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Abstract. Automata learning is a known technique to infer a finite state machine
from a set of observations. In this paper, we revisit Angluin’s original algorithm
from a categorical perspective. This abstract view on the main ingredients of the
algorithm lays a uniform framework to derive algorithms for other types of au-
tomata. We show a straightforward generalization to Moore and Mealy machines,
which yields an algorithm already know in the literature, and we discuss general-
izations to other types of automata, including weighted automata.

1 Introduction

One of the topics Prakash Panangaden has always been interested in is learning. He is
not only a great scholar himself, but he also has a great drive to spread his knowledge,
through his many lectures and discussions with colleagues around the world. We, as
authors, have enjoyed and been inspired by him and his work.

On a more technical level, learning is an active area in computer science, especially
in artificial intelligence. It involves deducing a (minimal) machine from observations. In
this paper we explore, redescribe, and generalize part of this research using a categorical
perspective. In this way we apply Prakash’s favourite language to an area that is close
to him — since he is a member of McGill’s Reasoning and Learning Lab.

Finite automata or state machines have a wide range of applications in Computer
Science. One of their applications is in verification of software systems and security
protocols. Typically, the behavior of the system is modeled by a finite state machine
and then desired properties, encoded in an appropriate logic, are checked against the
model. Models are unfortunately not always available and the rapid changes in the sys-
tem require frequent adaptations. This has motivated a lot of research into inferring
or learning a model from a given system just by observing its behavior or response to
certain queries.

Automata learning, or regular inference [4], is a widely used technique for creating
an automaton model from observations. The regular inference algorithms provide se-
quences of input, so called membership queries, to a system, and observe the responses
to infer an automaton. In addition, equivalence queries check whether the inferred au-
tomaton is equivalent to the system being learned. The original algorithm [4], by Dana
Angluin, works for deterministic finite automata, but since then it has been extended
and generalized to other types of automata [5,21,1], including Mealy machines and I/O
automata, and even a special class of context-free grammars.
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Category theory provides an abstract framework to study structures in mathematics
and computer science. Automata are prime examples of such structures and have been
studied using both algebras and coalgebras (see e.g. [13] and [19]) in two somewhat
independent research streams. In the last few years, strengths of both perspectives on
automata are being combined fruitfully, leading to the derivation of new algorithms and
results. In this paper, we again explore the power of abstraction and recast the main
ingredients of Angluin’s algorithm using basic categorical concepts, from algebra and
coalgebra, which open the door to instantiations to other types of automata, in other
categories, without having to reprove correctness of the algorithm.

In this paper we sketch the straightforward generalization from deterministic au-
tomata to Moore and Mealy machines, which yields an algorithm known in the litera-
ture [21,1,2], that had been developed inspired by Angluin’s algorithm but without an
explicit connection of the similarities and differences in both. Our abstract view pro-
vides this connection and opens the door to even further generalizations to other types
of automata.

In the proof of minimality of the inferred automaton we have used a technique that
goes back to Kalman and has since then been explored by a multitude of authors, in-
cluding Prakash himself. Among his many research interests, Prakash’s recent activities
includes using Stone-type dualities to minimize automata. He has observed that there
might be connections with automata learning (personal communication). This paper
provides a first step towards exploring this connection.

Organization of the paper. The rest of the paper is organized as follows. In Section 2,
we recall the basic ingredients of Angluin’s algorithm for deterministic automata and
show how we can recast them in a categorical language. In Section 3, we present the
first generalization of the algorithm based on the categorical reformulation by varying
the functor under consideration and provide a learning algorithm for Mealy/Moore au-
tomata. In Section 4, we show a different type of generalization by changing the base
category in which the automata are considered from Sets to Vect, obtaining in this man-
ner an algorithm for linear weighted automata.

2 Automata Learning: The Basic Algorithm

In this section, we explain the ingredients of Angluin’s original algorithm for learning
deterministic finite automata and rephrase them using basic categorical constructs as
we proceed.

Let us first introduce some notation and basic definitions. Let A be a finite set of
labels, often called an alphabet, and A∗ the set of finite words or sequences of elements
of A. We will use λ to denote the empty word and, given two words u, v ∈ A∗, uv denotes
their concatenation.

A language over A is a subset of words in A∗, that is L ∈ 2A∗ . We will often switch
between the equivalent representation of a language as a set of words and as its charac-
teristic function. Given a language L and a word u ∈ A∗, we write L(u) to denote 1 if
u ∈ L and 0 otherwise.
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Given two languages U and V , we will denote by U · V (or simply UV) the concate-
nation of the two languages U · V = {uv | u ∈ U, v ∈ V}. Given a language L and a ∈ A
we can define its right and left derivative by setting

a−1L = {u | au ∈ L} and La−1 = {u | ua ∈ L}.

A language L is prefix-closed if La−1 ⊆ L, for all a ∈ A, and suffix-closed if a−1L ⊆ L,
for all a ∈ A. Note that every non-empty suffix or prefix-closed language must contain
the empty word λ. We will use ↓u (resp. ↑u) to denote the set of prefixes (resp. suffixes)
of a word u ∈ A∗.

↓u = {w ∈ A∗ | w is a prefix of u} ↑u = {w ∈ A∗ | w is a suffix of u}
For the rest of this paper we fix a language L ∈ 2A∗ to be learned: the master lan-

guage. This learning means that we seek a finite deterministic automaton that accepts
L. Many definitions and results are parametric in L but we do not always make this
explicit.

