
Technical Dependency Challenges

in Large-Scale Agile Software Development

Nelson Sekitoleko1, Felix Evbota1, Eric Knauss1, Anna Sandberg2,
Michel Chaudron1, and Helena Holmström Olsson3

1 Department of Computer Science and Engineering
Chalmers, University of Gothenburg

nellysek@gmail.com, gusevbfe@student.gu.se, eric.knauss@cse.gu.se
2 Ericsson AB

3 Malmö University

Abstract. This qualitative study investigates challenges associated with
technical dependencies and their communication. Such challenges fre-
quently occur when agile practices are scaled to large-scale software de-
velopment. The use of thematic analysis on semi-structured interviews
revealed five challenges: planning, task prioritization, knowledge shar-
ing, code quality, and integration. More importantly, these challenges
interact with one another and can lead to a domino effect or vicious
circle. If an organization struggles with one challenge, it is likely that
the other challenges become problematic as well. This situation can have
a significant impact on process and product quality. Our recommenda-
tions focus on improving planning and knowledge sharing (with practices
such as scrum-of-scrums, continuous integration, open space technology)
to break the vicious circle, and to reestablish effective communication
across teams, which will then enable large-scale companies to achieve
the benefits of large-scale agility.

Keywords: Technical dependencies, Large-scale agile, Cross-Functional
Teams (XFT), Qualitative research.

1 Introduction

Due to attractive characteristics such as flexibility, responsiveness and team
empowerment, agile development methods have been increasingly adopted by
large-scale development organizations. In emphasizing the use of iterations and
development of small features, agile methods have increased the ability for soft-
ware development companies to accommodate changing customer requirements
and fast changing market needs [1]. In particular, agile methods have shown
their capacity in empowering development teams, improving their relationship
to customers, and allowing an increased focus on informal communication and
coordination rather than focusing on formal communication and documentation
of their practices [2]. As one of its basic principles, agile development provides
simple, rapid, and incremental solutions to big problems by breaking down com-
plex features into smaller ones [3]. This allows for small, cross-functional teams to

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 46–61, 2014.
c© Springer International Publishing Switzerland 2014

Technical Dependency Challenges 47

work on smaller tasks and well-defined areas of development and hence, improve
both efficiency and speed.

However, while agile development methods and the breakdown of complex
tasks were originally developed to improve small-scale development, and to sup-
port co-located teams, they are being increasingly adopted by large-scale devel-
opment organizations with globally distributed teams [3]. In such settings, the
agile breakdown of complex tasks poses a big challenge due to complex technical
dependencies between teams [4]. These dependencies can be seen in various ways,
such as, dependencies between activities in the development process, dependen-
cies among different software artefacts, and dependencies across teams and team
members [5]. Looking back at the agile basic principles, teams should commu-
nicate directly in a face-to-face conversation [6], a situation that is rarely the
case in large-scale distributed software development. Instead, the complexity of
technical dependencies increases with the size of the company, and in large-scale
software development the challenge therefore becomes how to minimize technical
dependencies that have a negative impact on team performance, as well as how
to enable communication and management of technical dependencies between
teams.

Based on this identified challenge of technical dependencies in large-scale soft-
ware development, this study addresses the following research questions:

RQ1: What are the challenges associated with technical dependencies between
teams in a large-scale agile software development?

RQ2: What affects the likelihood of a challenge to occur?

The contribution of the paper is twofold. First, and based on case study re-
search, we identify the challenges that exist in relation to technical dependencies
between teams in large-scale distributed development. Second, we provide a set
of recommendations on how software development companies can manage these
challenges in order to mitigate the impact of these on development team per-
formance. While our findings are based on a single case study, we believe that
our findings are relevant to other organisations in which communication and
coordination between teams is a critical task.

The remainder of this paper is structured as follows: Section 2 describes ag-
ile teams and how agile team practices are increasingly applied in large-scale
software development. The section also introduces the notion of technical de-
pendencies and how these can be communicated in teams and in between teams.
Section 3 describes the research site and the case study research methodology
that we applied in this study. In Section 4, we present the findings from the
interview study. Finally, in Section 5 and 6 we discuss our findings as well as
provide a set of recommendations to help organisations address the challenges
we identified in relation to technical dependencies.

