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Abstract. If C � 2N is the Cantor set realized as the infinite product of
two-point groups, then a folklore result says the Cantor map from C into
[0, 1] sends Haar measure to Lebesgue measure on the interval. In fact,
C admits many distinct topological group structures. In this note, we
show that the Haar measures induced by these distinct group structures
are all the same. We prove this by showing that Haar measure for any
group structure is the same as Haar measure induced by a related abelian
group structure. Moreover, each abelian group structure on C supports
a natural total order that determines a map onto the unit interval that
is monotone, and hence sends intervals in C to subintervals of the unit
interval. Using techniques from domain theory, we show this implies this
map sends Haar measure on C to Lebesgue measure on the interval, and
we then use this to prove any two group structures on C have the same
Haar measure.

Keywords: Cantor set, Cantor map, compact group, Haar measure,
Lebesgue measure, Stone duality.

1 Introduction

The discovery of the middle-third Cantor set in the late 1800s led to the first
construction of a continuous map of the unit interval onto itself whose derivative
is zero almost everywhere. Another remarkable – in fact, folklore – result about
the Cantor set is that the restriction of the same map to the Cantor set sends
Haar measure on the compact group 2N to Lebesgue measure on the interval
[14]. In this note we generalize this result to any compact totally disconnected
second countable infinite group. Any topological group structure on the Cantor
set is the strict projective limit of finite groups, and conversely, the limit of a
countable projective system of finite groups is a topological group on the Cantor
set. In fact, any compact totally disconnected second countable group is either
finite or a strict projective limit of a countable family of finite groups.

Any locally compact group admits a unique (up to scalar factor) translation-
invariant Borel measure called Haar measure, and Haar measure is finite (and
hence normalized to be a probability measure) iff the group is compact. For
example, Haar measure on (R,+) is Lebesgue measure, and Haar measure on
any discrete group is counting measure. There are two main results in this paper:
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the first is that any two topological group structures on the Cantor set have the
same Haar measure, and the second is that the natural map from the Cantor
set to the unit interval sends Haar measure to Lebesgue measure. To prove the
first of these results, we first show that any strict projective system of finite
groups can be replaced by a system of finite abelian groups, so that each of
the replacement groups has the same cardinality as the corresponding group in
the original projective system. Since the probability functor is continuous on
compact Hausdorff spaces, Haar measure on the limit of a projective system
of finite groups is the limit of the Haar measures on the finite groups. Any two
finite groups of the same cardinality have the same Haar measure, so this implies
Haar measure on the limit of the projective system of finite abelian groups is
the same as Haar measure on the limit of the original projective system.

The advantage of a projective system of finite abelian groups is that each is
a product of cyclic groups, which allows us to define a total order on each of
these groups relative to which the projection maps from larger to smaller groups
are monotone. This implies these total orders induce a complete total order on
the limit, the Cantor set C, and from this it follows that the natural map from
C onto the unit interval is monotone and Lawson continuous, if we view C as a
continuous lattice. Using domain theory, we then show that Haar measure on
the Cantor set assigns the same length to each interval in C as Lebesgue measure
assigns to the image of the interval under the map, which implies that the map
sends Haar measure on the Cantor set to Lebesgue measure on the unit interval.

1.1 Outline of the Results

Our focus is on the Cantor set C, which can be defined abstractly as a second
countable perfect Stone space, i.e., a compact Hausdorff perfect zero-dimensional
space that has a countable base for its topology. Here perfect means every point is
a limit point; second countability implies C is the projective limit of a countable
family of finite sets. We will study two additional structures with which C can
be endowed:

(1) The structure of a topological group – the leading example is C � 2N, the
infinite product of two-point groups, but like 2N, any topological group struc-
ture on C can be realized as the strict projective limit of a countable system
of finite groups and group homomorphisms, and

(2) A total order relative to which C is complete lattice.

Because the probability functor on compact Hausdorff spaces is continuous, view-
ing the Cantor set C as a compact group that is the strict projective limit of finite
groups, Cn implies that Haar measure on C is the limit of the Haar measures
on the Cns, where Haar measure on each Cn has the uniform distribution. We
show we can replace any topological group structure on Cn with an “equivalent”
abelian group structure, in the sense that the Haar measure is the same for both
groups. As a finite abelian group, the replacement group structure is isomorphic
to a finite product of cyclic groups, and we show that we can construct the
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replacement group Cn so that it satisfies Cn � ⊕
k≤n Zak

is a direct product of
n finite cyclic groups.

Since Zk admits a natural total order for each k, this allows us to define
the lexicographic order on Cn � ⊕

k≤n Zak
for each n, and then the quotient

mapping Cm → Cn is monotone for each n ≤ m. These total orders therefore
induce a complete total order on C, which means C is a complete lattice in
this order. Then the topology on C is the Lawson topology from the theory of
continuous lattices.