2.1 Observation Tables

The algorithm of Angluin incrementally constructs an observation table with Boo-lean
entries. The rows are labelled by words in S ∪ S · A, where S is a non-empty finite
prefix-closed language, and the columns by a non-empty finite suffix-closed language
E. For arbitrary U,V ⊆ A∗, define row : U → 2V by row(u)(v) = L(uv). Formally, an
observation table is a triple (S , E, row), where row : (S ∪ S · A) → 2E . Note that ∪
here is used for language union and not coproduct. Since row is fully determined by the
language L we will from now on refer to an observation table as a pair (S , E), leaving
the language L implicit.

There are two crucial properties of the observation table that play a key role in the
algorithm of [4] allowing for the construction of a deterministic automaton from an
observation table: closedness and consistency.

Definition 1 (Closed and Consistent Table [4]). An observation table (S , E) is closed
if for all t ∈ S · A there exists an s ∈ S such that row(t) = row(s). An observation table
(S , E) is consistent if whenever s1 and s2 are elements of S such that row(s1) = row(s2),
for all a ∈ A, row(s1a) = row(s2a).

In many categories each map f : A → B can be factored as f = (A � • � B), de-
scribing f as an epimorphism followed by a monomorphism. In the category Sets of sets
and functions epimorphisms (resp. monomorphisms) are surjections (resp. injections).
Using these factorizations we come to the following categorical reformulations.

Lemma 2. An observation table (S , E) is closed (resp. consistent) if and only if there
exists a necessarilly unique map i (resp. j) such that the diagram on the left (resp. right)
commutes.
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������
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closed consistent

Here, Λ(row) is obtained by abstraction (Currying), so that Λ(row)(s)(a) = row(sa).

Proof. Suppose the table is closed according to Definition 1. Then, for every t ∈ S · A
there exists an s ∈ S such that row(s) = row(t). We define i by i(eA(t)) = e(s), using
that eA is epi/surjective. It remains to show that m ◦ i = mA.

(m ◦ i)(eA(t)) = (m ◦ e)(s) definition of i

= row(s) definition of row

= row(t) closedness assumption

= mA(eA(t)) definition of row.

The uniqueness of i is immediate using that m is monic.
Conversely, suppose that there exists i such that m ◦ i = mA and let t = ua ∈ S · A.

Take s such that e(s) = i(eA(t)) (which exists since e is epi). We need to show row(s) =
row(t).

row(s) = m(e(s)) factorization of row

= m(i(eA(t))) assumption e(s) = i(eA(t))

= mA(eA(t)) assumption m ◦ i = mA

= row(t) definition of row.

Suppose the table is consistent according to Definition 1. That is, if s1, s2 ∈ S are such
that row(s1) = row(s2) then, for all a ∈ A, it holds that row(s1a) = row(s2a). We define
j by j(e(s)) = eΛ(s), using that e is epi. By definition, j ◦ e = eΛ. It remains to show that
j is well-defined. Let s1, s2 be such that e(s1) = e(s2). We need to show eΛ(s1) = eΛ(s2).

e(s1) = e(s2) ⇒ row(s1) = row(s2) definition of row

⇒ ∀a∈A · row(s1a) = row(s2a) consistency assumption

⇒ Λ(row)(s1) = Λ(row)(s2) definition of Λ

⇒ (mΛ ◦ eΛ)(s1) = (mΛ ◦ eΛ)(s2) factorization of Λ(row)

⇒ eΛ(s1) = eΛ(s2) mΛ is monic.

The uniqueness of j follows directly from using the fact that e is epi.
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Conversely suppose that there exists j such that j ◦ e = eΛ and let s1, s2 ∈ S be
such that row(s1) = row(s2). We need to show row(s1a) = row(s2a), for all a ∈ A or,
equivalently, Λ(row)(s1) = Λ(row)(s2).

Λ(row)(s1) = mΛ(eΛ(s1)) factorization of Λ(row)

= mΛ( j(e(s1))) assumption eΛ = j ◦ e

= mΛ( j(e(s2))) assumption row(s1) = row(s2)

= mΛ(eΛ(s2)) assumption eΛ = j ◦ e

= Λ(row)(s2) factorization of Λ(row). �

Closed and consistent observation tables are important in the algorithm of [4]
because they can be translated into a deterministic automaton. We first describe the
construction concretely and subsequently more abstractly using our categorical refor-
mulation.

Definition 3 (Automaton associated to a closed and consistent observation table [4]).
Given a closed and consistent table (S , E) one can construct a deterministic automaton
M(S , E) = (Q, q0, δ, F) where

– Q is a finite set of states, F ⊆ Q is a set of final states and q0 ∈ Q is the initial state;
– δ : Q × A→ Q is the transition function.

These Q, F and δ are given by:

Q = {row(s) | s ∈ S } q0 = row(λ)

F = {row(s) | s ∈ S , row(s)(λ) = 1} δ(row(s), a) = row(sa).

To see that this is a well-defined automaton we need to check three facts: that the
initial state is indeed an element of Q; that F is a well-defined subset, or equivalently,
a well-defined function of type Q → 2; and that δ is a well-defined function of type
Q × A→ Q.

