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Preface

During the last three decades, Prakash Panangaden has worked on a large variety
of topics including probabilistic and concurrent computation, logics and duality,
and quantum information and computation. Despite the enormous breadth of
his research, Prakash has made significant and deep contributions. For example,
he introduced a logic and a real-valued interpretation of the logic to capture
equivalence of probabilistic processes quantitatively. This quantitative notion
turned out to be closely related to a metric introduced by Nobel laureate Leonid
Kantorovich. The fact that Prakash studied physics, both at the undergraduate
and graduate level, makes his accomplishments in computer science even more
impressive and provides yet another illustration of his ability. What better way
to celebrate his 60th birthday than this Festschrift with a large variety of papers
attributed to him and a conference, PrakashFest, featuring a diverse range of
speakers, held in Oxford in May 2014.

We would like to thank the authors for their contributions to this Festschrift
and also for their help with the reviewing process. We are also thankful to the
other reviewers. We are grateful to Laurie Hendren for providing us with a variety
of input for this Festschrift, ranging from photos to the acknowledgments section
of a dissertation. We would like to thank Bart Jacobs and Alexandra Silva for
bringing the precise date of Prakash’s 60th birthday to our attention. We would
also like to thank Alfred Hofmann and Anna Kramer at Springer for their support
and help in producing this Festschrift. Samson Abramsky, Karen Barnes, Bob
Coecke, Destiny Chen, Michael Mislove, and Jamie Vicary deserve our special
thanks for organizing PrakashFest, the conference in honor of Prakash on the
occasion of his 60th birthday. We would also like to acknowledge the support
for students to attend PrakashFest from the EPSRC Network on Structures in
Computing and Physics.

March 2014 Franck van Breugel
Elham Kashefi

Catuscia Palamidessi
Jan Rutten



VIII Preface

In 1990, Prakash Panangaden visited the “Centrum Wiskunde en Informatica”
(CWI), the Dutch Research Institute for Mathematics and Computer Science,
in Amsterdam. At the time, I was a graduate student at CWI. During his visit,
Prakash gave several excellent talks. I still distinctly remember his talk on the
expressiveness of dataflow primitives. When I applied in 1994 for a fellowship of
the Netherlands Organization for Scientific Research to spend one year abroad,
visiting McGill University to work with Prakash topped my list. I was his post-
doc for two years. Prakash has had a significant impact on me as a researcher,
a teacher, and a person. He strengthened my love for mathematics. His own is
reflected, among many other things, by his large collection of volumes of the
Graduate Texts in Mathematics series. Prakash was also instrumental in prepar-
ing me for job interviews. In 1995, my daughter Lisa was born in Montreal.
Prakash was the first to visit her in the Royal Victoria Hospital. For all these
and many other things I am to him for ever thankful.

Franck van Breugel Toronto, March 2014

I joined Oxford’s quantum group in 2003 after my PhD in Imperial College’s
Computing Department with a physicist as my supervisor. I was told that there
was a big-shot professor who would be coming for his sabbatical to Oxford, who
is the king of labelled Markov processes and programming language and formal
methods and logic and algebra etc. I thought, “Yeah, whatever, I’m a combi-
natorics person searching to design new quantum algorithms and protocols.” In
my ignorance, I was totally oblivious to the tipping point in my life about to
happen. Prakash arrived, and with his endless charm, generosity, and knowledge
enlightened me to the brave new world. In our cosy Wednesday meetings (only
now do I realize what privilege I had) we set up the foundation of Measurement
Calculus that I am still stuck with; he taught me how science is not separated
and he made me fall so deeply in love with the beauty of mathematics that I
could not resist falling for his first French logician visitor. Whenever I wonder
why I’m doing what I’m doing, I think of Prakash and of the beautiful goddess
of knowledge to get inspiration for a life worth living.

Elham Kashefi Edinburgh, March 2014

I met Prakash for the first time at ICALP 1990 in Warwick, England. He gave one
of the best talks and I remember being fascinated by the beauty of its exposition.
During a break, a large group of people went outside to enjoy the bright sun of
July. People were chatting pleasantly when a student, no doubt excited by the
friendly atmosphere in such a gathering of fine minds, asked the name of one
of the big shots there. Offended for not being recognized, the latter answered
emphatically “I am [. . . ], head of [. . . ] in theoretical computer science!”. Silence
fell at once. Everybody felt embarrassed, and the poor student was mortified.
But Prakash exclaimed, “And don’t we all love theoretical computer science!”.
This was just the right moral statement. I thought,“ Wow! this man is not only
brilliant, he has a heart too, and he is so witty! As long as there are people like
him around, our profession will be a paradise”. In all these years, I have met



Preface IX

Prakash at a myriad of events, we became friends, I have had uncountable chats
with him, both about science and about life. We have collaborated on various
projects, and I am immensely grateful to him for opening my mind to new
horizons. But what I am most grateful for is that whenever something happens
that makes me feel bad about my profession, I can think of Prakash and what
he would say to refocus my attention on the nobility of science and its people.

Catuscia Palamidessi Paris, March 2014

Prakash and this editor met in a discotheque, in Tampere, Finland. We were
all a bit drunk, not so much from alcohol (that as well) but more so from the
fact that there seemed to be sun always, everywhere. Science being the solid
foundation of our friendship, there must have been some conference nearby. In
fact, in the background, ICALP 1988 was taking place.

From the outset it was clear that this was someone special. Able to enjoy life
to the fullest while remaining perfectly able to discuss serious science, at any
time and anywhere (this included the discotheque). Respectable and enjoyable,
and both highly so.

Later there was, all in all, more science than dancing in our various encounters
throughout the years to follow (but I do remember various other clubs, including
one in Montreal). On the very day of the writing of this little note, I am in the
middle of something that builds on joint work with Prakash, and that started
with a question he posed. Which illustrates the continuing impact the encounter
in Tampere has had.

Many thanks for all of this, Prakash. May you have a long and happy life,
and may we remain in touch for many more years to come!

Jan Rutten Amsterdam, March 2014



X Preface

Prakash Panangaden’s Doctoral Students

Former Students

– Pablo Castro: On Planning, Prediction and Knowledge Transfer in Fully and
Partially Observable Markov Decision Processes, McGill University, October
2011.

“Throughout these years, my love of mathematics has greatly in-
creased, in great part due to the many things I learned from Prakash.
The clarity with which he explains complex subjects is something I
have always admired and aspire to emulate. His insistence on clar-
ity, syntactical and grammatical correctness, both in math and plain
English, have definitely improved the way I express myself, and I am
very grateful for that.”

– Yannick Delbecque: Quantum Games as Quantum Types, McGill University,
August 2008.

“I would like to extend my gratitude to my supervisor Prakash
Panangaden for his shared wisdom and insight, as well as for his
continued support throughout the most difficult stages.”

– Norm Ferns: State-Similarity Metrics for Continuous Markov Decision Pro-
cesses, McGill University, October 2007.

“Firstly, I would like to thank the bestest supervisors in the whole
wide world, Prakash Panangaden and Doina Precup. Smarter people
I do not know. You have been nothing short of kind and supportive,
more patient and understanding with me than warranted, and just
all-around swell. I really do appreciate everything. Thank you.”

– Ellie D’Hondt: Distributed Quantum Computation—A Measurement-Based
Approach, Vrije Universiteit Brussels, July 2005.

“Above all, I am very grateful to my second advisor, Prakash Panan-
gaden. He took me on as a student at a time when he did not know
me at all. I was very lucky to meet him and our collaboration has
proved to be a fruitful one – and also a lot of fun! I sincerely hope
we can continue working together in the future.”

– Josée Desharnais: Labelled Markov Processes, McGill University, November
1999.

“First I would like to warmly thank my thesis supervisor, Prakash
Panangaden, for his precious enthusiasm, for his invaluable support
and patience, for having so strongly believed in me and for his con-
tinuous help during the preparation and writing of this thesis. I also
want to thank him for having introduced me to the subject of this
thesis, for having given me the opportunity to travel and meet people
by sending me to many conferences in many beautiful countries.”
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– Clark Verbrugge: A Parallel Solution Strategy for Irregular, Dynamic Prob-
lems, McGill University, August 1996.

“I would like to thank my advisor, Prakash Panangaden, for his sup-
port (financial and otherwise), encouragement and invaluable advice;
I have learned a great deal from him, and would certainly have never
finished this without his guidance.”

– Marija Čubrić: The Behaviour of Dataflow Networks with Finite Buffers,
Concordia University, 1994.

“First of all, I would like to thank my supervisor, Professor Prakash
Panangaden, for his great help—professional and financial. I have
learned very much from his interesting lectures, challenging discus-
sions and overall academic performance. I especially thank him for
his patience, encouragement and friendship.”

– Carol Critchlow: The Inherent Cost of Achieving Causal Consistency, Cor-
nell University, August 1991.

“First, I would like to propose a toast to Prakash Panangaden,
whose encouragement and support—academic, moral, and vinous–
have been simply invaluable to me throughout my time at Cornell.
If not for him, I really might be a substitute teacher of remedial alge-
bra for high school students in Winnipeg. So here’s to you, Prakash,
and merci bien, eh?”

– Radhakrishnan Jagadeesan: Investigations into Abstraction and Concurrency,
Cornell University, August 1991.

“I would like to thank Prakash Panangaden for being a great the-
sis advisor. His advice, on matters academic and otherwise, have
been influential throughout my stay in Cornell. This thesis would
not have been started or finished without his ideas, encouragement
and support.”

– Charles Elkan: Flexible Concurrency Control by Reasoning about Database
Queries and Updates, Cornell University, August 1990.

“The faculty of the Department of Computer Science at Cornell have
created an environment that is wonderfully scholarly, friendly, and
enterprising. My committee members, official and unofficial, have
been inspiring examples–Prakash Panangaden, Dexter Kozen, David
McAllester, and Alberto Segre. Thank you for your confidence and
your patience.”

– Kimberly Taylor: Knowledge and Inhibition in Asynchronous Distributed
Systems, Cornell University, August 1990.

“I first and foremost wish to thank Prakash Panangaden for being
an unsurpassable advisor, mentor, and friend throughout the past
five years. In particular, for listening to and even encouraging the
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most nebulous of ideas, for having faith in me long before I had faith
in myself, and for allowing me the freedom to develop as a whole
person in addition to as a researcher.”

– Vasant Shanbhogue: The Expressiveness of Indeterminate Dataflow Primi-
tives, Cornell University, May 1990.

“I chiefly wish to thank my advisor, Prakash Panangaden, for ini-
tially suggesting my thesis problem, encouraging me in my work, and
suffering me during my moody moments. He has always been very
enthusiastic about and receptive to new ideas, and at the same time,
he has encouraged the sifting of ideas to separate the gold from the
chaff.”

– James Russell: Full Abstraction and Fixed-Point Principles for Indetermi-
nate Computation, Cornell University, May 1990.

“First, I would like to thank Prakash Panangaden for being a great
advisor. His advice on subjects, academic, professional, and beyond
has been invaluable to me throughout my time at Cornell.”

– Anne Neirynck: Static Analysis of Aliases and Side Effects in Higher-Order
Languages, Cornell University, January 1988.

“Prakash Panangaden has supervised the work described in this the-
sis, and I am deeply endebted to him for his time, attention, advice
and enthusiasm. It has been a pleasure to work with him.”

– Michael Schwartzbach: A Category Theoretic Analysis of Predicative Type
Theory, Cornell University, January 1987.

“First of all, I want to thank Prakash Panangaden for being an ex-
cellent friend and advisor from the first day we both came to Cornell.
The success of this project is largely due to his optimism and inspi-
ration.”

Current Students

– Gheorghe Comanici: Markov Decision Processes, Bisimulation and Approx-
imation, McGill University.

“I would like to express my sincere gratitude to my current co-
supervisor Prakash Panangaden, first and foremost for his great feed-
back and contribution to my on-going research, as well as his amazing
support towards my educational, professional and personal growth.
Prakash was there as a teacher when I chose this career path, he was
there as a friend when I needed support in staying on track, he is
and will be my supervisor in leading me towards my graduation, and
I know I am super-lucky for that.”



Preface XIII

– Anusar Farooqi: Quantum Information Theory in General Relativity, McGill
University.

“During the first semester of my PhD I went to a Math-Physics-CS
social. I was just socializing when I saw a swarm of kids hanging on
to, what appeared to be, a professor’s every word. I made my way
through the swarm. At the centre, Prakash (my friend had informed
me that it was her advisor) was holding court. Students were asking
him about black holes. Now I have been interested in such things
since I was a kid, so I made my way to the front and engaged with
Prakash. We talked about quantum entanglement and black holes;
specifically whether entanglement still holds between two particles if
one of them falls inside a black hole. I still remember his answer: “No
one really knows.” Later I went back to Prakash and asked him if he
would be interested in exploring that question with me as my PhD
advisor (along with Professor Niky Kamran in the math department
who is an expert in black hole geometries). Prakash was sufficiently
intrigued to give it a shot. I’m pretty sure that this is not something
that happens everyday. It takes a special kind of professor to ignite
a four year research project over a beer. Running into Prakash that
fateful evening was one of the best things that ever happened to me.”

– Andie Sigler:Mathematical Structure in Musical Analysis, McGill University.

“Prakash, jouster of monstrous abstractions, nixer of mathemati-
cal misapplications, and mind-expander of luminous categorical do-
mains: nice of Doina to let us borrow her pet mathematician!”



XIV Preface

Group photo from the 2014 Bellairs Workshop

Group photo from the 2013 Bellairs Workshop
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Prakash Panangaden in the president’s chair
at his induction to the Royal Society of Canada
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Layout Randomization and Nondeterminism

Mart́ın Abadi1, Jérémy Planul2, and Gordon D. Plotkin1,3

1 Microsoft Research
2 Department of Computer Science, Stanford University
3 LFCS, School of Informatics, University of Edinburgh

Abstract. In security, layout randomization is a popular, effective at-
tack mitigation technique. Recent work has aimed to explain it rigor-
ously, focusing on deterministic systems. In this paper, we study layout
randomization in the presence of nondeterministic choice. We develop a
semantic approach based on denotational models and the induced notions
of contextual public observation, characterized by simulation relations.
This approach abstracts from language details, and helps manage the del-
icate interaction between nondeterminism and probability. In particular,
memory access probabilities are not independent, but rather depend on
a fixed probability distribution over memory layouts; we therefore model
probability using random variables rather than any notion of probabilis-
tic powerdomain.

1 Introduction

Randomization has important applications in security, ranging from probabilistic
cryptographic schemes [1] to the introduction of artificial diversity in low-level
software protection [2]. Developing rigorous models and analyses of the systems
that employ randomization can be challenging, not only because of the intrinsic
difficulty of reasoning about probabilities but also because these systems typ-
ically exhibit many other interesting features. Some of these features, such as
assumed bounds on the capabilities and the computational complexity of attack-
ers, stem directly from security considerations. Others, such as nondeterminism,
need not be specifically related to security, but arise because of the generality
of the ambient computational models, which may for example include nondeter-
ministic scheduling for concurrent programs and for network protocols.

The form of randomization that we explore in this paper is layout randomiza-
tion in software systems (e.g., [3–5]). Layout randomization refers to a body of
widely used techniques that place data and code randomly in memory. In prac-
tice, these techniques effectively thwart many attacks that assume knowledge of
the location of data and code. Recent research by the authors and others aims to
develop rigorous models and proofs for layout randomization [6–9]. The research
to date has focused on deterministic, sequential programs. Here, we consider
layout randomization for programs that may make nondeterministic choices.

We phrase our study in terms of a high-level language in which variables are
abstract (symbolic) locations, and a low-level language in which they are mapped

F. van Breugel et al. (Eds.): Panangaden Festschrift, LNCS 8464, pp. 1–39, 2014.
c© Springer International Publishing Switzerland 2014



2 M. Abadi, J. Planul, and G.D. Plotkin

to random natural-number addresses in memory. Both languages include a stan-
dard construct for nondeterministic choice. We give models for the languages. For
each language, we also define a contextual implementation relation. Intuitively, a
context may represent an attacker, so contextual implementation relations may
serve, in particular, for expressing standard security properties. We character-
ize contextual implementation relations in terms of semantic simulation relations
(so-called logical relations). Throughout, the low-level relations are probabilistic.
Via the simulation relations, we obtain a semantic correspondence between the
high-level and low-level worlds. Basically, simulation relations in one world in-
duce simulation relations in the other, and therefore contextual implementation
in one world implies contextual implementation in the other.

Thus, our approach emphasizes semantic constructions. In comparison with
prior syntactic work, arguments via models arguably lead to more satisfying
security arguments, independent of superficial details of particular languages
(as layout randomization is largely language-agnostic in practice). They also
help reconcile probabilities and nondeterminism, which have a rich but thorny
interaction.

Some of the difficulties of this interaction have been noticed in the past.
For instance, in their development of a framework for the analysis of security
protocols [10, Section 2.7], Lincoln et al. observed:

our intention is to design a language of communicating processes so that
an adversary expressed by a set of processes is restricted to probabilistic
polynomial time. However, if we interpret parallel composition in the
standard nondeterministic fashion, then a pair of processes may nonde-
terministically “guess” any secret information.

They concluded:

Therefore, although nondeterminism is a useful modeling assumption in
studying correctness of concurrent programs, it does not seem helpful
for analyzing cryptographic protocols.

Thus, they adopted a form of probabilistic scheduling, and excluded nondeter-
minism. In further work, Mitchell et al. [11] refined the framework, in particular
defining protocol executions by reference to any polynomial-time probabilistic
scheduler that operates uniformly over certain kinds of choices. The uniformity
prevents collusion between the scheduler and an attacker. Similarly, Canetti et
al. [12] resolved nondeterminism by task schedulers, which do not depend on
dynamic information generated during probabilistic executions; they thus gen-
erated sets of trace distributions, one for each task schedule.

From a semantic perspective, a nondeterministic program denotes a function
that produces a set of possible outcomes; equally, a probabilistic program repre-
sents a function that produces a distribution over outcomes. Rigorous versions
of these statements can be cast in terms of powerdomains and probabilistic pow-
erdomains [13]. In principle, a nondeterministic and probabilistic program may
represent either a function producing a set of distributions over outcomes or else



Layout Randomization and Nondeterminism 3

one producing a distribution over sets of outcomes. However it seems that only
the former option, where nondeterministic choice is resolved before probabilistic
choice, leads to a satisfactory theory if, for example, one wishes to retain all the
usual laws for both forms of nondeterminism [14–16].

To illustrate these options, imagine a two-player game in which Player I
chooses a bit bI at random, Player II chooses a bit bII nondeterministically,
and Player I wins if and only if bI = bII. The system composed of the two play-
ers may be seen as producing a set of distributions or a distribution on sets of
outcomes.

– With the former view, we can say that, in each possible distribution, Player
I wins with probability 1/2.

– On the other hand, with the latter view, we can say only that, with proba-
bility 1, Player I may win and may lose.

The former view is preferable in a variety of security applications, in which we
may wish to say that no matter what an attacker does, or how nondeterministic
choices are resolved, some expected property holds with high probability.

However, in our work, it does not suffice to resolve nondeterministic choice
before probabilistic choice, as we explain in detail below, fundamentally because
the probabilistic choices that we treat need not be independent. Instead, we
construct a more sophisticated model that employs random variables, here maps
from memory layouts to outcomes. The memory layouts form the sample space
of the random variables, and, as usual, one works relative to a given distribution
over the sample space.

Beyond the study of layout randomization, it seems plausible that an ap-
proach analogous to ours could be helpful elsewhere in security analysis. Our
models may also be of interest on general grounds, as a contribution to a long
line of research on programming-language semantics for languages with nonde-
terministic and probabilistic choice. Specifically, the models support a treatment
of dependent probabilistic choice combined with nondeterminism, which as far
as we know has not been addressed in the literature. Finally, the treatment of
contextual implementation relations and simulation relations belongs in a long
line of research on refinement.

This paper is a full version of a conference paper [17] of the same title. The
main differences are that proofs are presented in full (except in some routine or
evident cases) and that an inconsistency between the operational and denota-
tional semantics of the low-level language has been corrected by an alteration to
its operational semantics.

Contents

In Section 2 we review some preliminary material on cpos.
In Section 3, we consider a high-level language, with abstract locations, stan-

dard imperative constructs, and nondeterminism, and describe its denotational
and operational semantics. We define a contextual implementation relation with
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respect to contexts that represent attackers, which we call public contexts; for
this purpose, we distinguish public locations, which attackers can access directly,
from private locations. We also define a simulation relation, and prove that it
coincides with the contextual implementation relation. The main appeal of the
simulation relation, as usual, is that it does not require reasoning about all
possible contexts.

In Section 4, we similarly develop a lower-level language in which programs
may use natural-number memory addresses (rather than abstract locations).
Again, we define a denotational semantics, an operational semantics, a contex-
tual implementation relation, and a simulation relation. These definitions are
considerably more delicate than those of the high-level language, in particular
because they refer to layouts, which map abstract locations to concrete natural-
number addresses, and which may be chosen randomly (so we often make prob-
abilistic statements).

In Section 5, we relate the high-level and the low-level languages. We define
a simple compilation function that maps from the former to the latter. We then
establish that if two high-level commands are in the contextual implementation
relation, then their low-level counterparts are also in the contextual implemen-
tation relation. The proof leverages simulation relations. In semantics parlance,
this result is a full-abstraction theorem; the use of public contexts that represent
attackers, however, is motivated by security considerations, and enable us to in-
terpret this theorem as providing a formal security guarantee for the compilation
function, modulo a suitable random choice of memory layouts.

Finally, in Section 6 we conclude by discussing some related and further work.

2 Preliminaries on Cpos

We take a cpo to be a partial order P closed under increasing ω-sups, and
consider sets to be cpos with the discrete ordering. We write P⊥ for the lift of
P , viz. P extended by the addition of a least element, ⊥. Products P × Q and
function spaces P → Q (which we may also write as QP ) are defined as usual,
with the function space consisting of all continuous functions (those monotonic
functions preserving the ω-lubs).

We use the lower, or Hoare, powerdomain H(P ), which consists of the
nonempty, downwards, and ω-sup-closed subsets of P , ordered by inclusion. The
lower powerdomain is the simplest of the three powerdomains, and models “may”
or “angelic” nondeterminism; the others (upper and convex) may also be worth
investigating.

For any nonempty subset X of P , we write X ↓ for the downwards closure
{y | ∃x ∈ X. y ≤ x} of X . We also write X∗ for the downwards and ω-sup closure
of X (which is typically the same as X ↓ in the instances that arise below).

Both H(−) and H(−⊥) are monads (those for lower nondeterminism, and
lower nondeterminism and nontermination, respectively). The unit of the former
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is x �→ {x}↓ and continuous maps f : P → H(Q) have extensions f † : H(P )→
H(Q) given by:

f †(X) = (
⋃
x∈X

f(x))∗

The unit of the latter is x �→ {x} ↓ and continuous maps f : P → H(Q⊥) have
extensions f † : H(P⊥)→ H(Q⊥) given by:

f †(X) = {⊥} ∪ (
⋃

x∈X\{⊥}
f(x))∗

3 The High-Level Language

In this section, we define our high-level language. In this language, locations are
symbolic names, and we use an abstract store to link those locations to their
contents, which are natural numbers.

For simplicity, the language lacks data structures and higher-order features.
Therefore, locations cannot contain arrays or functions (cf. [9]), except perhaps
through encodings. So the language does not provide a direct model of overflows
and code-injection attacks, for instance.

There are many other respects in which our languages and their semantics
are not maximally expressive, realistic, and complex. They are however conve-
nient for our study of nondeterminism and of the semantic approach to layout
randomization.

3.1 Syntax and Informal Semantics

The syntax of the high-level language includes categories for natural-number
expressions, boolean expressions, and commands:

e ::= k |!lloc | e+ e | e ∗ e
b ::= e ≤ e | ¬b | tt | ff | b ∨ b | b ∧ b
c ::= lloc := e | if b then c else c | skip | c; c | c+ c | while b do c

where k ranges over numerals, and l over a given finite set of store locations Loc.
Natural-number expressions are numerals, dereferencing of memory locations,
sums, or products. Boolean expressions are inequalities on natural-number ex-
pressions, negations, booleans, disjunctions, or conjunctions. Commands are as-
signments at a location, conditionals, skip, sequences, nondeterministic choices,
or while loops. Command contexts C[ ] are commands with holes; we write C[c]
for the command obtained by filling all the holes in C[ ] with c. We further
use trivial extensions of this language, in particular with additional boolean and
arithmetic expressions.

We assume that the set of store locations Loc is the union of two disjoint sets
of locations PubLoc (public locations) and PriLoc (private locations). Let c be a
command or a command context. We say that c is public if it does not contain any
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occurrence of lloc := v or !lloc for l ∈ PriLoc. As in previous work [7], we model
attackers by such public commands and command contexts; thus, attackers have
direct access to public locations but not, by default, to private locations.

The distinction between public and private locations is directly analogous
to that between external and internal state components in automata and other
specification formalisms (e.g., [18]). It also resembles distinctions in information-
flow systems, which often categorize variables into levels (e.g., [19]), and typically
aim to prevent flows of information from “high” to “low” levels. We do not
impose any such information-flow constraint: we permit arbitrary patterns of use
of public and private locations. Nevertheless, we sometimes use h for a private
location and l for a public location, and also associate the symbols H and L
with private and public locations, respectively.

3.2 Denotational Semantics

A store s is a function from the finite set Loc of store locations to natural
numbers. When Loc consists solely of h and l, for example, we write (h �→
m, l �→ n) for the store that maps h to m and l to n. A public (private) store is
a function from PubLoc (PriLoc) to natural numbers. We write S for the set of
stores, SL for the set of public stores, and SH for the set of private stores. The
following natural functions restrict the store to its public and private locations:

SL
L←−− S H−−→ SH

We write sL for L(s) and s =L s
′ when sL = s′L, and similarly for H .

The denotational semantics

[[e]] : Store→ � [[b]] : Store→ �

of expressions are defined as usual with, in particular, [[!lloc]](s) = s(l). The
denotational semantics

[[c]] : S → H(S⊥)

of commands is given in Figure 1, where the semantics of the while loop is the
standard least-fixed point one.

[[lloc := e]](s) = η(s[l �→ [[e]](s)]) [[skip]](s) = η(s)

[[if b then c else c′]](s) =
{
[[c]](s) ([[b]](s) = tt)

[[c′]](s) ([[b]](s) = ff)

[[c; c′]](s) = [[c′]]†([[c]](s))
[[c+ c′]](s) = [[c]](s) ∪ [[c′]](s)

[[while b do c]] = μ θ : S → H(S⊥). λs :S.

{
η(s) ([[b]](s) = ff)

θ†([[c]](s)) ([[b]](s) = tt)

Fig. 1. High-level denotational semantics
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Example 1. Consider the two commands:

c0 = (h := 1; l := ¬!l) + (h := 0) c1 = (h := 1; l := 1) + (h := 0; l := 0)

According to the semantics, [[c0]] maps any store mapping l to 1 to the set
{(h �→ 1, l �→ 0), (h �→ 0, l �→ 1)} ↓, and any store where l is 0 to the set
{(h �→ 1, l �→ 1), (h �→ 0, l �→ 0)} ↓, while [[c1]] maps any store to the set {(h �→
1, l �→ 1), (h �→ 0, l �→ 0)}↓. In sum, we may write:

[[c0]](h �→ , l �→ 1) = {(h �→ 1, l �→ 0), (h �→ 0, l �→ 1)}↓
[[c0]](h �→ , l �→ 0) = {(h �→ 1, l �→ 1), (h �→ 0, l �→ 0)}↓
[[c1]](h �→ , l �→ ) = {(h �→ 1, l �→ 1), (h �→ 0, l �→ 0)}↓

Since the two commands act differently on stores, they do not have the same
semantics. However, when one observes only public locations, the apparent be-
havior of both commands is the same: they non-deterministically write 0 or 1 to
l. This similarity will be made rigorous in Example 2. ��

3.3 Operational Semantics

The high-level language has a straightforward big-step operational semantics. In
this semantics, a high-level state is a pair 〈c, s〉 of a command and a store or,
marking termination, just a store s. The transition relation is a binary relation
〈c, s〉 ⇒ s between such states. Figure 2 gives the rules for⇒. (Note that we treat
expressions denotationally; as we wish to focus on commands, this treatment
avoids some extra complexity.)

〈lloc := e, s〉 ⇒ s[l �→ [[e]]s]
[[b]]s = tt 〈c, s〉 ⇒ s′

〈if b then c else c′, s〉 ⇒ s′

[[b]]s = ff 〈c′, s〉 ⇒ s′

〈if b then c else c′, s〉 ⇒ s′
〈skip, s〉 ⇒ s

〈c, s〉 ⇒ s′ 〈c′, s′〉 ⇒ s′′

〈c; c′, s〉 ⇒ s′′

〈c, s〉 ⇒ s′

〈c+ c′, s〉 ⇒ s′
〈c′, s〉 ⇒ s′

〈c+ c′, s〉 ⇒ s′

[[b]]s = ff

〈while b do c, s〉 ⇒ s

[[b]]s = tt 〈c, s〉 ⇒ s′ 〈while b do c, s′〉 ⇒ s′′

〈while b do c, s〉 ⇒ s′′

Fig. 2. High-level operational semantics
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The following proposition links the operational and denotational semantics of
the high-level language.

Proposition 1 (High-level operational/denotational consistency). For
any high-level command c and store s, we have:

[[c]](s) = {s′|〈c, s〉 ⇒ s′} ∪ {⊥}

Proof. In one direction, using rule-induction, one shows that if 〈c, s〉 ⇒ s′ then
s′ ∈ [[c]](s). In the other direction one shows, by structural induction on loop-free
commands, that if s′ ∈ [[c]](s) then 〈c, s〉 ⇒ s′. One then establishes the result for
all commands, including while loops, by considering their iterates, where loops
are unwound a finite number of times. We omit details.

3.4 Implementation Relations and Equivalences

We next define the contextual pre-order that arises from the notion of public
observation. We then give an equivalent simulation relation, with which it is
easier to work as it does not refer to contexts.

Contextual Pre-order. We introduce a contextual pre-order �L on com-
mands. Intuitively, c �L c′ may be interpreted as saying that c “refines” (or
“implements”) c′, in the sense that the publicly observable outcomes that c can
produce are a subset of those that c′ permits, in every public context and from
every initial store. Thus, let f = [[C[c]]] and f ′ = [[C[c′]]] for an arbitrary public
context C, and let s0 be a store; then for every store s in f(s0) there is a store
s′ in f ′(s0) that coincides with s on public locations. Note that we both restrict
attention to public contexts and compare s and s′ only on public locations.

We define �L and some auxiliary relations as follows:

– For X ∈ H(S⊥), we set:

XL = {sL | s ∈ X \ {⊥}} ∪ {⊥}

– For f, f ′ : S → H(S⊥), we write that f ≤L f ′ when, for every store s0, we
have f(s0)L ≤ f ′(s0)L.

– Let c and c′ be two commands. We write that c �L c′ when, for every public
command context C, we have [[C[c]]] ≤L [[C[c′]]].

Straightforwardly, this contextual pre-order relation yields a notion of contextual
equivalence with respect to public contexts.

Simulation. We next give the simulation relation �. As in much previous work,
one might expect the simulation relation between two commands c and c′ to be
a relation on stores that respects the observable parts of these stores, and such
that if s0 is related to s1 and c can go from s0 to s′0 then there exists s′1 such
that s′0 is related to s′1 and c′ can go from s1 to s′1. In our setting, respecting
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the observable parts of stores means that related stores give the same values
to public locations (much like refinement mappings preserve externally visible
state components [18], and low-bisimulations require equivalence on low-security
variables [19]).

Although this idea could lead to a sound proof technique for the contextual
pre-order, it does not suffice for completeness. Indeed, forward simulations, of
the kind just described, are typically incomplete on their own for nondetermin-
istic systems. They can be complemented with techniques such as backward
simulation, or generalized (e.g., [18, 20, 21]).

Here we develop one such generalization. Specifically, we use relations on sets
of stores. We build them from relations over H(SH⊥) as a way of ensuring the
condition that public locations have the same values, mentioned above. We also
require other standard closure conditions. Our relations are similar to the ND
measures of Klarlund and Schneider [20]. Their work takes place in an automata-
theoretic setting; automata consist of states (which, intuitively, are private) and
of transitions between those states, labeled by events (which, intuitively, are
public). ND measures are mappings from states to sets of finite sets of states, so
can be seen as relations between states and finite sets of states. The finiteness
requirement, which we do not need, allows a fine-grained treatment of infinite
execution paths via König’s Lemma.

First, we extend relations R over H(SH⊥) to relations R+ over H(S⊥), as
follows. For any X ∈ H(S⊥) and s ∈ SL, we define Xs ∈ H(SH⊥) by:

Xs = {s′H | s′ ∈ X, s′L = s} ∪ {⊥}

and then we define R+ by:

XR+Y ≡def ∀s ∈ SL. (Xs �= {⊥} ⇒ Ys �= {⊥}) ∧XsRYs

If R is reflexive (respectively, is closed under increasing ω-sups; is right-closed
under ≤; is closed under binary unions) the same holds for R+. Also, if XR+Y
then XL ≤ YL.

For any f, f ′ : S⊥ → H(S⊥) and relation R over H(SH⊥) we write that
f �R f ′ when:

∀X,Y ∈ H(S⊥). XR+Y ⇒ f †(X)R+f ′†(Y )

If f �R f ′ holds then we have f ≤L f ′ (as follows from the fact that XL ≤ YL
holds if XR+Y does).

Finally, we write that f � f ′ if f �R f ′ for some reflexive R closed under
increasing ω-sups, right-closed under ≤, and closed under binary unions.

Contextual Pre-order vs. Simulation. The contextual pre-order coincides
with the simulation relation, as we now show. We break the proof into two parts.

Lemma 1. Let c and c′ be two commands of the high-level language such that
[[c]] � [[c′]]. Then c �L c′ holds.
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Proof. Let c0 and c1 be two commands such that [[c0]] �R [[c1]], with R a reflexive
relation over H(SH⊥) closed under increasing ω-sups, right-closed under ≤, and
closed under binary unions, and let C be a public command context. We prove
that [[C[c0]]] �R [[C[c1]]] by induction on the size of C, considering the possible
forms of C:

1. lloc := e: Suppose thatXR+Y . As e is public, for every s, [[e]](s) only depends
on sL. As l is also public, [[lloc := e]](s) = {s′} ∪ {⊥}, for every s, where
s′ =H s and s′L depends only on sL. Therefore, for every s0 ∈ SL, let S0 ⊆ S
be the (possibly empty) set

{s ∈ S | ∃s′ ∈ S, [[lloc := e]](s) = {s′} ∪ {⊥} and s′L = s0}

We then have that [[lloc := e]](X)s0 = (
⋃
s∈S0

XsL) ∪ {⊥} and also that
[[lloc:=e]](Y )s0 = (

⋃
s∈S0

YsL) ∪ {⊥}.
To see that [[lloc:=e]](X)R+[[lloc:=e]](Y ), choose s0 ∈ SL, and define S0 as
above. Then, if [[lloc:=e]](X) �= {⊥} there is an s ∈ S0 such that XsL �= {⊥}.
But then, as XR+Y , we have that YsL �= {⊥}, and so [[lloc:=e]](Y ) �= {⊥}.
Finally we have to check that [[lloc:=e]](X)s0R[[lloc:=e]](Y )s0 . That follows
from the above two formulas, as XR+Y and R is closed under countable
unions and reflexive.

2. if b thenCtt elseCff : Suppose that XR+Y . Define Xtt ⊆ X to be the set
{s ∈ X |[[b]](s) =tt} ∪{⊥} and define Ytt, Xff , and Yff similarly. As b is public,
for every s, [[b]](s) only depends on sL, and so, for any s0 ∈ SL we have:

(Xtt)s0 =

{
Xs0 ∪ {⊥} (∃s ∈ Xtt. s0 = sL)
{⊥} (otherwise)

and similar equations hold for Ytt, Xff , and Yff . We then check that XttR
+Ytt

and XffR
+Yff much as in the previous case.

We have

[[if b thenCtt[c0] elseCff [c0]]]
†(X) = [[Ctt[c0]]]

†(Xtt) ∪ [[Cff [c0]]]
†(Xff)

and similarly for Y . By induction, [[Ctt[c0]]]
†(Xtt)R

+[[Ctt[c1]]]
†(Ytt) and simi-

larly for ff. As R+ is closed under binary unions, we conclude.
3. skip: The conclusion is immediate as [[skip]]† is the identity.
4. C′;C′′: Here we have:

[[C′[c0];C′′[c0]]]† = ([[C′′[c0]]]†[[C′[c0]]])† = [[C′′[c0]]]†[[C′[c0]]]†

and the same holds for c1, and so the conclusion follows using the induction
hypothesis.

5. C′ + C′′: Here, as R+ is closed under binary unions, the conclusion follows
using the induction hypothesis.
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6. while b doCw: Define iterates C(n) by setting:

C(0) = Ω C(n+1) = if b then skip elseCw;C
(n)

where Ω is some command denoting ⊥. By induction on n, we have
C(n)[c0] �R C(n)[c1]: the case n = 0 follows as we have {⊥}R+{⊥}, and
the induction step follows using the same reasoning as in the second, third,
and fourth cases of the proof.

But then, as we have

C[c0] =
∨
n≥0

C(n)[c0]

and the same holds for c1, the conclusion follows using the fact that R+ is
closed under increasing ω-sups.

7. [ ]: We have C[c0] = c0 and C[c1] = c1, and the conclusion follows using the
hypothesis.

This concludes the proof since it follows from [[C[c0]]] �R [[C[c1]]] that
[[C[c0]]] ≤L [[C[c1]]].

We need a lemma in order to prove the converse of Lemma 1.

Lemma 2. Let Ri (i ≥ 0) be relations on H(SH⊥) such that if XRiY holds
then X �= {⊥} implies Y �= {⊥}. Let R be the closure of the union of the Ri
under increasing ω-sups, binary union, and right-closure under ≤. Then R+ is
the closure of the union of the relations R+

i under increasing ω-sups, binary
union, and right-closure under ≤.

Proof. As −+ is evidently monotone, R+ contains the R+
i . Next, we know that

if a relation S on H(SH⊥) is closed under any one of increasing ω-sups, binary
unions, or right-closure under ≤, then so is S+. So R+ is closed under increasing
ω-sups and binary unions, and right-closed under ≤. It is therefore included in
the closure of the union of the R+

i under increasing ω-sups, binary unions, and
right-closure under ≤.

For the converse, suppose that UR+W to show that U and W are related in
the closure of the union of the R+

i under increasing ω-sups, binary unions, and
right-closure under ≤. For any given s in SL, by definition of −+, UsRWs, and

so, by the definition of R, there is a set J (s) ⊆ IN, and relations X
(s)
j R

i
(s)
j

Y
(s)
j

such that Us =
⋃
j∈J(s) X

(s)
j and Ws ⊇

⋃
j∈J(s) Y

(s)
j . We may assume without

loss of generality that the J (s) are disjoint.
Let

J =
⋃
s∈SL

J (s)

Xj = {s′ | s′H ∈ X
(s)
j , s′L = s} ∪ {⊥} (j ∈ J (s))

Yj = {s′ | s′H ∈ Y
(s)
j , s′L = s} ∪ {⊥} (j ∈ J (s))

ij = i
(s)
j (j ∈ J (s))
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We verify that (Xj)s is equal to X
(s)
j , if j is in J (s), and equal to {⊥}, otherwise,

and similarly for the (Yj)s. Consequently, U =
⋃
j Xj, W ⊇

⋃
j Yj , and for

all s in SL, (Xj)sRij (Yj)s. Since, by hypothesis, if (Xj)sRij (Yj)s holds then

(Xj)s �= {⊥} implies (Yj)s �= {⊥}, we note that XjR
+
ij
Yj . We conclude that U

and W are related as required.

We also need some notation. Assume a fixed enumeration x1 . . . xn of PubLoc.
Then, given high-level commands ci (i = 1, . . . , n) we write [cx | x ∈ PubLoc] for
the high-level command cx1 ; . . . ; cxn . As usual, we abbreviate if b then c else skip
to if b then c. We can now show:

Lemma 3. Let c and c′ be two commands of the high-level language such that
c �L c′. Then [[c]] � [[c′]] holds.

Proof. Let c0 and c1 be two commands such that c0 �L c1. We define relations
Ri (i ≥ 0) on H(SH⊥) as follows:

– for every X ∈ H(SH⊥), we have X R0 X ;
– for every X,Y ∈ H(S⊥), such that X R+

i Y , and for every s ∈ SL we have
[[c0]]

†(X)s Ri+1 [[c1]]
†(Y )s.

We first prove by induction on i that, if X R+
i Y , then, for every s ∈ X such

that s �=⊥, there exist a public command context C and s0 ∈ S such that
s ∈ [[C[c0]]](s0) and [[C[c1]]](s0)sL ⊆ YsL .

– Suppose that X R+
0 Y . For every s, we let C be skip and s0 be s. We have

s ∈ [[skip]](s) and [[skip]](s)sL = {s,⊥}sL ⊆ XsL = YsL .
– Suppose that X R+

i+1 Y . By definition of X R+
i+1 Y , and in particular

XsL Ri+1 YsL , there existX
′ R+

i Y
′ and s′ ∈ SL such that [[c0]]

†(X ′)s′ = XsL

and [[c1]]
†(Y ′)s′ = YsL . As sH in XsL , by definition of −†, there exist s′′ ∈ X ′

and s′′′ ∈ S such that s′′′ ∈ [[c0]](s
′′), s′′′L = s′ and s′′′H = sH (note that

s′′ �=⊥).
By induction on X ′ Ri Y ′ and s′′, there exists a public command context C
and an s0 ∈ S such that both s′′ ∈ [[C[c0]]](s0) and [[C[c1]]](s0)s′′L ⊆ Y

′
s′′L

hold.

We consider the public command context

C′ =def C; [if !xloc �= s′′L(x) then Ω | x ∈ PubLoc];
[ ]; [x := sL(x) | x ∈ PubLoc]

We have s′′ in [[C[c0]]](s0), so s
′′′ is in

[[C[c0]; [if !xloc �= s′′L(x) then Ω | x ∈ PubLoc]; c0]](s0)

so s is in [[C′[c0]]](s0).
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Also, [[C[c1]]](s0)s′′
L
⊆ Y ′

s′′L
, hence

[[C[c1]; [if !xloc �= s′′L(x) then Ω | x ∈ PubLoc]]](s0) ⊆ Y ′

hence

[[C[c1]; [if !xloc �= s′′L(x) then Ω | x ∈ PubLoc]; c1]](s0)s′ ⊆ YsL

and hence (we rewrite the low variables with their corresponding values in
sL)

[[C′[c1]]](s0)sL ⊆ YsL
We now prove that

∀X,Y ∈ H(SH⊥). XRiY ⇒ (X �= {⊥} ⇒ Y �= {⊥})

For i = 0, this follows from the definition of R0. Otherwise, i = j + 1, and
by definition of (Ri), there exist X ′, Y ′, and s ∈ SL such that X ′R+

j Y
′, X =

[[c0]]
†(X ′)s, and Y = [[c1]]

†(Y ′)s. If X �= {⊥}, by definition of −†, there exists
s′ ∈ X ′ such that [[c0]](s

′)s �= {⊥} (note that s′ �=⊥). As shown above, since
X ′R+

j Y
′, there exist a public command context C and s0 ∈ S such that s′ ∈

[[C[c0]]](s0) and [[C[c1]]](s0)s′
L
⊆ Y ′

s′L
.

We let C′ = C[ ]; [if !xloc �= s′L(x) then Ω|x ∈ PubLoc]; [ ]. We have
[[c0]](s

′)s ⊆ [[C′[c0]]](s0)s �= {⊥}. Also, since C′ is a public command context,
we have [[C′[c0]]](s0) ≤L [[C′[c1]]](s0). Hence [[C′[c1]]](s0)s �= {⊥}, and we con-
clude since [[C′[c1]]](s0)s ⊆ [[c1]]

†(Y ′)s.
By definition of Ri+1, we have

X R+
i Y ⇒ ∀s ∈ SL, [[c0]]†(X)s Ri+1 [[c1]]

†(Y )s

From the result above, we deduce

∀X,Y ∈ H(S⊥). XR+
i Y ⇒ [[c0]]

†(X)R+
i+1[[c1]]

†(Y ) (∗)

We now let R be the closure of the union of the Ri increasing ω-sups, right-
closure under ≤ and closure under binary unions. Note that R is reflexive as it
contains R0. By Lemma 2, we then have that R+ is the closure of the union of
the R+

i under increasing ω-sups, right-closure under ≤, and closure under binary
unions. Since every [[c]]† is monotone and distributes over these unions, and given
the property (∗) above, we conclude that [[c0]] �R [[c1]].

Lemmas 1 and 3 give us the desired equivalence:

Theorem 1. Let c and c′ be two commands of the high-level language. Then
c �L c′ holds if and only if [[c]] � [[c′]] does.

Example 2. We can verify that c0 and c1, introduced in Example 1, are equiva-
lent (with R the full relation). For instance, take S0 and S1 to be {(h �→ 0, l �→
1)}↓ and {(h �→ 1, l �→ 1)}↓. We have S0R

+S1, and:

[[c0]]
†(S0) = {(h �→ 1, l �→ 0), (h �→ 0, l �→ 1)}↓

[[c1]]
†(S1) = {(h �→ 1, l �→ 1), (h �→ 0, l �→ 0)}↓
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We can then check that:
[[c0]]

†(S0)R
+[[c1]]

†(S1)

��
Example 3. In this example, we study the two commands

c2 = ifh = 0 then l := 1 else (h := 0) + (h :=!h− 1)
c3 = ifh = 0 then l := 1 else (h := 0) + skip

which seem to share the same behavior on public variables, but that are inher-
ently different because of their behavior on private variables. According to the
semantics, we have:

[[c2]](h �→ 0, l �→ ) = {(h �→ 0, l �→ 1)}↓
[[c2]](h �→ j + 1, l �→ k) = {(h �→ j, l �→ k), (h �→ 0, l �→ k)}↓
[[c3]](h �→ 0, l �→ ) = {(h �→ 0, l �→ 1)}↓
[[c3]](h �→ j + 1, l �→ k) = {(h �→ j + 1, l �→ k), (h �→ 0, l �→ k)}↓

We can verify that c2 �R c3, with R defined as the smallest relation that
satisfies our conditions (reflexivity, etc.) and such that

{(h �→ k)}R{(h �→ k′)} for all k ≤ k′

For example, let S0 and S1 be {(h �→ 5, l �→ 0)}↓ and {(h �→ 7, l �→ 0)}↓. Then
we have S0R

+S1, and:

[[c2]]
†(S0) = {(h �→ 4, l �→ 0), (h �→ 0, l �→ 0)}↓

[[c3]]
†(S1) = {(h �→ 7, l �→ 0), (h �→ 0, l �→ 0)}↓

We can then check that:
[[c2]]

†(S0)R
+[[c3]]

†(S1)

However there is no suitable relation R such that c3 �R c2. If there were such
a relation R, it would be reflexive, so {(h �→ 1)} R {(h �→ 1)}. Suppose that
S0 = {(h �→ 1, l �→ 0)} ↓ and that S1 = {(h �→ 1, l �→ 0)} ↓. We have S0R

+S1,
and:

[[c3]]
†(S0) = {(h �→ 1, l �→ 0), (h �→ 0, l �→ 0)}↓

[[c2]]
†(S1) = {(h �→ 0, l �→ 0)}↓

We need

{(h �→ 1, l �→ 0), (h �→ 0, l �→ 0)}↓ R+{(h �→ 0, l �→ 0)}↓

hence {(h �→ 1)}R{(h �→ 0)}. Now take S2 = {(h �→ 1, l �→ 0)}↓ and S3 = {(h �→
0, l �→ 0)}↓. We have S2R

+S3, and:

[[c3]]
†(S2) = {(h �→ 1, l �→ 0), (h �→ 0, l �→ 0)}↓

[[c2]]
†(S3) = {(h �→ 0, l �→ 1)}↓

Since the values of l do not match, we cannot have [[c3]]
†(S2)R

+[[c2]]
†(S3), hence

c3 ��R c2.
As predicted by Theorem 1, we also have c3 ��L c2. Indeed, for C = ; and

s0 = (h �→ 1, l �→ 0), we have [[C[c3]]](s0) �≤L [[C[c2]]](s0). ��
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4 The Low-Level Language

In this section, we define our low-level language. In this language, we use concrete
natural-number addresses for memory. We still use abstract location names, but
those are interpreted as natural numbers (according to a memory layout), and
can appear in arithmetic expressions.

4.1 Syntax and Informal Semantics

The syntax of the low-level language includes categories for natural-number ex-
pressions, boolean expressions, and commands:

e ::= k | lnat |!e | e+ e | e ∗ e
b ::= e ≤ e | ¬b | tt | ff | b ∨ b | b ∧ b
c ::= e := e | if b then c else c | skip | c; c | c+ c | while b do c

where k ranges over numerals, and l over the finite set of store locations. Boolean
expressions are as in the high-level language. Natural-number expressions and
commands are also as in the high-level language, except for the inclusion of
memory locations among the natural-number expressions, and for the derefer-
encing construct !e and assignment construct e := e′ where e is an arbitrary
natural-number expression (not necessarily a location).

Importantly, memory addresses are natural numbers, and a memory is a par-
tial function from those addresses to contents. We assume that accessing an
address at which the memory is undefined constitutes an error that stops execu-
tion immediately. In this respect, our language relies on the “fatal-error model”
of Abadi and Plotkin [7]. With more work, it may be viable to treat also the
alternative “recoverable-error model”, which permits attacks to continue after
such accesses, and therefore requires a bound on the number of such accesses.

4.2 Denotational Semantics

Low-Level Memories, Layouts, and Errors. We assume given a natural
number r > |Loc| that specifies the size of the memory. A memory m is a partial
function from {1, . . . , r} to the natural numbers; we write Mem for the set of
memories. A memory layout w is an injection from Loc to {1, . . . , r}; we write
ran(w) for its range. We consider only memory layouts that extend a given
public memory layout wp (an injection from PubLoc to {1, . . . , r}), fixed in the
remaining of the paper. We let W be the set of those layouts.

The security of layout randomization depends on the randomization itself. We
let d be a probability distribution on memory layouts (that extend wp). When
ϕ is a predicate on memory layouts, we write Pd(ϕ(w)) for the probability that
ϕ(w) holds with w sampled according to d.

Given a distribution d on layouts, we write δd for the minimum probability
for a memory address to have no antecedent private location (much as in [7]):

δd = min
i∈{1,...,r}\ran(wp)

Pd(i �∈ ran(w))
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We assume that δd > 0. This assumption is reasonable, as 1−δd is the maximum
probability for an adversary to guess a private location. For common distribu-
tions (e.g., the uniform distribution), δd approaches 1 as r grows, indicating that
adversaries fail most of the time. We assume d fixed below, and may omit it,
writing δ for δd.

The denotational semantics of the low-level language uses the “error + non-
termination” monad Pξ⊥ =def (P + {ξ})⊥, which first adds an “error” ele-
ment ξ to P and then a least element. As the monad is strong, functions
f :P1 × . . .× Pn → Qξ⊥ extend to functions f on (P1)ξ⊥ × . . .× (Pn)ξ⊥, where
f(x1, . . . , xn) is ξ or ⊥ if some xj , but no previous xi, is; we often write f for f .

For any memory layout w and store s, we let w·s be the memory defined on
ran(w) by:

w·s(i) = s(l) for w(l) = i

(so that w ·s(w(l)) = s(l)). The notation w · s extends to s ∈ Sξ⊥, as above, so
that w ·ξ = ξ and w ·⊥=⊥. A store projection is a function ζ : MemW

ξ⊥ of the
form w �→ w · s, for some s ∈ Sξ⊥; we use the notation −·s to write such store
projection functions.

What Should the Denotational Semantics Be? A straightforward seman-
tics might have type:

W ×Mem→ H(Memξ⊥)

so that the meaning of a command would be a function from layouts and memo-
ries to sets of memories (modulo the use of the “error + nontermination” monad).
Using a simple example we now argue that this is unsatisfactory, and arrive at
a more satisfactory alternative.

Suppose that there is a unique private location l, no public locations, and that
the memory has four addresses, {1, 2, 3, 4}. We write si for the store (l �→ i). The
4 possible layouts are wi = (l �→ i), for i = 1, . . . , 4. Assume that d is uniform.
Consider the following command:

c4 = (1:=1) + (2:=1) + (3:=1) + (4:=1)

which nondeterministically guesses an address and attempts to write 1 into it.
Intuitively, this command should fail to overwrite l most of the time. However,
in a straightforward semantics of the above type we would have:

[[c4]](wj , wj ·s0) = {ξ, wj ·s1} ↓

and we cannot state any quantitative property of the command, only that it
sometimes fails and that it sometimes terminates.

One can rewrite the type of this semantics as:

Mem→ H(Memξ⊥)W

and view that as a type of functions that yield an H(Memξ⊥)-valued random
variable with sample space W (the set of memory layouts) and distribution d.
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Thus, in this semantics, the nondeterministic choice is made after the proba-
bilistic one —the wrong way around, as indicated in the Introduction.

It is therefore natural to reverse matters and look for a semantics of type:

Mem→ H(MemW
ξ⊥)

now yielding a set of Memξ⊥-valued random variables—so, making the nonde-
terministic choice first. Desirable as this may be, there seems to be no good
notion of composition of such functions.

Fortunately, this last problem can be overcome by changing the argument
type to also be that of Memξ⊥-valued random variables:

MemW
ξ⊥ → H(MemW

ξ⊥)

It turns out that with this semantics we have:

[[c4]](ζi) = {ζ1ξ , ζ2ξ , ζ3ξ , ζ4ξ } ↓

where ζi(w) = w ·si and ζiξ(w) = wi ·s1 if w = wi and = ξ otherwise. We can
then say that, for every nondeterministic choice, the probability of an error (or
nontermination, as we are using the lower powerdomain) is 0.75.

In a further variant of the semantics, one might replace Memξ⊥-valued ran-
dom variables by the corresponding probability distributions on Memξ⊥, via the

natural map Indd :MemW
ξ⊥ −→ V(Memξ⊥) induced by the distribution d on W

(where V is the probabilistic powerdomain monad, see [13]). Such a semantics
could have the form:

Mem→ HV(Memξ⊥)

mapping memories to probability distributions on memories, where HV is a
powerdomain for mixed nondeterministic and probabilistic choice as discussed
above. However, such an approach would imply (incorrectly) that a new layout
is chosen independently for each memory operation, rather than once and for
all. In our small example with the single private location l and four addresses,
it would not capture that (1 := 1); (2 := 1) will always fail. It would treat the
two assignments in (1 := 1); (2 := 1) as two separate guesses that may both
succeed. Similarly, it would treat the two assignments in (1 := 1); (1 := 2) as
two separate guesses where the second guess may fail to overwrite l even if the
first one succeeds. With a layout chosen once and for all, on the other hand,
the behavior of the second assignment is completely determined after the first
assignment.

Denotational Semantics. The denotational semantics

[[e]] : Mem×W → �ξ⊥ [[b]] : Mem×W → �ξ⊥

of expressions are defined in a standard way. In particular, [[lnat]]
w
m = w(l), and

also [[!e]]wm = m([[e]]wm), if [[e]]wm ∈ dom(m), and = ξ, otherwise, using an obvious
notation for functional application. Note that these semantics never have value⊥.
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As discussed above, the denotational semantics of commands has type:

[[c]] :MemW
ξ⊥ → H(MemW

ξ⊥)

(and we remark that, asW is finite, all increasing chains in MemW
ξ⊥ are eventually

constant, and so for any nonempty subset X of MemW
ξ⊥ we have X∗ = X ↓).

The denotational semantics is defined in Figure 3; it makes use of two auxiliary
definitions. We first define:

Ass :Memξ⊥ ×�ξ⊥ ×�ξ⊥ → Memξ⊥

by setting Ass(m,x, y) = m[x �→ y] if x ∈ dom(m) and = ξ, otherwise, for
m ∈ Mem, x, y ∈ �, and then using the function extension associated to the
“error + nontermination” monad. Second, we define

Cond(p, θ, θ′) :MemW
ξ⊥ → H(MemW

ξ⊥)

for any p :Mem×W → �ξ⊥ and θ, θ′ :MemW
ξ⊥ → H(MemW

ξ⊥), by:

Cond(p, θ, θ′)(ζ) = {ζ′ | ζ′|Wζ,tt
∈ θ(ζ)|Wζ,tt

, ζ′|Wζ,ff
∈ θ′(ζ)|Wζ,ff

,
ζ′(Wζ,ξ) ⊆ {ξ}, and ζ′(Wζ,⊥) ⊆ {⊥}} ↓

where Wζ,t =def {w | p(ζ(w), w) = t}, for t ∈ �ξ⊥, and we apply restriction
elementwise to sets of functions.

[[c+ c′]](ζ) = [[c]](ζ) ∪ [[c′]](ζ) [[c; c′]] = [[c′]]†◦[[c]] [[skip]] = η

[[e := e′]](ζ) = η(λw :W.Ass(ζ(w), [[e]]wζ(w) , [[e
′]]wζ(w)))

[[if b then c else c′]] = Cond([[b]], [[c]], [[c′]])

[[while b do c]] = μθ :MemW
ξ⊥ → H(MemW

ξ⊥).Cond([[b]], θ†◦[[c]], η)

Fig. 3. Low-level denotational semantics

Example 4. In this example, we demonstrate our low-level denotational seman-
tics. Consider the command:

c5 = l′nat := lnat; (!l
′
nat) := 1; l′nat := 0

This command stores the address of location l at location l′, then reads the
contents of location l′ (the address of l) and writes 1 at this address, and finally
resets the memory at location l′ to 0. Because of this manipulation of memory
locations, this command is not the direct translation of a high-level command.

Letting:

si,j = (l �→ i, l′ �→ j) ζi,j = −·si,j ζ′i = −·(l �→ i, l′ �→ w(l))
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we have:
[[l′nat := lnat]](ζi,j) = {ζ′i}↓

Note that ζi,j is a store projection, but ζ′i is not. We also have:

[[(!l′nat) := 1]](ζ′i) = {ζ′1}↓ [[l′nat := 0]](ζ′1) = {ζ1,0}↓

In sum, we have:
[[c5]](ζi,j) = {ζ1,0}↓

��

Looking at the type of the semantics

[[c]] :MemW
ξ⊥ → H(MemW

ξ⊥)

one may be concerned that there is no apparent relation between the layouts
used in the input to [[c]] and those in its output. However, we note that the
semantics could be made parametric. For every W ′ ⊆ W , replace W by W ′ in
the definition of [[c]] to obtain:

[[c]]W ′ :MemW ′
ξ⊥ → H(MemW ′

ξ⊥ )

There is then a naturality property, that the following diagram commutes for
all W ′′ ⊆W ′ ⊆W :

MemW ′
ξ⊥

[[c]]W ′� H(MemW ′
ξ⊥ )

MemW ′′
ξ⊥

Memι
ξ⊥

�

[[c]]W ′′
� H(MemW ′′

ξ⊥ )

H(Memι
ξ⊥)

�

where ι :W ′′ ⊆ W ′ is the inclusion map. Taking W ′ = W and W ′′ a singleton
yields the expected relation between input and output: the value of a random
variable in the output at a layout depends only on the value of the input random
variable at that layout. The naturality property suggests re-working the low-level
denotational semantics in the category of presheaves over sets of layouts, and
this may prove illuminating (see [22] for relevant background).

4.3 Operational Semantics

As a counterpart to the denotational semantics, we give a big-step deterministic
operational semantics using oracles to make choices.

The set of oraclesΠ is ranged over by π and is given by the following grammar:

π ::= ε | Lπ | Rπ | π;π | if (π, π)
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A low-level state σ is:

– a pair 〈c,m〉 of a command c and a memory m,
– a memory m, or
– the error element ξ.

States of either of the last two forms are called terminal, and written τ . Transi-
tions relate states and terminal states. They are given relative to a layout, and
use an oracle to resolve nondeterminism. So we write:

w |= σ
π
=⇒ τ

Figure 4 gives the rules for this relation.
The rules for conditionals use different oracles for the true and false branches

in order to avoid any correlation between the choices made in the two branches.1

The rules for two commands in sequence also use different oracles, again avoiding
correlations, now between the choices made in executing the first command and
the choices made in executing the second. The oracles used in the rules for while
loops ensure that the operational semantics of a loop and its unrolling are the
same. We continue this discussion after Theorem 2 below.

Example 5. Consider the command c4 introduced in Section 4.2, with added
parentheses for disambiguation:

c4 = (1:=1) + ((2 :=1) + ((3 :=1) + ((4 :=1))))

We have:

w1 |= 〈c4, w1 ·sk〉 L
=⇒ w1 ·s1 wj |= 〈c4, wj ·sk〉 L

=⇒ ξ (j �= 1)

w2 |= 〈c4, w2 ·sk〉 RL
==⇒ w2 ·s1 wj |= 〈c4, wj ·sk〉 RL

==⇒ ξ (j �= 2)

w3 |= 〈c4, w3 ·sk〉 RRL
===⇒ w3 ·s1 wj |= 〈c4, wj ·sk〉 RRL

===⇒ ξ (j �= 3)

w4 |= 〈c4, w4 ·sk〉 RRR
===⇒ w4 ·s1 wj |= 〈c4, wj ·sk〉 RRR

===⇒ ξ (j �= 4)

��

The transition relation is deterministic: if w |= σ
π
=⇒ τ and w |= σ

π
=⇒ τ ′ then

τ = τ ′. We can therefore define an evaluation function

Eval : Com×W ×Mem×Π → Memξ⊥

by:

Eval(c, w,m, π) =

{
τ (if w |= 〈c,m〉 π

=⇒ τ)
⊥ (otherwise)

1 The rules for, e.g., conditionals differ from those given in [17] which use the same
oracle for both branches. The rules in [17] are erroneous in that the resulting oper-
ational semantics is not consistent with the denotational semantics in the sense of
Theorem 2.
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[[e]]wm ∈ dom(m) and [[e′]]wm 
= ξ

w |= 〈e := e′,m〉 ε
=⇒ m[[[e]]wm �→ [[e′]]wm]

[[e]]wm 
∈ dom(m) or [[e′]]wm = ξ

w |= 〈e := e′,m〉 ε
=⇒ ξ

[[b]]wm = tt 〈c,m〉 π
=⇒ τ

w |= 〈if b then c else c′, m〉 if (π,π′)
=====⇒ τ

[[b]]wm = ff 〈c′,m〉 π′
=⇒ τ

w |= 〈if b then c else c′,m〉 if (π,π′)
=====⇒ τ

[[b]]wm = ξ

w |= 〈if b then c else c′,m〉 if (π,π′)
=====⇒ ξ

w |= 〈skip,m〉 ε
=⇒ m

w |= 〈c,m〉 π
=⇒ m′ 〈c′,m′〉 π′

=⇒ τ

w |= 〈c; c′,m〉 π;π′
==⇒ τ

w |= 〈c,m〉 π
=⇒ ξ

w |= 〈c; c′,m〉 π;π′
==⇒ ξ

w |= 〈c,m〉 π
=⇒ τ

w |= 〈c+ c′, m〉 Lπ
=⇒ τ

w |= 〈c′,m〉 π
=⇒ τ

w |= 〈c+ c′,m〉 Rπ
==⇒ τ

[[b]]wm = ff

w |= 〈while b do c,m〉 if (π;π′,ε)
======⇒ m

[[b]]wm = tt 〈c,m〉 π
=⇒ m′ 〈while b do c,m′〉 π′

=⇒ τ

w |= 〈while b do c,m〉 if (π;π′,ε)
======⇒ τ

[[b]]wm = tt 〈c,m〉 π
=⇒ ξ

w |= 〈while b do c,m〉 if (π;π′,ε)
======⇒ ξ

[[b]]wm = ξ

w |= 〈while b do c,m〉 if (π;π′,ε)
======⇒ ξ

Fig. 4. Low-level operational semantics

In order to establish the consistency of the operational and denotational se-
mantics we make use of an intermediate denotational semantics

[[c]]i :W → (Mem×Π → Memξ⊥)

defined by setting for all commands, other than loops:

[[c+ c′]]i(w)(m,π) =

{
[[c]]i(w)(m,π′) (π = Lπ′)
[[c′]]i(w)(m,π′) (π = Rπ′)

[[c; c′]]i(w)(m,π;π′) = [[c′]]i(w)([[c]]i(w)(m,π), π′)
[[skip]]i(w)(m,ε) = m
[[e := e′]]i(w)(m,ε) = Ass(w, [[e]]wm, [[e′]]wm)
[[if b then c else c′]]i(w)(m, if (π;π′)) = C([[b]]wm , [[c]]i(w)(m,π), [[c′]]i(w)(m,π′))

and taking [[c]]i(w)(m,π) to be ⊥ for all other combinations of loop-free com-
mands and oracles, and where we use the error plus nontermination extension
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of the evident conditional function C : � × P × P → P for the semantics of
conditionals.

For while loops, [[while b do c]]i is defined to be

μθ.λw.λm, π.

{
C([[b]]wm, θ(w)([[c]]i(w)(m,π′), π′′),m) (π = if (π′;π′′, ε))
⊥ (otherwise)

The following lemma asserts the consistency of the operational semantics and
this intermediate denotational semantics. Its proof, which uses rule-induction,
structural induction, and consideration of iterates like that of Proposition 1, is
omitted.

Lemma 4. For any low-level command c, layout w, memory m, and oracle π,
we have:

[[c]]i(w)(m,π) = Eval(c, w,m, π)

Lemma 5. For any low-level command c and ζ ∈ MemW
ξ⊥, we have:

[[c]](ζ) = {λw :W. [[c]]i(w)(ζ(w), π) | π ∈ Π} ↓

Proof. We first extend the language by adding a command Ω, and let it denote
the relevant least element in both denotational semantics. With that we establish
the result for commands not containing any while loops, proceeding by structural
induction:

1. skip, Ω: These two cases are immediate from the definitions of [[c]] and [[c]]i.
2. e := e′: We calculate:

{λw :W. [[e := e′]]i(w)(ζ(w), π) | π ∈ Π} ↓
= {λw :W. [[e := e′]]i(w)(ζ(w), ε)} ↓
= {λw :W.Ass(w, [[e]]wζ(w), [[e

′]]wζ(w))} ↓
= [[e := e′]](ζ)

3. c; c′: We calculate:

[[c; c′]](ζ) =
⋃
{[[c′]](ζ′) | ζ′ ∈ [[c]](ζ)} ↓

=
⋃
{[[c′]](λw :W. [[c]]i(w)(ζ(w), π)) | π ∈ Π} ↓

=
⋃
{{λw :W. [[c′]]i(w)([[c]]i(w)(ζ(w), π), π′) | π′ ∈ Π ↓}
| π ∈ Π} ↓

= {λw :W. [[c′]]i(w)([[c]]i(w)(ζ(w), π), π′) | π, π′ ∈ Π} ↓
= {λw :W. [[c; c′]]i(w)(ζ(w), (π;π′)) | π, π′ ∈ Π} ↓
= {λw :W. [[c; c′]]i(w)(ζ(w), π) | π ∈ Π} ↓
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4. cL + cR: We calculate:

{λw :W. [[cL + cR]]i(w)(ζ(w), π) | π ∈ Π} ↓ =

{λw :W. [[cL + cR]]i(w)(ζ(w), Lπ) | π ∈ Π} ↓
∪ {λw :W. [[cL + cR]]i(w)(ζ(w), Rπ) | π ∈ Π} ↓

=

{λw :W. [[cL]]i(w)(ζ(w), π) | π ∈ Π} ↓
∪ {λw :W. [[cR]]i(w)(ζ(w), π) | π ∈ Π} ↓

= [[cL]](ζ) ∪ [[cR]](ζ)
= [[cL + cR]](ζ)

5. if b then ctt else cff : We have to show that

[[if b then ctt else cff ]](ζ) =

{λw :W. [[if b then ctt else cff ]]i(w)(ζ(w), π) | π ∈ Π} ↓
Set Wζ,t =def {w | [[b]]wζ(w) = t}, for t ∈ �ξ⊥. Then note first that ζ′ is

in the left-hand side if, and only if, there are ζ′′ ≥ ζ′, ζtt ∈ [[ctt]](ζ), and
ζff ∈ [[cff ]](ζ) s.t.: ζ′′|Wζ,tt

= ζtt|Wζ,tt
, ζ′′|Wζ,ff

= ζff |Wζ,ff
, ζ′′(Wζ,ξ) ⊆ {ξ}, and

ζ′′(Wζ,⊥) ⊆ {⊥}.
Using the induction hypothesis, we see that ζtt ∈ [[ctt]](ζ) if, and only if, for
some πtt, ζtt ≤ λw :W. [[ctt]]i(w)(ζ(w), πtt), and similarly for ζff .
We then see that the condition for ζ′ to be in the left-hand side is equivalent
to the existence of ζ′′ ≥ ζ′, πtt and πff such that

ζ′′ ≤ λw :W.C([[b]]wζ(w), [[ctt]]i(w)(ζ(w), πtt), [[cff ]]i(w)(ζ(w), πff ))

which is equivalent to the condition that ζ′ is in the right-hand side.

We can now establish the desired result for general commands c (including
Ω). Define iterates c(n) by setting c(0) = Ω and defining c(n+1) homomorphically,
except for while loops, where we put:

(while b do cw)
(n+1) = if b then c(n+1)

w ; (while b do cw)
(n) else skip

Note that the iterates are all in the sub-language not including loops.
We have that [[c(n)]] is an increasing sequence with lub [[c]], and the same holds

for [[−]]i. As the desired result holds for commands not containing while loops,
but possibly containing Ω, we can then calculate:

[[c]](ζ) =
∨
n≥0[[c

(n)]](ζ)

=
∨
n≥0{λw :W. [[c(n)]]i(w)(ζ(w), π) | π ∈ Π} ↓

= {λw :W. [[c(n)]]i(w)(ζ(w), π) | π ∈ Π,n ≥ 0} ↓
= {λw :W.

∨
n≥0 [[c

(n)]]i(w)(ζ(w), π) | π ∈ Π} ↓
= {λw :W.

∨
n≥0[[c

(n)]]i(w)(ζ(w), π) | π ∈ Π} ↓
= {λw :W. [[c]]i(w)(ζ(w), π) | π ∈ Π} ↓

which concludes the proof.
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Lemmas 4 and 5 immediately yield the consistency of the operational and
denotational semantics:

Theorem 2 (Low-level operational/denotational consistency). For any
low-level command c and ζ ∈MemW

ξ⊥, we have:

[[c]](ζ) = {λw :W.Eval(c, w, ζ(w), π) | π ∈ Π} ↓

The evaluation function yields operational correlates of the other possible
denotational semantics discussed in Section 4.2, similarly, using image or induced
distribution functionals. For example, for the first of those semantics, by currying
Eval and composing, one obtains:

Com×W ×Mem
curry(Eval)−−−−−−−→ MemΠ

ξ⊥
ImMemξ⊥−−−−−−→ P(Memξ⊥)

Using such operational correlates, one can verify operational versions of the
assertions made in Section 4.2 about the inadequacies of those semantics.

The operational semantics has the peculiarity that the oracles used are inde-
pendent of the layout but not of the command structure. Allowing the oracle to
depend on the layout would amount to making nondeterministic choices after
probabilistic ones. The use of the syntactic dependence in the case of conditionals
can be seen by considering the example:

if b then (lnat := 0) + (lnat := 1) else (lnat := 0) + (lnat := 1)

If the same oracle was used for both branches in the operational semantics, then
lnat would either always (i.e., for all layouts) be set to 0 or else would always be
set to 1; however, for a suitable choice of condition b, the denotational semantics
allows the possibility of setting lnat to 0 in some layouts and to 1 in others.

In the case of sequence commands, consider the example

(if b then skip else skip); ((lnat := 0) + (lnat := 1))

If the oracle chosen for the second command depended on which branch of the
conditional was taken, then it could be possible that lnat was sometimes set to
0 and sometimes to 1, whereas to be in accord with the denotational semantics
it should either always be set to 0 or always set to 1.

In this connection it is worth noting that the equation

(if b then ctt else cff); c = if b then ctt; c else cff ; c

which one might naturally expect to hold in the denotational semantics in fact
does not. A counterexample can be obtained by taking ctt and cff to be skip
and c to be (lnat := 0) + (lnat := 1). The left-hand side is then the command
just considered to illustrate the use of oracles for sequence commands, and the
right-hand side may sometimes set lnat to 0 and sometimes to 1.

Such subtleties, and more generally the difficulty of both operational and
denotational semantics, suggest that these semantics may be attractive subjects
for further work. Fortunately, neither the operational semantics nor its relation
with the denotational semantics are needed for our main results (which are also
those of [17]).
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4.4 Implementation Relations and Equivalences

Much as in the high-level language, we define a contextual implementation rela-
tion and a simulation relation for the low-level language. The low-level definitions
refer to layouts, and in some cases include conditions on induced probabilities.

Contextual Pre-order. Again, the contextual pre-order c �L c′ may be in-
terpreted as saying that c “refines” (or “implements”) c′, in the sense that the
publicly observable outcomes that c can produce are a subset of those that c′

permits, in every public context. In comparison with the definition for the high-
level language, however, c and c′ are not applied to an arbitrary initial store but
rather to a function from layouts to memories (extended with “error + nonter-
mination”), and they produce sets of such functions. We restrict attention to
argument functions induced by stores, in the sense that they are store projec-
tions of the form −·s. Thus, let f = [[C[c]]] and f ′ = [[C[c′]]] for an arbitrary
public context C, and let s be a store; then (roughly) for every ζ in f(−·s)
there exists ζ′ in f ′(−·s) such that, for any w, ζ(w) and ζ′(w) coincide on public
locations.

The treatment of error and nontermination introduces a further complication.
Specifically, we allow that ζ produces an error or diverges with sufficient prob-
ability (≥ δ), and that ζ′ produces an error with sufficient probability (≥ δ), as
an alternative to coinciding on public locations.

Therefore, we define �L and some auxiliary notation and relations:

– Set PubMem =def IN
ran(wp). Then, for any memory m, let mL in PubMem

be the restriction of m to ran(wp), extending the notation to Memξ⊥ as
usual.

– For any ζ ∈ MemW
ξ⊥, we define ζL ∈ PubMemW

ξ⊥ by ζL(w) = ζ(w)L.

– For X,Y ∈ H(MemW
ξ⊥), we write that X ≤L Y when, for every ζ ∈ X , there

exists ζ′ ∈ Y such that:
• ζL ≤ ζ′L, or
• P (ζ(w) ∈ {ξ,⊥}) ≥ δ and P (ζ′(w) = ξ) ≥ δ.

– For f, f ′ ∈ MemW
ξ⊥ → H(MemW

ξ⊥), we write f ≤L f ′ when, for all s ∈ S, we
have:

f(−·s) ≤L f ′(−·s)
– Finally, we write c �L c′ when, for every public command context C,

[[C[c]]] ≤L [[C[c′]]].

Simulation. As in the high-level language, we introduce a simulation relation�.
This relation works only on commands whose outcomes on inputs that are store
projections are themselves store projections; nevertheless, simulation remains a
useful tool for proofs.

We first define some auxiliary notations:

– We define max(X), for any X ∈ H(MemW
ξ⊥), as the set of maximal elements

of X . (As W is finite, every element of X is less than a maximal element of
X , and X = max(X) ↓.)
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– We write S(ζ) for the element of Sξ⊥ uniquely determined by a store pro-
jection ζ.

– For any cpo P and ζ ∈ PW
ξ⊥, we define ζ/ξ by:

ζ/ξ =

{
w �→ ξ (if P (ζ(w) = ξ) ≥ δ)
ζ (otherwise)

– For every X ∈ H(MemW
ξ⊥), we say that X is a store projection set when

{ζ/ξ | ζ ∈ max(X)} is a set of store projections. Then, we let

χ(X) = S({ζ/ξ | ζ ∈ max(X)}) ∪ {⊥}

Note that s ∈ χ(X) if, and only if, −·s ∈ X , and that ξ ∈ χ(X) if, and only
if, there exists ζ ∈ X such that P (ζ(w) = ξ) ≥ δ.

The ≤L relation restricted to store projection sets has a pleasant characteri-
zation. This characterization requires some definitions. First, −L extends from
S to Sξ⊥, so that ⊥L=⊥ and ξL = ξ; with that, for any X in H(Sξ⊥), we define
XL in H(SLξ⊥) to be {sL | s ∈ X}.

Fact 3. Let X and Y be store projection sets. Then:

X ≤L Y ⇔ χ(X)L ≤ χ(Y )L

Proof. LetX and Y be store projection sets. Assume first thatX ≤L Y , and take
a non-bottom element of χ(X)L. There are two cases. In the first the element is
sL for some s ∈ Store such that ζ =def −·s ∈ X . As X ≤L Y we have ζL ≤ ζ′L
for some ζ′ ∈ Y . But then ζ′ = −·s′ for some s′ ∈ Store with s′L = sL and
so sL ∈ χ(Y )L. In the second case the element is ξ and there is a ζ ∈ X such
that P (ζ(w) = ξ) ≥ δ. As X ≤L Y it follows that there is a ζ′ ∈ Y such that
P (ζ′(w) = ξ) ≥ δ, and so ξ ∈ χ(Y )L.

For the converse, assume that χ(X)L ≤ χ(Y )L. The case X = {⊥} is trivial.
Otherwise take ζ ∈ X . Choose ζ′ ∈ max(X) such that ζ ≤ ζ′. As X is a store
projection set �= {⊥}, there are two cases. In the first case ζ′ has the form −·s.
As χ(X)L ≤ χ(Y )L there is a ζ′′ ∈ Y of the form −·s′ where s′L = sL. We
therefore have ζL ≤ ζ′L. In the second case P (ζ′(w) = ξ) ≥ δ and so ξ ∈ χ(X)
(and P (ζ(w) ∈ {ξ,⊥}) ≥ δ). As χ(X)L ≤ χ(Y )L it follows that ξ ∈ χ(Y ), and
so there is a ζ′′ ∈ Y such that P (ζ′′(w) = ξ) ≥ δ, which concludes the proof.

Much as in the high-level language, we extend relations R over H(SHξ⊥) to

relations R× over H(MemW
ξ⊥). First we extend −s to H(Sξ⊥) as follows: for

X ∈ H(Sξ⊥) and s ∈ SL, we let Xs ∈ H(SHξ⊥) be (X \ {ξ})s ∪ {ξ | ξ ∈ X}.
Then, given a relation R over H(SHξ⊥), we first extend it to a relation R+ over
H(Sξ⊥) by setting

XR+Y ≡def (ξ ∈ X ⇒ ξ ∈ Y ) ∧
∀s ∈ SL. ((Xs \ {ξ}) �= {⊥} ⇒ (Ys \ {ξ}) �= {⊥}) ∧XsRYs



Layout Randomization and Nondeterminism 27

for X,Y ∈ H(Sξ⊥) and then define R× by setting:

XR×Y ≡def X and Y are store projection sets ∧ χ(X)R+χ(Y )

for X,Y ∈ H(MemW
ξ⊥). (Note that if R ⊆ H(SH⊥), then the high- and low-level

definitions of R+ coincide.)
If R is closed under increasing ω-sups (respectively, is right-closed under ≤,

is closed under binary unions) the same holds for R+, and then for R× (with ≤
restricted to store projection sets). If R is reflexive, then R+ is and R× is reflexive
on store projection sets. We also have, much as before, that, for X,Y ∈ H(Sξ⊥),
if XR+Y then XL ≤ YL. It then follows from Fact 3 that, for X,Y ∈ H(MemW

ξ⊥),
if XR×Y then X ≤L Y .

For any f, f ′ : MemW
ξ⊥ → H(MemW

ξ⊥) and relation R over H(SH⊥) we write
that f �R f ′ when:

∀X,Y ∈ H(MemW
ξ⊥). XR

×Y ⇒ f †(X)R×f ′†(Y )

Finally, we write that f � f ′ if f �R f ′ for some reflexive R closed under
increasing ω-sups, right-closed under ≤, and closed under binary unions.

Contextual Pre-order vs. Simulation. The contextual pre-order coincides
with the simulation relation, but only for commands whose semantics sends
store projections to store projection sets. Formally, we say that a given function
f :MemW

ξ⊥ → H(MemW
ξ⊥) preserves store projections if, for every s ∈ S, f(−·s) is a

store projection set. The coincidence remains quite useful despite this restriction,
which in particular is not an impediment to our overall goal of relating the low-
level language to the high-level language.

As in Section 3 we divide the proof of the coincidence into two halves. First,
however, we need some preliminary lemmas.

Lemma 6. For any cpo P , ζ ∈MemW
ξ⊥, layout w, expression e, boolean expres-

sion b, command c, and x ∈ {⊥, ξ} we have:

ζ(w) = x⇒ [[e]]wζ(w) = x

ζ(w) = x⇒ [[b]]wζ(w) = x

ζ(w) = x⇒ ζ′(w) = x (ζ′ ∈ max([[c]](ζ)))

Proof. For expressions and boolean expressions, the proof is by definition. The
proof for commands is then straightforward by structural induction.

Lemma 7. Let f : MemW
ξ⊥ → H(MemW

ξ⊥) be a function that preserves store

projections. Let X ∈ H(MemW
ξ⊥) be a store projection set. Then f †(X) is a store

projection set.

Proof. We know that f †(X) = {f(ζ)|ζ ∈ max(X)} ↓. We need to prove that,
for all ζ ∈ max(X) and ζ ′ ∈ max(f(ζ)), we have that ζ′/ξ is a store projection.
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Since X is a store projection set, we know that ζ/ξ is a store projection, so we
have three possibilities:

– If ζ is a store projection, we conclude since f preserves store projection sets.
– If ζ =⊥, or ζ/ξ = ξ, we conclude using Lemma 6.

Lemma 8. 1. Suppose that e is a public natural-number expression, and that
ζ ∈MemW

ξ⊥ is such that ζ/ξ is a store projection. Then either:

– (w �→ [[e]]wζ(w))/ξ = w �→ ξ,

– (w �→ [[e]]wζ(w))/ξ =⊥ and ζ/ξ =⊥, or
– there exists n ∈ � such that (w �→ [[e]]wζ(w))/ξ = w �→ n .

Further, (w �→ [[e]]wζ(w))/ξ only depends on S(ζ/ξ)L.

2. Suppose that b is a public boolean expression, and that ζ ∈ MemW
ξ⊥ is such

that ζ/ξ is a store projection. Then either:

– (w �→ [[b]]wζ(w))/ξ = w �→ ξ,

– (w �→ [[b]]wζ(w))/ξ =⊥ and ζ/ξ =⊥, or
– there exists t ∈ � such that (w �→ [[b]]wζ(w))/ξ = t.

Further, (w �→ [[b]]wζ(w))/ξ only depends on S(ζ/ξ)L.

Proof. For the first part, letting e be a public expression, and letting ζ ∈ W →
Memξ⊥ be such that ζ/ξ is a store projection, if S(ζ/ξ) = ξ or S(ζ/ξ) =⊥, we
conclude, using Lemma 6. Otherwise S(ζ/ξ) ∈ S and the proof is by structural
induction on e. Note that as S(ζ/ξ) ∈ S, [[e′]]wζ(w) �=⊥ for any e′ and w, and so
the second case cannot arise when applying the induction hypothesis.

1. k: The conclusion is immediate.
2. lnat: Since lnat is public, and wp is fixed, [[e]]wζ(w) = wp(l) holds for every

layout w, and we conclude.
3. !e: By the induction hypothesis on e, (w �→ [[e]]wζ(w))/ξ only depends on

S(ζ/ξ)L and either

– P ([[e]]wζ(w) = ξ) ≥ δ, in which case P ([[!e]]wζ(w) = ξ) ≥ δ and we conclude

or

– there exists an n ∈ � such that, for every layout w, [[e]]wζ(w) = n. If

n = wp(l) for some public l, then [[!e]]wζ(w) = ζ(w)(l) = S(ζ/ξ)(l), and

we conclude. Otherwise, if n �∈ ran(wp), then we have that P ([[!e]]wζ(w) =

ξ) = P (n �∈ ran(w)) ≥ δ, and we conclude.

4. e+ e or e ∗ e: We conclude by the induction hypothesis.

The proof of the second part is similar; the corresponding induction makes
use of the first part in the case when b has the form e ≤ e′.

We can now prove the first half of the coincidence.

Lemma 9. Let c and c′ be two commands of the low-level language such that
[[c]] � [[c′]]. Then c �L c′ holds.
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Proof. Let c0 and c1 be two commands such that [[c0]] �R [[c1]], with R a reflexive
relation closed under increasing ω-sups, right-closed under ≤, and closed under
binary unions, and let C be a public command context.

We prove by induction on the size of C that [[C[c0]]] �R [[C[c1]]], considering
the possible forms of C:

1. e := e′: Suppose that XR×Y . We first do a case study on the semantics of
e, e′, and e := e′. As e and e′ are public, for every ζ ∈MemW

ξ⊥ such that ζ/ξ
is a store projection, we have, by Lemma 8

– (w �→ [[e]]wζ(w))/ξ = ξ,

– (w �→ [[e]]wζ(w))/ξ =⊥ and ζ =⊥, or
– there exists n ∈ � such that (w �→ [[e]]wζ(w))/ξ = w �→ n .

and similarly for e′.
In the bottom case, we have ζ =⊥. In any of the error cases, we have P ([[e :=
e′]]wζ(w) = ξ) ≥ δ, hence χ([[e := e′]](ζ)) = {w �→ ξ}↓.
Otherwise, let n and n′ be such that (w �→ [[e]]wζ(w))/ξ = w �→ n and

(w �→ [[e′]]wζ(w))/ξ = w �→ n′. By Lemma 6, and definition of ()/ξ and store
projections, there exists s ∈ S such that ζ = −·s
– If n = wp(l) for some public l, then we have:

[[e := e′]](ζ) = {−·s[l �→ n′]}↓

We then say that ζ is normal, and write s+(ζ) for (s[l �→ n′])L.
– Otherwise, n �∈ ran(wp), and we have:

P ([[e := e′]](ζ)(w) = ξ) = P (n �∈ ran(w)) ≥ δ

By Lemma 8, this analysis only depends on S(ζ/ξ)L.

We now prove that [[e := e′]](X)R×[[e := e′]](Y ). From the case analysis
above, we deduce that [[e := e′]](X) and [[e := e′]](Y ) are store projection
sets. Also, ξ ∈ χ([[e := e′]](X)) if and only if either there exists ζ ∈ X such
that P (ζ(w) = ξ) ≥ δ or else there exists −·s ∈ X such that ξ ∈ χ([[e:=
e′]](−·s′)) if s′L = sL and similarly for Y . Since XR×Y , this proves that
ξ ∈ χ([[e:=e′]](X))⇒ ξ ∈ χ([[e:=e′]](Y )).

Further, as can be seen from our case analysis above, for every s′ ∈ SL,

χ([[e:=e′]](X))s′ =
⋃
ζ∈max(X){χ(X)S(ζ/ξ)L | ζ is normal, s′ = s+(ζ)}

∪ {ξ | ∃ζ ∈ max(X). ζ is not normal, ζ �=⊥}
∪ {⊥}

and similarly for Y . By hypothesis, XR×Y , and so we have both X ≤L Y
(by Fact 3) and χ(X)R+χ(Y ). From the latter we have, for all s ∈ SL, that
(χ(X) \ {ξ})s �= {⊥} ⇒ (χ(Y ) \ {ξ})s �= {⊥} and also that χ(X)sRχ(Y )s.
As R is reflexive, closed under non-empty countable unions, and right-closed
under ≤, we conclude.
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2. if b thenCtt elseCff : The case where X = {⊥} is straightforward, using
Lemma 6. Otherwise suppose that XR×Y . As X �= {⊥} we have Y �= {⊥}.
As b is public, and by Lemma 8, for every ζ �=⊥ such that ζ/ξ is a store
projection, (w �→ [[b]]wζ(w))/ξ only depends on S(ζ/ξ)L, and can only be a
boolean t ∈ � or ξ, independent of w. Define the store projection set Xtt to
be ⋃

s∈S
{ζ ∈ X |ζ = (−·s) ∧ ∀w. [[b]]ww·s = tt}↓ ∪ {⊥}

and define the store projection set Xξ to be

{ζ ∈ X | ζ/ξ = w �→ ξ} ↓ ∪ {⊥}

and define the store projection sets Xff , Ytt, Yff , and Yξ similarly. We have
that X = Xtt ∪ Xff ∪ Xξ and that at least one of Xtt, Xff , or Xξ is not {⊥},
and similarly for Y. We also have that

[[if b thenCtt[c0] elseCff [c0]]]
†(X) =

[[Ctt[c0]]]
†(Xtt) ∪ [[Cff [c0]]]

†(Xff) ∪ Xξ (∗)

and similarly for Y .
Similarly to the previous point, we have:

χ(Xtt)s′ =
⋃
s∈S
{χ(X)s′ | ∀w. [[b]]ww·s = tt and sL = s′}↓

and can check that XttR
×Ytt,XffR

×Yff , andXξR
×Yξ, making use of the facts

that X ≤L Y , and that R is reflexive, closed under non-empty countable
unions, and right-closed under ≤. We can then conclude using (∗) and the
fact that R is closed under binary unions.

3. skip, C′;C′′, C′ + C′′, while b doCw, or [ ]: In all these cases the proof is
analogous to that of the corresponding parts of the proof of Lemma 1.

This concludes the proof as [[C[c0]]] � [[C[c1]]] implies [[C[c0]]] ≤L [[C[c1]]].

We need some further lemmas before proving the second half of the coinci-
dence.

Lemma 10. Let c be a low-level command such that [[c]] preserves store projec-
tion. Let C[ ] be a public command context. Then [[C[c]]] preserves store projec-
tions.

Proof. The proof is an induction on public command contexts, and is similar to,
but simpler than, the proof of Lemma 9.

Let −χ be the map from relations on H(Sξ⊥) to relations on store projection
sets left anonymous in the main text. That is, for R a relation on H(Sξ⊥):

XRχY ≡def χ(X)Rχ(Y )
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We define � : Sξ⊥ → H(MemW
ξ⊥) by:

�(⊥) = {w �→⊥}↓
�(s) = {−·s}↓
�(ξ) = {ζ|P (ζ(w) = ξ) ≥ δ}↓

Note that, for every X ∈ Sξ⊥, we have χ(�(X)) = X .

Lemma 11. 1. Let Ri (i ≥ 0) be relations on H(SHξ⊥) such that if XRiY
holds, then ξ ∈ X implies that ξ ∈ Y and (X \ {ξ}) �= {⊥} implies that
(Y \{ξ}) �= {⊥}). Let R be the closure of the union of the Ri under increasing
ω-sups, binary union, and right-closure under ≤. Then R+ is the closure of
the union of the relations R+

i under increasing ω-sups, binary unions, and
right-closure under ≤.

2. Let Ri (i ≥ 0) be relations on H(Sξ⊥) and let R be their closure under
increasing ω-sups, binary unions, and right-closure under ≤. Then Rχ is the
closure of the union of the Rχ

i under increasing ω-sups, binary unions, and
right-closure under ≤ (restricted to store projection sets).

Proof. 1. The proof is almost exactly the same as for Lemma 2. As −+ is
evidently monotone, R+ contains the R+

i . Next, as we know, if a relation
S on H(SHξ⊥) is closed under any one of increasing ω-sups, binary unions,
or right-closure under ≤, then so is S+. So we also have that R+ is closed
under increasing ω-sups and binary unions, and is right-closed under ≤. It
is therefore included in the closure of the union of the R+

i under increasing
ω-sups, binary unions, and right-closure under ≤.
For the converse, suppose that UR+W to show that U and W are related in
the closure of the union of the R+

i under increasing ω-sups, binary unions,
and right-closure under ≤. For any given s in SL, by definition of −+,
UsRWs, and so, by the definition of R, there is a set J (s) ⊆ IN, and re-

lations X
(s)
j R

i
(s)
j

Y
(s)
j such that Us =

⋃
j∈J(s) X

(s)
j and Ws ⊇

⋃
j∈J(s) Y (s).

We may assume without loss of generality that the J (s) are disjoint.
Let

J =
⋃
s∈SL

J (s)

Xj = {s′ | s′H ∈ X
(s)
j , s′L = s} ∪ {ξ | ξ ∈ X(s)

j } ∪ {⊥} (j ∈ J (s))

Yj = {s′ | s′H ∈ Y
(s)
j , s′L = s} ∪ {ξ | ξ ∈ Y (s)

j } ∪ {⊥} (j ∈ J (s))

ij = i
(s)
j (j ∈ J (s))

We verify that (Xj)s = X
(s)
j , if j ∈ J (s), and = {⊥}, otherwise, and similarly

for the (Yj)s. Consequently, U =
⋃
jXj , W ⊇

⋃
j Yj , and for all s in SL,

(Xj)sRij (Yj)s. Since, by hypothesis, if XRiY holds then ξ ∈ X implies

ξ ∈ Y and (X \ {ξ}) �= {⊥} implies (Y \ {ξ}) �= {⊥}, we note that XjR
+
ij
Yj .

We conclude that U and W are related as required.
2. As −χ is evidently monotone, Rχ contains the Rχ

i . Next one can check that
if a relation S on H(Sξ⊥) is closed under either one of increasing ω-sups
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or binary unions, then so is Sχ, and that if it is right-closed under ≤ then
Sχ is right-closed under ≤ restricted to store projection sets; to do this one
uses the fact that χ is monotone and preserves increasing ω-sups and binary
unions. So we also have that Rχ is closed under increasing ω-sups and binary
unions, and right-closed under ≤ restricted to store projection sets.
For the converse, suppose that URχW to show that U and W are related in
the closure of the union of the Rχ

i under increasing ω-sups, binary unions,
and right-closure under ≤, restricted to store projection sets.
We have χ(U)Rχ(W ). So, by the definition of R, for some nonempty J ⊆ IN,
there are relationsXjRijYj such that both χ(U) =

⋃
j Xj and χ(W ) ⊇

⋃
j Yj

hold. One can show that, for j ∈ J , χ(U∩�(Xj)) = Xj and χ(W ∩�(Yj)) =
Yj . So we have (U ∩�(Xj))R

χ
ij
(W ∩�(Yj)), for j ∈ J . So, calculating that:⋃

i

(U ∩�(Xj)) = U ∩�(
⋃
i

Xj) = U ∩�(χ(U)) = U

and that: ⋃
i

(W ∩�(Yj)) =W ∩�(
⋃
i

Yj) ⊆W ∩�(χ(W )) =W

we see that U and W are related as required.

We can now establish the second half of the coincidence. We will use notations
[cx | x ∈ PubLoc] and if b then c for low-level commands analogous to those
used for high-level commands in the proof of Lemma 3.

Lemma 12. Let c and c′ be two commands of the low-level language such that
c �L c′, and [[c]] and [[c′]] preserve store projections. Then [[c]] � [[c′]] holds.

Proof. Let c0 and c1 be two commands such that c0 �L c1 and that [[c0]] and [[c1]]
preserve store projections. (The latter property, in combination with Lemmas 10
and 7, allows us to assume that we are always dealing with store projection sets.)
We define relations Ri on SH (for i ≥ 0) as follows:

– for every X ∈ H(SH⊥), we have X R0 X ;
– for every X,Y ∈ H(MemW

ξ⊥) such that X R×
i Y , we have (χ([[c0]]

†(X)))s
Ri+1 (χ([[c1]]

†(Y )))s, forall s ∈ SL.

We first prove by induction on i that, if X R×
i Y , then, for every s ∈ S such

that ζ = −·s ∈ X , there exists a public command context C and an s0 ∈ S such
that ζ ∈ ([[C[c0]]](−·s0)) and χ([[C[c1]]](−·s0))sL ⊆ χ(Y )sL .

– Suppose X R×
0 Y . Take C = skip and s0 = s (hence −· s0 = ζ). Then

ζ ∈ [[skip]](ζ) and χ([[skip]](ζ))= {s,⊥} ⊆ χ(X)=χ(Y ), and we conclude by
monotonicity of −sL .

– Suppose that X R×
i+1 Y . By definition of X R×

i+1 Y , and in particu-

lar χ(X)sL Ri+1 χ(Y )sL , there exist X ′ R×
i Y ′ and s′ ∈ SL such that,

χ([[c0]]
†(X ′))s′ = χ(X)sL and χ([[c1]]

†(Y ′))s′ = χ(Y )sL .
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We have that χ([[c0]]
†(X ′)) = S({ζ′′/ξ | ζ′′ ∈ max([[c0]]

†(X ′))}) ↓ and also

sH ∈ χ(X)sL . Hence, using the definition of −†, there exist a ζ′ ∈ max(X ′)
and a ζ′′ ∈ max([[c0]](ζ

′)) such that S(ζ′′)L = s′ and S(ζ′′)H = sH . By
Lemma 6, as ζ′′ �=⊥ we have ζ′ �=⊥, and as P (ζ′′(w) = ξ) = 0, we have
P (ζ′(w) = ξ) = 0.
Applying the induction hypothesis to X ′ R×

i Y
′ and S(ζ′), there is a public

command context C and an s0 ∈ S s.t. ζ′ ∈ [[C[c0]]](−·s0) and χ([[C[c1]]](−·
s0))S(ζ′)L ⊆ χ(Y ′)S(ζ′)L .
We consider the public command context

C′ =def C;
[if !xnat �= S(ζ′)L(x) then Ω | x ∈ PubLoc];
[ ]; [x := S(ζ)L(x) | x ∈ PubLoc]

We have ζ′ ∈ [[C[c0]]](−·s0), so ζ′′ is in

[[C[c0]; [if !xnat �= S(ζ′)L(x) then Ω | x ∈ PubLoc]; c0]](−·s0)

so ζ is in [[C′[c0]]](−·s0).
Also, χ([[C[c1]]](−·s0))S(ζ′)L ⊆ χ(Y ′)S(ζ′)L , hence

max([[C[c1]; [if !xnat �= S(ζ′)L(x) then Ω | x ∈ PubLoc]]](−·s0))/ξ
⊆ max(Y ′)/ξ

hence,

χ([[C[c1]; [if !xnat �= S(ζ′)L(x) then Ω | x ∈ PubLoc]; c1]](−·s0))s′
⊆ χ([[c1]]

†(Y ′))s′ = χ(Y )sL

and hence (we replace the low variables by the corresponding values in sL)

χ([[C′[c1]]](−·s0))sL ⊆ χ(Y )sL

We now prove that:

XR×
i Y ⇒ ξ ∈ χ([[c0]]†(X))⇒ ξ ∈ χ([[c1]]†(Y ))

and that

XR×
i Y ⇒ ∀s ∈ SL. ((χ([[c0]]†(X)))s \ {ξ}) �= {⊥}

⇒ ((χ([[c1]]
†(Y )))s \ {ξ}) �= {⊥}

The two proofs are similar, first, for ξ. If ξ ∈ χ([[c0]]†(X)), by definition of −†,
there exists ζ ∈ max(X) such that ξ ∈ χ([[c0]]†(ζ)). In the case that P (ζ(w) =
ξ) ≥ δ, then the proof is by Lemma 6; otherwise ζ = −·s, for some s ∈ S
(it cannot be ⊥). We know from the above that, since XR×

i Y , there exists a
public command context C and an s0 ∈ S such that ζ ∈ [[C[c0]]](−·s0) and
χ([[C[c1]]](−·s0))sL ⊆ χ(Y )sL . We let

C′ =def C; [if !xnat �= S(ζ)L(x) then Ω | x ∈ PubLoc]
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As χ([[C[c1]]](− · s0))sL ⊆ χ(Y )sL , χ([[C′[c1]]](− · s0)) ⊆ χ(Y ), and so
χ([[C′[c1]; c1]](−·s0) ⊆ χ([[c1]]†(Y )).

We have ξ ∈ χ([[C′[c0]; c0]](−·s0)). Also, as C′; [ ] is a public command context,
[[C′[c0]; c0]](−·s0) ≤L [[C′[c1]; c1]](−·s0). Hence we have ξ ∈ χ([[C′[c1]; c1]](−·s0)).
This concludes the proof, as we have χ([[C′[c1]; c1]](−·s0)) ⊆ χ([[c1]]†(Y )).

Now, for ⊥. Suppose χ([[c0]]†(X))s \ {ξ} �= {⊥} for some s ∈ SL. Then there
exists s′ ∈ S such that s′L = sL and −·s′ ∈ [[c0]]

†(X). By definition of −†, there
exists ζ ∈ max(X) such that −·s′ ∈ [[c0]]

†(ζ). If ζ is not a store projection, then
there is a contradiction by Lemma 6, otherwise, ζ = −·s′′, for some s′′ ∈ S.

We know from the above that, since XR×
i Y , there exists a public command

context C and an s0 ∈ S such that both ζ ∈ [[C[c0]]](−·s0) and χ([[C[c1]]](−·
s0))s′′L ⊆ χ(Y )s′′L hold. We let

C′ =def C; [if !xnat �= S(ζ)L(x) then Ω | x ∈ PubLoc]

As χ([[C[c1]]](−·s0))s′′L ⊆ χ(Y )s′′L , χ([[C
′[c1]]](−·s0)) ⊆ χ(Y ) holds, and so too,

therefore, does χ([[C′[c1]; c1]](−·s0) ⊆ χ([[c1]]†(Y )).
We have −·s′ ∈ χ([[C′[c0]; c0]](−·s0)). Also, since C′; [ ] is a public command

context, we have

[[C′[c0]; c0]](−·s0) ≤L [[C′[c1]; c1]](−·s0)

Hence we have −·s′′′ ∈ χ([[C′[c1]; c1]](−·s0)) for some s′′′ with s′′′L = s′L = s. As
χ([[C′[c1]; c1]](−·s0)) ⊆ χ([[c1]]†(Y )), this concludes the proof.

By the definition of Ri+1, we have

X R×
i Y ⇒ ∀s ∈ SL. (χ([[c0]]†(X)))sRi+1(χ([[c1]]

†(Y )))s

From both facts and the definition of Ri+1 we then deduce that

∀X,Y ∈ H(MemW
ξ⊥). XR

×
i Y ⇒ [[c0]]

†(X)R×
i+1[[c1]]

†(Y )

We now define R as the closure under increasing ω-sups, right-closure under
≤ and closure under binary unions of the union of the Ri. We then conclude,
using Lemma 11, that [[c0]] �R [[c1]].

Combining Lemmas 9 and 12, we obtain the desired coincidence:

Theorem 4. Let c and c′ be two commands of the low-level language such that
[[c]] and [[c′]] preserve store projections. Then c �L c′ holds if and only if [[c]] � [[c′]]
does.

Example 6. Suppose that there is only one private location, and consider the
two commands:

c4 = (1:=1) + (2:=1) + (3:=1) + (4:=1) c6 = (1:=1); (2 :=1)

As seen above, we have that [[c4]](ζi) = {ζ1ξ , ζ2ξ , ζ3ξ , ζ4ξ } ↓. We also have that

[[c6]](ζi) = {w �→ ξ}↓. Since P (ζiξ(w) = ξ) ≥ δ, we can verify that c4 and c6 are
equivalent. (Thus, a nondeterministic guess is no better than failure.) ��
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5 High and Low

In this section we investigate the relation between the high-level language and
the low-level language. Specifically, we define a simple translation from the high-
level language to the low-level language, then we study its properties.

We define the compilation of high-level commands c (expressions e, boolean
expressions b) to low-level commands c↓ (expressions e↓ and boolean expressions
b↓) by setting:

(!lloc)
↓ = !lnat

(lloc := e)↓ = lnat := e↓

and proceeding homomorphically in all other cases, for example setting:

(e+ e′)↓ = e↓ + e′↓

Crucially, this compilation function, which is otherwise trivial, transforms high-
level memory access to low-level memory access.

We begin with two lemmas about compilation.

Lemma 13. 1. Let e be a high-level natural-number expression. Then, for ev-
ery s ∈ S, and w ∈ W ,

[[e↓]]ww·s = [[e]](s)

2. Let b be a high-level boolean expression. Then, for every s ∈ S, and w ∈W ,

[[b↓]]ww·s = [[b]](s)

3. Let c be a high-level command. Then, for every s ∈ S,

[[c↓]](−·s) = {−·s′ | s′ ∈ [[c]](s)}↓

Proof. The first two parts are straightforward structural inductions on natural
number and boolean expressions. For the third we proceed by structural induc-
tion on commands:

1. lloc := e: The result is immediate by part 1 and the definition of the seman-
tics.

2. if b then ctt else cff : By part 2, we have [[b]](s) = [[b↓]]ww·s = t with t ∈ �,
hence

– [[c]](s) = [[ct]](s), and

– [[c↓]](−·s) = [[c↓t ]](−·s)
The result then follows by applying the induction hypothesis to ct.

3. skip: Here η(−·s) = {−·s}↓ and η(s) = {s}↓.
4. c′; c′′: The result follows from the definition of −† and applying the induction

hypothesis to c′ and c′′.
5. c′ + c′′: The result follows by applying the induction hypothesis to c and c′.
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6. while b do cw: Define iterates c(n) of while b do cw by setting c(0) = Ω and
c(n+1) = if b then skip else cw; c

(n), where Ω is some command denoting ⊥,
as does its compilation. Note that the (c(n))↓ are the corresponding iterates
of (while b do c↓w).
By induction on n, we have

[[(c(n))↓]](−·s) = {−·s′ | s′ ∈ [[c(n)]](s)}↓

as the case n = 0 follows from the fact that Ω and its compilation denote
(the relevant) ⊥, and the induction step follows using the same reasoning as
in the second, third, and fourth cases.
The conclusion follows, as we have

[[c]] =
∨
n≥0

[[c(n)]] and [[c↓]] =
∨
n≥0

[[(c(n))↓]]

the latter by the above remark on the iterates of (while b do cw)
↓.

This concludes the proof.

Lemma 14. Let c be a high-level command. Then [[c↓]] preserves store projec-
tions, and for every store projection set X we have:

χ([[c↓]]†(X)) = [[c]]†(χ(X) \ {ξ}) ∪ {ξ | ξ ∈ χ(X)}

Proof. This lemma is a straightforward consequence of Lemmas 6 and 13.

Theorem 5 relates the simulation relations of the two languages. It states that
a high-level command c simulates another high-level command c, with respect
to all public contexts of the high-level language, if and only if the compilation
of c simulates the compilation of c′, with respect to all public contexts of the
low-level language.

Theorem 5. Let c and c′ be two high-level commands. Then [[c]] � [[c′]] holds if
and only if [[c↓]] � [[c′↓]] does.

Proof. In one direction, let c and c′ be commands such that [[c]] �R0 [[c′]], with
R0 a reflexive relation closed under increasing ω-sups, right-closed under ≤, and
closed under binary unions. Let R be the closure of R0 inH(SHξ⊥) by reflexivity,
increasing ω-sups, binary union, and right-closure under ≤. That is, XRY holds
if both (X \ {ξ})R0 (Y \ {ξ}) and ξ ∈ X ⇒ ξ ∈ Y do. Note that XR+Y if
(X \ {ξ})R+

0 (Y \ {ξ}) and ξ ∈ X ⇒ ξ ∈ Y . Let X and Y in H(MemW
ξ⊥) be

such that XR×Y . We have to show that [[c↓]]†(X)R×[[c′↓]]†(Y ). By Lemma 14,
[[c↓]]†(X) and [[c′↓]]†(Y ) are store projection sets, and so this is equivalent to
showing that

χ([[c↓]]†(X))R+ χ([[c′↓]]†(Y ))

Using Lemma 14 again, we see that this latter statement is equivalent to:

([[c]]†(χ(X) \ {ξ}) ∪ {ξ | ξ ∈ χ(X)})R+ ([[c′]]†(χ(Y ) \ {ξ}) ∪ {ξ | ξ ∈ χ(Y )})
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which in turn is equivalent, by a previous remark, to

[[c]]†(χ(X) \ {ξ})R+
0 [[c′]]†(χ(Y ) \ {ξ}) ∧ (ξ ∈ χ(X)⇒ ξ ∈ χ(Y ))

AsXR×Y , we have that χ(X)R+ χ(Y ). It follows first that we have that (χ(X)\
{ξ})R+

0 (χ(Y )\ {ξ}), and then [[c]]†(χ(X)\ {ξ})R+
0 [[c′]]†(χ(Y )\ {ξ}) (as [[c]] �R0

[[c′]]); and second we have that ξ ∈ χ(X)⇒ ξ ∈ χ(Y ). The conclusion follows.
In the other direction, let c and c′ be two commands such that [[c↓]] �R [[c′↓]],

with R0 a reflexive relation closed under increasing ω-sups, right-closed under
≤, and closed under binary unions. We let R be the restriction of R0 to H(SH⊥).
That is, XRY if XR0Y . Note that XR+Y if XR+

0 Y . Let X and Y in H(S⊥)
be such that XR+Y . Hence XR+

0 Y . We have �(X)R×
0 �(Y ), hence, by the

definition of �R0 , we have [[c↓]]†(�(X))R×
0 [[c

′↓]]†(�(Y )).
By Lemmas 6 and 13, [[c↓]]†(�(X)) = �([[c]]†(X)), and similarly for Y . Thus,

by the definition of R×
0 , [[c]]

†(X)R+
0 [[c

′]]†(Y ), hence [[c]]†(X)R+[[c′]]†(Y ), and we
conclude.

Our main theorem, Theorem 6, follows from Theorem 5, the two previous
theorems, and Lemma 14. Theorem 6 is analogous to Theorem 5, but refers to
the contextual pre-orders: a high-level command c implements another high-level
command c′, with respect to all public contexts of the high-level language, if and
only if the compilation of c implements the compilation of c′, with respect to all
public contexts of the low-level language.

Theorem 6 (Main theorem). Let c and c′ be two high-level commands. Then
c �L c′ holds if and only if c↓ �L c′↓ does.

Theorem 6 follows from Theorem 5, the two previous theorems, and the
lemma. The low-level statement is defined in terms of the probability δ that
depends on the distribution on memory layouts. When δ is close to 1, the state-
ment indicates that, from the point of view of a public context (that is, an
attacker), the compilation of c behaves like an implementation of the compila-
tion of c′. This implementation relation holds despite the fact that the public
context may access memory via natural-number addresses, and thereby (with
some probability) read or write private data of the commands. The public con-
text may behave adaptively, with memory access patterns chosen dynamically,
for instance attempting to exploit correlations in the distribution of memory
layouts. The public context may also give “unexpected” values to memory ad-
dresses, as in practical attacks; the theorem implies that such behavior is no
worse at the low level than at the high level.

For example, for the commands c0 and c1 of Example 1, the theorem en-
ables us to compare how their respective compilations behave, in an arbitrary
public low-level context. Assuming that δ is close to 1, the theorem basically
implies that a low-level attacker that may access memory via natural-number
addresses cannot distinguish those compilations. Fundamentally, this property
holds simply because the attacker can read or write the location h considered in
the example only with low probability.
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6 Conclusion

A few recent papers investigate the formal properties of layout randomization,
like ours [6–9]. They do not consider nondeterministic choice, and tend to reason
operationally. However, the work of Jagadeesan et al. includes some semantic
elements that partly encouraged our research; specifically, that work employs
trace equivalence as a proof technique for contextual equivalence.

In this paper we develop a semantic approach to the study of layout random-
ization. Our work concerns nondeterministic languages, for which this approach
has proved valuable in reconciling probabilistic choice with nondeterministic
choice. However, the approach is potentially more general. In particular, the
study of concurrency with nondeterministic scheduling would be an attractive
next step. Also, extending our work to higher-order computation presents an
interesting challenge.
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Abstract. This paper concerns labelled Markov processes (LMPs),
probabilistic models over uncountable state spaces originally introduced
by Prakash Panangaden and colleagues. Motivated by the practical ap-
plication of the LMP framework, we study its formal semantics and the
relationship to similar models formulated in control theory. We consider
notions of (exact and approximate) probabilistic bisimulation over LMPs
and, drawing on methods from both formal verification and control the-
ory, propose a simple technique to compute an approximate probabilistic
bisimulation of a given LMP, where the resulting abstraction is charac-
terised as a finite-state labelled Markov chain (LMC). This construction
enables the application of automated quantitative verification and pol-
icy synthesis techniques over the obtained abstract model, which can be
used to perform approximate analysis of the concrete LMP. We illustrate
this process through a case study of a multi-room heating system that
employs the probabilistic model checker PRISM.

1 Introduction

Labelled Markov processes (LMPs) are a celebrated class of models encompass-
ing concurrency, interaction and probability over uncountable state spaces, orig-
inally introduced and studied by Prakash Panangaden and colleagues [14,37].
LMPs evolve sequentially (i.e., in discrete time) over an uncountably infinite
state space, according to choices from a finite set of available actions (called la-
bels). They also allow for the possible rejection of a selected action, resulting in
termination. LMPs can be viewed as a generalisation of labelled transition sys-
tems, allowing state spaces that might be uncountable and that include discrete
state spaces as a special case. LMPs also extend related discrete-state proba-
bilistic models from the literature, e.g. [34], and are related to uncountable-state
Markov decision processes [38].

The formal semantics of LMPs has been actively studied in the past (see the
Related Work section below). One of the earliest contributions is the notion
of exact probabilistic bisimulation in [14], obtained as a generalisation of its
discrete-state counterpart [34] and used to characterise the LMP model seman-
tics. Exact bisimulation is in general considered a very conservative requirement,
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and approximate notions have been consequently developed [15,19], which are
based on relaxing the notion of process equivalence or on distance (pseudo-
)metrics. These metrics encode exact probabilistic bisimulation, in that the dis-
tance between a pair of states is zero if and only if the states are bisimilar.
While the exact notion of probabilistic bisimulation can be characterised via a
Boolean logic, these approximate notions of probabilistic bisimilarity can be en-
compassed by real-valued logics, e.g. [30]. In view of their underlying uncountable
state spaces, the analysis of LMPs is not tractable, and approximate bisimula-
tion notions can serve as a means to derive abstractions of the original LMPs.
Such abstractions, if efficiently computable and finite, can provide a formal basis
for approximate verification of LMPs.

Separately from the above work rooted in semantics and logic, models that are
closely related to LMPs have also been defined and studied in decision and con-
trol [7,28,36]. Of particular interest is the result that quantitative finite abstrac-
tions of uncountable-space stochastic processes [2,3] are related to the original,
uncountable-state models by notions of approximate probabilistic bisimulations
[41]. These notions are characterised via distances between probability measures.
Alternatively these formal relations between abstract and concrete models can
be established via metrics over trajectories, which are obtained using Lyapunov-
like functionals as proposed in [1,31,39], or by randomisation techniques as done
in [4]. There is an evident connection between approximation notions and met-
rics proposed for LMPs and for related models in decision and control, and it is
at this intersection that the present contribution unfolds.

In this paper, we build upon existing work on LMPs, with the aim of de-
veloping automated verification, as well as optimal policy synthesis, for these
models against specifications given in quantitative temporal logic. Drawing on
results from the decision and control literature, we give an explicit interpretation
of the formal semantics of LMPs. We consider notions of (exact and approxi-
mate) probabilistic bisimulation over LMPs, and propose a simple technique
to compute an approximate probabilistic bisimulation of a given LMP, where
the resulting abstraction is characterised as a finite-state labelled Markov chain
(LMC). This enables the direct application of automated quantitative verifica-
tion techniques over the obtained abstract model by means of the probabilistic
model checker PRISM [32], which supports a number of (finite-state) probabilis-
tic models [32,26], including LMCs. We implement an algorithm for computing
abstractions of LMPs represented as LMCs and, thanks to the established no-
tion of approximate probabilistic bisimulation, the analysis of the abstraction
corresponds to an approximate analysis of the concrete LMP. We illustrate the
techniques on a case study of a multi-room heating system, performing both
quantitative verification and policy synthesis against a step-bounded variant of
the probabilistic temporal logic PCTL [27]. We thus extend the capability of
PRISM to also provide analysis methods for (uncountable-state) LMPs, which
was not possible previously.
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Related Work. Approximation techniques for LMPs can be based on metrics
[15,19,42] and coalgebras [43,44]. Approximate notions of probabilistic bisimi-
larity are formally characterised and computed for finite-state labelled Markov
processes in [17]. Metrics are also discussed and employed in [16] and applied to
weak notions of bisimilarity for finite-state processes, and in [23,24,25] for (finite
and infinite) Markov decision processes – in particular, [25] looks at models with
uncountable state spaces. The work in [23] is extended by on-the-fly techniques
in [12] over finite-state Markov decision processes. LMP approximations are also
investigated in [13] and, building on the basis of [17,23], looked at from a differ-
ent perspective (that of Markov processes as transformers of functions) in [11].
Along the same lines, [33] considers a novel logical characterisation of notions
of bisimulations for Markov decision processes. The relationship between exact
bisimulation and (CSL) logic is explored in [18] over a continuous-time version of
LMPs. Abstractions that are related to Panangaden’s finite-state approximants
are studied over PCTL properties in [29]. In control theory, the goal of [2,3] is
to enable the verification of step-bounded PCTL-like properties [21], as well as
time-bounded [41] or unbounded [40] linear-temporal specifications. It is then
shown that these approximations are related to the original, uncountable-state
models by notions of approximate probabilistic bisimulations [41]. Regarding
algorithms for computing abstractions, [9] employs Monte-Carlo techniques for
the (approximate) computation of the concepts in [15,19] which relates to the
randomised techniques in [4].

Organisation of the Paper. The paper is structured as follows. Section 2 intro-
duces LMPs and discusses two distinct perspectives to their semantic definition.
Section 3 discusses notions of exact and approximate probabilistic bisimulations
from the literature, with an emphasis on their computability aspects. Section 4
proposes an abstraction procedure that approximates an LMP with an LMC and
formally relates the two models. Section 5 describes PRISM model checking of
the LMC as a way to study properties of the original LMP. Finally, Section 6
illustrates the technique over a case study.

2 Labelled Markov Processes: Model and Semantics

We consider probabilistic processes defined over uncountable spaces [36], which
we assume to be homeomorphic to a Borel subset of a Polish space, namely a
metrizable space that is complete (i.e., where every Cauchy sequence converges)
and separable (i.e., which contains a countable dense subset). Such a space is
endowed with a Borel σ-algebra, which consists of sets that are Borel measurable.
The reference metric can be reduced to the Euclidean one.

The uncountable state space is denoted by S, and the associated σ-algebra
by B(S). We also introduce a space of labels (or actions) U , which is assumed
to be finite (that is, elements taken from a finite alphabet). For later reference,
we extend state and action/label spaces with the additional elements e and ū,
respectively, letting Se = S ∪ {e} and Ue = U ∪ {ū}. We assume a finite set of
atomic propositions AP, a function L : S → 2AP which labels states with the
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propositions that hold in that state, and a reward structure r : S×U → R�0,
which assigns rewards to state-label pairs over the process.

Processes will evolve in discrete time over the finite interval [0, N ] over a
sample space ΩN+1 = SN+1, equipped with the canonical product σ-algebra
B(ΩN+1). The selection of labels at each time step depends on a policy (or
strategy), which can base its choice on the previous evolution of the process.
Formally a policy is a function σ : {Si | 1�i�N} → dist(U), where dist(U) is the
set of probability distributions over U and σ(s0, . . . , sk) = μ represents the fact
that the policy selects the label uk in state sk at time instant k with probability
μ(uk), given that the states at the previous time instances were s0, . . . , sk−1.

Under a fixed policy the process is fully probabilistic and we can then reason
about the likelihood of events. However, due to the uncountable state space this
is not possible for all policies. Following [10], we restrict our attention to so called
measurable policies, for which we can define a probability measure, denoted Pσs ,
over the sample space ΩN+1 when the initial state of the process equals s.

The following definition is taken from [14,15,19] (these contributions mostly
deal with analytic spaces that represent a generalisation of the Borel measurable
space we focus on).

Definition 1 (Labelled Markov Process). A labelled Markov process (LMP)
S is a structure:

(S, s0,B(S), {τu |u ∈ U}) ,

where S is the state space, s0 ∈ S is the initial state, B(S) is the Borel σ-field
on S, U is the set of labels, and for each u ∈ U :

τu : S × B(S) −→ [0, 1]

is a sub-probability transition function, namely, a set-valued function τu(s, ·) that
is a sub-probability measure on B(S) for all s ∈ S, and such that the function
τu(·, S) is measurable for all S ∈ B(S). ��

In this work, we will often assume that the initial state s0 can be any element of
S and thus omit it from the definition. Furthermore, we will implicitly assume
that the state space is a standard Borel space, so the LMP S will often be
referred to simply as the pair (S, {τu |u ∈ U}).

It is of interest to explicitly elucidate the underlying semantics of the model
that is syntactically characterised in Definition 1. The semantics hinges on how
the sub-probability measures are dealt with in the model: we consider two dif-
ferent options, the first drawn from the literature on testing [34], and the second
originating from models of decision processes [38]. Recall that we consider fi-
nite traces over the discrete domain [0, N ] (this is because of the derivation of
abstractions that we consider below – an extension of the semantics to infinite
traces follows directly). The model is initialised at time k=0 at state s0, which is
deterministically given or obtained by sampling a given probability distribution
π0, namely s0 ∼ π0. At any (discrete) time 0 � k � N−1, given a state sk ∈ S
and selecting a discrete action uk ∈ U , this action is accepted with a probability
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S τuk

(sk, dx), whereas it is rejected with probability 1 −
∫
S τuk

(sk, dx). If the
action uk is rejected, then the model can exhibit two possible behaviours:

1. (Testing process) the dynamics stops, that is, the value sk+1 is undefined
and the process returns the finite trace

((s0, u0), (s1, u1), . . . , (sk, uk));

2. (Decision process) a default action u ∈ Ue is selected and the process contin-
ues its evolution, returning the sample sk+1 ∼ τu(sk, ·). The default action
can, for instance, coincide with the label selected (and accepted) at time
k−1, i.e. u = uk−1 ∈ U , or with the additional label, i.e. u = ū. At time
instant N−1, the process completes its course and further returns the trace

((s0, u0), (s1, u1), . . . , (sk, uk), (sk+1, u) . . . , (sN−1, u), sN ).

Note that the above models can also be endowed with a set of output or observ-
able variables, which are defined over an “observation space” O via an observa-
tion map h : S×U → O. In the case of “full observation,” the map h can simply
correspond to the identity and the observation space coincides with the domain
of the map. The testing literature often employs a map h : U → O, whereas in
the decision literature it is customary to consider a map h : S → O. That is,
the emphasis in the testing literature is on observing actions/labels, whereas in
the decision and control field the focus is on observing variables (and thus on
the corresponding underlying dynamics of the model).

We elucidate the discussion above by two examples.

Example 1 (Testing process). Consider a fictitious reactive system that takes the
shape of a slot or a vending machine, outputting a chosen label and endowed with
an internal state with one n-bit memory register retaining a random number. For
simplicity, we select a time horizon N < 2n−1, so that the internal state never
under- or overflows. The state of the machine is sk ∈ {−2n−1, . . . , 0, . . . , 2n−1},
where the index k is a discrete counter initialised at zero. At its k-th use, an
operator pushes one of U = {0, 1, 2, . . . ,M} buttons uk, to which the machine
responds with probability 1

1+e−sk
and, in such a case, resets its state to sk+1 =

sk + ukξk, where ξk is a fair Bernoulli random variable taking values in {−1, 1}.
On the other hand, if the label/action is not accepted, then the machine gets
stuck at state sk.

Clearly, the dynamics of the process hinges on the external inputs provided
by the user (the times of which are not a concern; what matters is the discrete
counter k for the input actions). The process generates traces as long as the
input actions are accepted. We may be interested in assessing if a given periodic
input policy applied within the finite time horizon (for instance, the periodic
sequence (M−1,M,M−1,M, . . .)) is accepted with probability greater than a
given threshold over the model initialised at a given state, where this probability
depends on the underlying model. Alternatively, we may be interested in gener-
ating a policy that is optimal with respect to a specification over the space of
possible labels (for example, we might want the one that minimises the occur-
rence of choices within the set {0, 1, 2} ⊆ U). ��
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Example 2 (Decision process). Let us consider a variant of the temperature con-
trol model presented in [3,5] and which will be further elaborated upon in Sec-
tion 6. The temperature of a room is controlled at the discrete time instants
tk = 0, δ, 2δ, . . . , Nδ, where δ ∈ R+ represents a given fixed sampling time. The
temperature is affected by the heat inflow generated by a heater that is con-
trolled by a thermostat, which at each time instant tk can either be switched
off or set to a level between 1 and M . This choice between heater settings is
represented by the labels U = {u0, u1, . . . , uM} of the LMP, where u0 = 0 and
0 < u1 < · · · < uM . The (real-valued) temperature sk+1 at time tk+1 depends
on that at time tk as follows:

sk+1 = sk + h(sk−sa) + huk
ζ(sk, uk) + ξk,

where

ζ(sk, uk) =

{
uk w.p. 1− sk· uk

uM
·α

ū else,

ξk ∼ N [0, 1], sa represents the constant ambient temperature outside the room,
the coefficient h denotes the heat loss, huk

is the heat inflow when the heater
setting corresponds to the label uk, and α is a normalisation constant.

The quantity ζ(sk, uk) characterises an accepted action (uk) with a proba-
bility that decreases both as the temperature increases (we suppose increasing
the temperature has a negative affect through heat-related noise on the correct
operation of the thermostat) and as the heater level increases (increasing the
heater level puts more stress on the heater, which is then more likely to fail),
and conversely provides a default value if the action is not accepted. The default
action could feature the heater in the OFF mode (u0), or the heater stuck to the
last viable control value (uk−1). In other words, once an action/label is rejected,
the dynamics progresses by adhering to the default action.

We stress that, unlike in the previous example, here the dynamics proceeds
regardless of whether the action is accepted or not, since the model variable
(sk) describes a physical quantity with its own dynamics that simply cannot be
physically stopped by whatever input choice. Given this model, we may be in-
terested in assessing whether the selected policy satisfies a desired property with
a specified probability (similar to the testing case), or in synthesising a policy
that maximises the probability of a given specification – say, to maintain the
room temperature within a certain comfort interval. Policy synthesis problems
appear to be richer for models of decision processes, since the dynamics play a
role in a more explicit manner. ��

The second semantics (related to a decision process) leads to a reinterpretation
of the LMP as a special case of an (infinite-space) MDP [38]. Next, we aim
at leveraging this interpretation for both semantics: in other words, the two
semantics of the LMP can be interpreted in a consistent manner by extending
the dynamics and by properly “completing” the sub-stochastic kernels, by means
of new absorbing states and additional labels, as described next. This connection
has been qualitatively discussed in [37] and is now expounded in detail and
newly applied at a semantical level over the different models. Let us start with
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the testing process. Given a state sk ∈ S and an action uk ∈ U , we introduce
the binary random variable taking values in the set {uk, ū} with probability
{
∫
S τuk

(sk, dx), 1 −
∫
S τuk

(sk, dx)}, respectively. Consider the extended spaces
Se and Ue. Here e is an absorbing state, namely e is such that

∫
S τu(e, dx) =

0 for all u ∈ Ue (any action selected at state e is rejected), and such that
τū(s, dx) = δe(dx) for all s ∈ Se, where δe(·) denotes the Dirac delta function
over Se. We obtain:

sk+1 ∼
{∫

S τuk
(sk, dx)τuk

(sk, ·) if the action is accepted
(1 −

∫
S τuk

(sk, dx))τū(sk, ·) if the action is rejected.
(1)

The labelling map h : U → O is inherited and extended to Ue, so that h(ū) = ∅.
Let us now focus on the decision process. Similarly to the testing case, at time

k and state sk, label/action uk is chosen and this value accepted with a certain
probability, else a default value u is given. In the negative instance, the actual
value of u depends on the context (see the discussion in the example above) and
can correspond to an action within U (say, the last accepted action) or to the
additional action ū outside this finite set but in Ue. Then, as in the testing case,
sk+1 is selected according to the probability laws in (1). However, we impose
the following condition: once an action is rejected and label u is selected, the
very same action is retained deterministically for the remaining part of the time
horizon, namely uj = u for all k � j � N−1. Essentially, it is as if, for any
time instant k � j � N−1, the action space collapsed into the singleton set
{u}. Notice that, in the decision case, the state space Se does not need to be
extended; however, the kernel τū, ū ∈ Ue \ U , should be defined and indeed have
a non-trivial dynamical meaning if the action ū is used. Finally, the labelling
map h : S → O is inherited from above.

Let us emphasise that, according to the completion procedure described above,
LMPs (in general endowed with sub-probability measures) can be considered as
special cases of MDPs, which allows connecting with the rich literature on the
subject [7,28].

3 Exact and Approximate Probabilistic Bisimulations

We now recall the notions of exact and approximate probabilistic bisimulation
for LMPs [14,17]. We also extend these definitions to incorporate the labelling
and reward functions introduced in Section 2. We emphasise that both concepts
are to be regarded as strong notions – we do not consider hidden actions or
internal nondeterminism in this work, and thus refrain from dealing with weak
notions of bisimulation.

Definition 2 ((Exact) Probabilistic Bisimulation).Consider an LMPS =
(S, {τu |u ∈ U}). An equivalence relation R on S is a probabilistic bisimulation if,
whenever s1Rs2 for s1, s2 ∈ S, then L(s1) = L(s2), r(s1, u) = r(s2, u) for all
u ∈ U and, for any u ∈ U and set S̃ ∈ S/R (which is Borel measurable), it holds
that

τu(s1, S̃) = τu(s2, S̃) .
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A pair of states s1, s2 ∈ S are said to be probabilistically bisimilar if there exists a
probabilistic bisimulation R such that s1Rs2. ��

Observe that the autonomous case of generalMarkov chainswith sub-probability
measures, which is characterised by a trivial labels set with a single element, can
be obtained as a special case of the above definition.

Let R be a relation on a set A. A set Ã ⊆ A is said to be R-closed if R(Ã) =
{t | sR t ∧ s ∈ Ã} ⊆ Ã. This notion will be employed shortly – for the moment,
note that Definition 2 can be equivalently given by considering the condition on
the transition kernel to hold over R-closed measurable sets S̃ ⊆ S.

The exact bisimulation relation given above directly extends the correspond-
ing notions for finite Markov chains and Markov decision processes (that is, mod-
els characterised by discrete state spaces). However, although intuitive, it can be
quite conservative when applied over uncountable state spaces, and procedures
to compute such relations over these models are in general deemed to be undecid-
able. Furthermore, the concept does not appear to accommodate computational
robustness [20,45], arguably limiting its applicability to real-world models in
engineering and science. These considerations lead to a notion of approximate
probabilistic bisimulation with level ε, or simply ε-probabilistic bisimulation [17],
as described next.

Definition 3 (Approximate Probabilistic Bisimulation). Consider an
LMP S = (S, {τu |u ∈ U}). A relation Rε on S is an ε-probabilistic bisimu-
lation relation if, whenever s1Rs2 for s1, s2 ∈ S, then L(s1) = L(s2), r(s1, u) =
r(s2, u) for all u ∈ U and, for any u ∈ U and Rε-closed set S̃ ⊆ S, it holds that∣∣ τu(s1, S̃)− τu(s2, S̃) ∣∣ � ε . (2)

In this case we say that the two states are ε-probabilistically bisimilar. ��

Unlike the equivalence relation R in the exact case, in general, the relation Rε
does not satisfy the transitive property (the triangle inequality does not hold:
each element of a pair of states may be close to a common third element, but
map to very different transition measures among each other), and as such is not
an equivalence relation [17]. Hence, it induces a cover of the state space S, but
not necessarily a partition.

The above notions can be used to relate or compare two separate LMPs,
say S1 and S2, with the same action space U by considering an LMP S +

characterised as follows [37]. The state space S+ is given by the direct sum of
the state spaces of the two processes (i.e. the disjoint union of S1 and of S2),
where the associated σ-algebra is given by B(S1) ∪ B(S2). The labelling and
reward structure combine those for the separate processes, using the fact that
the state space is the directed sum of these processes. The transition kernel
τ+u : S+×B(S+) → [0, 1] is such that, for any u ∈ U , 1 � i � 2, si ∈ Si,
S+ ⊆ B(S1) ∪ B(S2) we have τ+u (si, S

+) = τ iu(si, S
+ ∩ Si). The initial states of

the composed model are characterised by considering those of the two generating
processes with equal likelihood. In the instance of the exact notion, we have the
following definition.
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Definition 4. Consider two LMPs Si =
(
Si, {τ iu |u ∈ U}

)
where i = 1, 2, en-

dowed with the same action space U , and their direct sum S +. An equivalence
relation R on S+ is a probabilistic bisimulation relation between S1 and S2 if,
whenever s1Rs2 for s1 ∈ S1, s2 ∈ S2, then L(s1) = L(s2), r(s1, u) = r(s2, u) for
all u ∈ U and, for any given u ∈ U and R-closed set S̃+ ∈ B(S1) ∪ B(S2), it
holds that

τ+u (s1, S̃
+) = τ1u(s1, S̃

+ ∩ S1) = τ2u(s2, S̃
+ ∩ S2) = τ+u (s2, S̃

+) .

A pair of states (s1, s2) ∈ S1×S2 is said to be probabilistically bisimilar if there
exists a relation R such that s1Rs2. Two LMPs Si are probabilistically bisimilar
if their initial states are. ��

The inequality in (2) can be considered as a correspondence between states
in the pair (s1, s2) that could result from the existence of a (pseudo-)metric over
probability distributions on the state space. This approach has been taken up
by a number of articles in the literature, which have introduced metrics as a
means to relate two models. Such metrics have been defined based on logical
characterizations [15,19,33], categorical notions [43,44], games [17], normed dis-
tances over process trajectories [1,31], as well as distances between probability
measures [42].

3.1 Computability of Approximate Probabilistic Bisimulations

While for processes over discrete and finite state spaces there exist algorithmic
procedures to compute exact [6,34] and approximate [17] probabilistic bisimula-
tions, the computational aspects related to these notions for processes over un-
countable state spaces appear to be much harder to deal with. We are of course
interested in characterising computationally finite relations, which will be the
goal pursued in the next section. Presently, only a few approaches exist to ap-
proximate uncountable-space processes with finite-state ones: LMPs [9,11,13,19],
(infinite-state) MDPs [33], general Markov chains [29] and stochastic hybrid
systems (SHSs) [2,3].

Alternative approaches to check the existence of an approximate probabilistic
bisimulations between two models, which hinge on the computation of a function
relating the trajectories of the two processes [1,31,39], are limited to models that
are both defined over an uncountable space, and do not appear to allow for the
constructive synthesis of approximate models from concrete ones. Computation
of abstract models, quantitatively related to corresponding concrete ones, is
investigated in [4], which leverages randomised approaches and, as such, can
enforce similarity requirements only up to a confidence level. Recent work on
symbolic abstractions [46] refer to approximation notions over (higher-order)
moments on the distance between the trajectory of the abstract model and the
solution of the concrete one.

In conclusion, analysing the precision, quality, and scalability properties of con-
structive approximation techniques for uncountable-state stochastic processes is
a major goal with relevant applications that we deem worthwhile pursuing.
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4 From LMPs to Finite Labelled Markov Chains

In this section, we introduce an abstraction procedure to approximate a given
LMP as a finite-state labelled Markov chain (LMC). The abstraction procedure
is based on a discretisation of the state space of the LMP (recall that the space
of labels (actions) is finite and as such requires no discretisation) and is inspired
by the early work in [3] over (fully-probabilistic) SHS models. It is now extended
to account for the presence of actions and to accommodate the LMP framework
(with sub-probability measures). The relationship between abstract and concrete
models as an approximate probabilistic bisimulation is drawn from results in [41].

Let us start from an LMP S = (S, s0,B(S), {τu |u ∈ U}), represented via
its extended dynamics independently from its actual semantics1. We consider a
finite partition of the space S = ∪Qi=1Si such that Si∩Sj = ∅ for all 1 � i �=j � Q.
In addition, we assume that states in the same element of the partition have the
same labelling and reward values, that is, for any 1 � i � Q we have L(s)=L(s′)
and r(s, u)=r(s′, u) for all s, s′ ∈ Si and u ∈ U . Let us associate to this partition a
finite σ-algebra corresponding to σ(S1, . . . , SQ). The finiteness of the introduced
σ-algebra, in particular, implies that, for any 1 � i � Q, states s1, s2 ∈ Si,
measurable set S ∈ σ(S1, . . . , SQ) and label u ∈ U , we have:

τu(s1, S) = τu(s2, S) .

This follows from the finite structure of the σ-algebra and and the definition of
measurability. Let us now select for each 1 � i � Q a single fixed state si ∈ Si.
Using these states, for any label u ∈ U we then approximate the kernel τu by
the matrix pu ∈ [0, 1]Q×[0, 1]Q, where for any 1 � i, j � Q:

pu(i, j) = τu(si, Sj) .

Observe that, for any u ∈ U and 1 � i � Q, we have
∑Q

j=1 pu(i, j) � 1. The
structure resulting from this procedure is called a finite labelled Markov chain
(LMC). Note that, in general, LMCs do not correspond to (finite-state) MDPs:
this correspondence holds only if we have abstracted an LMP that has been
“completed” with the procedure described in Section 2, and which as such can
be reinterpreted as an uncountable-state MDP.

Let us comment on the procedure above. We have started from the LMP
S = (S, {τu |u ∈ U}), endowed with an uncountable state space S with the
corresponding (uncountable) Borel σ-algebra B(S). We have partitioned the
space S into a finite quotient made up of uncountable sets Si, and associ-
ated to this finite quotient a finite σ-algebra. We call this intermediate model
S f : the obtained model is still defined over an uncountable state space, but
its probabilistic structure is simpler, being characterised by a finite σ-algebra
σ(S1, . . . , SQ) and piecewise constant kernels – call them τfu (s, ·) – for complete-
ness S f =

(
S, s0, σ(S1, . . . , SQ), {τfu |u ∈ U}

)
. This latter feature has allowed

1 With slight abuse of notation but for simplicity sake, we avoid referring to extended
state and/or action spaces as more proper for “completed” LMP models.
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us, in particular, to select an arbitrary state si for each of the partition sets Si,
which has led to a finite state space Sd = {s1, . . . , sQ}. For each label u ∈ U
we have introduced the (sub-)probability transition matrix pu. The new model
S d =

(
Sd, sd0, σ(S1, . . . , SQ), {pu |u ∈ U}

)
is an LMC. Here sd0 is the discrete

state in Sd that corresponds to the quotient set, including the concrete initial
condition s0 of S .

Let us emphasise that, whilst the structure of the state spaces of S f and of
S d are not directly comparable, their probabilistic structure is equivalent and
finite – that is, the probability associated to any set in Sf (the quotient of S)
for S f is matched by that defined over the finite set of states in Sd for S d.
The model S f allows us to formally relate the concrete, uncountable state-space
model S with the discrete and finite abstraction S d.

The formal relationship between the concrete and the abstract models can be
derived under the following assumption on the regularity of the kernels of S .

Assumption 1. Consider the LMP S = (S, {τu |u ∈ U}). For any label u ∈ U
and states s′, s′′, t ∈ S, there exists a positive and finite constant k(u), such that

|Tu(s′, t)− Tu(s′′, t)| � k(u)‖s′ − s′′‖,

where Tu is the density associated to the kernel τu, which is assumed to admit
an integral form so that

∫
Tu(s, t)dt =

∫
τu(s, dt) for all s ∈ S and u ∈ U . ��

Consider the concrete LMP S , and recall the finite partition for its state space,
S = ∪Qi=1Si. Let R be the relation over S such that s′Rs′′ if and only if the
states are in the same element of the partition, i.e. there exists 1 � i � Q such
that s′, s′′ ∈ Si. The relation R is trivially symmetric and reflexive. Furthermore,
if s′Rs′′, then for any S ∈ {S1, . . . , SQ}:

|τu(s′, S)− τu(s′′, S)| =
∣∣∣∣∫
S

τu(s
′, dx)−

∫
S

τu(s
′′, dx)

∣∣∣∣
=

∣∣∣∣∫
S

Tu(s
′, x) dx −

∫
S

Tu(s
′′, x) dx

∣∣∣∣
�
∫
S

|Tu(s′, x)− Tu(s′′, x)| dx

�
∫
S

k(u)‖s′ − s′′‖ dx

� L(S)k(u)δ(S), (3)

where δ(S) = sups′,s′′∈S ‖s′ − s′′‖ denotes the diameter of the partition set S
and L(S) denotes the Lebesgue measure of the set S. By virtue of the inequality
established in (3) and Definition 3, we obtain the following result.