48 N. Sekitoleko et al.

2 Background: Large-Scale Agility, Technical
Dependency, and Communication

2.1 Agile Teams

During the last decade agile methods have dramatically changed the way soft-
ware development is performed, as well as the ways in which software teams are
organised. Unlike traditional development methods characterized by plan-based
execution of sequential phases, agile methods focus on managing unpredictabil-
ity and change. In doing so, agile methods advocate small development teams
in which all necessary competences are represented, i.e. cross-functional teams
consisting of software developers, testers, architects etc. Typically, these teams
take responsibility for the development of a software feature from the moment
that a requirement comes from a customer, until that requirement is translated
into software functionality that addresses that customers need. During devel-
opment of a feature, the development team works in close collaboration with
the customer in order to allow for rapid feedback loops, collaborative decision-
making, as well as continuous integration and deployment of code changes [7]. In
this way, agile teams seek to avoid cumbersome and time-consuming processes
and instead focus on taking an end-to-end responsibility for feature development
and that continuously validate if the functionality they develop correspond to
customer needs. Typically, this is referred to as empowerment of teams [7]. Al-
though agile methods differ in details and techniques, overall agile principles
such as flexibility, empowered teams and customer collaboration lie at the heart
of all of them.

2.2 Large-Scale Agile

For more than a decade, agile development methods have demonstrated their suc-
cess in establishing flexible development processes with short feedback loops and
consideration taken to evolving customer needs [2,8]. Due to successful accounts
[9,10], these methods have become attractive to a broad variety of companies.
Currently, large software-intensive organizations are in the process of deploying
agile methods, and attempts to scale agile methods can be identified [11,12,13].
However, the applicability of these methods is not without challenges in large-
scale development of software intended for a mass-market [14]. As recognized by
Badampudi et al [15], organizations often discover misalignments between meth-
ods when attempting to use agile methods in a large-scale setting. According to
the authors, the reason for this is that many large-scale companies practice ag-
ile in a way that is not consistent with the original agile ideas, and that the
translation of the original ideas to a large-scale setting is difficult. Also, the shift
towards agile is difficult for companies that are used to heavyweight sequential
processes and companies that are confronted with interdependent teams and
stakeholders located at different locations [15]. Often, development teams lack
a shared understanding with other teams due to communication and coordina-
tion challenges, lack of documentation and complex decision-making processes
among distributed stakeholders.

Technical Dependency Challenges 49

Another difficulty, and as reported on by Heikkila et al. [14], is the challenge
related to cross-functional team creation. In their research, the authors iden-
tify difficulties with creating generalist teams that can implement features in
all components of the software. As recognized in their study, organizations usu-
ally realizes that many components in a large-scale system are technically very
difficult and interdependent, and require years of experience to be fully under-
stood by developers. As a result, many large-scale organizations experience long
lead times before the development teams can implement anything useful in a
component. The authors conclude that identifying who has the required exten-
sive experience and expertise to perform a task is still a challenge in a large
organization adopting agile methods.

Finally, creating user stories that can be developed in a single sprint is re-
ported on as challenging because of the complex nature of large-scale software
systems [14]. Often, internal and external dependencies affect the way in which
agile practices can be applied in large-scale development settings, and many or-
ganizations experience inconsistencies with the way in which agile practices are
adopted. As recognized by [16], the understanding of the contingencies, i.e. how
and when agile practices are applicable under variations in project size, business
domain, and team configurations surrounding large-scale agile development is
important.

2.3 Technical Dependency

The large number of interdependencies among activities and artefacts in the
software development process is one of the major challenges in large-scale soft-
ware development, which includes a large number of developers and development
teams.[17]. Babinet and Ramanathan identify the following challenges of tech-
nical dependencies [18]:

– Unpredictability, were teams find it difficult to know beforehand what
changes, issues, surprises, failures and successes they will come across during
the development of a feature.

– Conflicting priorities, such as a team depending on a component that has
lower priority in the backlog of another team.

– Difficulty in understanding overlapping and short release cycles, and teams
constant changing of priority in each sprint.

To address these technical dependencies, Babinet and Ramanathan recom-
mend release kick-offs, dependency identification exercises, Scrum-of-Scrums,
virtual architecture teams, status reports and a number of other activities that
help team communication and knowledge sharing [18]. In similar, Souza et al.
propose tools with which technical dependencies can be analyzed and visualized
so that these are better understood and therefore, easier to communicate among
development teams [19].

50 N. Sekitoleko et al.

2.4 Communication

Communication is often described as fundamental for organizational success [20].
Effective internal and external communication stimulates the performance of a
development organization [21]. However, while communication is central to all
organizations it also poses major challenges. As recognized by Johansson et al.,
a message can be properly communicated but the intended receiver may choose
to interpret the message as invalid [22]. Also, to select a message at one point
and deliver that message at another point is problematic [23]. As experienced
in most organizations, inter-team communication is a challenge that grows with
the size and complexity of the organization.

