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Abstract. The question of which and how a particular class of entan-
gled resource states (known as graph states) can be used for measurement
based quantum computation (MBQC) recently gave rise to the notion of
Flow and its generalisation gFlow. That is a causal structure for measure-
ments guaranteeing deterministic computation. Furthermore, gFlow has
proven itself to be a powerful tool in studying the difference between the
measurement-based and circuit models for quantum computing, as well
as analysing cryptographic protocols. On the other hand, entanglement
is known to play a crucial role in MBQC. In this paper we first show
how gFlow can be used to directly give a bound on the classical simula-
tion of an MBQC. Our method offers an interpretation of the gFlow as
showing how information flows through a computation, giving rise to an
information light cone.We then establish a link between entanglement
and the existence of gFlow for a graph state. We show that the gFlow
can be used to upper bound the entanglement width and what we call
the structural entanglement of a graph state. In turn this gives another
method relating the gFlow to upper bound on how efficiently a compu-
tation can be simulated classically. These two methods of getting bounds
on the difficulty of classical simulation are different and complementary
and several known results follow. In particular known relations between
the MBQC and the circuit model allow these results to be translated
across models.

Measurement Based Quantum Computing (MBQC) [1] has attracted attention
recently as one of the main competitors for a realisation of a quantum computer,
its role in understanding the power and significance of entanglement for compu-
tation [2, 3], and that it plays a key role in the development of cryptographic
protocols [4, 5]. In MBQC one starts off with a large multiparty entangled re-
source state and the computation is driven by a series of local measurements,
the choice of which can depend on the result of previous measurements in the
series. The formal language for MBQC was jointly developed by Prakash Panan-
gaden in [6]. In this work we are interested in the question of how to recognise
or characterise a ‘good’ resource for measurement based quantum computing.
Given the fact that after the generation of the state, all operations are local, it
is natural to expect entanglement to play a key role. Indeed it has been shown
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that the entanglement of a resource state must be sufficiently high for it to be
universal and not classically simulatable (we note that these two properties are
currently not known to be equivalent, though it is broadly expected that they
are) [7–11].

A related question to universality is that of the ability, or not, for a resource
to allow any unitary MBQC computation on it at all. This question is addressed
by what is called Flow or its generalisation referred hereinafter gFlow [12, 13],
for a particular class of resource states, called graph states [14] and its extension
open graph state [12] (see also below). There exist efficient algorithms [15, 16] to
find gFlow if it exists, and once gFlow is found, it gives an explicit measurement
pattern which gives a unitary computation across the resource graph state in
hand. Subsequently gFlow has been a useful tool for exploring many aspects
of MBQC such as efficient translation between MBQC and the circuit model
[12, 17], analysing cryptographic protocols [18], direct pattern design in MBQC
[19], proving bounds on depth complexity [13, 20] and from a more fundamental
perspective, the arrival of causal order in MBQC [20–23].

In this paper we show that gFlow also gives a bound on the difficulty in classi-
cally simulating MBQC, and how it can be interpreted as a flow of information.
This leads to the observation that the causal forward cone (the ‘forward cone’
given by the qubits who’s corrections directly or indirectly depend on that qubit’s
measurement results) is equal to the information cone (the cone of qubits where
the information spreads to through the computation). We then establish an intu-
itive link between gFlow on the one hand, and entanglement of a resource state
on the other. We further make this connection explicit by showing how gFlow can
be used to give bounds on the entanglement of a graph state. In this way we will
see that properties of simulateability of MBQC on a resource in terms of entangle-
ment can be translated to conditions in terms of gFlow. Via a known relationship
between the circuit model and MBQC these results can also lead to conditions
on simulateability of circuits. One such example is a rederivation of the result by
Jozsa [24].

The organisation of this papers is as follows. In Section 1 we mention basic ob-
servations about entanglement conditions for any good resource state for MBQC
which will be then linked to gFlow. In Section 2 we introduce graph states and
review the notion gFlow and several preliminary notions necessary for the rest
of the paper. In Section 3 we prove that gFlow can be used to give bounds on
direct simulation of a MBQC. In Section 4 we discuss how gFlow can be used to
see how information flows through a resource in an MBQC, giving in particular
an information light cone which coincides with the causal cone as defined in
[22, 23]. In Section 5 we show how gFlow can be used to upper bound the entan-
glement of a resource state which gives a new route to bounding simulatability
of a MBQC, which is different and complementary to the direct simulation in
Section 3. We finish with discussions.
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1 Entanglement and Determinism in MBQC

In measurement-based quantum computing one starts with a large entangled
resource state |ΨRES〉 on n qubits. We identify a two sets of qubits, I which will
represent the inputs, and O which will represent the outputs of the computation,
with n ≥ |O| ≥ |I|. Generally one can consider three types of computation using
this resource, one with a classical input and a classical output (let’s call this
CC), one with a quantum input and a classical output QC and one with a
quantum input and a quantum output QQ. Clearly QQ is the most general,
since one can always encode classical information onto quantum states. In this
work we focus on QQ. When considering a quantum input |ψ〉S (on a system
S of |I| qubits) the first step is to teleport the input system qubits S onto I
on the resource state, by some global map on I and S. This can be done for
example by entangling I with S (using, say, a control-Z gate) and performing
Pauli X measurements on S then appropriate corrections (see e.g. [25] for graph
state resources). The computation then proceeds by a series of measurements
on individual qubits, followed by corrections, then further measurements and
corrections and so on until the computation is complete. We call the sequence
of measurements and corrections the measurement pattern (see [6] for formal
definitions). The outputs qubits, labelled O are those qubits which at the end of
the computation are not measured. In this way the computation uses the resource
state to transfer the input from I to O, in a kind of involved teleportation, at
the same time performing some unitary over the input.

We begin with the following definitions.

Definition 1. A resource state |ΨRES〉 on n qubits, with defined input qubits I
and output qubits O is D-Happy if for all bi-partitions A,B such that I ∈ A and
O ∈ B we have

EA,B(|ΨRES〉) ≥ |I|, (1)

where EA,B(|ΨRES〉) = S(ρA) = S(ρB) is the entropy of entanglement across
partition A,B, where S(ρA) = − lnTr(ρA) is the von Neumann entropy of the
reduced state ρA = TrB(ρAB).

Definition 2. A MBQC pattern is called unitary if for all inputs the returned
state of the output is an encoding of a unitary acting on the input.

A similar notion was defined in [26] as information preserving pattern. We
present a simple but important observation about the link between the above
two definitions.

Theorem 1. There exists a unitary MBQC pattern on a resource state |ΨRes〉
on n qubits, with input qubits I and output qubits O only if it is D-Happy.

Proof. We start by noting that in order to teleport a state |ψ〉 ∈ C
⊗|I|
2 perfectly

across |ΨRes〉 to its output space, it is necessary to have EA,B ≥ |I|, for all bi-
partitions A,B such that I ∈ A and O ∈ B. To see this is true one can consider
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the state to be teleported as half a maximally entangled state. After the tele-
portation one would end up with a state with entanglement EA,B = |I|. Since
all operations are local, and it is not possible to increase entanglement in the
process, this implies that we started with EA,B ≥ |I|. We then note that any mea-
surement based computation can be considered as a teleportation across any cut
which divides the inputs from the outputs - since all operations are local to each
qubit, they are certainly local to any cut. �

Recall that a MBQC computation evolves through various branches, depend-
ing on the measurement outcomes. In a unitary MBQC pattern as defined
above, it is possible that different branch implements different unitary operators.
A weaker notion of unitary computation is given below.

