
 123

LN
BI

P
17

9

15th International Conference, XP 2014
Rome, Italy, May 26–30, 2014
Proceedings

Agile Processes
in Software Engineering
and Extreme Programming

Giovanni Cantone
Michele Marchesi (Eds.)

Lecture Notes
in Business Information Processing 179

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Giovanni Cantone
Michele Marchesi (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming

15th International Conference, XP 2014
Rome, Italy, May 26-30, 2014
Proceedings

13

Volume Editors

Giovanni Cantone
University of Rome Tor Vergata
Department of Computer Science, Systems and Production
Rome, Italy
E-mail: cantone@uniroma2.it

Michele Marchesi
University of Cagliari
Department of Electrical and Electronic Engineering
Cagliari, Italy
E-mail: michele@diee.unica.it

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-319-06861-9 e-ISBN 978-3-319-06862-6
DOI 10.1007/978-3-319-06862-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014937905

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Agile software development is now in its teens. It began by performing in
relatively small pioneering organizations; then it gained the interest of medium-
size companies, academia, and applied research institutions and laboratories;
nowadays it runs in organizations of any kind, including major software and
systems development companies.

Because of such a wide diffusion of agile development in industry, the need
for collaboration between academics and practitioners increases, with the aim
of improving the body of knowledge available to help managers, system engi-
neers, and software engineers to take their managerial/economical, and architec-
tural/project/technical decisions.

During its 15 editions, the XP conference has been a major supporter of the
agile vision of software development. Year after year, the XP conference has
been supporting the improvements and observing the growth of agile software
development and providing evidence of the advantages that agile development
can provide. In fact, these XP editions brought together industrial practitioners
and researchers in the fields of information systems and software development.
They examined the latest theory, practical applications, and implications of agile
and lean methods.

XP 2014, in continuity with the past editions, provided a multidisciplinary
platform for research and practice on various aspects of agile methods, increased
the interaction and collaboration between practitioners and researchers, and dis-
cussed and rethought the relationships, synergies, compatibilities, and incompat-
ibilities between agile and lean practices.

This book presents the regular papers, short papers, and the experience re-
ports that the Research Program Committee accepted for presentation at XP
2014. We should point out that the acceptance process was very selective; specif-
ically, more than 50% of the submitted papers and experience reports were re-
jected.

This book presents chapters concerning or rethinking agile and lean devel-
opment research topics, including: contracting, maturity modeling, value-based
software development, large-scale software development, methods, metrics, test-
ing, challenges and perspectives, software development in practice and teaching
at university. The experience reports come from both industry and research insti-
tutes, and their topics range from studying global architecture design approaches
to investigating challenges involved when advancing software development prac-
tices.

Hopefully, we reached the goal of doing our best in serving the agile commu-
nity by synthesizing the state of the art and practice and tracing its perspectives.

April 2014 Giovanni Cantone
Michele Marchesi

Organization

Conference Chairs

General Chair

Charlie Poole

Research Program Chairs

Giovanni Cantone University of Rome Tor Vergata, Italy
Michele Marchesi University of Cagliari, Italy

Workshops and Tutorials Chairs

Jutta Eckstein
Hakan Erdogmus

Research/Practice Chairs

Pekka Abrahamsson
Morten Elvang
Jaana Nyfjord

Short Paper Chair

Giulio Concas

Panel Chair

Steve Fraser

Executives & Managers Track Chairs

Diana Larsen
Jaana Nyfjord

Open Space Chairs

Diana Larsen
Andrea Provaglio

Program Design and Tech Demos Chair

Emily Bache

VIII Organization

Lightning Talks Chair

Michael Leber

Local Team

Fabio Armani
Giorgio Natili

Volunteer Coordinator

Johanna Hunt

PhD Symposium Chairs

Davide Falessi
Xiaofeng Wang

Posters Chairs

Roberto Tonelli
Stefano Leli

Social Activities Chair

Cinzia Rosellini

Social Media Chair

Daniel Graziotin

Web Master

Martina Matta

Program Committee

Steve Adolph WSA Consulting, Canada
Muhammad Ali Babar IT University of Copenhagen, Denmark
Robert Biddle Carleton University, Canada
Luigi Buglione Engineering.IT/ ETS, Italy
Giulio Concas University of Cagliari, Italy
Steve Counsell Brunel University, London, UK
Ivica Crnkovic Mälardalen University, Sweden
Simon Cromarty Red Gate Software, UK
Steven Fraser Tech Transfer & Research Relations Advisor,

USA

Organization IX

Torgeir Dingsoyr SINTEF, Norway
Siva Dorairaj Software Education, New Zealand
Tore Dyb̊a SINTEF and University of Oslo, Norway
Amr Elssamadisy Gemba Systems, USA
Hakan Erdogmus Kalemun Research, Canada
Davide Falessi Fraunhofer CESE, USA
John Favaro Intecs, Italy
Juan Garbajosa Technical University of Madrid, Spain
Alfredo Goldman University of São Paulo, Brazil
Des Greer Queens University Belfast, Ireland
Orit Hazzan Technion – Israel Institute of Technology,

Israel
Rashina Hoda The University of Auckland, New Zealand
Helena Holmström Olsson Malmö University, Sweden
Johanna Hunt University of Sussex, UK
Kirsi Korhonen NSN, Finland
Pasi Kuvaja University of Oulu, Finland
Casper Lassenius Alto University, Finland
Lech Madeyski Wroclaw University of Technology, Poland
Manuel Mastrofini University of Rome Tor Vergata, Italy
Grigori Melnik Microsoft, Canada
Alok Mishra Atilim University, Turkey
Nils Brede Moe SINTEF ICT, Norway
Ana Moreno Technical University of Madrid, Spain
Alessandro Murgia University of Antwerpe, Belgium
Maria Paasivaara Helsinki University of Technology, Finland
Jennifer Perez Technical University of Madrid, Spain
Adam Porter University of Maryland, USA
Bernhard Rumpe RWTH Aachen University, Germany
Outi Salo Nokia, Finland
Carolyn Seaman UMBC, USA
Helen Sharp The Open University, UK
Alberto Sillitti Free University of Bolzano/Bozen, Italy
Giancarlo Succi Free University of Bolzano/Bozen, Italy
Roberto Tonelli University of Cagliari, Italy
Marco Torchiano Politecnico di Torino, Italy
Stefan Van Baelen University of Leuven, Belgium
Corrado Aaron Visaggio University of Sannio, Italy
Xiaofeng Wang Free University of Bolzano/Bozen, Italy
Hironori Washizaki Waseda University, Japan
Agustin Yague Technical University of Madrid, Spain

X Organization

Sponsors

Media Sponsor

Organization XI

Organizers

Università di Cagliari

Table of Contents

Agile Development

UX Design in Agile: A DSDM Case Study . 1
Laura Plonka, Helen Sharp, Peggy Gregory, and Katie Taylor

Agile Principles in the Embedded System Development 16
Matti Kaisti, Tapio Mujunen, Tuomas Mäkilä, Ville Rantala, and
Teijo Lehtonen

Agile Software Development in Practice . 32
Maureen Doyle, Laurie Williams, Mike Cohn, and Kenneth S. Rubin

Agile Challenges and Contracting

Technical Dependency Challenges in Large-Scale Agile Software
Development . 46

Nelson Sekitoleko, Felix Evbota, Eric Knauss, Anna Sandberg,
Michel Chaudron, and Helena Holmström Olsson

How Can Agile and Documentation-Driven Methods be Meshed
in Practice? . 62

Lise Tordrup Heeager

Contracting in Agile Software Projects: State of Art and How
to Understand It . 78

Shi Hao Zijdemans and Christoph Johann Stettina

Lessons Learned and Agile Maturity

Maturing in Agile: What Is It About? . 94
Rafaela Mantovani Fontana, Sheila Reinehr, and Andreia Malucelli

Why We Need a Granularity Concept for User Stories 110
Olga Liskin, Raphael Pham, Stephan Kiesling, and Kurt Schneider

How to Evolve Software Engineering Teaching

Self-organized Learning in Software Factory: Experiences and Lessons
Learned . 126

Xiaofeng Wang, Ilaria Lunesu, Juha Rikkila, Martina Matta, and
Pekka Abrahamsson

XIV Table of Contents

Methods and Metrics

Using Agile Methods to Implement a Laboratory for Software Product
Quality Evaluation . 143

Javier Verdugo, Moisés Rodŕıguez, and Mario Piattini

Software Metrics in Agile Software: An Empirical Study 157
Giuseppe Destefanis, Steve Counsell, Giulio Concas, and
Roberto Tonelli

Testing and Beyond

Visualizing Testing Activities to Support Continuous Integration:
A Multiple Case Study . 171

Agneta Nilsson, Jan Bosch, and Christian Berger

Comparing a Hybrid Testing Process with Scripted and Exploratory
Testing: An Experimental Study with Practitioners 187

Syed Muhammad Ali Shah, Usman Sattar Alvi, Cigdem Gencel, and
Kai Petersen

Lean Development

Impediments to Flow: Rethinking the Lean Concept of ‘Waste’
in Modern Software Development . 203

Ken Power and Kieran Conboy

Examining the Structure of Lean and Agile Values among Software
Developers . 218

Fabian Fagerholm and Max Pagels

Short Papers

Agile Methodologies in Web Programming: A Survey 234
Giulio Barabino, Daniele Grechi, Danilo Tigano, Erika Corona, and
Giulio Concas

How Many Eyeballs Does a Bug Need? An Empirical Validation
of Linus’ Law . 242

Subhajit Datta, Proshanta Sarkar, Sutirtha Das, Sonu Sreshtha,
Prasanth Lade, and Subhashis Majumder

The Theory and Practice of Randori Coding Dojos 251
John Rooksby, Johanna Hunt, and Xiaofeng Wang

Locating Expertise in Agile Software Development Projects 260
Mawarny Md. Rejab, James Nobl, and George Allan

Table of Contents XV

Are Refactoring Practices Related to Clusters in Java Software? 269
Giulio Concas, Cristina Monni, Matteo Orrù, and Roberto Tonelli

Social Contracts, Simple Rules and Self-organization: A Perspective
on Agile Development . 277

Ken Power

Realizing Agile Software Enterprise Transformations by Team
Performance Development . 285

Petri Kettunen

A Test-Driven Approach for Model-Based Development of Powertrain
Functions . 294

Henrik Peters, Christoph Knieke, Oliver Brox,
Stefanie Jauns-Seyfried, Michael Krämer, and
Andreas Schulze

Experience Reports

Archinotes: A Global Agile Architecture Design Approach 302
Juan Urrego, Rafael Muñoz, Mauricio Mercado, and Daŕıo Correal

Definition of Ready: An Experience Report from Teams at Cisco 312
Ken Power

Specification by Example with GUI Tests - How Could That Work? 320
Emily Bache and Geoffrey Bache

Towards Agile and Beyond: An Empirical Account on the Challenges
Involved When Advancing Software Development Practices 327

Helena Holmström Olsson and Jan Bosch

Author Index . 337

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 1–15, 2014.
© Springer International Publishing Switzerland 2014

UX Design in Agile: A DSDM Case Study

Laura Plonka1, Helen Sharp1, Peggy Gregory2, and Katie Taylor2

1 The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
2 University of Central Lancashire, Preston PR1 2HE, UK
{laura.plonka,helen.sharp}@open.ac.uk,

{ajgregory,kjtaylor}@uclan.ac.uk

Abstract. Integrating User Experience (UX) design with agile development
continues to be the subject of academic studies and practitioner discussions.
Most of the existing literature focuses on SCRUM and XP, but in this paper we
investigate a technical company who use DSDM. Unlike other agile methods,
DSDM provides a configurable framework and a set of roles that covers the
whole software development process. While elements of the UX design
integration experience were similar to those reported with other agile methods,
working practices to mitigate the challenges were identified using DSDM’s
standard elements. Specifically, communication challenges were mitigated by
extending two of DSDM’s standard roles. In addition, a change of focus
between a design-led phase and a development-led phase of the project changed
the communication challenges. Agile teams need to be aware that this change of
focus can happen and the implications that it has for their work.

Keywords: DSDM, UX, agile roles.

1 Introduction

Adequately addressing the user perspective is critical for software system success [1],
and good user experience design is fundamental to achieving this. How best to
integrate user experience (UX) design into an agile project has been a concern of
practitioners and researchers for many years [2, 3, 4]. The main agile methods do not
provide robust support for this integration, leading to several experience reports and
much debate in the UX community. Several approaches to integration have been
suggested including aligning processes, utilising UX techniques alongside agile
sprints, and co-location of experts. However challenges remain.

UX design is about designing “how the product behaves and is used in the real
world… how it works on the outside, where a person comes into contact with it and
has to work with it……every product that is used by someone has a user experience:
newspapers, ketchup bottles, reclining armchairs, cardigan sweaters” [5]. This involves
producing Wireframes, visual designs, interface widgets, user characterisations, and
performing user research and usability testing.

In this paper we present a case study that explores the challenges faced by a
company when integrating UX design into a Dynamic Systems Development Method
(DSDM) project. We use an iterative research approach because it enables us to work

2 L. Plonka et al.

closely with an organisation on challenges that are relevant to everyday practice.
Dingsoyr et al [6] have called for more research that has industrial impact to build a
body of knowledge about agile methods that is relevant to practitioners. DSDM is of
interest because it has been studied less intensively than other agile approaches [7],
yet it provides a particular perspective on project phases and team roles that sets it
apart from other agile methods. The case study focuses on a high-tech software
development company that has a core expertise in software delivery and subscribes to
the DSDM method. This case study presents mainly the technical team’s perspective
since it was they who perceived the difficulty.

The main research question of this study is “What challenges are faced by a
company trying to integrate UX design and DSDM agile development?” Addressing
this question also allows us to discuss two follow-up questions “How does the DSDM
framework support this integration?” and “What implications do the answers to these
questions raise for DSDM and other agile methods?”

The paper is structured as follows: section two introduces the DSDM framework;
section three summarises previous work on integrating agile and UX design; section
four introduces the study site, and describes the research approach; section five
presents our findings; and section six revisits the research questions.

2 The DSDM Framework

The Dynamic Systems Development Method (DSDM) is an agile framework for both
project management and product delivery that grew out of the Rapid Application
Development (RAD) tradition (www.dsdm.org). It was the earliest published agile
method, and one of the founders, Arie van Bennekum, was an original signatory of
the Agile Manifesto [8]. In contrast to early versions of XP and Scrum, which focused
on engineering practices, DSDM sought to wrap the best aspects of RAD in a
lightweight framework to ensure the delivery of business value. The method has
evolved into the DSDM Agile Project Framework [9]. More details about how the
different agile methods compare can be found in [7].

The DSDM framework covers the full project lifecycle including guidance on
philosophy, principles, project roles, processes, practices and products. It is typified
by key practices such as iterative and incremental development, MoSCoW (Must,
Could, Should, Won’t have this time) prioritisation, Timeboxing, Modelling,
Prototyping and Facilitated Workshops. It is configurable so it can accommodate a
range of project types and sizes; and is compatible with a variety of governance and
programme office structures [9].

In this paper we give examples from DSDM Atern [9] because this version was
used within our case study organisation. Atern consists of seven phases: Pre-project,
Feasibility, Foundations, Exploration, Engineering, Deployment, and Post-project. In
Pre-Project a proposal is formalised and prioritised in line with strategic goals. During
Feasibility the business and technical viability of the project are considered.
A high-level investigation of potential solutions is produced, as well as estimates of
costs and timeframes. During the Foundations phase business needs are ascertained
and high level requirements are identified, prioritised and linked to those needs, and
resources are secured. Planning allocates high level requirements to increments

 UX Design in Agile: A DSDM Case Study 3

(releases). Each increment consists of a number of smaller development timeboxes,
the size of which is decided by the team. The first three phases are sequential and set
the scene before the actual development begins. For each increment, Exploration and
Engineering iteratively investigate solutions through the development of prototypes
that build, test and document the solution. In Deployment the solution is made
operational. The number of passes through this phase will depend on the number of
increments scheduled and will be driven by business need. The Post-Project phase
takes place after the last Deployment phase. It is used to assess project performance
against business value and determine benefit realisation.

DSDM defines a full set of roles for project teams: Business Sponsor, Business
Visionary, Technical Coordinator, Project Manager, Team Leader, Business Analyst,
Solution Developer, Solution Tester, Business Ambassador, Business Advisor,
Workshop Facilitator and DSDM Coach. The framework outlines the responsibilities
required however these roles are filled in different ways depending on the nature of
the project, but a key aspect is the importance placed on business involvement.

3 Integrating Agile Development and UX Design

Approaches to integration have been reported by both practitioners and academic
researchers. They can be broadly divided into two categories: bringing people
together, and aligning developer and UX designer work practices.

3.1 Bringing People Together

Cross-functional, co-located teams are regarded as imperative for agile to work. For
example, a key practice in the XP agile approach is the ‘whole team’ practice.
However this view is problematic. Firstly, it is often not feasible or desirable to co-
locate UX designers and agile developers. For example because the organisation’s
core business does not support the direct employment of UX designers, or where the
organisational culture keeps the disciplines separate: “UX designers work best when
they are separated from the issues of software construction because these issues
hamper creativity” [10].

Secondly, relying on cross-functional teams assumes that bringing people together
leads to the integration of concerns, but does it? Ferreira et al. [11] found that
integrating UX design and developers is an ongoing achievement, requiring
articulation work and conscious effort day-by day, so although co-location helps, it is
not the whole story. They identified four aspects to this: integration as mutual
awareness; integration as negotiating progress, integration as engaging with each
other and integration as expectations about acceptable behaviour.

3.2 Aligning Developer and UX Designer Work Practices

Agile developer and UX designer work practices may be aligned in a range of ways
such as: using techniques from one discipline in the other, combining agile and UX
design processes, and recommendations derived from practice.

4 L. Plonka et al.

Techniques from UX design such as personas [12, 13], discount usability [14] and
scenarios [15] have been reportedly used within agile projects. Personas can act as
reminders to developers about who they are developing for, and hanging posters of
personas in the development team area can make design work more visible to
developers [13]. Looking at it the other way around, Kollmann et al. [16] describes
the idea of a “Question Board”, which is similar to an agile progress board but
focuses only on design issues. They explain that it facilitates and triggers discussion
about open questions and issues related to design. It also helps to avoid recurring
debates and captures different perspectives. Sy [17] also suggests capturing design
issues as story cards on a UX board to increase their visibility.

UX design has traditionally followed a process that includes big design up front –
something that agile tries to avoid. Aligning these processes can therefore be a
challenge. In response to this, Sy and Miller [18] proposed that UX designers work
one timebox ahead of developers (see Figure 1), which has become very popular. This
enables the design work to be completed ahead of development work yet be tightly
coupled to it, as the user stories evolve.

Fig. 1. ‘Train tracks’ development where UX designers work one timebox ahead of agile
developers [15]

Several sets of recommendations have been developed by practitioners. For
example, Jeff Patton has 12 recommendations for successful UX design integration
[19] including “Research, model and design up front, but only just enough”, and “Buy
design time with complex technical stories”. Nielsen and Norman [20] recommend
development in train tracks, and emphasize the need to maintain a coherent vision.

4 Research Approach

This paper is based on a case study conducted by the Agile Research Network (ARN
– see agileresearchnetwork.org), a network that conducts industry based research into
agile methods. LShift, a hi-tech software development company, approached the ARN
to investigate a challenge that they were facing: Integrating UX design into a DSDM
project. The research was carried out between April 2013 and October 2013 using an

 UX Design in Agile: A DSDM Case Study 5

iterative research approach that incorporates regular feedback points in which
observations and findings were presented back to the development company [21].
This research approach was chosen based on two main considerations:

1. The research was conducted on a project that was running at LShift at that time.
Studying a live project means that work practices and challenges that the team
members face are constantly evolving during the course of the project and hence
requires an iterative data gathering process to keep up to date with the changes.

2. LShift approached the ARN with a real-world challenge and the aim of this
research was to generate research insights to address the research questions at the
same time as providing research that helps practitioners [22]. In the context of
this study, this means that we shared observations, findings, and relevant
literature during the course of the case study.

4.1 Research Site

LShift is a hi-tech software development company that works across a broad range of
industries, languages and platforms. They have tried many flavours of agile and
subscribe to the DSDM method. At LShift all employees are co-located in an open-
plan office. However due to the wide variety of projects they produce, the expert
LShift software engineers regularly work with external experts and additional teams
such as partner agencies or client-owned teams who are often not co-located for an
entire project. This was the case for UX experts. LShift did not employ UX designers
themselves. Instead their UX design work was done by a separate UX design agency
that had some experience of agile but did not specifically subscribe to the DSDM
method. The agency is a separate commercial entity, located in a separate building.

4.2 Data Gathering and Analysis

Our research approach consisted of four data gathering phases, two main feedback
points and a jointly written report by the researchers and the company. Figure 2 shows
a simplified timeline of our research approach. In practice, phases were iterated.

1. First data gathering phase: Initial interview At the beginning of the case
study, three researchers interviewed the managing director and the programme
manager to build an overall understanding of the project and to develop an initial
picture of the as-is situation in the project and the perceived challenges. This
interview served as a starting for the following observations.

2. Second data gathering phase: Observations During the case study, two
researchers spent time at the LShift office observing the daily work practices of
the development team and attending meetings. Table 1 presents an overview of
the meetings attended. In addition, the two researchers had informal
conversations with developers and project managers during lunch and coffee
breaks. During all observations, extensive field notes were taken.

6 L. Plonka et al.

Fig. 2. Research Approach

3. First feedback point: At the first feedback point, initial observations and
identified challenges were shared with LShift’s management. The management
supported us in identifying key stakeholders for interviews.

Table 1. Overview of observed meetings

Observations Type of meeting

5 Daily Stand-Up Meetings

1 Planning and estimation session

2 Retrospective (one with designers and one without)

1 Design Review Session

4. Third data gathering phase: Semi-structured interviews Semi-structured
interviews were conducted with the identified key technical figures (developers,
project managers, and a business analyst) and UX designers but subsequently the
designers withdrew. The interviews were used to delve deeper into the identified
challenges, to uncover additional challenges and to understand the perspectives of
different key stakeholders. All interviews were audio-recorded and conducted by
at least two researchers; each one lasted between 30min and 1 hour.

5. Second feedback point: Presentation Before the second feedback point, we (all
four authors) analysed the interviews to understand the different perspectives on
the challenges. We also reviewed existing literature to identify ways to mitigate
these challenges. Subsequently, findings from the analysis and literature review
were presented in a meeting that was attended by a large proportion of LShift’s
project team. In the meeting, project members confirmed the challenges we
identified and discussed how to mitigate them using the literature review.

6. Fourth data gathering phase: Follow up interviews To keep track of the
changes that took place after the second feedback point, follow-up interviews
with the project manager and the managing director were conducted.

7. Joint written report As a final step of our research approach, a joint report with
the company was written [23]. This final step allowed us to validate the
interpretation of our observations.

The analysis of the data was conducted iteratively with a focus on articulating
integration challenges. After each data gathering step, the data was analysed
through group discussions, key themes were extracted and findings confirmed
with the company. The findings of the each step informed further data gathering.