3 Research Method

3.1 Research Setting

The case study was conducted at Ericsson AB. Ericsson provides communica-
tions networks, telecom services, and support solutions used in global commu-
nication. It is ranked the fifth largest software supplier in the world with 950
million subscribers in over 180 countries. In this section, we map and describe
the concepts of cross-functional teams (XFT) and technical dependencies from
an Ericsson perspective.

Cross-functional Teams. A cross-functional team (XFT) is a team which has
all core competences needed for the development and release of a feature. At Eric-
sson AB, XFTs generally follow the same working practices and include roles like
system manager, system designer, function tester, system testers, and architect.
In addition, each XFT has a scrum master, agile coach, and an operative product
owner (OPO) on a part time basis and the teamworks in an open space which facil-
itates easy communication among teams. Each of these XFTs consists of 5–9 team
members who have up to three roles in their team and some teammembers are as-
sociated with several teams in different roles. XFTs do not have team leaders but
should be self-organized andwork togetherwith otherXFTs on featureswhichhave
a life cycle of approximately 500–1000 hours (a release consists of 20–80 features).
Features are broken down into work packages which are developed in sprints of∼3
weeks. During the sprint, a XFT takes full responsibility for the development of a
work package, breaks it down into user stories and tasks, and is in charge of han-
dling planned and unplanned technical dependencies. Our study focusses on the 30
XFTs responsible for the development of one specific embedded software product
that has been developed during a period of more than 10 years with a design base
of more than 1 Million lines of code.

Technical Dependencies. At Ericsson, technical dependencies are relation-
ships and interactions between artifacts and teams during product development.
Examples include situations when a developer/team needs information regarding
technical aspects of a system developed by another developer/team in order to

Technical Dependency Challenges 51

progress the development work. Technical dependencies can occur during design-
time, compile-time, and run-time and affect areas like source-code, architecture,
hardware, and tools. At Ericsson, there are two types of technical dependen-
cies: Planned technical dependencies are identified during the planning phase.
Managers, program officers and product owners are responsible for identifying
and scheduling planned technical dependencies, i.e identifying the tasks to be
done in parallel or in sequence across teams, and communicating them to teams
before development begins. Unplanned technical dependencies occur unexpect-
edly during the actual development of a product, for example due to improper
implementation of the original plan.

3.2 Research Approach

This paper reports on a three-months case study at Ericsson AB plus a follow-
up questionnaire1 three month later. A qualitative research approach was chosen
to investigate our research questions from a social, technical and organizational
context. As qualitative research approaches aim to investigate and improve the
understanding of phenomena in their real-life context [24], and especially when
the purpose is to explore peoples’ experiences and perceptions, we found it par-
ticularly well suited for our interests.

3.3 Data Collection

We interviewed 9 employees at Ericsson AB who were selected qualitatively
based on insider knowledge about skills, experience, and organizational distribu-
tion from a population of 300 software engineers [25]. Our 9 interviewees have an
average working experience of 10 years and about 3 years in agile practices, since
Ericsson is gradually, team by team, transitioning to agile. In their work, they
follow the most common agile practices like sprint-demo, retrospectives, daily
stand-up meetings (∼15min), and backlog grooming. Table 1 shows the roles
the interviewees hold. A semi-structured interview approach was used to collect
data because it has inherent properties that allow the interviewer to improvise
and explore interview questions further [24]. Thus based on the progression of
the interview, questions can be adapted and relevant follow-up questions posed
[24]. The interview guide2 helped us in ensuring that all questions were covered
irrespective of the order in which they were followed. The interview questions
mainly focused on planned and unplanned technical dependencies faced by XFT
teams. Some of the interview questions are about the impact of incompatible
components, how technical dependencies are located, communicated, resolved,
and so forth [26]. We recorded the conversations while interviewing and tran-
scribed these voice recordings verbatim to reduce the risk of corrupt data which
can happen when transcribing during the interview [27].

1 https://dl.dropboxusercontent.com/u/13255493/

Tech-Depend-Questionnaire.pdf
2 https://dl.dropboxusercontent.com/u/13255493/

Tech-Depend-Interview-guide.pdf

https://dl.dropboxusercontent.com/u/13255493/Tech-Depend-Questionnaire.pdf
https://dl.dropboxusercontent.com/u/13255493/Tech-Depend-Questionnaire.pdf
https://dl.dropboxusercontent.com/u/13255493/Tech-Depend-Interview-guide.pdf
https://dl.dropboxusercontent.com/u/13255493/Tech-Depend-Interview-guide.pdf

52 N. Sekitoleko et al.

Table 1. Interviewees and their roles / responsibilities

ID Role Responsibility

P1 Software designer SW development
P2 Software designer and scrum master SW development, facilitate team work
P3 Function tester Functional testing
P4 Software designer SW development
P5 Software designer and scrum master SW development, facilitate team work
P6 Scrum master and architect Team support, technical leadership
P7 Software designer and scrum master SW development, facilitate team work
P8 Function tester functional testing
P9 System manager, scrum master, Give directions, facilitate team work

and Function tester functional testing

After analysis of the interview data, we collected additional data to be able to
confirm our findings based on a questionnaire that presented our findings as state-
ments in a short questionnaire with a likert scale to measure the agreement of the
initial interviewees with challenges, their dependencies, and proposed solutions.