Definition 3. A measurement based quantum computation is called determin-
istic if for all inputs the returned state of the output is an encoding of a fixed
unitary acting on the input independent of the branch of the computation.

Other types of determinism and their connections can be found in [13, 26]. In
this paper we only consider the above central notions as they can be directly
linked to the concept of structural entanglement as we present later. Moreover
it is known that for graph states with |I| = |O| the two definitions of unitary
and determinism, defined above, are equivalent [26]. This will allow us to link
the concept of gFlow to D-Happy as we discussed next.

2 Preliminaries: Graph States, Flow and gFlow

In the previous section we presented a necessary condition for computation across
a resource state based on entanglement. The simple idea there was that if infor-
mation can be transferred across a resource state, that state must be maximally
entangled across each cut. We did not say anything about how this can be done
however. This is where the ideas of Flow [12] and its generalisation gFlow[13]
play a role, where a constructive definition together with efficient algorithm
could be obtained for particular class of resource states of many qubits - graph
states (defined below), with chosen input I and output O. If a graph state has
gFlow, it implies that a unitary computation can be carried out across it [12, 13].
Not only that, gFlow also gives instructions how to do it, and tells you what
class of computations will be carried out (which unitaries). We will show that
we can further use gFlow to give a simple bound on classical simulation of the
computation based on the size of the forward cones implied by the measurement
patters. This gives rise to an interpretation of the gFlow as showing us how
information is ‘spread’ across the resource state throughout the computation,
in an information light cone (which coincides with the causal forward cone in
MBQC [20, 22, 23]). In this section we review the definitions of graph states [14],
open graph states, Flow [12] and gFlow [13] and related concepts.

We start by defining the resource states considered, graph states [14]. A graph
state is a multipartite state |G〉 of n qubits, in one to one correspondence to a
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simple undirected graph G, with vertices V and edges E. Every vertex is asso-
ciated to a qubit, and every edge can be understood as an entangling operation
between qubits which have been initialised in the state

|+〉 := (|0〉+ |1〉)/√2.

We then have
|G〉V :=

∏

i,j∈E

CZi,j |++ · · ·+〉V , (2)

where CZi,j is the control-Z operation between qubits i and j. It is clear from
this definition that the entanglement across a cut A,B is bounded by the number
of edges cutting it, denoted CA,B, i.e. EA,B ≤ CA,B.

Graph states can equivalently be defined by their stabiliser operators [14], a
set of n operators, each associated to one vertex defined as

Ki := Xi ⊗j∈N(i) Zj , (3)

where X and Z are the Pauli operators (and Y = iZX). The graph state |G〉
is the unique state satisfying all the eigenvalue equations (also called stabiliser
relations or equations)

Ki|G〉V = |G〉V .
The above relation is the key to how gFlow works - gFlow tells us how to apply
the stabilisers to correct for measurements.

When used as a resource state for MBQC we assign some vertices as inputs
I ∈ V and some as outputs O ∈ V . In order to preserve the space we have that
the size of the input set |I| ≤ |O|. We call the graph, with these assignments an
open graph denoted as G(I, O, V ). The associated state is slightly different, the
input vertices are no longer prepared in the |+〉 state, but can be arbitrary input
qubits |ψ〉I . The rest of the vertices are prepared as normal, and again, every
edge corresponds to a control-Z operation. We denote such a state as |G(ψ)〉

|G(ψ)〉V :=
∏

i,j∈E

CZi,j |ψ〉I |+ · · ·+〉V/I (4)

where the state only depends on the inputs so different open graphs may have
the same open graph state if they share the same set I, and graph G even if they
have different assigned outputs O. The stabilisers are now reduced to those only
on the non-inputs (we denote this set Ic)

Ki|G(ψ)〉V = |G(ψ)〉 ∀i ∈ Ic. (5)

Here the stabilisers define a space (of dimension 2|I|) of states such that this
equation holds. The open graph state defined in Equation 4 is equivalent to
starting in the standard graph state Equation 2 and teleporting an input |ψ〉S
over system S (of |I| qubits) onto the input vertices I by performing control-
Zs between S and I, followed by Pauli X measurements on the S qubits and
corrections (see e.g. [25]).
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In the standard model of MBQC [6, 27] measurements are performed in one
of the equatorial planes defined by the X − Y , X − Z or Y − Z planes, and
correction operations are local Pauli operators. By the end of the computation
all vertices will be measured except the outputs (we denote this OC). The gFlow
assigns a set of correction operators for each of these measurements.

Before giving the definition of gFlow, we give the intuition to how it works for
measurements in the X − Y plane. This corresponds to measuring in the basis
|±θ〉 := (|0〉 ± eiθ|1〉)/√2. We denote the projections associated to results ±1 as
P±,θ := |±θ〉〈±θ|. For later use we denote the results in binary form as ri = 0
for +1 and ri = 1 for −1 outcomes. When measuring a state |ψ〉, in quantum
mechanics the result is random (in fact normally in MBQC the probabilities are
1/2 and 1/2), which takes the resulting state to one of two branches, either the
positive branch P+,θ|ψ〉/p+ with probability p+ = 〈ψ|P+,θ|ψ〉, or the negative
branch P−,θ|ψ〉/p− with probability p− = 〈ψ|P−,θ|ψ〉.

Clearly to perform a deterministic computation U , we need to recover a de-
terministic evolution, hence corrections need to be applied. By convention we
take the positive branch to be the ideal branch (note that of course P+,θ|ψ〉/p+
is not in general a unitary embedding, this is an additional requirement which is
also satisfied for our case). The task is then to find a correction operator to take
the state when projected onto the −1 result to that of the +1 result (possibly
ignoring the state of the measured qubit, since it is no longer used). The starting
point is to notice that for all measurements in the X − Y plane, the projections
are related to each other by a Pauli Z operator (for the other planes it is simi-
larly the orthogonal Pauli operator) P+,θ = ZP−,θZ. Imagine if it were possible
to know the outcome of the measurement before it was performed (for exam-
ple by traveling back in time after the measurement was performed and telling
yourself), instead of correcting after the event, if we knew that we were about to
get −1, we could cheat and apply a Pauli Z operator - then the ‘measurement’
(projection) would take us onto the projection we wanted, the positive branch.
Obviously this is not possible without time travel since in quantum mechanics
the results of measurements are random and cannot be known beforehand (we
can only predict probabilities). However, we can use the stabilisers to simulate
this strategy.

Imagine we applied the measurement on qubit i, then our time-travelling
correction strategy for the −1 result would be to perform a Pauli Z operator on
qubit i. Now, if we take a neighbour j /∈ I, the stabiliser condition (Equation 5)
tells us that

Zi|G(ψ)〉 = ZiKj=N(i)|G(ψ)〉 (6)

= I1i ⊗Xj ⊗k∈N(j) �=i Zk|G(ψ)〉. (7)

Since Xj⊗k∈N(j) �=iZk are on different systems from the measured qubit i, it does
not matter when they are performed (they commute with the measurement). In
this way, applying Xj ⊗k∈N(j) �=i Zk correction operator after the measurement,
is the same as applying a Z correction before the measurement - so that it
has exactly the same effect. The latter is sometimes called an ‘anachronical
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correction’, since it is as if we could go back in time and correct the measurement
before it happened. The same works if a product of stabilisers is used in Equation
6 as long as their product results in one Pauli Z operator on qubit i, and we call
the vertices associated to these stabilisers as the correcting set. Graphically this
condition is ensured if the total number of edges between the correcting set and
the vertex being measured is 1 modulo 2. This motivates the definition of the
odd neighbourhood of a set of verticesK, denoted Odd(K) := {μ | |N(μ)∩K| =
1 mod 2}, which will be used in the definition of gFlow below.

