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Abstract. Linus’ Law reflects on a key characteristic of open source
software development: developers’ tendency to closely work together in
the bug resolution process. In this paper we empirically examine Linus’
Law using a data-set of 1,000+ Android bugs, owned by 70+ developers.
Our results indicate that encouraging developers to work closely with
one another has nuanced implications; while one form of contact may
help reduce bug resolution time, another form can have quite the oppo-
site effect. We present statistically significant evidence in support of our
results and discuss their relevance at the individual and organizational
levels.
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1 Introduction and Research Question

The agile manifesto announced in 2001, and the principles behind it emphasized
on “individuals and interactions” in large scale software development1. Around
the same time, Raymond’s influential paper invoked the metaphor of the bazaar
to highlight how myriad, spontaneous, and local interactions can fulfil global
objectives in developing large and complex open source software [1]. In Cathedral
and the Bazaar Raymond made a bold conjecture based on his observations of
Linux development, calling it Linus’ Law : “Given enough eyeballs, all bugs are
shallow”; or more formally: “Given a large enough beta-tester and co-developer
base, almost every problem will be characterized quickly and the fix will be
obvious to someone” [1].

With the progressively empirical nature of software engineering research,
anecdotal evidence needs to be complemented with statistically significant con-
clusions [2]. As is widely recognized, Linux is more than just an open source
operating system; its significance lies in harnessing the agile methodology of
software development in a truly novel way [1]. With this background, Linus’

1 http://agilemanifesto.org/
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Law proclaims an interesting benefit of using agile methodologies by a wide and
distributed developer pool. To validate whether Linus’ Law captures merely a
fortuitous quirk of Linux development, or has wider relevance in large scale agile
development, we need to examine the law in a related but different development
scenario. Android’s2 wide currency in today’s computing milieu is indicated by
the level of its usage in mobile computing devices and active developer pool [3].
Derived from the Linux kernel and having a similar development methodology,
Android serves as an appropriate system for validating whether the claim of
Linus’ Law around the benefits of large scale agile practices indeed go beyond
Linux. In this paper we present results from examining Linus’ Law using Android
bug report data.

In earlier examinations of Linus’ Law using data from the Red Hat Enterprise
Linux 4, the PHP programming language and the Wireshark network protocol
analyzer, files with changes from nine or more developers were found to be 16
times more likely to have a vulnerability than files changed by fewer than nine
developers [4], [5]. Linus’ Law has also been called a “fallacy” due to the lack
of supporting evidence [6]. These and similar other studies point to a lack of
consensus on the validity as well as applicability of Linus’ Law [7].

Our examination of Linus’ Law using data from a large and widely used sys-
tem has implications at several levels. For individual developers, our results can
inform the benefits as well as costs of engaging closely with peers in the resolu-
tion of bugs. For managers, an understanding of Linus’ Law and its limitations
can be valuable for resource allocation. At the organizational level, our results
can guide decisions on whether and how latest trends like crowdsourcing may
help in bug resolution.

On the basis of the statements of Linus’ Law mentioned in the previous sec-
tion, we assume “eyeballs” to be a metaphor for focused developer attention on
a bug, and a “shallow” bug is one which is resolved quickly. Thus Linus’ Law
is taken to propose that bugs will be resolved faster if more developers attend to
them. The reference to “co-developer base” underscores a key expectation that
developers engage in the bug resolution process beyond the immediate bugs they
own. With this background, we arrive at our research question: Does higher
developer attention lead to Android bugs being resolved more quickly?

For developers, we need to identify attributes that reflect on the level of their
attention to resolving bugs. The spirit of agile development processes underly-
ing Linus’ Law encourages developers to engage across their peer group, sharing
knowledge, expertise, and responsibilities [1]. We posit that for developers, the
extent of connection and interpersonal influence in the project ecosystem is re-
lated to how quickly bugs are resolved. On the basis of these observations, we
refine the research question into the following hypotheses:

– H1: Developers who are more connected resolve their bugs more quickly.
– H2: Developers who have higher interpersonal influence resolve their bugs

more quickly.

2 www.android.com

www.android.com
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2 Methodology

Collecting Data: The Android bug reports data was accessed from a publicly
available online repository [8]. The source XML file was parsed and the data
persisted in a specifically designed MySQL database for easy querying. Each
bug was identified by a unique bug identifier, and had the following attributes:
title, status, owner, date opened, date closed, type, priority, component, stars,
reported by, description. Each comment had the following attributes: identifier of
the bug commented upon, commenter, date of comment, contents of comments.