Applying Stone duality allows us to interpret each finite quotient Cn as a
partition of C into subintervals, and then Haar measure on Cn assigns equal
lengths to each of these intervals. Next, we show that there is a natural map
from C to [0, 1] that is monotone and Lawson continuous. We show this assigns
the same length to each subinterval of C determined by Cn as Lebesgue measure
assigns to its image in [0, 1].

The final piece of the puzzle relies on verifying that the length Haar measure
on C assigns to each closed subinterval is the same as the length that Lebesgue
measure assigns to its image in [0, 1]. Since both measures are continuous (i.e.,
they assign measure 0 to points), and the clopen (= closed and open) intervals
in C map to the closed intervals in [0, 1], inner regularity implies these measures
assign the same measure to open intervals, and it follows that the image of Haar
measure on C under the natural map is Lebesgue measure on the interval.

1.2 The Plan of the Paper

In the next section, we review some backgroundmaterial from domain theory and
from the theory of compact abelian groups. Most of the latter is well-known, but
we include some proofs for completeness sake. The treatment of domain theory
includes a version of Stone duality. The following section constitutes the main
part of the paper, where we analyze the Cantor set when it is equipped with an
arbitrary abelian topological group structure making it a topological group.

2 Background

In this section we present the background material we need for our main results.

2.1 Domains

Our results rely fundamentally on domain theory. Most of the results that we
quote below can be found in [2] or [4]; we give specific references for those that
are not found there.

To start, a poset is a partially ordered set. A poset is directed complete if each
of its directed subsets has a least upper bound; here a subset S is directed if
each finite subset of S has an upper bound in S. A directed complete partial
order is called a dcpo. The relevant maps between dcpos are the monotone maps
that also preserve suprema of directed sets; these maps are usually called Scott
continuous.



From Haar to Lebesgue via Domain Theory 217

These notions can be presented from a purely topological perspective: a subset
U ⊆ P of a poset is Scott open if (i) U = ↑U ≡ {x ∈ P | (∃u ∈ U) u ≤ x} is
an upper set, and (ii) if supS ∈ U implies S ∩ U �= ∅ for each directed subset
S ⊆ P . It is routine to show that the family of Scott-open sets forms a topology
on any poset; this topology satisfies ↓x ≡ {y ∈ P | y ≤ x} = {x} is the closure
of a point, so the Scott topology is always T0, but it is T1 iff P is a flat poset.1

A mapping between dcpos is Scott continuous in the order-theoretic sense iff it
is a monotone map that is continuous with respect to the Scott topologies on its
domain and range.

If P is a dcpo, and x, y ∈ P , then x approximates y iff for every directed set
S ⊆ P , if y ≤ supS, then there is some s ∈ S with x ≤ s. In this case, we write
x � y and we let ↓↓y = {x ∈ P | x � y}. A basis for a poset P is a family
B ⊆ P satisfying ↓↓y ∩ B is directed and y = sup(↓↓y ∩ B) for each y ∈ P . A
continuous poset is one that has a basis, and a dcpo P is a domain if P is a
continuous dcpo. An element k ∈ P is compact if x � x, and P is algebraic if
KP = {k ∈ P | k � k} forms a basis. Domains are sober spaces in the Scott
topology.

Domains also have a Hausdorff refinement of the Scott topology which will
play a role in our work. The weak lower topology on P has the sets of the form if
O = P \ ↑F as a basis, where F ⊂ P is a finite subset. The Lawson topology on
a domain P is the common refinement of the Scott- and weak lower topologies
on P . This topology has the family

{U \↑F | U Scott open & F ⊆ P finite}
as a basis. The Lawson topology on a domain is always Hausdorff.

A domain is coherent if its Lawson topology is compact. We denote the closure

of a subset X ⊆ P of a coherent domain in the Lawson topology by X
Λ
.

Example 1. A basic example of a domain is the unit interval; here x � y iff
x = 0 or x < y. The Scott topology on the [0, 1] has open sets [0, 1] together
with ↑↑x = (x, 1] for x ∈ (0, 1]. Since domains are closed under finite products,
[0, 1]n is a domain in the product order, where x � y iff xi � yi for each i; a
basis of Scott-open sets is formed by the sets ↑↑x for x ∈ [0, 1]n (this last is true
in any domain).

The Lawson topology on [0,1] has basic open sets (x, 1] \ [y, 1] for x < y –
i.e., sets of the form (x, y) for x < y, which is the usual topology. Then, the
Lawson topology on [0, 1]n is the product topology from the usual topology on
[0, 1]. This shows [0, 1] is a coherent domain.

