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Preface

In recent decades, entomologists have expanded their analytical tools to improve
the interface between population theory and ways to analyse and interpret results
in research programs that emphasise mathematical modelling. Entomology is a
fruitful area for investigating complex processes and dynamic systems due to
the biological characteristics exhibited by insects. They experience different life
phases, frequent notable interactions, and are classified by intraspecific to trophic
relationships with different degrees of association. The Neotropical ecozone is
one of the eight major zoogeographical areas of the world, which contains about
a third of the world’s insects that live in complex topographical environments.
This condition likely allowed these organisms to experience different levels of
adaptation to face the diversity of factors influencing their demography. The
changes that occurred in these environments have substantially altered the resource
sources for insects, especially food availability. The predominance of monocultures
in Neotropical areas has remarkably impacted the environment and substantially
changed the structure of insect fauna by providing suitable conditions for infestation
by pests. Accelerated urbanisation processes have also negatively impacted the
urban scenarios, including giving rise to the emergence of infra-structural problems
in the metropolis and inducing the proliferation of vector insects of serious diseases.
Given the extensive problems facing humanity, we live in what could be called
the era of challenge and exploding information. Concurrently, thanks to growing
interest in developing models, ample opportunities to generate and explore data have
quickly been created by theorists, statisticians and entomologists, who can analyse
data with precise tools, particularly when ecological methodologies are applied
to entomology. The computational resources currently available are far superior
to what was available in the past, thus allowing bold designs that can consider
space and time simultaneously, especially in interface areas such as ecological
modelling. The use of mathematical models to describe ecological processes and
predict tendencies has been increasing in the last decades in response to growing
demand for analytical tools that are compatible with emerging issues in the previous
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vi Preface

and current centuries. Comprehending basic population or community functions
using ecological formalism can lead to useful models embedded in ecological theory
that are capable of covering a wide spectrum of issues, ranging from spatio-temporal
ecological patterns of populations and/or communities to epidemiological aspects or
trophic webs. This is a pioneering work in a specific area with interesting interfaces
for people interested in interdisciplinary studies. We hope that it will be useful for
a significant number of researchers and students involved with insect population
dynamics emphasising pest management and conservation. The authors of this
book thank Fundação de Amparo à Pesquisa do Estado de São Paulo FAPESP
and Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq for the
support with the research projects.

Botucatu, SP, Brazil Claudia P. Ferreira
Piracicaba, SP, Brazil Wesley A.C. Godoy
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Chapter 1
Insects and the Ecological Basis
for Mathematical Modelling

Claudia P. Ferreira and Wesley A.C. Godoy

Abstract This book brings together nine chapters that aim to present the most
recent research on the interface between ecological modelling and entomology. The
chapters are summaries of research performed in different Brazilian institutions,
UK and Ireland universities. The idea of the book is to present different focuses
of study by aggregating theoretical ecology and applications in agricultural and
medical entomology, also emphasising pest management and conservation. This
chapter briefly summarises a history of the population theory applied to entomology
and will introduce the reader to the topics developed in the following chapters.

Keywords Entomology • Insect population modelling

1.1 Introduction

Insects are fascinating organisms that have suffered evolutionary adaptations over
geologic periods. Their extraordinary stages of evolution have provided them
with special characteristics to occupy different habitats and to face a variety of
environmental conditions (Carpenter 1953). Due to this flexibility, insects have been
able to develop specific abilities and strategies for exploiting resources to guarantee
their survival even in adverse conditions. They are advantageous to humans in
various contexts. For example, there are insect species that act as natural enemies of
pests, that yield products beneficial to humans, such as the honey bee and silkworm,
and that can be used as forensic indicators, biotherapy and food (Goldsmith et al.
2005; Parnés and Lagan 2007; Wells and Stevens 2008; Srinivasan 2010; van
Huis 2012). However, although these organisms exhibit interesting mechanisms of
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2 C.P. Ferreira and W.A.C. Godoy

adaptation that have important ecological roles and are beneficial for humans, they
have also displayed a high capacity for increasing their population sizes, mainly in
systems with a high food availability, such as forests, crops, terrestrial and aquatic
environments, or even animal hosts. A high density of insects could severely damage
growing crops and cause epidemics, host infestations and a trophic imbalance with
negative consequences for conservation (Lima et al. 2009).

1.2 Insects and Their Evolutionary Strategies

Evolutionary strategies in insects have been classified according to the bioeco-
logical characteristics, which involve relevant factors such as body size, egg size,
development rate, fecundity, longevity, sex ratio, dispersal ability and density
dependence (Speight et al. 2008). These strategies could be understood as responses
to evolutionary pressures to attain the best species performance and involves striking
a balance between costs and benefits (Harrison et al. 2010). The best performance
usually involves a high magnitude of fecundity (Awmack and Leather 2002) which
is mediated nevertheless by density-dependent mechanisms. This observation could
be understood as optimisation, ecologically expressed by r- or K-strategy. This
is a theory that describes different strategies by combining traits in an attempt
to obtain the best advantage by confronting parental investment and the quantity
and quality of offspring (Pianka 1970). Generally, species governed by r-selection
invest in many offspring, whereas k-strategists focus theirs on a few (Pianka 1970).
Conversely, r-selected insect populations are unpredictable in their ecological
trends, where the cycles they experience over time depend on the demographic
parameters of fecundity and survival. Occasionally, an overexploitation of resources
will encourage populations to invade new areas (Davis et al. 2005). Insects viewed
as k-strategists are frequently regulated by density-dependent factors and have a low
fecundity (Matthews and Matthews 1978).

The movement of insects among different areas may be viewed according to
different perspectives and perhaps more appropriately classified into two basic
types: passive and active (Yates and Boyce 2012). The passive type has highlighted
the need for studies that emphasise phytogeography history, demography and
population dynamics mainly due to changing dynamic patterns in human movement
(Jones 2001; Bentley et al. 2012; Fresia et al. 2013). The benefits of modern
transportation, the economic growth of emerging countries and globalisation have
facilitated the transport of several items for human consumption, including organic
products, such as seeds, seedlings, cereal, fruits, meat, and many others (Bentley
et al. 2012; Hu et al. 2013). In response to this increasing transport of items, several
pest species have invaded new areas and frequently cause problems for the new
environments or hosts (Mazzi and Dorn 2012).
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1.3 Insects and the Climate Changes

Global warming has also exerted a significant influence on the distribution of
species around the world, with negative impacts on conservation, agriculture and
public health (Ferron and Deguine 2005; Kiritani 2006; Andrew and Hughes 2007).
Noticeably, insect species living in areas with predominantly high temperatures are
stimulated to leave their origin regions to new areas, with similar temperatures,
that were previously not inhabited by these species (Ammunet et al. 2011). The
implications of climate change for people and the environment are unpredictable,
but the dynamics of diseases transmitted by insects is a relevant concern that is
shared among nations worldwide. Malaria afflicts more than a billion of people
and causes 2 million deaths per year (WHO 2011a, b). Dengue fever infects
100 million people annually (WHO 2011a). Vector mosquitoes have developed a
significant resistance to insecticides, which decreases the efficiency of the methods
used to control these disease vectors (Zaim and Guillet 2002). All of these factors
underscore serious concerns about the future of global public health.

1.4 Insects and Their Responses

Resistance to insecticides is an increasing challenge currently faced by chemical
manufacturers. The use of chemical products without criteria, as well as the
widespread use of insecticides throughout the world, has increased the resistance to
different product classes (Carvalho et al. 2013). New chemical formulations have
been proposed as an attempt to increase the efficiency of products (Casida and
Durkin 2013). However, product toxicity for the environment, animals and humans
is a serious consequence for social welfare in addition to the high costs for growers
(Isman 2006). Transgenic crops represent a part of the modern agricultural strategy
to combat pest attacks (Kos et al. 2009) and consist of plants that are genetically
engineered to produce insecticidal proteins encoded by Bacillus thuringiensis (Bt)
genes (Shelton et al. 2002). More Bt crops are employed worldwide today than
15 years ago and are housed on more than 420 million hectares (Tabashnik et al.
2013). These observations are interesting, but their implications for an invasion of
secondary pests over time remains to be evaluated (Qiu 2010). Perhaps the greatest
challenge for the coming decades is to reconcile the rising needs of the fight against
vector-borne disease and devastating agricultural pests with biological conservation.
This would open new perspectives for optimising technology and various strategies
to appropriately apply modern synthetic insecticides, biological control agents,
botanical insecticides, pheromones, insect growth regulators, genetic manipulation
of pest species, host-plant resistance, and cultural techniques for organic farming
and intercropping (Kogan and Jepson 2007; Thacker 2002).
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1.5 Insects and the Numbers

The population pest density frequently reaches outbreak levels that pose consid-
erable economic and environmental impacts to agriculture, forests and to human
health around the world (Perveen 2012). Much of the variability in insect pest
population density may be attributed to several density-dependent or indepen-
dent mechanisms, including interacting effects with weather or natural enemies
(Bommarco et al. 2007). Despite the considerable number of recent studies on
ecology and population dynamics in insects (Liebhold and Tobin 2008), more
quantitative and qualitative information is required to generate different possible
analytical approaches. Empirical approaches may increase the knowledge about
ecological patterns implicit in population dynamics of pest species and create a
database of proposed strategies for control that consider the risks arising from the
previously mentioned factors (Ives and Schellhorn 2011).

Dealing with quantitative data requires appropriate analytical tools that come
mainly from computation, mathematics and statistics. Ecological modelling is an
essential part of both research and management of pest insects and is the major
tool for predicting population dynamics. The history of mathematical modelling
in insects begins with the conventional steps that exist for biological scenarios,
i.e., abstraction and subsequent proposition of theoretical models, which, although
considered simple, are capable of retaining the most important ingredients of
population change (Murray 2001). Models of this nature, which have existed for
more than a century, express mathematical functions capable of describing the shape
of the ecological patterns of time series, such as the paper by Benjamin Gompertz
that emphasises the law of human mortality (Gompertz 1825). Simple models, such
as the Verhulst model (Verhulst 1838) for population growth, have bolstered more
sophisticated formulations, which have improved by adding important mechanisms
that make the model more realistic by including delayed density-dependence,
interspecific and trophic interactions, age or stage structure, spatial dimension,
stochasticity and control strategies (Bascompte and Sole 1998; Murray 2001; Lima
et al. 2009; Rosenheim 2011).

1.6 Insects and Their Interactions

The structure of insect populations and communities includes complex relation-
ships that express different types of interactions, such as intra and interspecific
competition, cannibalism, predation, parasitism, commensalism, and a variety of
relationships with the environment (Felton and Tumlinson 2008; Polis 1991). On
one hand, modelling insect populations is a challenge because life cycles are
complex and involve lags that produce a strong dependence between life stages
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mainly in species that exhibit non-overlapping generations (Hassell et al. 1976).
On the other hand, there are species that overlap generations, and thus, the systems
exhibit reproductive patterns similar to mammals. In both cases, two different types
of equations are required to describe the system dynamics: one for non-overlapping
populations and one for overlapping populations (Edelstein-Keshet 1978). However,
insect life cycles are shorter than those of vertebrates or even perennial plants, and
some of them are easily reared in the laboratory, which encourages experimentation
and mathematical modelling (Cushing et al. 2003).

1.7 Insects and the Models

Verhulst (1838), Thompson (1924), Lotka (1925) and Volterra (1926) are the
precursors of ecological theory, which was the basis for the first mathematical
models presented to study populations and interactions between species of arthro-
pods (Hassel 1978). Subsequently, Nicholson (1933) and Nicholson and Bailey
(1935) proposed the first models to investigate prey-predator interactions, which
served as a great foundation for host-parasitoid models. The studies performed
by Nicholson (1954, 1957) provided long-term laboratory series that focused on
the population dynamics of Lucilia cuprina (Diptera: Calliphoridae) to investigate
effects of resource scarcity at different life stages. The results obtained described a
series with quasi-cycles and have been widely revisited by ecologists, such as the
paper by Gurney et al. (1980) entitled “Nicholson’s blowflies revisited”.

In 1985, Prout and McChesney (1985) published an interesting and useful
discrete time mathematical formulation that considered the delay effect on fecundity
and survival of competition during the larval stage of Drosophila melanogaster to
demonstrate how the functions of larval density, fecundity and survival can influence
the dynamic behaviour of populations in the laboratory (Prout and McChesney
1985). This theory has been widely used to model blowfly populations in a
biological invasion scenario (Serra et al. 2007; Coutinho et al. 2012; Moretti et al.
2013).

James Carey (1993) provided an extremely important contribution for the appli-
cation of statistics and ecological theory to entomology. Carey presented important
demographic methods to study life tables in insect populations. Dennis et al. (1995)
initiated an era of notable papers by proposing the LPA model, which is designed to
combine theory and experimentation to investigate ecological equilibrium patterns
in Tribolium castaneum by considering different life stages, such as larva, pupa and
adult. A textbook entitled “Chaos in ecology: experimental nonlinear dynamics”
is a nice compilation of the mechanisms of population growth, nonlinear stage-
structured population models, and chaos in ecology.
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1.8 This Book

In the current book, we present a compilation of studies that are at the interface
between mathematical modelling and entomology. Our proposal presents models
constructed to study different types of insects in distinct habitats and scenarios to
demonstrate how the theory can be used as a powerful tool to describe ecological
patterns and project tendencies. The next eight chapters will present an overview
of different ecological modelling applications, emphasising agricultural, medical
entomology and conservation.

The chapters describe a synthesis of the most recent research developed in several
Brazilian research institutions and also in three universities in the United Kingdom
and Ireland. A spatially explicit model is presented in Chap. 2 that assumes
density-dependent effects during pre- and post-dispersal in a host-parasitoid system.
The model reveals that behaviour may influence the spatial distribution and the
abundance of species in the landscape. Chapters 3 and 4 focus on how abiotic factors
affect the life cycle and population dynamics of mosquitoes with consequences
for dengue transmission. Chapter 3 presents a mathematical model to evaluate
parameters dependent on temperature and that are significantly influenced by
rainfall. The model assumes that seasonality causes the varying population size
and simulates a coupling of mosquitoes and humans to assess the transmission of
dengue virus. In the fourth chapter, a mathematical model describes the influences
of temperature on A. aegypti life stages by characterising transitions and death rates
as a function of temperature. With this formalism, they also describe the influence
of the temperature on dengue transmission.

In the fifth chapter, metacommunity models are used to investigate the geometry
of riverine networks, emphasising aquatic insects. The authors show that the strength
of the environmental impact, the spatial position of the impact within the network
and the degree of dispersal among local communities can severely affect the
performance of statistical models regularly employed in biomonitoring programs.
Chapter 6 provides insights into how to represent trophic interactions by using
different models that consider semelparity and iteroparity and demonstrate the
relevance of the interaction strength in determining food web dynamics. Chapter 7
presents coupled map lattices to study the spatio-temporal insect dynamics. The
lattices consider natural degradation as well as dynamics affected by chemical
substances or volatiles that move by diffusion and advection due to the wind.
The proposal to use coupled map lattices aimed to analyse the effects of the
insect behavioural response on their density, distribution and persistence. Chapter 8
proposes an important strategy for pest management programs by presenting a
mathematical formalism for monitoring pest abundance in agricultural fields. A
mathematical background for methods of numerical integration is provided and
application of numerical integration in the pest monitoring procedure is discussed to
demonstrate this proposal. The ninth chapter delineates how to model overdispersed
data in typical entomological scenarios, mainly when outcomes of interest are in the

http://dx.doi.org/10.1007/978-3-319-06877-0_8
http://dx.doi.org/10.1007/978-3-319-06877-0_7
http://dx.doi.org/10.1007/978-3-319-06877-0_6
http://dx.doi.org/10.1007/978-3-319-06877-0_3
http://dx.doi.org/10.1007/978-3-319-06877-0_4
http://dx.doi.org/10.1007/978-3-319-06877-0_3
http://dx.doi.org/10.1007/978-3-319-06877-0_2
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form of counts or proportions. As a foundation for the model, the authors discuss
possible causes for overdispersion in insects and use different approaches to analyse
distinct ecological patterns of distribution.

References

Ammunet T, Klemola T, Saikkonen K (2011) Impact of host plant quality on geometrid moth
expansion on environmental and local population scales. Ecography 34:848–855

Andrew NR, Hughes L (2007) Potential host colonization by insect herbivores in a warmer climate:
a transplant experiment. Glob Change Biol 13:1539–1549

Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev
Entomol 47:817–844

Bascompte J, Sole RV (1998) Spatiotemporal patterns in nature. Trends Ecol Evol 13:173–174
Bentley JW, Robson M, Sibale BB et al (2012) Travelling companions: emerging dis-

eases of people, animals and plants along the Malawi-Mozambique border. Hum Ecol
40:557–569

Bommarco R, Firle SO, Ekbom B (2007) Outbreak suppression by predators depends on spatial
distribution of prey. Ecol Model 201:163–170

Carey JR (1993) Applied demography for biologists: with special emphasis on insects. Oxford
University Press, New York

Carpenter FM (1953) The geological history and evolution of insects. Am Sci 41:256–270. Annu
Rev Entomol 47:817–844

Carvalho RA, Omoto C, Field LM et al (2013) Investigating the molecular mechanisms of
organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. Plos
One 8:e62268. doi:10.1371/journal.pone.0062268

Casida JE, Durkin KA (2013) Neuroactive insecticides: targets, selectivity, resistance, and
secondary effects. Annu Rev Entomol 58:99–117

Coutinho RM, Godoy WAC, Kraenkel RA (2012) Integrodifference model for blowfly invasion.
Theor Ecol 5:363–371

Cushing JM, Costantino RF, Dennis B et al (2003) Chaos in ecology: experimental nonlinear
dynamics. Academic, San Diego

Davis MA, Thompson K, Grime JP (2005) Invasibility: the local mechanism driving community
assembly and species diversity. Ecography 28:696–704

Dennis BR, Desharnais A, Cushing JM et al (1995) Nonlinear demographic dynamics: mathemat-
ical models, statistical methods and biological experiments. Ecol Monogr 65:261–281

Edelstein-Keshet L (1978) Mathematical models in biology. Princeton University Press, Princeton
Felton GW, Tumlinson JH (2008) Plant-insect dialogs: complex interactions at the plant-insect

interface. Curr Opin Plant Biol 11:457–463
Ferron P, Deguine JP (2005) Crop protection, biological control, habitat management and

integrated farming, a review. Agron Sustain Dev 25:17–24
Fresia P, Azeredo-Espin AML, Lyra ML (2013) The phylogeographic history of the new world

screwworm fly, inferred by approximate Bayesian computation analysis. Plos One 8:e76168.
doi:10.1371/journal.pone.0076168

Goldsmith MR, Shimada T, Abe H (2005) The genetics and genomics of the silkworm, Bombyx
mori. Annu Rev Entomol 50:71–100

Gompertz B (1825) On the nature of the function expressive of the law of human mortality,
and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond
115:513–585

Gurney WSC, Blythe SP, Nisbet RM (1980) Nicholson’s blowflies revisited. Nature 287:17–21

http://dx.doi.org/10.1371/journal.pone.0076168
http://dx.doi.org/10.1371/journal.pone.0062268


8 C.P. Ferreira and W.A.C. Godoy

Harrison JF, Kaiser A, VandenBrooks JM (2010) Atmospheric oxygen level and the evolution of
insect body size. Proc R Soc B 277:1937–1946

Hassel MP (1978) The dynamics of arthropod predator-prey systems, Monographs in population
biology. Princeton University Press, Princeton

Hassell MP, Lawton JH, May RM (1976) Patterns of dynamical behaviour in single species
populations. J Anim Ecol 45:471–486

Hu SJ, Ning T, Fu DY et al (2013) Dispersal of the Japanese pine sawyer, Monochamus
alternatus (Coleoptera: Cerambycidae), in mainland China as inferred from molecular data and
associations to indices of human activity. Plos One 8:e57568. doi:10.371/journal.pone.0057568

Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an
increasingly regulated world. Annu Rev Entomol 51:45–66

Ives AR, Schellhorn NA (2011) Novel pests and technologies: risk assessment in agroecosystems
using simple models in the face of uncertainties. Curr Opin Environ Sustain 3:100–104

Jones RE (2001) Mechanisms for locating resources in space and time: impacts on the abundance
of insect herbivores. Austral Ecol 26:518–524

Kiritani K (2006) Predicting impacts of global warming on population dynamics and distribution
of arthropods in Japan. Popul Ecol 48:5–12

Kogan M, Jepson P (2007) Perspectives in ecological theory and integrated pest management.
Cambridge University Press, Cambridge

Kos M, van Loon JJ, Dicke M et al (2009) Transgenic plants as vital components of integrated pest
management. Trends Biotechnol 27:621–627

Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management.
Annu Rev Entomol 53:387–408

Lima EABF, Ferreira CP, Godoy WAC (2009) Ecological modeling and pest population manage-
ment: a possible and necessary connection in a changing world. Neotrop Entomol 38:699–707

Lotka AJ (1925) Elements of physical biology. Williams & Williams Company, Baltimore
Matthews RW, Matthews JR (1978) Insect behaviour. Wiley, New York
Mazzi D, Dorn S (2012) Movement of insect pests in agricultural landscapes. Ann Appl Biol

160:97–113
Moretti AC, Coutinho RM, Moral RA et al (2013) Quantitative and qualitative dynamics of

exotic and native blowflies (Diptera: Calliphoridae) with migrations among municipalities.
Community Ecol 14:249–257

Murray JD (2001) Mathematical biology, an introduction. Springer, New York
Nicholson AJ (1933) The balance of animal populations. J Anim Ecol 2:131–178
Nicholson AJ (1954) An outline of the dynamics of animal populations. Aust J Zool 2:9–65
Nicholson AJ (1957) The self adjustment of populations to change. Cold Spring Harb Symp Quant

Biol 22:153–173
Nicholson AJ, Bailey VA (1935) The balance of animal populations. Part 1. Proc Zool Soc London

3:551–598
Parnés A, Lagan KM (2007) Larval therapy in wound management: a review. Int J Clin Pract

61:488–493
Perveen F (2012) Insecticides, advances in integrated pest management. InTech, Rijeka
Pianka ER (1970) On r and K selection. Am Nat 104:592–597
Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory.

Am Nat 138:123–155
Prout T, McChesney F (1985) Competition among immatures affects their adult fertility: popula-

tion dynamics. Am Nat 126:521–558
Qiu J (2010) GM crop use makes minor pests major problem. Nature. doi:10.1038/news.2010.242
Rosenheim JA (2011) Stochasticity in reproductive opportunity and the evolution of egg limitation

in insects. Evolution 65:2300–2312
Serra H, Silva ICR, Mancera PFA et al (2007) Stochastic dynamics in exotic and native blowflies:

an analysis combining laboratory experiments and a two-patch metapopulation model. Ecol
Res 22:686–695

http://dx.doi.org/10.1038/news.2010.242
http://dx.doi.org/10.371/journal.pone.0057568


1 Insects and the Ecological Basis for Mathematical Modelling 9

Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social conse-
quences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

Speight MR, Hunter MD, Watt AD (2008) Ecology of insects: concepts and applications. Wiley-
Blackwell, Oxford

Srinivasan MV (2010) Honey bees as a model for vision, perception, and cognition. Annu Rev
Entomol 55:267–284

Tabashnik BE, Brévault T, Carrière Y (2013) Insect resistance to Bt crops: lessons from the first
billion acres. Nat Biotechnol 31:510–521

Thacker JRM (2002) An introduction to arthropod pest control. Cambridge University Press,
Cambridge

Thompson WR (1924) La theory mathematique de l’action des parasites entomophages et le facteur
du hassard. Annales Faculte des Sciences de Marseille 2:69–89

van Huis A (2012) Potential of insects as food and feed in assuring food security. Annu Rev
Entomol 58:563–583

Verhulst PF (1838) Notice sur la loi que la population poursuit dans son accroissement. Correspon-
dance mathématique et physique 10:113–121

Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature
118:558–560

Wells JD, Stevens R (2008) Application of DNA-based methods in forensic entomology. Annu
Rev Entomol 53:103–120

WHO (2011a) Global health observatory. Available at: http://apps.who.int/ghodata/?vid=110001
WHO (2011b) Malaria fact sheet. Available at: http://www.who.int/mediacentre/factsheets/fs094/

en/
Yates G, Boyce MS (2012) Dispersal, animal. In: Hastings A, Gross LJ (eds) Encyclopedia of

theoretical ecology. University of California Press, Berkeley
Zaim M, Guillet R (2002) Alternative insecticides: an urgent need. Trends Parasitol 18:161–163

http://www.who.int/mediacentre/factsheets/fs094/en/
http://www.who.int/mediacentre/factsheets/fs094/en/
http://apps.who.int/ghodata/?vid=110001


Chapter 2
Demographic Processes in Spatially
Structured Host-Parasitoid Systems

Carolina Reigada, Marcus Aloizio Martinez de Aguiar,
and Lucas Dias Fernandes

Abstract We explore the demographic control effects that arise from the foraging
behaviour and reproductive strategies of host-parasitoid metapopulation systems
under the influence of spatio-temporal variations in patch quality. Parasitoid popula-
tions are characterised by different levels of density-dependent sex ratio adjustments
and interference competition. Using a spatially explicit mathematical model, in
which the habitats are described by the frequency and distribution of host resources,
we assume that the species are subjected to density-dependent effects in two dif-
ferent periods of their life cycles: pre- and post-dispersal. During the pre-dispersal
period, the number of individuals that disperse or remain in each patch depends
on the species “optimal decision” to explore or to leave the current patch, which
is affected by the local number of individuals. After dispersal, individuals arriving
in a new patch are influenced by the local densities, which define the host survival
rate and reproductive success of parasitoids. We show that different demographic
control levels, which arise from species behaviour and ecological processes in
response to changes in patch quality, lead to different spatial distributions and
species abundance in the landscape. The results elucidate how host-parasitoid life
history affects species establishment and the efficiency of parasitoids as biological
control agents.
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2.1 General Introduction

Entomologists’ interest in host-parasitoid interactions increased in the beginning
of the twentieth century with the possibility of using parasitoids to control insect
pests (Godfray and Shimada 1999). The research developed to include several
important aspects of species life history, behaviour and communities of host-
parasitoid systems. More recently, efforts have also been directed to model and
understand these many characteristics theoretically, guided by data obtained from
experimental and field studies (Godfray and Shimada 1999; Hassell 1978, 2000).

Parasitoids depend strongly on their hosts to complete their life cycle. This vital
dependence paints an extremely complex ecological interaction, and elucidating its
intricacies requires understanding ecological and behavioural aspects. The density
of hosts in a patch and the way they are exploited by parasitoids are governed by
complex chemical, visual and tactile cues in the localisation of hosts and in the
parasitoid’s adaptive behaviour through learning, aiming at increasing efficiency.
This complex behaviour also involves the evolution of searching strategies, clutch
size and sex ratios (Godfray 1994; Bernstein and Driessen 1996; Godfray and
Shimada 1999; Wajnberg 2006; Amat et al. 2009). Due to the complexity involved in
host-parasitoid interactions and the difficulties in acquiring large amounts of data to
test many of these processes on species dynamics, numerous mathematical models
have been developed to provide insights into several aspects of parasitoid biology.

Nicholson and Bailey (1935) pioneered a simple theoretical model that describes
the host-parasitoid dynamics. Although this Nicholson and Bailey (NB) model
displays unstable dynamics, where host and parasitoid populations cannot coexist,
the NB model is frequently used as a starting point for many theoretical studies to
add more realistic aspects to host-parasitoid models (Hassell 2000). The inclusion of
biological realism in the NB model involves modifications to several aspects of the
problem, such as the specific way parasitism is described, the inclusion of spatial
structure and forms of demographic control in host and parasitoid populations
(Chesson and Murdoch 1986; Pacala and Hassel 1991; Hassell 2000).

Generally, the high rates of attack observed for many parasitoid species lead to an
over-exploitation of hosts and to their local extinction, which causes the subsequent
extinction of parasitoid populations. Many theoretical and empirical works have
suggested that the existence of an underlying spatial structure can stabilise the host-
parasitoid dynamics (Briggs and Hoopes 2004; Cronin and Reeve 2005; Kerr et al.
2006; Rauch and Bar-Yam 2006; Arashiro and Tome 2007). Other stabilising factors
include processes of demographic control (e.g., host carrying capacity, parasitoid
interference, invulnerable age classes, different types of functional response and
non-random parasitoid attack) (Murdoch and Oaten 1975; Hassell 1978, 2000;
Briggs and Hoopes 2004) and food web structure (Price 1991; Hawkins 1992). This
chapter focuses on the effects of spatial structure for host-parasitoid dynamics and
considers the effects of some demographic processes on species dispersal rates.

Numerous spatial models have been developed to consider spatial structure in
the host-parasitoid interaction (Murray 1993; Briggs and Hoopes 2004; Hassell and
May 1973; Diekmann et al. 1988; Jongejans et al. 2008). These models describe
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how dispersal can change the stability and persistence of otherwise unstable host-
parasitoid dynamics (Briggs and Hoopes 2004; Cronin and Reeve 2005) and how a
spatial structure can lead to different spatial patterns of species distribution (Hassel
et al. 1991; Briggs and Hoopes 2004; Stacey et al. 2012). However, the species
response to spatial subdivision and habitat connectivity can vary according to the
behaviour of the species considered. In this context, few theoretical studies have
made biological contributions, such as species foraging and reproductive behaviour,
on species movements across a landscape (Hassell et al. 1983; Comins and Wellings
1985; Lozano et al. 1997; Meunier and Bernstein 2002; Reigada et al. 2012).

In this study, we consider foraging behaviour, reproductive strategies and
population dynamics. Specifically, we consider an adjustment in the sex ratio of
offspring and mutual interference among foragers as effects of demographic control
in parasitoid populations and build our model on a spatially structured framework. In
Sect. 2.2, we describe our mathematical model by detailing the landscape structure,
the interaction functions and the dispersal mechanisms. We started from the NB
approach and then go on to show how many biological aspects can be included,
such as parasitoid sex ratio control and mutual interference and density-dependent
species dispersal for host-parasitoid dynamics. In Sects. 2.3 and 2.4, we review
and explore the results of previous works (Reigada and de Aguiar 2012; Reigada
et al. 2012) by describing the influences of habitat quality, reproductive and foraging
behaviour on species demography and dispersal rates. More specifically, in Sect. 2.3,
we explore the effects of landscape patches in terms of frequency and distribution
of host resources on species persistence and spatial distribution. In Sect. 2.4, we
analyse how sex ratio adjustment and mutual interference in parasitoid populations
can result in different patterns of species distribution on the landscape. We end the
chapter by discussing possible future directions in this area of research, particularly
considering more complex spatial structures with different spatial arrangements
of patches and their interconnections. We also comment on the inclusion of co-
evolution in reproductive and foraging response dynamics, which would allow
researchers to understand how species adapt to different environmental conditions.

2.2 Modelling Host-Parasitoid Dynamics with Spatial
Structure

2.2.1 The Nicholson Bailey Model

One of the first mathematical models that described host-parasitoid systems was
provided by Nicholson and Bailey (1935). To situate our own model within the
literature, we present a brief review of this classic model in this subsection. The
Nicholson Bailey (NB) model describes the evolution of populations of hosts and
parasitoids at discrete generations in the form of a finite differences system of
equations:
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NtC1 D F .Nt ; Pt /

PtC1 D G .Nt ; Pt /
: (2.1)

The subscript is an integer that indicates the generation, and it is assumed that
the populations at time t C 1 can be completely determined from the populations at
time t. The functions F and G control the growth of the populations and how they
interact with each other.

The most general aspect of the host-parasitoid interaction is that the adult female
parasitoid lays its eggs on or in the bodies of other insects, their hosts. The parasitoid
eggs hatch, and the larvae consume its host either immediately or after a delay
during which the host continues to feed and grow in size. In either case, the
parasitised hosts die. The three basic assumptions of the NB model are:

1. The hosts that are not parasitised give rise to the next generation of hosts;
2. The parasitised hosts die and give rise to the next generation of parasitoids;
3. The proportion of parasitised hosts depends on the encounter rate between

individuals of the two populations and might also depend on the density of each
population.

These assumptions allow us to write the following dynamical equations:

NtC1 D �Nt f .Nt ; Pt /

PtC1 D cPt .1 � f .Nt ; Pt //
; (2.2)

where � is the reproduction rate of hosts, c is the number of parasitoid eggs laid
per host and f D f(Nt, Pt) the fraction of hosts that are not attacked. Notably, in
the absence of parasitoids, f(Nt, Pt) D 1, and the host population increases or
decreases exponentially fast if � > 1 or � < 1, respectively.

To complete the dynamical equations, we still have to make assumptions
about the form of the term f(Nt, Pt). The NB model makes the following extra
assumptions:

4. The encounters between hosts and parasitoids are random and independent. They
are directly proportional to each of the population densities as:

Ne D ˛Nt Pt ; (2.3)

where ˛ is a parameter related to the efficiency of parasitoid searches. The mean
number of effective encounters per host is then

� D Ne

Nt

D ˛Pt : (2.4)

5. The only significant encounter is the first one, and it always results in a successful
attack. Subsequent encounters do not affect the host’s state.
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The probability of n encounters is approximated by a Poisson distribution with
characteristic parameter �, and the probability of no encounters is given by e��,
which is precisely the proportion of hosts that are not attacked. The model is then
given by the following equations:

NtC1 D �Nt e
�˛Pt

PtC1 D cPt

�
1 � e�˛Pt

� (2.5)

The above equations are known as the NB model, which was developed in 1935
by the biologist AJ Nicholson and the physicist VA Bailey. This system presents a
non-trivial equilibrium point (non-zero population densities), which is unstable for
� > 1 and any values of the parameters ˛ and c. Because a model in which the only
equilibrium point is unstable may not be appropriate to describe realistic data, many
modifications have been proposed to the NB equations, which add more accurate
biological aspects to the population growth and interaction terms. Some of these
aspects, such as the carrying capacity for the host’s growth, presence of refuges
for hosts, demographic processes operating within the interaction patches and the
addition of spatial structure, can stabilise the equilibrium point. For a more detailed
description of these aspects, see (Briggs and Hoopes 2004; Edelstein-Keshet 2005).

2.2.2 Extended Spatial Model

We now turn to the construction of a more detailed model that will allow researchers
to study different aspects of the host-parasitoid interaction, including the spatial
distribution of populations. The species distribution patterns in a landscape depend
strongly on the fraction of emigrants and on the dispersal rates of the species
among patches. Therefore, we include two processes of demographic control in
our model that are provided by the interference competition and control of the
offspring sex ratio. Although a more complex mathematical treatment will be
required, our approach will hopefully be more realistic. By describing a larger set
of species behaviours and interaction details, the equations of this new model will
be constructed following the reasoning of the NB model.

The three main aspects to be explored by the new model are:

1. Space. The equations of the NB model are finite difference equations that
do not describe any underlying spatial structure. These types of models, also
called spatially implicit models, are useful to describe well mixed populations
or interactions that are localised in one or a few small patches. In cases where
the geographical distance between individuals plays a major role in the way the
species interact with each other, it is important to consider the range of action and
dispersal of individuals, which might be related both to the physical limitations
of the landscape and to intrinsic strategies of each species. These models are
typically called spatially explicit models.
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2. Sex allocation. In nature, most parasitoid species exhibit a type of haplodiploid
reproduction called arrhenotoky, where females are born from fertilised eggs and
males from unfertilised eggs, and thus, females control the sex ratio of their
offspring (Charnov 1982). In our model, we considered that arrhenotokous par-
asitoid populations can adjust the progeny sex ratio according to the conditions
of the exploited patch. The control of the sex ratio is intrinsically connected to
the patch quality, which is related to the number of conspecific foragers and to
the host abundance. This is an important concept and plays a crucial role in the
dynamics of the interaction, as only female parasitoids attack hosts.

3. Interference competition. Another important aspect in host density fluctuations is
the way parasitoids interact with each other. Female parasitoids may detect hosts
that are already parasitised and keep searching for healthy hosts. In a population
with a high parasitoid density, the ability of a female to detect parasitised
hosts affects its probability of laying eggs and thus introduces interference
competition.

With these three aspects in mind, we define the overall habitat as a set of
connected patches, where host growth is limited by the carrying capacity. The
dynamics are divided into two phases: first, hosts and parasitoids interact within
every patch, and subsequently, a fraction of the emerging adult hosts and female
parasitoid disperse to other patches.

2.2.2.1 The Interaction Phase

Hi,t, Fi,t and Mi,t represent populations of hosts, female and male parasitoids in patch
i at time t. The following equations represent the in-patch interactions:

hi;tC1 D Hi;t

�
�k

Hi;t .� � 1/ C k

�
Œ1 � p .Hi;t ; Fi;t /�

fi;tC1 D cHi;t p .Hi;t ; Fi;t / s .Hi;t ; Fi;t /

mi;tC1 D cHi;t p .Hi;t ; Fi;t / Œ1 � s .Hi;t ; Fi;t /�

; (2.6)

where the lower case letters for the populations in generation t C 1 represent the
pre-dispersal populations.

For small populations, the hosts grow exponentially fast, but the growth slows
down when it approaches the limit defined by the carrying capacity k. The carrying
capacity represents the limited amount of resources (both food and space) available
in each patch, and that prevents the populations from growing indefinitely. If
resources were unlimited, k ! 1 and would recover the term �Hi,t, for host growth.
The growth term is multiplied by (1�p(H, F)), where p(H, F) is the fraction of hosts
that are attacked by female parasitoids and might depend on the densities of both
hosts and female parasitoids.



2 Demographic Processes in Spatially Structured Host-Parasitoid Systems 17

The population of parasitoids in the next generation depend on the product Hi,t

p(Hi,t, Fi,t) and is multiplied by c, the mean number of adult parasitoids emerging
from each host (the parasitoids are assumed to be gregarious).

Finally, the function s(H, F) defines the proportion of female parasitoids in the
progeny and is adjusted according to the patch quality. The proportion of male
parasitoids is then represented by (1�s(H, F)).

Starting with these general equations, we must make assumptions on the forms
of the functions p(H, F) and s(H, F). For the fraction of parasitised hosts p(H, F),
we define:

p .Hi;t ; Fi;t / D
�

1; if � .Hi;t ; Fi;t / > 1

� .Hi;t ; Fi;t / if � .Hi;t ; Fi;t / � 1
; (2.7)

where

� .Hi;t ; Fi;t / D 32˛Fi;t

Hi;t C ˇF 2
i;t

(2.8)

and ˛ is the parasitoid attack rate.
We assume that no host can be parasitised by more than one parasitoid (super-

parasitism), as female parasitoids can differentiate between healthy and parasitised
pupae. The parameter ˇ controls the efficiency with which they search and recognise
healthy pupae. The interference among conspecific parasitoids is classified as
low (ˇ D 0.01), medium (ˇ D 0.03) or high (ˇ D 0.05). A low degree of inter-
ference characterises parasitoid populations that can detect healthy hosts in a
parasitoid-crowded patch efficiently, consequently causing higher host mortality
than parasitoid populations with medium and high levels of response to conspecifics.
The consequences of different levels of interference competition for the host
population are presented in Fig. 2.1. The smaller the ˇ value, the lower the degree of
interference among conspecifics. The number 32 represents the maximum number
of hosts that can be parasitised by one parasitoid in the absence of parasitoid
competition.

The proportion of female parasitoids in the progeny, s(H, F), is defined as

s .Hi;t ; Fi;t / D exp

�
��Fi;t

Hi;t

�
; (2.9)

where � controls how the ratio of females to hosts affects the sex ratio adjustment.
If F/H is high, a female tends to increase the proportion of males in its progeny
to increase the probability that her male offspring mate with the other females in
the next generation. Thus, the parameter � is related to the sensitivity of the sex
ratio control to the F/H ratio, which is related to the patch quality. In our model,
parasitoid populations can exhibit three different responses to fluctuations in patch
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Fig. 2.1 Probability of survival for host populations interacting with a parasitoid population under
different levels of interference competition in a patch. The contour plots are drawn for (a) low effect
(ˇ D 0.01), (b) medium effect (ˇ D 0.03) and (c) high effect (ˇ D 0.05) of interference competition
(Reprinted from Ecological Modelling: Reigada et al. (2012), Copyright (2012), with permission
from Elsevier [3136490533560])
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Fig. 2.2 Proportion of female offspring (decrease in the sex ratio) in parasitoid populations with
different levels of sex ratio adjustment as a function of change in the quality of local conditions
(F/H). An increase in the F/H represents a decrease in the patch quality. A sex ratio adjustment
in the parasitoid population can be translated as the F/H proportion necessary to provoke changes
in the ratio of a female parasitoid’s progeny. The dashed line represents low (� D 0.1), the solid
line medium (� D 0.5) and the dotted line high (� D 0.9) degrees of sex ratio adjustment. More
than 50 % of the offspring will be female for the following patch qualities: F/H < 6.93 for � D 0.1,
F/H < 1.39 for � D 0.5 and F/H < 0.77 for � D 0.9 (Reprinted from Ecological Modelling: Reigada
et al. (2012), Copyright (2012), with permission from Elsevier [3136490533560])

quality: low (� D 0.1), medium (� D 0.5) and high (� D 0.9) variations in the sex
ratio. Parasitoid populations with larger values of � respond more effectively to
variations in the exploited patch. Patches with low � values are expected to have a
high female density (Fig. 2.2).
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2.2.2.2 Dispersal Phase

After reproduction and parasitism occur in each patch, the populations may disperse
to other patches representing habitats for local subpopulations. The set of patches
that constitute the overall environment are placed on a two-dimensional square
grid of L x L sites with reflective boundary conditions. However, not every site
on the regular grid is necessarily a patch, as some sites may have no resources
and, therefore, may not be useful for colonisation. Additionally, not every patch
is connected to each other. Labeling the actual patches from 1 to N, we introduce
the adjacency matrix A with elements Aij D 1 if patches i and j are connected (and
direct migration from one to the other is possible) and Aij D 0 if not (Fig. 2.3). The
introduction of the adjacency matrix allows us to generalise the form in which the
patches are connected and consider landscapes of different topographies.

Adult hosts and female parasitoids can either disperse to other patches or remain
on their home patch, depending on the local conditions. The number of hosts that
leave the original patch, hout

i,t C 1, is represented by the following equation:

hout
i;tC1 D �H h2

i;tC1

hi;tC1 C h0
: (2.10)

where, �H is the maximum dispersal rate of hosts in highly populated patches,
and h0 is the tolerance to conspecifics. In this manner, the number of hosts that
leave the patch depends on the local host density; if the density is low, then a large
fraction of hosts stay in the patch. The dispersing hosts hout

i,t C 1 are divided among the
neighbouring connected patches j, (j ¤ i). The number of hosts arriving on patch j
coming from patch i is represented by the following equation:

‰i
j;tC1 D 0:05

ri;j

hout
i;tC1; (2.11)

Fig. 2.3 (a) The two-dimensional square grid of sites determines the position of each site, whereas
(b) the adjacency matrix displays how the sites are connected to each other. This approach permits
assessment of non-trivial patterns of connection
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where ri,j is the distance between the current patch and the destination patch
measured in units of the lattice parameter so that r D 1 for patches located on
adjacent sites.

After dispersal, the new generation of hosts is updated to

Hi;tC1 D hi;tC1 C
L2X

j D1

Ai;j

�
‰

j
i;tC1 � ‰i

j;tC1

�
; (2.12)

where A is the adjacency matrix as defined above. This accounts for the local
population minus the amount that dispersed to neighbouring patches and plus the
hosts that arrived from the same patches.

Because the parasitoids experience a longer period of maturation to reach the
adult stage, their dispersal occurs after the dispersal of the hosts. The number of
dispersing female parasitoids (male parasitoids do not disperse) depends on the
number of parasitoids as well as on the number of hosts in the originating patch
and is represented by

f out
i;tC1 D

8<:�F

H 0

H 0 C Hi;tC1

f 2
i;tC1

fi;tC1 C f 0
; if Hi;tC1 > 0

fi;tC1; if Hi;tC1 D 0

; (2.13)

where �F is the maximum parasitoid dispersal if the host density is small and the
female density is high (low quality patch). The constant factors H0 and f 0 represent
the number of hosts needed to keep the female parasitoids from dispersing and
the tolerance to other female parasitoids, respectively. The number of dispersing
females that arrive at patch j coming from patch i is represented by the following
equation:

�i
j;tC1 D

8<:
0:25

ri;j

f out
i;tC1; if Hi;tC1 > 0

0; if Hi;tC1 D 0

(2.14)

Comparing this expression with the corresponding equation for the hosts, we
note that hosts may disperse to more distant patches than the parasitoids, as has been
documented in field observations (Tscharntke et al. 2005). The final population of
female parasitoids in each patch at generation t C 1 is provided by the following
equation:

Fi;tC1 D fi;tC1 C
L2X

j D1

Ai;j

�
�

j
i;tC1 � �i

i;tC1

�
: (2.15)
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2.3 Resources Quality, Frequency and Duration

2.3.1 General Overview

In nature, it is common to find a high aggregation of consumer individuals in
landscape areas where resource quality is high. However, the quality and duration
of a resource in the landscape can change over time and affect the distribution
and abundance of species. In this section, we study this situation by considering
changes in location and lifetime of resource patches and explore the consequences of
ephemeral resource patches for the persistence of host-parasitoid metapopulations
and the spatial distribution of individuals in the landscape.

The main purpose of this section is to compare host-parasitoids dynamics in
landscapes where host resources can be either constant or ephemeral. We investi-
gated how the frequency with which ephemeral resources occur in the landscape
affects the populations by progressively reducing its likelihood. In communities
structured in metapopulations consisting of ephemeral local patches, the extinction
of local populations depends on the resource lifetime, their distribution and their
frequency in the landscape, as the persistence of species is related to the production
of emigrants in a patch and on their inter-patch dispersal. In these landscapes, the
recolonisation of a patch is conditioned to the appearance of new resources at the
same site in the next time step, which makes it a new ephemeral patch. We also
quantified the effects of variation in the quality of the resource patch, which was
measured in terms of host carrying capacity (k).

The spatial structure was modelled using a regular square network with 2,500
(50 � 50) sites (or nodes) that are connected to neighbour sites by potential
migration. The dispersion patterns follow the Eqs. 2.10, 2.11, 2.12, 2.13, 2.14 and
2.15 provided in Sect. 2.2, and migration is possible to all neighbours within a radius
RH for hosts and RF for parasitoids. In this manner, considering sites i and j, we
determined the elements of the Adjacency matrix, Aij D 1, if ri,j � RH, for hosts,
or ri,j � RF, for parasitoids. In this study, RH D 3.61 and RF D 3. After accounting
for the fraction of migrant hosts and parasitoids in each site (Eqs. 2.10 and 2.13),
dispersing populations were allocated in neighbour sites until all of the migrant
fraction was distributed, with the closest neighbours receiving first (if two or more
neighbour sites are the same distance away from the considered site, they are chosen
in a random order) or until the maximum distance is achieved.

To clearly distinguish between locations with and without resources, we use the
term patch for the former and site for the latter. Therefore, a patch is a site with
resources. We started the simulations with 300 hosts and 4 parasitoids at a single
patch located in the centre of the landscape. Resources were randomly distributed
with a probability pr for each site at the beginning of each generation and removed
at the end of the generation following a new allocation of resources. The distribution
of resources at each generation is independent of the previous distributions. Notably,
although the presence of resources at a site makes it available to receive hosts, the
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actual occupation is only possible through migration of individuals from neighbour
patches. For simulating landscapes with a continuous presence of resources, pr D 1.

For the dynamical model, we assumed high interference competition (ˇ D 0.06)
and an intermediary sex ratio adjustment (� D 0.5). The details of the host-parasitoid
dynamical model and the complete set of parameters used are described in Sect. 2.2.
To study the effects of resource quality, we used two values for the carrying capacity:
(i) a fixed size for the ephemeral basal resources (k D 1,600 host individuals per
patch) and (ii) variable sizes for ephemeral basal resources (the carrying capacity
assigned to a patch was uniformly selected in the interval 1,600 � krand � 8,000 host
individuals). For each simulation, we ran the host-parasitoid dynamic for 10,000
time-steps.

2.3.2 Simulation Results

We explored the effects of fixed and random carrying capacities (k D 1,600 and
1,600 � krand � 8,000 host individuals). In both cases, the allocation probability (pr)
had important implications for species persistence and distribution in the landscape.
For pr < 0.4, hosts and parasitoids were extinct in both scenarios. For pr D 0.5,
host populations persisted, and parasitoid populations became extinct. Coexistence
was observed only for pr � 0.6 (Fig. 2.4), where large values of pr increased host-
parasitoid abundance and changed the dynamics and the spatial pattern distribution.

Although the frequency of resource allocation (pr) affected the persistence of
hosts and parasitoids equally in both fixed and variable resource quality conditions,
the resulted fluctuation dynamics were different. In landscapes comprised by low
quality patches (k D 1,600), host and parasitoid population sizes fluctuated with low
abundances (Fig. 2.4a). Conversely, the size and fluctuation of species populations
in a landscape composed by patches of different quality (1,600 � krand � 8,000)
was systematically higher (Fig. 2.4b), indicative of the importance of the resource
dynamics for species occupancy and global abundance distribution.

For fixed low resource sizes, the parasitoids could not occupy all patches in the
landscape, and patches with hosts but no parasitoids were observed at all values
of pr (Fig. 2.4a). In these cases, the dynamics converged to a regime of large
population fluctuations, where host and parasitoid abundances were largely variable
in space and time as shown in Fig. 2.5a for times 9,990, 9,995 and 10,000. For
t D 9,990, patches with a high density of hosts were clearly observed, whereas for
t D 9,995, the parasitoid population in these patches increased significantly due to
overexploitation. For t D 10,000, the parasitoid population decreased again due to a
lack of hosts because of the intense parasitism at previous times.

For variable resource sizes, host populations occupied all available patches in the
landscape, but the parasitoids did not occupy all patches with hosts when the fre-
quency of resource occurrence was low (pr D 0.6), and the population fluctuations
resulted in oscillatory host and parasitoid abundances (Fig. 2.5b). For pr � 0.6, all
patches were occupied by hosts and parasitoids, with the parasitoid metapopulation
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Fig. 2.4 Spatial occurrence and persistence of hosts and parasitoids after 10,000 time-steps as
a function of time. The landscape has 50 � 50 sites with reflective boundary conditions. The
results are displayed for different probabilities of ephemeral resource occurrence (pr). (a) A
fixed size of the ephemeral resource (k D 1,600 host individuals) and (b) variable ephemeral
resource size (1,600 � krand � 8,000 host individuals). Black, dark gray and light gray symbols
represent, respectively, the basal ephemeral resource, host and parasitoid abundances. Parameter
values: � D 1.5; ˛ D 0.34; ˇ D 0.06; c D 20; � D 0.5; �H D 0.85; �F D 0.4 (Reprinted with minor
adaptations from Oikos: Reigada and de Aguiar (2012), Copyright (2012), with permission from
John Wiley and Sons [3117141225588])

divided into two subgroups, where abundances oscillated synchronously (Fig. 2.5b).
We also simulated landscapes with a stable level of high-quality resource patches
(k D 8,000). The same qualitative patterns displayed in Fig. 2.4b were observed,
suggesting that the existence of high-quality patches increases the number of
dispersal individuals so that host populations exist in all areas of the landscape
where resources are available.
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Fig. 2.5 Snapshots of the basal resource, host and parasitoid spatial occupancy for t D 9,990,
t D 9,995 and t D 10,000 time-steps. Black, dark gray and light gray symbols represent, respec-
tively, the basal ephemeral resource, host and parasitoid abundances within each patch. The sizes of
the dots are proportional to the population at each site. The results are displayed for two values of
the basal resource occurrence (pr D 0.6 and pr D 1.0). (a) k D 1,600 and (b) 1,600 � krand � 8,000.
Parameter values � D 1.5; ˛ D 0.34; ˇ D 0.06; c D 20; � D 0.5; �H D 0.85; �F D 0.4. The number
of sites and boundary conditions are the same as in Fig. 2.4 (Reprinted from Oikos: Reigada and de
Aguiar (2012), Copyright (2012), with permission from John Wiley and Sons [3117141225588])

2.3.3 Discussion

The spatial structure has been postulated as the principal mechanism for increasing
the persistence time of host-single parasitoid interactions, as the likelihood that
an individual host is parasitised depends on its spatial location and on the overall
host distribution (Bailey et al. 1962; Hassell and May 1974; Hassell et al. 1991).
However, the persistence of a metapopulation occurs only if the species display
limited dispersal and if the subpopulation dynamics is asynchronous (Levins 1969,
1970; Gilpin and Hanski 1991; Hanski and Gilpin 1997). Our results demonstrated
that variations in resource frequency and quality affected the number of dispersing
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individuals and species colonisation rates with important consequences for species
occupancy and distribution over the landscape. Different resource qualities lead to
different fluctuation patterns of host and parasitoid populations.

Previous studies have argued that density fluctuations increase the extinction risk
of local populations, especially when the populations are small and the patches
ephemeral (Lande 1993; Legendre et al. 1999). Several studies have also reported
that high carrying capacities can cause instability that may lead to the extinction
of the metapopulation (Lande 1993; Saether et al. 1998). Even narrow density
fluctuations can disrupt the regulation within local patches and lead to the extinction
of the metapopulation (Bonsall et al. 2002).

In our simulations, host-parasitoid interactions occurring in poor-quality envi-
ronments (k D 1,600) produced a low host density that lead to an increase in the
number of males in the parasitoid progeny and consequently a decrease in the
parasitoid dispersers (females). This relatively low number of female parasitoids,
combined with the higher dispersal rate of hosts compared to parasitoids, led to
the development of large changes in species distribution over time. Landscapes
with high-quality resources had smaller fluctuations in the populations and higher
number of dispersed parasitoids, which spread to all available patches in the
landscape. In simulations with higher carrying capacities, we observed a small
probability of local extinctions, and parasitoids were present in all patches with
hosts.

Although several studies have considered the influence of the carrying capacity
on the persistence of populations, much less effort has been made towards under-
standing communities that depend on ephemeral basal resources. Our results have
demonstrated how species abundance and distribution can change depending on
the characteristics of the basal resource for a host-parasitoid trophic interaction.
Bottom-up effects are important to the parasitoid community (Price 1991; Hawkins
1992), and the lower trophic level (host resources) can constrain the number and
strength of trophic links in host-parasitoid webs (Price 1991). We observed that
resource sizes and their spatial distributions are important for determining the
number of host and parasitoid migrants. The variability in ephemeral resource sizes
(fixed or random) affected the species’ spatial distribution pattern, and coexistence
was possible only for high probabilities of ephemeral resources in the landscape.

Host-parasitoid persistence was negatively affected by the presence of ephemeral
patches because of the isolation of ephemeral subpopulations (due to a low
occurrence of resources in these sites) and due to the low total resources. The
results demonstrated that host-parasitoid persistence requires a minimum number
of patches in the landscape, which in turn depends upon the probability of resource
allocation. A low occurrence of resources caused the isolation of patches in
the landscape. Conversely, landscapes with a high density of patches yielded a
formation of clusters of host-parasitoid populations. The clusters were linked by
dispersion and helped to ensure the persistence of both species.

We demonstrated that increasing the carrying capacity leads to a higher number
of migrants that spread and colonise new patches in the spatial structure. When
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the resources were low, coexistence was not observed. These results highlight the
importance of demographic fluctuations, environmental factors and patch connec-
tivity for the density of migrants and host-parasitoid persistence in landscapes with
ephemeral resources.

In this section, we demonstrated that landscapes composed by ephemeral patches
can lead to the persistence of host and parasitoid species depending on the number
of sites with resources. Our results have the potential to provide broad manage-
ment guidelines for host-parasitoid and other insect interactions with stochastic
environmental characteristics (e.g., ephemeral resources, fragmented habitats, crop
rotations in agricultural ecosystems or schedules of harvest in managed cultures)
and demographic processes (e.g., arising from behaviour, genetic and physiological
factors). The results presented here are also relevant to the control of patchily
distributed pests, which can be maintained by the occurrence of ephemeral resources
in the landscape.

2.4 Foraging and Reproductive Strategies

2.4.1 General Overview

Production of dispersers is essential for colonising empty patches and for promoting
the global persistence of a metapopulation (Levins 1970; Hanski 1999). The
dispersal of parasitoids from their current patch to a new patch occupied by
hosts is the fundamental process that determines coexistence in these systems.
Dispersion also affects their spatial distribution and metapopulation structure,
as parasitoid aggregation is lower in patches with a low host density, which
allows hosts in these patches to escape extinction and contributes to the coex-
istence of hosts and parasitoids (Hassell 2000). We demonstrated in the previ-
ous section that within-patch dynamics are essential to promote emigration and
directly impact species movement. In this section, we explore how the effects
of sex ratio adjustment and interference competition contribute to controlling the
demography, species movement and the coexistence probability of host-parasitoid
systems.

Parasitoid reproductive success is directly related to host abundance and the way
hosts are exploited (Godfray 1994; Outreman et al. 2005). However, successful
parasitism depends not only on host density but also on parasitoid density, given that
higher numbers of parasitised hosts in an exploited patch can decrease the repro-
ductive success of a female parasitoid. Depending on the density of conspecifics
and on the host density in the patch, a female parasitoid can adopt different patch
exploitation strategies thereby “optimising” its results. These conditions determine
the “quality” of the exploited patch and can be measured by the ratio of non-
parasitised host per parasitoid, H/F (Fauvergue et al. 2006; Reigada et al. 2012;
Reigada and de Aguiar 2012).

The profitability of host patches changes over space due to competition by
hosts and over time due to host depletion (Fauvergue et al. 2006). A decrease
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in patch quality reduces the reproductive success of female parasitoids and can
stimulate them to leave the patch and search for a better one, which increases the
species dispersal rate among patches in the landscape. To maximise its chances for
reproduction, a foraging female parasitoid needs to decide whether to leave its natal
patch in search of better conditions or to stay. The choice is determined by the
patch quality required by the species (Fretwell and Lucas 1970; Charnov 1976) and
by their dispersal capability. Once a patch is selected, the female parasitoid must
optimise her reproductive potential to ensure that her genes are passed on.