3.4 Data Analysis

We analyzed the data collected from interviews base on the thematic analysis
approach [27], an accepted method with wide-spread use in scientific and social
science research consisting of six phases [27]. Please refer to [26] for details and
examples of the data analysis.

1. Familiarizing with the data: We transcribed and read the data from the 9
interviews.

2. Generating initial codes: We coded the data from the perspective of the
research questions.

3. Searching for themes: We grouped the initial codes we generated into differ-
ent groups that we refer to as initial themes.

4. Reviewing Themes: We reviewed the initial themes, regrouped and refined
them by cross checking the interview data with the generated codes in Phase
1 and 2. We then extracted and refined 5 themes in Phase 3.

5. Defining and naming themes: In this phase we reached a consensus about
the five themes, which, in accordance to our research questions, we named
the main challenges and present in the results section.

6. Producing the report: In this paper, we present and discuss the five main
challenges and make recommendations.

3.5 Threats to Validity

As recognized by Maxwell [28], qualitative researchers rarely have the benefit
of previously planned comparisons, sampling strategies, or statistical manipula-
tions that control for possible threats to validity. While this can be acheived in
quantitive research, qualitative researchers must try to rule out validity threats

Technical Dependency Challenges 53

after the research has begun by using evidence collected during the research
itself to make alternative hypotheses or interpretations implausible. One impor-
tant aspect of validity is construct validity [24] that reflects to what extent the
operational measures that are studied represent what the researcher has in mind,
and what is reflected in the interview questions and themes. To address this crit-
ical aspect, we started each of our interviews with an introduction part in which
the researchers shared their understanding of agile practices and technical depen-
dencies with the interviewee. For example, we shared different definitions of the
agile concept and we discussed the agile manifesto to get a shared understand-
ing for the values that underpin agile development methods. Also, we shared
our understanding of technical dependencies and why it is important to consider
these in a large-scale development setting. In this way, the researchers and the
interviewee had a shared understanding of the topic before the interview started,
and we could proceed with asking questions without having to worry about the
interviewee being unsure about the context we studied. With respect to external
validity, i.e. to what extent it is possible to generalize the findings, our contribu-
tion is related to (1) the drawing of specific implications and (2) the contribution
of rich insight [29]. Based on our interview findings, we present implications in a
particular domain of action, i.e. in a particular software development company.
Our study brings together empirical insight that allows for a deep understanding
of this particular company, and the findings we present should be regarded as
insights valuable for other companies interested in understanding the impact of
technical dependencies in large-scale agile development.

4 Analysis and Interpretation

4.1 Technical Dependency Challenges in Large-Scale Agile

With respect to RQ1, (What are the challenges associated with technical depen-
dencies between teams in a large-scale agile software development?), the analysis
of the interview data revealed five main challenges: the planning challenge, the
task prioritization challenge, the knowledge sharing challenge, the code quality
challenge, and the integration challenge.

Planning Challenge. A perfect plan for software development would mini-
mize the occurrence of technical dependencies. Uncertainty, which is inherent to
software development, is one reason why creating and following such an optimal
plan is practically impossible, but our interviewees also indicate potential for
realistic improvement. This is reflected by the following quote from one of our
interviewees:

“[Managers] do not plan and allocate tasks to teams in an appropriate
way because they do not know much about the code and do not involve
in the actual coding.”

Our interviewees mentioned that sometimes tasks that should have been as-
signed to a single teamwere instead split and assigned to several teams, thereby cre-
ating unnecessary dependencies. Insufficient planning leads to unplanned

54 N. Sekitoleko et al.

technical dependencies during the actual product development. Such unplanned
technical dependencies across teams do not occur frequently, but when they oc-
cur, they seriously impact development and lead to changes in requirements and
time-plan. Our interviewees also said that it is difficult to locate the root cause of
unplanned technical dependencies.