Since [0, 1] has a least element, the same results apply for any power of [0, 1],
where x � y in [0, 1]J iff xj = 0 for almost all j ∈ J , and xj � yj for all j ∈ J .
Thus, every power of [0, 1] is a coherent domain.

Similarly, the middle-third Cantor set C ⊆ [0, 1] is a domain in the order it
inherits from [0, 1]. But while K[0, 1] = {0}, the compact elements of C consist

1 A space X is T0 if given any pair of points, there is an open set containing exactly
one of the points; X is T1 if {x} is a closed set for each x ∈ X.
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of the least upper bounds of the open intervals that are deleted from [0, 1] to
form C – 2

3 ,
2
9 ,

8
9 ,. . . . Thus, y = supKC ∩ ↓y for each y ∈ C, so C is an algebraic

domain, in fact a complete algebraic lattice.
A more interesting example of a coherent domain is Prob(D), the family of

probability measures on a coherent domain D, where μ ≤ ν iff μ(U) ≤ ν(U) for
every Scott-open subset U ⊆ D. For example, Prob([0, 1]) is a coherent domain.
In fact, the category COH of coherent domains and Scott continuous maps is
closed under the application of the functor Prob [10].

Embedding-Projection Pairs. One of the features of domain theory is its
ability to provide solutions to domain equations – these are abstract domains
that satisfy structural requirements, most often ones needed in defining models
for programming language constructs. Of course, the most famous domain equa-
tion is D � [D → D], which can be solved in any of the number of Cartesian
closed categories of domains. We don’t need anything so sophisticated, but we
can use the basic approach to solving domain equations to realize Stone spaces
as algebraic lattices.

Definition 1. Let P and Q be posets. An embedding–projection pair between
P and Q is a pair of monotone mappings e : Q → P and p : P → Q satisfying
p ◦ e = 1Q and p ◦ e ≤ 1P , where the order on functions is pointwise.

The main result we need is the following:

Theorem 1. Let (Pi, ei,j , pi.j)i≤j∈I be an indexed family of domains Pi and
Scott-continuous e–p pairs ei,j : Pi → Pj, pi,j : Pj → Pi for i ≤ j. Then P =
{(xi)i∈I | pi,j(xj) = xi} is a domain, and the projection maps πi : P → Pi

together with the mappings ei : Pi → P by (ei(x))j =

{
pi,j(x) if i ≤ j

ei,j(xj) if j ≤ i
form

Scott-continuous e–p pairs. Moreover, if each Pi is algebraic, then so is P , and
KP =

⋃
i ei(KPi).

2.2 The Prob Monad on Comp

It is well known that the family of probability measures on a compact Hausdorff
space is the object level of a functor which defines a monad on Comp, the category
of compact Hausdorff spaces and continuous maps. As outlined in [7], this monad
gives rise to several related monads:

– On Comp, it associates to a compact Hausdorff space X the free barycentric
algebra over X , the name deriving from the counit ε : Prob(S) → S which
assigns to each measure μ on a probabilistic algebra S its barycenter ε(μ).

– On the category CompMon of compact monoids and continuous monoid ho-
momorphisms, Prob gives rise to a monad that assigns to a compact monoid
S the free compact affine monoid over S.
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– On the category CompGrp of compact groups and continuous homomor-
phisms, Prob assigns to a compact group G the free compact affine monoid
over G; in this case the right adjoint sends a compact affine monoid to its
group of units, as opposed to the inclusion functor, which is the right adjoint
in the first two cases.

If we let SProb(X) denote the family of subprobability measures on a compact
Hausdorff space X , then it’s routine to show that SProb defines monads in each
of the cases just described, where the only change is that the objects now have
a 0 (i.e., they are affine structures with 0-element, allowing one to define scalar
multiples r · x for r ∈ [0, 1] and x ∈ SProb(X), as well as affine combinations).

There is a further result we need about Prob which relates to its role as
an endofunctor on Comp and its subcategories. The following result is due to
Fedorchuk:

Theorem 2 (Fedorchuk [3]). The functor Prob : Comp → Comp is normal; in
particular, Prob preserves inverse limits.

2.3 Stone Duality

In modern parlance, Marshall Stone’s seminal result states that the category of
Stone spaces – compact Hausdorff totally disconnected spaces – and continuous
maps is dually equivalent to the category of Boolean algebras and Boolean alge-
bra maps. The dual equivalence sends a Stone space to the Boolean algebra of
its compact-open subsets; dually, a Boolean algebra is sent to the set of prime
ideals, endowed with the hull-kernel topology. This dual equivalence was used
to great effect by Abramsky [1] where he showed how to extract a logic from
a domain constructed using Moggi’s monadic approach, so that the logic was
tailor-made for the domain used to build it.