In nature, arrhenotokous parasitoid species usually mate in isolated groups
before dispersing to new host patches and frequently show female-biased sex ratios.
Hamilton (1967) observed this characteristic and proposed the theory of Local Mate
Competition (LMC). This theory has been the basis for numerous studies about
adaptive sex ratio adjustment in parasitoid species (Hassell et al. 1983; Godfray
1994; Godfray and Werren 1996; Santolamazza-Carbone and Rivera 2003; Shuker
et al. 2006; Reigada et al. 2012) and assumes that females can control the sex ratio
of their offspring in an haplodiploid population. Therefore, females can reduce the
mating competition between their male offspring in response to foundress numbers
(female that lay eggs) and the number of parasitised hosts in the patch (Hamilton
1967; Shuker et al. 2006; Grillenberger et al. 2009).

The adjustment of the progeny sex ratio can be understood as a strategy of
female parasitoids to control sib-mating in patches of parasitised hosts. In addition
to inbreeding control, arrhenotoky also influences the population growth within
patches. In fact, the variation of the parasitoid sex ratio as a function of host
and parasitoid densities observably affects the host-parasitoid dynamics, given that
only mated females are able to produce female offspring capable of parasitising
hosts. This method of population control prevents the overexploitation of hosts and
consequently increases the stability of the host-parasitoid interaction (Hassell et al.
1983; Comins and Wellings 1985; Meunier and Bernstein 2002; Reigada et al. 2012;
Reigada and de Aguiar 2012).

In this section, we explore how variations in patch quality influence the host-
parasitoid coexistence, their dispersal and spatial distribution over the landscape. In
addition, we will analyse the effects of different levels of parasitoid responsiveness
to patch quality on species persistence and distribution on the landscape.

Throughout this section, the landscape is represented by a regular grid with
1,600 connected patches (40 � 40), where host resources are permanent, but host
populations are limited by a carrying capacity. Only hosts and female parasitoids
are allowed to disperse to other patches, and because male parasitoids are unable
to disperse, we assume that mating occurs in their native patch. We also define the
parasitoid foraging behaviour by their competitive abilities and by their ability to
change the sex ratio of the progeny according to variations in patch quality. Com-
petitive ability is a measure of the parasitoid efficiency in recognising parasitised
hosts and laying their eggs on healthy hosts (interference competition). We consider
parasitoid populations with three different levels of competitive ability, classified
as low, medium and high, according to three different values of the parameter ˇ

(Fig. 2.1). The three degrees of sex ratio adjustment, which are also classified as
low, medium or high, refer to the values of parameter � (Fig. 2.2).
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2.4.2 Simulation Results

2.4.2.1 Effects of Interference Competition and Sex Ratio Adjustments

In this sections, all simulations were initialised with 300 hosts and 4 female
parasitoids at a single patch located at the centre of the landscape, where all other
patches were empty. The host and parasitoid populations evolved according to the
model described in Sect. 2.2, where the response of parasitoids to patch quality is
based on three different foraging behaviours: (i) the decision to remain in or leave
the current patch; (ii) the control of the progeny’s sex ratio and (iii) the competitive
abilities of the female parasitoids. Sex ratio control occurs in response to spatio-
temporal fluctuations of host density, and competitive abilities are associated with
delays in successive ovipositions, which decrease the potential to attack hosts due
to interference from conspecifics in the exploited patch.

For simulations where female parasitoids explored patches extremely efficiently,
displaying low interference competition with conspecifics (ˇ D 0.01), we observed
a low coexistence probability (Fig. 2.6, circles). Similar results were obtained for
females that were less responsive to variations in patch quality (H/F) and produced
a high number of female offspring in poor-quality patches (� D 0.1). Both cases
evolved towards the overexploitation of hosts, which resulted in the extinction
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Fig. 2.6 Coexistence probabilities of host-parasitoid metapopulations as a function of the para-
sitoid sex ratio index (�) for different values of the competitive interference parameter (ˇ) after
5,000 time-steps (� D 1.5; ˛ D 0.15). Open symbols represent the coexistence probability obtained
from simulations with several combinations of host (�H) and parasitoid (�P) dispersal rates,
with 0.1 � �H � 1.0 and 0.1 � �P � 1.0. Full symbols represent the average over five replicates
of these simulations. The circles and dashed lines, triangles and solid lines, and squares and
dotted lines represent the results for low (ˇ D 0.01), medium (ˇ D 0.03) and high (ˇ D 0.05)
parasitoid interference competition, respectively (Reprinted from Ecological Modelling: Reigada
et al. (2012), Copyright (2012), with permission from Elsevier [3136490533560])
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of the parasitoid population. Conversely, for parasitoid populations displaying
some degree of demographic control, the probability of host-parasitoid coexistence
was significantly higher (Fig. 2.6). In the rest of the section, we detail cases of
medium and high levels of conspecific interference, as these are the most interesting
situations where coexistence is possible.

Our results demonstrate that parasitoid populations where females are more
responsive to patch quality have a higher probability of persistence. In these
cases, this observation occurs because the number of female offspring is restricted
when hosts are abundant in the patch. The fluctuations in population density also
decreased when the sex ratio adjustment was high (Fig. 2.7).

Fig. 2.7 Representative numerical simulations display the mean populations of hosts (black) and
parasitoids (gray) over a grid of 20 � 20 patches as a function of time. In panel (a), ˇ D 0.03 and
in panel (b), ˇ D 0.05. For both values, the degree of sex ratio adjustment varies from � D 0.1 to
� D 0.9. The simulations were performed with � D 1.5, ˛ D 0.15 and �H D �F D 0.5 (Reprinted
from Ecological Modelling: Reigada et al. (2012), Copyright (2012), with permission from Elsevier
[3136490533560])
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Considering the effects of the female parasitoid foraging efficiency, we observed
that parasitoids with a high degree of interference competition (ˇ D 0.05, Fig. 2.7b)
exhibited reduced oviposition rates in patches with a high density of parasitoids.
This drastically decreased the oscillations in the parasitoid population. For medium
levels of sex ratio adjustment (� D 0.5), the host and parasitoid populations oscil-
lated around two values in the abundance distribution. Conversely, parasitoid
populations with intermediate interference competition (ˇ D 0.03) always exhibited
less stable oscillations, which reached extremely low population values (Fig. 2.7a).
The combined results from the sex ratio adjustment and degree of interference
competition suggest that stability in host-parasitoid populations occurs only when
the population growth strongly correlates with patch conditions.

The different strategies of parasitoid foraging and reproductive behaviour have
consequences for the spatial distribution of the populations in the landscape.
Figure 2.8 presents snapshots of the patch occupancy of hosts and parasitoids for
three instants of time separated by five steps of high degree of sex ratio adjustment
(” D 0.9) and two degrees of competitive interference, ˇ D 0.03 and ˇ D 0.05.
For intermediate competitive interference (ˇ D 0.03), the abundance distribution
displays fluctuations for host and parasitoid species. This dynamical behaviour
causes large peaks of high abundances in a patch that decreases to zero in a few
generations and leaves the patch empty or nearly empty (Fig. 2.8a). This behaviour
was observed for intermediary and high sex ratio adjustment values. For low values,
(� D 0.1), the parasitoids went extinct.

For a large degree of interference competition (ˇ D 0.05) and intermediary
and high sex ratio adjustment values, the behaviour changed drastically. The

Fig. 2.8 Snapshots of host and parasitoid spatial occupancy for t D 9,990, 9,995 and 10,000.
Black and dark gray symbols represent host and parasitoid abundance within each patch (� D 1.5,
˛ D 0.15), respectively. The size of the dots is proportional to the population at the site. We
compared the effects of different levels of competitive interference for � D 0.9, �H D 0.2 and
�F D 0.8. ˇ D 0.03 in panel (a) and ˇ D 0.05 in (b). (Reprinted with minor adaptations from
Ecological Modelling: Reigada et al. (2012), Copyright (2012), with permission from Elsevier
[3136490533560])
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host population evolved to an approximately uniform spatio-temporal distribution,
whereas the parasitoids still displayed fluctuations of density across the landscape.
(Fig. 2.8b).

Our results suggest that the degree of interference competition can drastically
change the spatio-temporal patterns of the populations from highly a variable
pattern of densities to uniform as the interference competition increases. The degree
of sex ratio adjustment also plays an extremely important role, as it contributes
significantly to population persistence.

2.4.2.2 Dispersal Effects

In this section, we study the dynamics of extinction and patch colonisation for sets of
parameters where coexistence was observed (ˇ D 0.03 and ˇ D 0.05 for interference
competition and � D 0.5 and � D 0.9 for sex ratio adjustment). To characterise the
dynamics of patch recolonisation, we defined the persistence time of extinction as
the average time a patch remains empty or with population densities lower than 10 %
of the average population per patch. We analysed the effects of demographic control
(interference competition and sex ratio) for three combinations of species dispersal
rates: (i) parasitoids are more dispersive than their hosts (�H D 0.2, �F D 0.8),
(ii) parasitoids and hosts have the same dispersal rates (�H D �F D 0.5) and (iii)
parasitoids are less dispersive than their hosts (�H D 0.8, �F D 0.2).

For intermediate degrees of interference competition (ˇ D 0.03), patches with
extinct or low-density populations remains so for relatively long periods of time
before being recolonised (Fig. 2.9a, b). The recolonisation time decreased as the
degree of competition increased to ˇ D 0.05. The dispersal rates also influenced the
recolonisation time, particularly for patches at the landscape boundaries. Generally,
the lower the parasitoid dispersal rates, the longer the average time that boundary
patches remained empty after extinction. The degree of sex ratio adjustment also
affected the time of colonisation under fixed conditions of interference competition
(compare Fig. 2.9a, b).

The recolonisation time was reduced to a single time-step for all values of sex
ratio adjustment for ˇ D 0.05, except for � D 0.1. In this case (Fig. 2.9c), some of the
local parasitoid populations remained extinct for long periods due to the clustering
of hosts in a few patches, which limited the parasitoid occupation to these areas. The
dispersal rates did not change the results for medium and high sex ratio adjustments.

2.4.3 Discussion

Parasitoid species can differ dramatically in their response to patch quality and
also in their strategies to maximise the rate of progeny production (Bernstein
and Driessen 1996; van Alphen et al. 2003; Wajnberg 2006; van Alphen and
Bernstein 2008; Amat et al. 2009; Macke et al. 2011). These different reproductive
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Fig. 2.9 The mean persistence time of extinction in parasitoid subpopulations for different values
of parasitoid sex ratio adjustment (�) after 8,000 time-steps (out of 10,000 time-steps) for � D 1.5
and ˛ D 0.15. For each column, the persistence time is given for different host and parasitoid
dispersal rate combinations: (a) ˇ D 0.03, � D 0.5; (b) ˇ D 0.03, � D 0.9; (c) ˇ D 0.05, � D 0.1.
The black areas represent host subpopulations that were not extinct during the 2,000 time-steps
analysed. The white areas represent host subpopulations that remained extinct and/or with low
densities for at least 10 time-steps. The gray colours represent intermediate average persistence
times at 1-time-step intervals (Reprinted from Ecological Modelling: Reigada et al. (2012),
Copyright (2012), with permission from Elsevier [3136490533560])

and foraging adaptive behaviours have important consequences for the persistence
and spatio-temporal distribution of both the parasitoids and theirs hosts. Here we
used simulations to explore these features. The populations were characterised by
different degrees of sex ratio control, competitive ability and dispersal rates.

Two key mechanisms that avoid the overexploitation of hosts are density-
dependent interactions and spatially structured populations (Hassell et al. 1983;
Bonsall et al. 2002). These features allow parasitoids to highly aggregate only in
patches with a high host density so that small host populations can escape extinction
(Sutherland 1983; Lozano et al. 1997; Hassell 2000; Briggs and Hoopes 2004).
We demonstrated that foraging strategies that are regulated by patch quality can
considerably affect the spatial and temporal distribution of individuals and may lead
to self-regulating parasitoid populations. Our results also indicate that the effects
sex ratio adjustment, interference competition and density-dependent dispersal in
host-parasitoid systems are complex, and their effects are interrelated.



2 Demographic Processes in Spatially Structured Host-Parasitoid Systems 33

The parasitoids’ ability to change the number and sex ratio of their offspring
in response to changes in environmental properties is a widespread phenomenon
in patchy landscapes that contributes significantly to the stability of host-parasitoid
systems (Hassell et al. 1983). The number of female offspring depends on several
factors, such as the local host density, the number of female and male parasitoids and
the proportion of females to hosts (Hassell et al. 1983; Comins and Wellings 1985;
Lozano et al. 1997; Meunier and Bernstein 2002; Reigada et al. 2012). The host-
parasitoid equilibrium and spatial distribution depends on the specific mechanisms
at work. In this section, we explore the dynamics dependence on the local ratio of
hosts to female parasitoids, also known as the patch quality. In species that display
this feature, the female parasitoids can access the density of conspecifics or their
traces by encountering rates of parasitised hosts (Amat et al. 2009). We observed
that high rates of encounter with parasitised hosts led to variations in parasitoid local
demography due to the reduction of parasitoid reproductive success and changes in
the sex ratio, which altered the parasitism rates.

Variation in the sex ratio of parasitoid populations significantly affected the
female parasitoids. We observed coexistence for systems where parasitoid pop-
ulations displayed a high degree of sex ratio control in response to fluctuations
in the host population size (medium or high sex ratio degree). However, under
high competition, medium or high adjustments to the sex ratio were relatively
unimportant to the host-parasitoid dynamics.

Previous studies have already indicated that sex ratio adjustment by females has
limited influence on host-parasitoid systems (Comins and Wellings 1985; Lozano
et al. 1997; Meunier and Bernstein 2002; Reigada et al. 2012). The effects of
controlling the sex ratio are usually associated with other biological factors, such as
the host reproductive rate, parasitoid aggregation, parasitoid search efficiency and
mutual interference competition (Lozano et al. 1997; Meunier and Bernstein 2002).
Here we observed that sex ratio adjustment can be important when the degree of
interference competition among parasitoids is low, thus increasing, in this case, the
probability of coexistence; however, for higher levels of interference competition,
its effects were suppressed. Conversely, the level of interference competition was
always an important factor and constrained parasitoid effectiveness in reducing host
populations and determined the overall species distribution in the landscape.

Intermediate degrees of interference competition generated fluctuations in the
parasitoids subpopulations that led to highly variable patterns of density across the
landscape in host and parasitoid population abundances. However, for high values
of interference competition, the intrinsic demographic control of the parasitoid
populations was higher, allowing hosts to spread to all patches in the metapopulation
arena. In this case, the host population was uniformly distributed, although the
parasitoids’ distribution remained uneven across the arena.

High levels of interference competition and sex ratio adjustment in parasitoid
populations reduced the production of dispersal individuals. In these cases, the
ability to disperse has little effect, as the number of emigrants is constant and
rarely reaches its maximum. High demographic control of parasitoid populations
also reduced the fluctuations in host populations and increased the synchronisation
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among patches. Consequently, host populations displayed a uniform distribution
across the landscape, and colonisation/extinction events for parasitoid populations
were not larger than a single time-step, reflecting the oscillations of the local
populations instead of a dispersing species effect.

Previous models of foraging parasitoids have failed to include important co-
evolutionary aspects of population dynamics in the interaction with the host species
(Bonsall et al. 2002). Different foraging strategies are used during the exploitation
of hosts in response to demographic fluctuations, thereby modifying the amount of
time a female parasitoid stays in a patch (Hamilton 1967; Outreman et al. 2005;
van Alphen and Bernstein 2008; Amat et al. 2009; Reigada et al. 2012). In natural
systems, the landscape is fragmented into several patches, each with a different host
density and different degrees of interference competition. Because the parasitoids
cannot assess of the profitability of the entire set of patches, the female parasitoids
must adopt the best possible local strategy to maximise the use of hosts before
leaving the patch, as such a decision has high costs, such as exposure to predation
or difficulty in finding another suitable patch.

Our results also indicate that the stabilising effects incurred from the tendency of
parasitoids to aggregate in high-quality patches (Hassell 2000; Briggs and Hoopes
2004) need to be considered with caution, given that aggregation’s association with
changes in the sex ratio and mutual interference competition reduces the number of
female offspring and the rate of parasitoid dispersal, thereby increasing the size and
distribution of the host population in the landscape.

The stability of host-parasitoid systems depends on several complex interactions
between intrinsic biological characteristics of the interacting species and cannot
be attributed to a single mechanism (Lozano et al. 1997; Meunier and Bernstein
2002; Macke et al. 2011; Reigada et al. 2012; Reigada and de Aguiar 2012). In
this study, we demonstrated that different behaviours and/or strategies adopted by
female arrhenotokous parasitoids, as well as different patch quality requirements
and patch uses, yield different population distributions. These observations indicate
that the inclusion of life history traits of the host-parasitoid interaction can help
understand the spatial and temporal distribution of these species. A natural direction
for this research is to include the dynamics of co-evolution of these traits and to
study the adaptation of the strategies to different environmental situations.

2.5 Remarks

Metapopulation models have highlighted the importance of patch size, patch quality
and dispersal rates on metapopulation dynamics (Pulliam 1988; Hanski 1994;
Hassell et al. 1991). Few studies, however, have considered the effects of foraging
and reproductive behaviour on controlling the local patch demography (Hassell et al.
1983; Comins and Wellings 1985; Meunier and Bernstein 2002). In this chapter, we
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outlined the importance of demographic control factors for the movement of species
among patches and for understanding the extent to which the colonisation of new
patches is facilitated or impeded by them.

We assumed that species are subject to density-dependent effects in two different
periods of host-parasitoid interactions: pre and post-dispersal. During the pre-
dispersal period, the number of dispersers and the number of residents that remained
in each patch depended on the species “optimal decision” to explore or to leave
the current patch, which is directly affected by the number of individuals in the
patch. After dispersal, individuals arriving in a new patch are still influenced by the
local densities, which define the host survival rate and the reproductive success of
parasitoids. In addition to species behavioural aspects, we also demonstrated influ-
ences of patch spatio-temporal availability on species demography and dispersal.
The results indicate that the different levels of demographic control that arise from
species behaviours and ecological processes in response to changes in patch quality
lead to different species spatial distributions and abundance in the landscape.

Parasitoid adjustments to patch quality (in terms of host availability) result from
coevolutionary aspects of parasitoids and hosts species, on both ecological and
evolutionary time scales. Although we did not include coevolutionary dynamics
in host and parasitoid populations, future work should focus on elucidating how
species traits evolve dynamically in a density-dependent interaction model and
how they converge to an “optimum species response”. This could help explain the
different abundance and spatial occupancy patterns of real populations and also
make inferences about their tolerance and persistence in the face of environmental
changes.

In this study, we focused on the interference of one host species on the repro-
ductive and foraging behaviour of parasitoids, although, in nature, more than one
potential host species is commonly present for parasitoids. The presence of different
host species exerts important effects on the parasitoid’s decision to attack a specific
host species. Normally, the host species attacked by a given parasitoid species can be
classified by different suitability levels. According to different types of host cellular
immune response to parasitoids, many hosts can debilitate or destroy immature
parasitoids and survive to parasitism, which reduces the parasitoids’ reproductive
success (Heimpel et al. 2003). Therefore, the addition of a suboptimal prey in our
host-parasitoid model can contribute to understanding how different host qualities,
and the consequent asymmetry in parasitoid attack, change parasitoid foraging
behaviour and offspring sex ratio and generate variations in species coexistence and
distribution on the landscape.

Another interesting point to be explored in our model is the inclusion of a
complex spatial structure in the landscape. In this study, the landscape where host
and parasitoid species interact was represented by a regular square lattice. However,
natural environments have become more and more fragmented because of deforesta-
tion, farming, urbanisation and climate change (Hagen et al. 2012). Different species
are affected by fragmentation in different ways that depend strongly on their ability
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to move between fragments, i.e., on their dispersal characteristics (Tscharntke 2000;
Tscharntke et al. 2003; Cronin and Reeve 2005). In this context, few host-parasitoid
spatial models have incorporated realistic heterogeneous dispersal strategies or
embedded a complex structured landscape to host-parasitoid dynamics (Cronin
and Reeve 2005). The model developed in Sect. 2.2 allows for the description of
extremely general landscapes with any number of patches connected in arbitrary
ways through the adjacency matrix.

The use of network-based models (or graph theoretical models) is an easy way
to insert more complexity to landscape structure, defining spatial arrangement of
patches and different probability of connection among them (Urban and Keitt 2001).
Nodes in a spatially explicit landscape network represent the individual habitat
patches, and the links between the nodes represent the possibility of individual
flux among them (Urban and Keitt 2001; Cronin and Reeve 2005; Bodin and Saura
2010).

Considering the graphs approach in the landscape outline, modifications in the
adjacency matrix presented in this model can easily allow for the insertion of
different patterns in dispersal movement of individuals between patches. All of
the dispersion equations were also written for generic landscape connectivities in
a way that allowed the study of host-parasitoid dynamics for different network
structures to be straightforward. In this way, this model can be easily modified
to understand the effects of species behaviour and reproductive strategies in more
complex landscapes, to make predictions for different connectivity patterns (or
reach abilities on the landscape) and to assess the quantities of organisms that flow
throughout the landscape in a more realistic overview.
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Abstract Dengue incidence is dependent on abiotic factors that directly affect the
population dynamics of mosquitoes with serious implications for dengue transmis-
sion. By using estimated entomological parameters dependent on temperature, and
including the dependency of these parameters on rainfall, the seasonally varying
population size of the mosquito Aedes aegypti is evaluated using a mathematical
model. The anthropophilic and peridomestic female A. aegypti bite humans for
blood to mature fertilised eggs, during which the dengue virus can spread between
mosquitoes and humans. As an example of applied entomology, mosquito and
human populations are coupled to assess dengue virus transmission. Seasonal
patterns of mosquito populations influence dengue epidemics, illustrating the
importance of temperature and rainfall in designing control mechanisms.
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3.1 Introduction

Although a vaccine is not available, the mechanisms for controlling dengue
transmission rely on the control of its vector, the mosquito Aedes aegypti. This fact
underscores the importance of understanding the dynamics of mosquito populations
under abiotic influences, such as temperature and rainfall.

The A. aegypti life cycle comprises an aquatic phase (egg, larva and pupa stages)
followed by an adult form. Female mosquitoes mate after emerging from the pupa
stage and fertilise all of the eggs. Female mosquitoes feed on human blood to mature
the fertilised eggs, which are laid in suitable recipients (breeding sites) from time to
time (gonadotrophic cycle, a period of approximately 3 days). The eggs hatch into
larvae, which encompass four instars, when they come in contact with water. Larvae
can die during this stage or complete the cycle and become pupae. Pupae, in turn,
can die (low probability) or emerge as adult mosquitoes. In this last stage, however,
the mosquitoes are strictly considered to be at the stage of mortality and will die.

A. aegypti population dynamics aim to mimic its population size by using
demographic parameters. Therefore, if the transition rates from larva to pupa and
pupa to adult mosquito, the mortality rates in each stage (larva, pupa and adult),
and the oviposition rates are known, then the population size can be estimated.
These entomological parameters, however, vary with temperature and potentially
with rainfall. Additionally, the number of breeding sites, which could be viewed as
the carrying capacity in ecological terms, is an abiotic factor that determines the
size of the mosquito population. These breeding sites, in fact, depend strongly on
the rainfall.

With respect to the temperature influences on mosquito populations, entomo-
logical parameters, such as transition and mortality rates in the aquatic phase,
the mortality rate of adult mosquitoes and oviposition rates, were obtained exper-
imentally under a controlled temperature (Yang et al. 2009a, b, 2011). Briefly,
temperature-controlled experiments were designed to assess the effect of temper-
ature on the development, survival of immature (aquatic) forms and on the survival
and oviposition of adult mosquitoes. In each experiment, a fixed number of larvae
or mosquitoes were set in a germination chamber with a controlled temperature
(the device did not allow for a controlled humidity). The A. aegypti strain used
in the experiments was obtained from natural populations of the City of Marília
(�22ı1205000 latitude and 49ı5604500 longitude), which is northwest of São Paulo
State, Brazil. A one day period was divided into “day” (light turned on) and “night”
(light turned off) according to the photoperiod that occurs in the City of Marília. At
low temperatures, we set the dark period to be slightly longer than the light period to
mimic the winter season and vice versa at high temperatures. Inside the germination
chamber, two temperatures were fixed to correspond to the light and dark periods.
The weighted (with respect to periods of time when the light was turned on or off)
mean temperature was taken to be the temperature of the experiment.

However, to verify if the programmed temperature was achieved during each
experiment, a thermohygrograph was settled inside the chamber. Temperature and
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humidity data were then recorded on week-period paper. The weekly data were then
transcribed and used to calculate the weighted average temperature, which was taken
as the actual temperature inside the germination chamber instead of the programed
one.

There is a paucity of knowledge about the measurement of the effects of rainfall
in mosquito population. We retrieved and reproduced some previously observed
results. Vezzani et al. (2004) identified the highest adult A. aegypti density with
accumulated rainfalls above 150 mm, and Micieli and Campos (2003) observed a
close correlation between the highest peak of the A. aegypti population with high
rainfall, and the population decreased for the months with less rainfall. Baruah
and Dutta (2012) observed an extremely dense A. aegypti population with an
annual average rainfall of 2,758 mm, and the highest density was observed in
the post-monsoon season. Conversely, the larval population was not peak in these
conditions as expected, as the heavy rain washed away most of the containers.
Notwithstanding, immature A. aegypti stages resisted the rain flooding better than
Cx. pipiens. This difference was most dramatic during the pupal stage (Koenraadt
and Harrington 2008). An experiment performed by Dickerson et al. (2012) with
Anopheles mosquitoes revealed that they can fly in the rain.

Other authors (Moore et al. 1978; Toma et al. 1982) have indicated that
Aedes abundance is mainly regulated by temperature rather than precipitation.
However, rainfall may be the only determining factor for Aedes proliferation where
temperature is always above the marginal level. Baruah and Dutta (2012) found
that rain fall, when it is too heavy and continuous, may also be a regulating factor
for A. aegypti proliferation, where a significant reduction of adults and washing
away of immature stages was observed. However, heavy rainfall prepares the
habitat for Aedes proliferation when the temperature is highly suitable for mosquito
proliferation.

In this work, we aim to assess the effects of temperature and rainfall on the
mosquito population. The mosquito population variation is important to study,
as this species is the dengue virus vector. A. aegypti is an anthropophilic and
peridomestic insect (adapted to the modern life style of humans). Moreover, because
their bites occur during the day, the chance of dengue virus transmission is
enhanced. The interaction between humans and mosquitoes may result in sustained
dengue virus transmission.

Another intention of this work is to assess the influence of rain fall on dengue
transmission. To achieve this goal, we developed a deterministic model that
considers entomological parameters and allows them to depend on temperature and
rainfall if necessary.

The first part of this chapter (Sect. 3.2) addressed the variation of mosquito
populations with temperature and rainfall or precipitation. A system of equations
was developed based on the life cycle of the mosquito A. aegypti, where the
parameters of the model rely on the entomological parameters depending on
temperature and rainfall. In this section, our objective is to assess the mosquito
population size based on the model parameters when they are: (1) constant, (2)
temperature-dependent, or (3) both temperature- and precipitation-dependent.
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The second part of this chapter (Sect. 3.3) addresses the transmission of dengue
virus due to the interaction between human and mosquito populations. Considering
the entomological parameters dependent on temperature and precipitation, dengue
propagation is assessed by mathematical modelling. We discuss the results of the
mosquito modelling and dengue transmission in Sect. 3.4, and the conclusions are
presented in Sect. 3.5.

3.2 Mosquito Population Dynamics

Entomological parameters governing the dengue vector, the mosquito Aedes
aegypti, are dependent on temperature and precipitation. A model considering
these entomological parameters was developed to assess the population size of A.
aegypti. The dependency on the model parameters with temperature and rainfall
was developed based on a non-autonomous model. Given that the entomological
parameters are constant, by considering average values, an autonomous model was
studied in detail.

3.2.1 Model Formulation

Aedes aegypti population dynamics considers only female mosquitoes by assuming
that all of them mate as soon as they emerge. Female mosquitoes lay eggs in
suitable recipients (breeding sites). We assume that a fraction f of these eggs will
become females and a fraction q will hatch to the larva stage. Eggs hatch to larvae
without constraint (Regis et al. 2008); however, larvae are constrained to carrying
capacity due to, for instance, limited resources and competition among them. The
intrinsic oviposition rate and the carrying capacity (breeding sites) are designed
by, respectively, ∅m and C. The per-capita egg production is fq∅m(1�L/C), where
L represents the number of larvae, and that multiplied by M, the number of adult
female mosquitoes, obtains the total viable eggs that can yield females. The larvae
die at a per-capita mortality rate �l or become pupae at the per-capita transition rate
� l. The pupae, which are represented by P, die at a per-capita rate �p or emerge
as adult mosquitoes at a per-capita rate �p. Finally, the females die at a per-capita
mortality rate �m. All entomological parameters are dependent on temperature and
were obtained experimentally in controlled temperature experiments (Yang et al.
2009a, b, 2011).

Notably, the egg stage was not considered in the previous description of mosquito
population dynamics due to the difficulty in obtaining the entomological parameters
at this stage. Additionally, the inverse of per-capita mortality and transition rates are
the average survival time and the period of time spent in each stage, respectively.
For example, �� 1

p is the average survival time in the pupa stage, and �� 1
p is the

mean time spent in the pupa stage before emerging as an adult mosquito.
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The model parameters are dependent on a variety of factors. Among them, we
considered the temperature and precipitation and assessed how these factors are
encompassed in the model’s parameters.

From a series of daily recorded maximum (Tmax) and minimum (Tmin) tempera-
tures (CEPAGRI/UNICAMP 2012), we interpolated any temperature T at time t as

T .t/ D Tmin.j / C ŒTmax.j / � Tmin.j /� sin
�
	t 0�

where the index j, which is the integer part of time t, refers to the j-th calendar day,
and t0 is the fractional part of time t, that is, 0 � t0 < 1. Notably, t0 D 0 and t0 D 1
correspond to midnight, whereas t0 D 0.5 corresponds to midday.

The amount of rain precipitation (W) influences the carrying capacity and the
mortality rates in the aquatic phase and the capacity of eggs being hatched. During
heavy rain periods, larvae and pupae can be flushed, thereby cleansing breeding sites
of aquatic forms (Madi et al. 2012). We call this physically induced mortality, and
we do not consider this type of mortality among adult mosquitoes (Dickerson et al.
2012).

From a series of daily recorded precipitation (Instituto de Açucar e Álcool 2012),
we defined the simplest physical additional mortality as

�a� D G� ŒW.j / � Vc� 
 ŒW.j / � Vc� ;

where � stands for l and p, the larva and pupa stages, W(j) is the rain precipitation
at day j (the j-th calendar day), Vc is the critical rain volume sufficiently high to
originate the overflow and unsuitability of breeding sites, and 
 (x) is the Heaviside
function, that where 
 (x) D 1 if x � 0 and is otherwise 
(x) D 0. The parameter G*

is defined in terms of another parameter g* as G* D �*g*. Then, we have the total
mortality rates for aquatic phases:(

�s
l D �l f1 C gl ŒW.j / � Vc� 
 ŒW.j / � Vc�g

�s
p D �p

˚
1 C gp ŒW.j / � Vc� 
 ŒW.j / � Vc�

	
;

where �l and �p are temperature-dependent mortality rates, and gl and gp measure
how the precipitation affects the additional physical mortality rates.

The daily recorded maximum (Tmax) and minimum (Tmin) temperatures and
rain precipitation (W) are fixed along the entire day of observation. However, the
temperature is allowed to vary along the day, which accounts for the inter-daily
variability of the entomological parameters.

The fraction of eggs that are hatching (q) and the carrying capacity (C) are
assumed to depend only on precipitation. We assume that the rain that has fallen
in the past few days also influences both parameters.

During the dry seasons, the number of breeding sites is dramatically reduced. We
assume that the amount of rainfall always increases the breeding sites, even in the
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case of heavy rainfall. Hence, for carrying capacity, we describe the influence of
rainfall in its number as

C D DCi

n
1 � c0e�c1ŒW.j /CWM �

o
;

where D represents the magnitude of breeding sites found in a city, Ci is the rain-
independent variation in breeding sites but can depend on time due to demographic
changes in human population, 1 � c0, with c0 < 1, is the minimum fraction of
carrying capacity in the complete absence of rain (maybe due to vessels that store
water), and c1 is the change of breeding sites due to rain (the higher c1, the higher the
influence of rain on increasing breeding sites). The term WM represents the rainfall
of past days defined by

WM D
j �1X
kD1

W .j � k/

fw1 � ŒTmax .j � k/ C Tmin .j � k/�gk
;

where W(j � k) is the rainfall in j-k-th days before, w1 is the residual effect of past
rainfall (the higher w1, the lower the contribution of past rain due to evaporation). If
w1 D 1/2, then the evaporation is a function of the daily mean temperature. Heavy
and continuous rainfall may be a regulating factor for A. aegypti proliferation,
as immature forms might have been washed away and thus significantly reduced
the adult production. However, heavy rainfall prepares the habitat for A. aegypti
proliferation in the post rainy season (Baruah and Dutta 2012).

For the fraction of eggs that hatch into larvae, we follow similar argumentation
given for the carrying capacity. Because the relative humidity is almost 100 % when
there is abundant rain, we assume that

q D 1 � q0e�q1ŒW.j /CWM �;

where 1�q0 is the capacity of eggs hatching even without rainfall, and q1 is the rate
of hatching due to humidity (the higher q1, the higher the influence of humidity on
hatching). Notably, q D 1 when W ! 1.

We now want to consider control efforts, such as insecticide application and
the removal of breeding sites. Breeding sites can be removed in two ways: (1)
removal of breeding sites targeting houses surrounding case notification and (2)
preventive removal to avoid dengue transmission. The total size of inhabitations
in Campinas City Esteva and Vargas (2003) is approximately nT D 350,000. We
assume that the number of houses surveyed for breeding sites, and for further
removal, is proportional to decreases in the carrying capacity, represented by

C D DCi

n
1 � c0e

�c1ŒW.j /CWM �
o�

1 � ˛b

nb

nT

� ˛a

na

nT

�
;
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where nb and na are the numbers of houses surveyed surrounding dengue cases; as
preventive visits, and ˛b and ˛a correspond to the efficacy. Because the preventive
visit is a random event, whereas the dengue-targeting house visitation is case-search
event, we assumed that ˛b > ˛a.

Spraying insecticide aims to kill adult mosquitoes, which is represented by

�s
m D �m

�
1 C ˛s

ni

nT

�
;

where ni is the number of houses where insecticide was sprayed surrounding dengue
cases, and ˛s is the insecticide efficacy.

Based on the above description of the A. aegypti life cycle and the parameter
definitions, the dynamics of mosquito populations is described by8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

dl

dt
D fq∅mm

�
1 � l

C

�
� �

�l C �s
l

�
l

dp

dt
D �l l �

�
�p C �s

p

�
p

dm

dt
D �pp � �s

mm;

(3.1)

where the ratios are l D L/D, p D P/D and m D M/D. The model parameters are8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

q D 1 � q0e
�q1ŒW.j /CWM �

C D Ci

˚
1 � c0e

�c1ŒW.j /CWM �
	�

1 � ˛b

nb

nT

� ˛a

na

nT

�
�s

l D �l f1 C gl ŒW.j / � Vc� 
 ŒW.j / � Vc�g
�s

p D �p

˚
1 C gp ŒW.j / � Vc� 
 ŒW.j / � Vc�

	
�s

m D �m

�
1 C ˛s

ni

nT

�
;

(3.2)

where ∅m, �m, � l and �p depend only on temperature; �l and �p depend on both
temperature and precipitation; q and C depend only on precipitation; and f is the
constant fraction of eggs that yield females.

The dynamical trajectories of the system of equations, Eq. (3.1), are obtained
numerically considering the initial conditions, at t D 0, given by

.l.0/ D 0; p.0/ D 0; m.0/ D m0/ ;

where m0 D 1= .Dm/ and m is the equilibrium value (see Eq. (3.3) below). These
initial conditions supplied to the dynamical system correspond to the introduction
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of one mosquito in a community free of mosquitoes in a specified calendar time,
which was set as t D 0.

Although the model is non-autonomous, that is, Eq. (3.1) depends explicitly
on time t, we present an analysis of an autonomous model. This particular study
assumes that all model parameters given by Eq. (3.2) are constant (for example, at
a given temperature and constant precipitation).

3.2.2 Analysis of an Autonomous Model

The analysis of autonomous dynamics provides ideas for the expected local time
behaviour of the general model in terms of medium values of the parameters. In this
situation, Eq. (3.1) presents steady states, which are designed as the equilibrium
point (l , p, m). There are two possibilities:

1. Absence (extinction) of mosquito populations, called a trivial equilibrium,
expressed as Z0 D (0,0,0).

2. Infestation of (colonisation by) mosquito populations, called a non-trivial equi-
librium, expressed as Z1 D (l , p, m), where8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

l D C

�
1 � 1

Qc

�
p D �l

�p C �s
p

C

�
1 � 1

Qc

�
m D �p

�s
m

�l

�p C �s
p

C

�
1 � 1

Qc

�
;

(3.3)

with Qc, represented by

Qc D ∅m

�s
m

fq
�l

�l C �s
l

�p

�p C �s
p

; (3.4)

is the offspring number.

Z1 is globally stable for Qc > 1 Anderson and May (1991), whereas for Qc < 1,
Z0 is globally stable. Therefore, Qc D 1 is the bifurcation value. If we define

∅
th
m D �s

m

fq

�l C �s
l

�l

�p C �s
p

�p

;

which is the threshold of ∅m because the bifurcation occurs at ∅m D∅
th
m , for

∅m >∅
th
m , the non-trivial equilibrium appears. Notably, Z1 is biologically feasible

(positive numbers) if Qc > 1.



3 Abiotic Effects on Population Dynamics of Mosquitoes and Their Influence. . . 47

The above results unequivocally demonstrate the dynamical trajectories of the
autonomous system of equations, Eq. (3.1), with constant parameters. Disregarding
the initial conditions supplied to the dynamical system due to the global stability
results, all of the dynamical trajectories attain: (1) an equilibrium free of mosquitoes,
Z0 (if Qc < 1); or (2) infestation by mosquito populations Z1 (if Qc > 1). The
offspring number Qc therefore plays an important role in the dynamics, and it
deserves more discussion.

First, if none of the controlling mechanisms for the mosquito population are
considered, then the basic offspring number Q0 is

Q0 D ∅m

�m

fq
�l

�l C �l

�p

�p C �p

; (3.5)

where �l, �p and �m are temperature-dependent natural mortality rates. Let us
interpret the basic offspring number Q0 biologically. A female mosquito, during
its entire lifespan (1/�m), lays on average ∅m/�m eggs; a fraction f of these eggs
emerge as females, and a fraction q of these female eggs hatch into larvae. These
larvae must survive the larval stage and transform to pupae, which occurs with a
probability of � l/(� l C �l). These pupae must emerge as adult female mosquitoes
with a probability of �p/(�p C �p). Hence, Q0 is the average number of viable
female mosquitoes (daughters) that one female generates during its entire lifespan.
Therefore, the mosquito population does not go to extinction if Q0 > 1 (one female
mosquito generates more than one viable daughter).

Second, the controlling mechanisms decrease the basic number of offspring. The
relationship between Qc and Q0 is

Qc D Q0

�l C �l

�l C �s
l

�p C �p

�p C �s
p

�m

�s
m

;

where �l < �s
l , �p < �s

p and �m < �s
m according to Eq. (3.2). The control mecha-

nisms decrease the basic number of offspring and can result in the elimination of
mosquito populations by decreasing it below unity (Qc < 1).

3.2.3 Analysis of a Non-autonomous Model

The non-autonomous system of equations, given by Eq. (3.1), must be dealt with
numerically. The dynamical trajectories of this system do not achieve any limiting
values asymptotically. For this reason, the notion of the offspring number does not
make sense.

However, we can introduce the effective offspring number Qef in the context of
non-autonomous modelling from ideas borrowed from autonomous modelling: the
time-independent model parameters of the offspring number Qc are allowed to vary,
originating the time varying effective offspring number Qef .
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3.3 Dengue Transmission

The A. aegypti population, its dynamics described by Eq. (3.1), is linked to
the human population to assess dengue propagation. The dependency of model
parameters with temperature and rainfall results in a non-autonomous model.
Considering that the entomological parameters are constant, by using average
values, an autonomous model can be studied in detail.

3.3.1 Model Formulation

Dengue is caused by an arbovirus, and the infection in mosquitoes extremely
weakens their innate immune response. However, among humans, this infection
induces a strong and everlasting immune response (against one serotype). Dengue
virus spreads among humans in a suitable environment to A. aegypti mosquitoes.

When dengue virus circulates in interacting mosquito and human populations,
the female mosquito populations must be subdivided into three classes: susceptible
(M1), exposed (M2) and infectious (M3). Susceptible mosquitoes are infected
according to, for example, a mass action law Lindsay and Birley (1996), where the
per-capita incidence rate is generically referred to as Bm, and they enter an exposed
class. The rate of transfer from exposed to infectious classes is represented by �m,
where �� 1

m is the extrinsic incubation period. Then, they spend the entire life time in
the infectious class due to the assumption of absence of immune response. The total
population size is M D M1 C M2 C M3. The larval and pupal stages are described
by the first two equations of Eq. (3.1). Hence, the dynamics of the dengue virus
propagation among mosquitoes is8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

dL

dt
D fq∅m

�
1 � L

C

�
M � �

�l C �s
l

�
L

dP

dt
D �l L �

�
�p C �s

p

�
P

dM1

dt
D �pP � �

Bm C �s
m

�
M1

dM2

dt
D BmM1 � �

�m C �d
m

�
M2

dM3

dt
D �mM2 � �d

mM3:

(3.6)

The human population is subdivided into four classes according to the natural
history of the dengue infection: susceptible (S), exposed (E), infectious (I) and
immune or recovered (R). Susceptible humans are infected according to, for
example, a mass action law, where the per-capita incidence rate is generically
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referred to as Bh, and they enter an exposed class. These exposed individuals are
transferred to the infectious class at a per-capita rate �h, where �� 1

h is the intrinsic
incubation period. Infectious individuals are transferred to the immune or recovered
class at a per-capita rate �h, where �� 1

h is the period of time necessary to mount
an immune response (or the period of time at which symptoms are apparent). The
total human population size is N D S C E C I C R, and all classes of individuals are
under the same natural mortality rate �h. Neither maternally derived antibodies nor
the loss of an immune response is considered. Another assumption is the absence
of additional mortality, as we are categorising infection by just one serotype. The
dynamics describing dengue infection among humans are represented by8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

dS

dt
D ∅hN � .Bh C �h/ S

dE

dt
D BhS � .�h C �h/ E

dI

dt
D �hE � .�h C �h/ I;

(3.7)

where the decoupled immune class is represented by R D N � S � E � I. The total
population is calculated by

dN

dt
D .∅h � �h/ N; (3.8)

where ∅h is the per-capita natality rate. For simplicity, we do not consider migratory
movement.

Dengue virus transmission depends on mosquito biting and on the probability of
ingestion (human to mosquito) or inoculation (mosquito to human) of a sufficient
amount of virus to result in an infection. The rate at which one mosquito bites a
human is directly proportional to the average biting rate of mosquitoes (intrinsic
mosquito behaviour) and inversely proportional to the number of humans (one
specific person has the chance of being bitten by one mosquito is reduced in
a large population). Female mosquitoes bite humans at regular time intervals
(gonadotrophic cycle) to mature the fertilised eggs during mating. We assume that
the biting rate is proportional to the eggs laid by mosquitoes ∅m, which increases
with temperature. Considering the biting rate that is proportional to oviposition, the
per-capita infection rates Bm and Bh can be written as8<:

Bm D ˇm∅m
I
N

Bh D ˇh∅m

M3

N
;

where ˇm and ˇh are the transmission rates (or coefficient of transmission) from
mosquito bites. The terms ˇh and ˇm represent the biting rate and the probability
(asymmetric) of dengue transmission, respectively.
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Conversely, the per-capita incidence rates Bm and Bh can be understood as the
infection propagation due to the contact between human and mosquito populations
(mass action law). With respect to the biting rate, in lower temperatures, few eggs
are laid by mosquitoes, but the variance is extremely high (Yang et al. 2009a), and
thus, it must be taken into consideration through modelling. By considering both
assumptions, the per-capita infection rates Bm and Bh can be written as8<:Bm D ˇm

p
∅mI

Bh D ˇh

p
∅mM3;

where ˇm and ˇh are the transmission rates (with different units compared with the
previous definition) from mosquito bitings.

The previous two descriptions of per-capita incidence rates can be combined in
two cases: (1) infection due to contact between populations with linear dependency
with oviposition rate and (2) infection due to the biting probability with a square
root dependency with oviposition. Hence, Bm and Bh can be written as8<:B

jk
m D ˇm�j ık

mi

B
jk

h D ˇh�j ık
hm3;

where �j, ık
m and ık

h, with (j,k) D 1,2, are8<:�1 D ∅m

�2 D p
∅m;

(3.9)

and 8<: ı1
m D 1 and ı1

h D D
N

ı2
m D N and ı2

h D D:
(3.10)

Notably, D is constant (magnitude of breeding sites given by the amount at time
t D 0), and N is the size of the human population given by Eq. (3.8). Therefore, we
have four subtly different models according to the combination (j D 1, k D 1), (j D 2,
k D 1), (j D 1, k D 2) and (j D 2, k D 2). In the next section, these four models will
be written explicitly. Remember that the sub-indices m and h refer to the mosquito
and human populations, respectively.

The extrinsic incubation rate �m depends on temperature (Lindsay and Birley
1996) which is represented by

�m D �s

T � Tm

D 120

T � 16
;
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where T is the ambient temperature (in degrees Celsius), � s is the thermic sum (in
ıC � day), and Tm is the threshold temperature below which the dengue virus cannot
multiply.

A vaccine against dengue infection is not yet available. For this reason, all con-
trolling mechanisms have targeted the mosquito population. The model incorporates
two control methods: the spray of insecticide and the removal of breeding sites.

Insecticide spraying is used to kill infectious mosquitoes. With this purpose,
the insecticide is applied in all houses surrounding suspected or confirmed dengue
cases. This is the reason why the formulas presented in the following section is
restricted to susceptible mosquitoes, whereas exposed and infectious mosquitoes
are under the mortality rate given by

�d
m D �m

�
1 C ˛d

ni

nT

�
;

where ˛d is the insecticide efficacy with ˛d > ˛s.
The human population fractions are represented as s D S/N, e D E/N, i D I/N

and r D R/N with s C e C i C r D 1. Then, Eq. (3.7) can be rewritten using the
relationship with, for example, susceptible humans,

1

N

dS

dt
D ds

dt
C .∅h � �h/ s;

using Eq. (3.8), and the corresponding relationship with other compartments. With
respect to mosquito populations, we previously defined the ratios l D L/D, p D P/D,
m1 D M1/D, m2 D M2/D and m3 D M3/D.

The dynamics of dengue virus transmission among mosquitoes, in terms of ratios
of subpopulations, is described by8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

dl

dt
D f q∅m

�
1 � l

C

�
m � �

�l C �s
l

�
l

dp

dt
D �l l �

�
�p C �s

p

�
p

dm1

dt
D �pp � �

ˇm�j ık
mi C �s

m

�
m1

dm2

dt
D ˇm�j ık

mim1 � �
�m C �d

m

�
m2

dm3

dt
D �mm2 � �d

mm3;

(3.11)

and among humans, in terms of subpopulation fractions, dengue propagation is
described by
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8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

ds

dt
D ∅h � �

ˇh�j ık
hm3 C ∅h

�
s

de

dt
D ˇh�j ık

hm3s � .�h C ∅h/ e

d i

dt
D �he � .�h C ∅h/ i;

(3.12)

where the fraction of decoupled immune persons is r D 1 � s � e � i, and �j, ık
m and

ık
h, with (j,k) D 1,2, and the four submodels are represented by Eqs. (3.9) and (3.10).

The model parameters are8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

q D 1 � q0e
�q1ŒW.j /CWM �

C D Ci

˚
1 � c0e

�c1ŒW.j /CWM �
	 �

1 � ˛b
nb

nT
� ˛a

na

nT

�
�s

l D �l f1 C gl ŒW.j / � Vc� 
 ŒW.j / � Vc�g
�s

p D �p

˚
1 C gp ŒW.j / � Vc� 
 ŒW.j / � Vc�

	
�s

m D �m

�
1 C ˛s

ni

nT

�
�d

m D �m

�
1 C ˛d

ni

nT

�
:

(3.13)

This set of parameters differs from those given by Eq. (3.2) by the inclusion
of last term, which was added to discriminate between susceptible and infected
mosquitoes. The parameters with respect to human population are not dependent
on temperature or precipitation.

The dynamical trajectories of the system of equations, Eqs. (3.11 and 3.12), are
obtained numerically considering the initial conditions, at t D 0, given by�

l.0/ D l ; p.0/ D p; m1.0/ D m; m2.0/ D 0;

m3.0/ D 0; s.0/ D 1 � i0; e.0/ D 0; i.0/ D i0/ ;

where i0 D 1=N . The equilibrium values l , p and m are given by Eq. (3.3), and
N is the constant size of the human population. These initial conditions supplied
to the dynamical systems correspond to the introduction of one infectious person in
a completely susceptible population in a specified calendar time, which was set as
t D 0.

As we did in the previous section for mosquito populations, we present an
analysis of an autonomous model. This study assumes that all model parameters
given by Eq. (3.13) are constant (for example, at a given temperature and constant
precipitation).
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3.3.2 Analysis of an Autonomous Model

When mortality and natality rates are equal, that is when ∅h D �h, then the human
population does not change with time (dN/dt D 0 in Eq. (3.8)), and the total size of
the human population is constant, designated by N . When we assume that all model
parameters are constant (at a given temperature and constant precipitation), we
get an autonomous model. In this situation, the autonomous systems of equations,
Eqs. (3.11) and (3.12), have constant parameters and present steady states that are
designated as the equilibrium point (l , p, m1, m2, m3, s, e, i ). There are three
possibilities, assuming that �s

m D �d
m:

1. A human population without mosquitoes, U0. This equilibrium corresponds to
the absence of mosquitoes and all humans are susceptible, or,

U0 D
�
l D 0; p D 0; m1 D 0; m2 D 0; m3 D 0; s D 1; e D 0; i D 0

�
:

2. An interacting human and mosquito population without dengue transmission, U1.
This equilibrium dictates that all humans and mosquitoes are susceptible, or,

U1 D
�
l ; p; m1 D m; m2 D 0; m3 D 0; s D 1; e D 0; i D 0

�
;

where l , p and m are given by Eq. (3.3).
3. A dengue virus circulating between human and mosquito populations, U2. In this

equilibrium, the steady state values are

U2 D
�
l ; p; m1; m2; m3; s; e; i

�
;

where the coordinates, depending on the fraction of infectious i, are8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

l D C
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Qc

�
p D �l

�p C �s
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C

�
1 � 1

Qc

�
m1 D �p

ˇm�j ık
mi C �s

m

�l

�p C �s
p

C

�
1 � 1

Qc

�
m2 D ˇm�j ık

mi

�m C �s
m

�p

ˇm�j ık
mi C �s

m

�l

�p C �s
p

C

�
1 � 1

Qc

�
m3 D �m

�s
m

ˇm�j ık
mi

�m C �s
m

�p

ˇm�j ık
mi C �s

m

�l

�p C �s
p

C

�
1 � 1

Qc

�
s D 1 � �h C ∅h

�h

�h C ∅h

∅h

i

e D �h C ∅h

�h

i ;

(3.14a)
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and i is given by

i D Rc � 1

ˇm�j ık
m

�s
m

C .�hC∅h/.�hC∅h/

∅h�h
Rc

; (3.14b)

where the reproduction number Rc is represented by

Rc D �h�mˇm�j ık
mˇh�j ık

h

�s
m

�
�m C �s

m

�
.�h C ∅h/ .�h C ∅h/

m; (3.15)

where Qc is calculated from Eq. (3.4), and m, the sum of the ratios of subclasses
of mosquitoes, m D m1 C m2 C m3, is also obtained from Eq. (3.3). This
equilibrium point is biologically feasible if Rc > 1 and assuming that Qc > 1.
Equation (3.14b) is generated from the fifth equation in Eq. (3.14a) with another
equation for m3 represented by

m3 D .�h C ∅h/ .�h C ∅h/∅hi

�h∅h � .�h C ∅h/ .�h C ∅h/ i

�
ˇh�j ık

h

:

Notably, the maximum fraction of infectious humans iM is obtained when Rc is
extremely high (Rc ! 1) and yields

iM D �h∅h

.�h C ∅h/ .�h C ∅h/
;

which is an asymptote. Another important relationship from combining m, m1 and
s is

s
m1

m
D 1

Rc

:

With respect to the equilibrium points, we can establish that (Esteva and Vargas
2003): (1) if Qc < 1, then U0 is globally stable; (2) if Qc > 1 and Rc < 1, then U1

is globally stable; and (3) if Qc > 1 and Rc > 1, then U2 is globally stable. Con-
sequently, the dynamical trajectories of the autonomous system of equations, Eqs.
(3.11 and 3.12), are determined unequivocally. Disregarding the initial conditions
supplied to the dynamical system, all of the dynamical trajectories attain: (1) U0

(if Qc < 1); (2) U2 (if Qc > 1 and Rc > 1); (3) or U1 (if Qc > 1 and Rc < 1). The
reproduction number Rc therefore plays an important role in the dynamics of dengue
transmission and thus deserves more discussion.

First, if none of the controlling mechanisms in mosquito populations are
considered, then the basic reproduction number R0 is

R0 D ˇh�j ık
h

�m

�h

�h C ∅h

ˇm�j ık
m

�h C ∅h

�m

�m C �m

m0; (3.16)
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where m0 is given by Eq. (3.3) without control, or

m0 D �p

�m

�l

�p C �p

C0

�
1 � 1

Q0

�
; (3.17)

where the basic offspring number Q0 is given by Eq. (3.5). The carrying capacity
C0 is obtained from C leading to the controlling parameters ˛b D 0 and ˛a D 0.

We explicitly write the basic reproduction number for submodels according to
Eqs. (3.9 and 3.10) for j D 1,2 as:

R0 D

8̂̂̂̂
<̂
ˆ̂̂:

�j ˇh
Dm

N

�m

�h

�h C ∅h

�j ˇm

�h C ∅h

�m

�m C �m

; for k D 1

�j ˇhDm

�m

�h

�h C ∅h

�j ˇmN

�h C ∅h

�m

�m C �m

; for k D 2;

where �1 D∅m and �2 D p
∅m. Given that M D Dm, we have, for k D 1:

R0 D �j ˇh

�m

�h

�h C ∅h

�j ˇm

�h C ∅h

�m

�m C �m

M

N
; (3.18)

and for k D 2,

R0 D �j Q̌
h

�m

�h

�h C ∅h

�j Q̌
m

�h C ∅h

�m

�m C �m

; (3.19)

where Q̌
h D ˇhN and Q̌

m D ˇmM . The basic reproduction number differs
according to the model’s assumption of dengue virus transmission. The basic
reproduction number is linked to the introduction of one case in completely
susceptible populations, and we assume that one infectious mosquito is introduced
(the introduction of one infectious human follows a similar interpretation).

We interpret the basic reproduction number given by Eq. (3.18), the case k D 1,
which is written as

R0 D
0@ �j ˇh

N

�m

N

1A �h

�h C ∅h

0@ �j ˇm

N

�h C ∅h

M

1A �m

�m C �m

:

The first term represents the mean number of humans in a completely susceptible
population (N ) that become infected due to the mean number of bites given by an
infectious mosquito during its lifespan (�j ˇh=

�
N �m

�
). The term �h/(�h C∅h) is

the probability that an infected human survives the exposed period and enters the
infectious class. The third term is the mean number of mosquitoes in a completely
susceptible population (M ) that become infected due to the average number of
bites given by susceptible mosquitoes on an infectious human during his/her
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lifespan (�j ˇm=
�
N .�h C ∅h/

�
). The term �m/(�m C �m) is the probability that

an infectious mosquito survives the exposed period and enters the infectious class.
Hence, R0 is the mean number of secondary infectious mosquitoes produced by one
infectious mosquito introduced in completely susceptible populations of humans
and mosquitoes.

Dengue epidemics can be established in a community if one female mosquito
generates more than one daughter, and an infectious mosquito can produce more
than one secondary infectious mosquito. The severity of a dengue epidemic can
be assessed by estimating Rc and Qc: the higher both values, the more severe the
epidemic.

The basic reproduction number calculated from Eq. (3.19), k D 2, follows a
similar interpretation. Instead of infection probabilities, in this case, we use the
effective contact rates. Only in the equilibrium state are the per-capita contact rates
(ˇh and ˇm) and total contact rates ( Q̌

h and Q̌
m) interchangeable through Q̌

h D ˇhN

and Q̌
m D ˇmM .

Second, the controlling mechanisms decrease the basic reproduction number R0.
The relationship between Rc and R0, Eqs. (3.15) and (3.16), is

Rc D R0

�m

�s
m

�m C �m

�m C �s
m

m

m0

;

with �m < �s
m and m < m0, where m and m0 are calculated from Eq. (3.3) and

Eq. (3.17), respectively. The control mechanisms decrease the basic reproduction
number and can result in the elimination of dengue transmission by decreasing it
below unity (Rc < 1).

The time varying effective reproduction number, Ref , is defined as

Ref D Rcs
m1

m
; (3.20)

where the time varying fractions of susceptible humans and mosquitoes are,
respectively, s and m1/m, with m D m1 C m2 C m3. This definition reproduces
the previously obtained relationship existing among m, m1 and s. The effective
reproduction number has two bounding results.