 UX Design in Agile: A DSDM Case Study 7

5 Findings

LShift recognized early on that developers and UX designers have different
perspectives and goals, different processes, different commercial pressures, and
different skills and knowledge. These differences manifested themselves during the
“Feasibility and Foundations” phase and the “Engineering” phase. The next two
sections present how UX design was integrated into DSDM during that phase, what
challenges the project members were facing and how they addressed them.

5.1 Integrating UX Design during Feasibility and Foundations

For the project team the journey began at a very early stage. While the concept and
business case for the new product was being developed, a number of user interface
concepts were prepared which became a key part of the sales presentation. While it
was understood by all that these were for illustrative purposes to bring the concept to
life, they did create a set of expectations about the scope of the project and these
expectations survived through the planning stages.

5.1.1 Working Practices during Feasibility and Foundations
From the beginning of the Feasibility planning stage, UX designers and developers
together ran workshops to explore user journeys, produce a high level picture of what
the product had to do and estimate the size of the design and development effort.

At the beginning of the Foundations phase, developers and designers were working
mainly independently. LShift, the development company, who provided all the
technical expertise and is the company with delivery responsibility, focused on
fleshing out the high-level user stories, the technical analysis, infrastructure and
architecture, the security design, and technical de-risking. Meanwhile, the designers
created UX concepts and personas and collaborated closely with the client suggesting
and deciding on designs without receiving technical input from the developers. The
suggested designs were accepted by the client and consequently set their expectations.

5.1.2 Challenges during Feasibility and Foundations
LShift faced two main challenges during Feasibility and Foundations:

1. Technical feasibility issues with design-led approach: To focus on the potential
features of the product unencumbered by practicalities of having to deliver them,
a design-led approach was chosen for the early stage of the project. Illustrating
potential features using interface design mock-ups can be a very useful tool for
providing a shared understanding of what's to be built. However, issues with this
approach arose because UX designers and developers worked mainly
independently, and designs were agreed with the client before developers
confirmed their technical feasibility. This resulted in challenges because the
client’s expectations had been set, but some elements of the design had to be
changed after developers discovered that they were not feasible.

8 L. Plonka et al.

2. Agile prioritization: The prioritisation of functionality in agile projects meant that
the implementation of some features was delayed to a later increment than
originally planned, and some features moved between timeboxes.

Whether the functionality changed because of technical feasibility issues or
prioritisation activity, the result was the same: the client did not receive the
functionality envisaged in the design illustrations, and this was a challenge.

5.1.3 Mitigations during Feasibility and Foundations
In order to mitigate this challenge, a developer was seconded to the UX team to work
in a Business Analyst role, initially with a view to spend time with the design team
and help assess the feasibility of design proposals earlier in the process. However, the
initial planning of resources did not account for this extra, time-consuming task for
the technical lead. This resulted in an extended Foundations phase because the
technical tasks did not progress as quickly as expected.

5.2 Integrating UX Design during Engineering

During Engineering, the developers’ work was broken down into increments
comprising a number of three-week long time-boxes. The team held daily stand-up
meetings and organised their user stories in a project management tool. The UX
designers’ work was also time boxed and they worked one sprint ahead of the
development team (as shown in Fig 1). The designers organised their work during
their timeboxes independently of the development team.

5.2.1 Working Practices during Engineering
During Engineering, developers and UX designers had to integrate their work with
each other, organize the hand-over of designs and feedback on the designs.

 The UX designers worked closely with the client through an iterative design
process resulting in UX designs that were usually signed off by the client before being
handed over to the development team. The developers received various documents.
Usually designs were detailed, “pixel perfect”1 and signed off by the client. However,
occasionally developers received interactive wireframes. A design review to verify
the implemented designs was conducted at the end of each increment.

Due to stakeholder constraints, the classic DSDM whole-team workshops were not
run, but other communication-focused activities were in place.
Daily Communication: Designers attended the daily development stand-up meetings
(either in person or on the phone). This provided a daily opportunity for
communication and keeping up to date with each others’ work.

The New Business Analyst (BA) Role: Identified during the Foundations phase this
role continued to be a “communication bridge” between the developers and the client
as well as between the developers and the design agency. Over time, this

1 Pixel perfect design is the process of aligning and sizing all of the objects that make up a

design to their exact pixel placements and sizes.

 UX Design in Agile: A DSDM Case Study 9

communication bridge worked more directly with the client to drive the business
requirements and attended design meetings with the client to provide technical input.

Ad hoc and on-demand communication: Individual developers and designers could
communicate whenever there was a need for it. Communication could also take place
via email or through phone calls, and occasional face-to-face sessions were held
between designers and developers to work through proposed approaches. This
communication had no prescribed structure.

5.2.2 Challenges during Engineering
Although developers and designers had good opportunities to communicate regularly,
both teams agreed that communication challenges and inter-related challenges
regarding the level of detail in upfront design remained.

Communication between Developers and UX Designers
Communication is a broad topic, but here, four main questions capture the challenge.

1. What information needs to be communicated? UX designers and developers did
not always realise that there was a need for communication. There was not
enough mutual awareness of each others’ activities, leading to mistaken
expectations that caused frustration. For example, this led to the independent
production of two incompatible solutions for the same feature: one from the
developers and one from the designers. The designers did not know that
the developers had developed a solution, and the developers did not know that the
designers were designing the feature without knowing the technical constraints.
This mix-up caused frustration when developers saw the design solution for the
feature (signed off by the client) that did not consider their technical solution.

2. How and when best to communicate information? This question points to the
need for agreed ways of working. As an example, developers sometimes needed
to tweak designs after they had been handed over by the designers. How and
when should this be communicated to designers: when the need for a change is
first realised? once a proven alternative has been implemented and tested? or
somewhere in between? Developers may not expect that an early notification will
be helpful. From a designers’ perspective a continuous feedback process on the
designs may be attractive in order to maintain a coherent design and to inform
future decisions about the design, but it may also cause a high level of
interruptions as a design route may take a while to develop.

3. How to keep communication channels open? Although various channels of
communication were set up, issues sometimes took longer than expected to be
resolved, and this held up development work. This was particularly true when
developers had queries about the designs. Some developers felt inhibited about
phoning a designer to discuss the issue. Instead they used more indirect channels
like email, or tried to resolve the issue within the development team for the sake
of speed.

10 L. Plonka et al.

4. How best to keep the design implementation visible? Limited visibility of the
design implementation posed challenges for designers. This happened because
the design implementation was not regularly reviewed by the designers. In our
case study, although designers had the opportunity to review the design
implementation, formal design reviews were only planned at the end of each
increment for budgetary reasons, and this proved to be too infrequent to catch all
the changes. More formal or more frequently-organised reviews would have
raised design implementation visibility.

Level of Detail in Upfront Design: Sometimes Less Is More
From the developers’ perspective the initial designs were unnecessarily detailed. They
gave five main reasons for this.
1. Prioritisation and de-scoping can lead to a waste of pixel perfect designs.
2. Some issues with the design will only be found once implementation starts.
3. Pixel perfect designs may increase resistance towards making design changes.
4. It is better to focus on functionality first and design as you go along because

when developing new functionality, “any visual work … is a distraction.”
5. Quality of designs can benefit from early input by developers with knowledge of

design guidelines for the target platform.

5.2.3 Mitigations during Engineering
During the observation phase, LShift started to resolve the challenges by: introducing
new roles and involving designers in development and vice versa. They also changed
from a design-led to a development-led approach.

Introducing New Roles. Two standard DSDM roles were modified to help overcome
challenges: the BA (Business Analyst) as communication bridge, and a Project
Manager (PM) with experience of UX design and technical development.

The role was already introduced in Feasibility and Foundations. During the
Engineering phase, this role developed into both a “communication bridge” between
the developers and the client and between the developers and the designers to
explicitly address the communication gap between them. This BA role was staffed by
a senior developer, able to manage the discovery and communication of requirements,
and to provide direct feedback on the technical feasibility of design ideas coming out
of the meetings between designers and client. The BA also provided high-level
requirements for the designers at the beginning of their sprints. Designers and
developers perceived that the role improved communication.

A new person with experience of both technical projects and UX design was added
to the team in order to take a classic DSDM Project Manager role. This was a
departure from the company’s usual model of employing a lead developer in the PM
role, largely as a result of the size of the project and the amount of communication
overhead around the design work. Doing so resulted in extra support for the extended
BA role (described above), but also made sure that the designers’ point of view was
represented in the technical team.

 UX Design in Agile: A DSDM Case Study 11

Involving Developers in Design and Designers in Development. Visibility and
transparency of the work by both parties was increased by:

• The designer attending daily stand-ups. Previously, although a designer attended
stand-ups, different designers attended and they were often not the designer
currently doing the work. Having consistency in attendance was perceived as
positive, improved the communication and resulted in a quicker feedback loop.

• Providing access for designers and developers to all the stories being worked on
at any one time.

• Releasing the implemented design to the designers once a week has led to
iterative feedback coming from the designers to the developers.

From Design-Led to Development-Led Approach. Although the two mitigations
discussed above improved the integration, a subsequent change of project
requirements triggered a change of emphasis between development work and design
work. Whereas previously a design-led approach was in play, a development-led
approach was now needed. Technical spikes (prototypes) were developed and then
shared with designers for their input. In more detail, this process involved:

1. Designers provided wireframes (not pixel-perfect designs) for the new
functionality and these drove the conversation with the client and developers

2. Developers produced technical spikes (a ‘walking skeleton’) which cover basic
functionality to complete a transaction or user journey to test a technical solution

3. Once the basic functionality was developed and agreed, the solution design was
honed by the designers

This approach was perceived as useful since the design and the solution evolved
together. Part of the reason for this switch of emphasis is natural as a result of the
product concept maturing. There is a heavy emphasis on UX while the first
requirements are becoming crystallised into new features, then as design patterns
become clear, the development-led approach starts to become more prominent.

6 Discussion

This section returns to the research question posed above: “What challenges are faced
by a company trying to integrate UX design and DSDM agile development?” In the
next section 6.1, we discuss that the challenges found in a DSDM project are similar
to the challenges in other agile teams. However, DSDM provides a different structure
than other agile methods to address these challenges. We discuss this in section 6.2
and 6.3 focusing on the questions “How does the DSDM framework support this
integration?” and “What implications do the answers to these questions raise for
DSDM and other agile methods?”

In addition to the findings presented in this paper, a practitioners’ perspective on
the lessons learned from this study can be found in [23].

12 L. Plonka et al.

6.1 Key Challenges in UX Design and DSDM Integration

The challenges faced by our DSDM organization find resonances in existing
literature, and so are not unique to this method, and some existing mitigation
strategies have proved useful in this context.

Communication between Developers and UX Designers. The role of face-to-face
communication between developers and designers is stressed by Isomursu et al. [24].

Several publications suggest involving developers and designers in each other’s
process. For example, Budwig et al. [25] describes an approach in which the
developers conduct design work by creating paper mock-ups, presenting them to the
customer and then feeding back to the usability engineers. Designers can also be more
closely involved in the development process, e.g. in the sprint planning meeting [24]
or the stand-up meeting [17]. In our case study company, a designer did regularly
attend the stand-ups, but it was not always the designer actively working on the
project. Communication improved when the right designer attended.

Design collaboration can also be encouraged through, e.g., a design studio [26, 27]
in which developers, stakeholders and designers produce design sketches, present
them and critique them in order to find the best solution. The aim is to develop
technically-feasible designs, and to promote a shared understanding, shared
ownership of the design solutions and team communication.

Level of Precision in Upfront Design: This challenge is also faced by others. The
level of detail required depends on the communication process between designers and
developers, but the main message is “just enough”. There is little guidance on exactly
how much is “just enough”, and reliance often falls back onto frequent
communication. However, in our case study, developers suggested five main reasons
why “less is more” when it comes to design documentation ready for the start of
developer involvement.

Larry Constantine’s classification of outputs as “deliverables” versus
“consumables” provides a useful perspective [19]. Deliverables need to be finished
rather than modifiable. On the whole, designs are deliverables for designers and
consumables for developers.

6.2 How DSDM Supports Integration

In the case study organization, the roles of the extended Business Analyst and the
hybrid Project Manager were seen as key to overcoming the challenges. The DSDM
framework focuses on roles and phases, and hence does provide some support in this
area. However, as there is no explicit mention of UX design in DSDM and no UX
designer role, teams have to work out their own approach to managing this issue.

DSDM’s approach to roles is more detailed than that of other agile methods, and
this enables project teams to explicitly identify and manage team members with
different specialisms and different levels of responsibility. The roles involved during
Foundations are primarily the higher level ‘Project’ level roles, such as the Business

 UX Design in Agile: A DSDM Case Study 13

Sponsor, Business Visionary and Project Manager. During Exploration and
Engineering responsibility moves over to the lower level ‘Solution Development’
team, which contains roles such as the Business Analyst, the Business Ambassador,
the Solution Developer and the Solution Tester.

In this case study two DSDM roles were adapted, one higher ‘Project’ level role,
the Project Manager; and one lower ‘Solution Development’ role, the Business
Analyst. In DSDM the Project Manager is responsible for business and technical
delivery, high-level management, the outline delivery plan and resourcing specialist
roles. The introduction of a Project Manager with a background in technical and UX
management meant that the project level decision maker was sensitive to the team’s
UX challenges and was able to introduce new ways of working to improve the
situation. The role of the Business Analyst in DSDM is to facilitate communication
between the business and technical participants and to support Business Ambassadors
and Advisors in thinking through requirements details. The extension of this role in
the case study facilitated regular communication between the two teams.

These role adaptations were effective for LShift and could be attributed to the
iterative research process with regular feedback points we initiated [21]. However,
they were implemented fairly late on in the project and have yet to be fully evaluated.
Others have also suggested introducing new roles to support team integration, e.g.
Kollman et al have proposed a UX satellite [16]. An outcome from this work is a
recommendation to the DSDM Consortium to include some explicit mention of UX
design in the DSDM documentation along with some best practice guidelines that
would help those using the method.

6.3 Implications for DSDM and Other Agile Methods

Three aspects of the findings here have implications for DSDM and other agile
methods. Firstly, although UX design is not directly mentioned in the framework’s
description, DSDM does provide some support for the integration, but it could do
more. Specifically, having standard roles that can be extended to address UX
communication issues as discussed in the previous section is a useful starting point.
However the roles are not configurable in DSDM at present, but maybe this would be
appropriate.

Secondly, five reasons for reducing the amount of up-front design were identified
by the developers at LShift. Explaining these to designers at the beginning of the
project may lead to less resistance from them to minimize wasted resources. This may
be useful for all agile methods, including DSDM.

Finally, the shift between design-led and development-led project phases is worth
highlighting. In our case, the teams could not have started the project in a developer-
led fashion because the product brand and image needed to be established first.
However, once enough of the design had been developed and the common vision was
established, the developers were able to tweak existing designs in response to
evolving requirements. This difference has not been highlighted before in any agile
context, and could be better supported in both DSDM and other methods.

14 L. Plonka et al.

7 Conclusions

This paper focuses on the use of DSDM, but regardless of which agile method is used,
the integration of UX design and agile development is a challenge. This paper has
highlighted challenges and practical mitigations from which both DSDM and other
agile methods may learn.

DSDM’s Feasibility and Foundations phases offered a good opportunity to identify
and mitigate challenges in communication between different expertises. The sooner
these challenges are mitigated, the fewer challenges will seep through to Engineering.
Challenges that arose during these phases were addressed using extended versions of
DSDM’s standard pre-defined roles. DSDM might therefore be enhanced by
including guidance and support for such extensions, the exact details of which are
likely to depend on the specific context. Explicitly including roles to support
communication such as the communication bridge and the hybrid project manager
may enhance other agile methods too. Other agile methods may also learn from the
challenges that arose during the Engineering phase, where most agile methods focus.

In this case study, UX designers preferred to produce ‘pixel-perfect’ designs early
on. This concern is common to many agile methods, but the reasons are not so often
articulated. Here we have highlighted five reasons for these concerns, and these are
applicable in all agile methods.

The nature of any agile project may change from design-led to development-led. In
this case study, the importance of the UX role within the team reduced as soon as the
principles were set and the development team was operating well. This may change
the power balance in the project and hence the dynamics that create the challenges in
the first place. All agile teams need to be aware of these differences. This change
from design-led to development-led has not previously been discussed in the literature
and we suggest conducting further studies to investigate how the power balance
between designers and developers evolves during the course of a project.

References

1. Abelein, U., Sharp, H., Paech, B.: Does Involving Users in Software Development Really
Influence System Success? IEEE Software 30(6), 17–23 (2013)

2. Constantine, L.L.: Process agility and software usability: Toward lightweight usage-
centered design. Information Age 8(8), 1–10 (2002)

3. Sharp, H., Robinson, H.M., Segal, J.: eXtreme Programming and User-Centred Design:
friend or foe?. In: Proceedings of HCI 2004, 2nd vol. (September 2004)

4. Chamberlain, S., Sharp, H., Maiden, N.A.M.: Towards a Framework for Integrating Agile
Development and User-Centred Design. In: Abrahamsson, P., Marchesi, M., Succi, G.
(eds.) XP 2006. LNCS, vol. 4044, pp. 143–153. Springer, Heidelberg (2006)

5. Garrett, J.J.: The Elements of User Experience: User-Centered Design for the Web. New
Riders Publishers, Indianapolis (2002)

6. Dingsoyr, T., Dyba, T., Abrahamsson, P.: A preliminary roadmap for empirical research
on agile software development. In: Proceedings of AGILE 2008, pp. 83–94. IEEE (2008)

7. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile
methods: A comparative analysis. In: Proceedings of ICSE 2003, Portland, Oregon, USA
(May 2003)

 UX Design in Agile: A DSDM Case Study 15

8. Fowler, M., Highsmith, J.: The agile manifesto. Software Development 9(8), 28–35 (2001)
9. DSDM Consortium (2013), http://www.dsdm.org/dig-deeper

10. Ferreira, J., Sharp, H., Robinson, H.M.: User Experience Design and Agile Development:
Managing cooperation through articulation work. Software Practice and Experience 41(9),
963–974 (2011)

11. Ferreira, J., Sharp, H., Robinson, H.M.: Agile Development and User Experience Design
Integration as an Ongoing Achievement in Practice. In: Agile Conference (AGILE 2012),
pp. 11–20 (2012)

12. Haikara, J.: Usability in agile software development: Extending the interaction design
process with personas approach. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.)
XP 2007. LNCS, vol. 4536, pp. 153–156. Springer, Heidelberg (2007)

13. Broschinsky, D., Baker, L.: Using Persona with XP at LANDesk Software, an Avocent
Company. In: Proceedings AGILE 2008, pp. 543–548 (2008)

14. Kane, D.: Finding a place for discount usability engineering in agile development:
throwing down the gauntlet. In: Proceedings of ADC, pp. 40–46 (2003)

15. Cho, L.: Adopting an agile culture. In: AGILE 2009, pp. 19–25. IEEE Computer Society,
Los Alamitos (2009)

16. Kollmann, J., Sharp, H., Blandford, A.: The importance of identity and vision to user
experience designers on agile projects. In: Proceedings of the 2009 AGILE Conference,
Chicago, IL, USA, pp. 11–18. IEEE Computer Society (August 2009)

17. Sy, D.: Adapting usability investigations for agile user-centered design. Journal of
Usability Studies 2(3) (2007)

18. Sy, D., Miller, L.: Optimizing Agile user-centered design. In: Proceedings of CHI 2008
Extended Abstracts on Human Factors in Computing, pp. 3897–3900. ACM, New York
(2008)

19. Patton, J.: (2013), http://agileproductdesign.com/blog/
emerging_best_agile_ux_practice.html (accessed September 6, 2013)

20. Nielsen and Norman group report (2013), http://www.nngroup.com/
reports/agile-development-user-experience/

21. Gregory, P., Plonka, L., Sharp, H., Taylor, K.: Bridging the Gap Between Research and
Practice: The Agile Research Network. In: Proceedings of European Conference on
Research Methodology for Business and Management Studies (June 2014)

22. Avison, D.E., Lau, F., Myers, D., Nielsen, P.A.: Action research. Commun. ACM 42(1),
94–97 (1999)

23. The Agile Research Network in conjunction with LShift Ltd: Integrating UX design into a
DSDM project: challenges, working practices and lessons learned (2013),
http://agileresearchnetwork.org/ux-white-paper/

24. Isomursu, M., Sirotkin, A., Voltti, P., Halonen, M.: User Experience Design Goes Agile in
Lean Transformation – A Case Study. In: AGILE 2012, pp. 1–10 (2012)

25. Budwig, M., Jeong, S., Kelkar, K.: When user experience met agile: A case study. In:
Proceedings of CHI 2009 Extended Abstracts on Human Factors in Computing, pp. 3075–3084.
ACM, New York (2009)

26. Gothelf, J.: Lean UX Applying Lean Principles to Improve User Experience. O’Reilly
Media (February 2013)

27. Ungar, J., White, J.: Agile user centered design: Enter the design studio - a case study. In:
CHI 2008 Extended Abstracts on Human Factors in Computing Systems, pp. 2167–2178.
ACM, New York (2008)

Agile Principles in the Embedded System

Development

Matti Kaisti1, Tapio Mujunen1,2, Tuomas Mäkilä1,
Ville Rantala1, and Teijo Lehtonen1

1 Technology Research Center, University of Turku, 20014 Turun Yliopisto, Finland
http://embedded.utu.fi

2 Oy LM Ericsson Ab, 02420 Jorvas, Finland

Abstract. Agile manifesto with its four values and 12 principles provides
widely accepted definition of agile. Agile methods have been actively used
in software engineering and other fields are starting to utilize agile develop-
ment methods as well. Embedded system development combines software,
hardware andmechanical engineering activities and thus has some charac-
teristics and constrains which are not found in pure software engineering.
These constraints have earlier been described to be leading to some reinter-
pretation of agile practices. However, understanding how these constraints
affect the applicability of agile philosophy in embedded domain has not
yet been systematically analyzed. Here we will discuss about agile meth-
ods and its applicability in embedded system development through the 12
principles of agile manifesto. We aim to capture the philosophy of agile
rather than only individual practices, by presenting redefined principles for
embedded system development.

Keywords: agile development, embedded system, embedded software.

1 Introduction

Agile methods are currently widely recognized and used in the field of software
engineering. The Agile manifesto is commonly agreed to define agile software
development [1]. There are many methods under the umbrella of agile that share
the same philosophy as stated in the manifesto and thus it can be considered as
the conjunctive factor between the different agile methods.

Each method has its own practices and they emphasize different issues. For
example, Extreme Programming (XP) has many pragmatic practices where as-
pects such as extensive testing, code revision and pair programming are empha-
sized [2]. Alternatively, Scrum focuses more on managing projects where planning
is difficult and relies on frequent feedback from development cycles with regular
planning and review [3].

It is commonly agreed that iterative development is one of the core practices
of agile development. Iterative development has been used already as far back as
in the 1950’s, but its widespread use has been limited until the agile movement
in the 1990’s originating from the software development world [4]. The iterative

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 16–31, 2014.
c© Springer International Publishing Switzerland 2014

Agile Principles 17

development approachwas originally introduced as an alternative to a plan driven
approach commonly labeled as the waterfall model [5].