Using this idea, gFlow plays the role of making sure it is possible to make a
good choice of which neighbour (or set of neighbours) to choose in a consistent
way - so that corrections do not somehow contradict or interfere with one an-
other. Indeed, gFlow is composed of a time order ≺ (partial order over vertices)
and a choice of neighbouring sets (correcting sets) for each measured vertex i,
denoted g(i) with this in mind. Firstly the time order should be consistent, so
that corrections happen after the assigned measurements - this appears as (g1)
in the Definition 4 below. Secondly, the correction should not invalidate or af-
fect earlier corrections. This is true if no Pauli Z operators appear in the past
when applying the stabiliser corrections, i.e. the correcting set is not oddly con-
nected to the past - this appears as (g2) in Definition 4. Finally the correcting
set should correct for the measurement it is assigned to. For measurements in
the X −Y plane this corresponds to the application of a Pauli Z operator when
the correcting stabilisers are applied, which means the correcting set should be
oddly connected to the measured vertex - which appears as (g3) in the definition
below (the analogous corrections for the other planes appear after).

Definition 4. An open graph state G(I, O, V ) has gFlow if there exists a map
g : Oc → PIc

(from measured qubits to a subset of prepared qubits) and a partial
order ≺ over V such that for all i ∈ Oc

(g1) if j ∈ g(i) and i = j then i ≺ j
(g2) if j ≺ i and i = j then j /∈ Odd(g(i))
(g3) for measurements in the X − Y plane, i /∈ g(i) and i ∈ Odd(g(i))
(g4) for measurements in the X − Z plane, i ∈ g(i) and i ∈ Odd(g(i))
(g5) for measurements in the Y − Z plane, i ∈ g(i) and i /∈ Odd(g(i))
Flow is a special case of gFlow, when all measurements are performed on the
X − Y plane, and the correction sets g(i) have only one element.

In this way the product of
∏

j∈g(i) Kj applies the appropriate ‘anachronical’
correction on vertex i, whilst not affecting other previous corrections. The asso-
ciated computation can be carried out as follows. First generate the open graph
state, then go through round by round (in the order given by≺), measureing each
qubit i, denoting the binary form of the outcome ri, followed by the correction
given by

⎛

⎝σi

∏

j∈g(i)

Kj

⎞

⎠
ri

(8)
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where σi is the Pauli Zi, Yi or Xi for measurement on qubit i done on the
X − Y , X − Z or Y − Z planes respectively, so that Equation 8 is trivial over i
and non-trivial only on future qubits of i i.e. on j such that i ≺ j.

Fig. 1. An example of gFlow for the two dimensional clusters state as an open graph
state. Following the convention in [12, 13] inputs are identified by vertices with squares
around them, and outputs are identified as hollow vertices (hence all non-hollow ver-
tices will be measured in the computation). The choice of gFlow for a given vertex is
indicated by red dotted arrows from the vertex to its gFlow (these are called gFlow
paths, see Definition 5. Note that gFlow paths need not follow graph edges, as in Fig-
ure 3b). The induced measurement rounds are highlighted in grey, (see Definition 8).

In [13] it is shown that gFlow is a necessary and sufficient condition for an
open graph state to allow a uniform unitary, deterministic computation to be
performed across it, where uniform means that each qubit can be measured at
an arbitrary angle on one of the planes. Hence the existence of gFlow implies the
resource is also D-Happy. Intuitively on can think that the existence of gFlow
guarantees that the entanglement of the graph state is such that the random
effects of local measurements can be absorbed and countered by yet unmeasured
qubits. The following definitions will be used to discuss how information travels
throughout the computation [20].

Definition 5. A gFlow path starting from a vertex μ, denoted as gPath(μ), is an
ordered set of vertices such that for each pair (i, j) we have j ∈ g(i) and the first
element of the set is μ.

Definition 6. An influencing path starting from a vertex μ, denoted as gInf(μ),
is an ordered set of vertices such that each pair (i, j) is on a gFlow path or is
preceded immediately by a pair on a gFlow path.

Definition 7. The forward cone FC(μ) of a vertex μ is the set of all vertices
touched by all influencing paths from μ.

The concept of the forward cone appears in [20, 22, 23] and can be understood as
a causal light cone, as described in [22, 23]. The partial order≺ in a gFlow defines
time order for the rounds of measurements. We say a vertex μ is in a round Rx if
it is measured in round x.
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Definition 8. The set Rx, denotes the set of vertices which are measured in the
xth round of measurements according to the gF low.

The best way to understand these definitions is through some examples. The
gFlow (which is also a Flow in this case) is illustrated for the 2D cluster state
in Figure 1. In Figure 2 we show examples of influencing paths and their union,
which make up the forward cone for the 2D cluster state.

Fig. 2. a) The bold red lines are examples of two possible influencing paths from the
central input vertex (see Definition 6), for the gFlow paths given by the red dotted
arrows. An influencing path is path which follows gFlow paths and no more than one
edge between gFlow paths. b) The collection of all influencing paths identifies the
set of vertices (in red) in the forward cone (see Definition 7). The maximum size of
forward cone for the 2D cluster state is indicated by the red shaded region (for the
same gFlow). For an n × m 2D cluster state the maximum forward cone is of size
|FCmax | = nm − n2/4. This gives a bound on classical simulation for a computation,
in Theorem 2. The same region has an interpretation as an information light cone (see
Section 4).

Before moving on to the interpretations of gFlow with respect to simulation
and information flow, we review some examples which illustrate its power as
a tool for analysing entanglement (as potential resources for MBQC), and in
accessing the tradeoff between classical processing and number of measurement
rounds (depth [20]). We start with an example of an open graph for which there is
no gFlow in Figure 3 a). It can easily be seen that there is no possible assignment
of correction sets g(i) and time order satisfying the conditions in gFlow for any
measurement axes. Indeed its inability to act as a resource for computation
across it follows directly from the fact that the entanglement across it is less
then the number of inputs (hence it is not D-happy). We note however that
there are examples of graph states which are D-happy, but do not allow a gFlow
[13, 26]. All such known examples still do allow computation across them. The
second example is one where there exists a gFlow, but it necessarily has some
correction sets which have more than one member - i.e. there is no Flow, as
shown in Figure 3 b). The associated gFlow is give by assignments g(1) = 4,
g(2) = 5 and g(3) = 4, 5, 6, with partial order given by the ordered measurement
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Fig. 3. Examples of open graph states with and without gFlow. The gFlow paths
are red dotted lines, and the induced measurement rounds are highlighted in grey (see
Definition 8). The graph in Figure a) does not have gFlow. This can be seen since
the entanglement across the cut input/output is lower than the number of inputs. The
graph in Figure b) has gFlow but no Flow [13]. The graph in Figure c) is the linear
cluster state which has a gFlow that is also Flow.

rounds R1 = 1, R2 = 2 and R3 = 3, and all measurements in the X − Y plane.
Note here that a gFlow path need not lie on a graph edge as for the gFlow path
(3, 4). The third example is the simple linear cluster state in Figure 3 c), where
gFlow follows along the line.