For the first, note that since S is a non-empty prefix-closed language, it must contain
λ, so q0 is an element of Q.

For the second and third points, suppose s1 and s2 are elements of S such that
(�) row(s1) = row(s2). We must show that

λ ∈ E and row(s1) ∈ F ⇐⇒ row(s2) ∈ F (1)

δ(row(s1), a) = δ(row(s2), a) ∈ Q, for all a ∈ A. (2)

Since E is non-empty and suffix-closed, it must also contain λ. We also have :

row(s1) ∈ F ⇐⇒ row(s1)(λ) = 1
(�)⇐⇒ row(s2)(λ) = 1 ⇐⇒ row(s2) ∈ F.

This concludes the proof of (1) above. Since the observation table is consistent, we have
for each a ∈ A, that (�) implies row(s1a) = row(s2a) and hence we can calculate

δ(row(s1), a) = row(s1a) = row(s2a) = δ(row(s2), a).
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It remains to show that row(s1a) ∈ Q. Since the table is closed, there exists an s ∈ S
such that row(s) = row(s1a). Hence, row(s1a) ∈ Q and (2) above holds.

In our categorical reformulation of the construction of the automaton Q we use that
epis/surjections and monos/injections in the category Sets form a factorization system
(see e.g. [7]). This allows us to use the diagonal-fill-in property in the next result.

Lemma 4. The transition function δ of the automaton associated with a closed and
consistent observation table can be obtained as the unique diagonal in the following
diagram,

S
e 		 		

ϕ

��

Q

ψ

��

δ



�
�
�
�
�

QA 		 mA
		 (2E)A

where

⎧
⎪⎪⎨
⎪⎪⎩

ϕ = Λ(i ◦ eA)

ψ = mΛ ◦ j.

Proof. The function δ obtained by diagonalization above satisfies:

δ(e(s))(a) = ϕ(s)(a) = i(eA(sa)).

This is the same as the above definition of δ, since e(s) and i(eA(sa)) represent, respec-
tively, row(s) and row(sa). ��
Definition 5 (Automaton associated with an observation table). Let (S , E) be a closed
and consistent observation table. The automaton (Q, init, f inal, δ) associated with the
table is given in the following diagram.

1
λ
��

init

����
����

����
��� 2

S
e 		 		

row

��Q

f inal
��������������		 m 		

δ

��

2E

evλ

��

QA

(3)

The initial state init = row(λ) and the set of final states is given by evaluating the table
in the λ column. These two functions exist because S and E are prefix- and suffix-closed,
respectively. The transition function δ was defined in Lemma 4.

Next we give a categorical proof of the minimality result of [4].

Theorem 6. The automaton associated with a closed and consistent observation table
is minimal.

Proof. An automaton is minimal if all states are reachable from the initial state and
if no two different states recognize the same language (this property is referred to as
observability).
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Following a characterization that goes back to Kalman and then followed by other
authors [16,6,9,8] these two properties can be nicely captured in the following diagram,
where in the middle we have the automaton of Definition 5.

1
λ
��

init

��		
			

			
			

	 2

A∗ r
		







c

��

Q

f inal
������������

o
		







δ

��

2A∗
evλ

��

∂

��

(A∗)A

rA
		




 QA

oA
		




 (2A∗)A

(4)

Let us define the unknown ingredients in the above diagram. On the left we have A∗,
with a transition structure given by appending a letter to the end of the word:

c(u)(a) = ua.

The set A∗, together with the above transition structure, is the initial algebra of the
functor 1+ A× − on Sets. The map r exists and is unique by initiality; it sends a1 · · · an

to δ(δ(· · ·δ(init)(a1) · · · )(an−1))(an).
On the right we have 2A∗ , the set of languages over A, with a transition structure

given by the Brzozowski/left derivative of a language:

∂(L)(a) = a−1L = {u | au ∈ L}.

The set 2A∗ , together with this transition function, is the final coalgebra of the functor
2 × (−)A. The map of coalgebras o : Q → 2A∗ thus exists and is unique by finality. The
map o assigns to every state the language it accepts.

Reachability and observability can now be rephrased in terms of properties of the
functions r and o in (4): the automaton Q is reachable if r : A∗ → Q is epic/surjective
and it is observable if o : Q→ 2A∗ is monic/injective.

To see that the automaton Q is minimal we extend the diagram above by including
the auxiliary arrows of diagram (3). On the right we insert the mono m : Q� 2E from
Lemma 2 and complete the diagram:

1
init

���
��

��
��

��
�� 2

Q

f inal

��
		 m 		

δ

��

2E

∂

��

evλ

��

		 		 2A∗

∂

��

λ?

���������������

QA 		

mA
		 (2E)A 		 		 (2A∗)A

(5)

Note that the transition function ∂ : 2E → (2E)A given by ∂(L)(a) = a−1L is well-defined
because the subset E ⊆ A∗ is suffix-closed. Moreover, note that the inclusion E ↪→ A∗
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gives rise to an injection 2E � 2A∗ , by taking images (here 2− is the covariant powerset
functor). This is a map of coalgebras 2E � 2A∗ , making (2E , ∂) a subcoalgebra of the
final coalgebra. This transition map ∂ in (5) satisfies:

∂ ◦ row = Λ(row) : S −→ (2E)A. (6)

where Λ(row) is as in Lemma 2. The proof is easy:

(∂ ◦ row)(s)(a)(v) = ∂(row(s))(a)(v) = a−1(row(s))(v) = row(s)(av)

= L(sav)

= row(sa)(v)

= Λ(row)(s)(a)(v).