Theorem 1. Consider the LMP S = (S, s0, σ(S1, . . . , SQ), {τu |u ∈ U}). The
introduced relation R is an (approximate) ε-probabilistic bisimulation over S
where

ε = max
u∈U

max
1�i�Q

L(Si)k(u)δ(Si) . ��
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From this point on, we assume that we are interested in the dynamics of the
LMP over a bounded set S, which allows us to conclude that ε is finite (since its
volume L(S) and its diameter δ(S) are). More specifically, the approximation
level ε can be tuned by reducing the quantity δ(·), the diameter of the partitions
of S. Likewise, better bounds based on local Lipschitz continuity (rather than
global, as per Assumption 1) can improve the error, as further elaborated in [21].

We now introduce the model S f , with its corresponding finite σ-algebra and
piecewise constant kernel functions τfu . Working with the same relation R as
above, using (3) we have that if sR sf and S ∈ {S1, . . . , SQ}, then∣∣τu(s, S)− τfu (sf , S)∣∣ = |τu(s, S)− τu(si, S)| � L(S)k(u)δ(S) .

This leads us to conclude, via Definition 4, that the LMPs S and S f are
ε-probabilistically bisimilar, where ε is taken from Theorem 1. Notice that Def-
inition 4 can be used to relate LMPs with different structures, since it does not
require the LMPs to have the same state or probability spaces – the only re-
quirement is that the processes share the same action space. Having argued that
the probabilistic structure of S f and of S d are the same, we proceed now by
comparing the LMP S with the LMC S d. Consider their direct sum S + and
relation R where, for s ∈ S and si ∈ Sd, we have sR si if and only if s ∈ Si.
Now, any R-closed set S+ is such that S+ ∩ Sd = sj and S+ ∩ S = Sj for any
1 � j � Q. It therefore follows that∣∣τ+u (s, S+)− τ+u (si, S

+)
∣∣ = |τu(s, Sj)− pu(i, j)|
= |τu(s, Sj)− τu(si, Sj)|
� L(Sj)k(u)δ(Si),

which leads to the following result.

Theorem 2. Models S and S d are ε-probabilistically bisimilar. ��

Remark 1. The above theorem establishes a formal relationship between S and
S d by way of comparing S with S f over the same state space. Unlike most
of the mentioned approaches in the LMPs approximations literature, the result
comes with a simple procedure to compute the finite abstraction S d, with a
quantitative relationship between the finite abstraction and the original LMP
model [3,21]. Thanks to the dependence of the error on the (max) diameter
among the partition sets, the approximation level ε can be tuned by selecting
a more refined partition of the state space S. Of course this entails obtaining a
partition set with larger cardinality by employing smaller partitions. ��

5 Model Checking Labelled Markov Chains with PRISM

The previous section has described a procedure to approximate an infinite-state
LMP by a finite-state LMC. In this section, we show how probabilistic model
checking over this finite abstract model can be used to verify properties of the
original, concrete uncountable-space LMP.
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Probabilistic model checking is a powerful and efficient technique for formally
analysing a large variety of quantitative properties of probabilistic models. The
properties are specified as formulae in a (probabilistic) temporal logic. In this
paper, we use a time-bounded fragment of the logic PCTL [8,27] for discrete-
time models, augmented with an operator to reason about costs and rewards [26],
although the relationship established in the previous section between LMPs and
LMCs in fact preserves a more general class of linear-time properties over a
bounded horizon [41].

We will explain our use of probabilistic model checking in the context of
(finite-state) LMCs, and subsequently explain the relationship with LMPs. We
use logical properties defined according to Φ in the following syntax:

Φ ::= P∼p [φ U�K φ ]
∣∣ Rr∼x [ C

�K ]

φ ::= true
∣∣ a ∣∣ φ ∧ φ ∣∣ ¬φ,

where∼∈ {<,�, >,�} is a binary comparison operator, p ∈ [0, 1] is a probability
bound, x ∈ R�0 is a reward bound, K ∈ N is a time bound, r is a reward
structure and a is an atomic proposition. A property P∼p [φ U�K ψ ] asserts that
the probability of ψ becoming true within K time steps, and φ remaining true
up until that point, satisfies ∼ p. In standard fashion, we can also reason about
(bounded) probabilistic reachability and invariance:

P∼p [♦�K φ ] def
= P∼p [ true U�K φ ]

P�p [��Kφ ] def
= P�1−p [♦�K¬φ ] .

A property Rr∼x [ C
�K ] asserts that the expected amount of reward (from reward

structure r) accumulated overK steps satisfies∼x. State formulae φ can identify
states according to the atomic propositions that label them, and can be combined
by Boolean operations on these propositions.

We define satisfaction of a logical formulae Φ with respect to a state sd and
policy σd of an LMC S d. We write S d, sd, σd |= Φ to denote that, starting
from state sd of S d, and under the control of σd, Φ is satisfied. We can then
treat the analysis of a formula Φ against a model S d in two distinct ways.
We can verify that a formula Φ is satisfied under all policies of S d, or we can
synthesise a single policy that satisfies Φ. In fact, in practice, whichever kind
of analysis is required, the most practical solution is to compute the minimum
or maximum value, over all policies, for the required property. For example,
for an until property φ U�K ψ, we might compute the maximum probability of
satisfaction when the initial state is sd:

Pmax=? [φ U�K ψ ]
def
= maxσd Pσ

d

sd

(
φ U�K ψ

)
,

where Pσ
d

sd

(
φ U�K ψ

)
is the probability under the policy σd when the initial state

is sd of ψ becoming true within K time steps, and φ remaining true up until
that point.

Computing minimum or maximum probabilities or rewards (and thus checking
a property Φ against an LMC) can be performed using existing probabilistic
model checking algorithms for Markov decision processes [8,26]. These methods
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are implemented in the PRISM model checker, which we use for the case study
in the next section. When computing optimal values, a corresponding policy
(strategy) that achieves them can also be synthesised.

Finally, we discuss how probabilistic model checking of an LMC obtained from
an LMP allows us to analyse the original, concrete LMP.

Theorem 3. Consider a concrete LMP S and an abstract LMC S d which are
ε-probabilistic bisimilar. For two ε-probabilistically bisimilar states s ∈ S, sd ∈
Sd and until property φ U�K ψ we have:

– for any (measurable) policy σ of S there exists a policy σd of S d such that∣∣Pσs (φ U�K ψ)− Pσ
d

sd (φ U�K ψ)
∣∣ � εK,

– for any policy σd of S d there exists a (measurable) policy σ of S such that∣∣Pσd

sd (φ U�K ψ)− Pσs (φ U�K ψ)
∣∣ � εK .

Furthermore, the above bounds apply to the case of optimal policy synthesis, for
instance (in the case of maximisation) considering policies σ, σd within the same
class for S and S d, respectively, it holds that∣∣ maxσd Pσ

d

sd (φ U�K ψ)−maxσ P
σ
s (φ U�K ψ)

∣∣ � εK . ��

The above theorem also generalises to expected reward properties and general
linear-time properties over a finite horizon, such as bounded linear-time temporal
logic (BLTL) or properties expressed as deterministic finite automata.

6 Case Study

This section presents a case study of the multi-room heating benchmark intro-
duced in [22], based on a model proposed by [35] and already discussed in Sec-
tion 2. The objective is to evaluate the usefulness of probabilistic model checking
for the (approximate) verification (and optimisation) of an LMP. The model is
an extension of that presented in [5], in that the control set is richer than the
binary one considered in the reference, and is also related to that in [3].

We study a model for the control of the temperature evolution of two adja-
cent rooms. Each room is equipped with a heater and there is a single control
which can switch the heaters between M=10 different levels of heat flow, with
0 corresponding to the heaters being OFF and 10 to the heaters being ON at full
power. The uncountable state space is R2, modelling the temperature evolution
in the two rooms.

As in Section 2, the average temperature of a room evolves according to a
stochastic difference equation during the finite time horizon [0, N ]. As there are
now two rooms, following [22] we also include the heat transfer between the
rooms in the equations. Letting sk ∈ R2 denote the temperatures in the rooms
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at time instant tk, we have that the equation for room i ∈ 1, 2 (assuming j is
the other room) is given by:

sk+1(i) = sk(i) + bi(sk(i)−xa) + a(sk(j)−sk(i)) + huk
ζ(sk(i), uk) + ξk(i), (4)

where xa represents the ambient temperature (assumed to be constant) and a
the heat transfer rate between the rooms. The quantity bi is a non-negative
constant representing the average heat transfer rate from room i to the ambient
and huk

denotes the heat rate supplied to room i by the corresponding heater
at time k. The quantity ζ(sk(·), uk) characterises an accepted action (uk) with
a probability that, as in Section 2, decreases both as the temperature increases
and as the heater level increases. The disturbances 〈ξk(i)〉0�k�N−1 affecting the
temperature evolution in room i are assumed to be a sequence of independent
identically distributed Gaussian random variables with zero mean and variance
ν2. We also assume that the disturbances affecting the temperature in the two
rooms are independent.

The continuous transition kernel τu describing the evolution of the uncount-
able state s = (s(1), s(2)) can easily be derived from (4). Let N (·;μ, V ) denote
the Gaussian measure over (R2,B(R2)), with mean μ ∈ R2 and covariance matrix
V ∈ R2×2. Then, τu : B(R2)× S → [0, 1] can be expressed as:

τu(· |s) = N (·; s+Bs+ C, ν2I), (5)

where B ∈ R2×2 with [B]ii = bi−a and [B]ij = a, and C ∈ R2 with [C]i =
−bia + u. With reference to the semantic classification in Section 2, we are
dealing here with a decision process.

Let us select a time horizon of N=180 time steps. We are interested in the
optimal probability and the corresponding policy that the model dynamics stay
within a given “safe” temperature interval in both rooms, say I = [17.5, 22.5] ⊂
S degrees Celsius, and also the optimal expected time and associated policy that
the dynamics stay within the interval. We assume that the process is initialised
with the temperature in each room being at the mid-point of this interval (if it
is initialised outside it, then the associated probability is trivially equal to zero).

We proceed by abstracting the model as a labelled Markov chain [3] as follows.
The set I is partitioned uniformly into B=5 bins or sub-intervals. The labels
of the model correspond to choosing the heat-flow level of the heaters for the
next time instant. Regarding the atomic propositions and labelling function over
the abstract LMC (and concrete LMP), we assign the atomic proposition safe
to those states where the temperature is within the interval. In addition, to
allow the analysis of the time spent within the temperature interval, we use the
structure reward r which assigns the reward 1 to states-label pairs (both of the
LMC and LMP) for which the temperature in the state is within the interval
and 0 otherwise.

We use PRISM to obtain the minimum and maximum probability of remain-
ing within the safe temperature interval over the time horizon, and the mini-
mum and maximum expected time spent in the safe interval up to the horizon.
The properties used are Pmax=? [��Ksafe ] and Rrmax=? [ C

�K ], as well as the
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(a) Probability of remaining in safe region (b) Expected time spent in safe region

Fig. 1. PCTL model checking for the case study

corresponding properties for minimum, rather than maximum, values (see the
previous section for details of the notation). The results are presented in Fig. 1(a)
and Fig. 1(b), respectively.

The graph plots demonstrate that the minimum probability quickly reaches
zero, and that the minimum expected time stabilises as the time horizon in-
creases. Examining with PRISM the policies that obtain these minimum values,
we see that the policies coincide and correspond to never switching the heaters
on (i.e. setting the heating level to be 0 at each step up until the time horizon).
Although at first this may seem the obvious policy for minimising these values,
an alternative policy could be to keep the heaters on full at each step (i.e. setting
the heating level to 10), as it may be quicker to heat the rooms to above the
temperature interval, as opposed to letting the rooms cool to below the interval.

Using PRISM, we find that this alternative approach is actually far less ef-
fective in the expected time case, and for small time horizons when considering
the probabilistic invariance property. This is due to the fact that it takes much
longer to heat a room to above the temperature interval than it does to reach
the lower bound by keeping the heaters off. For example for a time bound of
10 minutes, the probability of remaining within the interval equals 1.68e−15
when the heaters are kept off, while if the heaters are on full the probability of
remaining within the interval is 0.01562. The fact that there is a chance that the
heaters fail at each time step only increases the difference between these policies
with regards to remaining within the temperature interval, as it is clearly detri-
mental to keep the heaters on full, but has no influence when the heaters are
kept off. This can be seen in the expected time graph (see Fig. 1(b)), where the
expected time of remaining within the temperature interval for the “full” policy
keeps increasing while the minimum policy levels off.

In the case of the maximum values for the properties in Fig. 1, we see that
for small time horizons there is a very high chance that we can remain within
the temperature interval, but as the horizon increases the chance of remaining
within the interval drops off. Consider the maximum expected time spent within
the interval; this keeps increasing as the horizon increases, but at a lesser rate.
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The reason for this behaviour is due to the fact that the heaters can fail and,
once a heater fails, there is nothing we can do to stop the temperature in the
corresponding room decreasing. Regarding the corresponding policies, we see
that, while the heaters are working, the optimal approach is to initially set the
heaters to be on full and then lower the heater level as one approaches the upper
bound of the temperature interval. In addition, if the temperature in the rooms
starts to drop, then the policy repeats the process by setting the heaters to high
and then reducing as the temperature nears the upper bound of the interval.

7 Conclusions

This paper has put forward a computable technique to derive finite abstractions
of labelled Markov processes (LMPs) in the form of labelled Markov Chains
(LMCs), a probabilistic model related to Markov decision processes. The abstract
LMC models are shown to correspond to the concrete LMPs via the notion of
approximate probabilistic bisimulation. The technique enables the use of PRISM
for probabilistic model checking and optimal policy synthesis over the abstract
LMCs, extending its current capability to uncountable-state space models. The
usefulness of the approach is demonstrated by means of a case study.
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Abstract. Negative probabilities have long been discussed in connec-
tion with the foundations of quantummechanics. We have recently shown
that, if signed measures are allowed on the hidden variables, the class
of probability models which can be captured by local hidden-variable
models are exactly the no-signalling models. However, the question re-
mains of how negative probabilities are to be interpreted. In this paper,
we present an operational interpretation of negative probabilities as aris-
ing from standard probabilities on signed events. This leads, by virtue
of our previous result, to a systematic scheme for simulating arbitrary
no-signalling models.

1 Introduction

Negative probabilities have been discussed in relation to quantum mechanics
by many authors, including Wigner, Dirac and Feynman [12,7,8]. For example,
Feynman writes:

The only difference between a probabilistic classical world and the
equations of the quantum world is that somehow or other it appears as
if the probabilities would have to go negative . . .

The separation of quantum from classical physical behaviour in results such as
Bell’s theorem [3] is expressed in terms of local realistic models, in which
ontic (or hidden) variables control the behaviour of the system in a classical
fashion, satisfying the constraints of locality and realism. The content of Bell’s
theorem is exactly that no such model can give rise to the behaviours predicted
by quantum mechanics.

However, if we allow negative probabilities on the ontic (or hidden) variables
of the model, the situation changes radically.

As a warm-up example, we shall consider the following scenario due to Piponi1,
which, while artificial, is appealingly simple, and does convey some helpful
intuitions.

1 See the blog post at
http://blog.sigfpe.com/2008/04/negative-probabilities.html

F. van Breugel et al. (Eds.): Panangaden Festschrift, LNCS 8464, pp. 59–75, 2014.
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We shall consider a system comprising two bit registers, A and B. We can
perform the following tests or observations on these registers on each run of the
system:

– We can read A or B, but not both.
– Alternatively, we can observe the value ofA⊕B, the exclusive or ofA andB.

What we find by empirical observation of the system is that, in every run:

1. When we read A, we always get the value 1.
2. When we read B, we always get the value 1.
3. When we observe A⊕B, we always get the value 1.

From 1 and 2, we infer that A = 1 and B = 1, but this contradicts our observa-
tion that A⊕B = 1.

We can try to explain this apparently contradictory behaviour as follows:

– On each run of the system, the registers are set to one of four possible
combinations of values:

AB 00 01 10 11

– This joint value is sampled from a probability distribution:

AB 00 01 10 11

p1 p2 p3 p4

It is easily seen that no such distribution, where pi ≥ 0, i = 1, . . . , 4 and∑
i pi = 1, can yield the observed behaviour of the system. However, consider

the following signed distribution:

p(00) = −1/2

p(01) = 1/2

p(10) = 1/2

p(11) = 1/2

Note that the probability of reading the value 1 for A is

p(A = 1) = p(10) + p(11) = 1,

and similarly
p(B = 1) = p(01) + p(11) = 1.

Also,
p(A⊕B = 1) = p(10) + p(01) = 1.

Finally, the measure is normalised:

p(00) + p(01) + p(10) + p(11) = 1.
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Also, note that the negative value p(00) = −1/2 can never be observed, since
we cannot read the values of both A and B in any given run. In fact, the only
events which are accessible by direct observation are the following:

A = 1 {10, 11}

A = 0 {00, 01}

B = 1 {01, 11}

B = 0 {00, 10}

A⊕B = 1 {10, 01}

A⊕B = 0 {00, 11}

All of these events get well-defined, non-negative probabilities under our signed
distribution, and moreover the complementary pairs of events corresponding to
the different possible outcomes for each run, given that a particular choice of
quantity to test has been made, yield well-defined probability distributions:

p(A = 1)+ p(A = 0) = 1, p(B = 1)+ p(B = 0) = 1, p(A⊕B = 1)+ p(A⊕B = 0) = 1.

Of course, unless we can give some coherent account of the negative value
appearing in the signed measure, it could be said that we have simply explained
one mystery in terms of another.

Before addressing this point, we shall turn to a more substantial example,
which plays a central rôle in much current work in quantum information and
foundations.

We shall now consider a scenario where Alice and Bob each have a choice of two
1-bit registers (or “measurement settings”); say a or a′ for Alice, and b or b′ for
Bob. As before, we shall assume that on each run of the system, Alice can read the
value of a or a′, but not both; and similarly, Bob can only read one of b or b′. (In
more physical terms, only one of these quantities can be measured in any given
run.) We shall assume that Alice and Bob are spacelike separated, and hence
they can perform their measurements or observe their variables independently of
each other. By observing multiple runs of this scenario, we obtain probabilities
p(uv|xy) of obtaining the joint outcomes x = u and y = v when Alice selects the
variable x ∈ {a, a′}, and Bob selects y ∈ {b, b′}.

Consider the following tabulation of values for these probabilities:

00 01 10 11

ab 1/2 0 0 1/2

ab′ 1/2 0 0 1/2

a′b 1/2 0 0 1/2

a′b′ 0 1/2 1/2 0

The entry in row xy and column uv gives the probability p(uv|xy).
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This is the PR-box of Popescu and Rohrlich [10]. As is well-known, it max-
imises the value of the CHSH expression:

E(ab) +E(ab′) +E(a′b)−E(a′b′) = 4,

where

E(xy) =
∑
u,v

(−1)u+vp(uv|xy).

Thus it exceeds the Tsirelson bound [11] of 2
√
2 for the maximum degree of

correlation that can be achieved by any bipartite quantum system of this form.
It follows that no quantum system can give rise to this probabilistic
model. At the same time, it still satisfies No-Signalling, and hence is consistent
with the relativistic constraints imposed by the spacelike separation of Alice and
Bob.

We now consider the analogous form of “explanation” for this model which
can be given in the same style as for our previous example. The ontic or hidden
variables will assign a definite value to each of the four possible measurements
which can be made in this scenario: a, a′ b, b′. We shall use the notation uu′vv′

for the assignment

a �→ u, a′ �→ u′, b �→ v, b′ �→ v′.

Following Mermin [9], we shall call such assignments instruction sets. In this
case, there are 24 = 16 instruction sets. We assume that on each run of the
system, such an instruction set is sampled according to a probability distribution
on this 16-element set. The values observed by Alice and Bob, given their choice
of measurement settings, are those prescribed by the instruction set.

Now Bell’s theorem tells us that no standard probability distribution on the
instruction sets can give rise to the behaviour of the PR Box; while from the
Tsirelson bound, we know that the correlations achieved by the PR box exceed
those which can be realised by a quantum system.

However, consider the following signed measure on instruction sets
[1, Example 5.2]:

p(0000) = 1/2

p(0001) = 0

p(0010) = −1/2

p(0011) = 0

p(0100) = 0

p(0101) = 0

p(0110) = 1/2

p(0111) = 0

p(1000) = −1/2

p(1001) = 1/2

p(1010) = 1/2

p(1011) = 0

p(1100) = 0

p(1101) = 0

p(1110) = 0

p(1111) = 0
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We can check that this distribution reproduces exactly the probabilities of the
PR box. For example:

p(00|ab) = p(0000) + p(0001) + p(0100) + p(0101) = 1/2,

and similarly p(uv|xy) can be obtained from this signed measure on the in-
struction sets for all u, v, x, y. Since the “observable events” are exactly those
corresponding to these probabilities, the negative values occurring in the signed
measure can never be observed. The probabilities of the outcomes for a given
choice of measurement settings, corresponding to the rows of the PR box table,
form well-defined standard probability distributions.

This is not an isolated result. In [1, Theorem 5.9] it is shown that for a large
class of probability models, including Bell scenarios with any numbers of agents,
measurement settings and outcomes, and also contextuality scenarios including
arbitrary Kochen-Specker configurations, the model can be realised by a signed
measure on instruction sets if and only if it is No-Signalling.

But this brings us back to the question: what are these negative probabilities?
The main purpose of the present paper is to give an operational interpretation of
negative probabilities, in a broadly frequentist setting, by means of a simulation
in terms of standard probabilities. We shall postpone discussion of the conceptual
status of this interpretation to the final section of the paper, after the ideas have
been put in place.

The further structure of this paper is as follows. In Section 2, we shall lay out
the simple ideas involved in our interpretation of negative probabilities at the level
of abstract probability distributions. We shall only consider the case of discrete
measures, which will be sufficient for our purposes. In Section 3, we shall review
observational scenarios and empirical models in the general setting studied in [1],
and the result relating signed measures and No-Signalling models. In Section 4, we
shall develop an operational interpretation of hidden-variable models, including
those involving negative probabilities. By virtue of the general result on hidden-
variable models with signed measures, this yields a uniform scheme for simulating
all No-Signalling boxes using only classical resources. Finally, Section 5 concludes
with a discussion of the results, and some further directions.

2 Probabilities and Signed Measures

Given a setX , we writeM(X) for the set of (finite-support) signed probability
measures on X , i.e. the set of maps m : X → R of finite support, and such that∑

x∈X
m(x) = 1.

We extend measures to subsets S ⊆ X by (finite) additivity:

m(S) :=
∑
x∈S

m(x).

We write Prob(X) for the subset ofM(X) of measures valued in the non-negative
reals; these are just the probability distributions on X with finite support.
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These constructions also act on maps. Given a function f : X → Y , we can
define

M(f) :M(X) −→M(Y ) :: m �→ [y �→
∑

f(x)=y

m(x)].

Thus M(f) pushes measures on X forwards along f to measures on Y .
SinceM(f) will always map probability distributions to probability distribu-

tions, we can define Prob(f) :=M(f)|Prob(X). It can easily be checked that these
assignments are functorial:

M(g ◦ f) =M(g) ◦M(f), M(idX) = idM(X),

and similarly for Prob.
Now we come to the basic idea of our approach, which is to interpret signed

measures by “pushing the minus signs inwards”. That is, we take basic events to
carry an additional bit of information, a sign or “probability charge”. Moreover,
occurrences of the same underlying event of opposite sign cancel. In this fashion,
negative probabilities arise from standard probabilities on signed events.2

More formally, given a setX , we take the signed version of X to be the disjoint
union of two copies of X , which we can write as

X± := {(x, ς) | x ∈ X, ς ∈ {+,−}}.

Also, given a map f : X → Y , we can define a map f± : X± → Y ± by

f± : (x, ς) �→ (f(x), ς), ς ∈ {+,−}.

We shall use the notation x+, x− rather than (x,+), (x,−). Given S ⊆ X , we
shall write

S+ := {x+ | x ∈ S}, S− := {x− | x ∈ S} ⊆ X±.

The representation of a signed measure on a sample space X by a probability
measure on X± is formalised by the map

θX :M(X) −→ Prob(X±)

given by

θX(m)(x+) =

⎧⎨⎩m(x)/K, m(x) > 0

0, otherwise

θX(m)(x−) =

⎧⎨⎩ |m(x)|/K, m(x) < 0

0, otherwise

where K =
∑

x∈X |m(x)| is a normalisation constant.

2 This intuitive way of looking at signed measures has, grosso modo, appeared in the
literature, e.g. in a paper by Burgin [5]. However, the details in [5] are very different
to our approach. In particular, the notion of signed relative frequencies in [5], which
is defined as a difference of ratios rather than a ratio of differences, is not suitable
for our purposes.



An Operational Interpretation of Negative Probabilities 65

Note that the probability measures in the image of θX have some special
properties. In particular, if we define W (d), for d ∈ Prob(X±), by

W (d) := d(X+)− d(X−),

then if d = θX(m), we have

W (d) =
∑
x∈X

m(x)/K = 1/K > 0.

We write Prob±(X) := {d ∈ Prob(X±) | W (d) > 0}. Thus θX cuts down to a
map

θX :M(X) −→ Prob±(X).

Note also that for any map f : X → Y , and d ∈ Prob(X±):

W (Prob(f±)(d)) =W (d).

Hence we can extend Prob± to a functor by Prob±(f) := Prob(f±).
We can recover a signed measure on X from a probability distribution in

Prob±(X) by an inverse process to θX . Formally, this is given by a map

ηX : Prob±(X) −→M(X) :: d �→ [x �→ (d(x+)− d(x−))/W (d)].

This map incorporates the idea that positive and negative occurrences of a given
event cancel.

The following simple observation will be used in showing the correctness of
our simulation scheme in Section 4.2.

Proposition 1. The following diagram commutes, for all sets X and Y and
functions f : X → Y :

M(X)
M(f) � M(Y )

Prob±(X)

θX

�

Prob±(f)
� Prob±(Y )

ηY

�

Proof. We write d := θX(m), and calculate pointwise on y ∈ Y :

ηY ◦ Prob±(f) ◦ d(y) =
d((f±)−1(y+)) − d((f±)−1(y−))

d(X+) − d(X−)

=
∑

f(x)=y,m(x)>0

m(x) −
∑

f(x)=y,m(x)<0

|m(x)|

=
∑

f(x)=y

m(x)

= M(f)(m)(y).

�
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Intuitively, this says that pushing a signed measurem forwards along f can be
performed by simulating the measure by a probability distribution d = θX(m)
on signed events, pushing d forwards along f , and then interpreting the resulting
probability distribution back as a signed measure via the map ηY .

3 Observational Scenarios and Empirical Models

An observational scenario is a structure (X,U , O), where:

– X is a set of measurements.
– U is a family of non-empty subsets of X with

⋃
U = X , representing the

compatible sets of measurements — those which can be performed together.
– O is a set of measurement outcomes.

For example, in the scenario for the PR box described in the Introduction, we
have:

– X = {a, a′, b, b′}.
– The measurement contexts are the choice of measurement settings by Alice

and Bob:

{a, b}, {a′, b}, {a, b′}, {a′, b′}.

– The outcomes are O = {0, 1}.

An empirical model for such a scenario is a family of probability distributions
{dU}U∈U , with dU ∈ Prob(OU ). Here OU is the set of all functions s : U → O.
Such functions represent basic events in the measurement context U , where the
measurements in U are performed, and the outcome s(x) is observed for each
x ∈ U .

In the case of the PR box, the distributions correspond to the rows of the
table, indexed by the measurement contexts xy.

We define an operation of restriction on signed measures, which is a general
form of marginalization: if U ⊆ V and m ∈ M(OV ), then m|U ∈ M(OU ) is
defined by:

m|U (s) =
∑
t|U=s

m(t).

Note that m|U =M(ρVU )(m), where

ρVU : OV −→ OU :: s �→ s|U .

Also, if d ∈ Prob(OV ), then d|U ∈ Prob(OU ).
A model {dU}U∈U is compatible if for all U, V ∈ U :

dU |U∩V = dV |U∩V .

As shown in [1], compatibility can be seen as a general form of no-signalling.
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A global section for an empirical model {dU}U∈U is a distribution d ∈
Prob(OX) such that, for all U ∈ U :

d|U = dU .

As shown in [1], a global section can be seen as a canonical form of local hidden
variable model.

A signed global section is a signed measure m ∈M(OX) such that m|U =
dU for all U ∈ U . We have the following result from [1].

Theorem 1. An empirical model {dU}U∈U is no-signalling if and only if it has
a signed global section.

4 Operational Interpretation of Hidden-Variable Models

We begin with standard local hidden-variable models. We shall follow the expos-
itory scheme due to Mermin phrased in terms of instruction sets [9], which is
encapsulated in the diagram in Figure 1.

Alice Bob

a, a′, . . . b, b′, . . .

0110

...

aa′bb′

Source

0110 0110

Target

a �→ 0 b �→ 1

Fig. 1. The Mermin instruction set picture

Here the agents or experimenters Alice and Bob each receive a stream of
particles; for each particle, they choose a measurement setting, and observe an
outcome. The stream of observed joint outcomes is collected at a target, and
provides the statistical data on which the empirical model is based.
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In this way of visualising hidden variables, the pairs of particles are generated
by some source. Reflecting the idea of local realism, each particle comes with
an “instruction set” which specifies an outcome for every possible measurement
which can be performed. In the pictured scenario, where we are considering
measurement settings a, a′ for Alice and b, b′ for Bob, such an instruction set
will specify an outcome, 0 or 1, for each of these four measurements, and hence
is depicted as a string of four bits, which correspond to outcomes for a, a′, b, b′.
When such a particle arrives e.g. at Alice and she performs the measurement a,
the instruction set 0110 dictates that she will observe the outcome 0; while if Bob
performs the measurement b on a particle with the same instruction set he will
observe the outcome 1. To account for the fact that the same measurements may
yield different outcomes, we depict the source as obtaining the stream of particles
with inscribed instruction sets by sampling some probability distribution on the
space of instruction sets.

The content of Bell’s theorem and related no-go results is that there is no
probability distribution on instruction sets which can account for the
probabilistic behaviour which is predicted by quantum mechanics, and highly
confirmed by experiment.

In mathematical terms, instruction sets are just functions in OX ; and the
non-existence of a probability distribution on instruction sets which recovers
the observed behaviour is exactly the non-existence of a global section for the
corresponding empirical model.

4.1 Formalisation of the Instruction Set Picture

We now give a formal account of this standard picture.
Firstly, we give a more explicit, frequentist description of the operational

reading we have in mind.

1. We fix some probability distribution d on instruction sets.
2. The source produces a stream of instruction sets tn by sampling repeatedly

according to d. It sends a stream of pairs of particles inscribed with the
corresponding instruction sets tn to Alice and Bob.

3. Alice and Bob act independently of the source. Alice receives a stream of
particles from the source, chooses and performs a corresponding stream of
local measurements an, and sends her measurement choices an and the out-
comes un to the target. Similarly, Bob receives a stream of particles, chooses
measurements bn, and sends his measurement choices bn and the outcomes
vn to the target. Note that the joint outcome unvn of a measurement context
anbn specified by an instruction set tn is given by un = tn(an), vn = tn(bn).

4. The target receives the streams of measurement choices and outcomes from
Alice and Bob. It combines these into a stream τ of joint outcomes, with
τn = unvn. For each choice of measurement context xy and joint outcome
uv, and for each n, it can compute the relative frequency rn(uv|xy) of uv in
the initial segment of τxy of length n. Here τxy is the restriction of τ to the
subsequence of those τi such that ai = x and bi = y.
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5. The limiting value of these relative frequencies rn(uv|xy) is taken to be the
probability p(uv|xy).

We comment on a number of points raised by this description.

– Firstly, note that the rôle of the various agents in this protocol is clearly
delineated by the information flows it makes explicit.
• Alice and Bob cannot predict the outcome, since they must accept un-
known particles from the source.

• Although the instruction sets generated by the source determine the out-
comes given the choice of measurements, the source cannot predict
which measurements Alice and Bob will select.

These informational independence notions are reflected in the standard as-
sumption of independence between the distribution governing the instruction
sets, and the choices made by Alice and Bob. This is usually referred to as
Free Choice of Measurements, or λ-independence [6]. Without this assump-
tion, the protocol trivialises, and arbitrary behaviour can be generated [2].

– The target is usually not made explicit. However, since Alice and Bob are
assumed to be spacelike separated, in order for it to be possible to obtain
empirical data on the correlations between their outcomes, it is necessary to
assume that their future light-cones intersect.

We now formalise this informal frequentist account in terms of standard prob-
ability theory.

Firstly, we recall standard notation for indicator functions. If U ⊆ X , we write
1U : X → R for the function

1U : x �→

⎧⎨⎩1, x ∈ U

0, x �∈ U.

If we fix a distribution d ∈ Prob(X), we can regard 1U as a random variable with
respect to d. Note that, writing E(R) for the expectation of a random variable
R:

E(1U ) = d(U).

We write X := {a, a′, b, b′}, O := {0, 1}, and I := OX for the set of instruction
sets. We write XA := {a, a′} for the set of Alice’s measurement choices, and
similarly XB := {b, b′}.

We are given a probability distribution d ∈ Prob(I). We also assume a prob-
ability distribution dAB on measurement choices xy, which is assumed to be
independent of d, reflecting our assumption that Alice and Bob’s measurement
choices are independent of the source. We shall assume that dAB(xy) > 0 for all
measurement contexts xy, i.e. that all measurements have some chance of be-
ing performed. If this were not the case, we could simply exclude measurements
which could never be performed from the scenario.

Thus we have a probability distribution μ on I ×XA ×XB:

μ(t, x, y) = d(t)dAB(xy).
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The stream of data at the target comprises items of the form uvxy ∈ O×O×
XA×XB. This is determined by the instruction set generated at the source and
the measurement choices made by Alice and Bob, as specified by the function

f : I ×XA ×XB −→ O ×O ×XA ×XB :: (t, x, y) �→ (t(x), t(y), x, y).

We can use the functorial action of Prob to push μ forward along f to yield
a probability distribution ν := Prob(f)(μ) on O × O ×XA ×XB. This can be
defined explicitly as follows. Given u, v, x, y, we define U(uvxy) ⊆ I:

U(uvxy) := {t ∈ I | t(x) = u ∧ t(y) = v}.

Now ν(uv, xy)=d(U(uvxy))dAB(xy). Note that d(U(uvxy))=Prob(ρIxy)(d)(uv).
The conditional probability for the target to observe outcomes uv given mea-

surement choices xy is:

ν(uv|xy) =
d(U(uvxy))dAB(xy)

dAB(xy)
= d(U(uvxy)).

Thus the stochastic process at the target for observing outcomes uv given mea-
surement settings xy is modelled by the i.i.d. sequence of random variables Xn,
where for all n, Xn = 1U(uvxy). Note that the conditioning on the choice of
measurement settings is represented implicitly by the selection of the infinite
subsequence corresponding to the stream τxy in the informal discussion above.
Of course, an i.i.d. sequence is invariant under the selection of arbitrary infinite
subsequences.

The relative frequencies observed at the target are represented by the averages
of these random variables:

rn(uv|xy) =
1

n

n∑
i=1

Xi.

Using the Strong Law of Large Numbers [4], we can calculate that

p(uv|xy) = d|xy(uv) = Prob(ρ
I
xy)(d)(uv) = d(U(uvxy)) = E(1U(uvxy)) =a.e. lim

n→∞
1

n

n∑
i=1

Xi.

This provides a precise statement of the agreement of the operational protocol
with the abstract formulation.

4.2 Signed Probabilities and No-Signalling Models

We now return to Theorem 1 and use our account of negative probabilities to
give it an operational interpretation, which we formulate as a refinement of the
Mermin picture.

We use the signed version of the Mermin instruction set scenario depicted in
Figure 2.
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Alice Bob

a, a′, . . . b, b′, . . .

0110

...

aa′bb′

Source

±

0110 0110

Target

a �→ 0 b �→ 1

±

Fig. 2. Signed instruction sets

We have the same picture as before, subject to the following refinements:

– The particles come with an additional bit of information in addition to the
instruction set: a sign.

– The source repeatedly samples these signed instruction sets according to a
(standard) probability distribution, and sends the particles with their in-
struction sets to Alice and Bob, who choose their measurements and observe
outcomes as before.

– The joint outcomes are collected at the target, which also receives the infor-
mation concerning the signs of the particles.

– The target uses the signs to compute signed relative frequencies on the
stream of joint outcomes, and hence to recover a signed measure on the joint
outcome. In certain cases, this signed measure may in fact be a bona fide
probability measure.
The signed relative frequencies incorporate the idea of cancelling positive and
negative occurrences of events. The signed relative frequency of an event
is the difference between its number of positive and negative occurrences,
normalised by the total weight of the ensemble, which is the difference
between the total numbers of positive and negative occurrences in the
ensemble.
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We shall now set out the simulation scheme in more precise terms. The analysis
is very similar to the unsigned case, the key difference being the use of signed
relative frequencies.

We are given a no-signalling empirical model with probabilities p(uv|xy).

1. By Theorem 1, we can find a signed measure m on the instruction sets which
yields the observed probabilities by marginalization:m|xy(uv) = p(uv|xy) for
all u, v, x, y.

2. We form the probability distribution d = θI(m) on signed instruction sets.
3. The source produces a streamof signed instruction sets sςn by repeatedly sam-

pling from d. It sends a stream of particles inscribed with the corresponding
instruction sets sn to Alice and Bob, and sends the signs to the target.

4. Alice and Bob act independently of the scheme, in exactly the same manner
as in the unsigned case. They send their measurement choices an, bn, and
the corresponding outcomes un, vn, where un = sn(an) and vn = sn(bn), to
the target.

5. The target receives the streams of outcomes and measurement choices from
Alice and Bob, and the stream of signs from the source. It uses these to
compute the signed relative frequencies r±n (uv|xy) for joint outcomes uv
given measurement choices xy.

6. The limiting value of these signed relative frequencies r±n (uv|xy) is taken to
be the probability p(uv|xy).

The stream of data received at the target comprises items of the form

(uv)ςxy ∈ (O ×O)± ×XA ×XB, ς ∈ {+,−}.

This is determined by the signed instruction set generated at the source, and
the measurement choices made by Alice and Bob, as specified by the function

g : I±×XA ×XB −→ (O×O)± ×XA×XB :: (sς , x, y) �→ ((s(x), s(y))ς , x, y).

We can use this function to push forward the measure μ± on I± × XA × XB,
defined by

μ±(sς , x, y) := d(sς)dAB(xy)

to ν± := Prob±(g)(μ±) on (O×O)±×XA×XB. This measure is defined explicitly
by:

ν±((uv)ςxy) = d(U ς(uvxy))dAB(xy).

As in the unsigned case, because of the product form of this measure, which
corresponds to the independence of the measurement choices from the source
distribution, conditioning on measurement choices xy leads to the probability
d(U ς(uvxy)) for signed outcomes (uv)ς .

We define the following i.i.d. sequences of random variables:

P+
n := 1U+(uvxy), P−

n := 1U−(uvxy), Q+
n := 1I+ , Q−

n := 1I− .
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The process of forming signed relative frequencies r±n (uv|xy) at the target is
modelled by the sequence of random variables Sn, where:

Sn :=

∑n
i=1 P

+
n −

∑n
i=1 P

−
n∑n

i=1 Q
+
n −

∑n
i=1 Q

−
n
.

The correctness of our simulation is now expressed by the following result.

Theorem 2. For all u, v, x, y:

lim
n→∞Sn =a.e. p(uv|xy).

Proof. By the Strong Law of Large Numbers,

lim
n→∞

1

n

n∑
i=1

P+
i =a.e. E(1U+(uvxy)) = d(U+(uvxy)).

Unpacking this more carefully (see e.g. [4, Theorem 6.1, p.85]), the random
variables Pn act on the probability space Seq = (I±)ω, the product of countably
many copies of I±, with product measure dω. The action is given by:

Pn = 1U+(uvxy) ◦ πn.

The Strong Law asserts that, for some set Z1 of measure zero in Seq, for all
σ ∈ Seq \ Z1:

lim
n→∞

1

n

n∑
i=1

P+
i (σ) = d(U+(uvxy)).

Similarly, outside sets Z2, Z3, Z4 of measure 0, we have

lim
n→∞

1

n

n∑
i=1

P−
i = d(U−(uvxy))

lim
n→∞

1

n

n∑
i=1

Q+
i = d(I+)

lim
n→∞

1

n

n∑
i=1

Q−
i = d(I−).

Since d = θI(m),

d(I+)− d(I−) = W (d) > 0,

and hence for all σ ∈ Seq \ (Z3 ∪ Z4), for all but finitely many n:

1

n

n∑
i=1

Q+
i (σ) −

1

n

n∑
i=1

Q−
i (σ) > 0.
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Now Z := Z1 ∪Z2 ∪Z3 ∪Z4 has measure 0, and for all σ ∈ Seq \Z, by standard
pointwise properties of limits:

lim
n→∞Sn(σ) = lim

n→∞

1
n (
∑n

i=1 P
+
i (σ) −

∑n
i=1 P

−
i (σ))

1
n (
∑n

i=1 Q
+
i (σ) −

∑n
i=1 Q

−
i (σ))

=
d(U+(uvxy)) − d(U−(uvxy))

d(I+) − d(I−)
= η(Prob±(ρIxy)(θX(m)))(uv)

= M(ρIxy)(m)(uv) by Proposition 1

= m|xy(uv)
= p(uv|xy).

�

5 Discussion

A first point to make is that the scheme we described in the previous section
was formulated for systems of type (2, 2, 2); that is, with two agents, two mea-
surements per agent, and two outcomes per measurement. This was to avoid
notational complications. It is clear that the same scheme would apply to Bell-
type systems with any numbers of agents, measurement settings and outcomes. It
is less clear how to proceed with other kinds of contextuality scenarios, although
the result in Theorem 1 certainly applies to such scenarios.

The interpretation we have given of negative probabilities is operational in
nature. It can be implemented in a physical scheme as summarized in the signed
instruction set diagram in Figure 2. However, one should think of this scheme
as a simulation, rather than a direct description of a fundamental physical
process. The fact that it applies to arbitrary no-signalling systems, including
superquantum devices such as PR boxes, which are generally believed to go
beyond what is physically realizable, compels caution in this respect.

At the same time, the nature of the simulation, which respects relativistic con-
straints and uses only classical probabilistic devices, provides interesting food for
thought. After all, this is a concrete way of thinking about entanglement, and
even superquantum correlations, in terms of familiar-seeming devices: one can
e.g. think of the source as generating its stream of signed particles by drawing
coloured billiard balls from an urn. The subsequent passages of the particles are
entirely classical. The only non-standard element of the process is the cancella-
tion of positive and negative events effected by forming the signed relative fre-
quencies. Can one find some structural features within this mode of description
of non-local correlations which can help to delineate the quantum/superquantum
boundary?

Among the features which it may be interesting to study from this point of
view are the rates of convergence of the stochastic processes described in the
previous section. If cancellation of positive events by negative ones can occur
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with unbounded delays, there may be some form of retrocausality hidden in
the computation of the signed relative frequencies. Do quantum processes admit
bounds on cancellation which ensure that causal anomalies do not arise? It may
also be interesting to compare the entropies of the simulating (unsigned) and
simulated (signed) processes. Computational efficiency may also provide a useful
perspective.

While we certainly do not claim to have solved any mysteries, we hope to
have provided a novel way of thinking about some of the mysterious features of
the quantum — and even the superquantum — world.
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Abstract. We introduce a notion of bisimulation on labelled Markov
Processes over generic measurable spaces in terms of arbitrary binary re-
lations. Our notion of bisimulation is proven to coincide with the coalge-
braic definition of Aczel and Mendler in terms of the Giry functor, which
associates with a measurable space its collection of (sub)probability mea-
sures. This coalgebraic formulation allows one to relate the concepts of
bisimulation and event bisimulation of Danos et al. (i.e., cocongruence)
by means of a formal adjunction between the category of bisimulations
and a (full sub)category of cocongruences, which gives new insights about
the real categorical nature of their results. As a corollary, we obtain suf-
ficient conditions under which state and event bisimilarity coincide.

1 Introduction

The first notion of bisimulation for Markov processes, that are, probabilistic sys-
tems with a generic measurable space of states, has been defined categorically
by Blute, Desharnais, Edalat, and Panangaden in [1] as a span of zig-zag mor-
phisms, i.e., measurable surjective maps preserving the transition structure of
the process. It turned out to be very difficult to prove that the induced notion
of bisimilarity is an equivalence and this was only solved under the technical
assumption that the state space is analytic. Under this hypothesis in [5] it was
proposed a neat logical characterization of bisimilarity, using a much simpler
logic than the one previously used for the discrete case.

In [3], Danos, Desharnais, Laviolette, and Panangaden introduced a notion
alternative to that of bisimulation, the so called event bisimulation (i.e., cocon-
gruence). From a categorical perspective the novelty was that they worked with
cospans rather than spans. Remarkably, they were able to give a logical charac-
terization of event bisimilarity without assuming the state space of the Markov
processes to be analytic. In addition, they proved that, for analytic spaces, event
and state bisimilarity coincide.

It has been always an open question whether the analyticity assumption on
the state space can be dropped. In this paper we make a step forward in this
direction, providing a notion of state bisimulation on Markov processes over ar-
bitrary measurable spaces. This definition is based on a characterization due
to Desharnais et al. [6,7], which mimics the definition probabilistic bisimulation
of Larsen and Skou [11] by adding a few measure-theoretic conditions to deal
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c© Springer International Publishing Switzerland 2014



Bisimulation on Markov Processes over Arbitrary Measurable Spaces 77

with the fact that some subsets may not be measurable. Their characterization
was given assuming that the bisimulation relation is an equivalence, instead,
our definition is expressed in terms of arbitrary binary relations. This mild gen-
eralization to binary relation allows us to prove that our definition coincides
with the coalgebraic notion of bisimulation of Aczel and Mendler in terms of
the Giry functor [8], which associates with a measurable space its collection of
subprobability measures. A similar result was proven by de Vink and Rutten [4]
who studied Markov processes on ultrametric spaces. However, in [4] the char-
acterization was established assuming that bisimulation relations have a Borel
decomposition (which is not a mild assumption). Our proof does not need the
existence of Borel decompositions and can be used to refine the result in [4].

Our characterization of probabilistic bisimulation is weaker than the original
proposal in [1,5] (which requires the relation to be an equivalence) and weaker
than the definition in [15] (which only requires the relation to be reflexive).
However, we show that our definition is a generalization of both, and we prove
that, when we restrict our definition on the case of single Markov processes, all
the results continue to hold, in particular that the class of bisimulations is closed
under union and that bisimilarity it is an equivalence.

Another contribution of this paper is a formal coalgebraic analysis of the re-
lationships between the notions of bisimulation and cocongruence on Markov
processes. This is done by lifting a standard adjunction that occurs between
spans and cospans in categories with pushouts and pullbacks. The lifting to
the categories of bisimulations and cocongruences is very simple when the be-
haviour functor weakly-preserves pullbacks. Although Viglizzo [16] proved that
the Giry functor does not enjoy this property, we managed to show that the
lifting is possible when we restrict to a suitable (full-)subcategory of congru-
ences. This restriction cannot be avoided, since Terraf [13,14] showed that state
and event bisimilarity do not coincide on Markov processes over arbitrary mea-
surable spaces. As a corollary, we establish sufficient conditions under which
bisimulation and cocongruence coincide, and as an aside result, this adjunction
explains at a more abstract categorical level all the results in [3] that relate state
and event bisimulations. To the best of our knowledge, this result is new and,
together with the counterexample given by Terraf, completes the comparison be-
tween these two notions of equivalence between Markov processes over arbitrary
measurable spaces.

2 Preliminaries

Binary Relations. For a binary relation R ⊆ X × Y we use πX : R → X and
πY : R→ Y to denote the canonical projections of R on X and Y , respectively.
Given R ⊆ X×Y and S ⊆ Y ×Z, we denote by R−1 = {(y, x) | (x, y) ∈ R} the
inverse of R, and by R;S = {(x, z) | (x, y) ∈ R and (y, z) ∈ S for some y ∈ Y }
the composition of R and S. We say that R ⊆ X × Y is z-closed if, for all
x, x′ ∈ X and y, y′ ∈ Y , (x, y), (x′, y), (x′, y′) ∈ R implies (x, y′) ∈ R; and we
denote by R∗, the z-closure of R, i.e., the least z-closed relation that containsR.
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Note that any equivalence relation is z-closed, indeed one can informally see the
z-closure property as a generalization of transitive closure on binary relations.

Measure Theory. A field over a set X is a nonempty family of subsets of X
closed under complement and union. A σ-algebra over a set X is a field ΣX such
that is closed under countable union. The pair (X,ΣX) is a measurable space
and the elements of ΣX are called measurable sets. A generator F for ΣX is a
family of subsets of X such that the smallest σ-algebra containing F , denoted
by σ(F), is ΣX .

Let (X,ΣX), (Y,ΣY ) be measurable spaces. A function f : X → Y is called
measurable if f−1(E) = {x | f(x) ∈ E} ∈ ΣX , for all E ∈ ΣY (notably, if ΣY

is generated by F , f is measurable iff f−1(F ) ∈ ΣX , for all F ∈ F). The family
{E ⊆ Y | f−1(E) ∈ ΣX}, called the final σ-algebra w.r.t. f , is the largest σ-
algebra over Y that renders f measurable. Dually, the family {f−1(E) | E ∈ ΣY }
is called initial σ-algebra w.r.t f , and it is the smallest σ-algebra over X that
makes f measurable. Initial and final σ-algebras generalize to families of maps
in the obvious way.

A measure on (X,ΣX) is a σ-additive function μ : ΣX → [0,∞], that is,
μ(
⋃
i∈I Ei) =

∑
i∈I μ(Ei) for all countable collections {Ei}i∈I of pairwise dis-

joint measurable sets. A measure μ : ΣX → [0,∞] is of (sub)-probability if
μ(X) = 1 (resp. ≤ 1), is finite if μ(X) < ∞, and is σ-finite if there exists
a countable cover {Ei}i∈I ⊆ ΣX of X , i.e.,

⋃
i∈I Ei = X , of measurable sets

such that μ(Ei) < ∞, for all i ∈ I. A pre-measure on a field F is a finitely
additive function μ0 : F → [0,∞] with the additional property that whenever
F0, F1, F2, . . . is a countable disjoint collection sets in F such that

⋃
n∈N

Fn ∈ F ,
then μ0(

⋃
n∈N

Fn) =
∑

n∈N
μ0(Fn).

Coalgebras, Bisimulations, and Cocongruences. Let F : C→ C be an endofunc-
tor on a category C. An F -coalgebra is a pair (X,α) consisting of an object X ,
called carrier, and an arrow α : X → FX in C, called coalgebra structure. An ho-
momorphism between two F -coalgebras (X,α) and (Y, β) is an arrow f : X → Y
in C such that α ◦ f = Ff ◦β. F -coalgebras and homomorphisms between them
form a category, denoted by F -coalg.

An F -bisimulation (R, f, g) between two F -coalgebras (X,α) and (Y, β) is a

span X
f←−− R

g−→ Y with jointly monic legs (a monic span) such that there
exists a coalgebra structure γ : R → FR making f and g homomorphisms of
F -coalgebras. Two F -coalgebras are bisimilar if there is a bisimulation between
them. A notion alternative to bisimilarity that has been proven very useful in
reasoning about probabilistic systems [3], is cocongruence. An F -cocongruence

(K, f, g) between F -coalgebras (X,α) and (Y, β) is an cospan X
f−−→ K

g←− Y
with jointly epic legs (an epic cospan) such that there exists a (unique) coalgebra
structure κ : K → FK on K such that f and g are F -homomorphisms.
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3 Labelled Markov Processes and Bisimulation

In this section we recall the notions of labelled Markov kernels and processes,
using a notation similar to [2], then we propose a general definition of (state)
bisimulation between pairs of Markov kernels.

Let (X,Σ) be a measurable space. We denote by Δ(X,Σ) the set of all sub-
probability measures over (X,Σ). For each E ∈ Σ there is a canonical evaluation
function evE : Δ(X,Σ)→ [0, 1], defined by evE(μ) = μ(E), for all μ ∈ Δ(X,Σ),
and called evaluation at E. By means of these evaluation maps, Δ(X,Σ) can be
organized into a measurable space (Δ(X,Σ), ΣΔ(X,Σ)), where ΣΔ(X,Σ) the ini-
tial σ-algebra with respect to {evE | E ∈ Σ}, i.e., the smallest σ-algebra making
evE measurable w.r.t. the Borel σ-algebra on [0, 1], for all E ∈ Σ. Equivalently,
ΣΔ(X,Σ) can be also generated by the sets Lq(E) = {μ ∈ Δ(X,Σ) | μ(E) ≥ q},
for q ∈ [0, 1] ∩Q and E ∈ Σ (see [9]).

Definition 1. Let (X,Σ) be a measurable space and L a set of action labels. An
L-labelled Markov kernel is a tuple M = (X,Σ, {θa}a∈L) where, for all a ∈ L

θa : X → Δ(X,Σ)

is a measurable function, called Markov a-transition function. An L-labelled
Markov kernel M with a distinguished initial state x ∈ X, is said Markov pro-
cess, and it is denoted by (M, x).

The labels in L constitute all possible interactions of the processes with the
environment: for an action a ∈ L, a current state x ∈ X , and a measurable set
E ∈ ΣX , the value θa(x)(E) represents the probability of taking an a-transition
from x to arbitrary elements in E.

Before presenting the notions of bisimulation and bisimilarity between labelled
Markov kernels, we introduce some preliminary notation.

Definition 2 (R-closed pair). Let R ⊆ X×Y be a relation on the sets X and
Y , and E ⊆ X, F ⊆ Y . A pair (E,F ) is R-closed if R∩(E×Y ) = R∩(X×F ).

A pair (E,F ) is R-closed iff π−1
X (E)=π−1

Y (F ), where πX , πY are the canonical
projections on X and Y , respectively. The following lemmas will be useful later
in the paper, and are direct consequences of the definition.

Lemma 3. Let R′ ⊆ R ∈ X×Y . If (E,F ) is R-closed, then (E,F ) is R′-closed.

Lemma 4. Let R ⊆ X × X be an equivalence relation. If (E,F ) is R-closed
then E = F , moreover E is an union of R-equivalence classes.

Definition 5 (Bisimulation and Bisimilarity). Let M = (X,ΣX , {αa}a∈L)
and N = (Y,ΣY , {βa}a∈L) be two L-labelled Markov kernels. A binary relation
R ⊆ X × Y is a (state) bisimulation between M and N if, for all (x, y) ∈ R,
a ∈ L, and any pair E ∈ ΣX and F ∈ ΣY such that (E,F ) is R-closed

αa(x)(E) = βa(y)(F ) .
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Two L-labelled Markov processes (M, x) and (N , y) are (state) bisimilar, written
x ∼(M,N ) y, if the initial states x and y are related by some bisimulation R
between M and N .

Originally, the definition of bisimulation between labelled Markov processes was
given in terms of spans of zig-zag morphisms [1]. Later, Danos et al. [3] gave
a more direct relational definition, called state bisimulation, characterizing the
original zig-zag definition in the case of equivalence relations. Their definition
differs from Definition 5 only on how R-closed subsets are characterized and
in that they require bisimulations to be equivalence relations1. Later, in [15],
van Breugel et al. proposed a weaker definition, where bisimulation relations
are only required to be reflexive. Definition 5 subsumes the definitions of state
bisimulation given in [3] and [15] (this is a direct consequence of Lemma 4).

Proposition 6. Let F be a family of bisimulation relations between the L-
labelled Markov kernels M = (X,ΣX , {αa}a∈L) and N = (Y,ΣY , {βa}a∈L).
Then

⋃
F is a bisimulation.

Proof. Let (x, y) ∈
⋃
F , a ∈ L, and E ∈ ΣX and F ∈ ΣY such that (E,F ) is⋃

F -closed. By (x, y) ∈
⋃
F , there exists a bisimulation R ⊆ X × Y such that

(x, y) ∈ R. Obviously R ⊆
⋃
F , thus, by Lemma 3, (E,F ) is R-closed. Since

(x, y) ∈ R and R is a bisimulation, we have αa(x)(E) = βa(y)(F ). ��

Corollary 7. ∼(M,N ) is the largest bisimulation between M and N .

Proof. By definition∼(M,N ) =
⋃
{R | R bisimulation betweenM and N}, thus,

by Lemma 6 it is a bisimulation and in particular it is the largest one. ��

The following results proves that, if bisimilarity is restricted to single labelled
Markov kernels, then it is an equivalence.

Theorem 8 (Equivalence). LetM = (X,Σ, {θa}a∈L) be an L-labelled Markov
kernel. Then, the bisimilarity relation ∼M ⊆ X ×X onM is an equivalence.

Proof. Symmetry: ifR is a bisimulation, so isR−1. Reflexivity: we prove that the
identity relation IdX is a bisimulation, i.e., for all x ∈ X , a ∈ A, and E,F ∈ Σ
such that (E,F ) is ΔX -closed, θa(x)(E) = θa(x)(F ). This holds trivially by
Lemma 4, since IdX is an equivalence. Transitivity: it suffices to show that,
given R1 and R2 bisimulations onM, there exists a bisimulation R onM that
contains R1;R2. Let R be the (unique) smallest equivalence relation containing
R1 ∪R2. R can be defined as R = IdX ∪

⋃
n∈N

Sn, where

S0 � R1 ∪R2 ∪R−1
1 ∪R−1

2 Sn+1 � Sn;Sn .
1 Actually, in [3], the definition of state bisimulation is given without mentioning that
the relation must be an equivalence, but without that requirement many subsequent
results do not hold (e.g. Lemmas 4.1, 4.6, 4.8, Proposition 4.7, and Corollary 4.9).
However, looking at the proofs it seems that they were imposing this condition.



Bisimulation on Markov Processes over Arbitrary Measurable Spaces 81

It is easy to see that R1;R2 ⊆ R. We are left to show that R is a bisimulation.
By Lemma 4, it suffices to prove that for all a ∈ L, and measurable set E ∈ Σ
such that (E,E) is R-closed, the following implication holds

(x, y) ∈ R =⇒ θa(x)(E) = θa(y)(E) . (1)

If (x, y) ∈ R, then (x, y) ∈ IdX or (x, y) ∈ Sn for some n ≥ 0. If (x, y) ∈ IdX
then x = y, hence (1) trivially holds. Now we show, by induction on n ≥ 0, that

(x, y) ∈ Sn =⇒ θa(x)(E) = θa(y)(E) . (2)

Base case (n = 0): let j ∈ {1, 2}. If (x, y) ∈ Rj , (2) holds since, by hypothesis
that Rj is a bisimulation and by Lemma 3, (E,E) is Rj-closed. If (x, y) ∈ R−1

j

we have (y, x) ∈ Rj , hence (2) holds again.
Inductive case (n+ 1): if (x, y) ∈ Sn+1, then there exists some z ∈ X such that
(x, z) ∈ Sn and (z, y) ∈ Sn. Then, applying the inductive hypothesis twice, we
have θa(x)(E) = θa(z)(E) and θa(z)(E) = θa(y)(E), from which (2) follows. ��

Remark 9. Theorem 8 has been already stated by van Breugel et al. [15] con-
sidering a more restrictive definition of bisimulation than the one given in Defi-
nition 1. Although the result is not new, we put the proof here to show that it
can be carried out in a much simpler way.

Moreover, notice that, in the proof of Theorem 8 transitivity is verified using
a strategy that avoids to prove that bisimulation relations are closed under
composition. Indeed, this would have required that (semi-)pullbacks of relations
in Meas are weakly preserved by the Giry functor. Recently, in [13,14] Terraf
showed that this is not the case. The proof is based on the existence of a non-
Lebesgue-measurable set V in the open unit interval (0, 1), which is used to
define two measures on the σ-algebra extended with V such that they differ in
this set. In the light of this, the simplicity of the proof of Theorem 8 is even
more remarkable. �

By Corollary 7 we have the following direct characterization for bisimilarity.

Proposition 10. Let M = (X,Σ, {θa}a∈L) be an L-labelled Markov kernel,
then, for x, y ∈ X, x ∼M y iff for all a ∈ L and E ∈ Σ such that (E,E) is
∼M-closed, θa(x)(E) = θa(y)(E).

Interestingly, Theorem 8 can be alternatively proven as a corollary of this result;
indeed the above characterization implies that ∼M is an equivalence relation.

Another important property, which will be used later in the paper, is that the
class of bisimulations is closed by z-closure.

Lemma 11 ([4]). If R is a state bisimulation between (X,ΣX , {αa}a∈L) and
(Y,ΣY , {βa}a∈L), then so is R∗, the z-closure of R.
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4 Characterization of the Coalgebraic Bisimulation

In this section, we prove that the notion of state bisimulation (Definition 5)
coincides with the abstract coalgebraic definition of Aczel and Mendler.

In order to model Markov processes as coalgebras the most natural choice for
a category is Meas, the category of measurable spaces and measurable maps.
This category is complete and cocomplete: limits and colimits are obtained as in
Set and endowed, respectively, with initial and final σ-algebra w.r.t. their cone
and cocone maps. Hereafter, for the sake of readability, we adopt a notation that
makes no distinction between measurable spaces and objects in Meas: by the
boldface symbol X we denote the measurable space (X,ΣX) (the subscript is
used accordingly).

Let L be a set of action labels. L-labelled Markov kernels are standardly mod-
eled as ΔL-coalgebras, where (·)L : Meas → Meas is the exponential functor
and Δ : Meas → Meas is the Giry functor acting on objects X and arrows
f : X→ Y as follows, for μ ∈ Δ(X,ΣX)

ΔX = (Δ(X,ΣX), ΣΔ(X,ΣX )) Δ(f)(μ) = μ ◦ f−1 .

It is folklore that L-labelled Markov kernels and ΔL-coalgebras coincide. For
X = (X,ΣX) a measurable space, the correspondence is given by

(X,ΣX , {θa}a∈L) �→ (X, α : X→ ΔLX) , where α(x)(a) = θa(x) , (3)

(X, α : X→ ΔLX) �→ (X,ΣX , {eva ◦ α}a∈L) . (4)

Where, in (3) α is measurable since evE ◦eva ◦α is measurable, for all a ∈ L and
E ∈ Σ, and in (4), eva ◦ α is measurable since is the composite of measurable
functions. Hereafter, we will make no distinction between ΔL-coalgebras and
L-labelled Markov kernels, and the correspondence above will be used without
reference.

Next we relate the notion of ΔL-bisimulation to the notion of state bisimu-
lation. Recall that in categories with binary products monic spans (R, f, g) are
in one-to-one correspondence with monic arrows R → X × Y . Thus, without
loss of generality, we restrict our attention only to relations R ⊆ X × Y with
measurable canonical projections πX : R→ X and πY : R→ Y.

Proposition 12. Let (X, α) and (Y, β) be ΔL-coalgebras and (R, πX , πY ) be a
ΔL-bisimulation between them. Then, R ⊆ X×Y is a state bisimulation between
(X,ΣX , {eva ◦ α}a∈L) and (Y,ΣY , {eva ◦ β}a∈L).

Proof. We have to show that for all (x, y) ∈ R, a ∈ L and E ∈ ΣX , F ∈ ΣY

such that (E,F ) is R-closed, α(x)(a)(E) = β(y)(a)(F ). Since (R, πX , πY ) is a
ΔL-bisimulation, there exists a coalgebraic structure γ : R → ΔLR on R such
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that πX and πY are ΔL-homomorphisms.

α(x)(a)(E) = (α ◦ πX)(x, y)(a)(E) (by def. πX)

= (ΔLπX ◦ γ)(x, y)(a)(E) (by ΔL-homomorphism)

= ΔπX(γ(x, y)(a))(E) (by def. IdL)

= γ(x, y)(a) ◦ π−1
X (E) (by def. Δ)

= γ(x, y)(a) ◦ π−1
Y (F ) (by (E,F ) R-closed)

= β(y)(a)(F ) (by reversing the previous steps)

��

The converse of Proposition 12 is more intricate, and we need some prelimi-
nary work involving techniques from measure theory in order to formally define
a suitable mediating measurable ΔL-coalgebra structure.

Proposition 13. Let (X,ΣX) and (Y,ΣY ) be measurable spaces, r1 : R → X,
r2 : R → Y be surjective maps, and ΣR be the initial σ-algebra on R w.r.t. r1
and r2, i.e., ΣR = σ({r−1

1 (E) | E ∈ ΣX} ∪ {r−1
2 (F ) | F ∈ ΣY }).

Then, for any pair of measures μ on (X,ΣX) and ν on (Y,ΣY ), such that,
for all E ∈ ΣX and F ∈ ΣY ,

if r−1
1 (E) = r−1

2 (F ) , then μ(E) = ν(F ) ,

there exists a measure μ ∧ ν on (R,ΣR) such that, for all E ∈ ΣX and F ∈ ΣY

(μ ∧ ν)(r−1
1 (E)) = μ(E) and (μ ∧ ν)(r−1

2 (F )) = μ(F ) .

Moreover, if μ and ν are σ-finite, μ ∧ ν is unique.

The existence and uniqueness of μ ∧ ν is guaranteed by the Hahn-Kolmogorov
extension theorem. Note that, the conditions imposed on μ and ν are necessary
for μ ∧ ν to be well-defined (see the appendix for a detailed proof).

Thank to Proposition 13 we can prove the following result, which concludes
the correspondence between state bisimulation and ΔL-bisimulation.

Proposition 14. Let R ⊆ X × Y be a state bisimulation between the L-labelled
Markov kernels (X,ΣX , {αa}a∈L) and (Y,ΣY , {βa}a∈L). Then (R, πX , πY ) is a
ΔL-bisimulation between (X, α) and (Y, β), where ΣR is initial w.r.t. πX and
πY , and for all a ∈ L, x ∈ X, and y ∈ Y , α(x)(a) = αa(x) and β(y)(a) = βa(y).

Proof. We have to provide a measurable coalgebra structure γ : R→ ΔLR mak-
ing πX : R→ X and πY : R→ Y ΔL-homomorphisms.

First notice that, without loss of generality we can assume πX and πY to be
surjective. Indeed, if it is not so, we can factorize πX and πY as πX = mX ◦ eX ,
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πY = mY ◦ eY such that eX , eY are surjective (epic) and mX , mY are injective
(monic), to obtain the following commuting diagrams

X X′ R Y′ Y

ΔLX ΔLX′ ΔLR ΔLY′ ΔLY

eXmX

ΔeXΔmX

α′α

eY mY

ΔeY ΔmY

ββ′

where X′ = (X ′, ΣX′), X ′ is the image πX(R), ΣX′ is the initial σ-algebra w.r.t.
mX (i.e., {m−1

X (E) | E ∈ ΣX}), and α′(x′)(a)(m−1
X (E)) = α(mX(i))(a)(E),

for all x′ ∈ X ′ and E ∈ ΣX ; (similarly for Y and β′). Therefore, to find the
coalgebra structure γ for making eX and eY ΔL-homomorphisms, it solves the
problem for πX and πY as well.

Recall that (E,F ) is R-closed iff π−1
X (E) = π−1

Y (F ). By hypothesis, R is a
state bisimulation, so that, for all (x, y) ∈ R, E ∈ ΣX , F ∈ ΣY , and a ∈ L,

if π−1
X (E) = π−1

Y (F ) , then α(a)(x)(E) = β(a)(y)(F ) .

For all (x, y) ∈ R and a ∈ L, by Proposition 13, we define γ((x, y))(a) as the
unique (sub)probability measure on (R,ΣR), s.t., for all E ∈ ΣX and F ∈ ΣY ,

γ((x, y))(a)(π−1
X (E))=α(x)(a)(E) , and γ((x, y))(a)(π−1

Y (F )) = β(y)(a)(F ) .

By definition of γ, both πX and πY are ΔL-homomorphisms, indeed,

(ΔLπX ◦ γ)((x, y))(a)(E) = γ((x, y))(a)(π−1
X (E)) (by def. ΔL)

= α(x)(a)(E) (by def. γ)

= (α ◦ πX)((x, y))(a)(E) . (by def. πX)

for all (x, y) ∈ R, a ∈ A, and E ∈ ΣX . The proof for πY is similar.
To prove that γ is measurable, by [9, Lemma 4.5] it suffices to show that for

any finite union of the form S =
⋃k
i=0(π

−1
X (Ei) ∩ π−1

Y (Fi)), where Ei ∈ ΣX and
Fi ∈ ΣY , for 0 ≤ i ≤ k, (eva ◦ γ)−1(Lq(S)) ∈ ΣR. We may assume, without loss
of generality, that S is given as a disjoint union (otherwise we may represent it
taking a disjoint refinement), and by finite additivity, it suffices to consider only
the case S = π−1

X (E′) ∩ π−1
Y (F ′), for some E′ ∈ ΣX and F ′ ∈ ΣY . According to

the definition of γ (see Proposition 13), we have to consider three cases:

– if ∃E ∈ ΣX such that S = π−1
X (E), then

(eva ◦ γ)−1(Lq(S)) = {(x, y) ∈ R | γ((x, y))(a) ∈ Lq(S)} (by inverse image)

= {(x, y) ∈ R | γ((x, y))(a)(S) ≥ q} (by def. Lq(·))
= {(x, y) ∈ R | α(x)(a)(E) ≥ q} (by def. γ)

= (πX ◦ eva ◦ α)−1(Lq(E)) (by inverse image)

which is a measurable set in ΣR, since πX , eva, α are measurable;
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– if ∃F ∈ ΣY , S = π−1
Y (F ), and ∀E ∈ ΣX , S �= π−1

X (E) one can proceed
similarly, replacing in the above derivation E, πX , and α(x) by F , πY and β(y),
respectively.
– if ∀E ∈ ΣX , F ∈ ΣY , S �= π−1

X (E) and S �= π−1
Y (F ), then

(eva ◦ γ)−1(Lq(S)) = {(x, y) ∈ R | γ((x, y))(a) ∈ Lq(S)} (by inverse image)

= {(x, y) ∈ R | γ((x, y))(a)(S) ≥ q} (by def. Lq(·))
= {(x, y) ∈ R | 0 ≥ q} (by def. γ)

= R (by q ∈ [0, 1] ∩Q)
��

Remark 15 (Ultrametric spaces). A similar result was proven by de Vink and
Rutten [4] in the setting of ultrametric spaces and non-expansive maps. A char-
acterization for the coalgebraic definition of bisimulation in the continuous case
was established under the assumption that the bisimulation relation has a Borel
decomposition. Proposition 13 does not need such an extra assumption and it
holds for Borel measures as well, so that the proof-strategy of Proposition 14
can be used to drop the assumption in [4, Theorem 5.8]. �

Theorem 16. State bisimulation and ΔL-bisimulation coincide.

Proof. Direct consequence of Propositions 12, and 14. ��

5 Relating Bisimulations and Cocongruences

In this section, we compare the notions ofΔL-bisimulation andΔL-cocongruence.
We do this establishing an adjunction between the category of ΔL-bisimulations
and a (suitable) subcategory ofΔL-cocongruences. As a result of this adjunction,
we obtain also sufficient conditions under which the notions of ΔL-bisimulation
and ΔL-cocongruence coincide.

The correspondence between ΔL-bisimulation and ΔL-cocongruence is based
on a standard adjunction between span and cospans in categories with pushouts
and pullbacks, which we briefly recall. The categoryMSpC(X,Y ) has as objects
monic spans (R, f, g) between X , Y in C, and arrows f : (R, r1, r2)→ (S, s1, s2)
which are morphisms f : R → S in C such that si ◦ f = ri, for all i ∈ {1, 2}.
The category ECoSpC(X,Y ), of epic cospans between X , Y in C, is defined
analogously. In the following, we will omit the subscript C when the category of
reference is understood.

If the category C has pullbacks and pushouts, we can define two functors:
Pb(X,Y ) : ECoSp(X,Y ) → MSp(X,Y ) mapping each epic cospan to its pull-
back, and Po(X,Y ) : MSp(X,Y ) → ECoSp(X,Y ) mapping each monic span
to its pushout. As for morphisms, let f : (R, r1, r2)→ (S, s1, s2) be a morphism
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in MSp(X,Y ), then Po(X,Y )(f) is defined as the unique arrow, given by the
universal property of pushout, making the following diagram commute

R

S

X Y

X Y

R′

S′

r1 r2

f

r′1 r′2 id

id s1 s2

Po(f)

s′1 s′2

where Po(X,Y )(R, r1, r2) = (R′, r′1, r
′
2) and Po(X,Y )(S, s1, s2) = (S′, s′1, s

′
2). The

action on arrows for Pb(X,Y ) is defined similarly, using the universal property
of pullbacks. When the domain (X,Y ) of the spans and cospans is clear, the
subscript in Po(X,Y ) and Pb(X,Y ) will be omitted. The following is standard:

Lemma 17. Let C be a category with pushouts and pullbacks, then

(i) Po % Pb;
(ii) PoPbPo ∼= Po and PbPoPb ∼= Pb.

The unit η : Id ⇒ PbPo and counit ε : PoPb ⇒ Id of the adjunction Po % Pb,
are given component-wise as follows, for (R, r1, r2) inMSp(X,Y ) and (K, k1, k2)
in ECoSp(X,Y ).

R

PbPo(R)

X Y

X Y

Po(R)

Po(R)

r1 r2

η(R,r1,r2)

r′1 r′2 id

id r′′1 r′′2

idPo(R)

r′1 r′2

Pb(K)

Pb(K)

X Y

X Y

K

PoPb(K)

k′
1 k′

2

idPb(K)

k1 k2 id

id k′
1 k′

2

ε(K,k1,k2)

k′′
1 k′′

2

The adjunction Po % Pb induces a monad (PbPo, η, P bεPo) in MSp(X,Y )
and a comonad (PoPb, ε, PoηPb) in ECoSp(X,Y ), which, by Lemma 17, are
idempotent.

Since Meas has both pushouts and pullbacks, the construction above can
be instantiated in this category. Note that, Meas has binary products and co-
products, hence we can identify the categories MSp(X,Y) and ECoSp(X,Y),
respectively, as the categories of relations R ⊆ X×Y (with measurable canonical
projections) and quotients (X + Y )/E (with measurable canonical injections),
where E is an equivalence relation on (X + Y ).

Moreover, in Meas it holds that PoPb ∼= Id and the composite functor
PbPo has the following explicit description. Let R ⊆ X × Y be an object in
MSp(X,Y), then PbPo(R) = R∗ where R∗ ⊆ X×Y is the z-closure of R, with
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σ-algebra ΣR∗ given as the initial σ-algebra w.r.t. the canonical projections; ar-
rows f : R → S between objects R,S ⊆ X × Y in MSp(X,Y) are mapped to
f∗ : R∗ → S∗, the z-closure extension of f , defined in the obvious way.

The monad PbPo in MSp(X,Y) has unit η : Id⇒ PbPo given by the natural
inclusion and multiplication PbεPo : PbPoPbPo⇒ PbPo defined as the “iden-
tity” natural transformation. The comonad PoPb in ECoSp(X,Y) has counit
ε : PoPb ⇒ Id and comultiplication PoηPb : PoPb ⇒ PoPbPoPb given as the
“identity” natural transformations.

5.1 Adjunction between Bisimulations and Cocongruences

The adjunction Po % Pb over monic span and epic cospans in Meas can be par-
tially lifted to an adjunction Po % Pb between the categories ofΔL-bisimulations
and ΔL-cocongruences. The term “partially” is used since the adjunction can
be established only restricting the category of ΔL-cocongruences to the image
given by the lifting Po. Moreover, we show that the subcategories given by the
images of PbPo and PoPb are equivalent. This provides sufficient conditions
under which the notions of bisimulation and cocongruence coincide.

We denote by Bisim((X, α), (Y, β)) the category with ΔL-bisimulations
((R, γR), f, g) between ΔL-coalgebras (X, α) and (Y, β) as objects and arrows
f : ((R, γR), r1, r2)→ ((S, γS), s1, s2) which are morphisms f : R → S in Meas
such that si ◦ f = ri, for all i ∈ {1, 2}, and γS ◦ f = ΔLf ◦ γR, i.e, f is a mor-
phism both inΔL-coalg andMSp(X,Y). The categoryCocong((X, α), (Y, β))
of ΔL-cocongruences between ΔL-coalgebras (X, α) and (Y, β) is defined simi-
larly.

The functor Po : MSp(X,Y) → Cospan(X,Y) is lifted to the categories of
ΔL-bisimulations and ΔL-cocongruences by the functor

Po : Bisim((X, α), (Y, β)) → Cocong((X, α), (Y, β)) ,

acting on ΔL-bisimulations as Po(((R, γR), r1, r2)) = ((Po(R), κ), k1, k2), where
(Po(R), k1, k2) is the pushout of (R, r1, r2) and κ : Po(R) → ΔLPo(R) is the
unique measurable map given by the universal property of pushouts, making the
diagram below commute; and on arrows f : ((R, γR), r1, r2)→ ((S, γS), s1, s2) as
Po(f), defined as the unique arrow, given by the universal property of pushouts,
making the diagram on the right commute:

R

X Y

Po(R)

ΔLX ΔLY

ΔLPo(R)

r1 r2

k1 k2

α β

κ

ΔLk1 ΔLk2

R

S

X Y

X Y

Po(R)

Po(S)

r1 r2

f

k1 k2 id

id s1 s2

Po(f)

h1 h2
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The arrow Po(f) is obviously a morphism between the cospans (Po(R), k1, k2)
and (Po(S), h1, h2), and can be proved to be also aΔL-homomorphism exploiting
the universal property of pushouts. Functoriality follows similarly.

Remark 18. The above construction is standard and applies in any category with
pushouts independently of the choice of the behaviour functor.

If the behavior functor preserves weak pullbacks, cocongruences give rise to
bisimulations via pullbacks (see [10, Prop. 1.2.2]). However, although ΔL does
not preserves weak pullbacks [16], if we restrict our attention only to the full
subcategory of ΔL-cocongruences that are Po-images of some ΔL-bisimulation,
namely, Po

(
Bisim((X, α), (Y, β))

)
, the functor Pb can be lifted as follows.

For ((R, γR), r1, r2) and f objects and arrows in Bisim((X, α)(Y, β)), respec-
tively, the lifting Pb of Pb is defined by

Pb : Po
(
Bisim(((X, α)(Y, β)))

)
→ Bisim(((X, α)(Y, β)))

Pb(Po((R, γR), r1, r2)) = ((R∗, γ∗R), r
∗
1 , r

∗
2) , P b(Po(f)) = f∗ ,

where PbPo(R, r1, r2) = (R∗, r∗1 , r
∗
2), PbPo(f) = f∗, and γ∗R : R∗ → ΔLR∗ is

the unique (sub)probability measure on R∗ (given as in Proposition 13) such
that, for all r ∈ R∗, a ∈ L, E ∈ ΣX and F ∈ ΣY

γ∗R(r)(a)((r
∗
1 )

−1(E)) = α(r∗1(r))(a)(E) ,
and

γ∗R(r)(a)((r
∗
2 )

−1(F )) = β(r∗2(r))(a)(F ) ,

Note that the well definition of the measure γ∗R(r)(a) is guaranteed by Lemma 11
and Proposition 14.

Remark 19. In the definition of γ∗R above, we applied Proposition 13 without
ensuring that r∗1 and r∗2 are surjective maps. This is not an issue and it can be
solved easily as in the proof of Proposition 14. �

The next lemma ensures that the functor Pb is well defined.

Lemma 20. Let ((R, γR), r1, r2) and f be, respectively, an object and an arrow
in the category Bisim((X, α)(Y, β)). Then, the following hold:

(i) Pb(Po((R, γR), r1, r2)) is a ΔL-bisimulation between (X, α) and (Y, β);
(ii) Pb(Po(f)) is a monic span-morphism and a ΔL-homomorphism.

The functors Po and Pb are actual liftings of Po and Pb, respectively, i.e.,
they commute w.r.t. to the forgetful functors mapping ΔL-bisimulations to their
monic spans and ΔL-cocongruences to their epic cospans. This is reflected also
in the following result:
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Theorem 21. Let (X, α) and (Y, β) be ΔL-coalgebras, then

(i) Po % Pb;
(ii) PbPo

(
Bisim((X, α), (Y, β))

) ∼= PoPbPo
(
Bisim((X, α), (Y, β))

)
.

Proof. (i) By the universal properties of pushouts, for any pair of bisimulations
((R, γR), r1, r2) and ((S, γS), s1, s2) in Bisim((X, α), (Y, β)) it holds that,

Hom(Po((R, γR), r1, r2), Po((S, γS), s1, s2) ∼=
Hom(((R, γR), r1, r2), P bPo((S, γS), s1, s2) ,

i.e., Po is left adjoint to Pb. (ii) The equivalence is given by the functors Po and
Pb and follows by Proposition 17(ii). ��

Theorem 21 provides sufficient conditions under which the notions of bisimu-
lation and cocongruence coincide: (ii) states that the ΔL-bisimulation formed
applying the (closure) operator PbPo to a ΔL-bisimulation ((R, γR), r1, r2) is
equivalent to the ΔL-cocongruences obtained applying the operator PoPbPo.

Related Work. In [3], Danos et al. proposed a notion alternative to bisim-
ulations, the so called event bisimulation, being aware that it coincides with
cocongruence. Here we recall its definition and try to make a comparison be-
tween the results in [3] in connection to Theorem 21.

Definition 22 (Event bisimulation). Let M = (X,ΣX , {θa}a∈L) be an L-
labelled Markov kernel. A sub-σ-algebra Λ ⊆ ΣX is an event bisimulation on M
if, for all a ∈ L, q ∈ Q ∩ [0, 1], and E ∈ Λ, θ−1

a (Lq(E)) ∈ Λ.

Any σ-algebra Σ on X induces a notion of separability in the form of an
relation &(Σ) ⊆ X ×X defined by &(Σ) = {(x, y) | ∀E ∈ Σ. [x ∈ E iff y ∈ E]}.
Moreover, considering only equivalence relations R ⊆ X ×X , they denoted by
Σ(R) = {E ∈ Σ | (E,E) is R-closed} the set of measurable R-closed sets,
which is readily seen to be a σ-algebra on X . The “operator” &(·) maps σ-
algebras to equivalence relations and, conversely,Σ(·) maps equivalence relations
to σ-algebras. Moreover, as the next lemma states, under certain circumstances,
they can also be thought of as maps between event bisimulations and state
bisimulations.

Lemma 23 ([3, Lemma 4.1]). Let M = (X,ΣX , {θa}a∈L) be an L-labelled
Markov kernel. Then, R is a state bisimulation iff Σ(R) is an event bisimulation.

Proof. Assume R is a state bisimulation on M. It is easy to show that Σ(R) is
a sub-σ-algebra of Σ. It remains to prove that for all a ∈ L and q ∈ Q ∩ [0, 1],
and E ∈ Σ(R), θ−1

a (Lq(E)) ∈ Σ(R). By denoting the canonical projections of
R, by π1 and π2, we have

π−1
1 (θ−1

a (Lq(E))) = {(x, y) ∈ R | θa(x)(E) ≥ q} (by pre-image)

= {(x, y) ∈ R | θa(y)(E) ≥ q} (by R state bisim.)

= π−1
2 (θ−1

a (Lq(E))) . (by pre-image)
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This proves that (θ−1
a (Lq(E)), θ

−1
a (Lq(E))) is R-closed, so that Σ(R) is an event

bisimulation. Conversely, assume that Σ(R) is an event bisimulation on M.
Then, for every (x, y) ∈ R, a ∈ L, and E ∈ Σ(R), we have that

for all q ∈ Q ∩ [0, 1] , [θa(x)(E) ≥ q iff θa(y)(E) ≥ q] .

Since Q ∩ [0, 1] is dense in [0, 1], the above implies θa(x)(E) = θa(y)(E). So R
is a state bisimulation. ��

Note that, given that Λ is an event bisimulation, it is not always the case
that its induced separability relation &(Λ) is a state bisimulation. This, some-
how, seems in accordance with our restriction to a well-behaved subcategory of
cocongruences in the definition of the functor Pb. Indeed, when one restricts
the attention only to state bisimulations R that are assumed to be equivalence
relations, the results in [3] are related to our adjunction as follows:

Po(R) = X/&(Σ(R)) , P bPo(R) = R∗ = R .

In particular, many of the lemmas and propositions in [3, §4] are consequences
of Theorem 21.

6 Conclusions and Future Work

We have proposed a genuinely new characterization of bisimulation in plain
mathematical terms, which is proven to be in one-to-one correspondence with
the coalgebraic definition of Aczel and Mendler.

Then, the notions of bisimulation and cocongruence (equivalently, event bisim-
ulation) are formally compared establishing an adjunction between the category
of coalgebraic bisimulations and a suitable subcategory of cocongruences. By
means of this adjunction we provided sufficient conditions under which the no-
tions of bisimulation and cocongruence coincide.

A comparison between bisimulations and cocongruences by means of an ad-
junction between their categories is interesting not just for Markov processes
but, more in general, for any F -coalgebra. Usually, the final bisimulation (i.e.,
bisimilarity) between two coalgebras is said to be “well behaved” if it coincides
with the pullback of the final cocongruence between the same pair of coalge-
bras. When a final coalgebra exists, the final cocongruence is given by the pair
of final homomorphisms and its pullback is called behavioral equivalence (or fi-
nal semantics). A sufficient condition to ensure that bisimilarity coincides with
behavioral equivalence is to require that the behaviour functor (weakly) pre-
serves pullbacks or semi-pullbacks (for instance see [12, Theorem 9.3]). When
the behavior functor does not (weakly) preserves pullbacks or semi-pullbacks,
one may use cocongruences instead of bisimulations. Another way (the one we
have explored in Section 5) is to use adjunctions, which allows one to focus on
the well behaved bisimulations by considering some suitable full-subcategories.
In this light, Theorem 21 generalizes the results in [3], which are consequences
of the existence of the adjunction Po % Pb.
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More generally, it would be interesting to study to what extent the weak-
pullback preservation assumption on the functor could be removed. For
example, in [17] Worrell proved that the category of F -coalgebras over Set
is complete, provided that the functor F weakly-preserves pullbacks and is
bounded. It would be nice to extend this result to general categories, replacing
the former assumption with the existence of an adjunction between
F -bisimulations and F -cocongruences.
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A Technical Proofs

In this appendix we provide the proofs of the technical results used in the paper.

Proof (of Lemma 3). We have to prove that, given R∩ (E × Y ) = R∩ (X × F )
and R′ ⊆ R, we have R′ ∩ (E × Y ) = R′ ∩ (X × F ).
(⊆) Let (x, y) ∈ R′ and x ∈ E. By R′ ⊆ R, (x, y) ∈ R. By (E,F ) R-closed, we

have y ∈ F .
(⊇) Let (x, y) ∈ R′ and y ∈ F . By R′ ⊆ R, (x, y) ∈ R. By (E,F ) R-closed, we

have x ∈ E. ��

Proof (of Lemma 4). We prove only the inclusion E ⊆ F , the reverse is similar.
Assume x ∈ E. By reflexivity of R, (x, x) ∈ R. Since (E,F ) is R-closed, we have
x ∈ F . To prove that E is an union of R-equivalence classes, it suffices to show
that if x ∈ E and (x, y) ∈ R, then y ∈ E. This easily follows since E = F . ��

Proof (of Proposition 10). (⇒) Immediate from Corollary 7. (⇐) Let x, y ∈ X
be such that

∀a ∈ L, ∀E ∈ Σ such that (E,E) ∼-closed , θa(x)(E) = θa(y)(E) . (5)

We prove x ∼ y showing a bisimulation R such that (x, y) ∈ R. Let R be the
smallest equivalence containing {(x, y)} and ∼, henceR = IdX∪

⋃
n∈N

Sn, where

S0 � {(x, y), (y, x)} ∪ ∼ Sn+1 � Sn;Sn .

By Lemma 4, it suffices to prove that, for all a ∈ L and E′ ∈ Σ such that (E′, E′)
is R-closed, the following holds:

(x′, y′) ∈ R =⇒ θa(x
′)(E′) = θa(y

′)(E′) . (6)

If (x′, y′) ∈ R, then (x′, y′) ∈ IdX or (x′, y′) ∈ Sn for some n ≥ 0. If (x′, y′) ∈ IdX
(6) holds trivially. Now we show, by induction on n ≥ 0, that

(x′, y′) ∈ Sn =⇒ θa(x
′)(E′) = θa(y

′)(E′) . (7)

Base case (n = 0): let (x′, y′) ∈ ∼. By ∼ ⊆ R and Lemma 3, (E′, E′) is ∼-closed.
Thus, by Corollary 7, (7) holds. If (x′, y′) ∈ {(x, y), (y, x)}, then property (5)
holds. Again, by Lemma 3, (E′, E′) is ∼-closed, thus (7) holds.
Inductive case (n+1): if (x′, y′) ∈ Sn+1, then there exists some z ∈ X such that
(x′, z) ∈ Sn and (z, y′) ∈ Sn. Then, applying the inductive hypothesis twice, we
have θa(x

′)(E) = θa(z)(E) = θa(y
′)(E). ��

Proof (of Lemma 11). Note that R∗ =
⋃
n∈N

Rn, for Rn and n ∈ N defined as

R0 = R , Rn+1 = R;R−1
n ;R .

Therefore, that R∗ is a bisimulation between the two Markov kernels, directly
follows if we can prove that, whenever (x, y) ∈ Rn, then αa(E) = βa(F ), for all
a ∈ L, and any pair (E,F ) of Rn-closed measurable sets E ∈ ΣX and F ∈ ΣY .
We proceed by induction on n ≥ 0.
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Base case (n = 0): Clearly, R0 = R and R is a state bisimulation.
Inductive step (n > 0): Suppose (x, y) ∈ Rn+1, then there exist x′ ∈ X and
y′ ∈ Y such that (x, y′) ∈ R, (x′, y′) ∈ Rn, (x

′, y) ∈ R. By Lemma 4, any
pair (E,F ) which is Rn+1-closed is also Rn-closed and R-closed. So that, by
hypothesis on R and the inductive hypothesis on Rn, for every a ∈ L, E ∈ ΣY

and F ∈ ΣY , we have

αa(x)(E) = βa(y
′)(F ) , αa(x

′)(E) = βa(y
′)(F ) , αa(x

′)(E) = βa(y)(F ) .

Therefore, αa(x)(E) = βa(y)(F ). ��
Proof (of Proposition 13). We define μ∧ ν has the Hahn-Kolmogorov extension
of a pre-measure defined on a suitable field F such that σ(F) = ΣR. Let F
be the collection of all finite unions

⋃k
i=0Gi, where k ∈ N, and for all i = 0..k,

Gi = r−1
1 (Ei)∩r−1

2 (Fi), for some Ei ∈ ΣX and Fi ∈ ΣY . Clearly, σ(F) = ΣR. To
prove that F is a field we need to show that it is closed under finite intersection
and complement (it is already closed under finite union). This is immediate by
De Morgan laws and the following equalities:(
r−1
1 (Ei) ∩ r−1

2 (Fi)
)
∩
(
r−1
1 (Ej) ∩ r−1

2 (Fj)
)
= r−1

1 (Ei ∩ Ej) ∩ r−1
2 (Fi ∩ Fj) ,

R \
(
r−1
1 (Ei) ∩ r−1

2 (Fi)
)
= r−1

1 (X \ Ei) ∪ r−1
2 (Y \ Fi) .

Now we define μ ∧ ν : F → [0,∞]. Note that any element in S ∈ F can always

be decomposed into a finite union S =
⋃k
i=0Gi of pair-wise disjoint sets of the

form Gi = r−1
1 (Ei) ∩ r−1

2 (Fi), where Ei ∈ ΣX and Fi ∈ ΣY (hereafter, called
G-sets). Then for any G-set we define

(μ ∧ ν)(Gi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ(E) if ∃E ∈ ΣX . Gi = r−1

1 (E) and ∀F ∈ ΣY . Gi �= r−1
2 (F )

ν(E) if ∀E ∈ ΣX . Gi �= r−1
1 (E) and ∃F ∈ ΣY . Gi = r−1

2 (F )

μ(E) if ∃E ∈ ΣX , F ∈ ΣY . Gi = r−1
1 (E) = r−1

2 (F )

0 otherwise

(8)
and we define

(μ ∧ ν)(S) =
k∑
i=0

(μ ∧ ν)(Gi) . (9)

Note that, in the definition of μ ∧ ν on G-sets, the surjectivity of r1 and r2
guarantees that if Gi = r−1

1 (E) or Gi = r−1
2 (F ), then E and F are unique. So

that, (8) is well-defined. Moreover, the definition on S does not depend on how
S is decomposed into a disjoint union. To see this, note that any two representa-

tions
⋃k
i=0Gi and

⋃k′

i=0G
′
i for S can be decomposed into a common refinement⋃k′′

i=0G
′′
i , so that, by the well definition of μ∧ ν on G-sets they must agree on it.

Therefore, μ∧ν is well-defined on all F , and by construction is finitely additive.
It remains to show that, if S ∈ F is the countable disjoint union of sets

S0, S1, S2, . . . ∈ F , then

(μ ∧ ν)(S) =
∑

n∈N
(μ ∧ ν)(Sn) .
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Splitting up S into disjoint G-sets, and restricting Sn to each of these G-sets
sets in turn, for all n ∈ N, by finite additivity of μ ∧ ν, we may assume without
loss of generality that S = r−1

1 (E) ∩ r−1
2 (F ), for some E ∈ ΣX and F ∈ ΣY . In

the same way, by breaking up each Sn into a G-set and using finite additivity
of μ∧ ν again, we may assume without loss of generality that each Sn takes the
form Sn = r−1

1 (En) ∩ r−1
2 (Fn), for some En ∈ ΣX and Fn ∈ ΣY . By definition

of μ ∧ ν and σ-additivity of μ and ν, (9) is rewritten as follows

(μ ∧ ν)(S) =
∑

n∈N
(μ ∧ ν)(Sn) = (μ ∧ ν)(r−1

1 (E) ∩ r−1
2 (F )) .

This proves that μ ∧ ν : F → [0,∞] is a pre-measure. By Hahn-Kolmogorov
theorem, μ ∧ ν can be extended to ΣR, and since, for all E ∈ ΣX and F ∈ ΣY ,

r−1
1 (E) = r−1

1 (E) ∩R = r−1
1 (E) ∩ r−1

2 (Y ) ∈ F ,
r−1
2 (F ) = R ∩ r−1

2 (F ) = r−1
1 (X) ∩ r−1

2 (F ) ∈ F ,

together with the hypothesis made on μ and ν, i.e.,

if r−1
1 (E) = r−1

2 (F ) , then μ(E) = ν(F ) ,

by (8) we have

(μ ∧ ν)(r−1
1 (E)) = μ(E) and (μ ∧ ν)(r−1

2 (F )) = ν(F ) ,

therefore, the required conditions are satisfied. If both μ and ν are σ-finite, so
is the pre-measure μ ∧ ν : F → [0,∞], hence its extension on ΣR is unique. ��

Proof (of Lemma 20)

(i) Immediate from Lemma 11 and the correspondence between state bisimula-
tion and ΔL-bisimulation (Theorem 16).
(ii) Let f : ((R, γR), r1, r2) → ((S, γS), s1, s2) in Bisim((X, α), (Y, β)). By def-
inition Pb(Po)(f) = PbPo(f) = f∗, hence it is a monic span-morphism from
(R∗, r∗1 , r

∗
2) to (S∗, s∗1, s

∗
2). To prove that f∗ is a ΔL-homomorphism between

the coalgebras (R∗, γ∗R) and (S∗, γ∗S), we have to show γ∗S ◦ f∗ = ΔLf∗ ◦ γ∗R.
By the unicity of the definition of the (sub)probability measures γ∗S(f

∗(r))(a)
and γ∗R(r)(a), to prove the equality it suffices to show that for arbitrary r ∈ R∗,
a ∈ L, E ∈ ΣX , and F ∈ ΣY ,

(γ∗S ◦ f∗)(r)(a)((s∗1)−1(E)) = (ΔLf∗ ◦ γ∗R)(r)(a)((s∗1)−1(E)) ,

and

(γ∗S ◦ f∗)(r)(a)((s∗2)−1(F )) = (ΔLf∗ ◦ γ∗R)(r)(a)((s∗2)−1(F )) .
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We prove only the first equality, the other follows similarly.

(γ∗S ◦ f∗)(r)(a)((s∗1)−1(E)) =

= γ∗S(f
∗(r))(a)((s∗1)

−1(E)) (composition)

= α(s∗1 ◦ f∗(r))(a)(E) (by def. γ∗S)
= α(r1(r))(a)(E) (by f span-morphism)

= γ∗R(r)(a)((r
∗
1 )

−1(E)) (by def. γ∗R)

= γ∗R(r)(a)((s
∗
1 ◦ f∗)−1(E)) (by f∗ span-morphism)

= γ∗R(r)(a)((f
∗)−1 ◦ (s∗1)−1(E)) (by comp. inverses)

= (ΔLf∗ ◦ γ∗R)(a)((s∗1)−1(E)) (by def. ΔL)

��
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Abstract. In the context of a multi-disciplinary project, where we con-
tribute with formal methods for reasoning about energy-awareness and
other quantitative aspects of low-level resource management protocols,
we made a series of interesting observations on the strengths and limi-
tations of probabilistic model checking. To our surprise, the operating-
system experts identified several relevant quantitative measures that are
not supported by state-of-the-art probabilistic model checkers. Most no-
tably are conditional probabilities and quantiles. Both are standard in
mathematics and statistics, but research on them in the context of prob-
abilistic model checking is rare. Another deficit of standard probabilistic
model-checking techniques was the lack of methods for establishing prop-
erties imposing constraints on the energy-utility ratio.

In this article, we will present formalizations of the above mentioned
quantitative measures, illustrate their significance by means of examples
and sketch computation methods that we developed in our recent work.

1 Introduction

Markovian models can be seen as automata annotated with probabilistic dis-
tributions and cost or reward functions to model stochastic phenomena and
resource constraints. Thanks to the Markovian property stating that the future
system behavior only depends on the current state but not on the past, they are
best suited for algorithmic quantitative analysis. This also explains their long
tradition in Computer Science and the increasing interest and relevance to the
research field of probabilistic model checking (PMC). Since its first release more
than 10 years ago, the prominent probabilistic model checker Prism [32] for
Markovian models and temporal logical specifications, as well as other proba-
bilistic checkers like MRMC [30], ProbDiVinE [10] or the CADP tool set [26],
have been continuously extended by new features and successfully applied in
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various areas. Examples for areas where PMC is nowadays well established are
randomized distributed systems, multimedia and security protocols and systems
biology.

In this article, we report on our experiences with the application of PMC in a
less well established area, namely the analysis of low-level resource management
algorithms. This work has been carried out in the context of multi-disciplinary
research projects on advancing electronics and highly-adaptive energy computing
where PMC serves as an offline approach to evaluate the adaption strategies and
resource management protocols developed by the project partners. The PMC-
based approach is complementary to the experimental and simulation-based
analysis conducted by project partners by providing insights in the energy-utility,
reliability and other performance characteristics from a global and long-run per-
spective. PMC results on the quantitative behavior can guide the optimization
of resource management algorithms and can be useful to predict the perfor-
mance of management algorithms on future hardware, where measurements are
impossible.

Besides the prominent state-explosion problem, a series of problems have to be
addressed. One challenging task is to find eligible model parameters (stochastic
distributions, cost values) that fit with “reality”, without zooming into complex
details of, e.g., hardware primitives (caches, busses, memory organization, and
so on). By means of a simple spinlock protocol, we illustrated in [6,5] a stepwise
refinement approach for the model generation that incorporates cache effects in
the distributions and relies on the parallel use of measurements and PMC for
small numbers of processes. In this way, we obtained evidence for the appropri-
ateness of the model and then applied PMC – in combination with sophisticated
techniques to tackle the state-explosion problem – for larger numbers of processes
where measurements are no longer feasible.

Surprising to us was the observation that the operating-system experts iden-
tified several quantitative measures as highly relevant that are not supported
by state-of-the-art probabilistic model checkers. Some of them are reducible to
standard queries that are supported by probabilistic model checkers. This, e.g.,
applies to the evaluation of relativized long-run properties, where the task is to
compute the probability of a certain temporal property or the expected value of a
random function, relativized by some constraint for the starting states and under
the assumption that the system has reached its steady state. As an example, for
an energy-aware resource management protocol, the expected amount of energy
consumed by threads in a given mode or the probability to access a requested
shared resource while not exceeding a given energy budget, is most interesting
when the system is in equilibrium and particularities of the initialization phase
have lost their influence. Theoretically more interesting were those quantitative
measures demanded by the operating-system colleagues that have not or only
barely been addressed by the model-checking community before. This mainly
concerns requirements on the interplay of several objectives, possibly depend-
ing on each other. For instance, minimizing the energy consumption of a sys-
tem without regarding its productivity or utility is rather pointless, since these
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measures clearly depend on the energy spent during an execution of the system.
One obvious possibility to include utility requirements into an energy-minimizing
objective is to require a minimal step-wise utility of the system, which however
may lead to a restriction towards overall inefficient executions consuming much
energy. As this example shows, more involved approach need to be identified to
faithfully reason over the interplay of objectives.

For Markov decision processes (MDPs), a variety of dynamic and linear-
programming techniques have been proposed to find Pareto optimal or compro-
mise solutions for multi-objective requirements given by a series of constraints
on expected rewards or the probabilities for ω-regular path properties, see, e.g.,
[42,18,23,37,24]. Although these techniques can be very useful to reason about
the interplay of energy efficiency and utility requirements, we identified three
important classes of quantitative measures that serve to formalize other types
of multi-objective requirements and that have obtained less attention so far in
the PMC community.

The first two are quantiles and conditional probabilities resp. conditional ac-
cumulated costs, where the probability measure is relativized by some temporal
condition. Both quantiles and conditional probabilities are standard in mathe-
matics and statistics and both appear naturally for analyzing the interplay of
two or more objectives, such as energy efficiency and utility. Quantiles, for in-
stance, can be used to formalize the minimal cost (e.g., energy) needed to achieve
a certain degree of utility with high probability. Conditional probabilities can,
e.g., be used to formalize the chance to execute a list of jobs when the available
energy is bounded by some energy budget, under the condition that a certain
degree of utility will be achieved.

The computation of quantiles in discrete Markovianmodels is computationally
hard (NP-hard even for discrete Markov chains as a consequence of the results in
[33]). Our recent paper [40] presents computation schemes for quantiles in MDPs
based on a linear program. The näıve implementation of this LP-based approach
turned out to be far too slow for practical applications. However, with several
heuristics to improve the performance [4], we obtained rather good results for
several case studies, including an energy-aware job scheduler and an energy-
aware bonding network device [22].

Extensions of branching-time logics with conditional probability operators
have been studied for discrete [2,1,29] and continuous-time [25] Markov chains.
The proposed model-checking procedure for computing PM

s (ϕ |ψ ) relies on the
obvious approach to compute the quotient of PM

s (ϕ ∧ ψ ) and PM
s (ψ). The

computation of maximal or minimal conditional probabilities in models with
nondeterminism and probabilism, such as MDPs, is more difficult since there
is no computation scheme that simply takes the quotient of two (standard)
maximal/minimal probabilities, where extrema range over all possible resolu-
tions of the nondeterminism (formalized by schedulers). An exponential-time
model-checking algorithm that relies on the inspection of a finite (but possibly
exponentially large) class of finite-memory schedulers taken as candidates to
achieve extremal conditional probabilities has been proposed in [2,1]. The lack
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of tools that provide special engines for the computation of conditional proba-
bilities has motivated our recent paper [9], where we presented transformations
for discrete Markov chains and MDPs that reduce the task of computing (max-
imal/minimal) conditional probabilities to the task of computing unconditional
probabilities in the transformed model. First experiments with a prototype im-
plementation indicate that our transformation-based methods are feasible in
practice and outperform the quotient-based method for discrete Markov chains.

The third class of quantitative measures that we identified to be significant
for the interference of energy and utility constraints is the energy-utility ra-
tio, where both the energy consumption and the achieved degree of utility are
formalized using accumulated values of weight functions. The nonprobabilistic
logical framework presented in [12] that extends temporal logics by operators
for accumulated values provides an elegant approach to formalize properties im-
posing constraints on accumulated values and could be used to express various
constraints on the energy-utility ratio. This framework is too powerful for our
purposes, since various model-checking problems are shown to be undecidable.
Nevertheless, there are decidability results for special formula types. We restrict
here our attention to path properties of the form ψθ ∧ ϕ, where ψθ imposes a
condition on the energy-utility ratio with respect to a quality threshold θ and ϕ
is a side-constraint, e.g., a reachability or parity condition. In our setting, ψθ is
of the form ψθ = �( utility

energy � θ). Intuitively, ψθ then stands for the path property
that at any moment on a path the ratio between the utility achieved and the
consumed energy so far is at least θ.

Examples for interesting tasks in, e.g., Markov chains are the almost-sure
verification problem that asks whether ψθ ∧ ϕ holds with probability 1 or the
quantitative analysis that aims to compute the probability for ψθ ∧ ϕ. These
tasks share some similarities with the questions that have been addressed in
the context of nonprobabilistic game structures [16,17] and probabilistic models
with single weight functions [16,35]. Ratio objectives for weighted MDPs have
been studied for example in [43] where the goal is to synthesize a scheduler for
a given weighted MDP that maximizes or minimizes the average ratio payoff of
two integer weight functions.

Contribution and Outline. The relevant concepts of discrete and continuous-
time Markov chains and MDPs are summarized in Section 2. Section 3 presents
the concept of relativized long-run probabilities and expectations for Markov
chains as introduced in our previous papers [6,7]. Sections 4 and 5 deal with
conditional probabilities and quantiles, respectively, where we put the focus on
Markov chains. While our previous work on conditional probabilities [9] and on
quantiles [40,4] is restricted to the discrete-time case, we expand on this in this
article with computation schemes for continuous-time Markov chains. Section 6
introduces energy-utility MDPs and presents decidability results for reasoning
about energy-utility ratios under ω-regular side-constraints in Markov chains
and MDPs. Section 7 contains some concluding remarks.
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2 Theoretical Foundations

This section provides a brief summary of our notation for Markov chains and
Markov decision processes and related concepts. For further details we refer to
textbooks on model checking [20,8] and on probability theory and Markovian
models [38,31,28,36].

The reader is assumed to be familiar with ω-automata and temporal logics.
See, e.g., [20,27,8]. We often use notation of linear temporal logic (LTL) and
computation tree logic (CTL), where ♦, �, © and U stand for the temporal
modalities “eventually”, “always”, “next” and “until”, while ∃ and ∀ are used
as CTL-like path quantifiers. The notion path property is used for any language
consisting of infinite words over 2AP where AP is the underlying set of atomic
propositions. LTL-formulas are often identified with the path property of infinite
words over the alphabet 2AP that are models for the formulas. Having in mind
temporal logical specifications, we use the logical operators ∨, ∧, ¬ for union,
intersection and complementation of path properties.

Distributions. A distribution on a nonempty, countable set S is a function
μ : S → [0, 1] such that

∑
s∈S μ(s) = 1. For U ⊆ S, μ(U) denotes

∑
s∈U

μ(s).

Markov Chains. A (discrete) Markov chain is a pairM = (S, P ) where S is a
finite, nonempty set of states and P : S × S → [0, 1] a function, called the tran-
sition probability function, such that

∑
s′∈S P (s, s

′) = 1 for each state s. Paths
inM are finite or infinite sequences s0 s1 s2 . . . of states built by transitions, i.e.,
P (si, si+1) > 0 for all i � 0. The length |π| denotes the number of transitions
taken in π. If π = s0 s1 . . . sn is a finite path, then first(π) = s0 denotes the first
state of π, and last(π) = sn the last state of π. We refer to the value

Pr(π) =
∏

0�i<n
P (si, si+1)

as the probability for π. We write FinPaths(s) for the set of all finite paths π
with first(π) = s. Similarly, InfPaths(s) stands for the set of infinite paths
starting in s. We use FinPaths and InfPaths to denote the sets of all finite paths,
respectively infinite paths. A weight function forM is a function wgt : S×S → Z
such that wgt(s, s′) = 0 if P (s, s′) = 0. For a finite path π = s0 s1 . . . sn the
(accumulated) weight of π is defined by the sum of the weights of its transitions:

wgt(π) =
n−1∑
i=0

wgt(si, si+1)

Occasionally, we also consider weight functions with rational values and refer to
them as rational-valued weight functions. If wgt is nonnegative, i.e., wgt(s, s′) � 0
for all states s, s′, then we refer to wgt as a reward function. We also con-
sider weight functions wgtst : S → Z for the states (rather than transitions).
These can be encoded as weight functions for the transitions by defining
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wgt(s, s′) = wgtst (s) for all states s
′ with P (s, s′) > 0. The accumulated weight

of a finite path π = s0 s1 . . . sn is defined accordingly:

wgtst (π) =
n−1∑
i=0

wgt(si)

The probability space induced by Markov chains is defined using classical con-
cepts of measure and probability theory. The basic elements of the underlying
sigma-algebra are the cylinder sets spanned by the finite paths, i.e., the sets
Cyl(π) consisting of all infinite paths π̃ such that π is a prefix of π̃. Elements of
this sigma-algebra are called (measurable) path events. The probability measure
PM
s is defined on the basis of standard measure-extension theorems stating the

existence of a unique probability measure PM
s with PM

s

(
Cyl(π)

)
= Pr(π) for

all π ∈ FinPaths(s), whereas cylinder sets of paths π with first(π) �= s have
measure 0 under PM

s .
With these definitions one can also reason about expected values of random

functions on infinite paths. We consider here the expected accumulated weight
for reaching a target set F ⊆ S. Let wgt [♦F ] : InfPaths → Z be the partial
function such that wgt [♦F ](s0 s1 s2 . . .) = wgt(s0 s1 . . . sn) if {s0, . . . , sn−1}∩F =
∅ and sn ∈ F . For infinite paths π̃ that do not visit F , i.e., π̃ �|= ♦F , wgt [♦F ](π̃)
is undefined. Assuming that F will be reached from state s almost surely, i.e.,
PM
s (♦F ) = 1, then the expected value of wgt [♦F ] under the probability measure

PM
s is well-defined and given by:

EM
s

(
wgt [♦F ]

)
=
∑

π Pr(π) · wgt(π)

where π ranges over all finite paths s0 s1 . . . sn starting in s0 = s such that
{s0, . . . , sn−1} ∩ F = ∅ and sn ∈ F .

Continuous-Time Markov Chains (CTMCs). A continuous-time Markov
chain (CTMC) is a pair C = (M, E) where M = (S, P ) is a discrete Markov
chain and E : S → R�0 a function that specifies an exit-rate for each state
s. M is called the embedded discrete Markov chain that describes the time-
abstract operational behavior. Intuitively, E(s) specifies the frequency of taking
a transition from s. More formally, E(s) is the rate of an exponential distribution
and the probability to take some transitions from s within t time units is given
by 1 − e−E(s)·t where e is Euler’s number. The probability to take a specific
transition from s to s′ within t time units is then:

P (s, [0, t], s′) = P (s, s′) ·
(
1− e−E(s)·t )

As a consequence, 1/E(s) is the average sojourn time in state s. A trajectory
(or timed path) of C is a path in M augmented with the sojourn times in the
states. Formally, a trajectory in C is an alternating sequence s0 t0 s1 t1 s2 t2 . . .
of states si and nonnegative real numbers ti such that P (si, si+1) > 0. An
infinite trajectory ϑ̃ is said to be time-divergent if

∑
i�0 ti = ∞. In this case,

if t ∈ R�0 then ϑ̃@t denotes the state si where i is the greatest index such
that t0 + t1 + . . . + ti � t. For finite trajectories we require that they end in a
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state. We write FinTraj (s) for the set of finite trajectories starting in state s
and InfTraj (s) for the infinite time-divergent trajectories from s. If the starting
state s is irrelevant, we omit s and write FinTraj and InfTraj . In CTMCs, state
weights are understood as weights per time spend in the corresponding state, and
therefore need to be scaled with the corresponding sojourn times in trajectories
during accumulation. Given weight functions wgt : S×S → Z and wgtst : S → Z,
the accumulated weights of a finite trajectory ϑ = s0 t0 s1 t1 . . . tn sn are given
by:

wgt(ϑ) =
n−1∑
i=0

wgt(si, si+1) wgtst (ϑ) =
n−1∑
i=0

ti · wgtst (si)

To reason about probabilities for conditions on trajectories, one can again rely on
standard concepts of measure and probability theory to define a sigma-algebra
where the events are infinite trajectories. Let s0 s1 . . . sn be a finite path in the
embedded discrete Markov chain M and let I0, I1, . . . , In−1 be bounded real
intervals in [0,∞[. We write T = s0 I0 s1 I1 . . . In−1 sn for the set of all finite
trajectories s0 t0 s1 t1 . . . tn−1 sn with ti ∈ Ii for 0 � i < n and refer to T
as a symbolic finite trajectory. The infinite trajectories ϑ̃ that have a prefix in
T constitute the cylinder set Cyl (T ). For state s, PC

s is the unique probability
measure on the smallest sigma-algebra containing the sets Cyl(T ) for all symbolic
finite trajectories T such that

PC
s

(
Cyl(T )

)
=

∏
0�i<n

P (si, Ii, si+1)

where for s, s′ ∈ S and real numbers t1, t2 with t1 � t2 we have:

P (s, [t1, t2], s
′) = P (s, s′) ·

(
e−E(s)t1 − e−E(s)t2

)
It is well-known that under PC

s almost all trajectories are time-divergent [21].
The probability measures PC

s rely on the assumption that s is the initial state.
If μ is a distribution, viewed as an initial distribution, then PC

μ =
∑
s∈S

μ(s) · PC
s .

The long-run behavior of CTMCs can be formalized using steady-state dis-
tributions formalizing the mean fraction of time spent in the states in infinite
trajectories. For the initial distribution μ, the steady-state probability of state s
is defined by:

StPrCμ(s) = lim
t→∞PC

μ

{
ϑ̃ ∈ InfTraj (s) : ϑ̃@t = s

}
The above limit exists for all finite-state CTMCs, but might depend on the initial
distribution μ.

Markov Decision Processes (MDPs). MDPs can be seen as a generaliza-
tion of Markov chains where the operational behavior in a state s consists of
a nondeterministic selection of an enabled action α, followed by a probabilis-
tic choice of the successor state, given s and α. Formally, an MDP is a tuple
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M = (S,Act , P ) where S is a finite set of states, Act a finite set of actions and
P : S ×Act × S → [0, 1] a function such that for all states s ∈ S and α ∈ Act:∑

s′∈S
P (s, α, s′) ∈ {0, 1}

We write Act(s) for the set of actions that are enabled in s, i.e., P (s, α, s′) > 0
for some s′ ∈ S. For technical reasons, we require that Act(s) �= ∅ for all
states s. Obviously if the sets Act(s) are singletons for all states s, then M
can be seen as a Markov chain. Paths are finite or infinite alternating sequences
s0 α0 s1 α1 s2 α2 . . . of states and actions such that P (si−1, αi−1, si) > 0 for all
i � 1. Notation that has been introduced for Markov chains can now be adapted
for MDPs, such as first(π), FinPaths(s), InfPaths(s).

Reasoning about probabilities for path properties in MDPs requires the se-
lection of an initial state and the resolution of the nondeterministic choices
between the possible transitions. The latter is formalized via schedulers, often
also called policies or adversaries, which take as input a finite path and select
an action to be executed. For the purposes of this paper, it suffices to con-
sider deterministic, possibly history-dependent schedulers, i.e., partial functions
S : FinPaths → Act such that S(π) ∈ Act

(
last(π)

)
for all finite paths π. Given

a scheduler S, an S-path is any path that might arise when the nondeterministic
choices inM are resolved using S. Thus, π = s0 α0 s1 α1 . . . αn sn is an S-path
iff P

(
sk−1,S(pref (π, k)), sk

)
> 0 for all 1 � k � n. Here, pref (π, k) denotes the

prefix of π consisting of the first k steps in π and ending in state sk. Infinite
S-paths are defined accordingly.

For an MDP (M, s), i.e. an MDP as before with some distinguished initial
state s ∈ S, the behavior of (M, s) under S is purely probabilistic and can be
formalized by an infinite tree-like Markov chain MS

s where the states are the
finite S-paths starting in s. The probability measure PS

s for measurable sets
of the infinite paths in the Markov chain MS

s , can be transferred to infinite
S-paths inM starting in s. Thus, if Φ is a path event then PS

M,s(Φ) denotes its
probability under scheduler S for starting state s. For a worst-case analysis of
a system modeled by an MDP M, one ranges over all schedulers (i.e., all pos-
sible resolutions of the nondeterminism) and considers the maximal or minimal
probabilities for Φ:

Pmin
s (Φ) = inf

S
PS
s (Φ) Pmax

s (Φ) = sup
S

PS
s (Φ)

We use weight functions of the following types: wgtst : S → Z for the states (as
for Markov chains) and wgt : S×Act ×S → Z for state-action-state tuples. The
accumulated weight of finite paths as well as the expected accumulated weight
ES
s

(
wgt [♦F ]

)
to reach a target set F under some scheduler S with PS

s (♦F ) = 1
is defined in the obvious way.

Assumptions and Relaxed Notation for Path Properties. For the meth-
ods proposed in the following sections, we suppose that the transition prob-
abilities are rational. When using LTL-like or CTL-like notation with atomic
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propositions in AP we suppose the Markov chain or MDP M under considera-
tion is extended by a labeling function that declares which atomic propositions
a ∈ AP hold in which states. At several places, we use single states or sets of
states in M as atomic propositions with the obvious meaning. For the interpre-
tation of LTL- or CTL-like formulas in M, the probability annotations (as well
as the action labels in case of an MDP and the exit rates in CTMCs) are ignored
and M is viewed as an ordinary Kripke structure. A path property ϕ is said to
be measurable if the set of infinite paths π̃ in M satisfying ϕ is a path event,
i.e., an element of the induced sigma-algebra. It is well known that all ω-regular
path properties are measurable [41]. We abuse notation and identify measurable
path properties and the induced path event. Thus, if M is an MDP then

PS
s (ϕ) = PS

s

{
π̃ ∈ InfPaths(s) : π̃ |= ϕ

}
denotes the probability for ϕ under scheduler S and starting state s.

3 Relativized Long-Run Probabilities

In the classical approach of PMC for Markov chains, the quantitative analysis
computes the probabilities PM

s (ϕ) for the given path event for all states s in
the given Markov chain. Many low-level operating-system protocols are, how-
ever, designed to run for an indefinite period of time and most relevant for the
quantitative analysis is the long-run behavior, when exceptional phenomena of
the initialization phase lose their influence. Possible sources for significant dif-
ferent quantitative behaviors in the long-run and in the initialization phase are,
e.g., variations in the frequency of cache misses or competitions between pro-
cesses to access shared resources. This indicates that the quantitative analysis
should be carried out assuming the steady-state distribution as the initial dis-
tribution. However, for many relevant quantitative measures only some states
that have positive steady-state probability are appropriate as reference points.
For instance, to determine the average time that a process waits for a requested
shared resource in the long-run, the relevant reference points are those states
with positive steady-state probability that are entered immediately after the
considered process has performed its request operation. That is, what we need
are long-run probabilities of temporal properties or long-run expected values,
relativized by some state condition that declares the relevant reference points.
The mathematical definition of relativized long-run probabilities for CTMCs is as
follows. Suppose C = (M, E) is a CTMC, μ an initial distribution as in Section 2
and U a subset of S such that the steady-state probability for U is positive, i.e.,
StPrCμ(U) > 0. Given an event ϕ, then the long-run probability for ϕ relativized
to U is given by:

LPC
μ [U ] (ϕ) = PC

θ (ϕ)



Probabilistic Model Checking for Energy-Utility Analysis 105

where θ is the relativized steady-state distribution where the condition is given
by U . Formally, θ is the distribution on S given by θ(s) = 0 if s ∈ S \ U and

θ(s) =
StPrCμ(s)

StPrCμ(U)
if s ∈ U

Likewise, we define the relativized long-run expected value of random functions
for infinite trajectories, such as the relativized long-run average accumulated
costs to reach a goal set F :

LEC
μ [U ] (wgt [♦F ]) = EC

θ (wgt [♦F ])

For the case of discrete Markov chains, the definition of relativized long-run
probabilities is analogous, except that we have to deal with the Cesàro limit:

StPrMμ (s) = lim
n→∞

1

n+ 1
·

n∑
i=0

PM
μ

{
s0 s1 s2 . . . ∈ InfPaths(s) : si = s

}
for the definition of steady-state probabilities. The Cesàro limit always exists
in finite Markov chains and is computable via an analysis of bottom strongly
connected components and linear equation systems.

State-of-the art probabilistic model checkers support the computation of
steady-state probabilities, but there is no direct support to compute the probabil-
ities for temporal path properties or expected accumulated values under steady-
state probabilities. For our case studies on low-level OS code we extended the
prominent model checkers PRISM [32] and MRMC [30] to compute relativized
long-run probabilities and average accumulated rewards. To illustrate the de-
mand of relativized long-run probabilities and expectations we now detail two
of our case studies.

Example 1 (Spinlock). In a case study on a locking protocol modeled as a discrete
Markov chain [6,5] the concept of relativized long-run properties was crucial. We
performed exhaustive experiments to compute various quantitative measures
that have been identified to be most relevant. We provide here three examples.
The first one is the long-run probability for a process acquiring a lock within the
next time step, assuming that the process just requested the lock:

LPC
μ [“lock requested”] (©“get lock”)

Another example is the long-run probability that the same process gets the lock
two times in a row:

LPC
μ [“lock released”] (“lock free”U“get lock”)

As an example for relativized long-run expectations one may ask for the average
time or energy spent on getting access to the lock:

LEC
μ [“lock requested”] (wgt [♦“get lock”]) �
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Example 2 (Probabilistic-Write/Copy-Select). Also in the context of the quanti-
tative analysis [7] of a novel synchronization scheme suggested by McGuire [34],
called Probabilistic-Write/Copy-Select (PWCS), long-run probabilities play an
important role. The idea behind PWCS is that the protocol avoids expensive
atomic operations for synchronizing access to shared objects. Instead, PWCS
makes inconsistencies detectable (using hashes or version numbers) and recover-
able. The protocol builds on the assumption that the probability for data races
is very small for typical workload scenarios. Hence, the PWCS protocol belongs
to a new and interesting class of algorithms, which make use of the inherent
randomness (called inherent nondeterminism in [34]) provided by modern paral-
lel hardware architectures, which can potentially also be used as an alternative
solution for breaking symmetries. Our formal analysis of a variant of the PWCS
protocol with multiple writers uses a CTMC and centers around the probability
of data races in the long-run for different types of workload scenarios. PWCS
makes use of an indexed list of replicas of the original data object to increase
the probability for a reader to find at least one consistent replica. That is, the
writers operate in a write cycle in which they modify the replicas successively in
an increasing order. The readers visit the replicas in a reversed order within their
read cycle to find at least one consistent version of the data, i.e., a replica not
damaged due to concurrent write operations. Figure 1 shows the transition sys-
tem for the kth replica (left) and the CTMC for the ith writer (right), whereas
the CTMC for the jth reader is depicted in Figure 2. The CTMC C for the
PWCS protocol arises from a parallel composition of the CTMC for the writers
and the readers and the ordinary transition systems for the replicas. We used
here CSP-like notations for synchronous send (!) and receive (?) actions. Rates
(denoted by greek letters in the figures) are only attached to send actions, while
the matching receive action in the replicas is “reactive” and has no rate. (See
[7] for a formal definition of the product.) Examples for relevant quantitative
measures are:

(1) the probability to successfully read a replica for a reader (in the long-run):

LPC
μ [“reading started”] (♦“reading successful”)

(2) the probability to write at least c ∈ N consistent replicas within a write cycle

LPC
μ [“writing started”] (φ),

where φ stands for a formula stating that the writing of at least c replicas is
not interrupted by any other writer within one write cycle.

(3) the average time or energy costs (in the long-run) for repairing a replica:

LEC
μ [“just damaged”] (wgt [♦“consistent”])

For the computation we annotate all states of C with reward 1 for the time
and the respective energy costs to compute the above relativized long-run
accumulated reward. �
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consistentk

currently modifiedk

damagedk

wk := 0

?start-writingk
wk := 1

?end-writingk
wk := 0

?start-writingk
wk := 2

if wk = 0 then
?start-writingk

wk := 1

?start-writingk
wk := wk+1

if wk > 0 then
?end-writingk
wk := wk−1

idlei

writing i
1 ready i

1

writing i
2 ready i

2

...
...

writingi
K ready i

K

γ : !start-writingi1

λ : !end-writingi1

μ : !start-writingi2

λ : !end-writingi2

μ : !start-writingiK

λ : !end-writingiK

η : return-to-write-idlei

Fig. 1. Transition system for the kth replica (left) and CTMC for the ith writer (right)

success j

error j

idle j

readingj
1 check j

1

reading j
K−1 check j

K−1

...
...

readingj
K check j

K
κ : start-readingjK

δ : end-readingj1

ρ : start-readingj1

δ : end-readingjK−1

ρ : start-readingjK−1

δ : end-readingjK

σ : return-to-read-idlej

ν : return-to-read-idlej

Fig. 2. CTMC for the jth reader
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4 Conditional Probabilities and Rewards

Probabilities and expectations under the assumption that some additional tem-
poral condition holds are often needed within the quantitative analysis of pro-
tocols. In general, any measurable set of paths with positive probability could
serve as a condition when computing either a probability value or expected costs.
In practice the conditions are often liveness properties or time or cost bounded
reachability properties representing progress assumptions. For instance, in the
context of the case study on the PWCS-protocol (cf. Example 2) our operating-
system colleagues asked us to compute the expected time until a reader success-
fully reads a consistent replica, under the assumption that it will find a consistent
replica without interference. When F formalizes the set of states where a consis-
tent replica is read andG is the set of states without an interference, this amounts
to computing a conditional expected value of the form EM

s

(
wgt [♦F ] |GUF

)
.

Recall that expectations of a path property are undefined if the corresponding
probability is less than 1. Hence, the corresponding unconditional expected ac-
cumulated reward EM

s

(
wgt [♦F ]

)
is undefined if PM

s (♦F ) < 1. In the context
of energy-utility analysis, conditional probabilities or expectations are useful to
analyze the energy-efficiency, while assuming that a certain condition on the
achieved utility is guaranteed. Vice versa, one might ask, e.g., for the expected
utility, while not exceeding a given energy budget. Conditional probabilities also
offer an alternative to the standard methods for dealing with fairness assump-
tions. This is of particular interest for MDPs where the classical analysis ranges
over fair schedulers (i.e., schedulers that generate almost surely paths where the
fairness assumption holds) and excludes unfair schedulers, whereas an approach
with conditional probabilities might range over all schedulers where the fairness
assumptions hold with positive probability.

For Markov chains, conditional probabilities can be computed using standard
techniques for the computation of unconditional probabilities, simply by relying
on the definition of conditional probabilities:

PM
s

(
ϕ |ψ

)
=

PM
s (ϕ ∧ ψ)
PM
s (ψ)

provided that PM
s (ψ) is positive. In what follows, we refer to ψ as the condi-

tion and to ϕ as the objective. This quotient-based approach has been taken in
[2,1,29] for discrete and in [25] for continuous-time Markov chains. In a recent
paper [9], we presented an alternative for discrete Markov chains. It relies on
a transformation M � Mψ that replaces a discrete Markov chain M with a
new Markov chain Mψ that “encodes” the effect of the condition ψ imposed
for M. With this transformation, conditional probabilities and also conditional
expected rewards in M can be computed using standard methods to compute
unconditional probabilities and expected rewards inMψ for an analogous event
resp. an analogous random function. We recall the definition ofMψ as proposed
in [9] for the case where ψ is a reachability condition. Then, we show that the
same transformation is also applicable for CTMCs.
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Conditional Probabilities in DTMCs. LetM = (S, P ) be a discrete Markov
chain and ψ = ♦F where F ⊆ S. The new Markov chain Mψ = (Sψ, Pψ) has
the state space Sψ = Sbef ∪ Snor where:

Sbef =
{
sbef : s ∈ S, s |= ∃♦F

}
Snor =

{
snor : s ∈ S

}
.

Intuitively, snor is simply a copy of state s in M (“normal mode”). The states
sbef are only needed if F is reachable from s inM and the behavior of sbef inMψ

agrees with the behavior of s inM under the condition that s will indeed reach
F . We refer to the states sbef as a copy of s in the “before mode”. Intuitively,
Mψ starts in the before mode. As soon as F has been reached,Mψ switches to
the normal mode whereMψ behaves asM. This is formalized by the transition
probability function ofMψ. If s ∈ S \F and v ∈ S with s |= ∃♦F and v |= ∃♦F :

Pψ(s
bef , vbef ) = P (s, v) · P

M
v (♦F )

PM
s (♦F )

For s ∈ F , we define Pψ(s
bef , vnor) = P (s, v), modeling the switch from before

to normal mode. For the states in normal mode, the transition probabilities are
given by Pψ(s

nor , vnor) = P (s, v). In all other cases, Pψ(·) = 0.
Obviously, all states in the before mode can reach F bef = {vbef : v ∈ F}.

This yields P
Mψ

sbef
(♦F bef ) = 1 for all states s of M with s |= ∃♦F . Suppose now

that ϕ is a measurable path property formalized, e.g., in LTL and using atomic
propositions for the states in M. Assuming that the copies sbef and snor satisfy
the same atomic propositions as s, then there is a one-to-one correspondence
between the infinite paths π̃ inM with π̃ |= ϕ∧♦F and the infinite paths π̃ψ in
Mψ with π̃ψ |= ϕ. More precisely, each path π̃ψ inMψ induces a path π̃ψ|M inM
by dropping the mode annotations. Vice versa, if π̃ is a path inM with π̃ |= ♦F
or π̃ |= � ∃♦F then π̃ can be augmented with mode annotations to obtain a
path π̃ψ in Mψ with π̃ψ|M = π̃. This yields a probability preserving one-to-one
correspondence between the cylinder sets in Mψ and the cylinder sets in M
spanned by finite paths s0 s1 . . . sn of M such that for all i ∈ {0, 1, . . . , n−1}: if
si �|= ∃♦F then sj ∈ F for some j < i. Hence:

PM
s

(
ϕ |♦F

)
= P

Mψ

sbef

(
ϕ
)

for all measurable path properties ϕ. The analogous statement holds for the
expected values of random functions.

This approach can be generalized for the case of ω-regular conditions. We have
implemented the above transformation for LTL conditions within the probabilis-
tic model checker PRISM and evaluated the implementation with a case study
on a bounded retransmission protocol [9]. Among others, we used our imple-
mentation to compute the probability of observing two retries for sending a data
fragment under the condition that globally no errors occur, i.e.,

PM
s

(
♦ “second retry for fragment”

∣∣¬♦“finish with error”
)
.
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As conditional expectation we considered, e.g., the expected (energy) costs for
data transmission under the condition that the data was transmitted successfully:

EM
s (wgt [♦ “finish with success”] |♦ “finish with success”

)
In the context of our experiments it turned out that indeed using this implemen-
tation was more efficient than the standard quotient-based approach. For details
we refer to [9].

Conditional Probabilities in CTMCs. We now adapt this transformation
for CTMCs. Let C = (M, E) where M is as before and E : S → R is an exit
rate function. We define:

Cψ = (Mψ, Eψ) where Eψ(s
bef ) = Eψ(s

nor) = E(s)

for all states s in C. The above mentioned one-to-one correspondence between
paths inM satisfying ♦F or � ∃♦F and paths inMψ carries over to trajectories
in the CTMCs C and Cψ. If Φ is a measurable set of trajectories in C then:

Φψ =
{
ϑ̃ψ : ϑ̃ ∈ Φ, π̃ |= ♦F ∨� ∃♦F

}
where ϑ̃ψ results from ϑ̃ by adding the obvious mode annotations to the states.

Theorem 1. With the notations as before, Φψ is measurable in the sigma-
algebra induced by Cψ and for each s of M with s |= ∃♦F :

PC
s

(
Φ |♦F

)
= P

Cψ

sbef

(
Φψ

)
Proof. Measurability of Φψ is clear, given the measurability of Φ and the set
{ϑ̃ ∈ InfTraj : ϑ̃ |= ♦F ∨ � ∃♦F

}
. It remains to prove the claim for cylinder

sets. The above mentioned one-to-one correspondence between finite paths inM
that do not contain a state s with s �|= ∃♦F , unless F has been visited before,
andMψ resp. finite trajectories in C and Cψ yields a one-to-one correspondence
between the cylinder sets (symbolic finite trajectories) in C and the cylinder sets
in Cψ. The above transformation π �→ πψ for paths in the embedded discrete
Markov chain can be adapted for (symbolic) finite trajectories. We define Tψ as
the symbolic finite trajectory that results from T by adding appropriate mode
annotations. Likewise, for a symbolic trajectory Tψ in Cψ we define Tψ|C as the
symbolic finite trajectory obtained from Tψ by dropping the mode annotations.

Claim: Let T = s0 I0 s1 I1 . . . In−1 sn be a symbolic finite trajectory in C such
that {s0, . . . , sn} ∩ F �= ∅ or si |= ∃♦F for all 1 � i � n. Then,

PC
s

(
Cyl(T ) |♦F

)
= P

Cψ

sbef

(
Cyl(Tψ)

)
Proof of the claim. We only address the case that T contains some state in F ,
say sk ∈ F and

{
s0, . . . , sk−1

}
∩F = ∅ where 0 � k � n. In particular, ϑ̃ |= ♦F

for all ϑ̃ ∈ Cyl(T ) and therefore

PC
s

(
Cyl (T ) ∧ ♦F

)
= PC

s

(
Cyl(T )

)
,
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where ♦F is identified here with the set of infinite trajectories that contain at
least one F -state. We now show that the conditional probability of the cylinder
set of T in C agrees with the unconditional probability of the cylinder set

Tψ = sbef0 I0 s
bef

1 I1 . . . Ik s
bef

k Ik+1 s
nor

k+1 Ik+1 . . . In−1 s
nor
n

in Cψ. Indeed, with s = s0 we have:

P
Cψ

sbef

(
Cyl(Tψ)

)
=

k−1∏
i=0

Pψ(s
bef

i , Ii, s
bef

i+1) · Pψ(s
bef

k , Ik, s
nor

k+1) ·
n−1∏
i=k+1

Pψ(s
nor

i , Ii, s
nor

i+1)

=
k−1∏
i=0

(
P (si, Ii, si+1) ·

PC
si+1

(♦F )
PC
si(♦F )

)
·
n−1∏
i=k

P (si, Ii, si+1)

=
n−1∏
i=0

P (si, Ii, si+1) ·
k−1∏
i=0

PC
si+1

(♦F )
PC
si(♦F )

= PC
s0(Cyl(T ) ) ·

1
PC
s0(♦F )

= PC
s0

(
Cyl (T ) |♦F

)
The argument for finite trajectories in C that do not contain an F -state, but
consist of states s with s |= ∃♦F , is analogous. �

As a consequence of Theorem 1, if ϕ is a measurable trajectory property, e.g.,
formalized by a time-bounded until formula then

PC
s

(
ϕ |♦F

)
= P

Cψ

sbef

(
ϕ
)

and the analogous statement for the expected values of random functions. For
instance, if rew : S → N is a reward function for the states in M then

EC
s ( rew [♦F ] | ♦F

)
= E

Cψ

sbef

(
rewψ[♦Fψ]

)
,

where Fψ = {sbef : s ∈ S, s |= ∃♦F} ∪ {snor : s ∈ S} and rewψ(s
bef ) = rew(s)

if s |= ∃♦F and rewψ(s
nor ) = rew(s) for all states s in M. Thus, the computa-

tion of conditional probabilities and rewards in CTMCs where the condition is
an untimed reachability property can be carried out using the presented trans-
formation C � Cψ and applying standard techniques for the computation of
unconditional probabilities or expected rewards in Cψ. One advantage of this
approach is that the transformed Cψ only depends on the condition ψ and it can
be used for different objectives. The construction of Cψ is simple since it only
requires the computation of (untimed) reachability probabilities.

The presented transformation C � Cψ can be adapted easily for (untimed)
ω-regular conditions. This has been explained in [9] for discrete Markov chains,
using a representation of the condition ψ by a deterministic ω-automaton A and
the (standard) product construction M⊗A to reduce the probabilities of ψ in
M to reachability conditions in M⊗A. The adaption of this transformation-
based approach for CTMCs is straightforward. Thus, our transformation yields
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an alternative to the quotient-based approach of [25] for the case of untimed
conditions. [25] deals with conditions and objectives that are represented as
path formulas of the logic CSRL (continuous stochastic reward logic) [3], and
thus can handle timed conditions. It would be interesting to study whether
our transformation-based approach can be extended for conditions with timing
constraints, e.g., provided by timed automata specifications [19].

Conditional Probabilities in MDPs. The task to reason about conditional
probabilities in Markov decision processes is more challenging. The matter is
that for the computation of, e.g.,

Pmax
s

(
ϕ |ψ

)
= max

S
PS
s

(
ϕ |ψ

)
= max

S

PS
s

(
ϕ ∧ ψ

)
PS
s

(
ψ
)

we cannot simply maximize the nominator and denominator. This problem has
been addressed first in [2,1], where an extension of PCTL over MDPs [11] by
a conditional probability operator has been presented. The presented model-
checking algorithm relies on an exhaustive search (with heuristic bounding tech-
niques) in some finite, but potentially exponentially large class of finite-memory
schedulers. In [9] we improved this result by presenting a polynomial transfor-
mation M � Mϕ|ψ for reachability objectives and conditions, which has been
shown to be the core problem for reasoning about ω-regular objectives and con-
ditions by using automata representations of the objective and the condition.

5 Quantiles

Quantiles play a central role in statistics, where for a given random variable R
and probability value p, the quantile is defined as the least value r such that the
probability for R � r is at least p. In the context of system analysis, quantiles
can provide useful insights about the interplay of two objectives:

Reduce the cost (formalized by R), while providing guarantees on
the utility (probability for some event is larger than p).

This allows combining energy (and other cost measures) with utility aspects like
throughput, latency and other QoS measures. Typical examples for quantiles
are the minimal time that a thread has to wait for a requested resource with
probability � 0.98 or the minimal amount of energy required to complete a list
of tasks without missing some deadline with probability � 0.98.

For discrete Markov chains over a state space S, quantiles can be formalized
using a reward function rew : S → N (i.e., a nonnegative weight function for the
states) to model R and a reward-bounded temporal constraint formalizing the
utility objective. This formalization is more general than using time-bounded
temporal constraints, since those can also be expressed by a reward function
assigning reward 1 to all states. When ϕ[r] denotes a path property imposing
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bounds on the costs formalized by the reward r, the above mentioned quantile
refers to

QuMs
(
Pr�p(ϕ[?])

)
= min

{
r ∈ N : PM

s

(
ϕ[r]

)
� p
}
.

The bounded path property ϕ[r] could be, e.g., an upper reward-bounded until
formula ϕ[r] = GU�rF over sets of states G,F ⊆ S. Intuitively, GU�rF denotes
the constraint that F will eventually be reached along some finite path π con-
sisting of G-states with an accumulated reward of at most r (i.e., rew(π) � r).
For instance, in the spinlock protocol case study (see Example 1), we used
a reward function for encoding the waiting time and computed the quantile
QuMs

(
Pr�0.8(♦�?“get lock”)

)
for a state s that has just requested the lock. This

corresponds to the minimal required time to ensure that the lock is acquired
with a probability of at least 80%. Instead of GU�rF , ϕ[r] can be any other
reward-bounded path property where the function r �→ PM

s (ϕ[r] ) is increasing,
i.e., where PM

s (ϕ[r] ) � PM
s (ϕ[r + 1] ) for all r ∈ N.

Other examples for quantiles aim to maximize the utility formalized by the
reward r by imposing constraints on the costs, e.g., by lower reward-bounded
until properties ψ[r] = GU>rF over statesG,F ⊆ S. The path propertyGU>rF
is fulfilled by all those paths only visiting G-states until eventually reaching F
with an accumulated reward exceeding r. In this case, the quantile is defined as
the maximal value r such that ψ[r] holds with sufficiently large probability:

QuMs
(
Pr�p(ψ[?])

)
= max

{
r ∈ N : PM

s

(
ψ[r]

)
� p
}
.

Note that similar as in the minimizing quantile, ψ[r] can be any reward-bounded
path property where r �→ PM

s (ψ[r]) is decreasing, i.e., PM
s (ψ[r]) � PM

s (ψ[r+1])
for all r ∈ N. The definition for strict probability bounds “> p” rather than
“� p” is analogous. Quantiles with upper probability bounds are reducible to
quantiles with lower probability bounds [40,4], e.g., for ϕ[r] = GU�rF :

QuMs
(
Pr�p(ϕ[?])