In a recent systematic literature review (SLR) the state-of-the-art of agile
methods in the embedded system and the embedded software development was
studied by the authors [6]. The results of the review showed that most of the
studies are experience reports and expert opinions, and no rigorous or controlled
experiments have been done. However, these reports showed no fundamental
issues why embedded development could not benefit from agile methods and
practices. It is clear that there are some characteristics in embedded domain
that challenge the applicability of agile development in embedded domain. In
fact, many reports and experience opinions showed at least anecdotal evidence
on the benefits of applying agile in embedded software development. It should
be noted, that most of these studies concentrated on applying agile methods in
embedded software development where software development is constrained by
hardware. Our focus here is broader as we consider not just embedded software
but embedded systems. These systems combine many fields of engineering that
jointly create the system through collaboration where each field constrains oth-
ers. To develop such a system in agile way we need agile system development
and not only pure software development.

The characteristics that are relevant in understanding why agile methods
might not be suitable as such in the embedded domain are discussed in Section
2. The Agile manifesto is based on four values which are backed up by twelve
principles. We consider the four values to be too general as a basis for new agile
method development for the embedded domain. Therefore, in Section 3 the suit-
ability of the twelve agile principles in embedded system design is studied. The
study is based on the emphasis of each principle analyzed in [7] and the char-
acteristics of embedded system development. This paper combines information
from literature and findings from an ongoing project (see acknowledgement) of
the authors where agile methods are studied in the context of embedded systems
development. In this project several case studies were conducted in companies
developing embedded systems. We propose and discuss redefined agile princi-
ples for agile development of embedded systems in Section 3. The final section
summarizes the findings.

2 Characteristics of Embedded Systems Development

Embedded system is application specific and it is typically defined to be a sys-
tem consisting of mechanical and electronic parts in addition to application
specific software. The applications of embedded systems vary from cell phones
and navigation devices to cameras and medical devices to just name a few. The
complexity of embedded systems has substantially increased which makes the
development of such systems increasingly harder.

In this paper, the development of embedded systems is analyzed as a whole,
including software, hardware and mechanical design. There are many issues that
need to be considered when applying agile methods to embedded system de-
velopment as the embedded domain differs in many aspects from pure software

18 M. Kaisti et al.

development. Some most common characteristics of embedded system develop-
ment are discussed next.

2.1 Need for System Level Documentation

In agile methods the working software is promoted over comprehensive docu-
mentation. This is commonly interpreted as keeping the amount of documen-
tation at a minimum and to start coding early without doing major up-front
designs or architectures. In embedded systems this can not be avoided [8]. The
view that system level documentation is required in embedded system develop-
ment is also supported in [9], [10], [11]. There are many stakeholders and design
teams involved in a project with different backgrounds and specialization. Dif-
ferent teams working in the same project also requires that the teams’ work is
synchronized which in turn requires some amount of up-front design documen-
tation. Therefore there is a need to have better ways for communication and
coordination between heterogeneous teams. The required documentation also
leads to a problem of keeping the documentation up to date [8]. A document
driven development is suggested as a way to share appropriate documentation
and information between different stakeholders [11].

Additionally embedded systems are often developed for areas of application
such as aerospace and medical devices where strict standards and regulations set
requirements for their functionality and even for the development process itself.
Heavy compliance approval processes may be required and therefore even small
changes in plans or implementations have to be carefully considered. Compliance
with standards also requires documentation to guarantee that the development
process follows the guidelines and achieves the desired quality. However, sev-
eral standards support incremental or evolutionary documentation which allows
more agile development as the standards do not necessarily require big up-front
design [12]. Even so, the nature of mission and life critical systems requires more
documentation because they are commonly multi-year projects where there is a
significant personnel turnover. For this reason tacit knowledge is not enough to
transfer information between developers. Also, the products are long lived and
of high quality that have to be maintainable. Usually there is a third party han-
dling the maintenance. Therefore, there are needs to have precise high quality
documentation present to transfer knowledge. [13]

2.2 Hardware-Software Interdependencies

Hardware and software parts are naturally tied together in embedded systems.
Hardware and software require each other in the final verification and both parts
have to be developed to some maturity before they can be tested together. Addi-
tionally, embedded system design requires substantial amount of experimenting
with hardware and software e.g. due to the hardware timing constraints which
can make the software behave in unpredictable ways. [8].

Electronics and mechanics design have long development cycles compared
to software. Even though these cycles can be shortened with today’s fast

Agile Principles 19

manufacturing processes, simulation tools, mechanical quick models, and with
many off the shelf components, they are not expected to reach the cycle lengths
of software development. Therefore, it may become an issue to fit these different
domains together into a cyclic development flow.

2.3 Heterogenous Teams with Different Skillsets

Developers of each domain, such as software, electronics or mechanics, see the
application mostly from their own point of view. A challenge is to combine these
views to develop, test, and verify the application in the best possible way early.
Mastering all these different domains at the same time is challenging or even
impossible. Understanding the overall functionality is difficult and requires ex-
tensive experience or very close and efficient collaboration. However, overcoming
this challenge through better understanding of the other domains is essential to
create an environment which supports synergetic cross-domain innovation, and
where communication is also effortless.

Agile methods commonly promote knowledge transfer within the team that
leads to teamswhere tasks in a project can virtually bemade by anyone. For exam-
ple, agilemethods promote a common code base and joint responsibility.Given the
nature of embedded systems with many heterogeneous teams with different skills
make it quite impossible to have such a knowledge transfer and commonly owned
task base. Additionally, many different teamswith specialized skills create difficul-
ties in communication where misunderstandings can become quite common. This
emphasizes close collaboration between different teams. The task is even more
challenging should there be virtual teams or outsourced resourcing involved in the
development process.

2.4 Inflexibility due to Real-Time Functionality

In embedded systems the software is commonly constrained due to resource
constraints e.g. processor speed, memory and user interface. Real-time means
that a function needs to happen in predictable ways, not that it is instantaneous.
Hard real time requirements mean that if an action is not executed in a given
time frame there could be a major failure in the system [14].

Maintaining synchronization of different parts of an embedded system is crucial
for the whole system to work as designed. The time window for a certain task to
complete can be very narrow and in many cases it can lead to a requirement of
optimization. This introduces a challenge to design work, since even small changes
in a feature or bug fixes in hardware or software may cause significant changes in
the timings. This leads to a situation where efficient communication between the
teams is emphasized and the ability to make changes becomes more difficult.

Real-time requirements are typical characteristics for any embedded system
[8] and lead to necessary reinterpretation of agile methods and practices. For
example refactoring needs to emphasize speed and low power consumption of
the design rather than modular and readable code [15]. Timing-critical features
typically have to be tuned carefully to operate as intended. In systems like these

20 M. Kaisti et al.

the correctness of the system functionality is guaranteed as long as every action
is executed within a given timeframe [14].

3 Mapping Principles of Agile Software Development to
Embedded System Development

Due to the characteristics of embedded system development discussed in the
previous chapter, agile methods do not directly work in the embedded domain.
There are many agile methods with various practices emphasizing different as-
pects. A widely recognized definition of agile capturing its philosophy is given
by Agile manifesto [1]. The manifesto comprises four values and 12 principles.
Since the four values are quite general and almost directly applicable to em-
bedded system development, we focus on the 12 principles of the manifesto. In
the following we will discuss how these principles apply in embedded domain
and thus we aim to provide some guidance to developing an agile method for
embedded domain. We also propose new principles which are more suitable for
embedded system development, but still retain the essence of the original agile
principles.

In Table 1 there are the 12 principles of the manifesto [1] and their correspond-
ing emphasis given in [7]. We added a third column describing main challenges
of each principle in the embedded system context. We have found that there
are challenges in evaluating the product maturity, releasing the whole embed-
ded system frequently and in accepting changes late in development process.
In addition, due to the diversity of development teams there are challenges in
communication and in aligning everyone’s efforts in an efficient way. According
to the emphasis of each principle discussed by [7] we grouped the principles in
four categories which are progress of product development (principles 1, 3, and
7), control of change (principles 2 and 10), people (principles 4, 5, 6, 8 and 11),
and improving the agility (principles 9 and 12).

3.1 Principles Concerning the Progress of Product Development

Agile methods underline the ability to measure reliably and continuously the
status of a project through functional deliverables and suggest that slicing tasks
in small pieces is a way to improve predictability and transparency. Creating
small, self-contained tasks is not trivial in the embedded domain and new prac-
tices are needed to achieve this target.

Principle 1: Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.
Principle 3: Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.
Principle 7: Working software is the primary measure of progress.

Agile Principles 21

Table 1. The emphasis and challenges of agile principles in embedded system devel-
opment. The emphasis is from [7] and principles from the agile manifesto [1].

Agile Principle Emphasis Challenge

1. Our highest priority is to

satisfy the customer through

early and continuous delivery

of valuable software.

Customer satisfaction,

continuous delivery, value,

early deliveries.

Definition of deliverable,

long development cycles.

2. Welcome changing require-

ments, even late in develop-

ment. Agile processes harness

change for the customer’s

competitive advantage.

Adaptability, competitive-

ness, customer benefit.

High cost of change late in

development.

3. Deliver working software fre-

quently, from a couple of weeks

to a couple of months, with

a preference to the shorter

timescale.

Frequent deliveries. Definition of deliverable,

the cost of delivering the

whole system, long devel-

opment cycles.

4. Business people and develop-

ers must work together daily

throughout the project.

Collaboration. Multi-domain communica-

tion.

5. Build projects around moti-

vated individuals. Give them

the environment and support

they need, and trust them to

get the job done.

Motivated individuals,

good environment, sup-

port, trust.

Heterogeneous skills and

teams.

6. The most efficient and effective

method of conveying informa-

tion to and within a develop-

ment team is face-to-face con-

versation.

Efficiency, communication. Distributed development,

multi-domain communica-

tion.

7. Working software is the pri-

mary measure of progress.

Measure of progress via de-

liverables.

Frequent system releases.

8. Agile processes promote

sustainable development. The

sponsors, developers, and users

should be able to maintain a

constant pace indefinitely.

Sustainability, people. Heterogeneous skills.

9. Continuous attention to tech-

nical excellence and good de-

sign enhances agility.

Focus on technical excel-

lence, good design as en-

abler of agility

Refactoring, good design.

10. Simplicity–the art of maximiz-

ing the amount of work not

done–is essential.

Simplicity, optimize work. Long cycles.

11. The best architectures, re-

quirements, and designs

emerge from self-organizing

teams.

Self-organization. Heterogeneous skills, up-

front system level design.

12. At regular intervals, the team

reflects on how to become more

effective, then tunes and ad-

justs its behavior accordingly.

Built-in improvement of ef-

ficiency and behavior.

Heterogeneous teams.

22 M. Kaisti et al.

The first agile principle assumes that the customer is satisfied by deliver-
ing valuable software. In the software development the goal is that software is
throughout the development process ”as ready as possible” and is incrementally
built into the first fully-working version. It is self-evident that in embedded sys-
tem development the first principle cannot be adopted as such, since the outcome
of the development activities is more than just software.

To analyze the meaning and the validity of the principle in the embedded
systems context, two questions have to be answered: 1) what is the equivalent
concept to the ”valuable software” in the context, and 2) can it be delivered
early and continuously during the embedded system development cycle?

The first question is more complex than it firstly seems. The incremental
development, that is taken for granted in software development, is not that
straightforward in the embedded systems domain. If the measure of progress is
considered to be a working system it could be that the first functional version
of the system could become available very late in the design process. Thus the
measure of progress would be available too late to allow the reliable estimation
of product maturity and possible corrections in the design.

We suggest that in the agile embedded development frequent demonstrations
of progress are taken into use. The demonstrations make the progress visible and,
if possible, increase the understanding of the system under development, and
therefore create value to the customer. The nature of demonstrations can vary.
In early stages of the development a demonstration can be a pre-project, a proof
of concept or even a document describing the system level design while in latter
stages actual prototypes of the system are delivered. Even if documentation and
plans can be accepted as demonstrations to some extent, the goal is to deliver
working prototypes as early and as often as feasible.

What comes to the second question, the costs to manufacture hardware and
mechanics prototypes nowadays are becoming lower compared to labor costs.
Therefore, iterative development of hardware and mechanics is more feasible than
it used to be, but nevertheless the iterations in these two domains are far longer
that in software. Thus, the frequency of customer releases is heavily impacted
by the speed of hardware and mechanical design. With the concept of redefining
the deliverable it is possible to use e.g. dual targeting [16] to demonstrate the
functionality of software and to improve the quality of hardware driver software
even though the physical implementation of the system is not ready. Up-front
prototyping and platform based design are hardware practices that can be used
to get a working system and a demonstration. [17], [18]. In some cases it is
fairly easy to deliver something working early. There is, however, difficulties in
reaching the same pace or frequency of deliveries as in software engineering.

Laanti et al. summarize the emphasis of the first principle as customer sat-
isfaction, continuous delivery, value and early deliveries [7]. Value builds up
differently in embedded systems than in software, and it is possible that ac-
tual functional value will be realized only late during the development cycle.
However, the customer can benefit from early and continuous delivery although
the deliverable is not the working system. It is evident that by delivering some

Agile Principles 23

proofs of development advancements increases the customer’s understanding into
the development work and therefore, also the customer satisfaction during the
development process. However, it has to be constantly kept in mind, that the
ultimate goal and the fulfillment of customer satisfaction is the working system
which creates additional value to the customer. Therefore, if there is a contra-
diction between the requirement of continuous delivery and the advancement
towards the working system, the latter should be given priority.

As a summary, we need to either loose the requirement of early and continuous
delivery in embedded systems development or define the ”valuable software”
differently than in software development context. The first principle could be
changed in the embedded systems context as follows:

Proposal 1: Our highest priority is to satisfy the customer through early and
continuous demonstrations which lead to the valuable system.

The third and seventh agile principle discuss the same topics as the first principle.
Working software is in the core of all these three principles and therefore what
is said above still applies. In the third principle frequent deliveries guarantee the
visibility and the pace of the development work. Although in embedded systems
development the reasonable development cycle might be longer than in software
development mainly because of the functionality of the hardware is more difficult
to slice into smaller pieces. Therefore, the cycle lengths should be stretched to
their natural length. However, the suggested iteration range still applies even if
it is likely that shorter lengths are not commonly met. The seventh principle
repeats the message of the importance of working software as a measure of
progress. As mentioned before, the concept of demonstrations that lead to a
working system can be used as a sufficient substitute in the embedded systems
development.

Laanti et al. summarize the essence of the third principle as frequent deliveries
and the seventh principle as progress measure via deliverables. These core ideas
behind the original principles can be restructured as follows:

Proposal 3: Deliver demonstrations leading to the working system frequently,
from a couple of weeks to a couple of months, with a preference to the shorter
timescale.

Proposal 7: Demonstrations and working systems are the primary measure of
progress.

3.2 Principles Concerning the Control of Change

Agile manifesto stresses the openness to accept changes whenever during the de-
velopment process to ensure customer’s advantage [1]. However, in the embedded
system development the cost of change late in the process can lead to substantial
increase in cost and the sudden increase in the workload can significantly affect
the release date. Therefore, new development techniques are needed to move the
stance from reacting to changes to ensuring that the customer does not have a
need for costly change late in development.

24 M. Kaisti et al.

Principle 2: Welcome changing requirements, even late in development. Agile
processes harness change for the customer’s competitive advantage.

In the previous section, the concept of working software and its equivalent
in embedded systems development was discussed. Another concept that works
differently in embedded systems development than in pure software development
are the changing requirements emphasized by the second principle. For example,
in many cases the functionality of a software system can be removed by simply
commenting out certain key lines from the source code. In embedded systems,
changing or enhancing functionality of a performance optimized feature could
result in a costly redesign due to software and hardware interdependencies. In
real-time systems these kind of changes could even jeopardize the correctness of
functionality.

Laanti et al. describe second principle to emphasize adaptability, competitive-
ness, and customer benefit [7]. Implementing this principle in embedded domain
requires a domain specific approach to overcome the cost of change which is em-
phasized in embedded domain. One strategy to achieve adaptability is adding
generality to the design. This is in contrast with for example Extreme Program-
ming where simplicity over general designs is strongly advised. The assumption
is that the cost of later modifications is smaller than the cost of making general
designs since in software engineering most of the functionality is never used.
In embedded domain this view is challenged since hardware sets limits how fast
and flexibly the hardware iterations can be made. Strictly following the principle
of simplicity would require much shorter hardware development cycles that are
possible. This hardware iteration length boundary shifts the balance between
simplicity and generality towards more general designs. More rigid and expen-
sive the hardware iteration, the greater is the shift. Generality thus ensures that
emerging customer requests could be handled as incremental design changes.

The lean software development approach provides a good tool for minimizing
costs due to changing requirements in the embedded systems development. The
fourth principle of the lean software development guides to defer commitment,
which practically means that the work should not be started until the latest
possible point. This way it is ensured that the latest and most correct information
is at developer’s disposal. [19]

Hardware inherently sets more limits and boundaries than software due to its
inherent rigidity and longer development cycles. Additionally, the expenses of
late changes in hardware more easily outweigh the benefits of the late change
than in software. For this reason the project becomes less agile when it matures
compared to software engineering projects. The software stays adaptable in the
boundaries of the hardware constraints. This is the problem of embedded soft-
ware development with hardware constraints. It has been previously discussed
e.g. by [8, 16].

To fully gain agility in embedded system project we need to introduce ideas
from hardware-software co-design [17]. It is important that hardware and soft-
ware feedback loops are short and that the entire system, not just embedded
software, is optimized. Both hardware and software set requirements to other

Agile Principles 25

domains. The common and inherent development phases of hardware are sys-
tem design, design implementation, manufacturing and testing. These phases
are clear points in the development that partially freeze the design. In each
development phase it should be analyzed how the flexibility of the system is
restricted after the phase has been completed. Through customer feedback from
the demonstrations and implemented features it should be ensured that no un-
necessary restrictions are made and that restricting decisions should be deferred
as long as feasible. If not enough information is available to make a design
choice, the requirement for simplicity should be relaxed. More general design
choices should be implemented that allows late changes without a costly hard-
ware re-implementation.

Based on this discussion, we can reformulate the second principle as follows:

Proposal 2: Defer making restricting design decisions to allow changing re-
quirements, even late in development. This way the change can be harnessed for
the customer’s competitive advantage.

Principle 10: - Simplicity – the art of maximizing the amount of work not done
– is essential.

Following Laanti’s categorization, the tenth principle emphasizes simplicity
and optimization of work. To avoid implementing anything that could be changed
later on, the principle guides developers to commit only to work which is essen-
tially necessary.

Simplicity in design is important just as well in embedded domain as it is in
software engineering since it guides to avoid overly complicated solutions that
are hard to document. There is, however, distinctions in embedded development
that have to be understood. Previously, we have discussed long development
cycles. Designing optimized, bare minimum functionality would easily lead to a
situation where after the hardware is designed and sent to be manufactured, a
new feature requirement arises.

To reduce the total amount of work to be done during the whole project it is
good practice to reserve some extra functionality that has fairly high probability
of being used even if this leads to fair amount of features never needed. This
leads to a trade-off between additional cost and flexibility but, as we discussed
in the context of the second principle, the target should always be to avoid dis-
ruptive modifications and to strive toward incremental changes. Practical means
to implement generality in design work means utilizing non-optimal, general de-
signs that can be more easily reused in different applications. This can be done
with modular and general platform-design, which enables the implementation of
functionality using software techniques rather than hardware implementations.
As discussed previously, the capability of predicting the right amount of extra
functionality is essential in implementing this approach efficiently.

As a summary, just as it is important to prioritize the work and to avoid
overengineering, it is also essential to optimize the total amount of total work to

26 M. Kaisti et al.

be done during a project. Therefore, we suggest that the tenth principle should
be reformulated as follows:

Proposal 10: Balance between simplicity – the art of maximizing the amount
of work not done in a short term – and generality – the art of minimizing the
total amount of work to be done in a long term – is essential.

3.3 Principles Concerning People

Agile methods promote people over processes. Emphasizing individuals puts the
focus on people and their energy, innovation, and ability to solve problems and to
work together towards a common goal. This is true also in embedded system devel-
opment although there are some specific challenges created by teams with special-
ized individual skills, e.g. by dividing into hardware and software engineers.

Principle 11: The best architectures, requirements, and designs emerge from
self-organizing teams.

In embedded system development top level design is required e.g. in order to have
clear task allocation between software and hardware. Therefore, it is important
that these teams have a joint system design or architecture. Additionally, there
should be a leading role with the responsibility of the project having the supreme
right to make important decisions should there be any conflicts between differ-
ent teams and to maintain continuous interaction between teams [20]. As an
example, in Scrum the Product Owner would make important product-related
decisions that affect the teams, while the Scrum Master would facilitate the con-
flict mediation and continuous interaction between the teams. It is acknowledged
that self-organization is still required, but the principle should also emphasize
co-operating teams which allows the embedded system, not just its components,
to have optimal implementation and not to have software and hardware over-
head. We propose a slight change to this principle as follows:

Proposal 11: The best architectures, requirements, and designs emerge from
co-operating and self-organizing teams.

Principle 8: Agile processes promote sustainable development. The sponsors,
developers, and users should be able to maintain a constant pace indefinitely.

In an ideal development team everyone would be able to take on every kind of
task. In embedded system development this, however, is not possible due to the
differentiation and complexity of subsystem components that are needed for an
application to be delivered. It is most likely, that there are areas of specialization
that can be done efficiently only by few in the development team. This can pos-
sibly lead to management issues when specialized tasks are done in series. Delay
in a critical part affects the rest of the developers causing the amount of work
not done to pile up. For this reason sustainable pace can be more challenging in
embedded context, but also, it can be the reason why it is even more important
to pay attention to it.

Agile Principles 27

Principle 4: Business people and developers must work together daily through-
out the project.
Principle 5: Build projects around motivated individuals. Give them the envi-
ronment and support they need, and trust them to get the job done.
Principle 6 The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

With heterogeneous teams a clear communication can be more difficult when
there is no full understanding of a foreign domain. Therefore face-to-face com-
munication is emphasized to make the communication more clear. However, in
embedded systems domain it is quite usual that different design groups can be
located on different sites. Therefore the face-to-face communication can be diffi-
cult, but modern communication tools allow communication in real time. Even
though modern communication tools can alleviate the problem, most likely it
can not be compensated altogether and thus following this principle requires
special attention.

As a conclusion, the people related agile principles apply in the embedded
systems domain, although some nuances have to be taken into consideration.
Some principles are more difficult to follow and at the same time it can be more
important to do so. The principle of self-organization is clearly the most chal-
lenging from all people related principles since the development teams contain
individuals with clearly different skill sets and there is a requirement for top
level design. That being said, we propose to keep the fourth, fifth, sixth and eight
agile principle intact in the embedded systems context.