One can now see that the rectangle on the left in (5) commutes by precomposing its
two maps Q⇒ (2E)A with the epi e : S � Q from Lemma 2:

(∂ ◦ m) ◦ e = ∂ ◦ row
(6)
= Λ(row) = mΛ ◦ eΛ = mΛ ◦ j ◦ e = (mA ◦ δ) ◦ e,

where the last equation uses the definition of δ from Lemma 4. Therefore, the unique
map Q� 2A∗ to the final coalgebra is a mono, being a composite of two monos in (5),
and we can conclude that the automaton Q is observable.

It remains to show that the automaton Q is reachable. This means that we must show
that the map r : A∗ → Q in diagram (4) is surjective/epic. We are done if we can show
that r ◦ n = e : S � Q, where we write n for the inclusion map S ↪→ A∗.

We prove this equation r ◦ n = e via the mono m : Q � 2E , and show that m ◦ r ◦
n = m ◦ e = row : S → 2E . We do so by induction on the length of strings u ∈ S . Thus:

(
m ◦ r ◦ n

)
(λ) = m(r(λ))

= m(init)

= m(e(λ))

= row(λ)
(
m ◦ r ◦ n

)
(ua) =

(
m ◦ r

)
(ua)

=
(
m ◦ r

)
(c(u)(a))

=
(
(m ◦ r)A)(c(u))(a)

=
(
(m ◦ r)A ◦ c

)
(u)(a)

(4)
=
(
mA ◦ δ ◦ r

)
(u)(a)

(5)
=
(
∂ ◦ m ◦ r

)
(u)(a)

=
(
∂ ◦ m ◦ r ◦ n

)
(u)(a) since S is prefix-closed

(IH)
=
(
∂ ◦ row

)
(u)(a)

(6)
= Λ(row)(u)(a)

= row(ua). �
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2.2 The Learning Algorithm

We present the algorithm of [4] in Figure 1. In the algorithm, there is a teacher which
has the capacity of answering two types of questions: yes/no to the query on whether a
word belongs to the master language and yes/no to the question whether a certain guess
of the automaton accepting the master language is correct. In the case of a negative
answer of the latter question, the teacher also provides a counter-example. The learner
builds an observation table by asking the teacher queries of membership of words of
increasing length. Once the table is closed and consistent, the learner tries to guess the
master language. We explain every step by means of an example, over the alphabet
A = {a, b}.
Input: Minimally Adequate Teacher of the master language L.
Output: Minimal automaton accepting L.
1: function LEARNER

2: S ← {λ} ; E ← {λ}.
3: repeat
4: while (S , E) is not closed or not consistent do
5: if (S , E) is not consistent then
6: find s1, s2 ∈ S , a ∈ A, and e ∈ E such that
7: row(s1) = row(s2) and L(s1ae) � L(s2ae)
8: E ← E ∪ {ae}.
9: end if

10: if (S , E) is not closed then
11: find s1 ∈ S , a ∈ A such that
12: row(s1a) � row(s), for all s ∈ S
13: S ← S ∪ {s1a}.
14: end if
15: end while
16: Make the conjecture M(S , E).
17: if the Teacher replies no to the conjecture, with a counter-example t then
18: S ← S∪ ↓t.
19: end if
20: until the Teacher replies yes to the conjecture M(S , E).
21: return M(S , E).
22: end function

Fig. 1. Angluin’s algorithm for deterministic finite automata [4]

Imagine the Learner receives as input a Teacher for the master language

L = {u ∈ {a, b}∗ | the number of a’s in u is divisible by 3}.
In the first step of the while loop it builds a table for S = {λ} and E = {λ}.
Step 1

λ

S
{

λ 1

S · A
{

a 0

b 1

(S , E) consistent? �

(S , E) closed? No, row(a) = (λ �→ 0) � (λ �→ 1) = row(λ).

Then, S ← S ∪ {a} and we go to Step 2.
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We extend the row index set S so we get a new observation table and we again check
for closedness and consistency.

Step 2

λ

λ 1

a 0

b 1

aa 0

ab 0

(S , E) consistent? �

(S , E) closed? �

Then, we guess the automaton:

�� ���� �	q0
a 		

b

��
�� ���� �	q1

a,b

�� where q0 = row(λ) = (λ �→ 0)

q1 = row(a) = (λ �→ 1)

Teacher replies with counter-example aaa.

S ← S ∪ {a, aa, aaa} and we go to Step 3.

In the second step we managed to build a closed and consistent table which enabled us
to make a first guess on the automaton. The guess was wrong so the teacher provided a
counter-example, which we use to extend the row index set, generating a larger table.

Step 3

λ

λ 1

a 0

aa 0

aaa 1

b 1

ab 0

aab 0

aaaa 0

aaab 1

(S , E) consistent?

No, row(a) = row(aa) but row(aa) � row(aaa).

Then E ← E ∪ {a} and we go to (Step 3.1).