)
= max

{
r ∈ N : PM

s

(
ϕ[r] ) � p

}
= QuMs

(
Pr>p(ϕ[?])

)
−1

Similarly, reward-bounded always and reachability properties can be transformed
into each other, e.g.,QuMs

(
Pr�p(��?G)

)
is equivalent toQuMs

(
Pr�1−p(♦�?¬G)

)
.

In this paper, we only define quantiles for discrete Markov chains. However,
more general quantiles for MDPs can also be considered, which require a further
declaration whether the probability bound is imposed for all schedulers or only
for some scheduler [40,4].

Computing Quantiles in DTMCs. In [40] a linear-programming approach
for computing quantiles for MDPs has been proposed. In order to support a clean
presentation, we continue presenting the approach towards computing quantiles
for discrete Markov chains only. Then, the linear program of [40] boils down
to a single linear-equation system. For instance, if ϕ[r] =GU�rF , the values
xs,i=PM

s (ϕ[i]) for 0� i� r can be computed with the following equation scheme:

xs,i =
∑
u∈S

P (s, u) · xu,i−rew(s) if rew(s) � i, s /∈ F and s |= ∃GUF ,
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and xs,i = 1 for s ∈ F and xs,i = 0 if s �|= ∃GUF or rew(s) > i. The value

QuMs
(
Pr�p(ϕ[?])

)
is then determined by computing xs,i for increasing i until

xs,i � p.
The approach by [40] only deals with quantiles concerning upper reward-

bounded properties ϕ[r] or ψ[r] where the utility is specified by a lower or upper
bound on the probability. In [4], this approach has been generalized towards
computing lower reward-bounded properties. Furthermore, [4] introduced ex-
pectation quantiles, where the utility is given by a bound on the expected utility
depending on the costs (e.g., consumed energy). In this setting, two reward func-
tions for the states are considered:

rewu : S → N for the utility, and

rewe : S → N for the energy

The induced function energy : FinPaths → N for the accumulated costs along
finite paths is given by energy(s0 . . . sn) =

∑n−1
i=0 rewe(si). For a given energy

bound r ∈ N, the random variable utility[♦energy�r F ] : InfPaths → N is given by:

utility[♦energy�r F ](s0 s1 s2 . . .) = rewu(s0 s1 . . . sn)

if {s0, . . . , sn−1} ∩ F = ∅, sn ∈ F and energy(s0 . . . sn) � r

For infinite paths π̃ that do not visit F within the given energy bound r,
utility[♦energy�r F ](π̃) is irrelevant. Assuming that F will be reached from state s
almost surely within the given energy bound, i.e., PM

s (♦energy�r F ) = 1, then the
expected value of utility[♦energy�r F ] under PM

s is well-defined and given by:

EM
s

(
utility[♦energy�r F ]

)
=
∑

π Pr(π) · utility[♦energy�r F ](π),

where π ranges over all finite paths s0 s1 . . . sn starting in s0 = s such that
{s0, . . . , sn−1} ∩ F = ∅, sn ∈ F and energy(s0 . . . sn) � r. We are interested in
the quantile

qs = min
{
r ∈ N : PM

s (♦energy�r F ) = 1 and EM
s

(
utility[♦energy�r F ]

)
� x

}
,

where min∅ =∞. Let

S′ =
{
s ∈ S : PM

s

(
♦energy�r F

)
= 1 for some r ∈ N

}
.

Then, for each such state s ∈ S′ the smallest energy bound such that F is visited
almost surely is given by

rs = QuMs
(
Pr�1(♦energy�? F )

)
.

If s ∈ S′\F , then u ∈ S′ and ru � rs−rewe(s) for all u ∈ S with P (s, u) > 0.
The values xs,i = EM

s

(
utility[♦energy�i F ]

)
for s ∈ S′ and i � rs are well-

defined and can be computed via the following linear-equation system:

xs,i = rewu(s) +
∑
u∈S

P (s, u) · xu,i−rewe(s) if s /∈ F and i � rs,
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where xs,i = 0 for s ∈ F and i � 0. In all other cases, the values xs,i are
irrelevant. If EM

s

(
utility[♦energy�i F ]

)
> x for a nonnegative rational number x

and s ∈ S′, then the value qs is well-defined and can be computed by an iterative
computation of the values xs,i for i = rs, rs+1, . . . until xs,i � x.

Quantiles in CTMCs. For continuous-time Markov chains, quantiles can be
defined in a similar way as for discrete Markov chains. However, in the case of
CTMCs we have to consider trajectories rather than paths, in which case the
quantile can be a real number (rather than an integer) and min and max in the
definitions need to be replaced with inf and sup, respectively.

Let C = (M, E) be a CTMC and rew a reward function possibly consist-
ing of state and action rewards. We consider here a CSRL-like [3] reward-
bounded reachability constraint ϕ[r] = ♦�rF , where F ⊆ S. An infinite tra-
jectory ϑ̃ = s0 t0 s1 t1 s2 t2 . . . satisfies ϕ[r] if there is some n ∈ N such that
rew(s0 t0 . . . tn−1 sn) � r and sn ∈ F . If p ∈ [0, 1] and s is a state in C such that
s /∈ F and PC

s (♦F ) > p, then we define:

QuMs
(
Pr�p(♦�?F )

)
= inf

{
r ∈ R : PC

s

(
♦�rF

)
� p
}

We are not aware of any method presented in the literature computing quantiles
of this form. A simple approximation scheme works as follows. The first step is
an exponential search to determine the smallest i ∈ N such that

PC
s

(
♦�2iF

)
� p.

For this step we might use known algorithms for computing reward-bounded
reachability probabilities in CTMCs [3]. The existence of such an index i is
guaranteed by the assumption PC

s (♦F ) > p. If i � 1, then we perform a binary
search to determine some value r ∈ [2i−1, 2i] such that

PC
s

(
♦�r− ε

2F
)
< p and PC

s

(
♦�r+ ε

2F
)
� p

for some user-defined ε > 0. Then, r is indeed an ε-approximation of the quantile
QuMs

(
Pr�p(♦�?F )

)
.

In the case where the exponential search aborts immediately with i = 0, we
proceed in the first step by an exponential search to the left (by considering the
reward-bounds 20 = 1, 12 ,

1
4 ,

1
8 , . . .) and determine the smallest i ∈ N with

PC
s

(
♦�2−i

F
)
< p.

The second step then corresponds to a binary search in the interval [2−i, 2−i+1].

6 Reasoning about the Energy-Utility Ratio

In this section, we detail another approach to combine energy and utility ob-
jectives by considering the ratio between the utility achieved during a system
execution and the energy consumed, called energy-utility ratio. To reason about
properties relying on this ratio, our aim is to apply probabilistic model-checking
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techniques. The undecidability results by Boker et al. [12] stated for temporal
logics extended by accumulations of numeric variables interpreted over nonprob-
abilistic models impose limitations on reasoning about quotients of two accumu-
lated values (such as energy-utility ratios). Nevertheless, there are decidable yet
useful patterns of properties detailed in [12] and in work on energy games [16,17],
which motivate a closer look at these patterns concerning the energy-utility ratio
in the probabilistic model-checking setting.

In particular, we consider requirements formalized by an ω-regular condi-
tion ϕ, which are combined with an invariance condition on the energy-utility
ratio. More precisely, given a quality threshold θ, we are interested in those exe-
cutions of a probabilistic system satisfying ϕ where at any time the energy-utility
ratio is at least θ. This pattern is rather natural, ensuring energy efficiency of
the considered system as well as fulfilling the requirements on functionality.

Energy-Utility MDP (EUM). To reason about systems where the energy-
utility ratio is of interest, we deal with MDPs Me,u = (M,wgte,wgtu) that are
equipped with two (state) weight functions: wgte for energy and wgtu for util-
ity. These weight functions formalize the current amount of energy (respectively,
utility) that has been consumed (respectively, achieved) so far during the execu-
tion. Formally, the consumed energy along a finite path π = s0 α0 s1 α1 . . . αn sn,
is defined by:

energy(π) =

n−1∑
i=0

wgte(si)

Likewise, utility(π) is defined by adding the utility weights of the states (except
for the last one) along π according to wgtu. We do not restrict the range of
utility(π), but suppose that energy(π) is positive for all finite paths π starting
from some distinguished (initial) state s = s0. This constraint can be checked in
polynomial time using standard shortest-path algorithms (see Lemma 1 below).
In order to formalize the requirements involving the energy-utility ratio already
detailed above, let us assume a given ω-regular condition ϕ and a safety con-
dition ψθ expressing that the energy-utility ratio is always at least the quality
threshold θ, which is assumed to be an arbitrary rational number. The energy-
utility ratio is formalized by the function ratio = utility

energy that assigns positive
rational numbers to finite paths of an EUM. Then, the path properties we focus
on in this section can be expressed by:

ψθ ∧ ϕ, where ψθ = �
(
ratio � θ

)
.

The semantics of ψθ is as expected. If π̃ = s0 α0 s1 α1 . . . is an infinite path in
M and ratio a function that assigns to each finite path a rational number, then:

π̃ |= �
(
ratio � θ

)
iff ratio

(
pref (π̃, k)

)
� θ for all k ∈ N.

Clearly, π̃ |= ψθ ∧ ϕ iff π̃ |= ψθ and π̃ |= ϕ. We are now interested in minimizing
or maximizing the probability for ψθ ∧ϕ in a given EUM. First, we show the de-
cidability of the almost-sure model-checking problem in EUMs that asks whether
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Pmax
s (ψθ∧ϕ) = 1 or Pmin

s (ψθ∧ϕ) = 1 (see Theorem 2). The corresponding prob-
lems where the task is to check whether Pmax

s (ψθ ∧ ϕ) > 0 or Pmin
s (ψθ ∧ ϕ) > 0

are more difficult as we will see in Example 3.

Theorem 2 (Almost-sure problems in EUMs). Let Me,u be an EUM as
above, s a state in M, ϕ a reachability, Büchi or parity property and θ ∈ Q be
a quality threshold. Then:

(a) The problem “does Pmin
s (ψθ ∧ ϕ) = 1 hold?” is in P.

(b) The problem “does Pmax
s (ψθ ∧ ϕ) = 1 hold?” is in NP ∩ coNP.

For proving Theorem 2 we employ some technical transformations first. To reason
about path properties of the form ψθ ∧ ϕ, we switch from Me,u to an MDP
(M,wgt) with a single rational-valued state weight function wgt : S → Q defined
by:

wgt(s) = wgtu(s) − θ · wgte(s)
We then have:

utility(π)

energy(π)
� θ iff wgt(π) � 0

The values of wgt might be rational. Since the weight functions for the energy
and the utility are supposed to be integer-valued, we multiply wgt with the
denominator of θ to obtain an integer-valued weight function. This permits to
assume that wgt(s) ∈ Z for all states s.

In order to prove statement (a), i.e., the upper polynomial bound for the
minimizing almost-sure model-checking problem, we first observe that

Pmin
s (ψθ ∧ ϕ) = 1 iff Pmin

s (ψθ) = 1 and Pmin
s (ϕ) = 1.

The condition Pmin
s (ϕ) = 1 can be checked in time polynomial in the size of

Me,u using standard techniques (see, e.g., [8]). We now address the task to
check whether Pmin

s (ψθ) = 1. Again we combine the weight functions for the
energy and utility to a single weight function wgt and replace the constraint
�(ratio � θ) with �(wgt � 0).

Lemma 1. Let M be an MDP with a weight function wgt : S → Q, and s a
state in M. The task to check whether

Pmin
s

(
�(wgt � 0)

)
= 1

is solvable in polynomial time. The same holds for any other constraint “� θ”
or “> θ” (rather than “� 0”) where θ is an arbitrary rational number.

Proof. The main argument is that:

Pmin
s

(
�(wgt � 0)

)
= 1 iff s �|= ∃♦(wgt < 0).

The decidability of the latter is derivable from known results for energy games
[16,17] or the result of [12], but the time complexity of these algorithms de-
signed for checking more complex properties is not polynomial. We consider the
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weighted graph that results fromM by ignoring the action names and transition
probabilities. That means, the nodes are the states and there is an edge from s
to s′ with weight w iff there is an action α ∈ Act(s) with P (s, α, s′) > 0. Using
standard shortest-path algorithms (e.g., Floyd or Bellmann-Ford) we compute
the length Δ(s, s′) of a shortest path from s to s′ for all state pairs (s, s′). Here,
Δ(s, s′) = +∞ if s′ is not reachable from s and Δ(s, s′) = −∞ if there is a cycle
with negative weight containing a state s̃ that belongs to a path from s to s′.
Then, Pmin

s (�(wgt � 0)) < 1 if and only if Δ(s, s′) < 0 for some state s′.
“if”: Pick some finite path π from s to s′ with wgt(π) = Δ(s, s′) and some
scheduler S such that π is a S-path. Then, the cylinder set of π has positive
measure under S and π̃ �|= �(wgt � 0) for all π̃ ∈ Cyl (π).
“only if”: Let S be a scheduler with PS

s

(
�(wgt � 0)

)
< 1. Then:

PS
s

(
♦(wgt < 0)

)
> 0

Hence, there is a finite S-path π starting in s such that wgt(π) < 0. With
s′ = last(π) we get:

Δ(s, s′) � wgt(π) < 0

Obviously, the constraint “� 0” can be replaced with “� θ” or “> θ”. �

In [16], an upper complexity bound of NP∩coNP was established for the almost-
sure model-checking problem of energy parity objectives in MDPs. Due to our
transformation ofMe,u towards (M,wgt), this result can be directly applied to
our setting and leads to a proof for statement (b) in Theorem 2. In combination
with Lemma 1, this completes the proof of Theorem 2.

The qualitative model-checking problem that asks whether PS
s (ψθ ∧ ϕ) is

positive for some or all schedulers S is much more difficult, since it depends
on the concrete transition probabilities. This even holds for the case of energy-
utility Markov chains (i.e., an EUM where Act(s) is a singleton for all states s)
as the following example shows.

Example 3. Consider the following Markov chainM with three states s0, s
+ and

s−. The transition from s+ and s− to s0 have probability 1. For the transition
probabilities of action walk in state s0 we deal with a parameter p ∈]0, 1[.

s0

s+ s−

walk,p

ret,1

walk,1−p

ret,1

wgt(s+) = 1

wgt(s−) = −1
wgt(s0) = 0

For instance, (M,wgt) results from the energy-utility Markov chainMe,u when
dealing with the quality threshold θ = 1, the energy weights wgte(s+) = 1 and
wgte(s−) = 1 and the utility weights wgtu(s+) = 2 and wgtu(s−) = 0, while all
other energy and utility weights are 0.
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The finite paths π = s0 s
1 s0 s

2 . . . sk s0 that start and end in s0 (where
s1, . . . , sk ∈ {s+, s−}) augmented with their accumulated weights wgt(π) consti-
tute a biased random walk starting at position 0 (the accumulated weight of the
path starting in state s0 of length 0) with possible steps from position " ∈ Z to
position "−1 with probability 1−p (for taking the cycle s0 s

− s0) and to position
"+1 with probability p (for taking the cycle s0 s

+ s0).
It is well-known that for p > 1

2 , with positive probability the random walk
drifts to the right and never reaches position −1, while for 0 < p � 1

2 , position
−1 will be visited almost surely. Thus:

PM
s0

(
�(wgt � 0)

)
> 0 iff p > 1

2

As a consequence, the answers for the qualitative model-checking problem “does
PMe,u

s

(
�(ratio � θ)

)
> 0 hold?” for a given energy-utility Markov chain Me,u

and the analogous questions “does Pmax
s

(
�(ratio � θ)

)
> 0 hold?” or “does

Pmin
s

(
�(ratio � θ)

)
> 0 hold?” for a given EUM Me,u and quality thresh-

old θ can depend on the specific transition probabilities. This rules out simple
algorithms relying on shortest-path arguments as in part (b) of Theorem 2. �

Despite the observation of the previous example, the positive qualitative model-
checking problem “does PMe,u

s (ψθ ∧ ϕ) > 0 hold?” and even the quantitative
model-checking problem are decidable when Me,u is a Markov chain. As we
will see now, this is a consequence of decidability results for model checking
probabilistic pushdown automata (pPDA) [15].

Theorem 3 (Quantitative analysis of energy-utility Markov chains).
Let Me,u be an energy-utility Markov chain, ϕ an ω-regular property and ρ ∈
[0, 1] a rational threshold. Then it is decidable whether PMe,u

s (ψθ ∧ ϕ) � ρ.

Proof. As explained before, we switch from Me,u to (M,wgt). From (M,wgt)
we now construct a pPDA P with one stack symbol. The control states of P are
the states S from M, including additional states inits for all s ∈ S. Moreover,
for each transition s → s′ in M (i.e., each pair of states s, s′ of states where
P (s, s′) > 0) with wgt(s) /∈ {−1, 0,+1} and k = |wgt(s)|, P contains k−1
additional control states s1, . . . , sk−1 with transitions s→ s1 → s2 → . . . sk−1 →
s′, all pushing (if wgt(s) is positive), keeping the stack as it is (if wgt(s) = 0),
or popping (if wgt(s) is negative). The transition probabilities of the transitions
si → si+1 are 1 for 1 � i < k where sk = s′, whereas the transition s → s1
has probability P (s, s′). Furthermore, inits has a single transition to s with
probability 1, pushing one stack symbol. Hence, during a run in P starting in
s with one stack symbol, the accumulated weight of (M,wgt) is represented
by the size of the stack in P . Since the initial states inits are never visited
again, all infinite runs in P correspond to those in M satisfying ψθ. In [15] it
was shown that the quantitative model-checking problem is decidable for any
ω-regular condition expressed over the control states of P . Dealing with a parity
condition ϕ and assuming that state s has the same parity color as inits and the
states s1, . . . , sk−1 that have been introduced to mimic an outgoing transition
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from s to s′ inM by |wgt(s)| push or pop operations, we obtain the decidability
of the question whether PM

s (�(ratio � 0) ∧ ϕ) � ρ, which is equivalent to
PMe,u

s (ψθ ∧ ϕ) � ρ. If ϕ is an arbitrary ω-regular property, then we construct
a deterministic parity automaton A for ϕ and deal with the standard product-
approach (see, e.g., [8]). �

The dual case of this theorem deciding PMe,u

s (ψθ ∧ ϕ) � ρ can be established
analogously. We leave the question of appropriate upper complexity bounds on
solving the quantitative model-checking problem open for further research. Note
that the size of the one-counter pPDA constructed in the proof above can be
exponential in the size of (M,wgt), where the weights are supposed to be rep-
resented as decimal or binary numbers. Besides the quantitative model-checking
problem detailed here, there are recent approaches approximating the probabil-
ity in a one-counter pPDA satisfying an ω-regular property, possible in poly-
nomial time [39]. It is clear that when M is an MDP, a construction as above
can also be achieved towards a one-counter MDP [13], i.e., one-counter pPDA
with actions assigned to the probabilistic transition relation. However, exist-
ing model-checking approaches for one-counter MDPs [13,14] do not allow for
model-checking nontrivial properties involving ratios of accumulated weights.

7 Conclusions

In this article we reported on our experience with probabilistic model checking
for evaluating low-level resource management protocols. We put the focus on the
inspirations that we got for theoretical work on quantitative measures to reason
about the duality of two weight functions, such as energy and utility. As sketched
in this article, we partly provided solutions, but still more theoretical work on
new algorithms, complexity-theoretic statements as well as tool support with
sophisticated techniques to tackle the state-explosion problem, needs to be ad-
dressed in future work. Although the research field on energy games and related
structures is very active, algorithms for reasoning about quotients of accumu-
lated values, such as energy-utility ratios, are rare. The undecidability results
for the model checking problem of temporal logics with accumulated values [12]
impose some limitations. Nevertheless, as the work on energy games and the
results in Section 6 show, there are several patterns of relevant properties where
algorithmic reasoning is possible. However, the presented results are just a first
step towards the theoretical foundations of energy-utility ratios in Markovian
models.
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15. Brázdil, T., Kučera, A., Stražovský, O.: On the Decidability of Temporal Properties
of Probabilistic Pushdown Automata. In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, pp. 145–157. Springer, Heidelberg (2005)



122 C. Baier et al.

16. Chatterjee, K., Doyen, L.: Energy and mean-payoff parity Markov decision pro-
cesses. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp.
206–218. Springer, Heidelberg (2011)

17. Chatterjee, K., Doyen, L.: Energy parity games. Theoretical Computer Science 458,
49–60 (2012)

18. Chatterjee, K., Majumdar, R., Henzinger, T.: Markov decision processes with mul-
tiple objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884,
pp. 325–336. Springer, Heidelberg (2006)

19. Chen, T., Han, T., Katoen, J.-P., Mereacre, A.: Model checking of continuous-
time Markov chains against timed automata specifications. Logical Methods in
Computer Science 7(1) (2011)

20. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
21. Desharnais, J., Panangaden, P.: Continuous stochastic logic characterizes bisimu-

lation of continuous-time Markov processes. Journal of Logic and Algebraic Pro-
gramming 56(1-2), 99–115 (2003)
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Abstract One of the first publications of Prakash Panangaden is about
compositional semantics of digital networks, back in 1984. Digital net-
works transform streams of input signals to streams of output signals.
If the output streams of the components of the network are functions
of their input streams, then the behavior of the entire network can be
nicely characterized by a recursive stream function. In this paper we
consider signal flow graphs, i.e., open synchronous digital networks with
feedbacks, obtained by composing amplifiers, mergers, copiers, and de-
layers. We give two characterizations of the recursive stream functions
computed by signal flow graphs: one algebraic in terms of localization
of modules of polynomials, and another coalgebraic in terms of Mealy
machines. Our main result is that the two characterizations coincide.

“Tell all the truth but tell it slant - success in circuit lies.”
— Emily Dickinson

1 Introduction

Signal flow graphs are a graphical representation for the analysis, modeling and
evaluation of linear systems as studied, for example, in signal processing algo-
rithms and systems theory [6,20]. They also occur in the literature as linear flow
graphs [16], linear finite state machines [17] or linear (sequential) circuits [25,18].
Here we will also refer to them simply as circuits since they are a special case of
digital networks.

Signal flow graphs are directed graphs in which the nodes transform input
signals into output signals (by amplifying, copying and merging), the arcs com-
municate signals without delay [12,13] (unlike in data flow graphs [11,7]), and
signal delay is implemented by registers. An arc which connects only a node
at its target is called an input end, similarly, an output end connects only a
node at its source. We classify signal flow graphs, along two parameters: being
open/closed and feedforward/feedback, where a signal flow graph is open if it
has an input end, otherwise it is closed. A signal flow graph is feedforward if it
has no cycles; otherwise it is a feedback circuit. Our main object of study are
open, feedback circuits. All other cases are viewed as instances of them.
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The behavior of a signal flow graph can be nicely characterized by a recursive
stream function. This works as follows. The internal state of the circuit is its
register contents. The internal state in the next step can be calculated as a linear
combination of the input and the registers. That is, the dynamics of a circuit can
be expressed as a system of linear of equations, one for each register. Since we
consider open circuits, the corresponding linear systems may have more variables
than equations where these extra (read-only) variables correspond to the input
arcs of the circuit.

One way of associating a stream transformation to an open linear system is
to solve it algebraically. Assuming that signals are elements of a unital, com-
mutative ring R, we present a generalization of the method given in [23] for
solving closed linear systems. The solution of a closed linear system is a fraction
of polynomials (i.e., a rational stream [24]). The solution of an open linear sys-
tem is also a fraction of polynomials, but its numerator consists of two or more
polynomials: one represents the initial register contents, and the others represent
the dependency on the input arcs. More precisely, we show that the solutions
of open linear systems are characterized by the localization of free modules of
polynomials over R.

Our second observation is that open linear systems (over a unital commutative
ring R) can be viewed as (generally infinite) Mealy machines with input and
output in R, and a free R-module as state space. Since Mealy machines are
coalgebras [3,9], they come equipped with a unique behavior map associating
each state of a Mealy Machine to a causal function from (input) streams to
(output) streams. In this way we obtain a coalgebraic characterization of signal
flow graphs.

Our main result is to show that the algebraic and the coalgebraic characteri-
zations of linear systems coincide. As a consequence we obtain a novel sound and
complete axiomatization of signal flow graphs, as well as an effective procedure
for deciding circuit equivalence.

Related Work. A strictly smaller class of signal flow graphs and their behaviors
has already been studied coalgebraically in [23,24], where the behaviors of closed
feedback circuits with signals from a field are characterized as rational streams.
In fact, our method for computing stream transformations for open feedback
circuits is a generalization of the one in [23,24] for computing streams. Also in
[23], the behaviors of open feedback circuits in which all registers are initially 0
were characterized as stream functions that multiply the input stream by a fixed
rational stream, but no algebraic characterization was provided. An alternative
algebraic calculus (without polynomials but using fixed points) for closed feed-
back circuits with signals over a field is given in [19], which yields also a sound
and complete axiomatization of rational streams. An extension of the latter cal-
culus (again without polynomials but using fixed points) to weighted automata
over alphabets of arbitrary size and weights in a semiring is presented in [4]. Our
method to represent stream transformations by fractions of polynomials over two
or more generators is inspired by the work in [10].
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Finally, we mention the classical methods of finding closed forms for linear
recurrences [28], which correspond to closed systems. A well-known example is
the formula for computing the Fibonacci numbers, involving the golden ratio.
There is also work (e.g., in [25]) on finding closed forms for what we call an
open system here, i.e., linear recurrences with a parameter. Such closed forms
allow efficient computation of single values, but usually it is difficult to check for
equivalence of closed forms. This differs from our approach which yields methods
for effective comparison, but not so much efficient computation of single values.

Overview. In Section 2 we recall basic facts from ring theory and universal
coalgebra. Signal flow graphs and their relationship with open linear systems
are briefly discussed in Section 3. In Section 4 we present the relevant algebraic
structures needed to solve open linear systems, and show their correspondence
with subsets of causal functions. Open linear system are solved algebraically
in Section 5, and coalgebraically in Section 6. The two solutions are shown to
coincide in Section 7. We summarize our results, and discuss future directions
in Section 8.

2 A Bit of Algebra and Coalgebra

In this section we recall the basic material from ring theory and from the coalge-
braic stream calculus needed throughout the paper. A more extensive introduc-
tion to commutative ring theory can be found in [1,8]. For the stream calculus
and universal coalgebra we refer to [21,23].

2.1 Rings, Modules and Algebras

Throughout this paper we let R denote a unital commutative ring, that is, a ring
(R,+, ·, 0, 1) in which the multiplication is commutative with neutral element 1.
Furthermore, we assume R is non-trivial, i.e., 0 �= 1 in R. We call an element
a ∈ R invertible if it has a multiplicative inverse a−1 ∈ R, i.e., a·a−1 = 1 = a−1·a.
We denote by R× ⊆ R the set of invertible elements of R. If for a, b ∈ R the
inverses a−1, b−1 exist, then (ab)−1 = b−1a−1.

A (unital) R-module is an abelian group (M,+, 0) together with a scalar
multiplication, written am for a ∈ R and m ∈ M , such that for every a, b ∈ R
and every m,n ∈M the following identities hold:

(a+ b)m = am+ bm a(m+ n) = am+ an
1m = m a(bm) = (ab)m.

Both rings and modules come with the usual notion of homomorphism. Module
homomorphisms will also be called linear maps.

A map f : S → R is said to have finite support if f(x) �= 0 only for finitely
many elements of x ∈ S. For every set S, the free R-module over S exists and can
be constructed as the set RS of all maps in S → R with finite support. Addition
and scalar multiplication are defined point-wise. Often we write an element m ∈
RSas a linear combination m = a1x1 + · · · + anxn, where x1, . . . , xn are the
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support of m. By universality of free constructions, every function f : S → M ,
whereM is an R-module, can be uniquely extended to a linear map f : RS →M
such that f = f ◦ i, where i(x) = 1x is the inclusion of S into RS . The extension
of f is given by f(a1x1 + · · ·+ anxn) = a1f(x1) + · · ·+ anf(xn).

A subset V of a module M is linearly independent if whenever
∑k

i=1 aivi = 0
for some ai ∈ R and vi ∈ V , then we have ai = 0 for all 1 ≤ i ≤ k. If f : S →M
is an injective map into an R-moduleM such that f(S) is a linearly independent
subset of M , then f : RS →M is injective.

If R is commutative and non-trivial, then finitely generated free modules
behave like vector spaces over a field. In fact, every generator set of RS has the
same cardinality as S. In this case the ring R is said to have an invariant basis
number and S is called a basis for the free module. Having such a basis, linear
maps between free finitely generated R-modules can be seen as matrices.

An R-algebra is an R-module that is also a commutative ring having a mul-
tiplication that is bilinear. Equivalently, an R-algebra is a pair (A,ψ) such that
A is a ring and ψ : R→ A is a ring homomorphism.

For example, every ring R is trivially an R-algebra, and hence an R-module.
A prototypical example of an R-algebra is the ring of polynomials R[X ] in a
single variable X (with the inclusion a �→ aX0).

2.2 Coalgebras

Given a functor F : Set → Set on the category of sets and functions, an
F -coalgebra consists of a set S together with a structure map c : S → FS. An
F -coalgebra homomorphism f : (S1, c)→ (S2, d) is a map f : S1 → S2 such that
d ◦ f = F (f) ◦ c. The F -coalgebras together with their homomorphisms form a
category denoted by Coalg(F ). A subcoalgebra of an F -coalgebra (S1, c1) is an
F -coalgebra (S2, c2) if the inclusion map S2 ↪→ S1 is a homomorphism.

An F -coalgebra (Z, ζ) is said to be final if for any F -coalgebra (S, c) there
exists a unique homomorphism c̃ : (S, c)→ (Z, ζ). The carrier Z can be thought
of as the set of all observable behaviors of F -coalgebras, and the unique homo-
morphism c̃ : (S, c) → (Z, ζ) is therefore also called the behavior map. A final
F -coalgebra, if it exists, is unique up to isomorphism. The structure map ζ of a
final coalgebra is necessarily an isomorphism [15].

An F -bisimulation between two F -coalgebras (S1, c1) and (S2, c2) is a relation
B ⊆ S1 × S2 that can be equipped with an F -coalgebra structure b such that
both projections π1 : B → S1 and π2 : B → S2 are F -coalgebra homomorphisms.
Two elements s1 ∈ S1 and s2 ∈ S2 are bisimilar if there exists an F -bisimulation
B containing the pair (s1, s2). We will use bisimulations as a tool for proving
that two states have the same observable behavior.

Proposition 1. Let (S1, c1) and (S2, c2) be two F -coalgebras with s1 ∈ S1 and
s2 ∈ S2, and assume that a final F -coalgebra exists. If s1 and s2 are bisimilar,
then c̃1(s1) = c̃2(s2), i.e., they have the same behavior.

The converse of the above proposition holds under the assumption that the
functor F preserves weak pullbacks [21].
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2.3 Elements of Stream Calculus

For a ring R, coalgebras for the functor S = R×(−) are called stream automata.
The final S-coalgebra is given by the set of all streams σ ∈ Rω = N→ R together
with the structure map ξ defined by ξ(σ) = (σ(0), σ′), where σ(0) is the initial
value of σ is σ′ its derivative [22]), i.e., for all n ∈ N, σ′(n) = σ(n + 1). The
inverse of ξ is given by the cons map defined by (r :σ)(0) = r, (r :σ)(n+1) = σ(n)
for all n ∈ N.

We define operations on Rω by means of behavioral differential equations [22],
i.e., by specifying their initial value and derivative. The following operations
become relevant for the algebraic characterizations of circuit behaviors in Sec-
tion 5.

Initial value Derivative Name
[r](0) = r [r]′ = [0] constant
X(0) = 0 X ′ = [1] shift
(σ + τ)(0) = σ(0) + τ(0) (σ + τ)′ = σ′ + τ ′ sum
(σ × τ)(0) = σ(0) · τ(0) (σ × τ)′ = σ′ × τ + [σ(0)]× τ ′ convolution product
σ−1(0) = σ(0)−1 (σ−1)′ = [−σ(0)−1]× σ′ × σ−1 convolution inverse

In the first column, r ∈ R and the operations +, · and (−)−1 on the right-hand
side of the equations are operations on R. We note that the inverse is only defined
on streams σ for which σ(0) ∈ R×. Note that (σ ×X) = (0, σ0, σ1, . . . ) for all
σ ∈ Rω. We will use the so-called fundamental theorem of stream calculus [22].

Proposition 2. For any σ ∈ Rω we have: σ = [σ(0)] + (σ′ ×X).

Proof. We note that (r :τ) = (r, τ0, τ1, . . . ) = [r]+(0, τ0, τ1, . . . ) = [r]+(τ×X) for
any τ ∈ Rω, and thus we obtain the desired result: σ = (σ0 :σ

′) = [σ0]+(σ′×X).

Streams over R form a unital, commutative ring (Rω,+,×, [0], [1]), and an
R-algebra via the embedding a �→ [a] of R into Rω. In other words Rω is an R-
module with the scalar multiplication aσ = [a]× σ. We denote by [Rω, Rω] the
set of all stream transformations, i.e., all functions from Rω to Rω. It forms a ring
under point-wise sum and (convolution) product, as well as an Rω-algebra via
the embedding of Rω as the subring of constant maps. A stream transformation
f : Rω → Rω is said to be causal whenever the n-th output of f depends only on
the elements up to n of its input. More precisely, f is causal if for all σ, τ ∈ Rω,
if σ(k) = τ(k) for all k ≤ n then f(σ)(n) = f(τ)(n).

Causal stream transformations play a key role in this paper. For example,
all constant maps as well as the identity are causal. We let C(Rω) ⊆ [Rω, Rω]
denote the subset of causal transformations on Rω. Since causal functions are
closed under point-wise sum and point-wise convolution product, the set C(Rω)
inherits the ring structure as well as the Rω-algebra structure from [Rω, Rω].
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3 Signal Flow Graphs and Linear Systems

3.1 Signal Flow Graphs

A signal flow graph [20,23] is a directed graph in which arcs connect up-to two
nodes. Nodes, also called gates, perform operations on signals from incoming arcs
and output the result on outgoing arcs. Signals are assumed to be elements of

a unital, commutative ring R. The amplifier gate (
a

) performs the scalar
multiplication of the incoming signal with a ∈ R. The adder gate (⊕) outputs
the sum of its inputs. A copier (•) simply copies its input to two (or more)
output ends. Finally, a register ( a ) is a one-element buffer which outputs
its content and stores the incoming signal. The initial content of the register is
thereby a. Arcs with no connecting gates at their source are input ends, whereas
those with no connecting gates at their target are output ends. For clarity, input
ends are marked with an input stream ι. We will also refer to signal flow graphs
simply as circuits. For technical simplicity we will consider only circuits with at
most one input ι end and one output end.

A circuit with no input end is closed, otherwise it is open. A circuit is called
feedforward if it contains no cycles; otherwise it is a feedback circuit. In order for
feedback circuits to have a well-defined behavior, all cycles are required to pass
through at least one register. Intuitively, the reason is that otherwise we would
end up with equations which may not have unique solutions. The condition will
be used in the construction in Section 3.2.

By feeding signals to the input end of a circuit we observe signals on its output
end. Since there is no limit on the number of signals a circuit can react to, the
behavior of a circuit is given by a function transforming input streams to output
streams. Closed circuits do not need any input, and their behavior is given by
constant stream functions, or, equivalently, by streams.

ι
⊕

0
−1

Δι ⊕
ι

0 ∫
ι

Fig. 1. A differentiator and an integrator signal flow graph

For example, the leftmost circuit in Fig. 1, implements a discrete differential
Δι where, for all n ∈ N,

(Δι) (0) = ι(0) and (Δι) (n+ 1) = ι(n+ 1)− ι(n) .

It consists of a copier, a register with initial value 0, a multiplication by −1 and
an adder. The rightmost circuit implements the discrete integral

∫
ι defined, for

all n ∈ N, by(∫
ι
)
(0) = ι(0) and

(∫
ι
)
(n+ 1) = ι(n+ 1) +

(∫
ι
)
(n) .
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Note that the discrete differential circuit is feedforward, whereas the integration
circuit is a feedback circuit.

By composing the two circuits (i.e., by linking the output arc of one circuit
with the input arc of the other), we obtain a new circuit that implements

∫
(Δι).

One can show by fairly straightforward induction that
∫
(Δι)(n) = ι(n) for all

n ∈ N. However, for more involved circuits, this may not always be easy. One
of the applications of our results is an algebraic calculus for proving circuit
equivalence (as opposed to point-wise, inductive reasoning).

3.2 Linear Systems

Signal flow graphs are graphical representations of linear systems, i.e., systems
of linear equations [5]. An (n-dimensional open) linear system L = (V,M,O, I)
is defined as follows. The set V = {v1, . . . , vn} is a set of n variables denoting
the registers, and in addition, we have a variable vin denoting the input signal.
Together they form the set V = {vin}+V . We use the free module RV to model
the assignment of register contents: every element

∑n
i=1 sivi ∈ RV (written as

(s1, . . . , sn)) denotes the assignment of si to the register vi. Analogously, the

elements of RV combine the input value for vin and assignments to registers.

Next,M andO are linear mapsM : RV → RV andO : RV → R that describe the
circuit wiring through which new values are fed to the registers and to the output
end. Since M is a linear map between free modules it can be represented as an
n× (n+1)-matrix over R with entries mi,j coming from: M(vin) =

∑n
i=1mi,0vi

and M(vj) =
∑n

i=1mi,jvi, for 1 ≤ j ≤ n. Similarly, O is a 1 × (n + 1)-matrix
with entries oi given by o0 = O(vin), and oi = O(vi), for 1 ≤ i ≤ n. Together,
M and O describe a system of n + 1 equations in the variables vin, v1, . . . , vn.
Finally, I = (r1, . . . , rn) ∈ RV is the vector of initial register contents.

One should think of the register contents over time as streams. If we denote
the current state by (s1, . . . , sn) (now viewed as a tuple of streams), the input
stream by ι, the next state of the system by (s′1, . . . , s

′
n), and the output stream

by o, then they satisfy the following system of stream differential equations:

s1(0) = r1

...

sn(0) = rn︸ ︷︷ ︸
I

s′1 = m1,0ι+m1,1s1 + · · ·+m1,nsn

...

s′n = mn,0ι+mn,1s1 + · · ·+mn,nsn

⎫⎪⎪⎬⎪⎪⎭M

o = o0ι+ o1s1 + · · ·+ onsn
}
O

By adapting the constructions given in [23] and [19], for every signal flow graph
C with one input end, one output end, finitely many gates and n registers, we
define its associated n-dimensional open linear system

L(C) = (V,M,O, I) (1)

as follows. We set V = {v1, . . . , vn}, and take I = (r1, . . . , rn) ∈ RV to be
the vector of the initial content of the registers of C. To define M , we build
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for each register vi a linear combination over vin, v1, . . . , vn by traversing the
graph in reverse direction starting from the input arc of vi and ending at a
register or an input end. These reverse paths form a syntax tree, say Ti, with
the root being the source of the arc entering the register vi and leaves among
vin, v1, . . . , vn. The tree branches at adder-gates and passes through a number
of scalar multiplier gates. If a branch ends in register vj the tree has a leaf vj ,
similarly for paths ending in the input end ι, the tree has a leaf vin. Since we
assume all cycles pass through a register, this tree is finite. Each tree Ti gives

rise to a linear combination mi,0vin +mi,1v1 + · · ·+mi,nvn ∈ RV by evaluating

Ti top-down in RV , and we define the i-th row of M (seen as a matrix) to be
Mi = (mi,0,mi,2, . . . ,mi,n). For the output of the circuit we get again a tree,

which yields a linear combination O ∈ RV in the same way.

T1

ι

T2

⊕v2

⊕
−1

v1

ι

Tout

⊕v2

⊕
−1

v1

ι

Fig. 2. Trees for flow in the composition of ciruits in Fig. 1

Example 3. Let v1, v2 denote the two registers from left to right in the compo-
sition of the circuits given in Fig. 1 that computes

∫
Δι. The constructed trees

for the registers and the output are shown in Fig. 2. These trees result in linear
combinations ι + 0v1 + 0v2, ι − v1 + v2 and again ι − v1 + v2, hence the linear
system given by

V = {v1, v2} I =

(
0
0

)
M =

(
1 0 0
1 −1 1

)
O =

(
1 −1 1

)
.

Conversely, we can construct from every linear system L a circuit, such that
its associated linear system is L.

Proposition 4. For all open linear systems L, there is a linear circuit C(L)
such that L(C(L)) = L. In other words, transforming C(L) back into a linear
system, see (1), yields the original system L again.

Proof. Let L = (V,M,O, I) be a linear system. Figure 3 sketches the linear
circuit C(L). In order to keep the picture simple, we use arrows pointing to and
originating from vi instead of drawing the full graph. By applying the definition,
we can check that L(C(L)) = L. ��

The shape of the matrixM of a linear system associated to a signal flow graph
gives us a precise characterization of closed and feedforward circuits.
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ι
m1,0 ⊕

m1,1

v1

⊕
m1,n

vn

r1

v1

o1 ⊕
o0

ι

...
...

ι
mn,0 ⊕

mn,1

v1

⊕
mn,n

vn

rn

vn

on ⊕
Fig. 3. Signal flow graph constructed from an open linear system

Lemma 5. Let C be a signal flow graph, and L(C) = (V,M,O, I) its associated
linear system.

1. If C is closed, then the first column of M and of O contains only 0’s.
2. If C is feedforward, then M is of the form

M =

⎛⎜⎜⎜⎝
m1,0 0 0 · · · 0 0
m2,0 m2,1 0 · · · 0 0

...
mn,0 mn,1 mn,2 · · · mn,n−1 0

⎞⎟⎟⎟⎠
The second part follows from the fact that, in a feedforward circuit, the register
variables can be ordered such that the input of a register only depends on the
registers preceding it in the order.

4 Algebraic Structures for Signal Flow Graphs

The ring structure on streams forms the basis of the algebraic structures that
characterize the behaviors of signal flow graphs. Recall that R is assumed to be
a unital, commutative ring. In this section we describe the relevant algebras. We
begin with the ring R[X ] of polynomials over R. It consists of all streams with
only finitely many non-zero elements, i.e., streams of the form [a0] + [a1]×X +
· · · + [an] × Xn for a0, . . . , an ∈ R. The following is a well-known fact about
polynomials.

Proposition 6. The set R[X ] of polynomials is a subring of Rω.

Polynomials are not closed under inverse, but we can extend the ring R[X ]
to fractions of polynomials using a construction called localization [1]. Let U be
the set of all invertible polynomial streams, i.e., U = {p ∈ R[X ] | p(0) ∈ R×}.



(Co)Algebraic Characterizations of Signal Flow Graphs 133

We observe that U is multiplicatively closed, a necessary condition to form the
localization of R[X ] (viewed as an R[X ]-module) at U :

R[X ]
[
U−1

]
= {[p : u] | p ∈ R[X ], u ∈ U} .

Elements in R[X ]
[
U−1

]
are equivalence classes with respect to the relation ∼

on R[X ]× U defined by

(p1, u1) ∼ (p2, u2) iff ∃v ∈ U : vp1u2 = vp2u1 .

Note that the extra v can be left out if, e.g., R is an integral domain. Using sum
and convolution product of streams, we define addition and multiplication by
scalars from R[X ] on R[X ]

[
U−1

]
as follows:

[p1 : u1] + [p2 : u2] = [p1u2 + p2u1 : u1u2]

q[p : u] = [qp : u] .

The above operations turn R[X ]
[
U−1

]
into an R[X ]-module with [0 : 1] as

additive identity, and such that, for all u ∈ U and p ∈ R[X ], u[p : uq] = [p : q]
In fact, R[X ]

[
U−1

]
is also a ring.

The behaviors of closed feedforward signal flow graphs are precisely the poly-
nomial streams R[X ], whereas those of closed feedback signal flow graphs are
the rational streams, i.e., the R[X ]-module R[X ]

[
U−1

]
, cf. [23].

For open, feedforward signal flow graphs, we will show that the relevant alge-

braic structure is given by the free R[X ]-module R[X ]
{ι,1}

generated by the two
elements set {ι, 1}. The intuition for these generators is that ι represents an un-
known input stream, and 1 captures the initial content of the registers. Elements

of R[X ]
{ι,1}

are of the form pι + q1 where p, q ∈ R[X ]. In the sequel, we will
write such an element simply as pι+ q. As for closed signal flow graphs, allowing
for feedback means constructing fractions. In the open case this means that we

will consider the localization of R[X ]
{ι,1}

at the set U of invertible polynomials:

R[X ]
{ι,1} [

U−1
]
= {[pι+ q : u] | p, q ∈ R[X ], u ∈ U} .

Similar to the previous localization, fractions [pι+ q : u] are equivalence classes

with respect to the relation ∼ on R[X ]{ι,1} × U defined by:

(p1ι+ q1, u1) ∼ (p2ι+ q1, u2) iff ∃v ∈ U : v(p1ι+ q)u2 = v(p2ι+ q)u1 .

As usual, we write pι+q
u instead of [pι+q : u]. Addition and scalar multiplication

are defined as expected, turning R[X ]{ι,1}
[
U−1

]
into an R[X ]-module which is

free among all R[X ]-modulesM for which the assignment λu : x �→ ux is a linear
isomorphism on M for all u ∈ U .

Proposition 7. The R[X ]-module R[X ]
{ι,1} [

U−1
]
together with the linear in-

clusion map ϕ : R[X ]
{ι,1} → R[X ]

{ι,1} [
U−1

]
given by ϕ(x) = x

1 satisfies the
following universal property [1,8].
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If M is an R[X ]-module such that for all u ∈ U , the linear maps λu : M →M

given by λu(x) = ux are isomorphisms, and if f : R[X ]
{ι,1} → M is a linear

map, then there is a unique linear map f : R[X ]{ι,1}
[
U−1

]
→ M extending f

such that the following diagram commutes:

R[X ] R[X ]{ι,1}
[
U−1

]

M

ϕ

f
!f

The extension of f is given by f([x : u]) = λ−1
u (f(x)). Moreover, if f is injective,

then its extension f is injective as well.

The following lemma relates the algebraic constructions used so far.

Lemma 8. There are inclusions among the constructed R[X ]-modules, as indi-
cated in the following commuting diagram

R[X ]
[
U−1

]
R[X ]{ι,1}

[
U−1

]

R[X ] R[X ]
{ι,1}

j

ϕ1

i

ϕ2

where ϕ1, ϕ2 are the inclusions into the localizations, i is given by x �→ x1, and j
is the linear extension j = ϕ2 ◦ i. All these inclusions are injective R[X ]-module
homomorphisms.

The elements of the four algebras above denote causal stream functions. The
polynomials R[X ] are by definition streams, or, equivalently, constant stream
transformations (which are clearly causal). For the algebras corresponding to
feedforward, closed and arbitrary circuits we have semantic maps �−�ff , �−�c and
�−� as shown here in the following diagram (we give their definitions below):

R[X ]{ι,1} R[X ]{ι,1}
[
U−1

]
R[X ]

[
U−1

]

{ι, 1} C(Rω)

�−�ff
�−�

�−�c

g

Here g : {ι, 1} → C(Rω) is the map defined by g(ι) = idRω and g(1) = σ �→ [1],

for all σ ∈ Rω . Since R[X ]{ι,1} is the free R[X ]-module over the set {ι, 1} the

map �−�ff : R[X ]
{ι,1} → C(Rω) is defined as the unique linear map extending g.

For all u ∈ U , the scalar multiplication λu : C(R
ω) → C(Rω) on C(Rω),

sends f to u × f (point-wise convolution). Since U consists of all invertible
polynomial streams, λu has an inverse λ−1

u (f) = u−1 × f , and hence each
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λu is a linear isomorphism on C(Rω). We can thus apply the universal prop-
erty of the localization (Prop. 7) in order to uniquely define the linear map

�−� : R[X ]{ι,1}
[
U−1

]
→ C(Rω) as the extension of �−�ff : R[X ]{ι,1} → C(Rω).

Finally, the map �−�c : R[X ]
[
U−1

]
→ C(Rω) is obtained by restricting �−�

along the inclusion R[X ]
[
U−1

]
↪→ R[X ]

{ι,1} [
U−1

]
. Note that �[p : q]�c is simply

the constant map that sends every stream to the rational stream p× q−1.

Theorem 9 (Soundness and completeness). For all x, y ∈ R[X ]{ι,1}
[
U−1

]
,

x = y if and only if �x� = �y�.

Soundness is, in fact, what allows us to define �−� : R[X ]{ι,1}
[
U−1

]
→ C(Rω)

as (linear) map. Completeness, on the other hand, is a consequence of the fact
that all the maps �−�ff , �−�c, and �−� are injective, since idRω and σ �→ [1] are
linearly independent in the R[X ]-module C(Rω).

5 Solving Linear Systems, Algebraically

In this section we give a matrix-based method for computing the solution of an
open linear system. Our method is a novel adaptation of the method presented
in [23] for solving closed linear systems.

Let L = (V,M,O, I) be an n-dimensional open linear system with (stream)
variables V = {v1, . . . , vn}. We use the fact that the matrix M over R can be
seen as a matrix over R[X ] by applying the inclusion a �→ [a] to each entry inM .
This allows us to multiply M (entry-wise) with scalars from R[X ]. Likewise, we
implicitly apply the entry-wise inclusion to view I as a vector over R[X ]. More
abstractly, we are using the R[X ]-algebra structure on the matrices.

Informally, a state solution to L is an assignment sσ : V → Rω, which depends
on an input stream σ, and satisfies the equations of L when taking ι = σ. By
the fundamental theorem of stream calculus (Prop. 2), for any such assignment,
we have sσ(vi) = [sσ(vi)(0)] + sσ(vi)

′X for each vi ∈ V . Hence, as a system of
constraints L is equivalent to the system expressed by:

sσ = I + (MX)

(
ι
sσ

)
This system is, in turn, equivalent to the “square” system:(

ι
sσ

)
=

(
ι
I

)
+

(
0

MX

)(
ι
sσ

)
where 0 denotes a row of n+ 1 0’s. Finally, this system is equivalent to(

In+1 −
(

0
MX

))(
ι
sσ

)
=

(
ι
I

)
(2)

where In+1 is the (n+ 1)-dimensional identity matrix. Formally, the system (2)
can be seen as an equation over the V -fold direct sum (copower) V*Γ =

⊕
V Γ
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of Γ where Γ = R[X ]
{ι,1} [

U−1
]
, as before. Elements of V*Γ are (n+1)-vectors,

and to ease readability, we introduce the notation ( ιx ) = ιvin + x ∈ V*Γ where
x = (x1, . . . , xn) ∈ V*Γ . Using the usual matrix-vector product, we can apply
M to vectors from the R[X ]-module V*Γ , and solve the system using standard
methods from linear algebra [1]. Note also that (2) does not depend on the output
O of the linear system. We therefore call it a state equation, and a solution will
be referred to as a state solution of L.

Definition 10. Let L = (V,M,O, I) be a linear system. A state solution to L
is an element s ∈ V*Γ such that(

In+1 −
(

0
MX

))(
ι
s

)
=

(
ι
I

)
.

A solution s to L thus contains for each vi ∈ V an element si in the localization
Γ = R[X ]

{ι,1} [
U−1

]
. Since we have seen in the previous section that localization

elements denote causal functions, we get a stream assignment sσ : V → Rω

defined by sσ(vi) = �si�(σ), for all streams σ ∈ Rω. The dependency on the

input ι is thus formalized via the free module R[X ]
{ι,1}

.

Proposition 11. Every n-dimensional open linear system L = (V,M,O, I) has

a unique state solution s ∈ V*
(
R[X ]

{ι,1} [
U−1

])
.

If s ∈ V*Γ is the unique state solution of L, then the output solution of
L is the localization element obtained by applying the output map O to the
(n+ 1)-vector ιvin + s, that is, the output solution of L is defined as

O(ιvin + s) ∈ R[X ]
{ι,1} [

U−1
]
.

Note that the output solution is uniquely defined for L due to the existence
of a unique state solution.

Definition 12. If L is an open linear system, then we define the algebraic so-
lution to L, denoted by �L�, as the algebraic semantics of the output solution:
�L� = �O(ιvin + s)� ∈ C(Rω).

In Section 7 we will show that �L� is indeed the behavior of any signal flow
graph represented by L.

Example 13. We solve the system from Example 3 using the above method.⎛⎝ 1 0 0
−X 1 0
−X X 1−X

⎞⎠⎛⎝ ι
s1
s2

⎞⎠ =

⎛⎝ι0
0

⎞⎠
Using Gaussian elimination, we find the state solutions s1 = ιX ,

s2 = ιX−ιX2

1−X = ιX and the output solution

o = 1ι− ιX + 1
ιX − ιX2

1−X = ι− ιX + ιX = ι .

Hence the composition
∫
(Δι) is the identity, as expected.
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6 Solving Linear Systems, Coalgebraically

In this section we describe a coalgebraic method of associating a stream trans-
formation to a linear system. The key observation is that each linear system
can be viewed as a Mealy machine. The Mealy machines we will consider are
coalgebras for the functor M = (R × (−))R. Intuitively, for a set of states S, a
structure map c : S →MS assigns to each state x ∈ S and input value a ∈ R a
pair (o, y) ∈ R×S, where o is the output and y is the next state of the machine
in state x on input a.

A final M-coalgebra exists, and is given by the set C(Rω) of causal stream
transformations equipped with the structure map δ : C(Rω) → (R × C(Rω))R

defined for all f ∈ C(Rω) and a ∈ R by δ(f)(a) = (f [a], f (a)) where for all
σ ∈ Rω,

f [a] = f(a : σ)(0) ∈ R,
f (a)(σ) = f(a : σ)′ ∈ Rω,

(3)

(see e.g. [9]). Note that because f is causal the definition of f [a] is independent
of the choice of σ ∈ Rω, and f (a) is causal as well.

By instantiating the notion of bisimulation to the functor M, we obtain that
a bisimulation between Mealy machines (S1, c1) and (S2, c2) is a relation B ⊆
S1 × S2 such that for all (s1, s2) ∈ B and all a ∈ R the following holds: if
(o1, t1) = c1(s1)(a) and (o2, t2) = c2(s2)(a) then

o1 = o2 and (t1, t2) ∈ B.

Definition 14 (Linear machines). Let L = (V,M,O, I) be an open linear
system with extra input variable vin. We define the Mealy machine associated
with L as the Mealy machine (RV , cL), where cL : R

V → (R × RV )R is defined
by

cL(x)(a) = (O(avin + x),M(avin + x))

for all a ∈ R and x ∈ RV .

We point out that for the linear machine (RV , cL) associated with some L,
the actual structure map cL : R

V → (R × RV )R is, in general, not linear, only
its uncurried form cL : R

V ×R→ R×RV is linear.
A Mealy machine (S, c), is called a linear machine if S is an R-module and

the uncurried structure map c : S ×R→ R × S is linear. Clearly, not all Mealy
machines are linear machines. In particular, the final M-coalgebra (C(Rω), δ)
is not a linear machine, because δ is not linear, even though δ itself is linear.
So the final Mealy machine is linear in the (coalgebraic) “curried form” whereas
linear machines are linear in “uncurried form”.

We denote by 〈LM〉 the least subcoalgebra of (C(Rω), δ) containing the be-
haviors of all linear machines. Similarly, 〈LMc〉 and 〈LMff〉 denote the least
subcoalgebras of (C(Rω), δ) containing the behaviors of all linear machines as-
sociated to closed, respectively feedforward, circuits.

We define the coalgebraic solution of an open linear system via the final Mealy
machine.
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Definition 15. Let L = (V,M,O, I) be an open linear system. We define the
coalgebraic solution of L, denoted by 〈|L|〉, to be the coalgebraic behavior of the
initial state I in its Mealy machine (RV , cL), that is, 〈|L|〉 = c̃L(I) ∈ C(Rω).

Example 16. Taking the linear system in Example 3 (our running example), we
calculate the first few outputs and states of the resulting Mealy machine with
input stream σ ∈ Rω. To this end, we set s0 = I and (ok, sk+1) = cL(sk)(σk)
and compute the concrete values:

o0 = O(σ0vin + s0) = σ0 − 0 + 0 = σ0

s1 =M(σ0vin + s0) = σ0v1 + (σ0 − 0 + 0)v2 = σ0v1 + σ0v2

o1 = O(σ1vin + s1) = σ1 − σ0 + σ0 = σ1

s2 =M(σ1vin + s1) = σ1v1 + (σ1 − σ0 + σ0)v2 = σ1v1 + σ1v2

...

Clearly, we get 〈|L|〉(σ) = c̃L(I)(σ) = (o0, o1, . . . ) = σ as expected.

7 Algebraic and Coalgebraic Solutions Coincide

In the previous two sections we have seen an algebraic and a coalgebraic method
for assigning a causal stream transformation to a linear system. In this section
we will show that the two methods lead to the same element of C(Rω).

To begin with, we show that the localization R[X ]
{ι,1} [

U−1
]
can be given a

Mealy machine structure such that the algebraic semantics �−� coincides with
its coalgebraic behavior map. For a more compact notation, we define Γ =

R[X ]
{ι,1} [

U−1
]
. The Mealy structure on Γ is defined by a two-step procedure

that mimics the definition of the structure map of the final Mealy machine in
(3): For all causal functions f ∈ C(Rω),

f λa ∈ R.f(a : −) λa ∈ R.λσ ∈ Rω.(f(a : σ)(0), f(a : σ)′) .

Let x ∈ Γ . To mimic the leftmost step above, we need an element xa ∈ Γ such
that �xa� = �x�(a:−). The idea is to obtain xa by substituting a:ι = a+ ιX for ι

in x. Formally, we define the substitution x[y/ι] of y ∈ R[X ]
{ι,1}

for ι in x as the
linear extension of the map ρy : {ι, 1} → Γ with ρy(ι) = y and ρy(1) = 1, i.e.,
x[y/ι] := ρy(x). More concretely, for x = (pι+ q)u−1 and y = rι+ t, we have

x[y/ι] = (prι + (pt+ q))u−1 .

Lemma 17. For all x ∈ R[X ]
{ι,1} [

U−1
]
, a ∈ R and σ ∈ Rω,

�x[(a+ ιX)/ι]�(σ) = �x�(a : σ) .
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We now make the observation, that x[(a+ιX)/ι] lies in the submodule G ⊆ Γ
where ι always occurs “guarded”, namely in the form ιX :

G =

{
pιX + q

u

∣∣∣∣ p, q ∈ R[X ], u ∈ U
}
.

Due to the guardedness, we can define linear maps o : G → R and d : G → Γ ,
which should be thought of as taking initial value and derivative of guarded
stream expressions, by inductively applying the behavioral differential equations
from Section 2.3 with the special case that o(ιX) = 0 and d(ιX) = ι. The
Mealy machine on Γ is obtained by composing the substitution with the maps
o : G→ R and d : G→ Γ .

Definition 18. The localization Γ = R[X ]
{ι,1} [

U−1
]
can be turned into a

Mealy machine with the structure map γ : Γ → (R× Γ )R defined by

γ(x)(a) = (o(x[(a + ιX)/ι]), d(x[(a+ ιX)/ι])) .

Concretely, for x = pι+q
u ∈ Γ and a ∈ R we have:

o(x[(a + ιX)/ι]) =
p(0)a+ q(0)

u(0)

d(x[(a + ιX)/ι]) =
p

u
ι+

u(0)(p′a+ q′)− (p(0)a+ q(0))u′

u(0)u
.

Since we defined o and d inductively using the behavioral differential equa-
tions, one can show using Lem. 17 and Def. 18 that for all x ∈ Γ , all a ∈ R and
all σ ∈ Rω:

o(x[(a+ ιX)/ι]) = �x�(a : σ)(0)

�d(x[(a+ ιX)/ι])�(σ) = �x�(a : σ)′ .

In other words, we have shown the following lemma.

Lemma 19. The algebraic semantics �−� : Γ → C(Rω) is a Mealy machine
homomorphism from (Γ, γ) to (C(Rω), δ). By finality of (C(Rω), δ), the algebraic
semantics coincides with the coalgebraic behavior map, that is, �x� = γ̃(x) for
all x ∈ Γ .

We will use the above lemma to show our main result.

Theorem 20. For any open linear system L, the algebraic solution of L coin-
cides with the coalgebraic solution of L: �L� = 〈|L|〉.

Proof. Let L = (V,M,O, I) be an n-dimensional open linear system and let
s ∈ V*Γ be the unique state solution of L. Furthermore, let (RV , cL) be the
Mealy machine associated to L with initial state I. The proof is divided into two
steps. We leave out some details.

First, we construct a Mealy machine (V*Γ, d : V*Γ →M (V*Γ )) on the
solution space. The map d is obtained by applying the Mealy structure (Γ, γ)
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point-wise. For x = (x1, ..., xn) ∈ V*Γ and a ∈ R, let d(x)(a) = (O(avin+o), x
′)

where o =
∑n

i=1 oivi and x
′ =
∑n

i=1 x
′
ivi with γ(xi)(a) = (oi, x

′
i) for i = 1, . . . , n.

With this definition, we can show that for all x ∈ V*Γ , d̃(x) = γ̃(O(ιvin + x)).

By Lem. 19 we get �O(ιvin+x)� = γ̃(O(ιvin+x)), and hence �O(ιvin+x)� = d̃(x).
In the second step we build a bisimulation B between (V *Γ, d) and (RV , cL)

with (s, I) ∈ B from which d̃(s) = c̃L(I) and hence �O(ιvin+s)� = c̃L(I) follows,
as desired. The relation B is constructed in the following way. We denote by
Iσ[n] ∈ RV the state reached in (RV , cL) after reading σ[n] = (σ(0), . . . , σ(n−1))
when starting in state I. For 0 we put Iσ[0] = I for all σ ∈ Rω. Analogously, we
denote by sσ[n] ∈ V*Γ the state reached in the Mealy machine (V*Γ, d) after
reading σ[n] when starting from the state solution s, and again we put sσ[0] = s.

Using the fact that s is a state solution, we can show that sσ[n] is obtained
by applying M repeatedly to the inputs σ(0), . . . , σ(n − 1) and s. To this end,

let π : V*Γ → V*Γ be the evident projection and M [k] = π ◦ ( 0
M )

k
the k-

fold composition ofM , followed by this projection. Furthermore, we define xn =∑n−1
i=0 σiX

i+ ιXn ∈ Γ and observe, that for n ≥ 1 the xn is in fact an element of
G, the submodule of Γ in which ι occurs in guarded form. With a bit of patience
one arrives at the following explicit definitions

sσ[n] =M [n]

(
0

s[xn/ι]

)
+

n−1∑
k=0

M [k+1]

(
x
(n−k−1)
n

0

)

Iσ[n] =M [n]

(
0
I

)
+

n−1∑
k=0

M [k+1]

(
σn−k−1

0

)
.

It is now easy to see that, applying o, we have o
(
x
(n−k−1)
n

)
= σn−k−1 and

o(s[xn/ι]) = I. By point-wise application of o we deduce, that the outputs
of d

(
sσ[n]

)
(a) and cL

(
Iσ[n]

)
(a) match for all a ∈ R. Moreover, one can also

show, that the next states are sτ [n+1] and Iτ [n+1] for some τ ∈ Rω with τ [n] =

σ[n] and τ(n) = a. Thus the relation B =
{(
sσ[n], Iσ[n]

) ∣∣ σ ∈ Rω, n ∈ N
}

is

a bisimulation. Finally, by definition (s, I) =
(
sσ[0], Iσ[0]

)
∈ B and the claim

follows. ��

We end this section with a Kleene-style theorem showing that the module

R[X ]
{ι,1} [

U−1
]
characterizes precisely the behaviors of all open linear systems.

Theorem 21. For every open linear system L, the unique output solution x of

L is in R[X ]{ι,1}
[
U−1

]
. Conversely, for every x ∈ R[X ]{ι,1}

[
U−1

]
there is an

open linear system L such that x is the output solution of L.

Proof. One direction of the above theorem is just Prop. 11. In order to prove

the other direction, we sketch here how to construct from x ∈ R[X ]
{ι,1} [

U−1
]

an open linear system L with x as output solution. Assume x = pι+q
u where,

without loss of generality, u0 = 1.
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We take as L the linear system associated with the following signal flow graph:

ι

0

0

p0

p1

pn

⊕

1

0

0

q0

q1

qm

⊕

0

0

−u1

−uk

⊕
The register contents are represented as a state vector s =

(
sp sq su

)T ∈
Rn+(m+1)+k separated into sp ∈ Rn, sq ∈ Rm+1 and su ∈ Rk.

More concretely, L = (V,M,O, I) with variables V = Vp + Vq + Vu using
Vp = {1, . . . , n}, Vq = {1, . . . ,m+ 1} and Vu = {1, . . . , k} is defined as follows.

The initial state is I = (Ip, Iq, Iu) where

Ip = (0, . . . , 0) Iq = (1, 0, . . . , 0) Iu = (0, . . . , 0).

We describe the matrixM by letting s(a) =M(avin+s) =M(avin+sp+sq+su):

s
(a)
p,1 = a s

(a)
p,i+1 = sp,i, 1 ≤ i ≤ n− 1

s
(a)
q,1 = 0 s

(a)
q,i+1 = sq,i, 1 ≤ i ≤ m

s
(a)
u,1 = O(avin + s) s

(a)
u,i+1 = su,i, 1 ≤ i ≤ k − 1.

The output matrix O is

O = (p0, p1, . . . , pn, q0, . . . , qm,−u1, . . . ,−uk).

To prove that the output behavior of this linear system is x we consider the
Mealy machine (Rn+(m+1)+k, cL) associated to L. Consider now the relation
B ⊆ Rn+(m+1)+k × Γ given by

B =

{
(s, z)

∣∣∣∣∣ z = p

u
ι+

1

u

(
n∑
i=1

sp,ip
(i) +

m+1∑
i=1

sq,iq
(i−1) −

k∑
i=1

su,iu
(i)

)}

One can verify that B is a bisimulation between (Rn+(m+1)+k, cL) and (Γ, γ),
and that (I, x) ∈ B, hence we have that c̃L(I) = γ̃(x) = �x�.

By solving the system L algebraically, we get a unique output solution xo ∈
R[X ]{ι,1}

[
U−1

]
with �xo� = c̃L(I) by Thm. 20. Since �−� is injective (Thm. 9)

we have x = xo. ��

Due to Thm. 21, given an open linear system L, we can simply refer to �L� =
〈|L|〉 as the behavior of L. Given a signal flow graph C, we refer to �L(C)� =
〈|L(C)|〉 as the behavior of C.
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We can use Thm. 21 to give a precise characterization of the behaviors of the
subclasses of closed, respectively feedforward, circuits.

Corollary 22. We have the following axiomatizations:

a) The behaviors 〈LM〉 of all circuits is an R[X ]-submodule of C(Rω), and

〈LM〉 ∼= R[X ]
{ι,1} [

U−1
]
as R[X ]-modules and as Mealy machines.

b) The behaviors 〈LMc〉 of closed, feedback circuits is an R[X ]-submodule of
C(Rω), and 〈LMc〉 ∼= R[X ]

[
U−1

]
as R[X ]-modules and as Mealy machines.

c) The behaviors 〈LMff〉 of open, feedforward circuits is an R[X ]-submodule of

C(Rω), and 〈LMff〉 ∼= R[X ]
{ι,1}

as R[X ]-modules and as Mealy machines.

Proof. a) It follows immediately from Thm. 21 that the image of the alge-

braic semantics map �−� : R[X ]
{ι,1} [

U−1
]
→ C(Rω) is 〈LM〉, and by soundness

and completeness (Thm. 9), �−� is an injective linear map of R[X ]-modules,

hence a module isomorphism from R[X ]
{ι,1} [

U−1
]
to 〈LM〉. From the fact that

�−� : R[X ]{ι,1}
[
U−1

]
→ 〈LM〉 is also a bijective Mealy homomorphism, it follows

that R[X ]
{ι,1} [

U−1
]
and 〈LM〉 are also isomorphic as Mealy machines.

Since �−� is both an R[X ]-linear map and a Mealy homomorphism which more-
over is injective, it suffices for the remaining items to show that the restrictions

of �−� to R[X ]
[
U−1

]
and R[X ]{ι,1} have range 〈LMc〉 and 〈LMff〉, respectively.

b) Let x = q
u ∈ R[X ]

[
U−1

]
and j(x) = 0ι+q

u ∈ R[X ]{ι,1}
[
U−1

]
its embedding.

Then we construct a circuit C for x such that �x�c = �j(x)� = �L(C)�, following
the proof of Thm. 21. By construction, this circuit will be independent of the
input, i.e., C is closed and hence �x�c ∈ 〈LMc〉. Conversely, if C is a closed,
feedback circuit and L = (V,M,O, I) its associated linear system, then the first
column of O is 0 (cf. Lem. 5). Consequently, the output solution of L is of the
form j(x) = 0ι+q

u for some x ∈ R[X ]
[
U−1

]
with 〈|L|〉 = �j(x)� = �x�c, thus

�−�c : R[X ]
[
U−1

]
→ 〈LMc〉 is onto.

c) Let x = pι + q ∈ R[X ]
{ι,1}

and ϕ2(x) =
pι+q
1 ∈ R[X ]

{ι,1} [
U−1

]
its embed-

ding. Then we construct again a circuit C for x such that �x�ff = �ϕ2(x)� =
�L(C)�, following the proof of Thm. 21. By construction, C is feedforward (since
u1, . . . , uk will all be 0), and hence �x�ff ∈ 〈LMff〉. Conversely, if C is an open,
feedforward circuit and L = (V,M,O, I) its associated linear system, then M
is of the “lower-triangular form” given in Lem. 5. It follows that the output

solution of L will be of the form ϕ(x) = pι+q
1 for some x ∈ R[X ]

{ι,1}
with

〈|L|〉 = �ϕ(x)� = �x�ff , so �−�ff : R[X ]
[
U−1

]
→ 〈LMff〉 is onto. ��

Remark 23. From the coalgebraic point of view, one may wonder, whether any
of our algebraic characterizations of open signal flow graphs is a fixed point for
the functor M of Mealy machines. For closed feedback signal flow graphs, the
localization R[X ]

[
U−1

]
is a fixed point of the functor for streams [4,19]. In the

general case of open signal flow graphs the result is negative, i.e., γ : Γ → (R×
Γ )R is not an isomorphism, for Γ = R[X ]

{ι,1} [
U−1

]
. It is indeed easy to see that

d is not surjective by taking, for example f ∈ (R×Γ )R with f(a) = (1, ι) ∈ R×Γ
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for all a ∈ R. Let us assume there is an element x = pι+q
u ∈ Γ with d(x) = f .

Then we necessarily have h(x[(a + ιX)/ι]) = 1 and we can deduce that p0 = 0,
for otherwise a cannot be arbitrary. It follows that x is of the following form (for
new p, q, u ∈ R[X ])

x =
b+ qX + pXι

b+ uX

From the requirement that (x[(a+ιX)/ι])′ = ι, we can derive that paXι = b+uX
and hence, by taking initial output, that 0 = b which is a contradiction. Thus
there is no x ∈ Γ with d(x) = f , i.e., d is not surjective and therefore Γ is not
a fixed point of the functor M.

8 Concluding Remarks

Our main contribution in this paper is the axiomatization of signal flow graphs
using standard mathematical concepts and techniques, such as polynomials and
module localization. In the following table we give an overview of the algebras
corresponding to different classes of signal flow graphs.

type feedforward feedback

closed Free R-algebra R[X ] of polynomials Localization R[X ]
[
U−1

]
open Free R[X ]-module R[X ]{ι,1} Localization R[X ]{ι,1}

[
U−1

]
Our results yield a method for deciding circuit equivalence by comparing solu-

tions in the localization Γ = R[X ]
{ι,1} [

U−1
]
. Deciding whether p1ι+q1

u1
= p2ι+q2

u2

boils down to finding a v ∈ U such that v(p1u2−p2u1) = 0 and v(q1u2−q2p1) = 0

hold (using that R[X ]
{ι,1}

is freely generated). If R is an integral domain, then
this problem reduces to the simple problem of deciding equivalence of polynomi-
als: p1u2 = p2u1 and q1u2 = q2p1. If equality in R is effectively decidable, then
polynomial equivalence is effectively decidable, since R[X ] is the free commu-
tative R-algebra over the single generator X . Summarizing, if R is an integral
domain in which equality is effectively decidable, then so is equality in Γ .

We have restricted our attention to circuits with at most one input end, and
one output end. It is straightforward to extend our result to more inputs by
using different generators ι1, . . . , ιk for each input end. Multiple outputs, on the
other hand, can be represented by changing the underlying ring to Rm (with
component-wise operations).

All the work in this paper is based on the assumption that signals are elements
of a commutative ring. There are, however, interesting rings used in systems
theory which are non-commutative, such as the ring of matrix polynomials [27].
An interesting future direction is the generalization of our results using non-
commutative localization. This raises two problems: first one needs different
conditions on the ring to still have an invariant basis number, so that matrices
still represent linear maps. The second problem is that in the localization one
generally loses the property that every element is of the form a

u , instead they will
be sums of such fractions. For discussions on these issues see for example [14].



144 H. Basold et al.

The localization Γ and the causal functions C(Rω) both carry algebraic as
well as coalgebraic structure. This suggests the presence of a more abstract
description in terms of bialgebras for a distributive law [2,26]. However, it is not
clear what the involved monad is, and as discussed after Def. 14 it is also not
clear how open linear systems can be viewed as coalgebras over a category of
algebras. We do not exclude the possibility of a bialgebraic modeling of open
linear systems, but we have to leave it as future work.
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Abstract. This paper is concerned with final coalgebra representations
of fractal sets. The background to our work includes Freyd’s Theorem:
the unit interval is a final coalgebra of a certain endofunctor on the cat-
egory of bipointed sets. Leinster’s far-ranging generalization of Freyd’s
Theorem is also a central part of the discussion, but we do not directly
build on his results. Our contributions are in two different directions.
First, we demonstrate the connection of final coalgebras and initial al-
gebras; this is an alternative development to one of his central contribu-
tions, working with resolutions. Second, we are interested in the metric
space aspects of fractal sets. We work mainly with two examples: the
unit interval [0, 1] and the Sierpiński gasket S as a subset of R2.

1 Introduction

This paper is a contribution to the presentation of fractal sets in terms of final
coalgebras. The first result on this topic was Freyd’s Theorem in [6]: the unit
interval [0, 1] is the final coalgebra of a functor X �→ X ⊕X on the category of
bipointed sets. Leinster [10] offers a sweeping generalization of this result. He is
able to represent many of what would be intuitively called self-similar spaces
using (a) bimodules (also called profunctors or distributors), (b) an examination
of non-degeneracy conditions on functors of various sorts; (c) a construction of
final coalgebras for the types of functors of interest using a notion of resolution.
In addition to the characterization of fractal sets as sets, his seminal paper also
characterizes them as topological spaces.

Our major contribution is to suggest that in many cases of interest, point (c)
above on resolutions is not needed in the construction of final coalgebras. Instead,
one may obtain a number of spaces of interest as the Cauchy completion of an
initial algebra, and this initial algebra is the set of points in a colimit of an ω-
sequence of finite metric spaces. This generalizes Hutchinson’s characterization
of fractal attractors in [8] as closures of the orbits of the critical points. In
addition to simplifying the overall machinery, it also presents a metric space
which is “computationally related” to the overall fractal. For example, when
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applied to Freyd’s construction, our method yields the metric space of dyadic
rational numbers in [0, 1]. When applied to the Sierpiński gasket S, it yields a
countable metric space whose completion is S and which might be taken as the
set of finitely described points in S.

Our second contribution is not completed at this time, but it is a set of results
on metric space characterizations of final coalgebras. This point was raised as
an open issue in Hasuo, Jacobs, and Niqui [7]; this paper was important to
us because it emphasized algebras in addition to coalgebras, and because it
highlighted endofunctors defined using quotient metrics. Indeed, we use quotient
metrics in the main results of this paper. We say that our work is not completed,
and by this we mean that what we have is a fully worked out example rather
than a general theory. Still, since [0, 1] and S are important in their own right,
we feel working them out in detail will inform a more general theory.

Related work. We know of a few papers which discuss final coalgebras obtained as
Cauchy completions of initial algebras. Perhaps the most relevant is Adámek [2],
since it summarizes and extends work that came before it. All of these papers
work under assumptions that are not satisfied in our setting. Specifically, [2] has
results on locally finitely presentable categories; these are complete, in contrast
to the main categories here. To make this point differently, our main categories,
Bi (bipointed sets) and Tri (tripointed sets) do not have final objects. Most of
the constructions of final coalgebras in the literature start from a final object.
So for this reason, what we are doing is not a special case of the results in [2].

2 Freyd’s Theorem on the Unit Interval

We begin our work by reviewing Peter Freyd’s characterization in [6] of the unit
interval [0, 1] in terms of bipointed sets. Our proof is a little simpler than the
original. In our presentation, we include a detour, connecting the final coalgebra
characterization of the unit interval to an initial algebra characterization of the
dyadic rationals in [0, 1].

A bipointed set is a triple (X,+,⊥), where X is an arbitrary set, and + and ⊥
belong to X . A bipointed set is proper (or non-degenerate) if ⊥ �= +. We restrict
attention to the proper bipointed sets from now on. Let Bi be the category of
proper bipointed sets ; a morphism in Bi is required to preserve the constants +
and ⊥.

We are mainly interested in a certain endofunctor on bipointed sets which
we’ll write as X �→M ⊗X . (The original notation for M ⊗X was X ⊕X , but
we have changed this to match Leinster [10]. The reason for the tensor product
notation ⊗ is that we are constructing a quotient of the product set M ×X , as
we shall see shortly.) Here M is a two-element set {", r}. For a bipointed set X ,
M ⊗X is the productM ×X , modulo the identification (",+) = (r,⊥). Further,
we take +M⊗X = (r,+), and ⊥M⊗X = (",⊥). We complete the definition of
M ⊗X as an endofunctor in the following way: if f : X → Y is a morphism of
bipointed sets, then M ⊗ f :M ⊗X →M ⊗ Y is (m,x) �→ (m, f(x)).
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Background on initial algebras and final coalgebras. We now recall some general
definitions from category theory. Given an endofunctor, that is a functor from
some category to itself, say F : C → C, an algebra for F is a pair (A, a : FA→
A). Dually, a coalgebra for F is a pair (A, a : A → FA). The difference is the
direction of the arrow. In either case, the object A is called the carrier, and the
morphism a is the structure. Often we suppress the structure when referring to
algebras or coalgebras. Algebras for F are often called F -algebras, and similarly
for coalgebras.

A morphism of algebras f : A→ B is a morphism in the underlying category
such that a ◦ f = b ◦ Ff , as on the left below:

FA
a ��

Ff

��

A

f

��
FB

b
�� B

A
a ��

f

��

FA

Ff

��
B

b
�� FB

A morphism of coalgebras is a morphism f : A → B such that the diagram on
the right commutes. An initial algebra is an F -algebra with the property that
there is a unique algebra morphism from it to any algebra (of the same functor).
A final coalgebra is a coalgebra with the property that for every coalgebra, there
is a unique coalgebra morphism into it. Initial algebras and final coalgebras occur
in many places in mathematics and theoretical computer science. Many examples
of these, along with their theory, may be found in the survey volume [3]. We do
need two of the central results in the theory.

Lemma 1 (Lambek’s Lemma [9]). The structure map of an initial algebra
is a categorical isomorphism. That is, if (A, a) is an initial algebra, then a has
an inverse a−1 : FA → A such that a−1 ◦ a = idFA, and a ◦ a−1 = idA. The
same hold for final coalgebra structures, mutatis mutandis.

Theorem 2 (Adámek [1]). Let C be a category with initial object 0. Let F :
C → C be an endofunctor. Consider the initial chain

0
! �� F0

F ! �� F 20
F 2! �� · · · Fn0

Fn! �� Fn+10 · · ·

Suppose that the colimit
A = colimn<ωF

n0

exists, and write in : Fn0 → A for the cocone morphism. Suppose that F pre-
serves this colimit. Let a : FA→ A be the unique morphism so that a◦Fin = in+1

for all n. Then (A, a) is an initial algebra of F .

We apply this with C being Bi. The category does have an initial algebra,
the two-point bipointed set {⊥,+}. For the functor F , we take X �→ M ⊗ X .
So F0 is a three-point bipointed set {⊥,+, 12}, and the map ! : 0 → F0 is the
inclusion. The 1

2 here is merely suggestive; we could use any object. But using 1
2

foreshadows what we shall soon see in the metric setting. Continuing, F 20 would
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be {⊥, 14 ,
1
2 ,

3
4 ,+}; again, the map F ! : F0→ F 20 is the inclusion. This explains

how the initial chain is constructed. Its colimit in the category is the set D of
dyadic rationals in [0, 1] with ⊥ = 0 and + = 1. (The dyadic rationals are the
rationals whose denominator is a power of two.) The structure d : FD→ D is

d(", x) = x/2
d(r, x) = (x+ 1)/2

It is easy to check that this is well-defined. To apply Theorem 2, we must verify
that F preserves the colimit of the initial chain. We omit this detail, and merely
state the result which we are after; see [3] for more on this result.

Theorem 3 ([3]). (D, d) is an initial algebra of F : Bi→ Bi.

We now turn to the final coalgebra of F . There is a dual of Theorem 2, first
stated by Barr [5]. However, Barr’s result requires that the underlying category
C have a final object, and the category Bi of bipointed sets does not have a final
object. [To see this, suppose towards a contradiction that A were final. Let B
be the three-element Bi-object {+,⊥, ∗}. There are at least two Bi-morphisms
i : B → A. One is + �→ +, ⊥ �→ ⊥, and ∗ �→ +. The other is + �→ +, ⊥ �→ ⊥,
and ∗ �→ ⊥. This shows that A is not final.] Instead, we use a different approach.
One way is to basically “guess” the final coalgebra and verify the guess. This is
what we shall do in Theorem 4 below.

Let I be the unit interval [0, 1], with ⊥ = 0 and + = 1. So I is an object in
Bi. We have a coalgebra structure i : I → FI quite closely related to the inverse
of d above:

i(x) =

{
(", 2x) if x ≤ 1/2
(r, 1− 2x) if x ≥ 1/2

(If x = 1/2, then both cases agree because (", 1) = (r, 0).) Note that i is a
bijection, and indeed an isomorphism in Bi. In particular, i−1 exists in Bi.

Theorem 4 (Freyd [6]). (I, i) is a final coalgebra of F : Bi→ Bi.

Proof. Let (X, e : X → FX) be a coalgebra, where X is any biointed set.
The homset Set(X, I) is a complete metric space with the metric given by the
supremum of pointwise distances. And the homset Bi(X, I) is a closed subset
of this space. Thus Bi(X, I) is a complete metric space. It is also non-empty.
Consider the function

ϕ : Bi(X, I)→ Bi(X, I)

given by
ϕ(f) = i−1 ◦ (Ff) ◦ e.

In other words, ϕ(f) makes the diagram below commute:

X

ϕ(f)

��

e �� FX

Ff

��
I

i
�� FI
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Then ϕ is a contraction of a non-empty complete metric space. (The contractive
property means that in the natural metric on Bi(X, I),

d(ϕ(f), ϕ(g)) < 1
2d(f, g).

This property is easy to check; it uses the fact that in our definition of FX , we
scaled the metric of X by 1

2 .) Thus ϕ has a unique fixed point. A fixed point ϕ∗

of ϕ is exactly a coalgebra morphism from X to I, and so we are done.

We mentioned before that this proof of Theorem 4 is simpler than the original
argument. Note also that the proof does not really use Theorem 3. So it is not
clear that there is a connection between these results at all. The central point
in this paper is to draw such a connection, based on the observation that the
unit interval is the Cauchy completion of the dyadic rationals in [0, 1]. Our way
of making the connection is via a metric version of Bi.

MS is the category of metric spaces, with all distances bounded by 1. The
morphisms in MS are the short maps f : X → Y of metric spaces: for all
x, y ∈ X ,

dY (f(x), f(y)) ≤ dX(x, y)

These are also called non-expanding maps. (Incidentally, we choose the short
morphisms as the morphisms in this category because it is the most standard
choice in the literature on coalgebras. However, at the very end of this paper we
shall see a reason to perhaps re-consider this choice.)

Let the category BiMS of bipointed metric spaces be the category whose ob-
jects are bipointed sets which are also metric spaces, and with the property
that d(⊥,+) = 1. The morphisms are short maps which preserve ⊥ and +. The
endofunctor X →M ⊗X works in the metric setting.

Theorem 5. The initial algebra of X →M⊗X on BiMS is the bipointed metric
space of dyadic rationals (D, d). The final coalgebra is the unit interval (I, i).

The initiality result is similar to what we saw in Theorem 3. The finality result
is proved in nearly the same way as Theorem 4, except that we must show one
extra point: if X is a bipointed set, then the set of short maps from X to I is
non-empty. (We need this because we want to apply the contraction mapping
theorem to get a fixed point, but to do this we must know that the space is
actually non-empty.) Fortunately, in this case, the result is easy: x �→ d(x,⊥) is
a BiMS-morphism of any space into [0, 1]. The analogous result for the Sierpiński
gasket will be much more difficult to obtain.

3 The Sierpiński Gasket

Freyd’s Theorem suggests that many interesting topological or metric spaces
might have final coalgebra characterizations. This point has been substantiated
by Leinster [10], especially on topics related to the topology. We are after some-
thing similar for the metric aspects. This paper begins this development by an
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extended discussion of the Sierpiński gasket (or Sierpiński triangle) S ⊆ R2.
This is sometimes taken to be the prototypical fractal set, and so it is a good
place to begin. As we shall see, not all of the results on S are straightforward
generalizations of what we have seen for the unit interval.

We first recall the characterization of S using iterated function systems.
Consider the maps σa, σb, σc : R

2 → R2 given by

σa(x, y) = (x/2, y/2) + (1/4,
√
3/4)

σb(x, y) = (x/2, y/2)
σc(x, y) = (x/2, y/2) + (1/2, 0)

(1)

The idea is that σa takes a point to the midpoint of the segment determined by
it and (1/2,

√
3/2); σb acts similarly using (0, 0), and σc uses (1, 0). These maps

σi extend to subsets of R2 by taking images.

Definition 1. The Sierpiński gasket is the unique non-empty compact subset
S ⊆ R2 such that

S = σa(S) ∪ σb(S) ∪ σc(S). (2)

S is shown in Figure 1.
Later on, we shall need some notation for certain subsets of the plane. Let

M = {a, b, c}

We use the letter m as a variable over M in the sequel.
LetM∗ be the set of finite words fromM . We define triangles trw for w ∈M∗

by recursion:

trε = the triangle with vertices

top = (1/2,
√
3/2), left = (0, 0), and right = (1, 0)

trmw = σm(trw)
(3)

Let
Rn =

⋃
{trw : w is a word of length n}.

Also, for an infinite sequence α = α0α1 · · ·αn · · · ∈Mω, let

pα = the unique point in
⋂
n trα0α1···αn .

That is,
⋂
n trα0α1···αn is a nested intersection of a family of non-empty compact

sets, and the diameter of the sets tends to 0. By the Cantor intersection theorem,
this intersection is a singleton.

The following is a special case of the classical result of Hutchinson [8] on
fractal attractors.

Proposition 6. S has the following characterizations:

S =
⋂
nRn

= {pα : α ∈Mω}
= the closure of

⋃
w∈M∗{x : x is a vertex of tw}.
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Fig. 1. The Sierpiński gasket S ⊆ R2

Different sequences in Mω might well be associated with the same point via
the operation p. For example, let α = baccc · · ·, and let β = bcaaa · · ·. Then
pα = pβ = (3/8,

√
3/8). However, the sequence α is a resolution of pα. And so

what we have is the familiar phenomenon that a given point might have more
than one resolution.

In addition, Proposition 6 gives three different ways to think about S. We just
saw that writing S = {pα : α ∈Mω} connects S with resolutions. But the third
way is closest to what we do in this paper.

4 Tripointed Sets

The main categories involved in our rendering of the Sierpiński gasket as a final
coalgebra are tripointed sets and tripointed metric spaces.

Definition 2. A tripointed set is a set X together with distinguished elements
top, left, and right. X is proper (or non-degenerate) if the distinguished ele-
ments are distinct. (As with bipointed sets, we are only really interested in proper
tripointed sets.)

We let Tri be the category of proper tripointed sets, taking as morphisms the
functions respecting the distinguished points.

Example 1. The initial object I of Tri is {top, left, right}. But Tri has no final
object. To see this, suppose that X were final. Let Y contain top, left, and right,
and also a fourth point ∗. There are at least three short maps from Y to X ,
since ∗ can be sent to any of the distinguished points.

Example 2. The Sierpiński gasket is an object of Tri. For the structure, we take
top = (1/2,

√
3/2), left = (0, 0), and right = (1, 0).
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top

left right

a⊗ top

a⊗ left a⊗ right

b⊗ top

b⊗ left b⊗ right

c⊗ top

c⊗ left c⊗ right

Fig. 2. On the left we have a Tri-object X. On the right we show M ⊗ X. It is the
cartesian product of M = {a, b, c} with X, with three pairs of points identified. The
identifications are shown with the doubled lines. The top of M ⊗ X is a ⊗ top, and
similarly for left and right. In Section 5, we shall study a version of this functor for
TriMS-objects. In that setting the metric multiplies the distances in the copies of M by
1
2
, and then takes the quotient metric associated with the identifications shown above.

Pairs of points identified by the doubled lines count as distance 0 apart.

The functor X �→ M ⊗ X on Tri. Recall the Set endofunctor X �→ M × X ,
where M is {a, b, c}. For a function f : X → Y , M × f : M ×X → M × Y is
(m,x) �→ (m, fx). We are are interested in a version of this functor for Tri.

We define ∼ on M ×X to be the relation

(a, left) ∼ (b, top) (a, right) ∼ (c, top) (b, right) ∼ (c, left) (4)

Let ≈ be the reflexive and symmetric closure of ∼. This relation ≈ is an equiv-
alence relation. We take M ⊗ X to be the quotient of M × X by the relation
≈. See Figure 2 for a picture. We write m ⊗ x instead of the equivalence class
[(m,x)]. So we have equalities

a⊗ left = b⊗ top a⊗ right = c⊗ top b⊗ right = c⊗ left

We call these points the connection points of M ⊗X .
Returning to our tripointed setM⊗X , we now see that this set is a tripointed

space with
topM⊗X = a⊗ top
leftM⊗X = b⊗ left
rightM⊗X = c⊗ right

If X is a proper tripointed set, so isM⊗X . Moreover, the operationX �→M⊗X
extends to a functor Tri→ Tri.
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The Sierpiński gasket S carries a coalgebra structure σ for this functor. It
is easier to define the algebra structure which is the inverse of this coalgebra
structure,

σ−1 :M ⊗ S→ S

σ−1 is given in terms of the maps σa, σb, and σc in (1):

σ−1(m⊗ x) = σm(x). (5)

We need to check that this map is well-defined. For example, a⊗ left = b ⊗ top

in M ⊗ S. And indeed σa(left) = (14 ,
√
3
2 ) = σb(top). We have to check the same

thing for the other pairs in (4); the verifications are similar. It is also easy to
check that σ−1 preserves top, left, and right. Finally, it is one-to-one. All of this
goes to show that σ : S→M ⊗S is a coalgebra on Tri, and also an isomorphism.

5 Tripointed Metric Spaces

The functor X �→ M × X on MS. The operation X �→ M × X extends to an
endofunctor on MS in the following way. We take

d((m,x), (n, y)) =

{
1
2d(x, y) if m = n
1 if m �= n

If f : X → Y is a morphism in MS, then so is M × f :M ×X →M × Y .
It is easy to show that if X is complete, then M ×X is also complete.

Tripointed metric spaces. An object of TriMS is an object of MS (a metric space
with distances bounded by 1) with three distinguished points top, left, and right
which are required to be of pairwise distance 1. Morphisms are short maps which
preserve the distinguished points.

Example 3. The initial object I of TriMS is I = {top, left, right} from Example 1
with pairwise distances 1.

Example 4. Another example is the unit triangle T, where

T = {(x, y) ∈ R2 : y ≥ 0 and y ≤ x
√
3 and y ≤

√
3(1− x)}.

We take top = (
√
3/2, 1), left = (0, 0), and right = (1, 0).

The functor X �→M ⊗X on TriMS. We turn X �→M ⊗X into an endofunctor
on TriMS by taking the set M ⊗ X and then using the quotient metric. This
means that the distance from m⊗ x to n⊗ y is the infimum over all finite paths
in M ×X of the score, where the score is the sum of the distances (in M ×X)
along the path, but where we count 0 for pairs in the relation ∼.
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Example 5. Let X be the initial object of TriMS (see Example 3) together with
another point x such that

d(top, x) = 1 = d(left, x) d(right, x) = 1/3.

There are essentially two paths from a⊗ x to b⊗ x: via the path

(a, x)
1
2

(a, left) ≈ (b, top)
1
2

(b, x)

(a, x)
1
6

(a, right) ≈ (c, top)
1
2

(c, left) ≈ (b, right)
1
6

(b, x)

.

In terms of the score, the second path is shorter, and its score is 5
6 . Indeed,

d(a⊗ x, b⊗ x) = 5
6 .

Generalizing what we saw in Example 5 just above, we have the following
result.

Lemma 7. For all x, y ∈ X, distances in M ⊗X are calculated as follows:

d(a⊗ x, a⊗ y) = 1
2d(x, y)

d(a⊗ x, b ⊗ y) = min

(
1
2 (d(x, left) + d(top, y)), 12 (d(x, right) + 1 + d(right, y))

)
and similarly for the other distance calculations.

Proof. We check the first assertion, concerning two pairs in the same copy of X ,
say (a, x) and (a, y).

Consider a finite sequence of pairs in M × X , and the sum of the distances
between pairs which are not related by ∼. Clearly we have

d(a⊗ x, a⊗ y) ≤ 1
2d(x, y)

The main work is to show the reverse inequalities by a detailed examination of
the quotient metric.

If our sequence consists only of pairs in the a-copy, then by the triangle in-
equality of X , the score has to be at most half the distance from x to y in the
original space X . If the sequence has two points in the b-copy, we may assume
that those points are different connection points; if they are the same point, then
we could get a smaller score by omitting everything between them. But if the
sequence has two connection points, then its score is at least 1/2. The last case
is when the sequence has two connection points of different types other than a,
say (c, top) and (b, right). In this case, again we have a score of at least 1

2 .
The second assertion is proved similarly. The point is that no sequence of

minimal score may use all three connection points. The shortest path between
a⊗x and b⊗ y could either go through (a, left) = (b, top); or it could go through
(a, right) = (c, top), and then to (c, left) = (b, right). (This last option occurs in
Example 5.)
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Proposition 8. X �→M ⊗X is an endofunctor on TriMS.

Proof. Lemma 7 implies that the distances in M ⊗ X between distinct corner
points is 1. For example, consider top and left.

d(topM⊗X , leftM⊗X) = d(a⊗ top, b⊗ left)
= min(12 (1 + 1), 12 (1 + 1 + 1))
= 1

This checks that M ⊗ X is an object in M ⊗ X . We next check the parallel
assertion for morphisms.

Let f : X → Y be a short map. We show that M ⊗ f : M ⊗ X → M ⊗ Y .
One example case concerns x1, x2 ∈ X and asks us that show that

dM⊗Y (a⊗ f(x1), b⊗ f(x2)) ≤ dM⊗X(a⊗ x1, b⊗ x2).

We sketch the proof. Both of the distances above are minima, and so it is suffi-
cient to show that the following two inequalities hold:

dY (f(x1), left) + dY (top, f(x2)) ≤ dX(x1, left) + dX(top, x2)
dY (f(x1), right) + dY (top, f(x2)) ≤ dX(x1, right) + dX(top, x2)

Now these inequalities hold because f preserves top, left, and right and is itself
a short map. For example,

dY (f(x1), left) = dY (f(x1), f(left)) ≤ dX(x1, left).

The full details of the proof are based on these observations and similar ones.

Example 6. With S the Sierpiński gasket in the usual metric, we have an algebra
σ−1 : M ⊗ S → S (see (5)). This map σ−1 is a short map, as is easily verified.
On the other hand, its inverse σ : S→M ⊗ S is not a short map. For example,

σ((12 ,
√
3
2 )) = (a, top), σ((12 , 0)) = (b, right), and

dS((
1
2 ,

√
3
2 ), (12 , 0)) =

√
3
2

dM⊗S((a, top), (b, left)) = 1

The theorem below is about tripointed sets, but the proof makes a detour into
tripointed metric spaces.

Theorem 9. S→M ⊗ S is a final coalgebra of M ⊗X on Tri.

Proof. The proof is almost the same as that of Theorem 4, so we merely sketch
this one and point out where it differs from the earlier proof. Let (X, e : X →
M ⊗ X) be a coalgebra, where X is any tripointed set. The main point is to
consider the homset Tri(X, S). This is easily seen to be a complete metric space.
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It is also non-empty: we can give X the discrete metric, and then take any
function preserving top, left, and right. Consider the function

ϕ : Tri(X, S)→ Tri(X, S)

given by
ϕ(f) = σ−1 ◦ (M ⊗ f) ◦ e.

(Here σ−1 is from (5), and we also saw it in Example 6.) In other words, ϕ(f)
makes the diagram below commute:

X

ϕ(f)

��

e �� M ⊗X
M⊗f
��

S M ⊗ S
σ−1

��

(We use σ−1 rather than σ because σ−1 is a short map.) Then ϕ is a contraction
of a non-empty complete metric space. Thus ϕ has a unique fixed point ϕ∗, and
the fixed points of ϕ are exactly the coalgebra morphisms from X to S. Note
also that there is no reason to expect that ϕ∗ would be a short map, even if X
carried a metric and e were itself short, since our proof starts by throwing away
the metric on X .

6 Isometric Embeddings and the Initial Chain

As with any morphism of metric spaces, we say that a TriMS morphism η : X →
Y is an isometric embedding if it preserves all distances.

Proposition 10. Concerning isometric embeddings:

1. The unique map η : I → M ⊗ I is an isometric embedding, where I is the
initial object of TriMS from Example 3.

2. If η : X → Y is an isometric embedding, so is M ⊗ η :M ⊗X →M ⊗ Y .

Proof. The first part follows from the fact thatM ⊗I is an object in TriMS. The
second follows easily from Lemma 7; see the proof of Proposition 8 for a similar
argument.

As a result, we have a chain of isometric embeddings

I
η �� M ⊗ I M⊗η �� M ⊗M ⊗ I M⊗M⊗η �� · · · (6)

In this situation, the colimit exists and is preserved by the functor M ⊗−.

Theorem 11. The colimit of the chain in (6) exists. Call this space G. G carries
the structure of an initial algebra η :M ⊗G→ G for M ⊗X on TriMS.
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Proof. We are going to use Adámek’s Theorem 2. The category TriMS has an
initial object. Given a chain of isometric embeddings as in (6), the colimit exists
in the category of metric spaces, and is the set-theoretic union of the spaces.
This colimit is an object of Tri, since the initial object is isometrically embedded
in it. This TriMS object is G in our theorem. The map in : Mn ⊗ I → G is the
inclusion. This space G is a fixed point: M ⊗G → G. Moreover, the mediating
morphism g :M ⊗G→ G given by the colimit is

m⊗ (n1 ⊗ n2 ⊗ · · · ⊗ nk ⊗ d) �→ m⊗ n1 ⊗ n2 ⊗ · · · ⊗ nk ⊗ d.

By Adámek’s Theorem 2, (G, g) is an initial algebra.

6.1 Concrete Presentation of G

It might be useful to see a presentation of G in very concrete terms. We have in
mind readers not familiar with Adámek’s Theorem, but who might be familiar
with the basics of universal algebra or abstract data types.

Consider a signature Σ of terms which takes symbols top, left, and right as
constants, and symbols a, b, and c as unary function symbols. Then we would get
terms such as a(b(c(right))) and b(b(left)). In order to match our earlier notation,
we are going to write these as a⊗b⊗c⊗right and b⊗b⊗left, respectively. Consider
the free Σ-algebra modulo the equations E

top = a⊗ top
left = b⊗ left
right = c⊗ right

a⊗ left = b⊗ top
a⊗ right = c⊗ top
b⊗ right = c⊗ left

(7)

This is the set G of all terms on the signature Σ modulo the smallest equivalence
relation containing the pairs in E above and closed under the three function
symbols. Technically, the elements of G are not terms but rather equivalence
classes of terms. (This is often written as TΣ,E.) In fact, an (M ⊗X)-algebra on
Tri is exactly a Σ-algebra satisfying E with the property that top, left, and right
are distinct. This correspondence extends to Σ-algebra morphisms and M ⊗X-
algebra morphisms. Then it is a standard result that G = TΣ,E is the initial
Σ-algebra satisfying E.

We takeG and impose the unique metric such that d(top, left) = d(top, right) =
d(left, right) = 1, and also such that the equations in Lemma 7 hold. This con-
cludes our digression on the concrete presentation of G as a metric space.

Proposition 12. As a metric space, G is totally bounded.

Proof. LetMn⊗I be the nth term in the chain in (6), starting withM0⊗I = I,
andM1⊗I =M⊗I. One checks easily that for all n, each point inMn+1⊗I is of
distance ≤ 2−(n+1) from some point in Mn. Then using the triangle inequality,
it follows that the distance of each point in Mn+k ⊗ I to some point in Mn ⊗ I
is at most

∑k
i=1 2

−(n+1+i) < 2−n. Thus, Mn ⊗ I is a finite set of points in G
with the property that every point in G is within 2−n of some point in it.
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6.2 The Final Coalgebra of X → M ⊗ X

This section constructs the final coalgebra of X → M ⊗X on TriMS. We need
a few preliminaries.

Complete tripointed spaces. We let TriCMS be the tripointed metric spaces which
are complete: every Cauchy sequence has a limit. Every metric space is isometri-
cally embedded in its Cauchy completion, and so we have a Cauchy completion
functor

C : TriMS→ TriCMS.

For a tripointed metric space X , consider

M ⊗ C(X)
βX �� C(M ⊗X)

γX �� M ⊗ C(X)

given by
βX(m⊗ (x0, x1, . . .)) = (m⊗ x0,m⊗ x1, . . .)
γX((mi ⊗ xi)i) = m∗ ⊗ (xj1 , xj2 , . . . , )

In the definition of γX , for each sequence of points inM⊗X , some m ∈M must
occur infinitely many times as the first coordinate mi, since M is finite. Let m∗

be “first” in some pre-chosen order on M . Let (xji )i be the subsequence of (xi)i
such that the corresponding first coordinates are all m∗.

Lemma 13. β : C(M ⊗−)→M ⊗ C(−) and γ :M ⊗ C(−)→ C(M ⊗−) are
natural isomorphisms.

Proof. One checks that for all X , βX and γX well-defined, that they are inverses
(modulo equivalence of Cauchy sequences), that they are short maps (hence they
are isometries), that they preserve the distinguished points, and that they are the
components of natural transformations. All of these verifications are elementary.

The final coalgebra of X →M ⊗X. We have seen the initial algebra

(G, η :M ⊗G→ G)

of X →M⊗X on TriMS. By Lambek’s Lemma 1, η is an isomorphism. Applying
the Cauchy completion functor C, we have another algebra

(CG,Cη ◦ βG :M ⊗ CG→ C(M ⊗G)→ CG).

Moreover,Cη◦βG is an isomorphism. Let us shorten our notation by writing S for
CG and s for (Cη ◦ βG)−1. So we have a coalgebra (S, s : S →M ⊗ S) on TriMS.
S is the completion of a totally bounded space (Proposition 12) and is therefore
compact. Forgetting the metric structure, S a coalgebra forM ⊗X on Tri.

Theorem 14 (Leinster [10]). (S, s : S → M ⊗ S) is a final coalgebra for
M ⊗X on Tri.
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Proof. We have seen the argument twice before, in Theorems 4 and 9. The main
points are that S is complete, so therefore Tri(X,S) is complete; also Tri(X,S)
is non-empty, and i is an isometry.

Theorem 14 is due to Leinster, but as with Freyd’s Theorem, our proof is
different. We feel that going through the initial algebra G offers an advantage
of sorts: G is the countable metric space of approximations to points in S. It
is a little like what is called the set of finite addresses of points in S, but it is
obtained as the colimit of the initial sequence of an endofunctor on TriMS.

7 Finality of S for M ⊗ X on TriMS

Theorem 14 shows that S is the final coalgebra ofM ⊗X on Tri. In this section,
we present a related result. To begin, recall from Proposition 8 that M ⊗X is
an endofunctor on TriMS. As S is an object of TriMS and its structure s is a
short map, we thus can ask whether S is a final coalgebra of M ⊗X on TriMS.
It is important to see that this is not an immediate consequence of Theorem 14.
Given a short map of tripointed metric spaces e : X → M ⊗X , we do have a
unique coalgebra morphism f : X → S. We must show that f is a short map.

Notation. Let m = m1,m2, . . . ,mk ∈ Mk. For x ∈ X , write m ⊗ x for m1 ⊗
· · · ⊗mk ⊗ x. Further, M i ⊗X denotes the space

i︷ ︸︸ ︷
M ⊗M ⊗ · · · ⊗M ⊗X.

Finally, we use a notation like M j ⊗ e as a shorthand for the obvious map.

Lemma 15. Let X be an object in TriMS. For all natural numbers i, all m ∈M i

and all x, y ∈ X the distance in M i ⊗X between

d(m⊗ x,m⊗ y) ≤ 2−i.

Thus for all x, x′, y, y′ ∈ X

|d(m⊗ x,n⊗ y)− d(m⊗ x′,n⊗ y′)| ≤ 21−i. (8)

Proof. The first assertion is proved by an easy induction on i. For the second,
we use the triangle inequality and two applications of the first assertion:

d(m⊗ x,n⊗ y)− d(m⊗ x′,n⊗ y′)| ≤ d(m⊗ x,m⊗ x′) + d(n⊗ y,n⊗ y′)
≤ 2−i + 2−i

Theorem 16. (S, s) is a final coalgebra of M ⊗X on TriMS.
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Proof. Let (X, e : X →M ⊗X) be a coalgebra of M ⊗ − on TriMS. Forgetting
the metric structure and the shortness of e, we know from Theorem 9 that there
is a unique coalgebra morphism f : X → S. This map preserves top, left, and
right, and the main task is to show that f is a short map. We do this by showing
that for ε > 0, and all x, y ∈ X ,

d(f(x), f(y)) ≤ d(x, y) + 22−i.

An easy induction on i shows that the composite below is a short map:

X
e �� M ⊗X M⊗e ��M ⊗M ⊗X M⊗M⊗e �� · · · Mi−1⊗e �� M i ⊗X .

(9)
Let x, y ∈ X . Denote the image of x and y under the composite above by m⊗x′
andm⊗y′ respectively, wherem = m0, . . . ,mk−1 ∈M i, n = n0, . . . , nk−1 ∈M i

and x′, y′ ∈ X Using the shortness of the map in (9), we see that

d(m⊗ x′,n⊗ y′) ≤ d(x, y) (10)

Since f is a coalgebra morphism to S we get:

(M i−1 ⊗ s ◦ . . . ◦ s)(f(x)) = m⊗ f(x′)
(M i−1 ⊗ s ◦ . . . ◦ s)(f(y)) = n⊗ f(y′)

Now s is an isometry, as are M ⊗ s, . . ., Mk−1⊗ s. Using the version of (9) that
starts with S and s, we see that

d(f(x), f(y)) = d(m⊗ f(x′),n⊗ f(y′)). (11)

(Note the contrast to (10), where we have an inequality instead.)
Recall that the category TriMS has an initial object I = {top, left, right}, and

for any object in Z of TriMS, the initial map

iZ : I → Z

is an isometric embedding and so are the maps

M i ⊗ iZ :M i ⊗ Z →M i ⊗ Z

for all i (see Proposition 10). In our case we use the following diagram with both
arrows being isometric embeddings

M i ⊗ S M i ⊗ I� ��� � � �� M i ⊗X

to conclude that

dMi⊗S(m⊗ topS , n⊗topS) = dMi⊗X(m⊗ topX ,n⊗ topX). (12)
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where topX and topS denote the images of top ∈ I under the two evident initial
maps. Therefore

dMi⊗S(f(x), f(y)) = dMi⊗S(m⊗ f(x′),n⊗ f(y′)) by (11)
≤ dMi⊗S(m⊗ topS ,n⊗ topS) + 21−i by Lemma 15
= dMi⊗X(m⊗ topX ,n⊗ topX) + 21−i by (12)
≤ dMi⊗X(m⊗ x′,m⊗ y′) + 21−i + 21−i by Lemma 15
≤ dMi⊗X(x, y) + 22−i by (10)

This for all i completes the proof.

8 The Relation between S and S

Let us summarize what we know about the spaces S, G, and S:

1. S is the Sierpiński gasket, the unique non-empty compact subset of R2 sat-
isfying

S = σa(S) ∪ σb(S) ∪ σc(S).
We know that as a tripointed set, it is a final coalgebra of X �→M ⊗X .

2. As explained in Section 6.1, G is the set of expressionsm1⊗m2⊗· · ·⊗mk⊗x,
where mi ∈ M and x ∈ {top, left, right}; we also quotient by a certain set
E of equations. G carries a metric structure, and as such it is an initial
algebra of X �→ M ⊗ X , considered as an endofunctor on TriMS. It also is
the case that forgetting the metric structure, G is an initial algebra for this
endofunctor on Tri.

3. S is the Cauchy completion of G. S is a final coalgebra of X �→ M ⊗X on
Tri, and also of this endofunctor on TriMS.

As tripointed sets, S and S are final coalgebras for the same endofunctor.
Thus there are inverse coalgebra morphisms i and j:

S
s ��

i

��

M ⊗ S
M⊗i
��

S σ
�� M ⊗ S

S
σ ��

j

��

M ⊗ S

M⊗j
��

S s
�� M ⊗ S

Both i and j are Tri-morphisms, and they are the topic of this section.
Recall from Example 6 that σ−1 is short. By initiality in the metric setting,

there is a unique short map h : G→ S such that the diagram below commutes:

M ⊗G
M⊗h

��

η �� G

h

��
M ⊗ S

σ−1

�� S

(13)

As an illustration of how h works, h(a⊗ b⊗ top) = σa(σb(top)).
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Example 7. The map h is not an isometry. For example, dG(b⊗left, a⊗right) = 1.
But h(b⊗ left) = h(left) = (0, 0), h(a⊗ right) = (3/4,

√
3/4), and

dS((0, 0), (3/4,
√
3/4)) =

√
3/2.

We need an observation concerning the map i.

Lemma 17. i = Ch.

Proof. Consider the diagram below:

M ⊗ S βS ��

s−1

��

M⊗Ch
��

C(M ⊗G)

C(M⊗h)
��

Cη
�� S

Ch

��
M ⊗ S

βS

��

σ−1

��C(M ⊗ S)
Cσ−1

�� S

(14)

The square on the right comes from the diagram in (13), applying C. The square
on the left is the naturality noted in Lemma 13. The top region commutes by
the definition of s. It is easy to check that the bottom part of the diagram
also commutes. It follows that h : S → S is an algebra morphism. We take the
inverses of s−1 and σ−1, and we forget the metric structure. (We need to forget
this metric structure, since σ is not a short map.) As a map of tripointed sets,
h is a coalgebra morphism. By finality, Ch = i.

One last preliminary is needed before our main result in this section. It is an
addendum to the triangle inequality.

Lemma 18. Let -ABC be a triangle in the plane. Then

AB +AC ≤ BC
√

2

1− cosA

Proof. Let us write K for
√
2/(1− cosA). Since ∠A is part of a triangle, −1 <

cosA < 1. Thus K > 1. Also, 2K2 cosA+ 2 = 2K2 − 2. For all x and y,

(K2 − 1)x2 − 2(K2 cosA+ 2)xy + (K2 − 1)y2

= (K2 − 1)x2 − 2(K2 − 1)xy + (K2 − 1)y2

= (K2 − 1)(x− y)2
≥ 0

Thus the first of the four lines above is ≥ 0. Rearranging things,

x2 + 2xy + y2 ≤ K2(x2 + y2 − 2xy cosA). (15)
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We apply (15) to the sides of our triangle, taking x to be AB, and y to be AC:

(AB +AC)2 ≤ K2(AB
2
+AC

2 − 2AB · AC cosA) = K2(BC)2.

In the line just above we used the law of cosines from trigonometry. Taking
square roots gives the assertion in our lemma.

Two cases of Lemma 18 will be of interest. When ∠A = 60o, we getAB+AC ≤
2BC. When ∠A = 120o, we get AB +AC ≤ 2

√
3

3 BC.

Theorem 19. i : S → S is a bilipschitz isomorphism. Specifically, for all
x, y ∈ S, √

3

4
d(x, y) ≤ d(i(x), i(y)) ≤ d(x, y) . (16)

Proof. We showed in Lemma 17 above that i = Ch. Since G is dense in S, we
need only verify (16) for h : G → S. It is important to recall that distances in
S are calculated using the quotient metric; in other words, we use the equations
in Lemma 7. But for S, we are using the Euclidean metric.

It is convenient to picture the points in Mn ⊗ I as arranged in a graph (see
some pictures below). For each n, we take the distance of a segment in Mn ⊗ I
to be 2−n. Then the distance between two points in Mn ⊗ I (as we have been
considering it) is exactly the length of the shortest path in the graph. Thus, we
need to show that the graph-theoretic distance between two points is at most
the Euclidean distance multiplied by 4

√
3/3.

Lemma 20. For all x ∈ Mn ⊗ I, there is a path from the top of Mn ⊗ I to x
whose graph-theoretic distance is at most 2

√
3/3 times the Euclidean distance.

Proof. For each x, we first construct a principal path top = p0, p1, . . . , pn = x
from the top to x. Each pi will belong to M i ⊗ I. We take p0 = top.

If x = p0, then the path is simply p0.
If x belongs to the top main triangle tra, then it is of the form a ⊗ y.

And by induction hypothesis, we already have principal path for y, say top =
p0, p1, . . . , pn = y. We take the principal path for x to be top = a ⊗ p0, a ⊗
p1, . . . , a ⊗ pn = x. (In other words, we take the principal path for y and then
apply σa to each point.)

If x belongs to the left main triangle trb, then it is b⊗ y. Again by induction
hypothesis, we already have principal path for y, say top = p0, p1, . . . , pn = y.
We have three subcases. If p1 is to the left of p0, then we take the principal path
for x to be top = p0, b⊗p2, . . . , b⊗pn = b⊗y = x. Note that we omit b⊗p1 in this
subcase. The second subcase is when p1 is to the right of p0. In this case, we take
the principal path for x to be top = p0, b⊗p1, b⊗p2, . . . , b⊗pn = b⊗y = x. In the
last subcase, x is directly under p0 = top. In this case, x = b ⊗ right = c⊗ left,
and we may take the principal path for x to be either top, a × left, x, or else
top, a× right,⊗
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If x belongs to the right main triangle trc, then the definitions work similarly.
Here are some illustrations of points x and the principal paths for them.

The path in the first figure is used in the second, and the path in the second is
used in the third. In fact, the path in the first figure could go the other way, left
instead of right. This possibility is important, as we shall see shortly.

We might have to modify the end of the path, because we would like to arrange
that no point on the principal path for x is directly above x, except when x is
of the form a⊗ a⊗ · · · ⊗ a⊗ b⊗ left = a⊗ a⊗ · · · ⊗ a⊗ c⊗ right. For all other x,
we can indeed arrange that the principal path not have any point directly above
x. To do this, we would only need to take the last two points on the path, and
change the direction.

An easy induction on n now shows that the path zig-zags across the vertical
line through x, as shown on the left below.

Next, it follows easily that if we incline the line so that it intersects top, the
principal path zig-zags across it. This uses the assumption that no point on the
principal path is directly above x. For example, if x is in the left main triangle
(as in our pictures above), then the inclined line on the right still intersects all
segments determined by the principal path.

To complete the proof, we use Lemma 18 in each of the triangles formed by
the principal path and the line from x to top.

Now we complete the proof of Theorem 19. We are done when one of the
points is top; and similarly we are done when one of the points is left or right.
In both of those cases, we have a better bound than the general bound stated in
Theorem 19:

√
3/2 · d(x, y) ≤ d(i(x), i(y)). But in general, we combine paths to

one of the connection points, and again use Lemma 18; we use the special case
of 60o-triangles. We would get

√
3/4 · d(x, y) ≤ d(i(x), i(y)).

This completes the proof of Theorem 19.
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Remark 1. The bound of 2
3

√
3 in Lemma 20 is sharp. The lower bound of

√
3/4 ≈

.433 in Theorem 19 may be improved to 1/2. However, the argument in this case
is much more involved than what we have seen in Lemma 20. In effect, one has
to show that all lines in R2 connecting pairs of points in Mn ⊗ I may be “zig-
zagged” by paths in Mn ⊗ I itself. (One would like to use results like those in
Aichholzer [4], but our graphs are not triangulations; they involve colinear triples,
for example.) Of course, it is sufficient in Theorem 19 to have any bound.

Metric spaces with lipschitz maps. The reader might wonder about the signifi-
cance of the bilipschitz result, Theorem 19. This points to the subtle question of
the maps in the category of “metric spaces.” We have been working with metric
spaces and short maps. But here are settings where one makes other choices. An-
other choice would be the continuous maps. An even smaller choice would be the
Lipschtiz continuous functions. These are the maps f : X → Y of metric spaces
with the property that there is a constantK such that d(f(x), f(y)) ≤ K ·d(x, y)
for all x, y ∈ X . Let MSLip be the category of 1-bounded metric spaces and Lip-
schitz continuous functions. An isomorphism in MSLip is exactly a bilipschtiz
bijection. Frequently in the literature on metric spaces one does indeed identify
spaces which are bilipschitz isomorphism. In comparison with other notions of
equivalence for metric spaces, we have

isometry =⇒ bilipschitz isomorphism =⇒ homeomorphism

We had hoped to find S and S to be related by an isometry, but this was not to
be. (The parallel result for the unit interval did hold, but this seems like a very
special result.) We have the following corollary to Theorem 19:

Corollary 21. σ :M ⊗ S→ S is a coalgebra in MSLip, and it is isomorphic to
(S, s).

Having said this, a good next question in this line of work would be: in MSLip,
is S a final coalgebra of M ⊗−? We have not yet pursued this question.

9 Conclusion

This paper presented some specific results on the Sierpiński gasket S. We consid-
ered the categories Tri of tripointed sets and TriMS of tripointed metric spaces.
Both categories carry an endofunctor X → M ⊗ X defined in a natural way.
The initial algebra of this functor on TriMS is the set of finite addresses (ten-
sor expressions) of points in S. Its Cauchy completion, S, is the final coalgebra
of the endofunctor. This finality result goes through in the metric setting, and
this is one of our main results. As tripointed sets, S and S are isomorphic. But
the isomorphism is not an isometry of the associated metric spaces. Indeed, the
natural metric structure on S as a coalgebra is not an isometry. The best we
can say is that as metric spaces, S and S are bilipschitz equivalent: there is a
bijection between these spaces with the property that distances in one space
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are uniformly bounded by multiples of the corresponding distances in the other
space. This bilipschitz equivalence involves work on paths in the finite approx-
imations to the Sierpiński gasket. It also extends to show that the coalgebras
(S, s) and (S, σ) are isomorphic in MSLip.

Naturally, the main open question in all of this work is whether the results
on the Sierpiński gasket extend to all of the other fractal sets in Rn. That is,
it is possible to consider specific self-similar sets, such as the Sierpiński carpet
or the unit interval, and then render them as finial coalgebras, the same way
as we have seen for the Sierpiński gasket. The initial algebras in these cases are
also interesting. However, we do not yet have a general theory that offers an
insightful generalization of these examples.

Acknowledgment. We thank anonymous referees for comments and sugges-
tions which have improved our presentation.
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Leaving Traces:

A Note on a Sound and Complete Trace Logic
for Concurrent Constraint Programs
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Abstract. Concurrent constraint programs operate on data which is
represented by a constraint of a given cylindric constraint system. Such
a system provides an algebraic representation of first-order logic. It fea-
tures a (binary) entailment relation, a binary union operation for adding
information (formally defined as the least upper bound of two constraints
with respect to the entailment relation) and, and finally, existential quan-
tification of variables.

The main contribution of this paper is a sound and complete proof
theory based on traces of input/output constraints for reasoning about
the correctness of concurrent constraint programs.

1 Introduction

One of the many influential papers co-authored by Prakash Panangaden is on
the semantic foundations of concurrent constraint programming [8]. That paper
also forms the very basis of this contribution to this “festschrift” dedicated to
the 60th anniversary of Prakash. By this contribution we hope to provide further
evidence of the lasting relevance of the work of Prakash in general, and of his
work on concurrent constraint programming in particular.

In this paper we address the main challenge of a complete proof theory for rea-
soning about the correctness of concurrent constraint programs (ccp programs,
for short). A sound and complete proof theory for confluent ccp programs has
been introduced in [2]. However in [2] it is also shown that the theory is sound
but incomplete for the general class of non-determinstic ccp programs. This is
due to the fact that in [2] the correctness of a ccp program is described in terms
of properties of its final results, that is, its resting points. However, these ob-
servables do not provide sufficient information for a compositional semantics of
ccp, for which additional information is needed about how these final results
are obtained. Interestingly, this additional information is needed because of the
interplay between local variables in ccp and non-deterministic choice. In fact,
both deterministic ccp and ccp without local variables allow a compositional
semantics in terms of the final results.

In [3] a compositional and fully abstract model of ccp has been introduced
based on traces of input/output constraints, where an output constraint is gener-
ated by the program itself and the input constraint by its environment. We show
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in this paper how this trace semantics forms the basis of a corresponding sound
and complete logic for the verification of ccp programs, following the approach
of trace logics for CSP (Communicating Sequential Processes), as presented for
example in [9].

Related work. Other approaches to proving correctness of ccp programs are based
on a straightforward translation in intuitionistic linear logic, see for example [5,7].
However, this approach is applicable only to a restricted class of liveness and
safety properties, quoting [4]:

The logical characterization of other observable properties of CC (Con-
current Constraint) computations, such as the set of terminal stores, i.e.
constraints of terminal configurations with or without suspended agents,
is more delicate.

2 Getting Started

Concurrent constraint programs operate on data which is represented by an el-
ement, a constraint c, of a given cylindric constraint system C. Such a system
consists of an algebraic representation of first-order logic. It provides a (binary)
entailment relation ., a binary union operation � for adding information (for-
mally defined as the least upper bound of two constraints with respect to the
entailment relation) and, for each variable x, an unary operation ∃x, for hiding
information about x. Since the operator � corresponds to logical conjunction we
will often refer to it with this terminology.

Assuming a given cylindric constraint system C the syntax of finite ccp agents
is given by the following grammar:

A ::= tell(c) |
∑n

i=1 ask(ci)→ Ai | A ‖ B | ∃xA

where the c, ci are supposed to be finite constraints (i.e. algebraic elements) in C.
Action prefixing is denoted by →, non-determinism is introduced via the

guarded choice construct
∑n

i=1 ask(ci) → Ai, parallel composition is denoted
by ‖, and a notion of locality is introduced by the agent ∃xA which behaves like
A with x considered local to A.

For technical convenience only we restrict in this paper to finite ccp agents. In
fact, the counterexample to completeness of the proof theory in [2] is finite. In
general a sound proof theory for finite ccp agents can be extended to recursion
by the inclusion of an appropriate induction rule in the logic. Completeness can
be extended assuming the logic is expressive enough (see [2]).

In the next subsection we describe formally the operational semantics of ccp.

3 Getting Fully Operational

We define a semantic basis of our trace logic in terms of the transition system of
ccp introduced in [8]. Let us briefly discuss the rules in Figure 1, where computa-
tion is described in terms of (transitions on) configurations consisting of a process
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and a constraint representing the store (in which the process is evaluated). In or-
der to represent successful termination we introduce the auxiliary agent stop: it
cannot make any transition. Rule R1 shows that we are considering here the so
called “eventual” tell: the agent tell(c) adds c to the store d without checking for
consistency of c � d and then stops. According to rule R2 the guarded choice op-
erator gives rise to global non-determinism: the external environment can affect
the choice since ask(cj) is enabled iff the store d entails cj , and d can be modi-
fied by other agents. Rules R3 models the parallel composition operator in terms
of interleaving. The agent ∃xA behaves like A, with x considered local to A, i.e.
the information on x provided by the external environment is hidden from A and,
conversely, the information on x produced locally by A is hidden from its external
environment. To describe locality the syntax has been extended by an agent ∃dxA
where d is a local store of A containing information on x which is hidden in the
external store. Initially the local store is empty, i.e. ∃xA = ∃truexA.

R1 〈tell(c), d〉→〈stop, c � d〉

R2 〈∑n
i=1 ask(ci) → Ai, d〉 → 〈Aj , d〉 j ∈ [1, n] and d � cj

R3
〈A, c〉→〈A′, d〉

〈A ‖ B, c〉→〈A′ ‖ B, d〉

R4
〈A, d � ∃xc〉→〈B,d′〉

〈∃dxA, c〉→〈∃d′xB, c � ∃xd
′〉

Fig. 1. The transition system for ccp

Using the transition system described by (the rules in) Figure 1 we can now
define our compositional trace semantics (along the lines of [3]), where a trace θ
is a (possibly empty) monotonically increasing (with respect to the entailment
relation) sequence of input constraints in(c) and output constraints out(c), end-
ing in a final resulting constraint. Since the constraints arising from the syntax
are finite, we also assume that a trace contains only finite constraints1.

Operationally, the traces T (A)(c) of an agent A starting from an initial store
c can be generated recursively as follows:

T (A)(c) = {out(d) · θ | 〈A, c〉→〈B , d〉 and θ ∈ T (B)(d)}
∪
{in(d) · θ | d . c and θ ∈ T (A)(d)}
∪
{θ | 〈A, c〉 → 〈B , c〉 and θ ∈ T (B)(c)}
∪
{c | 〈A, c〉 �→}.

1 Note that here we implicitly assume that if c is a finite element then also ∃xc is
finite.
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This recursive definition can be justified by a straightforward least fixed-
point construction. Note that in this input-enabled trace semantics the inputs
describe arbitrary assumptions of its environment (as described by the second
clause above). A trace θ ∈ T (A)(c) without any input constraints corresponds
with an execution of A in isolation starting from the initial constraint c and
terminating with the final constraint of θ.

4 Specifying Traces

We propose a typed specification language for traces which is based on a many-
sorted signature consisting of the sort B of Boolean values, a sort C which
represents the set of constraints of the given constraint system (each constraint
c is represented by a constant in the language), and a sort T of traces of in-
put/output constraints followed by a final constraint. The sort T contains the
sort C of constraints as a subsort so that each constraint itself is a trace, denoting
the final result.

Formally, given a set of (many-sorted) operators op : S1 × · · · × Sn → S
and for each sort mutually disjoint sets of variables, every variable x of sort S
is an expression of sort S in the specification language and for every operator
op : S1×· · ·×Sn → S, expressions ti of sort Si, for i = 1, . . . , n, op(t1, . . . , tn) is
an expression of sort S. Formulas are constructed from Boolean expressions by
means of the logical operations of conjunction, negation, implication and quan-
tification over variables of any sort (including the second-order quantification
over variables of the sort T of traces). Apart from the entailment relation on
constraints, represented by a Boolean binary operation C × C → B, and the
usual Boolean operators, the logic further includes the following operators.

Undefined Trace. The constant
⊥ : T

denotes the “undefined” trace.

Input/output. The strict trace constructors

in , out : C × T → T

add an input/output constraint to a trace which is only defined in case the
monotonicity of the entailment relation between the constraints of the resulting
trace is preserved and the final result entails the added constraint. For example,

in(x = a, true) = ⊥.

On the other hand,
in(x = a, x = a � y = b) �= ⊥.

For notational convenience, in the sequel we denote in(c, t) and out(c, t) by
in(c) · t and out(c) · t, for any trace expression t. Note that since C is as a
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subsort of T , all expressions in the initial algebra denoting traces consist of a
sequence of input/output constraints followed by the undefined trace ⊥ or a con-
straint which represents a possible final result, i.e., a constraint from which no
further transition is possible. In general the final constraint of a trace entails all
its input/output constraints. However, the conjunction of all the input/output
constraints does not necessarily entail the final result. A trace is complete if the
conjunction of all its input/output constraints is equivalent to its final resulting
constraint. In our trace logic incomplete traces are mainly used for the under-
specification of the environment, e.g., such traces allow to abstract from when
exactly the inputs of the environment are generated. For example, the trace ex-
pression out(c) · d, where c and d are variables of sort C, denotes an incomplete
trace which consists of a single output constraint and abstracts from the inputs.

Final constraint. The operation

γ : T → C

extracts from a trace its final constraint (γ(⊥) equals an arbitrary constraint). Its
definition (inductive on the length of the trace) is straightforward and therefore
omitted.

Parallel Composition. The (commutative) parallel composition

‖: T × T → T

satisfies the following axioms (here and in the sequel the variables c and d are
of sort C, and the variables t and t′ are of sort T ):

– c ‖ c = c
– (in(c) · t) ‖ (in(c) · t′) = in(c) · (t ‖ t′)
– (out(c) · t) ‖ (in(c) · t′) = out(c) · (t ‖ t′)

In all other cases t ‖ t′ = ⊥. Note that thus every output must match with a cor-
responding input. Two matching inputs which coincide represent an assumption
about the environment of the parallel composition.

Local variables. For each variable x we introduce a relation

�x: (T × T )→ B

such that θ �x θ′ if and only if θ and θ′ differ at most with respect to the
information about x such that the input constraints of θ and the output con-
straints of θ′ do not contain any information about x. Formally, this relation is
the smallest relation satisfying the following axioms.

– ∃xd = ∃xd′ → d �x d′
– t �x t′ → out(d) · t �x out(∃xd) · t′
– (∃xd = ∃xd′ ∧ t �x t′)→ in(∃xd) · t �x in(d′) · t′
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Trace equivalence. We introduce next the following equivalence relation / on
traces which respects the in/out operations and satisfies the following axioms:

Constraint equivalence

– c = d→ c / d

Empty input/output

– in(true) · t / t
– out(true) · t / t

Input/output (de)composition

– in(c � d) · t / in(c) · in(c � d) · t
– out(c � d) · t / out(c) · out(c � d) · t

These axioms can be justified by a fully abstract semantics as discussed in [3].
Note that they allow reasoning about traces modulo a normal form consisting
of an alternating sequence of input/output constraints different from true.

Input enabledness. To describe logically in a concise manner the input enabled-
ness of ccp programs we introduce in the trace logic a preorder � on traces,
defined as the smallest relation which subsumes the above trace equivalence (i.e.,
/⊆�), respects the in/out operations (e.g., t � t′ implies in(c) · t � in(c) · t′)
and satisfies the following axioms:

– t �= ⊥ → ¬(⊥ � t ∨ t � ⊥)
– t � in(c) · t

Note that thus t � in(c) · t implies that c is entailed by the final constraint γ(t)
of t (the in operation being undefined otherwise). This preorder allows to add
input constraints as long as they are entailed by the final result. In other words,
t � t′ if and only if t′ provides more information about the environment. For
example, instead of having to specify explicitly that a trace t consists of a single
output of a constraint c preceded and followed by arbitrary inputs, this now can
be simply expressed by out(c) · γ(t) � γ(t).

Validity. The intended (many-sorted) model M(C) of the above specification
language includes the Boolean values “true” and “false”, the given constraint
system C and the (finte) traces of input/output constraints in C followed by a
final constraint, and is defined in terms of the standard interpretation of the
operators. Given a trace specification φ, we denote by

M(C), σ |= φ

that φ holds in M(C) under the variable assignment σ (of values in M(C)). Its
definition is standard and proceeds by induction on φ. This induction relies on
a semantics Val(e)(M(C), σ) of expressions. Its definition also proceeeds by a
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straightforward induction on the structure of e. As a special case we show the
following clause

Val(in(c) · t)(M(C), σ) = in(σ(c)) ·s σ(t)
Here c and t are variables ranging over constraints and traces, respectively, and
the semantic operation “·s” adds the input constraint in(σ(c)) to σ(t), in case
the resulting sequence is montonically increasing and the final constraint of σ(t)
entails σ(c), otherwise the undefined trace ⊥ results.

By |= φ we denote that M(C), σ |= φ, for all variable assignments σ.

5 Verifying Trace Spec’s

Given a trace specification φ(t), with a (distinguished) trace variable t, by

A sat φ(t)

we denote that A satisfies the trace specification φ(t). In the theory below for
proving correctness of ccp programs we implicitly assume that t �= ⊥ and that
t is a complete trace (which can be easily expressed in the logic). It consists of
an axiom for the tell action, for each operator of the programming language a
single rule, and it includes a weakening rule.

Tell
tell(c) sat out(c) · γ(t) � t

Note that t �= ⊥ implies that γ(t) . c (because the out operation is only defined
if the output constraint is entailed by the final result2). Further, it is worth-
while to observe the use of the preorder � in the implicit specification of input
enabledness.

Parallel Composition

Ai sat φi(t), i = 1, 2

A1 ‖ A2 sat ∃t1, t2 : t / t1 ‖ t2 ∧ φ1(t1) ∧ φ2(t2)
Here φi(ti) denotes the result of replacing in φi the trace variable t by ti. Note
that t �= ⊥ implies that t1 and t2 are indeed compatible.

Hiding
A sat φ(t)

∃xA sat ∃t′ �x t : φ(t′)
For notational convenience we use here a simple form of bounded quantification.
The above specification of ∃xP expresses that a trace t of ∃xP can be obtained
from a trace t′ which does not contain information about the local variable x in
an input constraint and which satisfies φ(t′), by eliminating information about
the local variable x in the output constraints of t′ and replacing the information
about the local variable x in its input constraints by new information about the
global variable x (according the definition of �x).
2 Recalla that γ(t) denotes the final constraint of the trace t.
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Choice

Ai sat φi(t)

Σiask(ci)→ Ai sat (γ(t) � t ∧
∧
i

γ(t) �. ci) ∨
∨
i

in(ci) · t / t ∧ φi(t)

So either t is a trace consisting only of inputs such that its final result does not
entail any of the asked constraints or t is equivalent to a trace which starts with
an input of one of the asked constraints and t satisfies the corresponding trace
specification.

Weakening
A sat φ(t) |= φ(t)→ ψ(t)

A sat ψ(t)

Let us illustrate the above trace logics by the following two simple examples.

Example 1. Consider the ccp program

tell(c1) ‖ tell(c2)

We have that tell(ci), i = 1, 2, satisfies the trace specification

out(ci) · γ(t) � t

The parallel composition thus satisfies

∃t1, t2 : t1 ‖ t2 / t ∧ out(c1) · γ(t1) � t1 ∧ out(c2) · γ(t2) � t2

From the definition of parallel composition and the preorder � it follows that

out(c1 � c2) · γ(t) � t

By the weakening rule we thus obtain

tell(c1) ‖ tell(c2) sat out(c1 � c2) · γ(t) � t

Example 2. Next we consider proving correctness of the counter example to com-
pleteness to the proof theory based on resting points ([2]): ∃xA where A denotes

ask(x = a)→ tell(y = b) + ask(true)→ tell(z = c)

By the tell axiom and the choice rule we derive

A sat

⎛⎜⎜⎜⎜⎝
(γ(t) � t ∧ γ(t) �. x = a ∧ γ(t) �. true)

∨
(in(x = a) · t / t ∧ out(y = b) · γ(t) � t)

∨
(in(true) · t / t ∧ out(z = c) · γ(t) � t)

⎞⎟⎟⎟⎟⎠
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By the weakening rule (γ(t) . true and in(true) · t / t):

A sat

⎛⎝ (in(x = a) · t / t ∧ out(y = b) · γ(t) � t)
∨

out(z = c) · γ(t) � t

⎞⎠
Applying next the hiding rule we obtain

∃xA sat ∃t′ �x t

⎛⎝ (in(x = a) · t′ / t′ ∧ out(y = b) · γ(t′) � t′)
∨

out(z = c) · γ(t′) � t′

⎞⎠
By definition of /x we have

¬(in(x = a) · t′ �x t)

So we derive
∃xA sat ∃t′ �x t : out(z = c) · γ(t′) � t′

by a trivial application of the weakening rule. A final application of the weakening
rule then gives the desired result

∃xA sat out(z = c) · γ(t) � t

6 Wrapping Up: Soundness and Completeness

Let
. A sat φ(t)

denote that the trace specification A sat φ(t) is derivable from the above proof
system. Further, let

T�(A)(true) = {θ | θ / θ′, for some θ′ such that θ′ ∈ T (A)(true}

Then
|= A sat φ(t)

denotes that M(C), σ |= φ(t), for every variable assignment σ such that σ(t) ∈
T�(A)(true).

We have the following main soundness and completeness theorem.

Theorem 1
. A sat φ(t) if and only if |= A sat φ(t)

To sketch its proof, we first introduce the following abbreviations for the trace
specification schema describing the ccp operators in the above proof theory:

PAR(φ1(t), φ2(t))= ∃t1, t2 : t / t1 ‖ t2 ∧ φ1(t1) ∧ φ2(t2)
HIDE(φ(t))= ∃t′ �x t : φ(t′)
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CHOICE c̄
n(φ1(t), . . . , φn(t))=

(γ(t) � t ∧
∧
i d �. ci) ∨

∨
i in(ci) · t / t ∧ φi(t)

where c̄ = c1, . . . , cn

The following lemma states the monotonicity of the above trace specification
schema.

Lemma 1. We have

– |= (φi(t)→ ψi(t))→ (PAR(φ1(t), φ2(t))→ PAR(ψ1(t), ψ2(t)))
for i = 1, 2, where ψj = φj , for i �= j.

– |= (φ(t)→ ψ(t))→ (HIDE(φ(t))→ HIDE(ψ(t)))

– |= (φi(t)→ ψi(t))→ (CHOICE c̄
n(. . . , φi(t), . . .)→CHOICE c̄

n(. . . , ψi(t), . . .))
where i = 1, . . . , n

Let for every agent A the trace specification φA(t) be defined inductively as
follows:

A = tell(c): φA(t)↔ out(c) · γ(t) � t
A = A1 ‖ A2: φA(t)↔ PAR(φA1(t), φA2 (t))

A = ∃xB: φA(t)↔ HIDE(φB(t))

Σn
i ask(ci)→ Ai: φA(t)↔ CHOICE c̄

n(φA1(t), . . . , φAn(t))
where c̄ = c1, . . . , cn

The following lemma follows by a straightfoward induction of φA(t).

Lemma 2. For every (finite) ccp agent A we have

. A sat φA(t)

The next lemma shows that φA(t) describes the trace semantics of ccp agentA.

Lemma 3. For every agent A the trace specification φA(t) describes its trace
semantics T�. That is,

{σ(t) |M(C), σ |= φA(t)} = T�(A)(true)

The proof of this lemma proceeds by a simultaneous induction on the ccp agent
A and the length of traces.

The following corollary follows immediately from Lemma 3 and the above
definition of |= A sat φ(t).

Corollary 1. For every (finite) ccp agent A we have

|= A sat φ(t) if and only if |= φA(t)→ φ(t)
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Soundness. As a characteristic example we prove soundness of the parallel com-
position rule. Let

|= Ai sat φi(t),

for i = 1, 2, and A = A1 ‖ A2. From these assumptions and Corollary 1 it follows
that

|= φAi(t)→ φi(t)

By the monotonicity of the PAR scheme (Lemma 1) we thus derive that

|= PAR(φA1 (t), φA2(t))→ PAR(φ1(t), φ2(t))

By Lemma 3
|= φA(t)↔ PAR(φA1(t), φA2 (t)))

So we have
|= φA(t)→ PAR(φ1(t), φ2(t))

Thus we conclude from Lemma 3 again that

|= A sat PAR(φ1(t), φ2(t))

Completeness. To prove completeness, let

|= A sat φ(t)

From our assumption and Corollary 1 we thus derive that

|= φA(t)→ φ(t)

By lemma 2
. A sat φA(t)

So an application of the weakening rule gives us the desired result

. A sat φ(t)

7 What Next?

Courcelle’s famous theorem from 1990 [1] states that any property of graphs de-
finable in monadic second-order logic (MSO) can be decided in linear time on any
class of graphs of bounded treewidth. Since traces are sequences of monotonically
increasing finite (input/output) constraints we want to apply the above result
to constraint systems which can be modeled as graphs of bounded treewidth
(with respect to the entailment relation) by embedding our trace logic which
involves second-order quantification over sequences into monadic second-order
logic, representing traces by monadic predicates (on input/output constraints).