Our approach to Stone duality is somewhat unconventional, but one that also
has been utilized in recent work by Gehrke [5,6]. The idea is to realize a Stone
space as a projective limit of finite spaces, a result which follows from Stone
duality, as we now demonstrate.

Theorem 3 (Stone Duality). Each Stone space X can be represented as a
projective limit X � lim←−α∈A

Xα, where Xα is a finite space. In fact, each Xα is

a partition of X into a finite cover by clopen subsets, and the projection X � Xα

maps each point of X to the element of Xα containing it.

Proof. If X is a Stone space, then B(X), the family of compact-open subsets of
X is a Boolean algebra. Clearly B(X) � lim−→α∈A

Bα is the injective limit of its

family {Bα | α ∈ A} of finite Boolean subalgebras. For a given α ∈ A, we let Xα

denote the finite set of atoms of Bα. Then Bα ↪→ B(X) implies Bα is a family
of clopen subsets of X , and the set of atoms of Bα are pairwise disjoint, and
their sup – i.e., union – is all of X , so Xα forms a partition of X into clopen
subsets, Thus there is a continuous surmorphism X � Xα sending each element
of X to the unique atom in Xα containing it. The family {Bα | α ∈ A} is an
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injective system, since given Bα and Bβ, the Boolean subalgebra they generate
is again finite. Dually the family {Xα | α ∈ A} is a projective system, and since
B(X) � lim−→α∈A

Bα, it follows that X � lim←−α∈A
Xα.

We note that a corollary of this result says that it is enough to have a basis
for the family of finite Boolean subalgebras of B(X) in order to realize X as
a projective limit of finite spaces, where by a basis, we mean a directed family
whose union generates all of B(X).

2.4 Compact Groups

We now recall some results about compact topological groups. We include proofs
of some results that are well-known in the interest of completeness. A standard
reference for group theory is [12], and an excellent reference for the theory of
compact groups is [8]

To begin, a topological group is a T1-topological space G that is also a group,
and for which the multiplication · : G × G → G and inversion x �→ x−1 : G →
G mappings are continuous. A basic result is that all topological groups are
Hausdorff spaces. A compact group is a topological group whose topology is
compact.

We are interested in group structures on the Cantor set, which can be charac-
terized as a metrizable perfect Stone space. That is, a Cantor set is a compact
Hausdorff zero-dimensional space that has a countable base for its topology, and
in which every point is a limit point. It is well-known that any Cantor set has a
base of clopen subsets. We prove a stronger result for groups on the Cantor set.

Proposition 1. If G is a compact group whose underlying space it zero dimen-
sional, then G admits a neighborhood base of the identity consisting of clopen
normal subgroups.

Proof. We start with a basis O of clopen neighborhoods of the identity, which
exists in any Stone space. Since inversion is a homeomorphism (being its own
inverse), each O ∈ O satisfies O−1 ∈ O, so O ∩ O−1 ∈ O, which implies it is no
loss of generality to assume that O = O−1 for each O ∈ O.

Now, since multiplication is continuous and O is both compact and open,
O = e · O ⊆ O implies there is a U ∈ O with U · O ⊆ O. But then U ⊆ O, and
so U2 ⊆ O, and by induction, Un ⊆ O for each n > 0. Since U is symmetric,
this implies the subgroup HU that U generates is a subset of O. And since U is
open, so is HU (which also implies HU is closed).

For the claim about normal subgroups, we first recall that the family of conju-
gates H = {xHx−1 | x ∈ G} of a closed subgroupH < G is closed in the space of
closed subsets of G endowed with the Vietoris topology, which is compact sinceG
is compact. Moreover, G acts continuously on H by (x,H) �→ xHx−1 : G×H →
H. The kernel K = {x ∈ G | xHx−1 = H} of this action is then a normal
subgroup of G, and if H is clopen, then K is clopen as well. But since G acts
transitively on this family of conjugates, it follows that |G/K| = |H|. Since K is
open and G is compact, G/K is finite, and so there are only finitely many cosets
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xHx−1. Then their intersection
⋂

x∈G xHx−1 ⊆ H is a clopen normal subgroup
of G inside H . Since G has a basis of clopen subgroups H around e by the first
part, and we can refine each of these with a clopen normal subgroup by taking⋂

x∈G xHx−1, it follows that G has a basis of clopen normal subgroups around e.

Corollary 1. Any compact zero-dimensional group is the strict projective limit 2

of finite groups.