In the third step the test of consistency failed for the first time and hence we extend the
column index set E from {λ} to {λ, a}. This extension allows to distinguish states (that
is, rows of the table) that were indistinguishable in the previous step though they could
be differentiated after an a step.
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Step 3.1

λ a

λ 1 0

a 0 0

aa 0 1

aaa 1 0

b 1 0

ab 0 0

aab 0 1

aaaa 0 0

aaab 1 0

(S , E) consistent? �

(S , E) closed? �

We make another guess:

�� ���� �	
� ��� ��q0
a 		

b

��
�� ���� �	q1

b

��

a
����
��
��
�

�� ���� �	q2

a

���������
b

��

The teacher replies yes.

In the last step, we again constructed a closed and consistent table, which allowed us to
make another guess of the automaton accepting the master language. This second guess
yielded the expected automaton.

3 Angluin’s Algorithm for Moore and Mealy Machines

Moore automata generalize deterministic automata by replacing the subset of final states
by a function o : Q → B, where B is a set of outputs. Mealy automata are another
variation where instead of having the outputs associated to the states, each transition has
an associated input and output letter. In a nutshell, here are the three types of automata
we have encountered so far.

o : Q → 2 o : Q→ B

δ : Q→ QA δ : Q→ QA δ : Q→ (Q × B)A

Deterministic automata Moore automata Mealy automata

Note that using the isomorphism (Q × B)A � QA × BA we can also reduce Mealy to
Moore automata (with a higher order output set).

Definition 1 of closedness and consistency does not depend at all on the fact that
the output set is 2. More interestingly also the categorical proof of minimality (Theo-
rem 6) is not specific for deterministic automata but can be carried over to an arbitrary
Moore automaton. Hence, we can straightforwardly use all the categorical definitions
and results above for an arbitrary output set B. This allow us to define what a closed and
consistent table for a Moore/Mealy automaton is and derive the algorithm that infers the
automaton recognizing the behavior of a Moore/Mealy automaton.

The master language L : A∗ → 2 is now replaced by a weighted language (or for-
mal power series) L : A∗ → B. Here, we use our abstract view on automata. Every
automaton has a canonical semantics and universe of behavior associated with it: the
final coalgebra of the functor associated with the transition structure. In the case of de-
terministic automata the final coalgebra is precisely the set of formal languages 2A∗ and
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in the case of Moore automata it is the set of weighted languages BA∗ . Note that for
Mealy machines where the output set is BA we then get as semantics BA+

, where A+

denotes the set of non-empty words over A.
Apart from the change in the type of the master language, the rest of the algorithm

in Figure 1 is precisely the same and also the proof of minimality carries over since we
have phrased it in the general setting using the final coalgebra.

Let us now illustrate the algorithm for Mealy machines using as example the lan-
guage L : A+ → B, with A = {a, b} and B = N, given by, for w ∈ A+,

L(w) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|w|a mod 3 if w = ua

3 if w = aab(bb)n, n ∈ N
0 otherwise

where u ∈ A∗ and |u|a denotes the number of a’s in the word u.
For notational convenience we will use the following equivalent representation of

row

row : S → (BA)E

row : S → BE·A

This last representation, row : S → BE·A, starting with E · A = {λ} · A = A, is precisely
what can be found in the existing algorithms for Mealy machines [21,1,2].

In the first step of the algorithm we build a table for S = {λ} and E · A = A.

Step 1

a b

S
{

λ 1 0

S · A
{

a 2 0

b 1 0

(S , E) consistent? �

(S , E) closed? No, row(a) � row(λ).

Then, S ← S ∪ {a} and we go to Step 2.

We extend the row index set S so we get a new observation table and we again check
for closedness and consistency.

Step 2

a b

λ 1 0

a 2 0

b 1 0

aa 0 0

ab 2 0

(S , E) consistent? �

(S , E) closed? No, row(aa) � row(λ) and row(aa) � row(a).

Then, S ← S ∪ {aa} and we go to Step 3.
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We again extend the row index set S we check for closedness and consistency of the
new table.

Step 3

a b

λ 1 0

a 2 0

aa 0 0

b 1 0

ab 2 0

aaa 1 0

aab 0 0

(S , E) consistent? �

(S , E) closed? �

Then, we guess the Mealy automaton A :

�� ���� �	q0
a|1

		

b|0
��

�� ���� �	q1

b|0
��

a|2
		�� ���� �	q2

b|0
��

a|0

��

Teacher replies with counter-example aab.

S ← S ∪ {a, aa, aab} and we go to Step 4.

We process the teacher’s counter-example and analyze the resulting table. Note that the
above example is of minimal length, but in fact this is not guaranteed: the teacher can
reply with an arbitrary counter-example. Shorter counter-examples do not necessarily
imply less steps in the algorithm. For instance, the teacher could have replied with aabb
and, in fact, this would cause the algorithm to terminate in one less step than it will now.

Step 4

a b

λ 1 0

a 2 0

aa 0 0

aab 0 0

b 1 0

ab 2 0

aaa 1 0

aaba 1 0

aabb 0 3

(S , E) consistent?

No, row(aa) = row(aab) and row(aab) � row(aabb).

Then E ← E ∪ {b} and we go to (Step 4.1).
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In the fourth step the consistency check failed and therefore E · A, the column index,
gets extended from {λ} · A to {λ, b} · A.