Cleaning and Filtering Data: We calculated the resolution time for each
bug as the number of days between date the bug was opened and the date it
was closed. In the context of our study, we filtered the data by only considering
bugs which have been commented by more than one developer. From this set
we removed bugs with missing attributes or incorrectly recorded attributes (for
example the opened date being later in time than the closed date). Finally we
only considered bugs which had a resolution time of one year or less. We assume
that a bug which has not been resolved for more than a year is unlikely to have
attracted notable developer attention. Our final data-set consists of 1,016 bugs,
and 73 unique developers who own at least one of these bugs. Each bug in this
data-set has a unique owner; when we refer to a developer’s bug(s) in subsequent
discussion, we mean bug(s) which are owned by that developer.

Defining Developer Networks: We posit that developers can be connected
at two levels as they work together to resolve these bugs: by co-commenting
on bugs, which reflect shared interests and expertise, and through ownership of
bugs which are related to one another. These two levels seek to capture the well
recognized association between structure of work products and the structure of
communication surrounding the work products [9]. To capture these two levels
in our study, we construct the developer communication network (DCN) and
developer ownership network (DON), whose vertices(nodes) are developers. In
DCN two developers are connected by an edge (undirected link) if both have
commented on at least one bug. For constructing DON we build an intermediate
bug similarity network (BSN), whose vertices are bugs. In BSN, two bugs are
connected by an edge if they are similar to one another by the measure explained
below. In DON, two developers A and B are connected by an edge if there is at
least one pair of bugs bugA − bugB (bugA owned by A and bugB owned by B)
such that bugA and bugB are joined by an edge in BSN.

In large software systems involving many developers such as Android, when
a bug is raised its title and textual description are used to make a judgement on
how similar it is to other bugs that have been addressed earlier [10]. On the basis
of this judgement, the ownership of a bug gets decided; a bug is most likely to be
assigned to a developer who has resolved similar bugs earlier. Thus a key step in
the bug resolution process - assignment of ownership - is most often based on an
evaluation of the similarity between bugs. Thus we can assume that developers
owning bugs which are similar to one another are linked by a shared context.
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Detecting Bug Similarity: To automatically detect similarities between bugs,
we used a Latent Dirichlet Allocation (LDA) based approach. LDA considers
a document to be a mixture of a limited number of topics and each word in
the document can be attributed to one of these topics [11]. Given a corpus of
documents, LDA discovers a set of topics, keywords associated with each of the
topics and the specific mixture of these topics for each document in the corpus,
and expresses these information as probability distributions [12]. In developing
the LDA based topic models, we have used the collapsed Gibbs sampling method
[12], [13].

Having obtained the probability distribution over topics for each bug, we cal-
culate the similarity between all pairs of bugs in our data-set using the symmetric
Kullback Leibler Divergence (KLD) [14]. KLD is a distance measure between two
probability distributions. Since we seek to detect the most significant similarity
between bugs (thereby reducing false positives to largest possible extent), we
only connected two bugs by an edge in BSN if the corresponding KLD value was
in the 96 to 100th percentile.

Examining Hypotheses: On the basis of the data-set and the two networks
DCN and DON constructed as described above, we develop multiple linear re-
gression models to examine the hypotheses, whose results are presented next.

3 Results and Discussion

We build regression models for the set of developers owning bugs to examine
hypotheses H1 and H2. For the models we need to identify the dependent variable,
the independent variables, and the control variables. The models will allow us to
determine how the independent variables relate to the dependent variable, after
accounting for the effects of the control variables.

3.1 Model Development

We now describe the development of the model for developers.

Independent Variables: To validate hypothesis H1, we need to identify a pa-
rameter that captures how much a developer is connected to his/her peers in
the context of bug resolution. As defined in the Methodology section, DON cap-
tures how developers are linked to one another through the ownership of similar
bugs. The degree of a developer in DON is the number of other developers (s)he
is connected to via edges. As an established network metric, the degree of a
vertex is a measure of the extent of its connection [15]. Thus we calculate the
Connection of a developer as his/her degree in DON. For hypotheses H2, we
need a measure of a developer’s interpersonal influence in the collective enter-
prise of bug resolution. In social network analysis, the concept of betweenness
reflects how important a person is as an intermediary in the flow of information
between members of a network. Betweenness is measured by the betweenness
centrality of a vertex, which is the proportion of all geodesics between pairs of
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other vertices that include this vertex [15]. Individuals of higher betweenness are
in stronger positions to broker the interaction of others. In our context, devel-
opers of high Betweenness in DON are expected to know more about a diverse
range of bugs, and hence offer valuable guidance to other developers. On the
basis of this background, Connection and Betweenness are considered as the
independent variables in our model.