Proof. If G is compact and zero-dimensional, then e has a basis N of clopen
normal subgroups by the Proposition. If N ∈ N , then since G is compact, G/N
also is compact and the quotient map πN : G → G/N is open. But N ∈ N is
open, so G/N is discrete, which implies there are only finitely many cosets in
G/N , i.e., G/N is finite. The family N is directed by reverse set inclusion, and
for M ⊆ N ∈ N , we let πN,M : G/M → G/N be the natural projection. Then
the family (G/N, πN,M )M≤N∈N forms a strict projective system of finite groups
which satisfies G � lim←−N G/N .

Remark 1. We also note that since any topological group is homogeneous, a
topological group must satisfy the property that either every point is a limit
point, or else the group is discrete. Thus, the underlying space of a compact
group is either perfect or the group is finite. In particular, a topological group
on a Stone space forces the space to be finite or perfect. By a Cantor group, we
mean a topological group structure on a Cantor set (which we also assume is
metrizable).

2.5 Haar Measure on Cantor Groups

Definition 2. A Borel measure μ on a topological group G is left translation
invariant if μ(xA) = μ(A) for all x ∈ G and all measurable sets A ⊆ G.

A fundamental result of topological group theory is that each locally compact
group admits a left translation invariant Borel measure which is unique up to
scalar constant; i.e., if μ and ν are left translation invariant measures on the
locally compact group G, then there is a constant c > 0 such that μ(A) = c ·ν(A)
for every measurable set A. Any such measure is called a Haar measure. If G
is compact, the measure μ is assumed to satisfy μ(G) = 1, which means this
measure is unique. Notice in particular that Haar measure on any discrete group
is counting measure, and on a finite group, it is normalized counting measure.

We now establish an important result we need for the main result of this
section.

Proposition 2. Let G and H be compact groups and let φ : G → H be a con-
tinuous surmorphism. Then φ(μG) = μH , where μG and μH are Haar measure
on G and H, respectively.

2 A projective system is strict if the projection maps all are surjections.
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Proof. Let K = kerφ, and let A ⊆ G/K be measurable and x ∈ G/K. Since φ
is a surmorphism, there is x0 ∈ G with φ(x0) = x. Then

πK(μG)(xA) = μG(φ
−1(xA)) = μG(φ

−1(x) · φ−1(A)) = μG(x0K · φ−1(A))
∗
= μG(x0φ

−1(A)) = μG(φ
−1(A)) = πK(μG)(A),

where
∗
= follows from the normality of K and the fact that φ−1(A) is saturated

with respect to K, and the next equality follows because μG is Haar measure
on G. Thus φ(μG) is a Haar measure on H . The result then follows by the
uniqueness of Haar measure on a compact group.

The main result of this section is the following:

Theorem 4. If G is a topological group whose underlying space is a Cantor set,
then there is an abelian topological group structure on G that has the same Haar
measure as the original topological group structure.

Proof. Since G is a Cantor set, Corollary 1 implies G � lim←−k
G/Nk of a countable

chain of finite groups, where k ≤ k′ implies Nk′ ⊆ Nk. For each k, we define
groups Gk as follows:

1. G1 = Zn1 , where n1 = |G/N1|, and
2. for k > 1, Gk = Gk−1 ⊕ Znk

, where nk = | kerπG/Nk,G/Nk−1
|.

In short, Gk = ⊕l≤kZnl
, where n1 = |G/N1|, and nk = | kerπG/Nk,G/Nk−1

| for
k > 1. Thus, Gk is a direct product of cyclic groups, and |Gk| = |G/Nk| for each
k. Since Gk and G/Nk are both finite, this last implies Haar measure on G/Nk

is the same as Haar measure on Gk for each k.
Clearly there is a canonical projection πk,k′ : Gk → Gk′ whenever k′ ≤ k. So

we have a second strict projective system (Gk, πk,k′ )k′≤k, and since G/Nk � Gk

for each k qua topological spaces, it follows that G � lim←−k′≤k
(Gk, πk′,k), again

qua topological spaces.
Next, Theorem 2 implies that the limit of the sequence {μGk

}k is a Borel
measure μ on G � lim←−k′≤k

(Gk, πk′,k) whose image under the quotient map G →
Gk is μk, Haar measure on Gk. But if GA denotes the limit of the projective
system (Gk, πk′,k)k′≤k qua compact abelian groups, then Proposition 2 implies
Haar measure on GA also has image μGk

under the quotient map GA → Gk.
Since limits are unique, this implies μGA = μ.

Now the Haar measures μG/Nk
= μk on G/Nk and on Gk are equal by design,

and Proposition 2 implies Haar measure μG on G with its original compact
group structure maps to μG/Nk

under the quotient map G → G/Nk. Again
limits are unique, so we conclude that μG = μGA , the Haar measure induced on
GA � lim←−k′≤k

(Gk, πk′,k) qua compact abelian group.