A final example illustrates how gFlow can be used to find advantages in the
number of rounds needed in a computation (taken from [13]). In Figure 4 the same
open graph can have different gFlows. In the first case, Figure 4 a), the gFlow has
correcting sets of size one, hence it is a Flow (g(i) = i + 4), and the number of
rounds is the number of inputs (in the example this is four, but it easily extends
to arbitrary size). More complicated gFlows can be found by increasing the size
of some correcting sets, with the benefit of reducing the number of rounds. Figure
4 b), we set the correcting sets as g(1) = 5, 6, 7, 8, g(2) = 6, 7, 8 , g(3) = 7, 8 and
g(4) = 8. It can easily be checked that this assigment allows all measurements to
be done in the same round since for every vertex i, the correcting set g(i) is oddly
connected only to i.

The above example illustrates a general scheme that could be understood as a
tradeoff between rounds of computation and the amount of classical processing
needed, but we have not yet talked about classical processing. To see how it
works, we should think back again at what the gFlow does. Recall that gFlow
tells us on which sets of vertices we should apply corrections (Equation 8). In
particular, for a vertex i, the correction associated to its measurement result (ri,
where ri = 0 corresponds to the ideal branch and ri = 1 to that which needs to
be corrected) is the application of the product of the stabilisers of all the vertices
in g(i) (minus the Zi) - i.e. the correction is (Zi

∏
j∈g(i) Kj)

ri . Thus, if a vertex

l is in the gFlow (or is a neighbour to a gFlow vertex) of another vertex i, then
it will receive an Xri

l (or Zri
l ) correction. The total number of corrections for

a vertex depends on how many gFlow set (or neighbourhoods of gFlow set) to
which that vertex belongs to. In the example Figure 4 b), vertex 8 has corrections
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Fig. 4. This open graph state has several possible gFlows, and illustrates how gFlow
can be used to find advantages in terms of the number of rounds needed (depth) in
a computation. a) is a gFlow with one correcting vertex per qubit, hence it is also a
flow. This requires a number of rounds scaling with the number of inputs. b) is a gFlow
which has largest size scaling with the number of inputs, but all measurements can be
done in one round. Indeed all intermediary tradeoffs are also possible.This exemplifies
the tradeoff between classical computation required and the number of measurement
rounds needed.

from all inputs - hence it must receive the correction Xr1⊕r2⊕r3⊕r4
8 (where ⊕ is

the sum mod 2). In general, to calculate the Pauli X correction that should be
applied on qubit j requires calculating the parity of all the ris where j ∈ g(i) and
for the Pauli Z correction the parity of all the ris where j is a neighbour of g(i).
We assume this is done classically (since it is a simple calculation), however, by
increasing the size of the gFlows (in order to reduce the depth), we necessarily
increase the size of this classical computation. This tradeoff has recently been
translated to a tradeoff between the degree of the initial Hamiltonian and time
of computation in the adiabatic model [28].

This tradeoff, a particular feature of the measurement based model, gave rise
to a distinction in the power of measurement based quantum computation com-
pared to the circuit model with respect to the number of time steps required [29].
The first example of a depth separation between quantum circuit and MBQC
was proven for the calculation of parity function (where depth is defined to be
the minimum number of rounds for a computation) [20]. Indeed this is a general
feature that the depth of MBQC can be logarithmically better than the circuit
model, where the difference is absorbed into the classical processing. More con-
cretely it was shown that the depth complexity of MBQC is equal to the depth
complexity for the circuit model with the addition of unbounded fan out gates
[29].

3 Direct Simulation from gFlow

We will now see how we can derive a simple classical simulation, by tracking the
stabilisers and logical operators. This idea is exactly how one can understand the
Gottesman Knill theorem for the efficient classical simulatability of computations
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including only Clifford operations [30]. The proof follows from tracking stabilisers
operator since they are an efficient way to describe a stabiliser state (such as
a graph state), and Clifford operations, by definition transform stabiliser states
to other stabiliser states, so computations can be simply tracked and described
[30].

In what follows we will represent the computation in terms of the evolution of
a set of logical operators. In physics there are two main, equivalent, ways that one
views quantum evolution. One method (more common in quantum information)
is where we look at how a state develops, and keep track of it as it evolves.
This is known as the Schrödinger representation. Equivalently, one can view the
state as having not altered, but the operators defining measurements having
changed. This picture is known as the Heisenberg representation of evolution.
In between these two pictures lies another way of representing evolution, which
has been developed for quantum information - the so called ‘logical Heisenberg’
representation [30, 31]. In this method we track the evolution of a complete set
of logical operators - in this case the Pauli operators. To recover the Shrödinger
representation, we remember that any state density matrix can be decomposed
into Pauli operators (see Equations (13 and 14 in the next section). The logical
Heisenberg representation has proved a very instructive way to view the evolution
of MBQC [27, 32], and as we will see leads to a simple bound on the cost of
classical simulation.

Our simulation will follow the main treatment of [27, 32], with the addition that
we will consider rotated operators and their decomposition into Pauli operators,
and we will use gFlow to instruct our procedure for updating the operators, which
eventually leads to our main theorem. Our main tool will be the stabiliser formal-
ism [30]. As mentioned in Section 2, for an open graph state the stabilisers define
a space. Generally we talk in terms of a stabiliser group S, which is a subgroup of
the Pauli operators. In the case of the open graph states, the generators of the sta-
biliser group are given by the operators Ki (Equation 3), so that S = 〈{Ki}ni=1〉.
These are not the unique generators, indeed multiplying each of these by any one
generator gives a new set of generators. The stabiliser group defines a space (the
stabiliser space, or ‘code’ in error correction terminology) by a set of eigen equa-
tions - it is the space of states which are unchanged by the group. For the open
graph states this is given by Equation 5 that is for all i ∈ Ic : Ki|G(ψ)〉 = |G(ψ)〉,
which implies all products ofKi (i.e. all elements of S) leave the states unchanged.
We say the states |G(ψ)〉 are stabilised by the group S. In general if the stabiliser
group for n qubits is generated by k elements, then the stabiliser space is of di-
mension 2n−k. Essentially the stabilisers act like the identity over the this space,
defining the space itself. In addition to tracking the logical operators, we will also
track the stabiliser operators - indeed this will be a key tool for the former.

One can picture the whole of the computation in a high level as follows. The
attaching of the input to the graph state (forming the open graph state), encodes
the input space onto the many qubit state. The information is in some sense
‘spread’ over the large entangled state (we will talk more about computation
as spreading of information in the next section). We call this encoded space the
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logical space. During the computation the information is pushed forward through
the measurements towards the outputs, so that after the final measurements the
logical space sits on only the output qubits. During this push the logical space
is also rotated around, resulting in unitary computation. One can think of the
stabilisers as keeping track of where the logical space is sitting, and the logical
operators as telling you how the space has been rotated (in a sense the logical
operators track both).

If state |ψ〉 in the stabiliser space, with stabiliser group S = {Si} evolves
under unitary U , the new state U |ψ〉 is clearly stabilised by {USiU

†}, giving
the updated stabiliser group. Under measurement things are slightly more com-
plicated. In this work we use only single qubit projective measurements, which
we write as two outcome measurements of the form Ai = P+

i − P−
i where P±

i

are the projectors onto the ±1 outcomes where i indicates the qubit measured.
As usual we denote ri as the binary representation of the measurement outcome
with ri = 0 when the outcome is +1 and ri = 1 when the outcome is −1. If it
is possible to find a set of generators such that only one anticommutes with the
measurement, call it Si, and the rest commute, the update simply replaces Si

with −1riAi. It is not hard to see that this group will stabilise the state after
measurement [30]. The projection from the measurement will not change the
eigenvalue relation of commuting operators, and the projected state is clearly a
+1 eigen state of the operator −1riAi. The trick is to find a suitable set of gener-
ators allowing for such an update (i.e. such that one and only one anticommutes
with the measurement) - which is where the gFlow comes in.