Of particular interest is an extension of our work to the specification and
verification of the infinite behavior of ccp programs. A promising approach to
this problem involves an application of co-induction, as discussed in [6] for a
simple class of imperative programs.

Acknowledgement. We thank the reviewers for their valuable comments.
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Abstract. We investigate a communication scenario in which two in-
ertial observers attempt to securely communicate quantum information
via a noisy channel in the presence of a uniformly accelerating eaves-
dropper. Due to her acceleration, the eavesdropper is subject to Unruh
noise which can potentially be exploited to design a secure communica-
tion protocol. This problem had previously been studied by Panangaden
and co-authors for the special case in which the channel between the
inertial observers is noiseless. In this article, we consider noise in the
form of a lossy bosonic channel. Our calculations demonstrate that for
a fixed acceleration, there is a secure communication protocol provided
the noise is below a threshold value.

Keywords: relativistic quantum information, private quantum capacity.

1 Introduction

While most quantum information theory assumes that the computing and com-
munication of the participants all take place in a shared inertial frame, there
are many conceptual challenges and practical reasons to extend the theory be-
yond this special case. Perhaps most obviously, protocols designed to distribute
entanglement or teleport quantum information must be modified if they are to
perform properly when the participants do not share an inertial frame [1–3].
More intriguingly, relativistic causality can be exploited to provide solutions to
cryptographic problems [4]. In addition, the interplay between metrology and
quantum information has led to proposals for observing effects in relativistic
quantum field theory that had previously seemed inaccessible to experiment [5].
It has even been discovered that the no-cloning theorem admits a generalization
that characterizes exactly how quantum information can be replicated in space
and time [6, 7].

Modelling a physically realistic relativistic quantum information protocol is a
challenging problem, and only recently have tenable, explicit models been pro-
posed for even relatively simple communication tasks. The challenge is to model
the exchange of information between two localized agents in spacetime, whereby
the agents communicate by encoding their information in specific states of an
appropriate quantum field. [8] has considered the problem of an inertial sender
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communicating with a uniformly accelerating receiver via the coherent states of
a massless scalar field and find that, due to the Unruh effect, the secret key rate
of continuous variable quantum key distribution is reduced compared to the iner-
tial case, while [9] models how general relativistic effects impact satellite-based
quantum communication and derives similar conclusions. While these studies
are done in very explicit terms and consider very specific implementations of
certain quantum communication protocols, they do not much shed light on the
information-theoretical limits of such protocols, and the complexity of the anal-
ysis leaves it unamenable to such considerations. Indeed, much work remains
to be done to marry information-theoretical techniques with realistic models of
relativistic communication protocols.

In this article, we take a step in this direction by revisiting the problem of
two relativistic inertial observers, Alice and Bob, who wish to securely transmit
quantum information to each other in the presence of a uniformly accelerating
eavesdropper, Eve; henceforth A,B, and E will respectively denote Alice, Bob,
and Eve’s Hilbert spaces. Alice encodes her message in the excited states of a
quantum scalar field and then transmits to Bob over a channel N : A → B.
Due to the Unruh effect [10–13], whereby Eve perceives the vacuum state of the
quantum field in Alice’s frame as thermal, the message that Eve intercepts will
be subject to noise, the effect of which can be modelled by a quantum channel
E : A → E, the so-called Unruh channel. One hopes that this noise can be
exploited to ensure private quantum communication between Alice and Bob, at
least for some range of accelerations. This question is formalized by defining
the private quantum capacity, which is the optimal rate at which qubits can be
transmitted through repeated uses of N while simultaneously ensuring that any
eavesdropping using E is completely thwarted.

In the case that the channel from Alice to Bob is noiseless, Brádler, Hayden
and Panangaden [14, 15] have shown that that the private quantum capacity
Qp(id, E) is non-zero for all accelerations. In that case, the private quantum
capacity admits a single-letter formula, viz.

Qp(id, E) = max
1

2
I(A′;EC)τ , (1)

where the maximization is over all states of the form τ = (id ⊗ NC)ψA′A and
NC denotes the channel complementary to N , that is, the channel to Eve’s
environment. In words, the capacity is obtained by maximizing one-half the
mutual information between Alice’s purifying system and Eve’s environment
over pure states ψA′A. Because the Unruh channel is covariant and I(A′;EC)τ
is a concave function of ψA [16], the expression is maximized for the maximally
mixed input state for dual-rail qubit [14, 15]. In that case, (1) evaluates to

Qp(N , E) =
1

2

(
1−

∞∑
k=1

(1− z)2zk−1 k(k + 1)

2
log

k + 1

k

)
, (2)

where z parametrizes Eve’s proper acceleration [14, 15].
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In what follows, we will consider the case in which the channel from Alice to
Bob is itself noisy. In that scenario, there is no single-letter formula known for
the private quantum capacity, nor can we use the covariance of the channel to
prove that the maximally mixed state is optimal because the modified capacity
formula is not a concave function of the input density operator. Instead, we will
have to explicitly optimize the expression for the private quantum capacity over
Alice’s input states. We make some progress towards this end by demonstrating
that a lower bound on the capacity is maximized by the maximally mixed state,
and find that, unlike in this noiseless case, this expression vanishes for non-zero
acceleration parameter z.

2 Noise Models

2.1 The Unruh Channel

A detailed description of the Unruh effect and the corresponding quantum chan-
nel can be found in [15]. For our purposes, a conceptual description motivating
the definition of the channel will suffice.

We will assume that Alice encodes her quantum information in the single-
particle excitations of one of two Unruh modes of her quantum field; to wit, she
transmits to Bob qubit states of the form |ψ〉 = αâ†1|0, 0〉 + βâ†2|0, 0〉, where âi
is the annihilation operator corresponding to the i’th mode. States of this form
are called dual-rail qubits and the states |1, 0〉 = â†1|0, 0〉 and |0, 1〉 = â†2|0, 0〉
comprise the dual-rail basis.

When quantizing a field, the usual prescription is to separate the classical
solutions of the field into positive and negative frequency modes and assign an-
nihilation operators to the positive-frequency modes and creation operators to
the negative-frequency modes and demand that the canonical commutation re-
lations hold. Because the separation into positive and negative frequency modes
requires specifying a time-like Killing vector field, different observers will, in gen-
eral, make different assignments, resulting in the non-uniqueness of the definition
of the vacuum state of a quantum field. The creation and annihilation operators
of different observers are related by so-called Bogoliubov transformations, which
are, in general, linear transformations that preserve the canonical commutation
relations [17].

Thus, Eve’s motion will induce a transformation of Alice’s transmitted state.
Because the spacetime seen by a uniformly accelerating observer admits a hori-
zon, one must trace out the causally disconnected components of Alice’s trans-
formed state to obtain the state that is accessible to Eve. This procedure leaves
Eve with a mixed state, and so from Eve’s point of view, the intercepted state has
been subject to some kind of noise. Quantitatively, the transformation induced
on Alice’s i’th mode is equivalent to the action of the unitary operator

UAiCi = exp[r(â†i ĉ
†
i − âiĉi)]. (3)

In the above expression, Ci plays the role of Eve’s i’th environment mode, corre-
sponding to the Fock space of the causally disconnected modes of her field, and
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r is related to Eve’s acceleration as follows: if Eve’s proper acceleration is a and
the frequency of the i’th mode is ω, then tanh r = exp(−πω/a).

Strictly peaking, (3) is valid only if Alice encodes her information in her Un-
ruh modes, given in terms of the Minkowski modes in a rather non-trivial way.
While the Unruh modes do not readily admit a clean physical interpretation,
defining the problem this way makes it amenable to information-theoretical con-
siderations, though ultimately, the additional complications of frequency mixing
between Minkowski and Unruh modes needs to be taken into account [18]. In
addition, the Unruh modes are globally extended objects, and do not give a
realistic model of directed communication between two localized observers, but
this holds for the Minkowski modes as well.

As described in [15], the effect of this transformation on the dual-rail qubit
encoding is as follows.

Definition 1. The qubit Unruh channel E : A → E is the quantum channel
defined by

E(ψA) = TrC

[
(UA1C1 ⊗ UA2C2)ψA ⊗ |0, 0〉〈0, 0|C(U

†
A1C1

⊗ U †
A2C2

)
]
.

The action of the channel on an input qubit state can be written

E(ψA) = (1− z)3
∞⊕
k=0

zkσ
(k)
A (4)

for matrices σ
(k)
A , where z = tanh2 r. If J

(k)
i represents the i’th generator of the

irreducible k-dimensional representation of SU(2) and ψA has Bloch vector n,
then

σ
(k)
A =

k

2
id(k+1) +

3∑
i=1

niJ
(k+1)
i (5)

In the formula, id(j) is the j × j identity matrix. Subscripts such as Ai and Cj
are subsystem labels chosen to match the corresponding annihilation operators
âi and ĉj . The eavesdropper system here is E = A = A1A2. An important
role is also played by the channel complementary to the Unruh channel in our
investigation of the private quantum capacity. The complementary channel is
the channel to the eavesdropper’s environment EC = C1C2.

Definition 2. The channel complementary to the qubit Unruh channel EC :
A→ EC is the quantum channel defined by

EC(ψA) = TrA

[
(UA1C1 ⊗ UA2C2)ψA ⊗ |0, 0〉〈0, 0|C(U

†
A1C1

⊗ U †
A2C2

)
]
.

As detailed in [15], the action of the complementary channel on an input qubit
state can be written in terms of Unruh channel itself. Specifically,

EC(ψA) = zE(ψA) + (1− z)ω0 (6)
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where ω0 = (1 − z)2
[
id(1) ⊕ z id(2) ⊕ z2 id(3) ⊕ · · ·

]
. Therefore, up to complex

conjugation, the output of the complementary channel is a degraded version
of the output of the Unruh channel. The Unruh channel is therefore conjugate
degradable [19].

2.2 The Lossy Bosonic Channel

The simplest noise model for our purposes is the lossy bosonic channel (LBC),
which models the transfer of excitations into the environment. Mathematically,
the LBC affords a compact description in terms of the transformation it induces
on Alice’s annihilation operators, given by

âi →
√
ηâi +

√
1− ηf̂i (7)

f̂i → −
√
1− ηâi + ηf̂i. (8)

Here, f̂i is the annihilation operator of the associated environmental mode. This
transformation is equivalent to conjugation of the annihilation operators by the
unitary operator

Si = exp(θ(â†i f̂i − âif̂
†
i )) (9)

with θ = arctan
√

1−η
η . Assuming that the channel acts independently on each

of Alice’s input modes, we may explicitly write down the action of the channel
on Alice’s input state, as follows:

Definition 3. The lossy bosonic channel N : A → B is the quantum channel

defined by N (ψA) = TrF

[
S†
1 ⊗ S

†
2(ψA ⊗ |0, 0〉〈0, 0|F )S1 ⊗ S2

]
. The action of the

channel on an input ψA is given by

N (ψA) = ηψA + (1 − η)|0, 0〉〈0, 0|A (10)

Thus, we have that with probability η the state is transmitted unaltered, and
with probability 1− η the qubit is absorbed by the environment and the state is
projected onto the zero-photon subspace. Henceforth η will be called the noise
parameter. It should be mentioned that the channel represented by (10) is known
as an erasure channel in the quantum information literature [20], while in the
context of quantum optics, the operator (9) represents the transformation in-
duced by a beam splitter [17].

3 Private Quantum Capacity: The Noisy Case

Different communication capacities for bosonic channels have been previously
considered in the literature [21, 22]. Herein, we consider the private quantum
capacity Qp(N , E), which is, intuitively, the maximum rate at which qubits can
be reliably transmitted through N in such a way that if they were intercepted
en route and examined via E , the eavesdropped output would be essentially
independent of the qubit transmitted. More formally, let Φ(j) represent a Schmidt
rank j maximally entangled state and π(j) the rank j maximally mixed state.
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Definition 4. An (n, k, δ, ε) private entanglement transmission code from Alice
to Bob consists of an encoding channel A taking a k-qubit system R′ into the
input of N⊗n and a decoding channel B taking the output of N⊗n to a k-qubit
system C ∼= R′ satisfying

1. Transmission:
∥∥∥(id⊗ B ◦ N⊗n ◦ A)(Φ(2k))− Φ(2k)

∥∥∥
1
≤ δ.

2. Privacy:
∥∥∥(id⊗ E⊗n ◦ A)(Φ(2k))− π(2k) ⊗ (E⊗n ◦ A)(π(2k))

∥∥∥
1
≤ ε.

A rate Q is an achievable rate for private entanglement transmission if for all
δ, ε > 0 and sufficiently large n there exist (n, 1nQ2, δ, ε) private entanglement
transmission codes. The private quantum capacity Qp(N , E) is the supremum
of all the achievable rates.

As mentioned earlier, in the case that the channel from Alice to Bob is noisy,
there is no known single-letter formula for the private quantum capacity. Denot-
ing by I(X〉Y )ρ the coherent information H(Y )ρ −H(XY )ρ between X and Y ,
we may write the capacity as

Qp(N , E) = lim
n→∞max

1

2n
[I(A′〉Bn)ρ − I(A′〉En)τ ] (11)

where ρ = (id ⊗N )ψA′A and τ = (id ⊗ E)ψA′A, and the maximization is taken
over all pure states ψA′A [15]. A′ can be taken to be isomorphic to A. Fixing n = 1
and evaluating the expression above for any state ψA′A yields a lower bound on
Qp(N , E), that is, an achievable rate for private quantum communication:

LQp(N , E , ψA) =
1

2
(I(A′〉B)ρ − I(A′〉E)τ ) . (12)

(LQp is written as a function of ψA rather than ψA′A because its value is inde-
pendent of the choice of purification to A′.)

The rest of the paper will be devoted to computing the lower bound for
appropriately chosen input density matrices ψA, which will provide achievable
rates of private quantum communication. We will find that ψA maximally mixed
gives the best lower bound, which will allow us to quantitatively explore the
competition between noise in the channel between the inertial observers and
noise induced by the eavesdropper’s acceleration.

4 Computing LQp(N , E, ψA)

The coherent information terms appearing in the expression for LQp(N , E , ψA)
are difficult to calculate for arbitrary inputs ψ, but special properties of the
erasure and Unruh channels will simplify our computation by allowing us to
consider a restricted class of inputs. To begin, the coherent information between
Alice’s reference system and Bob evaluates to

I(A′〉B)ρ = (2η − 1)H(A)ψ. (13)



186 A. Bognat and P. Hayden

0.0
0.5

1.0
p

0.0

0.5

1.0
z

0.0

0.2

0.4

L bits

Fig. 1. Achievable rates of private quantum communication. The lower bound
max(LQp , 0) on the private quantum capacity is plotted as a function of the input
parameter p and the acceleration parameter z, plotted for 6 different values of the
noise parameter η, ranging from η = 1.0, which gives the highest communication rates,
down in steps of 0.1 to η = 0.5, for which no private quantum communication is pos-
sible. The lower bound has a single global maximum at p = 1/2 for all values of z and
η, unless the function is everywhere nonpositive for p ∈ [0, 1].

Moreover, since both the erasure channel and the qubit Unruh channel are SU(2)
covariant, the coherent information between Alice’s reference and Eve depends
only on the eigenvalues of the input and not on the basis in which it is diagonal.
Thus, we may without loss of generality restrict ourselves to input states of the
form ψA = p|1, 0〉〈1, 0|+(1−p)|0, 1〉〈0, 1| and just maximize LQp(N , E , ψA) over
the input parameter p.

The coherent information between Alice’s reference and Eve can be written

I(A′〉E)τ = H(E)τ −H(EC)τ (14)

where EC is the output EC(ψA′A) of the channel complementary to the Unruh
channel. Writing the action of the Unruh channel and its complementary channel
on Alice’s input as

E(ψA′A) =

∞⊕
k=1

βk(z)σ
(k)
A (15)

EC(ψA′A) =

∞⊕
k=1

βk(z)φ
(k)
C (16)

with βk(z) = (1 − z)3zk−1, we have that

LQp(N , E , ψA) = (2η − 1)H(A)ψ +

∞∑
k=1

βk(z)[H(φ
(k)
C )−H(σ

(k)
A )], (17)
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Fig. 2. The lower bound LQp as a function of p for z = 0.54 and η = 0.7. The function
is clearly neither concave nor convex. Deviations from concavity tend to occur only
when η is tuned to give only a very small private quantum communication rate, in this
case on the order of only 0.002 qubits per channel use.

where the operators σ
(k)
A and φ

(k)
C were introduced in Section 2.1. One can write

the difference of entropies above explicitly in terms of their eigenvalues, but the
resulting expression is neither elegant nor particularly enlightening. Indeed, a
plot of the expression is far more illuminating; Figure 1 shows the lower bound
on the private quantum capacity as a function of the input parameter p and
acceleration parameter z for a range of values of the noise parameter. We have
verified numerically that the maximally mixed input state, corresponding to
p = 1/2, maximizes LQp(N , E , ψA) whenever this quantity is non-negative.

Note, however, that the usual argument justifying the optimality of the max-
imally mixed state fails: LQp is a difference of two coherent informations, the
first for the erasure channel and the second for the Unruh channel. Because
the channels are degradable [23] and conjugate degradable [15, 19], respectively,
the individual coherent informations are concave. However, the difference of con-
cave functions LQp is not concave itself, as illustrated in Figure 2.

In the absence of a proof of additivity for (11), which would allow us to
ignore the limit and consider the n = 1 case to evaluate the capacity, we cannot
conclude that LQp(N , E) evaluated at the maximally mixed state gives an exact
expression for the capacity. Nevertheless, this quantity remains an informative
lower bound and achievable rate for private quantum communication; explicitly,
it is given by

LQp(N , E , idA/2) =
1

2

(
(2η − 1)−

∞∑
k=1

(1− z)2zk−1 k(k + 1)

2
log

k + 1

k

)
(18)

which reduces to (2) when η = 1, as it should. Indeed, the mutual information
in (1) can be written as

I(A′;EC)τ = H(A)ψ +H(EC)τ −H(E)τ , (19)
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Fig. 3. Achievable rates for private quantum communication, calculated using the lower
bound max(0, LQp ) evaluated for the maximally mixed state, as a function of the noise
and acceleration parameters. There is a clear trade-off between the amount of loss in
the channel between the inertial observers, parametrized by 1 − η, and the minimum
acceleration required to ensure the possibility of private quantum communication.

while LQp(N , E , ψA) takes the form

(2η − 1)H(A)ψ +H(EC)τ −H(E)τ (20)

when N is the erasure channel; the effect of the lossy bosonic channel on the
first term is merely to multiply it by a constant. Figure 3 shows a plot of
LQp(N , E , idA/2) as a function of the noise and acceleration parameters. We
see that for values of η away from 1, the rate vanishes for some non-zero value
of the acceleration parameter. This precisely characterizes the trade-off between
the noise that Eve experiences, which can be appropriately exploited to design
a secure communication protocol, and the noise between Alice and Bob, which
must be corrected against to have a robust communication protocol at all. In
particular, for z = 1, corresponding to infinite acceleration, in which case Eve
can glean no information about Alice’s state, we see that the rate vanishes for
η ≤ 1/2, as it should in accordance with the no-cloning theorem; for if informa-
tion could be transmitted when η ≤ 1/2, it could equally well be recovered from
the environment, thereby producing two copies of the same input state.

5 Conclusions

We have studied the problem of private communication of quantum information
between two inertial observers, Alice and Bob, in the presence of an accelerating
eavesdropper, when the channel between Alice and Bob is noisy. We considered
the simplest model of a noisy communication channel – the lossy bosonic channel
– and found that, while a single-letter formula for the private quantum capacity
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could not be obtained, a useful lower bound could be calculated. This quan-
tity suggests that, for a given noise parameter, the private quantum capacity
should vanish for some finite value of Eve’s acceleration, whereas in the noise-
less case, the capacity was non-zero for all accelerations. This can be understood
as a trade-off between the rate at which Alice can encode her information so
that Bob receives them with high fidelity, and the cost of securing that informa-
tion from a potential eavesdropper. However, the communication model used is
not particularly realistic for directed communication between two localized rela-
tivistic observers, and that a full information-theoretical analysis of the explicit
communication models considered in the literature remains to be done. With
respect to the calculation done in this article, the remaining open question is
whether taking the limit in (11) results in a significantly improved capacity. We
do not expect this to be the case, but examples of non-additive channel capac-
ities do occur in quantum information [24]. Finally, more realistic modelling of
the communication protocol could change the capacity in an unexpected way.
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Abstract. We consider the problem of approximating and computing a
bisimilarity pseudometric on the state space of a probabilistic automaton.
We show that the distances are rational and that both approximation
and exact computation of distances are in PPAD. In the proofs, a gener-
alization of the classical game-theoretic characterization of bisimilarity,
given in terms of simple stochastic games, plays a central role.

1 Some History

In the mid 1990’s Panangaden became interested in probabilistic systems with
continuous state spaces. For these systems, he coined the term labelled Markov
processes. A web search for this term returns more than twenty-five thousand
results, showing that it has been widely adopted. This term is also the title of
Panangaden’s most recent book [46].

Initially, Panangaden was interested in defining a notion of behavioural equiv-
alence for labelled Markov processes. Such an equivalence relation on the state
space captures which states behave the same. Together with Blute, Desharnais
and Edalat [7], he generalized probabilistic bisimilarity, introduced by Larsen and
Skou [42], from finite to continuous state spaces. Later Desharnais, Edalat and
Panangaden provided a logical characterization of probabilistic bisimilarity in
[23]. They considered a fragment of the probabilistic modal logic introduced by
Larsen and Skou in [42] and showed that states satisfy the same logical formulae
if and only if they are probabilistic bisimilar.

During a meeting in February 1998, Panangaden pointed out to Desharnais
(at the time his PhD student) and the first author of this paper (at the time his
postdoc) that his notion of probabilistic bisimilarity, or any other equivalence
relation based on the probabilities of the labelled Markov process for that matter,
was not robust. Small changes to any of those probabilities may cause equivalent
states to become inequivalent or vice versa. This started the quest for a robust
notion of behavioural equivalence for labelled Markov processes.
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Almost a decade earlier, Giacalone, Jou and Smolka [33] had already observed
that Larsen and Skou’s notion of probabilistic bisimilarity was not robust. They
proposed to use a pseudometric, rather than an equivalence relation, to capture
the behavioural similarity of states. The distance between two states, a real
number in the unit interval, captures their behavioural similarity. The smaller
their distance, the more alike they behave. Distance zero captures that states
are behaviourally indistinguishable. The pseudometric put forward by Giacalone
et al. was only defined for what they call deterministic probabilistic processes.
They close their paper with an open problem: generalize their pseudometric to
the nondeterministic setting.

In May 1998, Edalat discussed metrics on probability measures with the first
author and suggested to look at the Hutchinson metric [35]. As it turned out,
over a span of four decades this metric was reinvented several times and is orig-
inally due to Kantorovich [39] and should, therefore, be called the Kantorovich
metric. In October 1998, the first author sketched in a grant proposal how the
Kantorovich metric can be used to define a behavioural pseudometric on a class
of labelled Markov processes using the theory of coalgebra. For a detailed dis-
cussion of this theory we refer the reader to, for example, Jacobs’ textbook [36].
Some of these ideas later appeared in [8].

While the first author was trying to exploit coalgebras to define a pseudomet-
ric on the state space of a labelled Markov process, Panangaden and Desharnais
were attempting to adapt their logic to a quantitative setting. In January 1999,
in collaboration with Gupta and Jagadeesan, they proved that their pseudomet-
ric is a quantitative generalization of probabilistic bisimilarity by showing that
distance zero coincides with probabilistic bisimilarity, a key result that was miss-
ing from the first author’s work. Their behavioural pseudometric, the proof that
it generalizes probabilistic bisimilarity and several other results were published
later that year in [24]. This solved the problem posed by Giacalone et al. almost
a decade earlier.

In September 1999, the second author of this paper came up with a general
notion of similarity. This notion appeared later in [59]. Worrell was looking for
applications of this notion in a quantitative setting. In August 2000, Rutten
visited Oxford and met with the second author. At the time, Rutten was also
working on quantitative notions of bisimilarity, in particular metric bisimilarity
[48]. Rutten told Worrell about the work on the Kantorovich metric by the first
author. The latter visited Rutten in Amsterdam in October 2000. Rutten told
Van Breugel about Worrell’s work. This resulted in the first collaboration of
the authors of this paper. In the next couple of months, we showed that the
behavioural pseudometric defined by means of the theory of coalgebra coincides
with the bisimilarity pseudometric defined in terms of a logic by Desharnais et al.
As a consequence, also this behavioural pseudometric generalizes probabilistic
bisimilarity. This and some other results appeared in [12].
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2 The Problem, Related Work, and Our Results

In [24], Desharnais et al. wrote “The extension of the methods of this paper to
systems which have both probability and traditional nondeterminism remains
open and will be the object of future study.” They also wrote “In future work,
we will explore efficient algorithms and complexity results for our metrics.” In
this paper, we address both, that is, we consider a behavioural pseudometric for
probabilistic automata, which contain probability as well as nondeterminism,
and we focus on complexity results.

The paper [24] revived interest in behavioural pseudometrics, which were first
proposed by Giacalone et al. in [33]. Over the last 15 years, more than 100 pa-
pers on behavioural pseudometrics have been published. We will not attempt to
provide an overview of that vast body of work, but only discuss those papers
that are most relevant to this paper.

In this paper, we will restrict ourselves to systems with finitely many states.
Most papers on behavioural pseudometrics consider finite state systems. A few
papers, including a paper by Ferns, Panangaden and Precup [30], allow for sys-
tems with infinite state spaces.

In most papers, either the transitions or the states are labelled. The former
type of labelling usually captures interaction of the system with its environment.
The latter type is generally used to express properties of interest that hold in
particular states. Although the interpretations of these two types of labelling
are quite different, they generally have the same expressive power. That is, a
system with labellled transitions can be encoded as a system with labelled states
such that the encoding preserves the behavioural equivalences or distances, and
vice versa. Such an encoding can be found, for example, in the textbook [3,
Section 7.1.2] of Baier and Katoen. In this paper, we restrict our attention to
systems the states of which are labelled. In our examples, we use different colours
to distinguish states that are labelled differently.

The systems, called labelled Markov systems, considered by Desharnais et al.
in [24] only consider probabilistic choices. That is, for each state of the system,
its outgoing transitions form a probability distribution on the state space. Such
a collection of outgoing transitions we will call a probabilistic transition. An
example of a labelled Markov system is presented below. In this example, state 2
goes to state 3 with probability 1

4 and with probability 3
4 to state 4. To avoid

clutter, transitions with probability one are not labelled. For example, state 3
goes to state 3 with probability one. The bisimilarity pseudometric of Desharnais
et al. gives rise to the following distances for this example.
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We will not discuss here how these distances are computed. For algorithms to
compute these, we refer the reader to, for example, [2,15]. Instead we will argue
informally that these distances capture the similarity of the behaviour of the
states. The distance from state 4 to the other states is one, since state 4 is blue
whereas the other states are red. Let us, for example, consider the probability
that a state can reach a blue state. For the states 1, 2, 3 and 4 this probability
is 1

2 ,
3
4 , 0, and 1, respectively. Note that with respect to this particular property

state 2 behaves more like state 1 than state 3. This is reflected in the distance
function.

The systems that we consider in this paper, called probabilistic automata, con-
tain both probabilistic and nondeterministic choices. Behavioural equivalences
for these systems were first studied by Segala and Lynch in [52]. These automata
are also known as Segala automata (see, for example, [6]). Recall that the out-
going transitions of a state of a labelled Markov system form a probabilistic
transition. Each state of a probabilistic automaton has a set of such probabilis-
tic transitions eminating from it. An example of a probabilistic automaton is
presented below. In this example, state 2 has two nondeterministic alternatives.
The one takes the automaton to state 3 with probability 1. The other goes to
state 3 with probability 1

4 and to state 4 with probability 3
4 .
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Below, we will consider algorithms and their complexity for three different
problems related to a bisimilarity pseudometric, say d, on the state space of
a probabilistic automaton. The decision problem, given states s1 and s2 of a
probabilistic automaton and a rational q, raises the question whether d(s1, s2)<q.
The approximation problem, given states s1 and s2 of a probabilistic automaton
and a rational ε, consists of finding a rational q such that |d(s1, s2) − q| < ε.
The computation problem, given states s1 and s2 of a probabilistic automaton,
simply aims at computing d(s1, s2). These three problems are closely related. An
algorithm that solves the decision problem in combination with binary search
gives rise to an algorithm that solves the approximation problem. If the distances
are rational, an algorithm for the approximation problem in combination with
the continued fraction algorithm (see, for example, [50, Section 6.1]) gives rise
to an algorithm for the computation problem (see [29, page 2540]).

A bisimilarity pseudometric on the state space of a probabilistic automaton
was first presented by Deng, Chothia, Palamidessi and Pang in [22]. They showed
that their pseudometric generalizes probabilistic bisimilarity as introduced by
Segala and Lynch in [52].
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De Alfaro, Majumdar, Raman and Stoelinga considered a slightly different
pseudometric in [21]. We will discuss the difference in Section 4. They showed
that the approximation problem for their pseudometric can be expressed in the
first order theory over the reals. The latter theory is decidable, as shown by
Tarski in [56]. His algorithm has nonelementary complexity. The problem was
shown to be double exponential by Collins in [18].

Chatterjee, De Alfaro, Majumdar and Raman [14] considered the decision
problem and the approximation problem. In their paper, they first transformed
a quadratic optimization problem into a linear optimization problem that can be
solved by linear programming. Next, they showed that this linear optimization
characterization, capturing the approximation problem, can be expressed in term
of the existential fragment of the first order theory over the reals. Since this
theory is decidable in PSPACE, as shown by Cann in [13], they concluded
that the decision problem is in PSPACE. As a consequence, the approximation
problem is also in PSPACE.

Fu [31] showed that the bisimilarity distances for probabilistic automata are
rational. We will provide an alternative proof of that result for a slightly different
pseudometric in Section 7 of this paper. Furthermore, he proved that the decision
problem is in NP ∩ coNP. Similar to our definition in Section 4, he defined his
pseudometric as a least fixed point of some functional Δ. Fu’s proof consists
of two main steps. He presented a refinement algorithm which shows that the
problem of deciding whether a given rational fixed point of Δ is the least fixed
point is in P. Furthermore, he showed how to guess a rational fixed point of Δ.
The proof can be adapted to show that the decision problem is in UP ∩ coUP
[32]. Recall that UP contains those problems in NP with a unique accepting
computation.

Desharnais, Laviolette and Tracol [26] and Tracol, Desharnais and Zhioua
[58] also introduced pseudometrics for labelled Markov systems and probabilistic
automata, respectively. Their pseudometrics generalize probabilistic bisimilarity
as well. They are different from the pseudometrics on labelled Markov systems
and probabilistic automata discussed above. Examples showing the difference
can be found in [26, Example 7] and [58, Example 5]. To solve the computation
problem for their pseudometrics, they developed iterative algorithms. In each
iteration, a maximum flow problem needs to be solved. The resulting algorithms
show that the computation problem for their pseudometrics is in P.

The complexity class PPAD, which is short for polynomial parity argument
in a directed graph, was introduced by Papadimitriou in [47]. It lies between the
search problem versions of P and NP. The class captures the basic principles of
path-following algorithms like those of Lemke and Howson [43] and Scarf [49].
This complexity class PPAD is defined by one of its complete problems, called
end of the line. This problem is defined as follows. Let G be a possibly expo-
nentially large directed graph with no isolated vertices and with every vertex
having at most one predecessor and at most one successor. The graph G is
given by a polynomial-time computable function f(v), polynomial in the size
of v, which returns the predecessor and successor of the vertex v, if these exist.
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Given a vertex v in the graph G with no predecessor, the end of the line problem
is to find a vertex different from vertex v with no predecessor or no successor.
Note that such a vertex exists due to the parity argument that the graph G
has an even number of vertices with no predecessor or no successor. Finding
Nash equilibria of two player games is PPAD-complete, as shown by Chen and
Deng in [16]. Kintali et al. [41] present several other PPAD-complete problems.
Etessami and Yannakakis [28] have shown that computing the value of a simple
stochastic game is in PPAD.

In this paper, we consider the bisimilarity pseudometric on probabilistic au-
tomata introduced by Deng et al. [22]. We show that the approximation problem
and the computation problem for this pseudometric are in PPAD. To prove
these results, we exploit simple stochastic games.

Stochastic games were introduced by Shapley [54]. Condon [19] was the first to
study simple stochastic games from a complexity theory point of view. A simple
stochastic game consists of a directed graph whose vertices are partitioned into
sets of max vertices, min vertices, and average vertices and two special vertices
called 0-sink and 1-sink. One of the vertices is the start vertex. Each vertex has
two outgoing edges, apart from the 0-sink and 1-sink, which have none.

1 0

minavg

max

A simple stochastic game is played by two players, Player 0 and Player 1,
with a single token. Initially, the token is on the start vertex. At each step of the
game, the token is moved from a vertex to one of its successors. At a min vertex
Player 0 chooses the successor, at a max vertex Player 1 chooses the successor,
and at an average vertex the successor is chosen randomly. Player 1 wins a play
of the game if the token reaches a 1-sink; Player 0 wins if play reaches a 0-sink
or continues forever without reaching a sink.

The value of a simple stochastic game is the probability that Player 1 wins the
game when both players play optimally. The value of the above simple stochastic
game, where the max vertex is the start vertex, is 1

2 . The decision problem,
given a simple stochastic game, asks whether its value is smaller than 1

2 . The
approximation problem, given a simple stochastic game and a rational ε, consists
of finding a rational q such that |v− q|<ε, where v is the value of the game. The
computation problem, given a simple stochastic game, simply aims at computing
the value of the game.

The decision problem for simple stochastic games was shown to be in NP ∩
coNP by Condon [19] and, in fact, is known to be in UP ∩ coUP (see, for
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example, the paper [61] by Yannakakis). However, after 20 years, the exact com-
plexity remains unknown. The computation problem was shown to be in PLS
(polynomial local search) by Yannakakis [60] via a strategy improvement algo-
rithm. The same problem has also been shown to be in PPAD by Juba [38]
and Etessami and Yannakakis [28], ultimately relying on Scarf’s algorithm for
computing approximate fixed points of continuous functionals. More recently
the problem has been placed in the classes CLS (continuous local search) and
CCLS (convex continuous local search) by Daskalakis and Papadimitriou [20].
It is still not known whether this problem is complete for any complexity class.

As promulgated by Stirling, ordinary bisimilarity can be characterized in term
of a two player game. We will not discuss this game here, but refer the reader to
[55, Section 3.2]. In [26], Desharnais et al. introduce for each ε ∈ [0, 1] a notion
of ε-bisimilarity, which generalizes probabilistic bisimilarity for labelled Markov
systems. They also present a two player game that characterizes ε-bisimilarity
and generalizes the bisimilarity game. In Section 6, we will show that the bisim-
ilarity pseudometric for probabilistic automata can also be characterized as a
two player game. As we will see, our game is a simple stochastic game that also
generalizes the bisimilarity game.

Etessami and Yannakakis [28] showed that computing a fixed point of a poly-
nomial piecewise linear functional is in PPAD. We will introduce and discuss
this notion in Section 7. Etessami and Yannakakis used their result to show that
PPAD contains a variety of problems, including computing the values of simple
stochastic games, finding Nash equilibria of two player games, and computing
fixed points of discretized Brouwer functions. In this paper, we will show that
their result is also applicable to our setting.

We reduce the approximation problem of the bisimilarity pseudometric on a
probabilistic automaton to the approximation problem of the simple stochastic
game that generalizes the bisimilarity game. The size of this game depends expo-
nentially on the branching degree of the automaton and so our reduction is not
polynomial-time in general. Nevertheless, we are still able to inherit the PPAD
complexity from simple stochastic games. Here, we use the above mentioned
result of Etessami and Yannakakis.

3 Metrics and Orders

Distance functions on the states of a probabilistic automaton, that is, functions
that map each pair of states to an element of the unit interval, carry a natural
order and metric. These will play a key role in our technical development. Next,
we will collect definitions and results from the literature that we will use later
in this paper.

Let X be a set. The relation � ⊆ [0, 1]X×X × [0, 1]X×X is defined by

d1 � d2 iff d1(x1, x2) ≤ d2(x1, x2) for all x1, x2 ∈ X.

One can verify that 〈[0, 1]X×X ,�〉 is a complete lattice (see, for example, [25,
Lemma 3.2]).
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The function ‖ · − · ‖ : [0, 1]X×X × [0, 1]X×X → [0, 1] is defined by

‖d1 − d2‖ = sup
x1,x2∈X

|d1(x1, x2)− d2(x1, x2)|.

One can also check that 〈[0, 1]X×X , ‖·−·‖〉 is a nonempty complete metric space
(see, for example, [4, Section 1.1.2]).

To define the bisimilarity pseudometric on the states of a probabilistic au-
tomaton, we will use two key ingredients: a distance function on nonempty and
finite sets and a distance function on probability distributions. The former cap-
tures the nondeterministic choices in a probabilistic automaton, whereas the
latter deals with the probabilistic choices in the automaton.

We denote the set of nonempty and finite subsets of a set X by P(X). We lift
a distance function on X to a distance function on P(X) as follows.

Definition 1. Let X be a set. The function P : [0, 1]X×X → [0, 1]P(X)×P(X) is
defined by

P(d)(A1, A2) = max

{
max
x1∈A1

min
x2∈A2

d(x1, x2), max
x2∈A2

min
x1∈A1

d(x2, x1)

}
.

The above is known as the Hausdorff metric (in case d is a metric). One can
show that P preserves both the order and the metric: for all d1, d2 ∈ [0, 1]X×X ,
if d1 � d2 then P(d1) � P(d2), that is, P is monotone, and ‖P(d1)− P(d2)‖ ≤
‖d1 − d2‖, that is, P is nonexpansive.

Recall that d ∈ [0, 1]X×X is a pseudometric if for all x1, x2, x3 ∈ X , d(x1, x1) =
0, d(x1, x2) = d(x2, x1), and d(x1, x3) ≤ d(x1, x2)+d(x2, x3). If d is a pseudomet-
ric then P(d) is a pseudometric as well (see, for example, [9, Proposition A.25]).

We denote the set of rational probability distributions on a set X by D(X).
To lift a distance function on X to a distance function on D(X), we use the set
of nonexpansive functions from the set X endowed with the distance function d
to the unit interval, which we denote by (X, d) ------
 [0, 1]. Recall that a function
f : X → [0, 1] is nonexpansive if |f(x1)− f(x2)| ≤ d(x1, x2) for all x1, x2 ∈ X .

Definition 2. Let X be a set. The function D : [0, 1]X×X → [0, 1]D(X)×D(X) is
defined by

D(d)(μ1, μ2) = sup

{∑
x∈X

f(x)(μ1(x) − μ2(x))
∣∣∣∣∣ f ∈ (X, d) ------
 [0, 1]

}
.

The above is known as the Kantorovich metric (in case d is a metric). One
can show that D is monotone (see, for example, [11, Proposition 38]) and non-
expansive (see, for example, [10, Section 3]). One can also prove that D(d) is a
pseudometric if d is a pseudometric (see, for example, [27, Proposition 2.5.14]).

In Corollary 5, we present a dual characterization of the above definition of
the Kantorovich metric. It is this characterization that we will use in our proofs.
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This dual characterization is captured by means of couplings, a notion used
for bounding the rate of convergence of Markov chains (see, for example, [45,
Chapter 11]) and introduced next.

Definition 3. Let X be a set. Let μ1, μ2 ∈ D(X). Then ω ∈ D(X × X) is a
coupling of μ1 and μ2 if for all x1, x2 ∈ X,∑

x2∈X
ω(x1, x2) = μ1(x1) and

∑
x1∈X

ω(x1, x2) = μ2(x2).

In other words, ω is a joint probability distribution whose marginals are μ1
and μ2. We denote the set of couplings of μ1 and μ2 by Ωμ1,μ2 . Using the
duality theorem of linear programming (see, for example, [17, Theorem 5.1]) we
can characterise D as follows.

Theorem 4. Let X be a finite set. For all d ∈ [0, 1]X×X and μ1, μ2 ∈ D(X),

D(d)(μ1, μ2) = min

⎧⎨⎩ ∑
x1,x2∈X

ω(x1, x2)d(x1, x2)

∣∣∣∣∣ ω ∈ Ωμ1,μ2

⎫⎬⎭ .
The above result is a special case of the Kantorovich-Rubinstein duality the-

orem [40]. The set of couplings Ωμ1,μ2 is a convex polytope. We denote its set of
vertices by V (Ωμ1,μ2). Since a linear function on a convex polytope attains its
minimum at a vertex (see, for example, [50, Chapter 8]), we obtain the following
characterisation of D.

Corollary 5. Let X be a finite set. For all d ∈ [0, 1]X×X and μ1, μ2 ∈ D(X),

D(d)(μ1, μ2) = min

⎧⎨⎩ ∑
x1,x2∈X

ω(x1, x2)d(x1, x2)

∣∣∣∣∣ ω ∈ V (Ωμ1,μ2)

⎫⎬⎭ .
4 Probabilistic Automata

The topic of this paper is a bisimilarity pseudometric on a probabilistic au-
tomaton and the complexity to compute it. Next, we will introduce probabilistic
automata. Furthermore, we will define a pseudometric on the state space of a
probabilistic automaton.

Definition 6. A probabilistic automaton is a tuple (S,L,→, ") consisting of

– a nonempty finite set S of states,
– a nonempty finite set L of labels,
– a finite total transition relation → ⊆ S ×D(S), and
– a labelling function " : S → L.
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Note that for simplicity we suppose the transition relation → to be total, that
is, for each s ∈ S there exists a μ ∈ D(S) such that (s, μ) ∈ →.

For the remainder of this section, we fix a probabilistic automaton (S,L,→, ").
Instead of (s, μ) ∈ →, we will write s → μ, where s ∈ S and μ ∈ D(S). Next,
we introduce the notion of probabilistic bisimilarity for probabilistic automata
due to Segala and Lynch [52]. To define this notion, we first show how to lift a
relation on states to a relation on probability distributions on states.

Definition 7. The lifting of a relation R ⊆ S × S is the relation R̄ ⊆ D(S) ×
D(S) defined by μ1R̄μ2 if there exists a coupling ω ∈ Ωμ1,μ2 such that ω(s1, s2)>0
implies s1 R s2 for all s1, s2 ∈ S.

This notion of lifting can be found, for example, in [37, Definition 4.3]. It can
be used to define probabilistic bisimilarity as follows.

Definition 8. A relation R ⊆ S × S is a probabilistic bisimulation if s1 R s2
implies

– "(s1) = "(s2),
– if s1 → μ1 then there exists s2 → μ2 such that μ1 R̄ μ2,
– if s2 → μ2 then there exists s1 → μ1 such that μ1 R̄ μ2.

States s1 and s2 are probabilistic bisimilar, denoted s1 ∼ s2, if s1 R s2 for some
probabilistic bisimulation R.

Segala and Lynch also introduced another notion of probabilistic bisimilarity
for probabilistic automata. That notion is obtained from the above definition
by replacing probabilistic transitions with convex combinations of probabilistic
transitions. These transitions are also known as combined transitions [52] and
mixed transitions [14,21,31]. These convex combinations of probabilistic tran-
sitions correspond to randomized schedulers, whereas probabilistic transitions
correspond to deterministic schedulers. For a detailed discussion of both notions
of probabilistic bisimilarity we refer the reader to Segala’s thesis [51, Chapter 8].

As we already mentioned in Section 1, a behavioural pseudometric can be
defined by means of a real valued interpretation of a logic and also in terms of
a terminal coalgebra. As shown by Desharnais, Gupta, Jagadeesan and Panan-
gaden in [25], a behavioural pseudometric can also be defined as a fixed point.
In [11], the authors in collaboration with Hermida and Makkai showed that all
three approaches give rise to the same pseudometric for labelled Markov systems.
Here, we will use the fixed point approach. As we will see below, the bisimilarity
pseudometric is defined as the least fixed point of the following functional.

Definition 9. The function Δ : [0, 1]S×S → [0, 1]S×S is defined as follows. If
"(s1) �= "(s2) then Δ(d)(s1, s2) = 1. Otherwise

Δ(d)(s1, s2) = P(D(d))({μ1 | s1 → μ1 }, {μ2 | s2 → μ2 }).
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From the facts that P and D are monotone, we can conclude that Δ is mono-
tone as well. According to Tarski’s fixed point theorem [57], a monotone function
on a complete lattice has a least fixed point. Hence, Δ has a least fixed point,
which we denote by δ. This is the bisimilarity pseudometric introduced by Deng
et al. in [22].

De Alfaro et al. [21], Chatterjee et al. [14] and Fu [31] consider a behavioural
pseudometric for probabilistic automata that generalizes the notion of probabilis-
tic bisimilarity defined in terms of combined transitions. Their pseudometric is
defined as the least fixed point of the functional obtained from the one defined
in Definition 9 by replacing the sets of transitions with their convex closures.
To illustrate the difference between this pseudometric and the one we study, we
consider the probabilistic automaton below. In our pseudometric, the states 1
and 2 are 1

2 apart, whereas they have distance zero if we consider combined
transitions.
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From the facts that P and D are nonexpansive, we can conclude that Δ is
nonexpansive as well. Since Δ is monotone and nonexpansive, we can conclude
from [10, Corollary 1] that the closure ordinal of Δ is ω, that is, δ is the least
upper bound of {Δn(0) | n ∈ N }, where the distance function 0 maps every pair
of states to zero. The latter characterization of δ allows for inductive proofs. For
example, to conclude that δ is a pseudometric, it suffices to prove by induction
on n that Δn(0) is a pseudometric.

As shown by Deng et al. [22, Corollary 2.14], the pseudometric δ is a quan-
titative generalization of probabilistic bisimilarity, since distance zero coincides
with probabilistic bisimilarity.

Theorem 10. For all s1, s2 ∈ S, δ(s1, s2) = 0 if and only if s1 ∼ s2.

5 Simple Stochastic Games

In this section we present background on simple stochastic games in preparation
for our main results in Section 6 and 7.

Definition 11. A simple stochastic game is a tuple (V,E, P ) consisting of

– a finite directed graph (V,E) such that
• V is partitioned into the sets
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∗ Vmax of max vertices,
∗ Vmin of min vertices,
∗ Vrnd of random vertices,
∗ V0 of 0-sinks, and
∗ V1 of 1-sinks,

• the vertices in V0 and V1 have outdegree zero and all other vertices have
outdegree at least one,

– a function P : Vrnd → D(V ) such that for each vertex v ∈ Vrnd, P (v)(w)> 0
iff (v, w) ∈ E.

The above definition is slightly more general than the one given by Condon in
[19] and described in Section 2. Note that the outdegree of min, max and random
vertices is at least one (instead of exactly two), there may be multiple 0-sinks
and 1-sinks (rather than exactly one), and the outgoing edges of a random vertex
are labelled with rationals (rather than 1

2 ). However, a simple stochastic game
as defined above can be transformed in polynomial-time into a simple stochastic
game as defined in Section 2, as shown by Zwick and Paterson [62, Section 6].

Let G be a simple stochastic game. A strategy for Player 0 is a function
σ0 : Vmin → E that assigns an outgoing edge to each min vertex. Likewise a
strategy for Player 1 is a function σ1 : Vmax → E that assigns an outgoing edge
to each max vertex. These strategies are known as pure stationary strategies. We
can restrict ourselves to these strategies since both players of a simple stochastic
game have optimal strategies of this type (see, for example, [44]).

Such strategies determine a sub-game, denoted Gσ0,σ1 , in which each max
vertex and each min vertex has outdegree one (see [19, Section 2] for details).
Such a game can naturally be viewed as a Markov chain. We write φσ0,σ1 : V →
[0, 1] for the function that gives the probability of a vertex in this Markov chain
to reach a 1-sink.

The value function φ : V → [0, 1] of a simple stochastic game is defined as
minσ0 maxσ1 φσ0,σ1 . It is folklore that the value function of a simple stochastic
game can be characterised as the least fixed point of the following monotone
function (see, for example, [38, Section 2.2 and 2.3]).

Definition 12. The function Φ : [0, 1]V → [0, 1]V is defined by

Φ(f)(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if v ∈ V0
1 if v ∈ V1
max{ f(w) | w ∈ V ∧ (v, w) ∈ E } if v ∈ Vmax

min{ f(w) | w ∈ V ∧ (v, w) ∈ E } if v ∈ Vmin∑
w:(v,w)∈E P (v)(w) f(w) if v ∈ Vrnd

One can prove that Φ is nonexpansive. Since Φ is also monotone, we can
conclude from [10, Corollary 1] that the closure ordinal of Φ is ω, that is, φ is
the least upper bound of {Φn(0) | n ∈ N }, where the function 0 maps every
vertex to zero. Again, this characterization allows for inductive proofs.

We say that a simple stochastic game G is a stopping game if for every Player 0
strategy σ0 and Player 1 strategy σ1, each vertex in Gσ0,σ1 can reach a sink.
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That is, G terminates with probability one. While Φ need not have a unique
fixed point in general, it does in case G is a stopping game (see [19, Lemma 1]).
Stopping games play a key role in Section 7.

The following result is due to Etessami and Yannakakis [28]. This result can
already be found in Juba’s thesis [38, Theorem 5], although it should be men-
tioned that there is an oversight in his proof.

Theorem 13. The problem of computing the value function of a simple stochas-
tic game is in PPAD.

As we will explain in Section 7, the proof of the PPAD bound for computing
the bisimilarity pseudometric involves an appropriate generalisation of the proof
of Theorem 13, as given in [29, Section 5].

6 The Bisimilarity Game

Fix a probabilistic automaton A and write δ for the bisimilarity pseudometric
on A. We will characterise δ in terms of a certain simple stochastic game G,
which we call the bisimilarity game. This properly generalises the well-known
game-theoretic characterisation of bisimilarity in the non-probabilistic setting
(see, for example, [55, Section 3.2] for details). The latter can be recovered in
the special case that all probabilistic transitions in A are Dirac distributions.

In the bisimilarity game G we think of Player 0 as trying to show that two
states are probabilistic bisimilar, while Player 1 tries to prove that they are
not probabilistic bisimilar. There is a vertex vs1,s2 for each pair of automaton
states s1 and s2. If "(s1) �= "(s2) then the vertex is a 1-sink. Otherwise, Player 1
selects a transition, say s1 → μ1, and Player 0 responds by selecting a matching
transition s2 → μ2 and a vertex ω ∈ V (Ωμ1,μ2). Then play proceeds to a new
vertex vs′1,s′2 chosen according to the distribution ω.

In the following, we use M = {μ ∈ D(S) | ∃s ∈ S : s → μ } for the set of
probabilistic transitions occurring in automaton A. The formal definition of the
bisimilarity game is as follows.

Vertices. For all s1, s2 ∈ S, there is a vertex vs1,s2 . If "(s1) �= "(s2) then this
vertex is a 1-sink; otherwise it is a max vertex. For all s ∈ S and μ ∈M , there is
a min vertex vμ,s. For all μ1, μ2 ∈M , there is a min vertex vμ1,μ2 . Furthermore,
for all ω ∈ V (Ωμ1,μ2), there is a random vertex vω .

Edges. There is an edge from each max vertex vs1,s2 to each min vertex vμ1,s2

such that s1 → μ1 and an edge to each min vertex vμ2,s1 such that s2 → μ2.
There is an edge from each min vertex vμ1,s2 to each min vertex vμ1,μ2 such
that s2 → μ2. There is an edge from each min vertex vμ1,μ2 to each random
vertex vω such that ω ∈ V (Ωμ1,μ2). Finally, there is an edge from each random
vertex vω to each vertex vs1,s2 such that (s1, s2) is in the support of ω, that is,
ω(s1, s2)> 0. The probability of this edge is ω(s1, s2).

By construction of bisimilarity game G, there is a direct correspondence be-
tween the function Φ from Definition 12 associated to G and the function Δ
from Definition 9 associated to the automaton A. From this correspondence it
is straightforward that the respective least fixed points of Φ and Δ agree.
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Theorem 14. For all s1, s2 ∈ S, φ(vs1,s2) = δ(s1, s2).

Proof. Since φ and δ are the least upper bounds of {Φn(0) | n ∈ N } and
{Δn(0) | n ∈ N }, respectively, it suffices to show that for all s1, s2 ∈ S and
n ∈ N,

Φ4n(0)(vs1,s2) = Δn(0)(s1, s2)

by induction on n. Obviously, the above holds if n = 0. Let n>0. We distinguish
the following cases.

– If "(s1) �= "(s2) then the vertex vs1,s2 is a 1-sink and, hence,

Φ4n(0)(vs1,s2) = 1 = Δn(0)(s1, s2).

– If "(s1) = "(s2) then

Φ4n(0)(vs1,s2)

= max

{
max
s1→μ1

Φ4n−1(0)(vμ1,s2), max
s2→μ2

Φ4n−1(0)(vμ2,s1)

}
= max

{
max
s1→μ1

min
s2→μ2

Φ4n−2(0)(vμ1,μ2), max
s2→μ2

min
s1→μ1

Φ4n−2(0)(vμ2,μ1)

}
= max

{
max
s1→μ1

min
s2→μ2

min
ω∈V (Ωμ1,μ2 )

Φ4n−3(0)(vω),

max
s2→μ2

min
s1→μ1

min
ω∈V (Ωμ2,μ1 )

Φ4n−3(0)(vω)

}

= max

⎧⎨⎩ max
s1→μ1

min
s2→μ2

min
ω∈V (Ωμ1,μ2 )

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)Φ

4n−4(0)(vs′1,s′2),

max
s2→μ2

min
s1→μ1

min
ω∈V (Ωμ2,μ1 )

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)Φ

4n−4(0)(vs′1,s′2)

⎫⎬⎭
= max

⎧⎨⎩ max
s1→μ1

min
s2→μ2

min
ω∈V (Ωμ1,μ2 )

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)Δ

n−1(0)(s′1, s
′
2),

max
s2→μ2

min
s1→μ1

min
ω∈V (Ωμ2,μ1 )

∑
s′1,s

′
2∈S

ω(s′1, s
′
2)Δ

n−1(0)(s′1, s
′
2)

⎫⎬⎭
[induction hypothesis]

= max

{
max
s1→μ1

min
s2→μ2

D(Δn−1(0))(μ1, μ2), max
s2→μ2

min
s1→μ1

D(Δn−1(0))(μ2, μ1)

}
[Corollary 5]

= Δn(0)(s1, s2).
��
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Thus the distance between automaton states s1 and s2 in the bisimilarity
pseudometric is the value of the vertex vs1,s2 in the bisimilarity game.

We remark that the translation from the probabilistic automaton A to the
bisimilarity game G incurs an exponential blow-up in general. This is because
the convex polytope Ωμ1,μ2 for two given distributions μ1, μ2 ∈ M can have
up to n! vertices, where n is the number of states in A. For example, if μ1 and
μ2 are both the uniform distribution on S, then the set of couplings Ωμ1,μ2 is
(up to scaling by 1

n ) the set of doubly stochastic n× n matrices. Here it is well-
known that the vertices are the permutation matrices (see, for example, [53,
Theorem 8.4]).

In general the bisimilarity game G need not be a stopping game. For each
ε ∈ [0, 1) we define a discounted version Gε by adding a new 0-sink, scaling all
probabilities out of the random vertices by ε, and sending the remaining mass
1 − ε to the new 0-sink. Clearly, Gε is a stopping game. We will use this game
in the next section.

7 Computing the Bisimilarity Pseudometric Is in PPAD

Let A = (S,L,→, ") be a probabilistic automaton. In this section we show that
for each pair of states s1, s2 ∈ S the distance δ(s1, s2) is a rational number
that can moreover be computed in PPAD. To prove this we make use of the
characterisation of δ in terms of the bisimilarity game G. Notwithstanding the
exponential blow-up in going from A to G, with some effort we are able to adapt
the technique used to obtain a PPAD bound for computing the value of simple
stochastic games in [28] to computing the bisimilarity pseudometric.

Our complexity bounds assume that the rational transition probabilities in
A are encoded as pairs of integers, with each integer given in binary. We write
||A|| for the length of the representation of A.

Theorem 15. For all s1, s2 ∈ S, δ(s1, s2) is a rational number whose size is
bounded by a polynomial in ||A||.

Proof. As we have observed in Section 5, the number of vertices of the bisim-
ilarity game G need not be bounded by a polynomial in ||A||. Note, however,
that for each Player 0 strategy σ0 and Player 1 strategy σ1, the subgame Gσ0,σ1

has a number of vertices polynomial in ||A||. In particular, each min vertex of
the form vμ1,μ2 has a single successor vω in the sub-game Gσ0,σ1 rather than
potentially exponentially many successors as in the overall game G. Moreover,
all transition probabilities appearing in G are of size bounded by a polynomial
in ||A||. Indeed for each vertex vω ∈ Vrnd, ω is a vertex of a polytope defined by
a system of linear equations whose coefficients are transition probabilities in A.
Thus the size of ω is bounded by a polynomial in ||A|| (see, for example, [15,
Proposition 12]).

Let σ∗0 and σ∗1 be strategies that realise the value of the bisimilarity game
in each vertex. The value of each vertex can be expressed as the probability to
reach a 1-sink in the sub-game Gσ∗

0 ,σ
∗
1
. As shown in [19, Lemma 2] this value is
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rational and has size bounded by a polynomial in Gσ∗
0 ,σ

∗
1
(and therefore also ||A||

by the above considerations).
Finally, recall from Theorem 14 that the bisimilarity distance δ(s1, s2) of any

pair of automaton states s1, s2 ∈ S is the value of the vertex vs1,s2 in the
bisimilarity game. The result immediately follows. ��

Recall from Section 6 the bisimilarity game G derived from the probabilistic
automaton A. The value of this game was defined as the least fixed point of the
associated functional Φ. Following the proof of Theorem 14 note that for a max
vertex vs1,s2 we have

Φ2(f)(vs1,s2) = max

{
max
s1→μ1

min
s2→μ2

f(vμ1,μ2), max
s2→μ2

min
s1→μ1

f(vμ2,μ1)

}
(1)

and for a min vertex vμ1,μ2 we have

Φ2(f)(vμ1,μ2) = min
ω∈V (Ωμ1,μ2 )

Lω(f) (2)

where Lω(f) =
∑

s′1,s
′
2∈S

ω(s′1, s
′
2) f(s

′
1, s

′
2).

We introduce

U1 = { vs1,s2 | vs1,s2 ∈ V1 }
Umax = { vs1,s2 | vs1,s2 ∈ Vmax }
Umin = { vμ1,μ2 | vμ1,μ2 ∈ Vmin }
U = U1 ∪ Umax ∪ Umin

By a slight abuse of notation, in the rest of this section we consider Φ2 as a
self-map of [0, 1]U defined by Equation (1) and (2) and Φ2(f)(vs1,s2) = 1 for all
vs1,s2 ∈ U1.

We will show that Φ2 is polynomial piecewise linear in the sense of [28]. In our
context, Φ2 is polynomial piecewise linear if for each rational vector f ∈ [0, 1]U

we can compute in polynomial time (in the representation of f and A)
– a set I of linear inequalities with rational coefficients defining a cell C con-

taining f , where the size of I and the coefficients of the inequalities in I are
of size bounded by a polynomial in ‖A‖, and

– a rational matrix A ∈ [0, 1]U×U and a rational vector b ∈ [0, 1]U , where the
rationals are bounded by a polynomial in ‖A‖, such that Φ2(g) = Ag+ b for
all g ∈ C.

Etessami and Yannakakis [28] have shown that the fixed-point functional as-
sociated with a simple stochastic game is polynomial piecewise linear. Recall
that in general we experience an exponential blow-up going from A to G. Hence,
we cannot allude to this result of Etessami and Yannakakis to conclude that Φ
is polynomial piecewise linear. Instead, we exploit the structure of the game G
to get polynomial complexity of Φ2 in the original automaton A, which may be
exponentially smaller than G.
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Proposition 16. Φ2 is polynomial piecewise linear.

Proof. First, we will show that it suffices to prove that Φ2(−)(v) : [0, 1]U → [0, 1]
is polynomial piecewise linear for each vertex v ∈ U . Fix a rational f ∈ [0, 1]U .
Assume that for each v ∈ U we can compute in polynomial time a set Iv of
linear inequalities defining a cell Cv ⊆ [0, 1]U containing f and a linear function
coinciding with Φ2(−)(v) on the cell Cv, that is, a rational vector av ∈ [0, 1]U and
a rational bv ∈ [0, 1] such that Φ2(g)(v) = avg + bv for all g ∈ Cv. Suppose that
the size of Iv and the rational coefficients of the linear inequalities in Iv and the
rationals in av and the rational bv are all of size bounded by a polynomial in ‖A‖.
Now define the cell C =

⋂
v∈U Cv. Then we can compute in polynomial time the

set
⋃
v∈U Iv of linear inequalities defining the cell C. Obviously, C contains f .

Furthermore, we can combine the vectors av into a matrix A and the rationals
bv into a vector b such that Φ2(g) = Ag + b for all g ∈ C. Clearly, the size of I
and the rational coefficients of the linear inequalities in I and the rationals in A
and b are all of size bounded by a polynomial in ‖A‖. Hence, Φ2 is polynomial
piecewise linear.

Let vs1,s2 ∈ U1. In this case, for all g ∈ [0, 1]U , Φ2(g)(vs1,s2) = 1. Obviously,
Φ2(−)(vs1,s2) is polynomial piecewise linear.

Fix vs1,s2 ∈ Umax and consider the set of linear inequalities Iv1,v2 = { f ∈
[0, 1]U | f(v1) ≤ f(v2) } for v1, v2 ∈ Umin. There are polynomially many such
inequalities (in the number of states of A) and these inequalities define cells. Fix
a rational f ∈ [0, 1]U . From Equation (1) we have that Φ2(f)(vs1,s2) = f(v) for
some v ∈ Umin. Let C be the cell containing f . For each g ∈ C, we have that for
all v1, v2 ∈ Umin,

f(v1) ≤ f(v2) iff g(v1) ≤ g(v2).

As a consequence, Φ2(g)(vs1,s2) = g(v). Hence, Φ2(−)(vs1,s2) is polynomial piece-
wise linear.

Next, fix vμ1,μ2 ∈ Umin and consider the set of linear inequalities Iω1,ω2 =
{ f ∈ [0, 1]U | Lω1(f) ≤ Lω2(f)}, where ω1, ω2 ∈ V (Ωμ1,μ2). Similar to the
previous case, these inequalities define cells. Again, fix a rational f ∈ [0, 1]U .
Clearly, the vertex ω that minimises the term L(−)(f) on the right-hand side
of Equation (2) is determined by the cell C that contains f . Note that the size
of Iω1,ω2 for ω1, ω2 ∈ V (Ωμ1,μ2) is potentially exponential in ‖A‖. However,
we will show next that each cell C can be defined by only polynomialy many
inequalities, and these can be computed in polynomial time.

Using the network simplex algorithm (see, for example, [1, Chapter 11]) we
can compute in polynomial time (in the representation of f , μ1, and μ2) a vertex
ω ∈ V (Ωμ1,μ2) that minimises the linear function L(−)(f) : V (Ωμ1,μ2) → [0, 1].
According to, for example, [15, Proposition 12], ω consists of rationals of size
bounded by a polynomial in ‖A‖. Let ω1, . . . , ωk be the adjacent vertices of
ω in V (Ωμ1,μ2). The number of such vertices is at most the number of linear
constraints defining Ωμ1,μ2 ; moreover we can compute each such vertex in poly-
nomial time from ω by performing one pivoting step of the simplex algorithm.
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Now define the cell

C = { g ∈ [0, 1]U | ∀1 ≤ i ≤ k : Lω(g) ≤ Lωi(g) } .

That is, C contains those vectors g for which the vertex ω is a local optimum
when minimizing the linear function L(−)(g). Since a local optimum of a linear
function on a convex polytope is a global optimum (see, for example, [34, The-
orem 16.25]), for g ∈ C we have that Lω(g) ≤ Lω′(g) for all ω′ ∈ V (Ωμ1,μ2).
Hence, Φ2(g)(vμ1,μ2) = Lω(g) for all g ∈ C and, therefore, Φ2(−)(vμ1,μ2) is poly-
nomial piecewise linear. ��

Theorem 17. The problem of approximating δ is in PPAD.

Proof. Recall the value function φ : V → [0, 1] of the bisimilarity game G. By
Theorem 14 we have that δ(s1, s2) = φ(vs1,s2) for all s1, s2 ∈ S, so it will suffice
to show that approximating φ is in PPAD.

Given an integer N in binary, for each pair of states s1, s2 ∈ S we wish to
compute a value q such that |φ(vs1,s2) − q| < 1

N . Let us fix s1, s2 ∈ S for the
remainder of this proof.

The value function φε : V → [0, 1] of the discounted version Gε of the bisimi-
larity game is the least fixed point of the function Φε : [0, 1]V → [0, 1]V defined
by

Φε(f)(v) =

{
ε
∑

w:(v,w)∈E P (v)(w) f(w) if v ∈ Vrnd
Φ(f)(v) otherwise

By [19, Lemma 8] there is some ε ∈ [0, 1) such that the value of each vertex
of the bisimilarity game G is within 1

N of the value of the same vertex in the
stopping game Gε. That is, |φ(vs1,s2)− φε(vs1,s2)|< 1

N . In fact, exploiting again
the fact that Gσ0,σ1 has size polynomial in ||A|| for each pair of strategies σ0
and σ1, the argument of [19, Lemma 8] shows that ε can be chosen to have
bit-length polynomial in ||A|| and the bit-length of N . We will take φε(vs1,s2)
as our approximation to φ(vs1,s2), so it remains to show that the former can be
computed in PPAD.

From Proposition 16 and the fact that ε can be chosen to have bit-length
polynomial in ||A|| and the bit-length of N , we can conclude that (Φε)2 is poly-
nomial piecewise linear. Thus, by [28, Theorem 23], some fixed point of (Φε)2

can be computed in PPAD. But, expanding definitions (as in the proof of The-
orem 14), we have (Φε)4(f) = Φ4(ε · f). Since Φ is non-expansive it follows that
(Φε)4 is contractive. From Banach’s fixed point theorem [5] it follows that the
fixed point of (Φε)4 is unique. Since any fixed point of (Φε)2 is also a fixed point
of (Φε)4, we can conclude that (Φε)2 has a unique fixed point. Because φε is a
fixed point of Φε, it is also a fixed point of (Φε)2. Therefore, φε is the unique fixed
point of (Φε)2. Hence, we can conclude that φε can be computed in PPAD. ��

Corollary 18. The problem of computing δ is in PPAD.

Proof. We use here the approach described by Etessami and Yannakakis [29,
page 2540]. Let N ∈ N be an upper bound on the denominators of the distances
δ(s1, s2) for s1, s2 ∈ S. By Theorem 15, N has bit-length polynomial in ||A||.
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By Theorem 17, we can compute an approximation of δ to within 1
2N in

PPAD. If we round all distances in this approximation to the nearest rational
with denominator at most N then we recover δ. This rounding can be done in
polynomial time using the continued fractions method (see, for example, [50,
Section 6.1]). ��

8 Conclusion

We have reduced the problem of computing the bisimilarity metric on probabilis-
tic automata to that of computing the value of an associated simple stochastic
game: the bisimilarity game. Although this reduction is exponential, we have
shown that the PPAD complexity of simple stochastic games carries over to
the bisimilarity metric. Our results rely in particular on [28, Theorem 23]. From
the proof of this theorem in [28] one sees that ultimately the reduction of the
computation problem for the bisimilarity metric to an end-of-line problem pro-
ceeds via Scarf’s algorithm for computing approximate fixed points of continuous
functionals. The latter can be seen as a path-following algorithm (see, e.g., [28,
Section 2]).

In future work we would like to further compare the complexity of the re-
spective computation problems for the bisimilarity metric and simple stochastic
games. It is natural to ask whether there is a polynomial reduction of the former
to the latter. In the absence of such a reduction, the complexity of computing
the bisimilarity metric can naturally be studied in terms of searching for local
optima, for example, via strategy improvement algorithms. Such an approach
has been pursued for labelled Markov systems in [2]. Recall from Section 2 that
the computation problem for simple stochastic games is known to belong to the
classes PLS [60], CLS [20], and CCLS [20], which are all defined in terms of
local-search algorithms where each step of the search can be done in polynomial
time. It is thus natural to wonder if the computation problem for the bisimilarity
metric also belongs in these classes.
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Abstract. If C � 2N is the Cantor set realized as the infinite product of
two-point groups, then a folklore result says the Cantor map from C into
[0, 1] sends Haar measure to Lebesgue measure on the interval. In fact,
C admits many distinct topological group structures. In this note, we
show that the Haar measures induced by these distinct group structures
are all the same. We prove this by showing that Haar measure for any
group structure is the same as Haar measure induced by a related abelian
group structure. Moreover, each abelian group structure on C supports
a natural total order that determines a map onto the unit interval that
is monotone, and hence sends intervals in C to subintervals of the unit
interval. Using techniques from domain theory, we show this implies this
map sends Haar measure on C to Lebesgue measure on the interval, and
we then use this to prove any two group structures on C have the same
Haar measure.

Keywords: Cantor set, Cantor map, compact group, Haar measure,
Lebesgue measure, Stone duality.

1 Introduction

The discovery of the middle-third Cantor set in the late 1800s led to the first
construction of a continuous map of the unit interval onto itself whose derivative
is zero almost everywhere. Another remarkable – in fact, folklore – result about
the Cantor set is that the restriction of the same map to the Cantor set sends
Haar measure on the compact group 2N to Lebesgue measure on the interval
[14]. In this note we generalize this result to any compact totally disconnected
second countable infinite group. Any topological group structure on the Cantor
set is the strict projective limit of finite groups, and conversely, the limit of a
countable projective system of finite groups is a topological group on the Cantor
set. In fact, any compact totally disconnected second countable group is either
finite or a strict projective limit of a countable family of finite groups.

Any locally compact group admits a unique (up to scalar factor) translation-
invariant Borel measure called Haar measure, and Haar measure is finite (and
hence normalized to be a probability measure) iff the group is compact. For
example, Haar measure on (R,+) is Lebesgue measure, and Haar measure on
any discrete group is counting measure. There are two main results in this paper:
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the first is that any two topological group structures on the Cantor set have the
same Haar measure, and the second is that the natural map from the Cantor
set to the unit interval sends Haar measure to Lebesgue measure. To prove the
first of these results, we first show that any strict projective system of finite
groups can be replaced by a system of finite abelian groups, so that each of
the replacement groups has the same cardinality as the corresponding group in
the original projective system. Since the probability functor is continuous on
compact Hausdorff spaces, Haar measure on the limit of a projective system
of finite groups is the limit of the Haar measures on the finite groups. Any two
finite groups of the same cardinality have the same Haar measure, so this implies
Haar measure on the limit of the projective system of finite abelian groups is
the same as Haar measure on the limit of the original projective system.

The advantage of a projective system of finite abelian groups is that each is
a product of cyclic groups, which allows us to define a total order on each of
these groups relative to which the projection maps from larger to smaller groups
are monotone. This implies these total orders induce a complete total order on
the limit, the Cantor set C, and from this it follows that the natural map from
C onto the unit interval is monotone and Lawson continuous, if we view C as a
continuous lattice. Using domain theory, we then show that Haar measure on
the Cantor set assigns the same length to each interval in C as Lebesgue measure
assigns to the image of the interval under the map, which implies that the map
sends Haar measure on the Cantor set to Lebesgue measure on the unit interval.

1.1 Outline of the Results

Our focus is on the Cantor set C, which can be defined abstractly as a second
countable perfect Stone space, i.e., a compact Hausdorff perfect zero-dimensional
space that has a countable base for its topology. Here perfect means every point is
a limit point; second countability implies C is the projective limit of a countable
family of finite sets. We will study two additional structures with which C can
be endowed:

(1) The structure of a topological group – the leading example is C / 2N, the
infinite product of two-point groups, but like 2N, any topological group struc-
ture on C can be realized as the strict projective limit of a countable system
of finite groups and group homomorphisms, and

(2) A total order relative to which C is complete lattice.

Because the probability functor on compact Hausdorff spaces is continuous, view-
ing the Cantor set C as a compact group that is the strict projective limit of finite
groups, Cn implies that Haar measure on C is the limit of the Haar measures
on the Cns, where Haar measure on each Cn has the uniform distribution. We
show we can replace any topological group structure on Cn with an “equivalent”
abelian group structure, in the sense that the Haar measure is the same for both
groups. As a finite abelian group, the replacement group structure is isomorphic
to a finite product of cyclic groups, and we show that we can construct the
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replacement group Cn so that it satisfies Cn /
⊕

k≤n Zak
is a direct product of

n finite cyclic groups.
Since Zk admits a natural total order for each k, this allows us to define

the lexicographic order on Cn /
⊕

k≤n Zak
for each n, and then the quotient

mapping Cm → Cn is monotone for each n ≤ m. These total orders therefore
induce a complete total order on C, which means C is a complete lattice in
this order. Then the topology on C is the Lawson topology from the theory of
continuous lattices.

Applying Stone duality allows us to interpret each finite quotient Cn as a
partition of C into subintervals, and then Haar measure on Cn assigns equal
lengths to each of these intervals. Next, we show that there is a natural map
from C to [0, 1] that is monotone and Lawson continuous. We show this assigns
the same length to each subinterval of C determined by Cn as Lebesgue measure
assigns to its image in [0, 1].

The final piece of the puzzle relies on verifying that the length Haar measure
on C assigns to each closed subinterval is the same as the length that Lebesgue
measure assigns to its image in [0, 1]. Since both measures are continuous (i.e.,
they assign measure 0 to points), and the clopen (= closed and open) intervals
in C map to the closed intervals in [0, 1], inner regularity implies these measures
assign the same measure to open intervals, and it follows that the image of Haar
measure on C under the natural map is Lebesgue measure on the interval.

1.2 The Plan of the Paper

In the next section, we review some backgroundmaterial from domain theory and
from the theory of compact abelian groups. Most of the latter is well-known, but
we include some proofs for completeness sake. The treatment of domain theory
includes a version of Stone duality. The following section constitutes the main
part of the paper, where we analyze the Cantor set when it is equipped with an
arbitrary abelian topological group structure making it a topological group.

2 Background

In this section we present the background material we need for our main results.

2.1 Domains

Our results rely fundamentally on domain theory. Most of the results that we
quote below can be found in [2] or [4]; we give specific references for those that
are not found there.

To start, a poset is a partially ordered set. A poset is directed complete if each
of its directed subsets has a least upper bound; here a subset S is directed if
each finite subset of S has an upper bound in S. A directed complete partial
order is called a dcpo. The relevant maps between dcpos are the monotone maps
that also preserve suprema of directed sets; these maps are usually called Scott
continuous.
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These notions can be presented from a purely topological perspective: a subset
U ⊆ P of a poset is Scott open if (i) U = ↑U ≡ {x ∈ P | (∃u ∈ U) u ≤ x} is
an upper set, and (ii) if supS ∈ U implies S ∩ U �= ∅ for each directed subset
S ⊆ P . It is routine to show that the family of Scott-open sets forms a topology
on any poset; this topology satisfies ↓x ≡ {y ∈ P | y ≤ x} = {x} is the closure
of a point, so the Scott topology is always T0, but it is T1 iff P is a flat poset.1

A mapping between dcpos is Scott continuous in the order-theoretic sense iff it
is a monotone map that is continuous with respect to the Scott topologies on its
domain and range.

If P is a dcpo, and x, y ∈ P , then x approximates y iff for every directed set
S ⊆ P , if y ≤ supS, then there is some s ∈ S with x ≤ s. In this case, we write
x 4 y and we let ↓↓y = {x ∈ P | x 4 y}. A basis for a poset P is a family
B ⊆ P satisfying ↓↓y ∩ B is directed and y = sup(↓↓y ∩ B) for each y ∈ P . A
continuous poset is one that has a basis, and a dcpo P is a domain if P is a
continuous dcpo. An element k ∈ P is compact if x 4 x, and P is algebraic if
KP = {k ∈ P | k 4 k} forms a basis. Domains are sober spaces in the Scott
topology.

Domains also have a Hausdorff refinement of the Scott topology which will
play a role in our work. The weak lower topology on P has the sets of the form if
O = P \ ↑F as a basis, where F ⊂ P is a finite subset. The Lawson topology on
a domain P is the common refinement of the Scott- and weak lower topologies
on P . This topology has the family

{U \↑F | U Scott open & F ⊆ P finite}

as a basis. The Lawson topology on a domain is always Hausdorff.
A domain is coherent if its Lawson topology is compact. We denote the closure

of a subset X ⊆ P of a coherent domain in the Lawson topology by X
Λ
.

Example 1. A basic example of a domain is the unit interval; here x 4 y iff
x = 0 or x < y. The Scott topology on the [0, 1] has open sets [0, 1] together
with ↑↑x = (x, 1] for x ∈ (0, 1]. Since domains are closed under finite products,
[0, 1]n is a domain in the product order, where x 4 y iff xi 4 yi for each i; a
basis of Scott-open sets is formed by the sets ↑↑x for x ∈ [0, 1]n (this last is true
in any domain).

The Lawson topology on [0,1] has basic open sets (x, 1] \ [y, 1] for x < y –
i.e., sets of the form (x, y) for x < y, which is the usual topology. Then, the
Lawson topology on [0, 1]n is the product topology from the usual topology on
[0, 1]. This shows [0, 1] is a coherent domain.

Since [0, 1] has a least element, the same results apply for any power of [0, 1],
where x4 y in [0, 1]J iff xj = 0 for almost all j ∈ J , and xj 4 yj for all j ∈ J .
Thus, every power of [0, 1] is a coherent domain.

Similarly, the middle-third Cantor set C ⊆ [0, 1] is a domain in the order it
inherits from [0, 1]. But while K[0, 1] = {0}, the compact elements of C consist

1 A space X is T0 if given any pair of points, there is an open set containing exactly
one of the points; X is T1 if {x} is a closed set for each x ∈ X.
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of the least upper bounds of the open intervals that are deleted from [0, 1] to
form C – 2

3 ,
2
9 ,

8
9 ,. . . . Thus, y = supKC ∩ ↓y for each y ∈ C, so C is an algebraic

domain, in fact a complete algebraic lattice.
A more interesting example of a coherent domain is Prob(D), the family of

probability measures on a coherent domain D, where μ ≤ ν iff μ(U) ≤ ν(U) for
every Scott-open subset U ⊆ D. For example, Prob([0, 1]) is a coherent domain.
In fact, the category COH of coherent domains and Scott continuous maps is
closed under the application of the functor Prob [10].

Embedding-Projection Pairs. One of the features of domain theory is its
ability to provide solutions to domain equations – these are abstract domains
that satisfy structural requirements, most often ones needed in defining models
for programming language constructs. Of course, the most famous domain equa-
tion is D / [D → D], which can be solved in any of the number of Cartesian
closed categories of domains. We don’t need anything so sophisticated, but we
can use the basic approach to solving domain equations to realize Stone spaces
as algebraic lattices.

Definition 1. Let P and Q be posets. An embedding–projection pair between
P and Q is a pair of monotone mappings e : Q → P and p : P → Q satisfying
p ◦ e = 1Q and p ◦ e ≤ 1P , where the order on functions is pointwise.

The main result we need is the following:

Theorem 1. Let (Pi, ei,j , pi.j)i≤j∈I be an indexed family of domains Pi and
Scott-continuous e–p pairs ei,j : Pi → Pj, pi,j : Pj → Pi for i ≤ j. Then P =
{(xi)i∈I | pi,j(xj) = xi} is a domain, and the projection maps πi : P → Pi

together with the mappings ei : Pi → P by (ei(x))j =

{
pi,j(x) if i ≤ j
ei,j(xj) if j ≤ i

form

Scott-continuous e–p pairs. Moreover, if each Pi is algebraic, then so is P , and
KP =

⋃
i ei(KPi).

2.2 The Prob Monad on Comp

It is well known that the family of probability measures on a compact Hausdorff
space is the object level of a functor which defines a monad on Comp, the category
of compact Hausdorff spaces and continuous maps. As outlined in [7], this monad
gives rise to several related monads:

– On Comp, it associates to a compact Hausdorff space X the free barycentric
algebra over X , the name deriving from the counit ε : Prob(S) → S which
assigns to each measure μ on a probabilistic algebra S its barycenter ε(μ).

– On the category CompMon of compact monoids and continuous monoid ho-
momorphisms, Prob gives rise to a monad that assigns to a compact monoid
S the free compact affine monoid over S.
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– On the category CompGrp of compact groups and continuous homomor-
phisms, Prob assigns to a compact group G the free compact affine monoid
over G; in this case the right adjoint sends a compact affine monoid to its
group of units, as opposed to the inclusion functor, which is the right adjoint
in the first two cases.

If we let SProb(X) denote the family of subprobability measures on a compact
Hausdorff space X , then it’s routine to show that SProb defines monads in each
of the cases just described, where the only change is that the objects now have
a 0 (i.e., they are affine structures with 0-element, allowing one to define scalar
multiples r · x for r ∈ [0, 1] and x ∈ SProb(X), as well as affine combinations).

There is a further result we need about Prob which relates to its role as
an endofunctor on Comp and its subcategories. The following result is due to
Fedorchuk:

Theorem 2 (Fedorchuk [3]). The functor Prob : Comp→ Comp is normal; in
particular, Prob preserves inverse limits.

2.3 Stone Duality

In modern parlance, Marshall Stone’s seminal result states that the category of
Stone spaces – compact Hausdorff totally disconnected spaces – and continuous
maps is dually equivalent to the category of Boolean algebras and Boolean alge-
bra maps. The dual equivalence sends a Stone space to the Boolean algebra of
its compact-open subsets; dually, a Boolean algebra is sent to the set of prime
ideals, endowed with the hull-kernel topology. This dual equivalence was used
to great effect by Abramsky [1] where he showed how to extract a logic from
a domain constructed using Moggi’s monadic approach, so that the logic was
tailor-made for the domain used to build it.

Our approach to Stone duality is somewhat unconventional, but one that also
has been utilized in recent work by Gehrke [5,6]. The idea is to realize a Stone
space as a projective limit of finite spaces, a result which follows from Stone
duality, as we now demonstrate.

Theorem 3 (Stone Duality). Each Stone space X can be represented as a
projective limit X / lim←−α∈AXα, where Xα is a finite space. In fact, each Xα is

a partition of X into a finite cover by clopen subsets, and the projection X � Xα

maps each point of X to the element of Xα containing it.

Proof. If X is a Stone space, then B(X), the family of compact-open subsets of
X is a Boolean algebra. Clearly B(X) / lim−→α∈A Bα is the injective limit of its

family {Bα | α ∈ A} of finite Boolean subalgebras. For a given α ∈ A, we let Xα

denote the finite set of atoms of Bα. Then Bα ↪→ B(X) implies Bα is a family
of clopen subsets of X , and the set of atoms of Bα are pairwise disjoint, and
their sup – i.e., union – is all of X , so Xα forms a partition of X into clopen
subsets, Thus there is a continuous surmorphism X � Xα sending each element
of X to the unique atom in Xα containing it. The family {Bα | α ∈ A} is an
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injective system, since given Bα and Bβ, the Boolean subalgebra they generate
is again finite. Dually the family {Xα | α ∈ A} is a projective system, and since
B(X) / lim−→α∈A Bα, it follows that X / lim←−α∈AXα.

We note that a corollary of this result says that it is enough to have a basis
for the family of finite Boolean subalgebras of B(X) in order to realize X as
a projective limit of finite spaces, where by a basis, we mean a directed family
whose union generates all of B(X).

2.4 Compact Groups

We now recall some results about compact topological groups. We include proofs
of some results that are well-known in the interest of completeness. A standard
reference for group theory is [12], and an excellent reference for the theory of
compact groups is [8]

To begin, a topological group is a T1-topological space G that is also a group,
and for which the multiplication · : G × G → G and inversion x �→ x−1 : G →
G mappings are continuous. A basic result is that all topological groups are
Hausdorff spaces. A compact group is a topological group whose topology is
compact.

We are interested in group structures on the Cantor set, which can be charac-
terized as a metrizable perfect Stone space. That is, a Cantor set is a compact
Hausdorff zero-dimensional space that has a countable base for its topology, and
in which every point is a limit point. It is well-known that any Cantor set has a
base of clopen subsets. We prove a stronger result for groups on the Cantor set.

Proposition 1. If G is a compact group whose underlying space it zero dimen-
sional, then G admits a neighborhood base of the identity consisting of clopen
normal subgroups.

Proof. We start with a basis O of clopen neighborhoods of the identity, which
exists in any Stone space. Since inversion is a homeomorphism (being its own
inverse), each O ∈ O satisfies O−1 ∈ O, so O ∩ O−1 ∈ O, which implies it is no
loss of generality to assume that O = O−1 for each O ∈ O.

Now, since multiplication is continuous and O is both compact and open,
O = e · O ⊆ O implies there is a U ∈ O with U · O ⊆ O. But then U ⊆ O, and
so U2 ⊆ O, and by induction, Un ⊆ O for each n > 0. Since U is symmetric,
this implies the subgroup HU that U generates is a subset of O. And since U is
open, so is HU (which also implies HU is closed).

For the claim about normal subgroups, we first recall that the family of conju-
gates H = {xHx−1 | x ∈ G} of a closed subgroupH < G is closed in the space of
closed subsets of G endowed with the Vietoris topology, which is compact sinceG
is compact. Moreover, G acts continuously on H by (x,H) �→ xHx−1 : G×H →
H. The kernel K = {x ∈ G | xHx−1 = H} of this action is then a normal
subgroup of G, and if H is clopen, then K is clopen as well. But since G acts
transitively on this family of conjugates, it follows that |G/K| = |H|. Since K is
open and G is compact, G/K is finite, and so there are only finitely many cosets
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xHx−1. Then their intersection
⋂
x∈G xHx

−1 ⊆ H is a clopen normal subgroup
of G inside H . Since G has a basis of clopen subgroups H around e by the first
part, and we can refine each of these with a clopen normal subgroup by taking⋂
x∈G xHx

−1, it follows that G has a basis of clopen normal subgroups around e.

Corollary 1. Any compact zero-dimensional group is the strict projective limit 2

of finite groups.

Proof. If G is compact and zero-dimensional, then e has a basis N of clopen
normal subgroups by the Proposition. If N ∈ N , then since G is compact, G/N
also is compact and the quotient map πN : G → G/N is open. But N ∈ N is
open, so G/N is discrete, which implies there are only finitely many cosets in
G/N , i.e., G/N is finite. The family N is directed by reverse set inclusion, and
for M ⊆ N ∈ N , we let πN,M : G/M → G/N be the natural projection. Then
the family (G/N, πN,M )M≤N∈N forms a strict projective system of finite groups
which satisfies G / lim←−N G/N .

Remark 1. We also note that since any topological group is homogeneous, a
topological group must satisfy the property that either every point is a limit
point, or else the group is discrete. Thus, the underlying space of a compact
group is either perfect or the group is finite. In particular, a topological group
on a Stone space forces the space to be finite or perfect. By a Cantor group, we
mean a topological group structure on a Cantor set (which we also assume is
metrizable).

2.5 Haar Measure on Cantor Groups

Definition 2. A Borel measure μ on a topological group G is left translation
invariant if μ(xA) = μ(A) for all x ∈ G and all measurable sets A ⊆ G.

A fundamental result of topological group theory is that each locally compact
group admits a left translation invariant Borel measure which is unique up to
scalar constant; i.e., if μ and ν are left translation invariant measures on the
locally compact group G, then there is a constant c > 0 such that μ(A) = c ·ν(A)
for every measurable set A. Any such measure is called a Haar measure. If G
is compact, the measure μ is assumed to satisfy μ(G) = 1, which means this
measure is unique. Notice in particular that Haar measure on any discrete group
is counting measure, and on a finite group, it is normalized counting measure.

We now establish an important result we need for the main result of this
section.

Proposition 2. Let G and H be compact groups and let φ : G → H be a con-
tinuous surmorphism. Then φ(μG) = μH , where μG and μH are Haar measure
on G and H, respectively.

2 A projective system is strict if the projection maps all are surjections.
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Proof. Let K = kerφ, and let A ⊆ G/K be measurable and x ∈ G/K. Since φ
is a surmorphism, there is x0 ∈ G with φ(x0) = x. Then

πK(μG)(xA) = μG(φ
−1(xA)) = μG(φ

−1(x) · φ−1(A)) = μG(x0K · φ−1(A))
∗
= μG(x0φ

−1(A)) = μG(φ
−1(A)) = πK(μG)(A),

where
∗
= follows from the normality of K and the fact that φ−1(A) is saturated

with respect to K, and the next equality follows because μG is Haar measure
on G. Thus φ(μG) is a Haar measure on H . The result then follows by the
uniqueness of Haar measure on a compact group.

The main result of this section is the following:

Theorem 4. If G is a topological group whose underlying space is a Cantor set,
then there is an abelian topological group structure on G that has the same Haar
measure as the original topological group structure.

Proof. Since G is a Cantor set, Corollary 1 implies G / lim←−k G/Nk of a countable

chain of finite groups, where k ≤ k′ implies Nk′ ⊆ Nk. For each k, we define
groups Gk as follows:

1. G1 = Zn1 , where n1 = |G/N1|, and
2. for k > 1, Gk = Gk−1 ⊕ Znk

, where nk = | kerπG/Nk,G/Nk−1
|.

In short, Gk = ⊕l≤kZnl
, where n1 = |G/N1|, and nk = | kerπG/Nk,G/Nk−1

| for
k > 1. Thus, Gk is a direct product of cyclic groups, and |Gk| = |G/Nk| for each
k. Since Gk and G/Nk are both finite, this last implies Haar measure on G/Nk

is the same as Haar measure on Gk for each k.
Clearly there is a canonical projection πk,k′ : Gk → Gk′ whenever k′ ≤ k. So

we have a second strict projective system (Gk, πk,k′ )k′≤k, and since G/Nk / Gk

for each k qua topological spaces, it follows that G / lim←−k′≤k(Gk, πk′,k), again

qua topological spaces.
Next, Theorem 2 implies that the limit of the sequence {μGk

}k is a Borel
measure μ on G / lim←−k′≤k(Gk, πk′,k) whose image under the quotient map G→
Gk is μk, Haar measure on Gk. But if GA denotes the limit of the projective
system (Gk, πk′,k)k′≤k qua compact abelian groups, then Proposition 2 implies
Haar measure on GA also has image μGk

under the quotient map GA → Gk.
Since limits are unique, this implies μGA = μ.

Now the Haar measures μG/Nk
= μk on G/Nk and on Gk are equal by design,

and Proposition 2 implies Haar measure μG on G with its original compact
group structure maps to μG/Nk

under the quotient map G → G/Nk. Again
limits are unique, so we conclude that μG = μGA , the Haar measure induced on
GA / lim←−k′≤k(Gk, πk′,k) qua compact abelian group.

Remark 2. We note that the same result holds for general (ie., nonmetriz-
able) compact group structures on Stone spaces. The only thing that changes
is that the group may require a directed family of finite quotients that may be
uncountable.
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3 Defining an Bialgebraic Lattice Structure on C
According to the proof of Theorem 4 we can assume we are given a Cantor group
C / lim←−(Cn, πm,n)n≤m where each Cn = ⊕i≤nZni is a product of n cyclic groups,
and the mapping πm,n : Cm → Cn is the projection map onto the first n factors
of Cm for n ≤ m. In particular, this representation relies on a fixed sequence of
finite cyclic groups {Zni | i > 0} satisfying Cn = ⊕i≤nZni , and without loss of
generality, we can assume that ni > 1 for each i – this follows from the fact that
C is a perfect (hence uncountable) Stone space and each quotient group Cn is
finite.

Theorem 5. C admits a total order relative to which it is a complete bialgebraic
lattice3 endowed with the Lawson topology.

Proof. We first note that we can define a total order on Cn = ⊕ni≤nZni to be
the lexicographic order, where we endow Zni with its total order from N.

Next, the projection mapping πm,n : Cn → Cm is monotone and clearly Scott
continuous, for n ≤ m, and we can define embeddings ιm,n : Cm → Cn by

ιm,n(x)i =

{
xi if j ≤ m
0 if m < j

, and clearly ιm.n is monotone and Scott continuous.

Moreover, it is clear that πm,n ◦ ιm,n = 1Cn and ιm,n ◦ πm,n ≤ 1Cm for n ≤ m.
So, we have a system ((Cn,≤n), ιm,n, πm,n)n≤m of e–p pairs in the category

of algebraic lattices and Scott-continuous maps. By Theorem 1, lim←−((Cn),≤n
), πn,m)n≤m is an algebraic lattice whose compact elements are the union of the

images of the Cns under the natural embeddings, ιn(x)j =

{
xj if j ≤ n
0 if n < j

. But

this is the same family of finite sets and projection maps that define the original
projective system, which implies C has a total order relative to which it is an
algebraic lattice.

To see that Cop also is algebraic, we note that since C is totally ordered and
complete, each x ∈ KC has a corresponding x′ = sup(↓x \ {x}) ∈ KCop. If
y �∈ KC and y < z ∈ C, then since C is algebraic, z = sup(↓z ∩ KC), so there
is some x ∈ KC with y < x ≤ z. But then y ≤ x′ ∈ KCop. It follows that
y = inf(↑y ∩KCop) for y ∈ C, so Cop also is algebraic.

Finally, the Lawson topology on an algebraic lattice is compact and Hausdorff,
and it is refined by the original topology on C, so the two topologies agree.

Remark 3. We note that KC =
⋃
n ιn(Cn), and the mappings ιn : Cn → KC are

injections, so we often elide the injections ιn and simply regard Cn as a subset of
C. Note as well that ιn is a group homomorphism for each n, so this identification
applies both order-theoretically and group theoretically.

Theorem 5 allows us to define the natural map φ : C → [0, 1]: For each n, Cn =
⊕i≤nZni , endowed with the lexicographic order. For x ∈ Cn, we define φn(x) =

3 A lattice L is bialgebraic if L and Lop are both algebraic lattices.
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i≤n

xi

n1·n2···ni
.4 Then φn is monotone, and n ≤ m implies φm ◦ ιm,n = φn.

Thus we have a monotone mapping φ : KC → [0, 1]. The fundamental theorem

of domain theory implies φ admits a Scott-continuous extension φ̂ : C → [0, 1].
In fact, note that φ : KC → [0, 1] is stictly monotone: if x < y, then φ(x) <

φ(y). This implies φ is one-to-one on KC, and clearly its image is dense in [0, 1].

Now, for any s ∈ (0, 1], if x ∈ C satisfies φ̂(x) < s, then s− φ̂(x) > 0, so we can
choose n > 0 large enough so there are xn, yn ∈ Cn ⊆ KC satisfying xn ≤ x < yn
and φn(yn) < s. Hence C \ φ̂−1([s, 1]) is weak-lower open in C, from which it

follows that φ̂−1([s, 1]) is weak-lower closed, which is to say φ̂−1([s, 1]) = ↑z for

some z ∈ C. But this implies that φ̂ is Lawson continuous. Since C is compact in
the Lawson topology, this implies φ̂(C) = [0, 1].

Moreover, since [0, 1] is connected and φ̂ is monotone, it follows that φ̂(x′) =
φ̂(x) for each x ∈ KC. We summarize this discussion as

Corollary 2. The mapping φ̂ : KC → [0, 1] by φ̂(x) =
∑

i≤n
xi

n1·n2···ni
is strictly

monotone (hence injective), and it has a Lawson-continuous, monotone and sur-

jective extension defined by φ̂(x) = sup φ̂(↓x∩KC). Moreover, for each x ∈ KC,
φ̂(x′) = φ̂(x), where x′ = sup(↓x \ {x}) ∈ KCop.

4 Mapping Haar Measure to Lebesgue Measure

We now come to the main result of the paper. Our goal is to show that there
is a natural map from any Cantor group onto the unit interval that sends Haar
measure to Lebesgue measure. According to Theorem 4, any compact group
structure on a Cantor set has the same Haar measure as a group structure
realized as the strict projective limit of a sequence of finite abelian groups,
and Theorem 5 and Corollary 2 show there is a Lawson continuous monotone
mapping of C onto the unit interval for such a group structure. We now show that
this map sends Haar measure on C as an abelian group to Lebesgue measure.

Recall that the abelian group structure satisfies C = lim←−n>0
(
⊕

i≤n Zki , πm,n),

where ki > 1 for each i, and πm,n : Cm → Cn is the projection on the first n
factors, for n ≤ m. Theorem 5 says C has a total order relative to which it is
a complete bialgebraic lattice, and it is this order structure we exploit in our
proof.

Remark 4. Recall that b ∈ KC implies b′ = sup(↓b \ {b}) ∈ KCop and φ̂(b) =

φ̂(b′). We need this fact because the clopen intervals in C all have the form [a, b′]
for some a ≤ b ∈ KC. Indeed, according to Stone duality (Theorem 3), in a
representation of a Stone space as a strict projective limit of finite spaces, each
finite quotient space corresponds to a partition of the space into clopen sets.

4 An intuitive way to understand φn for each n is that Zn1 divides the interval into n1

subintervals, Zn2 divides each of those into n2 subintervals, and so on. So φn maps
the elements of Cn to those those rationals in [0, 1] that can be expressed precisely
in an expansion using n1, n2, . . . as successive denominators.
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If the Stone space is totally ordered and the representation is via monotone
maps, then the elements of each partition are clopen intervals. In particular, if
πn : C → Cn is a projection map, then π−1

n (x) = [a, b′] for some a, b ∈ KC, for
each x ∈ Cn

Throughout the following, we let μC denote Haar measure on C, and let λ
denote Lebesgue measure on [0, 1].

Proposition 3. If a ≤ b ∈ Cn, then λ(φ̂([a, b′])) = μCn([a, b]Cn).

Proof. On one hand, λ(φ̂([a, b′])) = φ̂(b′) − φ̂(a) = φ̂(b) − φ̂(a). On the other,

μCn([a, b]Cn) =
|[a,b]Cn |

|Cn| since Cn is finite. Now Cn =
⊕

i≤n Zki in the lexicographic

order, and we show these two values agree by induction on n. Indeed, since
a ≤ b ∈ Cn, we have a = (a1, . . . , ai) and b = (b1, . . . , bj) for some i, j ≤ n, and

then φ̂(a) =
∑

l≤i
al

k1···kl and φ̂(b) =
∑

l≤j
bl

k1···bl . By padding a and b with 0s,
we can assume i = j = n. Then

λ(φ̂([a, b′])) = φ̂(b′)− φ̂(a) = φ̂(b)− φ̂(a)

=
∑
l≤n

bl
k1 · · · bl

−
∑
l≤n

al
k1 · · · kj

=

⎛⎝ ∑
l≤n−1

bl
k1 · · · bl

−
∑

l≤n−1

al
k1 · · · ki

⎞⎠
+

(∣∣∣∣ bn
k1 · · · kn

− an
k1 · · · kn

∣∣∣∣)
†
=
|[a∗, b∗]Cn−1 |
|Cn−1|

+

(∣∣∣∣ bn
k1 · · · kn

− an
k1 · · · kn

∣∣∣∣)
=
|[a, b]Cn |
|Cn|

= μC([a, b]Cn),

where a∗ = (a1, . . . , an−1) ≤ b∗ = (b1, . . . , bn−1) ∈ Cn−1 so that
†
= follows by

induction.

Theorem 6. Let O([0, 1]) denote the family of open subsets of [0, 1]. Then

λ : O([0, 1])→ [0, 1] and μC ◦ φ̂−1 : O([0, 1])→ [0, 1] are the same mapping.

Proof. Let U ∈ O([0, 1]) be an open set. Since φ̂ is Lawson continuous, φ̂−1(U)

is open in C, and since C is a Stone space, it follows that φ̂−1(U) =
⋃
{K | K ⊆

φ̂−1(U) clopen}. Now, φ̂ is a continuous surjection, so φ̂(K) is compact and

U = φ̂(φ̂−1(U)) = φ̂
(⋃

{K | K ⊆ φ̂−1(U) clopen}
)

=
⋃
{φ̂(K) | K ⊆ φ̂−1(U) clopen}.

Next, any clopen K ⊆ C is compact, and because KC is dense, (∃n > 0)(∃ai <
bi ∈ Ci)K =

⋃
i≤n[ai, b

′
i]. Moreover, we can assume [ai, b

′
i]∩ [aj , b′j ] = ∅ for i �= j.
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Then
μC(K) =

∑
i

μC([ai, b′i]) =
∑
i

λ(φ̂([ai, b
′
i])),

the last equality following from Proposition 3. Since the intervals [ai, b
′
i] are

pairwise disjoint, if φ̂([ai, b
′
i]) ∩ φ̂([aj , b′j]) �= ∅ then either b′i = a′j or b′j = a′i. In

either case, φ̂([ai, b
′
i]) ∩ φ̂([aj , b′j]) is singleton, and then since λ is continuous,

μC(K) =
∑
i

λ(φ̂([ai, b
′
i])) = λ(

⋃
i

φ̂([ai, b
′
i])) = λ(K). (1)

Finally, since μC and λ are both inner regular, we have

λ(U) = λ(φ̂(φ̂−1(U)))

= λ
(⋃

{φ̂(K) | K ⊆ φ̂−1(U) clopen}
)

†
=
⋃
{λ(φ̂(K)) | K ⊆ φ̂−1(U) clopen}

‡
=
⋃
{μC(K) | K ⊆ φ̂−1(U) clopen}

#
= μC

(⋃
{K | K ⊆ φ̂−1(U) clopen}

)
= μC(φ̂−1(U)).

where
†
= follows by the inner regularity of λ,5

‡
= follows from Equation 1, and

#
= follows from the inner regularity of μC .

Corollary 3. If we endow C with the structure of topological group with Haar
measure μC, then there is a continuous mapping φ̂ : C → [0, 1] satisfying

φ̂(μC) = λ.

Proof. If A ⊆ [0, 1] is Borel measurable, then φ̂(μC)(A) = μC(φ̂−1(A). We have

shown φ̂(μC)(A) = λ(A) in case A is open. But since the open sets generate the
Borel σ-algebra the result follows.

Theorem 7. Let C1 and C2 be Cantor sets with topological group structures with
Haar measures μC1 and μC2 , respectively. Then μC1 = μC2 .

Proof. By Theorem 4, we can assume that the group structures on C1 and C2
are both abelian, and then Theorem 5 and Corollary 2 show there are Lawson-
continuous monotone mappings of φ̂1 : C1 → [0, 1] and φ̂2 : C2 → [0, 1] both

onto the unit interval. Since KC′i are both countable, φ̂1 : C1 \ KC′1 → [0, 1]

is a Borel isomorphism onto its image, as is φ̂2 : C2 \ KC′2 → [0, 1]. Then the

composition φ̂−1
2 ◦ φ̂1 : C1 \ KC′1 → C2 \ KC′2 is a Borel isomorphism onto its

image (that also is an order isomorphism). Then, for any measurable set A ⊆ C1,
μC1(A) = λ(φ̂1(A)) = μC2(A), proving the claim.

5 It is straightforward to argue that any compact set C ⊆ U is contained in
⋃{φ̂(K) |

K ⊆ φ̂−1(U) clopen}.
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Remark 5. In the last proof, we could have restricted the mappings to Ci\(KCi∪
KC′i) for i = 1, 2. Then the induced map φ̂−1

2 ◦ φ̂1 is a homeomorphism as well as
an order isomorphism. On the other hand, the mappings we did use map are one-
to-one, in particular on the elements of [0, 1] that are expressible as fractional
representations using the families {Zni | i > 0} and {Zn′

i
| i > 0}.

5 Summary

We have studied the topological groups structures on the Cantor set C and shown
that any such structure has an “equivalent” abelian group structure, in the sense
that the Haar measures are the same. We also showed any representation of C
as an abelian group admits a continuous mapping onto the unit interval sending
Haar measure to Lebesgue measure. Finally, we showed that Haar measure on
C is the same, regardless of the group structure over which it is defined.

This work is the outgrowth of a talk by the second author at a Dagstuhl sem-
inar in 2012. A final comment in that talk sketched a domain-theoretic approach
to showing that Haar measure on C / 2N maps to Lebesgue measure. We were
inspired to look more closely at this issue because of the enthusiasm Prakash
Panangaden expressed for that result. So, as a 60th birthday present, we offer
this paper, and hope the recipient enjoys this presentation as well.

Happy Birthday, Prakash!!

Acknowledgements. Both authors gratefully acknowledge the support of the
US NSF during the preparation of this paper; the second author also thanks the
US AFOSR for its support during the preparation of this paper.
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Abstract. We develop a pregroup grammar for a basic fragment of San-
skrit, similar to the fragment used by Lambek in his treatment of En-
glish in a number of papers. We make reference to recent work of the
authors involving the characterization of cyclic rules in pregroup gram-
mars to treat word order alternation (e. g. in English, Persian, Italian,
and Latin) and analyse this phenomena in Sanskrit. Pregroups are intro-
duced by Lambek; they are partially ordered compact closed categories.
The latter have been invoked to analyze quantum protocols in the work
of Abramsky and Coecke. Sanskrit was the ancient official language of
India and remains one of its main religious and literary languages.

Keywords: Type Grammar, Pregroup, Cyclic Rules, Movement.

Dedicated to Prakash Panangaden, on his 60th Birthday.

1 Introduction

Pregroups are partially ordered monoids in which every element has a left and
a right adjoint. They have been introduced by Jim Lambek as a simplification
of the structure of residuated monoids [13, 24, 26]. Category theoretically, pre-
groups are partial order versions of compact closed categories, in contrast to
residuated moniods, which are partial order versions of monoidal closed cate-
gories [28, 30].

Similarly to Lambek’s Syntactic Calculus [23], which was based on residuated
monoids, pregroups were developed to reason about grammatical structures in
natural language. They also come equipped with a cut-free sequent calculus [10].
Because of their simple nature, pregroups have been applied, in a short span of
time, to reason about the structure of a wide range of languages from English and
French to Arabic and Persian (see [6, 12, 15, 27, 31]). What is missing from the
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list is the mother of all languages, Sanskrit, which is moreover claimed to have a
perfect grammatical structure. In this paper, we use pregroups to analyse a basic
fragment of Sanskrit, similar to the fragment used by Lambek in his treatment
of English in a number of papers, and consecutively by various other authors in
their analysis, such as the work of current authors on Persian, Hungarian, and
Latin [14, 31, 32].

We invoke recent work of the authors about precyclic properties in pregroups
[17], and show that a weaker version of Yetter’s cyclic axiom [35] hold in pregroup
algebras, via the translation between residuated monoids and pregorups [13]
and Abrusci’s cyclic sequent calculus rules for a non-commutative linear logic
[1, 2]. Then we use ideas from [16] on word order alternation in language and
develop corresponding permutations and transformations to analyse word order
alternations in Sanskrit and study its movement patterns. We type the Sanskrit
sentence assuming the canonical word order suggested in Apte [5]. We also type
a number of Sanskrit compounds based on the classification of Gillon [20]. The
focus of the current paper, however, is reasoning about alternation of word order
in Sanskrit. To achieve this, we use the rules of word order and movement in
Sanskrit according to the analysis of Gillon [18] and most of the examples are
also taken from the work of Gillon [18–20]. The present work is intended as the
basis for a further more detailed analysis, such as extending the work of [7] from
production rules to a pregroup grammar.

The connection to Prakash’s work is that pregorups are compact closed cate-
gories; these have been used to analyze quantum protocols in the work of Abram-
sky and Coecke. They have also been applied to reason about vector space se-
mantics of natural language, in the work of Clark, Coecke, and Sadrzadeh. This
latter work develops a primary syntactic analysis of the language under con-
sideration in a pregroup grammar. So our analysis of Sanskrit can be used to
provide a vector space semantics, based on the texts written in Sanskrit. There
is also a connection to Prakash himself, since Sanskrit was the ancient official
language of India and remains one of its main religious and literary languages.

2 Pregroup Algebras

Lambek developed the calculus of pregroups as an alternative to his Syntactic
Calculus [23], usually known as Lambek Calculus [29]. While the latter is an
intuitionistic system, based on the operation of implication, the former is a
classical system, based on the operation of multiplicative conjunction (for details
see [9, 11, 13, 26]). The mathematical and logical properties of pregroups are
studied in [9, 10, 24, 28]. In a short span of time, pregroups have been applied to
the grammatical analysis of fragments of a wide range of languages: English [25],
French [6, 27], Italian [12], Arabic [8], Polish [22], Persian [31] and others [15].

In a nutshell, a pregroup P , denoted by the structure (P, · , 1,≤, ()l, ()r),
is a partially ordered monoid (formally defined in the next section), ‘·’ is a
multiplicative operation, 1 is the unit of this multiplication, and each element
p ∈ P has both a left adjoint pl and a right adjoint pr, so that the following
adjunction inequalities hold:
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pl · p ≤ 1 ≤ p · pl p · pr ≤ 1 ≤ pr · p

The two inequalities on the left side of 1 are referred to as contractions, while the
two at the right side are called expansions ; adjoints are unique and contravariant:

p ≤ q =⇒ ql ≤ pl and qr ≤ pr

As a consequence of the compact property of the monoidal operation (which
gives rise to the adjunction inequalities), the unit 1 and the multiplication are
self dual [9, 24, 26, 28], that is:

1l = 1 = 1r (p · q)l = ql · pl (p · q)r = qr · pr

Some other properties of pregroups are as follows:

1- The adjoint of multiplication is the multiplication of adjoints but in the reverse
order, that is:

(p · q)l = ql · pl (p · q)r = qr · pr

2- The adjoint operation is order reversing, that is:

p ≤ q =⇒ qr ≤ pr and p ≤ q =⇒ ql ≤ pl

3- Composition of the opposite adjoints is identity, that is:

(pl)r = (pr)l = p

4- Composition of the same adjoints is not identity, that is:

pll = (pl)l �= p, prr = (pr)r �= p

This leads to the existence of iterated adjoints [24], so that each element of a
pregroup can have countably many iterated adjoints, for instance we have:

· · · , pll, pl, p, pr, prr, · · ·

A group is a pregroup where pr = pl for all p ∈ P . Another example of a
pregroup is the set of all monotone unbounded maps on integers f : Z → Z. In
this pregroup, function composition is the monoid multiplication and the identity
map is its unit; the underlying order on integers lifts to an order on the maps
whose Galois adjoints are their pregroup adjoints, defined as follows:

f l(x) = min{y ∈ Z | x ≤ f(y)} f r(x) = max{y ∈ Z | f(y) ≤ x}

A residuated monoid (M,≤, ·, 1, /, \) is a partially ordered monoid, where the
monoid multiplication has a right − \ − and a left −/− adjoint, that is, for
a, b, e ∈M we have

b ≤ a \ e ⇔ a · b ≤ e ⇔ a ≤ e/b
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The passage from residuated monoids (on which the Lambek Calculus is based)
to pregroups can be thought of as replacing the two adjoints of the monoid
multiplication with the two adjoints of the elements. If a residuated monoid has
a dualizing object, i.e. an object 0 ∈ M satisfying (0/p) \ 0 = p = 0/(p \ 0)
for p ∈ M , then one can define for each element a left and a right negation as
p0 := p\0 and 0p := 0/p. It would then be tempting to think of these negations as
the two pregroup adjoints, i.e. to define p0 = pr and 0p = pl. The problem with
this definition is that the operation involved in a\b (or b/a) - the linear logic “par”
- is different from the operation in (a . b) - the tensor product. One can however
translate, on this basis, Lambek Calculus expressions into pregroups, provided
that these two operations are identified with the pregroup unique operation:
then all the a\b (or b/a) types will become arb (or b al). In thise sense, pregroups
are non conservative extensions of the Lambek Calculus [24, 26].

3 Precyclic Properties

According to Yetter [35], an element c of a partially ordered monoid M is said
to be cyclic whenever, for all a, b ∈M , we have:

a · b ≤ c =⇒ b · a ≤ c

Although this definitions was first used in the setting of residuated monoids,
one can as well use it for partially ordered monoids that are not necessarily
residuated, since obviously the definition does not involve the adjoints to the
multiplication. For the reader more familiar with Yetter’s original definition, note
that whenever a monoid is residuated, the cyclic condition becomes equivalent
to one involving the adjoints, as follows:

c/a = a\c

We say that a partially ordered monoid (residuated or not) is cyclic whenever
it has a cyclic element. Residuated monoids admit the notion of dualization. An
element d of a residuated monoid is dualizing whenever for all a ∈M we have:

(d/a)\d = a = d/(a\d)

If the dualizing element of M is furthermore cyclic, we obtain:

d/(d/a) = a = (a\d)\d

Using the usual translation between residuated monoids and pregroups [13],
we can investigate whether and how the above notions may hold in a pregroup.
In particular, we can show that 1 is a dualizing element which is not necessarily
cyclic.

Definition 1. Given an element x of a residuated monoid M , we denote its
translation into a pregroup by t(x). For all a, b ∈ M , this translation is defined
as follows:

t(1) = 1, t(a · b) = t(a) · t(b), t(a\b) = t(a)r · t(b), t(a/b) = t(a) · t(b)l



Pregroups for Sanskrit 233

Proposition 1. In a pregroup P , the element 1 is dualizing; if P is proper, that
is al �= ar [9], then 1 is not cyclic.

Proof. To verify the first part, we have to show that for all a ∈ P , the translation
of (1/a)\1 = a = 1/(a\1) holds in a pregroup. That is we have to show:

t((1/a)\1) = t(a) = t(1/(a\1))

For the left hand side we have

t((1/a)\1) = (t(1/a))r · t(1) = (1 · t(a)l)r · 1 = ((t(a)l)r · 1) · 1 = (t(a)l)r = t(a)

For the right hand side we have

t(1/(a\1)) = t(1) · t(a\1)l = 1 · (t(a)r · t(1))l = 1 · (1 · (t(a)r)l) = (t(a)l)r = t(a)

To verify the second part, we have to show that for all a ∈ P , the translation of
1/a �= a\1 holds in a pregroup. This is true since we have:

t(1/a) = t(1) · t(a)l = t(a)l �= t(a\1) = t(a)r · 1 = t(a)r

However, pregroups do admit a weak form of cyclicity, which we refer to by
using the term precyclicity, described below:

Proposition 2. The following hold in any pregroup P , for any p, q, r ∈ P

(i) pq ≤ r =⇒ q ≤ prr (ii) q ≤ rp =⇒ qpr ≤ r

(iii) qp ≤ r =⇒ q ≤ rpl (iv) q ≤ pr =⇒ plq ≤ r

Proof. Consider the first case. Suppose pq ≤ r, since the multiplication operation
of a pregroup is order preserving, we multiply both sides by pr from the left
and obtain (∗) prpq ≤ prr. Now from the axioms of a pregroup it follows that
q ≤ prpq, by order preservation of multiplication, unity of 1, and from the two
validities q ≤ q and 1 ≤ prp. From this and (∗), by transitivity it follows that
q ≤ prr. Consider the second case now. Suppose q ≤ rp, multiply both sides
from the right with pr and obtain qpr ≤ rppr, by a similar argument as before
we have that rppr ≤ r in any pregroup, hence by transitivity it follows that
qpr ≤ r. The proofs of the other two cases are similar.

As a consequence we obtain:

Corollary 1. The following hold in any pregroup P , for any a, b ∈ P :

(1) 1 ≤ ab (ll)
=⇒ 1 ≤ ball (2) 1 ≤ ab (rr)

=⇒ 1 ≤ brra

Proof. Suppose 1 ≤ ab; by case (iv) of Proposition 2 we have that al1 ≤ b,
since 1 is the unit of P this is equivalent to 1al ≤ b, from which by case (iii) of
Proposition 2 it follows that 1 ≤ ball. The proof of the second case is similar.
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Informally, case (1) of the above corollary says that whenever a juxtaposition
of types, e.g. ab, is above the monoidal unit, then so is a permuted version of
it, where a moves from the left of b to the right of it, but as a result of this
movement, a gets marked with double adjoints ll to register the fact that it
came from the left. That is why this property is annotated with (and we thus
refer to it by) ll. Case (2) is similar, except that in this case it is b that moves
from the right of a to its left, hence it is marked with rr.

A more direct connection between these properties and cyclicity is highlighted
by the sequent calculus for linear logic. In this context, the cyclic properties were
originally represented via the exchange rule, first introduced by Girard [21]:

. Γ,A

. A,Γ CycExch

Later, Abrusci generalised this rule in the following way referring to its logic as
Pure Non-Commutative Classical Linear Logic (SPNCL′)[1]:

. Γ,A
. ¬r¬rA,Γ Cyc+2

. A,Γ
. Γ,¬l¬lA

Cyc−2

Using the translations ¬r¬rA := Arr and ¬l¬lA := All, and Buzskowsi’s in-
terpretation map of compact bi-linear logic into pregroups [10], one can easily
see that the properties of Corollary 1 are the semantic counterparts of Abrusci’s
cyclic rules (the empty sequent on the left is the unit of multiplication).

4 Pregroup Grammars

To analyse a natural language we use a pregroup grammar. On analogy with
other type logical or categorial grammars, a pregroup grammar consists in a
free pregroup generated over a set of basic grammatical types together with the
assignment of the pregroup types to the vocabulary of the language. To exemplify
consider the set of basic types {π, o, p, n, s}, representing five basic grammatical
roles as follows:

π : subject o : object p : predicate s : sentence n : noun phrase

The linguistic reading of partial orders on basic types is as follows: whenever
we have a ≤ b we read it as ‘a word of type a can also have type b’. Examples
of these partial orders are n ≤ π and n ≤ o. The free pregroup generated over
the above basic types includes simple types such as πl, πr, ol, or, and compound
types such as ool, ππl, srs, πrs, πrs ol.

A sentence of type s is defined to be grammatical whenever the multiplication
- corresponding to syntactic composition - of the types of its constituents is
less than or equal to the type s. This means that the type of a sentences is
derivable from the types assigned to its constituents. The computations that
lead to deciding about this matter are referred to as grammatical reductions. For
example, the type assignments to the words of the declarative sentence ‘John
saw Mary.’ are the following:
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John saw Mary.
π (πrs ol) o

The grammatical reduction corresponding to this example is as follows:

π (πrs ol) o ≤ 1 s 1 = s

In this computation, the subject is inputted to the verb via the inequality ππr ≤
1, similarly, the object is inputted via the inequality olo ≤ 1, and since 1 is the
unit of juxtaposition the result is the type of the sentence. Considering some more
complex examples involving adjectives, adverbials and the predicative copula
‘to be’, one can perform the following computations by assigning (πrs ol) to
the transitive verb ‘admires’, π to the subject role of the noun ‘girl’, (ool) to
‘beautiful’ in its adjectival role and p to its predicative role (as the complement
of the copula), (ππl) to the definite article ‘the’ in its subject position and ool

to its object position, (πrs pl) to the predicative copula ‘is’, and (srs) to the
adverbial ‘sincerely’1:

John admires the beautiful girl.
π (πrs ol) (o ol) (o ol) o ≤ s

John admires the beautiful girl sincerely.
π (πrs ol) (o ol) (o ol) o (sr s) ≤ s

The girl is beautiful.
(ππl) π (πrs pl) p ≤ s

A significantly large set of natural languages have been analysed by using pre-
group grammars (see e.g. [15, 26]). The computations that lead to type reduc-
tions can be depicted by the under-link diagrams, like in the example above,
that are reminescent of the planar proof nets of non-commutative linear logic, as
shown in the calculi developed in [2, 9], allowing for a geometrical representation
of the possible connections between words and expressions of the sentences of a
given language.

5 The Grammar of a Basic Fragment of Sanskrit

Arguably, Sanskrit is the language that has one of oldest grammar books. These
were first written down by Panini, who lived in the period between 2nd to 4th
century BC and later commented on by Mahabhashya, in 2nd century BC. San-
skrit itself, is said to have originated in Hindi hymns such as the Vedic verses,
which go back to 2000 BC. These religious writings later led to Barahamanas

1 Following [26], we separate the subject and object roles, instead of using n for both.
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which played a major role in the institutional language of India. The great legend
of Mahdbharata from 6th century BC and the philosophical poem of Bhagavad-
Glta are the two most important texts written in Sanskrit. It was on the basis
on these texts that Panini presented the grammar of Sanskrit. His work is a set
of algebraic formula-like rules that produce what is greatly known as Sanskrit
Compounds. These are mainly formed based on euphonic rules, rarely seen in
any other language. This is the reason why Sanskrit is claimed to have a ”pre-
fect grammar”. However, it has also been argued that these rules describe an
artificial language, one that has been used in religious and highly literary texts
and not one that is spoken by the people in the street [34].

The formation of Sanskrit compounds is complex and usually relies on en-
riched versions of the context-free rules [20]. In this paper we focus on a small
set of compounds, as well as the general rules of sentence formation. It is argued
that since the grammar of Sanskrit was based on hymns and poems, sentences
did not play a major role in its grammar, as originally put down by scholars.
In this paper we work with the invaluable exposition of Sanskrit grammar in
the style of European grammars by Apte [5] and a modern take of it by using
generative means by Gillon [18–20].

According to Apte, Sanskrit sentence can be of three kind: simple, complex,
and compound. Simple sentences are the ones that have one subject and one
verb. Complex sentences have one subject, one principal verb, and two or more
secondary verbs. Compound sentences consist of two or more principal sentences.
Verbs can be classified into copular and non-copular. Copulars are sentences
where a subject is connected to a predicate, also referred to by a complement.
Like in most languages, the best representative of a copular case is the verb to
be; ‘aste’ in Sanskrit. Similarly to Latin and certain European languages such
as Spanish, the verbs of the copular sentences are sometimes dropped, but for
now we disregard this case. Sanskrit also uses ‘aste’ for existential purposes, e.g.
in the sentence ‘There is a man.’ (‘The man is.’) in Sanskrit. In most of these
cases the copula is not dropped. The non-copular sentences are those in which
the verb is reporting the occurrence of an action, such as loving or going. These
verbs, may have objects, hence called transitive, or not, hence called intransitive.

The canonical pattern of a simple Sanskrit sentence is as follows:

Subject - Subject-Enlargement - Verb - Object - Object-Enlargement - Adverb

Enlargements of the subject and the object are ways of qualifying nouns; they
consist of adjectives and other nouns and compounds. The subject and object
can be nouns, noun compounds, or pronouns. If the verb needs more than one
object, there will be an order on the objects, e.g. preliminary, secondary etc; this
order is kept in the sentence.

The simplest type of compounds are aluk compounds. In these compounds
the leftmost part of the compound is inflected and the rest of the compound
is not. The remaining compounds are of the luk type, where the avyayibhava
compounds are the easiest; they are the inflected adverbs, for instance obtained
from a preposition followed by a noun. We also deal with the nan-tatpurusa
compounds, which are prefixed with the bound morpheme a or an and the
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upapada-tatpurusa ones, which end with bound morphemes derived from a verbal
root, such as bhida, jna, and ghna.

Sanskrit is a highly inflected language, with three genders (masculine, fem-
inine, neutral), three numbers (singular, dual, plural), and eight cases (nom-
inative, accusative, dative, ablative, locative, vocative, instrumental). For the
purposes of demonstration, we deal with the singular nominative and accusative
inflections. The former has ending ‘h’ and the latter has ending ‘m’. So for in-
stance, the name Rama will have the form Ramah in singular nominative case
and the form Ramam in singular accusative case.

5.1 A Pregroup Grammar for Sanskrit

We start with a set of basic types {ρ, π, o, p, n, s}. Apart from ρ, these types
are the same as in English: ρ denotes the subject of a predicative copular2. The
enlargements are treated as modifiers of the subject, the object or the predicate
and, since they are placed to the right of the unit they are modifying, they
will have a right adjoint type. Consequently, the subject-enlargement will be
assigned the type πrπ, the object-enlargement the type oro, and the predicate
enlargement the type prp.

An intransitive verb has type πrs and a transitive verb has type πrs ol. The
Sanskrit copula ‘aste’ (is) in its existential form has type πrs and in its predica-
tive form has type ρrs pl. The adverb is treated as a sentence modifier: it takes
a sentence and modifies it, and as it occurs to the right of the verb, it will also
have the type of a right adjoint of the sentence: srs. On this basis, the pregroup
type assignment table corresponding to the general Sanskrit sentence structure
is as follows:

Subject Subject-Enl Verb Object Object-Enl Adverb
π πrπ o oro srs

Intransitive πrs
Existential Copular πrs

Transitive πrs ol

Predicative Copular ρrs pl

and sentences with a transitive verb or a predicative copular are typed as follows:

Subject Subject-Enlargement Verb Object Object-Enlargement Adverb.

π (πrπ) (πrsol) o oro srs
Subject Subject-Enlargement Verb Predicate Predicate-Enlargement Adverb.

ρ (ρrρ) (ρrspl) p prp srs

2 As we will see in Section 7.2, copulars play a more complex role in word order
alternation in Sanskrit than in English. That is why we assign a different type to
the predicative copular subjects.
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The intransitive verb and the existential copulars are special cases of the exam-
ples below, where the object and predicate (correspondingly for each case) are
dropped.

As an example of a transitive sentence, consider the sentence ‘Rama from the
old city saw Súbhadrā (a) beautiful woman’3, which types as follows:

Ramah from the old city saw Súbhadrā (a) beautiful woman.
Ramah kapiJjalArma apasyat Súbhadrā maJjunAzI
π (πrπ) (πrs ol) o (oro)

As an example of a copular sentence, consider the sentence ‘Rama from the old
city [is] asked for instruction (as a teacher)’, in which ‘adhISTa’ is an adjective
in predicative role, and types as follows:

Rama from the old city [is] asked for instruction.
Ramah kapiJjalArma [aste] adhISTa
ρ (ρrρ) (ρrs pl) p

As for the compounds, we only describe here the case of transitive sentences;
the case of copulars is obtained by replacing o with p and π with ρ or φ, where
appropriate. The internal structure of a compound is set in such a way that its
resulting type, after the internal cancellations have taken place, is either πrπ
or oro. We develop a procedure for two-word πrπ compounds, trusting that
the two-word oro compounds can be treated in a similar fashion, basically by
substituting the type π with o and any of the π adjoints with the correspond-
ing o adjoint. The treatment for k-word compounds follows shortly below. For
aluke compounds, we type the first word of the compound as πrππl and the
second word as π, so that the first word inputs the second word and outputs
a subject enlargement. The same methodology is used for the avyayibhava and
nan-tatpurusa compounds, where the preposition of the first case and the mor-
phemes of the second case are assumed to input the noun and output a subject
enlargement. As for the upapada-tatpurusa compounds, the methodology is basi-
cally the same, but because the morpheme occurs at the end of the compound, it
has to have type πrπrπ. These assignments are expressed in the following table:

Type of Compound Word 1 Word 2

1 aluke πrππl π

luke

2 avyayibhava πrππl π
3 nan-tatpurusa πrππl π
4 upapada-tatpurusa π πrπrπ

3 Súbhadrā in Mahaabharata in the wife of Arjuna, one of the heroes of the poem.
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The above procedure extends to compounds that have more than two words as
follows. Suppose there are k words in a compound, then the first word of the
compounds of type 1 to 3 will be typed as follows:

πrπ πl · · ·πl︸ ︷︷ ︸
k−1

The compounds of type 4 will be typed as follows:

πr · · ·πr︸ ︷︷ ︸
k−1

πrπ

Here are three examples; the first is aluke, the second is avyayibhava and the
third is upapada-tatpurusa. Following [18], the inflected word (i.e. the first one
of the aluke compound) is denoted by the label N1, the inflected adverb by D1,
the non-inflected noun by N , and the non-inflected adjective by A.

[[N1 atamane] [N pada]] → [N atamanepada]
πr π πl π ≤ πr π
oneself voice voice for oneself

[[N1 upari] [N bhumi]] → [N uparibhumi]
πr π πl π ≤ πr π
above earth above the ground

[N [N sarva] [N -jna]]→ [N sarvajna]
π πrπrπ ≤ πrπ
all knowing omniscient

As for inflections, we assign the type nrπ to the nominative case morpheme
and the type nro to the accusative case morpheme. When these attach themselves
to the end of a noun, which is of type n, the cancellation between the type n of
the noun and the type nr of these morphemes, will produce a subject π and an
object o, respectively. The singular nominative and accusative cases are typed
in the following table:

Case Type of Morpheme Reduction

Nominative nrπ n(nrπ) ≤ π
Accusative nro n(nro) ≤ o

So, for instance, we assign the type n to Rama and the type nrπ to the nominative
morpheme ‘h’, hence Rama-h will have type π. Similarly, we assign the type nro
to the accusative morpheme ‘m’, hence obtaining the type o for Rama-m.

Rama h → Ramah Rama m → Ramam
n (nrπ) ≤ π n (nro) ≤ o
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6 Cyclic Rules and Alternation of Word Order

By alternation of word order, we mean that certain language units within a
sentence move from after the verb to before it, or from before the verb to after
it, such that the resulting composition of words is still a grammatical sentence,
although they may convey a different meaning. Non-inflectional languages such
as English seem to have a fixed word order and inflectional ones, such as Latin,
a free word order. However, the former cases do allow for alternations in word
order as a result of, for instance, putting emphasis on a part of speech. At the
same time, the latter cases do not allow for all possible permutations without
changing the meaning.

Pregroups were not able to reason about alternations of word order in a general
way and we offer a solution here. We propose to enrich the pregroup grammar
of a language with a set of precyclic transformations that allow for substituting
certain type combinations with their precyclic permutations. These transforma-
tions differ from language to language and express different, language specific,
movement patterns. Within each language, they are restricted to a specific set
so that not all word orders become permissible. More formally, we define:

Definition 2. In a pregroup P , whenever 1 ≤ ab =⇒ 1 ≤ ball or 1 ≤ brra,
then we refer to ball and brra as precyclic permutations of ab and denote this

relationship by ab
σ(ll)
� ball and ab

σ(rr)
� brra.

Definition 3. In a pregroup P , for ball and brra precyclic permutations of ab,
and any A,B,C ∈ P , we define the following precyclic transformations4:

(ll)-transformation A ≤ B(ab)C
(ll)
� A ≤ B(ball)C

(rr)-transformation A ≤ B(ab)C
(rr)
� A ≤ B(brra)C

Definition 4. A precyclic pregroup grammar is a pregroup grammar with a set
of precyclic transformations.

The intuitions behind the (ll) and (rr) annotations of the σ denotations and
the transformation rules are as described after Corollary 1. For instance, the (ll)
permutation rule allows us to substitute the type ab with a permuted version of
it, obtained by moving a from the left of the compound to the right of it, but as
a result of this movement, we have to annotate a with ll, hence it becomes all.
This annotation registers the fact that a has moved to its current position from
the left. The case for the (rr) rule is the same, here we substitute ab with brra
and the annotation registers the fact that b has moved to its current position
from the right of the compound.

Assuming these definitions, we formalise patterns of movement by providing
a procedure on the basis of which one can derive the type of the verb after the
movement, from its type before the movement. Hence, given the reduction of the

4 These transformations prevent us from making isolated assumptions such as 1 ≤ sol

and block the generation of meaningless inequalities such as 1o ≤ (sol)o ≤ s.
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original sentence and this procedure, one is able to obtain the reduction of the
sentence in which the alternation of word order has happened. The movement is
captured by the idea that arguments of certain words and phrases with complex
types, e.g. adjectives and verb phrases, can be moved before or after them, as
an effect of stress or other semantic vs. pragmatic intentions. The procedure to
extend the existing pregroup grammar of a language to include the word order
changes resulting from movement has two main steps:

1. Decide which word or phrase w allows which forms of movement and encode
this information about movement in the precyclic permutations of the type
of each such word or phrase w.

2. Form a precyclic pregroup grammar from the pregroup grammar of a lan-
guage by turning the above permutations into precyclic transformations.

The permutations are encoded as follows:

1.(i) If w is of type prq, i.e. it requires an argument of type p before it, and p

can be moved after w, then allow for the cyclic permutation prq
σ(ll)
� qpl.

1.(ii) Else, if w is of type qpl, i.e. it requires an argument of type p after it, and p

can be moved before w, then allow for the cyclic permutation qpl
σ(rr)
� prq.

The transformations are encoded as follows:

2.(i) If w is from step 1(i), add an (ll)-transformation by taking a = pr and
b = q and computing ball = q(pr)ll = qpl.

2.(ii) Else, if w is from step 1(ii), add an (rr)-transformation by taking a = q
and b = pl and computing brra = (pl)rrq = prq.

Finally, one says that a string of words is a grammatical sentence, whenever
either the types of its words, as assigned by the pregroup grammar, reduce to s,
or their transformed versions do.

English has different word order patterns, as discussed in detail by [4]. The
basic English word order is SVO (Subject-Verb-Object), but this order may
change as a result of object topicalisation or VP-preposing. Topicalisation allows
for the object to move from after the verb phrase to before it. VP-preposing
allows for the infinitive verb phrase to move from after the auxiliary or modal
verb to before it. These permissible movements are encoded in the following
precyclic transformations:

Moving Unit Permutation Transformation

Object sol
σ(rr)
� ors A ≤ B(sol)C

(rr)
� A ≤ B(ors)C

Infinitive sil
σ(ll)
� irs A ≤ B(sil)C

(rr)
� A ≤ B(irs)C

As an example of topicalization, consider the simple transitive sentence ‘I saw
him’, and its topicalized form ‘Him I saw’, which are typed as follows:

I saw him. : π(πrs ol) o ≤ 1(s ol) o ≤ 1 s 1 ≤ s

Him I saw. : o π(πrs ol) ≤ o (s ol) (rr)
� o (or s) ≤ s
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We are not allowed to reduce the other possible four orderings (him saw I, saw
I him, saw him I, I him saw) to s, since for obtaining similar permutations we
need either the subject to move to after the verb, or subject and object invert
their relative position; in both cases the consequence is that the subject and the
verb occur in configurations like verb-subject (inversion) or subject-object-verb
(separate) not admitted by the English grammar, as pointed out in [4]. Hence, we
have not included the unlawful permutations that lead to these cases; examples

of these are (∗1) πrs
σ(ll)
� sπl and (∗2) πrsol

σ(ll)
� solπl. As another example,

consider the sentence ‘He must love her’, as typed below:

He must love her.
π (πrsil) (iol) o

Here we can have both topicalisation (case (1) below) and VP-preposing (case
(2) below). The type assignments and reductions of these cases are as follows:

(1) Her he must love. : o π(πrs il)(i ol) ≤ o (sol) (rr)
� o (or s) ≤ s

(2) Love her he must. : (i ol) o π (πrs il) ≤ i (s il) (rr)
� i (ir s) ≤ s

Non-permissible combinations like ‘must love her he’ or ‘must love he her’ cannot
be derived, because they require, as before, a transformation corresponding to
the precyclic permutation πrsol

σ
� solπl, in which the subject is expected to

occur after the verb, that has not been included into the pregroup grammar.

7 Alternation of Word Order in Sanskrit

Like Latin, Sanskrit is a case-sensitive or inflectional language. That is, it has
morphemes that attach themselves to the end of the words and specify their
grammatical role in the sentence. For instance a subject may be marked with
the morpheme ‘h’, for the nominative case, and an object with the morpheme
‘m’, for the accusative case, as in the following transitive sentence:

Ramah apasyat Govindam.
Rama saw Govinda

which is typed as follows:

Ramah apasyat Govindam.
π (πr s ol) o ≤ s

One might think that, no matter where these words appear in the sentence, one
can be certain of their role and it need not be the case, as it is in English, that
the word order tells you which word is the subject and which is the object. For
instance the above Sanskrit sentence may as well be as follows and there might
be no doubt that still ‘Ramah’ is its subject and ‘Govindam’ is its object:

Govindam apasyat Ramah.
Govindam saw Ramah
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Whereas if the order of the words of a sentence changes in English, the roles
change as well. The sentence ‘Rama saw Govinda’ has a very different meaning
with respect to ‘Govinda saw Rama’: subject and object exchange their roles.
Because of these matters, it is argued that Sanskrit has a free word order. How-
ever, a completely free word order for Sanskrit has been debated, e.g. by Staal
[33] and later by Gillon [18] and even the original work of Apte [5] expresses
concern for this presupposition. Apte insists that certain word orders may not
be ungrammatical, but they are certainly awkward. In the following, we first
present Staal’s view and his constraints on movement, and then review Gillon’s
view and give some examples for each case.

7.1 Staal’s Constraints

According to Staal [33] word order is free among the branches (sisters) of one
and the same constituent. So for instance in the above example, Ramah is one
of the branches and apasyat Govindam is the other one, which itself consists of
two branches: apasyat and Govindam. Consequently, apasyat and Govindam can
change their order, and then Ramah can change its order with regard to these
two possible orders in apasyat Govindam.

These alternations are formalised via just two permutations:

Moving Unit Permutation Transformation

Subject πrs
σ(ll)
� sπl A ≤ B(πrs)C

(ll)
� A ≤ B(sπl)C

Object πrs ol
σ(rr)
� orπrs A ≤ B(πrsol)C

(rr)
� A ≤ B(orπrs)C

We have the following sentences and reductions:

– When apasyat and Govindam swap order

Ramah Govindam apasyat.

π o (πrsol)
(rr)
� π o (orπrs) ≤ s

– When Ramah swaps order with apaysat Govindam

apasyat Govindam Ramah.

(πr s ol) o π ≤ (πrs) π
(ll)
� (s πl) π ≤ s

– When Ramah swaps order with Govindam apaysat

Govindam apasyat Ramah.

o (πrsol) π
(rr)
� o(orπrs)π ≤ (πrs)π

(ll)
� (sπl)π ≤ s

The two other possibilities, which according to Staal are not allowed, are as
follows

(∗1) Govindam Ramah apasyat (∗2) apasyat Ramah Govindam

These are not derivable using the permutations of the above table. The first

case needs the permutation (∗1) sol
σ(rr)
� ors and the second one needs the

permutation (∗2) πrsol
σ(ll)
� solπl, which we have not allowed.
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7.2 Gillon’s Conjectures

In [18], after reviewing Staal’s constraints, Gillon observes that certain word or-
ders that Staal’s theory considered unlawful, do occur in his reference Sanskrit
corpus. This corpus consists of examples from Apte and some older texts. His
observation shows that Staal’s constraints might be too rigid. Gillon goes on
to find a pattern within these occurrences and develop appropriate constraints
for word order alternation in Sanskrit. The constraints he discovers show them-
selves when working with sentences in which at least the subject and the verb
have modifiers. In this paper, we study some of these constraints using precyclic
transformations.

Although Gillon suggests that simple transitive sentences, such as the example
of the previous section, allow for a fairly free word order, none of his witness
sentences are simple. That is, in all the sentences he presents and studies the
subject and/or object have modifiers, whereas in a simple transitive sentence
subject and object do not have modifiers. Hence, in this section we let the invalid
permutations of the previous section remain invalid and allow for new predictive
permutations including the following ones:

(oro)
σ(ll)
� (ool) (πrπ)

σ(ll)
� (ππl) (ρrρ)

σ(ll)
� (ρρl) (srs)

σ(ll)
� (ssl)

These permutations, enable the subject and object change order with their en-
largements, and the verb swap place with adverbs (which can be seen as verb
enlargements and some times even referred to as verb complements). At the
same time, we will not allow for a fully free word order within a simple transi-
tive sentence, that is a subject and object that do not have enlargements will
obey Staal’s constraints. If at any point, one wants to allow for these alternations
as well (hence allowing for all of the six permutations of words in a three-word
transitive sentence), one can include (∗1) and (∗2) of the previous section in the
set of lawful permutations.

Extraposition from Subject. Here the suggestion is that the subject modifier
can be separated from the subject, despite the fact that they form a constituent
and according to Staal should not be separated. As an example consider the
sentence “Rama from the old city saw Govinda”, where the subject “Rama” has
the enlargement “from the old city”:

Rama from the old city apasyat Govinda.
Ramah kapiJjalArma saw Govindam.
π (πrπ) (πrs ol) o

Here, “Rama” and “from the old city” form one constituent and, although
they can change position, allowing for phrases such as “from the old city Rama”,
according to Staal, they should never be separated from each other in a sentence.
However, according to Gillon’s witness sentences, it should be possible to form
the following sentence, in which this separation does indeed occur5:

5 We do not give exactly the same example as Gillon, since his examples are retrieved
from a real corpus and are rather complex, e.g. the example for this case is in question
form, and we have not discussed question forms here.
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from the old city saw Govinda Rama.
kapiJjalArma apasyat Govindam Ramah.