Remark 2. We note that the same result holds for general (ie., nonmetriz-
able) compact group structures on Stone spaces. The only thing that changes
is that the group may require a directed family of finite quotients that may be
uncountable.
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3 Defining an Bialgebraic Lattice Structure on C
According to the proof of Theorem 4 we can assume we are given a Cantor group
C � lim←−(Cn, πm,n)n≤m where each Cn = ⊕i≤nZni is a product of n cyclic groups,
and the mapping πm,n : Cm → Cn is the projection map onto the first n factors
of Cm for n ≤ m. In particular, this representation relies on a fixed sequence of
finite cyclic groups {Zni | i > 0} satisfying Cn = ⊕i≤nZni , and without loss of
generality, we can assume that ni > 1 for each i – this follows from the fact that
C is a perfect (hence uncountable) Stone space and each quotient group Cn is
finite.

Theorem 5. C admits a total order relative to which it is a complete bialgebraic
lattice3 endowed with the Lawson topology.

Proof. We first note that we can define a total order on Cn = ⊕ni≤nZni to be
the lexicographic order, where we endow Zni with its total order from N.

Next, the projection mapping πm,n : Cn → Cm is monotone and clearly Scott
continuous, for n ≤ m, and we can define embeddings ιm,n : Cm → Cn by

ιm,n(x)i =

{
xi if j ≤ m

0 if m < j
, and clearly ιm.n is monotone and Scott continuous.

Moreover, it is clear that πm,n ◦ ιm,n = 1Cn and ιm,n ◦ πm,n ≤ 1Cm for n ≤ m.
So, we have a system ((Cn,≤n), ιm,n, πm,n)n≤m of e–p pairs in the category

of algebraic lattices and Scott-continuous maps. By Theorem 1, lim←−((Cn),≤n

), πn,m)n≤m is an algebraic lattice whose compact elements are the union of the

images of the Cns under the natural embeddings, ιn(x)j =

{
xj if j ≤ n

0 if n < j
. But

this is the same family of finite sets and projection maps that define the original
projective system, which implies C has a total order relative to which it is an
algebraic lattice.

To see that Cop also is algebraic, we note that since C is totally ordered and
complete, each x ∈ KC has a corresponding x′ = sup(↓x \ {x}) ∈ KCop. If
y �∈ KC and y < z ∈ C, then since C is algebraic, z = sup(↓z ∩ KC), so there
is some x ∈ KC with y < x ≤ z. But then y ≤ x′ ∈ KCop. It follows that
y = inf(↑y ∩KCop) for y ∈ C, so Cop also is algebraic.

Finally, the Lawson topology on an algebraic lattice is compact and Hausdorff,
and it is refined by the original topology on C, so the two topologies agree.

Remark 3. We note that KC =
⋃

n ιn(Cn), and the mappings ιn : Cn → KC are
injections, so we often elide the injections ιn and simply regard Cn as a subset of
C. Note as well that ιn is a group homomorphism for each n, so this identification
applies both order-theoretically and group theoretically.

Theorem 5 allows us to define the natural map φ : C → [0, 1]: For each n, Cn =
⊕i≤nZni , endowed with the lexicographic order. For x ∈ Cn, we define φn(x) =

3 A lattice L is bialgebraic if L and Lop are both algebraic lattices.
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∑
i≤n

xi

n1·n2···ni
.4 Then φn is monotone, and n ≤ m implies φm ◦ ιm,n = φn.

Thus we have a monotone mapping φ : KC → [0, 1]. The fundamental theorem

of domain theory implies φ admits a Scott-continuous extension φ̂ : C → [0, 1].
In fact, note that φ : KC → [0, 1] is stictly monotone: if x < y, then φ(x) <

φ(y). This implies φ is one-to-one on KC, and clearly its image is dense in [0, 1].

Now, for any s ∈ (0, 1], if x ∈ C satisfies φ̂(x) < s, then s− φ̂(x) > 0, so we can
choose n > 0 large enough so there are xn, yn ∈ Cn ⊆ KC satisfying xn ≤ x < yn
and φn(yn) < s. Hence C \ φ̂−1([s, 1]) is weak-lower open in C, from which it

follows that φ̂−1([s, 1]) is weak-lower closed, which is to say φ̂−1([s, 1]) = ↑z for

some z ∈ C. But this implies that φ̂ is Lawson continuous. Since C is compact in
the Lawson topology, this implies φ̂(C) = [0, 1].

Moreover, since [0, 1] is connected and φ̂ is monotone, it follows that φ̂(x′) =
φ̂(x) for each x ∈ KC. We summarize this discussion as

Corollary 2. The mapping φ̂ : KC → [0, 1] by φ̂(x) =
∑

i≤n
xi

n1·n2···ni
is strictly

monotone (hence injective), and it has a Lawson-continuous, monotone and sur-

jective extension defined by φ̂(x) = sup φ̂(↓x∩KC). Moreover, for each x ∈ KC,
φ̂(x′) = φ̂(x), where x′ = sup(↓x \ {x}) ∈ KCop.