So how should we describe the evolution of our logical operators? We want
them to describe the information as it evolves. Talking in terms of pure states
(which suffices for our discussion) if |ψ〉 → |ψ̃〉, we want that our logical oper-
ators evolve L → L̃ so that their expectation is preserved, that is we demand
〈ψ|L|ψ〉 = 〈ψ̃|L̃|ψ̃〉. In this way, the new operators L̃ genuinely reflect the infor-
mation of the evolved space (see [27, 31, 32] for more details). Under a unitary
evolution |ψ〉 → U |ψ〉, we then have L → ULU †, clearly satisfying our require-
ment. For measurements, the trick will be to ensure that the logical operators
commute with the measurement operators, in which case, they remain unchanged
(measuring commuting observables cannot affect their expectation). The way of
doing this will be to multiply by stabilisers - which act as identity on the logical
space, so can be introduced without affecting the validity of the logical operators.

We will now see how we can track the evolution of the stabilisers and logical
operators through the computation. This will be done in three steps. Note that
our procedure does not exactly reflect the step by step process of the compu-
tation, as we do not consider corrections, rather it reflects the update as if all
measurements had the outcome +1 - which is indeed the role of the corrections in
the first place. In our discussion below we focus on measurements on the X − Y
plane, similar arguments simply apply to the other planes.

Step 1: The first step is to prepare the stabilisers in a form that will allow us to
simulate the measurements through the computation more easily. Physically it
corresponds to the unitary process of applying the control-Z operators generat-
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ing the open graph states (Equation 4), followed by simplifying the measurement
operator by applying first the appropriate local rotation. The stabilisers of the
open graph state are already given in Equation 3. For each input i an informa-
tionally complete set of operators is given by the Pauli operators Xi, Zi and
Yi = iZiXi. If we know Xi and Zi we can calculate Yi, hence we concentrate
only on these two, and denote them as LXi and LZi as we trace them through
the computation. The control-Z operators generating the open graph state is
unitary, thus after being attached to the graph the logical operators become
LXi = Xi ⊗j∈N(i) Zj and LZi = Zi (using the relation L → ULU † where U is
the control-Z operator, see also [6]).

Now we want to put these in a form ready to simulate measurements. The
idea is based on the fact that a measurement in the X−Y plane is equivalent to
first rotating around the Z axis, followed by measurement in the X basis (similar
relations are true for the other two planes used). We initialise all the stabilisers
and logical operators by doing this rotation, and consider Pauli X measurements
afterwards. The resulting state is sometimes called a rotated graph state. At the
same time we replace the individual stabilisers by products given by the gFlow.
We thus start with stabilisers

S =

〈⎧
⎨

⎩Si :=
∏

j∈g(i)

K
θj
j

⎫
⎬

⎭
i∈OC

, {Gi}i ∈ O

〉
, (9)

where Kθi
i := eiθi/2ZiKie

−iθi/2Zi = cos θiXi ⊗j∈N(i) Zj + i sin θiZiXi ⊗j∈N(i) Zj

are the rotated graph state stabilisers and θi is the angle of the measurement for
qubit i. The set {Gi}i ∈ O are there simply to complete the set of generators
in the case that |I| < |O|, chosen such that [Gi, Xj] = 0, ∀j /∈ O. Such a
set can always be found as follows, take an arbitrary set of operators which
complete a generating set (note that the operators Si above are by definition
all independent and so can form part of a generating set, then there is always
some set of operators in S which complete this set of generators). To ensure
commutation relation, we go round by round, starting from R1, we go through
each vertex ν in the round, and check if it commutes with Xν- and if not we
multiply it by Si. These operators are still valid generators and they commute
with all the Xν measurements. At the same time, by applying the local unitary
Phase rotations, the logical operators are initialised to

LXi = eiθi/2ZiXie
−iθi/2Zi ⊗j∈N(i) Zj ,

= cos θiXi ⊗j∈N(i) Zj + i sin θiZiXi ⊗j∈N(i) Zj ,

LZi = Zi. (10)

Step 2: The second step is to take the logical operators to a form which is
convenient for measuring Xν on all the non-outputs - by making sure that they
commute with Xν ∀ν ∈ OC . This update does not actually reflect any physical
operation, rather it is just rewriting by multiplication of logical identities, i.e.
stabilisers. However it is this step where the cost of the simulation arises, both
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in time and space of simulation. Although this is not a physical update we will
trace through what would happen in the computation to see how our update
can be carried out to ensure consistency in maintaining commutation.

We first expand logical operators in terms of products of Pauli operators

Lα =
∑

i

aiM
α
i , (11)

where Mα
i is some product of Pauli operators, this is always possible since the

Pauli operators forms a complete operator basis. Then, starting in R1 with the
stabilisers (Equation 9) and logical operators (Equation 10), we proceed with
each round as follows, going from the first to the final round in sequence. In
round Rx we update each Pauli term Mα

i in each Lα as follows:

∀μ ∈ Rx : If [Mα
i , Xμ] = 0, Mα

i → Mα
i

If {Mα
i , Xμ} = 0, Mα

i → SμM
α
i

After this step is complete, by the properties of gFlow it is easy to see that
all the Lα will commute with all Xν , i.e. [Lα, Xν ] = 0 ∀α, ∀ν ∈ Oc.

Step 3: The third step reflects the measurement of the computation, however
with the unphysical condition that all outcomes are plus one. Although this does
not really reflect measurement, it reflects the computation, since corrections are
made so that this is always the final state. We first update the stabilisers and
then use these to update the logical operators so that they are trivial (identity)
everywhere except the outputs. The stabilisers are replaced with

S =
〈{Xi}i∈OC

, {Gi}i ∈ O
〉
. (12)

One can picture this as measurements with fixed +1 outcome as follows. We
first notice that {Si, Xi} = 0 and [Si>j , Xj ] = 0, as can easily be seen from the
definition of gFlow. To update the stabiliser operators to arrive at Equation 12
from Equation 9, again we start in R1 and proceed with each round, going from
the first to the final round, and in each round Rx, we replace all the stabilisers
Si∈Rx withXi (corresponding to measuringXi and getting result +1). Because of
the condition {Si, Xi} = 0 and [Si>j , Xj ] = 0, this reflects exactly measurement
with the +1 outcomes, and finally we end up with the stabilisers (Equation 12).

The next part is to use these new stabilisers to update the logical operators
one final time. Again we do so term by term in the decomposition into Pauli
operators. If a term Mα

i has an Xμ for μ /∈ O, it is multiplied by Xμ (which
is now a stabiliser, hence a logical identity). The remaining logical operators
are trivial (i.e. identity) on everything except the outputs, and they encode the
unitary evolution of the computation Lα → U †LαU . This completes the classical
simulation.

The efficiency of this procedure is dominated by the size of the logical op-
erators (the number of terms occurring in the expansion). The stabilisers are
updated efficiently (nothing in the initialisation or the update scales larger than
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Fig. 5. Illustration of Step 2 the update procedure for the cluster state. The red
vertices represent the qubits where the logical operators LX1 and LZ1 are non-trivial.
a) is the point directly after X1 has been considered. b) is the point directly after
qubits in the first and second round have been measured. c) is the point after qubits
in the third round have been considered. See text for details. The number of qubits
touched in the update procedure is equal to the size of the forward cone FC , which
gives an upper bound to the size of the final logical operators, and hence the cost of
directly simulating the computation (see Theorem 2). The FC also acts as a light cone
for the information spread throughout the computation.