First, at t D 0, we assume that one case is introduced (one human, for
example) in a completely susceptible human and mosquito populations. Hence,
s D (N � 1)/N � 1, m1/m D 1 and Ref D Rc. If controlling mechanisms are not
considered (Rc D R0), then in the beginning of an epidemic,

Ref D R0:

As time goes on, s and m1/m decrease, and thus, Ref , given by Eq. (3.20), also
decreases.
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Second, as t ! 1, the asymptotic equilibrium values are reached when one
infectious case produces exactly one secondary case. Hence, Ref must obey

Ref D Rcs
m1

m
D 1;

from which, if controlling mechanisms are not considered (Rc D R0), we have the
asymptotic relationship

s
m1

m
D 1

R0

;

where the inverse of the basic reproduction number is the product of the fractions of
susceptible populations. To better explain this formula, the modelling of directly
transmitted infections (such as rubella, measles, etc.) relies on the following
formula:

s D 1

R0

;

where s is the fraction (in the steady state) of susceptible humans (Anderson and
May 1991; Yang 1999a, b).

3.3.3 Study of the Non-autonomous Modelling

The non-autonomous system of equations, given by Eqs. (3.11) and (3.12), must be
dealt with numerically. The dynamical trajectories of this system do not achieve any
limiting values asymptotically. For this reason the notion of reproduction number
does not make sense.

However, we can define the effective reproduction number Ref in the context of
non-autonomous modelling from ideas borrowed from autonomous modelling: the
time-independent model parameters of the reproduction number Rc are allowed to
vary, originating the effective reproduction number Ref .

The effective reproduction number regarded in the non-autonomous system, Eqs.
(3.11 and 3.12), is provided by Eq. (3.20), but now the model parameters depend on
time. Because two populations interact, we define the contributions of the human
and mosquito populations, Rh

ef and Rm
ef , in the overall effective reproduction ratio

Ref at each time t as8̂̂̂<̂
ˆ̂:

Rh
ef D �j ˇh

�s
m

�h

�h C ∅h

D

N
s

Rm
ef D �j ˇm

�h C ∅h

�m

�m C �s
m

m
m1

m
D �j ˇm

�h C ∅h

�m

�m C �s
m

m1;



58 H.M. Yang et al.

for the model labeled k D 1, and for k D 2,8̂̂̂<̂
ˆ̂:

Rh
ef D �j ˇh

�s
m

�h

�h C ∅h

Ds

Rm
ef D �j ˇm

�h C ∅h

�m

�m C �s
m

mN
m1

m
D �j ˇm

�h C ∅h

�m

�m C �s
m

Nm1;

for j D 1,2, and N is the varying size of a human population (D is constant).
Therefore, Ref is given by

Ref D Rh
ef R

m
ef ; (3.21)

which varies with time.
The effective reproduction ratio Ref provides the risk of a dengue outbreak. Up to

just before an epidemic, Ref D Rc, or, in the absence of controlling efforts, Ref D R0.
The severity of the first epidemic peak is given by the basic reproduction number
R0. After an epidemic peak, Ref increases to trigger the next dengue outbreak.

3.4 Results

We first present model parameters and temperature and precipitation data used in
the numerical simulations.

Table 3.1 summarises the model parameters. The values presented in Table 3.1
are the mean values with respect to mosquito population parameters, whereas
for the human population, they are considered independent of temperature and
precipitation; the value ∅h was chosen to describe the varying population of
Campinas City from 1991 (847,595) to 2010 (1,080,999) Esteva and Vargas (2003).
The values given in Table 3.1 are used to numerically simulate the autonomous
system of equations.

The entomological parameters ∅m, �l, �p, �m, � l and �p of A. aegypti
depend strongly on temperature. Table 3.2 illustrates the estimated entomological
parameters from controlled temperature experiments (Yang et al. 2009a, b, 2011).
An n-th degree polynomial Pn(T) D b0 C b1T C � � � C bnTn, where bi is represented
by days�1 � (ıC)�i, was used to fit experimental data.

In addition to temperature, rainfall influences the entomological parameters
�l, �p, q, and the carrying capacity C. Table 3.3 summarises the precipitation-
dependent parameters and their values.

The control of dengue transmission relies on the reduction of mosquito pop-
ulations by spraying insecticides and by removing breeding sites. In general,
insecticides are applied in the areas surrounding houses where cases of active
transmission of the dengue virus were specified. Concomitantly, the breeding sites
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Table 3.1 Summary of model’s parameters and respective mean values

Symbol Meaning Unit Value

f Fraction of eggs originating female mosquitoes – 0.5
q Fraction of eggs hatching to larva stage – 0.5
C Carrying capacity (breeding sites) – 0.8
∅m Intrinsic oviposition rate per female mosquito 1/day 4.0479
�l Per-capita mortality rate of larva 1/day 6.28 � 10�2

�p Per-capita mortality rate of pupa 1/day 5.73 � 10�2

�m Per-capita mortality rate of female mosquito 1/day 3.73 � 10�2

¢ l Per-capita transition rate from larva to pupa 1/day 1.184 � 10�1

¢p Per-capita transition rate from pupa to female mosquito 1/day 3.706 � 10�1

”m Per-capita extrinsic incubation rate 1/day 6.6 � 10�2

�h Per-capita mortality rate of human 1/day 3.8052 � 10�5

∅h Per-capita natality rate of human 1/day 7.3100 � 10�5

”h Per-capita intrinsic incubation rate 1/day 0.1428
¢h Per-capita recovery rate of human 1/day 0.1428
“m Transmission rate from human to female mosquito 1/day 3.0 � 10�1

“h Transmission rate from female mosquito to human 1/day 6.0 � 10�2

are removed. The removing of breeding sites also occurs during seasons preceding
dengue epidemics to prevent dengue outbreaks. Table 3.4 summarises mosquito
controlling parameters and their values.

Figure 3.1 presents the number of houses that were sprayed with insecticides and
where the breeding sites were removed since 2000 in the City of Campinas.1

The daily maximum and minimum temperatures CEPAGRI/UNICAMP (2012)
and precipitation Instituto de Açúcar e Álcool (2012) from January 1, 1991 to
December 31, 2011 in the City of Campinas, São Paulo State, Brazil are used
to numerically simulate the previously described dynamics systems. Figure 3.2
illustrates these data, assigning to January 1, 1991 as the 1st day 1st in the time axis,
and so on. A restricted interval of time, from days 1,000 to 1,400 that correspond to
September 26, 1993 to October 31, 1994, is also presented.

Results with respect to mosquito populations and dengue transmission models
are presented. Three cases are used in the analyses of both mosquito populations
and dengue transmission models with respect to dependency of the parameters on
temperature and precipitation: (1) constant (the annual temperature and precipitation
mean is used), (2) temperature-dependent, and (3) dependent on both temperature
and precipitation.

1Data provided by Sucen (Superintendência de Controle de Endemias).
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Table 3.3 Summary of model’s parameters depending on precipitation and respective values

Symbol Meaning Unit Value

w1 Residual effect of past rain 1/ıC 0.5
Ci Rain independent variation in breeding sites – 1
c0 Minimum carrying capacity in the absence of rain – 5.0 � 10�1

c1 Capacity of creation of breeding sites due to rain 1/mm 5.0 � 10�2

q0 Capacity of eggs hatching even without rain fall – 7.0 � 10�1

q1 Rate of hatching due to humidity 1/mm 5.0 � 10�2

gl Additional physical mortality among larvae 1/mm 1.0 � 10�4

gp Additional physical mortality among pupae 1/mm 1.0 � 10�4

Vc Critical rain volume to overflow 1/mm 5.0 � 10C1

Table 3.4 Summary of controlling parameters

Symbol Meaning Unit Value

˛a Efficacy of preventive removing of breeding sites – 2
˛b Efficacy of targeted removing of breeding sites – 8
˛s Efficacy of insecticide application on susceptibles – 2
˛d Efficacy of insecticide application on infectious – 13

Fig. 3.1 Number of houses visited to spray insecticides (a), and removing of breeding sites as
preventive (b) and dengue-targeted (c)

3.4.1 Mosquito Population

Equation (3.1), with model parameters defined by Eq. (3.2), is treated numerically.
Initially, we present the time-independent model, assuming that the entomological
parameters are constant values that average 1 year of variation. Temperature
dependency is then considered, and finally precipitation is included.

Numerical results in this section are shown considering the entire time interval
given in Fig. 3.2 and also in a restricted time interval to highlight some details.
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Fig. 3.2 Daily maximum and minimum temperatures (a, b), and precipitation (c, d) registered
since 1991 in the City of Campinas, São Paulo State, Brazil

3.4.1.1 Constant Entomological Parameters

The fixed-value parameters used for assessing the mosquito population are pre-
sented in Table 3.1. The basic offspring number is Q0 D 15.369, which was obtained
from Eq. (3.5). If we change the values of parameters f and q to 0.1, the new basic
offspring number becomes Q0 D 0.615.

Figure 3.3 illustrates the dynamical trajectories of the mosquito population for
Q0 > 1 and Q0 < 1. Figure 3.3b was obtained using values from Table 3.1, except
f D q D 0.1. Figure 3.3 illustrates the classical population model when all parameters
are constant: the change in behaviour occurs when the basic offspring number
Q0 D 1. When the average number of offspring is lower than 1, the mosquito
population goes to extinction, and conversely the population is sustained if Q0 > 1,
and as this number increases, the population size reaches its maximum value given
by the carrying capacity.
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Fig. 3.3 Autonomous model – Densities of larvae (L), pupae (P) and female mosquitos (M) for
Q0 < 1 (a), and Q0 > 1 (b)

3.4.1.2 Temperature-Dependent Entomological Parameters

Instead of constant entomological parameters, these parameters are allowed to vary
with temperature. The temperature that is used in the modelling corresponds to the
temperature of Campinas City (Fig. 3.2). Here we show the dependency of ento-
mological parameters ∅m, �m, � l and �p with varying temperatures as illustrated
in Fig. 3.2. These parameters are assumed to be independent of precipitation. Other
entomological parameters, �l and �p, are presented as follows, as both depend on
precipitation.

The effective offspring number Qef , from Eq. (3.4), which changes Qc by Qef ,
varies along time due to the temperature varying entomological parameters. This
parameter provides an idea of the mean number of offspring at each time.

Figure 3.4 illustrates the temperature-dependent∅m and �m (Yang et al. 2009a, b,
2011). Both parameters were fitted using a 4-th order polynomial (Table 3.2). Figs.
on the left encompass the entire time period, from January 1, 1991 to December 31,
2011, and the Figs. on the right illustrate the restricted time interval from September
26, 1993 to October 31, 1994.

Figure 3.5 shows the temperature-dependent � l and �p (Yang et al. 2009a, b,
2011). Both parameters were fitted using 7-th and 8-th order polynomials, respec-
tively (Table 3.2). We present the entire (left Figs.) and restricted (right Figs.) time
intervals.

Figure 3.6 presents the dynamical trajectories of the mosquito populations when
parameters are allowed to depend on temperature. The fixed model parameters are
those given in Table 3.1, and the varying entomological parameters are calculated
using fitted polynomials given in Table 3.2. Figure 3.6 also demonstrates the
effective offspring number Qef . We present the entire (left Figs.) and restricted (right
Figs.) time intervals.
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Fig. 3.4 Temperature dependent ∅m (a, b) and �m (c, d)

Fig. 3.5 Temperature dependent � l (a, b) and �p (c, d)
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Fig. 3.6 Temperature dependency – Density of larvae (L), pupae (P) and female mosquitos (M)
(a, b), and effective offspring number Qef (c, d)

Despite the intense intra- and inter-day fluctuations in the effective offspring
number Qef , we observe damped amplitudes in the aquatic and adult stages, where
the within-day oscillations are quite smooth in the adult mosquitoes. Therefore, the
major mosquito population fluctuations occur seasonally.

3.4.1.3 Temperature- and Precipitation-Dependent
Entomological Parameters

As we have already underscored, precipitation influences the parameters �l, �p, q
and C. The additional contributions of precipitation on temperature-dependent �l

and �p are given by the difference8<:�s
l � �l D gl ŒW.j / � Vc� 
 ŒW.j / � Vc�

�s
p � �p D gp ŒW.j / � Vc� 
 ŒW.j / � Vc� ;

from Eq. (3.2). The parameters q and C were assumed to be dependent only on
precipitation.

Figure 3.7 presents the temperature-dependent �l and �p (Yang et al. 2009a, b,
2011) and the additional contribution by precipitation. The additional contribution
with respect to �l was multiplied by factor 80 and translated upward by summing
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Fig. 3.7 Temperature dependent �l (a, b) and �p (c, d), and corresponding rainfall contributions

0.43 to fit it on the same scale of temperature-dependent �l. To the parameter �p,
the multiplying factor was 35, and the summing constant was 0.3. We present the
entire (left Figs.) and restricted (right Figs,) time intervals.

Figure 3.8 shows the precipitation-dependent q and C. We present the entire (left
Figs.) and restricted (right Figs.) time intervals.

Figure 3.9 shows the dynamical trajectories of the mosquito populations when
parameters are allowed to depend both on temperature and precipitation. The fixed
model parameters are from Table 3.1. The varying entomological parameters are
calculated using fitted polynomials from Table 3.2, and the precipitation parameters
are provided in Table 3.3. Figure 3.9 presents the effective offspring number
Qef , which varies along time due to the temperature and precipitation varying
entomological parameters. We present the entire (left Figs.) and restricted (right
Figs.) time intervals.

By comparing Figs. 3.6 and 3.9, we observe that the inclusion of rain in the
parameters of the model yielded more concentrated fluctuations at a higher level of
infestation. Specially, the effective offspring number sharply contrasts to that when
rain is introduced in the parameters. The ‘regular’ oscillations exhibited a much
more irregular pattern when rain was included.
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Fig. 3.8 Rainfall dependent q (a, b) and C (c, d)

Fig. 3.9 Temperature and precipitation dependency – Densities of larvae (L), pupae (P) and
female mosquitos (M) (a, b); and the effective offspring number Qef (c, d)
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3.4.2 Dengue Transmission

Equations (3.11) and (3.12), with model parameters defined by Eq. (3.13), are
treated numerically. Initially we present the time-independent model with the
assumption that the entomological parameters are constant values that are averaged
over 1 year of variation. Temperature dependency is then dealt with, and finally,
precipitation is included.

The initial conditions supplied to the dynamical system correspond to the case
where the mosquito and human populations co-exist without dengue. At t D 1,826
(or at calendar time January 1, 1996), one case of dengue among humans is
introduced.

With respect to the mosquito population, curves of larvae and pupae are not
shown because they are the same as those obtained in the preceding section. Notably,
the sum of the three classes of mosquitoes m1, m2 and m3 is calculated from the total
mosquito density m provided in the preceding section.

3.4.2.1 Constant Entomological Parameters

Using fixed values of the parameters in Table 3.1, dengue transmission is assessed.
The basic reproduction number is R0 D 12.022 calculated using Eq. (3.19). If we
change the value of parameters ˇm and ˇh to ˇm D 2.0 � 10�1 and ˇh D 5.4 � 10�2,
the new basic reproduction number is R0 D 0.721.

Figure 3.10 illustrates the model labeled 4, that is, k D 2 and j D 2. Figure 3.10
illustrates the classical population model when all parameters are constant: the
change in behaviour occurs when the basic reproduction number R0 D 1. When
the mean number of secondary infectious mosquitoes is lower than 1, the dengue
transmission goes to extinction, and conversely the infection is sustained if R0 > 1.
As this number increases, the fraction of infectious individuals reaches its maximum
value given by iM .

3.4.2.2 Temperature and Precipitation-Dependent
Entomological Parameters

Four types of models are analysed according to Eqs. (3.9) and (3.10). Therefore, the
non-autonomous dengue transmission model is separated based on the type of the
model and not according to temperature and precipitation, as we did in the analysis
of the mosquito population. Only equations for susceptible populations of mosquitos
and humans are written from Eqs. (3.11) and (3.12).

Using fixed parameter values with respect to humans given in Table 3.1, in
Table 3.2 for temperature-dependent entomological parameters, in Table 3.3 for
precipitation-dependent parameters, and in Table 3.4 for controlling efforts, dengue
transmission is assessed. In each model, only ˇm and ˇh are changed.
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Fig. 3.10 Autonomous model – Densities of susceptible (m1), exposed (m2) and infectious (m3)
mosquitos; and fractions of susceptible (s), exposed (e) and infectious (i) humans, for R0 < 1 (a, b);
and R0 > 1 (c, d)

The effective reproduction number Ref varies along time due to the varying
temperature and precipitation entomological parameters. This parameter provides
an idea of the average number of secondary infectious cases at each time. The higher
this value is, the more severe the epidemic.

The exposed and infectious classes of mosquitoes and humans are much lower
than the susceptible classes. For this reason, those classes were multiplied by
suitable factors so they could fit the same scale of susceptible classes.

Model 1: j D 1 and k D 2

The first model addresses the mass action law and biting rate that are dependent
linearly on the oviposition rate. In this case, the equations for susceptible popula-
tions are 8̂̂<̂

:̂
dm1

dt
D �pp � �

ˇm∅mN i C �s
m

�
m1

ds

dt
D ∅h � .ˇh∅mDm3 C ∅h/ s;
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and, using the partial effective reproduction numbers due to human and mosquito
populations 8̂̂̂<̂

ˆ̂:
Rh

ef D �h∅mˇh

�s
m .�h C ∅h/

Ds

Rm
ef D �m∅mˇm

.�h C ∅h/
�
�m C �s

m

�Nm1;

the overall effective reproduction number Ref is

Ref D �h�mˇmˇh∅
2
m

�s
m

�
�m C �s

m

�
.�h C ∅h/ .�h C ∅h/

NDsm1:

According to the effects of abiotic factors, two cases are presented.
The dynamical trajectories of dengue transmission were obtained using

ˇh D 4 � 10�7 and ˇm D 1 � 10�9. The numerical results are shown in Figs. 3.11
and 3.12. In both Figs., the infectious mosquitoes m3, the exposed e and infectious i
humans must be divided by factors of 3, 35 and 20, respectively. The partial effective

Fig. 3.11 Model 1 (temperature) – Densities of susceptible (m1), exposed (m2) and infectious
(m3) mosquitos (a); fractions of susceptible (s), exposed (e) and infectious (i) humans (b); partial
effective reproduction numbers (c); and the overall effective reproduction number (d)
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Fig. 3.12 Model 1 (temperature and precipitation) – Densities of susceptible (m1), exposed (m2)
and infectious (m3) mosquitos (a); fractions of susceptible (s), exposed (e) and infectious (i)
humans (b); partial effective reproduction numbers (c); and the overall effective reproduction
number (d)

reproduction numbers Rh
ef and Rm

ef as well as the overall reproduction number Ref ,
must be multiplied by factors of 10 as well as 100, respectively.

Figure 3.11 shows temperature-dependent modelling that yields a relatively
moderate epidemic. The fraction of susceptible humans decreases up to 0.3 with
two major epidemics. The risk factor (effective reproduction number) before the
outbreak of dengue transmission is approximately 5,000.

Figure 3.12 shows temperature and precipitation-depending modelling that yields
a milder epidemic than the previous case. The fraction of susceptible humans
decreases up to 0.4 with only one major epidemic peak. The risk factor before
the outbreak of dengue transmission is approximately 4,000. The second wave of
epidemics is delayed in comparison with Fig. 3.11, and the difference between
partial effective numbers Rh

ef and Rm
ef are higher.

From Figs. 3.11 and 3.12, we observe that the amount of susceptible mosquitoes
changes little and results in a practically unchanged partial Rm

ef . Conversely, the
number of susceptible humans decreases reasonably and leads to an abrupt decrease
in the partial Rh

ef . Rain decreases the risk factor (Ref diminishes) for dengue
transmission, and thus, the epidemic becomes milder.
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Fig. 3.13 Model 2 (temperature) – Densities of susceptible (m1), exposed (m2) and infectious
(m3) mosquitos (a); fractions of susceptible (s), exposed (e) and infectious (i) humans (b); partial
effective reproduction numbers (c); and the overall effective reproduction number (d)

Model 2: j D 2 and k D 2

The second model addresses the mass action law and biting rate that are dependent
on the square root of the oviposition rate. In this case, the equations for susceptible
populations are 8̂̂<̂

:̂
dm1

dt
D �pp � �

ˇm

p
∅mN i C �s

m

�
m1

ds

dt
D ∅h � �

ˇh

p
∅mDm3 C ∅h

�
s

and the overall effective reproduction number Ref is

Ref D �h�mˇmˇh∅m

�s
m

�
�m C �s

m

�
.�h C ∅h/ .�h C ∅h/

NDsm1:

According to the effects of abiotic factors, two cases are presented.
The dynamicaltrajectories of dengue transmission were obtained using

ˇh D 1.9 � 10�9 and ˇm D 7.09 � 10�6. The numerical results are shown in
Figs. 3.13 and 3.14. In both Figs., the infectious mosquitoes m3, the exposed e
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Fig. 3.14 Model 2 (temperature and precipitation) – Densities of susceptible (m1), exposed (m2)
and infectious (m3) mosquitos (a); fractions of susceptible (s), exposed (e) and infectious (i)
humans (b); partial effective reproduction numbers (c); and the overall effective reproduction
number (d)

and infectious i humans must be divided by factors 0.5, 6 and 3, respectively. The
partial effective reproductions numbers Rh

ef and Rm
ef , and the overall reproduction

number Ref , must be multiplied by factors 10 and 100, respectively.
Figure 3.13 shows temperature-dependent modelling that yields a severe epi-

demic. The fraction of susceptible humans decreases up to 0.01 with successive
epidemic peaks that elapse by 5.5 years. The risk factor before the outbreak of
dengue transmission is approximately 200.

Figure 3.14 shows temperature and precipitation-depending modelling that yields
a more severe epidemic than that of the previous case. The results are more similar
than those of the temperature dependent model, but the risk factor is approximately
250, which is higher than in the previous case.

Comparing Figs. 3.13 and 3.14, when the biting rate is proportional to the square
root of the oviposition rate, the epidemic is more severe. Additionally, this model
presents an effective reproduction number that is ten times lower than the previous
model, which depends linearly on the oviposition rate, as expected (see Fig. 3.4
for ∅m).
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Model 3: j D 1 and k D 1

The third model addresses infection being proportional to the probability of biting
given by an infectious mosquito and the biting rate that is dependent linearly on the
oviposition rate. In this case, the equations for susceptible populations are8̂̂<̂

:̂
dm1

dt
D �pp � �

ˇm∅mi C �s
m

�
m1

ds

dt
D ∅h � �

ˇh∅m
D
N

m3 C ∅h

�
s;

and using the partial effective reproduction numbers due to human and mosquito
populations 8̂̂̂<̂

ˆ̂:
Rh

ef D �h∅mˇh

�s
m .�h C ∅h/

D

N
s

Rm
ef D �m∅mˇm

.�h C ∅h/
�
�m C �s

m

�m1;

the overall effective reproduction number from Eq. (3.21), Ref D Rh
ef R

m
ef , is

Ref D �h�mˇmˇh∅
2
m

�s
m

�
�m C �s

m

�
.�h C ∅h/ .�h C ∅h/

D

N
sm1:

According to the effects of abiotic factors, two cases are presented.
The dynamical trajectories of dengue transmission were obtained using

ˇh D 5.5 � 10�2 and ˇm D 2.6 � 10�2. The numerical results are shown in Figs. 3.15
and 3.16. In both Figs., the exposed m2 and infectious m3 mosquitoes, the exposed
e and infectious i humans must be divided by factors 7, 5, 8 and 7, respectively.

Figure 3.15 shows temperature-dependent modelling that yields a severe epi-
demic. The fraction of susceptible humans decreases up to 0.01 with successive
epidemic peaks elapsed by 8 years. The risk factor before the outbreak of dengue
transmission is approximately 30.

Figure 3.16 shows temperature and precipitation-depending modelling that yields
a less severe epidemic. The fraction of susceptible humans decreases up to 0.01 with
successive epidemic peaks elapsed by 11 years. The risk factor before the outbreak
of dengue transmission is approximately 23.

From Figs. 3.15 and 3.16, rain decreased the risk factor (Ref diminishes) for
dengue transmission, and thus, the epidemic became milder. The results are more
similar than those observed in model 1.
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Fig. 3.15 Model 3 (temperature) – Densities of susceptible (m1), exposed (m2) and infectious
(m3) mosquitos (a); fractions of susceptible (s), exposed (e) and infectious (i) humans (b); partial
effective reproduction numbers (c); and the overall effective reproduction number (d)

Model 4: j D 2 and k D 1

The fourth model simulates an infection that is proportional to the probability of
biting by an infectious mosquito and the biting rate that is dependent on the square
root of the oviposition rate. In this case, the equations for susceptible populations
are 8<:

dm1

dt
D �pp � �

ˇm

p
∅mi C �s

m

�
m1

ds
dt D ∅h � �

ˇh

p
∅m

D
N

m3 C ∅h

�
s

;

and the overall effective reproduction number Ref is

Ref D �h�mˇmˇh∅m

�s
m

�
�m C �s

m

�
.�h C ∅h/ .�h C ∅h/

D

N
sm1:

According to the effects of abiotic factors, two cases are presented.
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Fig. 3.16 Model 3 (temperature and precipitation) – Densities of susceptible (m1), exposed (m2)
and infectious (m3) mosquitos (a); fractions of susceptible (s), exposed (e) and infectious (i)
humans (b); partial effective reproduction numbers (c); and the overall effective reproduction
number (d)

The dynamical trajectories of dengue transmission were obtained using
ˇh D 2.2 � 10�2 and ˇm D 5.0 � 10�2. The numerical results are shown in Figs. 3.17
and 3.18. In both Figs., the exposed m2 and infectious mosquitoes m3, the exposed
e and infectious i humans must be divided by factors 200, 200, 60 and 120,
respectively.

Figure 3.17 shows temperature-dependent modelling that yields an extremely
mild epidemic. The fraction of susceptible humans decreases up to 0.95, and the
epidemic incidence elapsed by 5.5 years after the introduction of one case. The risk
factor before the outbreak of dengue transmission is approximately 1.8.

Figure 3.18 shows temperature and precipitation-depending modelling that yields
a mild epidemic. The fraction of susceptible humans decreases up to 0.6, and the
epidemic incidence elapsed by less than 1 year after the introduction of one case.
The risk factor before the outbreak of dengue transmission is approximately 2.3.

From Figs. 3.17 and 3.18, rain increased the risk factor (Ref diminishes) for
dengue transmission, and thus, the epidemic became more severe. This model
presents an effective reproduction number that is ten times lower than that of the
previous model. The results are more similar than those observed in model 2.
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Fig. 3.17 Model 4 (temperature) – Densities of susceptible (m1), exposed (m2) and infectious
(m3) mosquitos (a); fractions of susceptible (s), exposed (e) and infectious (i) humans (b); partial
effective reproduction numbers (c); and the overall effective reproduction number (d)

3.5 Conclusions

Based on entomological parameters, a mathematical model was developed to
assess the mosquito population size. The consideration of temperature-dependent
parameters resulted in seasonally fluctuating mosquito populations compared to
the autonomous model. The additional consideration of precipitation dramatically
changed the size of the mosquito populations.

By incorporating the temperature- and precipitation-independent dynamics of a
human population to previous mosquito population dynamics, we assessed dengue
transmission. Two different models of transmission were analysed: one structured
the dengue transmission based on a mass action law, and another assumption
considered dengue infection as a probabilistic event. To these two transmissions,
we added two types of dengue biting rates: one assumed a linear dependency with
the oviposition rate, where the second assumption considered the square root of the
oviposition rate.

The inclusion of temperature in the model parameters resulted in oscillatory
epidemics, with a period of longer than 1 year, despite the intense daily fluctuations
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Fig. 3.18 Model 4 (temperature and precipitation) – Densities of susceptible (m1), exposed (m2)
and infectious (m3) mosquitos (a); fractions of susceptible (s), exposed (e) and infectious (i)
humans (b); partial effective reproduction numbers (c); and the overall effective reproduction
number (d)

in mosquito populations. This behaviour is due to the larger human parameters
as compared with the mosquito parameters. The additional inclusion of rainfall
changed dramatically the dengue outbreaks.

The mass action law considers the per-capita transmission rate, which was the
reason that extremely low values for the transmission factors ˇh and ˇm were used.
In the case of a probabilistic event, these factors were interpreted in the steady state
as population transmission factors.

In this work, the precipitation that was included in the modelling as playing
minor effects. Notwithstanding, dynamical behaviors was changed in some order
of degree. In a future work, the effects of rain in the dynamics will be enhanced to
obtain very different behaviors.
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Chapter 4
Modelling the Implications of Temperature
on the Life Cycle of Aedes aegypti Mosquitoes

Marcelo Margon Rossi, Lêuda Ólivêr, and Eduardo Massad

Abstract Dengue is an infectious disease that is transmitted by the Aedes aegypti
mosquito. Each stage of the life cycle is influenced by climate variation. The
transmission of the dengue virus can be related to increased mosquito survival due
to rain and temperature conditions that are optimal for the mosquito’s maturation.
The aim of this paper is to propose a mathematical model to study how temperature
influences each stage of the mosquito’s life cycle dynamics by representing
transitions and death rates as an explicit function of temperature. The model is thus
able to show the influence of temperature on dengue transmission. It can also be
used as an operational tool due to its simplicity regarding data requirements and
computational effort. The model demonstrates that an expected increase in global
temperature will influence the mosquito’s life cycle and, consequently, increase the
incidence of dengue cases in areas that were previously free from the disease.

Keywords Dengue • Climate change • Aedes aegypti • Mathematical
modelling • Public health

4.1 Introduction

The influence of climatic conditions on human diseases, such as dengue, yellow
fever and other viral disorders that are transmitted by arthropods, is particularly
worrying due to the recently observed drastic changes in climate. As a result of
these changes, arthropod-borne diseases will increase their geographical ranges
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and spread the burden of these diseases (Guha-Sapir and Schimmer 2005; Hales
et al. 2002; Simmons et al. 2012). According to epidemiological studies (Campbell-
Lendrum et al. 2003; Choi et al. 2005; Gadelha and Toda 1985), diseases that
are currently endemic to tropical regions could be directly affected by changes
in temperature or, indirectly, by rainfall patterns. The parasites that cause these
diseases proliferate and develop in mosquito vectors, whose life cycle is influenced
by air temperature, rainfall and relative humidity. Dengue virus is a flavivirus
transmitted by mosquitoes that belong to the Aedes genus. The Aedes aegypti
mosquito is the principal vector for dengue, and its prevalence worldwide has
spread dengue infection in almost all countries from tropical and subtropical areas
(Burattini et al. 2008; Coelho et al. 2008; Hopp and Foley 2001; Massad and
Forattini 1998; Seligman 2008; Simmons et al. 2012). An investigation into how
climatic variations influence the vector’s life cycle would help understand which
factor or factors influence the appearance of new cases of the vector-borne infection.

Studies that model the mosquito life cycle and climate change have focused
mainly on changes in temperature. These studies have evaluated patterns of
mosquito evolution in environments where the seasonal variation effect is more
influential rather than focusing on geographic regions that are far from the tropics
(Tan et al. 2008). Rainfall (Padmanabha et al. 2011) was investigated to evaluate
biological parameters that can be influenced by changes in the water regime
(Monteiro et al. 2007). In addition, rainfall intensity has an important influence on
the rate of vector-host contact (Bicout and Sabatier 2004) and can sharply increase
the rate of virus transmission. The effects of seasonality on the biological and
population parameters of Aedes albopictus were studied by Alto and Juliano (2001),
who observed that alterations in both temperature and precipitation regimes were
extremely important to mosquito growth and geographical spreading.

Massad and Forattini (1998) modelled the temperature-dependence of physio-
logical parameters of Anopheles mosquitoes, including the effects of temperature
on all stages of the mosquitoes’ growth. That study was based on the strong
correlation between malaria cases and environmental variables, including rainfall
assessments, elevated temperatures and geographical characteristics such as altitude
and wind. Some mathematical expressions were elaborated to show how these
factors influence the dynamics of Anopheles mosquitoes. In Aedes aegypti mosquito
life cycle modelling studies, most of the relationships between physiological
parameters and temperature were fitted by polynomials (Costa et al. 2008; Maidana
and Yang 2007; Yang et al. 2007, 2009a, b).

In the present study, we propose a mathematical model that assesses the
relationship between temperature variation and different mosquito life cycle stages
to evaluate the effect of temperature on the dynamics of mosquito populations.
We elaborate this model to study how climatic variations (or climate change)
could influence the A. aegypti life cycle and help to predict how the A. aegypti
population can spread to locations in which increased temperatures are expected.
The entomological data associated with the Aedes life cycle was collected from
Yang et al. (2009a, b), Löwenberg-Neto and Navarro-Silva (2004) and (Calado and
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Navarro-Silva 2002) to estimate the population size of mosquitoes, larvae, pupae
and eggs. This approach aims to evaluate the impact of temperature on each stage of
the mosquito life cycle at different places from Brazil and to demonstrate the model
applicability in other places of the world.

4.2 Theory from Mathematical Model

We first developed a set of equations describing the aquatic phases and the air
stage of mosquito development. The influence of the average daily temperature is
represented as a climate variable. In theory, the size of a population can be estimated
if each key parameter that governs its development is known. In the case of mosquito
dynamics, these parameters represent the transition rates between each stage, which
depend on temperature. The dynamics of the A. aegypti life cycle are represented by
the following system:

dE

dt
D op .Tair/ pic

�
1 � E

Ke

�
A � �e .Tair/ E � h .Tair/ E

dL

dt
D 1

E C K 0 C L2

Ki

h .Tair/ E � �l .Tair/ L � pt .Tair/ L

dP

dt
D pt .Tair/ L � �p .Tair/ P � ptA .Tair/ P

dA

dt
D ptA .Tair/ � �a .Tair/ A (4.1)

where E, L, P and A represent the egg, larval, pupal and adult mosquito populations,
respectively. The others parameters are pic, as the number of bites per day of a
human being; Ke, the carrying capacity relative to the egg-laying sites; K0, the
saturation constant growth rate of eggs when larvae are present in same environment
and Ki, a constant that represents the inhibitory effect of larvae super-population
on larval development. The other parameters in the equation are op (oviposition
rate) and �e, �l, �p and �a, which represent the death rate of egg, larval, pupal
and adult populations, respectively, and are all functions of the daily average air
temperature (Tair). The hatching rate is given by h, and pt and ptA represent the
fraction of larvae that become pupae and the fraction of these pupae that develop
into adult mosquitoes, respectively. The first term in the second equation of model
(4.1) contains a “yield” term, 1

ECK0CL2=Ki
, that denotes the competitive influence

of larvae on the hatching rate, egg population and the development of the super-
population of the larvae. All parameters and values are listed in Table 4.1.

A mathematical model, which correlates the effect of latitude, longitude and
altitude on temperature in any location, was used to demonstrate the seasonal
variations (Antonini et al. 2009). A time series of mean air temperatures from 1990
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Table 4.1 Values of model parameters related to the environmental temperatures of Santos city

Parameter Parameter meaning Value

ˇ0 Mean temperature value 23
ˇ1 Implication of latitude �0.008
ˇ2 Implication of longitude �0.032
ˇ3 Implication of altitude �0.036
a1 First harmonic of Fourier sine series 25
a2 Second harmonic of Fourier sine series �0.35
b1 First harmonic of Fourier cosine series 0.97
b2 Second harmonic of Fourier cosine series 0.017
! Phase oscillations of Fourier series 0.017

to 2009 were obtained from NCEP1 data to the Santos city (São Paulo, Brazil) as an
example of applicability of the model (4.1).

The data were fitted to the following equation:

Tair D ˇ0 C ˇ1Lat C ˇ2Long C ˇ3Alt C
NX

nD0

.an cos .n!t/ C bn sin .n!t//;

(4.2)

where ˇ0 represents the average daily temperature in the period studied; ˇi (i D 2,
3, 4) incorporates the geographic coordinates; an and bn represent the amplitude of
seasonal variation, respectively; and n and ! represent the number of terms and the
phase of the Fourier series, respectively.

4.2.1 Calculation of the Temperature-Dependent Parameters

4.2.1.1 Oviposition and Egg Death Rates

To initiate the A. aegypti mosquito life cycle, female adults must oviposit in a
suitable environment. This phenomenon can be described by the following equation:

op .Tair/ D ˛0

�
1 � e˛1.Tair�Tmax/

�
.Tair � Tmin/˛2 : (4.3)

The rate of oviposition op (Eq. 4.3) is similar to the Brière nonlinear model
(Brière et al. 1999; Loetti et al. 2007) and illustrates the effect of temperature on
the variation in the number of eggs. Oviposition is slow at low temperatures and
increases exponentially as the temperatures increase. This process is controlled by

1Provided by NOAA/OAR/ESRL PSD, Boulder, Colorado USA http://www.cdc.noaa.gov/

http://www.cdc.noaa.gov/
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Table 4.2 Values of temperature-dependent parameters of the A. aegypti mosquito life cycle

Parameter Biological meaning Value

˛0 Maximum oviposition rate 0.0011
˛1 Temperature influence factor on oviposition 0.0101
˛2 Exponent of attenuation of eggs’ metabolism 3.445
ı1 Death rate at low temperature 0.0731
ı2 Influence factor of temperature 0.0595
 Hatching rate 0.00764
�lo Temperature-independent death rate factor of larval stage 0.0143
�po Temperature-independent death rate factor of pupae 0.0143
	 l Temperature-dependent death rate factor of larval stages 4.03 � 10�6

	p Temperature-dependent death rate factor of pupae 4.03 � 10�6

¤ Transition rate from larval stage to pupal stage 0.00129
�1 Temperature-independent transition rate parameter 1.1324
�2 Pupal and adult mosquito populations relation parameter 1.2728
�3 Temperature factor on transition rate 0.19
�1 Mean value of adult mosquito survival 0.053
�2 Survival rate 0.081
�3 Temperature direct effect parameter 6.375 � 10�4

an exponential term associated with the maximum temperature (indicating a maxi-
mum oviposition value) and a power-law term derived from the difference between
the estimated temperature calculated in Eq. 4.2 and the minimum values observed in
the region under study. The parameters ˛0, ˛1 and ˛2, which represent the maximum
oviposition rate, influence of climate and attenuation of the physiological processes,
are affected by increased temperature, respectively (˛1 and ˛2 are constants). Tmin

and Tmax are the minimum and maximum ambient temperatures that support the life
of the mosquito. Tair is calculated from Eq. 4.2. All of the parameters are listed in
Table 4.2.

Some eggs develop to the next larval stage, and some die. The egg death rate can
be represented by

�e .Tair/ D ı1e
ı2Tair ; (4.4)

where ı1 and ı2 represent the death rate at low temperature and the influence of
temperature, respectively (Table 4.2).

This expression is extremely similar to the concept of “generation time” found
in cellular development (Bermingham 2003) and mosquito ecology (Christopher
1960). Seasonality is another important factor in the death rates of eggs because
eggs depend on suitable temperatures for embryonic development and hatching. In
the winter, when temperatures are low, eggs are not particularly susceptible to lethal
effects from the weather conditions, depending on the time of exposure.
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4.2.1.2 Hatching Rate

The number of eggs that hatch per unit of time as a function of temperature, h(Tair),
can be represented by

h .Tair/ D  .Tair C 273/

exp

�
40:55 � 13094:10

Tair C 273

�
1 C exp

�
92:501 � 28169:2

Tair C 273

� : (4.5)

Equation 4.5 is composed of a linear term related to the temperature increase and
a logistic-like term related to enzymatic mechanisms. Parameter  is a constant. The
numeric values in this equation are related to the enthalpy and entropy of metabolic
reactions according to Tan et al. (2008) and Schoolfield et al. (1981). The enthalpy
value is in cal/K, where K is the temperature in Kelvin.

Equation 4.5 demonstrates that if the hatching rate is positive, the larval
population increases. Larval mosquitoes and eggs then compete for space in the
same place where rain-water is collected or stored (Gama et al. 2005; Serpa et al.
2008). Larvae inhibit egg proliferation by decreasing the hatching rate either by
outcompeting the eggs for high-density resources or by consuming the eggs as a
nutrient source (Padmanabha et al. 2011). The saturation expression that appears in
the first term of the larval population balance is “Andrews inhibitory kinetics”-like
(Andrews 1968), akin to the functional forms used in biochemical reactions. This
form was chosen because the larval mosquitoes compete for survival when they
share the same environment, which is analogous to two enzymes competing for a
substrate. The enzyme that has the higher affinity and better access to the substrate
has the better chance of producing the final product, even if the other enzyme is
present. The intra-specific competition between larvae and eggs is thus represented
by an inhibitory effect of the larval density-dependent stress on the egg population.

4.2.1.3 Death Rates of Larval and Pupal Populations

Larval mosquito populations either pupate or die. The effect of temperature on the
death rate of larval mosquitoes is not extremely pronounced, although it can be
influenced by the food supply (Beserra et al. 2009; Ndiaye et al. 2006) conforming
Eq. 4.6. In this work, we constructed a general representation from all larval instars
while not losing the model’s purpose. The larval death rate (Massad and Wilder-
Smith 2009) can be written as:

�l .Tair/ D �l0 exp
�
0:00189Tair

2
�

: (4.6)

According to this relationship, for each one degree Celsius increase, the �l

parameter increases by approximately 4 % in a low temperature and to 13 %
in a high temperature season. The death rate grows slowly at low and medium
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temperatures but can rapidly increase at higher temperatures (Fig. 4.5). Because the
survival temperatures are equal to larvae and pupae under similar ambient conditions
(Gadelha and Toda 1985), we used the same mathematical expression for the pupal
death rate:

�p .Tair/ D �p0 exp
�
0:00189Tair

2
�

: (4.7)

4.2.1.4 Pupation Rate, from the Larval to the Pupal Stage

After some days in the fourth instar, the larvae enter the pupal stage, and this rate is
influenced by biological and metabolic mechanisms that are temperature-dependent
(Christopher 1960; Gomes et al. 1995; Rinne 2009). We represent these processes
by the following equation:

pt .Tair/ D � .Tair C 273/ exp

�
25:21 � 7; 514:34

Tair C 273

�
: (4.8)

Equation 4.8 represents the enthalpy of the metabolic processes used by the
mosquito in the pupation process and shows how temperature regulates this process.
High values support a faster transition between the larval and pupal stages. Again,
the values in the exponential terms are relative to the velocities of enzymatic
mechanisms and correspond to enthalpy processes. As in Eq. 4.5, ¤ is a constant
linked to the dynamics of the metabolic and enzymatic processes.

4.2.1.5 Emergence Rate to Adults and the Adult Death Rate

Pupae consume oxygen but no other nutrients. The transition rate of the pupal
population to the winged stage (Poletti et al. 2011) is represented by

ptA .Tair/ D 0:21 exp

 
�0:5

�
Tair � �1

�2

�2
!

� �3: (4.9)

An increase in the ambient temperature of the surrounding air near where the
pupae grow improves the efficiency of the mosquito metabolism and outcomes
in over-maturation of the pupae. Equation 4.9 reveals that the pupation process
is Gaussian relative to weather variations, which is demonstrated by the daily
temperature oscillations that range between the maximum and minimum values. In
this equation, �1 represents the mean daily air temperature value, �2 is a dispersion
parameter that correlates with values from the same daily range and �3 is a constant.

Mosquitoes die at a death rate that is temperature-dependent,

�a .Tair/ D �1 exp
�
��2.Tair � 23/2

�
C �3.Tair � 23/2: (4.10)
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Table 4.3 Evaluation of
goodness of fit from the
temperature-dependent
parameters

Parameter r2 d RMSD p

op 0.9127 0.980 1.0427 <10�5

h 0.7764 0.960 0.0131 <10�4

�e 0.9307 0.992 0.0370 <10�5

�p/ �l 0.8178 0.504 0.1251 <0.005
ptA 0.8971 0.978 0.0188 <10�6

pt 0.8886 0.981 0.0158 0.001
�a 0.7464 0.925 0.0115 <10�4

This process is similar to a Weibull reliability function (Rinne 2009). This
equation is composed of two terms, a Weibull’s reliability-like probability (Rinne
2009) and a potential well-like model, which is similar to some mathematical
representations used in particle physics (Dybiec and Gudowska-Nowak 2007; Coon
et al. 1966). In this equation, �1 and �3 are constant parameters, and �2 is similar
to the scale parameter of the Weibull distribution (Rinne 2009).

We were able to elaborate these mathematical relations based on entomological
data found in (Yang et al. 2009a; Löwenberg-Neto and Navarro-Silva 2004; Calado
and Navarro-Silva 2002).

4.2.1.6 Correlation Measures and Model Fitness

When the data and estimated equation values are related by regression, some infor-
mation about precision and accuracy may be attained, indicating the consistency of
estimated values together with the data. To evaluate the goodness of fit, a regression
analysis was applied in a correlation matrix (determined by R2, Spearman’s p,
Willmott’s index of agreement d, RMSD) on all of the temperature relations to
determine the precision (of dependence level between data and models estimative)
and accuracy (Katok and Hasselblatt 1995; Turell et al. 1985; Krause et al. 2005;
Willmott et al. 1985; Willmott 1982). The adult death rate exhibited a larger
dispersion (R2 D 0.7464) than the egg death rate (R2 D 0.9307), and the Willmott’s
d-index ranged from 0.504 to 0.992 for the same variables. All of the other indexes
are shown in Table 4.3. All equations were fitted using the “nls” package from R
Statistical software with a Gauss-Newton algorithm.

4.3 Results and Discussion

4.3.1 Temperature-Dependent Transition Parameters

To simulate the stages of the A. aegypti mosquito life cycle, we used the Santos
city (23.95S, 46.33O and altitude of 20 m) location parameters to represent the
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Table 4.4 Geographic coordinates from the cities in which dengue cases were registered in Brazil
in 1990–2009

CITY STATE LAT LONG ALT

RB RIO BRANCO AC 9.58 S 67.48 W 153 m
MO MACEIO AL 9.40 S 35.43 W 7 m
MP MACAPA AP 0.02 N 51.03 W 14 m
MU MANAUS AM 3.08 S 60.01 W 92 m
SR SALVADOR BA 12.59 S 38.31 W 8.3 m
FO FORTALEZA CE 3.43 S 38.30 W 21 m
VI VITORIA ES 20.19 S 40.21 W 12 m
GO GOIÂNIA GO 16.40 S 49.16 W 749 m
SL SÃO LUIS MA 2.31 S 44.16 W 4 m
CO CORUMBÁ MS 19.01 S 57.39 W 118 m
BH BELO HORIZONTE MG 19.92 S 43.94 W 820 m
BE BELÉM PA 1.27 S 48.29 W 10 m
JP JOÃO PESSOA PB 7.07 S 34.52 W 40 m
LO LONDRINA PR 23.31 S 51.16 W 610 m
RE RECIFE PE 8.03 S 34.54 W 4 m
THE TERESINA PI 5.05 S 42.49 W 72 m
NA NATAL RN 5.47 S 35.13 W 30 m
RJ RIO DE JANEIRO RJ 22.54 S 43.15 W 20 m
BV BOA VISTA RR 2.49 N 60.40 W 85 m
SP SÃO PAULO SP 23.33 S 46.38 W 792 m
AR ARACAJU SE 10.54 S 37.04 W 4 m

temperature’s seasonal dynamics. Other cities in Brazil in which dengue cases have
been registered may be found in Tables 4.4 and 4.5.

Figure 4.1 shows the fit of the temperature-dependent hatching profile to Eq. 4.3.
According to this figure, egg hatching occurs at a low rate at low temperatures
and increases with increasing temperature. After reaching a maximum value, egg
hatching drops quickly to zero when the temperature is near 40 ıC. The exponential
term of Eq. 4.3 demonstrates that this rate is a Poisson process with mean 1/˛1,
which is regulated by another term (a potential term). The maximum rate is in the
same range of the optimal temperature for biochemical and enzymatic mechanisms
and nutrient uptake. The dynamics of egg death are influenced by temperature
variation; egg death rates show an exponential increase with increasing temperature
increments (Fig. 4.2).

The carrying capacity regulates the fraction of hatched and dead eggs, which
leads to a steady state plateau that is also temperature-dependent. Mature eggs
develop to the larval stage depending on the salinity and larval density present in
the specific place. The larval super-population imparts a “regulator mechanism” on
adult mosquito size (Gama et al. 2005) when some resource-limited habitats are
present, and larvae inhibit egg maturation due to intra-specific competition (Livdahl
and Edgerly 1987; Serpa et al. 2008).
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Fig. 4.1 Temperature-dependent oviposition rate. The temperature stress on the oviposition rate
of female A. aegypti may be seen at one acceleration stage (15–20 ıC) and an interval of maximum
acceleration may occur with a temperature elevation up to 30 ıC (temperate climate). Above 35 ıC,
the rate declines due to the deleterious effects from the elevated temperature. The points represent
experimental values, and the solid line represents Eq. 4.3 (R2 D 0.9127; Willmott’s d D 0.980;
p < 10�5)

Fig. 4.2 Temperature-
dependent egg death rate.
Estimation of the temperature
influence on the death of eggs
in an environment where
larval density-dependent level
inhibition is not observed and
intra-repellent action is
proportional to the container
size. The solid line represents
Eq. 4.4 (R2 D 0.9307;
Willmott’s d D 0.992;
p < 10�5)
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Interestingly, the equilibrium value of the pupal population is influenced not by
the larval or egg stages but by the adult mosquitoes. This equilibrium is reached
when the temperature of the interface between the water and the air controls the
dynamical trade-off between each population. These factors lead to the formation
of new adult male and female mosquitoes because the number of pupae that die
is smaller than the number that emerges into the adult form. The larval population
increases as the eggs spread and hatch, in contrast to the adult mosquito population.
Larval growth dynamics are influenced by temperature on the water-air interface,
the food supply, larval density and salinity (Beserra et al. 2009; Esteva and Yang
2006; Ndiaye et al. 2006), and the eclosion rate peaks near 30 ıC (Fig. 4.3).
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Fig. 4.3 Temperature-dependent egg hatching rate. Profile from temperature effects on the hatch
rate of the A. aegypti mosquito. The maximum influence of environmental temperature on egg
eclosion occurs between 20 and 30 ıC. If the temperature increases, the mosquito metabolism
optimises by spending little time in each stage. The rate declines at temperatures warmer than
30 ıC most likely due to the deleterious effects of the temperature on the mosquito’s metabolism.
The points represent experimental values, and the solid line represents Eq. 4.5 (R2 D 0.7764;
Willmott’s d D 0.960; p < 10�4)

After the eggs hatch, the larvae feed on organic matter in the water, such as algae.
Most of the larval stage is spent at the water’s surface and comprises four stages
(instars). Three are short compared to the fourth instar, which encompasses several
days. Temperature directly affects the enthalpy and entropy values from Eq. 4.5, and
food supply affects the  parameter. Because larval anabolic and catabolic processes
have different dependencies on temperature, various modification responses in the
regulation of the population density are observed (Ndiaye et al. 2006). In optimal
feeding conditions, the temperature-dependent larvae formation profile is presented
in Fig. 4.4. The larval death rate is not only instar- and temperature- dependent
(Christopher 1960) but also density-dependent due to the resource competition
(Ndiaye et al. 2006) that larvae undergo to survive before entering the pupal stage
(Fig. 4.5).

The pupation process is attenuated by a lack of food required to maintain
the basal level of energy and, even if there is a suitable temperature for a high
pupation rate, resource-limited habitats may delay the transitions of the immature
stages. The pupation process (Fig. 4.6) exhibits a Gaussian-like relationship with
temperature, which differs from Massad and Forattini (1998), which relates the
adult mosquitoes successful “jump” from pupa to the winged stage. However,
both mathematical expressions relate the successful emergence rate from pupae to
winged adult mosquitoes; the expression from Eq. 4.9 shows that the environmental
temperature must oscillate occasionally, and the average value near Tair through the
�1 and �2 parameters, to a best emergence rate.
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Fig. 4.4 Temperature-dependent pupation rate. The effects of temperature on the transition from
the larval stages (instar 1–4) to the pupal stage. A temperature elevation supports substrate uptake
and a larval density increase, which has a potential direct impact on pupal death (due to high
larval density), even with a smaller adult body size and an abundance of female adult mosquitoes
in the population. The points represent experimental values, and the solid line represents Eq. 4.8
(R2 D 0.8886; Willmott’s d D 0.981; p D 0.001)
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Fig. 4.5 Temperature-dependent larval and pupal death rates. The effects of temperature on larval
and pupal population deaths. At elevated temperatures, the immature form dies more rapidly at
temperatures warmer than 25 ıC, and the larvae that are smaller than the viable ones that pupate
eventually die. This shows the resistance of the larval population to climate change variations (the
same occurs to pupae). The points represent experimental values, and the solid line represents
Eqs. 4.6 and 4.7 (R2 D 0.8178; Willmott’s d D 0.504; p < 0.005)

The adult death rate formulation has two expressions: one similar to a Weibull
reliability function, which represents the frequency of survival of mosquitoes at
each temperature, and one similar to a “potential well” profile, which represents a
possible stability of those frequencies. The survival of these mosquitoes displays
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Fig. 4.6 Temperature-dependent emergence rate. Estimated relationship from the temperature
effects on the transition from the aquatic to aerial phase of A. aegypti mosquitoes. Pupae derive
oxygen from the air, and the gradient between ambient and water temperatures drives this
consumption, reducing the water-air transition period at elevated temperatures exponentially. The
points represent experimental values, and the solid line represents Eq. 4.9 (R2 D 0.8971; Willmott’s
d D 0.978; p < 10�6)

a classic “bathtube curve”, indicating at low temperature (or winter) that “failures”
decrease with small temperature elevations. At medium or intermediary temperature
ranges, these “failures” are constants and minimal, and the mosquitoes have a
productive life. At high temperatures (for example, in the summer), a “wear-out”
phenomenon is observed possibly due to the low tolerance from Aedes to elevated
temperatures.

The lowest death rate for adult mosquitoes occurs between 18 and 28 ıC, and
the death rate increases rapidly at temperatures that are below or above that range.
Therefore, the optimum temperature range for mosquito survival is between 20
and 28 ıC (Fig. 4.7). The values of each parameter from Eq. 4.2 are presented in
Table 4.1. The values relative to each parameter are shown in Table 4.2.

4.3.2 Equilibrium Analysis

The model’s equations reveal that equilibrium values can be observed for all
subpopulations. According to the dynamical model (4.1), some equilibria depend
on the larval densities and are observed when the mosquitoes complete their life
cycle and survive. The mathematical structures that represent these states are shown
in Eqs. 4.11, 4.12 and 4.13. The notation of rates has been simplified to enhance
understanding of the Jacobian matrix.
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Fig. 4.7 Temperature-dependent adult mosquito death rate. The effects of temperature on the
death rate of the adult female mosquito A. aegypti. A temperature range from 15 to 28 ıC exhibits
a smaller death rate (and a bigger survival rate). At higher temperatures, an increased death rate is
observed most likely due to a maximum temperature tolerance. The points represent experimental
values, and the solid line represents Eq. 4.10 (R2 D 0.7464; Willmott’s d D 0.925; p < 10�4)

With ‘ss’ denoting the steady-state, the equilibrium states are

Ess .Tair/ D op:pic:Ke:Ass .Tair/

op:pic:Ke:Ass .Tair/ C Ke .�e C h/
; (4.11)

Pss .Tair/ D �a

ptA
Ass .Tair/ ; (4.12)

and

Ass .Tair/D
s

1 C 4

�
op:pic

Ke .�e C h/

�2

Ki

�̂
K2

e .�e C h/ C K 0
�

Ke .�e C h/

op:pic
� 1

��
;

(4.13)

where

ˆ D
�

ptA

�a

�2� pt

�p C ptA

�2 �
h

�l C pt
� 1

�
: (4.14)

Considering the larval population from the second equation of model (4.1),
when larvae and eggs coexist in the same location, multiple equilibria are possible.
However, we consider only three, which are described separately below.
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Case 1 Due to the application of larvicide, the larval numbers are diminished, and
the remaining larvae compete for survival by searching for food in large-volume
vessels or sites. The equilibrium is denoted by

Lss.Tair/1 D h

�l C pt

E

E C K 0 : (4.15)

Egg populations that hatch under favourable climatic conditions control this
equilibrium, saturation of the egg-laying site (where both eggs and larvae coexist)
and optimal feeding conditions for larval growth.

Case 2 Assuming that both populations densely coexist at the same site, these
dynamics could lead to another equilibrium. In this case, the intra-specific com-
petition between larvae and eggs by space regulates the larval super-population at a
density-dependent level, which is represented by

Lss.Tair/2 D 3

s
h

�l C pt
KiEss .Tair/: (4.16)

Case 3 A third possible equilibrium occurs when control strategies are applied
to control both larval and egg abundances. Eventually, and under favourable
climatic conditions, the larval and egg populations can grow without limitation from
density-dependent interactions. The size of the larval population will be directly
proportional to the number of eggs that are present. The steady state in this scenario
is thus

Lss.Tair/3 D h

�l C pt
Ess .Tair/ : (4.17)

Once eggs mature, they hatch at a rate that is influenced by the environmental
conditions. Temperature affects several enzymatic and metabolic processes in the
mosquito (Eq. 4.14), and temperature variations increase eggs’ developmental
requirements. The hatching rate peaks near 30 ıC (Fig. 4.3). Some of the eggs
do not hatch and actually die as the temperature increases (Fig. 4.2), showing an
exponential profile.

The mathematical expressions used to characterise the temperature dependence
of the life cycle of the A. aegypti has phenomenological and biological bases,
exhibiting representations such as Boltzmann-Arrhenius function-like from bio-
chemical kinetics. In environments subject to seasonal variation in temperature, the
mosquito population dynamics respond to this variation as shown in Fig. 4.12a, b.

4.3.2.1 Equilibrium with Only Adult Mosquitoes

According to (Silver 2008), when some information about the size of the emergent
adult population is present, the probability that viable eggs persist to adulthood can
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be estimated. Cuéllar (1969) stressed the parameter’s importance for predicting the
potential size of mosquito populations. Consider the equilibrium S1 D (0;0;0;A*),
where females mosquitoes feed on human blood during their life cycle to survive in
a region that has no dengue cases and where the mosquito population does not have
the dengue virus.