3.4 Principles Concerning Improvement of Agility

Agile methods encourage embracing customer initiated changes in product devel-
opment and also promote that teams find better working methods and refactor
their deliverables as long as it takes to fulfill customer’s requests. In agile soft-
ware development this is seen to improve agility as well as quality.

Principle 9: Continuous attention to technical excellence and good design en-
hances agility.

Striving towards good design through refactoring and modular code enhances
agility in software development. Refactoring, especially in hardware design con-
text, needs to be reinterpreted in embedded domain. Refactoring should empha-
size speed and low power consumption while keeping the code as modular and
readable if possible. [15].

In embedded systems the cost of change increases as the system grows more
mature more strongly than in software engineering. This is true especially in
real-time systems where the correctness of functionality of the system can be
impacted even by small changes. Continual improvements during a product de-
velopment should be limited only to those design phases that have not yet been
completed.

28 M. Kaisti et al.

Principle 12: At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Investing in continuous development of skills improves multi-discipline team
communication as team members become more familiar with other team’s work-
ing methods. This helps to organize work in order to improve overall throughput.
The outcome of reflection is twofold, firstly the improved communication helps
to minimize unnecessary documentation and avoid misinterpretations. Secondly,
understanding the work flow as a whole helps to optimize working methods of
each team. The result is the best possible outcome from the product point of
view instead of each team optimizing their own ambitions.

Even though some common agile practices such as refactoring do not fit as
such in embedded context the principles behind improving agility are just as im-
portant in the embedded context than they are in software engineering. There-
fore we propose that that principles 9 and 12 remain intact in embedded system
development.

4 Summary

Suitability of agile principles in embedded system development has been dis-
cussed in this paper. There are some unique features in embedded system devel-
opment that prevent the straightforward appliance of the original agile principles
in the embedded domain. In this paper we presented the proposals for the agile
principles in embedded system development which are presented in Table 2. The
presented proposals were based on the emphasis of each principle and analyzed
through the characteristics of embedded systems. These resulted in principle
specific challenges that we summarized in Table 1 and discussed in Section 3.

Some of the original agile principles work in embedded domain as such and
others require changes or reinterpretations. Additionally, the importance of some
principles is emphasized differently in embedded context. We grouped the prin-
ciples in four categories: progress of product development, control of change,
people and improvement of agility.

The most notable differences are found in principles concerning the progress of
product development. In embedded system development it is unfeasible to have
frequent system releases due to long development cycles of hardware. Therefore,
the definition of deliverable needs to be reinterpreted more loosely. By using
hardware related practices it is possible to deliver frequently where the progress
is measured via demonstrations.

Principles concerning the control of change also need different approach in the
embedded domain especially with welcoming changing requirements even late in
development. In hardware-intensive embedded system development late changes
cannot be always accepted because of the high impact on cost and schedule since
changes usually trickle down to many stakeholders and design teams.

The principles concerning people fit into embedded domain as they may fit
into any domain. A discrepancy is found with self-organizing teams. In embed-
ded domain there are commonly many distinct design teams collaborating on a

Agile Principles 29

Table 2. Proposals for Agile Principles in Embedded System Development. Redefined
parts of principles are emphasized.

Proposal of Agile Principles

1 Our highest priority is to satisfy the customer through early and con-
tinuous demonstrations which lead to the valuable system.

2 Defer making restricting design decisions to allow changing require-
ments, even late in development. This way the change can be harnessed
for the customer’s competitive advantage.

3 Deliver demonstrations leading to the working system frequently, from a
couple of weeks to a couple of months, with a preference to the shorter
timescale.

4 Business people and developers must work together daily throughout
the project.

5 Build projects around motivated individuals. Give them the environ-
ment and support they need, and trust them to get the job done.

6 The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

7 Demonstrations and working system are the primary measure of
progress.

8 Agile processes promote sustainable development. The sponsors, devel-
opers, and users should be able to maintain a constant pace indefinitely.

9 Continuous attention to technical excellence and good design enhances
agility.

10 Balance between simplicity – the art of maximizing the amount of work
not done in a short term – and generality – the art of minimizing the
total amount of work to be done in a long term – is essential.

11 The best architectures, requirements, and designs emerge from co-
operating and self-organizing teams.

12 At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

project and the self-organization is mainly limited among the people working on
the same, quite narrowly defined, domain.

Principles concerning improvement of agility are especially important in em-
bedded domain since common practices, such as refactoring, are not trivial in
embedded domain. Distinct development teams are unfamiliar with each other’s
work which has to be taken into account at each point of the adoption process.

The discussion and the proposed principles, presented in this paper, point out
the main differences between software engineering and development of embed-
ded systems. Based on the proposed principles it is also possible to examine the
agility, as declared by the agile manifesto, of certain embedded system devel-
opment practices. Each level and quarter of an organization should be aware of
these presented principles to enable self-organization in the development teams.

As a conclusion, the twelve principles of the agile manifesto can be applied to
embedded system development as long as their essence can be met with practices
suitable for the context of embedded domain.

30 M. Kaisti et al.

Acknowledgement. The research reported in this article has been conducted
as a part of AgiES (Agile and Lean Product Development for Embedded ICT
Systems) project. The project is carried out in collaboration with Finnish Insti-
tute of Occupational Health and industry partners BA Group, FiSMA, Lindorff
Finland, LM Ericsson, Neoxen Systems, Nextfour Group and Nordic ID. The
project is mainly funded by Tekes - the Finnish Funding Agency for Technology
and Innovation.

References

1. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Agile manifesto (2001),
http://agilemanifesto.org/

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(1999)

3. Schwaber, K.: Scrum development process. In: 10th Annual ACM Conference on
Object Oriented Programming Systems, Languages, and Applications (OOPSLA),
pp. 117–134 (1995)

4. Larman, C.: Agile and Iterative Develpoment: A Manager’s Guide. Addison-
Wesley, Boston (2003)

5. Royce, W.W.: Managing the development of large software systems. In: Proc. IEEE
WESTCON, Los Angeles (1970)

6. Kaisti, M., Rantala, V., Mujunen, T., Hyrynsalmi, S., Könnölä, K., Mäkilä, T.,
Lehtonen, T.: Agile methods for embedded systems development - a literature
review and a mapping study. EURASIP Journal on Embedded Systems 15 (2013)

7. Laanti, M., Similä, J., Abrahamsson, P.: Definitions of agile software development
and agility. In: McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2013.
CCIS, vol. 364, pp. 247–258. Springer, Heidelberg (2013)

8. Ronkainen, J., Abrahamsson, P.: Software development under stringent hardware
constraints: Do agile methods have a chance? In: Marchesi, M., Succi, G. (eds.)
XP 2003. LNCS, vol. 2675, pp. 73–79. Springer, Heidelberg (2003)

9. Drobka, J., Noftz, D., Raghu, R.: Piloting xp on four mission-critical projects.
IEEE Software 21(6), 70–75 (2004)

10. Gul, E., Taylan, S., Yuceturk, A.C., Yildirim, U.: Using xp in telecommunication
software development. In: The Third International Conference on Software Engi-
neering Advances, ICSEA 2008, pp. 258–263 (2008)

11. Luqi, Zhang, L., Berzins, V., Qiao, Y.: Documentation driven development for
complex real-time systems. IEEE Transactions on Software Engineering 30(12),
936–952 (2004)

12. Theunissen, W.M., Kourie, D.G., Watson, B.W.: Standards and agile software de-
velopment. In: Proceedings of the 2003 Annual Research Conference of the South
African Institute of Computer Scientists and Information Technologists on Enable-
ment Through Technology, SAICSIT 2003, pp. 178–188 (2003)

13. Sidky, A., Arthur, J.: Determining the applicability of agile practices to mission
and life-critical systems. In: Proceedings of the 31st IEEE Software Engineering
Workshop, SEW 2007, pp. 3–12. IEEE Computer Society, Washington, DC (2007)

14. Douglass, B.P.: Real-Time Agility: The Harmony/ESW Method for Real-Time and
Embedded Systems Development, 1st edn. Addison-Wesley Professional (2009)

http://agilemanifesto.org/

Agile Principles 31

15. Smith, M., Miller, J., Daeninck, S.: A test-oriented embedded system production
methodology. Journal of Signal Processing Systems 56(1), 69–89 (2009)

16. Grenning, J.W.: Test Driven Development for Embedded C. Pragmatic Bookshelf
(2011)

17. Punkka, T.: Agile hardware and co-design. In: Embedded Systems Conference 2012,
Boston, ESC–3008 (2012)

18. Cordeiro, L., Barreto, R., Oliveira, M.: Towards a semiformal development method-
ology for embedded systems. In: 3rd International Conference on Evaluation of
Novel Approaches to Software Engineering, pp. 5–12 (May 2008)

19. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development:
From Concept to Cash. Addison Wesley Professional (2007)

20. Womack, J.P., Jones, D.T., Roos, D.: The Machine That Changed the World.
Simon & Schuster, London (2007)

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 32–45, 2014.
© Springer International Publishing Switzerland 2014

Agile Software Development in Practice

Maureen Doyle1, Laurie Williams2, Mike Cohn3, and Kenneth S. Rubin4

1 Computer Science, Northern Kentucky University,
Highland Heights, Kentucky 41011, USA

doylem3@nku.edu
2 Computer Science, North Carolina State University,

Raleigh, North Carolina 27695, USA
williams@csc.ncsu.edu

3 Mountain Goat Software, Lafayette, Colorado 80026, USA
mike@mountaingoatsoftware.com
4 Innolution, Niwot, Colorado 80544, USA

krubin@innolution.com

Abstract. Agile software development methods have been around since the mid
1990s. Over these years, teams have evolved the specific software development
practices used. Aims: The goal of this paper is to provide a view of the agile
practices used by new teams, and the relationship between the practices used,
project outcomes, and the agile principles. Method: This paper provides a
summary and analysis of 2,229 Comparative AgilityTM (CA) assessment
surveys completed between March 2011 and October 2012 by agile developers
who knew about the survey. The CA tool assesses a team’s agility and project
outcomes using a 65-statement Likert survey. Results: The agile principle of
respect for individuals occurs the most frequently, while simplicity occurs least.
Progress/Planning is correlated strongly to nine principles. Conclusion: Subject
to sampling issues, successful teams report more positive results for agile
practices with the most important practice being teams knowing their velocity.

Keywords: agile software development, comparative agility assessment,
agile practices.

1 Introduction

Agile software development is no longer considered a new idea, however showing the
savings obtained from implementing an agile process is still largely through anecdote
or case studies [1]. The agile manifesto defined principles, and since the inception of
agile software development in the mid 1990s, teams have evolved the specific
practices used [2].

The goal of this paper is to provide a view of the agile practices used by new
teams, and the relationship between the practices used, success Outcomes, and the
Agile Principles. We present a view into the state of the practice in agile software
development based on extensive analysis of 2,229 completed Comparative Agility
(CA) surveys.

 Agile Software Development in Practice 33

This paper contributes the following:

• Identification of the most and least popular agile practices.
• Identification of the agile principles that most influence other principles and

successful project outcomes.
• Identification of individual survey statements that occur more frequently

among successful teams than unsuccessful teams.

2 Comparative Agility

CA is a survey-based assessment tool, developed by three of the four authors, used by
individuals and organizations to compare their own agility implementations to others.
Any practitioner can visit the CA website1 and, in exchange for investing his or her
time to complete the survey, receive a free report that compares his or her survey
results to the complete industry dataset. Alternatively, teams can request2 to have a
customized collector. These team members then individually take the survey using a
team-specific survey URL.

At the highest level, the CA approach assesses agility across eight dimensions:
Teamwork; Requirements; Planning; Technical Practices; Quality; Culture;
Knowledge Creating; and Outcomes. The survey respondent is presented with 65
statements. Each statement is an agile practice for which the respondent indicates the
truth of the statement relative to their team or organization. For example:

• Upfront planning is helpful without being excessive.
• Team members leave planning meetings knowing what needs to be done

and have confidence they can meet their commitments.
• Teams communicate the need to change release date or scope as soon as

they are discovered.
• Effort spent on planning is spread approximately evenly throughout the

project.

Throughout this paper, we refer to the statements as “practices” interchangeably.
The survey statements are considered practices because each statement indicates a
practice the team would decide to include in their agile development process. CA
respondents choose the appropriate response to the statement using a 6 point Likert
scale: not applicable, false, more false than true, neither false nor true, more true than
false and true. Individual survey responses were excluded from analysis when ‘Not
Applicable’ was chosen. The remaining responses are assigned ranks of 1, 2, 3, 4,
and 5 respectively for all analyses.

CA was designed to lead to actionable results. Sample comparison output is shown
in Fig. 1 and the individual respondent or team receives information on the number of
standard deviations of their response(s) versus the dataset mean. When an
organization can see how it compares with other organizations, improvement efforts
can be focused.

1 http://www.comparativeagility.com/
2 Those wishing to obtain a customized collector should contact the third author of this paper.

34 M. Doyle et al.

Initially, the CA consis
through a systematic elimin
questions on project outcom
practices teams use with th
instrument.

Fig. 1.

3 Related Work

Williams et al. [3] published
respondents of the original
on the results of four ind
collectors, explaining why
interviews with the teams.
reactions and plans of these
in this 2014 paper differs in
the agile principles and surv

Chow et al. [4] develop
agile software projects. T
scope, timeliness and cost.
engineering techniques, tea
four critical success facto
examining the agile princip

VersionOne3, an agile pr
global survey of agile adop
survey at conferences and
year the survey has provi
currently implementing or

3 http://www.versionon
4 http://ambysoft.com/

ted of 125 statements. The CA was shortened in 20
nation of highly correlated and repetitive questions. Se
mes were added to the new CA to enable analysis of

heir project results. This paper analyzed the newer surv

Comparative Agility Dimension Analysis

d an overview of industry trends in agility based upon 1,2
125-statement CA. This 2010 paper also explored in de

dustrial teams who responded to the CA via customi
y their results were relatively high or low based up

 The paper discussed the resultant process improvem
e teams subsequent to reviewing their CA results. The w
n the surveys analyzed and includes a statistical analysis
vey statements that were not part of the 2010 work.
ped and analyzed a survey to examine success factors
They evaluated hypothesis based on success in qual
 The results showed that delivery schedule, agile softw
m capability and project management process were the
ors in successful teams. This CA analysis differs
les, as well a examining a larger pool of practices.
roject management tool producer, has conducted an ann
ption and practices since 2006. VersionOne publicizes t

via email campaigns asking people to participate. E
ided an aggregate report on the status of organizati
r practicing agile methods. Ambysoft4 conducts sim

ne.com/
/surveys

010
even

the
vey

235
epth
ized
pon

ment
work

s of

s in
lity,

ware
top

s in

nual
this

Each
ions

milar

 Agile Software Development in Practice 35

surveys. This paper also reports on the status and demographics of survey-responders,
but also provides statistical analyses of the survey results.

Two other assessment frameworks have been used to evaluate agile software
development teams with published results. One is the Extreme Programming
Evaluation Framework (XP-EF) [5]. The purpose of the XP-EF is to provide a
structure for a case study such that the results of multiple, independent case studies
can be combined and compared to create a family of related studies. For example, the
results of case studies of industrial Extreme Programming (XP) teams at IBM and
others were structured via the XP-EF [6].

The other assessment framework is the Shodan survey [5]. Similar in intent to CA,
the purpose of the Shodan survey is to assess the extent to which a team adopts the
practices of Extreme Programming. The published works detail specific case studies
only. Additional published case studies (e.g. [7, 8]) examine agile development,
which provide in-depth analysis of a single company.

ThoughtWorks Agile Assessments5 and Dr. Agile Assessment6 provide surveys
similar to CA for the purpose of providing individuals and organizations information
on their agile adoption and practices. These organizations have not published
aggregate data, so we cannot compare to their results.

4 Data Collection and Demographics

The industry-wide data reported in this paper is based upon 2,229 completed CA
surveys taken between March 26, 2011 and October 12, 2012. The survey database
indicates that 3,339 surveys were attempted or taken during this timeframe, but 1,110
of these surveys were eliminated because not all of the 65 Likert statements had a
response. In other words, a survey was deemed incomplete and omitted from the
analysis if even one statement was skipped since the option ‘Not Applicable’ was
available for all statements. Individual survey statements with the ‘Not Applicable’
response were not analyzed. Surveys were not eliminated when demographic questions
were skipped. In this section, we report the overall demographics for all valid surveys
and present the reported industry, team size, team experience, project types, and other
general demographic information.

There were a large number of demographics collected and a subset of these are
now discussed. A majority (78%, N=1,735) of the responses came from teams who
asked for their data to be analyzed via a customized collector. Generally, teams that
request a customized collector are being coached by one of the authors so that their
data can be analyzed as a separate group. In other cases (22%, N=494), individuals
found the CA survey site, such as after seeing articles written about the survey [5].
Based upon these circumstances, the respondents are considered to be part of agile
teams or teams beginning an agile transition.

A broad range of industries participated in the CA assessment. Thirty-one (31)
different industries were identified by respondents, including bio-technology, tourism,
and game development. Table 1 lists the top five reported industries.

5 http://agileassessments.com/
6 http://www.dragile.com/

36 M. Doyle et al.

Table 1. Top five industries

Industry Count % of Responses

Web/Software Development 968 29.0%
Manufacturing 159 4.8%
Finance/Banking/Accounting 132 4.0%
Telecommunications/Networks 108 3.2%
Non-Profit/Trade Association 95 2.8%

Ninety-five percent (2,127) of the surveys had a response to the question “Which

best characterizes this project?” Table 2 lists the most popular project types.

Table 2. Project Type

Project Type % of Responses

Software, application or solution that will be used internally within my organization 37.9%
Web Development 33.8%
Embedded software/systems/devices 13.3%
Other 7.9%
A project being developed by one company for another company 7.1%

Ninety-seven percent of the survey respondents provided the number of people

working on their project team including managers, developers, testers, and designers.
Many teams had fewer than 10 (33.6%) people while 7% of the teams had more than
50 people. Table 3 summarizes the agile team sizes.

Table 3. Team size as percentage of all respondents

Team Size % Total

1-10 33.6%
11-25 23.5%
26-50 10.0%

51-100 3.8%
More than 100 3.7%

Another demographic question was answered by 95% of respondents and queried:

“How long has this group been doing agile development prior to starting this
project?“ Over 59% (1308/2229) of the respondents indicated the group had been
doing agile for a year or less which is likely a manifestation of the survey being taken
by new teams being coached by the authors. Table 4 summarizes the results of this
question.

Table 4. Team's Experience

Team’s Agile Experience % Total

 0-6 months 38.5%
7-12 months 21.8%

Longer than 1 year, less than 2 21.2%
Longer than 2 years, less than 3 10.6%

Longer than 3 years 7.9%
Left Blank 2.9%

 Agile Software Development in Practice 37

In summary, the demographics presented here show that the analysis results
discussed in this paper apply to a variety of agile projects and primarily to new teams.

5 State of the Practice

The state of the practice reports the project outcomes experienced by teams, the agile
practices, as measured by the survey statements, in practice and presents and
discusses the most popular and unpopular reported statements. Understanding the
state of agile software development with respect to the twelve agile principles
provides us with a quasi-metric of how current agile development compares to the
vision stated in the twelve principles.

5.1 Project Outcomes

Seven CA statements assess the outcomes of an agile project are listed, along with a
keyword in Table 5.

Table 5. CA Statements evaluating project outcomes

CA Statement Keyword
The team has produced higher quality products since we
started using an agile approach.

Higher quality

The team has been more productive since we started
using an agile approach.

More productive

Our customers have been more satisfied with the
functionality of our products since started using an agile
approach.

Customer
functionality

Our customers have been more satisfied with the usability
of our products since we started using an agile approach.

Customer Usability

The team has had higher morale since we started using an
agile approach.

Higher Morale

Our business has recognized greater economic value
since we started using an agile approach.

Greater Economic
Value

We have delivered functionality to users more quickly
and/or more often since we started using an agile
approach.

Delivered
Functionality Quicker

The percentage of response type is plotted in Fig. 2 to provide a snapshot of the

project outcomes when embracing agile development when compared to previous
approaches.

The outcomes “more productive” and “delivered functionality to users more
quickly” occurs the most frequently and have more positive than negative responses.
The least occurring outcomes relate to customer satisfaction, both with functionality
and usability. Of the 2,229 surveys analyzed, 1,593 (71%) reported at least one
positive outcome, 636 (29%) of the surveys had only negative outcomes, and 516
(23%) reported all positive outcomes, as defined by responses of “true” or “more true
than false.”

38 M. Doyle et al.

Fig. 2. Reported project outcomes, Count percentage

5.2 Agile Principles

The CA statements were mapped to one of the twelve agile principles defined in the
Agile Manifesto [9]. Although statements may address more than one principle, each
was assigned to the one principle that the statement most influenced. Table 6 presents
the number of CA survey statements per principle and a keyword. The keyword is
used in subsequent discussions.

The survey statements were grouped and the percentage of Likert-Scale responses
are shown in Fig. 3. It is worth nothing that there are five principles, highlighted in
Table 6, that have similar response percentages with a large number of positive
responses. All but three principles (emergence, excellence, and simplicity) report at
least 50% of teams are practicing the agile principle. The agile principles with the
largest positive results are Individuals, Business, and Face-to-face. The CA
statements for Individuals address team autonomy, support, and respect. The two
statements with the most positive responses for Individuals are: “Estimates are
created collaboratively by the people who will do the work.” and “Team members are
kept together as long as possible.” Business statements evaluate how much the
customer is involved in the development process. “The product owner is available to
discuss upcoming features and work-in-progress” and “One or more of scope,
schedule, or resources is allowed to change during a project.” are the two statements

Customer Usability

Customer Functionality

Greater Economic Value

Higher Morale

Higher quality

Delivered Functionality Quicker

More productive

0.4 0.2 0 0.2 0.4 0.6

False
More False than True

Neither True nor False
More True than False

True

 Agile Software Development in Practice 39

with the most positive responses. Face-to-face survey questions target the availability
of team members to meet in person. There are five statements evaluating this practice
and the top two statements are “Whole teams, including the ScrumMaster and
Product Owner, have no more than 12 people on them.” and “Team members
communicate in a high-bandwidth manner without undue interference.”

Table 6. CA Survey statements per principle

Principle Keyword Num of
statements

Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.
Outcomes 7

Welcome changing requirements, even late in

development. Agile processes harness change for the

customer’s competitive advantage.

Change 4

Deliver working software frequently, from a couple of

weeks to a couple of months, with a preference to the

shorter timescale.

Frequently 1

Business people and developers must work together daily

throughout the project.
Business 5

Build projects around motivated individuals. Give them

the environment and support they need, and trust them to

get the job done.

Individuals 12

The most efficient and effective method of conveying

information to and within a development team is face-to-

face conversation.

Face-to-face 5

Working software is the primary measure of progress. Progress 8

Agile processes promote sustainable development. The

sponsors, developers, and users should be able to maintain

a constant pace indefinitely.

Sustainable 7

Continuous attention to technical excellence and good

design enhances agility.
Excellence 11

Simplicity—the art of maximizing the amount of work not

done—is essential.
Simplicity 1

The best architectures, requirements, and designs emerge

from self-organizing teams.
Emergence 2

At regular intervals, the team reflects on how to become

more effective, then tunes and adjusts its behavior

accordingly.