O(n) where n is the size of the pattern). Similarly the initialisation of the log-
ical operators is efficient, however, during each update step, each term in the
expansion into Pauli operators must be checked and possibly updated. When an
Sμ is added to the term in the second step, the size increases by 2|g(μ)|, where
|g(μ)| is the number of vertices in the correcting set. This is necessary for every
Pauli Z operator introduced by previous updates. Starting from R1 these Pauli
Z operators are introduced on all the neighbours of the correcting sets - that
is along the gFlow path and one graph edge further. Thus they follow along all
possible influencing paths. Some terms may cancel out, so the total number of
terms is less than equal to 2|FC(ν)|. From this we get the following theorem.

Theorem 2. An MBQC over an open graph state with gFlow can be simulated
classically in O(n exp(|FCmax |)) where FCmax is the maximum forward cone over
all the inputs. More explicitly the logical operators Lα associated to vertex μ can
be updated with O(exp(|FC(ν)|)).

As mentioned, the above simulation does not take into account correction
(since it is unnecessary in terms of simulating the computation). One may won-
der given the simulation above where would the corrections come in at all. The
answer is in the last step - when measureing Xi, and getting result ri, instead of
replacing by Xi, we should replace by −1riXi. This would add signs throughout
the logical operators which in general could not be undone by simply products
of Pauli operators. With the exception being the case when each logical opera-
tor only has one Mα in expansion (Equation 11), i.e. is just a product of Pauli
operators, which occurs when the angles θi = 0, π, i.e. measurements onto Pauli
operators only. Then the minus signs can be all flipped coherently by multiply-
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ing by stabilisers. This is another way of seeing that if only Pauli measurements
are made, all corrections can be made at the end. In such a case one can also
see that the size of the logical operators becomes small - only one term each -
so that this simulation itself is efficient. This simple observation will allow us
to derive the equivalent of Gottesman-Knill Theorem directly in MBQC. As all
the Clifford operates can be implemented in MBQC using only Pauli operators.
Having removed any dependency as described above will lead to an efficient
classical simulation of any MBQC pattern implementing Clifford operators and
Pauli measurements. This interplay between efficiency and the angles of mea-
surement is something not taken into account in the above theorem, and offers
more potential for better bounds. We leave this to future work for now.

To see the updating which truly corresponds to a computation, i.e. including
corrections, one can combine steps 2 and 3 to get rid of the Xis round by round
by applying the post measurement stabilisers −1riXi and in addition perform
the correction operation (given by the gFlow) to remove the −1ri . The effect
is that one can simply remove the measured Xis whilst tracing through the
computation.

For clarity we go through the example for the first few rounds on the 2D clus-
ter state. For input of qubit 1 before being attached to the graph it is described
entirely by two logical operators LX1 = X1 and LZ1 = Z1. After Step 1 initial-
isation (joining to the open graph state and ‘rotating’ each qubit according to
the measurement basis), these become

LX1 = eiθ1Z1X1Z3

LZ1 = Z1.

Here we have abbreviated the terms coming from the rotated basis into the
exponent eθ1Z1 = cos θ1I1 + i sin θ1Z1, and for ease of notation we remove the
tensor product symbol.

We next consider Step 2, starting with round R1 and operator X1 that an-
ticommutes with Z1s, hence for those terms in the Lα where this occurs we
are required to multiply by S1 = Kθ3

3 = Z1 ⊗ Z2 ⊗ eiθ3Z3X3 ⊗ Z4 ⊗ Z7. This
is equivalent to putting it up into the exponent, so that the logical operators
become

LX1 = X1e
iθ1Z2e

iθ3Z3X3Z4Z7Z3

LZ1 = Z2e
iθ3Z3X3Z4Z7.

In Step 3 the X1s are removed (since after measurement and correction the
X1 are a logical identity), and the logical operators are thus non-trivial on qubits
2, 3, 4, 7 after R1, as illustrated in Figure 5a). In the second round R2, Xν on
qubits 2, 3 and 4 are considered. We update the logical operators by considering
these one by one, starting with X2 (any order in the same round gives the same
final result). This anti commutes with Z2 - which comes from the application
of S1 = Kθ3

3 in the previous round. Indeed this is how the updates are affected
along all influencing paths. When the Z2 occurs we are forced to multiply the



444 D. Markham and E. Kashefi

term by S2 = Kθ6
6 = Z2 ⊗ Z5 ⊗ eθ6Z6X6 ⊗ Z7 ⊗ Z11. This takes the logical

operators to

LX1 = eiθ1e
iθ3Z3X3Z4Z5e

θ6Z6X6Z11Z3

LZ1 = eiθ3Z3X3Z4Z5e
θ6Z6X6Z11.

Note that here, two Z7 operators have cancelled out - they came from two
occasions where qubit 7 was a neighbour of one of the correcting sets. In this
way, it is possible that some qubits in the set of influencing paths cancel out
- this happens if the number of influencing paths they sit in as gFlow paths is
even, and the number arriving from non-gFlow paths is also even (at this point
in our calculation the number of times it is on a gFlow path is zero, and it is in
2 influencing paths not as a gFlow).

After qubits X3 and X4 are also considered, we have to do the same trick
to get rid of the Z3 and Z4s, by multiplying the terms where they occur by
S3 = Kθ7

7 and S4 = Kθ8
8 respectively. Finally we end up with logical operators

LX1 = eiθ1e
iθ3Z6eiθ7Z7X7Z8Z12X3Z5e

θ6Z6X6Z7e
iθ8Z8X8Z9Z11Z13Z6e

iθ7Z7X7Z8Z12

LZ1 = X3e
iθ3Z6e

iθ7Z7X7Z8Z12Z5e
θ6Z6X6Z7e

iθ8Z8X8Z11Z12.

Again, in Step 3 we get rid of theX2,X3,X4s, hence after the measurements in
round R2 the logical operators are non-trivial only on qubits 6, 7, 8, 9, 11, 12, 13,
as indicated in Figure 5b). It is then clear how after the third round of measure-
ments we will be left with logical operators that sit on the highlighted qubits 10,
11, 12, 13 and 14, as indicated in Figure 5c).

For any graph and any measurement pattern with gFlow, each time a Pauli
Z operator is added, unless it is in the output set, we will have to multiply
that term by a stabiliser - which will add a splitting of two. During the update
procedure, Pauli Z operators are added along every influencing path. Sometimes
these will cancel out, depending on the graph, but sometimes not, so that this
gives an upper bound to the complexity for the direct update procedure which
is the content of Theorem 2.

We thus see an initial way to go from a gFlow to a classical simulation. How-
ever, for certain examples this bound can be very bad. We have already men-
tioned that this is the case where all of the measurement angles are zero or π/2
- i.e. measuring the Pauli operators - there is no splitting of the logical opera-
tors, and only one term is needed for each logical operator, hence this simulation
becomes efficient, which is not captured by Theorem 2 (where we effectively as-
sume the worst case for the angles). Another example is a computation across
along a 1D graph state, with one input, say on the left, and an output on the
right (see Fig. 3c). There the gFlow simply follows the line, thus the influenc-
ing volume is big, however, this is always a simple one qubit computation, and
indeed all computations on a 1D cluster state are easy to simulate classically
[33]. In Section 5 we will see how connections to entanglement allow us to make
tighter bounds on classical simulatability which will work well for this example
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and many others. Before we do that however, in the next section we will discuss
how the update above can be interpreted as information flow, in tern giving the
interpretation of the forward cone FC as a light cone for the information.