Task Prioritization Challenge. According to our interviewees, the task prior-
itization challenge a result of the planning challenge. When unplanned technical
dependencies arise, teams have to update their sprint plan to account for changes
in requirements and time-plans. These changes arise for example from new re-
quests for components from other teams that were not planned before and often
lead to conflicts in the product backlog. Two problematic scenarios given by our
interviewees characterize the prioritization challenge:

(1) When teams have to implement a component which was not in their
backlog and (2) when they have to deliver a component in their backlog earlier
than scheduled since another team realized that they were dependent on the
component.

According to our interviewees, the above scenarios led to re-prioritizing tasks
in their backlog.

“[...] constant changing of priorities makes our burn-down charts look
bad.”

Our interviewees stated that changing priorities in their backlog usually desta-
bilizes their work plan, because they need to assign resources to the unplanned
requests, thereby leading to delays and late deliveries.

Knowledge Sharing Challenge. From the perspective of our interviewees,
knowledge sharing among the XFTs is vital to enable good communication and
coordination. If knowledge is not properly circulated, communicating technical
dependencies will suffer, as indicated by some of the problems raised by the
interviewees.

– Some interviewees do not have the opportunity to say what they want in
company meetings (e.g. tasks presentation meetings), because of the mul-
titude of people in the meeting. The interviewees claimed they do not get
opportunity to express their burning issues or raise vital questions.

– Experienced personnel is involved in difficult tasks and often too busy to be
approached.

Our interviewees also expressed some concerns about some of their colleagues
attitude and ability to share knowledge, including the following problems:

– Protectiveness: Some team members are protective of their work and do not
want to provide support to others.

– Bad teachers: Some team members know much about the code, but are
simply not good at explaining it.

Technical Dependency Challenges 55

– Laziness: Some team members do not want to share knowledge because they
fear that others will start seeking help from them more often.

– Over specialization: Some team members prefer to focus on their own task,
thereby not having adequate knowledge of the entire product, which in turn
leads to inefficient communication about dependencies.

– Lack of communicativeness: Some team members are too shy to either ask
or provide information during meetings, thus causing important information
to be ignored.

Another problem related to knowledge sharing occurs when team members
do not understand, ignore, or forget what was discussed in a meeting:

“During development some people forget easily what was agreed upon in
scrum meetings. Then, they are not be able to work accordingly.”

From the perspective of our interviewees it is clear that such problems with
knowledge sharing create a major challenge for communicating technical depen-
dencies.

Code Quality Challenge. In software companies, good code quality will lead
to quality products that can compete favourably in the market. However, in large
scale software development, maintaining good quality code remains a challenge.
Our interviewees stated that despite the existence of Subversion (SVN) control
tools, too many people involved in the same code make changes in the code
which can end up as conflicts in other teams. Their common view was:

“Such changes make it difficult to maintain a stable version of code,
hence reducing code quality and creating more technical dependencies.”

Function testers specifically shared an opinion that such changes make testing
more complex because they have to rewrite test cases many times. The prevailing
view among our interviewees was that providing good quality code is difficult
because of technical dependencies.

Integration Challenge. In large-scale agile software development, merging of
work packages is a problem because of the many self-organized teams working
to deliver an integrated working product to the customers. Our interviewees
demonstrated a scenario in which teams develop work packages independently
for 2-3 months without knowing what is happening in the main branch. At
delivery, teams get conflicts since many changes have been made in the main
branch, hence creating dependencies which at times may only be resolved by
engaging other teams. Despite tool support, this is a challenging task.

Other concerns expressed by interviewees were about incompatible dependent
components they received from other teams that resulted in merge conflicts. Ac-
cording to our interviewees, incompatible components often cause teams to either
re-plan or re-develop their work, thereby leading to late deliveries. It appears
that the integration challenge is a result of not handling technical dependencies
in a good way.

56 N. Sekitoleko et al.

4.2 Likelihood of Technical Dependency Challenges

With respect to our RQ2 (What affects the likelihood of a challenge to occur?),
we first tried to achieve a better understanding of the nature of the challenges
we identified. By doing this, we then found that in fact the likelihood of a
challenge to occur is affected by the presence of other challenges, for example if
the planning challenge is not resolved, then it can lead to other challenges.

0%

17%

17%

17%

33%

100%

83%

67%

50%

33%

0%

0%

17%

33%

33%Code quality challenge

Integration challenge

Knowledge sharing challenge

Task prioritization challenge

Planning challenge

100 50 0 50 100
Percentage

Response disagree neutral agree strong agree

Fig. 1. Agreement of interviewees with challenges (”It is challenging to . . . ”)

Understanding the Nature of Challenges. For understanding the nature
of the challenges we discovered, we asked our interviewees which challenges they
consider to be most dominant in their daily work. Fig. 1 shows that planning
and task prioritization are recognized as most challenging.