(πrπ) (πrsol) o π

This sentence types in the following way: first the subject modifier’s type
will change from (πrπ) to (ππl) via an (ll)-permutation; then the subject swaps
places with the verb phrase “saw Govinda” of type (πrs) via the following (ll)-
permutation:

(πrs)π
σ(ll)
� π(πrs)ll

As a result of these movements, the subject modifier type (ππl) and the subject
type π will cancel out. Now it remains to input the subject to the verb; this
is done by swapping the type of the verb with the subject and permuting it to
(sπl). The corresponding permutations are as follows:

π(πrs)ll
σ(rr)
� (πrs)π (πrs)

σ(ll)
� (sπl)

The full reduction is shown below:

from the old city saw Govinda Rama.
kapiJjalArma apasyat Govindam Ramah.

(πrπ) (πrsol) o π ≤ (πrπ)(πrs)π
(ll)
� (ππl)(πrs)π

(ll)
� (ππl)π(πrs)ll ≤ π(πrs)ll
(rr)
� (πrs)π

(ll)
� (sπl)π ≤ s

Extraposition from Verb Phrase. Here, Gillon observes that the object can
be separated from its verb and move (on its own and leaving the verb behind) to
the beginning of the sentence, which is exactly the (∗1) case that was discarded
by Staal. However, Gillon argues that this probably only happens in sentences
where the object has an enlargement and that this enlargement will remain in
situ, keeping the (perviously maintained by the object) connectivity to the verb.
An example is the sentence “Ramah saw Govindam from the old city”:

Ramah apasyat Govindam kapiJjalArma
π (πrsol) o (oro) ≤ s

A verb phrase extraposition of the above sentence results in the following:

Govindam Ramah apasyat kapiJjalArma.
o π (πrsol) (oro)

We type this sentence by first inputting the subject to the verb and reducing
the π(πrs ol) phrase to (s ol). Then we apply a (ll)-permutation to this phrase
and the object modifier and swap their places; this permutation is as follows:

(s ol)(oro)
σ(ll)
� (oro)(s ol)ll
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Now it becomes possible to input the object to its enlargement and obtain the
modified object via the reduction o(oro) ≤ o. At this stage, we send the verb
back via the following (rr)-transformation:

o (s ol)ll
(rr)
� (s ol) o

All that remains to be done is to input the object to the verb via the reduction
(sol)o ≤ o and obtain a sentence. The full reduction is shown below:

Govindam Ramah apasyat kapiJjalArma.

o π (πrs ol) (oro) ≤ o(sol)(oro) (ll)
� o(oro)(sol)ll ≤

o(sol)ll
(rr)
� (s ol)o ≤ s

Extraposition from Verb Complement. In such cases, adverbial phrases
can move to the beginning of the sentence. For instance, a sentence such as

Ramah apasyat Govindam suzevya.
Rama saw Govinda dearly
π (πrs ol) o (srs)

can be turned into the following one

suzevya Ramah apasyat Govindam.
(srs) π (πrs ol) o

To type the above, we first input the subject and the object to the verb to obtain
(srs) s, and then permute the adverbial type (srs) to (s sl). The full reduction
is as follows:

suzevya Ramah apasyat Govindam.

(srs) π (πrs ol) o ≤ (srs)s
(ll)
� (ssl)s ≤ s

Copular Sentences. A special case, upon which both Staal and Gillon agree, is
the word order in copular sentences. According to [19], in the existential copular
sentences, the subject can move from before the verb to after it, regardless of
the explicit or implicit presence of the verb aste. However, in the predicative
copulars, when aste is present, the subject always stays before the verb.We deal
with this case by using the different type of the subject of the predicative copular.
Because of this difference in type (ρ rather than π), the permutation that allowed

for the subject of other sentences to move to after the verb, that is πrs
σ(ll)
� sπl,

is not applicable to predicative copular case. In other words, since we did not
include the following unlawful permutation, we bar the movement of the subject
of a predicative copular to after aste.

(∗3) ρrs
σ(ll)
� sρl
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All the other plausible copular movements and their corresponding lawful move-
ments can be reasoned about, similarly to the cases presented above. For
instance, we can have the following sentence:

From the old city Súbhadrā is a lady.
kapiJjalArma Súbhadrā aste adhISTa.

(ρrρ) ρ (ρrs pl) p

We type the above by applying just one transformation, namely (ρrρ)
σ(ll)
� (ρρl)

and then proceed the cancelations as usual. That is, the ρ in Súbhadrā will be
cancelled out with the ρl in the new type of kapiJjalArma, the result will cancel
out with the ρr in the type of aste and so on. On the contrary, the following
alternation will be unlawful and not derivable:

(*) is a lady from the old city Súbhadrā.
aste adhISTa kapiJjalArma Súbhadrā.

(ρrs pl) p (ρrρ) ρ ≤\ s

8 Conclusions

In this paper, we applied the calculus of pregroups to the analysis of a basic
fragment of the mother of Indo-European languages: Sanskrit. In particular we
have used the recent development of precyclic transformations (work based on
[16, 17]) to treat word order alternations in this language. In [17], we provided
a preliminary analysis of word order in Persian and Latin using cyclic permuta-
tions and transformations in pregroups. The alternation of word order in Persian,
at least in simple sentences, is closer to that in English, induced by topicalisa-
tion and preposing. Perhaps it is not surprising that the change of word order
in Sanskrit is more similar to Latin, rather than to Persian, despite the geo-
graphical closeness of the regions in which these languages were spoken. In both
Latin and Sanskrit, simple sentences can in principle enjoy a free word order
(although Staal disagrees), but when the constituents have complements, there
are some restrictions governing the discontinuities that lead the complements to
be separated from the parts of speech they are modifying.

A proper treatment of the full lexicon (see, for instance, [7] for a formalisa-
tion using generative rewriting rules) and syntactic rules of Sanskrit is far from
having been achieved in this paper. We offer some results both from the point
of view of morphological properties and of syntactical organization, with special
attention to word order, in particular, as a result of extraposition from the sub-
ject, verb and object clauses. We distinguish and study a property of pregroups,
called precyclicty, and develop corresponding transformation rules to apply this
property within types in compounds. These rules allow us to derive the new types
of the words, caused by alternations, from their original types, in the canonical
sentence structure. It remains for future work to study the expressive power of
such transformation rules and expand the current work to a larger fragment of
the language.



248 C. Casadio and M. Sadrzadeh

References

1. Abrusci, M.: Phase Semantics and Sequent Calculus for Pure Noncommutative
Classical Linear Propositional Logic. Journal of Symbolic Logic 56, 1403–1451
(1991)

2. Abrusci, V.M.: Classical Conservative Extensions of Lambek Calculus. Studia Log-
ica 71, 277–314 (2002)

3. Abrusci, V.M., Ruet, P.: Non-commutative Logic I: the Multiplicative Fragment.
Annals of Pure and Applied Logic 101, 29–64 (1999)

4. Ades, A.E., Steedman, M.J.: On the Order of Words. Linguistics and Philosophy 4,
517–558 (1982)

5. Apte, V.: The Student’s Guide to Sanskrit Composition, A Treatise on Sanskrit
Syntax for Use of Schools and Colleges, Poona, India, 24th edn. Lokasamgraha
Press (1960)

6. Bargelli, D., Lambek, J.: An algebraic approach to french sentence structure. In:
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Abstract. We expose the information flow capabilities of pure bipartite
entanglement as a theorem — which embodies the exact statement on
the ‘seemingly acausal flow of information’ in protocols such as telepor-
tation. We use this theorem to re-design and analyze known protocols
(e.g. logic gate teleportation and entanglement swapping) and show how
to produce some new ones (e.g. parallel composition of logic gates). We
also show how our results extend to the multipartite case and how they
indicate that entanglement can be measured in terms of ‘information
flow capabilities’. Ultimately, we propose a scheme for automated design
of protocols involving measurements, local unitary transformations and
classical communication.

Prakash! Ok, here we go. In 2001 I found myself being in Montreal without any
further academic job prospects, having done a PhD in the at that time career-
suicidal area of quantum foundations, followed by work in the already buried
area of quantum logic. An angel fell from the sky in the form of Prakash who
put me on a plane to Oxford, to work with Samson. The ticket turned out to be
a one-way one.

Besides this direct personal help Prakash has also been instrumental in raising
a new community which draws from modern computer science mathematics and
feeds this not only in quantum computer science but also in the foundations of
physics as well. Key to these where that Barbados meeting which Prakash has
been holding on this area since 2004, the Quantum Physics and Logic workshop
series, and there were several one-off events too.

All of this only didn’t consolidate my own career, but also the careers of many
who followed, maybe not all represented here in this volume, but I am sure that
I am speaking for all of them when praising Prakash’s guidance and support to
create an entire new generation of scientists at the interface of logic, computer
science, and foundational physics.

This Paper.My fate in particular changed with the paper presented here, which
for reasons of many top journals editors being either complete idiots or bitter
frustrated failed scientists (and usually both), never got published. Ten years
later this is the ideal opportunity to finally get this stuff a legitimate status.
Below is the slightly adapted 2004 arXiv version [6].

F. van Breugel et al. (Eds.): Panangaden Festschrift, LNCS 8464, pp. 250–267, 2014.
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This work first appeared in 2003 as a 160 page research report [5]. Before that
it was presented at the 1st QPL in Ottawa where it endangered my life when I
ended up being attacked by a member of the audience who got really upset by
the “as if time goes backward” statement. The joke is that exactly this aspect of
the paper, via Svetlichny whom only mentioned it in a footnote [11], made it into
the New York Times as a “new model for quantum time-travel” when it ended
up being experimentally implemented, ... but it was in fact already implemented
long before in [8], by some decent people who knew how to cite.

More importantly, this work was the starting point of a diagrammatic refor-
mulation of quantum theory, on which a textbook jointly written with Aleks
Kissinger is forthcoming, and the categorical axiomatization of this work with
Abramsky yielded categorical quantum mechanics [1].

1 Introduction

Entanglement has always been a primal ingredient of fundamental research in
quantum theory, and more recently, quantum computing. By studying it we aim
at understanding the operational/physical significance of the use of the Hilbert
space tensor product for the description of compound quantum systems. Many
typical quantum phenomena are indeed due to compound quantum systems be-
ing described within the tensor product H1 ⊗ H2 and not within a direct sum
H1 ⊕H2.

In this paper we reveal a new structural ingredient of the supposedly well-
understood pure bipartite entanglement, that is, we present a new theorem about
the tensor product of Hilbert spaces. It identifies a ‘virtual flow of information’
in so-called entanglement specification networks. For example, it is exactly this
flow of information which embodies teleporting [3] an unknown state from one
physical carrier to another. Furthermore, our theorem (nontrivially) extends to
multipartite entanglement. We also argue that it provides a new way of conceiving
entanglement itself and hence of measuring entanglement:

entanglement ≡ information flow capabilities

Indeed, our result enables reasoning about quantum information flow without
explicitly considering classical information flow — this despite the impossibility
of transmitting quantum information through entanglement without the use of
a classical channel.

Using our theorem we can fairly trivially reconstruct protocols such as logic
gate teleportation [7] and entanglement swapping [12]. It moreover allows smooth
generation of new protocols, of which we provide an example, namely the con-
version of accumulation of inaccuracies causing ‘sequential composition’ into
fault-tolerant ‘parallel composition’ [10]. Indeed, when combing our new insights
on the flow of information through entanglement with a model for the flow of
classical information we obtain a powerful tool for designing protocols involving
entanglement.
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An earlier and extended version of this paper is available as a research report
[5]. It contains details of proofs, other/larger pictures, other references, other
applications and some indications of connections with logic, proof theory and
functional programming.

2 Classical Information Flow

By the spectral theorem any non-degenerated measurement on a quantum sys-
tem described in a n-dimensional complex Hilbert space H has the shape

M = x1 · P1 + . . .+ xn · Pn .

Since the values x1, . . . , xn can be conceived as merely being tokens distinguish-
ing the projectors P1, . . . ,Pn in the above sum we can abstract over them and
conceive such a measurement as a set

M / {P1, . . . ,Pn}

of n mutually orthogonal projectors which each project on a one-dimensional
subspace of H. Hence, by von Neumann’s projection postulate, a measurement
can be conceived as the system being subjected to an action Pi and the observer
being informed about which action happened (e.g. by receiving the token xi).

In most quantum information protocols the indeterminism of measurements
necessitates a flow of classical information e.g. the 2-bit classical channel re-
quired for teleportation [3]. We want to separate this classical information flow
from what we aim to identify as the quantum information flow. Consider a pro-
tocol involving local unitary operations, (non-local) measurements and classical
communication e.g. teleportation:

ΨBell

MBell

Uxz
xz

φ

φ

We can decompose such a protocol in

1. a tree with the consecutive operations as nodes, and, in case of a mea-
surement, the emerging branches being labeled by tokens representing the
projectors;

2. the configuration of the operations in terms of the time when they are applied
and the subsystem to which they apply.

Hence we abstract over spatial dynamics. The nodes in the tree are connected
to the boxes in the configuration picture by their temporal coincidence. For
teleportation we thus obtain
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ΨBell

MBell

U00 U01 U10 U11

00 01 10 11

...

...

...

Classical communication is encoded in the tree as the dependency of operations
on the labels on the branches below it e.g. the dependency of the operation Uxz
on the variable xz stands for the 2-bit classical channel required for teleporta-
tion. We will also replace any initial state Ψ by the projector PΨ on it, which
can be conceived as its preparation e.g. PEPR is the preparation of an EPR-pair.
It should be clear that for each path from the root of the tree to a leaf, by ‘filling
in the operations on the included nodes in the corresponding boxes of the con-
figuration picture’, we obtain a network involving only local unitary operations
and (non-local) projectors e.g. one network

PBell

Pxz

Uxz

for each of the four values xz takes. It will be these networks (from which we
extracted the classical information flow) for which we will reveal the quantum
information flow. Hence each projector in it which is not a preparation is to be
conceived conditionally.

3 Bipartite Entanglement

Let H1 and H2 be two finite dimensional complex Hilbert spaces. The elements
of H1 ⊗ H2 are in bijective correspondence with those of H1→H2, the vector
space of linear maps with domain H1 and codomain H2, and also with those of
H1 �H2, the vector space of anti-linear maps with domain H1 and codomain

H2. Given a base {e(1)α }α of H1 and a base {e(2)β }β of H2 this can easily be seen
through the correspondences∑

αβ

mαβ 〈e(1)α | −〉 · e(2)β

L/
∑
αβ

mαβ · e(1)α ⊗ e(2)β∑
αβ

mαβ 〈− | e(1)α 〉 · e
(2)
β

aL/
∑
αβ

mαβ · e(1)α ⊗ e(2)β

where (mαβ)αβ is the matrix of the corresponding function in bases {e(1)α }α and

{e(2)α }β and where by

〈e(1)α | −〉 : H1 → H2 and 〈− | e(1)α 〉 : H1 � H2
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we denote the functionals which are respectively the linear and the anti-linear

duals to the vector e
(1)
α . While the second correspondence does not depend on

the choice of {e(1)α }α the first one does since

〈c · e(1)α | −〉 = c̄ · 〈e(1)α | −〉 and 〈−| c · e(1)α 〉 = c · 〈−| e(1)α 〉.

We can now represent the states of H1 ⊗ H2 by functions in H1 → H2 or in
H1�H2, and vice versa, these functions represent states of H1 ⊗H2. Omitting
normalization constants, an attitude we will abide by throughout this paper,
examples of linear maps encoding states are:

id :=

(
1 0
0 1

)
L/ |00〉+ |11〉

π :=

(
0 1
1 0

)
L/ |01〉+ |10〉

id∗ :=

(
1 0
0 −1

)
L/ |00〉 − |11〉

π∗ :=

(
0 −1
1 0

)
L/ |01〉 − |10〉

The last three of these four functions which encode the Bell-base states are (up
to a scalar multiple) the Pauli matrices

σx ≡ X := π σy ≡ Y := iπ∗ σz ≡ Z := id∗

plus the identity which encodes the Bell-state. We can also encode each projector

PΨ : H1 ⊗H2 → H1 ⊗H2 :: Φ �→ 〈Ψ | Φ〉 · Ψ

with Ψ ∈ H1 ⊗H2 by a function either in H1→H2 or H1�H2. Hence we can
use these (linear or anti-linear) functional labels both to denotate the states of
H1 ⊗H2 and the projectors on elements of H1 ⊗H2. We introduce a graphical
notation which incarnates this.

f

f

H1 H2

�
time

The box f depicts the projector which projects on the bipartite state
labeled by the (anti-)linear function f and the barbell f depicts that state
itself. Hence the projector f acts on the multipartite state represented
by and produces a pure tensor consisting of (up to a
normalization constant) f and some remainder. Hence this picture portrays
‘preparation of the f -labeled state’.

By an entanglement specification network we mean a collection of bipartite
projectors f ‘configured in space and time’ e.g.
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1

2

3

4

5

6 −− f1→ −− f3→
−− f2→
←f5 −−

←f4 −−
−− f7→

−− f6→ −− f8→

H1 H2 H3 H4 H5

The arrows indicate which of the two Hilbert spaces in H1 ⊗Hj is the domain
and which is the codomain of the labeling function.

Such a network can also contain local unitary operations — which we will
represent by a grey square box U . We will refer to the lines labeled by some
Hilbert space Hi (/ time-lines) as tracks.

Definition 1. A path is a line which progresses along the tracks either forward
or backward with respect to the actual physical time, and, which:

(i) respects the four possibilities

for entering and leaving a bipartite projector;
(ii) passes local unitary operations unaltered, that is

(iii) does not end at a time before any other time which it covers.

An example of a path is the grey line below.

1

2

3

4

5

6

The notion of a path allows us to make certain predictions about the output
Ψout of a network, that is, the state of the whole system after all projectors have
been effectuated. Before stating the theorem we illustrate it on our example. Let

Ψin := φin ⊗
∑

α2...α5

Φinα2...α5
· e(2)α2

⊗e(3)α3
⊗e(4)α4

⊗e(5)α5
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be its input state. This input state factors into the pure factor φin, which we
call the input of the path, and a remainder.

1

2

3

4

5

6 −− f1→ −− f3→

−− f2→

←f4 −−

←f5 −−

−− f6→

−− f7→

−− f8→

︸ ︷︷ ︸
φin

?φout

∑
Φin
α2...α5

·e(2)α2
⊗e(3)α3

⊗e(4)α4
⊗e(5)α5

α2...α5

It should be clear that after effectuating all projectors we end up with an output
which factors in the bipartite state labeled by f1, the bipartite state labeled by
f2 and a remaining pure factor φout — which we call the output of the path. Our
theorem (below) predicts that

φout = (f8 ◦ f7 ◦ f6 ◦ f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1)(φin) . (1)

Be aware of the fact that the functions f1, . . . , f8 are not physical operations but
labels obtained via a purely mathematical isomorphism. Moreover, the order in
which they appear in the composite (1) has no obvious relation to the temporal
order of the corresponding projectors. Their order in the composite (1) is:

the order in which the path passes through them

— this despite the fact that the path goes both forward and backward in physical
time. Here’s the theorem.

Lemma 1. For f , g and h anti-linear maps and U and V unitary operations
we have

g

h ◦ V † ◦ g ◦ U ◦ f

f h
U V

Proof. Straightforward verification or see [5] §5.1. �

Theorem 1. (i) Given are an entanglement specification network and a path.
Assume that :
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1. The order in which the path passes through the projectors is

f1 ⇒ f2 ⇒ . . .⇒ fk−1 ⇒ fk .

2. The input of the path is a pure factor φin .
3. Ψout has a non-zero amplitude.

Then the output of the path is (indeed) a pure factor φout which is explicitly
given by

φout = (fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1)(φin) . (2)

(ii) If the path passes forwardly through U then U will be part of the composite
(2); if it passes backwardly through U then U † will be part of the composite (2).

Proof. Lemma 1 is the crucial lemma for the proof. For a full proof see [5] §5. �
It might surprise the reader that in the formulation of Theorem 1 we didn’t

specify whether f1, . . . , fk are either linear or anti-linear, and indeed, we slightly
cheated. The theorem is only valid for f1, . . . , fk anti-linear. However, in the
case that f1, . . . , fk are linear, in order to make the theorem hold it suffices
to conjugate the matrix elements of those functional labels for which the path
enters (and leaves) the corresponding projector ‘from below’ (see [5] §4.1):

In most practical examples these matrix elements are real (see below) and hence
the above theorem also holds for linear functional labels. One also verifies that
if a path passes though a projector in the opposite direction of the direction of
an anti-linear functional label f , then we have to use the adjoint f † of the anti-
linear map f in the composite (2) — the matrix of the adjoint of an anti-linear
map f † is the transposed of the matrix of f (see [5] §4.2). Finally note that we
did not specify that at its input a path should be directed forwardly in physical
time, and indeed, the theorem also holds for paths such as

We discuss this in Section 5.

4 Re-designing Teleportation

By Theorem 1 we have

id

id

φ

φ

(3)
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due to
(id ◦ id)(φ) = φ .

When conceiving the first projector as the preparation of a Bell-pair while tilting
the tracks we indeed obtain ‘a’ teleportation protocol.

id

id

φ

φ

However, the other projector has to ‘belong to a measurement’ e.g.

MBell := {Pid,Pπ,Pid∗ ,Pπ∗} .

Hence the above introduced protocol is a conditional one. We want to make it
unconditional.

Definition 2. Paths are equivalent iff for each input φin they produce the same
output φout.

Corollary 1. For U unitary and g ◦ U = U ◦ g we have that

U†

U ◦ f
g

and
f

g

are equivalent paths.

Proof. Since U †◦ g ◦ (U ◦ f) = g ◦ f the result follows by Theorem 1. �

Intuitively, one can move the box U† along the path and permute it with
projectors whose functional labels commute with U (= commute with U †) until
it gets annihilated by the U -factor of U ◦ f . Applying Corollary 1 to

f, g := id and U ∈ {id, π, id∗, π∗} ,

since π† = π, (id∗)† = id∗ and (π∗)† = −π∗, we obtain four conditional telepor-
tation protocols

id id id id

id π id∗ π∗
id π id∗ -π∗
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of which the one with U := id coincides with (3). These four together constitute
an unconditional teleportation protocol since they correspond to the four paths
‘from root to leaf’ of the tree discussed in Section 2, from which then also the
2-bit classical channel emerges.

In order to obtain the teleportation protocol as it is found in the literature,
observe that π∗ = π ◦ id∗, hence

◦ id id∗

id id id∗

π π π∗

and thus we can factor — with respect to composition of functional labels — the
2-bitBell-basemeasurement in two 1-bit ‘virtual’measurements (∨ stands for ‘or’):

id∨id∗ id∨πid∨π∨id∗∨π∗ /
2 bits

1 bit
1 bit

Note that such a decomposition of MBell does not exist with respect to ⊗ nor
does it exist with respect to composition of projector actions. All this results in

id

id∨id∗ id∨π

id∨π
id∨id∗

which is the standard teleportation protocol [3].
The aim of logic gate teleportation [7] is to teleport a state and at the same

time subject it to the action of a gate f . By Theorem 1 we evidently have

f

id

φ

f(φ)

We make this protocol unconditional analogously as we did it for ordinary
teleportation.
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Corollary 2. For U and V unitary and g ◦ V = U ◦ g we have that

U†

V ◦ f
g

and
f

g

are equivalent paths.

Proof. Analogous to that of Corollary 2. �

We apply the above to the case

f := id⊗ id and g := CNOT

that is, the first projector is now to be conceived as the preparation of the state

ΨCNOT = |00〉 ⊗ |00〉+ |01〉 ⊗ |01〉+ |10〉 ⊗ |11〉+ |11〉 ⊗ |10〉 .

Let Ψf be defined either by f
L/ Ψf or f

aL/ Ψf .

Proposition 1. Ψf⊗g = Ψf ⊗ Ψg ; Pf⊗g = Pf ⊗ Pg.

Proof. The first claim is verified straightforwardly. Hence Pf⊗g ≡ PΨf⊗g
=

PΨf⊗Ψg = PΨf
⊗ PΨg ≡ Pf ⊗ Pg what completes the proof. �

Hence we can factor the 4-qubit measurement to which the second projector
belongs in two Bell-base measurements, that is, we set

V ∈
{
U1 ⊗ U2

∣∣ U1, U2 ∈ {id, π, id∗, π∗}
}
.

The resulting protocol

CNOT

id∨id∗ id∨π

id∨id∗ id∨π
id∨id∗

id∨id∗id∨id∗

id∨πid∨π

id∨π
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is the one to be found in [7] — recall that U † factors as a tensor since CNOT is
a member of the Clifford group.

Our last example in this section involves the passage from sequential to parallel
composition of logic gates. Due to the accumulation of inaccuracies in sequential
composition [10] it would be desirable to have a fault-tolerant parallel alternative.
This would for example be useful if we have a limited set of available gates
from which we want to generate more general ones e.g. generating all Clifford
group gates from CNOT gates, Hadamard gates and phase gates via tensor and
composition. By Theorem 1 the network

id

f1

id

f2

id

fm

realizes the composite fm◦ . . .◦f1 conditionally. Again this protocol can be made
unconditional — an algorithm which captures the general case can be found in
[5] §3.4. Note that by Theorem 1 it suffices to make unitary corrections only at
the end of the path [5] §3.4.

5 Entanglement Swapping

By Theorem 1 we have

φin (h ◦ g ◦ f)(φin)

g

f h

H1 H2 H3 H4

However, Theorem 1 assumes φin to be a pure factor while it is part of the
output Ψout of the network. This fact constraints the network by requiring that

h ◦ g ◦ f aL/ φin ⊗ φout
for some φin and φout i.e. the state labeled by h ◦ g ◦ f has to be disentangled
— which is equivalent to the range of h ◦ g ◦ f being one-dimensional [5] §5.3.

Using Lemma 1 this pathology can be overcome by conceiving the output
state of the bipartite subsystem described in H1 ⊗H4 not as a pair (φin, φout)
but as a function ϕ : H1�H4 which relates any input φin ∈ H1 to an output
φout := ϕ(φin) ∈ H4. Hence we conceive the above network as producing a
function

ϕ := h ◦ g ◦ f aL/ Ψϕ

where Ψout = Ψϕ ⊗ Ψg with

Ψϕ ∈ H1 ⊗H4 and g
aL/ Ψg ∈ H2 ⊗H3 .
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To such a function produced by a network we can provide an input via a uni-
partite projector. The generic example (which can be easily verified) is

f

φin

φout = f(φin)

One can then conceive f as a λ-term λφ.fφ [2] and the process of providing
it with an input via a unipartite projector embodies the β-reduction [2]

(λφ.fφ)φin
β
= f(φin) .

As we will see below we can ‘feed’ such a function at its turn as an input of
function type in another network. This view carries over to the interpretation of
multipartite entanglement where it becomes crucial.

The entanglement swapping protocol [12] can now be derived analogously as
the teleportation protocol by setting f = g = h := id in the above. For this
particular case Lemma 1 becomes

id ◦ id ◦ id = id

id id

id

Details can be found in [5] §6.2.

6 Multipartite Entanglement

The passage from states to functions as inputs and outputs enables to extend
our functional interpretation of bipartite entanglement to one for multipartite
entanglement. In general this involves higher order functions and hence the use
of denotational tools from modern logic and proof theory such as λ-calculus [2].

Whereas (due to commutativity of −⊗−) a bipartite tensor H1⊗H2 admits
interpretation as a function either of type H1�H2 or of type H1H2, a tripar-
tite tensor (due to associativity of −⊗−) admits interpretation as a function of
a type within the union of two (qualitatively different) families of types namely

Hi � (Hj � Hk) and (Hi � Hj) � Hk .

Explicitly, given ∑
αβ

Mαβγ · e(1)α ⊗ e(2)β ⊗ e(3)γ ∈ H1 ⊗H2 ⊗H3

we respectively obtain
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f1 : H1 � (H2 � H3)

::
∑
α

ψα · e(1)α �→
∑
βγ

(∑
α

ψ̄αMαβγ

)
〈− | e(2)β 〉 · e(3)γ

and

f2 : (H1 � H2) � H3

::
∑
αβ

mαβ〈− | e(1)α 〉 · e
(2)
β �→

∑
γ

(∑
αβ

m̄αβMαβγ

)
· e(3)γ

as the corresponding functions — the complex conjugation of the coefficients
ψ̄α and m̄αβ is due to the anti-linearity of the maps. The appropriate choice
of an interpretation for a tripartite projector depends on the context i.e. the
configuration of the whole network to which it belongs. A first order function
f1 enables interpretation in a configuration such as

f1 : H1� (H2�H3)

φ1

φ2

φout= (f(φ1))(φ2)

One can think of this tripartite projector as producing a bipartite one at its
‘output’. A second order function f2 — recall that a definite integral is an
example of a second order function — enables interpretation in the configuration

f2 : (H1�H2)�H3

g

φout= f(g)

We illustrate this in an example — we will not provide an analogue to The-
orem 1 for the multipartite case since even its formulation requires advanced
denotational tools. Consider the following configuration.

1

2

3

4

H1 H2 H3 H4 H5 H6 H7 H8

(M1
α1α2α3

)α1α2α3

(M2
α4α5α6

)α4α5α6

(M3
α6α7α8

)α6α7α8(m1
α3α4

)α3α4

(m2
α2α5

)α2α5

φ1 φ2

For ‘good’ types we can draw a ‘compound’ path.
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H1 H2 H3 H4 H5 H6 H7 H8

f1:H1� (H2 �H3)

f2: (H4 �H5)�H6

f3:H6 � (H7�H8)g
†
1
:H3�H4

g2 :H2�H5

φ1 φ2

?[φout]

If a multipartite analogue to Theorem 1 truly holds one would obtain

φout = (f3 ◦ f2)(g2 ◦ (f1(φ1))† ◦ g†1)(φ2) .

Hence in terms of matrices we predict φoutα8
to be∑

α1...α7

φ̄2α7
m1
α3α4

φ1α1
M̄1

α1α2α3
m2
α2α5

M̄2
α4α5α6

M3
α6α7α8

.

To verify this we explicitly calculate φoutα8
. Set

Ψ τ =
∑
i1...i8

Ψ τi1...i8 · e
(1)
i1
⊗ . . .⊗ e(8)i8

where Ψ0 is the (essentially arbitrary) input of the network and Ψ τ for τ ∈
{1, 2, 3, 4} is the state at time τ + ε. For I ⊆ {1, . . . , 8} and I

c

:= {1, . . . , 8} \ I
let PIΦ stipulate that this projector projects on the subspace

Φ⊗
⊗
i∈Ic

Hi for some Φ ∈
⊗
i∈I
Hi .

Lemma 2. If Ψ τ = PIΦ(Ψ
τ−1) then

Ψ τi1...i8 =
∑

jα|α∈I
Ψ τ−1
i1...i8[jα/iα|α∈I]Φ̄(jα|α∈I)Φ(iα|α∈I)

where i1 . . . i8[jα/iα | α ∈ I] denotes that for α ∈ I we substitute the index iα by
the index jα which ranges over the same values as iα.

Proof. Straightforward verification or see [5] §6.4. �

Using Lemma 2 one verifies that the resulting state Ψ4
i1...i8

factors into five
components, one in which no index in {i1, . . . , i8} appears, three with indices in
{i1, . . . , i7} and one which contains the index i8 namely∑

l4l5l6l7
m1m2m3

m2
m2l5m

1
m3l4M

3
l6l7i8φ

1
m1
M̄2

l4l5l6 φ̄
2
l7M̄

1
m1m2m3

.
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Substituting the indices m1, m2, m3, l4, l5, l6, l7, i8 by α1, . . . , α8 we exactly
obtain our prediction for φoutα8

.
It should be clear from our discussion of multipartite entanglement that, pro-

vided we have an appropriate entangled state involving a sufficient number of
qubits, we can implement arbitrary (linear) λ-terms.

7 Discussion

For a unitary operation U : H → H there is a flow of information from the
input to the output of U in the sense that for an input state φ the output U(φ)
fully depends on φ.

input: φ

U

output: U(φ)

How does a projector Pψ act on states? After renormalization and provided that
〈φ |ψ〉 �= 0 the input state φ is not present anymore in the output ψ = Pψ(φ).
At first sight this seems to indicate that through projectors on one-dimensional
subspaces there cannot be a flow of information cfr. the ‘wall’ in the picture
below.

Theorem 1 provides a way around this obstacle.

While there cannot be a flow from the input to the output, there is a ‘virtual flow’
between the two inputs and the two outputs of a bipartite projector whenever it
is configured within an appropriate context. And such a bipartite projector on a
state in H1⊗H2 can act on this flow as any (anti-)linear function f with domain
in H1 and codomain in H2 — which is definitely more general than unitary
operations and also more general than actions by (completely) positive maps.
This behavioral interpretation extends to multipartite entanglement, and, as is
shown in [5] §6.6, it also enables interpretation of non-local unitary operations.

The wall within a projector incarnates the fact that

Pψ
L/ ψ ⊗ ψ .
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Indeed, one verifies that disentangled states ψ⊗φ are in bijective correspondence
with those linear maps which have a one-dimensional range [5] §5.3, that is, since
states correspond to one-dimensional subspaces, disentangled states correspond
to (partial) constant maps on states. Since constant maps incarnate the absence
of information flow (cfr. ‘the wall’ mentioned above):

entangled

disentangled
/ information flow

no information flow
.

Pursuing this line of thought of conceiving entanglement in terms of its in-
formation flow capabilities yields a proposal for measuring pure multipartite
entanglement [5] §7.5 — given a measure for pure bipartite entanglement
e.g. majorization [9].

The use of Theorem 1 in Sections 4 and 5 hints towards automated design of
general protocols involving entanglement. We started with a simple configuration
which conditionally incarnates the protocol we want to implement. Conceiving
this conditional protocol as a pair consisting of (i) a single path ‘from root to
leaf’ in a tree, and, (ii) a configuration picture, we can extend the tree and the
configuration picture with unitary corrections in order to obtain an unconditional
protocol. It constitutes an interesting challenge to produce an explicit algorithm
which realizes this given an appropriate front-end design language.

Recent proposals for fault-tolerant quantum computers of which the archi-
tecture is manifestly different from the circuit model require a different math-
ematical setting for programming them and reasoning about them [4]. We are
convinced that the insights obtained in this paper provide the appropriate tool
for doing so.

Acknowledgments. WethankSamsonAbramsky,HowardBarnum,SamBraun-
stein, Ross Duncan, Peter Hines, Radha Jagadeesan and Prakash Panangaden for
useful input.
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Free Energy of Petri Nets

Vincent Danos and Ilias Garnier
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1 Introduction

One can often extract valuable properties of Markov chains (MCs) by “compressing”
them using various notions of bisimulation (exact or approximate, strong or weak,
etc) [10,3,2,4]. Typically a bisimulation will lead from a concrete and perhaps overly
detailed system to a simpler and more abstract one [7]. In this paper, we will go the
opposite way! We will show that for the subclass of continuous-time MCs (ctMCs)
corresponding to thermodynamically consistent stochastic mass action Petri nets (the
standard model for chemical reactions for fast diffusing chemicals), one can construct
in a systematic fashion concrete versions of the dynamics. These concrete MCs are
functionally bisimilar to their abstract counterpart and admit a simpler description of
their invariant probability (equivalently, of their energy function). This can sometimes
reveal interesting equilibrium properties of the original chain.

To see how the benefits of the construction come about, and fix a few notations which
we will re-use in the main development, we start with a simple class of ‘urn models’.
These are traditionally introduced as discrete models of diffusion.

1.1 Continuous Time Ehrenfest Urns

Transitions correspond to one particle moving from one urn to another. One has a con-
stant numberN of (non-interacting) particles, a set k of urns, and the state of the system
is modeled by an occupancy map σ : k → N. For each urn i, σ(i) specifies the number
of particles in i. Thus, a state σ can be seen as a vector in Rk. We will write eis for the
canonical basis vectors.

As the total number of particles is constant, one has a global invariant
∑

i σ(i) =
N . In particular, for any (deterministic) initial condition, the set of reachable states is
strongly connected and finite. The rate at which one particle travels from urn to urn
is described by a k × k matrix R with real-valued coefficients (non-negative for the
off-diagonal ones). Hence, we obtain a global ctMC with rate function Qa whose off-
diagonal values are:

Qa(σ, σ − ei + ej) = σ(i)Rij for i �= j (1)

Say we are interested in computing the fixed point of Qa. To do this, we introduce
a new chain Qc which tracks each particle individually. The intuition is that, as the
particles do not interact, their final distribution in the concrete Qc model will be a
simple product of each individual ones. The fixed point of the original chain Qa will
just be the projection of this simple product distribution.

F. van Breugel et al. (Eds.): Panangaden Festschrift, LNCS 8464, pp. 268–289, 2014.
c© Springer International Publishing Switzerland 2014
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A state of the concrete system is now a map τ : N → k from invidual particles to
the urn where they sit. We write τ [n �→ i] for the map identical to τ save for particle n
sitting in i.

There is an evident projection map π from concrete states to abstract ones:

π(τ)(i) = |τ−1(i)|

Each individual particle n in N travels over k following the rate matrix R defined
above. Hence the concrete chain Qc is the asynchronous parallel composition of N
copies of R:

Qc(τ [n �→ i], τ [n �→ j]) = Rij for i �= j (2)

Let us now assume thatR is irreducible -i.e. has one strongly connected component,
and has a fixed point probability. By classical MC theory [13], this implies that the fixed
point E is unique and a global attractor, meaning:

E = limt→+∞ pTn (0) e
tR

for any choice of the initial probability pn(0).
We want to prove that the equilibrium of the compound chain Qc: 1) is the product

overN of the individual (and identical) E , 2) is unique, 3) and is also a global attractor
for Qc. To see this, we remark that the asynchronous parallel composition of ctMCs
Q1, Q2 can be written as a Kronecker sum:

Q1 ⊕Q2 := Q1 ⊗ I2 + I1 ⊗Q2

where ⊗ is the tensor product, and I1, I2 identity matrices of same dimensions as Q1,
Q2. So, by definition, Qc =

⊕
N R. Besides, it is easy to see that eA⊕B = eA ⊗ eB .

This gives the dynamics of the concrete chain in terms of R:

pc(t) = (
⊗

N pn(0))
T etQc =

⊗
N pn(0)

T etR

where we assume the initial probability is a tensor (i.e. a product probability). Hence
pc(t) stays always a product, and in the limit:

limt→+∞ pc(t) =
⊗

N E

Therefore, with Ec :=
⊗

N E , this implies point 1) and point 3) for tensor initial
states. Furthermore, Qc being a product of irreducibles is clearly irreducible, hence
points 2) and (full) 3) follow.

It remains to lift this concrete fixed point to the abstract state space. As we will
prove shortly, it so happens that the projection π is a (forward functional stochastic)
bisimulation. Intuitively, the abstract flow of probability is preserved in the concrete
system. Formally, this means that for all σ, σ′, and τ in π−1(σ):

Qa(σ, σ
′) =

∑
τ ′∈π−1(σ′)

Qc(τ, τ
′) (3)
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It is easy to verify that π is a bisimulation. Suppose one has an abstract transition
Qa(σ, σ

′), then one must have σ′ = σ−ei+ej for some i �= j. To match this transition
on the concrete side, one needs to pick an n in i and move it to j. That is to say:∑

τ ′∈π−1(σ′)Qc(τ, τ
′) =

∑
n∈τ−1(i)Qc(τ [n �→ i], τ [n �→ j]) = σ(i)Rij

which is equal toQa(σ, σ
′) (Eqn. 1). This establishes that π is a bisimulation as defined

in (Eqn. 3).

1.2 Categorical Aside

The fact that π is a bisimulation (Eqn. 1) can be neatly captured as a commutative dia-
gram in the category of, say, finite sets and real-valued matrices. In this setting (Eqn. 1)
simply says that πQa = Qcπ (note the inversion of the composition due to the conven-
tion thatQ(x, y) is the rate to jump from x to y, which is the opposite of the usual linear
algebraic convention) where π is now recast as a rectangular matrix in the obvious way:
π(τ, σ) = 1 iff π(τ) = σ. This in turn immediately implies (and is in fact equivalent
to) that πetQa = etQcπ.

Again, we can express this commutation as a diagram in the category of probabilistic
relations [14,15].1 This diagram is shown in Fig. 1 in the specific case of our example
(but is completely general). Therein, the function π being deterministic, is now seen as
taking Dirac values δπ(τ). This category has a final object, the one point (measurable)
space, written 1. An arrow p from 1 to X is just a probability p on X . Hence the
existence of a steady state can be expressed as a commuting triangle (see Fig. 1). Also
the composition of p with a (measurable) function X → Y is no other than the image
probability f(p). It follows, diagramatically, that the image of a steady state probability
through a functional bisimulation π is a steady state of the target of π.

1

kN kN

Nk Nk
etQa

etQc

λτ.δπ(τ) λτ.δπ(τ)

Ec

Ec

Ea

Fig. 1. Forward stochastic bisimulation as a diagram in the category of stochastic relations; the
fact that Ec is a steady state of Qc can be expressed as the commutation of the upper triangle

1 This category is the Kleisli category of Giry’s probabilistic monad [8], also known as the
category of probabilistic mappings [11], or as the category of Markov kernels.
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1.3 The Ehrenfest Steady State

We can readily use this general result to obtain a steady state of Qa simply by aggre-
gating the steady state probability of Qc in the pre-image of each abstract state:

Ea(σ) =
∑

τ∈π−1(σ) Ec(τ)
=
∑

τ∈π−1(σ)

∏
N E(τ(n))

=
∑

τ∈π−1(σ)

∏
k E(i)σ(i) = |π−1(σ)|

∏
k E(i)σ(i)

The cardinality of π−1(σ) is by definition a multinomial coefficient; hence the general
Ehrenfest steady state is:

Ea(σ) =
(

N

σ(1) · · ·σ(k)

)∏
k

E(i)σ(i) (4)

The same diagram guarantees thatQa inherits the irreducibility ofQc, and therefore Ea
is unique and a global attractor.

Thus we see that a more concrete and bisimilar description of a process can some-
times be more amenable to calculations and reveal some of its properties. Specifically,
moving over from a multiset semantics to a word-based semantics (with distinguish-
able particles) can provide insight in the dynamics. As we will show in this paper, and
perhaps surprisingly, a similar ‘concretization’ can be made made to work for a vastly
larger class of ctMCs, namely that of stochastic and thermodynamically consistent (to
be defined below) Petri nets. This can be thought of as a vast generalisation of our open-
ing example (although, strictly speaking, the classes are incomparable, as in the latter
and simpler case we do not assume thermodynamic consistency).

1.4 Plan of the Paper

This paper is structured as follows: in §2, Petri nets are introduced as well as their qual-
itative and stochastic semantics. A proof is provided that under some weak restrictions
there exists an equilibrium distribution from which the free energy function of the net
can be derived – entailing the thermodynamic consistency of these restricted Petri nets.
Word-based rewriting systems are considered and the shape of their equilibrium proba-
bility is derived under some general hypotheses on the properties of the embedding of
Petri nets into those systems. In §3 Petri nets are rephrased in categorical terms. The
state-space of word-based rewriting systems is described. The fact that multisets arise
as a quotient of words is made precise by exhibiting an equivalence between the cate-
gory of words and the category of multisets. In §4, two distinct attempts at concretising
Petri nets are described: in the first instance, a concrete dynamics is described that pre-
serves an invariant on the size of words. In the second instance, this rewriting system is
generalised to non size-preserving Petri nets. In both cases, results of bisimulation and
convergence to thermodynamically consistent equilibria are given. The paper concludes
on some general remarks on the results achieved in this paper and discusses how this
approach could be applied to more general systems.
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2 Mass-Action Petri Nets

2.1 General Definitions

Petri nets. We recall the qualitative semantics of Petri nets (see Ref. [12] for a more
detailed overview). A Petri net N is given by a finite set of places P and of transi-
tions T equipped with a pair of input i : T → P → N and output o : T → P → N
functions, notedN = 〈P, T, i, o〉. It is insightful to interpret Petri nets as chemical reac-
tion networks, where places correspond to chemical species and transitions correspond
to chemical reactions. The input function i then encodes the number of molecules of
each species consumed by a given transition, whereas the output function o encodes the
amount of molecules that are produced.

The state space of a net is the set of markings NP . Markings are multisets, that
is P -indexed vectors of non-negative integers, and as such they are endowed with an
obvious additive structure. If x ∈ NP is a marking and A ∈ P is a place, let x(A) be
the number of elements (called tokens) in that place for the particular marking x. The
chemical interpretation of a marking is simply a mixture of species.

The moves on the state graph correspond to firing of transitions. Given a transition
r ∈ T and a state x ∈ NP , there exists an r-labelled move:

x −→r x− i(r) + o(r) if x ≥ i(r)

The guard x ≥ i(r) intuitively ensures that there are enough reactants for r to activate.
This dynamics can be expressed in a vectorial form. Let us write p = |P | and q = |T |.
The functions i and o define the stoichiometric matrix C with p lines, q columns and
elements Cj,k = o(k)(j) − i(k)(j). When a net in vectorial form is considered, it will
be notedN = 〈P, T, C〉.

In the canonical basis {e1, . . . , eq} of Rq , the outcome of Cer is the net effect of
firing transition r once. This lifts to arbitrary linear combinations of firings. Conversely,
any vector p ∈ Rp can be read as the per-place “cost” of a token. Given r ∈ Rq, the
p-cost of firing r is henceptCr. This view of the dynamics overlooks the restriction that
markings should always be point-wise non-negative, but embeds enough information to
reason on asymptotic properties of the stochastic semantics.

Transition invariants are vectors r ∈ Nq such thatCr = 0. In the light of the previous
paragraph, these vectors are combinations of firings that leave markings (i.e. reactants)
invariant. Transition invariants correspond to cycles in the transition graph. Place in-
variants are vectors p ∈ Rp so that ptC = 0, i.e. costs for reactants that make any
firing of a transition cost 0.

Simple and symmetric nets. The rest of the paper will concentrate on the study of
simple and symmetric Petri nets (see e.g. [5] for more details); we say that a Petri net
N = 〈P, T, C〉 is:

– simple iff no two transitions have identical jumps, i.e. identical columns in C;
– symmetric iff every transition r has an inverse transition r∗ with i(r∗) = o(r) and
i(r) = o(r∗).
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Example 1. Consider the finite set of places P = {A;B} and a netN with a cyclic set
of reactions t1 = A �→ B and t2 = B �→ A, with an initial marking A. The semantics

gives rise to an infinite run t1t2t1 . . . The stoichiometric matrix C is
[

−1 +1
+1 −1

]
. But the

same stoichiometric matrix is compatible with the reaction t′1 = 2A �→ A + B, which
gives rise to the empty run if started from the same marking. In a simple network, one
cannot have both transitions t1 and t′1.

Mass action stochastic semantics. Petri nets can be endowed with mass action seman-
tics, emphasising the chemical interpretation of their dynamics. The state space of a
Petri net is countably infinite and by finiteness of T the branching factor is bounded,
hence any assignment of rates to its transitions will determine a ctMC. Let us recall the
the definition of a ctMC:

Definition 1. (Continuous-Time Markov Chain) A ctMC on a countable setΩ is a fam-
ily of random variables {Xt}t∈[0;+∞) with values in Ω which obey the Markov prop-
erty:

P (Xs+t = j|Xs = i,Xs1 = i1, . . . , Xsn = in) = P (Xt = j|X0 = i)

∀s, t > 0, ∀i, i1...n, j ∈ Ω.

Equivalently, the time evolution of the probabilistic state of a ctMC (or a more gen-
eral Markov process) is described by the master equation pt = etQp0 where pt :
Ω × Ω → [0; 1] describes the time evolution of the jumping probability, p0 is the
initial probabilistic state and Q is called the rate matrix or infinitesimal generator. It is
Q that specifies how fast the process jumps from a state to another. Let us recall that the
definition of stochastic forward bisimulation given in the introduction (Eqn. 3) applies
perfectly to this definition of ctMCs.

Going forward with our chemical interpretation of Petri nets, we use mass action
semantics: the rate of a given transition is defined to be proportional to the number
of ways in which it can be fired, i.e. proportional to the number of place-preserving
injections from the input of the transition to the current state. Let us note [X ;Y ] the
injections from a finite set X to a finite set Y . The number of such injections is given
by |[X ;Y ]| = |Y |!

(|Y |−|X|)! .
Let r be a transition, A a place, x a marking, and i(r) the input multiset of r, the

number of place-preserving injections from i(r) to x is:∏
A∈P |[i(r)(A);x(A)]| =

x!

(x− i(r))!
where we have written x! for the multiset exponential

∏
A∈P x(A)!.

Definition 2. (Mass action Petri net) For any simple and symmetric Petri net N =
〈P, T, C〉, given reaction rate constants k : T → R+, the associated mass action Petri
net is a ctMC Nma = 〈N , Q, p0〉 on the state space Ω = NP with initial probability
p0 and rate matrix:

Q(x, x′) =

⎧⎨⎩k(r)
x!

(x − i(r))! if x −→r x
′

0 otherwise
(5)
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The simplicity assumption ensures that this is a well-defined specification: any move
x → x′ can only correspond to one transition r ∈ T . Also, the initial distribution is
rescaled by dividing it by the size of the fibre its argument belongs to. Also, observe
that we allow self-loops: we do not enforce Q(x, x) = −

∑
y �=xQ(x, y). This does

not alter the transient nor the steady-state probabilities [7]. This completes the ctMC
structure associated to a simple, symmetric and mass-action Petri net (a sisma net for
short).

2.2 Equilibrium and Entropy of Mass-Action Petri Nets

We now study the existence of an equilibrium (to be defined shortly) for a ctMC built
as in the previous paragraph. With the notations introduced above, a probability E onΩ
is a steady state forQ iff ETQ = 0. A sufficient (but far from necessary!) condition for
this to happen is the detailed balance condition:

E(x)Q(x, x′) = E(x′)Q(x′, x) (6)

for all x, x′ in Ω. When this condition is satisfied, we say that E is an equilibrium for
Q. Just to be clear, E can be a steady state without being an equilibrium. Indeed for an
equilibrium to exist, some form of reversibility must hold in the sense thatQ(x, x′) �= 0
iff Q(x′, x) �= 0.

Given a sisma Petri net 〈P, T, C〉 with rate map k : T → R+, we set the transitional
energy vector K : T → R to be:

K(r) = log k(r∗)− log k(r)

Theorem 1 ([5]). A sisma net 〈P, T, C〉 has an equilibrium iff K ∈ ker(C)⊥.

Proof. Suppose E is an equilibrium, and x −→ x′; using equations (5) and (6), we get:

E(x)
E(x′) =

Q(x′, x)
Q(x, x′)

= eK(r)x
′!
x!
. (7)

This relation extends to any path φ : x1 −→∗
r xn, with r the multiset of reactions used

by φ:
E(x1)
E(xn)

=
∏
i

Q(xi+1, xi)

Q(xi, qi+1)
= e〈K,r〉

xn!

x1!
. (8)

In particular, if φ is a loop, then e〈K,r〉 = 1, equivalently 〈K, r〉 = 0. Suppose now r
in NT is a transition invariant. It is easy to see that there is a loop φ (in fact countably
many) which visits the multiset r. Besides, ker(C) has a basis with rational coordinates
in the canonical basis as C has integer coefficients. In fact, a ker(C) basis can be
chosen with integer coefficients by scaling, and even positive by exploiting the fact that
r� = −r as a basis vector. It follows that, K will be orthogonal to such a basis of
ker(C) (hence to any), hence K ∈ ker(C)⊥.

Conversely, if K ∈ ker(C)⊥ = Im(CT ), there exists a pricing of species ε such
that K = CT ε. Therefore, for a path φ : x −→∗

r x
′, 〈K, r〉 = 〈CT ε, r〉 = 〈ε, Cr〉 =
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〈ε, x′ − x〉 depends only of its endpoints. Hence (Eqn. 8) can be used to define an
E which will be an equilibrium (which will be unique up to an additive constant, per
connected component of the underlying transition graph). One can prove easily that the
per component normalization factor is always finite (see Ref. [5]).

Thermodynamic interpretation. The existence of an equilibrium can be expressed as
the existence of an energy function E : Ω → R+ with E(x) = e−E(x)/Z and Z =∑

x e
−E(x). The energy is only defined up to an additive constant. Taking the logarithm

of the equilibrium condition on paths (Eqn. 8), we get:

E(x1)− E(xn) = log E(xn)− log E(x1)
= −〈CT ε, r〉 + log x1!− log xn! = 〈ε, x1〉 − 〈ε, xn〉+ log x1!− log xn!

Hence we have simply E(x) := 〈ε, x〉+ log x!.
Note that the ε function associated to K in the derivation above is not unique in

general. If two distinct energies E1 and E2 can be defined in this way, their difference
on a given state x, in the connected component of a reference state x0, is:

E1(x)− E2(x) = 〈ε1 − ε2, x〉
= 〈ε1 − ε2, x0 + Cr〉 for any path from x0 to x
= 〈ε1 − ε2, x0〉 ε1 − ε2 ∈ Ker(CT )
= E1(x0)− E2(x0)

Hence versions only differ by a constant on each connected component, and any choice
uniquely defines an equilibrium per component. The first term ofE entails cost minimi-
sation – as such, it is an order term, while the second term tends to the uniformisation
of the amount of each species in the state and is hence a disorder – or entropic – term.

Seeing this decomposition, one could be tempted to interpretE as a free energy func-
tion, identifying 〈ε, x〉 to an internal energy term and −log(x!) to an entropy – but this
negative entropy would make little sense from a physical standpoint. In general, entropy
corresponds to the degeneracy factor of the energy, i.e. it quantifies its non-injectivity.
Indeed, one can rewrite the partition function Z =

∑
x e

−E(x) =
∑

Ei
N(Ei)e

−Ei

where Ei is a particular value taken by the energy (in the case of Petri nets, there are
only countably many) and N(Ei) is the number of states with energy Ei in the reach-
ability class of interest. For any fixed state x with energy Ei, the degeneracy factor of
Ei corresponds to the number of distinct solutions y to the equation:

〈ε, x〉+ log(x!) = 〈ε, y〉+ log(y!)

Let us first study the order and disorder terms of E(x) separately. The following points
are easily proved.

– One has log(x!) = log(y!) if and only if y is obtained from x by renaming species,
i.e. y = (A ∈ P ) �→ x(τA) for some τ ∈ Sym(P ).

– One has 〈ε, x〉 = 〈ε, y〉 exactly for all ys on the hyperplane normal to ε and passing
by x.

Therefore, the states fixing both the order and disorder terms simultaneously will be
those obtained from x by renamings of species that preserve energy.
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It remains to study the degeneracies arising from correlations between the order and
disorder term, i.e. symmetries that fix E(x) without fixing both ε(x) and log(x!). Such
an energy-preserving transformation can only arise from a transfer of energy between
the order and disorder components. In general, for fixed x and ε we seek states y s.t.

〈ε, y〉 = 〈ε, x〉+ log(x!)− log(y!)
= C − log(y!)

Clearly, one can craft cases where this equation has non-trivial solutions. It is not trivial
to determine even whether there is an asymptotic bound on the number of solutions as
the energy grows. However, the non-linearity of the right-hand side versus the linearity
of the left hand of the equation side hints that these symmetries are unlikely.

As an aside, we can compute the asymptotic variation of energy when the state un-
dergoes an “infinitesimal” transition, which in our case corresponds to adding a token,
say A, to the multiset state x. Let μA be this variation:

μA = ∂E
∂x(A) = ε(A) + ∂ log(x(A)!)

∂x(A) ∼ ε(A) + log(x(A))

The cost of adding an A to x decomposes into a constant cost ε(A) which one can
think of as the internal energy of A, and the logarithm of the number of As already
present. No matter how energetically cheap A is, the second entropic term log(x(A))
will eventually dominate and make the creation of more As increasingly unlikely.

2.3 Concretisation of the State-Space and Concrete Equilibrium

The natural state space of Petri nets is the set of multisets over places. The purpose
of this paper is to study how the dynamics and the equilibrium can be explained in
terms of another, more concrete state space of words over places. The objective of this
subsection is to build a plausible concrete equilibrium probability, with the idea that
the concrete ctMC still to be defined will have to converge to this equilibrium. Assume
given a thermodynamically consistent sisma net N = 〈P, T, C〉 with a cost function
ε : NP → R and an energy function E : Ω → R+ as defined in Subsec. 2.2. Let P ∗

be the set of all finite words over P and let Pn ⊂ P ∗ be the set of words of length n.
Consider again the mapping π : Pn → NP of Sec. 1. One seek concrete counterparts
ε′, E′, defined on words and inducing a concrete equilibrium E ′(w) ∝ exp(−E′(w)).
Let us make the two following fundamental hypotheses:

1. (Energy conservation) the concrete cost is the same as the abstract one: ε′ = ε,
2. (Equipartition) the equilibrium probability is divided equally among all elements

in the fibre of a multiset: E ′(w) = E(x)/|π−1(x)|.

These two hypotheses can be intuitively justified as follows. The first one states that
since the cost of a multiset is only a function of its contents, it should be the same for
words. The second hypothesis states that the concrete dynamics is not biased by the
structure of the words, i.e. is invariant under the symmetries generated by permuting
symbols. The transformation we propose has the deliberate effect of multiplying the
degeneracy factor by the size of the fibre of π.
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Lemma 1. (Size of the inverse image of a multiset) Let Pn be the set of words of length
n and x ∈ NP a multiset with

∑
A x(A) = n. Then one has:

|π−1(x)| = n!

x!

Proof. This is a trivial application of the orbit-stabilizer lemma: x! is the order of the
stabilizer subgroup of any word in π−1(x), under the natural action of Sn. The ratio
yields the size of the orbit, i.e. the number of words in the fibre of x.

With the lemma in place and under the assumptions of energy conservation and
equipartition, we can compute E′:

E′(w) = − log E ′(w)
= − log E(π(w)) + log |π−1π(w))|
= 〈ε, π(w))〉 + log(π(w)!) + log |π−1π(w))|
= 〈ε, w〉 + log |w|!

So, the concrete energy is E′(w) = 〈ε, w〉+ log |w|!.
As an aside, one can easily show that the free energy F is preserved by the transfor-

mation. The free energy corresponding to an energy shell (and by extension to any state
x in this shell) is by definition F (Ei) = Ei − log(Ni). For a state, F (x) = E(x) −
log(N(x)). After concretisation, one has F ′(x) = E′(x) − log(N(x) · |π−1(x)|) =
F (x), hence the free energy is conserved by concretisation.

3 Categorical Presentation of Nets

In order to facilitate the construction of the concrete transition system, we recast nets in
a categorical setting. In Sec. 4, we will ground word rewriting in this framework. The
plan of this section is as follows:

1. we provide a categorical view of multisets and words,
2. the operational semantics of Petri nets is presented using double pushout (DPO)

rewriting,
3. we exhibit an equivalence of categories between the categories of words and mul-

tisets.

For the rest of this section, let us fix an arbitrary sisma netN = 〈P, T, C〉.

3.1 A Category of Multisets and Inclusions

The category M of multisets and functions over a fixed alphabet P has elements of NP

as objects and colour-preserving (i.e. place-preserving) functions as morphisms. This
corresponds to the intuitive concept of multiset inclusion. More formally, if x, y ∈ NP

are two objects then a multiset morphism m : x → y is a colour-indexed family of
set-theoretic functions (mA : x(A) → y(A))A∈P between the objects x(A) and y(A)
seen as finite ordinals. Identities and composition of morphisms are that of Set.
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The operational semantics of Petri nets can be given as a rewriting system expressed
in double pushout (DPO) terms [16,6,9]. One can associate to any transition r ∈ T

a span i(r) k��g�� �� h �� o(r) in M, where the component k is called the “glueing
object” and represents the part of the state conserved by the rewriting. Note that the
span is taken in the subcategory of injective morphisms and multisets. Given a total and
injective matching morphism m : i(r) → x representing the application point of the
rule on the multiset x, a rewrite is encoded as a direct derivation diagram composed of
two pushout diagrams, as pictured below:

i(r) k o(r)

x c = x− (i(r)− k) o(r)− k + c

ki ko

m f

k′i k′o

kc

The rewrite is performed in two steps: the left-hand side of the rule i(r) is removed
from the target except for the conserved part k, and the right-hand side o(r) is added
– still modulo the conserved part k. The next figure is an example of such a DPO
rewrite step, where the two-line notation on the arrows embodies the actual mapping
from source to target tokens.

2A+B A+B A+X +B

3A+ 2B + C 2A+ 2B + C 2A+X + 2B + C

01 0
12 0

0 0 0
1 0 1

This example illustrates a transitionAA+B → A+X+B whose firing will conserve
the first A, erase the second, create an X and conserve the B. Let us take advantage of
this simple example to draw the attention of the reader to the fact that many variations of
this diagram would yield an identical resulting multiset. The degrees of freedom are the
combinations of the choice of conserved symbols and the symmetries of the matching
morphism.

3.2 A Category of Words and Inclusions

Given the same fixed alphabet P as for multisets, the category W of words has elements
of P ∗ as objects and functions as morphisms (symbol order is not preserved). Given two
wordsw1, w2, a morphismm : w1 → w2 is a set-theoretic function u(m) : |w1| → |w2|
between the integers |wi| seen as finite ordinals, such that symbols are preserved. The
identities as well as associativity are provided by Set. If u(m) is a bijection,w1 andw2

are isomorphic words, i.e. permutations of one another. The i-th symbol of a word w
will be notedw[i], not to be confused withw(A), the number of symbolsA inw. Words
can be concatenated, endowingW with the obvious structure. Importantly, this structure
lifts on morphisms as well: given any pair of morphisms f : v1 → v2, g : w1 → w2,
one can build the pairing 〈f, g〉 : v1 · w1 → v2 · w2, where · is word concatenation.
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3.3 Functors between the Category of Words and the Category of Multisets

From words to multisets. The category of multisets M is obtained from W by a quotient
of the words under the relation of being isomorphic inW. This yields a functorπ : W→
M, defined on words w : n→ P as:

π(w) = A �→ |w−1(A)|,

i.e. to each w is associated the functor mapping any place A ∈ P to its number of
occurrences in w. To any W-morphismm : w1 → w2 is associated a morphism π(m) :
π(w1) → π(w2) defined as a family {mA : π(w1, A) → π(w2, A)}A∈P of injections
indexed by each colour (i.e. each place). This family arises as the projections ofm along
each colour. In particular, the injections are preserved by π. This projection process is
illustrated by the following example.

m : AAB ��
012
132 �� AABACB mA : 2A ��

01
12 �� 3A

This process is repeated for each place, yielding the image morphism. It is straightfor-
ward to see that identities are mapped to identities, and preservation of composition
corresponds to the preservation of each colour.

From multisets to words. Given a total order≺ on P a functor π∗ in the opposite way to
π can be defined, mapping any multiset to its≺-sorted word. Concretely, it is defined on
objects as π∗ = x �→

∏
A∈P≺ A

x(A), effectively sorting the multiset. It can readily be
seen that any M-morphism h : x → y can be decomposed into a family of morphisms
hA : x(A) → y(A). On morphisms, define π∗(h) =

∏
A∈P≺ hA where the product is

interpreted as the pairing defined in Sec. 3.2. What follows is an example of the action
of both π and π∗ on objects and morphisms.

AAB 2A+B AAB

AABACB 3A+ 2B + C AAABBC

π π∗

012
132

01 0
12 0

012
123

It appears that π∗ is only a right inverse to π: sorting modifies the orders of tokens ac-
cording to≺, the arbitrarily specified order on places. Notice that π is locally stable: the
injections are preserved in each component. More importantly, π verifies the following
property.

Lemma 2. π is an equivalence of categories.

Proof. Essentially surjectivity is trivial. It remains to prove fullness and faithfulness.
Let w1, w2 ∈ Obj(W) be two words and π(w1), π(w2) the corresponding multisets.
For any colour-preserving multiset inclusion m : π(w1) → π(w2), one has a corre-
sponding π∗(m) : π∗(π(w1)) → π∗(π(w1)). By construction, for any w, there exists
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an isomorphism αw : π∗(π(w)) → w (indeed, π∗(π(w)) is w after stable sorting).
Hence, there exists a morphism (α−1

w1
;π∗(m);αw2) : w1 → w2 whose image is m. For

the other direction, one also resorts to local stability: two different colour-preserving
inclusions m1,m2 : w1 → w2 must yield multiset inclusions π(m1), π(m2) which
disagree on some colour.

4 Concrete Transition Systems

We can now proceed to the definition of transition systems implementing concrete ver-
sions of the stochastic Petri net dynamics exposed in Sec. 2. The transitions systems we
expose in this section are designed to respect the following criteria: they should be func-
tionally bisimilar to the Petri net dynamics while respecting the steady state constraints
set in Sec. 2.3, namely energy conservation and equipartition. Taking advantage of the
definitions of Sec. 3, the concrete transition systems will be presented as DPO-based
word rewriting systems set in the category W. For the rest of this section, let us assume
fixed an arbitrary sisma Petri net N = 〈P, T, C〉 and also that an arbitrary ordering of
places has been chosen so as to satisfy the definition of the functor π∗ (Sec. 3.3). This
defines a concrete rewriting system.

Definition 3. (Concrete rewriting system) The concrete rewrite system Nc associated
to N is the tuple 〈P, Tc〉 where:

– P is the same set of places as in N considered as a finite alphabet;
– Tc ⊆ P ∗×P ∗ is a set of word rewrite rules s.t. r̂ = (π∗(i(r)), π∗(o(r))) ∈ TC ⇔
r ∈ T . We will note i(r̂) = π∗(i(r)) and o(r̂) = π∗(o(r)).

Without loss of generality, any rule r̂ ∈ Tc can be noted as a W span
i(r̂) k���� �� �� o(r̂) , with k some conserved symbols.

In plain terms, each concrete rewrite rule r̂ ∈ Tc is built as an arbitrary ordering
of the input and output of some Petri net transition in T . We restrict our matches to
multiset and word injections, as in standard Petri nets. Note that all matchings from the
original Petri net are preserved.

Example 2. Consider the second net in example 1, with transitions 2A �→ A + B
and B �→ A. A possible concrete rewriting system for the order A ≺ B is the set
of concrete transitions {(AA,AB); (B,A)}. Another one for the order B ≺ A is
{(AA,BA); (B,A)}.

Rules can be applied at so-called redexes, which correspond exactly to injective
matches from left-hand sides of rules onto words.

Definition 4. (Redex) A redex is a combination of a rule r̂ ∈ Tc and of a word w such
that there exists a total injection m : i(r̂) � w. The set of redexes corresponding to a
word w is defined asRNc(w) = {(m, r̂) | r̂ ∈ Tc ∧ m : i(r̂) � w}. The restriction of
RNc(w) to a particular rule r̂ is the restriction RNc,r̂(w).
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One can define the erasure part of a DPO rewrite using word complementation. Word
complementation corresponds to the removal of all symbols in a wordw2 that are in the
image of some redexm : w1 � w2.

Definition 5. (Word complement) For any two words w1, w2 and any total injection
m : w1 � w2, a partial re-indexing function f : |w2| → |w2| − |w1| can be defined as
f(i) = i−|{j < i | j ∈ codom(m)}| if i �∈ codom(m), f(i) = ⊥ otherwise. Injectivity
of f follows the verification of the inequality |{j | i1 < j < i2}| < i2 − i1 for all
i1 < i2 ∈ dom(f). The outcome of complementation is the morphism w2 − w1@m �
w : |w2| − |w1| → P s.t. w[i] = w2[f

−1(i)], well-defined by injectivity of f .

i(r̂) k

w c

ki

m

k′i

kc

Erasure is defined in terms of complementation: for any word
w, any redex m : i(r̂) → w and any conserved symbols spec-
ified by g : k → i(r̂), define c = w − (i(r̂) − k@ki)@m.

The span i(r̂) k��ki�� �� kc �� c has w as a pushout object: any

cospan i(r̂) �� w′ c�� making the span into a commutative
diagram factors uniquely up-to isomorphism through a morphism
u : w → w′ (not necessarily injective), constructed by inverting each branch of the
cospan and building the injection u in the obvious way. Note that with our definition,
the morphism k′i : c � w has the property of being both injective and monotonic:
symbol order is preserved on conserved symbols. It remains to define the second part
of the DPO rewrite, concerned with symbol insertion. We simply say that for a diagram
as above and a morphism ko : k � o(r̂), any cospan c �� k′

o
�� w′ o(r̂)��f�� making the

span c k��kc�� �� ko �� o(r̂) into a commutative diagram and w′ a pushout object defines
a valid insertion. This general scheme will be used in two distinct solutions in Sec. 4.1
and 4.2. We first investigate the case of a dynamics constrained to stay in a shell where
words have an arbitrary fixed length and follow by showing how to extend this to the
general case.

4.1 Size-Preserving Dynamics

Let us assume given a Petri netN and its concrete counterpartNc as above, and suppose
further that the dynamics is size preserving, i.e. that the total number of tokens is an
invariant of the dynamics. This last condition of size preservation can be stated as the
existence of constants 0 < k ≤ n where ∀r ∈ T, |i(r)| = |o(r)| = k and with an initial
state w s.t. |x| = n. Given a redex (in span notation) m : i(r̂) → w, a rewrite can be
interpreted as in-place substitution in w of the symbols of the input i(r̂) by the symbols
of the output o(r̂) at the position specified by m. Parts of w outside the image of m
are left untouched. We choose to not conserve symbols: the glueing object is the empty
word.



282 V. Danos and I. Garnier

Definition 6. (Size-preserving rewrite) For any word w and any redex m : i(r̂) � w
inRNc(w), the word w′ = w{i(r̂)\o(r̂)@m} defined below makes the diagram a DPO
rewrite.

i �∈ codom(m)→ w′[i] = w[i]
i ∈ codom(m)→ w′[i] = o(r̂)[m−1(i)]

i(r̂) ε o(r̂)

w w − i(r̂)@m w′

ki ko

m fk′i k′o
kc

Example 3. What follows is an example of how a multiset rewrite can be mapped down
to the word rewriting system in the size-preserving case. The back face is a concrete
rewrite, with redex AAB � AABACB.

i(r̂) = AAB

w = AABACB

ε

w − i(r)@m

XXB = o(r̂)

AXBXCB = w′

i(r) = 2A+B

x = 3A+ 2B + C

0

x− i(r)

2X +B = o(r)

A+ 2X + 2B + C = x′

m= 012
132

n= 012
132

01 0
12 0

01 0
12 0

Observe that the resulting word stays identical for any automorphism of w that is
preserved by the rewrite. In the previous example, one easily checks that m′ = 012

312
is a

matching s.t. w{i(r̂)\o(r̂)@m} = w{i(r̂)\o(r̂)@m′}. The number of such matchings
is called the thickness of the transition w −→r̂ w

′.

Definition 7. (Thickness) Let w,w′ be words and r̂ be a concrete rule. Let us note:

CNc,r̂(w,w
′) � {m : i(r̂)→ w | w′ = w{i(r̂)\o(r̂)@m}}

the set of redexes inducing a rewrite from w to w′. The thickness of the transition
w −→r̂ w

′ is defined as |CNc,r̂(w,w
′)|.

An important property required to prove thermodynamic consistency is that the thick-
ness of the forward r̂ and backward r̂∗ transitions should match.

Lemma 3. (Forward and backward thickness are equal) If w −→r w
′, then one has

the equality:
|CNc,r̂(w,w

′)| = |CNc,r̂(w
′, w)|

Proof. This is a direct consequence of the symmetry of DPO rewrites: any forward
diagram is a backward diagram when read right-to-left, and conversely. See [9], Sec. 2,
p. 33.

Concrete ctMC. This size-preserving dynamics can be given stochastic semantics. As
will be shown, it turns out that the corresponding ctMC is forward bisimilar to the
original (Petri net-based) one. Let us proceed by giving a ctMC corresponding to Nc

and prove that π is indeed a functional forward bisimulation in the size-preserving case.
A property of the size-preserving transition system is that it enjoys a version of the

simplicity property of abstract nets. This allows us to stay in the format of standard
ctMCs:
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Proposition 1. (Simplicity for the concrete transition system) Given any two words
w,w′, there is at most one transition r̂ s.t. w′ = w{i(r̂)\o(r̂)@m} for some matching
m.

Proof. The existence of r̂1 �= r̂2 s.t. w{i(r̂1)\o(r̂1)@m1} = w{i(r̂2)\o(r̂2)@m2}
would imply the existence of r1, r2 ∈ T with π(w) −→r1 �=r2 π(w′), violating the
simplicity hypothesis.

The definition of the size-preserving concrete ctMC is derived from the concrete
rewriting system 〈P, Tc〉 (Def. 3).

Definition 8. (Size-preserving concrete ctMC) Consider a mass-action net 〈N , Q, p0〉
such that the support of the initial distribution p0 lies in the multisets of size n. The
concrete ctMC 〈Q′, p′0〉 is defined on the state spaceΩ′ = Pn of words of length n and
has components defined as follows.

– Q′ is the rate matrix s.t. for any word w,w′ and rule r̂ ∈ Tc

Q′(w,w′) =
{
k(r)|CNc,r̂(w,w

′)| if ∃m.w′ = w{i(r̂)\o(r̂)@m}
0 otherwise

– The initial distribution p′0 is such that for all w, p′0(w) = p0(π(w))/|π−1(π(w))|.
To put it in words, the concrete rate corresponds to the thickness of the transition.

Bisimulation and equilibrium correctness. Proving that our concrete dynamics is bisim-
ilar (cf. Eq. 3) to the abstact one is now a simple matter of unfolding definitions.

Proposition 2. π is a bisimulation between Q andQ′.
Proof. Let x and x′ be multisets such that x −→r x

′. By simplicity, this transition is
unique. Let w ∈ π−1(x). One has:∑

w′∈π−1(x′)

Q′(w,w′) =
∑

w′∈π−1(x′)

k(r)|CNc,r̂(w,w′)|

= k(r)|W(i(r̂), w)| (Sum of all thicknesses on the fibre)
= k(r)|M(i(r), x)| (fullness & faithfulness of π)
= Q(x, x′)

However, this result alone does not ensure that the image equilibrium respects the
requirements stated in Sec. 2.3. i.e. that it is of the shape E ′(w) ∝ exp−E′(w). A
sufficient condition is for E ′ to verify the detailed balance conditions (equation 6) for
any pair of related words w,w′, which it does, as witnessed by this theorem.

Theorem 2. E ′(w) verifies E ′(w) ∝ exp (−(〈ε, w〉+ log(|w|!)))
Proof.

log

(
q(w′, w)
q(w,w′)

)
= K(r) + log

(
|CNc,r̂(w

′, w)|
|CNc,r̂(w,w

′)|

)
= K(r) (Lemma 3)
= E′(w′)− E′(w)
= log

(
E′(w)
E′(w′)

)
Notice that the entropic term vanishes. Indeed, the term log(|w|!) stays by definition
constant in size-preserving dynamics, and can thus be dropped of the energy term.
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4.2 Unconstrained Dynamics

The size-preservation constraint allowed for a straightforward definition of word rewrit-
ing, by replacing symbols in-place. This obviated the need to consider the problem of
symbol insertion in its relation to the equipartition hypothesis. As the following ex-
ample shows, in unconstrained word rewriting systems some insertion strategies yield
incorrect dynamics.

Failure of a naı̈ve insertion strategy. Let us consider a net restricted to a unique transi-
tion r̂ = ε→ A creating a symbolA out of nothing. The question arises as to where this
symbol should be inserted in the word on which r̂ is applied. Let us arbitrarily choose
to insert the symbol at the end of the target word. As an example, consider the concrete
rewrite w = AnBAm −→r̂ A

nBAm+1 = w′. Computing the forward and backward
rates, one obtains:

Q(w,w′) = k(r) · 1
Q(w′, w) = k(r∗)(m+ 1)

Indeed, there are m + 1 ways to erase a symbol in w′ yielding w as a result. Observe
that this naı̈ve dynamics is biased towards states with a short tail of As. However, in the
long run it will converge to states with n = 0. Computing the log ratio of the backward
and forward rates, one has:

log
(
Q(w′,w)
Q(w,w′)

)
= ε(A) + log(m+ 1)

�= E′(w′)− E′(w) = ε(A) + log(n+m+ 2)

The deterministic insertion strategy that was chosen is incompatible with the equiparti-
tion hypothesis it is supposed to satisfy.

Insertions uniformly at random. The previous paragraph showed the bias induced by
selecting a deterministic strategy to perform insertions. A plausible solution is hence to
perform them uniformly at random, i.e. to attribute an equal probability to each possible
insertion. Considering the previous example, one observes that there arem+1 ways of
inserting to the right of B, yielding a uniform insertion probability of (m + 1)/(m +
n+ 2). This results in the following forward and backward rates:

Q(w,w′) = k(r)(m + 1)/(m+ n+ 2)
Q(w′, w) = k(r∗)(m+ 1)

The log ratio yields the expected energy difference:

log
(
Q(w′,w)
Q(w,w′)

)
= K(r) + log m+1

(m+1)/(m+n+2) = K(r) + log(|w′|)
= E′(w′)− E′(w) = ε(A) + log(n+m+ 2)

In the general situation, one has to consider the case of an arbitrary rule r̂ : i(r̂) →
o(r̂). In this setting, many distinct possibilities arise as to how to perform the rewrite,
depending on whether symbols are conserved or erased and reinserted at random. The
cardinality of the hom-set between two words is a function of this choice, inducing
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different dynamics (but the same equilibrium!). The choice here is quite arbitrary. In
our definition of the concrete transition graph, the chosen option is to erase all symbols
matched by the left-hand side and insert uniformly at random all symbols in the right-
hand side.

In order to proceed constructively one needs to build the multiset of all possible
insertions of a finite set into a word. For the uniform insertion probability to be properly
normalised, it is also required to compute the cardinality of the multiset of insertions.
One easily guesses that it corresponds to some rising factorial, noted a(b) =

∏b
i=1 a+

i = (a + b)!/a!. Let us proceed in order and start with the definition of the insertion
operation, and more precisely by the insertion of an arbitrary symbol in a word.

Definition 9. (Symbol insertion) Let σ be a finite set and w = a1 · an ∈ σ an arbitrary
word. The insertion of a symbol x in w is a multiset of words noted x� w and defined
by induction:

x� ε = x �→ 1 x� a · w = (x · a · w) + (a · (x� w))

Using multisets allows us counting multiple occurrences of the same word. Here,
one has as a trivial fact that |x � w| = |w| + 1. Let us continue with the unordered
insertion of a whole word into a word.

Definition 10. (Unordered word insertion) Let σ1 and σ2 be two finite sets and let
v = a1 · · ·am andw = b1 · · · bn ∈ σ∗2 be two finite words. The multiset of all insertions
of v into w is defined inductively as:

ε� w = w �→ 1 a · v � w =
∑

w′∈a�w

v � w′

An important but easy property is that the multiset v�w is independent of the actual
order of symbols in v.

Lemma 4. (Order independence of insertion) Let v and w be any words as in Def. 10.
Then for any permutation ρ, one has that v� w = ρ(v) � w.

Proof. It is enough to prove the case for ρ a simple transposition exchanging elements
of indices i, i+ 1. This further reduces to proving the commutation result a1 � (a2 �
w) = a2 � (a1 � w), easily proven by induction on w.

The following lemma gives the size of the multiset of all possible insertions.

Lemma 5. (Number of insertions) Let σ1 and σ2 be two finite sets, and let
w = b1 · · · bn ∈ σ∗2 be a finite word. The number of insertions σ1 � w of the sym-
bols of σ1 in w is:

|σ1 � w| = |w|(|σ1|)

Proof. Let us proceed by induction on |σ1|. For |σ1| = 0, one has |σ1�w| = n(0) = 1.
For |σ1 + {a}| = i + 1 the induction hypothesis yields |σ1 � w| = n(|σ1|) words. For
each of these words, there are n + |σ1| + 1 insertion possibilities for a, yielding the
expected result.
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Concrete ctMC. These combinatorial results enable us to define a concrete transition
system implementing uniform insertion. Given a Petri net N and its concrete counter-
partNc as defined in Def. 3, recall that the concrete transition system is built by associ-
ating to each redex (Def. 4) a multiset of outcomes, each outcome built by erasing the
left-hand side of the rule and inserting randomly the right-hand side.

Definition 11. (Multiset of outcomes) Given a redex i(r̂)
m� w, the multiset of out-

comes is O(w, r̂,m) = o(r̂) � (w − i(r̂)@m).

Given all that, the definition of the concrete operational semantics can finally be
stated explicitly as a ctMC. The transition system enjoys the simplicity property inher-
ited from abstract nets:

Proposition 3. (Simplicity of the concrete dynamics) Given any two words w1, w2,
there is at most one transition r̂ s.t. Wc(w1, r̂, w2) > 0.

Proof. The proof proceeds similarly as in the size-preserving case, by showing that the
existence of two concrete transitions between the same words would lift to the Petri net,
violating simplicity.

Definition 12. (Concrete ctMC) Let us consider the same input data as in Def. 8. The
concrete ctMC 〈Q′, p′0〉 is defined on the state space Ω′ = P ∗. Its components are
defined below.

– Q′ is the rate matrix s.t. for any word w and rule r̂,

Q′(w,w′) =

{
k(r)

∑
m

O(w,r̂,m)(w′)
|O(w,r̂)| if ∃m.w′ = w{i(r̂)\o(r̂)@m}

0 otherwise

where m ranges in W(i(r̂), w).
– The initial distribution p′0 is such that for all w, p′0(w) = p0(π(w))/|π−1(π(w))|.

Notice how the rate of a transition is rescaled by its multiplicity. An easy property of
our rewrite system is that the number of distinct ways of performingw −→r w

′ is equal
to its inversew′ −→r∗ w. This also proceeds from the symmetry of DPO rewrites. This
intuition is made precise by the following result.

Lemma 6. For any words w, w′ and reaction r̂, one has the equality:∑
m

O(w, r̂,m)(w′) =
∑
m

O(w′, r̂∗,m)(w)

Proof. Any w′ in
∑

mO(w, r̂,m) arises as the outcome of a DPO rewrite (in our case,
with glueing object ε), which by symmetry of DPOs corresponds to a DPO rewrite from
w′ to w.



Free Energy of Petri Nets 287

Bisimulation and equilibrium correctness. The concrete dynamics is built so as to prop-
erly reflect the Petri net dynamics. The following theorem states as expected that the
mapping from words to multisets is a bisimulation, as in the size-preserving case.

Theorem 3. π is a functional forward bisimulation between Q andQ′.

Proof. Let x and x′ be multisets such that x −→r x
′. By simplicity, this transition is

unique. Let w ∈ π−1(x). One has:∑
w′∈π−1(x′)

Q′(w,w′) =
k(r)

|O(w, r̂)|
∑
w′

∑
m

O(w, r̂,m)(w′)

=
k(r)

|O(w, r̂)| |O(w, r̂)| · |[i(r̂);w]| (Summing on all outcomes)

= k(r)|W(i(r̂), w)|
= k(r)|M(i(r), x)| (fullness & faithfulness of π)
= Q(x, x′)

Much less obvious is the property of reaching a concrete equilibrium whose
image through π matches the abstract equilibrium. The random insertion strategy is
precisely what one needs to ensure reaching that good equilibrium. As in the case of
size-preserving dynamics, a sufficient condition is for the log-ratio of the rates to yield
an energy difference corresponding to the definition of E′ in Sec. 2.3.

Theorem 4. (Equilibrium correctness) The unconstrained dynamics converges to an
equilibrium respecting energy conservation and equipartition.

Proof. Unfolding the detailed balance equations, one has:

log
(
q(w′,w)
q(w,w′)

)
= K(r) + log

(∑
mO(w′, r̂∗,m)(w)∑
mO(w, r̂,m)(w′)

|O(w, r̂)|
|O(w′, r̂∗)|

)
= K(r) + log

(
|w − i(r̂)|(|o(r̂)|)
|w′ − o(r̂)|(|i(r̂)|)

)
One has by definition of the transition graph c � w′ − o(r̂) = w − i(r̂). Also, recall
that a(b) = (a+ b)!/a!. Altogether, this yields the desired result:

log
(
q(w′,w)
q(w,w′)

)
= K(r) + log

(
(|c|+ |o(r̂)|)!
(|c|+ |i(r̂)|)!

)
= K(r) + log |w′|!

|w|!
= E′(w′)− E′(w)

This achieves the construction of a word-based transition system respecting equipar-
tition and energy preservation.

4.3 Analysis of the Construction

The energy function E′ is precisely the one needed to counterbalance the entropy
increase induced by concretisation, ensuring free energy preservation. A physical in-
tuition is that holding onto a word in the concrete system does not give any way of ex-
tracting any more “work” than in the original system: that is in essence a consequence
of the equipartition constraint (and not of bisimulation).
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In order for the net to converge to the good equilibrium E′, a crucial step was to use
an uniformly random insertion strategy. An open question is whether this is the only
solution. The equilibrium is a direct outcome of the detailed balance equations, i.e. of
the ratio of the backward to forward rates between any two words. In our construction,
the rate of a jump from w to w′ through r̂ is defined to be proportional to the “density”
ofw′ in the multiset of outcomes of rewritingw with r̂. The shape ofE′ is directly given
by the cardinality of this multiset of outcomes together with the cancellation of forward
and backward thicknesses. Bisimulation only requires the global flow of probability
to match the abstract one. This gives a set of sufficient conditions to build a correct
concrete ctMC:

– enforce forward bisimulation,
– ensure that forward and backward thicknesses are equal,
– normalize the rates of outgoing jumps (i.e. the thicknesses) from e.g. w through r̂

by |O(w, r̂)|.
An crucial observation is that the concretisation has simplified the (species-dependent)

entropic term log(x!) into a term log(|w|!). In other terms, concretisation allows to push
irrelevant part of the combinatorics into the entropy and simplify the expression of the
probabilistic fixed point. This is also what happens in the Ehrenfest case: the multinomial
term in the equilibrium of the abstract system disappears when one goes to the concrete
system.

5 Conclusion and Future Work

We have successfully embedded stochastic Petri nets into a word-based rewriting sys-
tem. A first result is that the energy function is simplified by moving to a more concrete
transition system: in the concrete system, the mass-action entropic potential term is a
function of the size of the word, independently of its contents, whereas in the abstract
case entropy also takes into account the diversity of symbols. This echoes what we ob-
served in the case of Ehrenfest urns, as explained previously. We also derived results
hinting at the fact that the degeneracy factor of stochastic Petri nets is low, implying
that the energy is a good proxy to the free energy: we plan to substantiate our heuristic
arguments in future work. It should be noted that our qualitative word-based transition
system is similar to the pre-net model of [1]: each pre-net corresponds to a fixed choice
of what we call a matching in our setting.

An unexpected hurdle in the construction of the concrete transition systems was
handling creation of tokens – this prompted the main ingredient of the paper, namely
uniformly random insertion. It stands as a particular solution to a more general prob-
lem, that of deriving a concrete stochastic process from an abstract one, such that the
concrete equilibrium is in some functional relation with the abstract one. In our case,
we enforced equipartition, but one could easily imagine more involved settings. We
also plan to study more structured state spaces, such as trees, graphs or generalisations
thereof, where we expect similar phenomena to arise. Uniformly random insertion cor-
responds to enumerating all the possible structure-preserving embeddings of an object
of size n into an object of size n + 1. This suggests using a formalism such as Joyal’s
species of structures as a generic setting where to apply our ideas.
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Prakash’s started his scientific career in physics. He obtained an MSc from
the Indian Institute of Technology, Kanpur, an M. Sc. from the University of
Chicago and a PhD from the University of Wisconsin-Milwaukee, all in the area
of quantum field theory. He then switched to computer science, obtaining an
MSc from the University of Utah, where he had done postdoctoral research in
quantum field theory.

At this point I must retell a savoury anecdote – after all, Prakash is a wonder-
ful story teller. After Utah, Prakash followed his partner to Cornell University
where he decided to start studying category theory. What better way to study a
topic than to teach the subject? Doubly so when you are such a good performer.
He stuck a note to the door of a random classroom: “Lecture on Category The-
ory, every Monday at 10.” From week to week, the number of attendants grew
in such a way that after a short while he found himself in the chair’s office,
being offered an assistant professor position. Prakash likes to recount how he
suffered all weekend long, being forced by the chair to wait and ponder the offer
until Monday before accepting it. How nervous he was on the Monday morning,
waiting for the chair to come into the office, afraid he would have changed his
mind! Of course, he had not.

At Cornell University, he worked on semantics, concurrency, type theory and
logic. With his wife Laurie, he went on to Canada in 1990 and has been at McGill
University ever since. Over the years, he has been an invited professor in Aarhus,
Edinburgh, Oxford and Paris, as well as visiting scientist in Amsterdam, Cam-
bridge, Toronto and Sydney. He has just been elected fellow of the Academy of
Science of the Royal Society of Canada. His work has been and will remain influ-
ential in many fields of mathematics, computer science and physics, reflecting his
varied interests. The papers in the present book bear witness to this.

Yes, the facts are there, his CV is impressive, but the most essential is, as Saint-
Exupéry’s little prince puts it, “invisible to the eye.” Two of Prakash’s most im-
pressive qualities are his exceptional intuition and his broad vision of computer
science and science in general. In a discussion, even when he knows epsilon about
a subject, he is often able to formulate a conjecture or an idea that will become a
crucial part to his interlocutor’s progress. Imagine when he talks about something
he actually knows well! He can put things into perspective like no other.
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Prakash has an incredible memory for a large variety of facts: of course in
mathematics, computer science and physics, but you can also ask him who has
won track and field events at the Olympic Games and the results of tennis or
cricket tournaments from any year. He will know. He also knows intricate details
from Tolkien’s Lord of the Rings and from Harry Potter; he has read the latter
with his daughter Jane in a never-ending loop, only interrupted by the arrival
of a new book of the series!

Prakash is a very nice man, who nonetheless has been known to occasionally
exhibit a somewhat boiling side. What a contrast between how he acted with a
research partner, and how he treated a wandering student who would knock just
below the “do not disturb” piece of paper stuck to his door, to ask him some futile
question. Akin to the Incredible Hulk, he would change from a agreeable compan-
ion to a bearish and scary bundle of anger. At some point, perhaps to spare his
energy, he changed the “do not disturb” note to “knock and die.” He would lose
faith in humanity when a student knocked anyway to see what would happen.

While preparing this laudatio, I consulted the acknowledgement section of my
Ph. D. thesis. I find revealing that, in the source file, I hid the sentence “I am hon-
oured to have worked with him.” He would not have liked this official-sounding
phrase, as he does not like any notion of rank. As far as he was concerned, I
was a colleague from the start. He wanted me to use the familiar “tu” form
to address him in French. We spoke French for about a year, as he insisted he
wanted to improve his command of the language. He likes to tell that it is only
when we switched to English that the research really took off.

I would like to complete this personal portrait of Prakash with a few things
he said: a few strong statements, as he likes to make, a few anecdotal phrases
that marked me or our relationship:

— Let’s make a list! (That’s how one starts without too much commitment.)
— Never apologize (typically in a talk). Your slides have been prepared in a

rush? Do not admit it, just be brilliant.
— Why would we remove negation in the logic? For sure it is not possible and

even if we could, nobody would be interested in that.
— Let’s prove Borel’s theorem! (after some dinner)
— Say something, just say something!
— One needs a “ten-year” to celebrate a tenure! (A ten-year-old bottle of Dom

Pérignon)
— What? Olive oil?! We will miss the plane! They’re closing the gate! (In Italy)
— Are we there yet? (driving towards Christiana)

In addition to all these qualities that we all have benefited from, thank you
Prakash for your unswerving support and for being my most faithful ambassador.
You are the most precious advisor, sending your students to top conferences,
introducing them to dozens of people, from bright students to computer science
stars. Your will to put them up front, to fit them into stimulating teams of
researchers is exemplary. Thank you for your legendary enthusiasm and your
commitment to advances in Mathematics and Computer Science. It is really no
surprise soooooo many people want to work with you.
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Abstract. Differential privacy is a notion of privacy that was initially designed
for statistical databases, and has been recently extended to a more general class
of domains. Both differential privacy and its generalized version can be achieved
by adding random noise to the reported data. Thus, privacy is obtained at the cost
of reducing the data’s accuracy, and therefore their utility.

In this paper we consider the problem of identifying optimal mechanisms for
generalized differential privacy, i.e. mechanisms that maximize the utility for a
given level of privacy. The utility usually depends on a prior distribution of the
data, and naturally it would be desirable to design mechanisms that are univer-
sally optimal, i.e., optimal for all priors. However it is already known that such
mechanisms do not exist in general. We then characterize maximal classes of pri-
ors for which a mechanism which is optimal for all the priors of the class does
exist. We show that such classes can be defined as convex polytopes in the priors
space.

As an application, we consider the problem of privacy that arises when us-
ing, for instance, location-based services, and we show how to define mecha-
nisms that maximize the quality of service while preserving the desired level of
geo-indistinguishability.

1 Prologue

Privacy is an instance of the general problem of information protection, which consti-
tutes one of the main topics of the research of our team Cométe. The history of our
interest for this topic has an important milestone in the visit of Prakash to Cométe in
2006, in the context of our équipe associée Printemps. We had been working for a while
on a probabilistic approach to anonymity, and when Prakash arrived, he suggested to
consider an information-theoretic approach instead. This was the beginning of a very
fruitful collaboration between Prakash and our team, and two of the papers that origi-
nated from this collaboration became the backbone of the PhD thesis of Konstantinos
Chatzikokolakis. Furthermore, the collaboration with Prakash influences, still today, our
research on information protection, in the sense that our research is characterized by the
paradigmatic view of a system as a noisy channel – the central concept of information
theory. The present paper, which explores the properties of the channel matrix in the
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context of differential privacy, is a tribute to the fundamental role that Prakash has had
in Cométe’s scientific life and evolution.

2 Introduction

It is often the case that a privacy threat arises not because of direct access to sensi-
tive data by unauthorized agents, but rather because of the information they can infer
from correlated public data. This phenomenon, known as information leakage, is quite
general and it has been studied in several different domains, including programming
languages, anonymity protocols, and statistical databases (see, for instance, [1–3]).
Naturally, the settings and the approaches vary from domain to domain, but the princi-
ples are the same.

In the case of statistical databases, the public information is typically defined by
the kind of queries we are allowed to ask, and the concerns for privacy focus on the
consequences that the participation in the databases may have for the confidential data
of a single individual. Differential privacy [4, 5] was designed to control these con-
sequences. Since it has been recognized that the deterministic methods offer little re-
sistance to composition attacks (i.e. to the combination of information inferred from
different databases, see for instance [6, 7]), differential privacy targets probabilistic
mechanisms, i.e. mechanisms that answer the query in a probabilistic fashion. Typically,
they generate the output by adding random noise to the true answer, according to some
probabilistic distribution. The aim of differential privacy is to guarantee that the partic-
ipation of a single individual in the database will not affect too much the probability of
each reported answer. More precisely, (the log of) the ratio between the likelihoods of
obtaining a certain answer, from any two adjacent databases (i.e., differing only for the
presence of an individual), must not exceed a given parameter ε. The rationale of this
notion comes from the fact that it is equivalent to the property that the reported answer
does not change significantly the probabilistic knowledge of the individual data. Differ-
ential privacy has become very popular thanks to the fact that it is easy to implement:
it is sufficient to add Laplacian noise to the true answer. Furthermore, the notion and
the implementation are independent from the side knowledge of the adversary about
the underlying database (represented as a prior probability distiribution over possible
databases). Finally, it is compositional, in the sense that the privacy loss caused by the
combination of attacks is the sum of the single privacy losses.

There have been several studies aimed at applying differential privacy to other areas.
In this work, we focus on the approach proposed in [8], which introduced the concept
of dX -privacy, suitable for any domain X equipped with a notion of distance dX . Given
a mechanism K from the set of secrets X to distribution over some set of outputs Z ,
we say that K satisfies dX -privacy if for any two secrets x1 and x2, and any output z,
the log of the ratio between K(x1) and K(x2) does not exceed dX (x1, x2). Note that
dX -privacy is an extension of differential privacy: the latter can be obtained by setting
X to be the set of databases (seen as tuples of individual records) and dX to be the
Hamming distance between these tuples, scaled by ε. Furthermore, it is a conservative
extension, in the sense that it preserves the implementability by means of Laplacian
noise, the independence from the prior probability, the interpretation in terms of prob-
abilistic knowledge, and the compositionality properties. From the practical point of
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view, dX -privacy is particularly suitable to protect the accuracy of the values, like in
the case of smart-meter signatures [8] and the precise geographical position in location-
based services [9]. Similar extensions of differential privacy obtained by generalizing
the distance or the adjacency relation have been considered in [10–12].

Besides guaranteeing privacy, a mechanism should of course provide an answer
which is “useful” enough for the service it has been designed. This second goal is
measured in terms of utility, which represents the average gain that a rational user ob-
tains from the reported answer. More precisely, let y be the true answer and let z be the
output reported by the mechanism. On the basis of the latter, the user tries to make a
guess y′ (remapping) about the (hidden) true answer y. His gain g(y, y′) is determined
by a given function g. The utility is then defined as the expected gain under the best
possible remapping. While the gain function can take various forms, in this paper we
restrict our analysis to the binary gain function, which evaluates to 1 when the user’s
guess is the same as the query result (y = y′) and evaluates to 0 otherwise.

Obviously, there is a trade-off between privacy and utility, and we are interested in
mechanisms that offer maximal utility for the desired level of dX -privacy. Such mecha-
nisms are called optimal. Naturally, we are also interested in mechanisms that are uni-
versally optimal, i.e., optimal under any prior1, as we don’t want to design a different
mechanism for each user2. A famous result by Gosh et al. [13] states that this is possi-
ble for the counting queries, namely the queries of the form “how many records in the
database have the property p”, for some p. Unfortunately Brenner and Nissim showed
that in differential privacy universally optimal mechanisms do not exist for any other
kind of query [14]. However, one can still hope that it is possible to design mechanisms
that are optimal for a significant class of users. These are exactly the main objectives
of this paper: identify regions of priors which admit a robust optimal mechanism, i.e. a
mechanism whose optimality is not affected by changes in the prior (within the region),
and provide a method to construct such mechanism.

A related issue that we consider in this paper is the amount of information leaked by
a mechanism, a central concept in the area of quantitative information flow . There have
been various proposals for quantifying the information leakage, we consider here an
information-theoretic approach based on Rényi min-entropy [15, 16], which is suitable
for one-try attacks. A main difference between the min-entropy leakage and dX -privacy
is that the former measures the expected risk of disclosure of sensitive information,
while the latter focuses on the worst case, i.e., it considers catastrophic any such disclo-
sure, no matter how unlikely it is.

Recently, researchers have investigated the relation between differential privacy and
min-entropy leakage [17–19], and in particular it has been proved in [18] that differ-
ential privacy induces a bound on the min-entropy leakage, which is met by a certain
mechanism for the uniform prior (for which min-entropy leakage is always maximum).
In this paper, we extend the above result to provide a more accurate bound for any prior
in the special regions described above. More precisely, we provide a bound to the leak-
age specific to the prior and that can be met, under a certain condition, by a suitable
mechanism.

1 Note that, in contrast to dX -privacy, utility does depend on the prior.
2 We recall that the prior represents the side knowledge of the user.
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Contributions

– We identify, for an arbitrary metric space (Y, dY), the class of the dY-regular distri-
butions of Y . The interest of this class is that for each prior distribution in it we are
able to provide a specific upper bound to the utility of any dY-private mechanism.
We characterize this class as a geometric region, and we study its properties.

– We describe a dY -private mechanism, called “tight-constraints mechanism”, which
meets the upper bound for every dY-regular prior, and is therefore robustly optimal
in that region. We provide necessary and sufficient conditions for the existence of
such mechanism, and an effective method to test the conditions and to construct the
mechanism.

– We consider the domain of databases (X , dX ), where dX is the Hamming distance,
and we recast the above definitions and results in terms of min-entropy leakage. We
are able to improve a result from the literature which says that differential privacy
induces a bound on the min-entropy leakage for the uniform prior: We provide more
accurate bounds, and show that these bounds are valid for all the dX -regular priors
(not just for the uniform one). A construction similar to the one in the previous
point yields the tight-constraints mechanism which reaches those upper bounds.

A preliminary version of this paper, restricted to standard differential privacy, and
without proofs, appeared in POST 2013.

Plan of the paper. In the next section we recall the basic definitions of generalized
differential privacy, utility, and min-entropy mutual information. Section 4 introduces
the notion of dY -regular prior, investigates the properties of these priors, and gives a
geometric characterization of their region. Section 5 shows that for all dY-regular priors
on the true answers (resp. databases), dY -privacy induces an upper bound on the utility
(resp. on the min-entropy leakage). Section 6 identifies a mechanism which reaches the
above bounds for every dY -regular prior, and that is therefore the universally optimal
mechanism (resp. the maximally leaking mechanism) in the region. Section 7 illustrates
our methodology and results using the example of the sum queries and location privacy.
Section 8 concludes and proposes some directions for future research.

3 Preliminaries

In this section we recall the generalized variant of differential privacy from [8], con-
sidering an arbitrary set of secrets X , equipped with a metric dX . We then discuss two
instantiations of the general definition: first, standard differential privacy is defined on
databases under the Hamming distance. Second, geo-indistinguishability [9], a notion
of location privacy, is obtained by using geographical locations as secrets, under the
Euclidean distance. Finally, we recall a standard way for measuring the utility of a
mechanism, and the notion of min-mutual information.

3.1 Generalized Privacy

As discussed in the introduction, a generalized variant of differential privacy can be
defined on an arbitrary set of secretsX , equipped with a metric dX . Intuitively, dX (x, x

′)



296 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

gives the “distinguishability level” between secrets x, x′, based on the privacy semantics
that we wish to obtain. The smaller the distinguishability level is, the harder it should
be for the adversary to distinguish the two secrets, hence offering privacy, while secrets
at great distance are allowed to be distinguished, giving the possibility to obtain some
controlled knowledge about the secret.

A mechanism from X to Z is a function K : X → P(Z), where P(Z) denotes the
set of probability distributions over some set of outputs Z . In this paper we consider
X ,Z to be finite, hence the involved distributions to be discrete. The mechanism’s
outcome K(x) is then a probability distribution, and K(x)(z) is the probability of an
output z ∈ Z when running the mechanism on x ∈ X . For simplicity we write K :
X → Z to denote a machanism from X to Z (omitting P).

The multiplicative distance dP between probability distributions μ1, μ2 ∈ P(Z) is
defined as dP (μ1, μ2) = supz∈Z | ln

μ1(z)
μ2(z)

| with the convention that | ln μ1(z)
μ2(z)

| = 0 if
both μ1(z), μ2(z) are zero and∞ if only one of them is zero.

We are now ready to give the definition of dX -privacy:

Definition 1. A mechanism K : X → Z satisfies dX -privacy, iff ∀x, x′ ∈ X :

dP(K(x),K(x′)) ≤ dX (x, x
′)

or equivalently:
K(x)(z) ≤ edX (x,x′) K(x′)(z) ∀z ∈ Z

The intuition behind this definition is that the attacker’s ability to distinguish two secrets
should depend on their distinguishability level dX (x, x

′). The closer two secrets are, the
more similar the mechanism’s output on those secrets should be, making it harder for
the adversary to distinguish them. Depending on the choice of dX , the definition can be
adapted to the application at hand, giving rise to different notions of privacy.

In [8], two alternative characterizations of dX -privacy are also given, in which the
attacker’s knowledge is explicitly quantified, which makes it easier to understand the
privacy guarantees obtained by a particular choice of dX .

Answering queries. In practice, we often want to learn some information about our
secret, that is we want to obtain the answer to a query f : X → Y . To do so privately, we
can compose f with a “noise” mechanism H : Y → Z , thus obtaining an “oblivious”
mechanism H ◦ f : X → Z , called oblivious since the answer depends only on f(x)
and not on x itself. The role of H is to add random noise to the true query result f(x)
and produce a “noisy” reported output z ∈ Z .

Since we assume all sets to be finite, the mechanismH can be described by a stochas-
tic matrixH = (hyz), called the noise matrix, whose rows are indexed by the elements
ofY and whose columns are indexed by the elements ofZ . Hence, hyz is the probability
of reporting z when the true query result is y.

Given a metric dY onY , the generalized definition of privacy allows us to directly talk
about the privacy of H , without involving f at all. Using matrix notation, dY -privacy
forH (Definition 1) can be written as

hyz ≤ edY(y,y′)hy′z ∀y, y′ ∈ Y, z ∈ Z (1)
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A natural question, then, is how dX -privacy of the composed mechanism H ◦ f
relates to dY-privacy ofH . The connection between the two comes from the concept of
uniform Δ-sensitivity.

Definition 2. A sequence y1, . . . , yn is called a chain from y1 to yn. We say that such
chain is tight if dY(y1, yn) =

∑
i dY(yi, yi+1). Two elements y, y′ ∈ Y are called Δ-

expansive iff dY(y, y
′) = ΔdX (x, x

′) for some x ∈ f−1(y), x′ ∈ f−1(y′). A chain is
Δ-expansive iff all steps yi, yi+1 are Δ-expansive.

Finally, f is uniformly Δ-sensitive wrt dX , dY iff:

– for all x, x′ ∈ X : dY(f(x), f(x
′)) ≤ ΔdX(x, x

′), and

– for all y, y′ ∈ Y: there exists a tight andΔ-expansive chain from y to y′.

The intuition behind this definition is that f expands distances by at most Δ, and
there are no answers that are always the results of a smaller expansion: all y, y′ ∈ Y
can be linked by a chain in which the expansion is exactly Δ. Under this condition, it
has been shown in [8] that the privacy of H characterizes that of H ◦ f .

Theorem 1 ([8]). Assume that f is uniformly Δ-sensitive wrt dX , dY . Then H satisfies
dY-privacy if and only if H ◦ f satisfies ΔdX -privacy.

In the remaining of the paper, we give results about dY-privacy for H , for an arbi-
trary metric dY , independently from any function f . The results can be used either to
talk about the privacy of H itself, or – given the above theorem – about the privacy
of oblivious mechanisms of the form H ◦ f , for some function f for which uniform
sensitivity can be established. A typical case of uniform sensitivity arises in standard
differential privacy when dY is the metric obtained from the induced graph of f , as
discussed in the next section. But uniform sensitivity can be established for other types
of metrics; some examples are given in [8].

3.2 Differential Privacy

The notion of differential privacy, introduced by Dwork in [4], imposes constraints on
data reporting mechanisms so that the outputs produced by two databases differing
only for one record are almost indistinguishable. Let V be a universe of values and u
the number of individuals. The set of all possible databases (u-tuples of values from V )
is V = V u. Two databases x, x′ ∈ V are called adjacent, written x ∼ x′, iff they differ
in the value of exactly one individual. The adjacency relation∼ defines a graph, and the
length of the shortest path between two databases x, x′ in the graph, written dh(x, x′),
defines a metric called the Hamming distance. In other words, dh(x, x′) is the number
of individuals in which x and x′ differ.

The property of ε-differential privacy requires that, for any two adjacent databases,
the ratio of the probabilities of producing a certain output is bound by eε. It is easy to
see that this property is equivalent to εdh-privacy, under the Hamming distance dh.

Given a query f : V → Y , the adjacency relation ∼ can be extended to Y , giving
rise to the induced graph ∼f of f [14, 19], defined as:

y ∼f y′ iff x ∼ x′ for some x ∈ f−1(y), x′ ∈ f−1(y′)
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Fig. 1. The induced graph of different queries

Figure 1 shows the induced graph of three different queries. In these examples
count(x, p) refers to a counting query which returns the number of records in the
database x which satisfy a certain property p. Other queries in the figure are expressed
using the count function.

Furthermore, let d∼f
(y, y′) be the metric on Y defined as the shortest ∼f -path from

y to y′. It has then been shown in [8] that any function f is uniformly 1-sensitive wrt
dh, d∼f

. As a consequence of this, and of Theorem 1, ε-differential privacy of an obliv-
ious mechanismH ◦ f can be characterized by the εd∼f

-privacy privacy ofH .

Corollary 1. For any query f : V → Y , H satisfies εd∼f
-privacy if and only if H ◦ f

satisfies εdh-privacy.

3.3 Geo-Indistinguishability

An advantage of the generalized definition of privacy is that it can be applied in cases
when there is a single individual involved – hence the notion of adjacency is inadequate
– by using a metric that gives a meaningful notion of privacy for the application at hand.
An example of such a notion is geo-indistinguishability [9], proposed as a formal notion
of location privacy in the context of Location Based Services (LBSs).

Consider a mobile user, typically using a GPS-enabled hand-held device, who wishes
to obtain information related to his current location, for instance restaurants close to
him. To do so, he can query an LBS provider, providing his actual location x as part
of the query. However, location information is not only inherently sensitive itself, but
also correlated to a variety of other sensitive information, such as political and reli-
gious beliefs, medical information, etc. Hence, the user would like to perform the LBS
query privately, that is without disclosing his exact location to the provider. Note that
protecting the user’s identity is not the goal here; in fact, the user might wish to be
authenticated to the service provider in order to obtain personalized recommendations.
What he is interested in, instead, is hiding his location.

A possible solution is to use a location obfuscation mechanism [20], producing a
noisy location z which is reported to the service provider. A natural goal then is to
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formalize the privacy guarantees provided by such a mechanism, for which various
approaches have been proposed in the literature [21].

Geo-indistinguishability provides such a formal definition of location privacy, and
can be expressed as an instance of dX -privacy. Secrets X are now locations (a subset of
R2), and ε-geo-indistinguishability is εd2-privacy, where d2 is the Euclidean distance
between locations.3 Intuitively, dP(K(x),K(x′)) ≤ εd2(x, x

′) requires that the closer
(geographically) two locations x, x′ are, the more likely to produce the same reported
location z they should be. This allows the provider to get some approximate informa-
tion necessary to provide the service (e.g. distinguish locations in Paris from those in
London), but prevents him from learning x with high accuracy (since locations x′ close
to x produce the same z with similar probabilities).

The results of this paper refer to an arbitrary metric between secrets, hence they are
directly applicable to geo-indistinguishability. A case-study in the context of location
privacy is given in Section 7.2.

3.4 Utility Model

The main role of a noise mechanism H : Y → Z is to guarantee dY-privacy while pro-
viding useful information about the true query result, i.e. to satisfy a trade-off between
the privacy and utility. For quantifying the utility ofH we follow a standard model from
[13]. Let y ∈ Y be the result of executing a query f . The mechanismH : Y → Z pro-
cesses y and produces an output z in some domain Z to the user. Based on the reported
output z and prior knowledge about the likely results of f , she applies a remapping
function R : Z → Y to z to produce a guess y′ ∈ Y for the real query result. Note that
the composite mechanism R ◦H : Y → Y is a mechanism whose output domain is the
query results domain Y . We say that H is remapped to R ◦ H by the remap R. Now,
with the user’s guessed value y′, a real-valued gain function g : Y × Y → R quantifies
how informative y′ is compared to the real query result y. In this paper we restrict our
analysis to the binary gain function gb which is defined as gb(y, y′) = 1 iff y′ = y and
0 otherwise. The choice of this gain corresponds to the preference of a user to guess the
true query result.

In practice, the user usually bases her guess y′ about the real query result on prior
knowledge about the underlying secret and the underlying query. This knowledge is
modeled by a probability distribution π (called prior) over the domain Y of query
results. Now the utility of a mechanism H : Y → Z with respect to a prior π and a
remap R : Z → Y is the expected value of the underlying gain function gb, and is
therefore expressed as

U(H,π, R) =
∑

y,y′ πy (HR)yy′ gb(y, y
′). (2)

Using the definition of gb, the above expression reduces to a convex combination of the
diagonal elements of HR as follows.

U(H,π, R) =
∑

y πy (HR)yy. (3)

3 Note that any other meaningful geographical distance could also be used, such as the Manhat-
tan or a map-based distance.
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Accordingly, we say that a dY-private mechanism H is dY -optimal for a prior π if
there is a remapR such that U(H,π, R) is maximal for all dY -private mechanisms and
all remaps.4 In general the optimality of a mechanism depends on the prior (related to
the user). That is a mechanism that is optimal for a prior may not be optimal for another
one. In the setting of differential privacy, it has been proven [14] that for any query,
other than a single counting one, there is no mechanism that is optimal for all priors
simultaneously. Nevertheless, we identify in Section 4 a region of priors, where it is
possible to find a single mechanism which is optimal to all of them.

3.5 Min-mutual Information

In this section we recall the use of an information-theoretic notion, namely mutual
information, to quantify the amount of information conveyed by a mechanism H :
Y → Z as an information theoretic channel.

Following recent works in the area of quantitative information flow ([15–17]), we
adopt Rényi’s min-entropy ([22]) as our measure of uncertainly. The min-entropyH∞(π)
of a priorπ, defined asH∞(π) = − log2 maxi πi, measures the user’s uncertainty about
the query result. Then, the corresponding notion of conditional min-entropy, defined as
H∞(H,π) = − log2

∑
z∈Z maxy πy hyz , measures the uncertainty about the query

result after observing an output z ∈ Z . Finally, subtracting the latter from the former
brings us to the notion of min-mutual information:

L(H,π) = H∞(π)−H∞(H,π)

which measures the amount of information about the query result conveyed by the
mechanism H . In the area of quantitative information flow this quantity is known as
min-entropy leakage; the reader is referred to [15] for more details about this notion.

4 Regular Priors

In this section we describe a region of priors, called ‘dY-regular’. These priors are de-
termined by the metric dY on the domain Y . Recall that the dY-privacy constraints
for H can be written as hyz/hy′z ≥ e−dY(y,y′) for all y, y′ ∈ Y . Since every lower
bound e−dY(y,y′) depends only on y, y′, the constraints can be described altogether by
a square matrix Φ formed by such lower bounds. We refer to this matrix as the privacy-
constraints matrix.

Definition 3 (privacy-constraints matrix). The privacy-constraints matrix Φ of a met-
ric dY is a square matrix, indexed by Y ×Y , where φyy′ = e−dY(y,y′) for all y, y′ ∈ Y .

Note that Φ is symmetric (φyy′ = φy′y) due to the symmetry of dY . Recall that dY
describes the privacy restrictions imposed on the domain Y . In particular these restric-
tions become vacuous if dY(y, y

′) → ∞ for all y, y′ : y �= y′. In this extreme case
the privacy-constraints matrix Φ converges to the identity matrix where each diagonal

4 Note that there may exist many optimal mechanisms for a given prior.
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entry is 1 and all other entries are 0. We now define the dY-regular priors, in terms of the
privacy-constraints matrix of dY . For a vector μ having cardinality |Y|, we use μ ≥ 0
to denote ∀y : μy ≥ 0.

Definition 4 (dY-regular prior). A prior π is called dY -regular iff there exists a row
vector μ ≥ 0 such that π = μΦ.

In the following we describe the common properties of these priors and also give a
geometric characterization for their region comparing it to the whole prior space. As
a first observation, this region converges to the entire prior space when the privacy
constraints on Y become vacuous. This is because, as described above, Φ approaches
the identity matrix where the vector μ exists for each prior π (just define μ = π).

An important property of any dY -regular prior is that the ratio between any two of
its entries πy, πy′ is always bound by edY(y,y′). Because of this property, such a prior is
called dY-regular.

Proposition 1. For every dY -regular prior π and for all y, y′ ∈ Y we have that
πy
/
πy′ ≤ edY(y,y′).

Proof. By Definition 4, the ratio πy/πy′ is given by

πy
/
πy′ =

∑
y′′ μy′′φy′′y∑
y′′ μy′′φy′′y′

. (4)

By the definitions of φy′′y′ , φy′′y we also have that

φy′′y′ = e−dY(y′′,y′) ≥ e−(dY(y′′,y)+dY(y,y′)) = e−dY(y,y′) φy′′y.

The above inequality is implied by the triangle inequality, dY(y
′′, y′) ≤ dY(y

′′, y) +
dY(y, y

′) and the fact that e−1 < 1. Since μy′′ ≥ 0 for all y′′, we have∑
y′′
μy′′φy′′y′ ≥ e−dY(y,y′)

∑
y′′
μy′′φy′′y

Substituting the above inequality in Eq. (4) completes the proof. ��

The above property restricts nearby elements of Y (with respect to the metric dY ) to
have ‘similar’ probabilities. In practice, this property holds for a large class of users
who have no sharp information that discriminates between nearby elements of Y . Note
that the above property is not equivalent to Definition 4. Namely, it is not true that all
priors having such a property are dY -regular.

A consequence of the above proposition is that for any dY-regular prior π, the prob-
ability πy associated with y ∈ Y is restricted by upper and lower bounds as follows.

Proposition 2. For every dY -regular prior π and for every y ∈ Y we have that

1
/∑

y′∈Y e
dY(y,y′) ≤ πy ≤ 1

/∑
y′∈Y e

−dY(y,y′).
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Proof. By Proposition 1, it holds for every pair of entries πy , πy′ that

πy′ ≤ edY(y,y′) πy and e−dY(y,y′) πy ≤ πy′ .

Summing the above inequalities over y′, we get∑
y′∈Y

πy′ ≤ πy
∑
y′∈Y

edY(y,y′) and πy
∑
y′∈Y

e−dY(y,y′) ≤
∑
y′∈Y

πy′ .

Since
∑

y′∈Y πy′ = 1, the above inequalities imply the upper and lower bounds for
πy . ��
One obvious implication is that any dY-regular prior must have full support, that is
πy > 0 for all y ∈ Y . In the following we describe the set of dY -regular priors as a
region in the prior space. For doing so, we first define in the following set of priors
which we refer to as the corner priors.

Definition 5 (corner priors). For every y ∈ Y , a corresponding corner prior, denoted
by cy , is defined as

cyy′ =
φyy′∑

y′′∈Y φyy′′
∀y′ ∈ Y.

Note that the above definition is sound, i.e. cy is a probability distribution for all y ∈ Y .
Note also that there are |Y| corner priors; each one corresponds to an element y ∈ Y . By
inspecting the entries of cy , observe that cyy has the maximum value compared to other
entries, and moreover this value is exactly the upper bound specified by Proposition 2.
We can therefore interpret this observation informally as cy is ‘maximally biased’ to y.
It can be also seen that each corner prior is dY-regular. In fact for any corner cy , there
is a row vector μ that satisfies the condition in Def. 4; this vector is obtained by setting
μy = 1/

∑
y′∈Y φyy′ and μy′ = 0 for all y′ �= y. Here it is easy to verify that cy = μΦ.

Now we can describe the region of the dY-regular priors using the corner priors.
Precisely, this region consists of all convex combinations of the corner priors.

Proposition 3 (convexity). A prior π is dY-regular iff it is a convex combination of the
corner priors, i.e. there exist real numbers γy ≥ 0, y ∈ Y such that

π =
∑

y∈Y γy c
y and

∑
y∈Y γy = 1.

Proof. By Definition 4, a prior π is dY -regular iff there exists vector μ ≥ 0 such that
π = μΦ; that is iff there are reals μy ≥ 0 for all y ∈ Y , such that π can be written as a
linear combination of Φ’s rows as follows.

π =
∑
y∈Y

μy Φy, (5)

where Φy is the row of Φ corresponding to the element y ∈ Y . From Def. 5, observe

that each row Φy is equal to
(∑

y′∈Y φyy′
)
cy . By substituting Φy in Eq. (5), we get

that π is dY-regular iff π =
∑

y∈Y γy c
y where γy = μy

(∑
y′∈Y φyy′

)
. Note from

the latter relation between γy and μy (for every y ∈ Y) that the existence of the vector
μ ≥ 0 is equivalent to the existence of the coefficients γy ≥ 0. Finally observe that∑

y∈Y γy =
∑

y∈Y(μΦ)y =
∑

y∈Y πy = 1. ��
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Fig. 2. Regions of dY -regular priors for Example 1

From Proposition 3 the region of dY -regular priors is a convex set, where each point
(prior) in this region is a convex combination of the corner priors. This region is there-
fore geometrically regarded as a convex polytope in the prior space. Since the corner
points always exists, this region is never empty. For a prior π in this region, the coef-
ficients γy model the ‘proximity’ of π to each corner prior cy. In particular, note that
0 ≤ γy ≤ 1, and γy = 1 iff π = cy. We demonstrate this geometric interpretation
using the following examples.

Example 1. Consider a simple domain Y consisting of 3 elements organized in a graph
structure where dg(y, y′) is the graph distance between y, y′. Now for an arbitrary scal-
ing number ε > 0, we can define the metric dY as dY(y, y

′) = ε dg(y, y
′). Since ev-

ery prior on Y has 3 entries (specifying the probability of every element y ∈ Y), the
prior space for Y can be represented by the 3-dimensional Euclidean space. Figure 2
visualizes the region of dY -regular priors in two cases: when the graph structure of
Y is a line, and when it is a circle. Note that in both cases, we have 3 corner priors
c1, c2, c3. In each case, the region is depicted for ε = 0.7 and ε = 1.6. Note in this
example that ε controls the privacy constraints imposed by dY -privacy, which in turn
determine the size of the region of dY-regular priors. In particular with ε = 1.6 (less
privacy), the region is larger than the one with ε = 0.7. In general the region expands
as ε increases and converges to the entire region of priors defined by the corner points
{(0, 0, 1), (0, 1, 0), (0, 0, 1)}when ε→∞.

Example 2. Suppose that Y contains 4 elements, and dY is defined as dY(y, y
′) = D

for all y, y′ : y �= y′. In this case every prior contains 4 entries and therefore is not
possible to be plotted in the 3-dimensional space. However, using the fact that the fourth
component is redundant (

∑
i πi = 1), every prior is fully described by its ‘projection’

onto the 3-dimensional subspace. Figure 3 shows the projection of the dY -regular prior
region for different values of D. Again the privacy constraints enforced by dY -privacy
are determined byD. The less restricted isD (i.e. having a higher value), the bigger the
region is; and eventually coincides with the entire space when D →∞.
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Fig. 3. Regions of dY -regular priors for Example 2

5 Upper Bounds for Utility and Min-mutual Information

In this section, we further describe the dY -regular priors on the domainY in terms of the
utility that can be achieved for these priors by a mechanismH : Y → Z satisfying dY-
privacy. We also describe the amount of information that can be conveyed byH to users
with such priors. More precisely, we identify for any dY -regular prior π upper bounds
for the utility and min-mutual information, considering all dY-private mechanisms and
all possible remaps. These bounds are indeed induced by the privacy constraints defined
by the metric dY .

5.1 Utility

For a given domain Y equipped with the metric dY , consider a dY -private mechanism
H : Y → Z producing observables in some domain Z . In the following analysis we
derive a linear algebraic expression for U(H,π, R), the utility ofH for a prior π using
the remap R : Z → Y . Such an expression will play the main role in the subsequent
results. We start by observing that the matrix product ofH and the remapR describes an
dY-private mechanismHR : Y → Y . Therefore the entries ofHR satisfy the following
subset of constraints.

e−dY(y,y′) (HR)y′y′ ≤ (HR)yy′

for all y, y′ ∈ Y . Using Definition 3 of the privacy-constraints matrix Φ, and taking into
account that

∑
y′∈Y (HR)yy′ = 1 for all y (as both H and R are stochastic), we get

the following inequalities.∑
y′∈Y φyy′ (HR)y′y′ ≤ 1, ∀y ∈ Y.

The inequality operators can be replaced by equalities while introducing slack variables
sy : 0 ≤ sy ≤ 1 for all y ∈ Y . The above inequalities can therefore be written as
follows. ∑

y′∈Y φyy′ (HR)y′y′ + sy = 1, ∀y ∈ Y.
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Let the slack variables sy form a column vector s indexed by Y . Let also 1 denote a
column vector of the same size and having all entries equal to 1. Using these vectors
and the privacy-constraints matrix Φ (for the given metric dY ), the above equations can
be rewritten in the following matrix form.

Φ diag(HR) + s = 1, (6)

where diag(HR) is the column vector consisting of the diagonal entries of HR. Now,
for any mechanism H : Y → Z and a remap R : Z → Y satisfying Eq. (6), and for a
prior π, we want to refine the generic expression (3) of the utility by taking Eq. (6) into
account. We start by rewriting Eq. (3) in the following matrix form.

U(H,π, R) = π diag(HR). (7)

Now, let μ be a row vector such that

π = μΦ. (8)

Note that, the above matrix equation is in fact a system of |Y| linear equations. The yth
equation in this system is formed by the yth column of Φ, and the yth entry of π as
follows.

μΦy = πy ∀y ∈ Y.

Solving this system of equations for the row vector μ has the following possible out-
comes: If the matrix Φ is invertible, then, for any prior π, Eq. (8) has exactly one
solution. If Φ is not invertible (i.e. it contains linearly dependent columns), then there
are either 0 or an infinite number of solutions, depending on the prior π: If the entries
of π respect the linear dependence relation then there are infinitely many solutions.
Otherwise, the equations are ‘inconsistent’, in which case there are no solutions.

Whether Φ is invertible or not, we consider here only the priors where the matrix
equation (8) has at least one solutionμ. Note that, by definition, all the dY -regular priors
have this property, but there can be others for which the solution μ has some negative
components. In some of the results below (in particular in Lemma 1) we consider this
larger class of priors for the sake of generality.

Multiplying Equation (6) by μ yields

μΦdiag(HR) + μ s = μ1. (9)

Substituting Equations (8) and (7) in the above equation consecutively provides the
required expression for the utility and therefore proves the following lemma.

Lemma 1. For a metric space (Y, dY) let π be any prior on Y . Then for every row
vector μ satisfying π = μΦ, the utility of any dY -private mechanism H for π using a
remap R is given by

U(H,π, R) = μ1− μs, (10)

for a vector s satisfying 0 ≤ sy ≤ 1 for all y ∈ Y .
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Lemma 1 expresses the utility function for any dY -private mechanism H , for a prior
π satisfying π = μΦ, and using a remap R. This utility is expressed as a function of
the vector μ and the slack vector s. Although the matrix H and the remap R do not
explicitly appear on the right side of Equation (10), the utility still depends on them
indirectly through the vector s. Namely, according to Equation (6), the choice of H
and R determines the slack vector s. The utility function depends also on the prior π,
because the choice of π determines the set of vectors μ satisfying Eq. (8). Substituting
any of these vectors in Eq. (10) yields the same value for U(H,π, R).

Now recall from Definition 4 that for every dY-regular prior π there is μ satisfying
π = μΦ and μ ≥ 0. This characteristic together with Lemma 1 implies an upper
bound on the utility of any dY-private mechanism H for π.

Theorem 2 (utility upper bound). Let π be a dY-regular prior and H : Y → Z be
a dY-private mechanism. Then for all row vectors μ ≥ 0 satisfying μΦ = π, and any
remap R, it holds that

U(H,π, R) ≤
∑

y∈Y μy. (11)

Furthermore the mechanism H and remap R satisfy the equality in (11) for every dY-
regular prior iff Φ diag(HR) = 1.

Proof. Since π is dY -regular, we have π = μΦ for a vector μ ≥ 0. Applying Lemma 1
and noting that sy ≥ 0 for all y ∈ Y , we observe that μs ≥ 0 and hence the utility is
upper-bounded by μ1 =

∑
y∈Y μy .

It remains to show that this bound is attained for every dY-regular prior if and only
if Φ diag(HR) = 1, which is equivalent (according to Eq. (6)) to s = 0: Clearly, if
s = 0, then applying Lemma 1 yields the equality in (11) for every dY -regular prior.
For the ‘only if’ direction, it is sufficient to find a regular prior for which s = 0 must
hold to satisfy the equality in (11). For this purpose we recall that every corner prior
cy satisfies μyΦ = cy where μyy > 0. Now consider the prior π̄ = (1/|Y|)

∑
y∈Y cy ,

which is dY-regular by Proposition 3. It is easy to see that it holds μ̄Φ = π̄ where
μ̄ = (1/|Y|)

∑
y∈Y μy . Observe here that μ̄y > 0 for all y ∈ Y . Suppose now that the

equality in (11) holds for μ̄. Therefore it must hold, by Lemma 1, that μ̄ s = 0. Since
μ̄y > 0 for all y ∈ Y , it must hold that s = 0. This completes the proof. ��

The above result can be also seen from the geometric perspective. As shown by Propo-
sition 3, each member in the region of dY -regular priors is described as a convex
combination of the corner priors. That is there are coefficients γy ≥ 0 for y ∈ Y
which form this combination. It can be shown (as in the proof of Proposition 3) that

γy = μy

(∑
y′∈Y φyy′

)
. Hence, the upper bound given by Theorem 2 can be written

as follows using the coefficients γy .

U(H,π, R) ≤
∑
y∈Y

γy∑
y′∈Y φyy′

.

Inspecting the above result for corner priors, recall that for a corner cy, γy′ is 1 for
y′ = y and is 0 otherwise; thus, the utility upper bound for cy is therefore 1/

∑
y′ φyy′ .

Moreover, the upper bound for each dY -regular prior π can be regarded (according to
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the above equation) as a convex combination of the upper bounds for the corner priors.
That is, from the geometric perspective, the utility upper bound for π linearly depends
on its proximity to the corner priors.

5.2 Min-mutual Information

In this paper we use the information-theoretic notion of min-mutual information in two
distinct ways: first, we use it to measure the information conveyed about the result
of a specific query, similarly to the use of “utility” in the previous section. Mutual
information and utility are indeed closely related, which allows us to transfer the bound
obtained in the previous section to the information-theoretic setting.

Second, we use it to quantify the information about the secret itself, thus obtaining
what is known in the area of quantitative information flow as min-entropy leakage [15].
The above bound can therefore be interpreted as a bound on the information leaked
by any mechanism, even non-oblivious ones, independently from the actual query. For
arbitrary priors, we obtain in a more natural way the bound conjectured in [17] and
proven in [19]. Moreover, if we restrict to specific (dY -regular) priors, then we are able
to provide more accurate bounds.

The following result from [19] shows that min-mutual information corresponds to
the notion of utility under the binary gain function and using an optimal remap, i.e., a
remap that gives the best utility among all possible remaps, for the given prior.

Proposition 4 ([19]). Given a mechanism H : Y → Z and a prior π, let R̂ be an
optimal remap for π, H . Then, we have

L(H,π) = log2
U(H,π, R̂)
maxy πy

This connection allows us to transfer the upper-bound given by Theorem 2 to min-
mutual information.

Proposition 5 (min-mutual information upper bound). Let π be a dY -regular prior
andH : Y → Z be a dY-private mechanism. Then for all row vectors μ ≥ 0 satisfying
μΦ = π, we have:

L(H,π) ≤ log2

∑
y∈Y μy

maxy πy
. (12)

Furthermore, H satisfies the equality for every dY -regular prior iff there is a remap R
such that Φ diag(HR) = 1.

Proof. By Proposition 4, the leakageL(H,π) is monotonically increasing with the util-
ity U(H,π, R̂). By Theorem 2, this utility is upper-bounded by

∑
y∈Y μy . Substituting

this upper bound in Proposition 4 yields the inequality (12) where the equality holds iff
it holds in Theorem 2 forH and and an optimal remap R̂. That is iff Φdiag(HR̂) = 1.
This condition is equivalent to the condition of equality in Proposition 5, because if a
remapR satisfies this latter condition then it must be optimal because the utility with R
(by Theorem 2) is globally maximum, that is no other remap can achieve higher utility.

��
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The above bound holds only for dY-regular priors. However, it is well-known ([16])
that min-mutual information is maximized by the uniform prior u, i.e. L(H,π) ≤
L(H,u) for all H,π. Thus, in cases when u is dY-regular, we can extend the above
bound to any prior.

Corollary 2. Suppose that the uniform prior u is dY -regular, and let H : Y → Z be
any dY-private mechanism. Then for all row vectors μ ≥ 0 satisfying μΦ = u, and for
all priors π, we have that

L(H,π) ≤ log2(|Y|
∑

y∈Y μy)

5.3 Quantifying the Leakage about the Database

In the previous section we considered the information about the query result that is
revealed by a mechanism H . This information was measured by the min-mutual infor-
mation L(H,π).

We now turn our attention to the case of standard differential privacy, with the goal
of quantifying the information about the database that is conveyed by a differentially
private mechanism K (not necessarily oblivious). Intuitively, we wish to minimize this
information to protect the privacy of the users, contrary to the utility which we aim at
maximizing. We can apply the results of the previous section by considering the full
mechanism K , mapping databases V = V u to outputs (recall that u is the number
of individuals in the database and V the universe of values). Differential privacy corre-
sponds to εdh-privacy, where dh is the Hamming distance on the domain V of databases.
Correspondingly εdh-regularity will concern priors π on databases V .

In this case, L(K,π) measures the information about the database conveyed by the
mechanism, which we refer to as “min-entropy leakage”, and the bounds from the pre-
vious section can be directly applied. However, since we now work on a specific metric
space (V , εdh), we can obtain a closed expression for the bound of Corollary 2. We
start by observing that due to the symmetry of the graph, the uniform prior u is εdh-
regular for all ε > 0. More precisely, we can show that the vector μ of size V having all
elements equal to (

eε

|V |(|V | − 1 + eε)

)u
satisfies μΦ = u and μ ≥ 0. Thus, applying Corollary 2 we get the following result.

Theorem 3 (min-entropy leakage upper bound). Let V = V u be a set of databases,
let ε > 0, and let K be an ε-differentially private mechanism. Then for all priors π on
V , we have:

L(K,π) ≤ u log2
|V | eε

|V | − 1 + eε

This bound determines the maximum amount of information that any ε-differentially
privacy mechanism can leak about the database (independently from the underlying
query). The bound was first conjectured in [17] and independently proven in [19]; our
technique gives an alternative and arguably more intuitive proof of this result.
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Fig. 4. Leakage bounds for various values of ε

Note that the above bound holds for all priors. If we restrict to a specific εdh-regular
prior π, then we can get better results by using the bound of Proposition 5 which
depends on the actual prior. This is demonstrated in the following example.

Example 3. Consider a database of 5 individuals, each having one of 4 possible values,
i.e. V = V u with V = {1, 2, 3, 4} and u = 5. Assume that each individual selects a
value independently from the others, but not all values are equally probable; in partic-
ular the probabilities of values 1, 2, 3, 4 are 0.3, 0.27, 0.23, 0.2 respectively. Let π be
the corresponding prior on V that models this information. We have numerically ver-
ified that for all 0.48 ≤ ε ≤ 1 (with step 0.01) π is εdh-regular. Thus we can apply
Proposition 5 to get an upper bound of L(K,π) for this prior.

The resulting bound, together with the general bound for all priors from Theorem 3,
are shown in Figure 4. We see that restricting to a specific prior provides a significantly
better bound for all values of ε. For instance, for ε = 0.5 we get that L(K,π) ≤ 1.2 for
this π, while L(K,π) ≤ 2.5 for all priors π.

6 Tight-Constraints Mechanisms

In general, the bounds for the utility (Theorem 2) and the min-mutual information
(Proposition 5) are not tight. That is for a given metric dY on a domain Y , there
may be no dY -private mechanism H that meets these bounds. Nevertheless, they pro-
vide ultimate limits, induced by the dY -privacy constraints, for all dY -private mech-
anisms and dY-regular priors. These bounds are simultaneously tight if the condition
Φ diag(HR) = 1 is satisfied (note that this condition is independent of the underlying
prior). In this section we exploit this ‘tightness’ condition and investigate the mecha-
nisms that, whenever exist, satisfy this condition and are therefore optimal for the entire
region of dY -regular priors. We call these mechanisms tight-constraints mechanisms.
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Definition 6 (A tight-constraints mechanism). For a metric dY , a mechanism H :
Y → Y is called a tight-constraints mechanism iff it satisfies the following conditions
for all y, y′ ∈ Y .

e−dY(y,y′) hy′y′ = hyy′ . (13)

It is important to note that, in general, there may exist zero, one or more tight-constraints
mechanisms for a given metric dY . The above definition enforces |Y| (|Y| − 1) linearly
independent equations, referred to as the ‘tight constraints’. Additionally it must also
hold that

∑
y′∈Y hyy′ = 1 for all y ∈ Y . Thus we have, in total, |Y| |Y| equations. If

these equations are linearly independent, then they solve to unique values. If these val-
ues are non-negative, then they determine a unique tight-constraints mechanism. On the
other hand, if these equations are not linearly independent, then there may be multiple
solutions with non-negative entries, in which case we have multiple tight-constraints
mechanisms for dY .

6.1 Properties

The first feature that follows immediately from the definition of tight-constraints mech-
anisms, for a metric dY , is that they satisfy dY -privacy:

Proposition 6 (dY-privacy). For a given metric dY , every tight-constraints mechanism
is dY-private.

Proof. For a tight-constraints mechanism Ĥ , we want to show that for every pair of
query results y, y′ and every output z, we have

ĥyz ≤ edY(y,y′) · ĥy′z. (14)

By Definition 6, for every pair of elements y, y′ and every output z, we have

ĥy′z = e−dY(y′,z) · ĥzz and ĥyz = e−dY(y,z) · ĥzz. (15)

If ĥzz = 0 then ĥy′z = ĥyz = 0. In this case, Condition (14) is satisfied. Otherwise
(i.e. if ĥzz �= 0), both ĥy′z and ĥyz are non-zero, and it follows from Equations (15)
that, for all inputs y and y′, and every output z,

ĥy′z
/
ĥyz = e−(dY(y′,z)−dY(y,z)).

By the triangle inequality, we have that dY(y
′, z)−dY(y, z) ≤ dY(y, y

′). Knowing also
that e−1 < 1, it follows from the above inequality that

ĥy′z
/
ĥyz ≥ e−dY(y,y′).

The above inequality is equivalent to Condition (14) of dY-privacy. ��

Thanks to the above property, we can give a further useful characteristic for the tight-
constraints mechanisms distinguishing them from other dY -private mechanisms. More
precisely, the following proposition identifies a linear algebraic condition that is satis-
fied only by the tight-constraints mechanisms for the given metric dY :
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Proposition 7 (diagonal characterization). For a metric dY , a dY-private mechanism
H : Y → Y is a tight-constraints mechanism iff

Φ diag(H) = 1. (16)

Proof. If H is a tight-constraints mechanism, then by Definition 6 we have that hyy′ =

e−dY(y,y′) hy′y′ for all y, y′ ∈ Y . It also holds that
∑

y′∈Y hyy′ = 1 for all y ∈ Y .
Combining these equations yields∑

y′∈Y
e−dY(y,y′) hy′y′ = 1, ∀y ∈ Y. (17)

Using the privacy-constraints matrix Φ, the above equations can be written in the matrix
form (16). Now we prove the other direction of implication as follows. Suppose that
Eq. (17) (which is equivalent to Eq. (16)) is satisfied by a dY -private mechanism H .
Then it holds for all y, y′ ∈ Y that hyy′ ≥ e−dY(y,y′) hy′y′ . Suppose for a contradiction
that this inequality is strict for some y, y′ ∈ Y , i.e. hyy′ > e−dY(y,y′) hy′y′ . Then∑

y′∈Y hyy′ >
∑

y′∈Y e
−dY(y,y′) hy′y′ = 1, where the last equality holds by Eq. (17).

That is, the sum of the entries of a row inH is strictly greater than 1 which violates the
validity of H . ��

The above proposition provides a way to check the existence of, and also compute,
the tight-constraints mechanisms for a given metric dY . Since Condition (16) is satisfied
only by these mechanisms, there is at least one tight-constraints mechanism if there is
a vector z, with non-negative entries, that satisfies the equation Φ z = 1. In this case a
tight-constraints mechanism is obtained by setting its diagonal to z, and evaluating the
non-diagonal entries from the diagonal using Eqs. (13).

Now we turn our attention to the region of dY -regular priors and identify the mech-
anisms that are optimal with respect to both utility and min-mutual information in this
region. Precisely, we show that the set of these optimal mechanism consists exactly of
all mechanisms that can be mapped to a tight-constraints one using some remap R.

Theorem 4 (Optimality). Let dY be a metric for which at least one tight-constraints
mechanism exists. Then a dY-private mechanism H : Y → Z is dY-optimal (wrt both
utility and min-mutual information) for every dY-regular prior π iff there is a remap
R : Z → Y such that HR is a tight-constraints mechanism for dY .

Proof. If there exists a tight-constraints mechanism H ′ for a given metric dY , then H ′

must satisfy Eq. (16). This implies that the upper-bound in Theorem 2 is reachable by
H ′ and the identity remap. Thus the upper-bound, in this case, is tight. Now consider a
dY-private mechanism H : Y → Z . By Theorem 2, H meets that upper bound for the
utility (and therefore is dY-optimal) iff it satisfies the condition Φdiag(HR) = 1, with
some remap R. Since H is dY-private, HR is also dY-private. Now by Proposition 7,
satisfying the condition Φdiag(HR) = 1 (meaning that H is optimal) is equivalent to
that HR is a tight-constraints mechanism (for dY). Using the relation, given by Propo-
sition 4, between utility and min-mutual information, the same argument holds for the
latter. ��
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Observe that tight-constraints mechanisms are optimal because they are mapped to
themselves by the identity remap. In the light of Theorem 4, we consider the special
case of the uniform prior, denoted by u, where all results in Y are equally likely. Note
that this prior corresponds to users having unbiased knowledge about the query results,
i.e. they assume that all the true results Y are yielded, by executing the query, with
the same probability. Firstly, the following lemma proves an equivalence between the
existence of at least one tight-constraints mechanism on one hand and the uniform prior
u being dY -regular on the other hand.