4 Flow of Information and FC as Information Light Cones

The gFlow gives a causal structure on top of a graph state induced by the
correction procedure, called the forward cone FC (Definition 7). In this section
we will also look at how the same cone can be understood as a forward cone
of information, and moreover a light cone (so that information cannot travel
beyond this cone).

The forward cone can be viewed as an information forward cone directly from
the simulation procedure described in the previous section, and the interpreta-
tion of the logical Heisenberg representation as showing us where information
sits (see for example [34]). Consider a density matrix of some input i

ρi =
1

2
(I1 + ηxXi + ηyYi + ηzZi) (13)

The state is totally described by the coefficients ηi. The logical Heisenberg rep-
resentation ensures that at any time the evolved state, denoted as ρ̃, which now
can be sitting over many systems, is described as

ρ̃ =
1

2

(
I1 + ηx ˜LXi + ηyL̃Yi + ηzL̃Zi

)
, (14)

where the L̃α are the updated logical operators of α corresponding to the evo-
lution.

The information is then preserved, but ‘spread’ over to different operators in
the following sense. To recover the information encoded on the original system i
(i.e. recover the ηi), we should measure the logical operators ˜LXi , L̃Yi and L̃Zi .
Thus the information can be said to have spread over the range of the logical
operators. From the simulation in the previous section, it is clear that the logical
operators, and hence the information of input qubit i spreads out over the causal
forward cone FC defined by the gFlow (see Figure 5).

One may then ask if this is all that is allowed, or could we understand the
information as having spread further than the influencing cone (after all, this
is not the only way one may simulate a computation)? The answer (at least
for patterns where we wish uniform determinism, i.e. that all measurements
on a Pauli equator are allowed) is no, in that the spread must be balanced by
consistency amongst all measurements, which is the function of the gFlow, which
defines the cone FC .

Let us first return back to Step 2 in the simulation above, which is where this
spread of information occurs in the simulation. The trick is simply multiplying
the logical operators by a logical identity (i.e. the stabilisers). This part however
is clearly not restricted to the cone. One could easily expand a logical operator
to cover practically all qubits in this way. The reason we do not allow this is
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because we want to do measurements, and we want to do them over all qubits
not outputs so that all logical operators are preserved (this is what we mean by
consistency). Say one did this for operator LXi , so that its extent was over many
qubits. Taking its expansion into products of Pauli operators (as in Equation 11),
one would have a sum of many terms, including Pauli Z and X operators on
any given qubit in its range. When measuring qubits, to ensure the survival of
the information, we asked that the logical operators be taken to a form which
commutes with the measurement - this was the role of Step 2 in the above. If
one did not have this, information may be lost. This can only be the case if in
each term MXi

j of the expansion of LXi , the part of MXi

j on vertex μ is the
same (say σμ) or identity for all terms.

One could have, for example, that this is indeed the case, i.e. for a particular
LXi , extended so that it touched many qubits, that over each such qubit μ all
the terms in the expansion of LXi were either the same Pauli σμ or identity. In
such a case, one could happily measure those qubits in the Pauli basis σμ, the
information would be preserved, and the logical operators could be calculated
(if we wanted to consider the information over the outputs we would then follow
Step 3 to leave them as identity everywhere else, though one would have po-
tentially different evolutions for different branches). In this way its final spread
may indeed be beyond the light cone given by gFlow. The problem with this
would be that we want to transfer the logical operators not just of one input i,
but of all the inputs. It is shown in [27] that to achieve this, in such a way that
every measured vertex one can choose amongst a set of measurements across one
of the planes, the only way to do it is via a gFlow. Hence, for an input η, not
only is the forward cone FC(η) also an information cone, but to transfer all the
information at the same time, it is a light cone for the information contained
η - that is, the information can not spread beyond it, and the computation be
consistent for all inputs.

From the perspective of information flow, theorem 2 says, unsurprisingly, that
the more information is spread through a computation, the more costly it is to
simulate. However, again we should be careful to note that the true cost of
simulation depends on the angles of the measurements, which is not captured by
the size of FC , hence not by theorem 2. As we saw, for angles 0, π, the simulation
is simple, however the spread of information is still large.

5 Bounds on Entanglement from gFlow

In this section we will show a connection between gFlow on the one hand, and
entanglement conditions for both the universality of a resource state and the clas-
sical simulatability of a computation on the given resource, on the other. More
precisely we will show that the Flow and gFlow can be used to upper bound
the entanglement of the graph state, in terms of the entanglement width [9] and
what we will call the structural entanglement (though not explicitly defined, it
can be understood from [8], see also [7]). Conditions of universal family of re-
source states, and for classical simulatability are known for both these measures,
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which can be translated to conditions about the gFlow through our bounds [9–
11]. Several known results can then be derived for both the measurement based
model and circuit based model (through the known maps between the two mod-
els [12, 17]). For example we reproduce the result by Josza stating that a circuit
which any wire are touched by at most logarithmic (in the size of the input)
many number of two qubit gates can be classically simulated efficiently [24].

Let us first define the entanglement measures we are interested in. The en-
tanglement width [9] of a pure state |ψ〉 is defined as

χwd(|ψ〉) := min
T

max
e

χbi
T,e(|ψ〉), (15)

where χbi
T,e(|ψ〉) is the the log-Schmidt rank across the bipartite cut defined by

T and e where T is a sub-cubic graph with n leaves and e is an edge of T .
Each leaf corresponds to a qubit of the state |ψ〉. The bipartite cut is defined by
removing edge e to give two separate trees. The leaves of one tree correspond to
one side of the cut, and the other tree the other side of the cut. It was shown
that if the entanglement of a family of resource state does not scale polynomially
with the size of its input space then, that family cannot be a universal [9, 11]
(in the case of QQ computations, note that this is not the same as asking for
universality in the CC case). It was also shown that any MBQC can be simulated
in O(npoly(2χwd)) [10].

Motivated by the proofs in [8], we define the structural entanglement as

Estruc(|ψ〉) := min
Order
1,...,n

max
cut k

A=1,...,k
B=k+1,...,n

χAB(|ψ〉), (16)

where the minimum is taken over all orderings (labelings) of the qubits 1, . . . , n,
and the max is taken over a cut defined for a given ordering by taking all qubits
1, . . . , k on partition A and the rest on partition B and χAB(|ψ〉) being the
log-Schmidt rank over cut AB. Although not explicitly stated in terms of this
measure, in [8] it is shown that any MBQC pattern can be simulated classically
in O(n2poly(2Estruc)).

It is easy to see that the tree in Figure 6 defines a set of cuts such that any
cut either splits the graph in two with all leaves below or equal to a value k on
the left, and above k on the right (as per the optimisation for Estruc), or else it
just identifies one leaf. This clearly implies that

Estruc ≥ χwd. (17)

We will now see how the Flow and gFlow can be used to upper bound Estruc,
and in turn χwd. We start by considering Flow, which is simpler to picture, but
the ideas easily extend to gFlow. The idea is that they both can be used to define
a natural order, which gives a simple bound to Estruc which comes from induced
disjoint input-output paths. Indeed, if an open graph state has Flow, following
the image of the Flow function, f , (Definition 4) from each of the inputs leads
to disjoint lines to the outputs, which cover all the non outputs [15, 17] (called
Flow wires).
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Fig. 6. This tree defines a set of cuts showing that Estruc ≥ χwd. Any cut either sits
in the same set of cuts as that optimised for Estruc - effectively choosing a k such that
all qubits of number less than or equal to k are in partition A and all higher qubits
are in partition B (cut a)), or else it singles out one qubit (cut b)), which can never
be the unique maximum.