Retrospective 2

The principle of Simplicity stands out because it has more negative responses than

any other agile principle. Simplicity is defined as the ‘art of maximizing the amount
of work not done’ [9] which is evaluated with one statement: Team members don’t
have to work on tasks that they deem to not add value. These results may indicate
that teams are not completely freed of bureaucratic or other non-value tasks when
they use agile practices.

40 M. Doyle et al.

Fig. 3. Applying Agile Practices, Percentage Count

5.3 More and Less Popular Agile Practices

We analyzed the responses to the 58 non-Outcome statements. A survey response is
considered positive if the practice was marked as “true” or “more true than false.”
The survey statements with the most positive responses are listed in Table 7.

Table 7. Most popular practices

CA Statement % Positive 95% lower
limit

Agile Principle

Estimates are created collaboratively by the people

who will do the work.
85% 84% Individuals

All work is done in iterations of no more than 30 days. 84% 83% Progress

Whole teams, including the ScrumMaster and Product

Owner, have no more than 12 people on them.

83% 81% Face-To-Face

Team members communicate in a high-bandwidth

manner without undue interference.
80% 79% Face-to-Face

Team members are kept together as long as possible. 80% 78% Individuals

 Agile Software Development in Practice 41

Table 7 includes the 95% lower-limit of positive responses to the questions
for generalization to the population of teams converting over to agile development.
In other words, given assumptions of normality and random sampling, we are 95%
sure that 84% of new agile teams are collaboratively developing estimates.

The practices embodied in the least positive statements are listed in Table 8.
Similar to the previous analysis, we are 95% sure that no more than 25% of
development teams have implemented pair programming. This is in agreement with
previous studies. The next lowest, at no more than 27%, is that agile teams have no
manual testing at the end of each iteration. This may be due to the large number of
web applications requiring multiple browser version testing.

Table 8. Least popular practices

CA Statement % Positive 95% upper
limit

Agile Principle

Code is written using pair-programming. 23% 25% Excellence

At the end of each iteration there is little or no

manual testing required.
25% 27% Excellence

Most code is written using unit test-driven

development.
38% 40% Excellence

Bonuses, annual reviews, and compensation

promote team behavior.
40% 42% Individuals

Team members don't have to work on tasks that

they deem to not add value.
43% 45% Simplicity

The agile principles associated with these statements reveal that while

“Individuals” has the most positive responses of all the principles, there is room for
improvement since at most 42% of the agile teams provide compensation to promote
team behavior. Three of the five statements address the agile principle of excellence,
and excellence is the second least popular agile principle for all of the survey
questions. The practice of agile excellence, as measured by pair-programming, unit-
testing, and automated testing are not practiced by most new agile teams.

6 Analysis of Principles and Outcomes

All statistical analysis and tests used are designed for ordinal data. A Spearman rank,
r, correlation analysis was performed for all correlation computations. The Spearman
rank correlation coefficient was selected because Likert-scale data is measured at the
ordinal level. Data of this form violates a necessary assumption for the use of the
parametric Pearson correlation coefficient, so a nonparametric correlation is used for
analysis. A correlation, r, between two dimensions indicates that r2 of the variability
in one is attributed to variability in the other. Since multiple comparisons were
performed, the Bonferroni correction was applied to control the false discovery rate.
All correlations are deemed significant only when p<=0.0002 for the sample sizes
analyzed in 6.1 and 6.2.

42 M. Doyle et al.

6.1 Outcome Correlations

The most strongly correlated statements among all 65 statements in the CA survey
occur between the Outcome statements. A large number of surveys had no positive
outcomes and, therefore, provide no information regarding the relationships between
project outcomes. As a result, correlations between outcomes were computed only
using surveys that had at least one successful outcome (1,714 surveys).

The correlation matrix for Outcomes is shown in Fig. 4. The correlation results are
displayed as is a lower-triangular matrix with correlation values, r, represented by the
size of the square. The larger the square, the more strongly correlated the pair of
outcomes. The diagonal is an example of r=1. There were no negative correlations in
this analysis. A correlation between two items is considered strong when its value is
at least 0.5. All correlations are significant to p<0.0002.

The strongest correlation between two outcomes is for customer more satisfied
with usability and customer more satisfied with functionality (r=0.78. Teams report
delivering customer satisfaction with functionality and usability together or they are
delivering neither. The smallest correlation is between higher morale and delivered
functionality to users more quickly (r=0.46), meaning team members report higher
morale delivering more frequently. The only other weak correlation is between
delivering functionality to users more quickly and delivering higher quality. This is
still a positive correlation, however it may reflect the tradeoff that often exists
between quality and speed.

Fig. 4. Outcome Correlations

0.3 0.53 0.77 1

H
ig

he
r

qu
al

ity

M
or

e
pr

od
uc

tiv
e

C
us

to
m

er
 F

un
ct

io
na

lit
y

C
us

to
m

er
 U

sa
bi

lit
y

H
ig

he
r

M
or

al
e

E
co

no
m

ic
 V

al
ue

D
el

iv
er

ed
 F

un
ct

io
na

lit
y

Higher quality

More productive

Customer Functionality

Customer Usability

Higher Morale

Economic Value

Delivered Functionality

 Agile Software Development in Practice 43

6.2 Principle Correlations

Correlations for the twelve agile principles were computed for the 2,229 surveys and
are shown in Fig. 5. All correlations are significant with p<=0.0002.

All correlations are positive. The six agile principles of Progress, Sustainable,
Individuals, Business, Change and Excellence are strongly correlated with each other.
Face-To-Face is also a part of this group although its correlation to Excellence is
weaker at r=0.45. This result means that teams embracing any one of these agile
principles are embracing all of the others.

Progress is correlated strongly to the most dimensions and also to Outcomes
(r=0.53). Progress may well be a bellwether of project success indicating projects who
are tracking progress are seeing more positive outcomes, while projects not tracking
progress are not seeing positive outcomes. In addition, teams that are monitoring
progress are also committed to the other principles of agile development.

The principles of Frequently and Retrospective are not as strongly correlated,
although interestingly they are highly correlated with each other. Retrospectives are
occurring when there are more frequent releases perhaps indicating a fuller
commitment to the team process changes necessary for agile development.

The two practices with the weakest correlations are Simplicity and Emergence
indicating that changes in these practices do not explain changes in the other practices
or outcomes. This result may be due not to the practice itself, but because these

Fig. 5. Agile Principle Correlations

44 M. Doyle et al.

are both harder principles to measure. In addition, there are just three questions
(1 for Simplicity and 2 for Emergence) in the survey measuring these practices.

6.3 Statement Analysis

Analysis was done to determine differences between successful and unsuccessful
teams. A confidence interval was computed for the differences between answers for
each statement between teams that had positive outcomes to teams that did not. All
results are significant with p < 0.001.

Table 9 contains a list of the practices showing the largest differences between
successful and unsuccessful teams. The table contains the 95% confidence interval
(lower limit, upper limit) for the reported differences and its agile principle. This
first row of this table states that successful teams responded with a 4 or a 5 to the
statement ‘Teams know their velocity’ at least 33% more often than unsuccessful
agile teams.

Table 9. Practices of successful teams

Practice ll ul principle
Teams know their velocity. 33 45 Sustainable
Standup meetings are effective at synchronizing work. 29 40 Face-To-Face
Team members choose which tasks to work on. 29 40 Individuals
The team maintains a steady rate of productivity without
being overworked.

29 40 Individuals

At the start of each iteration, the team performs sufficient
just-in-time planning to be confident of what it can
complete in the iteration.

28 39 Sustainable

The results of this analysis support that appropriate planning and team involvement

results in project success. These results are consistent with Chow [4] who found that
the top critical success fact is delivery strategy and three of the five successful
practices above (Teams know their velocity, The Team maintains a steady rate of
productivity without being overworked, and At the start of each iteration, the team
performs sufficient just-in-time planning to be confident of what it can complete in the
iteration.) are part of a delivery strategy. Teams converting to agile who have
implemented these practices are seeing more successful results than teams who do not.

7 Limitations

The main external threat to validity is this is not a random sample of agile
development teams. Teams participating in the CA survey may not be representative
of the general agile community since they are typically investing time for survey
completion, are likely being coached, and are therefore interested in improving their
agile processes.

The primary internal threat to validity is that many results are self-reported and
dependent on the veracity of the individual(s) completing the survey. The number of
questions attributed to each category influences the correlations and analysis of the

 Agile Software Development in Practice 45

CA dimensions and agile principles to outcomes. The addition or elimination of
survey questions for each principle may alter the results. The CA assessment analysis
treated all surveys independently. Teams from the same companies or surveys
completed by multiple members of the same team can skew the results.

Another threat to validity is that surveys were taken by different employees on the
same agile team and/or employed by the same company. Chi-square results shows that
the company has some impact on results although no there were no obvious patterns.

There may be a “cap effect” with regard to the two-sample confidence intervals. For
example since at least 83.7% of respondents answer one statement with a 4 or 5, it is
that much more difficult to have a larger difference between the success/no success
groups. Conversely with statement having fewer positive results, looking at all of them
it is 59-63% it is easier to have a bigger difference there between the two groups.

The CA assessment does not differentiate between the methodology used to
implement agile software development and this may also impact the results.

Acknowledgments. Thank you to the many reviewers and editors of earlier versions
of this paper including Dr. Jane Huffman Hayes, Dr. Laurie Williams’ research team,
John Slankas, Barbara Doyle, Dr. Brooke Buckley, Dr. Janet Burge, and Sue Noble.
The Burkhardt Consulting Center provided a thorough review of the data analysis.
Brittany Campbell provided technical support in meeting LNCS style guidelines.
Northern Kentucky University provided financial support to the first author for travel.
The Scrum Alliance provided financial support for the second author.

References

1. Taft, D.K.: Agile Software Development Hits Stride After Years of Evangelism. In: eWeek
(2013)

2. Williams, L.: What Agile Teams Think of Agile Principles. Communications of the
ACM 55(4), 71–76 (2012)

3. Williams, L., Rubin, K., Cohn, M.: Driving Process Improvement via Comparative Agility
Assessment. In: AGILE 2010, Orlando, FL, pp. 3–10 (2010)

4. Chow, T., Cao, D.-B.: A survey study of critical success factors in agile software projects.
Journal of Systems and Software 81(6), 961–971 (2008)

5. Williams, L., Laymen, L., Krebs, W.: Extreme Programming evaluation Framework for
Object-Oriented Languages – Version 1. In: N.C. Science (ed.) TR-2004-18, North Carolina
State University (2004),
http://www.csc.ncsu.edu/research/tech/reports.php

6. Krebs, W.: Turning the Knobs: A Coaching Pattern for XP through Agile Metrics. In:
Wells, D., Williams, L. (eds.) XP 2002. LNCS, vol. 2418, pp. 60–69. Springer, Heidelberg
(2002)

7. Pikkarainen, M., Passoja, U.: An approach for assessing suitability of agile solutions: A
case study. In: Baumeister, H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS,
vol. 3556, pp. 171–179. Springer, Heidelberg (2005)

8. Theunissen, W.H.M.: A case-study based assessment of Agile software development.
University of Pretoria (2003)

9. Beck, K., et al.: Principles behind the Agile Manifesto (2001) [cited 2013]

Technical Dependency Challenges

in Large-Scale Agile Software Development

Nelson Sekitoleko1, Felix Evbota1, Eric Knauss1, Anna Sandberg2,
Michel Chaudron1, and Helena Holmström Olsson3

1 Department of Computer Science and Engineering
Chalmers, University of Gothenburg

nellysek@gmail.com, gusevbfe@student.gu.se, eric.knauss@cse.gu.se
2 Ericsson AB

3 Malmö University

Abstract. This qualitative study investigates challenges associated with
technical dependencies and their communication. Such challenges fre-
quently occur when agile practices are scaled to large-scale software de-
velopment. The use of thematic analysis on semi-structured interviews
revealed five challenges: planning, task prioritization, knowledge shar-
ing, code quality, and integration. More importantly, these challenges
interact with one another and can lead to a domino effect or vicious
circle. If an organization struggles with one challenge, it is likely that
the other challenges become problematic as well. This situation can have
a significant impact on process and product quality. Our recommenda-
tions focus on improving planning and knowledge sharing (with practices
such as scrum-of-scrums, continuous integration, open space technology)
to break the vicious circle, and to reestablish effective communication
across teams, which will then enable large-scale companies to achieve
the benefits of large-scale agility.

Keywords: Technical dependencies, Large-scale agile, Cross-Functional
Teams (XFT), Qualitative research.

1 Introduction

Due to attractive characteristics such as flexibility, responsiveness and team
empowerment, agile development methods have been increasingly adopted by
large-scale development organizations. In emphasizing the use of iterations and
development of small features, agile methods have increased the ability for soft-
ware development companies to accommodate changing customer requirements
and fast changing market needs [1]. In particular, agile methods have shown
their capacity in empowering development teams, improving their relationship
to customers, and allowing an increased focus on informal communication and
coordination rather than focusing on formal communication and documentation
of their practices [2]. As one of its basic principles, agile development provides
simple, rapid, and incremental solutions to big problems by breaking down com-
plex features into smaller ones [3]. This allows for small, cross-functional teams to

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 46–61, 2014.
c© Springer International Publishing Switzerland 2014

Technical Dependency Challenges 47

work on smaller tasks and well-defined areas of development and hence, improve
both efficiency and speed.

However, while agile development methods and the breakdown of complex
tasks were originally developed to improve small-scale development, and to sup-
port co-located teams, they are being increasingly adopted by large-scale devel-
opment organizations with globally distributed teams [3]. In such settings, the
agile breakdown of complex tasks poses a big challenge due to complex technical
dependencies between teams [4]. These dependencies can be seen in various ways,
such as, dependencies between activities in the development process, dependen-
cies among different software artefacts, and dependencies across teams and team
members [5]. Looking back at the agile basic principles, teams should commu-
nicate directly in a face-to-face conversation [6], a situation that is rarely the
case in large-scale distributed software development. Instead, the complexity of
technical dependencies increases with the size of the company, and in large-scale
software development the challenge therefore becomes how to minimize technical
dependencies that have a negative impact on team performance, as well as how
to enable communication and management of technical dependencies between
teams.

Based on this identified challenge of technical dependencies in large-scale soft-
ware development, this study addresses the following research questions:

RQ1: What are the challenges associated with technical dependencies between
teams in a large-scale agile software development?

RQ2: What affects the likelihood of a challenge to occur?

The contribution of the paper is twofold. First, and based on case study re-
search, we identify the challenges that exist in relation to technical dependencies
between teams in large-scale distributed development. Second, we provide a set
of recommendations on how software development companies can manage these
challenges in order to mitigate the impact of these on development team per-
formance. While our findings are based on a single case study, we believe that
our findings are relevant to other organisations in which communication and
coordination between teams is a critical task.

The remainder of this paper is structured as follows: Section 2 describes ag-
ile teams and how agile team practices are increasingly applied in large-scale
software development. The section also introduces the notion of technical de-
pendencies and how these can be communicated in teams and in between teams.
Section 3 describes the research site and the case study research methodology
that we applied in this study. In Section 4, we present the findings from the
interview study. Finally, in Section 5 and 6 we discuss our findings as well as
provide a set of recommendations to help organisations address the challenges
we identified in relation to technical dependencies.

48 N. Sekitoleko et al.

2 Background: Large-Scale Agility, Technical
Dependency, and Communication

2.1 Agile Teams

During the last decade agile methods have dramatically changed the way soft-
ware development is performed, as well as the ways in which software teams are
organised. Unlike traditional development methods characterized by plan-based
execution of sequential phases, agile methods focus on managing unpredictabil-
ity and change. In doing so, agile methods advocate small development teams
in which all necessary competences are represented, i.e. cross-functional teams
consisting of software developers, testers, architects etc. Typically, these teams
take responsibility for the development of a software feature from the moment
that a requirement comes from a customer, until that requirement is translated
into software functionality that addresses that customers need. During devel-
opment of a feature, the development team works in close collaboration with
the customer in order to allow for rapid feedback loops, collaborative decision-
making, as well as continuous integration and deployment of code changes [7]. In
this way, agile teams seek to avoid cumbersome and time-consuming processes
and instead focus on taking an end-to-end responsibility for feature development
and that continuously validate if the functionality they develop correspond to
customer needs. Typically, this is referred to as empowerment of teams [7]. Al-
though agile methods differ in details and techniques, overall agile principles
such as flexibility, empowered teams and customer collaboration lie at the heart
of all of them.

2.2 Large-Scale Agile

For more than a decade, agile development methods have demonstrated their suc-
cess in establishing flexible development processes with short feedback loops and
consideration taken to evolving customer needs [2,8]. Due to successful accounts
[9,10], these methods have become attractive to a broad variety of companies.
Currently, large software-intensive organizations are in the process of deploying
agile methods, and attempts to scale agile methods can be identified [11,12,13].
However, the applicability of these methods is not without challenges in large-
scale development of software intended for a mass-market [14]. As recognized by
Badampudi et al [15], organizations often discover misalignments between meth-
ods when attempting to use agile methods in a large-scale setting. According to
the authors, the reason for this is that many large-scale companies practice ag-
ile in a way that is not consistent with the original agile ideas, and that the
translation of the original ideas to a large-scale setting is difficult. Also, the shift
towards agile is difficult for companies that are used to heavyweight sequential
processes and companies that are confronted with interdependent teams and
stakeholders located at different locations [15]. Often, development teams lack
a shared understanding with other teams due to communication and coordina-
tion challenges, lack of documentation and complex decision-making processes
among distributed stakeholders.

Technical Dependency Challenges 49

Another difficulty, and as reported on by Heikkila et al. [14], is the challenge
related to cross-functional team creation. In their research, the authors iden-
tify difficulties with creating generalist teams that can implement features in
all components of the software. As recognized in their study, organizations usu-
ally realizes that many components in a large-scale system are technically very
difficult and interdependent, and require years of experience to be fully under-
stood by developers. As a result, many large-scale organizations experience long
lead times before the development teams can implement anything useful in a
component. The authors conclude that identifying who has the required exten-
sive experience and expertise to perform a task is still a challenge in a large
organization adopting agile methods.

Finally, creating user stories that can be developed in a single sprint is re-
ported on as challenging because of the complex nature of large-scale software
systems [14]. Often, internal and external dependencies affect the way in which
agile practices can be applied in large-scale development settings, and many or-
ganizations experience inconsistencies with the way in which agile practices are
adopted. As recognized by [16], the understanding of the contingencies, i.e. how
and when agile practices are applicable under variations in project size, business
domain, and team configurations surrounding large-scale agile development is
important.

2.3 Technical Dependency

The large number of interdependencies among activities and artefacts in the
software development process is one of the major challenges in large-scale soft-
ware development, which includes a large number of developers and development
teams.[17]. Babinet and Ramanathan identify the following challenges of tech-
nical dependencies [18]:

– Unpredictability, were teams find it difficult to know beforehand what
changes, issues, surprises, failures and successes they will come across during
the development of a feature.

– Conflicting priorities, such as a team depending on a component that has
lower priority in the backlog of another team.

– Difficulty in understanding overlapping and short release cycles, and teams
constant changing of priority in each sprint.

To address these technical dependencies, Babinet and Ramanathan recom-
mend release kick-offs, dependency identification exercises, Scrum-of-Scrums,
virtual architecture teams, status reports and a number of other activities that
help team communication and knowledge sharing [18]. In similar, Souza et al.
propose tools with which technical dependencies can be analyzed and visualized
so that these are better understood and therefore, easier to communicate among
development teams [19].

50 N. Sekitoleko et al.

2.4 Communication

Communication is often described as fundamental for organizational success [20].
Effective internal and external communication stimulates the performance of a
development organization [21]. However, while communication is central to all
organizations it also poses major challenges. As recognized by Johansson et al.,
a message can be properly communicated but the intended receiver may choose
to interpret the message as invalid [22]. Also, to select a message at one point
and deliver that message at another point is problematic [23]. As experienced
in most organizations, inter-team communication is a challenge that grows with
the size and complexity of the organization.

3 Research Method

3.1 Research Setting

The case study was conducted at Ericsson AB. Ericsson provides communica-
tions networks, telecom services, and support solutions used in global commu-
nication. It is ranked the fifth largest software supplier in the world with 950
million subscribers in over 180 countries. In this section, we map and describe
the concepts of cross-functional teams (XFT) and technical dependencies from
an Ericsson perspective.

Cross-functional Teams. A cross-functional team (XFT) is a team which has
all core competences needed for the development and release of a feature. At Eric-
sson AB, XFTs generally follow the same working practices and include roles like
system manager, system designer, function tester, system testers, and architect.
In addition, each XFT has a scrum master, agile coach, and an operative product
owner (OPO) on a part time basis and the teamworks in an open space which facil-
itates easy communication among teams. Each of these XFTs consists of 5–9 team
members who have up to three roles in their team and some teammembers are as-
sociated with several teams in different roles. XFTs do not have team leaders but
should be self-organized andwork togetherwith otherXFTs on featureswhichhave
a life cycle of approximately 500–1000 hours (a release consists of 20–80 features).
Features are broken down into work packages which are developed in sprints of∼3
weeks. During the sprint, a XFT takes full responsibility for the development of a
work package, breaks it down into user stories and tasks, and is in charge of han-
dling planned and unplanned technical dependencies. Our study focusses on the 30
XFTs responsible for the development of one specific embedded software product
that has been developed during a period of more than 10 years with a design base
of more than 1 Million lines of code.

Technical Dependencies. At Ericsson, technical dependencies are relation-
ships and interactions between artifacts and teams during product development.
Examples include situations when a developer/team needs information regarding
technical aspects of a system developed by another developer/team in order to

Technical Dependency Challenges 51

progress the development work. Technical dependencies can occur during design-
time, compile-time, and run-time and affect areas like source-code, architecture,
hardware, and tools. At Ericsson, there are two types of technical dependen-
cies: Planned technical dependencies are identified during the planning phase.
Managers, program officers and product owners are responsible for identifying
and scheduling planned technical dependencies, i.e identifying the tasks to be
done in parallel or in sequence across teams, and communicating them to teams
before development begins. Unplanned technical dependencies occur unexpect-
edly during the actual development of a product, for example due to improper
implementation of the original plan.

3.2 Research Approach

This paper reports on a three-months case study at Ericsson AB plus a follow-
up questionnaire1 three month later. A qualitative research approach was chosen
to investigate our research questions from a social, technical and organizational
context. As qualitative research approaches aim to investigate and improve the
understanding of phenomena in their real-life context [24], and especially when
the purpose is to explore peoples’ experiences and perceptions, we found it par-
ticularly well suited for our interests.