Proposition 8. For a given metric dY , there exists at least one tight-constraints mech-
anism iff the uniform prior u is dY -regular.

Proof. By Proposition 7, if there is at least a tight-constraints mechanism Ĥ , then Eq.
(16) must hold for this mechanism. Taking the transpose of both sides in this equation,
and noting that Φt = Φ (because Φ is symmetric), then we get that

(diag(Ĥ))t · Φ = 1t.

Scaling the above equation by 1/|Y| yields the row vector u, the uniform prior, on the
right hand side. Thus if a tight-constraints mechanism Ĥ , exists then

(1/|Y|) (diag(Ĥ))t · Φ = u.

which means (By Def. 4) that u is dY -regular, because the row vector (diag(Ĥ))t has
only non-negative entries. For the opposite implication, assume that u is dY-regular.
Then by the definition there is a row vector μ with non-negative entries such that μΦ =
u. Taking the transpose of both sides, and multiplying by |Y|, yields that Eq. (16) is
satisfied for H , whose diagonal is given by diag(H) = |Y| · μt (non-negative). Thus
there exists a tight-constraints mechanism for dY . ��

It is worth noticing that in general the region of dY -regular priors may or may not
include the uniform prior. However, as shown earlier in Section 4, this region is enlarged
and converges to the entire prior space as the distances dY(y, y

′) → ∞ for all y �= y′.
In particular the dY-regular priors accommodate the uniform prior u if dY is scaled up
by an appropriate factor.

In the case of ε-differential privacy it holds that dY = ε dh where dh is the Hamming
distance on databases. Thus there is always a threshold ε∗, above which the uniform
prior u is ε dh-regular. This can provide a design criteria to select a setting for ε such
that, according to Proposition 8, there is a tight-constraints mechanism that is optimal
for all ε dh-regular priors.

Using Proposition 8, we can describe the optimal mechanisms for the uniform prior
as a corollary of Theorem 4.

Corollary 3. Let dY be a metric for which there exists at least one tight-constraints
mechanism. Then a mechanismH is dY-optimal for the uniform prior on Y iff HR is a
tight-constraints mechanism for some remap R : Z → Y .

In summary, the existence of tight-constraints mechanisms and their structures de-
pend on the given metric. The choice of such metric corresponds to the required pri-
vacy guarantee. Consider in particular the conventional ε-differential privacy, where
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any two adjacent elements in a domain Y are required to be indistinguishable relative
to ε. In this case, the domain Y and its adjacency relation ∼f are modeled by the graph
G = (Y,∼f ); and the requirement of satisfying ε-differential privacy forY translates in
our general model to the metric dY(y, y

′) = ε d∼f
(y, y′), where d∼f

(y, y′) is the graph
distance between y, y′. With this metric, we find that tight-constraints mechanisms cap-
ture other known differentially-private mechanisms. For example, if we set Y to be
the output domain of a counting query executed on a database, we find that the tight-
constraints mechanism for Y is exactly the truncated-geometric mechanism, which was
shown by [13] to be optimal for every prior. Also, we instantiate, in the following, the
tight-constraints mechanism when the metric space (Y, dY) satisfies a certain symme-
try. This symmetry captures, in particular, the graphs for which an optimal mechanism
is constructed in [19] for the uniform prior u. Once again this mechanism is precisely a
tight-constraints one. Note that an additional conclusion which we add here is that this
mechanism is optimal not only for u but also for all dY -regular priors.

6.2 Tight-Constraints Mechanism for Symmetric Metric Spaces

We consider the mechanisms that satisfy dY -privacy for a given domain Y . We focus
here on the metric spaces (Y, dY) that satisfy a certain symmetry which we call ball-
size symmetry. To describe this property, we recall the standard notion of balls in metric
spaces: a ball of radius r around a point y ∈ Y is the set BdY

r (y) = {y′ ∈ Y :
dY(y, y

′) ≤ r}. Now we define the ball-size symmetry as follows.

Definition 7 (ball-size symmetry). A metric space (Y, dY) is said to be ball-size sym-
metric if for all y, y′ ∈ Y , and all radii r, we have |BdY

r (y)| = |BdY
r (y′)|.

Note that the above condition is equivalent to saying that for any y ∈ Y , the number
of elements that are at distance r from y depends only on r, allowing us to write this
number as nr. Inspecting the privacy-constraints matrix Φ in this case, we observe that
the row sum

∑
y′ φyy′ for every y ∈ Y is the same and equal to

∑
r nr e

−r. This means
that the column vector z, of which every element is equal to 1/

∑
r nr e

−r, satisfies
Φz = 1 and therefore yields (by Proposition 7) the diagonal of a tight-constraints
mechanism H . The other (non-diagonal) entries of H follow from the diagonal as in
Definition 6. Thus we conclude the following result.

Proposition 9 (tight-constraints mechanism for symmetric metric spaces). For any
metric space (Y, dY) satisfying ball-size symmetry there is a tight-constraints mecha-
nism H : Y → Y which is given as hyy′ = edY(y,y′)

/∑
r nr e

−r.

The main consequence of the above proposition is that the mechanismH is optimal for
every dY-regular prior including the uniform prior u.

The above result generalizes and extends a result by [19] in the context of differen-
tial privacy. The authors of [19] considered two types of graphs: distance-regular and
vertex-transitive graphs. They constructed for these graphs an ε-differentially private
mechanism optimal for the uniform prior. As shown earlier ε-differential privacy for a
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(a) Sum query

(0,u) (1,u) (2,u) (u,u)
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(0,1) (1,1) (2,1) (u,1)

(0,0) (1,0) (2,0) (u,0)

(b) 2-count query

Fig. 5. Adjacency graphs

graph (Y,∼f ) translates in our setting to the metric space (Y, ε d∼f
). It can be eas-

ily seen that if (Y,∼f ) is either distance-regular or vertex-transitive, the correspond-
ing metric space (Y, ε d∼f

) is ball-size symmetric. Therefore, we can instantiate the
tight-constraints mechanism of Proposition 9 to εd∼f

, which gives exactly the optimal
mechanism constructed in [19]. Hence, we directly obtain the same optimality results,
and moreover our analysis shows that this mechanism is optimal on the entire region of
εd∼f

-regular priors, instead of only the uniform one.

7 Case-Studies

In this section we show the usefulness of the tight-constraints mechanism by applying
it to two contexts: standard differential privacy and geo-indistinguishability.

7.1 Differential Privacy: Sum and 2-Count Queries

We evaluate the tight constraints mechanism for two families of queries, namely sum
and 2-count queries. For each family, we apply the mechanism on databases consisting
of u individuals each having an integer value between 0 and v, and we compare its
utility to the geometric mechanism.

It is well-known that no universally optimal mechanism exists for these families; in
particular, the geometric mechanism, known to be optimal for a single counting query, is
not guaranteed to be optimal for sum queries or multiple counting queries. On the other
hand, as discussed in the previous section, tight-constraints mechanisms, whenever they
exist, are guaranteed to be optimal within the region of regular priors.

The comparison is made as follows: for each query, we numerically compute the
smallest ε (using a step of 0.01) for which a tight-constraints mechanism exists (i.e. for
which the uniform prior u is εd∼f

-regular, see Proposition 8). Then we compute the
utility (using an optimal remap) of both the tight constraints and the geometric mech-
anisms, for a range of ε starting from the minimum one. Note that the tight constraint
mechanism exists for any ε greater than the minimum one.
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Fig. 6. Utility for various values of ε

Sum query. Let f be the query returning the sum of the values for all individuals, thus it
has range Y = {0, . . . , vu}. By modifying the value of a single individual, the outcome
of the query can be altered by at most v (when changing the value from 0 to v), thus
two elements i, j ∈ Y are adjacent iff |i− j| ≤ v. The induced graph structure on Y is
shown in Figure 5(a) (for the case v = 3).

For our case-study we numerically evaluate this query for u = 150, v = 5 and for the
uniform prior. We found that the minimum ε for which a tight-constraints mechanism
exists (and is in fact unique since Φ is invertible) is 0.8. Figure 6(a) shows the utility of
the tight-constraint mechanism, as well as that of the geometric mechanism, for values
of ε between 0.8 and 1.3, the uniform prior and using and optimal remap. We see that
the tight-constraints mechanism provides significantly higher utility than the geometric
mechanism in this case.

2-count query. Consider now the query f consisting of 2 counting queries (i.e. reporting
the number of users satisfying properties p1 and p2), thus it has rangeY = {0, . . . , u}×
{0, . . . , u}. By modifying the value of a single individual, the outcome of each counting
query can be altered by at most 1, thus two answers (i1, i2), (j1, j2) ∈ Y are adjacent
iff |i1 − j1| ≤ 1 and |i2 − j2| ≤ 1. The induced graph structure on Y is shown in
Figure 5(b).

We evaluate this query for u = 30 and for the uniform prior. We found that the
minimum ε for which a tight-constraints mechanism exists is 0.9. Figure 6(b) shows the
utility of the two mechanisms (with the geometric being applied independently to each
counting query) for values of ε between 0.9 and 1.3 and the uniform prior. Similarly
to the sum query, we see that the tight-constraints mechanism provides significantly
higher utility than the geometric mechanism in this case.

7.2 Geo-indistinguishability

As discussed in Section 3.3, geo-indistinguishability is a notion of location privacy
obtained by taking dX = εd2, where d2 is the Euclidean distance between locations.
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In [9] it is shown that a planar version of the Laplace mechanism satisfies ε-geo-
indistinguishability. The Planar Laplace mechanism is continuous, having as input and
output the full R2, but in the case of a finite number of locations it can be discretized
and truncated while still satisfying geo-indistinguishability (for a slightly adjusted ε).

Although the Planar Laplace mechanism is simple, efficient and easy to implement, it
provides no optimality guarantees. On the other hand, for any finite number of locations,
the tight-constraints mechanism, if it exists, is guaranteed to be optimal for εd2-regular
priors. In this section we compare the two mechanisms on a grid of 100×100 locations,
with step size 1 km.

Note that constructing the tight-constraints mechanism involves inverting the matrix
Φ, which can be done in time O(|X |2.376) using the Coppersmith-Winograd algorithm.
This complexity is much lower than that of recent methods for computing optimal loca-
tion obfuscation mechanisms. For instance, the well-known method of Shokri et al. [23]
– which uses the adversary’s expected error as the metric of privacy – involves solving
large linear optimization problems and was evaluated to a grid of only 30 locations
(compared to the 10,000 locations in our grid).

Figure 7 shows the utility of the two mechanisms for ε ranging from 0.4 to 1.3 and
for a uniform prior. As expected, the tight-constraints mechanism offers significantly
higher utility than the Planar Laplace mechanism for the same ε.

It should be emphasized, however, that our optimality results hold for the binary gain
function, which corresponds to an attacker trying to guess the true location of the user
(the utility being the probability of a correct guess). This might often be meaningful,
especially when the grid size is big: guessing any incorrect cell could be considered
equally bad. But it is also common to consider gain functions taking the distance be-
tween locations into account, with respect to which the tight-constraints mechanism is
not guaranteed to be optimal.

8 Conclusion and Future Work

In this paper we have continued the line of research initiated by [13, 14] about the ex-
istence of differentially-private mechanisms that are universally optimal, i.e., optimal
for all priors. While the positive result of [13] (for counting queries) and the negative
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one of [14] (for essentially all other queries) answer the question completely, the latter
sets a rather dissatisfactory scenario, since counting queries are a very specific kind of
queries, and in general users can be interested in very different queries. We have then
considered the question whether we can achieve optimality with the same mechanism
for a restricted class of priors. Fortunately the answer is positive: we have identified a
region of priors, called dY-regular, and a mechanism, called tight-constraints, which is
optimal for all the priors in this region. We have also provided a complete and effec-
tively checkable characterization of the conditions under which such mechanism exists,
and an effective method to construct it. As a side result, we have improved on the exist-
ing bounds for the min-entropy leakage induced by differential privacy. More precisely,
we have been able to give specific and tight bounds for each dY -regular prior, in general
smaller than the bound existing in the literature for the worst-case leakage (achieved by
the uniform prior [18]).

So far we have been studying only the case of utility for binary gain functions. In
the future we aim at lifting this limitation, i.e. we would like to consider also other
kinds of gain. Furthermore, we intend to study how the utility decreases when we use
a tight-constraints mechanism outside the class of dY-regular priors. In particular, we
aim at identifying a class of priors, larger than the dY-regular ones, for which the tight-
constraints mechanism is close to be optimal.
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École Normale Supérieure

45 rue d’Ulm, F-75230 Paris Cedex 05, France
ferns@di.ens.fr

2 School of Computer Science
McGill University
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Abstract. We transfer a notion of quantitative bisimilarity for labelled
Markov processes [1] to Markov decision processes with continuous state
spaces. This notion takes the form of a pseudometric on the system states,
cast in terms of the equivalence of a family of functional expressions
evaluated on those states and interpreted as a real-valued modal logic.
Our proof amounts to a slight modification of previous techniques [2,3]
used to prove equivalence with a fixed-point pseudometric on the state-
space of a labelled Markov process and making heavy use of the Kan-
torovich probability metric. Indeed, we again demonstrate equivalence
with a fixed-point pseudometric defined on Markov decision processes [4];
what is novel is that we recast this proof in terms of integral probability
metrics [5] defined through the family of functional expressions, shifting
emphasis back to properties of such families. The hope is that a judicious
choice of family might lead to something more computationally tractable
than bisimilarity whilst maintaining its pleasing theoretical guarantees.
Moreover, we use a trick from descriptive set theory to extend our re-
sults to MDPs with bounded measurable reward functions, dropping a
previous continuity constraint on rewards and Markov kernels.

1 Introduction

Probabilistic bisimulation is a notion of state-equivalence for Markov transition
systems, first introduced by Larsen and Skou [6] based upon bisimulation for
nondeterministic systems by Park and Milner [7,8]. Roughly, states are deemed
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equivalent if they transition with the same probability to classes of equivalent
states.

In the context of labelled Markov processes (LMPs), a robust quantitative
notion of probabilistic bisimilarity has been devised in the form of a class of
behavioural pseudometrics, or bisimilarity metrics, defined on the state space
of a given process [9,1,10,2,11]. The defining characteristic of these metrics is
that the kernel of each is probabilistic bisimilarity, and otherwise each assigns
a distance between 0 and 1 that measures the degree to which two states are
bisimilar.

Bisimilarity metrics were initially defined in terms of a family of functional
expressions interpreted as a real-valued logic on the states of an LMP by De-
sharnais et al. [9], building on ideas of Kozen [12] that logic could be generalized
to handle probabilistic phenomena. Subsequently, van Breugel and Worrell [2]
used category theory to define another class of bisimilarity metrics, and showed
that their definition was equivalent to a slightly modified version of the metrics
of Desharnais et al. in terms of the family of functional expressions considered.
Desharnais et al. [1] in turn reformulated this latter version solely in terms of
order-theoretic fixed-point theory. A crucial component in these formulations was
the recognition that the initial version, when lifted to a metric on distributions,
could be expressed as a Kantorovich metric.

For finite systems, the various formulations readily admit a variety of algo-
rithms to estimate the distances [9,3,13]. In particular, the initial formulation in
terms of a family of functional expressions led to an exponential-time algorithm
based on choosing a suitable finite sub-family of functionals. This was vastly im-
proved in [3] wherein an iterative polynomial-time algorithm exploited the fact
that the Kantorovich metric is a specialized linear program.

In [14,15,4], the fixed-point presentation of the LMP bisimilarity metric was
adapted to finite Markov decision processes (MDPs) and MDPs with continu-
ous state spaces, bounded continuous rewards, and (weakly) continuous Markov
kernels. Insofar as finite systems are concerned, the addition of the reward pa-
rameter is minor; in fact, the iterative polynomial-time algorithm applies more
or less directly [14]. Unfortunately, even for very simple toy systems the experi-
mental space and time required is too great to be of practical use. This issue was
explored in [16] where a Monte Carlo approach to estimating the Kantorovich
metric, and the bisimilarity metric for MDPs in general, was devised and shown
to outperform other approaches in an experimental setting. The Monte Carlo
approach was even extended to MDPs in which the state space is a compact
metric space [4]. However, this line of investigation is still very preliminary.

In this work, we seek to complete further the picture of bisimilarity metrics
for MDPs by presenting a family of functional expressions that induce the fixed-
point bisimilarity metric, in analogy with the results of [2] for LMPs. We aim
to shift the study of equivalences on MDP states to the study of such families
and their properties. The right choice of family might lead to a more easily
computable equivalence whilst maintaining some important theoretical guaran-
tees. Additionally, we hope further to investigate Monte Carlo approaches to
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estimating similarity, for example, by sampling from a given family of functions.
More specifically, we carry out the following.

1. We adapt Proposition 2 of [2] to MDPs, showing that a class of functional
expressions interpreted as a real-valued logic on the states of a given MDP
is dense in the class of Lipschitz functions with respect to the pseudometric
induced by the family. It is important to note that the proof here appears
almost unchanged from [2]; what is important is that we recast the result
in the terminology and conceptual framework of integral probability metrics
and their generating classes of functions.

2. We remove the continuity constraints of Theorem 7, which establishes the
fixed-point bisimilarity metric for continuous MDPs, using techniques from
descriptive set theory. This is, to the best of our knowledge, an original
result.

3. We propose a preliminary Monte Carlo technique for estimating the bisim-
ilarity metric by sampling from the family of functional expressions that
encodes bisimilarity for MDPs. This too, appears to be an original result,
but is based on a heuristic method and experimental evidence presented
in [17].

The paper is organized as follows. In Section 2, we provide a brief summary
on the relevant development of bisimilarity metrics and related results for LMPs
and MDPs. In Section 3, we establish a family of functional expressions that
induces a metric equal to a previously-defined bisimilarity metric for MDPs,
and then generalize the applicability of this result by removing previous conti-
nuity constraints. Finally, in Section 4 and Section 5, we propose a Monte Carlo
method for approximating the bisimilarity metric by sampling from a family of
functional expressions, and conclude with suggestions for future work.

2 Background

The purpose of this section is to recall the development of pseudometrics cap-
turing bisimilarity for labelled Markov processes, and set down what has already
been carried over to Markov decision processes. In doing so, we fix some basic
terminology and notation for probabilistic systems. Unless otherwise stated, all
the results of this section can be found in Prakash’s book on labelled Markov
processes [18].

2.1 Probability Measures on Polish Metric Spaces

Since we deal primarily with uncountably infinite state spaces, we must take
into account the tension involved in imposing the right amount of structure on a
space for general theoretical utility and imposing the right amount of structure
for practical application. Much of the work on labelled Markov processes has
been cast in the setting of Polish spaces and analytic spaces, which are general
enough to include most practical systems of interest while structured enough to
admit many useful theorems.
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Definition 1.

1. A Polish metric space is a complete, separable metric space.
2. A Polish space is a topological space that is homeomorphic to a Polish metric

space.
3. An analytic set is a subset of a Polish space that is itself the continuous

image of a Polish space.
4. A standard Borel space is a measurable space that is Borel isomorphic to a

Polish space.

If (X, τ) is a topological space, then Cb(X) is the set of continuous bounded
real-valued functions onX . If (X,BX) is a standard Borel space then we let S(X)
and P(X) denote the sets of subprobability measures and probability measures
on X respectively, and remark that each is also a standard Borel space [19]. We
will also assume that the reader is familiar with the theory of integration. If μ is
a finite measure and f is an integrable function both defined on (X,BX) then
we denote the integral of f with respect to μ by μ(f).

Working at the level of standard Borel spaces allows us to use the rich struc-
ture of Polish metric spaces without necessarily having to fix a metric before-
hand. For example, when examining probability measures on such spaces, we
can sometimes restrict to compact metric spaces, which in turn provide finite
substructure for estimation schemes or over which convergence of certain func-
tions can be made to be uniform. The following can be found in [20] and [21]
and will be used to establish Theorem 9 in Section 3.

Definition 2. Let P be a family of Borel probability measures on a metric space
(X, d).

1. P is said to be uniformly tight iff for every ε > 0 there exists a compact
subset K of X such that P (X\K) < ε for every P ∈ P .

2. P is said to be relatively compact iff every sequence of elements in P contains
a weakly convergent subsequence.

Theorem 1 (Prohorov’s Theorem). Suppose (X, d) is a Polish metric space.
Let P ⊆ P(X). Then P is relatively compact if and only if it is uniformly tight.

Theorem 2 (Dini’s Theorem). Suppose (K, τ) is a compact topological space,
(fn)n∈N is a sequence of continuous real-valued functions on K, monotonically
decreasing and converging pointwise to a continuous function f . Then (fn)n∈N

converges to f uniformly on K.

2.2 Stochastic Kernels and Markov Processes

Definition 3. Let (X,BX) and (Y,BY ) be standard Borel spaces. A sub-Markov
kernel1 is a Borel measurable map from (X,BX) to (S(Y ),BS(Y )). AMarkov ker-
nel is a Borel measurable map from (X,BX) to (P(Y ),BP(Y )).

1 This is also known as a stochastic relation, a stochastic transition kernel, or simply a
stochastic kernel.
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Equivalently, K is a sub-Markov (Markov) kernel from X to Y iff

1. K(x) is a sub-probability (probability) measure on (Y,BY ) for each x ∈ X ,
and

2. x �→ K(x)(B) is a measurable map for each B ∈ BY .

We will simply write “K is a sub-Markov (Markov) kernel on X” when it
is implicitly assumed that Y = X . Such stochastic kernels play the role of a
transition relation in stochastic transition systems with continuous state spaces.
The two Markov processes that we examine in detail are the labelled Markov
process and the Markov decision process.

Definition 4. A labelled Markov process (LMP) is a tuple (S,BS , A, {Ka : a ∈
A}), where (S,BS) is a standard Borel space, A is a finite set of labels, and for
a ∈ A, Ka is a sub-Markov kernel on S.

Definition 5. A Markov decision process (MDP) is a tuple (S,BS , A, {Pa : a ∈
A}, r), where (S,BS) is a standard Borel space, A is a finite set of actions,
r : A× S → R is a bounded measurable reward function, and for a ∈ A, Pa is a
Markov kernel on S.

For each a ∈ A we will denote by ra : S → R the function defined by ra(s) =
r(a, s).

Remark 1. In [9,22,23,10], Desharnais, Panangaden, et al. consider LMPs in
which the state spaces are analytic sets; this is largely because the quotient
of a Polish space may fail to be Polish but is always guaranteed to be analytic.
We will not consider analytic sets in this work, but the interested reader should
keep this in mind.

2.3 Bisimulation

We present bisimilarity for LMPs and MDPs as outlined in [10] and [4] and note
that the latter amounts to little more than a mild extension through the addition
of rewards to the definition of the former.

Definition 6. Given a relation R on a set S, a subset X of S is said to be
R-closed if and only if the collection of all those elements of S that it is related
to by R, R(X) = {s′ ∈ S|∃s ∈ X, sRs′}, is itself contained in X.

Definition 7. Given a relation R on a measurable space (S,Σ), we write
Σ(R) for the set of those Σ-measurable sets that are also R-closed,
{X ∈ Σ|R(X) ⊆ X}.

When R is an equivalence relation then to say that a set X is R-closed is
equivalent to saying that X is a union of R-equivalence classes. In this case Σ(R)
consists of those measurable sets that can be partitioned into R-equivalence
classes.
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Definition 8. Let (S,BS , A, {Ka : a ∈ A}) be an LMP. An equivalence relation
R on S is a bisimulation relation if and only if it satisfies

sRs′ ⇔ for every a ∈ A and for every X ∈ Σ(R), Ka(s)(X) = Ka(s
′)(X).

Bisimilarity is the largest of the bisimulation relations.

Definition 9. Let (S,BS , A, {Pa : a ∈ A}, r) be an MDP. An equivalence rela-
tion R on S is a bisimulation relation if and only if it satisfies

sRs′ ⇔ for every a ∈ A, ra(s) = ra(s
′) and for every X ∈ Σ(R), Pa(s)(X) = Pa(s

′)(X).

Bisimilarity is the largest of the bisimulation relations.

It turns out that bisimulation for LMPS and MDPs can be equivalently cast
as the maximal fixed-point of a monotone functional on a complete lattice. We
present this here only in the context of MDPs; the statement for LMPs is anal-
ogous.

Theorem 3. Let (S,BS , A, {Pa : a ∈ A}, r) be an MDP, τ a Polish topology on
S generating BS and such that for each a in A, ra and Pa are continuous with
respect to τ , P(S) being endowed with the topology of weak convergence induced
by τ . Assume that the image of r is contained in [0, 1]. Define F : Equ → Equ
by

sF(R)s′ ⇔ ∀a ∈ A, ra(s) = ra(s
′) and ∀X ∈ Σ(R), Pa(s)(X) = Pa(s

′)(X),

where Equ is the set of equivalence relations on S equipped with subset ordering.
Then the greatest fixed point of F is bisimilarity.

Lastly, we remark that bisimulation for LMPs has a logical characterization,
and in turn, a characterization in terms of a real-valued modal logic. We omit
the details for lack of space, but return to the latter idea in subsequent sections.

2.4 Probability Metrics

Metrizing bisimilarity for Markov processes essentially involves assigning a dis-
tance to their Markov kernels via a suitable probability metric. Gibbs and Su [24]
survey a variety of such metrics. LMP bisimilarity was initially defined in terms
of an integral probability metric in [10], and later recast in terms of the Kan-
torovich metric in [2]. In order to present the Kantorovich metric, we first recall
the definition of lower semicontinuity.

Definition 10. Let (X, τ) be a topological space and let f : X → R∪{−∞,∞}.
Then f is lower semicontinuous if for each half-open interval of the form (r,∞),
the preimage f−1(r,∞) ∈ τ .
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The Kantorovich Metric

Definition 11. Let S be a Polish space, h a bounded pseudometric on S that is
lower semicontinuous on S×S with respect to the product topology, and Lip(h) be
the set of all bounded functions f : S → R that are measurable with respect to the
Borel σ-algebra on S and that satisfy the Lipschitz condition f(x)−f(y) ≤ h(x, y)
for every x, y ∈ S. Let P,Q ∈ P(S). Then the Kantorovich metric K(h) is defined
by

K(h)(P,Q) = sup
f∈Lip(h)

(P (f)−Q(f)).

Lemma 1. Let S, h, P , and Q be as in Definition 11. Let Λ(P,Q) consist of
all measures on the product space S × S with marginals P and Q, i.e.,

Λ(P,Q)={λ ∈ P(S×S) : λ(E×S)=P (E) and λ(S×E)=Q(E) for all E ∈ BS}. (1)

Then the Kantorovich metric K(h) satisfies the inequality:

sup
f∈Lip(h,Cb(S))

(P (f)−Q(f)) ≤ K(h)(P,Q) ≤ inf
λ∈Λ(P,Q)

λ(h) (2)

where Lip(h,Cb(S)) denotes functions on S that are continuous and bounded,
1-Lipschitz with respect to h, and have range [0, ‖h‖].

Note that h need not generate the topology on S, and so Lipschitz continuity
with respect to h does not immediately imply continuity on S.

The leftmost and rightmost terms in inequality 2 are examples of infinite
linear programs in duality. It is a highly nontrivial result that there is no duality
gap in this case (see for example Theorem 1.3 and the proof of Theorem 1.14
in [25]).

Theorem 4 (Kantorovich-Rubinstein Duality Theorem). Assume the
conditions of Definition 11 and Lemma 1. Then there is no duality gap in
equation 2, that is,

K(h)(P,Q) = sup
f∈Lip(h,Cb(S))

(P (f)−Q(f)) = inf
λ∈Λ(P,Q)

λ(h) (3)

Note that for any point masses δx, δy, we have K(h)(δx, δy) = h(x, y) since
δ(x,y) is the only measure with marginals δx and δy on the right-hand side of
Equation 3. As a result, we obtain that any bounded lower semicontinuous pseu-
dometric h can be expressed as h(x, y) = supf∈F (f(x)− f(y)) for some family
of continuous functions F .

Integral Probability Metrics. The intuition behind the Kantorovich metric is
that the quantitive difference between two probability measures can be measured
in terms of the maximal difference between the expected values with respect to
the two measures, of a class of test functions - in this case, the class of Lipschitz
functions. For an arbitrary class of test functions, the induced metric is known
as the integral probability metric generated by that class. All definitions and
results of this subsection are taken from [5].
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Definition 12. Let F be a subset of bounded measurable real-valued functions
on a Polish metric space (S, d). Then the integral probabilty metric associated
with F is the probability metric IPM(F ) on P(S) defined by

IPM(F )(P,Q) = sup
f∈F

|P (f)−Q(f)|

for probability measures P and Q.

For convenience, we will simply denote IPM(F ) by F . Remark that in general
F is allowed to take on infinite values, though we will work with bounded sets
of functions to avoid this. Additionally, we remark that this probability metric
in turn induces a pseudometric on S via

F (x, y) := F (δx, δy).

Thus, as an abuse of notation we will use F to refer to a family of functions, the
associated probability metric, and the induced pseudometric, with the intended
meaning clear from the context.

Definition 13. Let F be a subset of bounded measurable real-valued functions
on a Polish metric space (S, d). The maximal generator of the integral probabil-
ity metric associated to F is the set RF of all bounded measurable real-valued
functions on (S, d), each of which satisifies the following: g ∈ RF if and only if

|P (g)−Q(g)| ≤ F (P,Q)

for every P and Q in P(S).

It follows that RF is the largest such family, and that RF (P,Q) = F (P,Q).
The following is Theorem 3.3 of [5].

Theorem 5. Let F be an arbitrary generator of RF . Then

1. RF contains the convex hull of F ;
2. f ∈ RF implies αf + β ∈ RF for all α ∈ [0, 1] and β ∈ R;
3. If the sequence (fn)n∈N in RF converges uniformly to f , then f ∈ RF .

In particular, for a given F , RF is closed under uniform convergence.

2.5 Bisimulation Metrics

The metric analogue of bisimulation for LMPs was initially cast in terms of
a family of functional expressions, interpreted as a real-valued logic over the
states of a given Markov process [9]. A slightly modified version was then shown
to be equivalent to a bisimultaion metric developed in the context of category
theory in [2]. In [1], the authors in turn recast this latter metric fully using
order-theoretic fixed-point theory for discrete systems. Finally, this method was
generalized to develop a bisimulation metric for MDPs with continuous state
spaces in [4].

We present here the logic of [2] and the fixed-point results of [4], as these are
the results we will attempt to join in the subsequent sections.
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Definition 14. For each c ∈ (0, 1], Fc represents the family of functional ex-
pressions generated by the following grammar.

f ::= 1 |1− f | 〈a〉f | max(f, f) | f 7 q (4)

where q ∈ Q ∩ [0, 1] and a belongs to a fixed set of labels A.

Let M = (S,BS , A, {Ka : a ∈ A}) be an LMP. The interpretation of f ∈ Fc,
fM : S → [0, 1], is defined inductively. Let s ∈ S. Then

1M (s) = 1

(1− f)M (s) = 1− fM (s)

(〈a〉f)M (s) = c ·Ka(s)(fM )

max(f1, f2)M (s) = max((f1)M (s), (f2)M (s))

(f 7 q)M (s) = max(fM (s)− q, 0),

Henceforth, we shall omit the subscript M and use f to refer both to an expres-
sion and its interpretation, with the difference clear from the context.

Remark 2. We may also add the expressions min(f, f) and f ⊕ q as shorthand
for the expressions 1−max(1−f, 1−f)) and 1− ((1−f)7 q). The operations 7
and ⊕ denoted truncated subtraction in the unit interval and truncated addition
in the unit interval, respectively.

The relevance of such a formulation arises via a behavioural pseudometric.
The following is Theorem 3 of [2] and Theorem 8.2 of [18].

Theorem 6. Let M = (S,BS , A, {Ka : a ∈ A}) be an LMP and for c ∈ (0, 1],
let Fc be the family of functional expressions defined in Definition 14. Define
the map dc on S × S as follows:

dc(x, y) = sup
Fc

|f(x)− f(y)|. (5)

Then dc is a pseudometric on S whose kernel is bisimilarity.

As previously mentioned, the metric dc can be formulated in terms of fixed-
point theory, and indeed this construction has been carried over to MDPs, with
the minor addition of taking into account reward differences. The following is
Theorem 3.12 of [4].

Theorem 7. Let M = (S,BS , A, {Pa : a ∈ A}, r) be an MDP and let τ be a
Polish topology on S that generates BS . Assume that the image of r is contained
in [0, 1], and that for each a in A, ra and Pa are continuous, P(S) endowed with
the weak topology induced by τ . Let c ∈ (0, 1) be a discount factor, and lscm be be
the set of bounded pseudometrics on S that are lower semicontinuous on S × S
endowed with the product topology induced by τ . Define Fc : lscm → lscm by

Fc(h)(s, s
′) = max

a∈A
((1 − c)|ra(s)− ra(s′)|+ c · K(h)(Pa(s), Pa(s′)))

where K(h) is the Kantorovich metric induced by h ∈ lscm. Then
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1. Fc has a unique fixed point ρ∗c : S × S → [0, 1],
2. The kernel of ρ∗c is bisimilarity,
3. for any h0 ∈ lscm, limn→∞ Fn

c (h0) = ρ∗c ,
4. ρ∗c is continuous on S × S,
5. ρ∗c is continuous in r and P , and
6. If MDP M ′ = (S,BS , A, {Pa : a ∈ A}, k · r) for some k ∈ [0, 1] then ρ∗c,M ′ =
k · ρ∗c,M .

Whereas the interest in finding small bisimilar systems for LMPs lies in being
able to test properties of a system specified in a given logic, the interest in finding
small bisimilar systems for MDPs concerns finding optimal planning strategies
in terms of value functions. Given a discount factor γ ∈ [0, 1), the optimal value
function is the unique solution to the following Bellman optimality fixed-point
equation.

v∗(s) = max
a∈A

(ra(s) + γPa(s)(v
∗)) for each s ∈ S.

In general, such a v∗ need not exist. Even if it does, there may not be a well-
behaved, that is to say measurable, policy that is captured by it. Fortunately,
there are several mild restrictions under which this is not the case. According to
Theorem 8.3.6 and its preceding remarks in [26], if the state space is Polish and
the reward function is uniformly bounded then there exists a unique solution v∗

to the Bellman optimality equation and there exists a measurable optimal policy
for it as well.

The following is Theorem 3.20 in [4].

Theorem 8. Let M = (S,BS , A, {Pa : a ∈ A}, r) be an MDP and let τ be a
Polish topology on S that generates BS . Assume that the image of r is contained
in [0, 1], and that for each a in A, ra and Pa are continuous, P(S) endowed with
the weak topology induced by τ . Let c ∈ (0, 1) be a discount factor. Let v∗γ be
the optimal value function for the expected total discounted reward associated
with M and discount factor γ ∈ [0, 1). Suppose γ ≤ c. Then v∗γ is Lipschitz

continuous with respect to ρ∗c with Lipschitz constant 1
1−c , i.e., |v∗γ(x)− v∗γ(y)| ≤

(1− c)−1ρ∗c(x, y).

3 Bisimulation Metrics for MDPs Revisited

The goal of this section is two-fold. First, we establish a family of functional
expressions as in Definition 14 that captures bisimulation for MDPs as defined
in Theorem 7. This amounts to little more than Proposition 2 of [2] but using
the terminology of generating classes for integral probability metrics. Second, we
generalize the applicability of these results for MDPs by removing the continuity
constraints in Theorem 7.

3.1 When Is the Integral Probability Metric the Kantorovich
Metric?

In this section we will show that under some very mild conditions, the maximal
generator of a family of functional expressions is in fact the class of Lipschitz
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functions with respect to the distance induced by that family. In this case, the
integral probability metric and the Kantorovich metric induced by the family
coincide.

The following result is Lemma 4.6 of [1], itself adapted from Proposition 2
of [2], presented almost verbatim. The imposed Lipschitz condition makes mea-
surability concerns almost an afterthought. What really matters here is the re-
framing of the result in terms of the integral probability metric and its maximal
generator. Doing so will allow us to examine simpler grammars for bisimulation,
as well as ways of approximating these.

Theorem 9. Suppose (S, d) is a Polish metric space and F is a family of real-
valued functions on S that take values in the unit interval and are 1-Lipschitz
continuous with respect to d. Suppose further that F contains the constant zero
function and is closed under truncated addition with rationals in the unit interval,
subtraction from the constant function 1, and taking the pointwise maximum of
two functions. Let RF be the maximal generator of F and Lip(F ) be the set
of real-valued measurable functions on S that are 1-Lipschitz with respect to the
metric induced by F . Then RF = Lip(F ) ⊆ Cb(S).

Proof. Firstly note that since by assumption all members of the family F are
1-Lipschitz continuous with respect to d, the induced pseudometric F ≤ d.
Thus, Lip(F ) ⊆ Lip(d) ⊆ Cb(S). From the definition of RF applied to Dirac
measures, it immediately follows that each of its members is 1-Lipschitz with
respect to the pseudometric induced by F . Thus, RF ⊆ Lip(F ). In particular,
every member of the maximal generator belongs to Cb(S).

The reverse inclusion Lip(F ) ⊆ RF is somewhat more complicated to es-
tablish. By Theorem 5, we have that RF is closed with respect to uniform
convergence, and thus is also generated by F , the closure of F with respect to
uniform convergence. In fact, we will show that F is dense in Lip(F ) in the
metric of uniform convergence; for then it follows that Lip(F ) = F ⊆ RF . We
do so in two steps. First we establish the result in the case where (S, d) is a
compact metric space, as this allows us to replace pointwise convergence by uni-
form convergence at a certain point in the proof. Finally, we extend this result
to the general case of a Polish metric space by approximating it from within by
a suitable compact subset.

Assume that (S, d) is a compact metric space. It is easily seen that F contains
the constant zero function and remains closed under truncated addition with all
constants in the unit interval, subtraction from 1, and taking maxima; in fact,
it now follows that F is closed under countable suprema. To see this, suppose
(fn)n∈N is a sequence in F . Since F is uniformly bounded by 1 it follows that
f = supn∈N fn exists and moreover it is continuous, as each fn is 1-Lipschitz
continuous with respect to d. Define (hn)n∈N in F by hn = max1≤i≤n fi. Then
(hn)n∈N is monotonically increasing and converges pointwise to f . By Theorem 2,
(hn)n∈N converges uniformly to f , and hence f belongs to F . It now also follows
that F is closed under truncated subtraction with constants in the unit interval,
taking minima, and taking infima.
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Let g ∈ Lip(F ). Without loss of generality, we assume the image of g belongs
to [0, 1]; for the Lipschitz property with respect toF implies that sup g−inf g ≤ 1
and we may replace g by g′ := g− inf g. It follows that if g′ belongs to RF then
so does g = g′ + inf g.

Let ε > 0. Then there exists fxyε ∈ F such that

g(x)− g(y) ≤ F (x, y) ≤ fxyε(x)− fxyε(y) + ε (6)

Define wxyε ∈ F as follows:

wxyε(z) =

⎧⎪⎨⎪⎩
fxyε(z) if fxyε(x) = g(x)

fxyε(z)7[0,1] (fxyε(x)− g(x)) if fxyε(x) > g(x)

fxyε(z)⊕[0,1] (g(x) − fxyε(x)) if fxyε(x) < g(x)

(7)

Then wxyε(x) = g(x) and wxyε(y) ≤ g(y) + ε.
Let (un)n∈N be a dense sequence in (S, d). Define (φnmε)n,m∈N ⊆ F by φnmε =

wunumε and define (φnε)n∈N by φnε = infm∈N φnmε. It follows that (φnε)n∈N ⊆
F . Moreover,

φnε(un) = g(un) ≤ g(un) + ε and for each m �= n, φnε(um) ≤ g(um) + ε.

Define ψε = supn∈N φnε ∈ F . Then for any n ∈ N,

g(un) ≤ ψε(un) ≤ g(un) + ε. (8)

Let x ∈ S. Then as the inequalities in line 8 hold for any subsequence of (un)n∈N

converging to x, and as both g and ψε are continuous, it follows by taking limits
that for any x ∈ S,

g(x) ≤ ψε(x) ≤ g(x) + ε, or equivalently‖ψε − g‖ < ε.

Define the sequence (gn)n∈N in F by gn = ψ 1
n
. Then (gn)n∈N converges

uniformly to g. Therefore, g belongs to F ⊆ RF , i.e. Lip(F ) ⊆ RF .
Now suppose (S, d) is a general Polish metric space. Let P,Q ∈ P(S). Then

P = {P,Q} is finite, hence relatively compact. By Theorem 1, P is uniformly
tight. Let 0 < ε < 1

2 . Then there exists a compact subset K of S such that
P (S\K) < ε and Q(S\K) < ε.

Let G denote the functions of F restricted to K; for f ∈ F , we will write
fK ∈ G . Then as G still contains the constant zero function, and is closed under
the same operations as F , and as (K, d) is a compact metric space, we have
RG = Lip(G ). Let g ∈ Lip(F ); as before, we assume without loss of generality
that the image of g is contained in [0, 1]. Moreover, let gK be g restricted to K
and remark that gK ∈ Lip(G ). Next we define PK , QK ∈ P(K) by

PK(E) =
P (E ∩K)

P (K)
and QK(E) =

Q(E ∩K)

Q(K)
.
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Remark that P (K) > 1 − ε > 1
2 , and similarly for Q(K), so that each is well-

defined. Then as gK ∈ RG ,

|PK(gK)−QK(gK)| ≤ G (PK , QK).

Next for any 1-bounded measurable function u on S and it’s restriction uK to
K, we have

|P (u)− PK(uK)|= |P (u · δK)+P (u · δS\K)−PK(uK)|= |(P (u · δK)−PK(uK))+P (u · δS\K)|

≤ |1− 1

P (K)
| · P (u · δK) + 1 · P (S\K) ≤ 1

1− ε
− 1 + ε ≤ ε(2− ε)

1− ε
≤ 3ε,

where δK is the indicator function on K. Similarly |Q(u) − QK(uK)| ≤ 3ε.
Finally,

|P (g)−Q(g)| ≤ |P (g)− PK(gK)|+ |PK(gK)−QK(gK)|+ |QK(gK)−Q(g)|
≤ 3ε+ G (PK , QK) + 3ε ≤ 6ε + sup

f∈F
|PK(fK)−QK(fK)|

≤ 6ε+ sup
f∈F

(|PK(fK)− P (f)|+ |P (f)−Q(f)|+ |Q(f)−QK(fK)|)

≤ 12ε + sup
f∈F

(|P (f)−Q(f)|) ≤ 12ε +F (P,Q).

As ε is arbitrary, it follows that |P (g)−Q(g)| ≤ F (P,Q) and g ∈ RF .
��

Corollary 1. Suppose (S, d) is a Polish metric space and F is a family of real-
valued functions on S that take values in the unit interval and are 1-Lipschitz
continuous with respect to d. Suppose further that F contains the constant zero
function and is closed under truncated addition with rationals in the unit inter-
val, subtraction from the constant function 1, and taking the pointwise maximum
of two functions. Then the integral probability metric associated to F is the Kan-
torovich metric of the pseudometric induced by F , i.e. F (P,Q) = K(F )(P,Q)
for any P,Q ∈ P(S).

3.2 A Family of Functional Expressions for MDP Bisimulation

We now define a family of functional expressions as in Definition 14 that when
evaluated on a given MDP, capture bisimilarity.

Definition 15. For each c ∈ (0, 1], Fc represents the family of functional ex-
pressions generated by the following grammar.

f ::= 0 |1− f | 〈a〉f | max(f, f) | f ⊕ q (9)

where q ∈ Q ∩ [0, 1] and a belongs to a fixed set of labels A.
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Let M = (S,BS , A, {Pa : a ∈ A}, r) be an MDP. The interpretation of
f ∈ Fc, fM : S → [0, 1], is defined inductively. Let s ∈ S. Then

0M (s) = 0

(1− f)M (s) = 1− fM (s)

(〈a〉f)M (s) = ra(s) + c · Pa(s)(fM )

max(f1, f2)M (s) = max((f1)M (s), (f2)M (s))

(f ⊕ q)M (s) = min(fM (s) + q, 1).

As before, we shall omit the subscript M when it is clear from the context, and
remark that the family also contains the expressions min(f, f) and f 7 q.

We now show that the integral probability metric generated by Fc agrees
with the Kantorovich metric induced by the fixed-point bisimulation metric for
MDPs. This is essentially the proof method in all of Section 4 of [1].

Theorem 10. Suppose M = (S,BS , A, {Pa : a ∈ A}, r) is an MDP and let
τ be a Polish topology on S that generates BS. Assume that the image of r is
contained in [0, 1], and that for each a in A, ra and Pa are continuous, P(S)
endowed with the weak topology induced by τ . Let c ∈ (0, 1) be a discount factor,
and Fc be the family of functional expressions defined in Definition 15. Let G
be a family of functional expressions such that Fc ⊆ G ⊆ Lip(Fc). Then the
pseudometric induced by G coincides with the fixed-point metric ρ∗c given by
Theorem 7.

Proof. Let (S, d) be a Polish metric space such that d generates τ . Since ρ∗c
is continuous, we can assume without loss of generality that ρ∗c ≤ d, as we
can simply replace d by the equivalent metric d + ρ∗c . By structural induction,
Fc ≤ ρ∗c ≤ d, and the range of each member of Fc is [0, 1]. Therefore by
Corollary 1, the integral probability metric and the kantorovich metric induced
by Fc agree.

Notice that since Fc is closed under subtraction from the constant function
1, we have that for any P,Q ∈ P(S)

Fc(P,Q) = sup
f∈Fc

|P (f)−Q(f)| = sup
f∈Fc

max(P (f)−Q(f), Q(f)− P (f))

= max( sup
f∈Fc

P (f)−Q(f), sup
f∈Fc

Q(f)− P (f))

= max( sup
f∈Fc

P (f)−Q(f), sup
f∈Fc

P (1− f)−Q(1− f))

= max( sup
f∈Fc

P (f)−Q(f), sup
f∈Fc

P (f)−Q(f))

= sup
f∈Fc

P (f)−Q(f)

which is not necessarily the case otherwise. A simple structural induction next
shows that

Fc(x, y) = sup
a∈A,f∈Fc

|〈a〉f(x)− 〈a〉f(y)|.



Bisimulation for Markov Decision Processes 333

Therefore,

Fc(x, y) = sup
a∈A,f∈Fc

max(〈a〉f(x)− 〈a〉f(y), 〈a〉f(y)− 〈a〉f(x))

= sup
a∈A,f∈Fc

max
(
(1− c)(ra(x)− ra(y)) + c(Pa(x)(f)− Pa(y)(f)),

(1− c)(ra(y)− ra(x)) + c(Pa(y)(f)− Pa(x)(f))
)

= max
a∈A

max
(
(1− c)(ra(x)− ra(y)) + c sup

f∈Fc

(Pa(x)(f)− Pa(y)(f)),

(1− c)(ra(y)− ra(x)) + c sup
f∈Fc

(Pa(y)(f)− Pa(x)(f))
)

= max
a∈A

max
(
(1− c)(ra(x)− ra(y)) + c ·Fc(Pa(x), Pa(y)),

(1− c)(ra(y)− ra(x)) + c ·Fc(Pa(x), Pa(y))
)

= max
a∈A

(1− c)max
(
(ra(x)− ra(y)), (ra(y)− ra(x))

)
+ c ·Fc(Pa(x), Pa(y))

= max
a∈A

(1− c)|ra(x)− ra(y)|+ c ·Fc(Pa(x), Pa(y))

= max
a∈A

(1− c)|ra(x)− ra(y)|+ c · K(Fc)(Pa(x), Pa(y))

= Fc(Fc)(x, y).

The penultimate line follows from Corollary 1. Therefore, Fc is a fixed-point of
the functional Fc defined in Theorem 7. As the fixed-point is unique, it follows
that ρ∗c = Fc. Finally, it follows from Theorem 9 and the definition of maximal
generator that G = Fc = ρ∗c . ��

Remark 3. Theorem 10 provides another proof of Theorem 8. Consider the fam-
ily G with the expression for the Bellman operator Bγ for the MDP M =
(S,BS , A, {Pa : a ∈ A}, (1 − c)r) and discount factor γ ≤ c in [0, 1). Since
Lip(Fc) is closed under Bγ and the optimal value function scales with rewards,
the result follows immediately. Otherwise, we obtain the result only for V ∗

c since
Bc(f) = maxa∈A〈a〉f .

The usefulness of this theorem derives from our choice of G . On the one hand,
we might attempt to see what is the minimal family, if one exists, that captures
bisimilarity. On the other hand, we might consider explicitly adding operators,
like the Bellman operator, that could help an estimation scheme converge faster.
We will explore this further in Section 4.

Practical application is still hindered by the continuity constraints on the
rewards and Markov kernels, as many interesting problems model discontinuous
phenomena. In the next section, we will work to remove these constraints.

3.3 The General Case: Continuity from Measurability

We conclude this section with a neat little result from descriptive set theory
that was first pointed out to the authors by Ernst-Erich Doberkat at the 2012
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Bellairs Workshop on Probabilistic Systems organized by Prakash. In the most
interesting reinforcement learning applications, continuity of the reward process
cannot be guaranteed. Amazingly, we may remove the explicit assumption of
continuity in [4] and the result still holds! We seek to establish the following.

Theorem 11. Let (X, τ) be a Polish space and (P(X), τP(X)) be the space of
probability measures on X equipped with the topology of weak convergence with
respect to τ . Let K : (X,BX)→ (P(X),BP(X)) be a stochastic kernel. Then there
exists a finer Polish topology τ ′ on X such that σ(τ ′) = BX , σ(τ ′

P(X)) = BP(X),

and K : (X, τ ′)→ (P(X), τ ′
P(X)) is continuous.

This result is a minor reworking of the following well-known measurability-
to-continuity theorem, which is Corollary 3.2.6 in [27].

Theorem 12. Suppose (X, τ) is a Polish space, Y a separable metric space, and
f : X → Y a Borel map. Then there is a finer Polish topology τ ′ on X generating
the same Borel σ-algebra such that f : (X, τ ′)→ Y is continuous.

We will also make use of this characterization of Borel σ-algebra on the set of
probability measures, which is Proposition 7.25 in [28].

Proposition 1. Let X be a separable metrizable space and E a collection of
subsets of X which generates BX and is closed under finite intersections. Then
BP (X) is the smallest σ-algebra with respect to which all functions of the form
ΘE(p) = p(E), for E ∈ E, are measurable from P (X) to [0, 1], i.e.,

BP (X) = σ[∪E∈EΘ
−1
E (BR)].

For ease of exposition, we will divide the result into the following series of
steps.

Lemma 2. Let (X, τ) and K be as in Theorem 11. Then there exists an increas-
ing sequence (τn)n∈N of Polish topologies on X finer that τ such that σ(τn) = BX

and K : (X, τn+1)→ (P(X), (τn)P(X)) is continuous for all n ∈ N.

Proof. By Proposition 1 for any Polish topology τ ′ generating BX , τ ′
P(X) gener-

ates BP(X). It is well known [29] that τ ′
P(X) is also a Polish topology. Therefore,

K : (X, τ) → (P(X), τP(X)) is a Borel map. By Theorem 12, there exists a finer
Polish topology τ0 such that σ(τ0) = BX and K : (X, τ0) → (P(X), τP(X)) is
continuous; but then K : (X, τ0) → (P(X), (τ0)P(X)) is Borel. Repeating this
argument, there exists a finer topology τ1 on X such that σ(τ1) = BX and
K : (X, τ1) → (P(X), (τ0)P(X)) is continuous. The result now easily follows for
all n ∈ N by induction. ��

Lemma 3. Let (X, τ), K, and (τn)n∈N be as in Lemma 2. Then the least up-
per bound topology τ∞ = ∨n∈Nτn exists and is Polish, σ(τ∞) = BX , and
K : (X, τ∞)→ (P(X), (τn)P(X)) is continuous for all n ∈ N.



Bisimulation for Markov Decision Processes 335

Remark 4 ([27] Observation 2, pg. 93). Let (τn)n∈N be a sequence of Polish
topologies on X such that for any two distinct elements x, y of X , there exist
disjoint sets U, V ∈ ∩n∈Nτn such that x ∈ U and y ∈ V . Then the topology τ∞
generated by ∪n∈Nτn is Polish.

Proof. By Remark 4, τ∞ exists, is Polish, and is generated by ∪n∈Nτn. So ∪n∈Nτn
is a subbasis for τ∞. Let O ∈ τ∞. Then O is an arbitrary union of finite inter-
sections of elements of ∪n∈Nτn. So O = ∪j∈J (Oj,1 ∩Oj,2 ∩ · · · ∩Oj,nj ) for some
index set J . Let i(j, k) = min{n ∈ N|Oj,k ∈ τn} and i(j) = max{i(j, k)|1 ≤
k ≤ nj}. Then Oj = ∩1≤k≤njOj,k ∈ τi(j) because (τn)n∈N is increasing. So
O = ∪j∈JOj = ∪n∈N(∪{j|i(j)=n}Oj) = ∪n∈NO

′
n where O′

n = ∪{j|i(j)=n}Oj ∈ τn.
Therefore, each τ∞-open set is a countable union of open sets in ∪n∈Nτn. Since
each O′

n ∈ σ(τn) = BX , τ∞ ⊆ BX and σ(τ∞) ⊆ BX . On the other hand,
τ0 ⊆ τ∞ implies BX = σ(τ0) ⊆ σ(τ∞). Therefore, σ(τ∞) = BX .

Finally, continuity of K : (X, τ∞) → (P(X), (τn)P(X)) follows from that of
K : (X, τn+1)→ (P(X), (τn)P(X)), for all n ∈ N. ��

For the next result, we will need to appeal to the famous Portmanteau The-
orem, as found for example in [20].

Theorem 13 (Portmanteau Theorem). Let P and (Pn)n∈N be a sequence
of probability measures on (X,Σ), a metric space with its Borel σ-algebra. Then
the following five conditions are equivalent:

1. Pn ⇒ P .
2. lim infn

∫
fdPn =

∫
fdP for all bounded, uniformly continuous real f .

3. lim supn Pn(F ) ≤ P (F ) for all closed F .
4. lim infn Pn(G) ≥ P (G) for all open G.
5. limnPn(A) = P (A) for all P -continuity sets A.

Lemma 4. The least upper bound of the weak topologies ∨n∈N(τn)P(X) exists
and

∨n∈N(τn)P(X) = (τ∞)P(X).

Proof. Again, ((τn)P(X))n∈N is an increasing sequence of Polish spaces, and so
∨n∈N(τn)P(X) exists. Clearly, ∨n∈N(τn)P(X) ⊆ (τ∞)P(X).

Suppose Pn ⇒ P in ∨n∈N(τn)P(X). Then Pn ⇒ P in (τn)P(X) for all n ∈ N.
Let O be a τ∞-open set. Then as in the proof of Lemma 3, O = ∪n∈NOn where
each On ∈ τn. Let Gj = ∪jn=1On ∈ τj ⊆ BX . Then (Gj)j∈N increases to O. So
Pn(O) ≥ Pn(Gj) for all n, j ∈ N. So lim infn Pn(O) ≥ lim inf Pn(Gj) ≥ P (Gj)
for all j ∈ N by Theorem 13 in (τj)P(X). So lim infn Pn(O) ≥ limj P (Gj) = P (O)
by continuity from below. So Pn ⇒ P in (τ∞)P(X) by Theorem 13 in (τ∞)P(X).
Therefore, (τ∞)P(X) ⊆ ∨n∈N(τn)P(X) whence equality follows. ��

We are now able to prove the main theorem of this section.

Proof (Theorem 11). By Lemmas 2 and 3, there exist Polish topologies (τn)n∈N

and τ∞ on X , finer than τ , such that σ(τ∞) = BX and K : (X, τ∞) →
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(P(X), (τn)P(X)) is continuous for all n ∈ N. This is equivalent to continu-
ity of K : (X, τ∞) → (P(X),∨n∈N(τn)P(X)) since convergence in ∨n∈N(τn)P(X)

is equivalent to convergence in (τn)P(X) for all n ∈ N (again this follows
from ∨n∈N(τn)P(X)-open sets being unions of (τn)P(X)-open sets). But then K :
(X, τ∞)→ (P(X), (τ∞)P(X)) is continuous by Lemma 4. ��

This argument easily extends to a countable family of stochastic kernels, so
that we have the following.

Corollary 2. Let (X, τ) be a Polish space and (P(X), τP(X)) be the space of
probability measures on X equipped with the topology of weak convergence with
respect to τ . Let (Kn)n∈N be a sequence of stochastic kernels on X. Then there
exists a finer Polish topology τ ′ on X such that σ(τ ′) = BX , σ(τ ′

P(X)) = BP(X),

and each Kn : (X, τ ′)→ (P(X), τ ′
P(X)) is continuous.

Corollary 3. Let M = (S,BS , A, {Pa : a ∈ A}, r) be an MDP. Then there ex-
ists a Polish topology τ on S that generates BS and makes ra and Pa continuous
for each a in A, where P(S) is endowed with the topology of weak convergence
induced by τ .

Thus, if r is bounded and measurable we may apply Theorem 7 to obtain a
quantitative form of bisimilarity. It is important to keep in mind what is going
on here from a practical point of view: if we begin with a modelling scenario
in which the rewards are discontinuous with a given metric then this amounts
to changing that metric to one with respect to which rewards are continuous.
Therefore the usefulness of this result is contingent on the modelling problem at
hand not crucially being dependent on any specific metric.

With that caveat in mind, we now come to the main result of this paper, a
general version of Theorem 10.

Corollary 4. Suppose M = (S,BS , A, {Pa : a ∈ A}, r) is an MDP and that
the image of r is contained in [0, 1]. Let c ∈ (0, 1) be a discount factor, Fc be
the family of functional expressions defined in Definition 15, and G be a family
of functional expressions such that Fc ⊆ G ⊆ Lip(Fc). Then the pseudometric
induced by G is the unique fixed-point ρ∗c satisfying the equation

ρ∗c(x, y) = max
a∈A

((1− c)|ra(x) − ra(y)|+ c · K(ρ∗c)(Pa(x), Pa(y))) for all x, y ∈ S

and whose kernel is bisimilarity.

4 Estimating Bisimulation

In this section, we discuss how focusing on families of functional expressions may
make estimating bisimilarity more amenable in practice. Assume we are given
an MDP M = (S,BS , A, {Pa : a ∈ A}, r) where the image of r is contained in
[0, 1]. Computing a bisimilarity metric for a finiteM has encompassed estimating
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the integral probability metric Fc(P,Q), yielding an algorithm with exponen-
tial complexity [9], computing the Kantorovich metric, K(·)(P,Q), yielding an
algorithm with polynomial complexity [3], and solving a linear program [30].

The major issue is that although computing the linear programming formula-
tions of bisimilarity in the ideal case can be done in polynomial time, to do so in
practice is highly inefficient; to understand why, one may remark that the linear
programs for a given MDP are more complex than solving for the discounted
value function for that MDP; although the latter is also known to be solvable
in polynomial time by linear programming [31], in practice Monte Carlo tech-
niques have been found to be much more successful. In fact, in [4], we focused
on estimating the Kantorovich metric by replacing each P and Q by empirical
measures; this idea is studied in better depth in [32]. We will not focus on that
approach here.

Instead we focus on a heuristic approach implicitly used in [17] and Monte
Carlo techniques used in [33]. In the former, the problem at hand is, given a
distribution over MDPs with a common state space, to try to find a policy that
optimizes the expected total geometrically-discounted sum of rewards achieved
at each state, where the average is taken over a number of sample runs per-
formed on a number of MDPs drawn according to the given MDP distribution.
The authors attack this problem by generating a family of functional expres-
sions according to some distribution, and using these to estimate optimal plan-
ning strategies - the so-called formula-based exploration / exploitation strategies.
In [33], the authors solve the problem of trying to compute the infimum over a
given set by instead sampling and then estimating the essential infimum. Since
in our case we are interested in suprema, let us recall the definition of essential
supremum.

Definition 16. Let (X,BX , μ) be a measure space. The essential supremum of
a bounded measurable function f : (X,BX)→ (R,BR) is given by the following.

ess sup f = inf{α ∈ R : μ({x ∈ X : f(x) > α}) = 0}.
In other words, ess sup f is the least real number that is an upper bound on f

except for a set of μ-measure zero. It follows that in general, ess sup f ≤ sup f .
Suppose further that BX is a Borel σ-algebra, f is continuous, and μ is a strictly
positive measure, i.e. every non-empty open subset of X has strictly positive μ-
measure. Then since {x ∈ X : f(x) > α} = f−1(α,∞) is open, it follows
that it has μ-measure zero if and only if it is the empty set; in this case, the
essential supremum and the supremum agree. We will use this in conjunction
with Lemma 2 from [33], restated here in terms of the essential supremum in
place of the essential infimum.

Lemma 5. Let (Ω,Σ,P) and (X,BX , μ) be probability spaces and assume that
we can sample random variables X1, X2, . . . , Xn mapping Ω to X, independently
and identically distributed according to μ. Then if f : X → R is bounded and
measurable we have

max
1≤i≤n

f(Xi)→ ess sup f in μ-probability as n→∞. (10)
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This allows for another Monte Carlo technique for (under)approximating the
Kantorovich metric for bisimilarity in an MDP.

Proposition 2. Let M = (S,BS , A, {Pa : a ∈ A}, r) be an MDP where the
image of r is contained in [0, 1]. Let c ∈ (0, 1) be a discount factor and Fc be the
family of functional expressions defined in Definition 15 and interpreted over M .
Let Fc be the closure of Fc with respect to uniform convergence. Let μ ∈ P(Fc)
be strictly positive. Suppose f1, f2, . . . , fn are independent, identically distributed
samples drawn according to μ. Then

max
1≤i≤n

|P (fi)−Q(fi)| → Fc(P,Q) in μ-probability as n→∞. (11)

Proof. Since S is Hausdorff, Cb(S) with the uniform norm is a Banach space.
Therefore, Fc, as a closed subset of Cb(S), is itself a measurable subspace when
equipped with the Borel sets given by the uniform norm. For a given P,Q ∈ P(S)
let g : Fc → R be defined by g(f) = |P (f) − Q(f)|. Then g is continuous and
bounded by 1. The result now follows from Lemma 5 and the preceding remarks,
and Corollary 4. ��

Remark in particular that

max
1≤i≤n

|fi(x) − fi(y)| → ρ∗c(x, y) in μ-probability as n→∞. (12)

To turn this into a proper algorithm is beyond the scope of this work - one needs
to fix a particular measure and provide sample complexity results, among other
things. However, we remark that being able to sample from a much smaller class
than the class of all Lipschitz functions should improve performance regardless
of how other parameters are set.

5 Conclusions

We have shown, with slight modification, that the family of functional expres-
sions developed in [9,2] to capture quantitative bisimilarity for LMPs does the
same for MDPs with continuous state spaces and bounded measurable reward
functions. We have used the same techniques as in these previous works - in par-
ticular, a density result in Proposition 2 of [2] - reworded in the terminology of
generating classes for integral probability metrics. The hope is that by focusing
on these generating classes of functions, we may find better practical algorithms
for assessing equivalence between states in a Markov process - either by under or
over-approximating a particular class, or by sampling from it in some manner.

Moreover, we have used a trick from descriptive set theory to remove a pre-
vious continuity constraint on the rewards and Markov kernels in Theorem 7,
thereby widening its applicability.
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5.1 Related Work

The notion of bisimilarity metrics, both in terms of logical expressions and in
terms of how to compute them using linear programming formulations, really
derives from the work of [9] and [2] for LMPs. In [9], the emphasis was on devel-
oping a robust theoretical notion of quantitative bisimilarity and establishing a
decision procedure for it, albeit with exponential complexity. In [2], the empha-
sis was again on establishing a robust notion of quantitative bisimilarity while
at the same time yielding a theoretical polynomial complexity bound by means
of the Kantorovich metric. Complexity results in general are discussed in [30].
However, in none of these are more than a few toy examples worked through, and
the idea of Monte Carlo techniques for more efficient practical implementations
is not broached.

The idea of examining the relationship between probability measures by study-
ing generating classes of functions was explored in [5,34] for integral probability
metrics and stochastic orders. Müller takes the point of view of looking at maxi-
mal generators for such orders, and demonstrates that in general, minimal orders
may not exist.

To the best of our knowledge, the only practical work to exploit optimality
based on functional expression occurs in [17]. Here, the goal is to determine
an optimal planning strategy on average, when one is acting on an unknown
MDP but given a distribution over its reward and transition parameters. The
advantage of the functional expression approach here is that it is independent
of the particulars of a given model.

5.2 Future Work

The point of view of this work is that one should focus on families of functional
expressions for quantitative bisimilarity as we suspect this may be more advan-
tageous in practice. Thus, an immediate concern is to turn Proposition 2 into
a full-fledged Monte Carlo algorithm. Among the necessities are choosing the
right class of functional expressions from which to sample, as small as possible
a subset of Fc, constructing a strictly positive probability measure with which
to sample the class of functionals, and most importantly, a sample complexity
bound to inform us of how many samples should be required for a given level of
confidence.

From the theoretical side, we are interested in finding minimal classes that
generate the same bisimilarity metric, and equivalences obtained from using
other classes. In both cases, it might be fruitful to consider only non-empty
closed subsets of Cb(S) with the uniform norm. We can order this space, and
add in the empty set, to get a complete lattice; moreover, we can equip it with the
Hausdorff metric, and the resulting Borel σ-algebra, known as the Effros Borel
space, will be a standard Borel space provided (S,BS) is as well ( [27], pg. 97).
Doing so may allow us to relate the differences between the equivalences induced
by two families of functional expressions in terms of their quantitative difference
in Effros Borel space. In particular, we are interested in coarser more easily
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computable equivalences, and how to relate these to the theoretical guarantees
given by bisimilarity.

In statistical parlance, the interpreted class of functional expressions is just a
family of random variables; and testing whether or not two states are bisimilar
amounts to testing how their Markov kernels differ on this test set of random vari-
ables. Conceptually, this fits in with Prakash’s view that Markov processes should
be viewed as transformers of random variables [35]. As (real-valued) stochastic
kernels subsume both random variables and subprobability measures, we may
complete this conceptual picture by viewing a Markov process - itself a family
of kernels - as a transformer of families of kernels. It remains to be seen if this
point of view in general can lead to better algorithms in practice.
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Abstract. We make the first steps towards showing a general “random-
ness for free” theorem for stochastic automata. The goal of such theorems
is to replace randomized schedulers by averages of pure schedulers. Here,
we explore the case of measurable multifunctions and their measurable
selections. This involves constructing probability measures on the mea-
surable space of measurable selections of a given measurable multifunc-
tion, which seems to be a fairly novel problem. We then extend this to
the case of IT automata, namely, non-deterministic (infinite) automata
with a history-dependent transition relation. Throughout, we strive to
make our assumptions minimal.

1 Introduction

This paper grew out of an attempt at proving a “randomness for free” type the-
orem [5] for stochastic automata [4]. We present the first steps in this direction.

A stochastic automaton is a transition system on a measurable space Q of
states. When in state q ∈ Q, we have access to a set θ(q) of fireable transitions,
from which we choose non-deterministically. A transition is a pair (a, μ) of an
action a, from a fixed measurable space L, and of a probability measure μ on Q.
Once we have chosen such a transition, we pick the next state q′ at random with
respect to μ, and proceed. There are two ways to resolve the non-deterministic
choice of a transition (a, μ) ∈ θ(q). A pure scheduler σ is a function that maps
each path w = q0a1q1 · · · anqn of states and actions seen so far to an element
σ(w) of θ(qn) (or to a special termination constant ⊥). A randomized scheduler
η instead maps w to a (sub)probability measure concentrated on θ(qn), thereby
drawing the transition at random as well. In each case, given a scheduler η, the
stochastic automaton behaves as a purely probabilistic transition system, and
one can define the probability Pη(E) that the automaton will follow a path that
lies in the measurable set E .

The “randomness for free” question we envision is as follows: given a ran-
domized scheduler η, and a measurable set E of paths, can we find two pure
schedulers σ−, σ+ such that Pσ−(E) ≤ Pη(E) ≤ Pσ+(E)? This has a number of
important applications, and was solved positively by Chatterjee, Doyen et al.
[5, Section 4], in the case that Q and L are finite. In general, we consider the
following more general question: given a randomized scheduler η, and a mea-
surable payoff function h from paths to R+, can we find two pure schedulers
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σ−, σ+ such that
∫
ω
h(ω)dPσ− ≤

∫
ω
h(ω)dPη ≤

∫
ω
h(ω)dPσ+? This includes the

previous question, by taking the characteristic function χE of E for h.
Beware that one cannot reasonably ask for the existence of a pure scheduler

σ such that Pσ(E) = Pη(E). For example, let Q = {0, 1, 2}, L = {∗}, θ(0) =
{t1 = (∗, δ1), t2 = (∗, δ2)} (where δx is the Dirac mass at x), θ(1) = θ(2) = ∅.
There are only two pure schedulers, one that reaches state 1 with probability 1,
while the other reaches 2 with probability 1. But one can reach 1 with arbitrary
probability p using the randomized scheduler η(0) = pδt1 + (1− p)δt2 .

While Chatterjee, Doyen et al. are concerned with finite state and action
spaces, infinite spaces are useful as well: in modeling timed probabilistic and
non-deterministic transition systems [7, Example 1.1], or devices that interact
with the physical world [6,1], where each state includes information about time,
position, impulse and other real-valued data, for example. Considering his pub-
lication record (see for example [16] on labeled Markov processes, or [10] on
Markov decision processes), Prakash would probably be the first to approve us.

Our initial aim was to prove such “randomness for free” theorems for general
stochastic automata. During the year 2008, we found very complex arguments
that proved only very weak versions of what we were after. We were on the wrong
path. On the opposite, Chatterjee, Doyen et al. [5, Section 4] used a simple idea:
draw pure schedulers σ themselves at random, with respect to some measure
�, designed so that Pη(E) =

∫
σ
Pσ(E)d�. The claim then follows by standard

integration arguments (Fact 1 below).
The probability measure � on pure schedulers has an intuitive description,

too: we merely choose the transition σ(w) at random with respect to probability
η(w), where η is our given randomized scheduler, for each finite path w, indepen-
dently. Now this is the source of typical measure-theoretic complications. First,
we must force our pure schedulers to be measurable. Otherwise,

∫
σ Pσ(E)d�,

and in fact already Pσ, makes no sense. Second, we need to make clear what
the intended σ-algebra is on the space of all pure schedulers. If we don’t have
any, nothing of the above makes any sense either. Third, what does it mean to
draw σ(w) for each w independently? The sheer fact that σ is measurable must
enforce at least some moderate amount of non-independence.

Chatterjee, Doyen et al. did not need to address these issues: on finite state
and action spaces, all pure schedulers are measurable, and the problems above
disappear. Going to infinite spaces of states and actions requires extra effort.

While we were writing this paper, we soon realized that we would have
to choose between: (1) solving the full question, by applying all the required
measure-theoretic clout if necessary, possibly making it so complex that nobody
would understand it; or (2) solving a few restricted cases, showing a few elegant
proof tricks along the way. It should be clear that (2) was a better choice. We
hope that Prakash will appreciate the techniques, if not the results.

That is, we shall be content to solve the problem in the special case of IT
automata, namely, stochastic automata with a trivial action space, no option for
termination, and no random choice at all: randomness will be induced by the
randomized scheduler only. We shall deal with the general case in another paper.



Random Measurable Selections 345

The plan of the paper is as follows. We recapitulate some required basic mea-
sure theory in Section 2. In Section 3, we define a σ-algebra on the set Sel(F ) of
measurable selections of a given multifunction F—these are just what we have
called pure schedulers, for the transition relation F of a stochastic automaton
without probabilistic choice; and we show that any randomized scheduler g de-
fines a canonical probability measure �g on Sel(F ) such that, for every x, draw-
ing a point at random with probability g(x) gives the same result as drawing a
measurable selection f with probability �g and computing f(x) (Proposition 1).
This is the most important construction of the paper. In Section 4, we extend
this result from random measurable selections to random measurable pure sched-
ulers of IT automata. Although the setting looks extremely similar, there is no
hope of reusing the previous result. Instead, we use similar proof techniques, but
with a more complex implementation. We conclude in Section 5.

2 Basics on Measure Theory

A σ-algebra on a set X is a family of subsets that is closed under complement
and countable unions. We shall write A for the complement of A in X . A pair
X = (|X |, ΣX) of a set |X | and a σ-algebra ΣX on |X | is a measurable space, and
the elements of ΣX are called the measurable subsets of X . We shall sometimes
write X instead of |X | to avoid pedantry.

Given any family F of subsets of a set A, there is a smallest σ-algebra that
contains the elements of F . This is called the σ-algebra generated by F . We shall
sometimes refer to the elements of F as the basic measurable subsets of this
σ-algebra, despite some ambiguity. One example is R with its Borel σ-algebra,
generated by intervals. Another one is the product X1 ×X2 of two measurable
spaces is (|X1| × |X2|, ΣX1 ⊗ ΣX2), whose basic measurable subsets are the
rectangles E1 × E2, E1 ∈ ΣX1 , E2 ∈ ΣX2 . In general, the σ-algebra on the
product of an arbitrary family of measurable spaces (Xi)i∈I is the one generated
by the subsets π−1

i (E) where E ∈ ΣXi , i ∈ I, and πi :
∏

i∈I |Xi| → |Xi| is the
usual projection onto coordinate i.

The coproduct X1+X2 of two measurable spaces X1, X2 is simpler: |X1+X2|
is the disjoint union of |X1| and |X2|, and ΣX1+X2 consists of unions E1 ∪ E2

of a measurable subset E1 of X1 and of a measurable subset E2 of X2. This
construction generalizes to countable coproducts

∑
n∈N

Xn in the obvious way.
A measurable map f : X → Y is one such that f−1(E) ∈ ΣX for every

E ∈ ΣY . If F generates ΣY , it is enough to check that f−1(E) ∈ ΣX for every
E in F to establish the measurability of f .

A measure μ on X is a map from ΣX to R+∪{+∞} that is countably additive
(μ(∅) = 0, and μ(

⋃
n∈N

En) =
∑

n∈N
μ(En) for every countable family of disjoint

measurable subsets En). A probability measure is one such that μ(X) = 1. The
Dirac mass at x, δx, is the probability measure defined by δx(E) = 1 if x ∈ E,
0 otherwise.

A measure μ is concentrated on a measurable subset A of X if and only if
μ(X�A) = 0. For example, ifX is finite and ΣX = P(|X |), then μ =

∑
x∈X axδx
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is concentrated on {x ∈ X | ax �= 0}. Any subset A (even non-measurable) of
|X | gives rise to a measurable subspace, again written A, with ΣA = {A ∩ B |
B ∈ ΣX}. If A is measurable, one can define the restriction μ|A of μ to the
subspace A, by μ|A(B) = μ(B) for every B ∈ ΣA. If μ is a probability measure
that is concentrated on A, then μ|A is also a probability measure.

There is a standard notion of integral of measurable maps h : X → R+ with
respect to a measure μ onX , which we write

∫
x∈X h(x)dμ. Other notations found

in the literature are
∫
x∈X h(x)μ(dx) or 〈h, μ〉. We shall also use the notation∫

x∈X dμ h(x), especially when h(x) is a long formula, as in
∫
x1∈E1

dμ1
∫
x2∈E2

dμ2
h(x1, x2). Writing χE for the characteristic map of a measurable subset E of X ,∫
x∈X χE(x)dμ equals the measure μ(E) of E.
Given a map f : A→ |X | (not necessarily measurable) where X is a measur-

able space and A is a set, the family (f−1(E))E∈ΣX
is a σ-algebra on A, called

the σ-algebra induced by f on A. When f is the inclusion map of a subset A of
|X |, we retrieve the subspace σ-algebra ΣA.

If μ is concentrated on a measurable subset A of X , then
∫
x∈X g(x)dμ =∫

x∈A g(x)dμ|A, where A is considered as a subspace of X on the right-hand side.
We write P(X) for the space of all probability measures on X , with the weak

σ-algebra, generated by the subsets [E > r] = {μ ∈ |P(X)| | μ(E) > r}. One
can equate μ ∈ P(X) with a vector of real numbers (μ(E))E∈ΣX

, i.e., with an
element of the measurable space RΣX . The weak σ-algebra is nothing else than
the σ-algebra induced by the inclusion of |P(X)| into the product RΣX .

Given a measurable map f : X → Y , and a measure μ on X , the formula
f [μ](E′) = μ(f−1(E′)) defines a measure f [μ] on Y , called the image measure
of μ by f . For any measurable h : Y → R+, the following change of variables
formula holds [2, Theorem 16.13]:∫

y∈Y
h(y)df [μ] =

∫
x∈X

(h ◦ f)(x)dμ. (1)

More trivially, the function eX : X → P(X) that sends x to the Dirac mass
δx is measurable. These facts assemble to define the so-called Giry monad [11,
Section 1], of which e is the unit. (More precisely, one of the two Giry monads.)
Prakash stressed the importance of this monad in [14]—probably the one paper
that popularized it.

Finally, we shall use the following well-known fact near the end of the paper.

Fact 1. For every integrable map h : X → R on a measurable space X, for every
a ∈ R, if

∫
x∈X h(x)dμ = a for some probability measure μ on X, then there are

points x−, x+ ∈ |X | such that h(x−) ≤ a ≤ h(x+).
Indeed, if x− did not exist, say, then h(x) > a for every x ∈ |X |. Let An =
h−1(a + 1/n,+∞) for every non-zero natural number n: so |X | =

⋃
n≥1An.

Since h(x) ≥ a for every x ∈ |X | and h(x) ≥ a + 1/n if additionally x ∈ An,
a =

∫
x∈X h(x)dμ ≥ a+1/n μ(An), so μ(An) = 0. A consequence of σ-additivity

is that the measure of the union of a countable chain of measurable subsets is
the sup of their measures, so 1 = μ(|X |) = sup+∞

n=1 μ(An) = 0: contradiction.
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Carathéodory’s measure extension theorem. The following measure extension
theorem, due to Carathéodory, was singled out as “a very useful type of theorem”
by Prakash [15, Theorem 18]; see also [2, Theorem 11.3].

A semiring A on a set Ω is a collection of subsets of Ω that contains the empty
set, is closed under binary intersections, and such that the difference A � B of
any two sets A,B ∈ Ω can be written as a finite union of elements of A. A map
μ is countably subadditive on A if and only if for every countable disjoint family
of elements An of A whose union A is in A, μ(A) ≤

∑
n∈N

μ(An).

Theorem 1 (Carathéodory). Let Ω be a set, and A be a semiring on Ω.
Every function μ : A → [0,+∞] such that μ(∅) = 0, that is finitely additive and
countably subadditive on A, extends to a measure on the σ-algebra generated by
A. In particular, this is so if μ(∅) = 0 and μ is countably additive on A.

A typical application is Ω = R, A is the semiring of all half-closed intervals
[a, b), and μ[a, b) = b− a, leading to Lebesgue measure.

The Ionescu-Tulcea Theorem. Let Qn, n ∈ N, be countably many measurable
spaces, and assume countably many measurable maps gn :

∏n−1
i=0 Qi → P(Qn).

One can think of Qn as the space of all possible states of a probabilistic transition
system at (discrete) time n ∈ N. Given that at time n we have gone through
states q0 ∈ Q0, q1 ∈ Q1, . . . , qn−1 ∈ Qn−1, gn(q0, q1, · · · , qn−1) is a probability
distribution along which we draw the next state qn. The following Ionescu-Tulcea
Theorem states that these data define a unique probability measure on infinite
paths q0, q1, · · · , qn−1, · · · :

Theorem 2 (Ionescu-Tulcea). Let Qn, n ∈ N, be measurable spaces, and
g∗ = (gn :

∏n−1
i=0 Qi → P(Qn))n≥1 be measurable maps. For every q0 ∈ Q0, there

is a unique probability measure Pg∗(q0) on
∏+∞

i=0 Qi such that:

Pg∗(q0)(

n∏
i=0

Ei×
+∞∏

i=n+1

|Qi|) = χE0(q0)

∫
q1∈E1

dg1(q0)

∫
q2∈E2

dg2(q0q1) · · ·
∫
qn∈En

dgn(q0q1 · · · qn−1).

(2)
Moreover, Pg∗ defines a measurable map from Q0 to P(

∏+∞
i=0 Qi).

We consider tuples (q0, q1, q2, · · · , qn−1) as words, and accordingly write them as
q0q1q2 · · · qn−1. The notation

∫
qi∈Ei

dμi h(qi) (where μi = gi(q0q1 · · · qi−1) above)
stands for

∫
qi∈Qi

dμi χEi(qi)h(qi), and the rightmost integral in Theorem 2 is
an integral of the constant 1, which is standardly omitted—i.e., the rightmost
integral is

∫
qn∈Qn

χEn(qn)dgn(q0q1q2 · · · qn−1) = gn(q0q1q2 · · · qn−1)(En).
There are several small variations on the Ionescu-Tulcea Theorem. Our version

is Giry’s [11, Theorem 3], except for the fact that Giry considers more general
ordinal-indexed sequences of measurable spaces. We will not require that.

The following is needed in the proof of Lemma 2. Lemma 2 looks perfectly
obvious, yet requires some effort to prove. Measure theory is full of these.
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Lemma 1. Under the assumptions of Theorem 2, for every n ∈ N, and for every
measurable map h :

∏n
i=0Qi → R+, for every q ∈ Q0,∫

q0q1···∈
∏+∞

i=0 Qi

h(q0q1 · · · qn)dPg∗(q) (3)

=

∫
q1∈Q1

dg1(q)

∫
q2∈Q2

dg2(qq1) · · ·
∫
qn∈Qn

dgn(qq1q2 · · · qn−1)h(qq1q2 · · · qn−1qn).

Proof. This is true for functions h of the form χ∏n
i=0 Ei

, Ei ∈ ΣQi , as one can
check by using (2). Let S be the set of measurable subsets E of

∏n
i=0Qi such that

(3) holds for h = χE , i.e., such that Pg∗(q)(E) =
∫
q1∈Q1

dg1(q)
∫
q2∈Q2

dg2(qq1) · · ·∫
qn∈Qn

dgn(qq1q2 · · · qn−1)χE(qq1q2 · · · qn−1qn). S contains all the rectangles, is
closed under complements (using χE = 1 − χE), and under countable disjoint
unions. For the latter, consider countably disjoint elements Em, m ∈ N, of S, let
E =

⋃
m∈N

Em, and realize that χE = supm∈N

∑m
k=0 χEk

. The Monotone Con-
vergence Theorem [2, Theorem 16.2] states that integrals of non-negative real
functions commute with pointwise suprema of countable chains, so Pg∗(q)(E) =
supm∈N

∑m
k=0

∫
q1∈Q1

dg1(q)
∫
q2∈Q2

dg2(qq1) · · ·
∫
qn∈Qn

dgn(qq1q2 · · · qn−1)χEk
(qq1

q2 · · · qn−1qn) =
∑+∞

m=0 Pg∗(q)(Em). It follows that S is a σ-algebra containing
the rectangles, and therefore contains Σ∏n

i=0Qi
.

It follows easily that (3) holds for step functions h, i.e., when h is of the
form

∑m
k=0 akχEk

, m ∈ N, ak ∈ R+, Ek measurable. Since every measurable
map h :

∏n
i=0Qi → R+ is the pointwise supremum of a countable chain of step

functions (namely hm =
∑m2m

k=1 k/2
mχh−1(k/2m,+∞), m ∈ N), (3) follows by the

Monotone Convergence Theorem. ��

Consider now any family of measurable subsets En of
∏n−1
i=0 Qi ×Qn, n ≥ 1,

and assume that for all q0, q1, . . . , qn−1, gn(q0q1 · · · qn−1) draws qn at random
so that q0q1 · · · qn−1qn is in En. It seems obvious that what we shall get in the
end is an infinite path q0q1 · · · qn · · · such that every finite prefix q0q1 · · · qn is in
En. This actually needs a bit of proof. Given a measurable subset E of a product
A×B, and a ∈ |A|, the vertical cut E|a is the set {b ∈ |B| | (a, b) ∈ E}. This is
measurable as soon as E is [2, Theorem 18.1 (i)].

Lemma 2. Under the assumptions of Theorem 2, let En be measurable subsets
of
∏n−1
i=0 Qi × Qn, n ≥ 1, and assume that for all q0q1 · · · qn−1 ∈

∏n−1
i=0 Qi,

gn(q0q1 · · · qn−1) is concentrated on (En)|q0q1···qn−1
.

For every q ∈ Q0, Pg∗(q) is concentrated on the set PathE of infinite paths
whose finites prefixes q0q1 · · · qn are in En for every n ≥ 1. If additionally {q}
is measurable in Q0, then Pg∗(q) is concentrated on the set PathE(q) of those
infinite paths in PathE such that q0 = q.

Proof. First, PathE is measurable, as a countable intersection of measurable sub-
sets En ×

∏+∞
i=n+1 |Qi|. Since gn(q0q1 · · · qn−1) is concentrated on (En)|q0q1···qn−1

,
and the complement of the latter in |Qn| is (En)|q0q1···qn−1

,
∫
qn∈Qn

χ(En)|q0q1···qn−1

dgn(q0q1 · · · qn−1) = gn(q0q1 · · · qn−1)((En)|q0q1···qn−1
) = 0. By taking h = χEn

in
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(3), and realizing that χEn
(q0q1 · · · qn−1qn) = χ(En)|q0q1···qn−1

(qn), we obtain that∫
q0q1···∈

∏+∞
i=0 Qi

χEn
(q0q1 · · · qn)dPg∗(q) = 0. In other words, the Pg∗(q)-measure

of the complement of En×
∏+∞
i=n+1 |Qi| is zero. As a consequence of σ-additivity,

the union of these complements when n ranges over N has measure that is
bounded by the sum of their measures, namely 0. So the complement of PathE
has Pg∗(q)-measure 0.

For the second claim, if {q} is measurable, then Pg∗(q)((|Q0|�{q})×
∏+∞
i=1 |Qi|)

is equal to 0 by (2). The measure of the complement of PathE(q) = PathE ∩
({q} ×

∏+∞
i=1 |Qi|) therefore also has Pg∗(q)-measure 0. ��

3 Drawing Measurable Selections at Random

Before we go to the more complicated case of schedulers, we illustrate our basic
technique on random choice of measurable selections of a multifunction. We
believe this has independent interest.

A multifunction from a set A to a set B is a map F from A to P∗(B), the
non-empty powerset of B. We say that F is measurable if and only if its graph
GrF = {(x, y) | y ∈ F (x)} is a measurable subset of X × Y . This is one of the
many possible notions of measurability for relations, see [12]. The set F (x) is
exactly the vertical cut (GrF )|x, showing that for a measurable multifunction,
F (x) is a (non-empty) measurable subset of B (see comment before Lemma 2).

A selection for a multifunction F is a map f : A→ B such that f(x) ∈ F (x)
for every x ∈ A. Every multifunction has a selection: this is the Axiom of Choice.
In measure theory, we would like f to be measurable as well. Theorems guar-
anteeing the existence of measurable selections for certain multifunctions are
called measurable selection theorems. There are many of them (see Wagner [18],
or Doberkat [8]), but one should remember that measurable multifunctions do
not have measurable selections in general: Blackwell showed that there is a mul-
tifunction from [0, 1] to Baire space NN whose graph is closed (hence measurable)
but has no measurable selection [3] (see also Example 5.1.7 of [17]).

Given two measurable spaces X and Y , let us write 〈X → Y 〉 for the space
of all measurable maps from X to Y , with the weak σ-algebra. The latter is by
definition the subspace σ-algebra, induced by the inclusion of |〈X → Y 〉| into
the product space Y |X|. In other words, this is the smallest σ-algebra that makes
the maps ϕ ∈ 〈X → Y 〉 �→ ϕ(x) measurable, for every x ∈ |X |.

More generally, given a multifunction F : |X | → P∗(|Y |), we also consider the
subspace Sel(F ) of 〈X → Y 〉 of all measurable selections of F , with the induced
σ-algebra. (Beware that Sel(F ) need not be a measurable subset of 〈X → Y 〉.)
We again call the latter the weak σ-algebra, on this subset. In each case, the
weak σ-algebra is generated by subsets that we write [x → E], with x ∈ |X |
and E ∈ ΣY , and defined as those measurable functions, resp. those measurable
selections of F , that map x into E.

Assume now a measurable map g : X → P(Y ) such that, for every x ∈ |X |,
g(x) is concentrated on F (x). For each x ∈ |X |, pick an element f(x) in F (x) with
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probability g(x). The function f is a selection of F , but will not be measurable
in general. Can we pick f at random so that f is measurable and f(x) is drawn
with probability g(x)? This is the question we answer in the affirmative here.

The problem looks similar to the construction of Wiener measure, a model of
Brownian motion, where we would like to draw a map from R to some topological
space at random, and this map should be continuous [2, Section 37]; or to the
construction of Skorokhod’s J1 topology, which allows one to make sense of
random càdlàg functions. Our solution will be simpler, though: measurability is
easier to enforce than continuity or being càdlàg.

One can explain the problem in terms of independence [2, Section 5]. Let us
remind the reader that independence is not pairwise independence. Consider
for example two independent random bits b1 and b2, and the random variable
b3 = b1 ⊕ b2, where ⊕ is exclusive-or. These random variables are pairwise inde-
pendent, meaning that any pair among them is formed of independent random
variables. However, they are not independent, since given the value of any two,
one obtains the third one in a deterministic way. In our case, if we are to draw
a measurable map f at random, then the random infinite tuple (f(x))x∈|X| can-
not be a collection of independent random variables. However, the results below
essentially say that we can choose f measurable at random, in such a way that
all countable sequences (f(xn))n∈N

are independent.
A general way to draw several values at random, independently, is to draw

them with respect to a product measure. The following says that product mea-
sures exists not only for finite products but also for countable products of prob-
ability measures. This is well-known, and can even be extended to uncountable
products: this is the Łomnick-Ulam Theorem [13, Corollary 5.18].

Lemma 3. Let μn be probability measures on the measurable spaces Xn, n ∈ N.
There is a unique probability measure μ, written

⊗
n∈N

μn, on
∏
n∈N

Xn such that
μ(
⋂
i∈I π

−1
i (Ei)) =

∏
i∈I μi(Ei) for every finite subset I of N, and all measurable

subsets Ei of Xi, i ∈ I.

Proof. Apply Ionescu-Tulcea’s Theorem 2 to Q0 = {∗}, Qn+1 = Xn, let gn be
the constant map gn(q0q1 · · · qn−1) = μn, and note that for every finite set I,⋂
i∈I π

−1
i (Ei) is just the product

∏n
i=0Ei×

∏+∞
i=n+1 |Qi|, for some n large enough,

and where we extend the notation Ei to denote |Qi| for i �∈ I. ��
We shall use the following general technique to construct measurable maps.

Lemma 4 (Patching). Let X, Y be measurable spaces, (Ei)i∈I be a countable
partition of |X | in measurable subsets (I ⊆ N), and (fi)i∈I be a matching family
of measurable maps from Ei to Y . The patch f : X → Y , defined as mapping
every x ∈ Ei to fi(x), is a measurable map.

Proof. Categorically, this follows from the fact that X is the coproduct
∑

i∈I Ei.
Alternatively, f−1(E) =

⋃
i∈I(f

−1
i (E) ∩Ei) is measurable as soon as E is. ��

As an application, we show that a measurable multifunction F that has a
measurable selection must have plenty of measurable selections. Precisely, we
can fix their values, arbitrarily, at countably many arguments:
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Lemma 5. Let X, Y be measurable spaces, F : X → P∗(Y ) be a measurable
multifunction with a measurable selection f , (xi)i∈I be countably many points in
X (I ⊆ N), and yi be an element of F (xi) for every i ∈ I. Write #»y for (yi)i∈I .

There is a measurable selection f #»y of F such that f #»y (xi) = yi for every i ∈ I.
Moreover, we can choose f #»y in such a way that the mapping #»y �→ f #»y is itself a
measurable map from

∏
i∈I F (xi) to Sel(F ).

Proof. Without loss of generality, assume that I is N, or an initial segment
{0, 1, . . . , n − 1} of N. Similarly to vertical cuts, we may define horizontal cuts
of Gr(F ) at y, namely {x ∈ X | y ∈ F (x)}, and they are measurable as well.
Write F−1(y) for such a vertical cut. Define Ei, for each i ∈ I, as F−1(yi) �⋃i−1
j=0 F

−1(yj). Together with E∞ = |X |�
⋃
i∈I Ei, they form a partition of |X |

in measurable subsets. Define fi as the constant map on Ei equal to yi for i ∈ I,
and f∞ as the restriction of f to E∞, then form their patch f #»y , using Lemma 4.
It is plain to see that f #»y is a selection of F , and f #»y is measurable.

To show that #»y �→ f #»y is itself measurable, we must show that the set A of
tuples #»y such that f #»y ∈ [x → E] is measurable, for x ∈ |X | and E ∈ ΣY . For
convenience, write Ei( #»y ) for the set we called Ei above, and similarly with E∞.
Let E′

i be the set of tuples #»y ∈
∏
i∈I F (xi) such that yi ∈ F (x) and yj �∈ F (x)

for every j, 0 ≤ j < i. E′
i is measurable since F (x) is measurable: E′

i is just the
rectangle

∏i−1
j=0(F (xj)�F (x))× (F (xi)∩F (x))×

∏
j∈I,j>i F (xj). Also, #»y ∈ E′

i

if and only if x ∈ Ei( #»y ). Write πi for ith projection. Since f #»y (x) ∈ E if and
only if there is an i ∈ I such that x ∈ Ei( #»y ) and yi ∈ E, or for every i ∈ I,
x �∈ Ei( #»y ) and f(x) ∈ E, it follows that A = (

⋃
i∈I E

′
i∩π−1

i (E)) if f(x) �∈ E, and
A = (

⋃
i∈I E

′
i∩π−1

i (E))∪ (
⋂
i∈I E

′
i) otherwise. In any case, A is measurable. ��

Theorem 3 is the keystone of our construction, and allows us to provide foun-
dations to the notion of a random measurable selection.

Theorem 3. Let X, Y be two measurable spaces, and F : X → P∗(Y ) be a
measurable multifunction with a measurable selection. Let also g : X → P(Y ) be
a measurable map such that, for every x ∈ X, g(x) is concentrated on F (x).

There is a unique probability measure �g on the space Sel(F ) of measurable
selections of F such that �g(

⋂n
i=1[xi → Ei]) =

∏n
i=1 g(xi)(Ei) for every finite

collection of pairwise distinct points (xi)1≤i≤n of X and of measurable subsets
(Ei)1≤i≤n of Y .

Before we prove it, we note the following consequence. Proposition 1 can also
be seen as a partial implementation of the Chatterjee-Doyen-Gimbert-Henzinger
idea of the introduction in the Markovian case: given a (Markovian) randomized
scheduler g, draw (Markovian) pure schedulers f at random so that f(x) is drawn
with probability g(x).

Proposition 1. Under the assumptions of Theorem 3, let h : Y → R+ be a
measurable map, and x be a point of X, then:∫

f∈Sel(F )

h(f(x))d�g =

∫
y∈Y

h(y)dg(x).
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Proof. Let αx be the measurable map f ∈ Sel(F ) �→ f(x). By the change of
variables formula (1),

∫
f∈Sel(F )

h(f(x))d�g =
∫
y∈Y h(y)dαx[�g]. Now note that

αx[�g](E) = �g(α
−1
x (E)) = �g([x→ E]) = g(x)(E), so αx[�g] = g(x). ��

Proof (of Theorem 3). We use Carathéodory’s measure extension Theorem 1. Let
A be the semiring of subsets of the form

⋂n
i=1[xi → Ei] given in the statement of

the Lemma. To check that this is a semiring, consider any two setsA and B of this
form. We must show that A�B is a finite union of elements of A. We may write
A as

⋂n
i=1[xi → Ei], B as

⋂m
j=1[x

′
j → E′

i]. Then A�B is the finite union of the
sets Aj , 1 ≤ j ≤ m, defined by: if x′j = xk for some (unique) k, 1 ≤ k ≤ n, then
Aj =

⋂n
i=1
i�=j

[xi → Ei]∩ [xk → Ei�E
′
j ], else Aj =

⋂n
i=1[xi → Ei]∩ [x′j → Ω�E′

j ].

Note that A generates the weak σ-algebra on Sel(F ), by definition. Assume
there is a map μ : A → [0,+∞] that satisfies the formula given in the statement of
the Lemma: μ(

⋂n
i=1[xi → Ei]) =

∏n
i=1 g(xi)(Ei). For now, this is an assumption,

not a definition. For it to be a definition, we would need to check that this
is unambiguous: if

⋂n
i=1[xi → Ei] =

⋂m
j=1[x

′
j → E′

j ], we should verify that∏n
i=1 g(xi)(Ei) =

∏m
j=1[x

′
j → E′

j ]. This will be easier to prove later. Until then,
we concentrate on the more interesting question of σ-additivity.

Let Ak =
⋂
i∈Ik [xki → Eki], k ∈ N, be a countable family of disjoint elements

of A whose union is some element A of A again, where each index set Ik is finite.
We must show that μ(A) =

∑+∞
k=0 μ(Ak).

There is a simple trick to prove this: we exhibit a measure (sJ [μJ ] below) that
coincides with μ on A and each Ak, k ∈ N. We shall call this the Łomnick-Ulam
trick, since this also subtends the classical proof of the Łomnick-Ulam theorem.

Observe that the set of points (xki)k∈N,i∈Ik is countable. For each countable
set J of points of X , let sJ :

∏
x∈J F (x)→ Sel(F ) be the map #»y �→ f #»y given in

Lemma 5. Let μJ be the product probability measure
⊗

x∈J g(x) on
∏
x∈J F (x),

as given in Lemma 3.
By definition, sJ [μJ ](E) = μJ(s

−1
J (E)) for every measurable subset E of Sel(F ).

In particular, if J contains all the points x1, . . . , xn, then sJ [μJ ](
⋂n
i=1[xi → Ei]) =

μJ{ #»y ∈
∏
x∈J F (x) | ∀i, 1 ≤ i ≤ n · yxi ∈ Ei} (since sJ( #»y )(xi) = f #»y (xi) =

yxi , where we agree to write the tuple #»y with indices in J , namely, as (yx)x∈J)
= μJ(

⋂n
i=1 π

−1
xi

(Ei)). By definition of μJ , this is equal to
∏
i=1 g(xi)(Ei), hence

to μ(
⋂n
i=1[xi → Ei]).

In other words, sJ [μJ ] coincides with μ on all subsets of A of the form⋂n
i=1[xi → Ei] where every xi is in J . It is certainly not the case in general that

sJ [μJ ] and μ coincide! The condition that every xi is in J is crucial. This condi-
tion is satisfied by A and every Ak, k ∈ N, provided we take J = (xki)k∈N,i∈Ik .
Since sJ [μJ ] is σ-additive, the equation μ(A) =

∑+∞
k=0 μ(Ak) holds.

This construction also shows that μ indeed exists, something we had de-
ferred the verification of. The problem was to show that if

⋂n
i=1[xi → Ei] =⋂m

j=1[x
′
j → E′

j ] then
∏n
i=1 g(xi)(Ei) =

∏m
j=1[x

′
j → E′

j ]. Take J = {x1, · · · , xn}∪
{x′1, · · · , x′m}. The inverse image by sJ of the set

⋂n
i=1[xi → Ei] =

⋂m
j=1[x

′
j →

E′
j ] is equal to

⋂n
i=1 π

−1
xi

(Ei) =
⋂m
j=1 π

−1
x′
j
(E′

j), and its μJ -measure is
∏n
i=1 g(xi)

(Ei) =
∏m
j=1[x

′
j → E′

j ], by definition of the product probability measure.
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The existence of �g follows directly from Carathéodory’s theorem. It is clear
that it is a probability measure. Uniqueness follows from the fact that probability
measures are uniquely determined by their values on any π-system that generates
the σ-algebra [2, Theorem 3.3]. A π-system is a collection of sets that is closed
under binary intersections, and certainly A qualifies, as a semiring. ��

4 IT Automata

Consider the following simple form of non-deterministic automaton, which we
call an IT automaton (for Ionescu-Tulcea automaton): a tuple (Z,Λ, F ) where Z,
Λ are measurable spaces, and F : ZΛ∗ → P∗(Λ) is a measurable multifunction
with a measurable selection. Z can be thought as a space of input values, Λ
as a space of states, and F as a generalized transition relation, which given a
finite history zλ1 · · ·λn produces a non-empty set F (zλ1 · · ·λn) of possible next
states. The idea is that the system starts with some input value z, goes to the
first state λ1 ∈ F (z), then to a second state λ2 ∈ F (zλ1), . . . , to an nth state
λn ∈ F (zλ1 · · ·λn−1), and so on. In other words, IT automata are just like
non-deterministic automata, except on possibly infinite state spaces and with a
history-dependent transition relation.

We use the notation Λ∗ for the space of all finite words on the alphabet Λ,
which we equate with the countable coproduct

∑
n∈N

Λn. We also write ZΛ∗

instead of Z×Λ∗, and will more generally drop the × symbol in cases where this
is not ambiguous. Accordingly, we write zλ1 · · ·λn in word notation, instead of
as the tuple (z, λ1, · · · , λn). We have already done so before.

Since an IT automaton starting from input value z will produce infinitely
many states λ1, . . . , λn, it is natural to study the space ZΛN of infinite paths of
the automaton, where ΛN is the product of countably infinitely many copies of
Λ. (This is written Λω in language theory.) The σ-algebra on ZΛN is generated
by so-called cylinders, which are exactly the products X0Λ1Λ2 . . . ΛnΛ

N with
X0 ∈ ΣZ and Λi ∈ ΣΛ, 1 ≤ i ≤ n, and n ∈ N.

A randomized scheduler for such an IT automaton is a measurable map
g : ZΛ∗ → P(Λ) such that g(zλ1 · · ·λn) is concentrated on F (zλ1 · · ·λn) for
every zλ1 · · ·λn ∈ ZΛ∗.

Given a measurable subset E of ZΛN, and an input value z ∈ |Z|, the proba-
bility that the induced infinite path lies in E , where λn is chosen at random with
probability g(zλ1 · · ·λn−1) at each step, is given by Theorem 2, with Q0 = ZΛ∗,
Qi = Λ for every i ≥ 1, and letting gn be the restriction of g to ZΛn−1. Explicitly:
Proposition 2. Let Z, Λ be two measurable spaces, and g : ZΛ∗ → P(Λ) be a
measurable map. There is a unique map Pg : ZΛ∗ → P(ZΛN) such that Pg(w)(X0

Λ1Λ2 · · ·Λn · · ·Λn+mΛN) is equal to:

χX0(z)χΛ1(λ1) · · ·χΛn(λn)

∫
λn+1∈Λn+1

dg(w)

∫
λn+2∈Λn+2

dg(wλn+1) · · ·
∫
λn+m∈Λn+m

dg(wλn+1 · · ·λn+m−1)

for all measurable subsets X0 of Z, Λi of Λ (1 ≤ i ≤ m, n ≤ m), and elements
w = zλ1 · · ·λn ∈ ZΛ∗. Moreover, Pg is measurable.



354 J. Goubault-Larrecq and R. Segala

A pure scheduler for the IT automaton (Z,Λ, F ) is just a measurable selection
of F : given the history zλ1 · · ·λn−1, pick a next state λn from F (zλ1 · · ·λn−1).

Given a pure scheduler f , define f̃ : ZΛ∗ → ZΛN so that f̃(zλ1 · · ·λn) is
the unique infinite path that we obtain by starting with the history zλ1 · · ·λn
and repeatedly computing next states, using f : f̃(zλ1 · · ·λn) = zλ1 · · ·λn
λn+1 · · ·λn+m · · · where λn+k+1 = f(zλ1 · · ·λnλn+1 · · ·λn+k), for every k ∈ N.

One might think of doing the following. Fix an IT automaton (Z,Λ, F ), and a
randomized scheduler g for this automaton. Pick a pure scheduler f at random,
with respect to the probability measure �g given by Theorem 3, and show that
the probability that f̃(z) falls into any given measurable set E of infinite paths is
equal to the probability Pg(z)(E) given in Proposition 2. We did the computation,
and checked that this indeed holds. . . except this is all wrong! This does not
make sense unless the map f �→ f̃(z) (for z ∈ |Z| fixed) is measurable. We
cannot dismiss the problem: this is the central question here.

To state it another way, the weak σ-algebra on the space of pure schedulers
has to be replaced by a larger one: the w̃eak σ-algebra on the set |Sel(F )| of pure
schedulers is the smallest that makes every map f ∈ |Sel(F )| �→ f̃(zλ1 · · ·λn)
measurable, for every zλ1 · · ·λn ∈ ZΛ∗. We write S̃el(F ) for |Sel(F )| with the
w̃eak σ-algebra.

For w = zλ1 · · ·λn ∈ ZΛ∗, and a measurable subset E of ΛN, let us write wE
for {z} × {λ1} × · · · × {λn} × E . The w̃eak σ-algebra is generated by the sets
[w →̃ wE ], defined as the set of pure schedulers f such that f̃(w) ∈ wE .

We wish to define our probability measure ω̃g on pure schedulers f by saying
that the probability that f̃(w) ∈ wE (for any fixed w, E) is exactly Pg(w)(E),
where Pg is given in Proposition 2: namely, ω̃g([w →̃ wE ]) = Pg(w)(E). That
cannot be enough to define ω̃g, and we need to at least define ω̃g(

⋂n
i=1[wi →̃

wiEi]) for all finite intersections of sets [wi →̃ wiEi]. Now there is a big difference
with the case of random measurable selections (Section 3): the choices we make
for f̃(wi) for different indices i cannot in general be independent. Indeed, imagine
we have chosen f̃(wi), for some i, to be wiλn+1 · · ·λn+m · · · : then we have no
choice for f̃(wiλn+1), and also for f̃(wiλn+1λn+2), . . . , which must all be equal
to wiλn+1 · · ·λn+m · · · . This is the consistency condition mentioned in the proof
of Proposition 3 below: in general, if we have chosen f̃(wi) as wiωi for some
ωi ∈ ΛN, and later we need to choose f̃(wj) where wi is a prefix of wj , and wj
is a prefix of wiωi, then we must choose it as f̃(wj) = wiωi.

We still proceed in a manner similar to Section 3. We now need an extra
assumption: say that measurable space X has measurable diagonal if and only if
the diagonal Δ = Gr(=) = {(x, x) | x ∈ |X |} is measurable in X ×X . Dravecký
[9, Theorem 1] shows a number of equivalent conditions. One of these is that
X has measurable diagonal if and only if there is a countable family (En)n∈N

of measurable subsets of X that separates points, that is, such that for any two
distinct points x, y, there is an En that contains one and not the other. This is
true for all Polish spaces, notably. Another one is thatX has measurable diagonal
if and only if for every measurable function f from an arbitrary measurable space
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Y to X , the obvious multifunction y ∈ Y �→ {f(y)} is measurable. This apparent
tautology is wrong when X does not have measurable diagonal! The canonical
counter-example is Y = X , f = idX : the corresponding multifunction is precisely
the one whose graph is Δ. Finally, every one-element subset {x} of a space X
with measurable diagonal is measurable in X ; indeed, {x} is the vertical cut Δ|x.

Proposition 3. Let (Z,Λ, F ) be an IT automaton, with a randomized scheduler
g : ZΛ∗ → P(Λ). Assume that Z and Λ both have measurable diagonals. Let
Pg : ZΛ

∗ → P(ZΛN) be the probability-on-paths map given in Proposition 2.
There is a probability measure ω̃g on S̃el(F ) such that ω̃g([z →̃ E ]) = Pg(z)(E)
for all z ∈ Z and E ∈ ΣZΛN .

Proof. (Outline. The technical details are relegated to Appendix A.) As a nota-
tional help, we write w, possibly subscripted or primed, for finite words in ZΛ∗,
and ω, possibly subscripted or primed, for infinite words in ΛN.

Let us write � for the prefix relation on finite and infinite words. Say that a
set of words A of ZΛ∗ is prefix-closed if and only if for every w ∈ ZΛ∗ that is a
prefix of some element of A, w is in A as well.

Let A be the semiring of all finite intersections of basic measurable subsets⋂n
i=1[wi →̃ wiEi]. By adding extra words if needed, we may assume that I =

{w1, . . . , wn} is prefix-closed.
It is hard to even attempt to describe explicitly the values of ω̃g on elements

of A. In the proof of Theorem 3, we had eventually shown that the value of the
desired measure �g coincided with the image measure of some other measure
defined on a product space for sufficiently small parts of the semiring. We define
ω̃g on A(I) by a similar Łomnick-Ulam-like trick: through image measures of
some measures μW under maps αW , for countably infinite subsets W of ZΛ∗.

Given a countably infinite setW = (wj)j∈J of words in ZΛ∗ (with J = N�{0},
say), let CstW be the subspace of

∏
w∈W PathF (w) consisting of those tuples

(wjωj)j∈J that are consistent : for all i, j ∈ J such that wi � wj � wiωi, then
wiωi = wjωj . In pictures, if the leftmost two zones are equal then the rightmost
zones are equal, too:

ωj

ωi

· · ·

· · ·

wj

wi

Using Ionescu-Tulcea’s Theorem 2, we build a probability measure μW on CstW
(Proposition 5 in Appendix A). Intuitively, μW picks w1ω1 at random using
probability measure Pg(w1), then picks w2ω2, . . . , wjωj , . . . , as follows. At step
j, if wi � wj � wiωi for some previous i, 1 ≤ i < j, then we pick wjωj ,
deterministically, as equal to wiωi, enforcing consistency; otherwise, we pick
wjωj at random using probability measure Pg(wj). All this makes sense provided
we sort W topologically, i.e., we choose the indexing scheme so that any wi that
is a prefix of wj occurs before wj , viz., i ≤ j (Lemma 6 in Appendix A).

Given w ∈ W , say w = wj , let us write [w : E ] for the set of consistent tuples
#    »wω in CstW such that ωj ∈ E . One can show that, given any finite prefix-closed
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set {w1, . . . , wn} of words in ZΛ∗, the value μW(
⋂n
i=1[wi : Ei]) is the same for all

countably infinite subsetsW that contain w1, . . . , wn (Lemma 9 in Appendix A).
The formula we obtain simplifies when n = 1 and w1 is a single letter z ∈ Z:
μW([z : E ]) = Pg(z)(zE) (Lemma 10 in Appendix A).

We take the image measure of μW under a measurable map αW : #    »wω ∈
CstW �→ f #   »wω ∈ S̃el(F ) that retrieves a canonical pure scheduler from a con-
sistent set of tuples (Proposition 6 in Appendix A), defined in such a way that
f̃ #   »wω(wj) = wjωj for every j ∈ J . This is done by patching, similarly to Lemma 5.

Note that αW [μW ](
⋂n
i=1[wi →̃ wiEi]) is independent of W , provided that

W contains the prefix-closed subset {w1, . . . , wn}. Indeed, αW [μW ](
⋂n
i=1[wi →̃

wiEi]) = μW(
⋂n
i=1[wi : Ei]), which we have shown independent of W . We can

therefore define ω̃g as coinciding with αW [μW ] on those elements
⋂n
i=1[wi →̃

wiEi] of A with {w1, . . . , wn} ⊆ W . As such, it is σ-additive on A: as in the
proof of Theorem 3, let Ak =

⋂
w∈Ik

[w →̃ Ewi], k ∈ N, be a countable family of
disjoint elements of A, where Ik is finite and prefix-closed, and A =

⋂
w∈I [w →̃

Ew] be their union, assumed in A, with I prefix-closed again. Then ω̃g(A) =∑
k∈N

ω̃g(Ak), since ω̃g coincides with the measure αW [μW ] on A and every Ak,
for W =

⋃
k∈N

Ik ∪ I (which is countable).
Finally, ω̃g([z →̃ zE ]) = μW([z : E ]) = Pg(z)(zE), for every measurable subset

E of ΛN. Since Pg(z) is concentrated on PathF (z), hence on zΛN, for every
measurable subset E of ZΛN, ω̃g([z →̃ E ]) = ω̃g([z →̃ zE|z]) = Pg(z)(zE|z) =

Pg(z)(E ∩ zΛN) = Pg(z)(E). ��

We can now integrate on infinite paths ω with respect to Pg(z), or on pure
schedulers, and this will give the same average value:

Proposition 4. Under the assumptions of Proposition 3, let h : ZΛN → R+ be
a measurable map, and z ∈ Z, then:∫

f∈S̃el(F )

h(f̃(z))dω̃g =

∫
ω∈ZΛN

h(ω)dPg(z).

Proof. Let α̃z : f �→ f̃(z). This is a measurable map, since α̃−1
z (E) = [z →̃ E ].

The left-hand side is
∫
f∈S̃el(F )

h(α̃z(f))dω̃g =
∫
ω∈ZΛN h(ω)dα̃z [ω̃g] by the change

of variables formula (1). Proposition 3 states precisely that α̃z[ω̃g] = Pg(z). ��

We may think of h as a payoff function on infinite paths. The above shows that
the average payoff with respect to Pg(z) is also the average of the individual
payoffs h(f̃(z)) one would get by drawing a pure scheduler f at random instead.

Fact 1 then implies that the value of the average payoff is bounded by the
payoff evaluated on two pure schedulers f− and f+:

Corollary 1 (Randomness for Free). Under the assumptions of Proposi-
tion 3, let h : ZΛN → R+ be a measurable map, and z ∈ Z. There are two pure
schedulers f− and f+ in Sel(F ) such that:

h(f̃−(z)) ≤
∫
ω∈ZΛN

h(ω)dPg(z) ≤ h(f̃+(z)).
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5 Conclusion

We have established a few “randomness for free” type theorems for measurable
multifunctions first, for IT automata second. The results are pleasing, and our
assumptions are fairly minimal. Our proofs use fairly simple ideas, too: there
is the Chatterjee-Doyen-Gimbert-Henzinger idea of drawing measurable selec-
tions/pure schedulers at random first, and this makes sense because of a com-
bination of patching, of Carathéodory’s measure extension theorem, and of a
Łomnik-Ulam type trick.

Where should we go next? One may push the results on IT automata to par-
tially observable IT automata. Instead of a measurable transition multifunction
F : ZΛ∗ → P∗(Λ), such automata have a measurable transition multifunction
F : ZΛ∗ → P∗(Ξ), where Ξ is an (additional) measurable space Ξ of actual
states. Such states q are mapped to observable states λ ∈ Λ by a measurable
map τ : ZΛ∗ × Ξ → Λ; this may depend on the past history w ∈ ZΛ∗, viz.,
λ = τ(w, q). We pick the next observable state λ after history w by picking q
from F (w), then computing τ(w, q). Modifying the notion of consistent paths
as required, it seems feasible to prove an analogue of Proposition 3 for partially
observable IT automata. The σ-algebra on Sel(F ) needs to be changed again!
so that we cannot reuse Proposition 3 as is. Once this is done, we can proceed
to stochastic automata [4]. Given a stochastic automaton with state space Q
and action space L, take Z = Q, Λ = (L×Q)⊥ (writing X⊥ for X + {⊥}), and
Ξ = P(Λ). Taking g to be the second projection map π2, Theorem 3 allows us
to draw the observation maps τ : Q(L × Q)∗⊥ × P((L × Q)⊥) → (L × Q)⊥ at
random, and this will simulate the probabilistic choice of q′ with respect to μ
described in the introduction. Combining this with the alluded “randomness for
free” result for partially observable IT automata, we hope that it would settle
the “randomness for free” question for general, stochastic automata.
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A Auxiliary Results Needed for Proposition 3

In the following, we fix an IT automaton (Z,Λ, F ) with a randomized scheduler
g : ZΛ∗ → P(Λ). We also assume that Z and Λ both have measurable diagonals.
Let Pg : ZΛ∗ → P(ZΛN) be the probability-on-paths map given in Proposition 2.

In the rest of this section, we fix a countably infinite set W of words in ZΛ∗.
We let J = {1, 2, · · · } = N� {0}. This will serve as an index set.

Lemma 6. One can write W as a family (wj)j∈J in such a way that for all
i, j ∈ J , if wi � wj then i ≤ j.

In other words, one can sort the words topologically. Proving this involves show-
ing that the order type of W under the prefix ordering is at most ω.

Proof. There are only countably many elements of Z, resp. Λ, that can occur
in any word from W , so one can attribute each of them a unique natural num-
ber. Equate each element with the corresponding natural number. Each word
w = zλ1 · · ·λn can now be encoded as pz1p

λ1
2 · · · pλn

n+1, where p1, p2, . . . , pn, . . .

http://www.cs.bham.ac.uk/~mzk/probmiv/prelproc98/
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enumerate the prime numbers. This way, if wi is a proper prefix of wj , then wi
will be encoded as a lower number than wj . Now enumerate the words wi in the
order of their encodings. ��

In the rest of Section A, we assume such a topologically sorted indexing scheme
(wj)j∈J for W .

Lemma 7. For every n ∈ J , Pg(wn) is concentrated on PathF (wn).

Proof. Since Z and Λ have measurable diagonals, so does ZΛ∗. For each n ∈ J ,
{wn} is therefore measurable in ZΛ∗, so we can apply Lemma 2 and conclude
that Pg(wn) is concentrated on PathF (wn). ��

In particular, the restriction Pg(wn)|PathF (wn) makes sense. To reduce visual
clutter, we simply write Pg(wn) for the latter probability measure on PathF (wn).

We shall write wnΛN for the set of words in ZΛN that have wn as a prefix. As
the product {wn} × ΛN, this is a measurable set. (Recall that one-element sets
are measurable, since Z and Λ have measurable diagonals.)

We wish to draw the values wjωj of f̃(wj), j ∈ J , in a consistent way, namely,
if we have already mapped wi to the value wiωi, and wi � wj � wiωi, then
we have no choice and must choose to map wj to wiωi as well. We achieve this
by using Ionescu-Tulcea’s Theorem 2 on another probabilistic transition system,
defined as follows, and which we only use as a mathematical helper. This is
certainly no real-life, practical transition system, and is not meant to be.

We let Q0 = {∗}, q0 = ∗, Qn = PathF (wn) for n ∈ J , and gn :
∏n−1
i=0 Qi →

P(Qn) map (∗, w1ω1, · · · , wn−1ωn−1) to:

– the Dirac mass δwiωi , where i is the least index in 1, · · · , n − 1 such that
wi � wn � wiωi, if one such index exists; this implements consistency;

– otherwise, the probability measure Pg(wn).

Both are probability measures on Qn = PathF (wn): the second one by Lemma 7,
the first one because wiωi is a path in PathF starting with wn.

Lemma 8. For every n ∈ J , gn is measurable.

Proof. For every i, 1 ≤ i < n, such that wi � wn, the set Ai of infinite words
wiωi in PathF (wi) that have wn as a prefix is PathF (wi) ∩ wnΛN, hence is
measurable. By extension, when wi �� wn, write Ai for the empty set. Rephrasing
the definition, gn(∗, w1ω1, · · · , wn−1ωn−1) is defined as ePathF (wn)(wiωi) on Ei =
{∗} × A1 × · · · × Ai−1 × Ai × |Qi+1| × · · · × |Qn−1|, 1 ≤ i < n (recall that e

is the monad unit, which is a measurable map), and as Pg(wn) on
⋃n−1
i=1 Ei (a

constant map). So gn is a patch of measurable maps, and is therefore measurable
by Lemma 4. ��

We can now apply Ionescu-Tulcea’s Theorem, as promised, and obtain a prob-
ability measure on {∗}×

∏
j∈J PathF (wj) ∼=

∏+∞
j=1 PathF (wj) that we decide to

call μW . (This is the measure Pg∗(∗) of Theorem 2, but we wish to avoid any
visual confusion with Pg.)
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Let CstW be the set of tuples of paths (wjωj)j∈J in
∏

j∈J PathF (wj) that are
consistent, i.e., such that for all i, j ∈ J such that wi � wj � wiωi, wjωj = wiωi.
These are the only ones we can ever hope to produce from a pure scheduler f ,
namely, that are of the form (f̃(wj))j∈J .

Proposition 5. The probability measure μW is concentrated on the set CstW
of consistent tuples.

Proof. Let Fn be the multifunction from
∏n−1
j=1 PathF (wj) to PathF (wn) de-

fined, similarly to gn, by letting Fn(w1ω1, · · · , wn−1ωn−1) be:

– {wiωi}, where i is the least index in 1, · · · , n− 1 such that wi � wn � wiωi,
if one such index exists;

– otherwise, PathF (wn).

One checks easily that Fn is a measurable multifunction, and that gn(w1ω1, · · · ,
wn−1ωn−1) is concentrated on Fn(w1ω1, · · · , wn−1ωn−1). We apply Lemma 2 to
En = GrFn and obtain that μW is supported on PathE .

It remains to showthatPathE = CstW .Givenany inconsistent tuple (wjωj)j∈J ,
there must be two indices i, j ∈ J such that wi � wj � wiωi but wjωj �= wiωi.
SinceW is topologically sorted, i ≤ j. Take i minimal. Then wjωj would be out-
side {wiωi} = Fj(w1ω1, · · · , wj−1ωj−1) = (Ej)|(w1ω1,··· ,wj−1ωj−1), showing that
the tuple is not in PathE . This establishes that PathE ⊆ CstW . The converse in-
clusion is obvious. ��
The restriction μW|CstW therefore makes sense. Again, we simply write μW for
this restriction, and consider it as a probability measure on CstW .

Given w ∈ W , say w = wj , let us write [w : E ] for the set of consistent tuples
#    »wω in CstW such that ωj ∈ E .

A set A of words in ZΛ∗ is prefix-closed if and only if, for every w ∈ ZΛ∗ and
λ ∈ Λ, wλ ∈ I implies w ∈ I.

Lemma 9. Let {w′
1, . . . , w

′
n} be a finite prefix-closed set of words in ZΛ∗. For

all measurable subsets E1, . . . , En of ΛN, the value of μW(
⋂n
i=1[w

′
i : Ei]) is inde-

pendent of the countably infinite set W, provided it is a superset of {w′
1, . . . , w

′
n}.

Proof. Consider any countably infinite superset W of {w′
1, . . . , w

′
n}. Write W as

(wj)j∈J , as usual. Let w′
1 = wj1 , . . . , w′

n = wjn . Up to permutation, we may
assume that j1 < j2 < · · · < jn. Then

⋂n
i=1[w

′
i : Ei] is equal to the intersec-

tion of CstW with
∏j1−1

j=1 PathF (wj) × wj1E1 ×
∏j2−1
j=j1+1 PathF (wj) × wj2E2 ×

· · · ×
∏jn−1
j=jn−1+1 PathF (wj) × wjnEn ×

∏+∞
j=jn+1 PathF (wj). We now use for-

mula (2). This requires an abbreviation for all the integrals
∫
wjωj∈ZΛN dgj(∗, w1ω1,

· · · , wj−1ωj−1) with j �∈ {j1, j2, · · · , jn}—which will turn to be useless: write∫∫
k···!

#  »

dg for the list of symbols∫
wkωk∈PathF (wk)

dgk(∗, w1ω1, · · · , wk−1ωk−1)

∫
wk+1ωk+1∈PathF (wk+1)

dgk+1(∗, w1ω1, · · · , wkωk)

· · ·
∫
w�ω�∈PathF (w�)

dg!(∗, w1ω1, · · · , w!−1ω!−1).
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We can now write:

μW(

n⋂
i=1

[w′
i : Ei]) =

∫∫
1···j1−1

#  »

dg

∫
wj1ωj1∈wj1E1

dgj1(∗, w1ω1, · · · , wj1−1ωj1−1) (4)∫∫
j1+1···j2−1

#  »

dg

∫
wj2ωj2∈wj2E2

dgj2(∗, w1ω1, · · · , wj2−1ωj2−1) · · ·∫∫
jn−1+1···jn−1

#  »

dg

∫
wjnωjn∈wjnEn

dgjn(∗, w1ω1, · · · , wjn−1ωjn−1).

Since {w1, . . . , wn} is prefix-closed, for each i, 1 ≤ i ≤ n, gji(∗, w1ω1, · · · ,
wji−1ωji−1) can be written as a function g′i(wj1ωj1 , · · · , wji−1ωji−1) of just those
wordswkωk with k ∈ {j1, . . . , jn}, k < ji. Explicitly, g′i(wj1ωj1 , · · · , wji−1ωji−1) is
δwj�

ωj�
where " is the least index, 1 ≤ " < i, such thatwj� � wji � wj�ωj� if one ex-

ists, and Pg(wji ) otherwise. In (4), the final integral
∫
wjnωjn∈wjnEn

dgjn(∗, w1ω1,

· · · , wjn−1ωjn−1) =
∫
wjnωjn∈wjnEn

dg′n(wj1ωj1 , · · · , wjn−1ωjn−1) is independent
of all the formal variables wjn−1+1ωjn−1+1, . . . , wjn−1ωjn−1 that the integrals∫
wjω∈PathF (wj)

dgj(∗, w1ω1, · · · , wj−1ωj−1) hidden in
∫∫

jn−1+1···jn−1

#  »

dg intro-
duce. Since all these integrals arewith respect to probabilitymeasures, they merely
contribute a factor of 1. We repeat the process, from right to left in (4), erasing all
the notations

∫∫
jn−1+1···jn−1

#  »

dg, and obtain:

μW(

n⋂
i=1

[w′
i : Ei])=

∫
wj1ωj1∈wj1E1

dg′j1()
∫
wj2ωj2∈wj2E2

dg′2(wj1ωj1) · · ·
∫
wjnωjn∈wjnEn

dg′n(wj1ωj1 , · · · , wjn−1ωjn−1).

(5)
It is now evident that μW(

⋂n
i=1[w

′
i : Ei]) is independent of W . ��

Applying (5) to the case n = 1, wj1 = z ∈ Z (which is automatically prefix-
closed), and noticing that g′j1() = Pg(wj1 ) = Pg(z), we obtain:

Lemma 10. For every z ∈ Z, for every countably infinite set W of words of
ZΛ∗ containing z, for every measurable subset E of ΛN, μW([z : E ]) = Pg(z)(zE).

Proposition 6. For every consistent tuple #    »wω = (wjωj)j∈J in CstW , there is
a pure scheduler f #   »wω such that f̃ #   »wω(wj) = wjωj for every j ∈ J . Moreover, the
map αW : #    »wω ∈ CstW �→ f #   »wω ∈ S̃el(F ) is measurable.

Proof. If w ∈ ZΛ∗ is a prefix of an infinite word in ΛN, then this infinite word
can be written in a unique way as wλω for some λ ∈ Λ and ω ∈ ΛN: let us call
λ the letter after w in the infinite word.

Since (Z,Λ, F ) is an IT automaton, F has a measurable selection σ. For each
consistent tuple #    »wω = (wjωj)j∈J in CstW , we define a pure scheduler f #   »wω as
follows. For every w ∈ ZΛ∗,
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– either wj � w � wjωj for some j ∈ J , and f #   »wω(w) is the letter after w in
wjωj ;

– or wj � w � wjωj for no j ∈ J , and f #   »wω(w) = σ(w).

In the first case, it does not matter which j ∈ J is picked, because of consistency.
Imagine indeed that wi � w � wiωi and wj � w � wjωj for two indices i, j ∈ J .
Since wi and wj are two prefixes of the same word w, one of them must be a
prefix of the other, say wi � wj . Then wj � w � wiωi, and consistency entails
that wiωi = wjωj , so the letter after w is the same in both infinite words.

For short, let us say that w is stored in #    »wω if and only if wj � w � wjωj for
some j ∈ J . In this case, it is easy to see that f̃ #   »wω(w) = wjωj . This implies our
first claim, namely that f̃ #   »wω(wj) = wjωj for every j ∈ J .

When w is not stored in #    »wω, the situation is a bit more complicated. Let
σ̃0(w) = w, σ̃k+1(w) = σk(w)σ(σk(w)), be the ever longer sequence of finite
prefixes of σ̃(w). If no σ̃k(w) is stored in #    »wω, then f̃ #   »wω(w) = σ̃(w). But there
may be a k ∈ N such that σ̃k(w) is stored in #    »wω. Taking the least such k,
it must be the case that f̃ #   »wω(w) = wjωj where j is any index of J such that
wj � σ̃k(w) � wjωj. These remarks being made, let us proceed.

We wish to show that the map αW : #    »wω ∈ CstW �→ f #   »wω ∈ S̃el(F ) is measur-
able. For now, fix w ∈ ZΛ∗.

The set Sk of tuples #    »wω ∈ Cst such that σ̃k(w) is stored in #    »wω, is measurable.
Indeed, σ̃k(w) is stored in #    »wω if and only if there is a j ∈ J such that wj �
σ̃k(w) � wjωj, so Sk =

⋃
j∈J

wj�σ̃k(w)

π−1
j (σ̃k(w)Λ

N), where πj : Cst → PathF (wi)

is projection onto the jth component. It follows that the set S=k = Sk�
⋃k−1
!=0 S!

of tuples #    »wω ∈ Cst such that k is the least natural number such that σ̃k(w) is
stored in #    »wω is also measurable. Let S∞ be the (measurable) complement of⋃+∞
k=0 Sk.
Let ϕk map each #    »wω ∈ Sk to f̃ #   »wω(w), i.e., to wjωj where j ∈ J is such

that wj � σ̃k(w) � wjωj . For every measurable subset E of ZΛN, ϕ−1
k (E) =⋃

j∈J
wj�σ̃k(w)

σ̃k(w)Λ
N is measurable, so ϕk is measurable. Also, the function ϕ∞

that maps each #    »wω ∈ S∞ to f̃ #   »wω(w) = σ̃(w) is measurable since constant. By
patching ϕk, k ∈ N, and ϕ∞ (Lemma 4), we obtain that the map αw : #    »wω ∈
Cst �→ f̃ #   »wω(w) is measurable.

We now observe that, for all w ∈ ZΛ∗ and E ∈ ΣΛN , α−1
W ([w →̃ wE ]) = { #    »wω ∈

CstW | f̃ #   »wω(w) ∈ wE} = α−1
w (wE), which is measurable: soαW is measurable. ��
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Abstract. We study k-regular sequences from a coalgebraic perspective.
Building on the observation that the set of streams over a semiring S
can be turned into a final coalgebra, we obtain characterizations of k-
regular sequences in terms of finite weighted automata, finite systems
of behavioral differential equations, and recognizable power series. The
latter characterization is obtained via an isomorphism of final coalgebras
based on the k-adic numeration system.

Dedication

It is our greatest pleasure to dedicate this article to Prakash Panangaden
on the occasion of his 60th birthday. There are not many subjects in our
own research that have not been influenced by his work and ideas. Before
the notion of finality in semantics became prominent in the early nineties
of the previous century, Prakash was already writing [14] about infinite
objects requiring “ . . . a limit construction and a final object . . . ”. An-
other early reference that is of direct relevance for the present paper is
[16], published as a report in 1985, in which streams and stream func-
tions play a key role. For these and many other similar such inspiring
examples, we are immensely grateful.

1 Introduction

Infinite sequences, or streams, are much studied in the fields of number theory,
analysis, combinatorics, formal languages and many more. Streams are also one
of the best known examples of a final coalgebra [18]. Of particular interest is
the classification of streams in terms of certain finite automata, or alternatively,
stream differential equations of a certain form. The simplest such class consists
of all eventually periodic streams (over a set S). They are generated by finite
automata in which each state is assigned an output in S and a unique next state.
Let us call these deterministic 1-automata as they are deterministic automata on
a one-letter alphabet (with output in S). In terms of stream differential equations
(cf. [18]), eventually periodic streams are defined by simple systems of stream
differential equations such as x(0) = 0, x′ = y, y(0) = 1, y′ = y.
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We consider two ways of generalizing deterministic 1-automata. One is by
going from deterministic to weighted transitions. In this setting we must assume
that the output set S has the structure of a semiring. The class of sequences
generated by finite weighted 1-automata is known to be the class of rational
power series on a 1-letter alphabet, or in the case that S is a field, the class
of rational streams (cf. [18]). In terms of stream differential equations, rational
streams are defined by equations such as x(0) = 0, x′ = x+ y, y(0) = 1, y′ = 2x.

The other generalization is by going from a one-letter alphabet to a k-letter
alphabet, for k ∈ N. Here, finite deterministic k-automata generate exactly the
k-automatic sequences [2]. It was shown in [9,12] that k-automatic sequences
are defined by systems of equations involving the stream operation zipk, such
as (for k = 2), x(0) = 1, x = zip2(x, y), y(0) = 2, y = zip2(y, y). (Note
that the left-hand sides are x and y, and not x′ and y′). These equations can
be expressed using the even and odd stream operations, such as x(0) = 1,
even(x) = y,odd(x) = y, y(0) = 2, even(y) = y,odd(y) = x. This approach
generalizes easily to arbitrary k ≥ 2.

In this paper we will show that (generalizing in both directions) finite weighted
k-automata generate exactly the k-regular sequences. On the side of equational
specification, we show that k-regular streams are defined by systems of linear
zipk-behavioral differential equations, which are equations such as, e.g., x(0) =
0, x′ = zip(x+y, 2y), y(0) = 1, y′ = zip(2x, x+y). One way of summarising our
insights in a slogan would be: k-regular sequences are to k-automatic sequences
what rational streams are to eventually periodic ones. Our main characterization
results are stated in Theorem 14.

Our approach is coalgebraic, although we use the more familiar terminology of
automata. A seemingly small, technical difference with existing work is our use of
the bijective k-adic numeration system as opposed to the non-bijective standard
base k numeration. The advantage of using the bijective numeration system is
that the automaton structure on streams obtained via the k-adic numeration
yields immediately a final k-automaton, rather than a relatively final one for
zero-consistent automata, as in [12]. Consequently, we obtain an isomorphism
between the final k-automaton of sequences and the (classic) final k-automaton
of formal power series, and this isomorphism restricts to one between k-regular
sequences and rational formal power series. We also obtain a characterization
of k-automatic sequences as those k-regular sequences that have finite output
range. Another generalization with respect to [1] is the assumption that S is just
a semiring, not a ring.

Finally, we provide a connection between our coalgebraic presentation of the
k-regular sequences, and sequences attainable by so-called divide-and-conquer
recurrences (see e.g. [10], [20]). We also note that linear zipk-behavioral differ-
ential equations give an easy way of specifying these sequences coinductively in
the functional programming language Haskell.

Related work. The k-regular sequences were introduced in [1] as generalizations
of k-automatic sequences, and are further treated in [3], Chapter 16 of [2], and
Chapter 5 of [6]. Some open questions posed in the original paper [1] were solved
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in [5,15]. The work in this article builds on existing coalgebraic approaches to
automatic sequences, which can be found in [12] and [9]. In particular, our sys-
tems of linear zip-behavioral differential equations can be seen as a linear gen-
eralization of the zipk-specifications in [9]. The isomorphism of final coalgebras
presented in this paper is probably folklore, but we think its usefulness warrants
an explicit inclusion in our paper. Finally, we remark that the definitions and
results of section 3.2 on solutions to linear zipk-behavioral differential equations
can be seen as instances of more general concepts in the theory of bialgebra
(cf. [4]). Such an abstract presentation is, however, not necessary and would not
improve the results of the paper.

Acknowledgements. We would like to thank Alexandra Silva for helpful discus-
sions on weighted automata.

2 Preliminaries

2.1 Semirings and Semimodules

Throughout this paper, S denotes a semiring. A semiring S = (S,+, ·, 0, 1)
consists of a commutative monoid (S,+, 0) and a monoid (S, ·, 1) such that the
following identities hold for all s, t, u in S: 0 · s = s ·0 = 0, s · (t+u) = s · t+ s ·u,
(s + t) · u = s · u + t · u. A left-semimodule over S is a commutative monoid
(M,+, 0) together with a left-action by S, i.e., a map S ×M → M , denoted
as scalar multiplication (s,m) �→ sm for all s ∈ S,m ∈ M which satisfies:
(st)m = s(tm), s(m + n) = sm + sn, (s + t)m = sm + tm, 0m = 0, 1m = m.
A left-linear map between left-semimodules is a map f : M → N which respects
scalar multiplication and sum: f(sm) = sf(m) and f(m1 + m2) = f(m1) +
f(m2). Right-semimodules over S are defined similarly via a right action. If S
is commutative, i.e., the multiplicative monoid (S, ·, 1) is commutative, then left
and right semimodules are the same.

We will work in the setting of left-semimodules over S and left-linear maps,
which for simplicity we refer to as S-semimodules and linear maps. Note that S
is itself an S-semimodule with the left action given by multiplication in S.

2.2 Stream Operations, Zip and Unzip

We will use some notation and terminology from coinductive stream calcu-
lus (see e.g. [18]). A stream (over the semiring S) is an (infinite) sequence
(σ(0), σ(1), σ(2), . . .) of elements from S, or more formally, a map σ : N → S,
also written σ ∈ SN. We will use the terminology of streams and sequences
interchangeably, and the notions can be regarded as synonymous.

The initial value and derivative of a stream σ ∈ SN are σ(0) and σ′, respec-
tively, where σ′(n) = σ(n + 1) for all n ∈ N. The initial value and derivative of
σ are also known as head(σ) and tail(σ).
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The streams SN form an S-semimodule under pointwise addition and scalar
multiplication which are the unique stream operations that satisfy the following
stream differential equations (cf. [18]):

(σ + τ)(0) = σ(0) + τ(0), (σ + τ)′ = σ′ + τ ′,
(aσ)(0) = aσ(0), (aσ)′ = aσ′. (1)

for all σ, τ ∈ SN and a ∈ S. Note that from the above equations it follows
immediately that head : SN → S and tail : SN → SN are linear.

The shift operation X is defined as Xσ = (0, σ(0), σ(1), . . .), or equivalently,
by the stream differential equation:

(Xσ)(0) = 0, (Xσ)′ = σ.

We will use the so-called fundamental theorem of stream calculus(cf. [18])1:

for all σ ∈ SN : σ = σ(0) + Xσ′ (2)

Of central importance to us are the k-ary operations zipk. For k ∈ N, zipk
zips together k streams σ0, . . . , σk−1 into one by taking elements in turn from its
arguments. Formally, for k ∈ N and streams σ0, . . . , σk−1 the stream operation
zipk is defined by

zipk(σ0, . . . , σk−1)(i+ nk) = σi(n) ∀n, i ∈ N, 0 ≤ i < k (3)

or equivalently, by the stream differential equation:

zipk(σ0, . . . , σk−1)(0) = σ0(0)
zipk(σ0, . . . , σk−1)

′ = zipk(σ1, . . . , σk−1, σ
′
0).

(4)

For example, for k = 2, we have zip2(σ, τ) = (σ(0), τ(0), σ(1), τ(1), . . .).
Conversely, the unzipping operations are defined as follows for k, j ∈ N with

j < k:
unzipj,k(σ)(n) = σ(j + nk) ∀n ∈ N (5)

For k = 2, unzip0,2 and unzip1,2 are also known as even and odd:

unzip0,2(σ) = even(σ) = (σ(0), σ(2), σ(4), . . .)
unzip1,2(σ) = odd(σ) = (σ(1), σ(3), σ(5), . . .)

It can easily be verified that

zipk(unzip0,k(σ), . . . ,unzipk−1,k(σ)) = σ (6)

and conversely that (for i with 0 ≤ i < k)

unzipi,k(zipk(σ0, . . . , σk−1)) = σi. (7)

In other words, zipk : (S
N)k → SN is a bijection with inverse

unzipk = (unzip0,k, . . . ,unzipk−1,k) : S
N → (SN)k.

The unzip-operations relate to the more familiar notion of a k-kernel. The
k-kernel of a stream σ can be defined as the closure of the set {σ} under the
operations unzipj,k for 0 ≤ j < k.

1 Here σ(0) is overloaded as the stream (σ(0), 0, 0, . . .)
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2.3 Automata as Coalgebras

We briefly recall some basic definitions on (weighted) automata (with weights
in a semiring), and how these are modelled as coalgebras [17].