Step 4.1

a b ba bb

λ 1 0 1 0

a 2 0 2 0

aa 0 0 0 0

aab 0 0 0 3

b 1 0 1 0

ab 2 0 2 0

aaa 1 0 1 0

aaba 1 0 1 0

aabb 0 3 0 0

(S , E) consistent? �

(S , E) closed? No, row(aabb)�row(s), for all s∈S .

Then, S ← S ∪ {aabb} and we go to Step 5.

Step 5

a b ba bb

λ 1 0 1 0

a 2 0 2 0

aa 0 0 0 0

aab 0 0 0 3

aabb 0 3 0 0

b 1 0 1 0

ab 2 0 2 0

aaa 1 0 1 0

aaba 1 0 1 0

aabba 1 0 1 0

aabbb 0 0 0 0

(S , E) consistent? �

(S , E) closed? �

Then, we guess the Mealy automaton A :

�� ���� �	q0
a|1

		

b|0
��

�� ���� �	q1

b|0
��

a|2
		�� ���� �	q2

b|0
��

a|0

��

�� ���� �	q3a|0

��

b|0
��

�� ���� �	q4

b|3

��

a|0

��

Teacher replies yes.

4 Further Generalizations: Linear Weighted Automata

In Section 3, we showed that the categorical perspective on Angluin’s algorithm delivers
without any extra effort an algorithm for Moore and Mealy automata. That generaliza-
tion was obtained by observing that changes in the output set did not have any influence
on the construction of the observation table. We will now consider yet another example
in which we consider as output set F, a field, and we construct an automaton where the
state space is now a finite dimensional vector space over the field F. These automata are
known as linear weighted automata over the field F [12]. These examples illustrate two
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possible avenues of generalization: in the Mealy/Moore case we changed the functor
type of the automaton whereas here we change also the underlying category (in other
words the state space of the automaton) and consider automata in the category Vect of
vector spaces and linear maps.

Formally, a linear weighted automaton over a finite alphabet A and with outputs in a
field F is a quadruple (V, v0, δ, φ) where

– V is a finite dimensional vector space over F and v0 ∈ V is the initial vector.
– δ : V → VA is a linear map determining the transition structure.
– φ : V → F is a linear map assigning outputs in F to states.

That is, a linear weighted automaton is just a Moore automaton in the category of vector
spaces and linear maps.

Linear weighted automata recognize weighted languages FA∗ in the following way.
A word w = a1 · · · an ∈ A∗ is assigned the weight r ∈ F if and only if

φ(δ(δ(· · ·δ(v0)(a1) · · · )(an−1))(an)) = r.

More formally, FA∗ together with a transition structure given by

λ?(L) = L(λ) ∂(L)(a)(u) = L(au)

is the final coalgebra, in the category of vector spaces and linear maps, of the functor
F × (−)A. Note that FA∗ has a vector space structure given by pointwise sum and scalar
multiplication. More precisely, given r1, . . . , rk ∈ F and L1, · · · , Lk ∈ FA∗ , we define:

(r1L1 + · · · + rkLk)(w) = r1(L1(w)) + · · · + rk(Lk(w))

where on the right the sum and scalar multiplication are the ones in F. The functions λ?
and ∂ are also linear w.r.t. the vector space operations defined above.

Lemma 7. Given a linear weighted automaton (V, v0, δ, φ) there exists a unique linear
homomorphism such that the following diagram commutes.

1
v0

���
��

��
��

��
�� F

V

δ

��

φ

��������������� h 		





 F
A∗

∂
��

λ?

��

VA 		




 (FA∗ )A

Proof. For any v ∈ V , we define h(v) by induction on w ∈ A∗.

h(v)(λ) = φ(v) h(v)(aw) = h(δ(v)(a))(w)
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It is easy to see that h makes the above diagram commute. It remains to show uniqueness
and linearity of h. Linearity follows by induction and using the linearity of φ and δ.

h(r1v1 + · · · + rkvk)(λ) = φ(r1v1 + · · · + rkvk)

= r1φ(v1) + · · · + rkφ(vk) linearity of φ

= r1(h(v1)(λ)) + · · · + rk(h(vk)(λ))

h(r1v1 + · · · + rkvk)(aw) = h(δ(r1v1 + · · · + rkvk)(a))(w)

= h(r1δ(v1)(a) + · · · + rkδ(vk)(a))(w) linearity of δ

=r1(h(δ(v1)(a))(w))+· · ·+rk(h(δ(vk)(a))(w)) induction hyp.

= r1(h(v1)(aw)) + · · · + rk(h(vk)(aw))

For uniqueness, suppose there is a map g such that λ? ◦ g = φ and ∂ ◦ g = gA ◦ δ.
Then, for any v ∈ V ,

g(v)(λ) = λ?(g(v)) = φ(v) = h(v)(λ)

and, for any a ∈ A,

g(v)(aw) = (∂(g(v))(a))(w) = g(δ(v)(a))(w)
(IH)
= h(δ(v)(a))(w) = h(w)(aw). �

The master language is now an element of the final coalgebra F
A∗ . Our categorical

definitions and results – closedness, consistency and minimality – are valid also for
linear weighted automata. In the definitions of closedness and consistency we use the
usual epi-mono factorization of linear maps. Using the matrix representation of linear
maps, epimorphisms (resp. monomorphisms) will correspond to matrices of full column
(resp. row) rank.