3.3 Data Collection

We interviewed 9 employees at Ericsson AB who were selected qualitatively
based on insider knowledge about skills, experience, and organizational distribu-
tion from a population of 300 software engineers [25]. Our 9 interviewees have an
average working experience of 10 years and about 3 years in agile practices, since
Ericsson is gradually, team by team, transitioning to agile. In their work, they
follow the most common agile practices like sprint-demo, retrospectives, daily
stand-up meetings (∼15min), and backlog grooming. Table 1 shows the roles
the interviewees hold. A semi-structured interview approach was used to collect
data because it has inherent properties that allow the interviewer to improvise
and explore interview questions further [24]. Thus based on the progression of
the interview, questions can be adapted and relevant follow-up questions posed
[24]. The interview guide2 helped us in ensuring that all questions were covered
irrespective of the order in which they were followed. The interview questions
mainly focused on planned and unplanned technical dependencies faced by XFT
teams. Some of the interview questions are about the impact of incompatible
components, how technical dependencies are located, communicated, resolved,
and so forth [26]. We recorded the conversations while interviewing and tran-
scribed these voice recordings verbatim to reduce the risk of corrupt data which
can happen when transcribing during the interview [27].

1 https://dl.dropboxusercontent.com/u/13255493/

Tech-Depend-Questionnaire.pdf
2 https://dl.dropboxusercontent.com/u/13255493/

Tech-Depend-Interview-guide.pdf

https://dl.dropboxusercontent.com/u/13255493/Tech-Depend-Questionnaire.pdf
https://dl.dropboxusercontent.com/u/13255493/Tech-Depend-Questionnaire.pdf
https://dl.dropboxusercontent.com/u/13255493/Tech-Depend-Interview-guide.pdf
https://dl.dropboxusercontent.com/u/13255493/Tech-Depend-Interview-guide.pdf

52 N. Sekitoleko et al.

Table 1. Interviewees and their roles / responsibilities

ID Role Responsibility

P1 Software designer SW development
P2 Software designer and scrum master SW development, facilitate team work
P3 Function tester Functional testing
P4 Software designer SW development
P5 Software designer and scrum master SW development, facilitate team work
P6 Scrum master and architect Team support, technical leadership
P7 Software designer and scrum master SW development, facilitate team work
P8 Function tester functional testing
P9 System manager, scrum master, Give directions, facilitate team work

and Function tester functional testing

After analysis of the interview data, we collected additional data to be able to
confirm our findings based on a questionnaire that presented our findings as state-
ments in a short questionnaire with a likert scale to measure the agreement of the
initial interviewees with challenges, their dependencies, and proposed solutions.

3.4 Data Analysis

We analyzed the data collected from interviews base on the thematic analysis
approach [27], an accepted method with wide-spread use in scientific and social
science research consisting of six phases [27]. Please refer to [26] for details and
examples of the data analysis.

1. Familiarizing with the data: We transcribed and read the data from the 9
interviews.

2. Generating initial codes: We coded the data from the perspective of the
research questions.

3. Searching for themes: We grouped the initial codes we generated into differ-
ent groups that we refer to as initial themes.

4. Reviewing Themes: We reviewed the initial themes, regrouped and refined
them by cross checking the interview data with the generated codes in Phase
1 and 2. We then extracted and refined 5 themes in Phase 3.

5. Defining and naming themes: In this phase we reached a consensus about
the five themes, which, in accordance to our research questions, we named
the main challenges and present in the results section.

6. Producing the report: In this paper, we present and discuss the five main
challenges and make recommendations.

3.5 Threats to Validity

As recognized by Maxwell [28], qualitative researchers rarely have the benefit
of previously planned comparisons, sampling strategies, or statistical manipula-
tions that control for possible threats to validity. While this can be acheived in
quantitive research, qualitative researchers must try to rule out validity threats

Technical Dependency Challenges 53

after the research has begun by using evidence collected during the research
itself to make alternative hypotheses or interpretations implausible. One impor-
tant aspect of validity is construct validity [24] that reflects to what extent the
operational measures that are studied represent what the researcher has in mind,
and what is reflected in the interview questions and themes. To address this crit-
ical aspect, we started each of our interviews with an introduction part in which
the researchers shared their understanding of agile practices and technical depen-
dencies with the interviewee. For example, we shared different definitions of the
agile concept and we discussed the agile manifesto to get a shared understand-
ing for the values that underpin agile development methods. Also, we shared
our understanding of technical dependencies and why it is important to consider
these in a large-scale development setting. In this way, the researchers and the
interviewee had a shared understanding of the topic before the interview started,
and we could proceed with asking questions without having to worry about the
interviewee being unsure about the context we studied. With respect to external
validity, i.e. to what extent it is possible to generalize the findings, our contribu-
tion is related to (1) the drawing of specific implications and (2) the contribution
of rich insight [29]. Based on our interview findings, we present implications in a
particular domain of action, i.e. in a particular software development company.
Our study brings together empirical insight that allows for a deep understanding
of this particular company, and the findings we present should be regarded as
insights valuable for other companies interested in understanding the impact of
technical dependencies in large-scale agile development.

4 Analysis and Interpretation

4.1 Technical Dependency Challenges in Large-Scale Agile

With respect to RQ1, (What are the challenges associated with technical depen-
dencies between teams in a large-scale agile software development?), the analysis
of the interview data revealed five main challenges: the planning challenge, the
task prioritization challenge, the knowledge sharing challenge, the code quality
challenge, and the integration challenge.

Planning Challenge. A perfect plan for software development would mini-
mize the occurrence of technical dependencies. Uncertainty, which is inherent to
software development, is one reason why creating and following such an optimal
plan is practically impossible, but our interviewees also indicate potential for
realistic improvement. This is reflected by the following quote from one of our
interviewees:

“[Managers] do not plan and allocate tasks to teams in an appropriate
way because they do not know much about the code and do not involve
in the actual coding.”

Our interviewees mentioned that sometimes tasks that should have been as-
signed to a single teamwere instead split and assigned to several teams, thereby cre-
ating unnecessary dependencies. Insufficient planning leads to unplanned

54 N. Sekitoleko et al.

technical dependencies during the actual product development. Such unplanned
technical dependencies across teams do not occur frequently, but when they oc-
cur, they seriously impact development and lead to changes in requirements and
time-plan. Our interviewees also said that it is difficult to locate the root cause of
unplanned technical dependencies.

Task Prioritization Challenge. According to our interviewees, the task prior-
itization challenge a result of the planning challenge. When unplanned technical
dependencies arise, teams have to update their sprint plan to account for changes
in requirements and time-plans. These changes arise for example from new re-
quests for components from other teams that were not planned before and often
lead to conflicts in the product backlog. Two problematic scenarios given by our
interviewees characterize the prioritization challenge:

(1) When teams have to implement a component which was not in their
backlog and (2) when they have to deliver a component in their backlog earlier
than scheduled since another team realized that they were dependent on the
component.

According to our interviewees, the above scenarios led to re-prioritizing tasks
in their backlog.

“[...] constant changing of priorities makes our burn-down charts look
bad.”

Our interviewees stated that changing priorities in their backlog usually desta-
bilizes their work plan, because they need to assign resources to the unplanned
requests, thereby leading to delays and late deliveries.

Knowledge Sharing Challenge. From the perspective of our interviewees,
knowledge sharing among the XFTs is vital to enable good communication and
coordination. If knowledge is not properly circulated, communicating technical
dependencies will suffer, as indicated by some of the problems raised by the
interviewees.

– Some interviewees do not have the opportunity to say what they want in
company meetings (e.g. tasks presentation meetings), because of the mul-
titude of people in the meeting. The interviewees claimed they do not get
opportunity to express their burning issues or raise vital questions.

– Experienced personnel is involved in difficult tasks and often too busy to be
approached.

Our interviewees also expressed some concerns about some of their colleagues
attitude and ability to share knowledge, including the following problems:

– Protectiveness: Some team members are protective of their work and do not
want to provide support to others.

– Bad teachers: Some team members know much about the code, but are
simply not good at explaining it.

Technical Dependency Challenges 55

– Laziness: Some team members do not want to share knowledge because they
fear that others will start seeking help from them more often.

– Over specialization: Some team members prefer to focus on their own task,
thereby not having adequate knowledge of the entire product, which in turn
leads to inefficient communication about dependencies.

– Lack of communicativeness: Some team members are too shy to either ask
or provide information during meetings, thus causing important information
to be ignored.

Another problem related to knowledge sharing occurs when team members
do not understand, ignore, or forget what was discussed in a meeting:

“During development some people forget easily what was agreed upon in
scrum meetings. Then, they are not be able to work accordingly.”

From the perspective of our interviewees it is clear that such problems with
knowledge sharing create a major challenge for communicating technical depen-
dencies.

Code Quality Challenge. In software companies, good code quality will lead
to quality products that can compete favourably in the market. However, in large
scale software development, maintaining good quality code remains a challenge.
Our interviewees stated that despite the existence of Subversion (SVN) control
tools, too many people involved in the same code make changes in the code
which can end up as conflicts in other teams. Their common view was:

“Such changes make it difficult to maintain a stable version of code,
hence reducing code quality and creating more technical dependencies.”

Function testers specifically shared an opinion that such changes make testing
more complex because they have to rewrite test cases many times. The prevailing
view among our interviewees was that providing good quality code is difficult
because of technical dependencies.

Integration Challenge. In large-scale agile software development, merging of
work packages is a problem because of the many self-organized teams working
to deliver an integrated working product to the customers. Our interviewees
demonstrated a scenario in which teams develop work packages independently
for 2-3 months without knowing what is happening in the main branch. At
delivery, teams get conflicts since many changes have been made in the main
branch, hence creating dependencies which at times may only be resolved by
engaging other teams. Despite tool support, this is a challenging task.

Other concerns expressed by interviewees were about incompatible dependent
components they received from other teams that resulted in merge conflicts. Ac-
cording to our interviewees, incompatible components often cause teams to either
re-plan or re-develop their work, thereby leading to late deliveries. It appears
that the integration challenge is a result of not handling technical dependencies
in a good way.

56 N. Sekitoleko et al.

4.2 Likelihood of Technical Dependency Challenges

With respect to our RQ2 (What affects the likelihood of a challenge to occur?),
we first tried to achieve a better understanding of the nature of the challenges
we identified. By doing this, we then found that in fact the likelihood of a
challenge to occur is affected by the presence of other challenges, for example if
the planning challenge is not resolved, then it can lead to other challenges.

0%

17%

17%

17%

33%

100%

83%

67%

50%

33%

0%

0%

17%

33%

33%Code quality challenge

Integration challenge

Knowledge sharing challenge

Task prioritization challenge

Planning challenge

100 50 0 50 100
Percentage

Response disagree neutral agree strong agree

Fig. 1. Agreement of interviewees with challenges (”It is challenging to . . . ”)

Understanding the Nature of Challenges. For understanding the nature
of the challenges we discovered, we asked our interviewees which challenges they
consider to be most dominant in their daily work. Fig. 1 shows that planning
and task prioritization are recognized as most challenging.

During discussion and analysis of our findings, we also recognized that some of
the challenges we found are more technical in nature (code quality and integra-
tion challenge), while others can be characterized as communication challenges
(see axis Fig. 2). In fact, the knowledge sharing challenge refers to the mindset
of engineers, which is mostly related to communication. Task prioritization and
planning refer to work practices and relate both to communication and techni-
cal challenges. Code quality and integration are mostly technical in nature and
require technical actions.

Relationships and Interdependencies. Based on the improved understand-
ing of the challenges, a critical study of the main challenges by the authors
revealed that during the development of a product, the challenges interact with
one another to form a domino effect which leads to the technical dependency
loop (Fig. 2).

These relationships between challenges cause a vicious circle. Consider for ex-
ample the planning challenge: By suboptimal planning, unnecessary technical
dependencies are introduced. These cause problems that surface as task pri-
oritization challenge, which in turn increase the integration and code quality
challenges. Bad code quality can put additional pressure on teams which are
then reluctant to share knowledge. This in turn makes planning even more dif-
ficult. These circular relationships are bidirectional, e.g. in the example above,
unresolved prioritization issues in the teams’ backlogs seriously impair adequate
planning.

Technical Dependency Challenges 57

4.3 Recommendations

In order to break through the vicious circle, one has to start with mitigating one
challenge and then continue to exploit the positive influence on other challenges.
Our interview data suggests that the knowledge sharing challenge is a good
starting point. Improved knowledge sharing between technical and management
staff on different levels can significantly improve the ability to create a good
plan, and then in turn help addressing the other challenges.

We were especially interested in how our interviewees rate the dependencies
and were specifically asking, whether a solution for the planning (respectively:
knowledge sharing) challenge would positively impact other challenges as well.
Fig. 3 indicates that a solution for the knowledge sharing challenge would have
more impact on the other challenges. The figure also shows that the code quality

Technical challenges

C
om

m
un

ic
at

io
n

ch
al

le
ng

es

low high

high

Planning

Task Prioritization

Knowledge
sharing

Code quality

Integration

Fig. 2. Challenges associated with technical dependencies can be classified as commu-
nication and technical challenges. These challenges affect each other.

0%

0%

0%

17%

17%

17%

33%

33%

100%

83%

83%

83%

67%

50%

33%

33%

0%

17%

17%

0%

17%

33%

33%

33%Planning −> Code quality

Knowledge sharing −> Code quality

Planning −> Integration

Knowledge sharing −> Integration

Planning −> Task prioritization

Knowledge sharing −> Task prioritization

Planning −> Knowledge sharing

Knowledge sharing −> Planning

100 50 0 50 100
Percentage

Response disagree neutral agree strong agree

Fig. 3. Rating of challenge dependencies by interviewees

58 N. Sekitoleko et al.

0%

0%

0%

0%

17%

17%

33%

100%

100%

83%

83%

67%

50%

50%

0%

0%

17%

17%

17%

33%

17%Teams responsible for the detailed planning.

Encouraging all employees to share their opinion
in scrum meetings.

Continuous integration.

Information sharing between teams (e.g.
scrum−of−scrums).

Open space technology meetings (e.g. present and
discuss).

Increasing knowledge circulation between
individuals.

Minimize number of teams working on same code at
same time.

100 50 0 50 100
Percentage

Response disagree neutral agree strong agree

Fig. 4. Agreement of participants with recommendations

challenge is a bit detached from the vicious circle, as our participants do not agree
that a solution for another challenge would positively impact the code quality.

In order to gain a richer understanding of the knowledge sharing and plan-
ning challenge, we presented a number of recommendations from literature for
mitigating the challenges to our interviewees. Fig. 4 shows the agreement of our
interviewees with the recommendations we made.

5 Discussion

5.1 Implications for Practitioners

It is not new for practice that technical dependencies are cumbersome in large
software development. When scaling agile, the technical dependencies do not
become more or less, they just become more obvious and this is actually a possi-
bility for practice to deal with them. Here we have come to understand challenges
associated to technical dependencies and the domino effect this can create. By
embracing this knowledge of the domino effect, practice can break the vicious
circle by improving one or two of the challenges and by that improving all chal-
lenges. For example, when improving the Planning challenge by making sure the
planners have sufficient competence of the code, the Task prioritization challenge
get less problematic. Planners need to understand the quality of the impacted
code to make correct estimations (e.g. stinker code is known to take ten times
more time than code included in lean components), which then helps prioritize
task in the right order. For practice, it is of high importance to understand not
only the challenges on detailed level, but also how they impact each other in
order to improve where it gets the most impact. This study gives practice such
understanding.

5.2 Implications for Research

Eklund and Bosch propose a model for defining interactions necessary for agile
teams together with a set measures facilitating agile development in a context

Technical Dependency Challenges 59

where the full product cannot be agile [30]. These interactions can be seen in four
categories; requirements, project gates, integration & validation, and delivery.
The more teams understand such interactions, the less technical dependencies
(as discussed in this paper) they will encounter. In contrast, unplanned technical
dependencies can surface in late and inefficient clarification of features and re-
quirements, as discussed in related work on patterns of continuous requirements
clarification [31].

Cataldo et al. show that lack of socio-technical congruence, i.e. the fact that
social relationships such as communication of developers is not aligned with tech-
nical dependencies between them, leads to bad software quality [32]. Damian et
al. discuss similar observations from a case study where organizational structure
is not in line with the partitioning of requirements, thus leading to unsatis-
fied communication needs [33]. Both works hint on potential for organizational
optimization, which however is especially difficult in volatile, complex, and large-
scale agile environments.

Promising avenues for future research therefore include (i) investigating ways
to measure interaction and knowledge sharing quality and providing actionable
feedback to agile teams and (ii) gain a better understanding how organizational
change can support minimizing technical dependencies.

6 Conclusion and Outlook

In this qualitative study, we identified five challenges associated with technical
dependencies in large-scale agile software development: planning, task prioriti-
zation, knowledge sharing, code quality, and integration. More importantly, we
found that these challenges interact and can lead to a domino effect or vicious
circle: If an organization struggles with one challenge, it is likely that the other
challenges become problematic as well. A follow-up questionnaire confirmed the
relationships between challenges as well as that mitigating one of the challenges
can have a positive impact on the other challenges and ultimately promises to
break the vicious circle. Our results indicate that activities should focus on mit-
igating the knowledge sharing and planning challenges to reestablish effective
communication across teams, which will then enable companies to achieve the
benefits of large-scale agility. Although the findings in this paper are based on
a single case study, we believe that our findings are relevant to other companies
transitioning towards large-scale agile development practices.

References

1. Fogelström, N.D., Gorschek, T., Svahnberg, M., Olsson, P.: The impact of agile
principles on market-driven software product development. Journal of Software
Maintenance and Evolution: Research and Practice 22, 53–80 (2010)

2. Highsmith, J., Cockburn, A.: Agile software development: The business of innova-
tion. IEEE Computer 34(9), 120–122 (2001)

3. Kettunen, P., Laanti, M.: Combining agile software projects and large-scale orga-
nizational agility. Softw. Process 13, 183–193 (2008)

60 N. Sekitoleko et al.

4. Beck, K.: Embracing change with extreme programming. Computer 32(10), 70–77
(1999)

5. Curtis, B., Krasner, H., Iscoe, N.: A field study of the software design process for
large systems. Commun. ACM 31, 1268–1287 (1988)

6. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Mar-
tin, R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for
agile software development (2001), http://www.agilemanifesto.org (accessed on
December 3, 2013)

7. Highsmith, J.: The great methodologies debate: Part 2. Cutter IT Journal 5 (2002)

8. Larman, C., Vodde, B.: Scaling Lean and Agile Development: Thinking and Orga-
nizational Tools for Large-Scale Scrum. Pearson Education Inc., Boston (2009)

9. Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J.: New directions on agile
methods: a comparative analysis. In: Proceedings of the 25th International Con-
ference on Software Engineering, Portland, Oregon, pp. 244–254 (2003)

10. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the stairway to heaven: A multiple-
case study exploring barriers in the transition from agile development towards con-
tinuous deployment of software. In: Proceedings of the 38th Euromicro Conference
on Software Engineering and Advanced Applications, Cesme, Izmir, Turkey (2012)

11. Kerievsky, J.: Industrial xp: Making xp work in large organizations. Executive
Report in Agile Project Management 6(2) (2005)

12. McMahon, P.E.: Extending agile methods: A distributed project and organizational
improvement perspective. In: Proceedings of the 17th Annual Systems and Software
Technology Conference, Salt Lake City, UT (2005)

13. Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., Stahl, D.: The impact
of agile principles and practices on large-scale software development projects: A
multiple-case study of two projects at ericsson. In: ACM/IEEE Int’l Symp. on
Empirical Software Engineering and Measurement, Baltimore, Maryland, pp. 348–
356 (2013)

14. Heikkila, V.T., Paasivaara, M., Lassenius, C.: Scrumbut, but does it matter? A
mixed-method study of the planning process of a multi-team scrum organization.
In: ACM/IEEE Int’l Symp. on Empirical Software Engineering and Measurement,
Baltimore, Maryland, pp. 85–94 (2013)

15. Badampudi, D., Fricker, S.A., Moreno, A.M.: Perspectives on productivity and
delays in large-scale agile projects. In: Baumeister, H., Weber, B. (eds.) XP 2013.
LNBIP, vol. 149, pp. 180–194. Springer, Heidelberg (2013)

16. Dingsøyr, T., Moe, N.B.: Research challenges in large-scale agile software develop-
ment. SIGSOFT Softw. Eng. Notes 38(5), 38–39 (2013)

17. de Souza, C.R.B., Redmiles, D.F., Mark, J., Penix, G., Sierhuis, M.: Management
of interdependencies in collaborative software development. In: Proc. of Intl. Symp.
on Empirical Software Engineering, pp. 294–302 (2003)

18. Babinet, E., Ramanathan, R.: Dependency management in a large agile environ-
ment. In: Proc. of Agile Conference, pp. 401–406 (2008)

19. de Souza, C.R.B., Quirk, S., Trainer, E., Redmiles, D.F.: Supporting collaborative
software development through the visualization of socio-technical dependencies.
In: Proceedings of the 2007 International ACM Conference on Supporting Group
Work, Sanibel Island, Florida, USA, pp. 147–156 (2007)

20. Dainton, M., Zelley, E.D.: Applying communication theory for professional life: a
practical introduction. SAGE Publications Inc. (2005)

http://www.agilemanifesto.org

Technical Dependency Challenges 61

21. Sosa, M.E., Eppinger, S.D., Pich, M., McKendrick, D.G., Stout, S.K.: Factors that
influence technical communication in distributed product development: an empir-
ical study in the telecommunications industry. IEEE Transactions on Engineering
Management 49, 45–58 (2002)

22. Johansson, B.J.E., Persson, P.A.: Reduced uncertainty through human communi-
cation in complex environments. Cogn. Technol. Work 11, 205–214 (2009)

23. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Uni-
versity of Illinois Press (1971)

24. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Engg. 14, 131–154 (2009)

25. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. SAGE Publications (2009)

26. Sekitoleko, N., Evbota, F.: Technical dependencies in practicing agile in
large-scale software development organizations: A case study conducted at
Ericsson AB. Bachelor thesis, University of Gothenburg, Sweden (2013),
https://dl.dropboxusercontent.com/u/13255493/Tech-Depen-Report.pdf

27. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Research
in Psychology 3, 86–94 (2006)

28. Maxwell, J.: Qualitative research design: An interactive approach. Sage, Los An-
geles (2013)

29. Walsham, G.: Interpretive case studies in is research: nature and method. European
Journal of Information Systems 4, 74–81 (1995)

30. Eklund, U., Bosch, J.: Applying agile development in mass-produced embedded
systems. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 31–46. Springer,
Heidelberg (2012)

31. Knauss, E., Damian, D., Poo-Caamao, G., Cleland-Huang, J.: Detecting and Clas-
sifying Patterns of Requirements Clarifications. In: Proceedings of 20th Interna-
tional Requirements Engineering Conference (RE 2012), Chicago, USA, pp. 251–
260 (2012)

32. Cataldo, M., Herbsleb, J.D., Carley, K.M.: Socio-technical congruence: a framework
for assessing the impact of technical and work dependencies on software develop-
ment productivity. In: Proceedings of Second ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM 2008), Kaiser-
slautern, Germany, pp. 2–11. ACM (2008)

33. Damian, D., Helms, R., Kwan, I., Marczak, S., Koelewijn, B.: The role of domain
knowledge and hierarchical control structures in socio-technical coordination. In:
Proc. of IEEE Int. Conf. on Software Engineering (ICSE), San Francisco (2013)

https://dl.dropboxusercontent.com/u/13255493/Tech-Depen-Report.pdf

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 62–77, 2014.
© Springer International Publishing Switzerland 2014

How Can Agile and Documentation-Driven Methods
be Meshed in Practice?