The characteristic polynomial, p(�), from the first equilibrium (S1) occurs where
adult mosquitoes are present, and the other populations (eggs, larva and pupa) are
equal to zero. The resulting polynomial is

a4œ
4 C a3œ

3 C a2œ
2 C a1œ C a0; (4.18)

where the ai parameters have the following forms:

a4 D 1

a3 D
�

op:picA�

Ke

C �e C h

�
C �l C pt C ptA C �a

a2 D 2

��
�p C ptA

�
�a C

�
op:picA�

Ke

�
.�l C pt/ �a C .�l C pt/ .�a C ptA/

�
a1 D

�
op:picA�

Ke

� ��
�p C ptA

�
�aC��l C pt /. �a C ptA //

C .�l C pt/
�
�p C ptA

�
�a

a0 D
�

op:picA�

Ke

C �e C h

�
.�l C pt/

�
�p C ptA

�
�a (4.19)

The Routh-Hurwitz condition for stability is a1a2�a0a3 > a1 and

G0;adults D op:pic

Ke .�e C h/
A0 (4.20)

where G0,adults is the basic offspring number (Fankhauser and Tol 1997) that
describes how many new mosquitoes can be born to an active A0 female population.

Lemma 1 The equilibrium with only adult mosquitoes, given by Eq. 4.20, is
locally-asymptotically stable if G0,adults < 1 and is unstable if G0,adults > 1.

4.3.2.2 Equilibrium with Only Eggs

Another possible steady state occurs when only eggs, and no mosquitoes, are
present in the environment (e.g., under some type of mosquito control). In this case,
S2* D (E*; 0; 0; 0). The characteristic polynomial, p(�), has the structure and values

œ
˚
a3œ

3 C a2œ
2 C aœ

	C a0 (4.21)
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where the parameters ai are

a3 D 1

a2 D �a C �p C ptA C �l C pt

a1 D �
�p C ptA

�
�a C .�l C pt/ �a C .�l C pt/

�
�p C ptA

�
a0 D .�l C pt/

�
�p C ptA

�� h

E�

�
E�

E� C K 0 � 1

�
ptA:pt:op:pic:

�
1 � E�

Ke

�
(4.22)

The Ruth-Hurwitz stability criterion has the condition a1a2 � a0a3 > a1.
Thus, the model is stable under the assumption that there are only eggs in the

environment, and the basic offspring number is

G0;eggs D ‚
2hKe

Ke .2 C h/ C 2h
(4.23)

where

‚ D ptA

�p C ptA

pt

�l C pt

op:pic

�a

: (4.24)

Lemma 2 The equilibrium given by Eq. 4.23 is locally-asymptotically stable if
G0,eggs < 1 and unstable if G0,eggs > 1.

4.3.3 Analysis of Local and Global Stability

To identify the local stability of the positive equilibrium from model (4.1), a
Jacobian matrix was calculated at the population equilibrium. The equilibrium value
of the larval population is composed of terms that show the inhibition by substrate
uptake. The equilibrium value also includes the relationship between the hatching
rate, the larval mosquito death rate and the velocity with which the larvae transform
into pupae. Larval-induced inhibition in egg uptake appears in two terms: one term
is related to the equilibrium and the other is related to the half-maximum velocity
of nutrient uptake.

The adult mosquito can reach a temperature-dependent equilibrium, which
is derived from all of the transition parameters. Egg populations possess an
equilibrium state that is only affected by the temperature-dependent hatching rate.
This phenomenon can explain why active eggs have been observed after months in
conditions without water.
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The Jacobian matrix J* of model (4.1) evaluated at the equilibrium is

J � D

2666666664

� op:pic
Ke

A� � .�e C h/ 0 0 op:pic:
�
1 � E�

Ke

�
� .E�/2

h�
E�CK0C .L�/2

Ki

�3 � h 2L�

Ki
E��

E�CK0C .L�/2

Ki

� 0 0

0 pt � ��p C ptA
�

0

0 0 ptA ��a

3777777775
(4.25)

When the positive equilibrium S* D (E*; L*; P*; A*) (shown in Eq. 4.11) is
locally-asymptotically stable, it is interesting to analyse the global asymptotic
stability. Methods for this type of analysis have been published, and they include
Lyapunov functions (Lakshmikantham et al. 1991), the Poincaré-Bendixon theorem
(Chicone 1999; Lakshmikantham et al. 1991) and the Bendixon criterion of Li and
Muldowney (1993). According to these methods, it is sufficient to show what is
known as the second compound equation,

dM

dt
D @F Œ2�

@X
.X .t I X0// M.t/ (4.26)

with respect to a solution X(t;X0) is asymptotically stable (Sun and Loreau 2009).
Equation 4.26 shows that model (4.1) is also asymptotically stable. If the equations
that represent the stages of the mosquito life cycle have a periodic solution, the orbit
� of which is contained in the int � cone, then, in accordance with the criterion
given by Muldowney (1990) to determine the asymptotic stability of the periodic
orbit of a general autonomous system, it is sufficient to prove that the linear non-
autonomous system from Eq. 4.26 is asymptotically stable.

When the second additive compound matrix methodology is applied, the calcu-
lation can be a bit complex, and the outcome matrix J[2] has the form

J Œ2� D

266666664

� .aC�/ 0 0 �f .Ess/ 0 0

pt � .bC�/ 0 0 0 �f .Ess/

0 ptA � .cC�/ 0 0 0

0 �f1 .Ess; Lss/ 0 � .d C�/ 0 0

0 0 �f1 .Ess; Lss/ ptA � .mC�/ 0

0 0 0 0 pt � .!C�/

377777775
(4.27)

where, if the trace of J[2] < 0 and the determinant of J[2] > 0, then

a D f .Ass/ C g .Ess; Lss/ (4.28)

c D f .Ass/ C �a (4.29)
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m D g .Ess; Lss/ C �a (4.30)

b D f .Ass/ C �
�p C ptA

�
(4.31)

d D g .Ess; Lss/ C �
�p C ptA

�
(4.32)

! D �
�p C ptA

�C �a (4.33)

where the functionals are f .Ess/ D op:pic
�
1 � Ess

Ke

�
, f .Ass/ D op:pic

Ke
Ass C

.�e C h/, � f1(Ess, Lss) D J[2]
21 and � g(Ess, Lss) D J[2]

22 .
By analysing the J[2] (Eq. 4.27), we can verify that model (4.1) is stable

under the conditions with adult mosquito, egg, larval and pupal populations at the
location being studied. The Ruth-Hurwitz criterion can be used to verify whether
the dynamical system is stable. The characteristic polynomial of matrix J[2] has the
form

T6�
6 C T5�

5 C T4�
4 C T3�

3 C T2�
2 C T1� C T0 (4.34)

where

T6 D 1 (4.35)

T5 D d C m C ! C a C b C c (4.36)

T4 D .dm C d! C m!/ C .ab C bc C ac/ C .a C b C c/ .d C m C !/ (4.37)

T3 D abc C dm! .a C b C c/ .dm C d! C m!/ C .ab C bc C ac/ .d C m C !/

(4.38)

T2 D abc .d C m C !/ C dm! .a C b C c/ C .ab C bc C ac/ .dm C d! C m!/

(4.39)

T1 D .dm C d! C m!/ abc C dm! .ab C bc C ac/ (4.40)

T0 D abcdm! (4.41)

Lemma 3 The model (4.1) has a unique positive equilibrium if and only if T0 > 1.

The solution to this system implies that we must have two conditions associated
with the complete mosquito life cycle satisfied for the dynamical system to be stable.
These conditions are T1T2 > T3 and T1T4 > T5. By analysing the Ti parameters and
the parameter vector 
 D (a; b; c; d; m; !), it is clear that even with the climatic
variation, the conditions will be obeyed.



4 Modelling the Implications of Temperature on the Life Cycle of Aedes. . . 101

4.3.4 Adult Mosquito Population

When Eqs. 4.20 and 4.23 and the temperature-dependent population expansion of
an adult mosquito shown in Eq. 4.13 are considered, the maximum development of
the mosquito population occurs near 28 ıC. This temperature could be considered
as an optimum value for the A. aegypti colonisation and for widespread distribution.
Interestingly, these mathematical equations correlate with a mosquito infestation,
possibly from eggs or from adult mosquitoes, and either in alterations in the climate
variables or the environmental conditions, unlike what was previously observed
by Yang et al. (2009b) and Esteva and Yang (2006). In Fig. 4.9, the effect of
temperature on the mosquito population is estimated from Eq. 4.13 and illustrates
that temperatures near 30 ıC are optimal for mosquito development.

In temperatures ranging from 25 to 30 ıC, all transition rates increased, resulting
in a larger adult mosquito population. After the optimum temperature is reached,
adult mosquito tolerance to survive at the maximum temperature can be observed
in Figs. 4.7 and 4.9, and higher values may lead to an elevated death rate and a
decrease in the mosquito population (Christopher 1960).

4.3.5 Colonisation Risk

We observe that the colonisation risk from adult mosquitoes increased (Fig. 4.8a,
and Eq. 4.20) in a temperate environment with temperatures ranging into the
limits evaluated in model (4.1) and decreasing after the optimal value when the
temperature increased. Likewise, when only eggs are present in the environment
(Fig. 4.8b; Eq. 4.24) with temperatures ranging between 25 and 35 ıC, the risk

a b

Fig. 4.8 Profile of the basic offspring numbers. (a) G0,adults (Eq. 4.20); (b) G0,eggs (Eq. 4.23). These
equations demonstrate that elevations in temperature contribute to an increase in the mosquito
population in an environment that initially contains only adult mosquitoes or only eggs. G0,adults

calculations were performed assuming A0 D 8,000,000 female mosquitoes
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Fig. 4.9 Amount of
temperature-dependent adult
mosquitoes, Ass, estimated by
Eq. 4.13. Considering the
temperature variation in the
entomological parameters
modeled by Eqs. 4.3, 4.4, 4.5,
4.6, 4.7, 4.8, 4.9 and 4.10, the
maximum adult mosquito
population may occur near
30 ıC
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profile shows a simple peak at 28 ıC and values ten-fold less than those observed
for adult mosquitoes. This approach is useful for predicting the emergence of A.
aegypti mosquitoes into geographic areas where significant increases in temperature
are possible, e.g., in southern Europe (Fig. 4.9).

In the temperature range of 19 to 28 ıC, we might expect an increased risk
of dengue outbreaks because at these temperatures, we observed the lowest death
rate of adult mosquitoes. Higher adult mosquito populations will lead to an
increased contact rate between infected mosquitoes and humans. In addition, within
this temperature range, we observed the highest amount of eggs oviposited and
subsequently hatched into larval-stage mosquitoes, further contributing to the risk
of infection.

Above 25 ıC, the death rate of the larval and pupal stages is extremely
pronounced due to environmental factors and the metabolic processes of mosquitoes
(Figs. 4.10 and 4.11). Interestingly, the death rate of larval and pupal populations
remained low at a low temperature range possibly because they become sluggish to
prevent energy depletion and the elevated potential metabolic costs. This pattern
could be due to a temperature variation in the aquatic environment because air
and water have different temperature gradients, which occur at the same time.
Above 30 ıC, egg viability suffers, and hatching rates could decline because of
the influence of the larval super-population or desiccation in rearing sites, among
other factors. The transition rate from the pupal to the adult form plateaus near
30 ıC, and this fact may be associated with the “jump” from the aquatic to the
air environment that occurs when temperature range variations only influence the
metabolism of adult mosquitoes. This temperature range is more favourable for
breeding, and seasonality can drive the Aedes aegypti population (Fig. 4.12a, b).
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Fig. 4.10 Estimated temperature-dependent amount of adult mosquitoes, Ass, and pupal and larval
levels, Pss and Lss. Relationship of adult mosquitoes, pupal and larval concentrations, estimated by
the steady state from Eqs. 4.12, 4.13 and 4.16, and the temperature variation. Interestingly, the
estimations show that adult and larval populations peak at 30 ıC to, and at 10 ıC, pupae peak most
likely due to “sluggish” individuals that survive at low temperatures
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Fig. 4.11 Estimated egg and larval populations at steady state. All of these profiles were obtained
by a simulation of the model 1 for a period of 365 days, considering Santos city and the temperature
profile found in this city. Larvae2 (Eq. 4.16) considers the larval super-population on the same site
as the eggs, and Larvae3 (Eq. 4.17) shows that the larval population is proportional to the egg
steady state population. The initial simulation values are Eggs, E0 D 8,200; Larvae, L0 D 8,000
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Fig. 4.12 Seasonality affects the mosquito’s life cycle parameters and the Aedes population. (a)
Temporal variation of each parameter cited in Sect. 4.2, considering the temperature profile of
Santos city; (b) Influence of the daily average temperature variation on egg and adult populations
from Aedes aegypti mosquitoes. These profiles were calculated according to Sect. 4.2.1
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4.4 Conclusions

In developing this model, the main consideration was that each of the equations be
as simple as possible while still retaining the essential features of the A. aegypti
life cycle. With this objective in mind, some aspects have been simplified, such as
the larval stages of the growth phase. The mathematical expressions in the model
illustrate the behaviour of temperature-dependent parameters, such as death rates
and transition rates, among different life cycle stages of the A. aegypti mosquito. The
model dynamics capture extremely well the seasonality of the mosquito’s life cycle
and forecasting possibilities, once it used the temperature data (applied directly on
“entomological” equations) or estimated by Tair.

Even though the model does not consider the temperature-dependent adult
mosquito size explicitly, this aspect is assumed by the “yield” term of the larval
population. A limited-food habitat or climatic unfavourable conditions may impact
on larval size and the adult A. aegypti population, resulting in fluctuations on
mosquito’s life-cycle dynamics and in whole final population. The vectorial capacity
or competence of the mosquito requires a higher temperature to guarantee that the
dengue virus has a better proliferation rate.

Thus, all of these aspects favour the intense dengue virus transmission and a high
number of dengue cases on a geographical location with a high colonisation risk.
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Chapter 5
Predictive Modelling of Insect Metacommunities
in Biomonitoring of Aquatic Networks

Tadeu Siqueira, Lucas Danilo Durães, and Fabio de Oliveira Roque

Abstract Aquatic insects are used extensively in freshwater bioassessment because
they are good indicators of human impact. The most successful bioassessment
initiatives have focused mainly on comparing insect communities from potential
impacted sites to those predicted by empirical correlative models that occur in
pristine sites. The theoretical scope that underpins the use of these models is
derived from a deterministic view of ecology, particularly based on niche theory –
i.e., predicting taxa occurrence from environmental conditions. In recent years,
however, the development of new concepts (e.g., the metacommunity concept),
use of new techniques (e.g., artificial neural networks) and availability of better
datasets (e.g., geographic information system layers) could change this scenario.
In this chapter, we explore the use of metacommunity models, the geometry of
riverine networks and organism dispersal conceptually with a simulation exercise
to discuss the challenges of modelling metacommunities in biomonitoring aquatic
networks.
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5.1 Introduction

Freshwater habitats, the biodiversity they support and the services they supply are
directly threatened by human activities through land cover change, water pollution,
construction of dams, overexploitation and invasion by exotic species (Dudgeon
et al. 2006). Even worse, global climate change is predicted to exacerbate some
of these threats (Hamilton et al. 2010), placing headwater streams, rivers and
lakes among the most endangered ecosystems in the world. This raises serious
concerns about the status of aquatic biodiversity, especially considering that the
diversity of many groups (e.g., microbes and insects), as well as the ecosystem
goods and freshwater supply services (e.g., water consumption, fishing, and climate
regulation) are not even known. Researchers must, therefore, develop efficient
ways to measure, monitor and share information on freshwater biodiversity and
water quality to achieve good management and conservation practices. As noted by
Friberg et al. (2011), although it is not a scientific discipline in itself, biomonitoring
needs to be supported by strong science to guarantee its credibility so that wrong
costly decisions are avoided. Herein, we show and discuss the statistical modelling
approach used in most biomonitoring programs around the world (i.e., community-
based predictive modelling; Wright 1995, 2000) and explore the potential of
the concepts of metacommunity models, which are illustrated using a simulation
exercise with hopes of helping to advance the field of research.

5.1.1 The Use of Aquatic Insects in Biomonitoring

Aquatic insects, together with other macroinvertebrates, have been extensively
used in modern bioassessment programs in North America, Europe and Australia
(Rosenberg and Resh 1993; Bonada et al. 2006). Although the use of biological
information in freshwater ecology to access human impact had begun in the late
nineteenth century, there has been a dissemination of studies using ecological
and statistical theory to discuss good biomonitoring practices just in the past
25 years (Bonada et al. 2006; Dolédec and Statzner 2010; Friberg et al. 2011).
This was accompanied by the implementation of biomonitoring programs by
some governmental agencies, such as the UK Environment Agency and the US
Environmental Protection Agency, and by its use in marine and terrestrial systems.

Two main different analytical approaches have emerged from this feedback
exchange between researchers and managers, which promoted further development
of the field and implementation by agencies around the world, e.g., the EU Water
Framework Directive uses both. The first approach, called the multimetric index
approach (Karr and Chu 1999; Karr 1999), is based on the idea of using several
metrics that represent major aspects of composition and function of biological
communities that change with increased human impact, e.g., number of species
(or genera), taxonomic and trophic composition, and abundance. Metrics are rated
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to what would be expected at a preserved site and combined into an index of
biological integrity. A discussion of this approach is beyond the scope of the present
article. For those interested in details about its rationale and use, we recommend
the publications by Karr and Chu (1999), Karr (1999), Norris and Hawkins (2000),
and Bonada et al. (2006). The second approach, called predictive modelling (Wright
1995, 2000), is one of our focuses here and will be detailed in the next section.

5.1.2 Predictive Models in Freshwater Biomonitoring

The use of predictive models for freshwater bioassessment started with the develop-
ment of the River In Vertebrate Prediction And Classification System (RIVPACS)
by the Institute of Freshwater Ecology, UK, in 1977 (Wright 2000). The initial
objectives were two-fold: i-develop a biological classification of near pristine river
sites in Great Britain, based on macroinvertebrates; ii-evaluate whether macroinver-
tebrate communities could be predicted by using water variables. The success and
further improvement of the RIVPACS approach (Hawkins et al. 2000) stimulated
the development of similar predictive modelling tools in other countries. The most
common approaches are the AUStralian RIVer Assessment Scheme (AUSRIVAS)
and BEnthic Assessment of SedimenT (BEAST). Although these may differ greatly
among each other, more recently, they have been referred to as RIVPACS-type
models, i.e., multivariate predictive models that use macroinvertebrates to support
the detection and interpretation of anthropogenic impacts on aquatic communities
of streams and rivers. Hereafter, we emphasise the original RIVPACS, as our
simulations are closest to it.

Composed of several sequential steps, in general, RIVPACS-type models eval-
uate the deviation of a given site from the expected biological condition if that
site was in a minimally disturbed reference condition. The expected taxonomic
composition is then compared with the one observed by sampling the site. Discrep-
ancies between the two taxonomic compositions indicate the degree of impact. The
sequential steps usually include (for a more detailed description of the steps, see
Wright et al. 2000; Hawkins 2006; Hawkins et al. 2010): (1) a posteriori biological
classification of reference sites based on biological information that is derived
from some type of classification analysis (different dissimilarity measures and
clustering algorithms are available); (2) establishment of environmental variables
that best discriminate the biological classification of reference sites; (3) prediction
of taxonomic composition and richness for new sites; (4) calibration and predictions
for null models; (5) calculation of indices that evaluate discrepancies between the
predicted and the observed. Usually, the predictive modelling step is performed with
general linear models – from multivariate discriminant function analysis to logistic
regressions. Predictive models based upon Artificial Intelligence, such as Artificial
Neural Networks or Bayesian Belief Networks, have also been proposed (Feio and
Poquet 2011). Among the indices calculated in step (5), the O/E ratio of observed to
expected taxon richness is one of the most used. The O/E ratio is used to compare
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observed and expected assemblages, and a value different from 1.0 indicates that
the community at a site is not in reference condition. More recent studies, however,
have also used a measure of compositional dissimilarity (based on the Bray-Curtis
index) that complements O/E and summarises the taxon-specific disparities between
observed and expected assemblages directly (Van Sickle 2008).

The theoretical scope that underpins the use of these models is derived from a
deterministic view of ecology, particularly based on niche theory, i.e., predicting
taxa occurrence from environmental conditions. In recent years, however, the
development of new concepts (e.g., the metacommunity concept), use of new
techniques (e.g., graph theory, spatial modelling) and availability of better datasets
(e.g., geographic information system layers) could change this scenario. Hereafter,
we explore the use of metacommunity models (Leibold et al. 2004) that can
account for non-random spatially distributed anthropogenic impacts, the geometry
of riverine networks and organism dispersal to discuss the challenges of modelling
metacommunities in biomonitoring aquatic networks.

5.1.3 Biomonitoring in the Context of the Metacommunity
Theory

For freshwater biomonitoring research, it is crucial to be able to make reliable
predictions about community changes in a system. In this context, ecologists have
increasingly begun recognising the insights provided by viewing freshwater systems
from the perspective of multiple communities connected by dispersing organisms,
i.e., from a metacommunity perspective (Leibold et al. 2004). Metacommunity
theory is still under development (Scheiner and Willig 2008; Winegardner et al.
2012), with debates being fuelled, at a first moment, over its conceptual paradigms
and, more recently, over the support from empirical evidence (Logue et al. 2011).
Metacommunity theory has advanced our understanding of how spatial dynamics
and local interactions shape biodiversity patterns by changing the longstanding
deterministic assumption of community ecology. This assumption states that vari-
ation in a local community structure is simply determined by the responses of
different species to environmental gradients, which is also the cornerstone of all
freshwater bioassessment schemes. Ecologists now recognise that communities are
organised at multiple scales and that non-deterministic processes such as dispersal
within the river network also act as drivers of diversity patterns.

In their seminal paper, Leibold et al. (2004) organised the metacommunity
framework and proposed four characterisations or views of metacommunities by
using theoretical models developed previously: species sorting (Chase and Leibold
2003), patch dynamics (Tilman 1994), mass effects (Amarasekare and Nisbet 2001)
and the neutral model (Hubbell 2001). In short, these views of metacommunities
mainly differ in the assumption of whether patches are similar or heterogeneous
in respect of abiotic and biotic conditions and whether the amount of organism
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dispersal among patches is limited, moderate or intense (Holyoak et al. 2005).
Metacommunity models can be viewed as a continuum of the main drivers of
community structure and dynamics. At one extreme of this gradient, sufficient
dispersal of organisms results in species at sites well suited to their environmental
preferences along environmental gradients (i.e., species sorting). The neutral model,
at the other extreme of the continuum, describes a metacommunity that is structured
by dispersal limitation, speciation and ecological drift and not by ecological
differences between species (Hubbell 2001). Winegardner et al. (2012) recently
proposed that the other two models – patch dynamics and mass effects – can actually
be considered as special cases of the species sorting model. In patch dynamics,
the interacting species differ from each other by specialising their abilities as
either good competitors or good colonisers within a uniform environment. Within a
heterogeneous environment, strong priority effects caused by differential dispersal
abilities can lead to different community dynamics. In the mass effects framework,
intensive and constant dispersal from a source habitat provide a constant supply
of individuals to a sink habitat so that species exist at habitats outside of their
environmental range (Mouquet and Loreau 2003).

Notably, metacommunity models should not be seen as four discrete views
but rather as the simultaneous interaction between dispersal and environmental
processes in metacommunities (Leibold and McPeek 2006; Logue et al. 2011;
Winegardner et al. 2012). Thus, although integrating metacommunity ideas into
the scope of freshwater biomonitoring is not a simple task, it is fair to suggest
that biomonitoring approaches should recognise the importance of dispersal and
the level of connectivity among patches as an important driver structuring local
communities. In this sense, Siqueira et al. (2012a) proposed the selection of
biodiversity surrogates and indicators of environmental conditions with the explicit
integration of environmental and spatial variables into the selection approach.
Heino (2013) went further and provided a more complete conceptual framework
for bioassessment in a metacommunity. None of these articles, however, explicitly
considered the role of the dendritic nature of the riverine network into their analyses
or conceptual models; and that is crucial, as demonstrated by recent studies that have
highlighted how riverine topology and organismal dispersal among habitat patches
can determine community structure (Campbell Grant et al. 2007; Auerbach and Poff
2011; Brown et al. 2011).

5.1.4 Metacommunities in Hydrographic Networks

The spatial structure of ecosystems has long been recognised as a key component
in structuring ecological patterns. The role of spatial networks in generating and
maintaining biodiversity patterns has recently received increasing attention from
scientists and conservationists (Campbell Grant et al. 2007). Part of this interest is
due to the implications of this issue for understanding the forces that shape riverine
metacommunities (Heino et al. 2003, 2012; Ackerly 2004; Roque et al. 2010;
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Auerbach and Poff 2011; Siqueira et al. 2012b) and for the monitoring, management
and conservation of network systems (Economo 2011; Siqueira et al. 2012a).

Historically, the longitudinal dimension of aquatic systems has received more
attention than the vertical or lateral ones. Part of this interest is due to the ideas
of the “River Continuum Concept” that emphasises the predictable longitudinal
shift in biological communities caused by physical gradients and energy inputs
from the headwaters to the mouth (Vannote et al. 1980). The lateral dimension of
large rivers have also influenced our knowledge about the biodiversity organisation
in aquatic systems by placing major emphasis on the predictable pulsing of river
discharge and exchange processes of matter and organisms across river floodplain
gradients (Junk et al. 1989). Such a linear (longitudinal and lateral) view has been
the dominant paradigm in studies of aquatic insects during the 1980s and 1990s.
Recently, our view about the process that shapes biodiversity distribution is moving
beyond linear conceptual models of aquatic ecosystems to consider the role that
the spatial structure of river networks might play in determining diversity patterns.
This view has rapidly impacted our knowledge of aquatic insect biodiversity. For
example, consider the review by Clarke et al. (2008) as a landmark about the role
of dendritic networks on the distribution of aquatic macroinvertebrates, including
insects. Since this review, there has been an exponential increase in the number of
publications about the distribution of biodiversity in aquatic dendritic networks.

Despite advances in understanding the role of dendritic systems in biodiversity
distribution, the spatial configuration of riverine networks per se as a major factor
influencing the results of bioassessment and biomonitoring has been highlighted
only in the last few years (Heino 2013). We argue that not only environmental
heterogeneity but also spatial configuration are crucial for RIVPACS-type models.

5.2 Simulating Insect Metacommunities in Networks Under
Punctual Anthropogenic Impacts

We simulated riverine metacommunities in a hypothetical aquatic network to under-
stand how the spatial position of the anthropogenic impact and the connectivity
among patches can affect the species richness and composition of local communities
under different metacommunity scenarios and consequently the result of RIVPACS-
type models. Below, we provide a brief overview of the model construction. For
further details and codes, please contact the authors. The model was prepared
using the R software (R Development Core Team 2012). Steps 1–5 describe how
we simulated the aquatic networks. As with any model, these five steps simplify
the processes assembling natural metacommunities. For example, our simulation
used the same probability of survival for all species. This is likely not the case for
real metacommunities. However, we do not have empirical evidence from stream
metacommunities to use here. Thus, additional investigation is needed to evaluate
how changing parameters may influence the outcome of our analyses. Steps 6–8
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describe the standardised procedures for building and applying RIVPACS-type
models. For calculating RIVPACS metrics, we used the scripts for building and
applying predictive models (available from http://www.epa.gov/wed/pages/models/
rivpacs/rivpacs.htm).

1. We first developed riverine networks that resembled realistic hierarchical struc-
turing of habitat patches in stream networks using nodes (habitat patches) and
edges. The dendritic network in the model was represented as a graph consisting
of a set of vertices connected by lines. Each vertex of a given graph corresponded
to a discrete patch that could be colonised by species of the regional species pool.
Thus, our network aimed to simulate a small hydrographic basin. Communities
in the networks have already been represented by graphs, and this procedure is
an approximation of many real systems (Auerbach and Poff 2011).

2. For simplicity, all simulated metacommunities were composed of 20 species
because the number of species within the species pool can greatly affect
the structure of metacommunities (McPeek and Brown 2000). We started the
simulation with two individuals per species per patch. Each individual gives birth
to ten new individuals at each reproductive event. These individuals have a 70 %
probability of surviving. The survivors are subject to a process of environmental
filtering and stochastic events that can cause local extinction (see step 4). For
simplicity, we assumed Zero-Sum dynamics with a limit of 6,000 individuals
regionally and a maximum of ten individuals per species per patch.

3. Species disperse throughout the simulated network with the probability of
reaching a given patch dependent on the dispersal capacity and distance between
patches. We began by assuming that all nodes were initially occupied by an equal
number of species and used a dispersal kernel correspondent to a Brownian
motion (Lutscher et al. 2005) to represent the movement of insects throughout
each metacommunity:

Pij D 1

	
�
1 C ˛ � d 2

ij

�
where Pij is the probability of individuals present in patch j colonising patch i as
a function of the distance between patches i and j (dij). The coefficient ’ reflects
the dispersal capacity of the species, which determines the slope of the curve.
The lower the value of ˛, the greater the dispersal capacity.

4. The environment of each patch was represented by two abiotic variables (x1

and x2), in which one of them (x2) was related to anthropogenic impacts (e.g.,
dissolved oxygen concentration). x1 is analogous to the predictors unaffected
by human influence used in RIVPACS models (e.g., stream width). x2 assumed
a subtle variation (0.01) in patches free from anthropogenic impacts. In these
simulations, we modelled stochastic local extinction as a factor regulating local
species. We based our model on the premise that anthropogenic impacts enhance
the probability of local extinction. Thus, each species had an environmental

http://www.epa.gov/wed/pages/models/rivpacs/rivpacs.htm
http://www.epa.gov/wed/pages/models/rivpacs/rivpacs.htm
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tolerance interval, defined as the range of environmental conditions that is
capable of maintaining a population. The probability of colonisation as a function
of environment was calculated following Tilman (2004) and Gravel et al. (2006):

Psi .xi / D exp
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where Psi (xi) is the probability that species s will colonise patch i as a function of
xi, the value of the environmental variable in patch i, and � represents the optimal
value of the environmental variable for species s. The parameter ¢ describes the
tolerance of species s for that variable. The greater the ¢ value for a given species,
the greater the width of the niche for that species. The � values of each species
are environmental values of randomly chosen patches in the network.

5. The following factors determine the number of immature individuals that become
adults: probability of the immature to die (0.7), which does not depend on
the species identity; stochastic events that are able to remove a number of
individuals, which occur at a probability 0.1 at each time step and have a
probability of 0.95 for removing the surviving individuals (Fig. 5.1).

The steps described above were run for two scenarios considering the degree
of dispersal among local communities: i- metacommunities with moderate rates
of dispersal (MD); and ii- metacommunities with high rates of dispersal (HD)
(Fig. 5.2). In both scenarios, most species respond to the environmental gradient,
i.e., 70 % of the species (sensitive) with a niche breadth varying from 0.2 to 0.25
in relation to environmental variables x1 and x2 and 30 % of the species (tolerant)
with a niche breadth varying from 2 to 5 (Fig. 5.3).

Applying the RIVPACS model
6. To analyse how the spatial position of the anthropogenic impact and the

connectivity among patches affect the results of the RIVPACS-type models,

Fig. 5.1 Schematic
representation of the
simulation
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Fig. 5.2 Dispersal probability as a function of distance for species with low or high dispersal
capacities. A distance of 15 is equal to the largest distance between network patches

Fig. 5.3 Probability of colonisation as a function of environmental x1 and x2

we simulated an anthropogenic impact by altering the value of x2 for a given
patch (test patch, hereafter, Fig. 5.3). The difference between the altered value
and the original value defines the level of the impact. We simulated both a
strong (x2 D 15) and an intermediate (x2 D 7) level of impact. This procedure
was applied in three test patches within the network (Fig. 5.4): one more
isolated (patch Z), one more connected (patch X) and another with intermediate
connectivity (patch Y). In these patches, the variable x1 has the same value.
Through this step, we generated the observed values of species richness and
composition for comparison with RIVPACS predictions.
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Fig. 5.4 Representation of
the riverine network. Colours
in patches illustrate the
differences in environmental
conditions. Test patches
chosen for RIVPACS analysis
(different levels of
connectivity) are identified as
Z, Y, X. In these patches, the
variable x1 has the same value

7. We simulated 100 networks with the same original spatial configuration and
environmental heterogeneity. Following the standardised steps for building
and applying RIVPACS-type models (http://www.epa.gov/wed/pages/models/
rivpacs/rivpacs.htm), these networks were used to cluster patches, define the
reference condition and predict communities by using discriminant function
analysis. In our predictive model, the expected species composition for sites
free from anthropogenic impact is given by the set of patches of the reference
networks that have the same value of x1. The probability of occurrence (pc) for
each taxon was estimated for each patch as the ratio of the number of simulations
in which the taxon occurred by the total number of simulated networks. As the
predetermined probability threshold (pt) used to select subsets of taxa for the O/E
index calculations can influence the output, only taxa that are predicted to occur
with a probability >0.5 were included in the calculations.

8. Finally, we calculated the O/E ratio of observed to expected species richness and
the compositional dissimilarity (based on Bray-Curtis index), which indicates
discrepancies between the two assemblages as a result of ecosystem stress or
impairment (Van Sickle 2008). We compared the O/E ratio and dissimilarity
values among patches with different levels of connectivity. Considering only
the impact, which was the same in these patches, there should be no significant
difference in these metrics among these patches. If the spatial configuration of
the network matters, conversely, then there should be a significant difference in
these metrics among the more isolated (patch Z), more connected (patch X) and
the patch with intermediate connectivity.

http://www.epa.gov/wed/pages/models/rivpacs/rivpacs.htm
http://www.epa.gov/wed/pages/models/rivpacs/rivpacs.htm
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5.3 Results

We observed that in the scenario where the environmental impact in the test patches
was strong (high x2 values), both the O/E index and the compositional dissimilarity
responded strongly to the impact regardless of the spatial position of the test patch
(Fig. 5.5). In other words, in that scenario, the RIVPACS model performed well
regardless of the level of patch connectivity.

However, we also observed that under intermediate impact levels, the perfor-
mance of the RIVAPCS model was affected by the spatial position of the test
patch. Our results indicate that in a scenario of moderate dispersal rates, the
difference between the observed and expected values (for both the O/E index
and Bray-Curtis dissimilarity) is stronger in less connected patches (Fig. 5.5).
In this scenario, patch Z, located in the headwaters of the network, had the
lowest O/E values (mean D 0.113, SE D 0.005), which were approximately 42 %
smaller than the mean O/E value of patch X (the most connected) and 37 %
smaller the patch with an intermediate level of connectivity (patch Y) (F D 16.904,
P < 0.001). We observed extremely similar results for the Bray-Curtis composition
dissimilarity index. The less connected patch Z had the highest dissimilarity values

Fig. 5.5 Mean values (˙SE) of the O/E ratio and Bray-Curtis index in each of our simulated
scenarios. HD and MD refer to high and moderate dispersal, respectively. Z more isolated patch, Y
patch with intermediate connectivity, X more connected patch
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(mean D 0.824, SE D 0.008), followed by patch Y (mean D 0.74, SE D 0.008) and
patch X (mean D 0.683, SE D 0.007) (F D 17.133, P < 0.001).

This, however, was not the case for networks under intermediate impact levels
and higher dispersal rates (Fig. 5.5). In that scenario, there was no significant
difference between the different test patches. This indicates that a type of mass effect
may lead to the homogenisation of the biota, where populations in impacted patches
are maintained by source non-impacted patches.

5.4 Implications for Biomonitoring

The results of our simulations suggest three important properties of impacts in
insect metacommunities in dendritic networks that are relevant to biomonitoring:
(i) context dependency regarding the strength of the environmental impact; (ii) the
spatial position of the impact within the network; and (iii) the degree of dispersal
among local communities. The performance of RIVPACS-type models can be
severely affected depending on the combination of these factors. In cases where
the environmental impact was too strong, it overwhelmed the importance of the two
other factors – the spatial configuration of the network and the degree of dispersal.
This happened because only those species with extremely broad tolerance (i.e., wide
niche breadth in our simulations) were able to maintain populations in impacted test
patches, independent of their position within the network. In that case, according
to our simulations, the model correctly classified all three test patches as not in
the reference condition. RIVPACS-type models are known to have a high potential
to discriminate overall strong human impact (Wright 2000). High enrichment by
organic pollution is a good example of a strong impact that results in a high
performance of predictive models based on aquatic insects. The response of insect
communities to this type of impact is extremely predictable (Bonada et al. 2006).
In that case, pollution works as a strong environmental filter on a local scale and
results in a local community with few tolerant organisms (e.g., chironomids). The
challenge, however, is to perform well in detecting subtle and different types of
human impact, and this is where our results have something to add.

Under intermediate levels of impact, the spatial position of the test patch within
the network and the degree of dispersal among patches can make a big difference in
the RIVPACS model results. The first consideration in this situation of moderate
impact is whether the degree of dispersal among local communities is high or
moderate. First, our results suggest that in metacommunities with high dispersal
rates (i.e., dominated by species with good dispersal abilities), the spatial position
of the test patch within the network does not affect the performance of RIVPACS
models. We found that all three test patches, with varying levels of connectivity,
were classified with same level of impact – as we expected – because at high
dispersal rates, even the less connected sites can receive new colonisers. This
would guarantee that species reach suitable habitat patches according to their
environmental tolerances. Because all test patches had the same level of impact, they
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ended up with extremely similar O/E index and Bray-Curtis dissimilarity values.
This high dispersal scenario, however, should not be the rule in natural stream
networks, especially in headwater streams. Empirical evidence from genetic data,
including aquatic insects, is mixed. For example, whereas a hydropsychid caddisfly
with an adult flight stage exhibits frequent dispersal between adjacent catchments
(Baker et al. 2003), both larval and adult dispersal of the non-biting freshwater
midge Echinocladius martini is largely limited to within a stream channel (Krosch
et al. 2011). Thus, our moderate dispersal scenario seems to better reflect real-world
scenarios.

In metacommunities with moderate dispersal rates and under moderate impact,
the level of connectivity of the test patch influences our ability to identify the level of
the impact. We found that the least connected test patch (a headwater site) had O/E
and Bray-Curtis values that indicated stronger levels of impact (Fig. 5.4). This is
not correct, as we simulated the same level of impact in all three test patches. There
are two not mutually exclusive explanations for this result. The least connected
patch did not receive all of the species that could tolerate the new environmental
condition. In that case, species sorting with limiting dispersal (sensu Winegardner
et al. 2012) could attribute to this mismatch between the observed and predicted
communities in comparison with the other two more connected patches. This is a
likely explanation because more isolated patches always have fewer species that
could potentially occur as a function of the environment. Another possibility is
that the least connected patch was classified as it should be, and the two more
connected patches underestimated the level of impact. In that case, species sorting
with high dispersal (sensu Winegardner et al. 2012) would be the reason for this
mismatch between the observed and predicted communities. That is, the more
connected patches would have species that do not tolerate the impacted condition
but their populations are maintained by a constant supply from neighbouring non-
impacted sites. We cannot indicate which of these explanations is more plausible at
the moment. However, it is important to say that the O/E and Bray-Curtis values
can only be compared within each simulated scenario. We cannot compare the
least connected patch from this scenario with patches from the moderate impact-
high dispersal scenario because the predicted communities were generated under
different model assumptions. We are able to note, however, that under the same
moderate impact level, RIVPACS models can perform differently in sites with
varying levels of connectivity.

The spatial configuration of ecosystems can affect community-environment
analysis in the context of biomonitoring schemes in two main ways. First, when
both species and the environment are spatially structured, statistical tests may
overestimate the importance of environmental factors and thus generate false
community-environment association (Legendre 1993). Second, mass effects (i.e.,
the presence of species in environmentally suboptimal sites due to intense dispersal
from environmentally suitable sites) may obscure the effects of a stressor, as
dispersal from a source neighbouring site (e.g., an unaltered site) allows persistence
at a sink site (e.g., an impacted site). Thus, we potentially have to address a
spatial structure that is inherent to natural and human-induced environmental
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gradients and a spatial structure caused by spatially contagious processes, such
as dispersal. This has important implications for the construction of predictive
models and interpretation of anthropogenic impacts in biomonitoring, as predictive
modelling is mainly based on the idea of species sorting dynamics. For example,
during the model building phase, a false community-environment association would
result in wrongly predicted communities. In the phase of comparing observed
communities with predicted ones, in addition to the previous problem, one could
find an observed community that appears to be similar to the reference condition
when it is actually impacted but with populations that are maintained by source-
sink dynamics (i.e., species sorting with high dispersal, Winegardner et al. 2012).
Although some RIVPACS-type models account for spatial location by using latitude
and longitude as predictors – potentially accounting for the problem of false
community-environment association – this is only a coarse approximation for dis-
persal processes. In this sense, we have two main suggestions for incorporation by
RIVPACS-type models. First, we reinforce the use of spatial variables together with
environmental variables as predictors during the phase of model building. Several
recent studies have addressed this issue in community ecology, biogeography and
macroecology (e.g., Borcard et al. 1992, 2004; Borcard and Legendre 2002; Diniz-
Filho and Bini 2005; Dray et al. 2006; Bini et al. 2009; Peres-Neto and Legendre
2010). By doing this, one could at least obtain community-environment associations
that are free from spatial correlation. Second, we suggest that network measures of
habitat connectivity that identify particular barriers contributing to fragmentation of
riverine networks should be considered when selecting test sites.

As in any study involving simulations, our model makes several simplifications
regarding natural river networks and insect metacommunity dynamics. Although
there are an increasing number of studies on stream insects, there is still a paucity
of information about their basic biology (e.g., dispersal abilities, survival rates) that
would be used in our model. For example, we assumed that survival rates were
constant across patches and the same for all species. This neutral assumption is
unlikely to hold for species-rich insect metacommunities, such as those in tropical
areas. In addition to this lack of information on basic biology, we also simplified our
models regarding the spatial structure of the hydrographic basin. For example, we
simulated only three connectivity levels that did not strongly differ among the test
patches (Fig. 5.3). Although our network was too simplistic in this sense, we suspect
that in real-world scenarios, where sites can differ more in the level of connectivity,
the influence of the network configuration in the performance of predictive models
can become even stronger. Many RIVPACS modelling exercises comprise multiple
drainage basins. In these cases, we cannot measure connectivity levels based on
watercourse distances among sites as we did here. In such cases, the way spatial
configuration of ecosystems affects community-environment analysis in the context
of biomonitoring may be different. For example, across drainage basins, dispersal
limitation (instead of mass affects) would cause spatial structures and most likely
affect the outcome of RIVPACS models in a different way. In cases where dispersal
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limitation is important, RIVPACS models may not detect the anthropogenic impact
because not all potential species are present at reference sites. Alternatively, if one
is examining the effects of a restoration of impacted stream, RIVPACS models may
fail to detect the recovery if species cannot reach that newly suitable site due to
dispersal limitation.

Finally, another major aspect that was not addressed in our simulations – and
that also deserves further investigation – was the way the results could change
across different temporal scales. First we must consider that the role of dispersal
limitation and environmental filtering in structuring metacommunities may change
in short time scales. For example, Fernandes et al. (2014) analysed a seasonal
floodplain in the Pantanal and demonstrated that the fish-metacommunity structure
was more strongly affected by spatial connectivity at the beginning of the flood
season, whereas the environment was only important at the end when habitat
patches were more connected. Conversely, Nabout et al. (2009) did not observe a
significant signal of environmental or spatial control in structuring phytoplankton
metacommunities across different periods of a flood season. Thus, seasonal changes
in both environmental conditions and spatial connectivity may have some effects
on the results of RIVPACS models if metacommunity patterns are affected by
these changes. Second, we must consider that extinction may change the number
of species in a metacommunity in both short and long time scales. For example,
Halley and Iwasa (2011) demonstrated that, in a neutral scenario, habitat loss might
cause an immediate loss of species richness that is followed by a gradual process
of extinction – some populations drift to low numbers and then disappear. Unless
there is immigration or speciation, the eventual state of the community after habitat
loss is dominated by a single species (Halley and Iwasa 2011). Our model assumes
a fixed number of species within the metacommunity but that dispersal occurs as
a function of distance. Thus, the consequences of species loss could also affect
the performance of RIVPACS models, especially in situations where fragmentation
reduces the probability of dispersal.

In summary, we have known for a long time that (i) streams are not linear
but are rather dendritic systems, (ii) aquatic insects are complex organisms that
interact with the landscape at multiple scales using multiple dispersal routes, both
aquatic and terrestrial, and (iii) many species respond to environmental changes in a
predictable way. However, we have only recently begun to integrate these ideas. As
demonstrated here, the framework of metacommunities applied to dendritic systems
can improve our understanding of patterns in nature and consequently improve
our ability to construct predictive models based on aquatic insects to be used for
biodiversity conservation and biomonitoring.
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Chapter 6
Modeling Trophic Interactions in Insect
Population Dynamics

Michel Iskin da Silveira Costa and Lucas Del Bianco Faria

Abstract The complexity of insect communities involves a large number of
interacting species. Predators may often exploit a wide range of food sources,
frequently acting as generalists, omnivores or intraguild predators. In addition to
these kinds of interactions, natural communities also contain species with two
types of reproductive strategy, known as semelparity and iteroparity. In this chapter,
different mathematical models representing trophic interactions will be considered,
assuming both types of life history, in the framework of insect population dynamics
and biocontrol. The results show that among other factors the interaction strength
of the species involved plays an important role in the determination of the food web
dynamics.

Keywords Mathematical modeling • Reproductive strategy • Food web •
Population dynamics

6.1 Introduction

Natural communities are extremely complex and often involve different biological
levels (i.e., individuals, populations and species) interacting with one another.
Ecological communities are usually composed of many food webs/chains with a
myriad of potential interactions, which results in multiple channels of energy flow
(Pianka 2000).

The importance of understanding the patterns that emerge from food web studies
lies in the development of an explanatory theory to identify the underlying factors
that determine community structure and ecosystem functioning. Given that the
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nature of population ecology is essentially quantitative, a formal mathematical
approach can be used to model the dynamics of a population or of several species in
order to provide biological patterns that explain community structure and ecosystem
functioning (Roughgarden 1998).

Essentially, the modeling of population dynamics can take on two possible forms:
a continuous or discrete time framework. The choice of structure is closely related
to the characteristics of the life history of individual species.

The term “life history” summarizes the timing and magnitude of growth,
reproduction and mortality of an individual organism. Reproduction is one of the
most important individual traits to be considered, since it has a direct impact on
the next generation of offspring. Two types of reproductive strategy, with respect to
reproductive pattern, can be named: semelparity, when individuals reproduce only
once in their lifetime; and iteroparity, in which individuals reproduce more than
once (Morris 2009). Hence, depending on the patterns of reproduction, species can
have generations that overlap (iteroparity) or not (semelparity). The intensity or the
absence of generational overlapping can dictate, among other factors, the choice of
the time interval of modeling the population dynamics. Usually, iteroparous species
are modeled by continuous time models, while semelparous species are modeled by
discrete time models.

In this chapter, a biocontrol model will be couched by means of a system of
nonlinearly coupled differential equations (continuous time), and a stage-structured
intraguild insect population dynamics will be described by a set of nonlinearly
coupled difference equations (discrete time). In addition to the description of the
dynamics, the models will be shown to provide insights into disturbances, in order
to achieve the desired results from the biological standpoint.

6.2 Continuous Time Modeling of Food Web Dynamics

A continuous time model of food web dynamics should consist of a differential
equation for each trophic level (or species) of the whole system. Each equation
must include terms that reflect how each individual species evolves in the absence
of others, as well as how its dynamics is affected by the presence of the other species.

The time evolution of the basal species can be described by the logistic equation:

dNi

dt
D ri Ni

�
1 � Ni

Ki

�
(6.1)

Ni is the abundance of species i; ri and Ki are the per capita instantaneous growth
rate and the carrying capacity of species i.

Functional responses (sensu Holling 1959) may represent the impact of a
predator on its prey. Different kinds of functional response can be found in the
literature (Turchin 2003); however, “classical” functional response types I, II and
III will be considered here.
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Functional response types I, II and III (Eqs. 6.2, 6.3 and 6.4, respectively) can be
defined as follows:

FR1 D aijNj Ni (6.2)

FR2 D aijNj

1 C aijThijNj

Ni (6.3)

FR3 D aijNj
2

1 C aijThijNj
2
Ni (6.4)

aij represents the attack coefficient of species i on species j; Thij represents the
handling time of species i on species j. When more than one prey species is
available to a single predator, a multi-species functional response type 2 can have
the following form (Hassell 1978; Case 2000):

FRm D aijNi

1 C aijThki Ni C aijThijNkj

Nk (6.5)

The functional response is converted into predator offspring by means of the
numerical response. Then, predators evolve as a balance between prey consumption
and mortality, as follows (in the case of a functional response type II):

dNi

dt
D eji

aijNj

1 C aijThijNj

Ni � miNi (6.6)

eji represents the efficiency constant in converting consumed prey (Nj) into predator
(Ni) offspring; mi represents the per capita mortality rate of the predator.

As an example, a predator-prey model with logistic growth and functional
response type II can be given by Rosenzweig and MacArthur (1963):

dNj

dt
D rj Nj

�
1 � Nj

Kj

�
� eij

aijNj

1 C aijThijNj

Ni

dNi

dt
D eji

aijNj

1 C aijThijNj

Ni � mi Ni (6.7)

where Nj represents the prey density and Ni the predator density.
Similarly, a general multi-trophic food web model with functional response type

I can be stated as:

dNi

dt
D Ni

0@ri C eji

nX
j D1

aijNj

1A (6.8)

where ri > 0 or ri < 0 depending on the characteristics of the species, and aij D 0
when there is no interaction between species i and j.
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6.3 Continuous Time Modeling in Biological Control
and Integrated Pest Management

The mathematical structure presented in the previous section can be employed to
model the dynamics of species involved in a biocontrol food web scenario. The
trophic diagrams of Fig. 6.1 depict possible food webs describing a biocontrol
setting.

In diagram I, a generalist predator (Pg) feeds upon two prey species: a pest prey
(Np) and an endemic prey (Ne), which gives rise to a shared predator food web.
In diagram II, a specialist predator (Ps) feeding on pest prey (Np) is included in
diagram I, which, in turn, concomitantly gives rise to a shared predator and a shared
prey food web.

Since the structures of food webs I and II both involve multispecies predation,
one can resort to the multispecies functional response type 2 (Eq. 6.5) to model
the trophic interaction dynamics of the related species. Therefore, the population
dynamics of Np, Ne, Pg and Ps of food webs I and II are respectively described by
food web models (Eqs. 6.9 and 6.10):

dNp

dt
D rpNp

�
1 � Np

Kp

�
� .1 � p/ aPg NP Np

1 C .1 � p/ aPgNP ThPgNP Np C paPgNe
ThPgNe Ne

Pg

dNe

dt
D reNe

�
1 � Ne

Ke

�
� paPgNe

Ne

1 C .1 � p/ aPgNp ThPgNp Np C paPgNe
ThPgNe Ne

Pg

(6.9)

dPg

dt
D eNP Pg

 
.1 � p/ aPgNp ThPgNp Np

1 C .1 � p/ aPg Np ThPgNp Np C paPgNe
ThPgNe Ne

!
Pg

C eNePg

 
paPgNe

Ne

1 C .1 � p/ aPgNp ThPgNp Np C paPgNe
ThPgNe Ne

!
Pg � mgPg

Pg

NeNp

(1-p) p

NeNp

Ps Pg

(I) (II)

p(1-p)

Fig. 6.1 Food web I: a generalist predator (Pg) feeds on two prey species (NP and Ne) – a shared-
predator food web (generalist food web). Food web II: a specialist predator (Ps) is added to food
web I – a shared-predator and a shared-prey food web (specialist-generalist food web)
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dNp

dt
D rpNp

�
1 � Np

Kp

�
� aPs NP Np

1 C aPsNP ThPsNP Np

Ps

� .1 � p/ aPgNP Np

1 C .1 � p/ aPgNP ThPgNP Np C paPgNe
ThPgNe Ne

Pg

dNe

dt
D reNe

�
1 � Ne

Ke

�
� paPgNe

Ne

1 C .1 � p/ aPgNp ThPgNp Np C paPgNe
ThPgNe Ne

Pg

dPg

dt
D eNP Pg

 
.1 � p/ aPg NP Np

1 C .1 � p/ aPg NP ThPgNP Np C pagThPgNe Ne

!
Pg

CeNePg

 
paPgNe

Ne

1 C .1 � p/ aPg NP ThPgNP Np C pagThPgNe Ne

!
Pg � mgPg

dPs

dt
D eNpPs

�
aPs NP Np

1 C aPs NP ThPsNP Np

�
Ps � msPs

(6.10)

rp and Kp are the pest growth rate and its carrying capacity; re and Ke are the
endemic growth rate and its carrying capacity; eNpPg ; eNePg , eNpPs are the efficiency
conversion factors of the specific prey biomass into the corresponding predator
offspring; aPs NP is the specialist predator attack coefficient on the endemic species;
and aPgNP is the generalist predator attack coefficient on the pest species, while
aPgNe is the generalist predator attack coefficient on the endemic species; ThPgNp

and ThPgNP
are the handling times of the generalist predator on the pest and endemic

prey respectively; ThPsNp is the handling time of the specialist predator on the pest
prey; ms and mg are the per capita mortality rate of the specialist and the generalist
predator, respectively.

The analysis assumes that a trade-off exists between the specialist and the
generalist such that the specialist has a higher attack rate on its prey, while the
generalist has the ability, by definition, to feed on multiple prey items (Chang
and Kareiva 1999). The precise trade-off is accomplished by the use of a prey
preference parameter (p) for the generalist predator (Fig. 6.1). The parameter “p”
can be thought of as the proportion of time spent foraging for the endemic prey,
while 1�p is the proportion of time spent foraging on the pest. Note that the type
2 functional response is obtained when p D 0 and p D 1.0, and elsewhere a multi-
species functional response is obtained. Thus, at the endpoints p D 0 and p D 1.0 the
model simulates a generalist – playing the role of a specialist – feeding exclusively
on the pest and the endemic prey, respectively.

Three conditions are considered to evaluate the theoretical efficiency of the
models (Eqs. 6.9 and 6.10): (i) predator species must be able to control the pest prey
species, leading to low levels of abundance or even local extinction; (ii) predator
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Fig. 6.2 Bifurcation analyses (i.e., local minima and maxima on the attractor) for a generalist food
web (system I) over a range of values of the parameter p for the (a) Generalist predator (Ng), (b)
Pest prey (Np), and (c) Endemic prey (Ne). The parameters have been set so that the specialist on
the pest prey gives oscillatory dynamics (p D 0), and were held constant at rp D re D 1.0, Kp D 4,
Ke D 4, c D 0.3, hg D 0.5, dg D 0.1, ag D 1.0 (Reprinted from Faria and Costa 2009, License #
3157040097416, Elsevier)

species must not have a strong impact on endemic prey species, here assumed to be
an endemic non-target species; (iii) the biocontrol food webs must persist through
time without the need for addition of more individuals to the systems.

Figure 6.2a–c plots the local minimum and maximum of the trajectories of
the model (Eq. 6.9) (the generalist food web of Fig. 6.1 – I) for a range in prey
preference values (0 < p < 1). Two main features can be noted. First, as p increases,
the food web becomes stable and the pest species is suppressed. Over the range of
preference, where the generalist prefers the pest but still expends significant effort
on the endemic, the pest is held in a stable equilibrium at low densities, and is even
eliminated over some regions (Fig. 6.2b). Second, when the preference becomes
skewed toward the endemic (p > 0.50), the food web becomes stable again, but with
a preference range where the endemic species is locally extinct. In this range, the
generalist predator reaches high densities because of its overconsumption of the
endemic prey, which causes the suppression of the endemic prey population.

The long-term dynamic implications of using both a generalist and a special-
ist predator simultaneously are analyzed for the specialist-generalist food web
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Fig. 6.3 Bifurcation analyses (i.e., local minima and maxima on the attractor) for system II (4-
species model) over a range of values of the parameter p for the (a) Specialist predator (Ns), (b)
Generalist predator (Ng), (c) Pest prey (Np), and (d) Endemic prey (Ne). The parameters have been
set so that the specialist on the pest prey gives oscillatory dynamics (p D 0), and were held constant
at rp D re D 1.0, Kp D 4, Ke D 4, c D 0.3, hs D hg D 0.5, ds D dg D 0.1, as D ag D 1.0

(Fig. 6.1 – II) by means of a plot of the local minimum and maximum of the
trajectories of the model (Eq. 6.10) for a range of prey preference values (0 < p < 1),
as shown in Fig. 6.3a–d.

In the preference range where the generalist predator prefers the pest species, the
dynamic results are similar to the generalist food web (Fig. 6.2) in that suppression
of the pest occurs. In the preference range (0 < p < 0.5), the specialist predator is
initially outcompeted by the generalist because of the indirect effects caused by
predation on the endemic species. This kind of predation by the generalist increases
its density level, which in turn, augments its predation pressure on the pest prey,
leading this prey to reach levels that cannot sustain the specialist predator (i.e., the
whole food web of Fig. 6.1-II is not biologically feasible over the long term).

However, the range in which the specialist is eliminated can be reduced by
increasing the specialist species attack coefficient (aPsNP ) relative to the generalist
species attack coefficients (aPgNP and aPgNe ). Persistence of the specialist predator
is possible when the generalist prefers the endemic (0.5 < p < 1) and so decreases
the strength of the indirect competition between the two prey species. Importantly,
the inclusion of the specialist predator for p > 0.50 appears to limit the suppression
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of the endemic population by means of sustained oscillations (Fig. 6.3c), while in
its absence the endemic population is driven to extinction for p > 0.50 (Fig. 6.2c).