During discussion and analysis of our findings, we also recognized that some of
the challenges we found are more technical in nature (code quality and integra-
tion challenge), while others can be characterized as communication challenges
(see axis Fig. 2). In fact, the knowledge sharing challenge refers to the mindset
of engineers, which is mostly related to communication. Task prioritization and
planning refer to work practices and relate both to communication and techni-
cal challenges. Code quality and integration are mostly technical in nature and
require technical actions.

Relationships and Interdependencies. Based on the improved understand-
ing of the challenges, a critical study of the main challenges by the authors
revealed that during the development of a product, the challenges interact with
one another to form a domino effect which leads to the technical dependency
loop (Fig. 2).

These relationships between challenges cause a vicious circle. Consider for ex-
ample the planning challenge: By suboptimal planning, unnecessary technical
dependencies are introduced. These cause problems that surface as task pri-
oritization challenge, which in turn increase the integration and code quality
challenges. Bad code quality can put additional pressure on teams which are
then reluctant to share knowledge. This in turn makes planning even more dif-
ficult. These circular relationships are bidirectional, e.g. in the example above,
unresolved prioritization issues in the teams’ backlogs seriously impair adequate
planning.

Technical Dependency Challenges 57

4.3 Recommendations

In order to break through the vicious circle, one has to start with mitigating one
challenge and then continue to exploit the positive influence on other challenges.
Our interview data suggests that the knowledge sharing challenge is a good
starting point. Improved knowledge sharing between technical and management
staff on different levels can significantly improve the ability to create a good
plan, and then in turn help addressing the other challenges.

We were especially interested in how our interviewees rate the dependencies
and were specifically asking, whether a solution for the planning (respectively:
knowledge sharing) challenge would positively impact other challenges as well.
Fig. 3 indicates that a solution for the knowledge sharing challenge would have
more impact on the other challenges. The figure also shows that the code quality

Technical challenges

C
om

m
un

ic
at

io
n

ch
al

le
ng

es

low high

high

Planning

Task Prioritization

Knowledge
sharing

Code quality

Integration

Fig. 2. Challenges associated with technical dependencies can be classified as commu-
nication and technical challenges. These challenges affect each other.

0%

0%

0%

17%

17%

17%

33%

33%

100%

83%

83%

83%

67%

50%

33%

33%

0%

17%

17%

0%

17%

33%

33%

33%Planning −> Code quality

Knowledge sharing −> Code quality

Planning −> Integration

Knowledge sharing −> Integration

Planning −> Task prioritization

Knowledge sharing −> Task prioritization

Planning −> Knowledge sharing

Knowledge sharing −> Planning

100 50 0 50 100
Percentage

Response disagree neutral agree strong agree

Fig. 3. Rating of challenge dependencies by interviewees

58 N. Sekitoleko et al.

0%

0%

0%

0%

17%

17%

33%

100%

100%

83%

83%

67%

50%

50%

0%

0%

17%

17%

17%

33%

17%Teams responsible for the detailed planning.

Encouraging all employees to share their opinion
in scrum meetings.

Continuous integration.

Information sharing between teams (e.g.
scrum−of−scrums).

Open space technology meetings (e.g. present and
discuss).

Increasing knowledge circulation between
individuals.

Minimize number of teams working on same code at
same time.

100 50 0 50 100
Percentage

Response disagree neutral agree strong agree

Fig. 4. Agreement of participants with recommendations

challenge is a bit detached from the vicious circle, as our participants do not agree
that a solution for another challenge would positively impact the code quality.

In order to gain a richer understanding of the knowledge sharing and plan-
ning challenge, we presented a number of recommendations from literature for
mitigating the challenges to our interviewees. Fig. 4 shows the agreement of our
interviewees with the recommendations we made.

5 Discussion

5.1 Implications for Practitioners

It is not new for practice that technical dependencies are cumbersome in large
software development. When scaling agile, the technical dependencies do not
become more or less, they just become more obvious and this is actually a possi-
bility for practice to deal with them. Here we have come to understand challenges
associated to technical dependencies and the domino effect this can create. By
embracing this knowledge of the domino effect, practice can break the vicious
circle by improving one or two of the challenges and by that improving all chal-
lenges. For example, when improving the Planning challenge by making sure the
planners have sufficient competence of the code, the Task prioritization challenge
get less problematic. Planners need to understand the quality of the impacted
code to make correct estimations (e.g. stinker code is known to take ten times
more time than code included in lean components), which then helps prioritize
task in the right order. For practice, it is of high importance to understand not
only the challenges on detailed level, but also how they impact each other in
order to improve where it gets the most impact. This study gives practice such
understanding.