For convenience, in the algorithm, we still want to use the sets S and E and we
will represent the table as S → F

E . This is possible since all vector spaces are freely
generated and a linear map is determined by its value on the basis vectors. First, we just
recall the definitions of closedness and consistency and we instantiate them concretely.
We need some notation. Let V(S ) denote the free vector space generated by S (if S
is finite V(S ) = F

S ), whose elements we will frequently denote by finite formal sums
∑

I risi.
An observation table is now a linear map row : V(S ) → F

E . An observation table
(S , E) is closed (resp. consistent) if and only if there exist necessarilly unique linear
maps i and j such that the diagram on the left (resp. right) commutes.

V(S ) e
�� �������

�����
row

��
Q �� m

������
�����

F
E

Q′ �� mA

�����������
∃i
��

V(S · A) eA

�� �����������

row

��

F
E

Q ��

m ������������

∃ j
��

V(S )
eA

�� ������
�����

row
��

e �� �����������

Λ(row)
��

Q′′ ��
mA

������
�����

(FE)A

closed (in Vect) consistent (in Vect)

(7)
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The existence of the maps i and j induce a (linear) transition structure δ : Q → QA as
defined in Lemma 4.

More concretely, in the linear setting, a table is closed if for all t ∈ S · A, there exist
si ∈ S such that

row(t) =
∑

I

ri × row(si).

A table is consistent if whenever
∑

I

ri × row(si) =
∑

J

r j × row(t j),

for si, t j ∈ S , then, for all a ∈ A,

∑

I

ri × row(sia) =
∑

J

r j × row(t ja).

The map row has some special properties, related with the fact that V(−) is actually
a monad. We defined V above on sets but, V can also be defined on maps f : U → T as
V( f ) : V(U)→ V(T ), where

V( f )

⎛
⎜⎜⎜⎜⎜⎝

∑

I

riui

⎞
⎟⎟⎟⎟⎟⎠ =
∑

I

ri f (ui).

This V(−) is a functor and, of interest to us, a monad where the unit η : S → V(S ) is
given by the trivial unit linear combination. Given a map f : S → V , where V is a vector
space, let f : V(S )→ V denote its linearization given by

f

⎛
⎜⎜⎜⎜⎜⎝

∑

I

risi

⎞
⎟⎟⎟⎟⎟⎠ =
∑

I

ri f (si).

The linearization of f is the unique linear map satisfying f ◦ η = f . We will use this
uniqueness property below in the proofs.

The map row in the diagrams above is the linearization of the map row : S → F
E

that only determines the values of the elements of S , which act as a basis for the vector
space V(S ).

It might be interesting to observe that closedness in sets implies closedness in the lin-
ear setting, but consistency has a dual property: consistency in the linear setting implies
consistency in sets. This is interesting for the algorithm: if closedness is already true for
the table indexed by the basis vectors – row : S → F

E - then it is also true for the linear
view on the same table – row : V(S ) → F

E . On the other hand if row : S → F
E is not

consistent then row : V(S )→ F
E is also not consistent. These correspondences are both

interesting from an algorithmic point of view: note that the definition of consistency in
the linear setting involves comparison of arbitrary linear combinations of rows, which
is a rather expensive operation.

Lemma 8. Let row : S → F
E be an observation table and row : V(S ) → F

E its
linearization.
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1© If row is closed then so is row.

2© If row is consistent then so is row.

Proof. Recall the definitions of row : S → F
E being closed and consistent.

S d
�� ��������

�������
row

��
P �� n

�������
������

F
E

P′ �� nA

�������������
∃k

��

S · A dA

�� �������������
row

��

F
E

P ��

n ���������������

∃l
��S

dΛ
�� �������

������

row
��

d �� �������������

Λ(row)
��

P′′ ��
nΛ �������
������

(FE)A

closed (in Sets) consistent (in Sets)

First, observe that we can always define h : V(P) → Q, with Q as given in (7), as
follows:

V(S )
V(d)

		 		

e
����

V(P)

n
��

h

��� � � � � � �

Q 		
m

		 F
E

The commutativity of the above diagram follows by observing that

m ◦ e ◦ η = row and n ◦ V(d) ◦ η = n ◦ η ◦ d = n ◦ d = row.

For 1©, suppose row is closed and let us prove that row is also closed, according to (7).
We define the map i as follows.

V(S · A)
V(dA)

��

eA 		 		 Q′
��

mA

��

i

���
�
�
�
�
�
�
�
�
�

V(P′)
V(k)

��

V(P)
h
��

Q 		 m 		 F
E

Remains to show the commutativity of the above diagram, which follows by observing
that

mA ◦ eA ◦ η = row ◦ η = row and

m ◦ h ◦ V(k) ◦ V(dA) ◦ η = n ◦ η ◦ k ◦ dA = n ◦ k ◦ dA = nA ◦ dA = row.
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For 2©, suppose row is consistent and let us now prove that row is also consistent. We
define l as follows.