The development of the above two biocontrol food web models suggests that the
generalist predator was able to control the pest species abundance (even causing its
extinction) when the generalist’s preference for the pest was superior to that for the
endemic species. However, the model simulations also suggested that the endemic
prey species is strongly impacted by the generalist predator. Further, the extent of
this stable pest suppression depends on the attack coefficient of the generalist, so
that a weak attack coefficient mutes the suppression potential of the generalist.
Nonetheless, it is generally true that the presence of the generalist stabilizes the
dynamics relative to the specialist case (i.e., p D 0 in Fig. 6.2). Two reasons for this
stabilization can be suggested. First, the trade-off ensures that the generalist predator
has a lower consumption rate than the specialist on the preferred prey. Secondly,
the region of stabilization occurs where there exists a relatively strong interaction
coupled with a weak interaction. This asymmetry in interaction strength has been
shown to frequently enhance stability (Faria and Costa 2009; McCann et al. 1998;
Post et al. 2000).

Since the biocontrol aim proposed here was to control the pest prey species
without harming the endemic species, the results could be considered incomplete
because it was necessary to include a specialist predator. The inclusion of the
specialist predator clearly led to a wider range of stability, since the pest prey
species was driven to low levels of abundance or even to local extinction, whereas
the endemic prey species – i.e., non-target endemic species – was no longer extinct.
These results are generally true and, as above, the relative stability is driven by
the same mechanisms – the specialist-generalist trade-off dampens the strongest
interaction relative to the specialist case, and the strong-weak asymmetry enhances
the stability, as has been shown frequently in recent theoretical results (McCann
et al. 1998; Faria et al. 2008).

Although the simulations of model (Holling 1959) suggest that the proposed
specialist-generalist food web model is capable of simultaneously controlling
pest-species density and avoiding endemic-species extinction, complex behavior
dynamics – comprising (i) aperiodic behavior; (ii) two-point and (iii) four-point
limit cycles (p > 0.5 – Fig. 6.3) – may ensue over some preference parameter (p)
ranges, impeding to some extent the precise monitoring of species, and consequently
thwarting proper management decisions.

Importantly, the specialist-generalist food web model (Fig. 6.1-II; Eq. 6.10) is
amenable to other analyses in the context of pest management, such as, for instance,
Integrated Pest Management.

Integrated Pest Management (Stern et al. 1959) is a pest-control strategy that
uses an array of additive methods such as biological control and chemical control.
This strategy purports to allow more efficient control of pest outbreaks, minimizing
the direct and indirect effects caused by pesticide application. The modeling of IPM
could be conveyed by means of the alteration of the per capita mortality rates of all
components of the model, ms � "Ps and mg � "Pg, for the specialist and the generalist
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predator, respectively, where "Ps and "Pg are the per capita mortality coefficients
inflicted upon the predator(s) by chemicals used in IPM; correspondingly, (ri � "Ni)
and KNi (1 � "Ni/ri) [i D p,e] for the prey species. This framework was employed in
the analysis of an IPM with a generalist and specialist predator subject to a threshold
policy, in order to maintain pest prey species at a low level while preserving the
endemic species (Costa and Faria 2010).

In a specialist-generalist food web model (Eq. 6.10) the result of this IPM
formulated as a threshold management policy consisted of stabilization (i.e., species
coexistence without pest outbreaks) of the related system. In other words, it was
shown that with this strategy in the context of Integrated Pest Management, the
dynamics of a specific food web can be strongly stabilized. In fact, given a proper
combination of pesticide application intensity, generalist predator preference and
specialist predator threshold density, a previously chosen specialist predator level
was attained by means of a threshold policy applied to the pesticide application
intensity. This stable behavior occurred despite the dynamic complexity of the food
web model related to biocontrol only, and/or the direct and indirect effects caused
by a combined regime of continuous pesticide application and biocontrol.

6.4 Discrete Time Modeling of Predation Between
Immature Stages

Insect populations generally have life cycles with well-defined stage structures
during their life spans. Given this demographic setting, a reasonable approach to
mathematically describe insect population dynamics could consist of discrete time
dynamic models. Several discrete time mathematical models have been proposed
to describe unstructured as well as structured single-insect population dynamics
(Cushing et al. 2003). Accordingly, interspecific predation among unstructured as
well as structured insect populations has also given rise to some discrete time
dynamic models (Crawley 1975; Prout and McChesney 1985; Wang and Gutierrez
1980) with the aim of establishing relatively general criteria for coexistence and
stability in the systems studied. A common assumption of these models is that
predation occurs between mature stages and/or between mature and immature
stages. Since in these cases predation necessarily involves mature phases, the
modeling effort focuses on functional and numerical responses in order to couple
predator and prey dynamics.

However, predation among insect populations may occur only in immature
phases, which, in turn, requires relations linking predation in immature life stages
with survival and fecundity in mature stages. An example of this kind of trophic
interaction is the behavior of the blowfly Chrysomya albiceps and its larval prey
species. Initially, adult females of C. albiceps lay eggs in carcasses, which may also
support other species of Calliphoridae. Larvae hatch and start to consume the food
substrate, which is usually insufficient to support them, initiating a possible set of
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Fig. 6.4 N prey, P predator;
subscripts: l young, a adult.
The interspecific competition
in the larval phase together
with the larval predation
characterizes an intraguild
predation (Reprinted from
Faria et al. 2011, Licence #
3157040097416, Elsevier)
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intra- as well as interspecific competition processes. Consequently, in response to
food scarcity, C. albiceps third-instar larvae begin to prey on other larvae species,
i.e., an intraguild larval predation situation (Faria et al. 2007), which ceases when
the third-instar predator larva reaches the pupal stage.

Figure 6.4 depicts schematically this set of stage-dependent interactions, where
it is assumed that both prey (N) and predator (P) populations consist of two stages,
larva (l) and adult (a), and that predation as well as interspecific competition will
take place only during the larval phase (thus characterizing an intraguild predation),
while intra-specific competition occurs in the adult as well as in the larval phase.

A possible model to describe the dynamics of the prey larvae (Nl) and the
predator larvae (Pl) of the trophic scheme in Fig. 6.4 can be given by Faria et al.
(2011):

Nl .t C 1/ D Nl.t/e
�aPl .t/e�˛Pl .t/Smax _ preye

�bNl .t/e�a0Na.t/Emax _ prey

Pl .t C 1/ D Pl .t/e
��Nl .t/Sacte

�ˇPl .t/e�c0Pa.t/Eact (6.11)

A central feature of model (6.11) consists of the terms Eact, the actual fecundity of
an adult predator, and Sact, the actual survival of the larval predator, both functions of
the functional response of the intraguild predator. These terms make the connection
between predation in immature stages, and survival and fecundity in mature stages,
and they are expressed as:

Sact D
�

Smax _ predZ� if Z � 1

Smax _ pred if Z > 1



6 Modeling Trophic Interactions in Insect Population Dynamics 137

and

Eact D
�

Emax _ predZ� if Z � 1

Emax _ pred if Z > 1

with Z, the fraction of the diet obtained by one predator, given by Crawley
(1975):

Z D Nl.t/
�
1 � eŒ�aPl .t/�

�
Pl .t/A

A is the amount of prey required for satiation of one predator, and a is the attack
coefficient of Pl on Nl. The constant � (� > 0) determines the shape of the continuous
incremental survival and fecundity curves before they reach saturation.

In model (6.11), Pl .t/e
��Nl .t/Sact e

�ˇPl .t/ is the adult predator population in
generation t (resulting from Pl predator larvae at the beginning of generation t); ˇ is
the intraspecific competition coefficient among predator larvae; ” is the interspecific
competition coefficient between predator and prey larvae; c0 is the intraspecific com-
petition coefficient among adult predators. Nl.t/e

�aPl .t/e�˛Pl .t/Smax _ preye�bNl .t/

is the adult prey population in generation t (resulting from Nl prey larvae at the
beginning of generation t); a is the larval predation coefficient of predator larvae on
prey larvae; ˛ is the interspecific competition coefficient between predator and prey
larvae; b is the intraspecific competition coefficient among prey larvae; a0 is the
intraspecific competition coefficient among the adult prey; Smax_prey and Emax_pred

stand respectively for the density-independent maximum survival to mature stages
and the fecundity of the prey.

Model (6.11) can help in the analysis of the influence that the intraguild predator
attack rate (a) and its satiation (A) may exert on the success of its invasion into the
community and species coexistence. To this end, a parametric space composed by
attack rate vs. satiation rate is drawn in Fig. 6.5 for some values of �. It suggests
that the higher the intraguild predation satiation, the higher the attack rate must
be in order to promote species coexistence (i.e., success of the intraguild predator
invasion).

Given that in natural systems, predation during immature stages of the life
cycles of the species involved can occur (e.g., intraguild predation frog larvae–
Sours and Petranka 2007), and the plausibility of the dynamic results generated by
(6.11), it seems worthwhile to improve the modeling of interactive populations that
comprise this kind of predation. Furthermore, the proposed model is amenable to:
(i) the incorporation of other predation and competition structures; (ii) an explicit
dynamic equation for the resource; (iii) its modification for a continuous time
setting.
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Fig. 6.5 Relationship between satiation term (A) and attack rate (a) for different values of �.
Dashed line (� D 0.5); dash-dotted line (� D 1.5); solid line (� D 1). For each value of � the
arrow on the left side indicates an unfeasible system (predator unable to invade) and the arrow on
the right indicates coexistence of both species (predator successful invasion). Parameter values:
Smax_prey D 0.6; Smax_predator D 0.6; Emax_prey D 20; Emax_predator D 20; a0 D 0.5; c0 D 0.5; b D 0.1;
ˇ D 0.1; ˛ D 0.1; ” D 0.1 (Reprinted from Faria et al. 2011, Licence # 3157040097416, Elsevier)

6.5 Final Considerations

A mathematical approach based on systems of nonlinear difference and differential
equation is advanced, to model insect population dynamics in the contexts of
biocontrol and species invasion.

In both cases, the models are strategic in nature; that is, they eschew precise
descriptions of a specific biological system in favor of obtaining general principles
that could be applied to a relatively large set of biological systems.

In the continuous case, a generalist and a specialist-generalist food web model
were used to control outbursts of pest species. It was shown that to achieve this
aim, the proposed generalist-specialist food web model was more appropriate in
that it avoided low endemic pest-species population levels – a major requirement
of pest biocontrol. More importantly, this performance was accomplished when a
trade-off between generalist and specialist predator interaction strength ensured that
a generalist predator species has a lower consumption rate than the specialist on
the preferred prey. In addition, it was shown that the generalist-specialist food web
model could be extended in order to model an Integrated Pest Management scenario.

In the discrete time case, a stage-structured food web population model purported
to describe the invasion of an exotic species into an endemic food web. One main
result concerns the dependence of the invasion success on the attack coefficient of
the invasive species, where the higher the intraguild predation satiation, the higher
the attack rate must be in order to promote species coexistence.
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Theoretical modeling of population dynamics and interactions is of necessity
a process of ecological abstraction, because of the myriad of factors pertaining
to the biological systems involved. Accordingly, this process usually requires a
relatively small set of selected interactions and related parameters in order to
describe and predict patterns of abundance and species coexistence (or extinction) –
a requirement that is fulfilled by empirical observation, experiments and biological
theory. In the entomological context (as well as in other ecological contexts),
although theoretically robust general predictions are very unlikely to come by,
new trophic interaction models have been generating numerous assumptions and
forecasts about insect population dynamics and their structural and functional
communities.

In closing, it is worth mentioning that theoretical population ecology has been
spurring investigations in many different areas (Kareiva 1989; Wang and Gutierrez
1980; Loreau 2010). Mathematical models applied to predict population dynamics
and species trophic interaction patterns constitute a fundamental tool to gain a
better understanding of, among other topics, the role of trophic interactions in the
determination of species coexistence in natural communities (Kareiva 1989).
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Chapter 7
Coupled Map Lattice Model for Insects
and Spreadable Substances

Luiz Alberto D. Rodrigues, Maria C. Varriale, Wesley A.C. Godoy,
and Diomar C. Mistro

Abstract Understanding the spreading dynamics of insects and particles naturally
or artificially associated with them, such as seeds, pollen, repellents or insecticides,
is of paramount importance for pest management and conservation programs.
Insects and chemical or natural products exhibit dispersal patterns that depend
on the environment where they are and their respective sizes. In this chapter, we
present a Coupled Map Lattice formalism to investigate the theoretical dynamics
of the spread of insects and chemical substances sprayed over them. The models
consider a habitat with abundant resources and therefore insects moving only in
response to chemical concentrations. Diffusion and wind are the mechanisms used
to spread chemical substances. Continuous and discrete models are used to describe
the system on a macroscopic scale. The results are discussed taking into account
rules for movement, escape behaviour and integrated pest management strategies.
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7.1 Introduction

The dispersal of particles associated with insects, such as pollen, seeds, pheromones,
repellents, or even insecticides, may depend on the insect population movement
or on external stimuli such as the wind or climate changes (Esker et al. 2007;
Snell 2014). Pollen dispersal in particular has been studied by coupled map
lattice formalism with results showing that the principles of pollen spread are
well described by the model, as occurs with diffusion models (Yamamura 2004).
An interesting example of the coupled map lattices application in the analysis of
particles associated with insects is the study performed by Beck et al. (2003),
which aimed to evaluate the efficiency in controlling the spread scentless chamomile
by using seed weevils Omphalapion hookeri and the gall midge Rhopalomyia
tripleurospermi. In this study, the authors investigated interactions between scent-
less chamomile, a weed native to Europe considered to be a serious problem in
Canadian agricultural systems and the predators (Beck et al. 2003). They studied
the weed and the two insects mentioned above by employing a coupled map lattice
model incorporating an age structure for the pest scentless chamomile and the
two natural enemies. The model also included dispersal kernels for all species
and a geographical information system. The coupled map lattice model illustrated
the dispersal of scentless chamomile on a hypothetical landscape, providing a
formalism that can be applied to other weed biocontrol systems in a spatial context.

In an elegant study, Liere et al. (2012) investigated trophic interactions involving
a predatory ladybird, a beetle that depends on the patchy distribution of the
mutualism between its prey, the green coffee scale, and the ant Azteca instabilis.
A spatial model was proposed showing that the aggregated pattern of ant nests
helps to guarantee the persistence of the beetles. In addition, the consumption of
the scale insects by ladybirds induced a clumped distribution of the ants (Liere et al.
2012). The model has a stochastic component for the local and global migration
of the beetle, taking into account the beetles’ ability to sense ant pheromones and
therefore including the pheromone transport.

Conventionally, problems emphasising biological diffusion are frequently stud-
ied or solved based on examples of animal movement (Benhamou 2014), diffusion
of plants or seeds (Coulson et al. 2014) and spores (Ito 2013). However, there
are situations in which spreading particles are not living organisms, despite being
associated with them. For scenarios such as this, the complexity of the system
requires a different approach to better describe its diffusion. Diffusion processes
describe not only non-living particles but also living organisms. Natural or chemical
repellents would be examples of spreadable particles that are most likely associated
with insects and that should be investigated with respect to their pattern of spread.

Taking as an initial example the dispersal patterns of living organisms, we begin
with animal movement. In the simplest scenario, looking only at the dispersal of an
individual, it is not hard to recognise forces that influence the animal to leave a place
and go to another one. This pattern would result in regular, easily comprehended
movement (Okubo and Levin 2001). Nevertheless, with scenarios with more than
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one individual, the animals’ movement is most likely not identical (Okubo and
Grünbaum 2001). In a similar vein, if it is thought that insects and particles are to
some extent associated with each other and therefore could be governed by the same
forces, the result of their dispersal would depend on the intensity and frequency
of each force. This reasoning allowed us to draw conclusions about environmental
variability (Okubo and Grünbaum 2001).

Natural or chemical particles may be present in environments containing insects
and can also be used to repel them. In spite of the existence of several chemical
products that repel insects, their efficiency has been questioned (Semmler et al.
2014), and currently, there is a growing interest in the use of natural products. There
are essential oils in nature that can be used as alternative products to keep insects
away from humans, animals or plants (Olivero-Verbel et al. 2013; Tabanca et al.
2013; Tong and Bloomquist 2013). There are real examples of oils decreasing the
infestation of insect pests at a high percentage (Brendel 2013; Nikpay 2007). Citrus
intercropped with guava may have a lower incidence of its main pest than isolated
crops (Yang et al. 1998). The use of natural repellents has also been investigated in
mosquitoes with promising results (Govindarajan and Sivakumar 2012). Although
the literature emphasising repellents has been increasing in recent years, both the
spreading dynamics of particles and insect movement in response to repellents have
not be systematically investigated.

In this chapter, an approach to investigate the spread of insects and chemical
substances sprayed over them is presented. We take into account insect chemotactic
behaviour and the influence of environmental factors, such as the wind, in the
spread of the chemical substance. The theoretical scheme is presented in detail
using the Coupled Map Lattice theory employed by Rodrigues et al. (2013), who
recently investigated the dynamics of insects influenced by chemicals. The particles
depicted here are natural or artificial repellents or insecticides, which are supposed
to move by diffusion and advection influenced by the wind (Ngueleu et al. 2013;
Rodrigues et al. 2013), but the natural degradation of the particles has also been
considered.

The distribution and persistence of insects in time and space are analysed,
assuming that they are influenced by the behaviour of the insect and the chemical
substance. To model the insect populations influenced by a chemical substance
(pollutant, repellent or pesticide), different assumptions can be made about insect
behaviour and sensory ability. It is known that insects have different sensory
abilities; some of them exhibit sophisticated systems to measure chemical signals
over a long distance, as occurs with some Lepidoptera insects (Oliver and Stein
2011), whereas others are unable to do this and only perceive signals when visiting
a specific site, such as some blowfly species (Huntington and Higley 2010). We
show two different models depending on the insect movement behaviour. The first
model, Model I, considers insects with limited sensory ability, then the individuals
can only sense chemicals at the site at which they are located. In Model II, insects
have a better ability to detect chemical particles in their neighbourhood and are able
to move to lowest chemical concentration.
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Four sections were prepared as follows. In Sect. 7.2, we present the Coupled Map
Lattice formalism for modelling population spatio-temporal dynamics. In Sect. 7.3,
we propose and analyse a model for insects with local perception: the model
formulation, simulations as well as the continuous limit for the rules proposed are
presented. Section 7.3 brings the analyzes of a model for insects with quasi-local
perception while in Sect. 7.4 we discuss the ecological implications of our results.

7.2 The Spatial Structure and the Movement Rules

Although space has been neglected by theoretical models applied to entomology in
recent decades, currently its importance is well recognised in theoretical ecology.
In previous models, only a mean density of species were used, and it was assumed
that individuals are well distributed, implying that all predators are able to reach
prey with the same probability. There are many justifications to including space
in population biology models emphasising insects. Among them we note environ-
mental heterogeneity, which causes the parameters and the population density to
vary with geographical location, the heterogeneity of the initial distribution of the
population, which may lead to spatial invasions and consequently to heterogeneous
spatial distribution, different interacting species exhibiting distinct dispersal rates,
which once again may cause heterogeneous patterns in space (Godoy and Costa
2005; Kot 2001), and, finally, the model predictions can be different when space is
considered (Godoy and Costa 2005). The classical example is the host-parasitoid
discrete model presented by Nicholson and Bailey (1935), which shows instability
and extinction, except in its spatial counterpart proposed by Hassell et al. (1991) in
which the persistence of both species is observed. The discrepancy between these
models is mainly due to the explicit usage of space (Solé and Bascompte 2006).

Depending on the species life history and movement behaviour, different mod-
elling approaches can be adopted. These features determine the type of the indepen-
dent variables – continuous or discrete – and consequently the model framework.

When individuals present discrete generations (like many insect species that
reproduce in a well-established period of time), time-discrete formalisms are better
than continuous ones. Furthermore, if the space, at some appropriate scale of
examination, has a markedly discrete feature such as, for example, citrus orchards,
where each tree could be considered as a patch, a system characterised by crop can
be described by the coupled map lattice (CML) formalism.

CML models are characterised by discrete space and time but encompass
continuous state variables. Substance concentrations are examples of continuous
state variables. The habitat is split into patches or sites representing real
locations where the population is distributed. Coupled map lattices were first
introduced by the Japanese physicist Kunihiko Kaneko (1986) with the purpose
of investigating spatiotemporal chaos. The application to population ecology dates
back to the early 1990s (Hassell et al. 1991; Solé and Valls 1991; Solé et al. 1992).
Hassell et al. (1991) and Comins et al. (1992) extended Nicholson-Bailey’s host-
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Fig. 7.1 Two dimensional
lattice

parasitoid model to incorporate space by using a coupled map lattice with diffusion
movement for both populations. Depending on the species diffusivities, they
observed the following three types of self-organising spatial patterns: spiral waves,
crystal lattices and spatial chaos. This formalism has been used to study host-
parasitoid interactions, dispersal-driven instability, critical patch-size and invasion
processes (de-Camino-Beck and Lewis 2009; Gao et al. 2007; Hassell et al. 1991;
Méndez et al. 2010; Mistro et al. 2012; Reigada and Aguiar 2012; Rodrigues et al.
2012).

In a two-dimensional model of the dispersal problem, the total environment is
assumed to be subdivided into local habitats, dubbed ‘patches’, that are arranged in
a grid or lattice (Fig. 7.1).

In each point, at the centre of the patch and associated with integer coordinates
.i; j /, the population mean density over the patch is represented. The system is
assumed to have discrete generations. Within each generation, there are two distinct
phases, as follows:

1. A between-patch dispersal phase, in which a fraction of the individuals leaves
its current patch for neighbouring patches according to some dispersal rule while
some individuals remain in their original patch; and

2. A within-patch interaction and reproduction/mortality phase, that is, a sedentary
reaction stage, in which all intra- and inter-species interactions occur (Rodrigues
et al. 2011, 2012).

In this chapter, we will present state variables including insect population
densities and chemical substance concentrations. The dispersal phase for both the
insects and the substance occurs prior to the reaction stage; different types of
dispersion movement such as diffusion, convection and taxis can be described in
the former, while the latter includes substance decay and insect mortality due to the
effects of the substance.
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Fig. 7.2 The von Neumann
neighborhood: the central
patch i; j and its four
neighbors

The dynamics occurring within each patch are connected to their neighbours in
different ways. Each site can be coupled with neighbouring sites (partial) or with
the entire lattice (global mixing). For partial couplings, the rules frequently used
are related to their range; the von Neumann neighbourhood (Fig. 7.2) which will
be used in this chapter, considers the four nearest neighbours while the Moore
neighbourhood takes eight neighbours into account. It is also possible to define
different neighborhood to take into account long-range movements.

Representing the output from .i; j / to site .r; s/ of its neighbourhood by Sr;s and
the entries in .i; j / from the .r; s/ neighbours by Er;s, we can write, for any sort of
dispersal reduced to the neighbouring patches, the following equation:

X
0

i;j D Xt
i;j �

X
.r;s/2Vi;j

Sr;s C
X

.r;s/2Vi;j

Er;s; (7.1)

where Xt
i;j , X

0

i;j are the population densities of X species in generation t prior to
dispersal and postdispersal, respectively, and Vi;j is the neighbourhood considered.
Figures 7.3 and 7.4 depict movement scheme given by (7.1).

The simplest movement rule considers that a constant fraction � of individuals
leaves each site and is evenly distributed among the neighbouring sites. The
corresponding equation is given by

X
0

i;j D .1 � �/Xt
i;j C �

4

X
.r;s/2Vi;j

Xt
r;s; (7.2)

since

Sr;s D �

4
Xt

i;j ; for all .r; s/ 2 Vi;j :
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Fig. 7.3 The density of individuals in each patch after dispersal, correspond to their density prior
dispersal minus the density of those who left the patch plus the density of those who migrate to the
patch from the neighboring patches

Fig. 7.4 General movement
scheme: during the dispersal
stage, some individuals
remain in the original patch
while others migrate to the
neighboring ones

The diagram pictured in Fig. 7.5 illustrates the diffusion movement described by
Eq. (7.2).

Other movements can be described using CML, such as convection and taxis
movement, as will be illustrated in this chapter. In the former, a fraction of
individuals is carried by the wind or a fluid in which the population is immersed.
In the latter, the movement is driven by an external stimulus. Hence, the fraction
of individuals leaving the patch may not be constant; depending on the individuals’
movement behaviour, Sr;s may depend on the local population density or even on the
density of an external interacting population or stimulus. For example, the fraction
of predators that leaves each patch may depend on the prey density.

For individuals in the patches located at the boundary of the habitat, it is
necessary to define a particular movement rule that is called boundary condition
(BC). Three main types of BCs usually considered are reflective, absorbing and
periodic or cyclic (Comins et al. 1992; Solé and Bascompte 2006; White and White
2005):
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Fig. 7.5 Diffusive movement
scheme

• In the reflective BC, individuals do not cross the border; individuals that would
disperse out in other conditions remain in the edge patches, that is, they are
sent back into the habitat. This type of BC is used when individuals are located
in a very favourable area or when there are restrictions on their geographical
dispersion.

• In the absorbing BC, individuals who move out of the domain are lost, which
therefore imposes additional “mortality” on the system. In this type of BC, the
individuals abandon a region that becomes unfavorable.

• In periodic or cyclic BC, each end of the lattice is linked to its opposite one as in
a torus, so individuals moving north (east) of the first row (column) reappear at
the last row (column), which is obviously unrealistic, but has the advantage that
all patches are equivalent, with no edge effects.

For the second phase, the reaction stage, we represent the population density of
site .i; j / at generation t by Xt

i;j , and write the following:

XtC1
i;j D F.X

0

i;j /

to account for the particular features of the map corresponding to the local
dynamics. The interaction can include features such as the chemical’s effects
reducing the insect population, chemical degradation reducing its concentration,
insect mortality and birth, etc. F can depend explicitly on the position reflecting
spatial inhomogeneities. In spatial refuges, for example, hosts are protected in
certain areas where the attack rate of the parasitoid is drastically reduced, which
implies a spatial dependence of the corresponding parameter (Mistro et al. 2009).
Shigesada et al. (1986, 1987) studied a continuous model where not only the vital
rates but also the movement coefficient were affected by habitat heterogeneity.



7 Coupled Map Lattice Model for Insects and Spreadable Substances 149

Now we will analyze the macroscopic behavior resulting from the microscopic
rule (7.2) proposed. We argue that for appropriate spatial and temporal scales,
it is possible to approximate discrete models by continuum models expressed in
terms of reaction diffusion equations. We aim at obtaining some insight about the
macroscopic behavior from the schemes assumed and use the knowledge about
continuous models to a better understand the results.

Indeed, a limit model is not the real model but only a continuum model which
is amenable to partial differential equations techniques and approaches discrete
counterparts as closely as the scales of the latter are set in the correct limit path. This
approach allows us to avail ourselves of the continuum theoretical tools available for
partial differential equations from one hand and from the other hand, as we will see,
to take advantage of the handiness of the discrete model to simulate situations that
could hardly be dealt with the continuous model.

In order to obtain a macroscopic model equivalent to the discrete simulation
model (7.2), we consider that the individuals move on a two-dimensional lattice.
At each time step � , the individuals can move a distance ı either left or right,
up or down, with probabilities given by �

4
, or they may stay at the same location

with probability 1 � �: Thus, we have the following difference equation for the
population:

X.x; y; t C �/ D .1 � �/X.x; y; t/

C�

4
X.x � ı; y; t/ C �

4
X.x C ı; y; t/ (7.3)

C�

4
X.x; y � ı; t/ C �

4
X.x; y C ı; t/;

where the first term represents the individuals that stay in the same location, and the
other four terms represent the individuals that arrive from the nearest neighbouring
sites.

Now, we suppose that, from a macroscopic point of view, we can interpolate the
lattice values by a smooth function that satisfies the discrete equation (7.3). Then,
we replace each term in (7.3) by its corresponding Taylor expansion in ı and � ,
according to the following:

X.x; y; t C �/ D X.x; y; t/ C @X

@t
� C 1

2

@2X

@t2
�2 C � � �

X.x ˙ ı; y; t/ D X.x; y; t/ ˙ @X

@x
ı C 1

2

@2X

@x2
ı2 C � � � (7.4)

X.x; y ˙ ı; t/ D X.x; y; t/ ˙ @X

@y
ı C 1

2

@2X

@y2
ı2 C � � �

Substituting (7.4) in (7.3) and keeping terms up to O.ı2/, we obtain the
expression:
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@X

@t
� �@2X

@t2
� C �

4

@2X

@x2

ı2

�
C �

4

@2X

@y2

ı2

�
: (7.5)

Now, taking the limit � ! 0 and ı ! 0 first term on the right disappears.
Furthermore, defining

lim
�;ı!0

�ı2

4�
D D;

the equation reduces to

@X

@t
D Dr2X;

where r2 D @2

@x2 C @2

@y2 is the Laplacian corresponding to the diffusion equation.
Hence, hereafter we will refer to (7.2) as a discrete diffusive movement scheme.

The time interval � and the distance unit ı are not “as small as we want”, but
they can actually be determined by the experimental procedures. Turchin (1989)
presents a detailed explanation of how to obtain the resulting partial differential
equation parameters through experiments.

Finally, we observe that a continuum approach is valid when the time of
description of the phenomenon T is much greater than the duration of a step �

and when the spatial scale of description L is much greater than the step size ı (Lin
and Segel 1988; Okubo and Levin 2001).

7.3 The Model for Insects That Only Have Local Perception
Abilities

We assume a patchy environment such as citrus groves in a suitable spatial scale
where each tree can be represented as the CML site and is occupied by insects.
Assuming that the habitat is homogeneous and that the resources are abundant, the
spatio-temporal dynamics were analysed considering chemicals released over the
insects.

Here, the model describes the propensity of the insects for leaving their patch
in response to the chemical concentration in the patch (Model I). The chemical
substance is assumed to move by diffusion and advection due to wind.

The herbivore density in the site .i; j / at time t is described by at
i;j . Given that

the system is intended to model biological individuals, as Keller and Segel (1971),
we assume that there is a threshold value cm of the chemical concentration below
which neither insects are not able to perceive it nor the chemical is enough to kill
the insects. Hence ct

i;j represents the difference between the observed concentration
of the substance in .i; j / and the minimum value cm at which individuals can
sense it.
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7.3.1 Model I Formulation

Now, we describe the movement stage, which comprises the substance and insect
equations followed by the reaction stage.

7.3.1.1 Chemical Substance Spread

The substance disperses randomly by simple diffusion and also by advection due to
the wind, which has been considered as a key factor for substances dispersal in the
air. For the diffusive component of the motion, a constant fraction 0 � � � 1 of the
chemical concentration is evenly distributed in the four nearest patches. We assume
that the wind blows from the left to the right hand side of the dominium, so that,
at each time step, a fraction 0 � " � 1 of the chemical concentration is carried by
advection from patch .i; j / to the patch .i; j C 1/. Note that � and " must satisfy
0 � � C " � 1. Hence, the concentration of the chemical substance at site .i; j /,
after the movement stage of generation t , can be written as

c
0

i;j D .1 � � � "/ct
i;j C

X
.r;s/2V.i;j /

�

4
ct

r;s C "ct
i;j �1; (7.6)

where c
0

i;j represents the chemical density in .i; j / after the dispersal stage of time
step t , and V.i;j / D f.i � 1; j /; .i C1; j /; .i; j � 1/; .i; j C1/g is the Von Neumann
neighbourhood of patch .i; j /.

Equation (7.6) describes the substance permanence and arrival. The first term
determines the chemical concentration remaining in patch .i; j / after dispersal,
the second one gives the concentration that arrived at patch .i; j / by diffusion, and
the third term describes the chemical concentration reaching the patch .i; j / via the
wind (Fig. 7.6).

7.3.1.2 Insect Movement Stage

We assume that the habitat is full of resources so that the herbivores move (flee)
only in response to the concentration of the chemical substance.

In this scenario, insects are able to detect chemicals only in the patch in which
they are located. Hence, the population of insects in site .i; j / is repelled according
to the chemical concentration in this patch. During the movement stage, a fraction
of insects, proportional to the local concentration of the chemical, is uniformly
distributed in the four neighbouring sites. Then, ct

i;j at
i;j is the density of individuals

that leave site .i; j / at each time step. From a macroscopic point of view, this process
will result in the net movement of individuals to areas of low concentration of the
substance, as we will show in Sect. 7.3.3 (Fig. 7.7).
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Fig. 7.6 Diffusive and
convective movement scheme
for the chemical

Fig. 7.7 Insects movement
scheme

These assumptions lead to the following equation for the insect density in .i; j /

after the movement stage at generation t :

a
0

i;j D .1 � ct
i;j /at

i;j C
X

.r;s/2V.i;j /

1

4
ct

r;sa
t
r;s; (7.7)

where a
0

i;j is the density of insects in .i; j / after dispersal.
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The first term appearing in Eq. (7.7) describes the insects that stay in their
original patch. The second one represents individuals migrating to patch .i; j / at
generation t .

7.3.1.3 Reaction Stage

All the interactions take place at the reaction stage. The time scale of observation
of the phenomenon was restricted to the time interval in which the chemical
concentration can be sensed by the insects in the habitat. Since the time interval
in which the chemical acts on the insects is short compared to their growth time
scale, the insect population growth can be neglected. Hence, only insect mortality
due to the action of the chemical and the natural degradation of the substance will
be considered.

We consider that in each time step, a fraction of insects will be killed depending
on the chemical concentration and efficiency. In the course of time, the chemical
substance concentration will decay following an exponential function.

After the movement stage, the reaction, which is described by the following
equations, takes place:

atC1
i;j D a

0

i;j exp
�
�˛c

0

i;j

�
;

ctC1
i;j D ˇc

0

i;j ; (7.8)

where a
0

i;j and c
0

i;j represent the insect and chemical densities after the movement
stage of time step t . ˛ estimates the lethal efficiency of the substance so that
1=˛ represents the substance concentration that significantly decreases the insect
population, at each time step. The case ˛ D 0 refers to a repellent. The natural
degradation of the substance is described by ˇ, 0 < ˇ < 1.

7.3.2 Simulations

The behavioural effects of individuals on the spatiotemporal dynamics of the popu-
lation were studied by means of numerical simulations in a 50 � 50 square domain.
These dimensions were chosen to obtain better visualisation of the substance effects.

We began with different initial distributions of insects and substance depending
on the specific goal of the simulation. We assumed absorbing boundary conditions
for the insects and the chemical because on one hand chemicals spread and leave the
area of interest and, on the other hand, the insects can leave the area sprayed with
the substance.
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The results of the simulations are illustrated through: (i) density plots, which are
snap shots of insects and chemical spatial distributions with dark (light) gray color
describing high (low) densities according to each figure legend and, (ii) time series
of the total density of both, insects and chemical, over the lattice. Hereafter, we
present the results of the simulations developed for Model I.

The following two cases were taken into account: (1) the substance is a repellent
(˛ D 0) and (2) it is an insecticide (˛ > 0). Equations (7.6)–(7.8) were applied to
the insects and chemicals.

7.3.2.1 Repellent Chemical

Two different initial distributions of insects were assumed. In the first one, they are
homogenously distributed in the habitat; in the second one, the insect distribution is
heterogeneous.

Homogeneous Initial Distribution

In the first experiment, we assumed that the insects were initially homogeneously
distributed over the habitat at a density of 0:5. The chemical substance was released
in the center of the environment at time t D 0 according to

c0
i;j D exp

h
�
�
.i � 25/2 C 0:5 .j � 25/2

�i
:

In order to better observe the repulsive effects of the substance, we assumed
that the active component of the substance did not decay, which means, ˇ D 1.
The chemical diffusivity is fixed as � D 0:4, and the wind intensity is " D 0:5.
These parameters were chosen to show significant qualitative behavior of the model,
however they can be easily estimated in the experimental scenario.

In the upper panels of Fig. 7.8 the repellent distribution in time steps t D 5,
t D 20 and t D 50 are shown. In the lower panels, the insect spatial distributions,
at same time steps are also presented. The simulations indicate dispersion of the
substance to the right as an effect of advection. The concentration of repellent
diminishes in each site because of its diffusion into the neighbouring sites. The
insect movement is a response to the repellent concentration. With the movement
of the chemical particles, the insects leave high-concentration areas and go to
areas of low concentrations of the substance. Behind the chemical, we observe the
formation of a “furrow” in the insects’ distribution that does not change anymore
because the chemical concentration is not sufficient to promote any significant
change (Fig. 7.8). The interpretation of this result can be described as follows. High
concentrations of chemicals stimulate insect movement. However, after the repellent
density diminishes to low levels, the insects cease movement. The distribution of the
chemical and insects in line 25 (Fig. 7.9), corroborates these behavioural results.
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Fig. 7.8 Density plots of a repellent substance (upper panels) and insects (lower panels) at time
steps: 5, 20 and 50. Dark (light) grey colors show highest (lowest) densities. The parameters used
were a D 0, ˇ D 1:, � D 0:4 and " D 0:5. Reprinted with minor adaptations from Ecological
Complexity, Copyright (2013), with permission from Elsevier [3415301090462]
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Fig. 7.9 Distribution at line 25 for: (a) chemical substance and (b) insects, at different time steps
indicated by the gray scale colors. Initial time steps correspond to light curves while final time
steps are represented by dark curves

To investigate the effect of the wind on the spread of the chemical, an initial
concentration was released at some site .i0; j0/ and the mean square distance of the
chemical density, as a function of time, defined as

�2
t D

P
iD1

P
j D1 ct

i;j

�
.i � i0/

2 C .j � j0/2
�

P
iD1

P
j D1 ct

i;j

;

was measured.



156 L.A.D. Rodrigues et al.

Fig. 7.10 Variation of the
mean square distance with
time comparing a diffusive
process with wind (dashed
curve) with a classic diffusive
process without wind
(continuous curve)
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As expected, the wind exerts a significant influence on the dispersion process.
Figure 7.10 shows different curves for the variation of the mean square distance with
time; the dashed curve represents the influence of the wind (" D 0:4) with moderate
diffusion (� D 0:4), while the continuous curve corresponds to absence of wind
(" D 0) and high diffusivity (� D 1). In the latter, the dispersal of particles is due to
diffusion. However, the wind produces a faster spread of the repellent compared to
the diffusion process. The �2

t curve is approximately proportional to t2 when wind
is present, which is typical of diffusion processes with drift, and it is approximately
proportional to �t for the diffusion-only process (Codling et al. 2008).

Heterogeneous Initial Distribution

In this scenario the insects initially occupy 40 % of the patches at random at density
of 0.5. It is important mention that the insect distribution used in this study is suitable
for a discrete model but not for a continuous model, despite being reasonable in the
natural population. Aiming to recognise the distribution of insects over a long time
scale, the repellent is initially distributed at the left hand side of the dominium,
following the equation below

c0
i;j D exp

h
�
�
.i � 25/2 C 0:5 .j � 5/2

�i
:

We assume that the active component of the chemical degrades gradually with
time (ˇ D 0:99), and the diffusivity of the repellent is given by � D 0:4. The wind
intensity is taken as " D 0:4.

The upper panels in Fig. 7.11 illustrate the repellent distribution in time steps
t D 5, t D 50 and t D 100. The lower panels show the spatial distribution of
the insects at same time steps. In the presence of the chemical we now observe the
formation of a “splotch” in the insects’ distribution that, as previously shown, ceases
to change (Fig. 7.11).
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Fig. 7.11 Density plots of a repellent substance (upper panels) and insects (lower panels) at time
steps: 5, 50 and 100. Dark (light) grey colors show highest (lowest) densities. The parameters used
were a D 0, ˇ D 0:99, � D 0:4 and " D 0:45. Reprinted with minor adaptations from Ecological
Complexity, Copyright (2013), with permission from Elsevier [3415301090462]

7.3.2.2 Insecticides

For this case, we considered that the chemical is an insecticide with lethality
parameter ˛ D 1:1 and low degradation factor ˇ D 0:99. The wind intensity is
" D 0:45 and diffusivity � D 0:4. Initially, the insects occupy 40 % of the patches at
random at a density of 0.5. The chemical substance is released at the left hand side
of the dominium according to

c0
i;j D exp

h
�
�
.i � 25/2 C 0:5 .j � 5/2

�i
;

as previously assumed.
Figure 7.12 shows the spatial distribution of insects at time steps t D 5, t D 50

and t D 100. These simulations show that the insect density decays where the
substance was spread. Figure 7.13a presents the insect density as a function of time
in response to the chemical concentration for different wind intensities. The large
dashed curve illustrates a weak wind (" D 0:2); the small dashed curve describes
a moderate wind (" D 0:45); and the dotted curve depicts a strong wind (" D 0:6)
for � D 0:4. The corresponding total concentration of the substance in the habitat
is shown in Fig. 7.13b. The wind has a strong influence on the insecticide spread
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Fig. 7.12 Density plots of insects at time steps: 5, 50 and 100 considering an insecticide. Dark
(light) grey colors show highest (lowest) densities. The parameters are the same as before except
˛ D 1:1. Reprinted with minor adaptations from Ecological Complexity, Copyright (2013), with
permission from Elsevier [3415301090462]
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Fig. 7.13 (a) Normalized insect total population and (b) normalized total pesticide concentration
over the habitat for � D 0:4 and different wind intensity: " D 0:6 (dotted curve), " D 0:45

(small dashed curve) and " D 0:2 (large dashed curve). Reprinted from Ecological Complexity,
Copyright (2013), with permission from Elsevier [3415301090462]

as shown by the drastic change in the chemical curves. If the wind is weak the
substance has a high residual power, and the insect population decreases slowly.
However, the insect equilibrium density is the lowest (dotted curve in Fig. 7.13a).
Strong wind dissipates the insecticide, resulting in the highest insect equilibrium
(large dashed curve in Fig. 7.13b).

7.3.3 The Continuum Limit

In order to obtain a macroscopic model equivalent to the discrete simulation model
I, we considered a random walk on a two dimensional lattice. The insect movement
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depends on the “degree of repellence” of the chemical c.x; y; t/. At each time step
� , insects can move a distance ı down, up, left or right with probabilities given
by 1

4
c.x; y; t/ or remain at the same location with probability 1 � c.x; y; t/: The

equation below describes the insects’ density

n.x; y; t C �/ D .1 � c.x; y; t//n.x; y; t/C

C 1
4
c.x � ı; y; t/n.x � ı; y; t/ C 1

4
c.x C ı; y; t/n.x C ı; y; t/

C 1
4
c.x; y � ı; t/n.x; y � ı; t/ C 1

4
c.x; y C ı; t/n.x; y C ı; t/;

(7.9)

The first term indicates individuals remaining at the same site. Insects arriving from
the neighbouring locations are represented by the other four terms. The random walk
model can be approximated by a continuous model for pertinent choices of ı and �

(Jeanson et al. 2003; Segel 1978; Turchin 1989). According to the implementation in
Sect. 7.2, it is feasible to interpolate lattice values for insect and substance densities,
replacing the differences by Taylor expansions up to a suitable order. Maintaining
the corresponding terms, it is possible to write an equation for the insects’ density
as follows:

@a

@t
� �1

2

@2a

@t2
� C ı2

4�

�
c

@2a

@x2
C a

@2c

@x2
C 2

@a

@x

@c

@x



C ı2

4�

�
c

@2a

@y2
C a

@2c

@y2
C 2

@a

@y

@c

@y


: (7.10)

By taking the limit � ! 0 and ı ! 0, we obtain

@a

@t
D D

2
r2.ac/

or

@a

@t
D D

2
r � Œcra C arc� ;

where D D ı2

2�
; r2 is the Laplacian and r is the gradient operator.
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A partial differential equation can also be obtained for the chemical spread by
diffusion and advection. We substitute the proper Taylor series in scheme (7.6),
divide both sides by � and keep terms up to O.ı2/ to obtain

@c

@t
� �1

2

@2c

@t2
�

C�ı2

4�

�
@2c

@x2
C @2c

@y2


� "ı

�

@c

@x
C "ı2

2�

@2c

@x2
: (7.11)

Now, taking the limit �; ı; " ! 0, and defining

lim
�;ı;"!0

"ı

�
D v;

we obtain

@c

@t
D r �

�
�

2
Drc � vc


;

where jvj D "ı
�

:

Hence, a reaction-diffusion system with equations qualitatively similar to dis-
crete model I can be presented as follows:

@a

@t
D D

2
r � Œcra C arc� � kac; (7.12)

@c

@t
D r �

�
�

2
Drc � vc


� rc: (7.13)

The first term of the equation for insects, between brackets, describes a diffusive
flow characterised by diffusivity proportional to the concentration c.x; y; t/. The
second term indicates a flux in the opposite direction to the gradient of the chemical
substance, that is, a negative taxis, although there is no bias in the discrete rule. In
the chemical substance equation, the terms between brackets represent a classical
diffusion and a convective flux with constant velocity v, respectively. The reaction
term kac (k constant) in the first equation represents the insect mortality due to
chemical and rc, in the second equation, describes the exponential decay of the
chemical concentration.

Equation (7.12) indicates that the insects flux does not depend on the wind. How-
ever, the chemical dispersal indirectly acts in the insects movement, in particular,
the wind modify the insects spread by changing the chemical gradient and spatial
concentration. Although the continuous model clarify the macroscopic behaviour of
the system, it does not completely explain how the original parameters such as the
wind intensity affects the insects spatio-temporal distribution and total population.
Numerical simulations of the discrete model, presented in the previous section,
elucidate these issues.
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7.4 The Model for Quasi-local Perception Insects

7.4.1 Model II Formulation

For this case, it was assumed that insects may exhibit much more refined chemical
recognition, including the ability to perceive substance concentration gradients in
the neighbourhood in which they are exploring for resources. Thus, the insects can
change their future location based on the presence of chemicals. This behaviour
can be mathematically described by taking into account the fraction li;j of insects
leaving site .i; j / and going to another site .r; s/, defined as

li;j D

8̂<̂
:

1
4

�
1 � ct

r;s

mt
i;j

�
; if mt

i;j ¤ 0

0; if mt
i;j D 0

(7.14)

where,

mi;j D
X

.k;p/2V .i;j /

ct
k;p; and V .i;j / D V.i;j / [ f.i; j /g:

The probability of moving to site .r; s/, given by Eq. (7.14) reflects the propensity
of going to locations with lower substance concentrations, i.e., the lower the
concentration of the chemical at .r; s/ compared to the concentration in the other
sites of the neighbourhood, the greater is the probability of moving to this site.
It is important to emphasize that since the habitat has plenty of resource and, by
hypothesis, insects only move in response to the chemical, we defined li;j D 0

when mt
i;j D 0. This hypothesis suggest insects remain in patch they are when the

substance is below the threshold cm in all the neighbourhood. We also point out
that this movement scheme represents highly sensitive individuals: even for very
low chemical density in the neighbourhood, insects can react with a high movement
factor. The multiplying factor has a normalizing rule.

Looking at the probability that the insects move (7.14), their density at site .i; j /

after the movement of generation t is given by

a
0

i;j D at
i;j �

X
.r;s/2V.i;j /

at
i;j

4

 
1 � ct

r;s

mt
i;j

!
C

X
.r;s/2V.i;j /

at
r;s

4

 
1 � ct

i;j

mt
r;s

!
: (7.15)

The first summation in (7.15) accounts for the individuals who leave site .i; j /

while the third term represents those individuals who migrate to site .i; j / from the
neighbourhood.
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7.4.2 Simulations

The following simulations are for insects that perceive the insecticide around them
and make the decision to move away, looking for a place with a lower concentration
of the substance, which is now lethal. The same initial conditions previously used
in model I were employed with parameters ˛ D 1:1, ˇ D 0:99, " D 0:2

and � D 0:4.
In Fig. 7.14 the spatial distribution of insects is presented at time steps t D 5,

t D 30, t D 50 and t D 100. In this scenario, the insects vigorously respond
to the presence of the insecticide, resulting in an approximately homogeneous
spatial distribution (Fig. 7.14d). Note the substance concentration to the right side
(Fig. 7.14a, b) is lower than cm, justifying the permanence of the insects in the area.

The influence of sensory abilities on the spatial distribution and density of insects
is shown (Figs. 7.15 and 7.16) using: local, quasi-local and no sensory ability (that
is, a

0

i;j D at
i;j ). The scenarios observed are equivalent to models I, II and the

indifference of insects with respect to the substance concentration. The parameters
were taken as ˛ D 1:1, ˇ D 0:99, " D 0:45 and � D 0:2 and insects are initially
distributed inside a small region located at the center of the habitat as it can be when
an alien species appear in a new habitat. The insecticide or repellent is applied at
the centre of the occupied region, inducing insects to flee. After five time steps, the
substance is reapplied according to

f 5k
i;j D

(
1; .i; j / D .i0; j0/

ˇc
0

i;j ; .i; j / ¤ .i0; j0/
; k D 0; 1; 2; : : : ;

then the second equation in (7.8) is rewritten as

ctC1
i;j D

8̂<̂
:

ˇc
0

i;j ; for t C 1 ¤ 5k; k D 1; 2; : : :

f 5k
i;j ; for t C 1 D 5k; k D 1; 2; : : :

:

Fig. 7.14 Spatial distribution of insects for ˛ D 1:1, ˇ D 0:99, " D 0:2 and � D 0:4 for time
steps: t D 5, t D 30, t D 50 and t D 100. Reprinted with minor adaptations from Ecological
Complexity, Copyright (2013), with permission from Elsevier [3415301090462]
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Fig. 7.15 Insects spatial distribution at generation t D 40, for different chemical perceptions:
(a) local sensory ability, (b) quasi-local sensory ability and (c) no sensory ability. Reprinted with
minor adaptations from Ecological Complexity, Copyright (2013), with permission from Elsevier
[3415301090462]
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Fig. 7.16 Comparison of the normalized total population of insects. The large dashed curve
indicates insects without sensory ability; small dashed curve represents insects with local sensory
ability and the dotted curve illustrates insects with quasi-local sensory ability. Reprinted with
minor adaptations from Ecological Complexity, Copyright (2013), with permission from Elsevier
[3415301090462]

In Fig. 7.15 the distribution of insects is presented three different chemical
perception, at time step t D 40. For insects perceiving chemicals only in the site
where they are, movement to neighbouring sites takes place without regard to the
chemical concentration of other places (Fig. 7.15a). When the insects discern the
presence of harmful chemical around them, many more individuals try to leave
these areas, migrating to places with a lower substance concentration (Fig. 7.15b).
In contrast, the action of chemicals has more impact on immobile organisms
(Fig. 7.15c).

Figure 7.16 shows the normalised total population of insects for the three dif-
ferent movement schemes. For the reaction and movement parameters considered,
the asymptotic total insect density for quasi-local sensory ability (dotted curve) is
greater than that for local sensory ability (small dashed curve). The population of
insects that remain in their position (large dashed curve) suffer almost 80 % of loss
in this period of time.
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7.4.3 The Continuum Limit

Using similar reasoning as before, we define

r.x; y; t/; the individual fraction that migrates to the right-hand side
l.x; y; t/; the individual fraction that migrates to the left-hand side
n.x; y; t/; the individual fraction that migrates to the northern direction and,
s.x; y; t/; the individual fraction that migrates to the southern direction of site

.x; y/;

so that the individual density at site .x; y/ after dispersal can be written as

a.x; y; t C �/ D r.x � ı; y; t/a.x � ı; y; t/ C l.x C ı; y; t/a.x C ı; y; t/

Cs.x; y C ı; t/a.x; y C ı; t/ C n.x; y � ı; t/a.x; y � ı; t/

C Œ1 � r.x; y; t/ � l.x; y; t/ � s.x; y; t/ � n.x; y; t/� :

Substituting by Taylor series where necessary, and conveniently rearranging the
terms, we obtain

@a

@t
D � ı

�

@

@x
Œ.r.x; y; t/ � l.x; y; t// a.x; y; t/�

� ı

�

@

@y
Œ.n.x; y; t/ � s.x; y; t// a.x; y; t/�

C ı2

2�

@2

@x2
Œ.r.x; y; t/ C l.x; y; t// a.x; y; t/� (7.16)

C ı2

2�

@2

@y2
Œ.n.x; y; t/ C s.x; y; t// a.x; y; t/� :

We now suppose c ¤ 0 and use (7.14) to calculate r.x; y; t/ ˙ l.x; y; t/ and
n.x; y; t/ ˙ s.x; y; t/, which can be approximated by

r.x; y; t/ C l.x; y; t/ D 2

5
C 50c

4cı2
� 1

20c

@2c

@x2
ı2

r.x; y; t/ C l.x; y; t/ D �1

2

1

5c

@c

@x
ı

n.x; y; t/ C s.x; y; t/ D 2

5
C 50c

4cı2
� 1

20c

@2c

@y2
ı2 (7.17)

n.x; y; t/ � s.x; y; t/ D �1

2

1

5c

@c

@y
ı;
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which, substituted in (7.16), gives

@a

@t
D � ı

�

@

@x

�
�1

2

1

5c.x; y; t/

@c

@x
a.x; y; t/ı


� ı

�

@

@y

�
�1

2

1

5c.x; y; t/

@c

@y
a.x; y; t/ı


(7.18)

C ı2

2�

@2

@x2

��
2

5
C
�4c

50c
� 1

20c

@2c

@x2

�
ı2


a.x; y; t/

�
C ı2

2�

@2

@y2

��
2

5
C
�

50c

4c
� 1

20c

@2c

@y2

�
ı2


a.x; y; t/

�
or

@a

@t
D ı2

10�

@

@x

�
@

@x
ln c.x; y; t/a.x; y; t/


C ı2

10�

@

@y

�
@

@y
ln c.x; y; t/a.x; y; t/


(7.19)

C ı2

5�

@2

@x2
a.x; y; t/ C ı2

5�

@2

@y2
a.x; y; t/:

Hence, Model II results in the following partial differential equation for the
moving insects:

@a

@t
D Dr �

�
ra C rc

2c
a


� kac

D D4a C Dr �
�rc

2c
a


� kac; (7.20)

where D D ı2

5�
.

The movement scheme in Model II corresponds to a rather different insect
response to the chemical in the macroscopic scale. In this case, insect movement
shows classical diffusion and chemotactic components. However, the diffusion
coefficient is constant regardless the substance concentration. The chemotactic
component of the flux, in this case, obeys the Weber-Fechner law, which states that
the response to the chemical concentration is proportional to the relative gradient
rather than to its absolute value (Keller and Segel 1971). The same type of relation
has also been used for modelling the response of microorganisms to chemical
signals in the seminal chemotaxis paper by Keller and Segel (1971).

It is important to mention that model II could be implemented in ideal scenarios
in which the substance is smoothly distributed over the habitat and is never equal
to zero in the area studied. Therefore, real field situations such as initial distribution
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of the substance only in a small region of the dominium, can hardly be analyzed
by the continuous model. These mathematical properties constitute another reason
to undertake simulations directly from the discrete models proposed in the previous
section. Nevertheless, the continuous model shed light upon the general tendencies
of the postulates made in the discrete models.

7.5 Discussion and Final Remarks

In this chapter, a Coupled Map Lattice model was proposed to describe a hypothet-
ical insect pest population being influenced by harmful chemical substances, taking
into account the ability of the insect to flee and the environmental conditions. Two
different rules for insect population movement with dependence on sensory ability
were considered, local and quasi-local perception. A movement rule for chemical
dispersal by wind and diffusion was also implemented. Continuous equations were
designed to show the system on a macroscopic scale. With numerical simulations,
spatial distribution of the movement rules above was investigated to describe the
effects of dispersal in insect populations associated with repellents.

The models investigated here are consistent with advection, diffusion and taxis
processes and were able to extract essential qualitative aspects from the mechanisms
inherent to the spread dynamics. The discrete models proposed showed to be
consistent with the mechanisms of advection, diffusion and taxis and captured the
qualitative features expected for these processes. The model results confirm that the
absence of insect flight from unfavorable areas has a highly significant impact on
mortality due to insecticide application. This conclusion is narrowly associated with
the perceptive ability of the insects’ species. Additionally, species able to perceive
harmful substances only locally are not capable of choosing a better destination
and consequently exhibit much more susceptibility to the action of chemicals than
insects with sensory abilities over a quasi-local range.

Despite the simplicity of the model, it has enough flexibility to investigate other
strategies of integrated pest management (IPM) and to include influence on natural
enemies (Fogel et al. 2013) or new ranges of individuals’ perceptions (Haynes
1988). These aspects are of paramount importance for pest management scenarios,
mainly for scenarios that take into account strategies for substance applications
(Hassanali et al. 2008). The approach proposed here may also be useful for different
particles associated with insects such as pollen, seeds and pheromones, as presented
in the introduction of this chapter (Esker et al. 2007; Snell 2014).

The study presented in this chapter is an attempt to show the essential mathe-
matical tools used in a Brazilian research program in progress by researchers at the
Universidade Federal de Santa Maria and the Universidade Federal do Rio Grande
do Sul who are focused on the combination of population theory, experimentation
and evidence from the literature, aiming to support new strategies for IPM (Mistro
et al. 2009, 2012; Rodrigues et al. 2011, 2012, 2013).
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Chapter 8
Computational Methods for Accurate
Evaluation of Pest Insect Population Size

Natalia Petrovskaya and Nina Embleton

Abstract Ecological monitoring aims to provide estimates of pest insect abun-
dance, where the information obtained as a result of monitoring is then used
for making decisions about means of control. In our paper we discuss the basic
mathematics behind evaluating the pest insect abundance when a trapping procedure
is used to collect information about pest insect species in an agricultural field.
It will be shown that a standard approach based on calculating the arithmetic
average of local densities is often not the most efficient method of pest population
size evaluation and more accurate alternatives, known as methods of numerical
integration, can be applied in the problem. A mathematical background for methods
of numerical integration on regular grids of traps will be provided and examples of
their implementation in ecological problems will be demonstrated. We then focus
our attention on the issue of pest abundance evaluation accuracy when data available
in the problem are sparse and consider the extreme case when the uncertainty
of evaluation is so big, that an estimate becomes a random value. We complete
our discussion with the consideration of irregular grids of traps where numerical
integration techniques can also be applied.

Keywords Ecological monitoring • Numerical integration • Pest control •
Coarse grid

8.1 Introduction

Pests are a sustained and significant problem in the production of food across the
globe. The term ‘pest’ can be used to describe any organism which is deemed to
cause harm to mankind in some manner; in crop production this label is given to
those which damage or destroy potential produce to an unacceptable extent. In many
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ecologically important cases the definition above implies that an agglomeration of
organisms is considered: for example, while one or two occasional insects do not
make any significant harm to the crop in an agricultural field, the damage to the crop
can become dramatic if the number of insects exceeds a certain threshold. Hence, in
many ecological situations the definition of the term pest also requires the definition
of the pest abundance or the pest density distribution in the spatial domain under
consideration.