5.2 Implications for Research

Eklund and Bosch propose a model for defining interactions necessary for agile
teams together with a set measures facilitating agile development in a context

Technical Dependency Challenges 59

where the full product cannot be agile [30]. These interactions can be seen in four
categories; requirements, project gates, integration & validation, and delivery.
The more teams understand such interactions, the less technical dependencies
(as discussed in this paper) they will encounter. In contrast, unplanned technical
dependencies can surface in late and inefficient clarification of features and re-
quirements, as discussed in related work on patterns of continuous requirements
clarification [31].

Cataldo et al. show that lack of socio-technical congruence, i.e. the fact that
social relationships such as communication of developers is not aligned with tech-
nical dependencies between them, leads to bad software quality [32]. Damian et
al. discuss similar observations from a case study where organizational structure
is not in line with the partitioning of requirements, thus leading to unsatis-
fied communication needs [33]. Both works hint on potential for organizational
optimization, which however is especially difficult in volatile, complex, and large-
scale agile environments.

Promising avenues for future research therefore include (i) investigating ways
to measure interaction and knowledge sharing quality and providing actionable
feedback to agile teams and (ii) gain a better understanding how organizational
change can support minimizing technical dependencies.

6 Conclusion and Outlook

In this qualitative study, we identified five challenges associated with technical
dependencies in large-scale agile software development: planning, task prioriti-
zation, knowledge sharing, code quality, and integration. More importantly, we
found that these challenges interact and can lead to a domino effect or vicious
circle: If an organization struggles with one challenge, it is likely that the other
challenges become problematic as well. A follow-up questionnaire confirmed the
relationships between challenges as well as that mitigating one of the challenges
can have a positive impact on the other challenges and ultimately promises to
break the vicious circle. Our results indicate that activities should focus on mit-
igating the knowledge sharing and planning challenges to reestablish effective
communication across teams, which will then enable companies to achieve the
benefits of large-scale agility. Although the findings in this paper are based on
a single case study, we believe that our findings are relevant to other companies
transitioning towards large-scale agile development practices.

References

1. Fogelström, N.D., Gorschek, T., Svahnberg, M., Olsson, P.: The impact of agile
principles on market-driven software product development. Journal of Software
Maintenance and Evolution: Research and Practice 22, 53–80 (2010)

2. Highsmith, J., Cockburn, A.: Agile software development: The business of innova-
tion. IEEE Computer 34(9), 120–122 (2001)

3. Kettunen, P., Laanti, M.: Combining agile software projects and large-scale orga-
nizational agility. Softw. Process 13, 183–193 (2008)

60 N. Sekitoleko et al.

4. Beck, K.: Embracing change with extreme programming. Computer 32(10), 70–77
(1999)

5. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for
large systems. Commun. ACM 31, 1268–1287 (1988)

6. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Mar-
tin, R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for
agile software development (2001), http://www.agilemanifesto.org (accessed on
December 3, 2013)

7. Highsmith, J.: The great methodologies debate: Part 2. Cutter IT Journal 5 (2002)

8. Larman, C., Vodde, B.: Scaling Lean and Agile Development: Thinking and Orga-
nizational Tools for Large-Scale Scrum. Pearson Education Inc., Boston (2009)

9. Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J.: New directions on agile
methods: a comparative analysis. In: Proceedings of the 25th International Con-
ference on Software Engineering, Portland, Oregon, pp. 244–254 (2003)

10. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the stairway to heaven: A multiple-
case study exploring barriers in the transition from agile development towards con-
tinuous deployment of software. In: Proceedings of the 38th Euromicro Conference
on Software Engineering and Advanced Applications, Cesme, Izmir, Turkey (2012)

11. Kerievsky, J.: Industrial xp: Making xp work in large organizations. Executive
Report in Agile Project Management 6(2) (2005)

12. McMahon, P.E.: Extending agile methods: A distributed project and organizational
improvement perspective. In: Proceedings of the 17th Annual Systems and Software
Technology Conference, Salt Lake City, UT (2005)

13. Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., Stahl, D.: The impact
of agile principles and practices on large-scale software development projects: A
multiple-case study of two projects at ericsson. In: ACM/IEEE Int’l Symp. on
Empirical Software Engineering and Measurement, Baltimore, Maryland, pp. 348–
356 (2013)