4 Mapping Haar Measure to Lebesgue Measure

We now come to the main result of the paper. Our goal is to show that there
is a natural map from any Cantor group onto the unit interval that sends Haar
measure to Lebesgue measure. According to Theorem 4, any compact group
structure on a Cantor set has the same Haar measure as a group structure
realized as the strict projective limit of a sequence of finite abelian groups,
and Theorem 5 and Corollary 2 show there is a Lawson continuous monotone
mapping of C onto the unit interval for such a group structure. We now show that
this map sends Haar measure on C as an abelian group to Lebesgue measure.

Recall that the abelian group structure satisfies C = lim←−n>0
(
⊕

i≤n Zki , πm,n),

where ki > 1 for each i, and πm,n : Cm → Cn is the projection on the first n
factors, for n ≤ m. Theorem 5 says C has a total order relative to which it is
a complete bialgebraic lattice, and it is this order structure we exploit in our
proof.

Remark 4. Recall that b ∈ KC implies b′ = sup(↓b \ {b}) ∈ KCop and φ̂(b) =

φ̂(b′). We need this fact because the clopen intervals in C all have the form [a, b′]
for some a ≤ b ∈ KC. Indeed, according to Stone duality (Theorem 3), in a
representation of a Stone space as a strict projective limit of finite spaces, each
finite quotient space corresponds to a partition of the space into clopen sets.

4 An intuitive way to understand φn for each n is that Zn1 divides the interval into n1

subintervals, Zn2 divides each of those into n2 subintervals, and so on. So φn maps
the elements of Cn to those those rationals in [0, 1] that can be expressed precisely
in an expansion using n1, n2, . . . as successive denominators.
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If the Stone space is totally ordered and the representation is via monotone
maps, then the elements of each partition are clopen intervals. In particular, if
πn : C → Cn is a projection map, then π−1

n (x) = [a, b′] for some a, b ∈ KC, for
each x ∈ Cn

Throughout the following, we let μC denote Haar measure on C, and let λ
denote Lebesgue measure on [0, 1].

Proposition 3. If a ≤ b ∈ Cn, then λ(φ̂([a, b′])) = μCn([a, b]Cn).

Proof. On one hand, λ(φ̂([a, b′])) = φ̂(b′) − φ̂(a) = φ̂(b) − φ̂(a). On the other,

μCn([a, b]Cn) =
|[a,b]Cn |

|Cn| since Cn is finite. Now Cn =
⊕

i≤n Zki in the lexicographic

order, and we show these two values agree by induction on n. Indeed, since
a ≤ b ∈ Cn, we have a = (a1, . . . , ai) and b = (b1, . . . , bj) for some i, j ≤ n, and

then φ̂(a) =
∑

l≤i
al

k1···kl
and φ̂(b) =

∑
l≤j

bl
k1···bl . By padding a and b with 0s,

we can assume i = j = n. Then

λ(φ̂([a, b′])) = φ̂(b′)− φ̂(a) = φ̂(b)− φ̂(a)

=
∑

l≤n

bl
k1 · · · bl −

∑

l≤n

al
k1 · · · kj

=

⎛

⎝
∑

l≤n−1

bl
k1 · · · bl −

∑

l≤n−1

al
k1 · · · ki

⎞

⎠

+

(∣
∣
∣
∣

bn
k1 · · · kn − an

k1 · · · kn

∣
∣
∣
∣

)

†
=

|[a∗, b∗]Cn−1 |
|Cn−1| +

(∣
∣
∣
∣

bn
k1 · · · kn − an

k1 · · · kn

∣
∣
∣
∣

)

=
|[a, b]Cn |
|Cn| = μC([a, b]Cn),

where a∗ = (a1, . . . , an−1) ≤ b∗ = (b1, . . . , bn−1) ∈ Cn−1 so that
†
= follows by

induction.

Theorem 6. Let O([0, 1]) denote the family of open subsets of [0, 1]. Then

λ : O([0, 1]) → [0, 1] and μC ◦ φ̂−1 : O([0, 1]) → [0, 1] are the same mapping.

Proof. Let U ∈ O([0, 1]) be an open set. Since φ̂ is Lawson continuous, φ̂−1(U)

is open in C, and since C is a Stone space, it follows that φ̂−1(U) =
⋃{K | K ⊆

φ̂−1(U) clopen}. Now, φ̂ is a continuous surjection, so φ̂(K) is compact and

U = φ̂(φ̂−1(U)) = φ̂
(⋃

{K | K ⊆ φ̂−1(U) clopen}
)

=
⋃

{φ̂(K) | K ⊆ φ̂−1(U) clopen}.