Crops are vulnerable to attack from pests both during the growing process and
after they have been harvested. When pests of crops prior to harvest are considered,
the focus is often predominantly on arthropods, plant pathogens and weeds (e.g.
Louws et al. 2010; Ruberson 1999). Estimates of the annual worldwide loss due to
pests at this stage in the production process lie between 35 and 42 % (Oerke 2006;
Pimentel 1997). In particular, the pre-harvest loss of 14–15 % of the world’s crops
has been attributed to insect pests (Pimentel 2009; Pimentel and Pimentel 2008).
Further losses are incurred after the crops have been harvested. This can be due to
infestation of stored crops by pests such as insects, rodents, birds, as well as micro-
organisms which cause damage both quantitative and qualitative in nature (Gwinner
et al. 1996). Such losses have been estimated to range from 10 to 25 % (Pimentel
and Pimentel 2008).

8.1.1 Basic Principles of Integrated Pest Management

Pest management has the obvious goal of preventing or minimising the damage
pests cause to crops and various approaches have been used to achieve this goal.
Measures of so-called ‘preventative pest management’ can be put into practise;
the idea being to try to stop the pest population from becoming a problem in the
first place. Age-old examples of such a tactics are crop rotation and intercropping.
In a crop rotation, instead of an agricultural field consistently being used to grow
the same crop, different crops which critically host different pests, are grown
sequentially. Intercropping is the planting of different crops within the same field
at the same time. Variety can also be introduced by planting several genotypes
of the same crop species within a field. Introducing heterogeneity in such ways,
either spatially, temporally, or genotypically, can destabilise the life cycle of a pest
and has been documented to help to control pest populations (Liebman and Dyck
1993; Shoffner and Tooker 2013). A pest’s preference for a certain plant can be
exploited to the farmer’s advantage using a technique called trap cropping. Here,
crops are interspersed with plants that are more attractive to the pest and thus
act as sacrificial decoys. This diversionary ploy can be sufficient to protect the
crop in itself, otherwise, it reduces the area of the field to be subjected to further
management tactics should they be needed since the pests are then located in some
field sub-domain (Hokkanen 1991). Another precautionary measure is to grow crops
which have been cultivated to be resistant to pest attack. Grafting has been used for
centuries to manage certain pathogens and it has also been deemed to be useful in
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the control of arthropod pests and weeds (Louws et al. 2010). A more scientifically
advanced means of pest resistant plant cultivation is genetic modification. This is a
relatively recent initiative of which the risks are not yet fully understood, however,
its potential to become the dominant pest management strategy has certainly been
recognised and consequently it has become the focus of much research (e.g. Bates
et al. 2005; Christou et al. 2006; Gatehouse et al. 2011; Smigocki et al. 2013).

Another way of managing pests is to implement a control action, that is, to
employ a means of killing the pest organisms. The most widely used control action
is the application of pesticides. It has been estimated that around 3�109 kg are used
across the globe per year (Pimentel 2009). Biological control actions, e.g. releasing
a natural enemy of the targeted pest into the agroecosystem, provide an alternative
to the use of chemicals. However, the indiscriminate use of control actions or
using them as a preventative measure can have serious negative consequences. For
instance, the regular use of pesticides often leads to the pest becoming resistant
making future management a more difficult task (Alyokhin et al. 2008). Another
unwanted side effect can be that the pesticide has lethal or sub-lethal effects on
natural enemies (Sohrabi et al. 2013) which can cause a resurgence in the pest
population or a secondary pest to emerge.

Recognition that precautionary tactics are rarely sufficient to manage pests alone
and that relying entirely on control action is not a durable approach led to the
emergence of the concept of integrated pest management (IPM) (Kogan 1998). IPM
is the incorporation of several different tactics which work cooperatively together
to protect crops from pest attack in a more sustainable way. It consists of the
three phases. Firstly, preventative measures of pest management are put into place.
Subsequently, the pest abundance is monitored. The decision of whether or not
to implement a control action is then made by comparing the abundance of pests
against some threshold level, i.e. the limit at which intervening becomes worth the
effort or expense. Such threshold values can be decided upon by taking a variety of
factors into consideration. The most often used are economic thresholds (Stern et al.
1959) as usually the overriding concern is that the pest management programme is
financially viable (e.g. see Higley and Pedigo 1996). The basic principle of IPM
is therefore that a control action is only used if and when it is necessary. Thus
monitoring is key to the decision process and is considered an essential part of any
integrated pest control and management programme (Burn et al. 1987; Metcalf and
Luckmann 1982).

8.1.2 Monitoring Methodologies in IPM

A correct choice of a monitoring methodology is very important for the success
of an IPM programme. Since different pest types have different behaviours, the
monitoring methodologies in IPM programmes vary accordingly. We thus limit
our scope to the consideration of insect pests; henceforth in the text the generic
term ‘pest’ is used synonymously with ‘insect pest’ unless otherwise stated. The
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procedure also depends on the environment to be monitored. In our paper we
consider pest management of crops prior to harvest, where we take the spatial
scale of the monitoring procedure to be that of an agricultural field. A complete
census in this case is hardly practical or indeed possible, therefore the population
abundance must instead be estimated. The data to form such an estimate is
collected by sampling the pest population for which there exists a multitude of
techniques (Ausden 1996; Blackshaw 1983; Hutchins 1994; Mayor and Davies
1976; Southwood and Henderson 2000).

A direct, in-situ count can be made of the number of pests in a sample unit e.g.
a plant or a unit area of habitat. For the more inconspicuous species, the counting
process can be made easier by dislodging the pests from the plant using a practise
known as ‘knockdown’. In some instances a sample of the habitat itself may be
carefully removed and taken to a laboratory where the count can then be made.

Once the data has been collected the arithmetic mean number of pests M per
sample unit is calculated as follows:

M D 1

K

KX
kD1

fk; (8.1)

where fk are the individual sample counts, and K is the number of sample counts
taken (Davis 1994). From the mean number of pests per unit area, an estimate of the
number of pests in the entire agricultural field is obtained by multiplying by the area
of the field (Snedecor and Cochran 1980). A mean number of pests per plant can be
converted to the mean per unit area by multiplying by the mean number of plants
in such an area. Such an estimate of pest abundance is considered an ‘absolute’
estimate since the sample counts directly reflect the number of pests in the sample
unit.

Alternatively samples can be taken via netting. For example, a net can be swung
into the crops for a prescribed time or number of sweeps. The number of pest
insects caught inside is then counted (e.g. see Pedigo and Rice 2009; Southwood
and Henderson 2000). Netting is often used to sample insects on large agricultural
fields, because it is quicker and more cost effective than inspection of individual
plants.

Another widely used sampling technique is trapping. Traps are installed in the
field, exposed for a certain amount of time (e.g. for a week), after which the traps
are emptied and the pests counted. The position of the traps can be arbitrary;
some ecologists opt for random grids of traps or choose appropriate sampling
patterns (Alexander et al. 2005; Mayor and Davies 1976), but in many cases they
are placed at the nodes of a rectangular grid (Ferguson et al. 2000; Holland et al.
1999). The traps can either be active, whereby an attractant is used to draw the pests
into the traps e.g. bait or a pheromone, or they can be passive where capture relies
on the activity of the pest species. The trap counts provide information about the
pest population density at the position of the traps (Byers et al. 1989; Raworth and
Choi 2001) and the sample mean density can then be calculated by scaling (8.1)
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with relation to the area of the agricultural field, where fk are now the pest densities
at the sample locations.

The above techniques yield a relative estimate of the mean pest density rather
than an absolute estimate. The counts are not a direct measure of pest abundance but
are relative to the efficiency of the netting or trapping technique and the conditions
at the time of sampling. Therefore only relative estimates which have been obtained
via the same sampling technique and in the same conditions can be compared.
It is possible to convert an estimate that is relative to an absolute estimate using
regression analysis (Browde et al. 1992) or through calibration using experimental
data (Evans et al. 1983). Steps to achieve this via mathematical modelling have also
been made (Petrovskii et al. 2012).

An estimate of the population abundance can also be achieved using mark-
release-recapture methods. Initial sampling is performed and the catch is counted
and marked in some way (Hagler and Jackson 2001). The marked population is then
released back into the agroecosystem and another round of sampling is conducted.
An estimate of the population size can then be formulated using the condition that
the proportion of marked insects in the field is equal to the proportion of marked
insects found in the second sample. That is, the following can be rearranged to
solve for I

IM

I
D I QM

QI ; (8.2)

where IM is the total number of marked insects, I is the number of insects in the
entire population, QI is the number of insects caught in the second sample and I QM is
the number of those which are marked. This method works well in scientific studies
but can hardly be afforded in nation-wide monitoring programmes as it requires
considerable additional effort (such as insect marking and recapture).

8.1.3 The Problem of Accurate Estimation of Pest Abundance

Once an estimate of the pest population size or the mean pest density in an
agricultural field has been acquired, a decision is made by comparing it to some
threshold value(s). Let us consider the simplest case where a single threshold value
is used. If the estimate falls below the threshold the decision is to take no action,
whereas if it exceeds the threshold the decision is to intervene and implement a
control action (e.g. see Binns et al. 2000, Chapter 1). Such action can, for instance,
be the application of pesticides (Ester and van Rozen 2005; Stern 1973). Clearly
the accuracy of the estimate is important in ensuring the correct decision is made,
with the accuracy becoming particularly vital when it is close to the threshold value.
An underestimate could mean action is not taken when it is needed leading to the
loss of crops. Even with the use of pesticides the value of crops lost in the field to
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pests has been estimated to be $2,000 billion per year (Pimentel 2009).1 Obtaining
a more accurate estimate of the pest abundance could lead to the more timely use of
a control action and ultimately reduce crop loss.

On the other hand an overestimate could lead to a control action being used
unnecessarily. Application of pesticides is costly and brings considerable damage
to the environment (Jepson and Thacker 1990). Pesticides are known to contribute
to air, soil and water pollution whilst there is growing evidence linking their use
to human illnesses (Alavanja et al. 2013; Pimentel and Greiner 1997). It has been
estimated that less than 0.1 % of pesticides used reach their targeted pest, the
remaining 99.9 % is absorbed by some means into the environment (Pimentel 1995).
Some of the loss occurs during application with the spray drifting outside of the
intended area, however once applied to a crop, pesticides can then vaporise into the
air, end up in surface or groundwater, be absorbed by plants or ingested by non-
target species, or indeed remain in the soil. Furthermore, unnecessary application of
pesticides is undesirable from an economic perspective; around $40 billion is spent
per year applying pesticides (Pimentel 2009).

It is obvious from the above that there is a significant need for reliable methods to
accurately evaluate the pest population size in order to avoid making an unjustified
decision about control action. It is worth noting here that the accuracy required by
pest monitoring is not always very demanding as it differs according to the purpose.
In routine monitoring an error range can be 20–100 % (Pascual and Kareiva 1996;
Sherratt and Smith 2008), whereas monitoring for research purposes can demand a
higher degree of accuracy of 10 % (e.g. see Pedigo and Rice 2009, p. 245).

Several means of optimising the accuracy of an estimate have been considered
in the ecological literature. One way is to ensure that the size of the data set is
large enough i.e. that enough sample units are taken. It follows from Eq. (8.1) that
the exact value of the population size will be obtained for infinitely large number
K . Hence we can expect better accuracy of the estimate when K gets larger. A
pre-sample (or series of them) can be used to obtain a sample mean and sample
variance from which an estimate of the number of sample units needed to achieve
a specified precision can be calculated (e.g. see Binns et al. 2000; Dent 2000;
Pedigo and Rice 2009). However there is a trade-off between the number of sample
units needed to achieve sufficient accuracy and the number that can be practically
afforded. For instance, if a trapping procedure is applied in ecological research,
the number K of traps per given area can be made quite large, e.g. in the order of
hundreds. Meanwhile in routine pest monitoring programmes K rarely exceeds 20
(Mayor and Davies 1976) per a typical agricultural field with a linear size of several
hundred meters and, in some cases, it can be as small as one or a few traps per field
(Northing 2009). There are several practical reasons why the number of traps cannot
be made large. An increase in the number of sample units equates to an increase
in the amount of labour and hence finances required. In any real-world scenario

1The work Pimentel (2009) refers to pests in the generic sense of the term, i.e. insects, plant
pathogens and weeds.
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there is a limit to such resources. Also, traps introduce a disturbance into the field
and installing a large number of them can damage the corresponding agricultural
product. Furthermore, trapping imposes a disturbance on the pests which can in
turn affect the results of the trapping technique, therefore from this perspective the
number of traps should be minimised.

The efficacy of a sampling technique is also important to the accuracy of an
estimate of the pest abundance. Means of sampling a pest population are constantly
being reviewed leading to sampling equipment being developed and improved
(Birmingham et al. 2011; Taboada et al. 2012). Another key consideration is the
sampling plan, that is, the prescribed locations at which samples are to be taken.
For an estimate to be accurate the sample must capture sufficient information
to adequately represent the true pest presence. If conditions are homogeneous
across the field, insects can be randomly distributed, however they often exhibit
an aggregated spatial distribution (Ferguson et al. 2000; Holland et al. 1999).
The sampling plan thus becomes crucial; it is important to avoid bias stemming
from samples being placed entirely in areas where the pests are clustered, or
likewise, entirely in areas of zero density. Comparisons of various patterns e.g.
random, transects, quadrats, etc. have been made in order to make recommendations
(Alexander et al. 2005).

8.1.4 Goals and the Road Map

As the accuracy of evaluation of the pest abundance remains a crucial issue in IPM
programmes, any new method that can increase the accuracy must be carefully
studied and its advantages and disadvantages must be documented in order to
decide whether or not the method can be used in routine monitoring. Although
ensuring a sufficiently accurate estimate has been considered in the ecological
literature as discussed above, to our best knowledge the focus has predominantly
been on how the data is collected. In our paper we instead look at the way in
which the data is processed and discuss numerical integration techniques that
present an alternative approach to the existing statistical methods. In recent years
intensive study of numerical integration methods for ecological applications has
been carried out (Embleton and Petrovskaya 2013, 2014; Petrovskaya and Embleton
2013; Petrovskaya et al. 2013; Petrovskaya and Petrovskii 2010; Petrovskaya et al.
2012) and in this book chapter we summarize our experience with the application of
numerical integration methods to ecological problems. We will focus our attention
on a trapping procedure made in a single agricultural field and on the evaluation of
the total pest population size from the information provided by trap counts, but the
results of our discussion can be extended to other sampling techniques.

The main goal of the book chapter is twofold. Firstly, we would like to draw
the attention of our readers to methods of numerical integration as a reliable
alternative to a standard statistical method (8.1). We therefore explain a mathemat-
ical background for numerical integration techniques, elaborate on how to apply
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them in ecological problems and demonstrate that advanced numerical integration
methods can often be more effective in the evaluation of pest abundance than the
method (8.1).

Secondly, we want to discuss the issues of accuracy for various methods of
numerical integration and to identify the main factors that may affect the accuracy. It
will be shown that the accuracy of numerical integration depends on the number of
traps available in the problem and we therefore often have to deal with a numerical
integration problem where the data are sparse (see Sect. 8.1.3). Meanwhile, if the
number of traps is fixed in the problem, a spatial pattern of the pest density
distribution remains the most crucial factor that affects the accuracy of numerical
integration and this is another key topic that we discuss in this book chapter.

While most of our study with regard to the issues above will be done for regular
grids of traps, we are also interested in the study of accuracy on quasi-irregular
and random grids, as sampling patterns that result in such grids are backed by
ecologists as mentioned in Sect. 8.1.3. It is worth noting that, although the spatial
pattern of the sample units is considered important when collecting the data, an
estimate of pest abundance based on the sample mean does not use this information
directly. It can readily be seen that the expression for the sample mean (8.1) has
no spatial dependence. Alternatively, an estimate formulated by means of numerical
integration uses the spatial distribution information and we will see the implications
of this approach.

The chapter is organised as follows. In the next section, we briefly explain basic
information about the theory of numerical integration. In Sect. 8.3 we introduce
a coarse grid problem that may hamper the use of numerical integration methods
in ecological applications. In Sects. 8.2 and 8.3 we consider standard examples
that have no ecological meaning but serve the purpose of illustrating numerical
integration techniques well. We then demonstrate in Sect. 8.4 how to use methods
of numerical integration in order to evaluate the total population size from discrete
spatial data on regular grids. We also check the accuracy of various numerical
integration methods by applying them to spatial population distributions of different
complexity and conclude that knowledge of a spatial pattern is the most important
requirement when accuracy of numerical integration is concerned. In Sect. 8.5,
we discuss highly aggregated density distributions that present the most difficult
case for numerical integration methods. In Sect. 8.6, we investigate the effect of a
grid’s irregularity on the population size estimation. Finally, in section “Concluding
Remarks” we summarise our experience with the numerical integration problem in
pest insect monitoring and control.

8.2 Theory of Numerical Integration

In this section we provide a brief discussion of methods of numerical integration and
explain basic concepts related to this technique. We introduce a generic problem of
numerical integration and elaborate on the accuracy of integration when various
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methods are considered. For the sake of simplicity our discussion will mainly
be focused on the one-dimensional case, but it can be readily extended to multi-
dimensional problems.

8.2.1 Basic Concepts of Numerical Integration

Methods of numerical integration have to be applied when an integrand f .x/

defined over the interval Œa; b� is only given to us at a discrete set of points. This
is a common situation when we make experimental measurements of the function
f .x/ or when f .x/ is obtained as a result of computer simulation. If we consider
the points xi , i D 1; : : : ; N C1 where the function values fi � f .xi / are available,
then computation of the integral

I D
bZ

a

f .x/dx; (8.3)

is reduced to computation of a weighted sum of the values fi ,

I � QI .N / D
N C1X
iD1

!i fi : (8.4)

The basic problem of numerical integration is therefore to find weight coefficients !i

such that the sum QI .N / will approximate the integral I with appropriate accuracy.
The theory of numerical integration states that the weights !i in (8.4) depend on
the number N C 1 of points xi where the function values fi are available. Thus the
accuracy requirement can be formulated for any numerical integration problem as

QI .N / ! I; asN ! 1; (8.5)

and every time that the integration weights !i are defined in a new method of
numerical integration, the condition (8.5) must be verified.

The condition (8.5) tells us that the weighted sum of function values (8.4) gets
closer to the precise integral I when the number of points we use for integration
increases. However, in order to come up with an efficient method of numerical
integration we also want to know how fast the approximation QI .N / will approach
the precise integral I when we increase N in (8.5). We have to introduce the
concept of integration error in order to answer this question. Let us assume that
the value I of the integral (8.3) is known to us. The integration error E.N / is then
defined as

E.N / D jI � QI .N /j: (8.6)
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In many cases it is also convenient to consider the relative integration error,

e.N / D jI � QI .N /j
jI j : (8.7)

Consider now the unit interval Œ0; 1�. Let x1 D 0 and equidistant points xi , i D
1; : : : ; N C 1 be located over the interval, so that the distance between any two
neighbouring points xi and xiC1 is h D 1=N D const < 1. We refer to the set of
points xi , i D 1; : : : ; N C 1 as a regular (or uniform) computational grid of points.
The points xi are often called grid nodes and the distance h is referred to as the grid
step size.

Once a computational grid has been generated, the integration error can be
rewritten in terms of the distance h between neighbouring points as E D E.h/.
We have h ! 0 as N ! 1 and the condition (8.5) becomes

E.h/ ! 0; as h ! 0; (8.8)

where E.h/ is given by (8.6) after substituting N D 1=h. The formula (8.6) gives us
a rigorous definition of the integration error, but it still remains unclear from (8.6)
how we can check and control the condition (8.8), as the integral I is, of course,
not available in real-life computations. Thus, instead of computing the exact value
of E.h/ based on the exact value of the integral I , we make an estimate of the
integration error in order to be able to check the condition (8.8). In the theory
of numerical integration an integration error estimate is often considered in the
following form Davis and Rabinowitz (1975)

E.h/ D Chp; (8.9)

where the constant C and the power p depend on a specific method of numerical
integration used in the problem. The representation (8.9) of the integration error
allows us to conclude about the convergence rate, i.e. to conclude how fast the
error will decrease if we increase N . In other words, the formula (8.9) gives us
the information on how fast E.h/ ! 0, as h ! 0, and it is very important for our
further discussion to emphasise here that h in the expression (8.9) is assumed to be
small.

Let the integral be evaluated on a regular grid of N0 C 1 points. The expres-
sion (8.9) reads that if we increase the original number N0 as N1 D 2N0 then
h1 D 1=N1 D .1=2/h0 will be two times smaller, and the new error E.h1/ will be
2p times smaller. Obviously, the relative error (8.7) will exhibit similar behaviour.
It is also obvious that the discussion above is true for any interval Œa; b� where the
integrand f .x/ is considered. Indeed, any interval Œa; b� can be mapped onto the
unit interval Œ0; 1� by a linear transformation x D . Ox � a/=.b � a/, where x 2 Œ0; 1�

and Ox 2 Œa; b�.



8 Computational Methods for Accurate Evaluation of Pest Insect Population Size 181

100 101 102

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

a

N*

e

e=τ

N
100 101 102

10-9

10-7

10-5

10-3

10-1

trapezoidal rule

Simpson’s rule

b

N

e

e=τ

Fig. 8.1 The results of numerical integration of the function (8.10). (a) The convergence curve for
the Simpson method of numerical integration. The relative integration error e D e.N / is shown on
the logarithmic scale. (b) Comparison of the convergence rate for the trapezoidal rule (solid line,
open circle) and the Simpson rule (solid line, closed square)

From a practical viewpoint the concept of convergence means that we can control
the accuracy of integral evaluation. This statement is illustrated in Fig. 8.1a, where
the integral

I D
	Z

0

sin xdx (8.10)

is evaluated by a selected method of numerical integration (composite Simpson’s
rule.2) Again, we assume that the function values are only available on a regular grid
of N C 1 equidistant points. We start from the fixed number N D 8, and compute
the approximate integral QI D QI .N /. As the precise integral I D 2 is known to
us, we can compute the relative integration error (8.7). We then double the number
N and repeat our computation of the error e.N /. After making this computation
several times we obtain the error (8.7) as a function of N .

The graph e.N / is shown in Fig. 8.1a on the logarithmic scale. It can be seen from
the slope of the graph that the error decreases as h4, where h D 1=N . The graph
also gives us information about the threshold number N � for which the following
condition holds

e � �; (8.11)

2The detailed description of this method is not important for our present discussion and will be
provided later in the text.
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where � is a prescribed tolerance. If, for example, we choose � D 10�5, then
the accuracy (8.11) will be achieved for any N � N �, where N � D 32 (see
Fig. 8.1a). Better accuracy requires a bigger number of points where function values
are available, while larger � (e.g., � D 10�3) means that we can use a smaller
number of points to evaluate the integral.

The convergence rate (8.9) of a particular method of numerical integration
depends on the definition of the weight coefficients !i in the formula (8.4), and
two different methods may therefore have different convergence rates. One example
illustrating this statement is shown in Fig. 8.1b. In the figure we repeat the procedure
previously explained for the graph in Fig. 8.1a, when another method of numerical
integration (composite trapezoidal rule) is applied in the same problem. While we
do not discuss here the definition of weight coefficients !i in each method, it can be
readily concluded from Fig. 8.1b that the convergence rate of the trapezoidal rule is
much slower than the convergence of the Simpson rule. The error in the composite
trapezoidal rule decreases as h2, while for the composite Simpson rule it decreases
as h4. Hence a much bigger number of points is required to achieve the accuracy
� D 10�5, if the composite trapezoidal rule is employed in the same problem of
numerical evaluation of the integral (8.10).

The above discussion leads us to the conclusion that if we have several methods
of numerical integration then the method that has the fastest convergence rate (8.9)
must be employed in the problem and all other methods should be dismissed. Unfor-
tunately, things are not so straightforward. Firstly, a fast convergence rate always
comes at the price of the method’s complexity, and methods that converge faster
usually have more restrictions upon their implementation than the methods that
converge slowly. The Simpson rule in the example above has a faster convergence
rate, but it cannot be applied for an arbitrary number N and we should instead
require that N is an even number in order to define weight coefficients for the
Simpson rule. On the other hand, the trapezoidal rule has a slower convergence rate
but it is more flexible and can be applied for arbitrary N . In practical applications
the restrictions upon implementation of a specific method of numerical integration
must be taken into account and that often results in the choice of a slower convergent
method in the problem. Secondly, when we choose a method of numerical integra-
tion for the problem we solve, we need to understand how laborious the method
is. In other words, it may happen that the desired accuracy will be achieved for a
smaller number N but at the price of a very big number of computations, especially
in multi-dimensional problems. In the latter case we should ask ourselves if we can
come up with an alternative method of integral evaluation that may have a slower
convergence rate but is easier to implement. Finally, and this is the most serious and
difficult problem in numerical integration, the formula (8.9) may become invalid
when the number N C 1 of points we have at our disposal is small. Other criteria
should then be employed to compare two methods of numerical integration.

The above issues will be further discussed in the following sections. Their
understanding will require us to give an explicit definition of the weight coefficients
in numerical integration formulas. Below we consider the computation of weights
!i in the integral approximation (8.4).
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8.2.2 Definition of Weight Coefficients in Various Methods
of Numerical Integration

Consider a regular computational grid of N sub-intervals in the domain Œa; b�, i.e.
consider points x1 D a, xiC1 D xi C h, h D .b � a/=N . As in the previous
section we assume that the function values fi D f .xi / are available at points xi ,
i D 1; : : : ; N C 1. Numerical integration on regular grids with h D const can
be done by the application of well-known methods from the Newton-Cotes family
of integration rules, the trapezoidal rule and the Simpson rule being, perhaps, the
most famous. In this subsection we briefly review several methods of numerical
integration that stem from various choices of weight coefficients !i in a generic
formula (8.4) when regular grids are considered.

The problem of numerical integration is often thought of as a problem of finding
the area under the curve f .x/. Thus the most straightforward and intuitively clear
method is to take the function values fi � f .xi / at equidistantly spaced points xi

and to construct a rectangle with the sides h D xiC1 � xi and fi . The area

ai D hf i ; (8.12)

gives us an approximation of the integral Ii D
xiC1Z
xi

f .x/dx. Once the area ai has

been computed for each i D 1; 2; : : : ; N , the sum S D
NP

iD1

ai is considered as

an approximation of the integral I D
bZ

a

f .x/dx. Such consideration is based on

precise definition of a definite integral (8.3) as the limit of Riemann sums and the
proof exists that the sum S will converge to the integral I as N ! 1 (e.g. see
Apostol 1974). It immediately follows from (8.4) and (8.12) that the weights are
given by !i D h for any i D 1; 2; : : : ; N .

The approximation (8.12) is shown in Fig. 8.2a, where the function f .x/ is
replaced by a constant fi � f .xi / on each subinterval Œxi ; xiC1�. It is clear that the
approximation of the function by a constant is not very accurate, and we can improve
it if we consider a straight line connecting points xi and xiC1 (see Fig. 8.2b). The
area ai of each sub-interval is now given by

ai D 1

2
h.fi C fiC1/; (8.13)

and again we compute the approximation to the integral as

I � S D
NX

iD1

ai : (8.14)
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Fig. 8.2 Approximation of the function f .x/ by a polynomial of degree k. (a) Approximation by
a constant (k D 0) over a subinterval Œxi ; xiC1�, (b) approximation by a straight line (k D 1),
(c) three points xi , xiC1 and xiC2 are required to approximate the function by a parabola (k D 2)

Substituting (8.13) into the sum (8.14) and re-arranging the terms, we arrive at the
composite trapezoidal rule of integration,

I � S D h

2

"
f1 C 2

NX
iD2

fi C fN C1

#
: (8.15)

The weight coefficients are now given by !1 D !N C1 D h=2 and !i D h, i D
2; : : : ; N .

Approximation of a function f .x/ by a straight line can be considered as
replacing f .x/ by a linear polynomial on each subinterval Œxi ; xiC1�. If we go on
with the idea of approximating the function by a polynomial of degree k, where
k D 0; 1; 2; 3; : : :, then our next step will be to consider k D 2 and to replace the
integrand f .x/ by a quadratic polynomial. From a geometric viewpoint, this means
drawing a parabola through three consecutive points where the function is defined.
Clearly, we can use points xi , xiC1, xiC2 to define our quadratic polynomial as
shown in Fig. 8.2c. The area under the curve is now approximated as the area ai

under the parabola passing through xi , xiC1, xiC2 and it is computed as

Ii D
xiC2Z
xi

f .x/dx � ai D 1

3
h.fi C 4fiC1 C fiC2/: (8.16)

The approximation (8.16) presents us with the well-known Simpson’s rule of
integration on the subinterval Œxi ; xiC2�.

Once the area ai has been computed by the Simpson rule, the integral

I D
bZ

a

f .x/dx is approximated as the sum of all integrals ai ,
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bZ
a

f .x/dx � h

3

24f1 C 2

N=2�1X
iD1

f2iC1 C 4

N=2X
iD1

f2i C fN C1

35 ; (8.17)

and we arrive at the composite Simpson’s rule. It can immediately be seen from the
formula (8.17) that the number N of grid sub-intervals must be even in order to
apply the Simpson rule in the problem.

The above results can be further generalised as follows. Consider a polynomial
pk.x/ of degree k, where we require that pk.xn/ D f .xn/ for n D i; iC1; : : : ; iCk.
In other words, we consider a polynomial passing through k C 1 consecutive points
where the function values are available. The area under the graph of the function
f .x/ over a sub-interval Œxi ; xiCk� is then approximated as

xiCkZ
xi

f .x/dx � ai D
xiCkZ
xi

pk.x/dx;

and the resulting integral I is approximated by summation of all areas ai .
Using local polynomials at each sub-interval Œxi ; xiCk� with consecutive sum-

mation is known as the composite Newton-Cotes rules of numerical integration on
regular grids (Davis and Rabinowitz 1975). The idea of interpolating the integrand
function f .x/ by a polynomial pk.x/ of degree k was pivotal in the development of
the Newton-Cotes rules. The trapezoidal rule (k D 1) and the Simpson rule (k D 2)
discussed above represent the first two rules in the Newton-Cotes family. They are,
probably, the most well-known integration rules used in practical computations. The
reason for their extensive use is twofold. Firstly, Newton-Cotes methods with k > 2

do not necessarily provide the most accurate estimate of the integral. For example,
in the numerical integration problem considered in Davis and Rabinowitz (1975)
increasing the polynomial degree k from k D 2 up to k D 21 resulted in a larger
integration error in the latter case. Secondly, it is often difficult to apply a composite
Newton-Cotes rule with k > 2 on a grid with an arbitrary number of grid sub-
intervals, as the total number N of sub-intervals is required to be a multiple of k.
That is why in many experimental applications the integral evaluation is restricted by
the use of the composite trapezoidal rule (8.15) or the composite Simpson rule (8.17)
and further in the text we consider the trapezoidal and Simpson rules only.

8.2.3 Two-Dimensional Newton-Cotes Formulas

Once the integration techniques have been understood in the one-dimensional (1�d )
case, they can be easily expanded to the two-dimensional (2 � d ) case. Consider the
unit square D D Œ0; 1� � Œ0; 1�, where a regular grid is generated. Namely, let us
consider a set of points xi , i D 1; : : : ; N C1 on the interval Œ0; 1�, where we require
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that x1 D 0, xiC1 D xi C h, i D 1; : : : ; N , and the grid step size h is defined
as h D 1=N . Similarly, we consider points yj , j D 1; : : : ; N C 1 on the interval
Œ0; 1� and generate a one-dimensional grid in the y-direction as y1 D 0; yj C1 D
yj C h; j D 1; : : : ; N . The grid node position in the unit square is then given by
.xi ; yj / and we have a grid of square elements cij D Œxi ; xiC1� � Œyj ; yj C1�.

A composite rule of integration in the 2 � d case exploits the same idea as in the
1 � d case. We have

I D
1Z

0

1Z
0

f .x; y/dxdy D
X
i;j

Iij; (8.18)

where

Iij D
xiC1Z
xi

yj C1Z
yj

f .x; y/dxdy: (8.19)

Hence, the integration problem is reduced to the integral evaluation in each sub-
domain cij. Integration on square elements can, in turn, be further reduced to
consecutive application of the one-dimensional formulas. In other words, the
integral (8.19) can be re-written as

Iij D
yj C1Z
yj

F .y/dy; (8.20)

where

F.y/ D
xiC1Z
xi

f .x; y/dx:

We then employ 1�d Newton-Cotes formulas discussed in Sect. 8.2.2 in order to
evaluate the function F.y/ in the square cell cij. Once the values of F.y/ have been
computed, the same integration rule is applied to approximate the integral (8.20).

Different integration rules use different local approximation of the integrand
f .x; y/ on a single grid cell cij (e.g., see Davis and Rabinowitz 1975). The simplest
evaluation of the integral (8.19) can be done under the assumption that the function
f .x; y/ is approximated by a constant on each grid cell. Such approximation results
in the midpoint rule of integration:

Iij � Aijf .xiC1=2; yj C1=2/; (8.21)

where Aij D h2 and the node .xiC1=2; yj C1=2/ D .xi C h=2; yj C h=2/ is the
midpoint of the cell cij.
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The trapezoidal rule of integration implies the approximation of f .x; y/ by a lin-
ear function on each sub-domain cij. Correspondingly, the integral Iij is evaluated as

Iij � h2

4



f .xi ; yj / C f .xiC1; yj / C f .xi ; yj C1/ C f .xiC1; yj C1/

�
: (8.22)

The Simpson rule of integration is a result of approximation of the integrand
f .x; y/ by a quadratic polynomial in the square cell cij. The application of this rule
in the cell cij requires that the data f .x; y/ are available at points .xiCq; yj Cr /,
where q D 0; 1; 2 and r D 0; 1; 2. The function f .x; y/ is then integrated in the cell
cij by the Simpson rule as

Iij � h2

36



f .xi ; yj / C f .xi ; yj C2/ C f .xiC2; yj / C f .xiC2; yj C2/

C 4
�
f .xi ; yj C1/ C f .xiC1; yj / C f .xiC2; yj C1/ C f .xiC1; yj C2/

�
C16f .xiC1; yj C1/

�
: (8.23)

Note that, like in the 1�d case, integration by the Simpson rule requires an even
number N of grid sub-intervals in each direction x and y of a 2 � d regular grid.

8.3 The Coarse Grid Problem

In this section we review a so called ‘coarse grid’ problem that was previously
studied in detail in Petrovskaya and Petrovskii (2010), Petrovskaya et al. (2012),
and Petrovskaya and Venturino (2011) because of its importance in ecological
applications. For the sake of simplicity, the problem in this section is illustrated
by 1 � d examples, but the conclusions made in the 1 � d case are also true for
2 � d problems considered later in the text.

The coarse grid problem is closely related to the concept of the convergence rate
discussed in Sect. 8.2. We know that, given the distance h between neighbouring
points on a regular grid, the integration error (8.7) is controlled by the expres-
sion (8.9). However, we can only rely upon the error estimate (8.9) if the grid step
size h is sufficiently small, i.e. if we deal with fine grids. Meanwhile if the distance
h between grid nodes is not very small, it may happen that the error estimate (8.9)
does not hold. In the latter case we cannot tell which integration method is better
when we compare two integration methods based on their convergence rate (8.9).
Correspondingly, a coarse grid is defined as a grid where one cannot apply the error
estimate (8.9) to evaluate the integration error.

The above statement is illustrated in Fig. 8.3. We first consider the integrand

f .x/ D ex � 1

e � 1
; x 2 Œ0; 1�; (8.24)
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Fig. 8.3 The coarse grid problem: the comparison of the convergence rate for the trapezoidal
rule (solid line, open circle) and the Simpson rule (solid line, closed square). (a) The integrand
function (8.24) for x 2 Œ0; 1�. (d) The convergence rate for the integrand (8.24) is as predicted by
the error estimate (8.9). (b) The integrand function (8.25) over the interval x 2 Œ0:1; 1�. (e) The
convergence rate for the integrand (8.25). The error estimate (8.9) becomes true when the number
N of grid sub-intervals is N > N � � 64. (c) The integrand function (8.26). The function is shown
at the sub-interval Œ0; 0:2� for the sake of visualisation, while the integral is taken for x 2 Œ0; 1�.
(f) The convergence rate for the integrand (8.26). The error estimate (8.9) does not hold on coarse
grids, unless at least one grid node is placed in the sub-region of the steep gradient

shown in Fig. 8.3a. The error graphs for the integrand (8.24) are shown in Fig. 8.3d,
where the relative integration error (8.7) is computed for integration by the
trapezoidal rule and the Simpson rule. It has been discussed in Sect. 8.2 that
the convergence rate of the Simpson rule is much better than the convergence of the
trapezoidal rule. Decreasing the grid step size from h0 to h1 D h0=2 results in the
error reduction e.h1/ D .1=16/e.h0/ for the Simpson rule, while for the trapezoidal
rule we have e.h1/ D .1=4/e.h0/. It can be seen from Fig. 8.3d that in the case of
the integrand function (8.24) this conclusion is true for any N � 2 considered in the
problem.

Meanwhile, the above conclusion about the convergence rate does not hold for
an arbitrary integrand function f .x/. Consider now a rapidly oscillating function

f .x/ D sin.100	x/

	x
; x 2 Œ0:1; 1�; (8.25)

shown in Fig. 8.3b. The convergence of numerical integration methods, when the
function (8.25) is integrated, is presented in Fig. 8.3e. The integration error on grids
with N � 64 is very large for the both trapezoidal and Simpson’s rule of integration.
However, the most essential feature of the integration is that we cannot tell if the
Simpson method is more accurate, unless we have the number of grid sub-intervals
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N > 64, i.e. unless the grid step size becomes h � 0:015. The integration error
of the Simpson rule remains approximately the same as the error of the trapezoidal
rule on coarse grids with N < N � � 64.

The coarse grid problem is further illustrated by consideration of the function

f .x/ D 1

x C 0:0001
; x 2 Œ0; 1�; (8.26)

shown in Fig. 8.3c. It can be seen from the figure that the function (8.26) has a
very narrow domain where the gradient is very steep. For the sake of illustration the
function is shown on the sub-interval x 2 Œ0; 0:2�, while the integration is carried out
over the unit interval x 2 Œ0; 1�. Our previous experience with the integrand (8.25) of
Fig. 8.3b tells us that we can expect a big integration error when the number of grid
nodes is not sufficient to resolve the domain of a steep gradient. This conclusion is
confirmed by the convergence curve shown in Fig. 8.3f. The initial coarse grid with
grid step size h D 0:5 cannot capture the sub-region of the steep gradient that has
the width w 	 0:01. Even when we make the grid step size smaller by halving each
grid sub-interval, the whole sub-domain of the steep gradient remains ‘invisible’
to the integration method, as it is still located between two grid nodes where the
function values are available. Hence both the trapezoidal and Simpson rules provide
similar (and very inaccurate) results, unless we insert at least one grid node in the
sub-region of the steep gradient. That happens when we have an unrealistically big
number N � 5;000 of grid sub-intervals on a regular grid. Any grid with N < N �
is a coarse grid where the error estimate (8.9) does not hold. Accordingly, any grid
with N > N � is a fine grid where we can rely upon (8.9).

It was discussed in Petrovskaya and Petrovskii (2010) that the number N � of
grid subintervals when the grid becomes ‘sufficiently refined’, i.e.when we can rely
upon the error estimate (8.9), can be evaluated from the knowledge of the shape of
the integrand function. Let �x be a characteristic width of a spatial heterogeneity
described by a given integrand, e.g. the width of a single peak in (8.25). Then
integration on a regular grid will give an inaccurate answer until at least one grid
point falls into the heterogeneity region. We therefore have

N � D s
1

�x
; (8.27)

where 1 in the numerator stands for the length of the domain of integration and
s � 1 is a numerical coefficient depending on the type of the heterogeneity. If f .x/

is a monotone function on the interval Œx1; x2�, then we consider the function values
at two points, e.g., x1 C ı and x2 � ı, where 0 < ı < 0:5.x1 C x2/, as the minimum
‘amount of information’ required to reconstruct f .x/ over Œx1; x2� as these data are
sufficient for linear polynomial approximation of f .x/. Consequently, a sub-region
of a steep gradient in (8.26) can be resolved by inserting into it just one grid point.
Meanwhile, we need at least three grid points e.g., x1 C ı, x2, and x3 � ı, to resolve
a peak which spans the interval Œx1; x3�, as that will result in linear approximation
at each of subintervals Œx1; x2� and Œx2; x3� where f .x/ is a monotone function.
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The most important conclusion that follows from the above consideration is that
the grid coarseness should be evaluated in terms of the integration error rather than
by the number of grid nodes. Hence the definition of a coarse grid depends strongly
on the spatial pattern of the integrand function. It can immediately be seen from
Fig. 8.3 that a grid considered as coarse for one integrand function can be a fine
grid for another integrand. One way to improve very poor accuracy of integration on
coarse grids would therefore be to use an irregular grid where most of the grid nodes
would be concentrated in sub-regions that present difficulties in their numerical
integration (i.e. peaks or sub-regions with a steep function gradient). Integration
techniques on irregular grids are discussed in Sect. 8.6. However, in ecological
applications it often is not possible to use irregular grids adapted to a spatial pattern
of the density distribution because that pattern is usually not known a priori. On
the other hand, coarse grids are widespread in ecological monitoring, as there are
usually financial, ecological and other restrictions that do not allow for a big number
of measurements and the data available in the problem are sparse. Thus the problem
of accuracy control on coarse grids remains one of the most difficult problems
in ecological monitoring and it is still far from being solved. We will discuss
several particular examples of coarse grids in ecological applications further in
the text.

8.4 Numerical Integration in Ecological Problems

In this section we consider the application of the methods reviewed in Sect. 8.2 to
ecological monitoring and control. As we have already discussed in the introduction,
one key problem of ecological monitoring is to obtain an accurate estimate QI .N /

of the pest population size I in a given area under conditions when the population
density is only known at N C 1 locations. It follows immediately from our study
in Sect. 8.2 that the problem of evaluating the pest population size from discrete
data can be considered as a problem of numerical integration. Indeed, installing
traps in a domain where sampled data are collected and processing trap counts
means that the discrete integrand function is defined at the nodes of a computational
grid and methods (8.15) and (8.17) can be applied. However, several underlying
assumptions should be made before we implement numerical integration rules in
ecological problems.

8.4.1 Problem Statement and Underlying Assumptions

In our work we consider collecting information about a pest insect via trapping and
we assume that a trapping procedure is done as described in the introduction. In
this section we also assume that the traps are installed at the nodes of a regular
grid, which is a common situation in ecological applications (Ferguson et al. 2000;
Holland et al. 1999). Irregular grids will be discussed in Sect. 8.6.
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As we already mentioned in the previous section, numerical integration tech-
niques are essentially based on the underlying assumption that the integrand
function is continuous. Meanwhile, if we consider an agricultural field, where pest
insects are monitored, the distribution of the insects over the field is, of course,
discrete. Hence, in order to apply numerical integration techniques in the problem
we have to transform the discrete population distribution into a continuous function
that we will refer to as “the population density”. The population density can be
obtained from the discrete distribution of the pest insects by allocating a certain
area to each insect and assuming that only one insect can be found within that area
at the fixed time t .

Another important underlying assumption is that the number of insects caught
in each trap is an accurate representation of the absolute population density in its
catchment area. The transformation techniques that allow one to link trap counts to
the absolute density have been briefly discussed in the introduction. We also assume
that the information about the population density at a given time and location can
indeed be adequately obtained from trap counts, as depending on the biological and
behavioural traits of the monitored species, the population density distribution can
possibly change over the time of the traps’ exposure. The spatial scale of variations
in the population density distribution for walking insects usually sampled with
pitfall traps is known to be 30–40 m (Holland et al. 1999). Meanwhile, typical
dispersal distances for walking insects are estimated to be 1 m or less per day
(Vinatier et al. 2010), which obviously corresponds to the spread area of the order
of 1 m2 per day. Hence the distance insects can move over 1 week (i.e. an average
time of trap exposure) is

p
7 � 2:6 m, which is about one order of magnitude less

than the spatial scale of inherent variation. We conclude from the above that the
spatial density distribution reconstructed from traps counts can approximately be
relied upon as being static and methods of numerical integration can be applied.

Once the trap counts have been acquired, we can obtain the values of the
population density at the nodes of a regular grid, i.e. at the trap locations, and we
therefore can approximate the integral I , i.e. the total number of insects in the field,
by a selected method of numerical integration. However, application of numerical
integration in ecological monitoring and control is more difficult than a conventional
integration problem. The standard numerical integration technique usually implies
that a computational grid can be made sufficiently fine to provide the required
accuracy. This requirement is not realistic in an ecological monitoring routine where
the number of traps installed in a field cannot be made large. For example, a typical
agricultural field in the United Kingdom has a characteristic size of the order of
a few hundred meters. The number of traps installed over such a field very rarely
exceed a few dozen (Blackshaw 1983; Ferguson et al. 2000; Holland et al. 1999).
Moreover, we cannot increase the number of traps and repeat the trapping procedure
if we are not happy with the accuracy of our original estimate, as a repeated trapping
will inevitably be done under different conditions. Hence every time we compare the
accuracy of several methods of numerical integration, we should keep in mind that
in many ecological applications we may deal with numerical integration on coarse
grids where the error estimate (8.9) cannot be applied. Further examples will be
provided in the next sub-section.



192 N. Petrovskaya and N. Embleton

8.4.2 Numerical Integration of Data Obtained
from a Mathematical Model

Despite plenty of experimental data being available in the pest insect monitoring
problem, we first apply our numerical integration techniques to the data obtained
as a result of computer simulation. We use computer simulation for generating
ecologically meaningful data because we want to subsequently increase the number
of traps (i.e. the number of grid nodes) in order to investigate the integration error
e.N / for each integration method we employ in the problem. Thus we take our data
from an ecologically sound mathematical model of population dynamics in order
to be able to compute the function e.N / for various N of our choice. Namely, we
consider the spatially explicit predator-prey model with the Allee effect (Murray
1989; Turchin 2003). In dimensionless form the system is as follows:

@u.x; y; t/

@t
D d

�
@2u

@x2
C @2u

@y2

�
C ˇu.u � b/.1 � u/ � uv

1 C ƒu
; (8.28)

@v.x; y; t/

@t
D d

�
@2v

@x2
C @2v

@y2

�
C uv

1 C ƒu
� mv ; (8.29)

where x 2 Œ0; 1�, y 2 Œ0; 1�, the functions u.x; y; t/ and v.x; y; t/ are the densities of
prey and predator, respectively, at time t > 0 and position .x; y/, d is the diffusion
coefficient, and the other parameters have evident meaning (Murray 1989).

In order to obtain the population density distributions, the system (8.28–8.29)
is solved numerically for a range of parameters, and the function u.x; y; t/ is
then considered as the density of the pest insect in the problem. Solving the
system (8.28–8.29) requires us to generate a regular spatial grid as described in
Sect. 8.2. A discussion of the numerical solution along with the choice of the initial
and boundary conditions has been provided in the paper Petrovskaya et al. (2012)
where similar computer simulations have been done.

We begin our consideration from the simplest computational case where the
pest insect population density is generated from the 1 � d counterpart of the
system (8.28–8.29). The parameters of the 1 � d system of equations as well as
the initial and boundary conditions required for its numerical solution are given
in the paper Petrovskaya and Petrovskii (2010). The solution u.x; t/ of the 1 � d

system of equations is considered at fixed time Ot of our choice. We therefore have
a 1 � d spatial density distribution u.x; Ot / � u.x/ of the pest insect over the unit
interval x 2 Œ0; 1�. This spatial density distribution is available to us at grid nodes
xi , i D 1; 2; : : : ; N C 1 only, but we can control the number N C 1 of grid nodes
in our computations by adding new nodes to a coarse grid or by removing them
from a fine grid. Thus we first solve the 1 � d system (8.28–8.29) on a grid with
a very big number N C 1 D Nf C 1 D 215 C 1 of nodes. Once the density
distribution u.x/ has been obtained at fixed time Ot on an extremely fine grid of
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Nf C 1 nodes, the integral I D
1Z

0

u.x/dx is evaluated on that grid. The result

QI .Nf / of that evaluation then is considered as the true integral I and is stored for
further computations along with the spatial density u.x/ computed on a grid of
Nf C 1 nodes. We then decrease the number of grid nodes and consider several
approximations QI .N / for values N 
 Nf . Let us note that we do not re-compute
the density function u.xi /; i D 1; : : : ; N C 1 every time that a new number N is
chosen. The values of u.x/ are always taken from the ‘exact solution’ computed
on a grid of Nf C 1 nodes at time Ot , where we make a projection of the function
u.xi /; i D 1; : : : ; Nf C 1 obtained on the fine grid to a coarse grid every time that
we take a new, smaller number N C 1 of nodes. The details of this computational
technique are provided in our previous work (Petrovskaya and Petrovskii 2010).

It is well-known (e.g., see Malchow et al. 2008; Petrovskii et al. 2003) that
the properties of the spatial distribution u.x/ considered at a given time Ot are
determined by the diffusion d . The density distribution can evolve into a monotone
function if the diffusion d is of the order of 1 or larger. An example of a monotone
density distribution is shown in Fig. 8.4a. For smaller values of d 
 1 the initial
conditions u.x; 0/; v.x; 0/ evolve into an ensemble of irregular humps and hollows
(see Fig. 8.4b), where the number of peaks gets bigger for smaller values of d . The
density distributions from Fig. 8.4 present us with two somewhat extreme cases of
ecologically meaningful integrand functions, while there can be one or two peaks
in the domain for intermediate values of the diffusion coefficient d . Thus it is
interesting to compare the accuracy of numerical integration for the two spatial
patterns shown in the figure. Namely, we compare the results of the trapezoidal
rule (8.15), the Simpson rule (8.17) and the results of the total population size
evaluation by a statistical method.
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Fig. 8.4 Ecological test cases. (a) The spatial distribution of the pest population density u.x/ for
the diffusivity d D 10�4 . Other parameters along with the initial and boundary conditions used to
generate one-dimensional density distributions are discussed in Petrovskaya and Petrovskii (2010).
(b) A ‘multi-peak’ density distribution obtained for the diffusion coefficient d D 10�5
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The statistical method commonly used in the evaluation of pest abundance is
based on the computation of the sample mean pest population density (Davis 1994).
The sample mean value M.N / is given by a generic formula (8.1) where we have
K D N C 1 in our problem. The expression (8.1) acts as an approximation to the
true mean value. An approximation QI .N / to the actual pest population size I can
then be found by multiplying the sample mean by the area of the field A, that is

I � QI .N / D AM.N /: (8.30)

Consider the evaluation technique (8.30) in the 1 � d case, so that the area A is
given by the length L D b � a of the interval Œa; b� where traps are installed. If the
sampling positions xi , i D 1; : : : ; N C 1, are equidistant, i.e. xiC1 D xi C h where
h > 0 is constant, Eq. (8.30) can be written as

QI .N / D L

N C 1

N C1X
iD1

ui D Oh
N C1X
iD1

ui D
N C1X
iD1

Ohui �
Z b

a

u.x/dx; (8.31)

where ui D u.xi /, Oh D L=.N C 1/. It is readily seen that Eq. (8.31) coincides with
the simplest method of numerical integration with weights !i D Oh. The convergence
rate (8.9) of the integration rule (8.31) is e D C h, where C is a constant (Davis and
Rabinowitz 1975). Hence if the number of traps is big enough to resolve all features
of the integrand function u.x/, the rule (8.31) should be inferior to more accurate
integration methods such as the trapezoidal and Simpson rule.

The results of numerical integration of the density distributions shown in Fig. 8.4
are given in Table 8.1. It can be seen from the table that for the function u.x/

presented in Fig. 8.4a integration by the Simpson rule gives very accurate results
even on a grid with a very small number of grid nodes. If we install three traps over
the unit interval where the density measurements are made, evaluation of the total
population size by the Simpson rule can be done with the error of 0:2 %, while the
statistical rule provides us with an error over one hundred times bigger. Moreover,
generally the error on each consecutive grid is smaller in comparison with the error
on a previous grid.

Table 8.1 The relative integration error (8.7) for the 1 � d density distributions of Fig. 8.4. The
errors computed for the density distributions shown in Fig. 8.4a, b are marked with superscript (a)
and (b), respectively. The first column gives the number N C 1 of the grid nodes. The error for
each distribution (a) and (b) is computed by the statistical rule (8.31) (the column marked as estat),
by the trapezoidal rule (8.15) (the column eTR), and by the Simpson rule (8.17) (the column eSR)

N C 1 e
.a/
stat e

.a/
TR e

.a/
SR e

.b/
stat e

.b/
TR e

.b/
SR

3 0.283845 0.140895 0.002056 0.220479 0.056794 0.334066

5 0.132744 0.023493 0.015641 0.041373 0.245472 0.308365

9 0.064319 0.001141 0.006310 0.036879 0.138367 0.102665

17 0.033164 0.000373 0.000877 0.021570 0.025521 0.012094
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Meanwhile, the situation is very different when we consider the density function
shown in Fig. 8.4b. The application of the Simpson rule on grids with 3, 5 and 9

nodes does not have any advantage in comparison with the statistical rule. Clearly,
in the case of the ‘multi-peak’ density distribution of Fig. 8.4b we have to deal with
a ‘coarse grid problem’ where the density u.x/ is not well approximated on a grid
with a small number of nodes. One important indicator of the coarse grid problem
is that the error can oscillate between two grids, so that adding new nodes to the
grid does not consistently make the error smaller until the integrand function is well
resolved. An example is given by the error e

.b/
TR of the trapezoidal rule on grids with

N D 3 and N D 5 nodes.
It also is worth noting here that the statistical rule gives a more accurate answer

on a grid of five nodes, while the error of the trapezoidal and the Simpson rule
remains big on this grid. However, below we will see that even accurate results
obtained on coarse grids are not reliable, as a slight change in the spatial pattern of
the density function may result in a big jump in the integration error when the same
numerical integration method is used in the problem.

8.4.3 Numerical Integration of 2 � d Data

We now generate a 2 � d density distribution u.x; y/ from numerical solution of
the system of Eqs. (8.28–8.29). Let us fix the time t as t D Ot > 0 and consider a
snapshot u.x; y/ � u.x; y; Ot / of a temporal-spatial density distribution u.x; y; t/.
Numerical solution of (8.28–8.29) at any fixed time Ot provides us with the discrete
density distribution ui � u.xi ; yj /, i D 1; : : : ; N C1, j D 1; : : : ; N C1, where grid
nodes .xi ; yj / are the points where traps are located. Similarly to the 1 � d case we
consider two density distributions whose spatial pattern is strongly different from
each other. The density distribution shown in Fig. 8.5a presents a continuous front,
while the density distribution of Fig. 8.5b is an example of a late stage of the patchy
invasion (Petrovskii et al. 2005, 2002).

The computation carried out in the 1 � d problem is repeated for the 2 �
d density distributions of Fig. 8.5. The results of numerical integration by the
methods (8.30), (8.22) and (8.23) are shown in Table 8.2. It is readily seen from
the table that the accuracy of integration depends again on the spatial pattern of the
density function. Integration of the continuous front shown in Fig. 8.5a already gives
a small integration error on grids with a small number of traps, the Simpson method
being the most accurate method of integration. Let us recall that, in many ecological
studies, a relative error of 100 % (i.e. e.N / 	 1) is still regarded as acceptable,
while the error 0:2 < e.N / < 0:5 is considered as being good accuracy (Pascual
and Kareiva 1996; Sherratt and Smith 2008). Hence numerical integration of the
continuous front provides us with an accurate answer even on a grid with three grid
nodes in each direction.
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Fig. 8.5 Density function u.x; y/ as predicted by the population dynamics model (8.28–8.29) for
different parameter values. (a) A snapshot of a continuous front. (b) A snapshot of the population
density at a late stage of the patchy invasion

Table 8.2 The relative integration error (8.7) for the 2 � d density distributions of Fig. 8.5. The
errors computed for the density distribution shown in Fig. 8.5a, b are marked with superscript (a)
and (b), respectively. The first column gives the number N C 1 of the grid nodes in the direction x

and y of a regular grid in the unit square. The error for each distribution (a) and (b) is computed by
the statistical rule (8.31) (the column marked as estat), by the trapezoidal rule (8.22) (the column
eTR), and by the Simpson rule (8.23) (the column eSR)

N C 1 e
.a/
stat e

.a/
TR e

.a/
SR e

.b/
stat e

.b/
TR e

.b/
SR

3 0.1383 0.0506536 0.0255829 0.421591 0.496434 0.492878

5 0.064104 0.0142134 0.0221032 0.179808 0.263172 0.179825

9 0.032304 6.51693e-004 0.00389531 0.112412 0.111526 0.067423

17 0.017627 2.86861e-004 9.55669e-005 0.086713 0.064729 0.053797

Meanwhile, the more complex spatial structure of the density distribution of
Fig. 8.5b requires a bigger number of grid nodes to provide the same level of
accuracy. Moreover, on analysing the performance of the Simpson rule (8.23) on
grids with N C 1 < 9, we see that it is not more accurate than the other methods
on coarse grids. On grids where the spatial pattern of the density function u.x; y/ is
not well resolved it is hard to say which method is more accurate. This conclusion
is further confirmed by numerous computations of approximate integrals made for
various spatial distributions in the paper Petrovskaya et al. (2012).

8.4.4 Examples of Numerical Integration of Field Data

In this section we apply numerical integration techniques to field data of ecological
monitoring. The aim of this study is to check what can be the smallest number
of grid nodes (i.e. the number of traps in the agricultural field) used for accurate



8 Computational Methods for Accurate Evaluation of Pest Insect Population Size 197

evaluation of the pest insect population size, given the spatial distribution of the pest
insect density. Obviously, density measurements made under real-life conditions
cannot provide us with the data on a very fine grid. However, some experimental
data contain information sufficient to extract a sequence of grids with a smaller
number of nodes from the original grid and to compare the results of numerical
integration on grids with various numbers of nodes.