14. Heikkila, V.T., Paasivaara, M., Lassenius, C.: Scrumbut, but does it matter? A
mixed-method study of the planning process of a multi-team scrum organization.
In: ACM/IEEE Int’l Symp. on Empirical Software Engineering and Measurement,
Baltimore, Maryland, pp. 85–94 (2013)

15. Badampudi, D., Fricker, S.A., Moreno, A.M.: Perspectives on productivity and
delays in large-scale agile projects. In: Baumeister, H., Weber, B. (eds.) XP 2013.
LNBIP, vol. 149, pp. 180–194. Springer, Heidelberg (2013)

16. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software develop-
ment. SIGSOFT Softw. Eng. Notes 38(5), 38–39 (2013)

17. de Souza, C.R.B., Redmiles, D.F., Mark, J., Penix, G., Sierhuis, M.: Management
of interdependencies in collaborative software development. In: Proc. of Intl. Symp.
on Empirical Software Engineering, pp. 294–302 (2003)

18. Babinet, E., Ramanathan, R.: Dependency management in a large agile environ-
ment. In: Proc. of Agile Conference, pp. 401–406 (2008)

19. de Souza, C.R.B., Quirk, S., Trainer, E., Redmiles, D.F.: Supporting collaborative
software development through the visualization of socio-technical dependencies.
In: Proceedings of the 2007 International ACM Conference on Supporting Group
Work, Sanibel Island, Florida, USA, pp. 147–156 (2007)

20. Dainton, M., Zelley, E.D.: Applying communication theory for professional life: a
practical introduction. SAGE Publications Inc. (2005)

http://www.agilemanifesto.org

Technical Dependency Challenges 61

21. Sosa, M.E., Eppinger, S.D., Pich, M., McKendrick, D.G., Stout, S.K.: Factors that
influence technical communication in distributed product development: an empir-
ical study in the telecommunications industry. IEEE Transactions on Engineering
Management 49, 45–58 (2002)

22. Johansson, B.J.E., Persson, P.A.: Reduced uncertainty through human communi-
cation in complex environments. Cogn. Technol. Work 11, 205–214 (2009)

23. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Uni-
versity of Illinois Press (1971)

24. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Engg. 14, 131–154 (2009)

25. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. SAGE Publications (2009)

26. Sekitoleko, N., Evbota, F.: Technical dependencies in practicing agile in
large-scale software development organizations: A case study conducted at
Ericsson AB. Bachelor thesis, University of Gothenburg, Sweden (2013),
https://dl.dropboxusercontent.com/u/13255493/Tech-Depen-Report.pdf

27. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Research
in Psychology 3, 86–94 (2006)

28. Maxwell, J.: Qualitative research design: An interactive approach. Sage, Los An-
geles (2013)

29. Walsham, G.: Interpretive case studies in is research: nature and method. European
Journal of Information Systems 4, 74–81 (1995)

30. Eklund, U., Bosch, J.: Applying agile development in mass-produced embedded
systems. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 31–46. Springer,
Heidelberg (2012)

31. Knauss, E., Damian, D., Poo-Caamao, G., Cleland-Huang, J.: Detecting and Clas-
sifying Patterns of Requirements Clarifications. In: Proceedings of 20th Interna-
tional Requirements Engineering Conference (RE 2012), Chicago, USA, pp. 251–
260 (2012)

32. Cataldo, M., Herbsleb, J.D., Carley, K.M.: Socio-technical congruence: a framework
for assessing the impact of technical and work dependencies on software develop-
ment productivity. In: Proceedings of Second ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM 2008), Kaiser-
slautern, Germany, pp. 2–11. ACM (2008)

33. Damian, D., Helms, R., Kwan, I., Marczak, S., Koelewijn, B.: The role of domain
knowledge and hierarchical control structures in socio-technical coordination. In:
Proc. of IEEE Int. Conf. on Software Engineering (ICSE), San Francisco (2013)

https://dl.dropboxusercontent.com/u/13255493/Tech-Depen-Report.pdf

	Technical Dependency Challengesin Large-Scale Agile Software Development
	1 Introduction
	2 Background: Large-Scale Agility, Technical Dependency, and Communication
	2.1 Agile Teams
	2.2 Large-Scale Agile
	2.3 Technical Dependency
	2.4 Communication

	3 Research Method
	3.1 Research Setting
	3.2 Research Approach
	3.3 Data Collection
	3.4 Data Analysis
	3.5 Threats to Validity

	4 Analysis and Interpretation
	4.1 Technical Dependency Challenges in Large-Scale Agile
	4.2 Likelihood of Technical Dependency Challenges
	4.3 Recommendations

	5 Discussion
	5.1 Implications for Practitioners
	5.2 Implications for Research

	6 Conclusion and Outlook
	References