S

dΛ

����

d 		 		 P

l

���
�
�
�
�
�
�
�
�
�
�
�
η
��

V(P)
h
��

Q
j
��

Q′′
mΛ��

P′′ 		
nΛ 		 (FE)A

The commutativity of the above diagram follows by a simple calculation, using natu-
rality and properties of j as given above.

mΛ ◦ j ◦ h ◦ η ◦ d = mΛ ◦ j ◦ h ◦ V(d) ◦ η naturality of η

= mΛ ◦ j ◦ e ◦ η h ◦ V(d) = e

= mΛ ◦ eΛ ◦ η j ◦ e = eΛ

= Λ(row) ◦ η mΛ ◦ eΛ = Λ(row)

= Λ(row)

= nΛ ◦ dΛ factorization of Λ(row) �

The converses of 1© and 2© in the above lemma fail, as we point out in the example
below.

We will illustrate the algorithm in the linear setting with the following example over
F = R.

L(u) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if u = λ

2|u|b if |u|a is even

0 otherwise

In the first step we build a table for S = {λ} and E = {λ}.

Step 1

λ

λ 1

a 0

b 2

(S , E) consistent? �

(S , E) closed? �

Then, we guess the automaton:

�� ���� ��q0/1

b|2
��

where q0 = row(λ).

Teacher replies with counter-example aa.

S ← S ∪ {a, aa} and we go to Step 2.
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Note that the above table would not be closed in Sets because row(a) � row(λ). How-
ever, row(a) = 0 × row(λ) and hence the table is closed in the linear setting. Also
note that we use the following conventions in the representation of the automaton:

q/r denotes φ(q) = row(q)(λ) = r (the output of the state) and q
a|r

		 q′ denotes
δ(q)(a) = r × q′.

Step 2

λ

λ 1

a 0

aa 1

b 2

ab 0

aaa 0

aab 2

(S , E) consistent? �

(S , E) closed? �

Then, we guess the automaton:

�� ���� ��q0/1

b|2
��

a|1
��
�� ���� ��q1/0

b|2,a|1
  where q0 = row(λ)

q1 = row(a)

Teacher replies with counter-example ab.

S ← S ∪ {a, ab} and we go to Step 3.

Step 3

λ

λ 1

a 0

aa 1

ab 0

b 2

ab 0

aaa 0

aab 2

aba 2

abb 0

(S , E) consistent?

No, row(a) = row(ab) and row(aa) � row(aba).

Then E ← E ∪ {a} and we go to (Step 3.1).
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Step 3.1

λ a

λ 1 0

a 0 1

aa 1 0

ab 0 2

b 2 0

ab 0 2

aaa 0 1

aab 2 0

aba 2 0

abb 0 4

(S , E) consistent? �

(S , E) closed? �

Then, we guess the automaton:

�� ���� ��q0/1

b|2
��

a|1
��
�� ���� ��q1/0

a|1
  

b|2
��

where q0 = row(λ)

q1 = row(a)

Teacher replies yes.

5 Discussion

We have presented the first steps towards a categorical understanding and generalization
of Angluin’s learning algorithm, originally defined for deterministic finite automata.
The categorical reformulation enables us to explore two avenues of generalization: vary-
ing the functor (giving for instance different input/output for the automaton) and vary-
ing the category under study (changing for instance the type of computations involved).
The variations we concretely considered in this paper were rather mild but interestingly
enough yielded algorithms for Mealy/Moore automata and linear weighted automata.

The possibilities of further generalizations are vast. We would like to provide a cate-
gorical proof of termination of the algorithm. This requires a categorical understanding
on how the algorithm determines which rows/columns need to be added in order for
the observation table to be closed/consistent. Once this is understood, we expect that
further variations on the functor can also be considered. We conjecture that there is a
deep connection with the construction of the initial and final sequence of two functors.
On the one hand, the functor whose initial algebra determines the experiments/queries
needed to build the observation table. In the case we studied here the functor in ques-
tion is 1 + A × −. On the other hand, the functor whose final coalgebra determines the
notion of behavior. In all our examples, this was the functor B × (−)A. We expect that
the connection between the two functors can be explained by duality, as Prakash also
hinted to us (personal communication).

The production of counter-examples can also be a good place for exploring enhance-
ments of the algorithm. In this subject, recent work on bisimulations will be of use, as
we explain next. In order to return a counter-example, the teacher essentially tries to
build a bisimulation relation between the guessed automaton M(S , E) and the actual
minimal automaton recognizing the master language. The latter is 〈L〉 the subcoalgebra
of the final coalgebra (2A∗ , 〈λ?, ∂〉) generated by L. Let us illustrate this with the first
counter-example generated on page 393 in the example for deterministic automata. The
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procedure of constructing a bisimulation containing the initial state of the guessed au-
tomaton and the master language is depicted below. The pairs added to the bisimulation
are connected by a dashed line.

�� ���� �	q0

�
�
�

a 		

b

!!
�� ���� �	q1

�

�

�
�

�
�

���������

���������

a,b

!!

�� ��
�� �	L

b

""

a 		�� ���� ��La

b

##

a 		�� ���� ��Laa
a 		

b

##

�� ���� ���� ���� �	Laaa

The double dashed line, in red, shows the first contradiction in the bisimulation con-
struction: q1 has to be related to Laaa but they differ in their output. Hence the path
leading to these implies that aaa is the counter-example returned.

Finding counter-examples can be optimized by using enhancements of the bisim-
ulation method. In the case of deterministic automata, this was first observed in the
70’s by Hopcroft, Karp, and Tarjan [14,3,15] and has since then been improved (see
e.g [22,11,18]) and explored in other contexts, notably in concurrency theory [20,17,10].
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