Automata and formal power series. Given a finite alphabet A and a semiring
S, a (linear) A-automaton (with output in S) is a triple (Q, o, δ), where Q is an
S-semimodule, o : Q→ S is a linear map assigning an output value o(q) to each
q ∈ Q, and δ : Q→ QA is a linear map assigning to each q ∈ Q and a ∈ A a next
state δ(q)(a) which we will also denote by qa and refer to as the a-derivative of
q. Note the absence of initial states or state vectors in this presentation. The
transition function δ can be extended to a map δ∗ : Q → QA∗

in the usual
inductive manner: δ∗(q)(ε) = q and δ∗(q)(wa) = δ(δ∗(q)(w))(a).

The set S〈〈A〉〉 of formal power series over noncommuting variables from A
with outputs in S is the function space S〈〈A〉〉 = {ρ : A∗ → S} equipped with
pointwise S-semimodule structure. We note that a formal power series ρ : A∗ →
S can also be seen as an S-weighted language.2 The formal power series generated
by a state q ∈ Q in an A-automaton (Q, o, δ) is the map �q�L : A

∗ → S defined
by �q�L(w) = o(δ∗(q)(w)).

An A-automaton is a coalgebra for the functor S × (−)A on the category
of S-semimodules and linear maps. The theory of universal coalgebra [17] now
directly yields an associated notion of homomorphism. Diagrammatically, given
A-automata (Q, oQ, δQ) and (R, oR, δR), a linear map h : Q→ R is a homomor-
phism iff it makes the diagram

Q

(oQ,δQ)

��

h �� R

(oR,δR)

��
S ×QA 1S×hA

�� S ×RA

commute, or equivalently, iff for all q ∈ Q, oQ(q) = oR(h(q)) and h(qa) = h(q)a
for all a ∈ A. An isomorphism of A-automata is a bijective homomorphism.

The set S〈〈A〉〉 of formal power series is itself an A-automaton

L = (S〈〈A〉〉, O,Δ)

with O and Δ defined by

O(ρ) = ρ(ε) and Δ(ρ)(a)(w) = ρ(aw).

In fact, (S〈〈A〉〉, O,Δ) is known to be final in the category of A-automata (this
follows from [18, Theorem 9.1] combined with the fact that all final mappings
are linear). This means that given any A-automaton (Q, o, δ), there is a unique
homomorphism (Q, o, δ) → (S〈〈A〉〉, O,Δ). This unique homomorphism is, in
fact, the function �−�L : Q→ S〈〈A〉〉 which maps q ∈ Q to the formal power series
generated by q. We note that final coalgebras are unique only up to isomorphism.

2 This explains our later use of L as subscript to indicate formal power series.
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Recognizable formal power series are characterized in terms of weighted au-
tomata. We first introduce some notation. For a set X , we denote by SXω the
set of all functions φ : X → S with finite support, i.e., φ(x) �= 0 for only
finitely many x ∈ X . Equivalently, such a φ can be seen as a linear combi-
nation a1x1 + · · · + anxn where ai = φ(xi), i = 1, . . . , n and φ(x) = 0 for all
x /∈ {x1, . . . , xn}. The set X is included into SXω via the map η : X ↪→ SXω
defined as η(x) = 1x. Importantly, by taking pointwise S-semimodule struc-
ture, SXω is the free S-semimodule over the set X , which means that for each
function f : X → M into some S-semimodule M , there is a unique linear map
f̂ : SXω →M extending f , i.e., f̂ ◦ η = f .

Weighted automata. An S-weighted A-automaton is a triple (X, o, δ) where X
is a set (of states), o : X → S is an output function, and δ : X → (SXω )A is
a transition function. In terms of weighted transitions, δ(x)(a)(y) ∈ S is the
weight of the a-transition from x to y. We say that (X, o, δ) is finite if X is
finite. An S-weighted A-automaton is a coalgebra for the functor S × (S−

ω )
A on

the category of sets and functions. We note that a nondeterministic automaton is
a 2-weighted automaton where 2 = ({⊥,+},∨,∧,⊥,+) is the Boolean semiring.

Determinization. Any S-weighted A-automaton (X, o, δ) can be determinized

to an A-automaton, by constructing an A automaton (SXω , ô, δ̂), where ô and δ̂
are the unique linear extensions of o and δ to the free semimodule SXω , i.e. the

unique linear mappings satisfying ô(η(x)) = o(x) and δ̂(η(x)) = δ(x).
This construction can be summarized in the following diagram:

X ⊂ η � SXω
�−�L � S〈〈A〉〉

S × (SXω )A

(o,δ)

�
1S×�−�L

A

�
�

(ô
,̂δ
)

S × S〈〈A〉〉A

(O,Δ)

�

(8)

We say that a state x in an S-weighted A-automaton generates ρ ∈ S〈〈A〉〉 if
�η(x)�L = ρ. When X is finite, the determinization has a finitely generated
S-semimodule SXω as its state space, but as a set SXω is generally infinite. For
further details on determinization and its categorical/coalgebraic setting we refer
to [19].

The above now yields the following definition of the recognizable power series.

Definition 1. A formal power series ρ ∈ S〈〈A〉〉 is recognizable if and only if
there is a finite S-weighted A-automaton (X, o, δ) such that ρ = �x�L for some
x ∈ X.

In other words, ρ is recognizable if and only if it is generated by some state
in a finite S-weighted A-automaton. This definition is easily seen to correspond
to the classic definition in e.g. [6].
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2.4 Numeration Systems

For any natural number k ∈ N with k ≥ 1, let Ak denote the alphabet of digits

Ak = {1, . . . , k}

We emphasize the use of the digits as alphabet symbols by writing them in a
fixed-width font. The map νk : A

∗
k → N, which assigns to each string of digits

the natural number it represents, is defined inductively by:

νk(ε) = 0 and νk(i · w) = i+ k · νk(w).

It is well-known and easy to see that νk is a bijection between natural num-
bers and their representation in the k-adic numeration system3, with the least
significant digit on the left. For example, the 2-adic numeration of the natural
numbers starts as follows: ε, 1, 2, 11, 21, 12, 22, 111, . . .

We contrast the bijective k-adic numeration system with the familiar (stan-
dard) base k numeration system which is defined as follows. The alphabet of
digits is

Bk = {0, . . . , k− 1}

and, whenever k ≥ 2, we can define a mapping ξk : B
∗
k → N inductively by

ξk(ε) = 0 and ξk(i · w) = i+ k · ξk(w)

This again gives us a presentation with the least significant digit on the left.4 For
example, standard base 2 is the reverse binary notation with zero represented
by ε, i.e., starting as ε, 1, 01, 10, 11, 001, 101, 011, 111, . . . The map ξk has the
property that for all w ∈ B∗

k, ξ(w) = ξ(w · 0), and hence ξk is not bijective.
Finally, observe that, from the inductive definitions of the k-adic and standard

base k numeration, we obtain that

νk(a0 . . . an) =
n∑
i=0

aik
i and ξk(b0 . . . bn) =

n∑
i=0

bik
i

for all ai ∈ Ak and bi ∈ Bk, which can be taken as alternative definitions of the
two numeration systems.

In most literature on k-automatic and k-regular sequences, the standard base
k numeration system is employed. However, we prefer the bijective k-adic nu-
meration system since it yields a bijective correspondence at the level of fi-
nal coalgebras. Moreover, unlike in the standard base k numeration, there is a
straightforward and intuitive bijective numeration for the case k = 1 given by
ε, 1, 11, 111, . . .

3 Unrelated to and not to be confused with the p-adic numbers.
4 For a more standard presentation with the most significant digit on the left, switch
the inductive definition to ξk(w · i) = i+ k · ξk(w).
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3 Characterizations of k-regular Sequences

The notion of a k-regular sequence with values in a ring was introduced in [1].
The following definition is (roughly) a direct generalization to sequences with
values in a semiring. We discuss the more precise relationship in the remark
below.

Definition 2. A sequence σ ∈ SN is k-regular iff the k-kernel of σ is contained
in a finitely generated S-subsemimodule of SN, or equivalently, iff there is a finite
set of generators Σ = {σ0, . . . σn−1} with σ ∈ Σ, and an indexed family ah,i,j
for all h, i, j ∈ N with h < n, i < n, j < k, such that for all h < n and j < k

unzipj,k(σh) =
∑
i<n

ah,i,jσi

or equivalently, for all h < n:

σh = zipk

(∑
i<n

ah,i,0σi, . . . ,
∑
i<n

ah,i,kσi

)
. (9)

Remark 3. In [1], the definition of a k-regular sequence is as follows: Let R
be a ring and R′ a (commutative) Noetherian ring contained in R. A sequence
σ ∈ RN is (R′, k)-regular if each sequence in the k-kernel of σ is an R′-linear
combination of some finite set of sequences σ1, . . . , σn ∈ RN. In terms of modules,
this is equivalent with saying that the k-kernel of σ is contained in a finitely
generated R′-submodule of RN (viewed as an R′-module). Since R′ is assumed
to be Noetherian, this in turn is equivalent with the k-kernel itself being a finitely
generated R′-submodule of RN. For simplicity, we do not distinguish between the
semiring S of values and a subsemiring S′ ⊆ S from which linear coefficients may
be taken. Hence in the terminology of [1], our definition of k-regular could be
phrased as (S, k)-regular. If we assume that S is a Noetherian semiring (cf. [8]),
then our definition is equivalent to requiring that the k-kernel of σ is a finitely
generated S-subsemimodule of SN.

In this section we will give characterizations of k-regular sequences in terms
of finite weighted automata, finite systems of (certain) behavioral differential
equations, and recognizable formal power series.

3.1 An Isomorphism between Final Ak-automata

We start by defining an Ak-automaton S with state space SN as the composition
of bijections:

SN
(head,tail)

∼=
�� S × SN

1S×unzipk

∼=
�� S × (SN)Ak

That is,
S := (SN,head,unzipk ◦ tail)
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In [9, Proposition 26] it was observed that S is a final Ak-automaton. This result
will also follow from our Proposition 5 below, and the finality of L.

Given an Ak-automaton (Q, o, δ), we let �−�S : Q → SN denote the unique
mapping into the final Ak-automaton on SN:

Q

(o,δ)

��

�−�S �� SN

(head,unzipk◦ tail)

��
S ×QAk

1S×�−�
Ak
S �� S × (SN)Ak

(10)

The commutativity of the above diagram means that for all q ∈ Q:

o(q) = head(�q�S)
�δ(q)(i)�S = �qi�S = unzipi−1,k(�q�

′
S) for all i ∈ Ak

(11)

or, equivalently, using the zipk-unzipk isomorphism (6),

�q�S(0) = o(q), �q�
′
S = zipk(�δ(q)(1)�S , . . . , �δ(q)(k)�S). (12)

We refer to �q�S as the stream semantics of q. Conversely, we will say that q
generates the stream �q�S .

As final coalgebras are unique up to isomorphism, it follows that S and
L = (S〈〈Ak〉〉, O,Δ) are isomorphic. We will show that the unique isomorphism
between S and L is concretely given by k-adic numeration. First, we define a
map from sequences to formal power series.

Definition 4. We define the map hL : S
N → S〈〈Ak〉〉 by

hL(σ)(w) = σ(νk(w)) for all w ∈ A∗
k (13)

where νk : A
∗
k → N is the bijective k-adic numeration given in Section 2.4. For

σ ∈ SN we refer to hL(σ) as the formal power series corresponding to σ via
k-adic numeration.

Proposition 5. The map hL : S
N → S〈〈Ak〉〉 is an isomorphism of Ak-automata

from S to L, i.e., the following diagram commutes (where hS = h−1
L ):

SN
hL ��
hS

S〈〈Ak〉〉

S × (SN)Ak

(head,unzipk◦ tail)

� 1S×hk
L��

1S×hk
S

S × S〈〈Ak〉〉Ak

(O,Δ)

�

Proof. We must show that hL is a bijective homomorphism. From the fact that
νk is a bijection it directly follows that hL is a bijection. It remains to show that
hL is a homomorphism of Ak-automata.
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For this, we first have to prove that head(σ) = O(hL(σ)), which holds because

head(σ) = σ(0) = σ(νk(ε)) = hL(σ)(ε) = O(hL(σ)).

Now, we have to show that (hL(σ))i = hL(σi). This holds, because given any
w ∈ A∗

k and i ∈ Ak, we have:

(hL(σ))i(w) = (hL(σ))(i · w)
= σ(νk(i · w))
= σ(i+ k · νk(w))
= σ′((i − 1) + k · νk(w))
= unzipi−1,k(σ

′)(νk(w))
= hL((unzipi−1,k ◦ tail)(σ))(w)
= hL(σi)(w)

Finally, it can easily be verified that hL is linear using (1). ��

In combination with the fact that homomorphisms to final automata are
unique, this now directly leads to the following corollary:

Corollary 6. For any Ak-automaton (Q, o, δ), we have

hL ◦ �−�S = �−�L and hS ◦ �−�L = �−�S .

3.2 Systems of Linear zip-Behavioral Differential Equations

The finality of S gives rise to a coinduction principle for weighted automata.
Namely, by defining an S-weighted Ak-automaton (X, o, δ) we are defining the
streams �η(x)�S ∈ SN for each x ∈ X , via determinization and finality as de-
scribed in the following diagram, which is the analogue of (8) only with S instead
of L.

X ⊂ η � SXω
�−�S � SN

S × (SXω )Ak

(o,δ)

�
1S×�−�S

Ak �
�

(ô
,̂δ
)

S × (SN)Ak

(head,unzipk◦ tail)

�

(14)

The existence of �−�S and the commutativity of the above diagram immediately
tells us the following fact:

Lemma 7. A sequence σ is generated by a state in a finite weighted automaton
if and only if there is a finite set of sequences Σ = {σ0, . . . , σn−1} with σ ∈ Σ
such that for all j < k and i < n, unzipj,k(σ

′
i) is a linear combination of

elements from Σ.
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We can formulate the uniqueness of �−�S and the commutativity of (14) in
terms of the zipk-operations by using the homomorphism condition (12).

Lemma 8. Given an S-weighted Ak-automaton (X, o, δ), �−�S is the unique
linear mapping SXω → SN satisfying, for each x ∈ X, the equations

�η(x)�S(0) = o(x) �η(x)�
′
S = zipk(�δ(x)(1)�S , . . . , �δ(x)(k)�S).

(Recall that η : X ↪→ SXω is the inclusion of states into the determinization.)

The above lemma justifies an alternative method of specifying streams via
equations involving the zipk-operation. A system of linear zipk-behavioral dif-
ferential equations over a set (of variables) X is a system of equations, one for
each x ∈ X , of the form,

x(0) = ax, x′ = zipk(αx,1, ..., αx,k) (15)

where ax ∈ S and αx,1, . . . , αx,k are S-linear combinations over X .
Linear zipk-behavioral differential equations and “plain” behavioral differ-

ential equations (using formal power series derivatives) both describe weighted
automata, but the use of linear zip-behavioral differential equations makes it
explicit that we intend to apply the finality of S (to obtain streams), rather
than the finality of L (to obtain formal power series). Explicitly, given a sys-
tem of linear zipk-behavioral differential equations as in (15), the corresponding
S-weighted Ak-automaton (X, o, δ) is given by o(x) = ax, and δ(x)(i) = αx,i for
all x ∈ X and i ∈ Ak.

We illustrate with a small example. The streams specified in derivative form
by the behavioral differential equations:

o(x) = 1, x1 = x+ y, x2 = 3x+ y
o(y) = 2, y1 = y, y2 = x+ 2y

are equivalently specified in terms of unzip0,2 ◦ tail and unzip1,2 ◦ tail, i.e., by
even ◦ tail and odd ◦ tail:

o(x) = 1, even(x′) = x+ y, odd(x′) = 3x+ y
o(y) = 2, even(y′) = y, odd(y′) = x+ 2y

and equivalently (via the zip-unzip isomorphism (6)), by the system of linear
zip2-behavioral differential equations:

o(x) = 1, x′ = zip2(x + y, 3x+ y)
o(y) = 2, y′ = zip2(y, x+ 2y)

A solution to a system of linear zipk-behavioral differential equations over X
with components given as in (15), is a map f : X → SN such that for all x ∈ X ,

f(x)(0) = ax, f(x)′ = zipk(f̂(αx,0), ..., f̂(αx,k−1)) (16)

where f̂ : SXω → SN is the linear extension of f with respect to the semimodule
structure on SN.

The basic fact that justifies viewing systems of linear zipk-behavioral differ-
ential equations as defining streams, is stated in the following lemma.
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Lemma 9. Every system of linear zipk-behavioral differential equations has a
unique solution given by the final stream semantics �−�S ◦η of the corresponding
weighted automaton (X, o, δ).

Proof. By Lemma 8, the map �−�S ◦ η : X → SN is a solution, and it is unique
by uniqueness of �−�S . ��

We will say that a stream σ is defined by system of linear zipk-behavioral
differential equations over X if σ = �η(x)�S for some x ∈ X in such a system.
In what follows, we will suppress η and simply write �x�S instead of �η(x)�S .

3.3 Characterizations of k-regular Sequences

We will now show that k-regular sequences are obtained precisely by the stream
semantics finite S-weighted Ak-automata. It will follow that k-regular sequences
are in bijective correspondence with recognizable formal power series via k-adic
numeration. This is an analogue of the result in [1] which shows that k-regular
sequences over the integers Z correspond to some Z-rational power series in
noncommuting variables {0, . . . , k− 1} via the standard base k numeration.

Proposition 10. Given any k ≥ 2, if σ ∈ SN is a k-regular sequence, then there
is a finite S-weighted Ak-automaton (X, o, δ) and an x ∈ X, such that �x�S = σ.

Proof. If σ is k-regular, there is a finite set of sequences Σ = {σ0, . . . , σn−1}
with σ ∈ Σ, and values ah and bh,i,j in S indexed over h < n, i < n, j < k, such
that for all h < n:

σh = zipk

(∑
i<n

ah,i,0σi, . . . ,
∑
i<n

ah,i,k−1σi

)
.

Taking the derivative and second derivative of each σh using (4), we obtain:

σ′h = zipk

(∑
i<n

ah,i,1σi, . . . ,
∑
i<n

ah,i,0σ
′
i

)

σ′′h = zipk

⎛⎝∑
i<n

ah,i,2σi, . . . ,
∑
i<n

ah,i,0σ
′
i,
∑
i≤n

ah,i,1σ
′
i

⎞⎠
Hence, for each σ ∈ Σ+ := Σ ∪ {σ′ |σ ∈ Σ} and j < k, unzipj,k(σ

′) is a
linear combination of elements from Σ+, and hence there is a finite S-weighted
Ak-automaton (X, o, δ) and an x ∈ X , such that �x�S = σ by Lemma 7. ��

Example 11. We illustrate Proposition 10 with a well-known 2-regular sequence,
which the composer Per Nørg̊ard used in a variety of his compositions, and which
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he called the infinity sequence5 (A004718 on the Online Encyclopedia of Integer
Sequences6):

σ = (0, 1,−1, 2, 1, 0,−2, 3,−1, 2, 0, 1, 2, . . .) ∈ ZN

This sequence can be characterized uniquely by the following equations:

o(x) = 0 x = zip2(−x, x+ y)

o(y) = 1 y = zip2(y, y)

(with x denoting σ). The zip-equations on the right-hand side are a system in
the format of (9) and hence the sequence is 2-regular. Taking derivatives and
second derivatives of the zip-equations, we now get using (4):

x′ = zip2(x+ y,−x′) x′′ = zip2(−x′, x′ + y′)
y′ = zip2(y, y

′) y′′ = zip2(y
′, y′)

We can now compute the initial values of x′ and y′ as

o(x′) = o(zip2(x + y,−x′)) = o(x+ y) = o(x) + o(y) = 1
o(y′) = o(zip2(y, y)) = o(y) = 1.

Introducing new variables z and w representing x′ and y′ respectively, we now
can specify a weighted automaton as the unique solution to the following system
of zip-equations:

o(x) = 0 x′ = zip2(x+ y,−z)
o(y) = 1 y′ = zip2(y, w)

o(z) = 1 z′ = zip2(−z, z + w)

o(w) = 1 w′ = zip2(w,w)

The final homomorphism �−�S maps x to Nørg̊ard’s infinity sequence:

�x�S = (0, 1,−1, 2, 1, 0,−2, 3,−1, 2, 0, 1, 2, . . .)

We remark, however, that this weighted automaton is not minimal, as y and w
both are mapped onto the constant sequence of ones.

Example 12. Another example, which can be constructed in the same manner
as the previous example, is given by the following N-weighted A2-automaton:

o(x) = 1 x′ = zip2(x, x)

o(y) = 1 y′ = zip2(2y, 2y + x)

o(z) = 1 z′ = zip2(z, x+ y)

5 http://pernoergaard.dk/eng/strukturer/uendelig/uindhold.html
6 http://oeis.org
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Here, the final homomorphism �−�S maps x onto the constant stream of
ones, y onto the stream of natural numbers, and z onto Kimberling’s sequence
(A003602 on OEIS):

�z�S = (1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, . . .)

We now prove the converse of Proposition 10.

Proposition 13. Given any k ≥ 2, a finite S-weighted Ak-automaton (X, o, δ),
and a state x ∈ X, �x�S is k-regular.

Proof. By Lemma 8, we have

�x�′S = zipk(�δ(x)(1)�S , . . . , �δ(x)(k)�S)

and by (4) and (2) that

�x�S = zipk(o(x) + X�δ(x)(k)�S , �δ(x)(1)�S , . . . , �δ(x)(k-1)�S). (17)

Using the fact that (X�x�S)
′ = �x�S , and applying again (4) and (2), we obtain:

X�x�S = zipk(X�δ(x)(k-1)�S , o(x) + X�δ(x)(k)�S , �δ(x)(1)�S , . . . , �δ(x)(k-2)�S)
(18)

By defining the set of generators

Σ = {�x�S |x ∈ X} ∪ {X�x�S |x ∈ X} ∪ {(1, 0, 0, . . .)}

the equations (17) and (18) show (via the zip-unzip isomorphism (6)) that for
each generator σ ∈ Σ and j < k, unzipj,k(σ) is a linear combination of the
generators. It follows from the definition that �x�S is k-regular for all x ∈ X . ��

We now can gather, from our previous results, the following equivalent char-
acterizations of k-regular sequences, arriving at our main theorem:

Theorem 14. The following are equivalent for any stream σ ∈ SN:

1. σ is k-regular.
2. σ is generated by a state in a finite weighted Ak-automaton.
3. σ is defined by a linear system of zipk-behavioral differential equations over

a finite set of variables.
4. hL(σ) ∈ S〈〈Ak〉〉 is a recognizable power series.

Proof. 1 ⇒ 2 is Proposition 10. 2 ⇒ 1 is Proposition 13. 2 ⇔ 3 follows from
Lemma 8 and Lemma 9. 2⇔ 4 follows from Proposition 5. ��

The equivalence 1⇔ 4 in the above theorem combined with the fact that hL is
a bijection with inverse hS directly yields the following corollary, establishing a
bijective correspondence between k-regular power series and recognizable power
series on the alphabet Ak:
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Corollary 15. For all formal power series ρ ∈ S〈〈Ak〉〉 over variables Ak, we
have: ρ is recognizable if and only if the sequence hS(ρ) ∈ SN is k-regular.

The equivalence 1 ⇔ 4 of Theorem 14 is analogous to [1, Theorem 4.3],
which says that σ ∈ ZN is k-regular if and only if the formal power series∑

n<ω σ(n)ξ̄(n) is rational (or equivalently, recognizable), where ξ̄ : N→ B∗
k\B∗

k0
is the inverse of the bijection obtained by restricting the standard base k nu-
meration ξ : B∗

k → N to words not ending in 0. In contrast with our results,
[1, Theorem 4.3] cannot be extended to a bijective correspondence between the
classes of k-regular sequences and rational power series over variables in Bk as
there are rational power series ρ ∈ S〈〈Bk〉〉 that do not correspond to any k-
regular sequence via standard base k numeration. In other words, there is no
analogue of our Corollary 15 in the presentation using standard base k numera-
tion from [1].

Zero-consistent automata. It is also possible to characterize k-regular sequences
by a class of weighted automata that read the numeration used in [1, Theorem
4.3] (standard base k backwards). This class of automata is provided by the so-
called zero-consistent S-weighted Bk-automata which are a mild generalisation
of the zero-consistent automata that have been described in [12].

The defining feature for zero-consistent automata is that the (immediate)
output of the automaton does not change when reading letter 0. Intuitively,
reading letter 0 corresponds to moving from a state generating stream σ to a state
that generates the stream unzip0,k(σ). Zero-consistency reflects the fact that
the head of any stream σ is equal to the head of the stream unzip0,k(σ). More
generally, reading a letter j with 0 ≤ j < k in this setting corresponds to moving
from a state that represents a stream σ to a state that represents the stream
unzipj,k(σ). As Definition 2 of k-regular sequences is based on the unzipk-
operations (and not on the unzipk ◦ tail-operations as used in the definition of
S) it is rather straightforward to prove that the k-regular sequences are precisely
the ones that can be generated using zero-consistent automata.

3.4 Connections to Automatic Sequences

All of the results that were presented earlier in this section can be seen as
generalizations of corresponding results about the k-automatic sequences. In this
subsection, we will state (without proofs, but with some explanations about the
relationships) the corresponding theorems. We remark that, unlike in the case
of k-regular sequences, the results for automatic sequences are, in this form,
well-known in the literature. The following definition is analogous to Definition
2, but uses the more restrictive condition that the k-kernel is finite, rather than
finitely generated:

Definition 16. A sequence σ ∈ SN is k-automatic iff the k-kernel of σ is finite,
or equivalently, iff there is a finite set of sequences Σ = {σ0, . . . σn−1} with
σ ∈ Σ, such that for all h, j ∈ N with h < n and j < k, unzipj,k(σh) ∈ Σ.
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We can now obtain the following results, using essentially the same techniques
have been used in this paper for k-regular sequences:

– A sequence σ ∈ SN is k-automatic if and only if there is a finite Ak-
automaton (Q, o, δ) such that σ = �q�S for some q ∈ Q. (Equivalent to
[2, Theorem 5.2.7])

– A sequence σ is k-automatic iff it takes finitely many values v1, . . . , vn, and
for each vi, the language {w ∈ A∗

k |hL(σ)(w) = vi} is regular. (Analogous to
[2, Lemma 5.2.6], with change from standard to bijective numeration)

4 Relation to Divide and Conquer Recurrences

Divide and conquer recurrences, which have been considered for example in [10]
and [20], can somewhat informally be seen as—in the case of k = 2, to which we
will restrict ourselves in this section—sequences σ where σ(0) is given, and for
each n, σ(n) is defined in terms of σ(floor((n− 1)/2)), σ(ceil((n− 1)/2)), and
polynomials in n.

In this section, we will establish a close link between divide and conquer recur-
rences satisfying a number of ‘natural’ conditions, and the k-regular sequences,
by showing that their sequences occur as 2-regular sequences.

We will restrict ourselves to special (more precisely defined) restricted versions
of divide and conquer recurrences. To be precise, we will consider recurrences of
the form

σ(2n) = a2σ(n− 1) + a3σ(n) + τ1(n) σ(2n+ 1) = a1σ(n) + τ0(n)

where a1, a2, a3 are scalars from the semiring S, and τ1 and τ0 are themselves
2-regular sequences. We furthermore hold the assumption that σ(0) = 0 (we will
later see that this assumption can be relaxed).

Now observe that

σ(2n+ 2) = σ(2(n+ 1)) = a2σ(n) + a3σ(n+ 1) + τ ′1(n).

As a result of the equalities σ(2n + 1) = (even(σ′))(n) and σ(2n + 2) =
(odd(σ′))(n) we now derive

(even(σ′))(n) = (a1σ + τ0)(n)

and (odd(σ′))(n) = (a2σ + a3σ
′ + τ ′1)(n)

and hence also

even(σ′) = a1σ + τ0 odd(σ′) = a2σ + a3σ
′ + τ ′1.

A large number of combinatorial problems can be expressed by means of
divide and conquer recurrences of this type, and can be transformed using this
construction, including problems such as the Josephus problem, the sequence
of all numbers whose ternary representation does not contain the digit 1, or
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does not contain the digit 2, counting of quicksort insertions, and a variety
of other combinatorial and graph-theoretic problems. An overview of many of
these examples can be found at http://oeis.org/somedcgf.html. One of the
questions asked here, is whether all the examples presented there are indeed
2-regular. We will soon see that this question can be answered positively.

Example 17. As an example illustrating the construction, the recurrence given
by

σ(0) = 0 σ(2n) = σ(n) + σ(n− 1) + 2n− 2 σ(2n+ 1) = 2σ(n) + 2n− 1

specifying the sorting numbers (OEIS A001855) can first be transformed into:

σ(0) = 0 σ(2n+ 1) = 2σ(n) + 2n− 1 σ(2n+ 2) = σ(n+ 1) + σ(n) + 2n

We can coinductively specify the streams ones and nats by

o(ones) = 1, even(ones′) = ones, odd(ones′) = ones
o(nats) = 1, even(nats′) = 2 · nats, odd(nats′) = 2 · nats+ ones

and now we can transform the earlier recurrence into the behavioral differential
equation:

o(σ) = 0 even(σ′) = 2σ + 2 · nats− ones odd(σ′) = σ′ + σ + 2 · nats

We can now establish that σ is again 2-regular:

Proposition 18. Let τ0 and τ1 be 2-regular sequences over a semiring S, and let
a0, a1, a2, and a3 be elements of S. Then there is a unique sequence σ satisfying

σ(0) = a0 even(σ′) = a1σ + τ0 odd(σ′) = a2σ + a3σ
′ + τ1

which is again 2-regular.

Proof. If τ0 and τ1 are 2-regular, there are finite weighted automata (X0, o0, δ0)
and (X1, o1, δ1) with elements x0 ∈ X0, x1 ∈ X1 such that �x0�S = τ0 and
�x1�S = τ1.

Observe that, if σ satisfies the above equation, we can directly derive:

σ′(0) = a1a0 + o(τ0) even(σ′′) = a2σ + a3σ
′ + τ1 odd(σ′′) = a1σ

′ + τ ′0

We thus specify a system (X0 ∪ X1 ∪ {y, z}, o, δ) satisfying the behavioral
differential equations for X0 and X1 as before, and additionally:

o(y) = a0 even(y′) = a1y + o(x0) odd(y′) = a2y + a3z + x1
o(z) = a1a0 + o(x0) even(z′) = a2y + a3z + x1 odd(z′) = a1z + x′0

By Lemma 9, this system has a unique solution, in which �y�S satisfies the
equations for σ and �z�S = �y�′S . Because, given systems for τ0 and τ1, any
solution to the original equation for σ has to satisfy all equations in the composite
system, the solution for σ also is unique. ��

http://oeis.org/somedcgf.html
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This construction now leads to a large collection of examples, directly deriv-
able from specifications of divide and conquer-recurrences. We have used the
overview on http://oeis.org/somedcgf.html as a basis for the examples that
follow. We will not explicitly specify the constructions used: however, all ex-
amples have been obtained by a combination of the constructions presented
in Propositions 10 and 18. All the examples that follow are 2-regular over the
ring Z.

Example 19. We can now specify a large amount of sequences as 2-regular se-
quences. In most cases, we just need the three variables x (over the ring Z, and
in cases where no negative coefficients occur also over the semiring N), nats and
ones, where x represents the sequence itself; in some cases we need a fourth
variable x′, but these cases still fit in the format of Proposition 18.

o(x) even(x′) odd(x′) OEIS
1 4x 4x+ ones A000695
0 2x+ 2 · nats− ones x+ x′ + 2 · nats A001855
0 2x+ 2 · nats x+ x′ + 2 · nats+ ones A003314
1 −x x+ ones A004718
1 3x 3x+ ones A005836
1 2x− 1 x+ x′ A006165
0 x+ ones 0 A007814
1 −x ones− x A065359
0 2(x+ nats + ones) x+ x′ + 2(nats+ ones) A067699
1 2x+ ones 2 · nats + ones A086799

Here, for example, A000695 is the Moser-de Bruijn sequence which is the
ordered sequence of all numbers that can be written as a sum of distinct powers
of 4; the nth element of A001855 is the maximal number of comparisons needed
to sort n elements by binary insertion; and A005836 is the ordered sequence
of all numbers whose base 3 representation contains no 2. For specifications of
the other examples, as well as a large amount of background information about
these sequences, we refer to the entries at the OEIS.

Remark 20. All the examples in this section can be easily implemented in the
functional programming language Haskell. Building on the existing work on
stream calculus in Haskell (e.g. [13], [11], [21]), the zip operation of arbitrary
arity can be specified in Haskell using the (behavioral differential) equation

xzip (s:t) = head s : xzip (t ++ [tail s])

allowing us to specify all of the above examples with a single line of Haskell code.
For example, the (tail of the) Nørg̊ard sequence can now be specified by:

n = 1 : xzip [-n, n + ones]

http://oeis.org/somedcgf.html


A Final Coalgebra for k-regular Sequences 381

5 Conclusions and Future Work

We have given a coalgebraic (or automata-theoretic) as well as an algebraic
characterization of k-regular sequences: the k-regular sequences are exactly the
sequences that are generated by finite S-weighted automata over the k-letter
alphabet Ak. They are also exactly the sequences that can be defined by a finite
system of linear zip-behavioral differential equations. We also showed that there
is an isomorphism between the final Ak-automaton of formal power series and the
Ak-automaton of sequences (which is then also final). This isomorphism is given
by bijective k-adic numeration, and we derived from it directly that k-regular
sequences are in bijective correspondence with recognizable formal power series
over Ak.

The following table gives an overview of the classes of sequences and formal
power series that are generated by finite deterministic, respectively weighted,
automata with respect to three different final automata:

deterministic weighted
S semiring automata automata

1-letter eventually periodic recognizable
(SN,head, tail) (= 1-automatic) (= 1-regular)

k-letter S-simple recognizable
(S〈〈Ak〉〉, O,Δ) power series power series

k-letter k-automatic k-regular
(SN,head,unzipk ◦ tail) sequences sequences

If S is finite, then the right-hand “weighted” column collapses and becomes equal
to the left-hand “deterministic” column. Hence every finite weighted automaton
with output in a finite S is equivalent to a finite deterministic automaton with
output in S.

Generalization to other numeration systems. The k-adic numeration system ap-
pears to be a ‘nice’ choice because it is bijective and hence gives a bijective
correspondence between k-regular sequences and recognizable series (which is
not the case with standard base k numeration). It may be interesting to in-
vestigate whether corresponding results can be obtained with respect to other
(bijective or not) numeration systems.

Relation to S-algebraic sequences. In [7], a coalgebraic characterization of alge-
braic power series, which generalizes context-free languages, was provided. Here,
(constructively) algebraic power series can be described using systems of behav-
ioral differential equations over a finite set X , where each derivative is given as
a polynomial over X with coefficients in S. As with weighted automata, such
a system can be determinized into an automaton whose states are polynomials
over X with coefficients in S.

It would be interesting to see if we can connect this notion of (constructive)
algebraicity to the existing notion of k-context-free sequences (see e.g. [15]),
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using techniques analogous to the ones used in this paper to connect k-regular
sequences, recognizable sequences and power series. As a final remark, we note
that it is easily possible to use the isomorphism from Section 3.1 as the basis for
a definition of k-context-freeness, however, we note that the product inherited on
SN from the convolution product on S〈〈Ak〉〉 differs from the standard convolution
product on SN except for the case where k = 1.
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Abstract. Automata learning is a known technique to infer a finite state machine
from a set of observations. In this paper, we revisit Angluin’s original algorithm
from a categorical perspective. This abstract view on the main ingredients of the
algorithm lays a uniform framework to derive algorithms for other types of au-
tomata. We show a straightforward generalization to Moore and Mealy machines,
which yields an algorithm already know in the literature, and we discuss general-
izations to other types of automata, including weighted automata.

1 Introduction

One of the topics Prakash Panangaden has always been interested in is learning. He is
not only a great scholar himself, but he also has a great drive to spread his knowledge,
through his many lectures and discussions with colleagues around the world. We, as
authors, have enjoyed and been inspired by him and his work.

On a more technical level, learning is an active area in computer science, especially
in artificial intelligence. It involves deducing a (minimal) machine from observations. In
this paper we explore, redescribe, and generalize part of this research using a categorical
perspective. In this way we apply Prakash’s favourite language to an area that is close
to him — since he is a member of McGill’s Reasoning and Learning Lab.

Finite automata or state machines have a wide range of applications in Computer
Science. One of their applications is in verification of software systems and security
protocols. Typically, the behavior of the system is modeled by a finite state machine
and then desired properties, encoded in an appropriate logic, are checked against the
model. Models are unfortunately not always available and the rapid changes in the sys-
tem require frequent adaptations. This has motivated a lot of research into inferring
or learning a model from a given system just by observing its behavior or response to
certain queries.

Automata learning, or regular inference [4], is a widely used technique for creating
an automaton model from observations. The regular inference algorithms provide se-
quences of input, so called membership queries, to a system, and observe the responses
to infer an automaton. In addition, equivalence queries check whether the inferred au-
tomaton is equivalent to the system being learned. The original algorithm [4], by Dana
Angluin, works for deterministic finite automata, but since then it has been extended
and generalized to other types of automata [5,21,1], including Mealy machines and I/O
automata, and even a special class of context-free grammars.
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Category theory provides an abstract framework to study structures in mathematics
and computer science. Automata are prime examples of such structures and have been
studied using both algebras and coalgebras (see e.g. [13] and [19]) in two somewhat
independent research streams. In the last few years, strengths of both perspectives on
automata are being combined fruitfully, leading to the derivation of new algorithms and
results. In this paper, we again explore the power of abstraction and recast the main
ingredients of Angluin’s algorithm using basic categorical concepts, from algebra and
coalgebra, which open the door to instantiations to other types of automata, in other
categories, without having to reprove correctness of the algorithm.

In this paper we sketch the straightforward generalization from deterministic au-
tomata to Moore and Mealy machines, which yields an algorithm known in the litera-
ture [21,1,2], that had been developed inspired by Angluin’s algorithm but without an
explicit connection of the similarities and differences in both. Our abstract view pro-
vides this connection and opens the door to even further generalizations to other types
of automata.

In the proof of minimality of the inferred automaton we have used a technique that
goes back to Kalman and has since then been explored by a multitude of authors, in-
cluding Prakash himself. Among his many research interests, Prakash’s recent activities
includes using Stone-type dualities to minimize automata. He has observed that there
might be connections with automata learning (personal communication). This paper
provides a first step towards exploring this connection.

Organization of the paper. The rest of the paper is organized as follows. In Section 2,
we recall the basic ingredients of Angluin’s algorithm for deterministic automata and
show how we can recast them in a categorical language. In Section 3, we present the
first generalization of the algorithm based on the categorical reformulation by varying
the functor under consideration and provide a learning algorithm for Mealy/Moore au-
tomata. In Section 4, we show a different type of generalization by changing the base
category in which the automata are considered from Sets to Vect, obtaining in this man-
ner an algorithm for linear weighted automata.

2 Automata Learning: The Basic Algorithm

In this section, we explain the ingredients of Angluin’s original algorithm for learning
deterministic finite automata and rephrase them using basic categorical constructs as
we proceed.

Let us first introduce some notation and basic definitions. Let A be a finite set of
labels, often called an alphabet, and A∗ the set of finite words or sequences of elements
of A. We will use λ to denote the empty word and, given two words u, v ∈ A∗, uv denotes
their concatenation.

A language over A is a subset of words in A∗, that is L ∈ 2A∗ . We will often switch
between the equivalent representation of a language as a set of words and as its charac-
teristic function. Given a language L and a word u ∈ A∗, we write L(u) to denote 1 if
u ∈ L and 0 otherwise.
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Given two languages U and V , we will denote by U · V (or simply UV) the concate-
nation of the two languages U · V = {uv | u ∈ U, v ∈ V}. Given a language L and a ∈ A
we can define its right and left derivative by setting

a−1L = {u | au ∈ L} and La−1 = {u | ua ∈ L}.

A language L is prefix-closed if La−1 ⊆ L, for all a ∈ A, and suffix-closed if a−1L ⊆ L,
for all a ∈ A. Note that every non-empty suffix or prefix-closed language must contain
the empty word λ. We will use ↓u (resp. ↑u) to denote the set of prefixes (resp. suffixes)
of a word u ∈ A∗.

↓u = {w ∈ A∗ | w is a prefix of u} ↑u = {w ∈ A∗ | w is a suffix of u}
For the rest of this paper we fix a language L ∈ 2A∗ to be learned: the master lan-

guage. This learning means that we seek a finite deterministic automaton that accepts
L. Many definitions and results are parametric in L but we do not always make this
explicit.

2.1 Observation Tables

The algorithm of Angluin incrementally constructs an observation table with Boo-lean
entries. The rows are labelled by words in S ∪ S · A, where S is a non-empty finite
prefix-closed language, and the columns by a non-empty finite suffix-closed language
E. For arbitrary U,V ⊆ A∗, define row : U → 2V by row(u)(v) = L(uv). Formally, an
observation table is a triple (S , E, row), where row : (S ∪ S · A) → 2E . Note that ∪
here is used for language union and not coproduct. Since row is fully determined by the
language L we will from now on refer to an observation table as a pair (S , E), leaving
the language L implicit.

There are two crucial properties of the observation table that play a key role in the
algorithm of [4] allowing for the construction of a deterministic automaton from an
observation table: closedness and consistency.

Definition 1 (Closed and Consistent Table [4]). An observation table (S , E) is closed
if for all t ∈ S · A there exists an s ∈ S such that row(t) = row(s). An observation table
(S , E) is consistent if whenever s1 and s2 are elements of S such that row(s1) = row(s2),
for all a ∈ A, row(s1a) = row(s2a).

In many categories each map f : A → B can be factored as f = (A � • � B), de-
scribing f as an epimorphism followed by a monomorphism. In the category Sets of sets
and functions epimorphisms (resp. monomorphisms) are surjections (resp. injections).
Using these factorizations we come to the following categorical reformulations.

Lemma 2. An observation table (S , E) is closed (resp. consistent) if and only if there
exists a necessarilly unique map i (resp. j) such that the diagram on the left (resp. right)
commutes.
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S e
�� ��������

������
row

��
• �� m

�������
������

2E

• �� mA

�������������
∃i
��

S · A eA

�� �������������

row

��

2E

• ��
m ��������������

∃ j
��

S
eΛ

�� ��������
�����

row
��

e �� �������������

Λ(row)
��

• ��
mΛ �������
������

(2E)A

closed consistent

Here, Λ(row) is obtained by abstraction (Currying), so that Λ(row)(s)(a) = row(sa).

Proof. Suppose the table is closed according to Definition 1. Then, for every t ∈ S · A
there exists an s ∈ S such that row(s) = row(t). We define i by i(eA(t)) = e(s), using
that eA is epi/surjective. It remains to show that m ◦ i = mA.

(m ◦ i)(eA(t)) = (m ◦ e)(s) definition of i

= row(s) definition of row

= row(t) closedness assumption

= mA(eA(t)) definition of row.

The uniqueness of i is immediate using that m is monic.
Conversely, suppose that there exists i such that m ◦ i = mA and let t = ua ∈ S · A.

Take s such that e(s) = i(eA(t)) (which exists since e is epi). We need to show row(s) =
row(t).

row(s) = m(e(s)) factorization of row

= m(i(eA(t))) assumption e(s) = i(eA(t))

= mA(eA(t)) assumption m ◦ i = mA

= row(t) definition of row.

Suppose the table is consistent according to Definition 1. That is, if s1, s2 ∈ S are such
that row(s1) = row(s2) then, for all a ∈ A, it holds that row(s1a) = row(s2a). We define
j by j(e(s)) = eΛ(s), using that e is epi. By definition, j ◦ e = eΛ. It remains to show that
j is well-defined. Let s1, s2 be such that e(s1) = e(s2). We need to show eΛ(s1) = eΛ(s2).

e(s1) = e(s2) ⇒ row(s1) = row(s2) definition of row

⇒ ∀a∈A · row(s1a) = row(s2a) consistency assumption

⇒ Λ(row)(s1) = Λ(row)(s2) definition of Λ

⇒ (mΛ ◦ eΛ)(s1) = (mΛ ◦ eΛ)(s2) factorization of Λ(row)

⇒ eΛ(s1) = eΛ(s2) mΛ is monic.

The uniqueness of j follows directly from using the fact that e is epi.
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Conversely suppose that there exists j such that j ◦ e = eΛ and let s1, s2 ∈ S be
such that row(s1) = row(s2). We need to show row(s1a) = row(s2a), for all a ∈ A or,
equivalently, Λ(row)(s1) = Λ(row)(s2).

Λ(row)(s1) = mΛ(eΛ(s1)) factorization of Λ(row)

= mΛ( j(e(s1))) assumption eΛ = j ◦ e

= mΛ( j(e(s2))) assumption row(s1) = row(s2)

= mΛ(eΛ(s2)) assumption eΛ = j ◦ e

= Λ(row)(s2) factorization of Λ(row). �

Closed and consistent observation tables are important in the algorithm of [4]
because they can be translated into a deterministic automaton. We first describe the
construction concretely and subsequently more abstractly using our categorical refor-
mulation.

Definition 3 (Automaton associated to a closed and consistent observation table [4]).
Given a closed and consistent table (S , E) one can construct a deterministic automaton
M(S , E) = (Q, q0, δ, F) where

– Q is a finite set of states, F ⊆ Q is a set of final states and q0 ∈ Q is the initial state;
– δ : Q × A→ Q is the transition function.

These Q, F and δ are given by:

Q = {row(s) | s ∈ S } q0 = row(λ)

F = {row(s) | s ∈ S , row(s)(λ) = 1} δ(row(s), a) = row(sa).

To see that this is a well-defined automaton we need to check three facts: that the
initial state is indeed an element of Q; that F is a well-defined subset, or equivalently,
a well-defined function of type Q → 2; and that δ is a well-defined function of type
Q × A→ Q.

For the first, note that since S is a non-empty prefix-closed language, it must contain
λ, so q0 is an element of Q.

For the second and third points, suppose s1 and s2 are elements of S such that
(�) row(s1) = row(s2). We must show that

λ ∈ E and row(s1) ∈ F ⇐⇒ row(s2) ∈ F (1)

δ(row(s1), a) = δ(row(s2), a) ∈ Q, for all a ∈ A. (2)

Since E is non-empty and suffix-closed, it must also contain λ. We also have :

row(s1) ∈ F ⇐⇒ row(s1)(λ) = 1
(�)⇐⇒ row(s2)(λ) = 1 ⇐⇒ row(s2) ∈ F.

This concludes the proof of (1) above. Since the observation table is consistent, we have
for each a ∈ A, that (�) implies row(s1a) = row(s2a) and hence we can calculate

δ(row(s1), a) = row(s1a) = row(s2a) = δ(row(s2), a).
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It remains to show that row(s1a) ∈ Q. Since the table is closed, there exists an s ∈ S
such that row(s) = row(s1a). Hence, row(s1a) ∈ Q and (2) above holds.

In our categorical reformulation of the construction of the automaton Q we use that
epis/surjections and monos/injections in the category Sets form a factorization system
(see e.g. [7]). This allows us to use the diagonal-fill-in property in the next result.

Lemma 4. The transition function δ of the automaton associated with a closed and
consistent observation table can be obtained as the unique diagonal in the following
diagram,

S
e 		 		

ϕ

��

Q

ψ

��

δ



�
�
�
�
�

QA 		 mA
		 (2E)A

where

⎧
⎪⎪⎨
⎪⎪⎩

ϕ = Λ(i ◦ eA)

ψ = mΛ ◦ j.

Proof. The function δ obtained by diagonalization above satisfies:

δ(e(s))(a) = ϕ(s)(a) = i(eA(sa)).

This is the same as the above definition of δ, since e(s) and i(eA(sa)) represent, respec-
tively, row(s) and row(sa). ��
Definition 5 (Automaton associated with an observation table). Let (S , E) be a closed
and consistent observation table. The automaton (Q, init, f inal, δ) associated with the
table is given in the following diagram.

1
λ
��

init

����
����

����
��� 2

S
e 		 		

row

��Q

f inal
��������������		 m 		

δ

��

2E

evλ

��

QA

(3)

The initial state init = row(λ) and the set of final states is given by evaluating the table
in the λ column. These two functions exist because S and E are prefix- and suffix-closed,
respectively. The transition function δ was defined in Lemma 4.

Next we give a categorical proof of the minimality result of [4].

Theorem 6. The automaton associated with a closed and consistent observation table
is minimal.

Proof. An automaton is minimal if all states are reachable from the initial state and
if no two different states recognize the same language (this property is referred to as
observability).
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Following a characterization that goes back to Kalman and then followed by other
authors [16,6,9,8] these two properties can be nicely captured in the following diagram,
where in the middle we have the automaton of Definition 5.

1
λ
��

init

��		
			

			
			

	 2

A∗ r
		







c

��

Q

f inal
������������

o
		







δ

��

2A∗
evλ

��

∂

��

(A∗)A

rA
		




 QA

oA
		




 (2A∗)A

(4)

Let us define the unknown ingredients in the above diagram. On the left we have A∗,
with a transition structure given by appending a letter to the end of the word:

c(u)(a) = ua.

The set A∗, together with the above transition structure, is the initial algebra of the
functor 1+ A× − on Sets. The map r exists and is unique by initiality; it sends a1 · · · an

to δ(δ(· · ·δ(init)(a1) · · · )(an−1))(an).
On the right we have 2A∗ , the set of languages over A, with a transition structure

given by the Brzozowski/left derivative of a language:

∂(L)(a) = a−1L = {u | au ∈ L}.

The set 2A∗ , together with this transition function, is the final coalgebra of the functor
2 × (−)A. The map of coalgebras o : Q → 2A∗ thus exists and is unique by finality. The
map o assigns to every state the language it accepts.

Reachability and observability can now be rephrased in terms of properties of the
functions r and o in (4): the automaton Q is reachable if r : A∗ → Q is epic/surjective
and it is observable if o : Q→ 2A∗ is monic/injective.

To see that the automaton Q is minimal we extend the diagram above by including
the auxiliary arrows of diagram (3). On the right we insert the mono m : Q� 2E from
Lemma 2 and complete the diagram:

1
init

���
��

��
��

��
�� 2

Q

f inal

��
		 m 		

δ

��

2E

∂

��

evλ

��

		 		 2A∗

∂

��

λ?

���������������

QA 		

mA
		 (2E)A 		 		 (2A∗)A

(5)

Note that the transition function ∂ : 2E → (2E)A given by ∂(L)(a) = a−1L is well-defined
because the subset E ⊆ A∗ is suffix-closed. Moreover, note that the inclusion E ↪→ A∗
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gives rise to an injection 2E � 2A∗ , by taking images (here 2− is the covariant powerset
functor). This is a map of coalgebras 2E � 2A∗ , making (2E , ∂) a subcoalgebra of the
final coalgebra. This transition map ∂ in (5) satisfies:

∂ ◦ row = Λ(row) : S −→ (2E)A. (6)

where Λ(row) is as in Lemma 2. The proof is easy:

(∂ ◦ row)(s)(a)(v) = ∂(row(s))(a)(v) = a−1(row(s))(v) = row(s)(av)

= L(sav)

= row(sa)(v)

= Λ(row)(s)(a)(v).

One can now see that the rectangle on the left in (5) commutes by precomposing its
two maps Q⇒ (2E)A with the epi e : S � Q from Lemma 2:

(∂ ◦ m) ◦ e = ∂ ◦ row
(6)
= Λ(row) = mΛ ◦ eΛ = mΛ ◦ j ◦ e = (mA ◦ δ) ◦ e,

where the last equation uses the definition of δ from Lemma 4. Therefore, the unique
map Q� 2A∗ to the final coalgebra is a mono, being a composite of two monos in (5),
and we can conclude that the automaton Q is observable.

It remains to show that the automaton Q is reachable. This means that we must show
that the map r : A∗ → Q in diagram (4) is surjective/epic. We are done if we can show
that r ◦ n = e : S � Q, where we write n for the inclusion map S ↪→ A∗.

We prove this equation r ◦ n = e via the mono m : Q � 2E , and show that m ◦ r ◦
n = m ◦ e = row : S → 2E . We do so by induction on the length of strings u ∈ S . Thus:

(
m ◦ r ◦ n

)
(λ) = m(r(λ))

= m(init)

= m(e(λ))

= row(λ)
(
m ◦ r ◦ n

)
(ua) =

(
m ◦ r

)
(ua)

=
(
m ◦ r

)
(c(u)(a))

=
(
(m ◦ r)A)(c(u))(a)

=
(
(m ◦ r)A ◦ c

)
(u)(a)

(4)
=
(
mA ◦ δ ◦ r

)
(u)(a)

(5)
=
(
∂ ◦ m ◦ r

)
(u)(a)

=
(
∂ ◦ m ◦ r ◦ n

)
(u)(a) since S is prefix-closed

(IH)
=
(
∂ ◦ row

)
(u)(a)

(6)
= Λ(row)(u)(a)

= row(ua). �
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2.2 The Learning Algorithm

We present the algorithm of [4] in Figure 1. In the algorithm, there is a teacher which
has the capacity of answering two types of questions: yes/no to the query on whether a
word belongs to the master language and yes/no to the question whether a certain guess
of the automaton accepting the master language is correct. In the case of a negative
answer of the latter question, the teacher also provides a counter-example. The learner
builds an observation table by asking the teacher queries of membership of words of
increasing length. Once the table is closed and consistent, the learner tries to guess the
master language. We explain every step by means of an example, over the alphabet
A = {a, b}.
Input: Minimally Adequate Teacher of the master language L.
Output: Minimal automaton accepting L.
1: function LEARNER

2: S ← {λ} ; E ← {λ}.
3: repeat
4: while (S , E) is not closed or not consistent do
5: if (S , E) is not consistent then
6: find s1, s2 ∈ S , a ∈ A, and e ∈ E such that
7: row(s1) = row(s2) and L(s1ae) � L(s2ae)
8: E ← E ∪ {ae}.
9: end if

10: if (S , E) is not closed then
11: find s1 ∈ S , a ∈ A such that
12: row(s1a) � row(s), for all s ∈ S
13: S ← S ∪ {s1a}.
14: end if
15: end while
16: Make the conjecture M(S , E).
17: if the Teacher replies no to the conjecture, with a counter-example t then
18: S ← S∪ ↓t.
19: end if
20: until the Teacher replies yes to the conjecture M(S , E).
21: return M(S , E).
22: end function

Fig. 1. Angluin’s algorithm for deterministic finite automata [4]

Imagine the Learner receives as input a Teacher for the master language

L = {u ∈ {a, b}∗ | the number of a’s in u is divisible by 3}.
In the first step of the while loop it builds a table for S = {λ} and E = {λ}.
Step 1

λ

S
{

λ 1

S · A
{

a 0

b 1

(S , E) consistent? �

(S , E) closed? No, row(a) = (λ �→ 0) � (λ �→ 1) = row(λ).

Then, S ← S ∪ {a} and we go to Step 2.
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We extend the row index set S so we get a new observation table and we again check
for closedness and consistency.

Step 2

λ

λ 1

a 0

b 1

aa 0

ab 0

(S , E) consistent? �

(S , E) closed? �

Then, we guess the automaton:

�� ���� �	q0
a 		

b

��
�� ���� �	q1

a,b

�� where q0 = row(λ) = (λ �→ 0)

q1 = row(a) = (λ �→ 1)

Teacher replies with counter-example aaa.

S ← S ∪ {a, aa, aaa} and we go to Step 3.

In the second step we managed to build a closed and consistent table which enabled us
to make a first guess on the automaton. The guess was wrong so the teacher provided a
counter-example, which we use to extend the row index set, generating a larger table.

Step 3

λ

λ 1

a 0

aa 0

aaa 1

b 1

ab 0

aab 0

aaaa 0

aaab 1

(S , E) consistent?

No, row(a) = row(aa) but row(aa) � row(aaa).

Then E ← E ∪ {a} and we go to (Step 3.1).

In the third step the test of consistency failed for the first time and hence we extend the
column index set E from {λ} to {λ, a}. This extension allows to distinguish states (that
is, rows of the table) that were indistinguishable in the previous step though they could
be differentiated after an a step.
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Step 3.1

λ a

λ 1 0

a 0 0

aa 0 1

aaa 1 0

b 1 0

ab 0 0

aab 0 1

aaaa 0 0

aaab 1 0

(S , E) consistent? �

(S , E) closed? �

We make another guess:

�� ���� �	
� ��� ��q0
a 		

b

��
�� ���� �	q1

b

��

a
����
��
��
�

�� ���� �	q2

a

���������
b

��

The teacher replies yes.

In the last step, we again constructed a closed and consistent table, which allowed us to
make another guess of the automaton accepting the master language. This second guess
yielded the expected automaton.

3 Angluin’s Algorithm for Moore and Mealy Machines

Moore automata generalize deterministic automata by replacing the subset of final states
by a function o : Q → B, where B is a set of outputs. Mealy automata are another
variation where instead of having the outputs associated to the states, each transition has
an associated input and output letter. In a nutshell, here are the three types of automata
we have encountered so far.

o : Q → 2 o : Q→ B

δ : Q→ QA δ : Q→ QA δ : Q→ (Q × B)A

Deterministic automata Moore automata Mealy automata

Note that using the isomorphism (Q × B)A � QA × BA we can also reduce Mealy to
Moore automata (with a higher order output set).

Definition 1 of closedness and consistency does not depend at all on the fact that
the output set is 2. More interestingly also the categorical proof of minimality (Theo-
rem 6) is not specific for deterministic automata but can be carried over to an arbitrary
Moore automaton. Hence, we can straightforwardly use all the categorical definitions
and results above for an arbitrary output set B. This allow us to define what a closed and
consistent table for a Moore/Mealy automaton is and derive the algorithm that infers the
automaton recognizing the behavior of a Moore/Mealy automaton.

The master language L : A∗ → 2 is now replaced by a weighted language (or for-
mal power series) L : A∗ → B. Here, we use our abstract view on automata. Every
automaton has a canonical semantics and universe of behavior associated with it: the
final coalgebra of the functor associated with the transition structure. In the case of de-
terministic automata the final coalgebra is precisely the set of formal languages 2A∗ and
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in the case of Moore automata it is the set of weighted languages BA∗ . Note that for
Mealy machines where the output set is BA we then get as semantics BA+

, where A+

denotes the set of non-empty words over A.
Apart from the change in the type of the master language, the rest of the algorithm

in Figure 1 is precisely the same and also the proof of minimality carries over since we
have phrased it in the general setting using the final coalgebra.

Let us now illustrate the algorithm for Mealy machines using as example the lan-
guage L : A+ → B, with A = {a, b} and B = N, given by, for w ∈ A+,

L(w) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|w|a mod 3 if w = ua

3 if w = aab(bb)n, n ∈ N
0 otherwise

where u ∈ A∗ and |u|a denotes the number of a’s in the word u.
For notational convenience we will use the following equivalent representation of

row

row : S → (BA)E

row : S → BE·A

This last representation, row : S → BE·A, starting with E · A = {λ} · A = A, is precisely
what can be found in the existing algorithms for Mealy machines [21,1,2].

In the first step of the algorithm we build a table for S = {λ} and E · A = A.

Step 1

a b

S
{

λ 1 0

S · A
{

a 2 0

b 1 0

(S , E) consistent? �

(S , E) closed? No, row(a) � row(λ).

Then, S ← S ∪ {a} and we go to Step 2.

We extend the row index set S so we get a new observation table and we again check
for closedness and consistency.

Step 2

a b

λ 1 0

a 2 0

b 1 0

aa 0 0

ab 2 0

(S , E) consistent? �

(S , E) closed? No, row(aa) � row(λ) and row(aa) � row(a).

Then, S ← S ∪ {aa} and we go to Step 3.
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We again extend the row index set S we check for closedness and consistency of the
new table.

Step 3

a b

λ 1 0

a 2 0

aa 0 0

b 1 0

ab 2 0

aaa 1 0

aab 0 0

(S , E) consistent? �

(S , E) closed? �

Then, we guess the Mealy automaton A :

�� ���� �	q0
a|1

		

b|0
��

�� ���� �	q1

b|0
��

a|2
		�� ���� �	q2

b|0
��

a|0

��

Teacher replies with counter-example aab.

S ← S ∪ {a, aa, aab} and we go to Step 4.

We process the teacher’s counter-example and analyze the resulting table. Note that the
above example is of minimal length, but in fact this is not guaranteed: the teacher can
reply with an arbitrary counter-example. Shorter counter-examples do not necessarily
imply less steps in the algorithm. For instance, the teacher could have replied with aabb
and, in fact, this would cause the algorithm to terminate in one less step than it will now.

Step 4

a b

λ 1 0

a 2 0

aa 0 0

aab 0 0

b 1 0

ab 2 0

aaa 1 0

aaba 1 0

aabb 0 3

(S , E) consistent?

No, row(aa) = row(aab) and row(aab) � row(aabb).

Then E ← E ∪ {b} and we go to (Step 4.1).
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In the fourth step the consistency check failed and therefore E · A, the column index,
gets extended from {λ} · A to {λ, b} · A.

Step 4.1

a b ba bb

λ 1 0 1 0

a 2 0 2 0

aa 0 0 0 0

aab 0 0 0 3

b 1 0 1 0

ab 2 0 2 0

aaa 1 0 1 0

aaba 1 0 1 0

aabb 0 3 0 0

(S , E) consistent? �

(S , E) closed? No, row(aabb)�row(s), for all s∈S .

Then, S ← S ∪ {aabb} and we go to Step 5.

Step 5

a b ba bb

λ 1 0 1 0

a 2 0 2 0

aa 0 0 0 0

aab 0 0 0 3

aabb 0 3 0 0

b 1 0 1 0

ab 2 0 2 0

aaa 1 0 1 0

aaba 1 0 1 0

aabba 1 0 1 0

aabbb 0 0 0 0

(S , E) consistent? �

(S , E) closed? �

Then, we guess the Mealy automaton A :

�� ���� �	q0
a|1

		

b|0
��

�� ���� �	q1

b|0
��

a|2
		�� ���� �	q2

b|0
��

a|0

��

�� ���� �	q3a|0

��

b|0
��

�� ���� �	q4

b|3

��

a|0

��

Teacher replies yes.

4 Further Generalizations: Linear Weighted Automata

In Section 3, we showed that the categorical perspective on Angluin’s algorithm delivers
without any extra effort an algorithm for Moore and Mealy automata. That generaliza-
tion was obtained by observing that changes in the output set did not have any influence
on the construction of the observation table. We will now consider yet another example
in which we consider as output set F, a field, and we construct an automaton where the
state space is now a finite dimensional vector space over the field F. These automata are
known as linear weighted automata over the field F [12]. These examples illustrate two
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possible avenues of generalization: in the Mealy/Moore case we changed the functor
type of the automaton whereas here we change also the underlying category (in other
words the state space of the automaton) and consider automata in the category Vect of
vector spaces and linear maps.

Formally, a linear weighted automaton over a finite alphabet A and with outputs in a
field F is a quadruple (V, v0, δ, φ) where

– V is a finite dimensional vector space over F and v0 ∈ V is the initial vector.
– δ : V → VA is a linear map determining the transition structure.
– φ : V → F is a linear map assigning outputs in F to states.

That is, a linear weighted automaton is just a Moore automaton in the category of vector
spaces and linear maps.

Linear weighted automata recognize weighted languages FA∗ in the following way.
A word w = a1 · · · an ∈ A∗ is assigned the weight r ∈ F if and only if

φ(δ(δ(· · ·δ(v0)(a1) · · · )(an−1))(an)) = r.

More formally, FA∗ together with a transition structure given by

λ?(L) = L(λ) ∂(L)(a)(u) = L(au)

is the final coalgebra, in the category of vector spaces and linear maps, of the functor
F × (−)A. Note that FA∗ has a vector space structure given by pointwise sum and scalar
multiplication. More precisely, given r1, . . . , rk ∈ F and L1, · · · , Lk ∈ FA∗ , we define:

(r1L1 + · · · + rkLk)(w) = r1(L1(w)) + · · · + rk(Lk(w))

where on the right the sum and scalar multiplication are the ones in F. The functions λ?
and ∂ are also linear w.r.t. the vector space operations defined above.

Lemma 7. Given a linear weighted automaton (V, v0, δ, φ) there exists a unique linear
homomorphism such that the following diagram commutes.

1
v0

���
��

��
��

��
�� F

V

δ

��

φ

��������������� h 		





 F
A∗

∂
��

λ?

��

VA 		




 (FA∗ )A

Proof. For any v ∈ V , we define h(v) by induction on w ∈ A∗.

h(v)(λ) = φ(v) h(v)(aw) = h(δ(v)(a))(w)
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It is easy to see that h makes the above diagram commute. It remains to show uniqueness
and linearity of h. Linearity follows by induction and using the linearity of φ and δ.

h(r1v1 + · · · + rkvk)(λ) = φ(r1v1 + · · · + rkvk)

= r1φ(v1) + · · · + rkφ(vk) linearity of φ

= r1(h(v1)(λ)) + · · · + rk(h(vk)(λ))

h(r1v1 + · · · + rkvk)(aw) = h(δ(r1v1 + · · · + rkvk)(a))(w)

= h(r1δ(v1)(a) + · · · + rkδ(vk)(a))(w) linearity of δ

=r1(h(δ(v1)(a))(w))+· · ·+rk(h(δ(vk)(a))(w)) induction hyp.

= r1(h(v1)(aw)) + · · · + rk(h(vk)(aw))

For uniqueness, suppose there is a map g such that λ? ◦ g = φ and ∂ ◦ g = gA ◦ δ.
Then, for any v ∈ V ,

g(v)(λ) = λ?(g(v)) = φ(v) = h(v)(λ)

and, for any a ∈ A,

g(v)(aw) = (∂(g(v))(a))(w) = g(δ(v)(a))(w)
(IH)
= h(δ(v)(a))(w) = h(w)(aw). �

The master language is now an element of the final coalgebra F
A∗ . Our categorical

definitions and results – closedness, consistency and minimality – are valid also for
linear weighted automata. In the definitions of closedness and consistency we use the
usual epi-mono factorization of linear maps. Using the matrix representation of linear
maps, epimorphisms (resp. monomorphisms) will correspond to matrices of full column
(resp. row) rank.

For convenience, in the algorithm, we still want to use the sets S and E and we
will represent the table as S → F

E . This is possible since all vector spaces are freely
generated and a linear map is determined by its value on the basis vectors. First, we just
recall the definitions of closedness and consistency and we instantiate them concretely.
We need some notation. Let V(S ) denote the free vector space generated by S (if S
is finite V(S ) = F

S ), whose elements we will frequently denote by finite formal sums
∑

I risi.
An observation table is now a linear map row : V(S ) → F

E . An observation table
(S , E) is closed (resp. consistent) if and only if there exist necessarilly unique linear
maps i and j such that the diagram on the left (resp. right) commutes.

V(S ) e
�� �������

�����
row

��
Q �� m

������
�����

F
E

Q′ �� mA

�����������
∃i
��

V(S · A) eA

�� �����������

row

��

F
E

Q ��

m ������������

∃ j
��

V(S )
eA

�� ������
�����

row
��

e �� �����������

Λ(row)
��

Q′′ ��
mA

������
�����

(FE)A

closed (in Vect) consistent (in Vect)

(7)
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The existence of the maps i and j induce a (linear) transition structure δ : Q → QA as
defined in Lemma 4.

More concretely, in the linear setting, a table is closed if for all t ∈ S · A, there exist
si ∈ S such that

row(t) =
∑

I

ri × row(si).

A table is consistent if whenever
∑

I

ri × row(si) =
∑

J

r j × row(t j),

for si, t j ∈ S , then, for all a ∈ A,

∑

I

ri × row(sia) =
∑

J

r j × row(t ja).

The map row has some special properties, related with the fact that V(−) is actually
a monad. We defined V above on sets but, V can also be defined on maps f : U → T as
V( f ) : V(U)→ V(T ), where

V( f )

⎛
⎜⎜⎜⎜⎜⎝

∑

I

riui

⎞
⎟⎟⎟⎟⎟⎠ =
∑

I

ri f (ui).

This V(−) is a functor and, of interest to us, a monad where the unit η : S → V(S ) is
given by the trivial unit linear combination. Given a map f : S → V , where V is a vector
space, let f : V(S )→ V denote its linearization given by

f

⎛
⎜⎜⎜⎜⎜⎝

∑

I

risi

⎞
⎟⎟⎟⎟⎟⎠ =
∑

I

ri f (si).

The linearization of f is the unique linear map satisfying f ◦ η = f . We will use this
uniqueness property below in the proofs.

The map row in the diagrams above is the linearization of the map row : S → F
E

that only determines the values of the elements of S , which act as a basis for the vector
space V(S ).

It might be interesting to observe that closedness in sets implies closedness in the lin-
ear setting, but consistency has a dual property: consistency in the linear setting implies
consistency in sets. This is interesting for the algorithm: if closedness is already true for
the table indexed by the basis vectors – row : S → F

E - then it is also true for the linear
view on the same table – row : V(S ) → F

E . On the other hand if row : S → F
E is not

consistent then row : V(S )→ F
E is also not consistent. These correspondences are both

interesting from an algorithmic point of view: note that the definition of consistency in
the linear setting involves comparison of arbitrary linear combinations of rows, which
is a rather expensive operation.

Lemma 8. Let row : S → F
E be an observation table and row : V(S ) → F

E its
linearization.
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1© If row is closed then so is row.

2© If row is consistent then so is row.

Proof. Recall the definitions of row : S → F
E being closed and consistent.

S d
�� ��������

�������
row

��
P �� n

�������
������

F
E

P′ �� nA

�������������
∃k

��

S · A dA

�� �������������
row

��

F
E

P ��

n ���������������

∃l
��S

dΛ
�� �������

������

row
��

d �� �������������

Λ(row)
��

P′′ ��
nΛ �������
������

(FE)A

closed (in Sets) consistent (in Sets)

First, observe that we can always define h : V(P) → Q, with Q as given in (7), as
follows:

V(S )
V(d)

		 		

e
����

V(P)

n
��

h

��� � � � � � �

Q 		
m

		 F
E

The commutativity of the above diagram follows by observing that

m ◦ e ◦ η = row and n ◦ V(d) ◦ η = n ◦ η ◦ d = n ◦ d = row.

For 1©, suppose row is closed and let us prove that row is also closed, according to (7).
We define the map i as follows.

V(S · A)
V(dA)

��

eA 		 		 Q′
��

mA

��

i

���
�
�
�
�
�
�
�
�
�

V(P′)
V(k)

��

V(P)
h
��

Q 		 m 		 F
E

Remains to show the commutativity of the above diagram, which follows by observing
that

mA ◦ eA ◦ η = row ◦ η = row and

m ◦ h ◦ V(k) ◦ V(dA) ◦ η = n ◦ η ◦ k ◦ dA = n ◦ k ◦ dA = nA ◦ dA = row.
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For 2©, suppose row is consistent and let us now prove that row is also consistent. We
define l as follows.

S

dΛ

����

d 		 		 P

l

���
�
�
�
�
�
�
�
�
�
�
�
η
��

V(P)
h
��

Q
j
��

Q′′
mΛ��

P′′ 		
nΛ 		 (FE)A

The commutativity of the above diagram follows by a simple calculation, using natu-
rality and properties of j as given above.

mΛ ◦ j ◦ h ◦ η ◦ d = mΛ ◦ j ◦ h ◦ V(d) ◦ η naturality of η

= mΛ ◦ j ◦ e ◦ η h ◦ V(d) = e

= mΛ ◦ eΛ ◦ η j ◦ e = eΛ

= Λ(row) ◦ η mΛ ◦ eΛ = Λ(row)

= Λ(row)

= nΛ ◦ dΛ factorization of Λ(row) �

The converses of 1© and 2© in the above lemma fail, as we point out in the example
below.

We will illustrate the algorithm in the linear setting with the following example over
F = R.

L(u) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if u = λ

2|u|b if |u|a is even

0 otherwise

In the first step we build a table for S = {λ} and E = {λ}.

Step 1

λ

λ 1

a 0

b 2

(S , E) consistent? �

(S , E) closed? �

Then, we guess the automaton:

�� ���� ��q0/1

b|2
��

where q0 = row(λ).

Teacher replies with counter-example aa.

S ← S ∪ {a, aa} and we go to Step 2.
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Note that the above table would not be closed in Sets because row(a) � row(λ). How-
ever, row(a) = 0 × row(λ) and hence the table is closed in the linear setting. Also
note that we use the following conventions in the representation of the automaton:

q/r denotes φ(q) = row(q)(λ) = r (the output of the state) and q
a|r

		 q′ denotes
δ(q)(a) = r × q′.

Step 2

λ

λ 1

a 0

aa 1

b 2

ab 0

aaa 0

aab 2

(S , E) consistent? �

(S , E) closed? �

Then, we guess the automaton:

�� ���� ��q0/1

b|2
��

a|1
��
�� ���� ��q1/0

b|2,a|1
  where q0 = row(λ)

q1 = row(a)

Teacher replies with counter-example ab.

S ← S ∪ {a, ab} and we go to Step 3.

Step 3

λ

λ 1

a 0

aa 1

ab 0

b 2

ab 0

aaa 0

aab 2

aba 2

abb 0

(S , E) consistent?

No, row(a) = row(ab) and row(aa) � row(aba).

Then E ← E ∪ {a} and we go to (Step 3.1).
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Step 3.1

λ a

λ 1 0

a 0 1

aa 1 0

ab 0 2

b 2 0

ab 0 2

aaa 0 1

aab 2 0

aba 2 0

abb 0 4

(S , E) consistent? �

(S , E) closed? �

Then, we guess the automaton:

�� ���� ��q0/1

b|2
��

a|1
��
�� ���� ��q1/0

a|1
  

b|2
��

where q0 = row(λ)

q1 = row(a)

Teacher replies yes.

5 Discussion

We have presented the first steps towards a categorical understanding and generalization
of Angluin’s learning algorithm, originally defined for deterministic finite automata.
The categorical reformulation enables us to explore two avenues of generalization: vary-
ing the functor (giving for instance different input/output for the automaton) and vary-
ing the category under study (changing for instance the type of computations involved).
The variations we concretely considered in this paper were rather mild but interestingly
enough yielded algorithms for Mealy/Moore automata and linear weighted automata.

The possibilities of further generalizations are vast. We would like to provide a cate-
gorical proof of termination of the algorithm. This requires a categorical understanding
on how the algorithm determines which rows/columns need to be added in order for
the observation table to be closed/consistent. Once this is understood, we expect that
further variations on the functor can also be considered. We conjecture that there is a
deep connection with the construction of the initial and final sequence of two functors.
On the one hand, the functor whose initial algebra determines the experiments/queries
needed to build the observation table. In the case we studied here the functor in ques-
tion is 1 + A × −. On the other hand, the functor whose final coalgebra determines the
notion of behavior. In all our examples, this was the functor B × (−)A. We expect that
the connection between the two functors can be explained by duality, as Prakash also
hinted to us (personal communication).

The production of counter-examples can also be a good place for exploring enhance-
ments of the algorithm. In this subject, recent work on bisimulations will be of use, as
we explain next. In order to return a counter-example, the teacher essentially tries to
build a bisimulation relation between the guessed automaton M(S , E) and the actual
minimal automaton recognizing the master language. The latter is 〈L〉 the subcoalgebra
of the final coalgebra (2A∗ , 〈λ?, ∂〉) generated by L. Let us illustrate this with the first
counter-example generated on page 393 in the example for deterministic automata. The
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procedure of constructing a bisimulation containing the initial state of the guessed au-
tomaton and the master language is depicted below. The pairs added to the bisimulation
are connected by a dashed line.

�� ���� �	q0

�
�
�

a 		

b

!!
�� ���� �	q1

�

�

�
�

�
�

���������

���������

a,b

!!

�� ��
�� �	L

b

""

a 		�� ���� ��La

b

##

a 		�� ���� ��Laa
a 		

b

##

�� ���� ���� ���� �	Laaa

The double dashed line, in red, shows the first contradiction in the bisimulation con-
struction: q1 has to be related to Laaa but they differ in their output. Hence the path
leading to these implies that aaa is the counter-example returned.

Finding counter-examples can be optimized by using enhancements of the bisim-
ulation method. In the case of deterministic automata, this was first observed in the
70’s by Hopcroft, Karp, and Tarjan [14,3,15] and has since then been improved (see
e.g [22,11,18]) and explored in other contexts, notably in concurrency theory [20,17,10].
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Abstract. This paper studies the problem of simulating a coin of arbi-
trary real bias q with a coin of arbitrary real bias p with minimum loss
of entropy. We establish a lower bound that is strictly greater than the
information-theoretic bound. We show that as a function of q, it is an
everywhere-discontinuous self-similar fractal. We provide efficient pro-
tocols that achieve the lower bound to within any desired accuracy for
(3−√

5)/2 < p < 1/2 and achieve it exactly for p = 1/2.

Keywords: probabilistic protocols, randomness, entropy.

1 Introduction

A discrete simulation protocol is any procedure that maps a stream of digits
from one alphabet to a stream of digits from another alphabet. If the input
sequence comes from a random process, then the statistical properties of the
input stream impart statistical properties to the output stream, and we can
think of the protocol as a reduction from one random source to another.

The efficiency of the simulation is the rate of entropy produced per unit of
entropy consumed [4,7]. The efficiency measures the amount of randomness lost
in the conversion. By general information-theoretic considerations, this value
cannot exceed unity [1,6]. In general, the efficiency may not exist, or it may
exist but vary with time.

A paradigmatic example is the simulation of a coin of arbitrary real bias q
with a coin of arbitrary real bias p. Here, both the input and output alphabets
are binary, the input is a sequence of i.i.d. bias-p coin flips, 0 < p < 1, and
the output is a sequence of i.i.d. bias-q coin flips, 0 ≤ q ≤ 1. We call this a
p, q-simulation protocol. For such protocols, the efficiency is

H(q) ·Eprod

H(p) · Econs
,

where H is the Shannon entropy

H(p) = −p log p− (1− p) log(1− p)
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and Eprod and Econs are, respectively, the expected number of output digits
produced and the expected number of input digits consumed in one round of the
protocol. If Eprod = 1, this gives an information-theoretic lower bound

Econs ≥
H(q)

H(p)

on the number of bias-p coin flips required by the protocol to produce one output
digit. To maximize the efficiency of the simulation, we should minimize this
quantity.

A classical example of a p, 12 -simulation protocol is the von Neumann trick
[9]. The bias-p coin is flipped twice. If the outcome is ht, the protocol halts
and declares h for the fair coin. If the outcome is th, the protocol halts and
declares t. On any other outcome, the process is repeated. This protocol has the
advantage that it is oblivious to the bias of the input coin, but its efficiency is
quite poor even for p close to 1/2. For example, for p = 1/3, the von Neumann
trick consumes 4.5 input digits per output digit, whereas the Shannon bound is
only 1/(log 3− 2/3) ≈ 1.083 · · · .

More efficient simulations and enhancements have been studied in [4,7,13]. It
is known that any discrete i.i.d. process can simulate any other discrete i.i.d.
process with efficiency asymptotically approaching 1, provided the protocol is
allowed unbounded latency; that is, it may wait and produce arbitrarily long
strings of output digits at once. Unbounded latency is exploited in [7] to sim-
ulate a fair coin with an arbitrary coin with asymptotically optimal efficiency.
The technique is a generalization of the von Neumann trick. In the other direc-
tion, [6, Theorem 5.12.3] shows that a fair coin can in principle generate one
output digit of an arbitrary coin with expected consumption at most two more
than the entropy. In conjunction with [6, Theorem 5.4.2], this yields a method
for generating a sequence of i.i.d. bias-q coins from a fair coin with efficiency
asymptotically approaching 1, again allowing unbounded latency.

In this paper we consider non-oblivious, one-bit output protocols: those that
output exactly one output digit in each round but take advantage of the knowl-
edge of p. For fixed 0 < p < 1, let Eopt(q) be the infimum of Econs over all
one-bit output p, q-simulation protocols. We show:

– The function Eopt(q) is an everywhere-discontinuous self-similar fractal. For
all but finitely many points, it is strictly larger than the Shannon bound
H(q)/H(p). A graph of Eopt compared to the Shannon bound for p = 1/3 is
shown in Fig. 1.

– For all 0 ≤ q ≤ 1, there exists a p, q-simulation protocol that achieves
Eopt(q). Previously, this was known only for p = 1/2 [6].

– There exists a single residual probability protocol that is optimal for all q. A
residual probability protocol is a protocol whose state set is the closed unit
interval [0, 1] and the probability of halting and reporting heads (respec-
tively, tails) starting from state q is q (respectively, 1 − q). It is optimal for
all q in the sense that Econs(q) = Eopt(q). The protocol is nondeterministic,
and it is not known whether it can be made deterministic in general, even
for rational p and q.
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Fig. 1. Comparison of Eopt(q) and the Shannon bound H(q)/H(p) for p = 1/3

– For (3 −
√
5)/2 < p ≤ 1/2, we exhibit a family of deterministic, efficiently

computable1 residual probability protocols that achieve Eopt(q) + ε for any
desired degree of accuracy ε > 0 and all q.

– For a fair input coin (p = 1/2), we show that the optimal residual probabil-
ity protocol is computable, and determine the values of Eopt(q) exactly. A
similar protocol for p = 1/2 was proposed in [6] but without proof, and the
values of Eopt were not established.

Some of the proof techniques we use are somewhat nonstandard. One partic-
ular innovation is the coalgebraic formulation of stochastic simulation protocols
introduced in Section 2. In contrast to the usual formulation of stochastic pro-
cesses as sequences of random variables, this approach gives a powerful technique
for reasoning about various functions defined as fixpoints of recursive equations.

1.1 Other Related Work

There is a large body of interesting work on extracting randomness from weak
random sources (e.g. [10,11,14,15]). These models typically work with imperfect
knowledge of the input source and provide only approximate guarantees on the
quality of the output. In this paper, however, we assume that the statistical
properties of the input and output are known completely, and simulations must
be exact.

1 As we are computing with real numbers, we assume unit-time real arithmetic and
comparison of real numbers. These assumptions are not necessary if computation is
restricted to the rationals.
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The fractal nature of certain residual probability protocols was observed in
[8], but the existence of optimal protocols was left unresolved.

2 Simulation Protocols

Let 0 < p ≤ 1/2 and 0 ≤ q ≤ 1. To simulate a bias-q coin with a bias-p
coin, we would ordinarily define the input to the simulation to be a Bernoulli
process consisting of a sequence of i.i.d. random variablesX0, X1, . . . with success
probability p. The simulation would be specified by a function that decides, given
a finite history X0, X1, . . . , Xn−1 of previous bias-p coin flips, whether to halt
and declare heads, halt and declare tails, or flip again. The process must halt
with probability 1 and must declare heads with probability q and tails with
probability 1− q.

However, it is technically convenient to specify protocols in terms of more
general state sets. We thus define a protocol to be a triple (S, β, s0) consisting
of a coalgebra (S, β), where

β : S → {h,t}+ ({0, 1} → S), (1)

and a distinguished start state s0 ∈ S.2 Intuitively, depending on the current
state, the protocol decides either

– to halt immediately and return h or t, thereby declaring the result of the
bias-q coin flip to be heads or tails, respectively; or

– to consume a random bias-p coin flip (0 or 1), and based on that information,
enter a new state.

A protocol is a p, q-simulation protocol if, when it is started in its start state
s0 with the input stream generated by a Bernoulli process with success proba-
bility p, it halts with probability 1, declaring h with probability q and t with
probability 1− q.

The protocol is computable if the function β is.

Example 1. A traditional choice for the state set would be {0, 1}∗, the history
of outcomes of previous bias-p coin flips. The transition function would be

β : {0, 1}∗ → {h,t}+ ({0, 1} → {0, 1}∗),

and the start state would be the empty history ε ∈ {0, 1}∗. The next step of
the protocol is determined by the previous history. If this history isX0, . . . , Xn−1

and the protocol decides to halt and declare heads or tails, then β(X0, . . . , Xn−1)
would be h or t, respectively. If on the other hand the protocol decides not to
halt, and the result of the next bias-p coin flip isXn, then β(X0, . . . , Xn−1)(Xn) =
X0, . . . , Xn.

2 For clarity, we are using different symbols to distinguish the input coin (heads = 0,
tails = 1) from the output coin (heads = h, tails = t).
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Example 2. The following example is a slight modification of one from [8]. The
state set is the closed real interval [0, 1]. If q ∈ {0, 1}, then β(q) ∈ {h,t},
otherwise β(q) ∈ {0, 1} → [0, 1]. The values are

β(q) =

{
h if q = 1

t if q = 0

β(q)X =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 < q ≤ p and X = 1

q

p
if 0 < q ≤ p and X = 0

q − p
1− p if p < q < 1 and X = 1

1 if p < q < 1 and X = 0.

Intuitively, if p < q < 1 and the bias-p coin flip returns heads (0), which occurs
with probability p, then we halt and output heads; this gives a fraction p/q of
the desired probability q of heads of the simulated bias-q coin. If the bias-p coin
returns tails (1), which occurs with probability 1− p, we rescale the problem to
condition on that outcome, setting the state to (q − p)/(1 − p) because that is
the residual probability of heads, and repeat. Similarly, if 0 < q ≤ p and the
bias-p coin returns tails, then we halt and output tails; and if not, we rescale
appropriately and repeat.

Example 3. The final coalgebra (C, δ) of the type (1) is the set of binary prefix
codes for the two-element alphabet {h,t}. Each such code consists of a pair
of disjoint sets H,T ⊆ {0, 1}∗ such that the elements of H ∪ T are pairwise
prefix-incomparable. The operation δ is defined by

δ(H,T ) =

⎧⎪⎨⎪⎩
h if ε ∈ H
t if ε ∈ T
λa ∈ {0, 1}.(Da(H), Da(T )) otherwise,

where Da is the Brzozowski derivative Da(A) = {x | ax ∈ A}.
The coalgebra (C, δ) is final in the sense that from any other coalgebra (S, β),

there is a unique coalgebra homomorphism code : (S, β) → (C, δ), defined by:
code(s) = (Hs, Ts), where Hs (respectively, Ts) is the set of strings x ∈ {0, 1}∗
such that running the protocol starting from s results in output h (respectively,
t) after consuming input digits x. The function code is a coalgebra homomor-
phism in that δ(code(s)) = β(s) if β(s) ∈ {h,t}, otherwise β(s) : {0, 1} → S
and δ(code(s)) = code ◦ (β(s)) : {0, 1} → C.

In the definition of C, the sets H,T must be disjoint to ensure that δ is well-
defined. They need not be nonempty; in fact, if β(s) = h, then h(s) = ({ε},∅).
There is no other possible choice for h(s) due to the requirement that H,T be
disjoint and elements of H ∪T be pairwise prefix-incomparable. The single-state
subcoalgebra (∅,∅) represents protocols that never halt.
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2.1 Residual Probability Protocols

Intuitively, the residual probability of a state s of a p, q-simulation protocol is
the probability r that the protocol halts and declare heads when started in state
s. In order to halt with probability 1 from that state, it should also halt and
declare tails with probability 1− r. It is conceivable that a protocol might want
to take different actions in two different states, even if the residual probabilities
are the same.

Formally, a residual probability protocol is a protocol whose state space is the
closed unit interval [0, 1] and whose probability of halting and declaring heads
(resp., tails) when started in state q is q (resp., 1−q). Thus the next action of the
protocol depends only on the residual probability. Example 2 is an example of a
residual probability protocol. Theorem 4 below says that when searching for an
optimal protocol, we can restrict our attention to residual probability protocols
without loss of generality.

2.2 Impatient Protocols

A protocol (S, β) is impatient if in every state s, the probability of halting in
at most one step is nonzero; that is, either β(s), β(β(s)0), or β(β(s)1 ∈ {h,t}).
Assuming computable real arithmetic and comparison of real numbers3, every
p, q has a computable impatient protocol; for example, the protocol of Example 2,
as well as others described in [8], are computable and impatient. Every impatient
protocol has at most one infinite computation path starting from any state, which
occurs with probability 0.

Impatient strategies are not necessarily optimal. Example 2 is not: in that
example, β(1 − p)0 = 1 and β(1− p)1 = (1 − 2p)/(1 − p), whereas a better
choice would be β(1− p)0 = 0 and β(1 − p)1 = 1.

2.3 Greedy Protocols

Greedy protocols are a special class of impatient residual probability protocols.
Intuitively, a protocol is locally greedy at a state if it attempts to optimize in the
next step by halting as early as possible with the maximum allowable probability.
To define this formally, we start with the special case

(1− p)2 ≤ p ≤ 1− p; (2)

equivalently, (3 −
√
5)/2 ≤ p ≤ 1/2. In this case, let us define the ambiguous

region as the open interval (p, 1− p). A greedy protocol must halt immediately
when q ∈ {0, 1}, declaring heads for the q-coin if q = 1 and tails if q = 0.
Otherwise, if q is not in the ambiguous region, it must flip the p-coin and halt if
the outcome is tails, which occurs with probability 1−p, declaring either tails or
heads for the q-coin, depending on whether q ≤ p or q ≥ 1−p, respectively. If q is
in the ambiguous region, it must flip the p-coin and halt if the outcome is heads,

3 If p and q are rational, this assumption is not needed.
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which occurs with probability p, but there is a choice whether to declare heads or
tails for the q-coin, leading to two possible greedy strategies. If it declares heads
when the p-coin returns heads, then it must rescale to (q − p)/(1− p) when the
p-coin returns tails. If it declares tails when the p-coin returns heads, then it
must rescale to q/(1 − p) when the p-coin returns tails. It is not immediately
clear which action will ultimately be better.

The significance of the restriction (2) is that the protocol exits the ambiguous
region after only one step, and that is the case that we will focus on in this
paper. More generally, let k = 1−1/ log2(1 − p)2, the least positive integer such
that (1−p)k+1 < 1/2. The ambiguous region for p is the open interval (b, 1− b),
where b is either 1−(1−p)k or (1−p)k+1, depending on which interval is smaller.
Under the restriction (2), k = 1. In this more general situation, a protocol is
greedy if it moves so as to enter one of the regions q ≤ p or q ≥ 1− p as quickly
as possible; this is determined except when q is in the ambiguous region.

Greedy strategies are not necessarily optimal. For example, let p be a tran-
scendental number satisfying (2). There is an uncountable nowhere-dense set of
points on which the greedy strategy achieves its best running time 1/(1 − p);
that is, the protocol never enters the ambiguous region. It can be shown that
these are exactly finite and infinite alternating sums of increasing integer powers
of p:

J = {pk0 − pk1 + pk2 − pk3 + · · · | ki ∈ Z, 0 ≤ k0 < k1 < · · · }.

Consider q = 2p(1−p). Then p < q < 1−p, so q is in the ambiguous region. After
one greedy step in either direction, it is easily checked that the resulting image
of q is not in J . Moreover, there must subsequently be an infinite computation
path, because otherwise p would be algebraic. Thus the expectation of any greedy
protocol is strictly larger than p+(1−p)(1+1/(1−p)) = 2. A better strategy is
to flip the p-coin twice, declaring heads if the outcome is 10 or 01, tails otherwise.
The expectation is 2, and this is optimal.

3 Coalgebras and Fixpoint Induction

Technically, coalgebras of type (1) are F -coalgebras, where F : Set → Set is
the polynomial functor FX = � + � +X2. Given an F -coalgebra (S, β), many
interesting functions can be specified by providing an F -algebra (A,α) with some
extra order structure allowing for the existence of least fixpoints. The function
defined is the least fixpoint of the map

f �→ α ◦ Ff ◦ β, (3)

that is, the least f such that the following diagram commutes:

S

FS

A

FA

f

β
Ff

α
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Intuitively, the destructor β : S → FS computes the arguments to a recursive
call, the map Ff : FS → FA is the recursive call, and the constructor α : FA→
A is the construction applied to the returned element. This general scheme for
recursively defined functions has been previously studied in [2,3,5].

If A is a chain-complete partially ordered set and α order-continuous, then
the map (3) is monotone and order-continuous on functions S → A under the
pointwise order, therefore by the Knaster–Tarski theorem has a unique least
fixpoint.

Example 4. The outcome O(s) of the simulation starting from state s is a random
variable defined on the probability space {0, 1}ω taking values in {h,t,⊥}. The
value ⊥ signifies nonhalting. Formally,

O : S → {0, 1}ω → {h,t,⊥}
is the least fixpoint of the equation

O(s)(X · σ) =
{
β(s) if β(s) ∈ {h,t}
O(β(s)X)(σ) if β(s) ∈ {0, 1} → S.

This would be specified by the F -algebra (A,α), where

A = {0, 1}ω → {h,t,⊥}

α(f) =

{
λσ ∈ {0, 1}ω.f if f ∈ {h,t}
λσ ∈ {0, 1}ω.f(headσ)(tailσ) if f ∈ {0, 1} → A

under the pointwise ordering on A induced by ⊥ < h and ⊥ < t.

Example 5. Define P (s) = Pr(O(s) = h), the probability that the outcome
is heads starting in state s. This is specified by the F -algebra on [0, 1] with
constructor

X �→

⎧⎪⎨⎪⎩
1 if X = h

0 if X = t

p ·X(0) + (1 − p) ·X(1) if X ∈ {0, 1} → [0, 1]

and the natural order on [0, 1].

Example 6. The expected consumption of input digits starting from state s sat-
isfies the equation

E(s) =

{
0 if β(s) ∈ {h,t}
1 + p ·E(β(s)0) + (1− p) ·E(β(s)1) if β(s) ∈ {0, 1} → S.

The function E is specified by the F -algebra on R+ = {x ∈ R | x ≥ 0} ∪ {∞}
with constructor

X �→
{
0 if X ∈ {h,t}
1 + p ·X(0) + (1− p) ·X(1) if X ∈ {0, 1} → R+

and the natural order on R+.
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An important property for our purposes, due to Adámek, Milius, and Velebil
[3], is that the least fixpoint construction is natural in S the sense that if f and
f ′ are the least solutions of (3) in the F -coalgebras S and S′, respectively, and
if h : S → S′ is an F -coalgebra morphism, then f = f ′ ◦ h (Theorem 1 below).
The significance of this property is that a function defined by (3), such as the
probability of heads or the expected comsumption of input digits, is the same
whether measured in S or any quotient of S by a bisimulation. In particular,
if s ∈ S is a start state of a protocol and code(s) ∈ C is its image in the final
coalgebra, then the expected consumption of input digits starting in state s is
just the expected codeword length

∑
x∈code(s) Pr(x) · |x| if P (s) = 1, or ∞ if

P (s) < 1.4

Theorem 1 ([3], Proposition 3.5). Let (A,α) be an ordered F -algebra such
that A is a chain-complete and α order-continuous. The construction of the least
fixpoint of (3) is natural in S; that is, if h : S → S′ is an F -coalgebra morphism,
then fS = fS′ ◦ h.

Proof. Let τS be the map (3) on functions S → A. The assumptions on A
and α imply that τS is monotone and order-continuous under the pointwise
order on S → A. Let ⊥ be the bottom element of A. The map λs ∈ S.⊥ is
the bottom element of S → A. If h : S → S′ is an F -coalgebra morphism,
then clearly λs ∈ S.⊥ = (λs ∈ S′.⊥) ◦ h, therefore the selection of λs ∈ S.⊥
is natural in S. Moreover, it is easily argued that τS is also natural in S. By
induction, τnS (λs ∈ S.⊥) is natural in S for all n. By continuity, the least fixpoint
is supn τ

n
S (λs ∈ S.⊥), and the result follows from the observation that suprema

are preserved by composition with h on the right. ��

3.1 Fixpoint Induction

The construction of the least fixpoint of the monotone map τS admits the use
of the following fixpoint induction rule [12]: If f : S → A is the least fixpoint of
τS , and if τS(g) ≤ g, then f ≤ g.

3.2 Two Metrics

A popular metric on streams defines the distance between two streams to be 2−n

if n is the length of their maximal common prefix, or 0 if the streams are equal.
There is an analogous metric on codes. We say that binary codes s = (H,T ) and
t = (H ′, T ′) agree to length n if for all words x ∈ {0, 1}∗ of length n or less, x ∈ H
iff x ∈ H ′ and x ∈ T iff x ∈ T ′. We define d′(s, t) = pn if n is the maximum
number such that s and t agree to length n, or 0 if they are equal. We use pn

4 Here Pr(x) = p#0(x)(1 − p)#1(x), where #a(x) is the number of occurrences of a
in x for a ∈ {0, 1} and x ∈ {0, 1}∗. We write x ∈ code(s) for x ∈ H ∪ T , where
code(s) = (H,T ) is the image of state s under the unique F -coalgebra morphism to
the final F -coalgebra C.
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instead of 2−n for technical reasons, but the difference is of no consequence, as
the same topology is generated. The metric d′ satisfies the recurrence

d′(s, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if either δ(s), δ(t) ∈ {h,t} and δ(s) �= δ(t)

0 if both δ(s), δ(t) ∈ {h,t} and δ(s) = δ(t)

p ·max(d′(δ(s)0, δ(t)0), d
′(δ(s)1, δ(t)1))

if δ(s), δ(t) ∈ {0, 1} → C,

and in fact this can be taken as a formal definition according to (3). A similar
map d′ is induced on the states of any protocol by d′(s, t) = d′(code(s), code(t)),
where code is the unique F -coalgebra morphism to C. On arbitrary protocols,
the map d′ is not a metric in general, but only a pseudometric.

Alternatively, we might consider two protocols similar if, when run simulta-
neously, they halt at the same time and produce the same output with high
probability. Thus we define d : S × T → [0, 1] to be the least solution of the
equation

d(s, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if either β(s), β(t) ∈ {h,t} and β(s) �= β(t)

0 if both β(s), β(t) ∈ {h,t} and β(s) = β(t)

p · d(β(s)0, β(t)0) + (1 − p) · d(β(s)1, β(t)1)
if β(s), β(t) ∈ {0, 1} → S.

Formally, d can be specified in curried form d(s, t) = d(s)(t) by an F -algebra on
T → [0, 1] as above. We could also define an F -coalgebra on S × T with

(s, t) �→

⎧⎪⎨
⎪⎩
h if either β(s), β(t) ∈ {h,t} and β(s) 
= β(t)

t if both β(s), β(t) ∈ {h,t} and β(s) = β(t)

λa ∈ {0, 1}.(β(s)a, β(t)a) if β(s), β(t) ∈ {0, 1} → S

and take d(s, t) = Pr(O(s, t) = h).
Symmetry and the triangle inequality are easy to verify, thus any protocol S

is a pseudometric space under the distance functions d and d′.

Lemma 1. Let S and T be F -coalgebras, s ∈ S, and t ∈ T . The following are
equivalent:

1. d(s, t) = 0
2. d′(s, t) = 0
3. s and t are bisimilar.

Proof. The states s and t are bisimilar iff they have the same image in the final
coalgebra, and d and d′ are also preserved. Thus if s and t are bisimilar, then
d(s, t) = d′(s, t) = 0. Conversely, any two distinct prefix codes must differ on
some codeword x ∈ {0, 1}∗, in which case both d(s, t), d′(s, t) ≥ p|x|. ��

Lemma 2. Every d′-open set is d-open. If E(s) <∞, then every d-open neigh-
borhood of s is d′-open.
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Proof. If s and t disagree on x, then the probability of disagreement is at least
p|x|, thus d(s, t) ≥ d′(s, t), so every basic d′-open set {t | d′(s, t) < ε} contains
the basic d-open set {t | d(s, t) < ε}, thus is also d-open.

Conversely, suppose E(s) < ∞. If d′(s, t) ≤ pn, then the codes s and t agree
to length n, thus s and t differ with probability at most Pr(|x| > n) ≤ E(s)/n
by the Markov inequality. Thus d(s, t) ≤ E(s)/n. We conclude that d(s, t) ≤
E(s)/ logp d

′(s, t). ��

Lemma 2 says that d generates a finer topology than d′ on C. They are not the
same: an example of a d-open set that is not d′-open is the ε-neighborhood of
s = (∅,∅) in the d-metric for any 0 < ε < 1. For sn = ({0, 1}n,∅), d(s, sn) = 1
but d′(s, sn) = pn.

In the final F -coalgebra C, d(s, t) = 0 implies s = t, since bisimilar states of C
are equal. Thus C is a metric space under d. However, it is not complete, even re-
stricted to points with finite expectation. For example, the sequence ({0, 1}n,∅)
has no limit point. However, the subspace of points with expected running time
bounded by any constant b is compact, thus complete, as we will now show.

Theorem 2. Let Cb be the subspace of points s ∈ C such that E(s) ≤ b. Then
Cb is a compact, hence complete, metric space under d.

Proof. We have argued that Cb is a metric space, thus it remains to show com-
pactness. Certainly Cb is compact under d′. By Lemma 2, d and d′ generate the
same topology on Cb, therefore Cb is also compact under d. ��

Recall that P (s) = Pr(O(s) = h).

Lemma 3. The map P is continuous with respect to d on C.

Proof.

|P (s)− P (t)| = |Pr(O(s) = h ∧O(t) �= h)− Pr(O(t) = h ∧O(s) �= h) |
≤ Pr(O(s) = h ∧O(t) �= h) + Pr(O(t) = h ∧O(s) �= h)

≤ Pr(O(s) �= O(t))

= d(s, t).

��

The map E is not continuous at any point in either metric, not even restricted
to Cb. However, we have the following.

Lemma 4. Let A ⊆ C and let cl′(A) denote the closure of A under the d′

metric. Then sup{E(s) | s ∈ cl′(A)} ≤ sup{E(t) | t ∈ A}.

Proof. Recall that for points s in the final coalgebra, E(s) =
∑

x∈s Pr(x) · |x| if∑
x∈sPr(x) = 1, and ∞ if

∑
x∈s Pr(x) < 1. Let s ∈ cl′(A). If

∑
x∈sPr(x) < 1,

then that is also true for some t ∈ A, so in that case both suprema are ∞; so
assume that

∑
x∈s Pr(x) < 1.
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For ε > 0, let n be large enough that

∑
x∈s
|x|≤n

Pr(x) · |x| ≥
{
E(s)− ε if E(s) <∞,
1/ε if E(s) =∞

and choose a point t ∈ A such that s and t agree to length n. Then

E(t) ≥
∑
x∈t

|x|≤n

Pr(x) · |x| =
∑
x∈s
|x|≤n

Pr(x) · |x| ≥
{
E(s)− ε if E(s) <∞,
1/ε if E(s) =∞,

thus sup{E(t) | t ∈ A} ≥ E(s). As s was arbitrary, the conclusion follows. ��

4 Residual Probability Protocols Are Optimal

Let Eopt(q) be the infimum of expectations of all p, q-simulation protocols. There
exist protocols with expectation at most 1/p (e.g., Example 2), so Eopt(q) ≤ 1/p.
A p, q-simulation protocol with start state s is optimal if Econs(s) = Eopt(q).

Theorem 3. For every p, q such that 0 < p ≤ 1/2 and 0 ≤ q ≤ 1, there exists
an optimal p, q-simulation protocol.

Proof. We show that Eopt(q) is attained at a state in the final F -coalgebra C.
Let s0, s1, . . . be a sequence of start states of p, q-protocols such that E(sn) is
decreasing and limnE(sn) = Eopt(q). Since E(s) and P (s) are preserved under
morphisms, the images of these states in C are also start states of p, q-protocols
in C and their expectations are the same, thus we can assume without loss of
generality that the sn are states of C1/p. Since C1/p is compact, there exists
a convergent subsequence with limit uq ∈ C1/p ∈ C1/p. Since P is continuous
(Lemma 3), P (uq) = q, thus uq is the start state of a p, q-protocol. By Lemma
4, E(uq) = Eopt(q). ��

Theorem 4. For every p, there is a residual probability protocol Up that is op-
timal for every q.

Proof. Let uq be the optimal p, q-protocol constructed in Theorem 3. Consider
the coalgebra Up = ([0, 1], υ), where

υ(q) =

{
δ(uq) if δ(uq) ∈ {h,t}
λX ∈ {0, 1}.Pr(O(δ(uq)X) = h) if δ(uq) ∈ {0, 1} → C.

We claim that for all q,

EU (q) = Eopt(q) Pr(O(q) = h) = q Pr(O(q) = t) = 1− q, (4)
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thus Up with start state q is an optimal p, q-simulation protocol. We first show
that

EU (q) ≤ Eopt(q) Pr(O(q) = h) ≤ q Pr(O(q) = t) ≤ 1− q (5)

by fixpoint induction.
For the first inequality of (5), define a property ϕ on S to be hereditary if

ϕ(β(s)0) and ϕ(β(s)1) whenever β(s) ∈ {0, 1} → S and ϕ(s). The property

E(s) = Eopt(P (s)) (6)

is hereditary, because it says that s is an optimal protocol for its residual prob-
ability. But if s is, then so must be its successors; if not, then we could replace
them by a better protocol and thereby improve E(s) as well.

Now we proceed by fixpoint induction to show that EU (q) ≤ Eopt(q). It
suffices to show that Eopt is a fixpoint of the defining equation τ for EU .

τ(Eopt)(q)

=

{
0 if υ(q) ∈ {h,t}
1 + p · Eopt(υ(q)0) + (1− p) · Eopt(υ(q)1) if υ(q) ∈ [0, 1]2

(7)

=

{
0 if δ(uq) ∈ {h,t}
1 + p · Eopt(P (δ(uq)0)) + (1 − p) · Eopt(P (δ(uq)1)) if δ(uq) ∈ C2

(8)

=

{
0 if δ(uq) ∈ {h,t}
1 + p · EC(uP (δ(uq)0)

) + (1− p) ·EC(uP (δ(uq)1)
) if δ(uq) ∈ C2

(9)

=

{
0 if δ(uq) ∈ {h,t}
1 + p · EC(δ(uq)0) + (1− p) ·EC(δ(uq)1) if δ(uq) ∈ C2

(10)

= EC(uq) (11)

= Eopt(q). (12)

Inference (7) is by the definition of τ . Inference (8) is by the definition of υ(q).
Inference (9) is from the construction of Theorem 3. Inference (10) is by the fact
that δ(uq)1 and δ(uq)0 satisfy property (6), since uq does and the property is
hereditary, therefore

EC(δ(uq)X) = Eopt(P (δ(uq)X)) = EC(uP (δ(uq)X ))

for X ∈ {0, 1}. Inference (11) is by the definition of EC . Inference (12) is by
Theorem 3.

For the second inequality of (5), writing P (q) for Pr(O(q) = h), it suffices to
show that the identity function on [0, 1] is a fixpoint of the defining equation τ
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for P .

τ(λq.q)(q) =

⎧⎪⎨⎪⎩
1 if υ(q) = h

0 if υ(q) = t

p · (λq.q)(υ(q)0) + (1− p) · (λq.q)(υ(q)1) if υ(q) ∈ [0, 1]2

(13)

=

⎧⎪⎨⎪⎩
1 if υ(q) = h

0 if υ(q) = t

p · υ(q)0 + (1− p) · υ(q)1 if υ(q) ∈ [0, 1]2
(14)

=

⎧⎪⎨⎪⎩
1 if δ(uq) = h

0 if δ(uq) = t

p · P (δ(uq)0) + (1− p) · P (δ(uq)1) if δ(uq) ∈ C2
(15)

= P (uq) (16)

= q. (17)

Inference (13) is by definition of τ . Inference (14) is by the application of the
identity function. Inference (15) is by definition of υ. Inference (16) is by def-
inition of P (uq). Inference (17) is by the fact that uq is the start state of a
p, q-protocol.

The proof of the third inequality of (5) is symmetric.
Now we argue that all the inequalities (5) are actually equalities (4). By the

first inequality, the probability of halting is 1, since EU is finite. Since the last
two inequalities hold and the left-hand sides sum to 1, the last two inequalities
must be equalities. Then U with start state q is a p, q-simulation protocol, thus
Eopt(q) ≤ EU (q), therefore the first inequality of (5) is an equality as well. ��

5 Properties of Eopt

We assume throughout this section and the next that (3 −
√
5)/2 ≤ p ≤ 1/2;

equivalently, (1− p)2 ≤ p ≤ 1− p.
For fixed p, a real number q ∈ [0, 1] is exceptional of degree d if it has a finite

binary prefix code with probabilities p, 1−p whose longest codeword is of length
d. The number q is exceptional if it is exceptional of some finite degree.

If q is exceptional of degree d, then so is 1 − q, and the pair of codes form a
finite loop-free p, q-protocol with maximum running time d. In this case q and
1− q are polynomial functions of p of degree d. The twelve exceptional values of
degree at most 2 are shown in Table 1.

Some rows of Table 1 collapse for certain degenerate values of p. For p = 1/2,
rows (iii), (iv), and (v) collapse and rows (ii) and (vi) collapse. For p = (3−

√
5)/2,

rows (ii) and (v) collapse. These are the only two degenerate values that cause
collapse. Rows (v) and (vii) would collapse for p = 1/3, but this case is ruled
out by the assumption p ≥ (3 −

√
5)/2 ≈ .382.
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Table 1. Exceptional values of degree at most 2

q 1− q degree Eopt

(i) 0 1 0 = 0

(ii) p 1− p 1 = 1

(iii) p(1− p) 1− p+ p2 2 = 1 + p

(iv) p2 1− p2 2 = 1 + p

(v) (1− p)2 p+ p(1− p) 2 = 2− p

(vi) 2p(1− p) p2 + (1− p)2 2 ≤ 2

The exceptional points form a countable dense subset of the unit interval. The
set is countable because there are countably many polynomials in p with integer
coefficients. It is dense because for any 0 ≤ a < b ≤ 1, for sufficiently large n
(viz., n > log1−p b−a), Pr(x) ≤ (1−p)n < b−a for all binary strings x of length
n, therefore a ≤

∑
x∈A Pr(x) ≤ b for some A ⊆ {0, 1}n.

Lemma 5. Let ([0, 1], β) be a greedy residual probability protocol with expecta-
tion E. If (3−

√
5)/2 ≤ p < 1/2, then

1. For q ≤ p or 1− p ≤ q, E(q) < 2.
2. For p < q < 1− p, E(q) < (2 − p)/(1− p+ p2).

If p = 1/2, then E(q) ≤ 2.

Proof. For q ∈ [0, p]∪[1−p, 1], either β(q) ∈ {h,t} or β(q)1 ∈ {h,t}, thus the
protocol takes at most one step with probability at least 1−p. For q ∈ (p, 1−p),
either β(q)0 = h and β(q)1 = (q−p)/(1−p) or β(q)0 = t and β(q)1 = q/(1−p).
In the former case, q < 1 − p ≤ 1 − (1 − p)2 so β(q)1 = (q − p)/(1 − p) < p. In
the latter case, (1 − p)2 ≤ p < q so β(q)1 = q/(1 − p) > 1 − p. In either case,
the protocol reenters the region [0, p] ∪ [1 − p, 1] in the next step. Thus E(q)
is bounded by M for q ∈ [0, p] ∪ [1 − p, 1] and by N for (p, 1 − p), where M
and N satisfy the system of recurrences

M = (1− p) + p(1 +N) = 1 + pN
N = p+ (1− p)(1 +M) = 1 + (1− p)M. (18)

The unique bounded solution is

M =
1 + p

1− p+ p2
N =

2− p
1− p+ p2

,

thus

E(q) ≤

⎧⎪⎪⎨⎪⎪⎩
1 + p

1− p+ p2
if q ≤ p or 1− p ≤ q

2− p
1− p+ p2

if p < q < 1− p.

In the case q ≤ p or 1 − p ≤ q, the value is 2 for p = 1/2 and strictly less than
2 if p < 1/2. The inequality is also strict in the case p < q < 1 − p if p < 1/2,
since it is governed by the system (18). ��
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We show that for p < 1/2, the function Eopt has a dense set of discontinuities
on the unit interval, and the function is self-similar but for a discrete set of
exceptions.

Lemma 6. For all non-exceptional q, Eopt(q) ≥ 1/(1−p), and for p < q < 1−p,
Eopt ≥ 2.

Proof. We will show in Lemma 8 that greedy is optimal on non-exceptional q,
and non-exceptionality is preserved by greedy steps. Thus the optimal protocol
is purely greedy on non-exceptional q. The remainder of the proof is similar to
the proof of the corresponding inequalities (3.14) and (3.15) of [8].

The first inequality follows from the observation that a greedy protocol can
do no better than to halt with probability 1 − p in every step, giving the same
expectation as a Bernoulli process with success probability 1− p.

For the second, if p < q < 1 − p, then after one greedy step, the residual
probability is either q′ = q/(1− p) > 1− p or q′ = (q − p)/(1− p) < p. In either
case, by the previous argument, Eopt(q

′) ≥ 1/(1− p). Thus

Eopt(q) = 1 + (1− p)Eopt(q
′) ≥ 1 + (1− p) 1

1− p = 2.

��
Theorem 5. For p < 1/2, the function Eopt is everywhere discontinuous; that
is, every open subinterval of the closed unit interval contains a discontinuity.

Proof. The argument is very similar to one given in [8], with minor modifications
to account for exceptional points.

It follows from Lemmas 5 and 6 that Eopt has discontinuities at p and 1− p.
By Lemma 6, all non-exceptional q approaching p from above have Eopt(q) ≥ 2;
by Lemma 5, all non-exceptional q approaching p from below have Eopt(q) ≤
(1 + p)/(1− p+ p2) < 2; and Eopt(p) = 1.

Now we show that every nonempty open interval (a, b) contains a discontinu-
ity. If the interval (a, b) is entirely contained in one of the three regions (0, p),
(p, 1−p), or (1−p, 1), then a greedy step maps the non-exceptional elements of
(a, b) conformally to a larger subinterval. For example, if (a, b) ⊆ (0, p), then

Eopt(q) = 1 + pEopt(q/p)

for non-exceptional a < q < b, thus

Eopt(q/p) = (Eopt(q)− 1)/p

for a/p < q/p < b/p, so the non-exceptional elements of (a, b) are mapped
conformally onto the interval (a/p, b/p). But the length of this interval is (b −
a)/p, thus we have produced a longer interval.

A similar argument holds if (a, b) is contained in one of the intervals (p, 1−p)
or (1−p, 1). In each of these three cases, we can produce an interval of continuity
that is longer than (a, b) by a factor of at least 1/(1− p). This process can be
repeated at most log1−p(b− a) steps before the interval must contain one of the
discontinuities p or 1 − p. As the mappings were conformal on non-exceptional
points, the original interval (a, b) must have contained a discontinuity. ��
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6 Algorithms

Throughout this section, as in the last, we assume that (3−
√
5)/2 ≤ p ≤ 1/2.

Lemma 7. For residual probability protocols, a greedy step is optimal at all but
finitely many exceptional q.

Proof. Suppose first that p < 1/2. By Lemma 5, Eopt ≤ 2 − ε for some ε > 0.
Suppose we have a residual probability protocol that is not greedy at q for some
0 < q ≤ p or 1 − p ≤ q < 1. If the protocol generates an infinite computation
path from q, then

E(q) ≥ p+ (1− p)(1 + 1

1− p ) = 2.

This is the minimum possible expectation with at least one an infinite path if the
protocol does not halt with probability at least 1−p in the first step. Truncating
at depth k, the running time would be

2− pk−1(1 − p)(k + 1

1− p ) = 2− pk−1(k(1− p) + 1),

and this is greater than any 2 − ε for sufficiently large k. By Lemma 5, any
protocol that is not greedy in the first step and generates a computation path
of length at least k cannot be optimal. But the only q that can generate com-
putation trees of depth k or less are the exceptional q of degree at most k, and
there are only finitely many of these.

If p = 1/2, the situation is even simpler. By Lemma 5, Eopt ≤ 2. In this case,
however, any impatient protocol is greedy. If the protocol is not impatient at q,
then all computation paths are of length at least 2. The only way this can be
optimal is if q is exceptional of degree 2, and all computation paths are of length
exactly 2. But according to Table 1, this is impossible: row (vi) collapses to row
(ii) for p = 1/2, so there is no such optimal computation.

Now let us consider the case p < q < 1 − p. Any strategy that is not greedy
in the first step must take at least 2 steps in all instances; it cannot halt in one
step with probability 1 − p, because that probability is too big to assign either
h or t. If the protocol generates an infinite computation path from q, then it
takes time at least

2 + p2(2 +
1

1− p ).

But N is less than this for p ≥ (3−
√
5)/2:

2− p
1− p+ p2

≤ 2 + p2(2 +
1

1− p ).

This can be shown by comparing derivatives. The derivative of the left-hand side
is negative for all points greater than 2 −

√
3, and 2 −

√
3 < (3 −

√
5)/2 ≤ p.
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The derivative of the right-hand side is positive for all p. The inequality holds
at 3/8, where the values are 104/49 and 401/160, respectively, and 2 −

√
3 <

3/8 < (3−
√
5)/2.

As above, by Lemma 5, any protocol that is not greedy but generates a com-
putation path of sufficient length k cannot be optimal. So if the optimal protocol
is not greedy at q, then q must be exceptional of degree at most k. ��

Lemma 8. Assume (3−
√
5)/2 ≤ p ≤ 1/2. At all non-exceptional points, greedy

is globally optimal.

Proof. By Lemma 7, the optimal local strategy at all but finitely many excep-
tional points is greedy. But it is not difficult to show that a greedy step preserves
non-exceptionality, therefore for non-exceptional points, greedy is globally opti-
mal as well. ��

Theorem 6. For p = 1/2, Eopt(q) = 2 but for the following exceptional values:
Eopt(k/2

n) = (2n − 1)/2n−1, k ≤ 2n odd. Greedy is optimal for all q.

Proof. Lemmas 5 and 7 establish that Eopt(q) ≤ 2 for all q and that Eopt(q) = 2
for all nonexceptional q. Any non-greedy strategy takes at least two steps on all
computation paths, thus greedy is optimal for all q. For the exceptional points
mentioned in the statement of the theorem, it is easily checked inductively that
the greedy strategy behaves as stated. Moreover, all exceptional points are of
this form. ��

6.1 An Approximation Algorithm

Were it not for the ambiguous region (p, 1 − p), we would be done. We could
check in each step whether q is one of finitely many exceptional values; if so,
obtain the optimal strategy by table lookup, and if not, take a greedy step.
Note that this gives an optimal protocol for p = 1/2, as the ambiguous region is
empty.

Unfortunately, for q in the ambiguous region (p, 1− p), there are always two
choices, and we do not know which will ultimately be the better choice. To
approximate the globally optimal expectation Eopt to within any desired ε > 0,
we will simulate all possible greedy choices down to a fixed depth k depending
on ε.

Let d be a bound on the degree of those exceptional points for which a local
greedy step is not optimal, as guaranteed by Lemma 7. Let G be the set of
exceptional points of degree at most d+ k. As G is a finite set, whenever q ∈ G
during the execution of the protocol, we can obtain the optimal local action by
table lookup and take that action.

Otherwise, on input q �∈ G, if q is not in the ambiguous region (p, 1 − p),
we take the unique possible greedy step. This is optimal, by Lemma 7. If q ∈
(p, 1−p), we have two greedy choices. We know that one of them is optimal, but
we do not know which. In this case we simulate all possible greedy paths down to
depth k. This involves branching when q is in the ambiguous region (p, 1−p) to
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simulate the two possible greedy steps. No greedy path ever encounters a q ∈ G
by choice of G, so we know that some greedy path is optimal down to depth k.

At depth k, we have several paths x that are currently being simulated. One
of them is optimal. For each such x, let Ex be the expected time to halt before
reaching the end of x, given that the path x is taken; that is, Ex is the expected
length of a shortest path prefix-incomparable to x. Let fx(q) ∈ [0, 1] be the
residual probability after following path x if the computation has not halted by
then. Then

Eopt(q) = min
x

(Ex + Pr(x) · (k + Eopt(fx(q))))

≥ min
x

(Ex + Pr(x) · k).

But for any such x, continuing from x with a purely greedy strategy yields an
expectation no worse than

Ex + Pr(x) · (k + 2) (19)

by Lemma 5, and

min
x

(Ex + Pr(x) · (k + 2)) ≤ min
x

(Ex + Pr(x) · k) + 2(1− p)k

≤ Eopt(q) + ε,

provided k is large enough that (1 − p)k ≤ ε/2, that is, k ≥ log1−p(ε/2). Thus
the greedy strategy x that minimizes (19) will be within ε of optimal.

6.2 Analysis

The algorithm constructs a tree with 2k/2 nodes in the worst case, where k =
log1−p(ε/2). It is 2

k/2 and not 2k because branching occurs at most once every

two steps. The algorithm thus runs in time bounded by 2k/2 ≤ (ε/2)1/ log(1−p)
2

.
The exponent 1/ log(1 − p)2 ranges between −.72 and −.5 for p in the range
(3−

√
5)/2 ≤ p ≤ 1/2, thus the algorithm is better than linear in 1/ε.

7 Conclusion

Several questions present themselves for further investigation.
Our analysis gives a worst-case time bound less than linear in 1/ε, but em-

pirical evidence suggests that the true time bound is exponentially better and
that we actually achieve the optimal on all but a very sparse set. In the many
experiments we have tried, the size of the set of candidate greedy paths x does
not grow beyond two if demonstrably suboptimal paths are pruned along the
way, and the algorithm invariably exits the loop with one candidate, which must
be optimal.

The restriction p ≥ (3−
√
5)/2 was made to simplify many of the proofs, but

it should be possible to eliminate it.
Most importantly, it would be nice to know whether the optimal protocol is

computable for all rational p and q.
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2. Adámek, J., Lücke, D., Milius, S.: Recursive coalgebras of finitary functors. Theo-

retical Informatics and Applications 41, 447–462 (2007)
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Abstract. The question of which and how a particular class of entan-
gled resource states (known as graph states) can be used for measurement
based quantum computation (MBQC) recently gave rise to the notion of
Flow and its generalisation gFlow. That is a causal structure for measure-
ments guaranteeing deterministic computation. Furthermore, gFlow has
proven itself to be a powerful tool in studying the difference between the
measurement-based and circuit models for quantum computing, as well
as analysing cryptographic protocols. On the other hand, entanglement
is known to play a crucial role in MBQC. In this paper we first show
how gFlow can be used to directly give a bound on the classical simula-
tion of an MBQC. Our method offers an interpretation of the gFlow as
showing how information flows through a computation, giving rise to an
information light cone.We then establish a link between entanglement
and the existence of gFlow for a graph state. We show that the gFlow
can be used to upper bound the entanglement width and what we call
the structural entanglement of a graph state. In turn this gives another
method relating the gFlow to upper bound on how efficiently a compu-
tation can be simulated classically. These two methods of getting bounds
on the difficulty of classical simulation are different and complementary
and several known results follow. In particular known relations between
the MBQC and the circuit model allow these results to be translated
across models.

Measurement Based Quantum Computing (MBQC) [1] has attracted attention
recently as one of the main competitors for a realisation of a quantum computer,
its role in understanding the power and significance of entanglement for compu-
tation [2, 3], and that it plays a key role in the development of cryptographic
protocols [4, 5]. In MBQC one starts off with a large multiparty entangled re-
source state and the computation is driven by a series of local measurements,
the choice of which can depend on the result of previous measurements in the
series. The formal language for MBQC was jointly developed by Prakash Panan-
gaden in [6]. In this work we are interested in the question of how to recognise
or characterise a ‘good’ resource for measurement based quantum computing.
Given the fact that after the generation of the state, all operations are local, it
is natural to expect entanglement to play a key role. Indeed it has been shown
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that the entanglement of a resource state must be sufficiently high for it to be
universal and not classically simulatable (we note that these two properties are
currently not known to be equivalent, though it is broadly expected that they
are) [7–11].

A related question to universality is that of the ability, or not, for a resource
to allow any unitary MBQC computation on it at all. This question is addressed
by what is called Flow or its generalisation referred hereinafter gFlow [12, 13],
for a particular class of resource states, called graph states [14] and its extension
open graph state [12] (see also below). There exist efficient algorithms [15, 16] to
find gFlow if it exists, and once gFlow is found, it gives an explicit measurement
pattern which gives a unitary computation across the resource graph state in
hand. Subsequently gFlow has been a useful tool for exploring many aspects
of MBQC such as efficient translation between MBQC and the circuit model
[12, 17], analysing cryptographic protocols [18], direct pattern design in MBQC
[19], proving bounds on depth complexity [13, 20] and from a more fundamental
perspective, the arrival of causal order in MBQC [20–23].

In this paper we show that gFlow also gives a bound on the difficulty in classi-
cally simulating MBQC, and how it can be interpreted as a flow of information.
This leads to the observation that the causal forward cone (the ‘forward cone’
given by the qubits who’s corrections directly or indirectly depend on that qubit’s
measurement results) is equal to the information cone (the cone of qubits where
the information spreads to through the computation). We then establish an intu-
itive link between gFlow on the one hand, and entanglement of a resource state
on the other. We further make this connection explicit by showing how gFlow can
be used to give bounds on the entanglement of a graph state. In this way we will
see that properties of simulateability of MBQC on a resource in terms of entangle-
ment can be translated to conditions in terms of gFlow. Via a known relationship
between the circuit model and MBQC these results can also lead to conditions
on simulateability of circuits. One such example is a rederivation of the result by
Jozsa [24].

The organisation of this papers is as follows. In Section 1 we mention basic ob-
servations about entanglement conditions for any good resource state for MBQC
which will be then linked to gFlow. In Section 2 we introduce graph states and
review the notion gFlow and several preliminary notions necessary for the rest
of the paper. In Section 3 we prove that gFlow can be used to give bounds on
direct simulation of a MBQC. In Section 4 we discuss how gFlow can be used to
see how information flows through a resource in an MBQC, giving in particular
an information light cone which coincides with the causal cone as defined in
[22, 23]. In Section 5 we show how gFlow can be used to upper bound the entan-
glement of a resource state which gives a new route to bounding simulatability
of a MBQC, which is different and complementary to the direct simulation in
Section 3. We finish with discussions.
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1 Entanglement and Determinism in MBQC

In measurement-based quantum computing one starts with a large entangled
resource state |ΨRES〉 on n qubits. We identify a two sets of qubits, I which will
represent the inputs, and O which will represent the outputs of the computation,
with n ≥ |O| ≥ |I|. Generally one can consider three types of computation using
this resource, one with a classical input and a classical output (let’s call this
CC), one with a quantum input and a classical output QC and one with a
quantum input and a quantum output QQ. Clearly QQ is the most general,
since one can always encode classical information onto quantum states. In this
work we focus on QQ. When considering a quantum input |ψ〉S (on a system
S of |I| qubits) the first step is to teleport the input system qubits S onto I
on the resource state, by some global map on I and S. This can be done for
example by entangling I with S (using, say, a control-Z gate) and performing
Pauli X measurements on S then appropriate corrections (see e.g. [25] for graph
state resources). The computation then proceeds by a series of measurements
on individual qubits, followed by corrections, then further measurements and
corrections and so on until the computation is complete. We call the sequence
of measurements and corrections the measurement pattern (see [6] for formal
definitions). The outputs qubits, labelled O are those qubits which at the end of
the computation are not measured. In this way the computation uses the resource
state to transfer the input from I to O, in a kind of involved teleportation, at
the same time performing some unitary over the input.

We begin with the following definitions.

Definition 1. A resource state |ΨRES〉 on n qubits, with defined input qubits I
and output qubits O is D-Happy if for all bi-partitions A,B such that I ∈ A and
O ∈ B we have

EA,B(|ΨRES〉) ≥ |I|, (1)

where EA,B(|ΨRES〉) = S(ρA) = S(ρB) is the entropy of entanglement across
partition A,B, where S(ρA) = − lnTr(ρA) is the von Neumann entropy of the
reduced state ρA = TrB(ρAB).

Definition 2. A MBQC pattern is called unitary if for all inputs the returned
state of the output is an encoding of a unitary acting on the input.

A similar notion was defined in [26] as information preserving pattern. We
present a simple but important observation about the link between the above
two definitions.

Theorem 1. There exists a unitary MBQC pattern on a resource state |ΨRes〉
on n qubits, with input qubits I and output qubits O only if it is D-Happy.

Proof. We start by noting that in order to teleport a state |ψ〉 ∈ C
⊗|I|
2 perfectly

across |ΨRes〉 to its output space, it is necessary to have EA,B ≥ |I|, for all bi-
partitions A,B such that I ∈ A and O ∈ B. To see this is true one can consider
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the state to be teleported as half a maximally entangled state. After the tele-
portation one would end up with a state with entanglement EA,B = |I|. Since
all operations are local, and it is not possible to increase entanglement in the
process, this implies that we started with EA,B ≥ |I|. We then note that any mea-
surement based computation can be considered as a teleportation across any cut
which divides the inputs from the outputs - since all operations are local to each
qubit, they are certainly local to any cut. �

Recall that a MBQC computation evolves through various branches, depend-
ing on the measurement outcomes. In a unitary MBQC pattern as defined
above, it is possible that different branch implements different unitary operators.
A weaker notion of unitary computation is given below.

Definition 3. A measurement based quantum computation is called determin-
istic if for all inputs the returned state of the output is an encoding of a fixed
unitary acting on the input independent of the branch of the computation.

Other types of determinism and their connections can be found in [13, 26]. In
this paper we only consider the above central notions as they can be directly
linked to the concept of structural entanglement as we present later. Moreover
it is known that for graph states with |I| = |O| the two definitions of unitary
and determinism, defined above, are equivalent [26]. This will allow us to link
the concept of gFlow to D-Happy as we discussed next.

2 Preliminaries: Graph States, Flow and gFlow

In the previous section we presented a necessary condition for computation across
a resource state based on entanglement. The simple idea there was that if infor-
mation can be transferred across a resource state, that state must be maximally
entangled across each cut. We did not say anything about how this can be done
however. This is where the ideas of Flow [12] and its generalisation gFlow[13]
play a role, where a constructive definition together with efficient algorithm
could be obtained for particular class of resource states of many qubits - graph
states (defined below), with chosen input I and output O. If a graph state has
gFlow, it implies that a unitary computation can be carried out across it [12, 13].
Not only that, gFlow also gives instructions how to do it, and tells you what
class of computations will be carried out (which unitaries). We will show that
we can further use gFlow to give a simple bound on classical simulation of the
computation based on the size of the forward cones implied by the measurement
patters. This gives rise to an interpretation of the gFlow as showing us how
information is ‘spread’ across the resource state throughout the computation,
in an information light cone (which coincides with the causal forward cone in
MBQC [20, 22, 23]). In this section we review the definitions of graph states [14],
open graph states, Flow [12] and gFlow [13] and related concepts.

We start by defining the resource states considered, graph states [14]. A graph
state is a multipartite state |G〉 of n qubits, in one to one correspondence to a
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simple undirected graph G, with vertices V and edges E. Every vertex is asso-
ciated to a qubit, and every edge can be understood as an entangling operation
between qubits which have been initialised in the state

|+〉 := (|0〉+ |1〉)/
√
2.

We then have
|G〉V :=

∏
i,j∈E

CZi,j |++ · · ·+〉V , (2)

where CZi,j is the control-Z operation between qubits i and j. It is clear from
this definition that the entanglement across a cut A,B is bounded by the number
of edges cutting it, denoted CA,B, i.e. EA,B ≤ CA,B.

Graph states can equivalently be defined by their stabiliser operators [14], a
set of n operators, each associated to one vertex defined as

Ki := Xi ⊗j∈N(i) Zj , (3)

where X and Z are the Pauli operators (and Y = iZX). The graph state |G〉
is the unique state satisfying all the eigenvalue equations (also called stabiliser
relations or equations)

Ki|G〉V = |G〉V .
The above relation is the key to how gFlow works - gFlow tells us how to apply
the stabilisers to correct for measurements.

When used as a resource state for MBQC we assign some vertices as inputs
I ∈ V and some as outputs O ∈ V . In order to preserve the space we have that
the size of the input set |I| ≤ |O|. We call the graph, with these assignments an
open graph denoted as G(I, O, V ). The associated state is slightly different, the
input vertices are no longer prepared in the |+〉 state, but can be arbitrary input
qubits |ψ〉I . The rest of the vertices are prepared as normal, and again, every
edge corresponds to a control-Z operation. We denote such a state as |G(ψ)〉

|G(ψ)〉V :=
∏
i,j∈E

CZi,j |ψ〉I |+ · · ·+〉V/I (4)

where the state only depends on the inputs so different open graphs may have
the same open graph state if they share the same set I, and graph G even if they
have different assigned outputs O. The stabilisers are now reduced to those only
on the non-inputs (we denote this set Ic)

Ki|G(ψ)〉V = |G(ψ)〉 ∀i ∈ Ic. (5)

Here the stabilisers define a space (of dimension 2|I|) of states such that this
equation holds. The open graph state defined in Equation 4 is equivalent to
starting in the standard graph state Equation 2 and teleporting an input |ψ〉S
over system S (of |I| qubits) onto the input vertices I by performing control-
Zs between S and I, followed by Pauli X measurements on the S qubits and
corrections (see e.g. [25]).
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In the standard model of MBQC [6, 27] measurements are performed in one
of the equatorial planes defined by the X − Y , X − Z or Y − Z planes, and
correction operations are local Pauli operators. By the end of the computation
all vertices will be measured except the outputs (we denote this OC). The gFlow
assigns a set of correction operators for each of these measurements.

Before giving the definition of gFlow, we give the intuition to how it works for
measurements in the X − Y plane. This corresponds to measuring in the basis
|±θ〉 := (|0〉 ± eiθ|1〉)/

√
2. We denote the projections associated to results ±1 as

P±,θ := |±θ〉〈±θ|. For later use we denote the results in binary form as ri = 0
for +1 and ri = 1 for −1 outcomes. When measuring a state |ψ〉, in quantum
mechanics the result is random (in fact normally in MBQC the probabilities are
1/2 and 1/2), which takes the resulting state to one of two branches, either the
positive branch P+,θ|ψ〉/p+ with probability p+ = 〈ψ|P+,θ|ψ〉, or the negative
branch P−,θ|ψ〉/p− with probability p− = 〈ψ|P−,θ|ψ〉.

Clearly to perform a deterministic computation U , we need to recover a de-
terministic evolution, hence corrections need to be applied. By convention we
take the positive branch to be the ideal branch (note that of course P+,θ|ψ〉/p+
is not in general a unitary embedding, this is an additional requirement which is
also satisfied for our case). The task is then to find a correction operator to take
the state when projected onto the −1 result to that of the +1 result (possibly
ignoring the state of the measured qubit, since it is no longer used). The starting
point is to notice that for all measurements in the X − Y plane, the projections
are related to each other by a Pauli Z operator (for the other planes it is simi-
larly the orthogonal Pauli operator) P+,θ = ZP−,θZ. Imagine if it were possible
to know the outcome of the measurement before it was performed (for exam-
ple by traveling back in time after the measurement was performed and telling
yourself), instead of correcting after the event, if we knew that we were about to
get −1, we could cheat and apply a Pauli Z operator - then the ‘measurement’
(projection) would take us onto the projection we wanted, the positive branch.
Obviously this is not possible without time travel since in quantum mechanics
the results of measurements are random and cannot be known beforehand (we
can only predict probabilities). However, we can use the stabilisers to simulate
this strategy.

Imagine we applied the measurement on qubit i, then our time-travelling
correction strategy for the −1 result would be to perform a Pauli Z operator on
qubit i. Now, if we take a neighbour j /∈ I, the stabiliser condition (Equation 5)
tells us that

Zi|G(ψ)〉 = ZiKj=N(i)|G(ψ)〉 (6)

= I1i ⊗Xj ⊗k∈N(j) �=i Zk|G(ψ)〉. (7)

Since Xj⊗k∈N(j) �=iZk are on different systems from the measured qubit i, it does
not matter when they are performed (they commute with the measurement). In
this way, applying Xj ⊗k∈N(j) �=i Zk correction operator after the measurement,
is the same as applying a Z correction before the measurement - so that it
has exactly the same effect. The latter is sometimes called an ‘anachronical
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correction’, since it is as if we could go back in time and correct the measurement
before it happened. The same works if a product of stabilisers is used in Equation
6 as long as their product results in one Pauli Z operator on qubit i, and we call
the vertices associated to these stabilisers as the correcting set. Graphically this
condition is ensured if the total number of edges between the correcting set and
the vertex being measured is 1 modulo 2. This motivates the definition of the
odd neighbourhood of a set of verticesK, denoted Odd(K) := {μ | |N(μ)∩K| =
1 mod 2}, which will be used in the definition of gFlow below.

Using this idea, gFlow plays the role of making sure it is possible to make a
good choice of which neighbour (or set of neighbours) to choose in a consistent
way - so that corrections do not somehow contradict or interfere with one an-
other. Indeed, gFlow is composed of a time order ≺ (partial order over vertices)
and a choice of neighbouring sets (correcting sets) for each measured vertex i,
denoted g(i) with this in mind. Firstly the time order should be consistent, so
that corrections happen after the assigned measurements - this appears as (g1)
in the Definition 4 below. Secondly, the correction should not invalidate or af-
fect earlier corrections. This is true if no Pauli Z operators appear in the past
when applying the stabiliser corrections, i.e. the correcting set is not oddly con-
nected to the past - this appears as (g2) in Definition 4. Finally the correcting
set should correct for the measurement it is assigned to. For measurements in
the X −Y plane this corresponds to the application of a Pauli Z operator when
the correcting stabilisers are applied, which means the correcting set should be
oddly connected to the measured vertex - which appears as (g3) in the definition
below (the analogous corrections for the other planes appear after).

Definition 4. An open graph state G(I, O, V ) has gFlow if there exists a map
g : Oc → PIc (from measured qubits to a subset of prepared qubits) and a partial
order ≺ over V such that for all i ∈ Oc

(g1) if j ∈ g(i) and i �= j then i ≺ j
(g2) if j ≺ i and i �= j then j /∈ Odd(g(i))
(g3) for measurements in the X − Y plane, i /∈ g(i) and i ∈ Odd(g(i))
(g4) for measurements in the X − Z plane, i ∈ g(i) and i ∈ Odd(g(i))
(g5) for measurements in the Y − Z plane, i ∈ g(i) and i /∈ Odd(g(i))
Flow is a special case of gFlow, when all measurements are performed on the
X − Y plane, and the correction sets g(i) have only one element.

In this way the product of
∏
j∈g(i)Kj applies the appropriate ‘anachronical’

correction on vertex i, whilst not affecting other previous corrections. The asso-
ciated computation can be carried out as follows. First generate the open graph
state, then go through round by round (in the order given by≺), measureing each
qubit i, denoting the binary form of the outcome ri, followed by the correction
given by ⎛⎝σi ∏

j∈g(i)
Kj

⎞⎠ri

(8)
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where σi is the Pauli Zi, Yi or Xi for measurement on qubit i done on the
X − Y , X − Z or Y − Z planes respectively, so that Equation 8 is trivial over i
and non-trivial only on future qubits of i i.e. on j such that i ≺ j.

Fig. 1. An example of gFlow for the two dimensional clusters state as an open graph
state. Following the convention in [12, 13] inputs are identified by vertices with squares
around them, and outputs are identified as hollow vertices (hence all non-hollow ver-
tices will be measured in the computation). The choice of gFlow for a given vertex is
indicated by red dotted arrows from the vertex to its gFlow (these are called gFlow
paths, see Definition 5. Note that gFlow paths need not follow graph edges, as in Fig-
ure 3b). The induced measurement rounds are highlighted in grey, (see Definition 8).

In [13] it is shown that gFlow is a necessary and sufficient condition for an
open graph state to allow a uniform unitary, deterministic computation to be
performed across it, where uniform means that each qubit can be measured at
an arbitrary angle on one of the planes. Hence the existence of gFlow implies the
resource is also D-Happy. Intuitively on can think that the existence of gFlow
guarantees that the entanglement of the graph state is such that the random
effects of local measurements can be absorbed and countered by yet unmeasured
qubits. The following definitions will be used to discuss how information travels
throughout the computation [20].

Definition 5. A gFlow path starting from a vertex μ, denoted as gPath(μ), is an
ordered set of vertices such that for each pair (i, j) we have j ∈ g(i) and the first
element of the set is μ.

Definition 6. An influencing path starting from a vertex μ, denoted as gInf(μ),
is an ordered set of vertices such that each pair (i, j) is on a gFlow path or is
preceded immediately by a pair on a gFlow path.

Definition 7. The forward cone FC(μ) of a vertex μ is the set of all vertices
touched by all influencing paths from μ.

The concept of the forward cone appears in [20, 22, 23] and can be understood as
a causal light cone, as described in [22, 23]. The partial order≺ in a gFlow defines
time order for the rounds of measurements. We say a vertex μ is in a round Rx if
it is measured in round x.
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Definition 8. The set Rx, denotes the set of vertices which are measured in the
xth round of measurements according to the gF low.

The best way to understand these definitions is through some examples. The
gFlow (which is also a Flow in this case) is illustrated for the 2D cluster state
in Figure 1. In Figure 2 we show examples of influencing paths and their union,
which make up the forward cone for the 2D cluster state.