Next, any clopen K ⊆ C is compact, and because KC is dense, (∃n > 0)(∃ai <
bi ∈ Ci)K =

⋃
i≤n[ai, b

′
i]. Moreover, we can assume [ai, b

′
i]∩ [aj , b

′
j ] = ∅ for i �= j.
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Then
μC(K) =

∑

i

μC([ai, b′i]) =
∑

i

λ(φ̂([ai, b
′
i])),

the last equality following from Proposition 3. Since the intervals [ai, b
′
i] are

pairwise disjoint, if φ̂([ai, b
′
i]) ∩ φ̂([aj , b

′
j]) �= ∅ then either b′i = a′j or b′j = a′i. In

either case, φ̂([ai, b
′
i]) ∩ φ̂([aj , b

′
j]) is singleton, and then since λ is continuous,

μC(K) =
∑

i

λ(φ̂([ai, b
′
i])) = λ(

⋃

i

φ̂([ai, b
′
i])) = λ(K). (1)

Finally, since μC and λ are both inner regular, we have

λ(U) = λ(φ̂(φ̂−1(U)))

= λ
(⋃

{φ̂(K) | K ⊆ φ̂−1(U) clopen}
)

†
=

⋃
{λ(φ̂(K)) | K ⊆ φ̂−1(U) clopen}

‡
=

⋃
{μC(K) | K ⊆ φ̂−1(U) clopen}

#
= μC

(⋃
{K | K ⊆ φ̂−1(U) clopen}

)

= μC(φ̂−1(U)).

where
†
= follows by the inner regularity of λ,5

‡
= follows from Equation 1, and

#
= follows from the inner regularity of μC .

Corollary 3. If we endow C with the structure of topological group with Haar
measure μC, then there is a continuous mapping φ̂ : C → [0, 1] satisfying

φ̂(μC) = λ.

Proof. If A ⊆ [0, 1] is Borel measurable, then φ̂(μC)(A) = μC(φ̂−1(A). We have

shown φ̂(μC)(A) = λ(A) in case A is open. But since the open sets generate the
Borel σ-algebra the result follows.

Theorem 7. Let C1 and C2 be Cantor sets with topological group structures with
Haar measures μC1 and μC2 , respectively. Then μC1 = μC2 .

Proof. By Theorem 4, we can assume that the group structures on C1 and C2
are both abelian, and then Theorem 5 and Corollary 2 show there are Lawson-
continuous monotone mappings of φ̂1 : C1 → [0, 1] and φ̂2 : C2 → [0, 1] both

onto the unit interval. Since KC′
i are both countable, φ̂1 : C1 \ KC′

1 → [0, 1]

is a Borel isomorphism onto its image, as is φ̂2 : C2 \ KC′
2 → [0, 1]. Then the

composition φ̂−1
2 ◦ φ̂1 : C1 \ KC′

1 → C2 \ KC′
2 is a Borel isomorphism onto its

image (that also is an order isomorphism). Then, for any measurable set A ⊆ C1,
μC1(A) = λ(φ̂1(A)) = μC2(A), proving the claim.

5 It is straightforward to argue that any compact set C ⊆ U is contained in
⋃{φ̂(K) |

K ⊆ φ̂−1(U) clopen}.
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Remark 5. In the last proof, we could have restricted the mappings to Ci\(KCi∪
KC′

i) for i = 1, 2. Then the induced map φ̂−1
2 ◦ φ̂1 is a homeomorphism as well as

an order isomorphism. On the other hand, the mappings we did use map are one-
to-one, in particular on the elements of [0, 1] that are expressible as fractional
representations using the families {Zni | i > 0} and {Zn′

i
| i > 0}.

5 Summary

We have studied the topological groups structures on the Cantor set C and shown
that any such structure has an “equivalent” abelian group structure, in the sense
that the Haar measures are the same. We also showed any representation of C
as an abelian group admits a continuous mapping onto the unit interval sending
Haar measure to Lebesgue measure. Finally, we showed that Haar measure on
C is the same, regardless of the group structure over which it is defined.

This work is the outgrowth of a talk by the second author at a Dagstuhl sem-
inar in 2012. A final comment in that talk sketched a domain-theoretic approach
to showing that Haar measure on C � 2N maps to Lebesgue measure. We were
inspired to look more closely at this issue because of the enthusiasm Prakash
Panangaden expressed for that result. So, as a 60th birthday present, we offer
this paper, and hope the recipient enjoys this presentation as well.

Happy Birthday, Prakash!!
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