We first illustrate our approach by considering data that have already been used in
our earlier paper (Petrovskaya et al. 2012) where numerical integration techniques
have been applied to experimental data collected for a New Zealand flatworm
population (Arthurdendyus triangulatus) by Murchie and Harrison (2004). The data
on flatworm abundance at different locations were collected by means of trapping
where the traps were positioned at the nodes of a 12 � 12 regular grid. Spacing
between two traps was 2 m in each direction. The traps were examined every week
and the numbers of flatworms caught were counted. The various 12 � 12 grid trap
systems caught 465–748 flatworms per sampling period (Murchie and Harrison
2004). Other details of the trapping procedure can be found in Murchie and Harrison
(2004) and Petrovskaya et al. (2012).

Two examples of the density distributions obtained from trap counts are shown
in Fig. 8.6. The trap counts have been linked to the local population density u.x; y/

by dividing the trap counts at each location by 4 m2 (i.e. by the area of the grid cell)
(Byers et al. 1989; Raworth and Choi 2001). For the sake of numerical integration,
we have then extracted a sub-grid with N C 1 D 11 traps in each direction from the
trap data originally collected in the field. This has been done because integration by
the Simpson rule requires an odd number N C1 of grid nodes. Having integrated the
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Fig. 8.6 Numerical integration of field data on a coarse grid of nine nodes. The nodes of a regular
grid are shown as closed circles in the figure. The field data present flatworm spatial distributions
over the study area (see Murchie and Harrison 2004; Petrovskaya et al. 2012 for more details).(a)
Numerical integration of the density distribution gives good accuracy even on a grid with a very
small number of nodes. (b) Two grid nodes (node I and node II in the figure) fall into small
patches of different density on a coarse grid. Since the density values at those locations are not
representative, numerical integration on a coarse grid results in a big integration error
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Table 8.3 The approximation of the total population size and the integration error on a regular grid
of 3 � 3 nodes for the field data taken from the paper Petrovskaya et al. (2012). The approximate
integral is computed by the statistical rule (8.30) (the column Istat), by the trapezoidal rule (8.22)
(the column ITR) and by the Simpson rule (8.23) (the column ISR). The rows marked .a/ and .b/

in the table correspond to the density distributions shown in Fig. 8.6a, b, respectively

case I Istat estat ITR eTR ISR eSR

.a/ 611 411 0.327 488 0.202 561 0.082

.b/ 544 289 0.469 269 0.506 247 0.545

population density over the fine grid of 11 � 11 D 121 nodes, we have reproduced
the total number I of collected insects. This number is further considered as the
exact value of the population size.

Let us now compute the population size on a regular grid of 3 � 3 D 9 nodes and
compare the population size obtained by numerical integration over this grid with
the value I obtained for the density distributions shown in Fig. 8.6a and Fig. 8.6b on
the original grid of 11�11 nodes. The 9 traps on a coarse grid are stationed as shown
in Fig. 8.6 and we take the density values at those locations from the original grid.

The results of numerical integration on a grid of nine nodes are presented in
Table 8.3. We compute the integral by the statistical rule (8.30) (the column Istat),
by the trapezoidal rule (8.22) (the column ITR) and by the Simpson rule (8.23) (the
column ISR). We also compute the relative integration error (8.7) for each of the rules
above (the columns marked as estat, eTR, eSR, respectively). The exact population
size (i.e. the integral computed on a grid of 121 nodes) is I .a/ D 611 for the density
distribution shown in Fig. 8.6a and I .b/ D 544 for the density distribution shown in
Fig. 8.6b.

The results presented in the table confirm our previous conclusion that the
accuracy of evaluation depends heavily on the spatial pattern of the density function
u.x; y/. It is seen from the table that the integration of the density distribution shown
in Fig. 8.6a gives good accuracy even on a grid with the number of nodes as small
as nine nodes. This result lead us to the conclusion that robust information about the
population size of pest insect population can be obtained using far fewer traps per
unit area, provided that the spatial density pattern is not very patchy.

In the case of the density distribution in Fig. 8.6b some information about the
density function u.x; y/ has been lost, as two grid nodes have fallen into small
sub-regions (patches) where the density is strongly different from the density in
the surrounding domain; see nodes I and II in the figure. The density values at
those nodes made a misleading contribution to the sum (8.4) and that resulted
in a big integration error. Meanwhile it is worth noting that even in the case (b)
the relative error of the population size estimate still remains smaller than 55 %
and such accuracy can still be considered as acceptable for large scale monitoring
programmes (Northing 2009).

Let us also note that we had to transform the grid of 12 � 12 traps to conduct our
computational study, as application of the Simpson method was not possible on a
grid with an even number of nodes in each direction. Meanwhile, we would like to
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Table 8.4 An example of trap count data for Pterostichus melanarius obtained by trapping with
pitfall traps (The data are taken from the paper Alexander et al. (2005))

5 0 1 2 4 1 1 38 5 4 3 3 1 13 5 6

7 13 1 0 1 0 0 12 2 0 1 8 12 10 1 0

6 3 0 0 4 2 1 1 2 3 5 11 12 11 3 0

2 5 1 7 8 6 15 0 3 1 0 6 2 8 1 0

7 5 1 2 0 2 0 0 4 3 3 0 9 7 4 1

3 7 6 0 0 1 6 0 5 2 0 2 16 13 6 2

4 6 3 0 5 8 1 4 3 6 2 26 11 1 5 2

2 2 2 7 9 5 13 5 3 14 26 42 9 15 1 4

1 0 3 2 11 0 3 7 8 11 14 22 24 5 5 0

6 1 4 16 15 11 0 11 12 13 16 20 12 7 5 4

1 0 4 1 11 2 11 7 6 6 0 3 4 6 0 0

9 6 3 2 7 7 6 8 11 25 18 9 2 1 2 1

3 2 6 15 5 18 24 4 8 16 6 11 6 1 0 0

3 7 3 22 27 34 0 41 21 37 16 10 3 7 2 3

12 12 30 25 23 15 19 12 6 9 9 4 10 6 3 6

11 7 11 26 38 19 16 19 11 13 13 0 5 4 2 10

emphasise that application of so called higher order numerical integration methods
can be made on grids with an arbitrary number of grid nodes in each direction.
A numerical integration method that would have the same convergence rate as the
Simpson method could be designed for the original grid of 12 � 12 nodes. The
application of such a method, however, would be a much more difficult technical
task and it is beyond the scope of our paper. Thus we only provide a brief discussion
of more general methods of numerical integration in Sect. 8.6.

Our conclusion about the accuracy of numerical integration is further illustrated
by another set of field data taken from the paper Alexander et al. (2005). The trap
counts for beetles Pterostichus melanarius obtained by trapping with pitfall traps
are presented in Table 8.4. Field sampling for data in the table was performed on
a 16 � 16 regular grid of traps installed in a conventionally managed 4 ha winter
wheat field in Devon, UK; see Alexander et al. (2005) for more details. The density
distribution obtained from Table 8.4 is shown in Fig. 8.7a. Again, for the purpose
of our study we have to transform the original grid of 16 � 16 nodes into a grid
where the Simpson method of integration can be applied. In the case of Table 8.4
we found it more convenient to augment the table rather than extract a grid with a
smaller number of nodes. Generating a 17�17 computational grid from the original
data should allow us to compute the integration error on a sequence of regular grids
of 3 � 3, 5 � 5 and 9 � 9 nodes and to compare the accuracy of integration on those
grids. Thus we added another row and column to the original grid. Hypothetical data
for that addition were generated under the requirement to keep the same structure
of the spatial pattern as in the original density distribution (see Fig. 8.7b). The value
of the integral (i.e. using the total number of trap counts) on the new grid of 17 � 17

nodes is I D 1;980.
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Fig. 8.7 The spatial density distribution obtained from the trap counts in Table 8.4. (a) The density
function u.x; y/ based on the original data in Alexander et al. (2005). (b) Hypothetical data have
been added to the original table in order to generate a 17 � 17 regular grid. The data have been
generated to preserve the spatial structure of the original density distribution. An example of a
regular grid (5 � 5 nodes) on which integral is computed is shown as a set of closed circles in the
figure

It can be seen from Fig. 8.7b that the spatial pattern of the density distribution
is similar to the spatial pattern of the 1 � d function (8.26) studied in Sect. 8.3.
The density distribution is mostly homogeneous (cf. the function (8.26) on the
interval x 2 Œ0:01; 1�) with several small patches where the density is very high
(cf. the function (8.26) for x 2 Œ0; 0:01�). From the study of the convergence
graph for the function (8.26) we predict that grids with 3 � 3, 5 � 5 and 9 � 9

nodes should be considered as coarse grids for the density distribution u.x; y/ of
Fig. 8.7b, as small patches of the high density are not resolved on those grids. Hence
the Simpson method will not have a visible advantage over the other integration
methods employed in the problem. On the other hand, a big sub-domain where
the density is almost homogeneous will be already well-resolved on coarse grids
and integration over that sub-domain should give us an accurate contribution to the
integral over the whole domain. Meanwhile, the number of patches with high density
is not big and the density localised there is only approximately 30 times bigger
than the density in the homogeneous sub-domain, while this ratio is approximately
5;000 for the function (8.26). Thus we expect a reasonably small integration error
on coarse grids.

An example of a regular computational grid (a grid of 5 � 5 nodes) used in our
computation is shown in Fig. 8.7b. The location of the nodes on a this grid confirms
our analysis in the previous paragraph. Namely, all small patches of high density
fall in between the grid nodes, but the density values on grid nodes are already
representative enough to give accurate information about the density function in sub-
domains where the density is an almost homogeneous function (see also Table 8.4).
The results of numerical integration are shown in Table 8.5. The relative error
is within 35 % even on a grid with three traps in each direction. However, as
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Table 8.5 The approximate integral and the relative integration error (8.7) for the density
distribution of Fig. 8.7b on a sequence of regular grids. The first column gives the number N C 1

of the grid nodes in the direction x and y of a regular grid. The approximate integral and the error
is computed on each grid by the statistical rule (8.30) (the columns marked as Istat and estat in the
table), by the trapezoidal rule (8.22) (the columns ITR and eTR), and by the Simpson rule (8.23)
(the columns ISR and eSR)

N C 1 Istat estat ITR eTR ISR eSR

3 1,507 0.239 1,344 0.321 2,332 0.178

5 1,679 0.152 1,632 0.175 1,561 0.212

9 1,659 0.162 1,692 0.145 1,748 0.117

predicted, increasing the number of traps from three to nine in each direction does
not significantly increase the accuracy of integration methods because small patches
are still not resolved. Also, the Simpson method is not definitively superior to the
statistical method and the trapezoidal rule, as the convergence rate (8.9) does not
hold on coarse grids.

One important conclusion drawn from our consideration of 1 � d and 2 � d

ecological distributions is that the accuracy of an estimation depends strongly on
how the pest insects are dispersed across the agricultural field. The question of
accuracy has been the focus of ecological research for a long time (Dent 2000;
Vlug and Paul 1986; Ward et al. 1985). Reliable recommendations have been
provided on the minimum number of traps required for obtaining an accurate
estimate of a particular pest insect species based on the assumption that the pest
insect density distribution is close to homogeneous (Binns et al. 2000; Karandinos
1976; Southwood and Henderson 2000). This assumption is true for many species,
but as we could see in this section there also exist many ecologically important cases
where the pest density is heterogeneous and can be aggregated into several patches
(see also Barclay 1992; Ferguson et al. 2003). In the latter case we can anticipate
an inaccurate estimate of the total pest population size, as a relatively small number
of traps normally used in the trapping procedure may not be sufficient to resolve
highly localised sub-domains of non-zero density. In the next section we discuss an
extreme case of a single density patch in order to demonstrate that a conceptually
different approach should be applied to evaluate the total population size for such
spatial patterns.

8.5 Highly Aggregated Density Distributions

In this section we consider highly aggregated density distributions that we also
refer to as peak functions. Namely, we discuss spatial patterns where the entire
pest population is confined to a single sub-region (patch) within an agricultural
field and the pest population is zero outside that patch. Such distributions have
ecological significance as they present at an early stage of the biological invasion
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Fig. 8.8 (a) The pest population density distribution u.x; y/ at an early stage of patchy invasion.
The highly aggregated density function u.x; y/ has been obtained from numerical solution of
Eqs. (8.28–8.29). The traps used to measure the density u.x; y/ are installed at the nodes of
a regular coarse grid as shown in the figure. (b) A one-dimensional counterpart of the density
distribution of Fig. 8.9a

(Shigesada and Kawasaki 1997). It is clear that timely and accurate evaluation of
the total number of pest insects at the beginning of biological invasion is beneficial
for the cultivation of the agricultural product. At the same time the application of
numerical integration methods to highly aggregated density distributions is a very
difficult task, as the exact location of the high density sub-domain is normally not
known in the problem. Thus, instead of installing the traps locally in the patch of
the non-zero density in order to increase the accuracy of integration, traps have to
be stationed at the nodes of a regular grid over the entire domain where monitoring
is made. That, in turn, may result in the most unfavourable situation when the entire
patch of non-zero density falls in between grid nodes.

Examples of highly aggregated density distributions are depicted in Fig. 8.8
where the density function was modelled by solving Eqs. (8.28–8.29) in the 2 � d

case (see Fig. 8.8a) and in the 1�d case (see Fig. 8.8b). It can be seen from Fig. 8.8a
that the sub-region of non-zero density is entirely missed on a coarse grid of 5 � 5

nodes and we should significantly increase the number of nodes in order to resolve
that sub-region. Given natural limitations on the number of traps that present in
ecological applications, two basic questions arise. The first question is: What is the
minimum number Nt C 1 of traps required to achieve desirable accuracy if a highly
aggregated density distribution is numerically integrated? Also, we have to answer
the related question: What can be an alternative measure of accuracy on a regular
grid of traps where N < Nt?

The answer to the questions above were offered in the paper Petrovskaya and
Embleton (2013). It has been shown there that a standard methodology does not
work when the density of a highly aggregated pest population is measured by a
trapping procedure with a small number N C 1 of traps installed. The uncertainty
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Fig. 8.9 Numerical integration of a highly aggregated density distribution. The accuracy of
integration depends on the peak location x� with respect to the nodes of a regular grid. (a) The peak
sub-domain contains only one grid node. (b) The same peak is now located in a different region,
so that two grid nodes lie within the peak sub-domain when the same regular grid is generated

in measurements made on coarse grids is so strong that an estimate QI .N / of the
integral I becomes a random variable. As a result, the integration error also becomes
a random variable with a high magnitude and we cannot control the accuracy
of evaluation. In other words, we cannot consider the condition (8.11) for peak
functions on grids with small N , as, depending on the peak location, we sometimes
will obtain a very accurate answer and sometimes our answer on the same regular
grid will be well beyond the accuracy range. An example illustrating this statement
is shown in Fig. 8.9, where we have one grid node within the peak sub-domain in
Fig. 8.9a. If we move the peak on the same grid, so that the location of the maximum
x� becomes different, two grid nodes will fall into the peak region (see Fig. 8.9b). As
a result, the peak function will be better resolved and we will have a more accurate
estimate of the integral.

Since the integration error is considered as a random variable on coarse grids
where a location of the density patch is not known to us, it was therefore suggested
in Petrovskaya and Embleton (2013) that we have to compute the probability of
achieving an integration error within a certain accuracy range instead of computing
the error itself. Namely, we compute the probability p.h/ (or p.N / in some
cases) that the condition (8.11) holds. The probability p.h/ is then considered
an alternative measure of accuracy when we integrate a high aggregation density
distribution on a regular grid with a small number of nodes.

Grids, where the integration error becomes a random variable because of the
insufficient information about the integrand function and where we have to compute
the probability of an accurate evaluation of the integral are referred to as ultra-
coarse grids (Embleton and Petrovskaya 2013; Petrovskaya and Embleton 2013;
Petrovskaya et al. 2012). It is clear that if we keep increasing the number of
nodes on a regular grid, then sooner or later we are able to integrate the peak
function with very good accuracy. We therefore have the threshold number Nt of
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grid sub-intervals, where the desirable accuracy of pest population size evaluation
cannot be guaranteed for any N < Nt . An immediate consequence of this result is
that an estimate of the pest population size per se becomes unreliable if the number
N of traps in the field is N < Nt .

The above results are illustrated by a simple example of a 1 � d peak function.
Consider the following density distribution (the Lorentzian) on the unit interval
x 2 Œ0; 1�,

u.x/ D

8̂̂<̂
:̂

ı2

4

1

4.x � x�/2 C ı2=4
� 1

5
; x 2 Œx� � ı=2; x� C ı=2�;

0; otherwise;

(8.32)

where ı is the peak width and x� is the location of the maximum point. Let us
emphasise again that the location x� is not known to us, so the peak can be located
at any point of the sub-interval Œı=2; 1 � ı=2�. The peak function (8.32) is shown in
Fig. 8.10a for the peak width ı D 0:06.

Consider now numerical integration of the function (8.32) by the trapezoidal
rule (8.15). Let a regular grid of N C 1 nodes be generated in the domain Œ0; 1� as
x1 D 0; xiC1 D xi C h, i D 1; : : : ; N , where the grid step size is h D 1=N . For
the purpose of our study we require that the grid step size is h > ı=2. We start from
h D 0:25 (i.e., five equidistant grid nodes over the unit interval) and decrease h by
adding new nodes to the grid until the grid step size is so small that the condition
h > ı=2 is broken. For each grid step size h we compute the probability p.h/

of getting an accurate estimate of the integral, provided that the peak is arbitrarily
located in the domain. The accuracy we impose in the problem is e.N / � �0 D 0:25,
where e.N / is the relative integration error (8.7). The details of the computation of
p.h/ can be found in Petrovskaya and Embleton (2013).
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Fig. 8.10 (a) The peak function (8.32) with the peak width ı D 0:06 on a regular grid of 9 nodes.
(b) The probability curves p.h/ obtained for the function (8.32) with the peak width ı D 0:06

(solid line, closed right triangle) and ı D 0:1 (solid line, closed square)
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Two probability curves p.h/ are shown in Fig. 8.10b for the function (8.32) with
the peak width ı D 0:06 and ı D 0:1. It can be seen from the figure that for each
probability curve there exists the threshold value ht such that p.h/ D 1 for any
h < ht . It was shown in Petrovskaya and Embleton (2013) that the grid step size ht

for which the error (8.7) becomes deterministic, that is p.ht / D 1 and p.h/ < 1 for
any h > ht , can be evaluated as

ht D ˛t ı; (8.33)

where ı is the peak width and ˛t is constant for any given tolerance � in the accuracy
condition (8.11). The value of ˛t was computed in Petrovskaya and Embleton (2013)
as ˛t � 0:81 for � D 0:25.

Let us, for example, integrate the function (8.32) with the peak width ı D 0:1

on a regular grid with the grid step size h D 0:1 (i.e., a grid of 11 nodes). We have
h > ht � 0:08 and it follows from Fig. 8.10b that our chance p.h/ to evaluate the
integral within the accuracy range e.N / < 0:25 is p.h/ � 0:2 D 20 %. In other
words, there is an 80 % chance that the error of our evaluation will be bigger than
� D 0:25 when we evaluate the pest abundance for the peak function (8.32) on a
regular grid of 11 nodes. Consider now a grid with h D 0:07 (15 grid nodes). Since
the distance between nodes is now h < ht , we will always have the error e.N / of
integral evaluation smaller than 0:25, no matter where the peak is located. The prob-
ability p.h/ of getting the error within the accuracy range e.N / < 0:25 is p.h/ D 1.

In the 1 � d case the grid step size h is given by h D 1=N and we can therefore
evaluate the minimum number Nt D 1=ht , such that the desirable accuracy of
integration is guaranteed on a grid of Nt C 1 nodes. Furthermore, it has been
discussed in Petrovskaya et al. (2013) that in ecological problems the width ı of
the highly aggregated density distribution can be written as

ı D !
p

d; (8.34)

where d is the diffusion coefficient. Another coefficient ! in the expression (8.34)
depends on the system’s parameters. It was shown in Petrovskii and Malchow (2001)
and Petrovskii et al. (2003) that the value ! is relatively robust to changes in the
parameter values and can typically be considered as ! � 25. Hence the threshold
number Nt can be evaluated as

Nt D 1

˛t ı
� 1

˛t !
p

d
: (8.35)

For example, the ecologically meaningful density distribution of Fig. 8.8b was
generated for the diffusion d D 10�4. The estimate (8.35) gives us the grid step
size as ht � 0:2 and the corresponding number of grid nodes is Nt C 1 � 6.

Understanding accuracy requirements for highly aggregated density distributions
is important when a sampling plan is designed for pest insect monitoring and
control. As we already mentioned in the introduction, a standard procedure of the
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risk evaluation in pest management is to compare an estimate of the total number
of pest insects with a certain critical number and to make a decision based on that
comparison. We discussed in the previous sections that the error in the estimation of
pest abundance becomes worse as the number of samples decreases (see also Binns
et al. 2000). However, consideration of the extreme case of a random error brings
into the problem another risk factor related to the uncertainty in integral evaluation
when the number N C 1 of traps is small. Taking this risk factor into account
may constitute an important task in the whole process of designing an appropriate
methodology for decision making in pest insect management.

8.6 Evaluating Pest Abundance on Irregular Grids

So far we have considered using methods of numerical integration to evaluate pest
population abundance when the sampling plan is a regular grid, i.e. the samples
are taken at regular spatial intervals. However, it may be that an irregular grid is
prescribed in a pest monitoring programme. Furthermore, even if a regular grid has
been selected as the intended sampling plan, taking samples at precisely regular
intervals may not be possible in practise. The landscape of an agricultural field may
have natural obstacles (e.g. a bush or a tree) that will make trap installation on the
nodes of a regular grid impossible. One or many of the samples may then have to
be taken at a location shifted from that which was intended due to an obstruction of
some kind, hence the resulting grid of samples is irregular. We thus now investigate
the accuracy of numerical integration methods formulated on an irregular grid. Our
analysis is focused on a 1 � d problem for the sake of simplicity, but, as in previous
sections, our results can be readily extended to a 2 � d problem.

8.6.1 Generation of Irregular Grids

We consider several types of grids with varying degrees of irregularity: a slightly
irregular grid, a quasi-random grid, and a random grid. We use the term ‘slightly
irregular’ to refer to a simple example of an irregular grid, whereby a single
sampling location is shifted from the position prescribed by a regular sampling
plan. We generate such a grid by first constructing a regular grid as was explained
in Sect. 8.2. A single interior node xi , for some i D 2; : : : ; N is then perturbed
according to the following transformation:

x
irreg
i D xi C h

�
r � 1

2

�
; (8.36)

where xi is a node location on a regular grid, and r 2 .0; 1/ is a uniformly distributed
random variable. The transformation (8.36) is further illustrated in Fig. 8.11b.
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xi xi + h
2xi − h

2 xi+1xi−1

xi xi+1xi−1

a

b

Fig. 8.11 (a) An interior grid node xi for some i D 2; : : : ; N is a fixed distance h from its
neighbouring grid nodes in accordance with a regular sampling plan. (b) An interior grid node
x

irreg
i which has been perturbed according to the transformation (8.36) (the superscript is omitted

in the figure to make it consistent with Fig. 8.11a). The shaded region shows the possible locations
for x

irreg
i , where this node is no longer an equal distance from its neighbouring nodes

A quasi-random grid has an increased level of irregularity whilst preserving some
structure. Such grids are generated in a similar way to the method discussed above
for the slightly irregular grids. The difference is that instead of a single interior node
being perturbed, all interior nodes are perturbed. That is, the transformation (8.36)
is applied to all interior nodes xi ; i D 2; : : : N of the regular grid. This form of
grid is closely related to the so called ‘centric systematic’ sampling plan (e.g. see
Milne 1959) whereby the field is divided into sections and a sample is taken from a
random location within each section. Our version differs only in that we have fixed
the boundary points so as to preserve the interval of integration as Œa; b�.

A random sampling plan is often viewed favourably from a theoretical viewpoint
as it is considered to avoid introducing bias into the estimate (Bliss 1941; Legg
and Moon 1994; Reisen and Lothrop 1999; Silver 2008), the concern being that a
systematic distribution of samples will somehow coincide with the distribution of
the pests. We therefore take into consideration such a distribution of samples in our
investigation and generate the points xi ; i D 1; : : : ; N C 1 as follows:

xi D a C r.b � a/; i D 1; : : : ; N C 1; (8.37)

where r 2 .0; 1/ is a uniformly distributed random variable. The points xi ; i D
1 : : : N C 1 are then sorted into ascending order and the endpoints on a random grid
are then replaced as

x1 D a; xN C1 D b: (8.38)

An example of a random grid is shown in Table 8.6. The grid of nine nodes
presented in the table was generated over the interval Œ0; 	� using a standard function
rand./ in Visual C++.
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Table 8.6 An example of random grid over the interval Œ0; 	�

i 1 2 3 4 5 6 7 8 9

xi 0.0 0.816881 1.05838 1.43716 1.489 1.58434 1.70697 1.74214 3.14159

8.6.2 Numerical Integration on Irregular Grids

We now look at the accuracy of pest abundance estimates obtained by methods of
numerical integration on the grids outlined above. We will be using the statistical
rule, the trapezoidal rule and Simpson’s rule to evaluate the pest abundance. Since
the statistical rule (8.31) has no spatial dependence it can be applied to regular and
irregular grids alike.

Meanwhile, we must use different forms of the trapezoidal and Simpson’s rules
to those which have been mentioned above in order to be able to apply them to
irregular grids. The Newton-Cotes formulas can, of course, be applied in the case
that the integrand function f .x/ is defined on the nodes of an irregular grid. The idea
remains the same: replace the integrand by a polynomial function and integrate the
polynomial instead. However, we cannot use formulas (8.15) and (8.17) designed
for regular grids and we have to take into account a grid’s irregularity when the
weight coefficients !i are computed.

The trapezoidal rule on irregular grids is given by

I � QI D
NX

iD1

hi

.fi C fiC1/

2
; (8.39)

where N is the number of grid sub-intervals, and the grid step size hi D xiC1 � xi

is variable rather than fixed as in the formula for regular grids. We use the following
adapted version of Simpson’s rule to handle irregular grids

I � QI D
N
2X

iD1

h2i�1 C h2i

6
.f2i�1 C 4f2i C f2iC1/ ; (8.40)

which also relies on the variable grid step size hi D xiC1 � xi . As with the
conventional Simpson’s rule (8.17), the number of grid nodes N C 1 is required
to be odd.

We illustrate the convergence on irregular grids by considering a sequence of
grids, where each grid is generated according to the relevant procedure outlined
above. The number of grid subintervals is set on the first grid in the sequence as
N D N0, an estimate is obtained by means of a chosen numerical integration
method and the relative error (8.7) is calculated. The number of grid sub-intervals
is then increased to N1 D 2N0, a new grid is generated, and the estimate and
subsequent relative error is recalculated. This process is repeated until the number
of grid sub-intervals reaches some chosen value N D Nfinal. In the case of the
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slightly irregular grids, we want to determine how perturbing a single node affects
the convergence rate of a method of numerical integration, rather than how the
position of the grid node which is perturbed affects the accuracy. As such, in each
generation of the slightly irregular grids, the same interior grid node is perturbed.
We will begin all of our calculations on a grid of three grid nodes which has only
one interior node. The unperturbed position of this node lies at x D .a C b/=2,
therefore, it will always be this central node which is perturbed in the generation
of each slightly irregular grid. For grids with a more significant level of irregularity
i.e. the quasi-regular and random grids, each grid generation is repeated a total of
nr times thus providing nr values of the error for any given grid of N C 1 nodes.
The mean error on a grid of N C 1 nodes is then calculated as

�.e/ D 1

nr

nrX
iD1

ei : (8.41)

We first consider a standard mathematical test case where the integral of the
function (8.10) is evaluated over a sequence of increasingly refined irregular grids
according to the procedure outlined above. For the slightly irregular grids, the
corresponding relative errors are shown in Table 8.7. It can be seen from the table
that very little difference is made to the accuracy by perturbing a single node as the
results for the regular and slightly regular grids are close to each other.

For the random grids, the mean of nr D 104 evaluations of the error have been
plotted in Fig. 8.12. The convergence rate of errors calculated over increasingly
refined regular grids has also been plotted in each graph for comparison purposes
(see dashed line in the figure). Random perturbation of the interior nodes affects
the convergence rate with varying degrees of prominence depending on the method
of numerical integration employed as can be seen in the figure. The behaviour
of the convergence curve for the statistical rule shown in Fig. 8.12a is different
from the convergence for the trapezoidal rule (Fig. 8.12b) and the Simpson rule
(Fig. 8.12c), as the convergence rate of the method (8.31) on irregular grids is
slower in comparison with the convergence on regular grids. Meanwhile the
randomness introduced to the computational grid causes the convergence curves

Table 8.7 The relative integration error (8.7) for the function (8.10) on slightly irregular grids
where the central node is shifted from its position on the original regular grid. The first column
gives the number N C 1 of grid nodes. The error (8.7) is computed on an irregular grid (marked
as the superscript “irreg” in the table) and compared with the corresponding error on a regular grid
(the superscript “reg”). The error is computed for the statistical rule (8.31) (the columns marked
as estat in the table), the trapezoidal rule (8.39) (the columns eTR), and the Simpson rule (8.40) (the
columns eSR)

N C 1 e
reg
stat e

irreg
stat e

reg
TR e

irreg
TR e

reg
SR e

irreg
SR

3 4.764e�001 4.829e�001 2.146e�001 2.163e�001 4.720e�002 4.681e�002

5 2.416e�001 2.423e�001 5.194e�002 5.409e�002 2.280e�003 1.786e�003

9 1.226e�001 1.227e�001 1.288e�002 1.288e�002 1.346e�004 1.342e�004

17 6.185e�002 6.185e�002 3.215e�003 3.222e�003 8.296e�006 8.295e�006
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Fig. 8.12 Numerical integration of the function (8.10) on random grids. (a) The relative integra-
tion error (8.7) for the statistical rule (8.31) (solid line, right open triangle). The convergence
curve is compared with the convergence on regular grids (dashed line, right open triangle). (b)
Convergence curves for the trapezoidal rule (8.39) on random grids (solid line, open circle). The
convergence curve for the method (8.15) on regular grids is shown as a dashed line in the figure.
(c) Convergence curves for the Simpson rule (8.40) on random grids (solid line, closed square) and
for the method (8.17) on regular grids (dashed line, closed square)

of the trapezoidal and Simpson’s rules to be shifted upwards, that is, the resulting
estimates are less accurate although they begin to converge at a similar rate to those
formulated on regular grids as N increases. The higher the degree of the method
applied, the more prominent the effect seems to be, although it should be noted that
on average the accuracy still improves when a higher degree method is used.

8.6.3 Integration of Ecological Data on Irregular Grids

Let us now consider the accuracy of the numerical integration of ecologically
significant data. Since we are required to perform repeated calculations over
increasingly refined grids, we use simulated data as suitable field data is difficult to
obtain. As earlier explained the simulated ecological population density functions
were obtained through numerical solution of the 1 � d system (8.28–8.29) on an
extremely fine, regular grid of Nf C1 D 215C1 nodes on the interval Œa; b� D Œ0; 1�.
Since the density functions are thus discrete rather than continuous, the method for
generating the slightly irregular computational grid is now different to that outlined
above although the fundamental ideas are the same.

We have available a fine grid of points x
f
i ; i D 1; : : : ; Nf C 1 where

x
f
1 D a D 0; x

f
i D xi�1Cb � a

Nf

; i D 2; : : : ; N; x
f
Nf C1 D b D 1:

To generate a slightly irregular grid of N C 1 nodes, a regular grid is first obtained
by extracting the required N C 1 nodes from the available fine grid as

xi D x
f
j ; j D 1 C .i � 1/

�
Nf

N

�
; i D 1; : : : ; N C 1: (8.42)



8 Computational Methods for Accurate Evaluation of Pest Insect Population Size 211

A single interior node must then be perturbed, however, it must be perturbed to a
value for which the population density is available. This is achieved by replacing an
interior grid node as

xi D x
f
j Cr ; r 2

�
� Nf

2N
;

Nf

2N


(8.43)

for some i D 2; : : : ; N , where j is as given in (8.42) and r is a uniformly distributed
random integer.

The generation of quasi-random grids for use with simulated ecological data is
as follows. The endpoints are fixed as

x1 D x
f
1 ; xN C1 D x

f
Nf C1; (8.44)

and the interior points are defined as

xi D x
f
j Cr ; r 2

�
� Nf

2N
;

Nf

2N
� 1


; i D 2; : : : ; N: (8.45)

Note that here the upper limit of the interval to which r belongs is one less than that
in (8.43) so as to avoid any nodes coinciding.

To extract a random grid from the available data, the grid nodes of the fine grid
x

f
i ; i D 1; : : : ; Nf C 1 are first permuted randomly. We shall denote the resulting

points as Qxf
i ; i D 1; : : : ; Nf C 1. We begin to form a random grid of N C 1 nodes

by selecting the first N C 1 nodes from the permuted fine grid so we have

xi D Qxf
i ; i D 1; : : : ; N C 1: (8.46)

The nodes xi ; i D 1; : : : ; N C 1 are then sorted into ascending order and the
endpoints are replaced as

x1 D a D 0; xN C1 D b D 1: (8.47)

Let us now consider the three-peak simulated ecological test case as shown in
Fig. 8.4b. As above, we generate a sequence of increasingly refined grids and the
relative errors are calculated according to (8.7). It should be noted that since the
exact value of the integral is not available to us for such discrete data, we have taken
the approximation obtained by applying the trapezoidal rule to the extremely fine,
regular grid of Nf C 1 nodes to be the ‘exact’ value of the pest abundance I . For
the quasi-random and random grids, nr D 104 of each grid are generated and the
mean of the errors is calculated.

Convergence curves for the slightly irregular grids, where one node is randomly
shifted from its original location on a regular grid, are shown in Fig. 8.13. The
integration error (8.7) computed for the statistical rule (8.31) is presented in
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Fig. 8.13 Convergence curves on slightly irregular grids for the ecologically meaningful density
distribution of Fig. 8.4b. Convergence on a sequence of grids where a central grid node is randomly
shifted is compared to the convergence on regular grids. The figure legend is the same as in
Fig. 8.12. (a) The statistical rule (8.31), (b) the trapezoidal rule (8.39), and (c) the Simpson
rule (8.40) is implemented
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Fig. 8.14 Convergence curves on quasi-random grids for the ecologically meaningful density
distribution of Fig. 8.4b. Convergence on a sequence of grids where each interior grid node is
randomly shifted around its position on a regular grid is compared to the convergence on regular
grids. The figure legend is the same as in Fig. 8.12. (a) The statistical rule (8.31), (b) the trapezoidal
rule (8.39), and (c) the Simpson rule (8.40) is implemented

Fig. 8.13a, while the error for the trapezoidal rule (8.39) and the Simpson rule (8.40)
is shown in Fig. 8.13b, c, respectively. The convergence results in the figure confirm
our previous conclusion made for the function (8.10). A slight perturbation of grid
regularity results in a slight perturbation in the integration error.

Let us now make a stronger perturbation of a regular grid and consider numerical
integration on a sequence of quasi-random grids where each interior grid node is ran-
domly shifted around its position on a regular grid. The corresponding convergence
curves are shown in Fig. 8.14, where the figure legend is the same as in Fig. 8.12.
It can be seen from the figure that increasing the degree of grid randomness in the
problem results in a bigger integration error, no matter what integration method
is used. This conclusion is further illustrated by consideration of the integration
error on truly random grids; see Fig. 8.15. Again, the convergence curves shown
in Fig. 8.15 for integration on regular grids always lie below convergence curves
obtained for random grids for any integration rule employed in the problem.
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Fig. 8.15 Convergence curves on regular and random grids for the ecologically meaningful
density distribution of Fig. 8.4b. The figure legend is the same as in Fig. 8.12. (a) The statistical
rule (8.31), (b) the trapezoidal rule (8.39), and (c) the Simpson rule (8.40) is implemented

The results of our study demonstrate that grid randomisation leads to a bigger
integration error on coarse and fine grids alike. Surprisingly, this conclusion is true
even for the statistical method which has no spatial dependence. While further
careful study of this issue is required, our first experience with the problem of
numerical integration on random grids demonstrates that an equidistant distribution
of traps is better than a random distribution.

8.7 Concluding Remarks

We considered the application of methods of numerical integration to the problem
of evaluating pest insect abundance. Methods of numerical integration are well
known and documented in the literature, but, to our best knowledge, they have never
been applied in ecological problems. Meanwhile, employing advanced numerical
integration techniques can be beneficial in the evaluation of total pest population
size, as those techniques can help to improve the accuracy of evaluation. In our
paper we studied a trapping procedure in an agricultural field and discussed how
information about the pest population density at trap locations can be transformed
into a numerical integration problem. However, our conclusions about the appli-
cability of methods of numerical integration in ecological problems are general
enough and therefore remain valid when the information about the local species
density is obtained by another sampling technique.

The key idea behind numerical integration methods considered in the paper
is to locally replace the existing density distribution by an approximated density
distribution described by a polynomial function. The most straightforward way
to apply numerical integration is to install traps at the nodes of a regular grid,
but similar techniques can be designed for a random distribution of traps over an
agricultural field. From a numerical integration viewpoint the method (8.31) widely
used in ecological applications can be loosely interpreted as local approximation
of the density function by a constant. While such approximation provides in some
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cases rather poor accuracy, approximation by higher order polynomials (e.g. by a
quadratic function) should result, according to the theory of numerical integration,
in more accurate evaluation of pest abundance. It has been shown in the paper that
advanced numerical integration techniques (e.g., the Simpson rule on regular grids)
often provide a significantly more accurate estimate of the population size from trap
data than the standard statistical approach (8.31). In many cases methods remain
effective even when the distribution exhibit a complex spatial structure.

At the same time, it was discussed in the paper that the application of numerical
integration methods in ecological problems may be restricted by the poor resolution
of the density distribution on coarse grids. Our study demonstrated that numerical
integration methods may become unreliable when pest abundance is evaluated from
a heterogeneous density pattern on a coarse grid. For example, the accuracy of the
Simpson method (8.17) is superior to the statistical rule (8.31) and the trapezoidal
rule (8.15), but the Simpson method has no visible advantage over less accurate
methods (8.31) and (8.15) when a strongly heterogeneous density distribution is
considered on a coarse grid of traps. In the extreme case when the total population
is localised in a small sub-domain, an estimate of the total population size becomes
a random variable, and we cannot even tell whether or not the estimate is within a
given accuracy range.

The coarse grid problem remains, in our opinion, the main obstacle to the
implementation of numerical integration methods in IPM programmes. It was shown
in the paper that grid coarseness is not defined by the number of traps available
in the problem. For any fixed number of traps, that number can be considered as
a grid with good resolution for one density pattern, while the same grid of traps
can appear as a coarse grid, where the accuracy of evaluation is poor, for another
density distribution. Our study confirmed that grid coarseness is directly related to
the degree of heterogeneity, highly aggregated density distributions being the most
difficult case for numerical integration. Meanwhile, ecologists and farmers often
have to deal with pest insect density distributions that have a considerable degree
of aggregation (Comins et al. 1992; Malchow et al. 2008; Okubo 1986). Thus an
important conclusion that stems from our results is that any information about the
spatial pattern of the pest insect density distribution must be used to its fullest extent
(cf. Perry 1996; Perry and Hewitt 1991) in order to decide whether or not we can
expect to obtain an accurate estimate of pest abundance. This conclusion is true
for any numerical integration technique including the method (8.31), as examples
studied in the paper reveal that an estimate of the mean density on coarse grids can
be very far away from its true value. Let us also note that the unreliability of results
on coarse grids should, in our opinion, be taken into account as another risk factor
when a sampling plan is designed, and results of large-scale ecological monitoring
should be interpreted accordingly.

Summarising the above, the main recommendation from our study is to imple-
ment methods of numerical integration that are based on approximation of the
density distribution by higher order polynomials (e.g. the Simpson method). If
heterogeneity in a spatial pattern is not well resolved, no method of numerical
integration has an advantage over the other methods, as all of them will give equally
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unreliable results. However, as soon as the heterogeneity is resolved, approximation
of the density distribution by higher order polynomials will provide a more accurate
estimate of the total pest population size.

Our study leaves a number of open questions. The most difficult and crucial issue
is, of course, the question of how to get information about a spatial pattern of the
density distribution in order to be able to predict the accuracy of integration. Another
important issue related to the question above is the optimisation of trap locations.
Grid adaptation to the spatial pattern can be made if we have the information about
patches of high density. Numerical integration on an adapted grid should result in
an improvement in accuracy, but its application requires further discussion of the
technical details. Also, numerical integration techniques can be extended to domains
of arbitrary shape, but resolution of a curvilinear boundary remains a topic for future
research.

Finally, we would like to emphasise that numerical integration techniques still
have to be validated for a broad variety of ecological test cases before they can
be routinely used in ecological monitoring and control. However, identification and
clear understanding of all theoretical aspects of numerical integration techniques
can accelerate and simplify further incorporation of those techniques into IPM
programmes and the issues that have been in the focus of this paper are important
milestones along the way.
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Chapter 9
Models for Overdispersed Data in Entomology

Clarice G.B. Demétrio, John Hinde, and Rafael A. Moral

Abstract Entomological data are often overdispersed, characterised by a larger
variance than assumed by simple standard models. It is important to model
overdispersion properly in order to avoid incorrect and misleading inferences.
Outcomes of interest are often in the form of counts or proportions and we present
extended models that incorporate overdispersion, methods to assess its impact and
model goodness-of-fit, and techniques to test treatment differences in the presence
of overdispersion.

Keywords Overdispersion • Statistical models • Count data • Proportion data •
Zero-inflated data

9.1 Introduction

Outcomes of interest for entomological data are often in the form of counts or
proportions and as a first step we might analyse these using standard Poisson and
binomial models. These are both specific examples of generalized linear models
(McCullagh and Nelder 1989) and hence our focus here on this class of models.
However, in general, the data are overdispersed, characterised by a larger variance
than assumed by these simple standard models. It is important to adapt models
to take account of overdispersion in order to avoid incorrect and misleading
inferences (Hinde and Demétrio 1998). In this chapter we will consider some
general approaches for doing this and illustrate with specific examples.
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There are many different possible causes of overdispersion and in specific
situations a number of these could be involved. Some common possibilities in
entomological studies are:

1. Variability of experimental material – this can be thought of as individual
variability of the experimental units and may give an additional component of
variability that is not accounted for by the basic response model. For example,
in dose-response experiments, the insects used will typically have differing
susceptibilities to the substance which will affect propensity to respond.

2. Correlation between individual responses – in biological assays involving
batches of insects we may expect to see some correlation between insects
from the same batch since they may be genetically similar. There may also
be correlation due to shared experimental environments or through observing
a group of insects over time.

3. Cluster and multistage sampling – often, instead of a simple random sample,
the insects under study may be structured into some hierarchy with sampling
sequentially from each level. For example, we may consider insects within
metapopulations within ecosystems. In our sampling we may take a random
sample of ecosystems, then from these selected ecosystems we may pick a
random sample of metapopulations, and, finally, take our observational units
from a random sample of insects in these selected metapopulations. This
structured hierarchical sampling can lead to complex dependencies between the
individual level responses and certainly we are likely to see correlation between
the responses within a given metapopulation.

4. Aggregation – here the individual level responses are grouped into a response
at a higher, aggregate, level. The aggregation process may be known, but more
generally it is not completely specified and leads to a compound distribution
for the observed responses. For example, in biological control studies we may
observe total numbers of insects emerged from larvae parasitised by a number
of females, but given that generally every female can lay a different number of
eggs per host the observed totals of insects will be a combination of the number
of females that parasitised the larvae and the distribution of the number of eggs
per female; any modelling may more sensibly apply to the numbers of insects
from the same female, but this is not observed, only the total number of insects
emerged from a number of parasitised larvae.

5. Omitted unobserved variables – in some sense the above categories are all
special cases of this, but generally in a rather complex way. Our models will
often be formulated with the notion of some omitted variable to account for
possible underlying, but unobserved, structure. This is particularly relevant in
the regression modelling context.

In some circumstances the cause of the overdispersion may be apparent from
the nature of the data collection process. Although, it should be noted that different
explanations of the overdispersion process can lead to the same model. In general,
it is difficult to infer the precise cause, or underlying process, leading to the
overdispersion. However, the causes mentioned above provide a useful framework
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for thinking about overdispersion in practical applications, even if the distinctions
are not always sharp. This will become apparent in the subsequent development of
overdispersion models and some applications.

However overdispersion may arise, its presence will be apparent through some
failure of the basic model assumptions. In this chapter we will begin by considering
how to detect these model failures in categorical and count data and then consider
model extensions to account for overdispersion. We will also illustrate the effect of
ignoring overdispersion on key questions of interest, such as treatment comparisons.

9.2 Models for Proportion Data

One of the simplest forms of data in entomology consists of observing a number
of insects and counting the number that respond to some stimulus, with the aim
of possibly comparing different treatments or environments, or perhaps studying a
dose-response relationship. In this context our variable of interest is an observed
(counted) proportion y=m, where we have y insects responding out of a group of
size m. If we assume that each individual insect has the same chance of responding
and they act independently then the binomial distribution gives a natural starting
point for data analysis.

9.2.1 Binomial Model

Outcomes which can be classified as response/non-response can be thought of as
arising from a Bernoulli trial.1 Taking a group of m independent Bernoulli outcomes
with constant response probability 	 and counting the total number of insects that
respond, y, leads to the binomial probability model

Pr.Y D y/ D
 

m

y

!
	y.1 � 	/m�y y D 0; 1; : : : ; m (9.1)

denoted by Binomial.m; 	/. This is simply the distribution of the sum of m

independent Bernoulli random variables. The binomial coefficient
�

m
y

�
arises from

the number of possible sequences of m Bernoulli trials that give rise to y

responses.
If we extend this to a sample of n groups of observations, we obtain a set of

random variables Yi , i D 1; : : : ; n, with possibly different response probabilities

1A Bernoulli trial is a random experiment with exactly two possible outcomes, “success” and
“failure”, in which the probability of success is the same every time the experiment is conducted.



222 C.G.B. Demétrio et al.

	i , representing counts of responses from samples of size mi . We can summarise
this as the model Yi 	 Binomial.mi ; 	i /, where Yi has mean

E.Yi / D �i D mi 	i ;

and variance

Var.Yi / D mi 	i .1 � 	i / D �i

�
1 � �i

mi

�
: (9.2)

In general we will be interested in modelling the 	i s in terms of p observed
explanatory variables, x, which may include continuous variates (e.g. doses) and/or
sets of 0=1 dummy variables to represent one or more factors that classify the data
into groups (e.g. treatments, species). (We will also assume that x includes a constant
term to account for the overall response rate.) This is conveniently done through
the framework of generalized linear models which allow us to model the expected
proportions 	i in terms of explanatory variables xi through a transformed linear
function

g.	i / D ˇT xi D �i

where g is some suitable function, called the link function and ˇ is a vector of p

unknown parameters.
It is important to note that although we are modelling the mean response through

the 	i s, the variance of Yi is a simple fixed function of the mean which constrains
how the model can account for the observed variability in proportion data. In
general, for real data sets the observed variance is larger than that implied by the
binomial model – observed overdispersion.

To complete the binomial regression model specification we need to consider the
choice of the link function g. The usual (canonical) link function for the binomial
distribution is the logit link

g.�i / D log

�
�i

mi � �i

�
D log

�
	i

1 � 	i

�
which corresponds to modelling on the log-odds scale with regression parameters
corresponding to log odds-ratios. Other common choices of link function for
proportion data are the probit

g.�i / D ˆ�1.�i =mi/ D ˆ�1.	i /;

based on an underlying normal tolerance distribution for the probability of a positive
response, and the complementary log-log (CLL) link

g.�i / D logf� log.1 � �i =mi/g D logf� log.1 � 	i /g:
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The probit and logit links are very similar and are symmetric in 	 and 1 � 	 , while
the CLL link is not symmetric and can lead to rather different fits in certain cases
and can be useful in experiments where over time the insect population becomes
increasingly resistant to the insecticide, see Mallet (1989). The probit has a long
history in biological assays and dose-response studies, see Finney (1971), although
in general the logit is now preferred. A common feature of all of these link functions
is that they transform the response probability 	 from Œ0; 1� to the real line where
the linear regression model ˇT x can be sensibly applied – direct modelling of 	 can
lead to non-sensical fitted values and should be avoided.

Inference for generalized linear models proceeds in the same way as for standard
normal linear regression models. Testing an individual term in the regression model
can be based on the parameter estimate and associated standard error, while tests
for groups of terms (e.g. a factor) and model comparison are based on the analysis
of deviance from Nelder and Wedderburn (1972), which generalizes the ideas in
standard ANOVA. Here, the usual residual sum of squares is replaced by the residual
deviance, a measure that compares a fitted model to a saturated model (with n

regression parameters) that reproduces the observed data. For the binomial model
this deviance is given by

DB D 2

nX
iD1

�
yi log

�
yi

O�i

�
C .mi � yi / log

�
mi � yi

mi � O�i

�
;

where O�i , i D 1; 2; : : : ; n, are the fitted values for the model of interest. The
deviance DB can be viewed as a measure of goodness-of-fit of the fitted model with
p estimated parameters. A more traditional goodness-of-fit statistic is the Pearson
X2 statistic, which for binomial data takes the form

X2
B D

nX
iD1

.yi � O�i /
2cVar.Yi /

D
nX

iD1

.yi � O�i /
2

O�i

�
1 � O�i

mi

� :

For data with large sample sizes mi , DB and X2
B are equivalent and under the null

hypothesis of an adequate model both have an approximate �2 distribution on n� p

degrees of freedom (df). However, Jørgensen (2002) recommends using X2
B rather

than DB as a measure of goodness-of-fit, based on numerical and analytical studies
which show that the limiting �2 distribution is approached faster (as the sample sizes
mi increase) for the X2 statistic than for D. So, for a well-fitting (adequate) model
we would expect X2

B to be consistent with the �2
n�p distribution and at a significance

level ˛ we would require X2
B < �2

n�pI.1�˛/, the upper ˛-percentage point of the

�2
n�p distribution. More informally, we may simply check to see if X2

B � n�p, that
is if the observed value is of the same order as the mean of the �2

n�p . An incorrect,
or inadequate, model with unexplained variation (overdispersion) will lead to much
larger observed values of X2

B (and DB ).
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In addition to providing a measure of fit, the deviance plays a central role in
comparing different nested models and hence testing groups of one or more effects.
The choice of the deviance for this, rather than the Pearson X2, is because it has the
same sort of additive breakdown that the sum of squares has in standard regression
and analysis of variance. For example, suppose that we consider dropping some
variables from our original p-variate model to give a sub-model with only q < p

variates – this corresponds to setting the ˇ-coefficients of the p�q eliminated terms
to zero. Writing Dp for the residual deviance of the full model and Dq as that for
the reduced model, then under the null hypothesis that true coefficient values of
omitted terms really are zero the change in deviance Dq � Dp should have a �2

p�q

distribution. So a formal test at significance level ˛ will reject the null hypothesis if
Dq � Dp > �2

p�qI.1�˛/ indicating that some, or all, of the omitted terms need to be
retained (this actually corresponds to a likelihood-ratio test for comparing the nested
models). A model selection process involves a combination of such tests for terms
of possible interest and the use of the goodness-of-fit to check that any selected
models are adequate descriptions of the data.

To complete the checking of a model, in addition to the global goodness-of-
fit, it is useful to use some diagnostic plots to detect specific aspects of possible
model failure. The procedures typically compare the observed and fitted values for
the individual observations through some type of residual and the simplest forms of
these are the n individual contributions to the X2 and D statistics giving the Pearson
and deviance residuals, respectively. Typical plots may include:

– Observed and fitted values versus continuous explanatory variables to examine
overall model fit;

– Residuals (deviance or Pearson) versus fitted values to check model adequacy,
detect outliers and other unusual features;

– (Half-)normal plot of the residuals, with an added model-based simulation
envelope (Hinde and Demétrio 1998), to check that the residuals are consistent
with the variation implied by the model.

The whole process of modelling proportion data is most easily illustrated through
example analyses. We will begin with a situation where the binomial model is found
to be appropriate. Subsequently, we will see that the same general approach applies
not only for proportion data where the binomial model is not adequate but also for
other data types within the generalized linear modelling framework.

Example 1: Dose-response model
The neuropteran Chrysoperla externa (Neuroptera: Chrysopidae) is a predator that
acts as a natural enemy of the brown citrus aphid, Toxoptera citricida (Hemiptera:
Aphididae), which is among the most important citrus pests worldwide. A substance
called “lime sulphur” is a product made of calcium polysulphides and used to
control fungi, bacteria and insects that live on trees. A possible strategy to control
T. citricida populations would be to use lime sulphur and the C. externa predator
in combination which may be beneficial as long as the lime sulphur has less
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Table 9.1 Chrysoperla
externa lime sulphur
mortality data (table entries:
dead/number of larvae,
yi =mi )

Concentration (ppm) Replicates

0 0/2 0/5 1/4 0/5 0/3 0/6

60 0/6 2/6 0/5 0/5 0/4 1/5

600 1/3 1/5 2/3 2/6 1/5 0/4

6,000 0/1 0/5 1/5 2/4 3/7 2/5

effect on the predator than the prey. To explore this Battel (2012) conducted an
experiment with first-instar larvae of Chrysoperla externa exposed to different levels
of lime sulphur. Specifically, 24 Orange Jessamine (Murraya paniculata) plants
were sprayed with different concentrations (conc) of lime sulphur and up to 7
first-instar larvae (mi ) were placed on each plant. The experiment was set up in a
completely randomized design with four treatments: lime sulphur concentrations at
0 ppm (water control), 60 ppm, 600 ppm, and 6,000 ppm. The plants were observed
until the predators reached the second instar and the number of larvae that died on
each plant (yi ) was recorded. The data is presented in Table 9.1.

We now consider fitting a standard binomial logit model in R (R Core Team
2013). Here, the concentrations are proportional to powers of 10 and so it is more
natural to use the logarithm of the concentrations in our models and because of
the control at 0 ppm we add 1 before taking the log (this is rather arbitrary and
alternatives could be explored if the model is poor, such as allowing for natural
mortality). The full R-code to do this is given below (in subsequent examples
we will omit data input details as the full code will be available as “Electronic
Supplementary Material”).

# set-up data
dead <- c(0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1,

1, 1, 2, 2, 1, 0, 0, 0, 1, 2, 3, 2)
alive <- c(2, 5, 3, 5, 3, 6, 6, 4, 5, 5, 4, 4,

2, 4, 1, 4, 4, 4, 1, 5, 4, 2, 4, 3)
conc <- rep(c(0,60,600,6000),each=6)
lconc <- log(conc+1)
resp <- cbind(dead, alive)
total <- dead + alive
# fit model using conc levels both on log-scale and

as a factor
# to produce simple analysis of deviance
model <- glm(cbind(dead, alive) ~ lconc +

factor(conc), family=binomial)
anova(model, test="Chisq")
# test adequacy of factor model using deviance and X2
1-pchisq(deviance(model), df.residual(model))
(X2 <- sum(residuals(model, type="pearson")^2))
1-pchisq(X2, df.residual(model))
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Table 9.2 Analysis of
deviance for the Chrysoperla
externa mortality data, using
a binomial logit model

Source df Deviance p-value X2 p-value

Linear trend 1 8.73 < 0.01

Non-linearity 2 0.91 0.63

Residual 20 21.95 0.34 20.77 0.41
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Fig. 9.1 Chrysoperla externa mortality data, log-dose binomial logit model: (a) fitted curve with
observed proportions; (b) half-normal plot: � – data; —- – simulated envelope

This produces an analysis of deviance with a term by term breakdown as follows:

df Deviance Resid. df Resid. Dev Pr(>Chi)
NULL 23 31.594
lconc 1 8.7310 22 22.863 0.003129 **
factor(conc) 2 0.9141 20 21.949 0.633138

For convenience we have re-summarised this together with the goodness-of fit
values in Table 9.2. The added contribution of specifying concentration as a (4-level)
factor gives a test for non-linearity of the log-dose response.

For the factor model the values of the residual deviance DB D 21:95 and Pearson
statistic X2

B D 20:77 are similar and consistent with a �2
20 distribution as they are

close to the mean value of 20 and considerably less than �2
20;0:95 D 31:41. This

suggests an adequate model, but as there is also no evidence of non-linearity in the
dose response we can use this linear trend model, which has a residual deviance
of 22:86 on 22 df. We now refit this and produce some simple diagnostic plots
presented in Fig. 9.1; a plot of the observed proportions with the fitted dose-response
curve and a half-normal plot of the deviance residuals. The R-code is as follows:

model1 <- glm(resp ~ lconc, family=binomial)
par(mfrow=c(1,2), cex=1.4)
plot(jitter(lconc), dead/total, ylab="Proportion dead",

xlab="log(conc+1)", main="(a)")
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x <- seq(0, 8.7, .1)
pr <- predict(model1, data.frame(lconc=x), ty="response")
lines(x, pr)
# half-normal plot
hnp(model1, xlab="Half-normal scores",

ylab="Deviance residuals", pch=4, main="(b)")

Neither of these show anything particularly unusual and in the half-normal plot
the residuals lie completely within the simulated envelope, based on a binomial
model, indicating the adequacy of the binomial modelling assumption. (Note that
the simulated envelope is randomly generated and will be slightly different each
time the function is called.)