Lise Tordrup Heeager

Aarhus University, Denmark
lith@asb.dk

Abstract. Agile methods are becoming increasingly popular in software
development; even by organizations complying with quality standards. The
literature reports on scattered examples of organizations that have succeeded in
meshing agile and documentation-driven methods. However, due to a lack of
empirical research, it is not well understood how to implement a meshed
software development practice. To increase the understanding of how to do this,
this paper presents two case studies of the development of safety-critical
software. The first case study presents challenges of adopting quality assurance
in an agile software practice. The second case study shows how agile practices
are adopted in a documentation-driven practice compliant with the US Food and
Drug Administration standard. Based on a framework that identifies nine
practice areas in which the methods differ, the challenges of and possibilities in
implementing a meshed software development practice is presented.

Keywords: Agile Software Development, Documentation-Driven Software
Development, Safety-Critical Software Development, Scrum, FDA.

1 Introduction

Within software development, much focus has been and still is on the methods for
developing software. Software developers have and still are struggling to find the best
way to develop software. The two overall approaches of software development are;
1) the agile methods, such as Scrum [1] and Extreme Programming (XP) [2] and 2)
the documentation-driven methods, such as the waterfall model and Structured
Systems Analysis and Design Method [3]. Quality assurance standards such as CMMI
[4] and FDA [5] also represent the documentation-driven methods. While the agile
methods offer flexibility the documentation-driven methods offers predictability [6].
Some hybrid methods that seek to mesh both types of methods do exist; examples of
such are The Relational Unified Process (RUP), or the spiral model. RUP is an
iterative method with high focus on risk, but adaptable on the amount of
documentation [7]. The spiral model is an evolutionary software process model which
includes controlled and systematic aspects [8]. Despite these hybrid methods it is still
not clear how to achieve a mesh in practice and due to the differences between the
agile and the documentation-driven methods, meshing is very challenging [9]. Several
practitioners are still seeking a way to mesh the agile and documentation-driven
methods [10]. So far very little empirical data documents the alleged compatibility,

 How Can Agile and Documentation-Driven Methods be Meshed in Practice? 63

and it is not well understood how these methods can be meshed in practice. Hence,
the following research question has been formulated: How can the agile and the
documentation-driven methods be meshed in practice?

This research question takes a practical viewpoint of how to mesh, in order to
provide empirical evidence regarding if and how this can be done. It was studied via
case studies of the development of safety-critical software. The strict requirements of
the quality standards required when developing safety-critical software makes it
difficult to adopt agile practices, since the differences between agile and
documentation-driven methods are heightened. Researchers are therefore discussing
whether or not agile methods are suitable for such projects, at the same time more and
more organizations developing safety-critical software are interested in adopting agile
practices in order to increase the flexibility of their software practice.

The paper is structured as follows; in section 2 the theoretical background is
presented; through practice areas the differences and similarities of the agile and the
documentation-driven methods are clarified. Section 3 defines the concept of
meshing. In section 4 the research design and the case studies are described. Section 5
presents the analysis of the cases and in section 6 the results of the analysis is
discussed. Finally the results are concluded on in section 7.

2 Agile and Documentation-Driven Methods

Many agile methods have appeared over the years. The Dynamic Systems
Development Method (DSDM) [11], is identified as the first agile method [12];
followed by eXtreme Programming (XP) [2]. Among other agile methods is Scrum
[1]. Today, Scrum and XP are the two most well-known and popular agile methods.
Each of the agile methods has specific features, but also common characteristics:
Through an iterative, test-driven software development process with frequent
customer feedback, the agile methods seek high software quality. The short iterations,
multi-disciplinary teams, knowledge sharing and continuous integration allow better
control over the project and increase visibility [13]. To enhance knowledge sharing,
they advocate an informative workspace, which includes information radiators [14].
Agile methods rely on the competencies of the software developers [15]. Refactoring
(redesigning and rewriting software) is also advocated by the agile methods, as it
serves to correct poorly written and redundant code [16].

Several terms are used for the traditional, documentation-driven software methods.
I suggest the use of the term ‘documentation-driven’ which indicates that the methods
use the documentation of its practices in various ways, for example for the sharing of
knowledge and for proving the quality of the product. Furthermore, the amount and
reliance on documentation seems to be one of the greatest differences between agile
methods and the software practice suggested by the quality standards [17]. The
objectives of documentation-driven methods are to create predictability, repeatability
and optimization [6]. Documentation-driven development is often associated with the
Waterfall model, also known as the systems development life cycle consisting of
sequential development stages. The V-model is a variation of the Waterfall model; it
has the same sequential structure but links the development phases to the software
tests [18]. The methods Structured analysis [19] and Modern Structured Analysis [20]
both provide structured techniques to the analysis phase.

64 L.T. Heeager

2.1 Practice Areas of Agile and Documentation-Driven Methods

The agile and the documentation-driven methods have several differences, but also
some similarities; this section highlights these. In a review of the literature; nine
practice areas in which the methods differ have been identified (see table 1).

Table 1. The agile and documentation-driven practice areas

Practice area Agile development Documentation-driven
development

Management
strategy

Self-managing teams. Control by management.

Customer relations Customer involvement through
the whole development.

Customer is involved during
the early phase of the project.

People-issues Focus on the social aspects. Rely on documentation.
Documentation Working software over

documentation.
Highly reliant on
documentation.

Requirements Requirements defined in user
stories.

Requirements are documented.

Development
Strategy

Iterative development strategy. Sequential development
strategy.

Communications
and knowledge
sharing

Person-to-person
communication
(personalization).

Documented, explicit
knowledge (codification).

Testing Test of each increment, focus
on test-driven development.

Late testing and rely on test
plans.

Culture Social and team-oriented. Plan-oriented.

The agile and the documentation-driven software development methods are based

on different project management strategies [12]. Adopting agile methods requires a
change from command and control management to leadership and collaboration [21],
[22], which requires a reorientation for the developers and for management [23].

Another difference between the agile and the documentation-driven methods is
customer relations. Both the documentation-driven methods and the agile methods
highly value the satisfaction of the customer. In documentation-driven methods the
customer is mainly involved during the early phases of the project, while agile
methods involve the customer throughout the whole development process [24]. The
customer involvement in agile methods is therefore much greater [25].

The agile methods focus on the social aspects of software development [26] and
people-issues are at the heart of the agile movement [27]. This heavy reliance on
human factors poses challenges when adopting agile practices [28], it is a significant
departure from the focus on plans of the documentation-driven methods [29].

While the agile methods tend not to document enough, the documentation-driven
methods tend to be over documented [24]. However, the agile methods do not cast all
documentation aside [30], and it is not necessary to write piles of documentation in
order to comply with, for example, CMMI [31].

The agile and the documentation-driven methods handle the requirements
differently, which also can cause problems when meshing [32]. Agile methods rely on

 How Can Agile and Documentation-Driven Methods be Meshed in Practice? 65

user stories written by the customer in a plain business-like language. Such user
stories cannot be used directly in safety critical projects. Instead each story must be
translated into functional test cases [33].

To ensure adaptability, agile methods advocate an iterative development strategy
[34]. Adopting an agile, iterative development strategy requires major alterations to
work practices [22], [35]. In contrast to the documentation-driven methods, which
have separate coding and testing phases, the agile methods include the testing and
debugging of the written code in the iteration [36].

Knowledge sharing is an important part of both agile and documentation-driven
methods [37]. While the agile methods rely on person-to person communication
and knowledge sharing, documentation-driven methods focus on documented
knowledge [38]. The frequent meetings (stand-up meetings, planning meetings and
retrospectives) proposed by the agile methods serve as ways to informally
communicate and share knowledge, enhanced by the self-managing developer teams.
The documentation-driven methods favour division of labour, hence use role-based
teams and the knowledge is shared in the documents [38].

The agile and the documentation-driven methods have different strategies for
testing. Test-driven development has become popular within the agile community
[22]. In XP, testing is a core practice and development is mostly test-driven [2]. It is
also suggested that there is testing of all parts of an increment and that completion is
determined by the increment passing all tests. In documentation-driven methods
testing is done late in the process and is based on detailed test plans [39].

The culture in documentation-driven organizations is plan-orientated, whereas the
agile cultures are more social and team orientated [40]. When adopting agile practices
in a documentation-driven organisation, the organisational culture has to change from
policy and procedure-based to freedom of development and management by team
members [21]. Research has described adoption of agile methods as a culture change
[26]. A change of organizational culture requires a change of people’s mind-sets [23].

3 Meshing

Several concepts have been used to describe the compatibility of the agile and the
documentation-driven methods; for example: mixed [41], hybrid [6] and combined
[12]. In this paper the key concept used is meshed which by the dictionary is defined
as: [to become entangled or entwined] [42]. This concept suggests that it is possible to
implement an entangled practice where the elements of the agile and documentation-
driven methods are not easily identified. Figure 1 depicts the definition of meshing.
At each end of the line the pure form of respectively agile software development and
documentation-driven software development is placed. In the middle of the line a
span of compatibility is placed. Compatibility is achieved by implementing both agile
and documentation-driven elements in a software practice; the practice becomes
meshed. A mesh can be primarily agile or primarily documentation-driven (hence
placed on respectively the right or left side of the line, within the span of
compatibility). To identify the mesh of a practice, the nine practice areas presented
above are used. Each of these may have different meshes. Even though some practice
areas are not meshed an overall mesh of the software practice can still be achieved.

66 L.T. Heeager

Fig. 1. The mesh of agile and documentation-driven practice areas

4 Research Design

The research design consists of two complimentary, interpretive case studies [43].
The first case study is of a small, agile software organization trying to mesh by
adopting the quality standard GAMP (a standard for safety-critical, medical devices
with software) [44]. The second case study involves a large pharmaceutical
organization trying to mesh by implementing elements of the agile method Scrum into
their FDA [5] compliant practice. For an overview of the case studies see figure 2.

Fig. 2. The case studies

4.1 Case 1: SmallSoft

The first case focuses on the process and challenges of adopting quality assurance in a
small, agile software organisation in Denmark. They were forced to adopt quality
assurance by their primary customer as they by law were to be able to assure the
quality of the safety-critical software. The project included the majority of the 15
software developers employed in the organization. At the beginning of the research
study, the software organization expressed great frustration because of the
requirements of the quality assurance standard as one of their primary goals was to
maintain the agility. Hence, they had a need to mesh their practice.

The system development process was initiated in 1998 and in October 2004, the
software organisation decided to initiate the adoption of the quality assurance as they
realised that the customer would soon make a demand for quality assurance. The
GAMP4 standard was suggested by the customer organisation later the same year.
Two years later, in December 2007, the software organisation went through its first
external audit. They failed this audit.

 How Can Agile and Documentation-Driven Methods be Meshed in Practice? 67

The software development practice was primarily agile in following way: The
software was built in iterations of one month, in close cooperation with the customer.
Each month an administration meeting between the software organisation and the
customer representatives took place. At these meetings the requirements for the kernel
version of the device were discussed, determined and prioritised. The requirements
for the local adaptations were accepted at all times primarily by email or phone. All
requirements were written by or in cooperation with the customer and formed as user
stories, specified in electronic forms. The knowledge sharing within the developer
team was done primarily through face-to-face communication, the software
developers were sitting close together and worked in pairs; and very little
documentation was done. Testing was done continuously.

4.2 Case 2: LargeSoft

The second case describes how a clinical product with embedded, safety-critical
software is developed in a large pharmaceutical company. The focus was a software
group consisting of approximately 30 managers, developers and testers. The
development also involved clinical researchers responsible for the drugs, process
engineers responsible for production facilities, mechanical engineers responsible for
the product’s mechanical functions in dispensing the drugs, and embedded hardware
engineers responsible for the computer chips and the communication controlling the
mechanics. Due to high level of safety-criticality of the device, the project had to
comply with several quality standards (e.g. FDA). The project had run for years and
was at the time of study entering the stage of refining the product.

This case study focused on how the software group was implementing a software
development practice that meshed a documentation-driven FDA-compliant process
and elements of the agile method Scrum. This software practice consisted of iterations
of 2 weeks; an iteration was initiated with a planning meeting, including a
retrospective of the previous iteration and planning of the future iteration. The
developers were divided into two sub teams, which were coordinated by the Scrum
Master. The testers were organised in their own sub team controlled by a test
manager. The two sub teams of developers worked on the same product backlog.
Two Scrum boards on the walls were used to display tasks and other relevant
information. The developers primarily coordinated within the sub teams at the daily
stand-up meetings. The developers were responsible for unit testing and reviewing the
code during each iteration; the test team conducted the integration tests before the
code was handed to the system engineering group in charge of the system tests.

4.3 Data Collection and Data Analysis

The data from each case study was collected and analysed sequentially. Each case
study consisted of two phases and was conducted over a longer time period of
approximately 1-2 years. A significant amount of data was collected: 36 qualitative
interviews, observations and document studies (see table 2).

68 L.T. Heeager

Table 2. Overview of the data collection in case studies

Case Duration Data collection
SmallSoft:
A small, agile
software
organisation

Phase 1: August 2007 –
December 2007

4 qualitative interviews,
observations and a
document study

Phase 2: January 2008 –
June 2008

5 qualitative interviews,
and a document study

2 LargeSoft:
A large
pharmaceutical
organisation

Phase 1: November
2008 – June 2009

15 qualitative
interviews, observations
and a document study

Phase 2: January 2010 –
August 2010

12 qualitative
interviews, observations
and a document study

Data Collection and Analysis of SmallSoft
In the first case study, phase one had the purpose of gaining initial understanding of
the challenges faced by the software organization in adopting the quality assurance.
Four diagnostic interviews [45] were conducted, these included: the project manager
and three developers from the software organization. Observations were made of the
software organization over four months, building personal knowledge of the case. At
the end of the first phase a quality seminar was given by a researcher. This seminar
included all of the employees from the software organisation.

The initial data analysis showed that studying the adoption process from only the
side of the software organisation did not reveal a full picture of the situation. In the
second phase the focus was shifted and the adoption process was studied from an
interorganizational perspective. Five qualitative interviews based on semi-structured
interview guides on interorganizational relationship [46] were conducted. These
interviews included: the project manager and a developer from the software
organisation, as well as two users of the system and a customer representative.

All interviews were recorded and transcribed. The data collected was analyzed
using Atlas.ti. This was done iteratively both in-between the phases and after the
second phase. The focus of the analysis was on the software practice and its changes
and progress. The practice areas served as an analysis framework. The findings were
written up and presented in a report for validation.

Data Collection and Analysis of LargeSoft
In the second case study, phase one focused on the software practice. The phase
consisted of 15 qualitative, diagnostic [45] interviews and a seminar presentation. The
interviews were based on semi-structured interview-guides, that included the subjects:
FDA requirements, agile software development and general strengths and weaknesses.
The interviews included the project manager (two interviews), the software architect (two
interviews), a software tester and developers from both sub teams. At the end the findings
were written into a report and presented to the software group in a seminar.

The second phase focused on the improvements of the software practice that had
been made by the software group since the first phase. The phase included 12
interviews with the project manager, the software developers, a tester, the new

 How Can Agile and Documentation-Driven Methods be Meshed in Practice? 69

software architect, a coordinator between the software group and other groups of the
project and a consultant specializing in Scrum, affiliated to the software group for 5
months. Furthermore, observations were conducted to verify the procedures and
outcomes of the planning meetings and stand-up meetings.

All interviews were audio recorded, transcribed and analyzed using Atlas.ti. The
focus of the analysis was on the software practice and identification of agile and
documentation-driven elements. The practice areas served as an analysis framework.
The full analysis was written up, presented in a report for validation.

5 Analysis of the Mesh in the Case Studies

Using the definition of meshing; the mesh of each practice area in the two case studies
as well as the overall mesh of the two case studies will in this section be analyzed.

5.1 The Overall Mesh in the Case Studies

This section describes the overall mesh in the two case studies. The declared goal of
the software developers and managers, in both case studies was to achieve a mesh. In
practice not all developers and managers were evenly eager to mesh, which in the
analysis is identified as a big barrier.

Meshing in SmallSoft
Despite their efforts to achieve a mesh the development practice in SmallSoft
remained primarily agile. Hence, on the line on meshing, SmallSoft is placed on the
left side outside of the span of compatibility (see figure 3). The external audit showed
that the excessive documentation required by the quality standard was the main
reason why the mesh did not succeed; the amount and quality of documentation
produced on requirements and for knowledge sharing purposes was not enough.
Frequent customer contact was maintained at monthly administration meetings and by
email or phone. The communication and knowledge sharing between the developers
was primarily based on personalization [47], they worked close together. The analysis
of the customer relations showed a great trust between the parties. Due to this trust
neither the developers nor the customers felt a need for a more documentation-driven
customer relation and or a need for more documentation.

Meshing in LargeSoft
During the time of study the software group increased the agility of the software
practices and achieved a mesh; the mesh was however primarily documentation-
driven. Hence, LargeSoft is on the line of meshing placed on the right side inside the
span of compatibility (see figure 3). The software group was successful at
implementing an agile software development practice embedded in the documentation-
driven project. The analysis showed that the software developers were not able to
establish a contact to a customer and implement a well-functioning product owner role.
Due to the excessive amount of documentation required by the FDA standard the
practice area on documentation was very difficult to mesh. The case study also showed
that handling the requirements in an iterative manner was difficult. This challenge
arose due to a sequential treatment of the requirements specifications (forced by the

70 L.T. Heeager

sequential development strategy of the overall project). The software group meshed the
practice area on development strategy by embedding an iterative software practice in
the sequential project. The communication and knowledge sharing strategy was in
practice primarily personalized but also codified as much knowledge was documented.
The testing was done in the late stages of the project and was based on thorough test
plans, hence primarily documentation-driven.

5.2 The Mesh of the Practice Areas

The two case studies made it possible to provide contributions on six of the practice
areas: 1) customer relations, 2) documentation, 3) requirements, 4) development
strategy (only LargeSoft), 5) communication and knowledge sharing and 6) testing
(only LargeSoft). Table 3 gives an overview of the mesh (or lack of) for these six.

Table 3. The agile and documentation-driven practice areas

Practice area Mesh in SmallSoft Mesh in LargeSoft
Customer relations No mesh was achieved and the

customer relations of SmallSoft
remained primarily agile. Due to
high trust between SmallSoft and
their customer no need was found
for standardizing this process.

No mesh was achieved and the
customer relations of LargeSoft
remained primarily documentation-
driven. The product was developed
for a market; no time was allocated
for an internal product owner.

Documentation No mesh was achieved and the
customer relations of SmallSoft
remained primarily agile. The
requirements of the GAMP were
not met, mainly due to the amount
of documentation required.

A mesh was not achieved on
documentation in LargeSoft, they
remained primarily documentation-
driven. The approval and change of
a document was time-consuming;
the main challenge of meshing.

Requirements No mesh was achieved and the
customer relations of SmallSoft
remained primarily agile. The
requirements written by customers
could not be approved by GAMP.

The requirements practice in
LargeSoft was meshed, the mesh
remained primarily documentation-
driven. Requirements were
redefined in late in the project.

Development
Strategy

- The development strategy in
LargeSoft was meshed, but remained
mainly documentation-driven.
Iterations were found advantageous,
but were affected by long-term
milestones.

Communications
and knowledge
sharing

No mesh was achieved, the
customer relations of SmallSoft
remained primarily agile. The
communication was primarily face-
to-face; no incentive for using
documents for knowledge sharing.

A mesh of communications was
achieved in LargeSoft, they
remained primarily documentation-
driven. Much communication was
face-to-face, but documents were
also used for knowledge sharing.

Testing - No mesh was achieved; the testing
practice of LargeSoft remained
primarily documentation-driven.
Testing had little focus from
management and was postponed.

 How Can Agile and Documentation-Driven Methods be Meshed in Practice? 71

6 Discussion

In this section, six propositions based on the analysis of the case studies are presented
and discussed according to the literature. Figure 3 summarizes the findings.

Fig. 3. The findings of this paper

6.1 Customer Relations

Proposition 1: The practice area of customer relations is difficult to mesh. Trust
between the software organization and its customer can hinder the adoption of
documentation-driven elements. Implementing an agile product owner role in a
documentation-driven project it is important to have the support of the management.

So far, the literature on agile software development and on meshing does not focus
on how to implement a well-functioning customer relation. The literature does
acknowledge that the outcome of a project is influenced by the customer relations
[46], [48]. No research focuses on the influence of the customer relations on the
adoption of documentation-driven elements in an agile software organisation. The
case study of SmallSoft showed how close customer relations have great influence on
meshing; it can both advance and hinder this. When trying to create a mesh it is
therefore very important to be aware of how agile customer relations influence the
implementation of documentation-driven practice areas.

The literature acknowledges that maintaining a close, agile customer relation
requires a lot of time and involvement, which makes it hard to implement [49]. In
LargeSoft the software group struggled to implement the product owner role of
Scrum. The product was developed for a market and an immediate customer was
therefore not associated. To solve this issue Murru et al [50] propose filling this role
by an internal person or share it between an internal and an external person. In
LargeSoft, filling the product owner role by an internal person proved difficult, as
adequate time needs to be allocated the person assigned the product owner role.
Showing that the management needs to acknowledge the importance of this role.

72 L.T. Heeager

6.2 Documentation

Proposition 2: The practice area of documentation is the hardest to mesh. The amount
of documentation required by quality standards is not supported by the agile focus.
Handling the documents in a light and iterative manner may be difficult in a project
controlled by long-term milestones and approval of the documents in the early stages.

The amount of documentation required by a quality standard is very different from
the agile focus [24]. It is however not necessary to write a large amount of
documentation to comply with quality standards [31]. Furthermore, the agile principle
of working software need not be a rejection on writing documentation. Still, agile
methods do not support the degree of documentation demanded by documentation-
driven methods [24]. Kähkönen and Abrahamsson [51] report on a case study in
which an organization had implemented a light documentation practice in compliance
with XP, but to satisfy CMMI they had to produce additional documentation.

Both the case study on SmallSoft and on LargeSoft show specifically that meshing
the agile and documentation-driven way of handling the documentation was difficult.
The developers in both case studies spent much time writing documents and found it,
due to the strict quality standards, difficult to keep an agile focus on working
software. McMichael and Lombardi [52] underline that most standards are flexible
and that one needs to find the appropriate level of documentation. This may be harder
for safety-critical projects as the quality standards are stricter in order to make sure
quality is documented sufficiently [53].

6.3 Requirements

Proposition 3: The practice area of requirements is difficult to mesh. The main
challenge is the different emphasis on the amount of documentation needed and the
difficulties of handling the requirements specifications iteratively.