Dependent Variable: Both hypotheses H1 and H2 are concerned with how
developers may resolve their bugs quickly. As a dependent variable in our model,
we take the mean of the resolution time for all the bugs owned by a developer,
denoted by ResolutionTime. The distributions of the resolution times of bugs
owned by developers in our data-set have typically low skewness and kurtosis;
thus the mean is a reasonably accurate measure of central tendency.

Control Variables: By developing the model, we expect to understand how
Connection and Betweenness relates to ResolutionTime. However, to establish
the relationship between independent variables and the dependent variable, we
need to isolate some of the peripheral effects on the dependent variable. How
much a developer can work on a bug to quickly resolve it, is influenced by how
many bugs (s)he owns, or the total Workload. Additionally, since developers
are encouraged to advice one another, a developer’s SpanOfInterest - given by
the number of bugs the developer has commented on - can also be expected to
influence how quickly (s)he resolves his/her bugs. As defined in the Methodol-
ogy section, DCN links developers through the co-commenting of work items.
In social network analysis, clustering coefficient(CC)3 measures how closely an
individual is collaborating with others [15]. In our context, CollaborationLevel is
the extent to which a developer is working with others and is a likely influence on
how quickly (s)he resolves her bugs. Finally, we need to have a general sense of
how much interest a bug has generated in the Android community. The “stars”
field of bug report is “used in order to represent the number of people following
a bug” [3]. The mean number of stars across all bugs owned by a developer -
CommunityConcern - thus gives an indication of how much concern a developer’s
bugs have generated in the development ecosystem: a parameter that is likely
to influence how quickly his/her bugs are resolved. With this background, we
include Workload, SpanOfInterest, CollaborationLevel, and CommunityConcern
as control variables in our model.

Model Assumptions and Variable Transformations:With reference to Ta-
ble 1, column I gives the parameters of the base model which only considers the
effects of the control variables, while column II reflects the attention model that
additionally includes the independent variables. Multiple linear regression has
the underlying assumptions of linearity, normality, and homoscedasticity of the
residuals, and absence of multicollinearity between the independent variables.

3 In a network, the clustering coefficient (Cv) for a vertex v is defined as follows: If v
has a degree of kv , that is there are kv vertices directly linked to v, the maximum
number of edges between these kv vertices is kv choose 2 or kv ∗ (kv − 1)/2. If the
actual number of such edges existing is Nv , then Cv = 2 * Nv / kv ∗ (kv − 1) [15].
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The residual properties were verified using histogram, Q-Q plot and scatter plot
of the standardized residuals. Among the variables, Workload and SpanOfIn-
terest had a relatively high correlation (around 0.74), which is understandable
as developers who own more bugs tend to comment more. Since the Variance
Inflation Factors (VIF) of all variables were found to be below the upper limit
of 10 in both the base and attention models [16], absence of appreciable mul-
ticollinearity was established. With references to the descriptive statistics in
Table 1, although a skewness of around 3 for a variable is considered acceptable
for including it in a linear regression model, we considered various established
transformations for variables with relatively high values of absolute skewness,
for making their distributions close to a normal distribution [16]. Accordingly,
Workload and CommunityConcern variables were logarithmically transformed
before including in the model. On the basis of the above discussion we concluded
that the assumptions of linear multiple regression are valid within permissible
limits in our case [16].

Model Description and Validation: In columns I and II of Table 1, the
superscripts of the coefficients denote the range of their respective p values,
as we specify in the table caption. The p value for each coefficient is calculated
using the t-statistic and the Student’s t-distribution. In the table’s lower section,
overview of the models are given: N denotes the number of data points used in
building the model, in our case the number of developers who own bugs. R2 is
the coefficient of determination – the ratio of the regression sum of squares to the
total sum of squares; it indicates the goodness-of-fit of the regression model in
terms of the proportion of variability in the data-set that is accounted for by the
model. df denotes the degrees of freedom. F is the Fisher F-statistic - the ratio
of the variance in the data explained by the linear model divided by the variance
unexplained by the model. The p value is calculated using the F-statistic and the
F-distribution, and it indicates the overall statistical significance of the model.
For the coefficients as well as the overall regression, if p ≤ level of significance,
we conclude the corresponding result is statistically significant, based on null
hypothesis significance testing.