Fig. 2. a) The bold red lines are examples of two possible influencing paths from the
central input vertex (see Definition 6), for the gFlow paths given by the red dotted
arrows. An influencing path is path which follows gFlow paths and no more than one
edge between gFlow paths. b) The collection of all influencing paths identifies the
set of vertices (in red) in the forward cone (see Definition 7). The maximum size of
forward cone for the 2D cluster state is indicated by the red shaded region (for the
same gFlow). For an n × m 2D cluster state the maximum forward cone is of size
|FCmax | = nm − n2/4. This gives a bound on classical simulation for a computation,
in Theorem 2. The same region has an interpretation as an information light cone (see
Section 4).

Before moving on to the interpretations of gFlow with respect to simulation
and information flow, we review some examples which illustrate its power as
a tool for analysing entanglement (as potential resources for MBQC), and in
accessing the tradeoff between classical processing and number of measurement
rounds (depth [20]). We start with an example of an open graph for which there is
no gFlow in Figure 3 a). It can easily be seen that there is no possible assignment
of correction sets g(i) and time order satisfying the conditions in gFlow for any
measurement axes. Indeed its inability to act as a resource for computation
across it follows directly from the fact that the entanglement across it is less
then the number of inputs (hence it is not D-happy). We note however that
there are examples of graph states which are D-happy, but do not allow a gFlow
[13, 26]. All such known examples still do allow computation across them. The
second example is one where there exists a gFlow, but it necessarily has some
correction sets which have more than one member - i.e. there is no Flow, as
shown in Figure 3 b). The associated gFlow is give by assignments g(1) = 4,
g(2) = 5 and g(3) = 4, 5, 6, with partial order given by the ordered measurement
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Fig. 3. Examples of open graph states with and without gFlow. The gFlow paths
are red dotted lines, and the induced measurement rounds are highlighted in grey (see
Definition 8). The graph in Figure a) does not have gFlow. This can be seen since
the entanglement across the cut input/output is lower than the number of inputs. The
graph in Figure b) has gFlow but no Flow [13]. The graph in Figure c) is the linear
cluster state which has a gFlow that is also Flow.

rounds R1 = 1, R2 = 2 and R3 = 3, and all measurements in the X − Y plane.
Note here that a gFlow path need not lie on a graph edge as for the gFlow path
(3, 4). The third example is the simple linear cluster state in Figure 3 c), where
gFlow follows along the line.

A final example illustrates how gFlow can be used to find advantages in the
number of rounds needed in a computation (taken from [13]). In Figure 4 the same
open graph can have different gFlows. In the first case, Figure 4 a), the gFlow has
correcting sets of size one, hence it is a Flow (g(i) = i + 4), and the number of
rounds is the number of inputs (in the example this is four, but it easily extends
to arbitrary size). More complicated gFlows can be found by increasing the size
of some correcting sets, with the benefit of reducing the number of rounds. Figure
4 b), we set the correcting sets as g(1) = 5, 6, 7, 8, g(2) = 6, 7, 8 , g(3) = 7, 8 and
g(4) = 8. It can easily be checked that this assigment allows all measurements to
be done in the same round since for every vertex i, the correcting set g(i) is oddly
connected only to i.

The above example illustrates a general scheme that could be understood as a
tradeoff between rounds of computation and the amount of classical processing
needed, but we have not yet talked about classical processing. To see how it
works, we should think back again at what the gFlow does. Recall that gFlow
tells us on which sets of vertices we should apply corrections (Equation 8). In
particular, for a vertex i, the correction associated to its measurement result (ri,
where ri = 0 corresponds to the ideal branch and ri = 1 to that which needs to
be corrected) is the application of the product of the stabilisers of all the vertices
in g(i) (minus the Zi) - i.e. the correction is (Zi

∏
j∈g(i)Kj)

ri . Thus, if a vertex

l is in the gFlow (or is a neighbour to a gFlow vertex) of another vertex i, then
it will receive an Xri

l (or Zril ) correction. The total number of corrections for
a vertex depends on how many gFlow set (or neighbourhoods of gFlow set) to
which that vertex belongs to. In the example Figure 4 b), vertex 8 has corrections
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Fig. 4. This open graph state has several possible gFlows, and illustrates how gFlow
can be used to find advantages in terms of the number of rounds needed (depth) in
a computation. a) is a gFlow with one correcting vertex per qubit, hence it is also a
flow. This requires a number of rounds scaling with the number of inputs. b) is a gFlow
which has largest size scaling with the number of inputs, but all measurements can be
done in one round. Indeed all intermediary tradeoffs are also possible.This exemplifies
the tradeoff between classical computation required and the number of measurement
rounds needed.

from all inputs - hence it must receive the correction Xr1⊕r2⊕r3⊕r4
8 (where ⊕ is

the sum mod 2). In general, to calculate the Pauli X correction that should be
applied on qubit j requires calculating the parity of all the ris where j ∈ g(i) and
for the Pauli Z correction the parity of all the ris where j is a neighbour of g(i).
We assume this is done classically (since it is a simple calculation), however, by
increasing the size of the gFlows (in order to reduce the depth), we necessarily
increase the size of this classical computation. This tradeoff has recently been
translated to a tradeoff between the degree of the initial Hamiltonian and time
of computation in the adiabatic model [28].

This tradeoff, a particular feature of the measurement based model, gave rise
to a distinction in the power of measurement based quantum computation com-
pared to the circuit model with respect to the number of time steps required [29].
The first example of a depth separation between quantum circuit and MBQC
was proven for the calculation of parity function (where depth is defined to be
the minimum number of rounds for a computation) [20]. Indeed this is a general
feature that the depth of MBQC can be logarithmically better than the circuit
model, where the difference is absorbed into the classical processing. More con-
cretely it was shown that the depth complexity of MBQC is equal to the depth
complexity for the circuit model with the addition of unbounded fan out gates
[29].

3 Direct Simulation from gFlow

We will now see how we can derive a simple classical simulation, by tracking the
stabilisers and logical operators. This idea is exactly how one can understand the
Gottesman Knill theorem for the efficient classical simulatability of computations
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including only Clifford operations [30]. The proof follows from tracking stabilisers
operator since they are an efficient way to describe a stabiliser state (such as
a graph state), and Clifford operations, by definition transform stabiliser states
to other stabiliser states, so computations can be simply tracked and described
[30].

In what follows we will represent the computation in terms of the evolution of
a set of logical operators. In physics there are two main, equivalent, ways that one
views quantum evolution. One method (more common in quantum information)
is where we look at how a state develops, and keep track of it as it evolves.
This is known as the Schrödinger representation. Equivalently, one can view the
state as having not altered, but the operators defining measurements having
changed. This picture is known as the Heisenberg representation of evolution.
In between these two pictures lies another way of representing evolution, which
has been developed for quantum information - the so called ‘logical Heisenberg’
representation [30, 31]. In this method we track the evolution of a complete set
of logical operators - in this case the Pauli operators. To recover the Shrödinger
representation, we remember that any state density matrix can be decomposed
into Pauli operators (see Equations (13 and 14 in the next section). The logical
Heisenberg representation has proved a very instructive way to view the evolution
of MBQC [27, 32], and as we will see leads to a simple bound on the cost of
classical simulation.

Our simulation will follow the main treatment of [27, 32], with the addition that
we will consider rotated operators and their decomposition into Pauli operators,
and we will use gFlow to instruct our procedure for updating the operators, which
eventually leads to our main theorem. Our main tool will be the stabiliser formal-
ism [30]. As mentioned in Section 2, for an open graph state the stabilisers define
a space. Generally we talk in terms of a stabiliser group S, which is a subgroup of
the Pauli operators. In the case of the open graph states, the generators of the sta-
biliser group are given by the operators Ki (Equation 3), so that S = 〈{Ki}ni=1〉.
These are not the unique generators, indeed multiplying each of these by any one
generator gives a new set of generators. The stabiliser group defines a space (the
stabiliser space, or ‘code’ in error correction terminology) by a set of eigen equa-
tions - it is the space of states which are unchanged by the group. For the open
graph states this is given by Equation 5 that is for all i ∈ Ic : Ki|G(ψ)〉 = |G(ψ)〉,
which implies all products ofKi (i.e. all elements of S) leave the states unchanged.
We say the states |G(ψ)〉 are stabilised by the group S. In general if the stabiliser
group for n qubits is generated by k elements, then the stabiliser space is of di-
mension 2n−k. Essentially the stabilisers act like the identity over the this space,
defining the space itself. In addition to tracking the logical operators, we will also
track the stabiliser operators - indeed this will be a key tool for the former.

One can picture the whole of the computation in a high level as follows. The
attaching of the input to the graph state (forming the open graph state), encodes
the input space onto the many qubit state. The information is in some sense
‘spread’ over the large entangled state (we will talk more about computation
as spreading of information in the next section). We call this encoded space the
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logical space. During the computation the information is pushed forward through
the measurements towards the outputs, so that after the final measurements the
logical space sits on only the output qubits. During this push the logical space
is also rotated around, resulting in unitary computation. One can think of the
stabilisers as keeping track of where the logical space is sitting, and the logical
operators as telling you how the space has been rotated (in a sense the logical
operators track both).

If state |ψ〉 in the stabiliser space, with stabiliser group S = {Si} evolves
under unitary U , the new state U |ψ〉 is clearly stabilised by {USiU †}, giving
the updated stabiliser group. Under measurement things are slightly more com-
plicated. In this work we use only single qubit projective measurements, which
we write as two outcome measurements of the form Ai = P+

i − P−
i where P±

i

are the projectors onto the ±1 outcomes where i indicates the qubit measured.
As usual we denote ri as the binary representation of the measurement outcome
with ri = 0 when the outcome is +1 and ri = 1 when the outcome is −1. If it
is possible to find a set of generators such that only one anticommutes with the
measurement, call it Si, and the rest commute, the update simply replaces Si
with −1riAi. It is not hard to see that this group will stabilise the state after
measurement [30]. The projection from the measurement will not change the
eigenvalue relation of commuting operators, and the projected state is clearly a
+1 eigen state of the operator −1riAi. The trick is to find a suitable set of gener-
ators allowing for such an update (i.e. such that one and only one anticommutes
with the measurement) - which is where the gFlow comes in.

So how should we describe the evolution of our logical operators? We want
them to describe the information as it evolves. Talking in terms of pure states
(which suffices for our discussion) if |ψ〉 → |ψ̃〉, we want that our logical oper-
ators evolve L → L̃ so that their expectation is preserved, that is we demand
〈ψ|L|ψ〉 = 〈ψ̃|L̃|ψ̃〉. In this way, the new operators L̃ genuinely reflect the infor-
mation of the evolved space (see [27, 31, 32] for more details). Under a unitary
evolution |ψ〉 → U |ψ〉, we then have L → ULU †, clearly satisfying our require-
ment. For measurements, the trick will be to ensure that the logical operators
commute with the measurement operators, in which case, they remain unchanged
(measuring commuting observables cannot affect their expectation). The way of
doing this will be to multiply by stabilisers - which act as identity on the logical
space, so can be introduced without affecting the validity of the logical operators.

We will now see how we can track the evolution of the stabilisers and logical
operators through the computation. This will be done in three steps. Note that
our procedure does not exactly reflect the step by step process of the compu-
tation, as we do not consider corrections, rather it reflects the update as if all
measurements had the outcome +1 - which is indeed the role of the corrections in
the first place. In our discussion below we focus on measurements on the X − Y
plane, similar arguments simply apply to the other planes.

Step 1: The first step is to prepare the stabilisers in a form that will allow us to
simulate the measurements through the computation more easily. Physically it
corresponds to the unitary process of applying the control-Z operators generat-
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ing the open graph states (Equation 4), followed by simplifying the measurement
operator by applying first the appropriate local rotation. The stabilisers of the
open graph state are already given in Equation 3. For each input i an informa-
tionally complete set of operators is given by the Pauli operators Xi, Zi and
Yi = iZiXi. If we know Xi and Zi we can calculate Yi, hence we concentrate
only on these two, and denote them as LXi and LZi as we trace them through
the computation. The control-Z operators generating the open graph state is
unitary, thus after being attached to the graph the logical operators become
LXi = Xi ⊗j∈N(i) Zj and LZi = Zi (using the relation L → ULU † where U is
the control-Z operator, see also [6]).

Now we want to put these in a form ready to simulate measurements. The
idea is based on the fact that a measurement in the X−Y plane is equivalent to
first rotating around the Z axis, followed by measurement in the X basis (similar
relations are true for the other two planes used). We initialise all the stabilisers
and logical operators by doing this rotation, and consider Pauli X measurements
afterwards. The resulting state is sometimes called a rotated graph state. At the
same time we replace the individual stabilisers by products given by the gFlow.
We thus start with stabilisers

S =

〈⎧⎨⎩Si := ∏
j∈g(i)

K
θj
j

⎫⎬⎭
i∈OC

, {Gi}i ∈ O
〉
, (9)

where Kθi
i := eiθi/2ZiKie

−iθi/2Zi = cos θiXi⊗j∈N(i) Zj + i sin θiZiXi⊗j∈N(i) Zj
are the rotated graph state stabilisers and θi is the angle of the measurement for
qubit i. The set {Gi}i ∈ O are there simply to complete the set of generators
in the case that |I| < |O|, chosen such that [Gi, Xj] = 0, ∀j /∈ O. Such a
set can always be found as follows, take an arbitrary set of operators which
complete a generating set (note that the operators Si above are by definition
all independent and so can form part of a generating set, then there is always
some set of operators in S which complete this set of generators). To ensure
commutation relation, we go round by round, starting from R1, we go through
each vertex ν in the round, and check if it commutes with Xν- and if not we
multiply it by Si. These operators are still valid generators and they commute
with all the Xν measurements. At the same time, by applying the local unitary
Phase rotations, the logical operators are initialised to

LXi = eiθi/2ZiXie
−iθi/2Zi ⊗j∈N(i) Zj ,

= cos θiXi ⊗j∈N(i) Zj + i sin θiZiXi ⊗j∈N(i) Zj ,

LZi = Zi. (10)

Step 2: The second step is to take the logical operators to a form which is
convenient for measuring Xν on all the non-outputs - by making sure that they
commute with Xν ∀ν ∈ OC . This update does not actually reflect any physical
operation, rather it is just rewriting by multiplication of logical identities, i.e.
stabilisers. However it is this step where the cost of the simulation arises, both
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in time and space of simulation. Although this is not a physical update we will
trace through what would happen in the computation to see how our update
can be carried out to ensure consistency in maintaining commutation.

We first expand logical operators in terms of products of Pauli operators

Lα =
∑
i

aiM
α
i , (11)

where Mα
i is some product of Pauli operators, this is always possible since the

Pauli operators forms a complete operator basis. Then, starting in R1 with the
stabilisers (Equation 9) and logical operators (Equation 10), we proceed with
each round as follows, going from the first to the final round in sequence. In
round Rx we update each Pauli term Mα

i in each Lα as follows:

∀μ ∈ Rx : If [Mα
i , Xμ] = 0, Mα

i →Mα
i

If {Mα
i , Xμ} = 0, Mα

i → SμM
α
i

After this step is complete, by the properties of gFlow it is easy to see that
all the Lα will commute with all Xν , i.e. [Lα, Xν ] = 0 ∀α, ∀ν ∈ Oc.
Step 3: The third step reflects the measurement of the computation, however
with the unphysical condition that all outcomes are plus one. Although this does
not really reflect measurement, it reflects the computation, since corrections are
made so that this is always the final state. We first update the stabilisers and
then use these to update the logical operators so that they are trivial (identity)
everywhere except the outputs. The stabilisers are replaced with

S =
〈
{Xi}i∈OC

, {Gi}i ∈ O
〉
. (12)

One can picture this as measurements with fixed +1 outcome as follows. We
first notice that {Si, Xi} = 0 and [Si>j , Xj ] = 0, as can easily be seen from the
definition of gFlow. To update the stabiliser operators to arrive at Equation 12
from Equation 9, again we start in R1 and proceed with each round, going from
the first to the final round, and in each round Rx, we replace all the stabilisers
Si∈Rx withXi (corresponding to measuringXi and getting result +1). Because of
the condition {Si, Xi} = 0 and [Si>j , Xj ] = 0, this reflects exactly measurement
with the +1 outcomes, and finally we end up with the stabilisers (Equation 12).

The next part is to use these new stabilisers to update the logical operators
one final time. Again we do so term by term in the decomposition into Pauli
operators. If a term Mα

i has an Xμ for μ /∈ O, it is multiplied by Xμ (which
is now a stabiliser, hence a logical identity). The remaining logical operators
are trivial (i.e. identity) on everything except the outputs, and they encode the
unitary evolution of the computation Lα → U †LαU . This completes the classical
simulation.

The efficiency of this procedure is dominated by the size of the logical op-
erators (the number of terms occurring in the expansion). The stabilisers are
updated efficiently (nothing in the initialisation or the update scales larger than
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Fig. 5. Illustration of Step 2 the update procedure for the cluster state. The red
vertices represent the qubits where the logical operators LX1 and LZ1 are non-trivial.
a) is the point directly after X1 has been considered. b) is the point directly after
qubits in the first and second round have been measured. c) is the point after qubits
in the third round have been considered. See text for details. The number of qubits
touched in the update procedure is equal to the size of the forward cone FC , which
gives an upper bound to the size of the final logical operators, and hence the cost of
directly simulating the computation (see Theorem 2). The FC also acts as a light cone
for the information spread throughout the computation.

O(n) where n is the size of the pattern). Similarly the initialisation of the log-
ical operators is efficient, however, during each update step, each term in the
expansion into Pauli operators must be checked and possibly updated. When an
Sμ is added to the term in the second step, the size increases by 2|g(μ)|, where
|g(μ)| is the number of vertices in the correcting set. This is necessary for every
Pauli Z operator introduced by previous updates. Starting from R1 these Pauli
Z operators are introduced on all the neighbours of the correcting sets - that
is along the gFlow path and one graph edge further. Thus they follow along all
possible influencing paths. Some terms may cancel out, so the total number of
terms is less than equal to 2|FC(ν)|. From this we get the following theorem.

Theorem 2. An MBQC over an open graph state with gFlow can be simulated
classically in O(n exp(|FCmax |)) where FCmax is the maximum forward cone over
all the inputs. More explicitly the logical operators Lα associated to vertex μ can
be updated with O(exp(|FC(ν)|)).

As mentioned, the above simulation does not take into account correction
(since it is unnecessary in terms of simulating the computation). One may won-
der given the simulation above where would the corrections come in at all. The
answer is in the last step - when measureing Xi, and getting result ri, instead of
replacing by Xi, we should replace by −1riXi. This would add signs throughout
the logical operators which in general could not be undone by simply products
of Pauli operators. With the exception being the case when each logical opera-
tor only has one Mα in expansion (Equation 11), i.e. is just a product of Pauli
operators, which occurs when the angles θi = 0, π, i.e. measurements onto Pauli
operators only. Then the minus signs can be all flipped coherently by multiply-
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ing by stabilisers. This is another way of seeing that if only Pauli measurements
are made, all corrections can be made at the end. In such a case one can also
see that the size of the logical operators becomes small - only one term each -
so that this simulation itself is efficient. This simple observation will allow us
to derive the equivalent of Gottesman-Knill Theorem directly in MBQC. As all
the Clifford operates can be implemented in MBQC using only Pauli operators.
Having removed any dependency as described above will lead to an efficient
classical simulation of any MBQC pattern implementing Clifford operators and
Pauli measurements. This interplay between efficiency and the angles of mea-
surement is something not taken into account in the above theorem, and offers
more potential for better bounds. We leave this to future work for now.

To see the updating which truly corresponds to a computation, i.e. including
corrections, one can combine steps 2 and 3 to get rid of the Xis round by round
by applying the post measurement stabilisers −1riXi and in addition perform
the correction operation (given by the gFlow) to remove the −1ri . The effect
is that one can simply remove the measured Xis whilst tracing through the
computation.

For clarity we go through the example for the first few rounds on the 2D clus-
ter state. For input of qubit 1 before being attached to the graph it is described
entirely by two logical operators LX1 = X1 and LZ1 = Z1. After Step 1 initial-
isation (joining to the open graph state and ‘rotating’ each qubit according to
the measurement basis), these become

LX1 = eiθ1Z1X1Z3

LZ1 = Z1.

Here we have abbreviated the terms coming from the rotated basis into the
exponent eθ1Z1 = cos θ1I1 + i sin θ1Z1, and for ease of notation we remove the
tensor product symbol.

We next consider Step 2, starting with round R1 and operator X1 that an-
ticommutes with Z1s, hence for those terms in the Lα where this occurs we
are required to multiply by S1 = Kθ3

3 = Z1 ⊗ Z2 ⊗ eiθ3Z3X3 ⊗ Z4 ⊗ Z7. This
is equivalent to putting it up into the exponent, so that the logical operators
become

LX1 = X1e
iθ1Z2e

iθ3Z3X3Z4Z7Z3

LZ1 = Z2e
iθ3Z3X3Z4Z7.

In Step 3 the X1s are removed (since after measurement and correction the
X1 are a logical identity), and the logical operators are thus non-trivial on qubits
2, 3, 4, 7 after R1, as illustrated in Figure 5a). In the second round R2, Xν on
qubits 2, 3 and 4 are considered. We update the logical operators by considering
these one by one, starting with X2 (any order in the same round gives the same
final result). This anti commutes with Z2 - which comes from the application
of S1 = Kθ3

3 in the previous round. Indeed this is how the updates are affected
along all influencing paths. When the Z2 occurs we are forced to multiply the
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term by S2 = Kθ6
6 = Z2 ⊗ Z5 ⊗ eθ6Z6X6 ⊗ Z7 ⊗ Z11. This takes the logical

operators to

LX1 = eiθ1e
iθ3Z3X3Z4Z5e

θ6Z6X6Z11Z3

LZ1 = eiθ3Z3X3Z4Z5e
θ6Z6X6Z11.

Note that here, two Z7 operators have cancelled out - they came from two
occasions where qubit 7 was a neighbour of one of the correcting sets. In this
way, it is possible that some qubits in the set of influencing paths cancel out
- this happens if the number of influencing paths they sit in as gFlow paths is
even, and the number arriving from non-gFlow paths is also even (at this point
in our calculation the number of times it is on a gFlow path is zero, and it is in
2 influencing paths not as a gFlow).

After qubits X3 and X4 are also considered, we have to do the same trick
to get rid of the Z3 and Z4s, by multiplying the terms where they occur by
S3 = Kθ7

7 and S4 = Kθ8
8 respectively. Finally we end up with logical operators

LX1 = eiθ1e
iθ3Z6eiθ7Z7X7Z8Z12X3Z5e

θ6Z6X6Z7e
iθ8Z8X8Z9Z11Z13Z6e

iθ7Z7X7Z8Z12

LZ1 = X3e
iθ3Z6e

iθ7Z7X7Z8Z12Z5e
θ6Z6X6Z7e

iθ8Z8X8Z11Z12.

Again, in Step 3 we get rid of theX2,X3,X4s, hence after the measurements in
round R2 the logical operators are non-trivial only on qubits 6, 7, 8, 9, 11, 12, 13,
as indicated in Figure 5b). It is then clear how after the third round of measure-
ments we will be left with logical operators that sit on the highlighted qubits 10,
11, 12, 13 and 14, as indicated in Figure 5c).

For any graph and any measurement pattern with gFlow, each time a Pauli
Z operator is added, unless it is in the output set, we will have to multiply
that term by a stabiliser - which will add a splitting of two. During the update
procedure, Pauli Z operators are added along every influencing path. Sometimes
these will cancel out, depending on the graph, but sometimes not, so that this
gives an upper bound to the complexity for the direct update procedure which
is the content of Theorem 2.

We thus see an initial way to go from a gFlow to a classical simulation. How-
ever, for certain examples this bound can be very bad. We have already men-
tioned that this is the case where all of the measurement angles are zero or π/2
- i.e. measuring the Pauli operators - there is no splitting of the logical opera-
tors, and only one term is needed for each logical operator, hence this simulation
becomes efficient, which is not captured by Theorem 2 (where we effectively as-
sume the worst case for the angles). Another example is a computation across
along a 1D graph state, with one input, say on the left, and an output on the
right (see Fig. 3c). There the gFlow simply follows the line, thus the influenc-
ing volume is big, however, this is always a simple one qubit computation, and
indeed all computations on a 1D cluster state are easy to simulate classically
[33]. In Section 5 we will see how connections to entanglement allow us to make
tighter bounds on classical simulatability which will work well for this example
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and many others. Before we do that however, in the next section we will discuss
how the update above can be interpreted as information flow, in tern giving the
interpretation of the forward cone FC as a light cone for the information.

4 Flow of Information and FC as Information Light Cones

The gFlow gives a causal structure on top of a graph state induced by the
correction procedure, called the forward cone FC (Definition 7). In this section
we will also look at how the same cone can be understood as a forward cone
of information, and moreover a light cone (so that information cannot travel
beyond this cone).

The forward cone can be viewed as an information forward cone directly from
the simulation procedure described in the previous section, and the interpreta-
tion of the logical Heisenberg representation as showing us where information
sits (see for example [34]). Consider a density matrix of some input i

ρi =
1

2
(I1 + ηxXi + ηyYi + ηzZi) (13)

The state is totally described by the coefficients ηi. The logical Heisenberg rep-
resentation ensures that at any time the evolved state, denoted as ρ̃, which now
can be sitting over many systems, is described as

ρ̃ =
1

2

(
I1 + ηx ˜LXi + ηyL̃Yi + ηzL̃Zi

)
, (14)

where the L̃α are the updated logical operators of α corresponding to the evo-
lution.

The information is then preserved, but ‘spread’ over to different operators in
the following sense. To recover the information encoded on the original system i
(i.e. recover the ηi), we should measure the logical operators ˜LXi , L̃Yi and L̃Zi .
Thus the information can be said to have spread over the range of the logical
operators. From the simulation in the previous section, it is clear that the logical
operators, and hence the information of input qubit i spreads out over the causal
forward cone FC defined by the gFlow (see Figure 5).

One may then ask if this is all that is allowed, or could we understand the
information as having spread further than the influencing cone (after all, this
is not the only way one may simulate a computation)? The answer (at least
for patterns where we wish uniform determinism, i.e. that all measurements
on a Pauli equator are allowed) is no, in that the spread must be balanced by
consistency amongst all measurements, which is the function of the gFlow, which
defines the cone FC .

Let us first return back to Step 2 in the simulation above, which is where this
spread of information occurs in the simulation. The trick is simply multiplying
the logical operators by a logical identity (i.e. the stabilisers). This part however
is clearly not restricted to the cone. One could easily expand a logical operator
to cover practically all qubits in this way. The reason we do not allow this is
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because we want to do measurements, and we want to do them over all qubits
not outputs so that all logical operators are preserved (this is what we mean by
consistency). Say one did this for operator LXi , so that its extent was over many
qubits. Taking its expansion into products of Pauli operators (as in Equation 11),
one would have a sum of many terms, including Pauli Z and X operators on
any given qubit in its range. When measuring qubits, to ensure the survival of
the information, we asked that the logical operators be taken to a form which
commutes with the measurement - this was the role of Step 2 in the above. If
one did not have this, information may be lost. This can only be the case if in
each term MXi

j of the expansion of LXi , the part of MXi

j on vertex μ is the
same (say σμ) or identity for all terms.

One could have, for example, that this is indeed the case, i.e. for a particular
LXi , extended so that it touched many qubits, that over each such qubit μ all
the terms in the expansion of LXi were either the same Pauli σμ or identity. In
such a case, one could happily measure those qubits in the Pauli basis σμ, the
information would be preserved, and the logical operators could be calculated
(if we wanted to consider the information over the outputs we would then follow
Step 3 to leave them as identity everywhere else, though one would have po-
tentially different evolutions for different branches). In this way its final spread
may indeed be beyond the light cone given by gFlow. The problem with this
would be that we want to transfer the logical operators not just of one input i,
but of all the inputs. It is shown in [27] that to achieve this, in such a way that
every measured vertex one can choose amongst a set of measurements across one
of the planes, the only way to do it is via a gFlow. Hence, for an input η, not
only is the forward cone FC(η) also an information cone, but to transfer all the
information at the same time, it is a light cone for the information contained
η - that is, the information can not spread beyond it, and the computation be
consistent for all inputs.

From the perspective of information flow, theorem 2 says, unsurprisingly, that
the more information is spread through a computation, the more costly it is to
simulate. However, again we should be careful to note that the true cost of
simulation depends on the angles of the measurements, which is not captured by
the size of FC , hence not by theorem 2. As we saw, for angles 0, π, the simulation
is simple, however the spread of information is still large.

5 Bounds on Entanglement from gFlow

In this section we will show a connection between gFlow on the one hand, and
entanglement conditions for both the universality of a resource state and the clas-
sical simulatability of a computation on the given resource, on the other. More
precisely we will show that the Flow and gFlow can be used to upper bound
the entanglement of the graph state, in terms of the entanglement width [9] and
what we will call the structural entanglement (though not explicitly defined, it
can be understood from [8], see also [7]). Conditions of universal family of re-
source states, and for classical simulatability are known for both these measures,
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which can be translated to conditions about the gFlow through our bounds [9–
11]. Several known results can then be derived for both the measurement based
model and circuit based model (through the known maps between the two mod-
els [12, 17]). For example we reproduce the result by Josza stating that a circuit
which any wire are touched by at most logarithmic (in the size of the input)
many number of two qubit gates can be classically simulated efficiently [24].

Let us first define the entanglement measures we are interested in. The en-
tanglement width [9] of a pure state |ψ〉 is defined as

χwd(|ψ〉) := min
T

max
e
χbiT,e(|ψ〉), (15)

where χbiT,e(|ψ〉) is the the log-Schmidt rank across the bipartite cut defined by
T and e where T is a sub-cubic graph with n leaves and e is an edge of T .
Each leaf corresponds to a qubit of the state |ψ〉. The bipartite cut is defined by
removing edge e to give two separate trees. The leaves of one tree correspond to
one side of the cut, and the other tree the other side of the cut. It was shown
that if the entanglement of a family of resource state does not scale polynomially
with the size of its input space then, that family cannot be a universal [9, 11]
(in the case of QQ computations, note that this is not the same as asking for
universality in the CC case). It was also shown that any MBQC can be simulated
in O(npoly(2χwd)) [10].

Motivated by the proofs in [8], we define the structural entanglement as

Estruc(|ψ〉) := min
Order
1,...,n

max
cut k

A=1,...,k
B=k+1,...,n

χAB(|ψ〉), (16)

where the minimum is taken over all orderings (labelings) of the qubits 1, . . . , n,
and the max is taken over a cut defined for a given ordering by taking all qubits
1, . . . , k on partition A and the rest on partition B and χAB(|ψ〉) being the
log-Schmidt rank over cut AB. Although not explicitly stated in terms of this
measure, in [8] it is shown that any MBQC pattern can be simulated classically
in O(n2poly(2Estruc)).

It is easy to see that the tree in Figure 6 defines a set of cuts such that any
cut either splits the graph in two with all leaves below or equal to a value k on
the left, and above k on the right (as per the optimisation for Estruc), or else it
just identifies one leaf. This clearly implies that

Estruc ≥ χwd. (17)

We will now see how the Flow and gFlow can be used to upper bound Estruc,
and in turn χwd. We start by considering Flow, which is simpler to picture, but
the ideas easily extend to gFlow. The idea is that they both can be used to define
a natural order, which gives a simple bound to Estruc which comes from induced
disjoint input-output paths. Indeed, if an open graph state has Flow, following
the image of the Flow function, f , (Definition 4) from each of the inputs leads
to disjoint lines to the outputs, which cover all the non outputs [15, 17] (called
Flow wires).
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Fig. 6. This tree defines a set of cuts showing that Estruc ≥ χwd. Any cut either sits
in the same set of cuts as that optimised for Estruc - effectively choosing a k such that
all qubits of number less than or equal to k are in partition A and all higher qubits
are in partition B (cut a)), or else it singles out one qubit (cut b)), which can never
be the unique maximum.

Fig. 7. Flow defines a natural ordering from top left to right across each Flow wire
from top to bottom as shown. This is used to define cuts by a number k where partition
A consists of all qubits below qubit k in the ordering and partition B consists of all
qubits above k in the ordering. The entanglement across any cut is upper bounded by
the number of edges cut (in this case k = 10 and the entanglement is exact).

We consider first the case where |I| = |O|. The numbering goes as follows. We
start with an arbitrary input going along the image of the Flow function of that
vertex till we reach an output qubit. Next we choose another not selected input
qubit and carry on in this fashion, till we cover all the inputs, see Figure 7 and
Figure 8. Note that based on the definition of Flow, no input qubit could belong
to the image of the Flow function of another input qubits hence on each such
Flow wire there will sit only one input qubit and hence we have |I| such wires.
To calculate the entanglement we note the fact that the entanglement across a
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Fig. 8. In the worst case the number of edges cut by a line equals 1 + 2CF . This
implies a bound on the structural entanglement (see text).

cut C for a graph state can be bounded by the number of edges crossing the cut
EA,B ≤ C. This is clear since in preparation of the state each edge corresponds
to a control-Z operator, and C such operators can create at most C e-bits.

Definition 9. For an open graph with flow, we denote CF the maximum number
of edges crossing between Flow wires.

We easily see that a cut between two Flow wires gives entanglement at most
CF (see Figure 7). This can be at most doubled (plus one) by choosing a lower
number to cut at (thus potentially increasing the number of edges cut) (see
Figure 8). We thus have that Estruc ≤ 1 + 2CF .

To extend this to the case where |O| > |I| we must consider the worst case,
for which each extra qubit adds one unit of entanglement. In this general setting
we now call CF the maximum number of edges crossing between Flow wires,
when the output qubits not in a Flow wire are ignored along with their edges.
We also call Δ := |O| − |I|. We then have the following observation.

Theorem 3. A graph state with Flow has structural entanglement

Estruc ≤ 1 + 2CF +Δ. (18)

Thus any computation can be simulated in at least O(n2poly(22CF+Δ)).

We note that any computation which can be done with a number of outputs
greater than |I| can be done with |I| = |O| without changing the Flow or CF
by simply removing the extra Δ output qubits from the graph resource. Thus
Δ = 0 for most interesting cases. This is clear since the existence of Flow is
robust against losing the extra outputs, and this guarantees the computation.

This result can be extended to open graphs with gFlow by using gFlow to find
disjoint input-output lines as follows. As we saw earlier, it is clear that if an open
graph state has gFlow, then it is necessarily D-happy (from Theorem 1 and the
fact that gFlow implies unitary computation). This in turn means that any cut
which separates the input and the output goes through at least C ≥ |I| edges.
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Taking a result from graph theory, Menger’s theorem [35] says that this implies
there are at least n parallel paths going from inputs to outputs. Furthermore it
can be shown that there are parallel paths which sit along gFlow paths and can
be found systematically also [36]. This can be used to give a natural order to
the graph as for Flow, but with the possibility that non-output qubits do not
sit in the disjoint paths, and so should be added to the Δ term. Again the size
of Δ may be reduced or removed by considering equivalent smaller graphs, but
this is less well understood for gFlow.

This result covers examples not covered by the direct simulation from Section
3, for example the 1D cluster state. The statement of Theorem 3 is a very similar
sounding statement to Jozsa’s [24] which states that a quantum computation on
a circuit can be simulated in O(npoly(2D)) where D is the maximum number of
gates that touch or cross a circuit wire.

6 Conclusions

We have seen that gFlow can be used for two complementary approaches for
giving bounds on the efficiency of classical simulation for MBQC. In Theorem 2
we saw that classical simulation is possible with resources scaling as exponential
in the size of the largest causal future cone defined by the gFlow. On the other
hand in Theorem 3 gFlow can be used to upper bound the entanglement, and
hence give bounds on resources for classical simulation in terms of the number
of edges crossing gFlow wires (parallel wires from input to output induced by
gFlow). Simple and straightforward, but illuminating conditions for entangle-
ment of general resource states are described in Theorem 1. Furthermore the
causal future cone induced by gFlow is seen to be at the same time a light cone
for information spreading.

The results on classical simulation combine two of the main approaches for
bounding the cost of classical simulation for quantum computation - explicit
tracking of the computation using an efficient form (used for example in the
Gottesman Knill [30] theorem and related results (e.g. [37])) and bounds coming
from entanglement (used for simulating computation [7–11] as well as many body
physics (e.g. [38])). This offers the perspective of bridging these two approaches
via gFlow. A natural question is the interplay between the angle of measurement
and efficiency of simulation via the gFlow update procedure presented here. Set-
ting all angles to zero or π makes the simulation efficient (as per the Gottesman
Knill theorem), however for general angles it is not efficient(indeed Theorem 2
represents this worst case situation). The in between ground, combined with
bounds by entanglement may present new classes of computation admitting ef-
ficient simulation for example. Furthermore, we may gain more insight into how
efficiency of classical simulation is related to other features of computation illu-
minated by the study of gFlow.

It is also interesting in itself that from Flow and gFlow one can derive bounds
on the entanglement of a graph state. Since there exist efficient algorithms to
calculate the Flow and gFlow of graphs [15, 16], and given Flow and gFlow one
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can easily bound the entanglement, one may use this to upper bound the en-
tanglement of general graph states. This is both important for recognising good
resources (since the existence of Flow does not talk about universality, whereas
the entanglement gives bounds on this also [9, 11]), and more generally as entan-
glement represents important resource in other areas of quantum information.

The two approaches to classical simulateability can also be understood as
arising from two notions of ‘spreading’ of information. We have seen in Section
4 that the forward cone given by gFlow bounding the cost of classical simulation
can also be interpreted as a spread of information - so that the more spread
the information is, the more costly the simulation. The bounds arising from
entanglement ([7], [8] e.t.c) which lead to Theorem 3, can also be understood
as assigning a cost to the spread of information as follows. The entanglement
measure key to these results is a bipartite measure, the Schmidt measure of en-
tanglement, which counts the minimum number of product states (with respect
to a particular cut) needed to describe the state. This may be interpreted as
saying how ‘spread’ across product bases the state is. Indeed it is exactly the
rank of the reduced density matrix of one cut, so in a sense says the size of the
space in which it must be understood to sit (in this sense the ‘spread’ is over
the state space rather than precisely the parties). The trick of [7] and subsequent
work is to find an efficient form to describe the state and its updating through
a computation based on this minimum decomposition. Again, the smaller the
‘spread’ in this sense, the smaller the cost of this simulation. As we have also
seen in Sections 3 and 4, a big ‘spread’ of information is however not enough
to imply that a computation is difficult to simulate - MBQC with only Pauli
measurements is efficient to simulate, but the spread of information is large (in
both senses - the future cone is large, and the entanglement is large). To cap-
ture the difficulty in simulation, one must also include something about how this
‘spread’ of information is used. In the case of MBQC studied here, universality
(and presumably the difficulty in simulation) is given by the use of arbitrary
angles for the measurements, using the spread of information in the most uni-
versal way. This balance between spread of information through entanglement
and how it can be used also plays a key role in analogies between MBQC and
thermodynamics and in particular phase transitions [39, 40]. It is an exciting
prospect that these pictures may be unified from the perspective of gFlow or
similar notions.

Acknowledgements. The authors would like to thank Bobby Antonio, Simon
Perdrix and Einar Pius for useful discussions and feedback. We are particularly
grateful to Vincent Danos and Prakash Panangaden for many discussions on the
topics of this paperwhich gave rise tomany of the ideasmentionedhere directly and
indirectly. DM is funded by the FREQUENCY (ANR-09-BLAN-0410), HIPER-
COM (2011-CHRI-006) projects, and by the Ville de Paris Emergences program,
project CiQWii. EK is funded by UK Engineering and Physical Sciences Research
Council grant EP/E059600/1.



452 D. Markham and E. Kashefi

References

1. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Physical Review
Letters 86, 5188 (2001)

2. Anders, J., Browne, D.E.: Computational power of correlations. Physical Review
Letters 102, 050502 (2009)

3. Hobanand, M.J., Wallman, J.J, Browne, D.E.: Generalized bell-inequality experi-
ments and computation. Physical Review A 84(6), 062107 (2011)

4. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computing.
In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2009), p. 517 (2009)

5. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Physical
Review A 78, 042309 (2008)

6. Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal of
ACM 54, 8 (2007)

7. Vidal, G.: Efficient classical simulation of slightly entangled quantum computa-
tions. Physical Review Letters 91(14), 147902 (2003)

8. Yoran, N., Short, A.J.: Efficient classical simulation of the approximate quantum
fourier transform. Physical Review A 76(4), 042321 (2007)

9. Van den Nest, M., Miyake, A., Dür, W., Briegel, H.J.: Universal resources for
measurement-based quantum computation. Physical Review Letters 97(15), 150504
(2006)

10. Van den Nest, M., Dür, W., Vidal, G., Briegel, H.J.: Classical simulation versus uni-
versality in measurement-based quantum computation. Physical Review A 75(1),
012337 (2007)

11. Van den Nest, M., Dür, W., Miyake, A., Briegel, H.J.: Fundamentals of universality
in one-way quantum computation. New Journal of Physics 9(6), 204 (2007)

12. Danos, V., Kashefi, E.: Determinism in the one-way model. Physical Review A 74,
052310 (2006)

13. Browne, D., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism
in measurement-based quantum computation. New Journal of Physics 9, 250 (2007)

14. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys-
ical Review A 69(6), 062311 (2004)

15. de Beaudrap, N.: Finding flows in the one-way measurement model. Phys. Rev.
A 77, 022328, 8 (2006, 2008)

16. Mhalla, M., Perdrix, S.: Finding optimal flows efficiently. In: Aceto, L., Damg̊ard,
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Abstract. The Bloch representation of a qubit is a beautiful way to
picture quantum states. We prove that such a representation does not
exist in higher dimensions by uncovering some of the structure required
of a general Euclidean representation of quantum states.

1 Introduction

The Bloch representation [9] of a qubit offers a beautiful way to imagine quan-
tum states and the quantum channels that act on them. Its simplicity enables
the calculation of things like capacity and scope [7], as well as the development
of physically realizable protocols for achieving them [5], things that appear dif-
ficult if not impossible when formulated in the standard Kraus representation.
This raises the question of whether or not Bloch representations exist in higher
dimensions. In this paper, we show that they do not, at least not the kind one
would ideally hope for, such as a ball in Euclidean space.

On the other hand, analogues of the idea in higher dimensions [4] do exist,
but obtaining a clear and insightful characterization of which points in the unit
ball actually represent quantum states has thus far proven difficult. Our results
show that to some extent this difficulty is intrinsic to the problem of repre-
senting quantum states. It is hoped that the more abstract perspective taken
in this paper, one that emphasizes the dependence of convex structure on the
set of extreme points, will help serve as a guide in one day uncovering a higher
dimensional Euclidean representation of quantum states.

2 The Degree of an Extreme Point

Throughout, E and F will denote nonempty compact convex subsets of Rn, the
unit ball will be written Bn := {x ∈ Rn : |x| ≤ 1} and Ωn is the set of n × n
quantum states on an n dimensional complex Hilbert space. Note that Ωn can
be regarded as a compact convex subset of R2n2

.
A point e ∈ E is extreme when e = px+(1−p)y implies that e = x = y for all

x, y ∈ E and p ∈ (0, 1). The extreme points of a line segment/triangle/rectangle
are its vertices, while the extreme points of Ωn are the pure states (projections).
By the Minkowski-Caratheodory result, if E has dimension k, then each point
of E is a convex sum of at most k+1 extreme points. We now introduce an idea
that to the best of our knowledge is new:
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c© Springer International Publishing Switzerland 2014



Euclidean Representations of Quantum States 455

Definition 1. The degree d(x) of an element x ∈ E is the smallest number of
extreme points which can appear in a convex sum equal to x.

Notice that a convex linear bijection [[·]] : E → F must preserve degree:
d([[x]]) = d(x) for all x ∈ E. Here in turn is how to calculate the degree of a
quantum state:

Proposition 1. The degree of a quantum state is equal to the number of nonzero
eigenvalues that it possesses.

Proof. Given a quantum state ρ ∈ Ωn, we first write it in terms of its spectral
decomposition

ρ =

d∑
i=1

λi |i〉 〈i|

where the λi are its nonzero eigenvalues arranged in decreasing order and d ≤ n.
If it were possible to write ρ as a convex sum of less than d pure states, then we
would have

ρ =

k∑
i=1

pi |ψi〉 〈ψi|

where the pi are again arranged in decreasing order and k < d. By [8], (pi) is
majorized by (λi) i.e.

(∀j ∈ {1, . . . , k})
j∑
i=1

pi ≤
j∑
i=1

λi

But
∑k

i=1 pi = 1, which implies that λk+1 = 0, contradicting λk+1 > 0. �

To illustrate, at least n pure states are required to write the completely mixed
state I/n as a convex sum. This turns out to be an essential reason for the dif-
ficulty in obtaining ‘simple’ representations of quantum states in higher dimen-
sions.

3 Euclidean Representations of Quantum States

To help motivate what follows, let us first recall the Bloch representation of a
qubit, which uses the spin operators

I =

(
1 0
0 1

)
σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
to uniquely rewrite a quantum state ρ ∈ Ω2 as

ρ =
1

2
(I + rxσx + ryσy + rzσz)
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where r = (rx, ry, rz) ∈ B3. In addition, if one begins with any such r ∈ B3,
the expression above yields a quantum state, so that a bijection [[·]] : Ω2 → B3

results. This bijection has many important properties. Here are three of partic-
ular interest:

• [[I/2]] = 0

• [[I − ρ]] + [[ρ]] = 0 for all ρ ∈ Ω2,

• [[(1 − x)ρ+ xσ]] = (1− x)[[ρ]] + x[[σ]] for all ρ, σ ∈ Ωn and x ∈ [0, 1].

The second property implies that Ω2 has a convex linear involution whose only
fixed point is I/2, while the third simply says that the Bloch representation is
convex linear.

In general, when n is a power of two, a convex linear injection [[·]] : Ωn → Bm

exists [4] with [[I/n]] = 0. In addition, Ωn can admit many convex linear in-
volutions that fix I/n. However, for n > 2, such an injection [[·]] can never be
surjective and such an involution must have fixed points other than I/n:

Theorem 1. For the set of quantum states Ωn, the following are equivalent:

(i) There is a convex linear bijection [[·]] : Ωn → Bm for some m.

(ii) The dimension of the underlying state space is n = 2.

(iii) There is a convex linear involution ∗ : Ωn → Ωn whose only fixed point is
I/n.

Proof. (i) ≡ (ii). For (i) ⇒ (ii), the degree of any point in Bm never exceeds
two, which one sees by noting that each point in the ball is on a line that
travels from one unit vector to another, and that the unit vectors in Bm are the
extreme points. But a convex linear bijection must preserve degree, so we have
n = d(I/n) ≤ 2, which gives n = 2. For (i) ⇐ (ii), use the Bloch representation.

(ii) ⇒ (iii): Take m = 3 and use the map defined at the start of this section.
The desired involution takes ρ to I − ρ. In the Bloch representation, this is the
antipodal map a(r) = −r on B3.

(iii) ⇒ (ii): Let ρ be a pure state. The involution is a convex linear bijec-
tion, so it maps extreme points to extreme points, which implies ρ∗ is also ex-
treme. By the convex linearity and involutive property of ∗, (ρ+ ρ∗)/2 is a fixed
point of ∗. But then I/n = (ρ + ρ∗)/2, which implies that d(I/n) ≤ 2, proving
n = 2. �

Corollary 1. Let [[·]] : Ωn → Bm be a convex linear injection with [[I/n]] = 0. If
ρ is a pure state and x = [[ρ]], then −x ∈ Im[[·]] iff n = 2. Put another way, the
antipode of a pure Bloch vector is not a Bloch vector unless n = 2.

Proof. For (⇒), we again derive d(I/n) = 2; for (⇐), use ((I−ρ)+ρ)/2 = I/2. �

Notice that any Euclidean representation of n dimensional states must contain
points of degree i, for each 1 ≤ i ≤ n.
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Abstract. Modern computer systems are awash in a sea of asynchronous events.
There is an increasing need for a declarative language that can permit business
users to specify complex event-processing rules. Such rules should be able to
correlate different event streams, detect absence of events (negative information),
permit aggregations over sliding windows, specify dependent sliding windows
etc. For instance it should be possible to precisely state a rule such as “Every
seventh trading session that DowJones has risen consecutively, and IBM’s stock
is off 3% over its average in this period, evaluate IBM position”, “Declare the
sensor as faulty if no reading has been received for 500 ms”, etc. Further, the
language should be implementable efficiently in an event-driven fashion.

We propose the Timed (Default) Concurrent Constraint, TCC, programming
framework as a foundation for such complex event processing. The framework
(developed in the mid 90s) interprets computation as deduction in a fragment
of linear temporal logic. It permits the programmer to write rules that can re-
act instantaneously to incoming events and determine the “resumption” that will
respond to subsequent events. The framework is very powerful in that it permits
instantaneous pre-emption, and allows user-definable temporal operators (“multi-
form time”).

However, the TCC framework “forgets” information from one instant to the
next. We make two extensions. First, we extend the TCC model to carry the store
from previous time instants as “past” information in the current time instant. This
permits rules to be written with rich queries over the past. Second, we show that
many of the powerful properties of the agent language can be folded into the
query language by permitting agents and queries to be defined mutually recur-
sively, building on the testing interpretation of intuitionistic logic described in
RCC [21]. We show that this permits queries to move “back and forth” in the
past, e.g. “Order a review if the last time that IBM stock price dropped by 10%
in a day, there was more than 20% increase in trading volume for Oracle the
following day.”

We provide a formal semantics for TCC + Histories and establish some basic
properties.

Keywords: synchronous programming, concurrent constraint programming,
RCC, TCC, HCC, complex event processing.
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1 Introduction

1.1 Timed Concurrent Constraint Programming

From about 1985 to about 1995, the programming languages/embedded systems com-
munity worked out a very robust programming model for time-based systems, under the
framework of “synchronous languages”, such as Esterel, Signal and Lustre ([4,19,3,7]).
In particular, the authors developed the Timed (Default) Concurrent Constraint Pro-
gramming Framework, [30], based on the simple idea of extending “across time” the
ideas of concurrent constraint programming, using the Synchrony Hypothesis of Berry
[4].1 One thinks of a reactive system as lying inert, waiting for a stimulus from the out-
side world. On each stimulation, the system computes an instantaneous response, and
prepares itself for further interaction (by computing a resumption). The system is am-
nesiac in that its past state is flushed, only the resumption is kept. Thus the system has
an internal notion of time that corresponds to its periodic interaction with the outside
world.

This notion of time can be made explicit through certain temporal combinators
within the language used to program these agents. TCC is built on just six orthogo-
nal basic combinators:2

(Agents) A,B ::= c | if G then A | if c else A | A and A | some V in A | hence A
| Z | mu Z in A

(Goals) G ::= c | G and G

Above, c ranges over constraints; X,V over first-order variables used in constraints; Z
over Agent variables; A,B ranges over Agent formulas, and G over Goal formulas.

The TCC framework is parametric on an underlying notion of constraint system C
[30]: essentially such a system specifies pieces of partial information, called tokens
or constraints, and an entailment relation which specifies which tokens follow from
which other sets of tokens. The (tell) c agent adds the constraint c to a shared store
of constraints. The (positive ask) agent if c then A reduces to A if the store is strong
enough to entail c. The (negative ask) agent if c else A reduces to A only if the final
store (at this time instant) will not be strong enough to entail c (this circularity – the
final store is defined in terms of the final store – is characteristic of defaults [28]). The
(parallel composition) agent A and B behaves as both A and B. The agent some X in A

introduces a new local variable X in A. The agent hence A is the only agent with temporal
behavior – it reduces to A at every time instant after the current instant. The agent mu Z

A (taken from the modal mu calculus) behaves like A with occurrences of Z replaced by
mu Z A.

This language is powerful enough to be the basis for a rich algebra of temporal
control constructs. For instance, one can define:

1 In the rest of this paper we will use the acronym TCC to stand for Timed Default Concurrent
Constraint Programming.

2 We introduce recursion explicitly through mu; in fact recursion is definable in TCC.



460 V. Saraswat, V. Gupta, and R. Jagadeesan

1. always A (run A at every time step);
2. do A watching c (run A until such time instant as the condition c is true, at which

point abort the remainder of A);
3. next A (run A only at the next time step);
4. time A on c (run A but on a clock derived from the basic clock by only passing

through those ticks at which the condition c is true).

The last combinator in particular is very powerful – it realizes the idea of “multi-
form” time, the notion that the basic clock on which an agent is defined may itself be
defined by another agent [30].

TCC (and its continuous time extension, HCC, [17]) have been used in modeling
complex electro-mechanical systems (photo copiers [18], robots [1]) and biological
systems [6]. They have a very well-developed theory – semantic foundations, reasoning
framework, implementation techniques, compilation into finite state automata, abstract
interpretation, etc. (see Related Works section below).

Unlike the other systems mentioned above (Esterel, and other reactive languages),
TCC, and its parent framework, Concurrent Constraint Programming (CCP) are declar-
ative and rule-based. Computation can be interpreted as deduction corresponding to
certain “agent” formulas in linear time temporal logic, defined over a certain notion of
defaults [30]. Defaults play a crucial role in permitting agents to detect the absence of
information. This is critical for faithfully modeling such computational phenomena as
time-outs and strong pre-emption. This logical reading extends the understanding of
CCP [35] as computation in intuitionistic logic [32].

1.2 Event Processing

Over the last decade a new and interesting application area has emerged, event pro-
cessing, [23]. The basic computational problem in event processing is to implement a
powerful “sense, analyze, respond” system. The system should be capable of receiving
multiple (usually discrete) time-varying signals, correlating them in potentially complex
ways involving detecting the absence of events, maintaining sliding windows, comput-
ing statistics over sliding windows (averages, max values, etc), and comparing these
values. If the desired temporal pattern is detected, then appropriate programmer speci-
fied action (e.g. issuing an alert) needs to be taken.

For an event processing language to be useful, it should be capable of expressing
complex patterns of temporal interactions. For example, it should be possible to support
rules of the form:

1. Every tenth time the price drops within an hour emit volatility warning.
2. Every seventh trading session that DowJones rises consecutively, and IBM stock has

fallen over this interval, evaluate IBM position.
3. Declare the sensor is faulty if no reading has been received in the past 10s.
4. Declare the room is too cold if the average temperature over the last 100s is below a

threshold.
5. Ignore an over global limit notification on an account if an over global limit notifi-

cation was sent on this account in the past two days.
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6. If the merchant has been tenured less than 90 days, and the sum of the transactions
in the last 7 days is much higher than the 7 day average for the last 90 days, then
investigate a 7 day hit and run possibility.

We also desire a language in which programs can be understood declaratively as
“rules”. Ultimately the language needs to mesh well with an OPS-like rule language,
such as ILOG JRules and ILOG Business Rules. We desire that the programmer should
be able to reason rigorously (if informally) about such rules. We require that the rules
should be compilable efficiently. For example queries involving sliding window aver-
ages should be implemented in an incremental forward-driven fashion (with a rolling
average being maintained).

1.3 TCC for Event Processing

Given the many valuable properties of TCC, it is interesting to consider it as a basis for
complex event processing. Incoming events can be represented as atoms to be added
to the constraint store. As events arrive, they are buffered while the system is active
(executing events it received at the previous tick). Once the system quiesces, and the
buffer is not empty, the system is advanced to the next time unit, and all buffered events
added.

A fundamental limitation of TCC for complex event processing, however, is that
TCC computations do not maintain history. All rules must be written in a “forward
looking” fashion, responding to the current events received, and whatever state has been
explicitly stored from past interactions. For instance, to express the rule “Trigger an
alert whenever it is the case that the stock price of company A falls over 10%, while
that of company B has risen over the past 7 days”, the programmer must write code that
maintains in the current store the value of the proposition “the stock of company B has
risen over the past 7 days”. Now on receipt of a notification that the stock price of A
has fallen, a check can be made for the value of the proposition and an alert emitted if
necessary.

But this way of writing rules is awkward. In essence, the programmer is being made
to work like a compiler – figure out how to write the rule in such a way that it is always
event-driven and forward looking. In many cases it is very natural instead to simply
write a query over the past that “looks back” and checks if the desired condition is true,
on demand.

Our basic move, therefore, is to augment TCC with history. When moving from time
step t to t + 1, we propose to retain the constraints computed at t, and time-stamp them
with t. Thus the store will contain not just the current constraint, but also, separately
and equally, past constraints, each tagged with the time at which they were computed.

A simple way to accomodate this view in TCC is simply to work over the constraint
system H(C) built from C as follows. The tokens in H(C) are of the form timei c for
some i, where c is a token of C. A multiset Γ of such tokens entails timek d only if Γk

entails d (in C), where Γk is the set of all constraints c such that timek c ∈ Γ. Given
k, by abuse of notation we will say that Γ entails prev c at k if Γk−1 entails c (in C).
Using H(C), the user can write ask agents that query the past. Tell agents must still
be prevented from modifying the past by ensuring that they can only assert constraints
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about the instantaneous state. The operational semantics is now modified to carry past
constraints automatically in the constraint store, and to tag tell constraints with the
current time step.

Example 1 (Querying the past in TCC(H(C))). The rule:

always if ((prev price(IBM)) > price(IBM)) then signalIBMDrop

will trigger if there is a drop in price of IBM stock over successive time instants.

Unfortunately, this simple technique is not powerful enough. What if we wanted to
trigger a rule if the current price is less than half the price at any point in the past
when MSFT stock was above a certain threshold? In other words, it is natural to require
recursive computations in our queries, capable of examining the past at arbitrary depth.

[21] in fact develops such a rich framework for CCP, called RCC. RCC is based
on the idea that a judgement A0, . . . ,An−1 . G can be regarded as asking whether the
system of concurrently interacting agents Ai (i < n) satisfy the query or goal G. Ap-
pendix A provides more details.) Queries are internalized in the agent language through
the production A::= if G then A.

Queries are not restricted to primitive constraints c. Recursive queries are permitted.
Universal queries, G::= all V in G, are permitted, where V is a first-order variable.
Such a query can be thought of as succeeding only when the query G succeeds, where V

is a brand-new variable that does not occur in the agents. Hypothetical queries are also
permitted: G::= if A then G can be thought of as temporarily augmenting the system
currently being tested with A and asking if the augmented system satisfies G. If so, the
guard is satisfied and execution continues, with the temporary augmentation discarded.
Hypothetical queries permit “what if” reasoning and allow for a compact representation
of very powerful idioms. To implement this, the underlying infrastructure must support
the notion of copying the entire concurrent assembly of agents.

[21] shows that the computational interpretation is sound and complete with respect
to the obvious logical interpretation of the queries.

TCC with deep guards. We now consider how to apply these ideas to TCC. Clearly,
we need to augment the power of guards, G. To add recursion across time, we introduce
G ::= hitherto G (analogously to A ::= hence A). The query hitherto G is intended
to be true if G is true at every point in the past (excluding the current one). We also
introduce recursive queries, G ::= mu X G, and require that X be guarded in G (occur
inside a hitherto). Similarly, we introduce universal queries G ::= all V in G.

We could introduce hypothetical queries,G::= if A then G. However, we can do
something richer. Note that A is not permitted to operate in the “past”, i.e. it is not pos-
sible for an agent to spawn an agent to “change the past”. (Concretely, A::= hitherto

A is not allowed. This is fundamental to the basic idea that computation always moves
ahead in time.) However, within the scope of hypothetical execution, it does make sense
to add agents to the past – these agents are free to participate in “what if” reasoning, ex-
ploring what might have been. Therefore we introduce a new category of nested agents,
B, which is the same as A except that it permits B::= hitherto B, and add G::= if B

then G.
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With these constructs it is possible for a query to “move back in time” arbitrarily
deeply, spawn agents in the past, and ask queries of the modified system. Still, the nested
agents and queries are asymmetric: nested agents can move back in time (hitherto B)
as well as forward (hence B), but queries can only move backwards. Logically, it makes
sense, then, to permit queries to also move forward in time; we add G::= hence G. This
permits us to express a query that checks whether the day after the last time IBM stock
fell 10% it was the case that MSFT stock rose 10%. The natural formulation of this
query would involve moving back in time and then forward.

Table 1 summarizes the language being considered, which we name “TCC, with
history”. The basic picture of computation supported by this language is as follows:
The system interacts with incoming events in a synchronous fashion. The rate at which
events arrive is controlled by the environment and not by the system. Each interaction
marks the progression of the system down a time-line. At each instant, the state of the
system carries the entire state of past interactions. This is accessible to be queried in
a very rich way through a query language which permits computations to move back-
wards and forwards in the past, and also spawn hypothetical queries. However, querying
cannot change the actual past, only read it.

This paper takes the first step in studying this language. Section 2 discusses how
some interesting idioms can be expressed in this language. For reasons of space we
omit standard extensions of the query language with “bag of” operators that permit
the collection of some statistic over all answers to a query (these are very important
in practice). Section 3 formalizes the informal reasoning presented here. We conclude
with an outline of the work that lies ahead.

Table 1. TCC, with history

(Agents) A ::= c | if G then A | if c else A | A and A | some V in A | hence A
| X | mu X in A

(Goals) G ::= c | if B then G | G and G | G or G | all V inG | hence G
| hitherto G | X | mu X in G

(Nested Agents) B ::= c | if G then B | if c else B | B and B | some V in B
| hence B | hitherto B | X | mu X in B

Agents A are those B’s which do not have any occurrence of the hitherto combinator.

Contributions. The contributions of this paper may be summarized as follows:

– We motivate the use of TCC for complex temporal event processing. TCC is capable
of handling the absence of information.

– We extend TCC with a way to capture the past history of the system. This permits a
natural declarative style of querying the past.

– We motivate the introduction of recursive queries in TCC. This permits recursive
queries that can reach arbitrarily deeply into the past.
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– Motivated by [21] and the testing interpretation of intuitionistic logic, we further
introduce “hypothetical” queries if B then G that ask if the current system aug-
mented with the agent B can answer the query G. Unlike TCC, we also permit such
nested agents to move backwards in time, allowing speculative augmentation of the
past. Together, these two capabilities permit B to move backwards and forwards in
time, while confined to the past.

– We provide a formal operational semantics for the language, based on an interpre-
tation of programs as formulas in linear time temporal logic, and computation as
deduction.

– We establish that the semantics of this language is conservative over TCC. That
is, the behaviors of a program in this language that is also expressible in TCC are
exactly the same as in TCC.

1.4 Related Work

Several authors have explored the properties of TCC in the last two decades, extending
it in various directions. [37] shows that the synchronous languages Lustre and Argos
can be embedded in TCC. Expressiveness is further discussed in [24]: different variants
that express recursiveness in different ways are discussed and related. It is shown that
equivalence of programs with replication (or parameterless recursive procedures) is de-
cidable. [26,25] propose an extension to TCC (ntcc) that can handle asynchronous com-
munication, and nondeterministic behavior, by providing a guarded-choice operator and
an unbounded but finite delay operator. A denotational semantics, and a proof system
for temporal properties are presented. Another approach to reasoning about TCC pro-
grams is provided in [11,10]. More decidability results for TCC and ntcc are presented
in [39]: strongest post-condition equivalence for “locally independent” ntcc programs is
shown to be decidable. This language is capable of specifying certain kinds of infinite-
state reactive systems. [5] discusses a variant capable of dealing with “soft” constraints
and preferences; the intended application area is a collection of agents negotiating over
quality of service. Abstract diagnosis for a variant of TCC is considered in [9].

In terms of implementation, [31] describes an initial implementation in Java, for
reactive computation. This is currently being extended to an implementation of the lan-
guage discussed in this paper, on top of X10 [29,8].

1.5 Our Research with Prakash

This paper is offered as a contribution to Prakash Panangaden’s Festschrift. During
1990, Prakash reached out to Vijay, having heard of Concurrent Constraint Program-
ming, and apparently being intrigued by the idea of computing (in parallel) with partial
information. This led to a visit to Vijay at Xerox PARC, leading to an invitation to join
the work that eventually was published in POPL91 [33]. Prakash was particularly in-
trigued by the development of constraint systems through cylindric algebras and later
pursued this work [27]. During the 90s the authors further developed CCP with discrete
time (TCC) and continuous time (HCC), and started exploring the integration of prob-
abilistic information into CCP [16]. This led to another collaboration between Prakash
and Radha and Vineet [14]. Thus it is fair to say that parallel computing with partial
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information – in its many forms – has been a shared interest between the authors and
Prakash.

Radha Jagadeesan was a Ph.D student of Prakash at Cornell from 1987-91. He claims
that he continues to remain a student of Prakash to this day, and holds Prakash respon-
sible for all inadequacies in Radha’s own view towards logic and semantics! In addi-
tion to constraint programming, Radha has also worked with Prakash and Vineet on
probabilistic processes, focussing primarily on metric based approximate reasoning for
discrete [13,12] and real time [15] probablistic processes.

2 Programming in TCC with Histories

We now consider how several idioms of practical interest can be expressed in this lan-
guage.

2.1 A Concrete TCC Language, V

To fix intuitions, we work on top of a constraint system which permits (sorted) function
and predicate symbols, with equality (“=”). Amongst the sorts available are Boolean and
Int. Sorts are closed under products and function space, i.e. if S1, S2 are sorts, then so
are S1 × S2 and S1 => S2.

(Terms) s,t ::= X | f(t1,. . . ,tn)
(Constraints) A,B ::= s=t | p(t1,. . . , tn) | c,c

The equality predicate is interpreted as a congruence relation (it is symmetric, re-
flexive and transitive, and equal terms can be substituted for each other in all contexts).
A set of constraints c1,..., cn entails p(t1,..., tk) if and only if it entails s1=t1,

..., sk=tk (for some terms s1,. . . , sk) and for some i, ci is p(s1,..., sk).
For convenience, we will also permit linear arithmetic constraints, and arithmetic

inequality, <, <=.
We will also find it convenient to permit prev(t) as a term, when t is a term. A

constraint store can establish prev(u)=v at time t if it can establish u=v at time t−1, and
v is rigid, i.e. does not change value with time. The only rigid terms are the constants –
we assume they denote the same value at every time instant.

We shall adopt the convention of specifying named agents through agent clauses of
the form a -: A, and named goals through goal clauses of the form g :- G, where a

and g are atomic formulas. The predicate names for agents, goals and primitive con-
straints are understood as being drawn from disjoint spaces.

2.2 Programming in V

Example 2 (past G, next G). We define the query past(X=Y), intended to be true at
query time i precisely if X=Y is true at query time i− 1.

past(X=Y) :- all U in if (hitherto hitherto U=true) then hitherto (U=true or X=Y)
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Here is how we understand it. To establish the goal past(X=Y) in a configuration Γ at
query time i, we are permitted to assume U=true (at all times) in [0, i− 2], for a brand-
new variable U. In turn, we must establish either U=true or X=Y in [0, i− 1]. Clearly, the
assumption establishes the desired goal in [0, i− 2]. Hence we are left with time i− 1.
No agent in Γ knows about U. Therefore the only way past(X=Y) can be established is
if at the previous time instant X=Y can be established.

The past predicate can be defined in a similar way for other constraints of interest, e.g.:

past(X>Y) :- all U in if (hitherto hitherto U=true) then hitherto (U=true or X>Y)

The code next(X=Y) is the dual:

next(X=Y) :- all U in if (hence hence U=true) then hence (U=true or X=Y)

Example 3 (once G). We express the query once G that succeeds only if G can be estab-
lished at some point in the past. We illustrate for G of the form X=Y.

once(X=Y) :- X=Y or past(once(X=Y)).

This goal can be established in a configuration at i only if G can be established at i,
or, recursively, the goal can be established at i− 1.

If arithmetic is available, and recursion with parameters, one can program within t

do G:

Example 4 (within t do G). We require G to be established within t time units in the
past:

within T do X=Y :- X=Y or (T > 0 and past(within T-1 do X=Y)).

We show that the query language has enough power to internalize else.

Example 5 (not(X=Y)). We express the query not(X=Y). This query succeeds only if X=Y
cannot be established:

not(X=Y) :- all U in if (if X=Y else U=false) then U=false

This goal can be established in a configuration Γ only if Γ, if X=Y else U=false

can establish U=false. But this can happen only if Γ can evolve in such a way that X=Y
cannot be established (per the semantics of the TCC if/else).

Example 6 (last X then G). We would like to express that G is true at the last time
instant at which X was true (assuming there is a time instant at which X is true):

last X=Y then U=V :- prev last1 X=Y then U=V.
last1 X=Y then U=V :- (X=Y and U=V) or (not(X=Y) and prev(last1 X=Y then U=V).

Intuitively, at the last time instant, a check is made for X=Y. If it is true, then U=V

must be true, else the goal will fail. If it is not known to be true, then the goal succeeds
provided that the same goal can be established at the previous time instant.

We turn now to using these general constructions to show how a complex event query
can be formulated.
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Example 7. An example of the use of this goal is the query that returns the previous
price of a stock. We shall imagine that if in a time instant an event arrives that specifies
the price P of a stock S, then the constraint price(P)=S is added to the store. Note that
many stock price events may arrive at the same time instant – we assume that all are for
different stocks. It is not necessary that each time instant contains a constraint about the
price of a given stock S. In this case, we may wish to determine the previous prices of
the stock S, which is the price of the stock at the first instant before the current one at
which a price event was received.

prevPriceOfStock(S)=P :-
(prev(price(S))>0 and P=prev(price(S))) or
(not(prev(price(S))>0) and prev(prevPriceOfStock(S)=P)).

Now one can use this query to determine whether the price has dropped. The query
checks that there is a price event at the current time instant, and the price it specifies for
the stock S is less than the previously known price for S.

priceDropped(S) :- prevPriceOfStock(S) > price(S).

Such a query can now be used to time an agent. The agent

time nextˆ10 emitVolatilityWarning on priceDropped(S)

will emit a volatility warning at the tenth time instant at which the price has dropped.
Using standard TCC idioms, this agent can be packaged up thus:

every hour
do time nextˆ10 emitVolatilityWarning

on priceDropped(s)
watching hour.

to precisely capture the rule “Every tenth time the price drops within an hour, emit a
volatility warning”.

The above provides a flavor of the richness of this system.

3 Semantic Model

3.1 Transition Relations

The central problem we address is the temporal evolution of (mutually dependent)
agents and guards.

We add a new formula B ::= timei B, to keep track of formulas that are intended to
hold at a point in time in the past. We abuse notation slightly by permitting time0 B
and treating it indistinguishably from B. Below, Γ,Δ,Π range over (possibly empty)
multisets of B formulas. For a multiset of formulas Δ = B0, . . . ,Bn−1 we let timei Δ
stand for timei B0, . . . ,time

i Bn−1. Similary for hence Δ and hitherto Δ.
We define three transition relations. All of them are indexed with the current time

instant j and the query time instant i (with i≤ j). The main relation of interest is Γ b

i, j
G

(read: “Γ proves G at (past) query time i (with quiescent store b) when the current time
is j (i≤ j)”). We need to carry j in the relation because in order to prove a goal of the
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form hence G we only need to consider time steps upto j. Note that Γ will, in general,
contain formulas active at different time instants k ≤ j (i.e. Γ will contain formulas of
the form timek B). G however, is never explicitly timed, since at query time i we care
only about queries holding at time i.

To define this relation, we need two auxiliary relations that define evolution within
time instants in the past (Γ −→i, j

b Γ′), and across time instants in the past (Γ �i, j Γ′).
Note that these auxiliary relations may work with hypothetical pasts, since they may
reflect the presence of assumptions B made by the goal G being solved at j.

We let σi(Γ) stand for the set of all formulas c s.t. timei c ∈ Γ, i.e. the subset of
constraints known to be in effect at time i.

The Provability Relation for Goals. The logical rules are straightforward, and corre-
spond to RHS rules for the appropriate logical connective, in a sequent-style presenta-
tion. Rule 1 uses σi to pick out the constraints in effect at query time i from the current
configuration. Rule 2 ensures that in order to prove a goal of the form if B then G at
query time i, the assumption B is added at time i to the current configuration.

σi(Γ) . c

Γ b

i, j
c

Γ b

i, j
G[µX G/X ]

Γ b

i, j
µX G

(1)

Γ b

i, j
G0 Γ b

i, j
G1

Γ b

i, j
G0 and G1

Γ,timei B b

i, j
G

Γ b

i, j
if B then G

(2)

Γ b

i, j
G0

Γ b

i, j
G0 or G1

Γ b

i, j
G1

Γ b

i, j
G0 or G1

(3)

Γ b

i, j
G[t/V ]

Γ b

i, j
some V in G

Γ b

i, j
G (V not free in Γ)

Γ b

i, j
all V inG

(4)

Note that b is not used in these rules; we will see later that it is used when specifying
how the LHS evolves within a time instant. In Rule 4 t is some term.

We consider now the temporal rules. These rules have a (finite) set of assumptions,
indicated by the for all quantifier. A goal hitherto G can be proved at query time i if
it can be proven at every time in [0, i). A goal hence G can be proved at query time i if
it can be proven at every time in (i, j].

Γ b0

0, j
G

Γ b

1, j
hitherto G

Γ b0

i−2, j
hitherto G Γ b1

i−1, j
G

Γ b

i, j
hitherto G

(5)

Γ b

i+1, j
G Γ b

i+1, j
hence G

Γ b

i, j
hence G

Γ b0

j, j
G

Γ b

j−1, j
hence G

(6)

Now, since we permit B’s to occur on the LHS, and these could evolve, we must also
have the following rules. In Rule 7, the configuration is partitioned into three groups
of formulas – Γi− which are all the formulas timek B with k < i, Γi+ which are all
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the formulas timek B with k ≥ i, and hitherto Δ. The rule captures the notion that to
prove a formula G at time i one must “go back” to time 0 in order to account for the
effects of any hitherto B formulas in Γ. In this traversal into the past, hitherto B
agents are carried “backwards” (exactly as hence B agents are carried forward in TCC,
see Rule 15), together with “past” state. The recursion is stopped by Rule 8.

Γi−,timei−1 Δ,hitherto Δ �i−1, j Γ′ Γ′,Γi+ −→i, j
b Γ′′ Γ′′ b

i, j
G i> 0

Γi−,Γi+,hitherto Δ b

i, j
G

(7)

Γ−→0, j
b Γ′ Γ′ b

0, j
G

Γ b

0, j
G

(8)

The Evolution Relation. The rules for −→ (evolution within a time instant) are as in
[30], changed in an appropriate way to consider the more general notion of execution at
possibly past time points. (The special case of TCC execution is obtained by considering
the relation Γ −→ j, j

b Γ′ and restricting ask agents to check primitive constraints.) At
query time i, an agent timei if G then B can be reduced to timei B provided that the
goal G can be proved from the current configuration. To reduce an timei if a else B
agent, we use the quiescent information b (associated with query time i), as usual for
Default CC.

Γ b

i, j
G

Γ,timei if G then B−→i, j
b Γ,timei B

(9)

b �. a

Γ,timei if a else B−→i, j
b Γ,timei B

(10)

Γ,timei B0 and B1 −→i, j
b Γ,timei B0,time

i B1
(11)

(Y not free in B,Γ,Π)

Γ,timei some V in B−→i, j
b Γ,timei B[Y/V ]

(12)

Γ,timei µX B−→i, j
b Γ,timei B[µX B/X ]

(13)

Note that there is no rule for hitherto B – it does not contribute to instantaneous evo-
lution, or to the step relation. It is of use in the proves relation when moving backwards
in time.

The rules for evolution across time instances are as follows. They differ from the
rules for TCC only in that the final constraint at the previous time step is explicitly
carried forward into the configuration at the next time step (timei b) with the appropri-
ate time index (i) to distinguish it from the constraints that will be generated at other
time steps. The first rule is used to advance time in a query computation, the second to
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advance time for the overall (top-level) computation. Below, let Π consist of formulas
of the form timei c for some i, and Γ′ does not contain such formulas.

Γ )−→
i, j
b Γ′,Π,hence Δ Γ′,Π,hence Δ �−→i, j

b σi(Π) = b i< j
Γ �i+1, j Π,timei+1 Δ,hence Δ (14)

Γ )−→
i, j
b Γ′,Π,hence Δ Γ′,Π,hence Δ �−→i, j

b σi(Π) = b i = j
Γ � j+1, j+1 Π,time j+1 Δ,hence Δ

(15)

Definition 1 (Execution). We say that a sequence of agents Γ0,Γ1 . . . ,Γn, . . . is an ex-
ecution if for all i> 0, Γi �i+1,i+1 Γi+1.

Let Γ be a multiset of agents. Then Γ � i is the set of all formulas B such that
timei B ∈ Γ.

Proposition 1 (TCC+history does not change the past.). Let Γ0,Γ1 . . . ,Γn, . . . be an
execution. Then for every j > 0 and m,n > j it is the case that Γm � j and Γn � j are
multisets of constraints that are equivalent.

The following proposition relies on the fact that a multiset of nested TCC+history
agents cannot have sub-formulas of the form if G then B (unless G is a constraint),
if B then G, hence G, hitherto G, hitherto B. Therefore in any proof of the

judgement Γ b

j, j
c only judgements of the form Γ′ b

j, j
c′ are generated. No “travel” in

time is possible.

Proposition 2. Suppose Γ is a multiset of nested TCC+history agents such that Γ � j

is a multiset of TCC agents. Then Γ b

j, j
c iff Γ � j .b c, where .b represents the TCC

entailment relation with b the final resting point.

Theorem 1. TCC + History is conservative over TCC.

4 Conclusion

This paper represents the first step in the study of TCC, augmented with history and a
rich notion of queries. A number of areas of work open up.

Expressiveness. Does this language realize the intuition that queries can be multi-form
in time, just as agents can be multi-form in time? Is it semantically meaningful to con-
sider deep negative guards?

Denotational semantics. The basic semantic intuition is that this language permits rich
querying of the past, with a deep interplay between agents and guards. Since the past is
not modified it should be possible to adapt the denotational semantics of [30] (based on
prefix-closed sets of traces) to this setting.
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Finitary implementations. For many uses of the language, it would be valuable to bound
the amount of past information that needs to be carried in the state. Does this language
admit of finite state compilability (a la TCC)? If not, what restrictions need to be placed
to achieve finite state compilability?
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A Background

The basic idea of TCC may be summarized as follows:

TCC = CCP + Synchrony hypothesis

CCP, concurrent constraint programming, is a simple view of parallel computation
that arises from multiple interacting agents sharing a common store of constraints. Con-
straints are expressions (such as X >= Y + Z) over a finite set of free variables. Each
constraint is associated with a solution set, a set of mappings from variables to values
(called valuations) that makes the constraint “true”. e.g. the set of valuations that makes
X >= Y + Z true is the set of valuations T s.t. T(X), T(Y) and T(Z) are numbers satisfying
T(X) >= T(Y) + T(Z).

Two fundamental operations on constraints are used in CCP – tell c (add c to the
current store), and ask c (check if c is entailed by the current store). Note that addition
is conjunctive – the solution set of c,d is the intersection of the solution sets of c and
d. Say that c entails d if the solution set of c is contained in that of d (that is, if v is a
solution for c, then it is a solution for d) and disentails d if the solution sets of c and d are
disjoint. The operation ask c succeeds if the store entails c, fails if the store disentails
c, and suspends otherwise.

In CCP, the programmer specifies a set of agents over shared variables that interact
with each other by telling and asking constraints on the shared variables. The funda-
mental property of CCP is that computations are determinate – the result is the same,
regardless of the order in which agents are executed. Furthermore, programs have a
declarative interpretation, they can be read as formulas in logic and have the property
that if a program P logically entails a constraint c, then execution of P will result in a
store that entails c.

CCP is a rich and powerful framework for (asynchronous) concurrent computation.
TCC arises from CCP by “extending” CCP across time. We add the new control con-
struct next: if A is an agent, then so is next A. The intuitive idea is that computation
progresses in a series of steps. In each step, some input is received from the environ-
ment (an “event”), and added to the store. The program is then run to quiescence. This
will yield a store of constraints, this provides the “instantaneous response”. In addition
it will yield a set of next A1, . . . , next An agents. (Note some of these agents can be
simple constraints.) These are precisely the agents that are used to respond to the next
event, at the next time instant.
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Notice that this view is concerned with a logical notion of time – time is just a
sequence of ticks arriving from the environment (with additional input). There is no
intrinsic association of this sequence of ticks with “real” time, e.g. msecs. This is the
powerful insight that underlies the notion of multiform time. This notion says that the
temporal constructs in the language can all be used for any user-defined notion of time,
not just the “built-in” notion of time. In TCC, this is captured by the time A on B com-
binator. For the agent A, the agent B defines the notion of time – only those time ticks
that “pass” the test B are passed on to A. Thus A is executed with a “programmer sup-
plied” clock. Of course, these constructs can be nested, thus time time time A on B1

on B2 will supply to A only those time ticks that pass B1 and B2.
This flexibility of the basic formalism permits a large number of combinators to be

definable by the user. Combinators such as the following are definable in A and B:

do A watching c: Execute A, across time instants but abort it as soon as there is a
time instant which satisfies the constraint c.

suspend c activate d A: Execute A, across time instants, suspending it as soon as
a time instant is reached in which c is true. Then activate it as soon as a time instant
is reached in which d is true.

A.1 RCC– Combining Agent Execution and Testing

The key intuition was the recognition that CCP corresponds to “computation on the
left”, or forward chaining, and (definite clause) logic programming corresponds to back-
ward chaining. This is illustrated by the following characterization of CCP agents as
formulas in intuitionistic logic:

(Agents) A ::= c | G⇒ A | E | some V in A
(Goals) G ::= c | all G and G
(Clauses) P ::= E ⇒ D | all P and P

Computation is initiated on the presentation of an initial agent, A, and progresses in
the “forward” direction. One thinks of a sequent A1,An → as a multiset of interacting
agents operating on a store of constraints (the subset of the Ai that are constraints). If
the store is powerful enough to entail the condition G of an agent G ⇒ A, then G ⇒
A can be replaced by A. This corresponds to the application of the left hand rule for
implication. Recursive calls E are replaced by the body D of their defining clauses E ⇒
D. Computation terminates when no more implication can be discharged.

This is logically sound. Clearly if we start computing with an agent A and terminate
in a state with the subset of constraints σ then we have A . σ, where . represents
provability in Intuitionistic Logic (IL), augmented with axioms from the underlying
constraint system, C . Is this logically complete? Indeed – [32] shows that if there is a
constraint d that is entailed by A, then in fact it is entailed by σ the constraint store of
the final configuration obtained by executing A as a CCP agent. Hence CCP operational
semantics is sound and complete with respect to entailment of constraints.

Note that this language corresponds to “flat” guards. In the early development of con-
current logic programming languages [36,34,38] a lot of attention was paid to “deep”
guards. How can deep guards be integrated into CCP?
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One idea is to look at definite clause logic programming. The logical picture here is
well known.

(Goals) G ::= c | all G and G | all G or G | H | some V in G
(Clauses) P ::= H ⇒ G | all P and P

Computation corresponds to posing a query, or a goal, against a database of clauses of
the form H ⇒ G [20]. A configuration consists of a collection of G formulas. In each
step, a conjunction is replaced by its components, an existential some V in G by G,
with V a “new” variable, and an atom H by the body G of a clause H ⇒ G from the pro-
gram. A disjunct is non-deterministically replaced by one of its disjuncts. Computation
terminates when the configuration contains only constraints. Of particular interest are
terminal configurations in which the constraints are jointly satisfiable, these correspond
to answers for the original query.

Is there a reasonable way to combine the two? In fact, it is possible to do this, and
a lot more. It is possible to give an intuitive operational semantics for the following
system of agents and goals.

(Agents) D ::= c | G⇒ D | E | E ⇒ D | all D and D | some V in D | all V in D
(Goals) G ::= c | A⇒ G | H | G⇒ H | all G and G | all G or G | some V in G

| all V in G
(Clauses) P ::= H ⇒ G | E ⇒ D | all P and P

Note that richness of interplay between agents and goals – agents can be defined in
terms of goals, and goals can be defined in terms of agents.

What is the underlying programming intuition? We think of D as representing a con-
current, interacting system of agents (interacting through a shared constraint store). We
think of G as a test of such a system. We think of a sequent D . G as establishing that
the system D passes the test G. With this interpretation, we can think of an agent G⇒ D
as saying: if the current system of agents can pass the test G, then reduce to D. Con-
versely, one thinks of the goal D⇒ G as a “what if” test: Suppose the existing system
is augmented with the agent D. Does it now pass the test G? Similarly, all V in G is a
generic goal: it asks the question “Does the system pass the test G” for some completely
unknown variable V (hence for all possible values of V).

We showed further that this semantics is sound and complete with respect to the inter-
pretation of agents and goals as formulas in Intuitionistic Logic (IL). The key insight is
to “segregate” the atomic formulas that occur in agents (E) and in goals (H) – these must
come from disjoint vocabularies. Therefore the “left hand side” (LHS) and the “right
hand side” (RHS) of a sequent can no longer communicate through the application of
identity rules (Γ,A . A). Rather the replacement constraint inference rule must be used.
Computation can be performed in potentially arbitrary combinations of LHS steps and
RHS steps, corresponding to evolution of the concurrent agent and simplifcation of the
test, respectively.

Subsequent work by Liang and Miller [22] established a connection between [21]
and the notion of focussing proofs developed by Andreoli [2]. Indeed, the notion of
combining forward and backward chaining in the very flexible way described above
has seen significant recent work.
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Abstract. A mathematical theory of probabilistic and quantum event
structures is developed. It has some claim to providing fundamental mod-
els of distributed probabilistic and quantum systems, and has formed the
basis for distributed probabilistic and quantum games.

1 Introduction

Prakash Panangaden has been drawn to conceptual problems in computer sci-
ence, logic and computation, how to structure and understand probabilistic com-
putation, and the boundaries of computer science with physics. I hope here to
be dealing with subjects close to Prakash’s heart.

Event structures have emerged as a fundamental model of distributed com-
putation, a model in which the traditional view of a history as a sequence of
events is replaced by a view of a history as a partial order of events. This ar-
ticle studies the mathematics needed to take event structures into the realm of
distributed probabilistic and distributed quantum computation. The lack of a
sufficiently general definition of probabilistic event structure became apparent in
work on concurrent games and strategies, in extending concurrent strategies to
probabilistic strategies—see the companion work [1]. The description of a prob-
abilistic event structure here meets that need and extends previous definitions,
summarised in [2].

A probabilistic event structure essentially comprises an event structure to-
gether with a continuous valuation on the Scott open sets of its domain of con-
figurations. The continuous valuation assigns a probability to each open set.
However open sets are several levels removed from the events of an event struc-
ture, so a more workable definition is obtained by considering the probabilities of
basic open sets, generated by single finite configurations; for each finite configu-
ration this specifies the probability of a result which extends the finite configura-
tion. Such valuations on configuration determine the continuous valuations from
which they arise, and can be characterised through the device of “drop func-
tions.” The characterisation yields a workable definition of probabilistic event
structure.

In a quantum event structure events are interpreted as unitary or projection
operators in a Hilbert space. Unitary operators are associated with events of
preparation, such as a change of coordinates with which to make a measure-
ment or a time period over which the system is allowed to evolve undisturbed.
Projection operators are associated with events of elementary tests. Causally
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independent (i.e. concurrent) events are interpreted by commuting operators. A
configuration of the event structure is thought of as a distributed quantum ex-
periment; it describes which events of preparation and tests to perform and their
(partial) order of dependency. Once given an initial state as a density operator, a
quantum event structure assigns an intrinsic weight to each finite configuration.
This does not make the whole event structure into a probabilistic event structure,
but it does do so locally: under each configuration there is a probabilistic event
structure giving the probabilities over the outcomes of the experiment the con-
figuration describes. Quantum theory is often described as a contextual theory,
in that it is only sensible to consider outcomes w.r.t. a specified measurement
context [3]. In a quantum event structure configurations assume the role of mea-
surement contexts; w.r.t. a measurement context expressed as a configuration,
the sub-configurations constitute the possible outcomes.

2 Event Structures

An event structure comprises (E,≤,Con), consisting of a set E, of events which
are partially ordered by ≤, the causal dependency relation, and a nonempty con-
sistency relation Con consisting of finite subsets of E, which satisfy

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆X ∈ Con �⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X �⇒ X ∪ {e} ∈ Con.

The configurations C∞(E) of an event structure E consist of those subsets x ⊆ E
which are

(Consistent) ∀X ⊆ x. X is finite⇒X ∈ Con x ∈ Con, and
(Down-closed) ∀e, e′. e′ ≤ e ∈ x �⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations, C(E).
We say an event structure is elementary when the consistency relation con-

sists of all finite subsets of events. Two events e, e′ which are both consistent and
incomparable w.r.t. causal dependency in an event structure are regarded as con-
current, written ecoe′. We shall occasionally say events are in conflict when they
are they are not consistent. For X ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′},
the down-closure of X ; note if X ∈ Con, then [X] ∈ Con so is a configuration.

Notation 1. Let E be an event structure. We use x−⊂y to mean y covers x

in C∞(E), i.e. x ⊊ y in C∞(E) with nothing in between, and x
e
−⊂ y to mean

x∪{e} = y for x, y ∈ C∞(E) and event e ∉ x. We use x
e
−⊂ , expressing that event

e is enabled at configuration x, when x
e
−⊂ y for some y. We write {xi ∣ i ∈ I}↑

to indicate that a subset of configurations is compatible, i.e. bounded above by
a configuration.
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3 Probabilistic Event Structures

A probabilistic event structure comprises an event structure (E,≤,Con) with a
continuous valuation on its Scott open sets of configurations. Recall a continuous
valuation is a function w from the Scott-open subsets of C∞(E) to [0,1] which
is

(normalized) w(C∞(E)) = 1; (strict) w(∅) = 0;
(monotone) U ⊆ V �⇒ w(U) ≤ w(V );
(modular) w(U ∪ V ) +w(U ∩ V ) = w(U) +w(V ); and
(continuous) w(⋃i∈I Ui) = supi∈Iw(Ui) for directed unions ⋃i∈I Ui.

The value w(U) of a continuous valuation w specifies the probability of a result
in open set U . Continuous valuations traditionally play the role of elements in
probabilistic powerdomains [4]. Continuous valuations are determined by their
restrictions to basic open sets

x̂ =def {y ∈ C
∞(E) ∣ x ⊆ y} ,

for x a finite configuration. A characterisation of such restrictions yields an equiv-
alent, more workable definition of probabilistic event structure, that we present
in Section 3.2. As preparation we first develop some machinery for assigning
values to “general intervals.”

3.1 General Intervals and Drop Functions

Throughout this section assume E is an event structure and v ∶ C(E) → R.
Extend C(E) to a lattice C(E)⊺ by adjoining an extra top element ⊺. Write its
order as x ⊑ y and its finite join operations as x ∨ y and ⋁i∈I xi. Extend v to
v⊺ ∶ C(E)⊺ → R by taking v⊺(⊺) = 0.

We are concerned with drops in value across general intervals [y;x1,⋯, xn],
where y, x1,⋯, xn ∈ C(E)

⊺ with y ⊑ x1,⋯, xn in C(E)⊺. The interval is thought of
as specifying the set of configurations ŷ ∖(x̂1 ∪⋯∪ x̂n), viz. those configurations
above or equal to y and not above or equal to any x1,⋯, xn. As such the intervals
form a basis of the Lawson topology on C∞(E)⊺.

Define the drop functions d
(n)
v [y;x1,⋯, xn] ∈ R for y, x1,⋯, xn ∈ C(E)

⊺ with
y ⊑ x1,⋯, xn in C(E)⊺, by induction, taking

d(0)v [y; ] =def v
⊺(y) and

d(n)v [y;x1,⋯, xn] =def d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn] ,

for n > 0.
The following proposition shows how drop functions assign to general intervals

[y;x1,⋯, xn] the value of being in ŷ minus the value of being in x̂1 ∪ ⋯ ∪ x̂n,
and that the latter is calculated using the inclusion-exclusion principle for sets;
notice that an overlap ⋂i∈I x̂i equals ⋁̂i∈I xi, where ∅ ≠ I ⊆ {1,⋯, n}.



Probabilistic and Quantum Event Structures 479

Proposition 1. Let n ∈ ω. For y, x1,⋯, xn ∈ C(E)
⊺ with y ⊑ x1,⋯, xn,

d(n)v [y;x1,⋯, xn] = v(y) − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) .

For y, x1,⋯, xn ∈ C(E) with y ⊆ x1,⋯, xn,

d(n)v [y;x1,⋯, xn] = v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi) ,

where the index I ranges over sets satisfying ∅ ≠ I ⊆ {1,⋯, n} s.t. {xi ∣ i ∈ I}↑.

Proof. We prove the first statement by induction on n. For the basis, when n = 0,

d
(n)
v [y; ] = v(y), as required. For the induction step, with n > 0, we reason

d(n)v [y;x1,⋯, xn] =def d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

= v(y) − ∑
∅≠I⊆{1,⋯,n−1}

(−1)∣I ∣+1v(⋁
i∈I

xi)

− v(xn) + ∑
∅≠J⊆{1,⋯,n−1}

(−1)∣I ∣+1v(⋁
j∈J

xi ∨ xn) ,

making use of the induction hypothesis. Consider subsets K for which ∅ ≠ K ⊆
{1,⋯, n}. Either n ∉ K , in which case ∅ ≠ K ⊆ {1,⋯, n − 1}, or n ∈ K, in
which case K = {n} or J =def K ∖ {n} satisfies ∅ ≠ J ⊆ {1,⋯, n − 1}. From this
observation, the sum above amounts to

v(y) − ∑
∅≠K⊆{1,⋯,n}

(−1)∣K∣+1v( ⋁
k∈K

xk) ,

as required to maintain the induction hypothesis.
The second expression of the proposition is got by discarding all terms

v(⋁i∈I xi) for which ⋁i∈I xi = ⊺ which leaves the sum unaffected as they con-
tribute 0. ◻

Corollary 1. Let n ∈ ω and y, x1,⋯, xn ∈ C(E)
⊺ with y ⊑ x1,⋯, xn. For ρ an

n-permutation,

d(n)v [y;xρ(1),⋯, xρ(n)] = d
(n)
v [y;x1,⋯, xn] .

Proof. As by Proposition 1, the value of d
(n)
v [y;x1,⋯, xn] is insensitive to per-

mutations of its arguments. ◻

In the following results we lay out the fundamental properties of drop functions
for later use.

Proposition 2. Assume n ≥ 1 and y, x1,⋯, xn ∈ C(E)
⊺ with y ⊑ x1,⋯, xn. If

y = xi for some i with 1 ≤ i ≤ n then d
(n)
v [y;x1,⋯, xn] = 0.
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Proof. By Corollary 1, it suffices to show d
(n)
v [y;x1,⋯, xn] = 0 when y = xn. In

this case,

d(n)v [y;x1,⋯, xn] =d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

=d(n−1)v [y;x1,⋯, xn−1] − d
(n−1)
v [y;x1,⋯, xn−1]

= 0 .

◻

Corollary 2. Assume n ≥ 1 and y, x1,⋯, xn ∈ C(E)
⊺ with y ⊑ x1,⋯, xn. If

xi ⊑ xj for distinct i, j with 1 ≤ i, j ≤ n then

d(n)v [y;x1,⋯, xn] = d
(n−1)
v [y;x1,⋯, xj−1, xj+1,⋯, xn] .

Proof. By Corollary 1, it suffices to show

d(n)v [y;x1,⋯, xn−1, xn] = d
(n−1)
v [y;x1,⋯, xn−1]

when xn−1 ⊑ xn. Then,

d(n)v [y;x1,⋯, xn] =d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

=d(n−1)v [y;x1,⋯, xn−1] − d
(n−1)
v [xn;x1 ∨ xn,⋯, xn−2, xn]

=d(n−1)v [y;x1,⋯, xn−1] − 0 ,

by Proposition 2. ◻

Proposition 3. Assume n ∈ ω and y, x1,⋯, xn ∈ C(E)
⊺ with y ⊑ x1,⋯, xn.

Then, d
(n)
v [y;x1,⋯, xn] = 0 if y = ⊺ and d

(n)
v [y;x1,⋯, xn] = d

(n−1)
v [y;x1,⋯, xi−1,

xi+1,⋯, xn] if xi = ⊺ with 1 ≤ i ≤ n.

Proof. When n = 0, d
(0)
v [⊺; ] = v

⊺(⊺) = 0. When n ≥ 1, d
(n)
v [⊺;x1,⋯, xn] = 0 by

Proposition 2 as e.g. xn = ⊺. For the remaining statement, w.l.og. we may assume
i = n and that xn = ⊺, yielding

d(n)v [y;x1,⋯,⊺] =

d(n−1)v [y;x1,⋯, xn−1] − d
(n−1)
v [⊺;x1 ∨ ⊺,⋯, xn−1 ∨ ⊺] = d

(n−1)
v [y;x1,⋯, xn−1] .

◻

It will be important that drops across general intervals can be reduced to
sums of drops across intervals based on coverings, as explained in the next two
results.

Lemma 1. Let n ≥ 1. Let y, x1,⋯, xn, x
′

n ∈ C(E)
⊺ with y ⊑ x1,⋯, xn. Assume

xn ⊑ x
′

n. Then,

d(n)v [y;x1,⋯, x
′

n] = d
(n)
v [y;x1,⋯, xn] + d

(n)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn, x

′

n] .
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Proof. By definition,

the r.h.s. = d(n−1)v [y;x1,⋯, xn−1] − d
(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn]

+ d(n−1)v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn] − d
(n−1)
v [x′n;x1 ∨ x

′
n,⋯, xn−1 ∨ x

′
n]

= d(n−1)v [y;x1,⋯, xn−1] − d
(n−1)
v [x′n;x1 ∨ x

′
n,⋯, xn−1 ∨ x

′
n]

= d(n)v [y;x1,⋯, xn−1, x
′
n]

= the l.h.s..

◻

Lemma 2. Let y ⊆ x1,⋯, xn in C(E). Then, d
(n)
v [y;x1,⋯, xn] is expressible as

a sum of terms d
(k)
v [u;w1,⋯,wk] where y ⊆ u−⊂wi in C(E) and wi ⊆ x1 ∪⋯∪xn,

for all i with 1 ≤ i ≤ k. (The set x1 ∪⋯∪ xn need not be in C(E).)

Proof. Define the weight of a term d
(n)
v [y;x1,⋯, xn], where y ⊆ x1,⋯, xn in C(E),

to be the product ∣x1 ∖ y∣ × ⋯ × ∣xn ∖ y∣.
Assume y ⊆ x1,⋯, x

′

n inC(E). By Proposition 2, if y equals x′n or some xi, then

d
(n)
v [y;x1,⋯, x

′

n] = 0, so may be deleted as a contribution to a sum. Otherwise,

if y ⊊ xn ⊊ x
′

n, by Lemma 1 we can rewrite d
(n)
v [y;x1,⋯, x

′

n] to the sum

d(n)v [y;x1,⋯, xn] + d
(n)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn, x

′

n] ,

where we further observe

∣xn ∖ y∣ < ∣x
′

n ∖ y∣ , ∣x′n ∖ xn∣ < ∣x
′

n ∖ y∣

and
∣(xi ∪ xn) ∖ xn∣ ≤ ∣xi ∖ y∣ ,

whenever xi ∨xn ≠ ⊺. Using Proposition 3 we may tidy away any mentions of ⊺.

This reduces d
(n)
v [y;x1,⋯, x

′

n] to the sum of at most two terms, each of lesser
weight. For notational simplicity we have concentrated on the nth argument in

d
(n)
v [y;x1,⋯, x

′

n], but by Corollary 1 an analogous reduction is possible w.r.t. any
argument.

Repeated use of the reduction, rewrites d
(n)
v [y;x1,⋯, xn] to a sum of terms of

the form
d(k)v [u;w1,⋯,wk]

where k ≤ n and u−⊂w1,⋯,wk ⊆ x1 ∪ ⋯ ∪ xn. This justifies the claims of the
lemma. ◻

3.2 Probabilistic Event Structures

A probabilistic event structure is an event structure associated with a [0,1]-
valuation on configurations, normalised to 1 at the emptyset, such that no general
interval has a negative drop.



482 G. Winskel

Definition 1. Let E be an event structure. A configuration-valuation on E is
function v ∶ C(E) → [0,1] such that v(∅) = 1 and which satisfies the drop
condition

d(n)v [y;x1,⋯, xn] ≥ 0

for all n ≥ 1 and y, x1,⋯, xn ∈ C(E) with y ⊆ x1,⋯, xn. A probabilistic event
structure comprises an event structure E together with a configuration-valuation
v ∶ C(E) → [0,1].1

Proposition 4. Let E be an event structure. Let v ∶ C(E) → [0,1]. Then, v is

a configuration-valuation iff d
(n)
v [y;x1,⋯, xn] ≥ 0 for all n ∈ ω and y, x1,⋯, xn ∈

C(E)⊺ with y ⊑ x1,⋯, xn. If v is a configuration-valuation, then

y ⊑ x �⇒ v⊺(y) ≥ v⊺(x) ,

for all x, y ∈ C(E)⊺.

Proof. By Proposition 3 and as d
(1)
v [y;x] = v

⊺(y) − v⊺(x). ◻

By Lemma 2, in showing we have a probabilistic event structure it suffices
to verify the “drop condition” only for special general intervals [y;x1,⋯, xn] in
which the configurations x1,⋯, xn cover y.

Proposition 5. Let E be an event structure. Let v ∶ C(E) → [0,1]. v is a
configuration-valuation iff v(∅) = 1 and

d(n)v [y;x1,⋯, xn] ≥ 0

for all n ≥ 1 and y−⊂x1,⋯, xn in C(E).

4 The Characterisation

Our goal is to prove that probabilistic event structures correspond to event struc-
tures with a continuous valuation. It is clear that a continuous valuation w on the
Scott-open subsets of an event structure E gives rise to a configuration-valuation
v on E: take v(x) =def w(x̂), for x ∈ C(E). We will show that this construction
has an inverse, that a configuration-valuation determines a continuous valuation.

For this we need a combinatorial lemma:2

1 Samy Abbes has pointed out that the “drop condition” appears in early work of the
Russian mathematician V.A.Rohlin [5](as relation (6) of Section 3, p.7), and Klaus
Keimel that functions satisfying the “drop condition” are called “totally convex” or
“completely monotone” in the literature [6]. The rediscovery of the “drop condition”
and its reuse in the context of event structures was motivated by Lemma 2, tying it
to occurrences of events.

2 The proof of the combinatorial lemma, due to the author, appears with acknowl-
edgement as Lemma 6.App.1 in [7], the PhD thesis of my former student Daniele
Varacca, whom I thank, both for the collaboration and the latex.
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Lemma 3. For all finite sets I, J ,

∑
∅≠K⊆I×J

π1(K)=I,π2(K)=J

(−1)∣K∣ = (−1)∣I ∣+∣J ∣−1 .

Proof. W.l.o.g. we can take I = {1, . . . , n} and J = {1, . . . ,m}. Also observe that
a subset K ⊆ I × J such that π1(K) = I, π2(K) = J is in fact a surjective and
total relation between the two sets, pictured below.

n

���
���

���
���

�

��
��

��
��

m

��������

Let
tn,m =def ∑

∅≠K⊆I×J

π1(K)=I,π2(K)=J

(−1)∣K ∣ ;

ton,m =def ∣{∅ ≠K ⊆ I × J ∣ ∣K ∣ odd, π1(K) = I, π2(K) = J}∣ ;

ten,m ∶= ∣{∅ ≠K ⊆ I × J ∣ ∣K ∣ even, π1(K) = I, π2(K) = J}∣ .

Clearly tn,m = t
e
n,m − t

o
n,m. We want to prove that tn,m = (−1)

n+m+1. We do
this by induction on n. It is easy to check that this is true for n = 1. In this case,
if m is even then te1,m = 1 and to1,m = 0, so that te1,m − t

o
1,m = (−1)

1+m+1. Similarly
if m is odd.

Now assume that tn,p = (−1)
n+p+1, for every p, and compute tn+1,m. To evalu-

ate tn+1,m we count all surjective and total relations K between I and J together
with their“sign.” Consider the pairs in K of the form (n + 1, h) for h ∈ J . The
result of removing them is a a total surjective relation between {1, . . . , n} and a
subset JK of {1, . . . ,m}.

n

����
����

����
����

��� ●

��
��
��
��

m s

�������������

Consider first the case where JK = {1, . . . ,m}. Consider the contribution of
such K’s to tn+1,m. There are (m

s
) ways of choosing s pairs of the form (n+1, h).

For every such choice there are tn,m (signed) relations. Adding the pairs (n+1, h)
possibly modifies the sign of such relations. In all the contribution amounts to

∑
1≤s≤m

(
m

s
)(−1)stn,m .

Suppose now that JK is a proper subset of {1, . . . ,m} leaving out r elements.

n

���
���

���
���

� ●

���
���

���
���

�

s r

�������������
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SinceK is surjective, all such elements hmust be in a pair of the form (n+1, h).
Moreover there can be s pairs of the form (n + 1, h′) with h′ ∈ JK . What is the
contribution of such K’s to tn,m? There are (m

r
) ways of choosing the elements

that are left out. For every such choice and for every s such that 0 ≤ s ≤ m − r
there are (m−r

s
) ways of choosing the h′ ∈ JK . And for every such choice there

are tn,m−r (signed) relations. Adding the pairs (n+ 1, h) and (n+ 1, h′) possibly
modifies the sign of such relations. In all, for every r such that 1 ≤ r ≤m−1, the
contribution amounts to

(
m

r
) ∑
1≤s≤m−r

(
m

s
)(−1)s+rtn,m−n .

The (signed) sum of all these contribution will give us tn+1,m. Now we use the
induction hypothesis and we write (−1)n+p+1 for tn,p.

Thus,

tn+1,m = ∑
1≤s≤m

(
m

s
)(−1)stn,m

+ ∑
1≤r≤m−1

(
m

r
) ∑
0≤s≤m−r

(
m − r

s
)(−1)s+rtn,m−r

= ∑
1≤s≤m

(
m

s
)(−1)s+n+m+1

+ ∑
1≤r≤m−1

(
m

r
) ∑
0≤s≤m−r

(
m − r

s
)(−1)s+n+m+1

= (−1)n+m+1 ( ∑
1≤s≤m

(
m

s
)(−1)s

+ ∑
1≤r≤m−1

(
m

r
) ∑
0≤s≤m−r

(
m − r

s
)(−1)s) .

By the binomial formula, for 1 ≤ r ≤m − 1 we have

0 = (1 − 1)m−r = ∑
0≤s≤m−r

(
m − r

s
)(−1)s .

So we are left with

tn+1,m = (−1)
n+m+1 ( ∑

1≤s≤m

(
m

s
)(−1)s)

= (−1)n+m+1 ( ∑
0≤s≤m

(
m

s
)(−1)s − (

m

0
)(−1)0)

= (−1)n+m+1 (0 − 1)

= (−1)n+1+m+1 ,

as required. ◻
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Theorem 1. A configuration-valuation v on an event structure E extends to a
unique continuous valuation wv on the open sets of C∞(E), so that wv(x̂) = v(x),
for all x ∈ C(E).

Conversely, a continuous valuation w on the open sets of C∞(E) restricts to
a configuration-valuation vw on E, assigning vw(x) = w(x̂), for all x ∈ C(E).

Proof. The proof is inspired by the proofs in the appendix of [2] and the thesis [7].
First, a continuous valuation w on the open sets of C∞(E) restricts to a

configuration-valuation v defined as v(x) =def w(x̂) for x ∈ C(E). Note that any
extension of a configuration-valuation to a continuous valuation is bound to be
unique by continuity.

To show the converse we first define a function w from the basic open sets
Bs =def {x̂1 ∪⋯ ∪ x̂n ∣ x1,⋯, xn ∈ C(E)} to [0,1] and show that it is normalised,
strict, monotone and modular. Define

w(x̂1 ∪⋯ ∪ x̂n) =def 1 − d(n)v [∅;x1,⋯, xn]

= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi)

—this can be shown to be well-defined using Corollaries 1 and 2.
Clearly, w is normalised in the sense that w(C∞(E)) = w(∅̂) = 1 and strict in

that w(∅) = 1 − v(∅) = 0.
To see that it is monotone, first observe that

w(x̂1 ∪⋯∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n+1)

as

w(x̂1 ∪⋯∪ x̂n+1) −w(x̂1 ∪⋯∪ x̂n) =d
(n)
v [∅;x1,⋯, xn] − d

(n+1)
v [∅;x1,⋯, xn+1]

=d(n)v [xn+1;x1 ∨ xn+1,⋯, xn ∨ xn+1] ≥ 0 .

By a simple induction (on m),

w(x̂1 ∪⋯∪ x̂n) ≤ w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯∪ ŷm) .

Suppose that x̂1∪⋯∪x̂n ⊆ ŷ1∪⋯∪ ŷm. Then ŷ1∪⋯∪ ŷm = x̂1∪⋯∪x̂n∪ ŷ1∪⋯∪ ŷm.
By the above,

w(x̂1 ∪⋯∪ x̂n) ≤ w(x̂1 ∪⋯∪ x̂n ∪ ŷ1 ∪⋯∪ ŷm)

= w(ŷ1 ∪⋯ ∪ ŷm) ,

as required to show w is monotone.
To show modularity we require

w(x̂1 ∪⋯∪ x̂n) +w(ŷ1 ∪⋯∪ ŷm)

=w(x̂1 ∪⋯∪ x̂n ∪ ŷ1 ∪⋯ ∪ ŷm) +w((x̂1 ∪⋯∪ x̂n) ∩ (ŷ1 ∪⋯ ∪ ŷm)) .

Note

(x̂1 ∪⋯ ∪ x̂n) ∩ (ŷ1 ∪⋯∪ ŷm) = (x̂1 ∩ ŷ1) ∪⋯ ∪ (x̂i ∩ ŷj)⋯ ∪ (x̂n ∩ ŷm)

= x̂1 ∨ y1 ∪⋯ ∪ x̂i ∨ yj⋯∪ x̂n ∨ ym .
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From the definition of w we require

w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯∪ ŷm)

= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) + ∑
∅≠J⊆{1,⋯,m}

(−1)∣J ∣+1v(⋁
j∈J

yj)

− ∑
∅≠R⊆{1,⋯,n}×{1,⋯,m}

(−1)∣R∣+1v( ⋁
(i,j)∈R

xi ∨ yj) . (1)

Consider the definition of w(x̂1∪⋯∪x̂n∪ŷ1∪⋯∪ŷm) as a sum. Its components are
associated with indices which either lie entirely within {1,⋯, n}, entirely within
{1,⋯,m}, or overlap both. Hence

w(x̂1 ∪⋯ ∪ x̂n ∪ ŷ1 ∪⋯∪ ŷm)

= ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I

xi) + ∑
∅≠J⊆{1,⋯,m}

(−1)∣J ∣+1v(⋁
j∈J

yj)

+ ∑
∅≠I⊆{1,⋯,n},∅≠J⊆{1,⋯,m}

(−1)∣I ∣+∣J ∣+1v(⋁
i∈I

xi ∨ ⋁
j∈J

yj) . (2)

Comparing (1) and (2), we require

− ∑
∅≠R⊆{1,⋯,n}×{1,⋯,m}

(−1)∣R∣+1v( ⋁
(i,j)∈R

xi ∨ yj)

= ∑
∅≠I⊆{1,⋯,n},∅≠J⊆{1,⋯,m}

(−1)∣I ∣+∣J ∣+1v(⋁
i∈I

xi ∨ ⋁
j∈J

yj) . (3)

Observe that

⋁
(i,j)∈R

xi ∨ yj = ⋁
i∈I

xi ∨ ⋁
j∈J

yj

when I =R1 =def {i ∈ I ∣ ∃j ∈ J. (i, j) ∈ R} and J =R2 =def {j ∈ J ∣ ∃i ∈ I. (i, j) ∈ R}
for a relation R ⊆ {1,⋯, n}×{1,⋯,m}. With this observation we see that equality
(3) follows from the combinatorial lemma, Lemma 3 above. This shows
modularity.

Finally, we can extend w to all open sets by taking an open set U to
supb∈Bs& b⊆Uw(b). The verification that w is indeed a continuous valuation ex-
tending v is now straightforward. ◻

The above theorem also holds (with the same proof) for Scott domains. Now,
by [8], Corollary 4.3:

Theorem 2. For a configuration-valuation v on E there is a unique probability
measure μv on the Borel subsets of C∞(E) extending wv.

When x a finite configuration has v(x) > 0 and μv({x}) = 0 we can understand
x as being a transient configuration on the way to a final with probability v(x).
In general, there is a simple expression for the probability of terminating at a
finite configuration, helpful in the examples that follow.
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Proposition 6. Let E,v be a probabilistic event structure. For any finite config-
uration y ∈ C(E), the singleton set {y} is a Borel subset with probability measure

μv({y}) = inf{d
(n)
v [y;x1,⋯, xn] ∣ n ∈ ω & y ⊊ x1,⋯, xn ∈ C(E)} .

Proof. Let y ∈ C(E). Then {y} = ŷ ∖ Uy is clearly Borel as Uy =def
{x ∈ C∞(E) ∣ y ⊊ x} is open. Let w be the continuous valuation extending v.
Then

w(Uy) = sup{w(x̂1 ∪⋯∪ x̂n) ∣ y ⊊ x1,⋯, xn ∈ C(E)}

as Uy is the directed union ⋃{x̂1 ∪⋯∪ x̂n ∣ y ⊊ x1,⋯, xn ∈ C(E)}. Hence

μv({y}) = v(y) −w(Uy) =v(y) − sup{w(x̂1 ∪⋯∪ x̂n) ∣ y ⊊ x1,⋯, xn ∈ C(E)}

=inf{v(y) − ∑

∅≠I⊆{1,⋯,n}

(−1)
∣I∣+1

v(⋁
i∈I

xi) ∣ y ⊊ x1,⋯, xn ∈ C(E)}

=inf{d
(n)
v [y;x1,⋯, xn] ∣ n ∈ ω & y ⊊ x1,⋯, xn ∈ C(E)} .

◻

Example 1. Consider the event structure comprising two concurrent events e1, e2
with configuration-valuation v for which v(∅) = 1, v({e1}) = 1/3, v({e2}) = 1/2
and v({e1, e2}) = 1/12. This means in particular that there is a probability of
1/3 of a result within the Scott open set consisting of both the configuration
{e1} and the configuration {e1, e2}. In other words, there is a probability of 1/3
of observing e1 (possibly with or possibly without e2). The induced probability
measure p assigns a probability to any Borel set, in this simple case any subset of
configurations, and is determined by its value on single configurations: p(∅) = 1−
4/12−6/12+1/12 = 3/12, p({e1}) = 4/12−1/12 = 3/12, p({e2}) = 6/12−1/12 = 5/12
and p({e1, e2}) = 1/12. Thus there is a probability of 3/12 of observing neither
e1 nor e2, and a probability of 5/12 of observing just the event e2 (and not e1).

There is a drop d
(0)
v [∅;{e1},{e2}] = 1−4/12−6/12+1/12 = 3/12 corresponding to

the probability of remaining at the empty configuration and not observing any
event. Sometimes it’s said that probability “leaks” at the empty configuration,
but it’s more accurate to think of this leak in probability as associated with a
non-zero chance that the initial observation of no events will not improve. ◻

Example 2. Consider the event structure with events N+ with causal dependency
n ≤ n + 1, with all finite subsets consistent. It is not hard to check that all
subsets of C∞(N+) are Borel sets. Consider the ensuing probability distributions
w.r.t. the following configuration-valuations:
(i) v0(x) = 1 for all x ∈ C(N+). The resulting probability distribution assigns
probability 1 to the singleton set {N+}, comprising the single infinite configura-
tion N+, and 0 to ∅ and all other singleton sets of configurations.
(ii) v1(∅) = v1({1}) = 1 and v1(x) = 0 for all other x ∈ C(N+). The resulting prob-
ability distribution assigns probability 0 to ∅ and probability 1 to the singleton
set {1}, and 0 to all other singleton sets of configurations.
(iii) v2(∅) = 1 and v2({1,⋯, n}) = (1/2)

n for all n ∈ N+. The resulting proba-
bility distribution assigns probability 1/2 to ∅ and (1/2)n+1 to each singleton
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{{1,⋯, n}} and 0 to the singleton set {N+}, comprising the single infinite con-
figuration N+. ◻

Remark. There is a seeming redundancy in the definition of purely probabilistic
event structures, in that there are two different ways to say, for example, that

events e1 and e2 do not occur together at a finite configuration y where y
e1
−⊂x1

and y
e2
−⊂x2: either through y∪{e1, e2} ∉ Con; or via the configuration-valuation

v through v(x1 ∪ x2) = 0. However, when we mix probability with nondetermin-
ism [1], we make use of both consistency and the valuation. In the next section,
for a quantum event structure, consistency will be important in determining
when there is a sensible intrinsic probability distribution on a family of configu-
rations, even though the probability of the union of the configurations ends up
being zero.

5 Quantum Event Structures

Event structures are a model of distributed computation in which the causal
dependence and independence of events is made explicit. By associating events
with the most basic operators on a Hilbert space, viz. projection and unitary
operators, so that independent (i.e. concurrent) events are associated with in-
dependent (i.e. commuting) operators, we obtain quantum event structures.

An event associated with a projection is thought of as an elementary positive
test; its occurrence leaves the system in the eigenspace associated with eigenvalue
1 (rather than 0) of the projection. An event associated with a unitary operator
is an event of preparation; the preparation might be a change of the direction in
which to make a measurement, or the undisturbed evolution of the system over a
time interval. A configuration is thought of as specifying a distributed quantum
experiment. As we shall see, w.r.t. an initial state given as a density operator,
each configuration w of a quantum event structure determines a probabilistic
event structure, giving a probability distribution on its sub-configurations—the
possible results of the experiment w.

Throughout let H be a separable Hilbert space over the complex numbers.
For operators A,B on H we write [A,B] =def AB −BA.

5.1 Events as Operators

Formally, we obtain a quantum event structure from an event structure by inter-
preting its events as unitary or projection operators which must commute when
events are concurrent.

Definition 2. A quantum event structure (overH) comprises an event structure
(E,≤,Con) together with an assignment Qe of projection or unitary operators
on H to events e ∈ E such that for all e1, e2 ∈ E,

e1 co e2 �⇒ [Qe1 ,Qe2] = 0 .
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Given a finite configuration, x ∈ C(E), define the operator Ax to be the
composition QenQen−1⋯Qe2Qe1 for some covering chain

∅
e1
−⊂x1

e2
−⊂x2⋯

en
−⊂xn = x

in C(E). This is well-defined as for any two covering chains up to x the sequences
of events are Mazurkiewicz trace equivalent, i.e. obtainable, one from the other,
by successively interchanging concurrent events. In particular A∅ is the identity
operator on H. An initial state is given by a density operator ρ on H.

Interpretation. Consider first the simpler situation where in a quantum event
structure E,Q the event structure E is elementary (i.e. all finite subsets are
consistent). We regard E,Q as specifying a, possibly distributed, quantum ex-
periment. The experiment says which unitary operators (events of preparation)
and projection operators (elementary positive tests) to apply and in which order.
The order being partial permits commuting operators to be applied concurrently,
independently of each other, perhaps in a distributed fashion.

For a quantum event structure, E,Q, in general, an individual configuration
w ∈ C∞(E) inherits the order of the ambient event structure E to become an
elementary event structure, and can itself be regarded as a quantum experiment.
The quantum event structure E,Q represents a collection of quantum experi-
ments which may extend or overlap each other: when w ⊆ w′ in C∞(E) the
experiment w′ extends the experiment w, or equivalently w is a restriction of
the experiment w′. In this sense a quantum event structure in general represents
a nondeterministic quantum experiment. The extra generality will be crucial
later in interpreting probabilistic quantum experiments.

5.2 From Quantum to Probabilistic

Consider a quantum event structure with initial state. A configuration w stands
for an experiment and specifies which tests and preparations to try and in which
order. In general, not all the tests in w need succeed, yielding as final result a
possibly proper sub-configuration x of w. Theorem 3 below explains how there is
an inherent probability distribution qw over such final results. So an experiment
provides a context for measurement w.r.t. which there is an intrinsic probability
distribution over the possible outcomes. In particular, when the event structure
is elementary it itself becomes a probabilistic event structure. (Below, by an
unnormalised density operator we mean a positive, self-adjoint operator with
trace less than or equal to one.)

Theorem 3. Let E,Q be a quantum event structure with initial state ρ. Each
configuration x ∈ C(E) is associated with an unnormalised density operator
ρx =def AxρA

†
x and a value in [0,1] given by v(x) =def Tr(ρx) = Tr(A†

xAxρ).
For any w ∈ C∞(E), the function v restricts to a configuration-valuation vw on
the elementary event structure w (viz. the event structure with events w, and
causal dependency and (trivial) consistency inherited from E); hence vw extends
to a probability measure qw on Fw =def {x ∈ C

∞(E) ∣ x ⊆ w}.



490 G. Winskel

Proof. We show v restricts to a configuration-valuation on Fw. As A∅ = idH,

v(∅) = Tr(ρ) = 1. By Lemma 2, we need only to show d
(n)
v [y;x1,⋯, xn] ≥ 0 when

y
e1
−⊂x1,⋯, y

en
−⊂xn in Fw.

First, observe that if for some event ei the operator Qei is unitary, then

d
(n)
v [y;x1,⋯, xn] = 0. W.l.o.g. suppose en is assigned the unitary operator U .

Then, Axn = UAy so

v(xn) = Tr(A
†
xn
Axnρ) = Tr(A

†
yU

†UAyρ) = Tr(A
†
yAyρ) = v(y) .

Let ∅ ≠ I ⊆ {1,⋯, n}. Then, either ⋃i∈I xi = ⋃i∈I xi∪xn or ⋃i∈I xi
en
−⊂ ⋃i∈I xi∪xn.

In the either case—in the latter case by an argument similar to that above,

v(⋃
i∈I

xi) = v(⋃
i∈I

xi ∪ xn) .

Consequently,

d(n)v [y;x1,⋯, xn] =d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn]

=v(y) −∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi) − v(xn) +∑
I

(−1)∣I ∣+1v(⋃
i∈I

xi ∪ xn)

= 0

—above index I is understood to range over sets for which ∅ ≠ I ⊆ {1,⋯, n}.
It remains to consider the case where all events ei are assigned projection

operators Pei . As x1,⋯, xn ⊆ w we must have that all the projection operators
Pe1 ,⋯, Pen commute.

As [Pei , Pej ] = 0, for 1 ≤ i, j ≤ n, we can assume an orthonormal basis which
extends the sub-basis of eigenvectors of all the projection operators Pei , for
1 ≤ i ≤ n. Let y ⊆ x ⊆ ⋃1≤i≤n xi. Define Px to be the projection operator got as the
composition of all the projection operators Pe for e ∈ x ∖ y—this is a projection
operator, well-defined irrespective of the order of composition as the relevant
projection operators commute. Define Bx to be the set of those basis vectors
fixed by the projection operator Px. In particular, Py is the identity operator
and By the set of all basis vectors. When x,x′ ∈ C(E) with y ⊆ x ⊆ ⋃1≤i≤n xi and
y ⊆ x′ ⊆ ⋃1≤i≤n xi,

Bx∪x′ = Bx ∩Bx′ .

Also,

Px∣ψ⟩ = ∑
i∈Bx

⟨i∣ψ⟩ ∣i⟩ ,

so

⟨ψ∣Px∣ψ⟩ = ∑
i∈Bx

⟨i∣ψ⟩⟨ψ∣i⟩ = ∑
i∈Bx

∣⟨i∣ψ⟩∣
2
,

for all ∣ψ⟩ ∈ H.
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Assume ρ = ∑k pk∣ψk⟩⟨ψk ∣, where the ψk are normalised and all the pk are
positive with sum ∑k pk = 1. For x with y ⊆ x ⊆ ⋃1≤i≤n xi,

v(x) =Tr(A†
xAxρ)

=Tr(A†
yP

†
xPxAyρ)

=Tr(A†
yPxAy∑

k

pk∣ψk⟩⟨ψk ∣)

=∑
k

pkTr(A
†
yPxAy ∣ψk⟩⟨ψk ∣)

=∑
k

pk⟨Ayψk ∣Px∣Ayψk⟩

= ∑
i∈Bx

∑
k

pk ∣⟨i∣Ayψk⟩∣
2
= ∑
i∈Bx

ri ,

where we define ri =def ∑k pk∣⟨i∣Ayψk⟩∣
2
, necessarily a non-negative real for i ∈

Bx.
We now establish that

d(n)v [y;x1,⋯, xn] = ∑
i∈By∖Bx1

∪⋯∪Bxn

ri ,

for all n ∈ ω, by mathematical induction—it then follows directly that its value
is non-negative.

The base case of the induction, when n = 0, follows as

d(0)v [y; ] = v(y) = ∑
i∈By

ri ,

a special case of the result we have just established.
For the induction step, assume n > 0. Observe that

By ∖Bx1 ∪⋯ ∪Bxn−1 = (By ∖Bx1 ∪⋯∪Bxn)
⋅∪ (Bxn ∖Bx1∪xn ∪⋯∪Bxn−1∪xn) ,

where as signified the outer union is disjoint. Hence,

∑
i∈By∖Bx1

∪⋯∪Bxn−1

ri = ∑
i∈By∖Bx1

∪⋯∪Bxn

ri + ∑
i∈Bxn∖Bx1∪xn∪⋯∪Bxn−1∪xn

ri ,

By definition,

d(n)v [y;x1,⋯, xn] =def d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn]

—making use of the fact that we are only forming unions of compatible config-
urations. From the induction hypothesis,

d(n−1)v [y;x1,⋯, xn−1] = ∑
i∈By∖Bx1

∪⋯∪Bxn−1

ri

and d(n−1)v [xn;x1 ∪ xn,⋯, xn−1 ∪ xn] = ∑
i∈Bxn∖Bx1∪xn∪⋯∪Bxn−1∪xn

ri .
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Hence
d(n)v [y;x1,⋯, xn] = ∑

i∈By∖Bx1
∪⋯∪Bxn

ri ,

ensuring d
(n)
v [y;x1,⋯, xn] ≥ 0, as required.

By Theorem 2, the configuration-valuation vw extends to a unique probability
measure on Fw. ◻

Corollary 3. Let E,Q be a quantum event structure in which E is elemen-
tary. Assume an initial state ρ. Then, x ↦ Tr(A†

xAxρ), for x ∈ C(E), is a
configuration-valuation on E. It extends to a probability measure on the Borel
sets of C∞(E).

Theorem 3 is reminiscent of the consistent-histories approach to quantum the-
ory [9] onceweunderstandconfigurations aspartial-order histories.The traditional
decoherence/consistency conditions on histories, saying when a family of histories
supports a probability distribution, have been replaced by ⊆-compatibility.

Example 3. Let E comprise the quantum event structure with two concurrent
events e0 and e1 associated with projectors P0 and P1, where necessarily
[P0, P1] = 0. Assume an initial state ∣ψ⟩⟨ψ∣, corresponding to the pure state ∣ψ⟩.
The configuration {e0, e1} is associated with the following probability distribu-
tion. The probability that e0 succeeds is ∣∣P0 ∣ψ⟩∣∣

2, that e1 succeeds ∣∣P1 ∣ψ⟩∣∣
2,

and that both succeed is ∣∣P1P0∣ψ⟩∣∣
2.

In the case where P0 and P1 commute because P0P1 = P1P0 = 0, the events e0
and e1 are mutually exclusive in the sense that there is probability zero of both
events e0 and e1 succeeding, probability ∣∣P0 ∣ψ⟩∣∣

2 of e0 succeeding, ∣∣P1 ∣ψ⟩∣∣
2 of

e1 succeeding, and probability 1 − ∣∣P0∣ψ⟩∣∣
2 − ∣∣P1∣ψ⟩∣∣

2 of getting stuck at the
empty configuration where neither event succeeds.

A special case of this is the measurement of a qubit in state ψ, the measure-
ment of 0 where P0 = ∣0⟩⟨0∣, and the measurement of 1 where P1 = ∣1⟩⟨1∣, though
here ∣∣P0 ∣ψ⟩∣∣

2 + ∣∣P1∣ψ⟩∣∣
2 = 1, as a measurement of the qubit will determine a

result of either 0 or 1. ◻

Example 4. Let E comprise the event structure with three events e1, e2, e3 with
trivial causal dependency and consistency relation generated by taking {e1, e2} ∈
Con and {e2, e3} ∈ Con—so {e1, e3} ∉ Con. To be a quantum event structure
we must have [Qe1 ,Qe2] = 0, [Qe2 ,Qe3] = 0. The maximal configurations are
{e1, e2} and {e2, e3}. Assume an initial state ∣ψ⟩⟨ψ∣. The first maximal configu-
ration is associated with a probability distribution where e1 occurs with proba-
bility ∣∣Qe1 ∣ψ⟩∣∣

2 and e2 occurs with probability ∣∣Qe2 ∣ψ⟩∣∣
2. The second maximal

configuration is associated with a probability distribution where e2 occurs with
probability ∣∣Qe2 ∣ψ⟩∣∣

2 and e3 occurs with probability ∣∣Qe3 ∣ψ⟩∣∣
2. ◻

5.3 Measurement

To support measurements yielding values we associate values with configurations
of a quantum event structure E,Q, in the form of a measurable function, V ∶
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C∞(E) → R. If the experiment results in x ∈ C∞(E) we obtain V (x) as the
measurement value resulting from the experiment. By Theorem 3, assuming an
initial state given by a density operator ρ, we obtain a probability measure
qw on the sub-configurations of w ∈ C∞(E). This is interpreted as giving a
probability distribution on the final results of an experiment w. Accordingly,
w.r.t. an experiment w ∈ C∞(E), the expected value is

Ew(V ) =def ∫
x∈Fw

V (x) dqw(x) .

Traditionally quantum measurement is associated with an Hermitian operator
A on H where the possible values of a measurement are eigenvalues of A. How
is this realized by a quantum event structure? Suppose the Hermitian operator
has spectral decomposition

A = ∑
i∈I

λiPi

where orthogonal projection operators Pi are associated with eigenvalue λi. The
projection operators satisfy ∑i∈I Pi = idH and PiPj = 0 if i ≠ j.

Form the quantum event structure with concurrent events ei, for i ∈ I, and
Q(ei) = Pi. Because the projection operators are orthogonal, [Pi, Pj] = 0 when
i ≠ j, so we do indeed obtain a quantum event structure. Let V ({ei}) = λi, and
take arbitrary values on all other configurations. The event structure has a single,
maximum configuration w =def {ei ∣ i ∈ I}. It is the experiment w which will cor-
respond to traditional measurement via A. Assume an initial state ∣ψ⟩⟨ψ∣. It can
be checked that the probability ascribed to each of the singleton configurations
{ei} is ⟨ψ∣Pi∣ψ⟩, and is zero elsewhere. Consequently,

Ew(V ) = ∑
i∈I

λi⟨ψ∣Pi∣ψ⟩ = ⟨ψ∣A∣ψ⟩

—the well-known expression for the expected value of the measurement A on
pure state ∣ψ⟩.

Example 5. The spin state of a spin-1/2 particle is an element of two-dimensional
Hilbert space, H2. Traditionally the Hermitian operator for measuring spin in a
particular fixed direction is

∣↑⟩⟨↑∣ − ∣↓⟩⟨↓∣ .

It has eigenvectors ∣↑⟩ (spin up) with eigenvalue +1 and ∣↓⟩ (spin down) with
eigenvalue −1. Accordingly, its quantum event structure comprises the two con-
current events u associated with projector ∣↑⟩⟨↑∣ and d with projector ∣↓⟩⟨↓∣. Its
configurations are: ∅, {u}, {d} and {u, d}. The value associated with the config-
uration {u} is +1, and that with {d} is −1. Given an initial pure state a∣↑⟩+ b∣↓⟩,
the probability of the experiment {u, d} yielding value +1 is ∣a∣2 and that of
yielding −1 is ∣b∣2. The probability that the experiment ends in configurations ∅
or {u, d} is zero. Its expected value is ∣a∣2 − ∣b∣2. This would be the average value
resulting from measuring the spin of a large number of particles initially in the
pure state. ◻
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An Event Logic. One way to assign values to configurations is via logic of
which the assertions will be true (taken as 1) or false (0) at a configuration. Given
a countable event structure E, we can build terms for events and assertions in a
straightforward way. Event terms are given by ε ∶∶= e ∈ E ∣ v ∈ Var, where Var is
a set of variables over events, and assertions by

L ∶∶= ε ∣ T ∣ F ∣ L1 ∧L2 ∣ L1 ∨L2 ∣ ¬L ∣ ∀v.L ∣ ∃v.L .

W.r.t. an environment ζ ∶ Var→ E, an assertion L denotes �L�ζ, a Borel subset
of C∞(E), for example:

�e�ζ = {x ∈ C∞(E) ∣ e ∈ x} �v�ζ = {x ∈ C∞(E) ∣ ζ(v) ∈ x}

�∀v.L�ζ = {x ∈ C∞(E) ∣ ∀e ∈ x. x ∈ �L�ζ[e/v]}

�∃v.L�ζ = {x ∈ C∞(E) ∣ ∃e ∈ x. x ∈ �L�ζ[e/v]}

with T, F, ∧, ∨ and ¬ interpreted standardly by the set of all configurations,
the emptyset, intersection, union and complement. In this logic, for example,
¬(a↓ ∧ b↓) ∧¬(a↑ ∧ b↑) could express the anti-correlation of the spin of particles
a and b.

W.r.t. a quantum event structure with initial state, for an experiment the con-
figuration w, the probability of the result of the quantum experiment satisfying
L, a closed assertion of the logic, is

qw(L ∩Fw) ,

which coincides with the expected value of the characteristic function for L.

5.4 Probabilistic Quantum Experiments

It can be useful, or even necessary, to allow the choice of which quantum mea-
surements to perform to be made probabilistically. For example, experiments
to invalidate the Bell inequalities, to demonstrate the non-locality of quantum
physics, may make use of probabilistic quantum experiments.

Formally, a probability distribution over quantum experiments can be realized
by a total map of event structures f ∶ P → E where P, v is a probabilistic
event structure and E,Q is a quantum event structure; the configurations of E
correspond to quantum experiments assigned probabilities through P . Through
the map f we can integrate the probabilistic and quantum features. Via the
map f , the event structure E inherits a configuration valuation, making it itself
a probabilistic event structure; we can see this indirectly by noting that if vo is a
continuous valuation on the open sets of P then vof

−1 is a continuous valuation
on the open sets of E. On the other hand, via f the event structure P becomes
a quantum event structure; an event p ∈ P is interpreted as operation Q(f(p)).
Of course, f can be the identity map, as is so in Example 6 below.
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Suppose E,Q is a quantum event structure with initial state ρ and a measur-
able value function V ∶ C∞(E) → R. Recall, from Section 5.3, that the expected
value of a quantum experiment w ∈ C∞(E) is

Ew(V ) =def ∫
x∈Fw

V (x) dqw(x) ,

where qw is the probability measure induced on Fw by Q and ρ. The expected
value of a probabilistic quantum experiment f ∶ P → E, where P, v is a proba-
bilistic event structure is

∫
w∈C∞(E)

Ew(V ) dμf
−1(w) ,

where μ is the probability measure induced on C∞(P ) by the configuration-
valuation v. Specialising the value function to the characteristic function of a
Borel subset L ⊆ C∞(E), perhaps given by an assertion of the event logic of
Section 5.3, the probability of the result of the probabilistic experiment satisfying
L is

∫
w∈C∞(E)

qw(L ∩Fw) dμf
−1(w) .

The following example illustrates how a very simple form of probabilistic
quantum experiment (in which the event structure has a discrete partial order
of causal dependency) provides a basis for the analysis of Bell and EPR experi-
ments.

Example 6. Imagine an observer who randomly chooses between measuring spin
in a first fixed direction a1 or in a second fixed direction a2. Assume that the
probability of measuring in the a1-direction is p1 and in the a2-direction is p2,
where p1 + p2 = 1. The two directions a1 and a2 correspond to choices of bases
∣↑a1⟩, ∣↓a1⟩ and ∣↑a2⟩, ∣↓a2⟩ in H2. We describe this scenario as a probabilistic
quantum experiment. The quantum event structure has four events, ↑a1, ↓a1, ↑
a2, ↓a2, in which ↑a1, ↓a1 are concurrent, as are ↑a2, ↓a2; all other pairs of events
are in conflict. The event ↑a1 is associated with measuring spin up in direction
a1 and the event ↓a1 with measuring spin down in direction a1. Similarly, events
↑a2 and ↓a2 correspond to measuring spin up and down, respectively, in direction
a2. Correspondingly, we associate events with the following projection operators:

Q(↑a1) = ∣↑a1⟩⟨↑a1∣ , Q(↓a1) = ∣↓a1⟩⟨↓a1∣ ,

Q(u2) = ∣↑a2⟩⟨↑a2∣ , Q(d2) = ∣↓a2⟩⟨↓a2∣ .

The configurations of the event structure take the form

⋅
↓a1

���
��
��
��
�

⋅
↓a2

� � 
  

  
  

 

⋅ ∅

↑a1

�	 �������

↓a1
���
��
��
��
�

↑a2

	��������

↓a2
� ��

��
��

��
� ⋅

⋅
↑a1

�	         
⋅

↑a2

	���������
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where we have taken the liberty of inscribing the events just on the cover-
ing intervals. Measurement in the a1-direction corresponds to the configuration
{↑a1, ↓a1}—the configuration to the far left in the diagram—and in the a2-
direction to the configuration {↑a2, ↓a2}—that to the far right. To describe that
the probability of the measurement in the a1-direction is p1 and that in the
a2-direction is p2, we assign a configuration valuation v for which

v({↑a1, ↓a1}) = v({↑a1}) = v({↓a1}) = p1 ,

v({↑a2, ↓a2}) = v({↑a2}) = v({↓a2}) = p2 and v(∅) = 1 .

Such a probabilistic quantum experiment is not very interesting on its own.
But imagine that there are two similar observers A and B measuring the spins
in directions a1, a2 and b1, b2, respectively, of two particles created so that
together they have zero angular momentum, ensuring they have a total spin
of zero in any direction. Then quantum mechanics predicts some remarkable
correlations between the observations of A and B, even at distances where their
individual choices of what directions to perform their measurements could not
possibly be communicated from one observer to another. For example, were both
observers to choose the same direction to measure spin, then if one measured
spin up then other would have to measure spin down even though the observers
were light years apart.

We can describe such scenarios by a probabilistic quantum experiment which
is essentially a simple parallel composition of two versions of the (single-observer)
experiment above. In more detail, make two copies of the single-observer event
structure: that for A, the event structure EA, has events ↑ a1, ↓ a1, ↑ a2, ↓ a2,
while that for B, the event structure EB, has events ↑ b1, ↓ b1, ↑ b2, ↓ b2. Assume
they possess configuration valuations vA and vB, respectively, determined by the
probabilistic choices of directions made by A and B. Write QA and QB for the
respective assignments of projection operators to events ofEA and EB. The prob-
abilistic event structure for the two observers together is got as EA∥EB , their
simple parallel composition got by juxtaposition, with configuration valuation
v(x) = vA(xA) × vB(xB), for x ∈ C(EA∥EB), where xA and xB are projections
of x to configurations of A and B. In this compound system an event such as
e.g. ↑a1 is interpreted as the projection operator QA(↑a1)⊗ idH2 on the Hilbert
space H2 ⊗H2, where the combined state of the two particles belongs. We can
capture the correlation or anti-correlation of the observers’ measurements of spin
through a value function on configurations, given by

V ({↑ai, ↑bj}) = V ({↓ai, ↓bj}) = 1 , V ({↑ai, ↓bj}) = V ({↓ai, ↑bj}) = −1 , and

V (x) = 0 otherwise,

and study their expectations under various initial states and choices of mea-
surement. In this way probabilistic quantum experiments, as formalised through
probabilistic and quantum event structures, provide a basis for the analysis of
Bell or EPR experiments. ◻

The ideas of probabilistic and quantum event structures carry over to prob-
abilistic and quantum games and their strategies [1]; the result of the play of
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quantum strategy against a counterstrategy is a probabilistic event structure.
This is yielding operations and languages which should be helpful in a struc-
tured development and analysis of experiments on quantum systems.
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Klüppelholz, Sascha 96
Knight, Sophia 319
Kozen, Dexter 407
Kupke, Clemens 363
Kwiatkowska, Marta 40

Larsen, Kim Guldstrand 76

Mardare, Radu 76
Markham, Damian 427
Martin, Keye 454
Mislove, Michael 214
Moss, Lawrence S. 146

Norman, Gethin 40

Palamidessi, Catuscia 292
Parker, David 40
Planul, Jérémy 1
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