Fig. 7. Flow defines a natural ordering from top left to right across each Flow wire
from top to bottom as shown. This is used to define cuts by a number k where partition
A consists of all qubits below qubit k in the ordering and partition B consists of all
qubits above k in the ordering. The entanglement across any cut is upper bounded by
the number of edges cut (in this case k = 10 and the entanglement is exact).

We consider first the case where |I| = |O|. The numbering goes as follows. We
start with an arbitrary input going along the image of the Flow function of that
vertex till we reach an output qubit. Next we choose another not selected input
qubit and carry on in this fashion, till we cover all the inputs, see Figure 7 and
Figure 8. Note that based on the definition of Flow, no input qubit could belong
to the image of the Flow function of another input qubits hence on each such
Flow wire there will sit only one input qubit and hence we have |I| such wires.
To calculate the entanglement we note the fact that the entanglement across a



Entanglement, Flow and Classical Simulatability in Quantum Computation 449

Fig. 8. In the worst case the number of edges cut by a line equals 1 + 2CF . This
implies a bound on the structural entanglement (see text).

cut C for a graph state can be bounded by the number of edges crossing the cut
EA,B ≤ C. This is clear since in preparation of the state each edge corresponds
to a control-Z operator, and C such operators can create at most C e-bits.

Definition 9. For an open graph with flow, we denote CF the maximum number
of edges crossing between Flow wires.

We easily see that a cut between two Flow wires gives entanglement at most
CF (see Figure 7). This can be at most doubled (plus one) by choosing a lower
number to cut at (thus potentially increasing the number of edges cut) (see
Figure 8). We thus have that Estruc ≤ 1 + 2CF .

To extend this to the case where |O| > |I| we must consider the worst case,
for which each extra qubit adds one unit of entanglement. In this general setting
we now call CF the maximum number of edges crossing between Flow wires,
when the output qubits not in a Flow wire are ignored along with their edges.
We also call Δ := |O| − |I|. We then have the following observation.

Theorem 3. A graph state with Flow has structural entanglement

Estruc ≤ 1 + 2CF +Δ. (18)

Thus any computation can be simulated in at least O(n2poly(22CF+Δ)).

We note that any computation which can be done with a number of outputs
greater than |I| can be done with |I| = |O| without changing the Flow or CF

by simply removing the extra Δ output qubits from the graph resource. Thus
Δ = 0 for most interesting cases. This is clear since the existence of Flow is
robust against losing the extra outputs, and this guarantees the computation.

This result can be extended to open graphs with gFlow by using gFlow to find
disjoint input-output lines as follows. As we saw earlier, it is clear that if an open
graph state has gFlow, then it is necessarily D-happy (from Theorem 1 and the
fact that gFlow implies unitary computation). This in turn means that any cut
which separates the input and the output goes through at least C ≥ |I| edges.
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Taking a result from graph theory, Menger’s theorem [35] says that this implies
there are at least n parallel paths going from inputs to outputs. Furthermore it
can be shown that there are parallel paths which sit along gFlow paths and can
be found systematically also [36]. This can be used to give a natural order to
the graph as for Flow, but with the possibility that non-output qubits do not
sit in the disjoint paths, and so should be added to the Δ term. Again the size
of Δ may be reduced or removed by considering equivalent smaller graphs, but
this is less well understood for gFlow.

This result covers examples not covered by the direct simulation from Section
3, for example the 1D cluster state. The statement of Theorem 3 is a very similar
sounding statement to Jozsa’s [24] which states that a quantum computation on
a circuit can be simulated in O(npoly(2D)) where D is the maximum number of
gates that touch or cross a circuit wire.

6 Conclusions

We have seen that gFlow can be used for two complementary approaches for
giving bounds on the efficiency of classical simulation for MBQC. In Theorem 2
we saw that classical simulation is possible with resources scaling as exponential
in the size of the largest causal future cone defined by the gFlow. On the other
hand in Theorem 3 gFlow can be used to upper bound the entanglement, and
hence give bounds on resources for classical simulation in terms of the number
of edges crossing gFlow wires (parallel wires from input to output induced by
gFlow). Simple and straightforward, but illuminating conditions for entangle-
ment of general resource states are described in Theorem 1. Furthermore the
causal future cone induced by gFlow is seen to be at the same time a light cone
for information spreading.

The results on classical simulation combine two of the main approaches for
bounding the cost of classical simulation for quantum computation - explicit
tracking of the computation using an efficient form (used for example in the
Gottesman Knill [30] theorem and related results (e.g. [37])) and bounds coming
from entanglement (used for simulating computation [7–11] as well as many body
physics (e.g. [38])). This offers the perspective of bridging these two approaches
via gFlow. A natural question is the interplay between the angle of measurement
and efficiency of simulation via the gFlow update procedure presented here. Set-
ting all angles to zero or π makes the simulation efficient (as per the Gottesman
Knill theorem), however for general angles it is not efficient(indeed Theorem 2
represents this worst case situation). The in between ground, combined with
bounds by entanglement may present new classes of computation admitting ef-
ficient simulation for example. Furthermore, we may gain more insight into how
efficiency of classical simulation is related to other features of computation illu-
minated by the study of gFlow.

It is also interesting in itself that from Flow and gFlow one can derive bounds
on the entanglement of a graph state. Since there exist efficient algorithms to
calculate the Flow and gFlow of graphs [15, 16], and given Flow and gFlow one
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can easily bound the entanglement, one may use this to upper bound the en-
tanglement of general graph states. This is both important for recognising good
resources (since the existence of Flow does not talk about universality, whereas
the entanglement gives bounds on this also [9, 11]), and more generally as entan-
glement represents important resource in other areas of quantum information.

The two approaches to classical simulateability can also be understood as
arising from two notions of ‘spreading’ of information. We have seen in Section
4 that the forward cone given by gFlow bounding the cost of classical simulation
can also be interpreted as a spread of information - so that the more spread
the information is, the more costly the simulation. The bounds arising from
entanglement ([7], [8] e.t.c) which lead to Theorem 3, can also be understood
as assigning a cost to the spread of information as follows. The entanglement
measure key to these results is a bipartite measure, the Schmidt measure of en-
tanglement, which counts the minimum number of product states (with respect
to a particular cut) needed to describe the state. This may be interpreted as
saying how ‘spread’ across product bases the state is. Indeed it is exactly the
rank of the reduced density matrix of one cut, so in a sense says the size of the
space in which it must be understood to sit (in this sense the ‘spread’ is over
the state space rather than precisely the parties). The trick of [7] and subsequent
work is to find an efficient form to describe the state and its updating through
a computation based on this minimum decomposition. Again, the smaller the
‘spread’ in this sense, the smaller the cost of this simulation. As we have also
seen in Sections 3 and 4, a big ‘spread’ of information is however not enough
to imply that a computation is difficult to simulate - MBQC with only Pauli
measurements is efficient to simulate, but the spread of information is large (in
both senses - the future cone is large, and the entanglement is large). To cap-
ture the difficulty in simulation, one must also include something about how this
‘spread’ of information is used. In the case of MBQC studied here, universality
(and presumably the difficulty in simulation) is given by the use of arbitrary
angles for the measurements, using the spread of information in the most uni-
versal way. This balance between spread of information through entanglement
and how it can be used also plays a key role in analogies between MBQC and
thermodynamics and in particular phase transitions [39, 40]. It is an exciting
prospect that these pictures may be unified from the perspective of gFlow or
similar notions.
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