From columns I and II of Table 1, we notice that by adding the independent
variables, the R2 value increases considerably between the base and attention
models and the F-statistic also increases. Thus the independent variables have
enhanced the explanatory power of the model. The standard technique of 10-
fold cross validation was carried out by randomly partitioning the data into 10
sub-samples, training the interaction model with 9 sub-samples and validating
the model on the 10th sub-sample, and repeating this procedure 10 times. The
overall root mean square of prediction error from the cross validation process
was found to be 74.53.

3.2 Threats to Validity

We report results from an observational study rather than a controlled
experiment; thus in the statistical models developed, correlation does not imply
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causation. Threats to construct validity arise from whether the variables are
measured correctly. Although we have used established network metrics in our
models, we recognize structures like DCN, BSN, and DON can be defined in other
ways. We have used a LDA based approach for text similarity as simpler methods
like cosine similarity do not consider clusters of keywords that are likely to occur
together. We have also assumed that the elapsed time between bug opening and
closure represents the actual time taken to resolve the bug. Internal validity en-
sures a study is free from systemic errors and biases. As the Android data-set is
our only source of data, there is no notable threat to this type of validity. Exter-
nal validity is concernedwith the generalizability of the results.We report results
from studying only one data-set and the R2 values of the models show there may
be several other factors whose influence may not have been considered.We plan to
address them in our future work. Thus we do not claim our results to be generaliz-
able as yet.Reliability of a study is established when the results are reproducible.
Given access to the Android bug report data, our results are reproducible.

Table 1. Left: Results of regression for the effects on bug resolution
time.(Superscripts ’∗∗∗’, ’∗∗’, ’†’ denote p ≤ 0.0009, p ≤ 0.001, p ≤ 0.05, respectively)
Right: Descriptive statistics for model variables.

I II Mean Stdev Skew Kurtosis
Base model Attention model

Dependent variable
ResolutionTime 69.12 75.94 1.48 1.76

Intercept 81.60∗∗ 144.03∗∗∗

(24.62) (30.92)

Control variables
Workload −27.30 27.42 13.92 26.17 3.57 14.87

(20.24) (42.35)
SpanOfInterest 0.12 −0.004 53.44 12.19 2.33 4.18

(0.01) (0.11)
CollaborationLevel 16.68 15.03 0.63 0.35 -0.5 -1.01

(27.19) (25.77)
CommunityConcern −17.30 −10.54 11.46 23.93 3.51 18.11

(20.35) (19.65)

Independent variables
Connection −3.27∗∗ 37.51 18.79 0.02 -1.12

(1.11)

Betweenness 1.45† 17.67 25.48 1.80 2.92
(0.86)

N 73 73
R2 0.05 0.17
df 68 66
F 0.89 2.3
p 0.5 < 0.05
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3.3 Observations and Conclusions

On the basis of the details of the attention model in column II of Table 1, we
can make a number of observations. The overall attention model as well as the
relationship between both the independent variables and the dependent vari-
able is statistically significant. From the sign of the respective coefficients, we
notice that higher Connection for a developer relates to decreased Resolution-
Time whereas higher Betweenness relates to increased ResolutionTime. Quicker
resolution of bugs owned by a developer translates to lower ResolutionTime.
Thus results from the model supports hypothesis H1, but we find evidence to
contradict hypothesis H2.

Recalling that Connection is measured by the degree of a developer in DON,
our results indicate that more connected a developer is to other developers
through the ownership of similar bugs, (s)he is likely to be more deeply embed-
ded in the development ecosystem, which is found to facilitate quicker resolution
of the bugs owned by that developer. However, the more involved a developer
gets in brokering interactions between other developers through his/her posi-
tion of higher Betweenness, it appears that (s)he gets more distracted, which is
reflected in the increased ResolutionTime of the bugs (s)he owns.

These results have notable implications in the development of large software
systems. While developers need to be encouraged to connect directly with one
another, the pitfalls of getting too engaged in facilitating interactions between
other developers need to be recognized. As more complex software - many of
them open source - is being built by larger teams, understanding the nuances
of developer attention and its consequences is beneficial for individuals, man-
agement, and organizations. We can thus conclude that the broad assertion on
more “eyeballs” making bugs “shallow” obscures important subtleties in the re-
lationship between developer attention and how quickly bugs get resolved. While
developers need to be encouraged to connect with one another as they collec-
tively work on bug resolution, they also need to be sensitized to the challenges
of too much involvement in mediating interactions between other developers.
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