Here, the interest is in finding a level of lime sulphur that is not too toxic
to the predator, so the fact that the maximum estimated death proportion is only
around 0.3 is not a problem. (In general dose-response studies we may want to
select concentration level to give response proportions over the [0,1] range.) A
common use of such fitted models is to determine a concentration level that kills
some specified proportion, p, of the target insects, referred to as the 100p % lethal
(effective) concentration and denoted by LC100p . For this example we might be
interested in estimating a concentration level that kills no more than, say, 10 % of
the predators, the LC10, and its associated confidence interval. This involves using
the fitted curve to read back from a specified proportion to the associated dose and
can be done using the dose.p function in the R-package MASS (Venables and
Ripley 2002).

require(MASS)
dose.p(model1, p=.10)

Dose SE
p = 0.1: 3.353481 1.49095

The above estimated dose is on the log-scale and converting this back to ppm gives
LC10 D 27:60. While the simplest way to obtain a confidence interval is to construct
an interval on the log-scale using the estimate and standard error from dose.p and
then converting this interval back to the ppm scale, this approach is not optimal and
other intervals include Fieller and profile-likelihood intervals, see Morgan (1992).
Adopting the simple approach here gives an approximate 95 % confidence interval
for LC10 of Œ0:45; 563:18�, although of course in this particular application a one-
sided lower interval may be more appropriate.

9.2.2 Overdispersion Models

Now we will turn to look at an example where the assumption of the binomial
model is less satisfactory and consider a first simple approach to allowing for
overdispersion.
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Example 2: Corn damage
A major pest of stored maize in Brazil is Sitophilus zeamais (Coleoptera: Cur-
culionidae). In an experiment to assess the insecticide action of organic extracts of
Annona mucosa (Annonaceae) Petri dishes containing 10 g of corn were treated with
extracts prepared with different parts of the plant (seeds, leaves and branches) at a
concentration of 1,500 mg/kg or just water (control), using a completely randomized
design with 10 replicates. Then 20 Sitophilus zeamais adults were placed in each
Petri dish and, after 60 days, the numbers of damaged and undamaged corn grains
were counted, see Ribeiro et al. (2013). The data are given in Table 9.3.

We begin by fitting a standard binomial logit model with the different extracts
and inspect the analysis of deviance and goodness-of-fit given in Table 9.4.

model1 <- glm(cbind(y, m-y) ~ extract, family=binomial)
anova(model1, test="Chisq")
hnp(model1, pch=4, main="Binomial: Logit",

xlab="Half-normal scores", ylab="Deviance residuals")

Here, there is clear evidence from the residual deviance and X2 values that the
model does not fit – the replicates are more variable than we would expect under
a binomial model. This can also be seen in the half-normal plot of the deviance
residuals shown in Fig. 9.2a.

So having established that a particular dataset may exhibit overdispersion, how
can we extend our basic model to take account of this? As we have discussed there
are many different possible causes of overdispersion and consequently a number
of different models and associated estimation methods have been proposed (see
Hinde and Demétrio 1998 for a review). For binomial data, Collett (2003) gives
a good practical introduction to some of these methods, following the work of
Williams (1982, 1996). We will begin by considering a quasi-likelihood approach
to accommodate increased variability.

Table 9.3 Corn damage data (table entries: damaged/no. of grains, yi =mi )

Extract Replicates

Leaf 26/35 25/36 21/38 18/38 30/39 8/38 12/34 33/38 23/36 18/37

Branch 28/36 29/35 26/37 19/37 28/36 29/37 22/39 10/37 26/34 18/35

Seed 0/35 1/35 0/36 0/34 1/35 0/37 0/35 0/35 2/36 0/35

Control 20/37 25/35 31/35 28/35 31/35 35/36 23/34 32/32 33/35 28/37

Table 9.4 Analysis of deviance for the corn damage data, using a binomial logit model

Source df Deviance p-value X2 p-value

Extracts 3 636.04 < 0.01

Residual 36 165.92 < 0.01 158.75 < 0.01
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Fig. 9.2 Corn damage data – Half-normal plots with simulated envelopes of deviance residuals
for (a) binomial and (b) quasi-binomial logit models

9.2.2.1 Quasi-likelihood

One of the simplest means to allow for overdispersion is to replace the mean-
variance function of the original model by a more general form, typically involving
additional parameters.

A constant overdispersion binomial model replaces (9.2) by

Var.Yi / D �mi 	i .1 � 	i /; (9.3)

where the overdispersion factor � .> 1/ indicates that the increased variation
for observation yi depends on neither the sample size mi nor the true response
probability 	i . This is often referred to as the heterogeneity factor model, see Finney
(1971).

Here, estimation of the regression parameters ˇ is based on maximum quasi-
likelihood (Wedderburn 1974) and for this constant overdispersion model the
estimates Ǒ are identical to those from the binomial model. (This arises as the
key mean-variance relationship is of the same form for the binomial and quasi-
binomial models; the constant scale factor � is irrelevant here in the same way that
the variance �2 does not affect parameter estimates in the usual normal regression
model.) However, the assumed greater variability in (9.3) does have an impact on the
standard errors of Ǒ and these are inflated by a factor of

p
� compared to those of the

binomial (� D 1) model. To obtain an estimate for � we can proceed analogously
to estimating �2 in a normal model fit and use some measure of residual variation.
Obvious candidates are our goodness-of-fit measures, the residual deviance or the
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Pearson X2, and the use of both is discussed in McCullagh and Nelder (1989) with
X2 being preferred. For our overdispersed binomial model we estimate � using

Q� D X2
B

n � p
D 1

.n � p/

nX
iD1

.yi � mi O	i /
2

mi O	i .1 � O	i /
;

and use this estimated value to obtain the standard errors of Ǒ .
We also need to take account of our assumed extravariability in the assessment

of effects using analysis of deviance tables. We can no longer assess significance
by reference to �2 distributions, but again proceed as for the normal regression
model and use F -tests for scaled deviances (for this simple constant overdispersion
model these are merely the binomial model deviances divided by the estimated scale
parameter Q�).

Example 2 (ctd): Corn damage
For the corn damage data fitting a quasi-binomial logit model the estimated value
for � is Q� D 4:41 (D 158:75=36 D X2

B=df). This is easily obtained in R using
the quasibinomial family in glm and the analysis of deviance with associated
F -tests is given by anova.

model2 <- glm(cbind(y, m-y) ~ extract, family=quasibinomial)
summary(model2)$dispersion
[1] 4.409755
anova(model2, test="F")

df Deviance Resid. df Resid. Dev F Pr(>F)
NULL 39 801.96
extract 3 636.04 36 165.92 48.078 1.127e-12 ***

Here, there is no overall goodness-of-fit test available as the residual variation
has been used to estimate �. However, half-normal plots can still be used with a
simulated envelope that takes account of the extravariability assumed in (9.3). The
plot presented in Fig. 9.2b shows no strong evidence of an inadequate model with
most of the observed residuals lying within the simulated envelope.

The F -test for extracts has an observed value of 48.08, which is large when
compared to F3;36I0:05 D 2:87, and so we reject the null hypothesis of no extract
effect, even allowing for additional variability. To further explore the differences
between extracts we can consider the parameter estimates and standard errors
as given in Table 9.5, where we see the same estimates for the binomial and
quasibinomial models and standard errors scaled by

p
4:41 D 2:10.

What can we say about differences between the extracts? In Table 9.5 the
parameter estimates and standard errors give us comparisons between extracts and
the default baseline, extract1 the leaf extract. Here it might have been more
sensible to use the control group as the baseline, which could be done by redefining
the levels of the factor extract (easily done by using relevel(extract,4)
in the glm call). However, for summary purposes and to allow for multiple
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Table 9.5 Corn damage
data: parameter estimates,
standard errors

Binomial Quasi-binomial
Source Estimate se Estimate se

(Intercept) 0.3226 0.1055 0.3226 0.2215

extract2 0.2850 0.1523 0.2850 0.3198

extract3 �4.7913 0.5138 �4.7913 1.0789

extract4 1.1591 0.1732 1.1591 0.3638

Fig. 9.3 Corn damage
data – Plot of fitted
proportions with
quasi-binomial confidence
intervals
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comparisons between the treatments, we will obtain the fitted linear predictors and
standard errors for each of the four treatments.

summary(update(model2,.~.-1))

Coefficients:
Estimate Std. Error

extract1 0.3226 0.2215
extract2 0.6076 0.2307
extract3 -4.4688 1.0560
extract4 1.4816 0.2886

These estimates, O�j ; j D 1; : : : ; 4 can then be converted back to the probability
scale to give fitted proportions, exp. O�j /=f1 C exp. O�j /g. Interval estimates can be
constructed by first forming intervals on the linear predictor scale (approximately
O� ˙ 2 � se. O�/, or refinements of this such as replacing 2 by the appropriate t-
value and possible multiple comparison type corrections) and again transforming
back to the probability scale. A plot of the fitted proportions (here identical to the
overall observed proportions for each extract) with approximate 95 % quasibinomial
confidence intervals is given in Fig. 9.3. It is clear that the extract prepared with
seeds of Annona mucosa gives better protection against Sitophilus zeamais than the
other extracts, which are little better than the non-active control.
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9.2.2.2 Beta-Binomial

An alternative approach to account for overdispersion is to adopt a two-stage model,
allowing the probability of response, 	i , in the binomial model to vary according
to some distribution. We can represent this as taking the conditional distribution of
Yi given its response probability to be binomial, Yi jPi 	 Binomial.mi ; Pi /, and
assuming that the Pi s are now themselves random variables with some distribution.
By assuming different distributions for the Pi s we can in principle obtain a range
of different models, however treating the Pi s as continuous we can assume that
they follow a beta distribution, a highly flexible family of distributions on Œ0; 1�.
Specifically, if we take Pi 	 Beta.ai ; bi / with ai Cbi constant, then unconditionally
Yi has a beta-binomial distribution with

E.Yi / D mi	i

and

Var.Yi / D mi	i .1 � 	i /Œ1 C �.mi � 1/�: (9.4)

where 	i D ai =.ai C bi/ and � D 1=.ai C bi C 1/ is the additional dispersion
parameter. For applications where all of the mi are equal, the variance function
in (9.4) will be of the same form as the quasi-binomial in (9.3), although the
beta-binomial model differs in that it corresponds to a fully specified probability
distribution for which full maximum likelihood estimation is available. In the
following example we have mi varying from 2 to 44 and so the two approaches
will not be identical.

Example 3: Wolbachia bacteria
The bacteria Wolbachia is commonly found in various insect species and has
the ability to change reproductive aspects of its host. When it infects the wasp
Trichogramma galloi (Hymenoptera: Trichogrammatidae) it is known to induce
thelythokous parthenogenesis, i.e., only females are produced from unfertilized
eggs. In Brazil, Trichogramma galloi is the most important egg parasitoid of
Diatraea saccharalis (Lepidoptera: Crambidae), a sugarcane pest. Souza (2011)
conducted an experiment to assess the effects of Wolbachia on the viability of T.
galloi eggs. Around 100 D. saccharalis eggs were offered to infected (C) or non-
infected (�) parasitoid couples or virgin females every day until the death of the
female. The parasitised eggs, (mi ), easily identifiable because they become dark,
were then kept on moist filter paper for 20 days when counts (yi ) were then made
of the number of eggs that had an orifice, which meant that an adult parasitoid
had emerged and thus the parasitoid was viable, see Table 9.6. Note that this is
an example of aggregated data as the number of parasitised eggs (mi ) is the sum
over the (unrecorded) numbers of eggs parasitised each day, and the lifespan of the
females also varied. This same aggregation process will also apply to the number of
viable parasitoids (yi ) and may contribute additional variability to the data.
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Table 9.6 Wolbachia bacteria data (table entries: viable/no. of parasitised eggs yi =mi )

Treatment

M CF C M CF � F C M �F C M �F � F �

28/35 30/38 11/13 14/15 22/25 20/27 4/4 2/12

16/26 21/35 12/13 5/7 28/37 3/9 12/12 2/9

13/17 22/27 11/13 21/22 30/30 19/21 5/6 4/6

16/16 20/28 17/18 2/2 34/39 26/33 11/12 3/15

25/30 17/22 3/8 4/4 10/14 14/22 2/2 3/18

25/28 23/23 8/8 10/11 27/33 21/27 7/7

13/21 26/29 11/13 15/15 9/16 22/44 4/5

14/21 13/17 7/7 10/14 22/22 27/28 5/6

18/18 12/18 12/13 26/34 34/38 7/9

36/36 27/34 19/20 28/33 25/25 8/14

14/29 23/23 16/17 43/43 23/26 3/13

28/30 18/18 14/14 37/37 17/28 5/6

32/32 27/28 8/10 39/39 21/21 6/8

31/31 16/17 37/37 16/16 8/14

27/27 8/9 27/27 6/13

8/10 13/14 4/11

5/6 24/27 4/5

Table 9.7 Analysis of deviance for the Wolbachia data, using a binomial logit model

Sources of variation df Deviance p-value X2 p-value

Treatments 5 109.00

Residual 100 435.08 < 0.01 386.61 < 0.01

We begin as before by fitting a standard binomial logit model.

model1 <- glm(cbind(y, m-y) ~ treat, family=binomial)
anova(model1, test="Chisq")
sum(resid(model1, ty="pearson")^2)

The resulting analysis of deviance in Table 9.7 shows a clear lack of fit
even for the full model. This is confirmed by looking at the half-normal plot in
Fig. 9.4a, where the deviance residuals are completely outside of the simulated
binomial envelope. Turning to a quasi-binomial model the estimated overdispersion
parameter is Q� D 386:61=100 D 3:866. The treatment factor is still significant with
an F -value of 5:64 (109:0=5=3:866), however the half-normal plot in Fig. 9.4b still
indicates an inappropriate model.

We now consider fitting the beta-binomial model making use of the aods3
package (Lesnoff and Lancelot 2013).
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Fig. 9.4 Wolbachia bacteria data – Half-normal plots of deviance residuals for (a) binomial,
(b) quasi-binomial and (c) beta-binomial logit models with different fitted probabilities for each
treatment

Fig. 9.5 Wolbachia bacteria
data – Plot of the fitted
proportions with approximate
95 % confidence intervals,
using a beta-binomial logit
model
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require(aods3)
model3<-aodml(cbind(y, m-y) ~ treat, family=’bb’,

data=wolbachia)
summary(model3)
hnp(model3)

The estimated value for � is O� D 0:18 and the half-normal plot presented in Fig. 9.4c
looks reasonable and suggests that the beta-binomial model is to be preferred over
the quasi-binomial model. The latter has constant overdispersion while for the beta-
binomial the additional variability depends upon the number of parasitised eggs, mi .

Working from the beta-binomial model we can now consider testing for any
treatment difference. A plot of the fitted proportions from the treatment factor model
with associated approximate 95 % confidence intervals is given in Fig. 9.5. This
suggests that the only real difference here is for the F � group of non-infected
virgin females, whose eggs are less viable than those from females receiving the
other treatments.

To explore this formally, we can fit nested submodels firstly grouping the first five
treatments to contrast them against the F � group (most easily done by using a single
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0=1 dummy variable for the F � group), and then the null no treatment difference
model. One issue to consider here is the estimation of the overdispersion parameter
� and there are two strategies that can be used: (i) re-estimating � in each model, or
(ii) fixing � at the value from the full treatment model. Strategy (i) corresponds to
standard maximum likelihood estimation of the different beta-binomial models and
comparisons can be made using likelihood ratio tests. However, a possible difficulty
with this is that the estimate of the � parameter can increase and absorb treatment
differences into the extravariability of the beta-binomial model. Strategy (ii) is more
akin to the usual approach in regression and analysis of variance where the variance
is estimated from some full model (or from replication) and is what was done for
the quasi-binomial model. Adopting this strategy here the change in deviance (�2�
log-likelihood) for treatment of 20.83 on 5 df decomposes into 1.96 on 4 df for
the first 5 treatments and 18.67 on 1 df for the F � group. The conclusion is clear
that only the F � group is different, even allowing for extravariation. In this case
strategy (i) gives identical conclusions with the overall treatment deviance of 18.31
on 5 df decomposing into 1.95 and 16.36, respectively. The � estimates change
very little, only increasing to 0.23 for the null model – here there are sufficient
replicates to constrain the estimate of �. Note that performing the same tests with
the inappropriate binomial model would lead to the erroneous conclusion that there
are significant differences between many of the treatments.

9.2.2.3 Logistic/Probit-Normal

The beta-binomial model assumes that the Pi s have a beta distribution. Another pos-
sibility is to assume that the linear predictor, �i , has some continuous distribution.
If this distribution is taken to be in the location-scale family then this corresponds
to including an additive random effect in the linear predictor and we can write

�i D xT
i ˇ C �Zi

where Zi is assumed to be from the standardized form of the distribution. Most
commonly Zi is taken to be normally distributed leading to the logistic-normal
and probit-normal models. The probit-normal has a particularly simple form as the
individual binary responses can be considered as arising from a threshold model for
a normally distributed latent variable, see McCulloch (1994).

The model for Y again has

E.Yi / D mi	i

and the variance can be approximated by

Var.Yi / � mi	i .1 � 	i /Œ1 C �2.mi � 1/	i.1 � 	i /�: (9.5)
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Williams (1982) refers to this as a type III variance function (the beta-binomial
variance in (9.4) is similarly sometimes referred to as type II) and proposes a
quasi-likelihood type of estimation procedure that just depends upon these first two
moments and hence only on the variance, �2, of the observation level random effect.
By specifying the distribution for Zi , typically as normal, it is possible to use full
maximum likelihood estimation for ˇ and � and there are several R packages that
provide this option, here we will use lme4.

Example 4: Diaphorina citri mortality
The Citrus psyllid Diaphorina citri (Hemiptera: Psyllidae) is a vector of Huang-
longbing, known as greening disease. An alternative to chemical control is to use
solutions of fungi conidia as a biological control strategy. D’Alessandro (2014,
unpublished data, private communication) conducted a completely randomized
experiment to assess how different conidia concentrations (104, 105, 106, 107 and
108 conidia.ml�1) of two fungi species, Beauveria bassiana and Isaria fumosorosea,
infected D. citri adults. Each experimental unit consisted of around 20 D. citri
adults, which were placed on Citrus limonia plants. The insects were pulverized
with the solutions and after 10 days the number of dead insects and dead insects due
to fungus infection were observed, see Table 9.8. Note that in this case the conidia
concentrations are obtained in successive dilutions and therefore small variations in
the number of conidia per ml may contribute additional variability to the data. Such
additional variability may be accounted for in the model by including an additive
random effect in the linear predictor.

We begin by fitting a standard binomial logit model with different dose-response
curves (using log(concentration)) for each species.

model1 <- glm(cbind(y, m-y) ~ lconc*species,
family=binomial)

anova(model1, test="Chisq")
sum(resid(model1, ty="pearson")^2)

Table 9.8 Diaphorina citri mortality data (table entries: dead due to fungus infection/no. of dead
insects, yi =mi )

Species Concentration (conidia/ml) Replicates

B. bassiana

104 3/19 6/10 0/19

105 2/15 2/3 1/10

106 6/14 5/18 10/16

107 10/17 6/15 9/13

108 14/16 12/16 12/13

I. fumosorosea

104 5/17 2/18 2/11

105 5/15 8/20 13/24

106 12/13 15/17 17/17

107 14/16 20/21 11/13

108 13/13 12/14 13/13
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Table 9.9 Analysis of deviance for the Diaphorina citri mortality data, using a binomial logit
model

Sources of variation df Deviance p-value X2 p-value

log(concentration) 1 128.14

Species 1 36.64

Species:log(concentration) 1 7.23 0.007

Residual 26 56.25 < 0.01 62.99 < 0.01
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Fig. 9.6 Diaphorina citri mortality data – Half-normal plots of deviance residuals for (a) binomial
and (b) quasi-binomial models and conditional residuals for (c) the logistic-normal model

The resulting analysis of deviance in Table 9.9 shows a clear lack of fit even for
the full model.

This is confirmed by looking at the half-normal plot in Fig. 9.6a, where most of
the deviance residuals are outside of the simulated binomial envelope. Turning to a
quasi-binomial model the estimated overdispersion parameter is Q� D 62:99=26 D
2:42. Now, the interaction factor is no longer significant with an F -value of 2:98

(7:23=1=2:42) on 1 and 26 df. The half-normal plot in Fig. 9.6b shows no evidence
of an inadequate model with all of the observed residuals lying within the simulated
envelope. However, a practical explanation for the extra-variation could be the
random variation of conidia concentration leading naturally to a logistic-normal
model. We now consider fitting this model making use of the lme4 package (Bates
et al. 2013).

require(lme4)
model3 <- glmer(cbind(y, m-y) ~ lconc*species + (1|ind),

family=binomial, data=fungi)
summary(model3)
hnp(model3)

The estimated value for � is O� D 0:33 and the half-normal plot presented in Fig. 9.6c
looks reasonable and suggests that the logistic-normal model is also an adequate
model to analyse this data set. The quasi-binomial model has constant overdisper-
sion while for the logistic-normal model the additional variability depends upon an
observation level random effect.
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Working from the logistic-normal model, we can now consider testing for
parallelism of the lines on the logistic scale. Here, again one issue to consider is the
estimation of the overdispersion parameter � and as for the beta-binomial model in
Sect. 9.2.2.2 there are two strategies that can be used: (i) re-estimating � in each
model, or (ii) fixing � at the value from the maximal model. Adopting strategy (i)
here the change in deviance (�2� log-likelihood) for parallelism is 3:38 on 1 df,
showing no strong evidence against a simpler adequate model. The � estimate for
the parallel lines model changes very little only increasing to 0.49.

model4 <- glmer(cbind(y, m-y) ~ lconc + species + (1|ind),
family=binomial, data=fungi)

anova(model4,model3)

Note that performing the same tests with the inappropriate binomial model would
lead to the erroneous conclusion that the distinct dose-response curves model is
necessary. A plot of the fitted proportions from the parallel lines model (on the logit
against log-dose scales) is given in Fig. 9.7.

An approximate way of calculating the lethal doses that kill 100 %p insects is to
use the expression

log10.LDp/ D
log p

1�p
� Ǒ

0

Ǒ
1

where Ǒ
0 and Ǒ

1 are, respectively, the estimated intercept and slope from the linear
predictor. For the D. citri mortality data, the median lethal doses are 104:84 and
106:25 conidia/ml, respectively, for I. fumosorosea and B. bassiana, showing that I.
fumosorosea is more than 106:25=104:84 � 25 times as potent as B. bassiana.

Fig. 9.7 Diaphorina citri
mortality data – Plot of the
fitted proportions, using a
parallel lines logistic-normal
model
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9.2.3 Zero-Inflated Models

In many entomological applications involving proportion data there is often an
excess of zero observations. This could be due to various reasons. Most commonly,
it may be the case that a subgroup of the individuals under study are incapable of
responding and so will always give a zero. This situation can be described by a two
component mixture model for the subgroup that always gives zero responses and the
subgroup that may, or may not, respond in the usual way for quantal responses – this
corresponds to the zero-inflated model described below. An alternative approach to
modelling data of this form is to use a two-stage model; one stage for division into
zero/non-zero data and the other for the response within the non-zero data – this is
sometimes referred to as a hurdle model and requires the use of a zero-truncated
distribution for the non-zero part.

To modify the basic binomial distribution to allow for extra zeros using a
zero-inflated binomial (ZIB) distribution, we augment the probability of zero by
a proportion ! giving

Pr.Yi D yi / D

8̂̂<̂
:̂

! C .1 � !/.1 � 	i /
mi y D 0

.1 � !/

 
mi

yi

!
	

yi

i .1 � 	i /
mi �yi yi D 1; : : : ; mi :

The mean is now E.Yi / D mi.1 � !/	i and the variance can be written as

Var.Yi / D .1 � !/
˚
mi 	i .1 � 	i / C !.mi 	i /

2
	

D mi .1 � !/	i f1 � .1 � !/	i g C mi	
2
i !.1 � !/.mi � 1/:

Since the latter term is non-negative, we see that, unless ! D 0, this model
is overdispersed compared to a binomial model, indeed, zero-inflation can be a
common source of observed overdispersion. In general, we could specify regression
models for both ! and 	 , although the simplest form of model takes ! to be
constant. There are some other obvious variants of this model that could be
considered, For example, in the counted proportion context we could also have
excess numbers of total response (m out of m), or of 1 out of m responses, and
similarly modified models can be used. We can also consider combining zero-
inflation with other models, such as the beta-binomial, etc., to give zero-inflated
overdispersed binomial models.

Example 5: Biological control of Diatraea saccharalis
Applied biological control is an important branch of entomology, which seeks
methods to control pests without damage to the environment and the ecosystem,
using natural enemies of the pest (parasitoids and/or predators). Sugarcane borer
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Table 9.10 Trichogramma galloi DA biotype data (table entries: no. of parasitised eggs out of
128, yi )

Number of females Replicates

2 0 0 0 0 0 50 65 30 62 48

4 0 0 0 0 0 0 0 62 3 1

8 0 0 0 0 0 49 19 22 51 65

16 0 0 0 0 0 57 35 52 37 58

32 0 0 0 0 0 120 90 86 102 95

64 0 0 0 0 0 0 57 77 105 99

128 0 0 0 0 38 21 82 42 90 81

(Diatraea saccharalis), the main pest in sugar cane cultivation in Brazil, has been
controlled using egg parasitoids, such as Trichogramma galloi. This requires large
numbers of parasitized eggs for inundative release in the sugarcane fields. As
part of a study on the efficient production of parasitized eggs, experiments were
conducted to compare two different T. galloi biotypes and to determine the optimal
number of females needed to maximize parasitized egg production. In a completely
randomized experiment, these two biotypes of the parasitoid, namely AA and DA,
were put to parasitize 128 eggs of Anagasta kuehniella (Lepidoptera: Pyralidae), an
economically suitable alternative host, using different numbers of female parasitoids
(2; 4; 8; : : : ; 128), with 10 replicates of each combination. The AA biotype was
adapted to the alternative host while the DA biotype was adapted to the natural
host, however, in the experiment, both were set to parasitize the alternative host.
The response variable is the number of parasitized eggs out of the 128 available, see
Table 9.10 for DA biotype data.

A plot of the observed proportions is given in Fig. 9.8 and shows that for DA
biotype there are large numbers of zero observations across the whole range of
different parasitoid numbers. The observed pattern of non-zero response for DA is
also rather unusual. Here to illustrate modelling of zero-inflated data we will restrict
our analyses to the DA biotype and to focus on the modelling of the zeros and the
overdispersion we will use the numbers of females as a 7-level factor in the model.
Further modelling might include using some smooth function over these parasitoid
numbers to determine the optimal value, see Vieira et al. (2000).

A binomial model is clearly inadequate here with a residual deviance of 4,045.9
on 63 df indicating huge overdispersion. This is confirmed by looking at the half-
normal plot in Fig. 9.9a. Using this model, it is suggested that the factor female is
significant, but this is based on a blatantly incorrect variance function. We can see
that the overdispersion may be due to the approximately 50 % of zero observations
at each level and also possibly greater than binomial variation for the non-zero
observations. We will now fit a range of models to explore these aspects. A simple
quasi-likelihood model has an estimated scale parameter Q� D 57:4 and the factor
female is now not significant, with an F -statistic of 1.56 on 6 and 63 df. However,
the half-normal plot of the deviance residuals shows that this simple overdispersion
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Fig. 9.8 Trichogramma
galloi biotype data – Plot of
observed proportions against
number of female parasites
(log2-scale) with jittering of
points: ı biotype AA,
� biotype DA
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Fig. 9.9 Trichogramma galloi DA biotype data – Half-normal plots of deviance residuals for (a)
binomial, (b) quasi-binomial and (c) beta-binomial models

model fails to capture the true pattern of variation here, see Fig. 9.9b. Fitting a beta-
binomial model, the results are similar (see Fig. 9.9c) with the same conclusion
about the non-significance of female. This is as we might expect since the sample
sizes mi D 128 for all of the observed proportions and so the beta-binomial
overdispersion, 1 C �.mi � 1/, is also constant, although the details of the fits differ
as the beta-binomial uses full maximum likelihood.

Turning to zero-inflated models, we initially fit a zero-inflated binomial model
with constant zero-inflation using the R package glmmADMB (Skaug et al. 2013).

require(glmmADMB)
fase2s1.ZIB <- glmmadmb(cbind(peggs, 128-peggs)

~factor(female),
family="binomial", zeroInflation=T,
data=fase2s1)

summary(fase2s1.ZIB)

This model gives an estimate for the proportion of extra-zeros of O! D 0:61.
The change in deviance from the binomial model is 3,599.6 on 1 df, showing that
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the zeros accounted for much of the lack of fit of the binomial model. However, the
residual deviance is 446.3 on 62 df, which still suggests considerable overdispersion.
The package glmmADMB also allows the fitting of a zero-inflated beta-binomial
distribution.

fase2s1.ZIBB <- glmmadmb(cbind(peggs, 128-peggs)
~factor(female),
family="betabinomial", zeroInflation=T,
data=fase2s1)

summary(fase2s1.ZIBB)
anova(fase2s1.bin,fase2s1.ZIB,fase2s1.ZIBB)
anova(fase2s1.bin,fase2s1.bb,fase2s1.ZIBB)

This gives a further reduction in the residual deviance of 231.4 on 1 df, showing
evidence of some additional overdispersion. However, the estimate of the zero-
inflation parameter is reduced to O! D 0:51. Note that the overall change in deviance
of 3,831 on 2 df from the binomial to the zero-inflated beta-binomial model does
not give a unique decomposition into zero-inflation and overdispersion, as is made
clear in the two different analysis of deviance tables. Indeed, going from a binomial
to a beta-binomial model gives a deviance change of 3,769.4 on 1 df, leaving only
61.6 on 1 df for the additional effect of zero-inflation. This makes clear the links
between these two aspects; the presence of zero-inflation results in overdispersion
and overdispersion models can often accommodate an excess of zeros, however, it is
possible for both features to be present. In this extended model, the factor female
remains significant with a deviance of 34.6 on 6 df (compared to a deviance of
536.9 for the original binomial model), although much of the variation between
the different levels would no longer be significant and a simpler (smooth) model
could be considered.

While, in principle, half-normal plots could be used to check the fit of these com-
plex models, simulating from something like a zero-inflated beta-binomial model
can lead to datasets for which the fitting algorithm fails and hence construction of
the simulated envelope can be problematic. Refinements to avoid these difficulties
are the subject of ongoing work.

9.3 Models for Count Data

The other form of data frequently collected in entomology is that of a simple count,
with common examples being the number of insects on plants or in fixed areas, and
the number of eggs laid. Again, interest may focus in how these counts vary under
different treatments, for different host plants, in different environments, etc. Specific
examples include:

– Ecological diversity studies using numbers of insect species in quadrats at
different locations;
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– Physiology experiments, assessing fecundity using number of eggs laid per
female;

– Behavioural studies to analyse reproduction patterns using number of matings;
– Biological control studies using numbers of attacks by predators on prey.

The simplest underlying process assumes that counts arise at some average
rate with the variability in the observed counts coming from independent, random
variation over time, space, individual, etc. The response variable of interest is now
simply an observed count, y, and the Poisson distribution provides a starting point
for data analysis.

9.3.1 Poisson Models

For counts over time or space a very simple model is to assume that events happen
independently, singly, and at random at some constant underlying rate. Considering
events over time, if we write � for the average rate per unit time, then, under these
assumptions, the distribution for the number of events, Y.t/, in an interval of length
t is Poisson.�t/ with probabilities

Pr.Y.t/ D y/ D e��t .�t/y

yŠ
; y D 0; 1; 2; : : : : (9.6)

The mean and variance are E.Y.t// D �t and Var.Y.t// D �t and are equal.
This is an important practical characterisation of the Poisson distribution and can
be checked empirically by assessing approximate equality of sample means and
variances. A similar model applies for counts over space, with the parameter �

giving the rate per unit area or volume.
In many simple applications, counts will be observed over identical time periods,

areas, etc. In this case, we can use a standard Poisson.�/ distribution for a count Y

with

Pr.Y D y/ D e���y

yŠ
; y D 0; 1; 2; : : : (9.7)

where � is the rate for the period/region of observation and we have

E.Y / D Var.Y / D �: (9.8)

This equality is often expressed in terms of the variance-to-mean-ratio, or index of
overdispersion, Var.Y /=E.Y /, which is 1 for the Poisson distribution. Of course, in
practice this is very restrictive and overdispersion in our counts, for reasons outlined
in Sect. 9.2, means that the Poisson distribution may not provide a good fit for most
real count data and we need to consider more general distributions with an index of
overdispersion greater than 1.
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To apply the Poisson distribution in a modelling framework, we proceed as for
the Binomial in Sect. 9.2.1. For a random sample of n counts Yi , i D 1; : : : ; n, with
possibly different underlying rates �i , we have Yi 	 Poisson.�i / where �i can be
modelled in terms of p observed explanatory variables x (again assumed to include a
constant term). Since the Poisson parameter �i is constrained to be positive (�i > 0)
the most widely used (canonical) link function for the Poisson distribution is the log
link, so the Poisson regression model specification is completed by taking

log �i D ˇT xi D �i

where ˇ is a vector of p unknown parameters.
Note that this model easily incorporates the possibility of counts being observed

over different times, areas, etc. Returning to the Poisson distribution for different
time intervals in (9.6), we have �i D �i ti where ti are the known periods of
observation and our regression model becomes

log �i D log.�i ti / D log.�i / C log.ti / D ˇT xi C log.ti / D �i

where the model ˇT xi is for the rates �i . The known ti ’s are included in the linear
predictor �i as a fixed term log.ti /, commonly referred to as an offset, and this
provides a natural and simple way of analysing rate data.

The deviance for the Poisson model is given by

DP D 2

nX
iD1

�
yi log

�
yi

O�i

�
� .yi � O�i /



where O�i , i D 1; 2; : : : ; n, are the fitted values for the model of interest. The
deviance DP can be viewed as a measure of goodness-of-fit of the fitted model with
p estimated parameters. For log-linear models (log link) which include an intercept,
the deviance reduces to

DP D 2

nX
iD1

�
yi log

�
yi

O�i

�

since the fitted model reproduces the overall total, i.e.
P

i O�i D P
i yi . The

alternative measure of overall fit, the Pearson X2 statistic, takes the familiar form

X2
P D

nX
iD1

.yi � O�i /
2cVar.Yi /

D
nX

iD1

.yi � O�i /
2

O�i

:

For large expected counts (�i ), DP and X2
P are equivalent and under the null

hypothesis of an adequate model both have an approximate �2 distribution on n� p
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df. As the Poisson log-linear model is a standard generalized linear model, model
comparisons and model checking proceed in the same way as for the Binomial
distribution and will be illustrated in the following examples.

Example 6: Sitophilus zeamais progeny
We return to the experiment described in Example 2 on the maize pest Sitophilus
zeamais. Petri dishes containing 10 g of corn were treated with extracts prepared
with different parts of the plant Annona mucosa (seeds, leaves and branches) at a
concentration of 1,500 mg/kg or just water (control), using a completely randomized
design with 10 replicates. Then 20 S. zeamais adults were placed in each Petri dish
and the focus now is on the numbers of emerged insects (progeny) after 60 days, see
Ribeiro et al. (2013). The data are given in Table 9.11.

We begin by fitting a standard Poisson log-linear model with the different extracts
and inspect the analysis of deviance and goodness-of-fit given in Table 9.12.

model1 <- glm(y ~ extract, family=poisson)
anova(model1, test="Chisq")
hnp(model1, pch=4, main="Poisson: log-linear",

xlab="Half-normal scores", ylab="Deviance
residuals")

Here, there is clear evidence from the residual deviance and X2 values that the
model does not fit – the replicates are more variable than we would expect under
a Poisson model. This can also be seen in the half-normal plot of the deviance
residuals shown in Fig. 9.10a. As for proportion data, we will turn to look at models
to be used to analyse data where the assumption of the Poisson model is less
satisfactory and consider approaches to allowing for overdispersion.

Table 9.11 Sitophilus zeamais data (table entries: no. of emerged insects, yi )

Treatment Replicates

Leaf extract 19 20 36 32 18 47 38 31 32 40

Branch extract 20 34 41 29 31 15 31 33 45 20

Seed extract 4 0 1 1 1 0 2 0 2 0

Control 35 26 41 34 23 29 39 34 16 38

Table 9.12 Analysis of deviance for the Sitophilus data, using a Poisson log-linear model

Sources of variation df Deviance p-value X2 p-value

Extracts 3 444.68

Residual 36 89.77 < 0.01 85.15 < 0.01
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Fig. 9.10 Sitophilus zeamais progeny data – Half-normal plots with simulated envelopes of
deviance residuals for (a) Poisson and (b) quasi-Poisson log-linear models

9.3.2 Overdispersion Models

Models for overdispersed count data move away from the strict Poisson assumption
of equal mean and variance (index of dispersion D 1). There is a long history
of accounting for overdispersion in count data, including Breslow (1984) and
Lawless (1987) and more general discussions are also to be found in McCullagh and
Nelder (1989) and Lindsey (1995). We will begin by considering a quasi-likelihood
approach to accommodate increased variability.

9.3.2.1 Quasi-likelihood

As for the quasi-binomial model in Sect. 9.2.2.1, here a constant overdispersion
model replaces (9.8) by

Var.Yi / D ��i : (9.9)

and the overdispersion parameter factor � .>1/ indicates that the increased variation
for observation yi does not depend on the �i . Again this is referred to as the
heterogeneity factor model, see Finney (1971).

Estimation of the regression parameters ˇ using maximum quasi-likelihood
(Wedderburn 1974) proceeds in the same way as for the quasi-binomial model and
for this constant overdispersion model the estimates Ǒ are identical to those from the
Poisson model. (Again the key mean-variance relationship is of the same form for
the Poisson and quasi-Poisson models, up to the constant scale factor �.) However,
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the assumed greater variability in (9.9) inflates the standard errors of Ǒ by a factor ofp
� compared to those of the Poisson (� D 1) model. For the overdispersed Poisson

model (9.9) we estimate � using

Q� D X2
P

n � p
D 1

.n � p/

nX
iD1

.yi � O�i /
2

O�i

and use this estimated value to obtain the standard errors of Ǒ .
We also need to take account of our assumed extra-variability in the assessment

of effects using analysis of deviance tables and again use F -tests for scaled
deviances (for this simple constant overdispersion model these are just the Poisson
model deviances divided by the estimated scale parameter Q�).

Example 6 (ctd): Sitophilus zeamais data
For the Sitophilus zeamais data fitting a quasi-Poisson model the estimated value
of � is Q� D 2:36 (D 89:77=36 D X2

P =df). This is easily obtained in R using
the quasipoisson family in glm and the analysis of deviance with associated
F -tests is given by anova.

model2 <- glm(y ~ extract, family=quasipoisson)
summary(fm2)$dispersion
[1] 2.365385
anova(model2, test="F")

df Deviance Resid. df Resid. Dev F Pr(>F)
NULL 39 534.44
extract 3 444.68 36 89.77 62.664 2.303e-14 ***

As for the quasi-binomial model in Sect. 9.2.2.1, there is no overall goodness-
of-fit test available, as the residual variation has been used to estimate �. However,
half-normal plots can still be used with a simulated envelope that takes account
of the extravariability assumed in (9.9). The plot presented in Fig. 9.10b shows no
strong evidence of an inadequate model, with most of the observed residuals lying
within the simulated envelope.

The F -test for extracts has an observed value of 62.66, which is large when
compared to F3;36I0:05 D 2:87, and so we reject the null hypothesis of no extract
effect, even allowing for additional variability. To further explore the differences
between extracts, we can consider the parameter estimates and standard errors as
given in Table 9.13, where we see the same estimates for the Poisson and quasi-
Poisson models and standard errors scaled by

p
2:36 D 1:54.

In Table 9.13, the parameter estimates and standard errors give us comparisons
between extracts and the default baseline, extract1 the leaf extract. Here, as in
Example 2, it might have been more sensible to use the control group as the baseline,
which could be done by redefining the levels of the factor extract. However, for
summary purposes and to allow for multiple comparisons between the treatments,
we will obtain the fitted linear predictors and standard errors for each of the four
treatments.
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Table 9.13 Sitophilus
zeamais progeny data:
parameter estimates, standard
errors

Poisson Quasi-Poisson
Source Estimate se Estimate se

(Intercept) 3.4436 0.0565 3.4436 0.0869

extract2 �0.0458 0.0809 �0.0458 0.1244

extract3 �3.3483 0.3068 �3.3483 0.4718

extract4 0.0064 0.0798 0.0064 0.1227

Fig. 9.11 Sitophilus zeamais
progeny data – Plot of fitted
counts with quasi-Poisson
confidence intervals
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summary(update(model2,.~.-1))
Coefficients:

Estimate Std. Error
extract1 3.44362 0.08693
extract2 3.39786 0.08894
extract3 0.09531 0.46371
extract4 3.44999 0.08666

These estimates, O�j ; j D 1; : : : ; 4 can then be converted back to the mean scale
to give fitted counts, exp. O�j /. Interval estimates can be constructed by first forming
intervals on the linear predictor scale (approximately O�˙2�se. O�/, or refinements of
this such as replacing 2 by the appropriate t-value and possible multiple comparison
type corrections) and transforming back to the mean scale. A plot of the fitted counts
(here identical to the overall observed means for each extract) with approximate
95 % quasi-Poisson confidence intervals is given in Fig. 9.11. It is clear that the
extract prepared with seeds of Annona mucosa gives better protection against S.
zeamais than the other extracts, which are each no better than the non-active control.

9.3.2.2 Negative Binomial

An alternative approach to account for overdispersion in the Poisson model is to
adopt a two-stage model, allowing the Poisson mean, Ti , to vary according to some
distribution. We can represent this by writing the conditional distribution of Yi given
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its mean, Yi jTi 	 Poisson.Ti /, and assuming that the Ti s are now themselves
random variables with some distribution. If we treat Ti as continuous, since it must
also be positive, a natural and flexible family of distributions on .0; 1/ is given
by the gamma distribution. Specifically, if we take Ti 	 Gamma.
; �i /, i.e. fix the
shape parameter 
 , then unconditionally Yi has a negative binomial distribution with
E.Yi / D 
=�i D �i and

Var.Yi / D �i C �2
i =
 D �i .1 C �i =
/: (9.10)

This is sometimes referred to as Negative Binomial type II to distinguish it
from negative binomial distributions with different mean-variance relationships. An
advantage of using a fixed value of 
 is that the resulting distribution for Yi is
in the exponential family and so we are still in the generalized linear modelling
framework.

Note that by assuming a different form for the gamma mixing distribution we
can obtain different overdispersed Poisson-Gamma models. For example, taking a
Gamma.
i ; �/ distribution for Ti leads to

Var.Yi / D �i C �i =� � ��i ; (9.11)

the constant overdispersion model, referred to as Negative Binomial type I. How-
ever, the resulting distribution for Yi is not in the exponential family and so will not
be considered here; see Nelder and Lee (1992) for details of maximum likelihood
estimation.

Example 7: Diaphorina citri oviposition
In an experiment to assess the effect of three agricultural oils on the oviposition of
Diaphorina citri, 70 Orange Jessamine (Murraya paniculata) plants were sprayed
with solutions of the mineral oils Oppa and Iharol, and the vegetable oil Nortox.
The experiment used the oils in concentrations of 0.5 % and 1.0 % and a control of
plain water set out in a completely randomized design with ten replicates. Following
treatment, when the plants were dry, ten pregnant females of D. citri were released
on each plant. After 5 days, the insects were removed and the total number of
eggs on each plant was observed, see Amaral et al. (2012). The data are given
in Table 9.14. This is another example of aggregated data as the number of eggs
(yi ) is the sum over the (unrecorded) numbers of eggs deposited each day and
the possibility of day to day variation may contribute additional variability to the
recorded counts.

We begin as before by fitting a standard Poisson log linear model.

model1 <- glm(y ~ oil, family=poisson)
anova(model1, test="Chisq")
sum(resid(model1, ty="pearson")^2)

The resulting analysis of deviance in Table 9.15 shows a clear lack of fit even for
the full model.
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Table 9.14 Diaphorina citri oviposition data (table entries: no. of eggs, yi )

Treatment Replicates

Control 137 20 105 1 102 10 61 148 69 56

Oppa (0.5 %) 127 124 121 1 15 131 1 69 68 49

Oppa (1.0 %) 11 49 67 2 43 38 25 67 12 82

Iharol (0.5 %) 159 129 67 24 12 112 46 17 51 3

Iharol (1.0 %) 25 16 7 53 75 1 53 5 101 151

Nortox (0.5 %) 114 29 125 117 13 86 15 43 210 11

Nortox (1.0 %) 1 3 4 12 3 12 1 3 17 1

Table 9.15 Analysis of deviance for the Diaphorina citri oviposition data, using a Poisson log-
linear model

Sources of variation df Deviance p-value X2 p-value

Treatments 6 944.35

Residual 63 2,523.10 <0.01 2,290.85 <0.01

This is confirmed by looking at the half-normal plot in Fig. 9.12a, where the
deviance residuals are completely outside of the simulated Poisson envelope.
Turning to a quasi-Poisson model the estimated overdispersion parameter is Q� D
2;290:85=63 D 36:36. The treatment factor (oil) is still significant with an F -
value of 4:33 (944:35=6=36:36). However, the half-normal plot in Fig. 9.12b still
indicates a possibly inappropriate model with many of the residuals lying outside of
the quasi-Poisson envelope and the noticeable curvature of the observed residuals
makes it clear that we do not have constant overdispersion here.

We now consider fitting the negative binomial model making use of the MASS
package.

require(MASS)
model3 <- glm.nb(y ~ oil)
summary(model3)

The estimated value for 
 is O
 D 1:09 .s:e: 0:18/ and implies considerable
overdispersion. The half-normal plot presented in Fig. 9.12c looks reasonable and
suggests that the negative binomial model is to be preferred over the quasi-Poisson
model. The latter has constant overdispersion, while for the negative binomial the
additional variability depends upon the mean number of eggs (�i ), as shown in the
variance expression (9.10), and is better at capturing the observed overdispersion.

Working from the negative binomial model we can now consider testing for any
treatment difference. A plot of the fitted means from the treatment factor model
with associated approximate 95 % confidence intervals is given in Fig. 9.13. This
suggests that the only real difference here is for Nortox at a 1 % concentration,
which is more effective than the other treatments at inhibiting oviposition.

To explore this formally, we can fit nested submodels. We begin by grouping
the first six treatments to contrast them against Nortox at a 1 % concentration, and
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Fig. 9.12 Diaphorina citri oviposition data – Half-normal plots of deviance residual for (a)
Poisson, (b) quasi-Poisson and (c) negative binomial log-linear models
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then fit the null model of no treatment difference. One issue to consider here is the
estimation of the overdispersion parameter 
 and, as for the beta-binomial model
in Sect. 9.2.2.2, there are two strategies that can be used: (i) re-estimating 
 in each
model, or (ii) fixing 
 at the value from the full treatment model. Fixing 
 D O
 D
1:09 (strategy (ii)) the change in deviance (�2� log-likelihood) for treatment of
32.25 on 6 df decomposes into 3.30 on 5 df for the first 6 treatments and 28.95 on
1 df for Nortox at 1 % concentration. The conclusion is clear that only 1 % Nortox is
different, even allowing for the extravariation of the negative binomial model. In this
case strategy (i) gives the same conclusions with the overall treatment deviance of
27.40 on 6 df decomposing into 3.23 and 24.17, respectively. The 
 estimates change
little with a value of 0.78 for the null model – this smaller value indicates greater
overdispersion for this constant mean model, which is to be expected as some of the
variation between treatments has been accounted for by additional overdispersion.
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Note that performing the same tests with the inappropriate Poisson model would
lead to the erroneous conclusion that there are significant differences between many
of the treatments.

9.3.2.3 Poisson-Normal

We can also consider extending the Poisson model by including a random effect
in the linear predictor. Indeed, the negative binomial model can be viewed in this
way by the addition of a log-gamma random effect. However, since we may think of
this additional random effect as a combination of many unexplained things, it may
be natural to assume that it has a normal distribution. Taking a Poisson log-linear
model and a normally distributed random effect leads to the Poisson-normal model,
see Hinde (1982). The model can be specified as

Yi jZi 	 Poisson.�i / with log �i D xT
i ˇ C �Zi

where Zi 	 N.0; 1/. This unfortunately has no closed form for the distribution of
Yi . Using standard results on conditional moments, we obtain

E.Yi / D exT
i ˇC 1

2 �2 WD �i

Var .Yi / D exT
i ˇC 1

2 �2 C e2xT
i ˇC�2

.e�2 � 1/ D �i C k0�2
i ;

which is the same form of quadratic variance function as for the negative binomial
distribution. In fact, with a log-link function and an additive continuous random
effect in the linear predictor, we always obtain a variance function of approximately
this form, see Nelder (1985). Because of the identical forms of variance function,
approximate quasi-likelihood estimates are the same for both the negative binomial
and Poisson-normal models. However, full maximum likelihood estimates will
differ; see Hinde (1982) for details of maximum likelihood estimation for the
Poisson-normal model based on using Guassian-quadrature to integrate over the
random effect.

Example 8: Coffee berry borer trapping
The coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae), is a major
pest of commercial coffee. The insect directly attacks the coffee fruit in development
causing severe losses in bean production and quality. The wingless male stays inside
the fruit during its entire life cycle. The females, after being fertilized, lay some of
their eggs and in adequate environmental conditions (low atmospheric pressure)
leave the fruit to form another colony in a different fruit. Behavioural aspects of the
pest may be taken into account to develop alternative control strategies for pesticide
application. For example, it is known that this beetle is attracted by ethanol and by
the color red. To explore this, Mota (2013) conducted an experiment randomizing
three types of traps (“SF”, “F”, “CV”) in each of four equidistant lines (blocks) of a
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Table 9.16 Coffee berry borer trapping data (table entries: no. of trapped insects, yi )

Block I Block II Block III Block IV
Week SF F CV SF F CV SF F CV SF F CV

1 5 22 126 55 57 95 15 19 166 9 59 99

2 2 1 6 1 4 11 1 3 25 0 1 9

3 1 8 39 5 3 113 1 8 22 1 10 110

4 5 14 65 8 25 80 7 28 258 58 38 95

5 5 4 70 8 16 42 8 17 149 45 9 24

6 32 36 169 55 61 163 43 56 551 94 68 171

7 15 11 31 11 9 24 0 35 61 6 1 8

8 57 104 110 38 57 150 37 23 230 29 98 148

9 36 28 56 10 19 116 3 36 103 15 16 83

10 5 17 96 1 5 217 12 67 49 4 5 212

11 5 5 14 3 4 85 0 22 10 4 1 67

12 16 21 134 41 19 176 4 54 72 6 10 353

13 2 4 26 4 5 46 0 16 9 3 10 86

14 0 0 12 0 2 27 4 8 17 5 3 29

15 0 2 5 1 0 11 0 2 2 0 0 7

16 1 4 6 3 2 22 1 1 2 2 2 6

17 0 0 3 1 1 16 1 2 5 0 1 14

18 0 0 4 0 3 3 0 1 0 1 2 4

19 3 0 4 0 1 3 0 2 0 0 2 3

20 17 7 77 26 25 246 4 57 40 26 6 66

21 5 3 12 9 0 28 0 25 8 8 5 15

22 4 8 7 5 10 31 3 17 4 9 2 37

23 0 3 17 0 0 15 3 2 47 0 4 59

24 10 0 10 4 3 6 8 3 40 0 4 53

coffee field. Each week, over a 24 week period, the insects were removed from the
traps and counted. The data is presented in Table 9.16 and it is clear from Fig. 9.14
that the “CV” type trap collects more insects than the other two types.

We begin by fitting a standard Poisson log-linear model with the factors block,
trap and week as fixed effects and inspect the analysis of deviance and goodness-of-
fit for the full model given in Table 9.17.

model1 <- glm(count ~ block + trap * factor(week),
data=trap.data, family=poisson)

anova(model1, test="Chisq")
sum(resid(model1, ty="pearson")^2)

Here, there is clear evidence from the residual deviance and X2 values that the
model does not fit – the replicates are more variable than we would expect under
a Poisson model. This can also be seen in the half-normal plot of the deviance
residuals shown in Fig. 9.15a, where the deviance residuals are completely outside
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Table 9.17 Analysis of deviance for the coffee berry borer trapping data, using a Poisson log-
linear model

Sources of variation df Deviance p-value X2 p-value

Block 3 243.6

Trap 2 5,721.4

Week 23 8,539.4

Week:Trap 46 454.3

Residual 213 2,729.5 <0.01 2,695.7 <0.01
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Fig. 9.15 Coffee berry borer trapping data – Half-normal plots of deviance residual for (a) Poisson
and (b) quasi-Poisson models and conditional residuals for (c) the Poisson-normal model
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of the simulated Poisson envelope. Turning to a quasi-Poisson model the estimated
overdispersion parameter is Q� D 2;695:7=213 D 12:65 and the interaction is no
longer significant with an F -value of 0:78 (454:3=46=12:65). However the half-
normal plot in Fig. 9.15b suggests that the constant overdispersion assumption is
inappropriate.

We now consider fitting a Poisson-normal model making use of the R package
lme4. For these data we can think of including two normal random effects, one
at trap-block combination level (Zij 	 N.0; �2

Z/) to account for the correlation
between counts taken on the same trap and block over time and another at
observation level (Wijk 	 N.0; �2

W /) to model overdispersion. These two random
effects will account for part of the variability caused by environmental conditions.

z <- factor(c(rep(1:12,each=24)))
w <- factor(1:nrow(trap.data))
model3 <- glmer(count ~ block + trap*factor(week)

+ (1|z) + (1|w), family=poisson,
data = trap.data,

control=glmerControl(optCtrl=list
(maxfun=50000)))

The estimated values for �2
Z and �2

W are O�2
Z D 0:0377 and O�2

W D 0:3270.
The half-normal plot presented in Fig. 9.15c looks reasonable and suggests that the
Poisson-normal model is adequate to analyse this data set.

Working from the Poisson-normal model, we now consider testing for the trap by
week interaction. Here, as for the logistic-normal model in Sect. 9.2.2.3, we proceed,
using strategy (i), re-estimating �2

Z and �2
W .

model4 <- glmer(count ~ block + trap + factor(week)
+ (1|z) + (1|w), family=poisson, data
= trap.data) anova(model3,model4)

The change in deviance for no interaction effect is 60:84 on 46 df, showing no
evidence of a significant effect, although this value also reflects the change in the
estimates O�2

Z D 0:0343 and O�2
W D 0:4323 and the extra dispersion associated

with the increased value for �2
W may have accounted for some of the interaction

variation. The half-normal plot, not presented here, indicates that this is also an
adequate model fit. Testing now for no trap effect the change in deviance is 31:69

on 2 df, showing evidence of a significant effect of traps, and note that this value also
reflects the change in the variance estimates O�2

Z D 0:8485 and O�2
W D 0:4322 with

�2
Z now much larger and also accounting for some of the between trap variation. So

clearly we need to include trap in our model. A plot for the average predicted and
observed values from the additive model is given in Fig. 9.16. Figure 9.17 shows the
averages of the fitted values for traps with approximate 95 % confidence intervals
and suggests that the only real difference here is for trap “CV” which collects more
insects.
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Fig. 9.16 Coffee berry borer
trapping data – Plot of
average predicted and
observed counts over the
24 weeks, using a
Poisson-normal model
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9.3.3 Zero-Inflated Models

As for proportion data in Sect. 9.2.3, count data often show a higher incidence of
zero counts than would be expected if the data were Poisson distributed, see Ridout
et al. (1998). To modify the basic Poisson distribution to allow for extra zeros using
a zero-inflated Poisson (ZIP) distribution, we augment the probability of zero by a
proportion ! giving

Pr.Y D y/ D

8̂<̂
:

! C .1 � !/e�
 y D 0

.1 � !/
e�
 
y

yŠ
y D 1; 2; : : :

The mean is now � D E.Y / D .1 � !/
 , while the variance is

Var.Y / D .1 � !/
.1 C !
/ D � C �2 !

.1 � !/
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which is greater than �, unless ! D 0, and has the same quadratic form as the
negative binomial and Poisson-normal variances. In this sense we may think of
it as a model for overdispersed count data, but data in which the overdispersion
arises in a very specific way, through an excess of zeros. Zero-inflated forms of
other count distributions, such as the negative binomial, can be defined similarly.
For zero-inflated models it is also possible to include random effects in the linear
predictor to account for overdispersion, correlation between measurements due to
cluster sampling, longitudinal data, etc. As an alternative to zero-inflated models
we can also consider the two-part hurdle model, with a logistic model for the
occurrence/non-occurrence of zeros and a zero-truncated model for the non-zero
counts.

In R, some of those models can be fitted using different packages as follows:

– pscl (Zeileis et al. 2008) allows the fitting of zero-inflated and hurdle Poisson
and negative binomial models with regression models for both components, but
without additional random effects;

– glmmADMB (Skaug et al. 2013) allows the fitting of mixed Poisson and negative
binomial models, with constant zero-inflation;

– gamlss (Rigby and Stasinopoulos 2005) includes the fitting of mixed Poisson
and negative binomial models, with zero-inflation modelled with covariates.

With regression modelling of both the core model linear predictor and, possibly,
also of the zero-inflated and overdispersion parameter, these models can provide
a flexible framework, but their application is not without problems, both in terms
of model fitting and inference. As we saw with the zero-inflated overdispersed
binomial model, there can be a substantial trade-off between zero-inflation and
overdispersion making such models difficult to interpret.

9.4 Discussion

The aim of this chapter has been to demonstrate the utility of generalized linear
models as the basis of a coherent and unified framework for the analysis of various
types of entomological data. However, as we have seen, the core binomial and
Poisson models for proportion and count data, respectively, are rarely adequate
for data as encountered in practice, due to the presence of additional variability.
Extensions to these models have been considered to allow for both structured and
unstructured components of extravariation, including the presence of additional
zeros. The basic ideas used to extend our core models can be further combined
and generalized but the model fitting principles and approach to data analysis stay
essentially the same, albeit with further levels of complication. We have tried to
indicate some of the range of software available to fit these models, specifically
in terms of R packages, although similar extended functionality exists in many
other statistical software systems, such as SAS, Stata and Genstat. However, while
we intended to show the practicising entomologist how to apply some of these
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models, it is perhaps clear that it is not always straightforward – consultation and
collaboration with a statistician may well be necessary for more complex datasets
and analyses, most usefully at the beginning when designing the experiment. A
completely different approach to the modelling discussed here would be through
Bayesian statistical modelling and MCMC (Markov Chain Monte Carlo). We intend
to present this in a future review chapter or article.
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