One major challenge to meshing the agile and the documentation-driven methods
is the way requirements are handled [32]. Both the case study of SmallSoft and on
LargeSoft specifically showed how meshing the practice area of requirements was
difficult due to several issues. User stories written in a plain business-like language
cannot be used directly as requirements by an organization wishing to comply with a
quality standard [53]. Instead, each user story needs to be translated into functional
test cases [33]. SmallSoft experienced that requirements written by the customers
could not be approved by the GAMP standard. Furthermore, this case study showed
how due to a close, trusting customer relation the need for further documentation of
the requirements was not perceived.

The agile and the documentation-driven practice areas on requirements are
pursuing similar goals, but the major difference is the emphasis on the amount of
documentation needed [24]. This is supported by the findings of this paper. The case
study on SmallSoft showed that, handling the requirements in an agile manner did not
comply with the requirements of documentation. The case study on LargeSoft also
showed that the documentation of the requirements was hard to mesh. Even though
the requirements were gathered at a big upfront analysis, the software group needed a
iterative requirements process. They therefore attempted a mesh by changing the
requirements and documents hereof in the late stages of the project. Doing so is

 How Can Agile and Documentation-Driven Methods be Meshed in Practice? 73

expensive and a more iterative requirements gathering is therefore preferable [2].
Previous literature suggests that a mesh can be pursued by introducing a requirements
engineering phase in the beginning, but still adjusting requirements iteratively [54].
Handling the requirements specifications in an iterative manner was, however,
difficult for LargeSoft due to official approvals of the documents.

6.4 Development Strategy

Proposition 4: The practice area of development strategy can be meshed. This can be
done by embedding an agile, iterative software development strategy in a
documentation-driven project. Such a practice has several advantages but it does pose
some challenges, as the long-term milestones will affect the iterations.

Previous literature proposed that the development strategies of the agile and the
documentation-driven methods were incompatible [22]. The analysis of software
practice in LargeSoft showed that it is possible to mesh the development strategies by
embedding an iterative agile software practice in a documentation-driven project
controlled by milestones. The milestones did, however, affect the content of the
iterations and forced the documents to be approved in the early stages of the project.
Boehm and Turner [32] advocate that the milestones are realigned and redefined to
better fit an iterative approach. An empirical study of how to do this is however not
presented. The literature acknowledges the advantages of iterative software
development [55]. The advantage of developing the software in iterations in order to
be able to define the requirements up front is highlighted [55].

6.5 Communications and Knowledge Sharing

Proposition 5: The practice area of communication and knowledge sharing can be
meshed. Creating a mesh between the agile personalization strategy and the
documentation-driven codification strategy is advocated. A mesh will likely be
dominated by the codification strategy, due to the requirements of the quality
standards.

The literature on meshing the agile and the documentation-driven practices do not
deal with the issue of meshing the practice area on communication and knowledge
sharing strategies. The literature on knowledge management reports on meshing
communication strategies. In line with the case on LargeSoft, it is suggested to have a
knowledge sharing strategy that consists of both personalization and codification; a
distribution of 80%-20% is advocated [47]. These finding have been supported by for
example Kautz and Thaysen [56]. Both SmallSoft and LargeSoft found it
advantageous to have a primarily personalized communication strategy, but were, due
to the quality standards, forced to have/introduce a dominating codification strategy.

74 L.T. Heeager

6.6 Testing

Proposition 6: The practice area of testing is difficult to mesh. Implementing an
agile, test-driven practice requires that both developers and the management realize
the advantages of test-driven development.

Implementing agile practices such as test-driven development is a way to mesh the
agile and the documentation-driven methods. It is argued that documentation-driven
methods already focus on test and quality of the software, while the test-first and
continuous integration proposed by the agile methods will be helpful in finding the
problems earlier rather than later [32]. One case study reports on Scrum and CMMI
level 5 being meshed; they underline how the test practices of Scrum (test-driven
development and automated tests) supported the iterations and were an important part
of the quality assurance [57]. Explicit quality plans were used to ensure testing was
done in the right manner. The literature does not propose that implementing agile test-
driven development may be difficult due to the different focus in documentation-
driven projects in the implementation phase, as the case study of LargeSoft showed.

7 Conclusion

The purpose of this paper was to answer: how can the agile and the documentation-
driven methods be meshed in practice? The research is based on two interpretive case
studies focusing on safety-critical software development and at the same time
attempting to achieve a mesh between the agile and the documentation-driven
methods. The first case study showed how an agile software organization attempted to
implement a meshed practice by introducing documentation-driven elements;
however unsuccessful. The second case study showed how a software group in a
documentation-driven project implemented a meshed (but primarily documentation-
driven) practice by introducing agile elements from Scrum.

Based on the literature, nine practice areas of meshing were identified
1) management style, 2) customer relations, 3) people-issues, 4) documentation,
5) requirements, 6) development strategy, 7) communication and knowledge sharing,
8) testing and 9) culture. The case studies provided contributions on six of the nine
practice areas; showing the following. A) Meshing the practice area of customer-
relations is difficult. An agile customer relation can hinder the implementation of the
documentation-driven customer strategy due to a high level of trust between the
parties. Implementing agile customer relations can also be difficult in a
documentation-driven project if such a relation is not prioritized by the management.
B) The practice area of documentation is the hardest to mesh; the amount of
documentation required by documentation-driven methods is not supported by the
agile methods. C) The practice area of requirements is difficult to mesh. The
challenge is related to the documentation of these. D) The practice area of
development strategy can be meshed. A software organization can mesh the agile and
the documentation-driven methods by using short iterations within long-term
milestones. The iterations will however be affected by the milestones as the passing
of these are dependent on certain activities, for example writing documentation. E)
The practice area of communication and knowledge sharing strategies can be meshed,

 How Can Agile and Documentation-Driven Methods be Meshed in Practice? 75

but will most likely be dominated by the documentation-driven codification strategy.
F) The practice area of testing is difficult to mesh. Both developers and management
need to realize the advantages of test-driven software development

References

1. Schwaber, K., Beedle, M.: Agile software development with scrum. Prentice Hall, Upper
Saddle River (2001)

2. Beck, K., Andres, C.: Extreme programming explained: Embrace change, 2nd edn.
Addison-Wesley Professional, USA (2004)

3. Hares, J.S.: SSADM for the advanced practitioner. John Wiley & Sons, UK (1994)
4. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI guidelines for process integration and

product improvement. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)
5. U.S. Department of Health of Health and Human Services: FDA U.S. Food and Drug

Administration 2011 (2010)
6. Boehm, B.: Get Ready for Agile Methods, with Care. Computer 35, 64–69 (2002)
7. Kruchten, P.: The rational unified process: An introduction. Addison-Wesley Professional,

Boston (2004)
8. Pressman, R.S.: Software engineering - A practitioner’s approach. McGraw-Hill

Publishing Company, UK (2000)
9. Heeager, L.T.: Introducing Agile Practices in a Documentation-Driven Software

Development Practice: A Case Study. Journal of Information Technology Case and
Application Research 14, 3–24 (2012)

10. Boehm, B., Turner, R.: Observations on Balancing Discipline and Agility, pp. 32–39
(2003)

11. Stapleton, J.: DSDM: Dynamic Systems Development Method, p. 406 (1999)
12. Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic

Review. Information and Software Technology 50, 833–859 (2008)
13. Mahanti, A.: Challenges in Enterprise Adoption of Agile Methods - A Survey. Journal of

Computing and Information Technology 14, 197–206 (2004)
14. Cockburn, A.: Agile software development: The cooperative game. Addison-Wesley

Professional, Boston (2006)
15. Aaen, I.: Software Process Improvement: Blueprints Versus Recipes. IEEE Software 20,

86–93 (2003)
16. Vogel, D.A.: Agile Methods: Most are Not Ready for Prime Time in Medical Device

Software Design and Development. DesignFax Online, pp. 1–6 (2006)
17. Heeager, L.T.: The Agile and the Disciplined Software Approaches: Combinable or Just

Compatible? In: Anonymous Information Systems Development, pp. 35–49. Springer
(2013)

18. Hilburn, T.B., Townhidnejad, M.: Software Quality: A Curriculum Postscript? 32, 167–
171 (2000)

19. DeMarco, T.: Structured analysis and system specification. Yourdon Press, New York
(1979)

20. Yourdon, E.: Modern structured analysis, Prentice Hall PTR, USA (1989)
21. Misra, S.C., Kumar, V., Kumar, U.: Identifying some Critical Changes Required in

Adopting Agile Practices in Traditional Software Development Projects. International
Journal of Quality & Reliability Management 27, 451–474 (2010)

76 L.T. Heeager

22. Nerur, S., Mahapatra, R.K., Mangalaraj, G.: Challenges of Migrating to Agile
Methodologies. Commun. ACM 48, 73–78 (2005)

23. Moe, N.B., Dingsøyr, T., Dybå, T.: A Teamwork Model for Understanding an Agile
Team: A Case Study of a Scrum Project. Information and Software Technology 52, 480–
491 (2010)

24. Paetsch, F., Eberlein, A., Maurer, F.: Requirements Engineering and Agile Software
Development, p. 308 (2003)

25. Huo, M., Verner, J., Zhu, L., et al.: Software Quality and Agile Methods, pp. 520–527
(2004)

26. McAvoy, J., Butler, T.: A Failure to Learn in a Software Development Team: The
Unsuccessful Introduction of an Agile Method. In: Information Systems Development, pp.
1–13 (2009)

27. Galal-Edeen, G.H., Riad, A.M., Seyam, M.S.: Agility Versus Discipline: Is Reconciliation
Possible? pp. 331–337 (2007)

28. Esfahani, C., Cabot, J., Yu, E.: Adopting Agile Methods: Can Goal-Oriented Social
Modeling Help? pp. 223–234 (2010)

29. Vinekar, V., Slinkman, C.W., Nerur, S.: Can Agile and Traditional Systems Development
Approaches Coexist? an Ambidextrous View. Inf. Syst. Manage. 23, 31–42 (2006)

30. Baker, S.W.: Formalizing Agility: An Agile Organization’s Journey Toward CMMI
Accreditation, pp. 185–192 (2005)

31. Bos, E., Vriens, C.: An Agile CMM, pp. 129–138 (2004)
32. Boehm, B., Turner, R.: Management Challenges to Implementing Agile Processes in

Traditional Development Organizations. IEEE Software 22, 30–39 (2005)
33. Beznosov, K.: Extreme Security Engineering: On Employing XP Practices to Achieve

‘Good enough Security’ without Defining It (2003)
34. Larman, C.: Agile and iterative development: A manager’s guide. Addison-Wesley

Professional, Boston (2004)
35. Senapathi, M.: Adoption of Software Engineering Process Innovations: The Case of Agile

Software Development Methodologies. In: Sillitti, A., Martin, A., Wang, X., Whitworth,
E. (eds.) XP 2010. LNBIP, vol. 48, pp. 226–231. Springer, Heidelberg (2010)

36. Cohn, M., Ford, D.: Introducing an Agile Process to an Organization [Software
Development]. Computer 36, 74–78 (2003)

37. Chau, T., Maurer, F., Melnik, G.: Knowledge Sharing: Agile Methods Vs. Tayloristic
Methods, pp. 302–307 (2003)

38. Chau, T., Maurer, F.: Knowledge Sharing in Agile Software Teams. In: Lenski, W. (ed.)
Logic versus Approximation. LNCS, vol. 3075, pp. 173–183. Springer, Heidelberg (2004)

39. Boehm, B.W., Turner, R.: Balancing agility and discipline: A guide for the perplexed.
Addison-Wesley Professional, Boston (2003)

40. Dahlberg, H., Ruiz, F.S., Olsson, C.M.: The Role of Extreme Programming in a Plan-
Driven Organization, pp. 291–312 (2006)

41. Boehm, B., Turner, R.: Using Risk to Balance Agile and Plan-Driven Methods.
Computer 36, 57–66 (2003)

42. Oxford Advanced Learner’s Dictionary: Oxford Advanced Learner’s Dictionary 2011
(2011)

43. Walsham, G.: Interpretive Case Studies in IS Research: Nature and Method. European
Journal of Information Systems 4, 74–81 (1995)

44. The International Society for Pharmaceutical Engineering: GAMP Publications 2011
(2010)

 How Can Agile and Documentation-Driven Methods be Meshed in Practice? 77

45. Iversen, J., Nielsen, P.A., Norbjerg, J.: Situated Assessment of Problems in Software
Development. ACM SIGMIS Database 30, 66–81 (1999)

46. Goles, T., Chin, W.W.: Information Systems Outsourcing Relationship Factors: Detailed
Conceptualization and Initial Evidence. ACM SIGMIS Database 36, 67 (2005)

47. Hansen, M.T., Nohria, N., Tierney, T.: What’s Your Strategy for Managing Knowledge?
Harv. Bus. Rev. 77, 106–116 (1999)

48. Das, T., Teng, B.S.: Trust, Control, and Risk in Strategic Alliances: An Integrated
Framework. Studies 22, 251–283 (2001)

49. Paulk, M.C.: Agile Methodologies and Process Discipline. Crosstalk-The Journal of
Defense Software Engineering 1, 15–18 (2002)

50. Murru, O., Deias, R., Mugheddue, G.: Assessing XP at a European Internet Company.
IEEE Software 20, 37–43 (2003)

51. Kähkönen, T., Abrahamsson, P.: Achieving CMMI Level 2 with Enhanced Extreme
Programming Approach. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009,
pp. 378–392. Springer, Heidelberg (2004)

52. McMichael, B., Lombardi, M.: ISO 9001 and Agile Development, pp. 262–265 (2007)
53. Wright, G.: Achieving ISO 9001 Certification for an XP Company. In: Maurer, F., Wells,

D. (eds.) XP/Agile Universe 2003. LNCS, vol. 2753, pp. 43–50. Springer, Heidelberg
(2003)

54. Namioka, A., Bran, C.: eXtreme ISO?!? pp. 260–263 (2004)
55. Rising, L., Janoff, N.S.: The Scrum Software Development Process for Small Teams.

IEEE Software 17, 26–32 (2002)
56. Kautz, K., Thaysen, K.: Knowledge, Learning and IT Support in a Small Software

Company. Journal of Knowledge Management 5, 349–357 (2001)
57. Jakobsen, C.R., Johnson, K.A.: Mature Agile with a Twist of CMMI, pp. 212–217 (2008)

Contracting in Agile Software Projects:

State of Art and How to Understand It

Shi Hao Zijdemans1 and Christoph Johann Stettina1,2

1 Leiden Institute of Advanced Computer Science, Leiden University,
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

2 Centre for Innovation The Hague, Leiden University,
Schouwburgstraat 2, 2511 VA The Hague, The Netherlands

Abstract. The iterative nature of Agile methods paves the way for
new and more dynamic contract arrangements in software development
projects. However, while new types and adaptations of existing contract
types have emerged in practice, a shared view on these arrangements
is missing in literature. In this paper we review common contract types
discussed in Agile and traditional project management. Based on ex-
isting literature and empirical data collected during a workshop and
semi-structured interviews we present a preliminary framework to help
understand and choose contracting practices in context.

Keywords: Agile project management, contracting, procurement
practices.

1 Introduction

Agile project management is becoming increasingly popular in and outside the
domain of software development [1]. While an Agile approach brings advantages
to both the software supplier and the customer, it also introduces new challenges.
Major challenges when implementing Agile methods in traditional software de-
velopment organizations are caused by the necessity to adapt existing practices
to fit the iterative nature of Agile projects in context [2]. Contracting is one of
such domains of practice potentially affected by agile methods [3].

Contract negotiation is a crucial part of a software development project, be-
cause it has an influence on the entire project, its practices, the underlying
patterns of action and governance structure. It can be challenging for a software
supplier and customer to find a common ground of trust without prior collabo-
rations. A good contract agreement is important for further relations [3]. Still,
frequently we encounter (small) software companies that are unaware of existing
contracting practices and the possibilities they offer.

Fixed-price contracts have been used frequently with Agile projects. Here, the
high level of uncertainty in software projects, and the flexibility that is intended
for the Agile approach conflict with the planning-driven nature of fixed-price
contracts [3]. Therefore, the Agile contracting problem has gradually received
more attention [4]. Alternative practices or contracting frameworks have been

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 78–93, 2014.
c© Springer International Publishing Switzerland 2014

Contracting in Agile Software Projects 79

proposed in literature, but every project is different and therefore we believe
that there is no one silver bullet for the Agile contracting problem.

Although an initial discourse can be found in literature, the discussion on
contracting in Agile projects is scattered across practitioners literature and indi-
vidual cases. Current contributions are limited to single case studies discussing
individual frameworks in practice, and predominantly covering the perspective of
software developers. This paper contributes an analysis of major contract types
discussed in Agile and traditional project management literature. Empirically
collecting the perceptions of different stakeholders such as legal advisors, Agile
coaches and business owners we present a preliminary tool to understand and
help choosing an appropriate configuration of contracting practices in context.

2 Related Work

In an attempt to counter contracting challenges in Agile projects, multiple con-
tract types have been discussed in literature. In this section we review the con-
tract types in Agile and traditional project management literature and their
application in Agile contexts.

Fixed-Price Contracts Besides a prespecified price, a fixed-price contract
contains a fixed deadline and an assumably complete specification of the software
system in question. In practice a complete specification is rather difficult and
costly to create (e.g. customer often cannot specify requirements accurately [4])
and hinders innovation (e.g. design changes in evolving system are only possible
via expensive and often troublesome change requests). The supplier is financially
responsible for any cost overruns. Therefore it is recommended that the supplier
does not consider this contract type unless the system requirements are clear
and unambiguous [5].

Target-Price Contracts In target-price contracts the risk of overruns are
shared between the customer and the supplier [6]. The contract contains a target
of effort (in man hours), a negotiated profit on the project and often a deadline.
If the actual amount of hours exceeds the target, the customer pays 50% (or
another agreed upon percentage) of the extra costs. And vice versa, if the actual
amount is less than the target, the customer pays 50% of the difference between
the actual amount and the target. This contract type can also be set up with a
minimum and maximum amount of hours that can be charged.

Time & Material Contracts In Time & Materials contracts the supplier
is paid based on its hourly rate [7]. At prespecified time intervals (e.g. monthly)
a bill is sent to the customer, containing the amount of man hours and the total
price according to the supplier’s hourly rate. T&M contracts do not contain a
complete specification of the system, and the project can be ended whenever
the customer wants. The risk in T&M projects is carried by the customer; the
supplier is paid fully for every hour, and therefore does not have an incentive to
complete the project quickly [3]. The only meaningful incentive is high compe-
tition and the prospect of follow-up contracts [5].

Cost-plus contracts In cost-plus contracts, the customer pays for all the
supplier’s costs plus an additional fee that contains the profit [8]. There are

80 S.H. Zijdemans and C.J. Stettina

different options to construct the fee. Cost-plus-fixed-fee contracts have a pre-
specified fixed profit fee [5]. In cost-plus-incentive-fee contracts, suppliers receive
a higher profit fee if they meet or exceed a specific target performance, which
is agreed in advance by supplier and customer. This introduces an incentive for
the supplier to keep the costs down [5]. Whereas the incentive fees are based
on objective calculations comparing certain measures (e.g. costs, delivery time),
Cost-plus-award-fee contracts utilize a more subjective fee. Award fees can be
earned when the supplier meets significantly higher levels of performance, qual-
ity, timeliness or responsiveness in the project [5]. Cost-plus contracts require
that the supplier’s books be audited [5].

We will now present frameworks dedicated to contracting in agile software
projects available in existing literature.

Agile Fixed-Price Contracts This book specifically devoted to Agile con-
tracts [9] provides a contract model for ‘Agile Fixed-Price Contracts’. The book
gives a detailed guide on the setup, the tender phase, and the practical aspects
of project management for Agile fixed-price contracts. This contract type con-
tains a fixed price ceiling and the scope of the software system is left variable. It
incorporates interesting features, such as ‘exit points’ and a ‘Checkpoint phase’.
Exit points are predefined points in time where the parties may terminate the
project in a controlled manner. A Checkpoint phase is a period of x sprints or a
performance scope of y storypoints, that act as a test phase of the cooperation
between customer and supplier.

Agile Contract Primer - Multi-phase variable-model The Agile Con-
tract Primer [10] provides suggestions for better understanding of IT lawyers’
perspective, and multiple suggestions for IT lawyers are given to get a better
understanding of the implications of the Agile methodology and systems think-
ing. The article also discussesMulti-phase variable-model frameworks which take
into account that the uncertainty and risk profiles of software projects change
over time. In a multi-phase framework, any phase can use any contracting model.
For example: choose fixed-price for the first phase, where the Product Backlog
is created and hence the most uncertain phase of the project is traversed, and
then switch to T&M.

adVANTAGE The ‘adVANTAGE’ pricing model combines elements of fixed-
price and T&M contracting models [3]. In this contracting model, the software
supplier is paid for their effort after each sprint. The contract provides an idea
of the overall scope in terms of user stories, time and budget. The required effort
for each user story is estimated in the beginning of the project. These estimates
are used in all sprints as an orientation point for the bill, as the actual effort
for each user story is compared to the estimated effort. The final price for each
sprint is compensated according to any differences in the actual and estimated
effort (like target-cost contracts). The customer can prioritize, eliminate or add
user stories at the beginning of each sprint, and in doing so, has to take into
account the supplier’s price estimates and its own budget ceiling.

Collaborative Agile Contracts Thorup and Jensen (2009) [11] proposed
and tested this model in two commercial projects. The biggest distinctive feature

Contracting in Agile Software Projects 81

of this contracting model is that the payment is delayed until a certain criterion
is fulfilled [11]. In most contract types this criterion is a calendar date, however
in Collaborative Agile Contracts, the criterion is to reach a predefined milestone
where the customer is getting value from a specific delivered increment of the
system. Generally both parties would like to reach these milestones as quickly as
possible. The supplier’s efficiency will be rewarded with a quicker payout. The
customer will think more carefully when deciding what features he/she wants to
have implemented, because all the increments will be paid for separately. Fur-
ther, Concha et al (2007) [12] propose an approach called “Agile Commitments”
which provides complementary practices for Agile projects. One of the objec-
tives of Agile Commitments is to define and specify the commitments between
the customer and supplier, which can provide a baseline for contract negotiation.

Current literature discusses a variety of contract types, however, the evalua-
tion in projects following Agile methods is sparse. While contracting is discussed
on the level of entire frameworks, our literature analysis points out that con-
tracting types resemble a mix of distinct practices. Such concrete practices are
fixed-price agreements or payments-per-sprint, often accompanied by further in-
centive and governance mechanisms. Based upon the literature reviewed above
we find it appropriate to pose the following research question:

1. What contract types and the contained concrete practices are suitable for
different Agile project contexts?

3 Method

Following our research goal we want to create an understanding of contracting
practices in real world projects. To pursue this goal, we chose to conduct an in-
ductive case study research approach as commonly proposed by literature [13,14].
Qualitative case studies allow to look at complex problems in context while de-
veloping rich and informative conclusions.

3.1 Data Collection: Workshop and Semi-structured Interviews

In order to establish an appropriate understanding of the topic matter we first
conducted a scientific workshop for Agile professionals. The 45-minute workshop
took place in context of a conference on Agile methods and was held with 8
participants. This pre-study allowed us to collect many perceptions on Agile
contracting in a short amount of time, and gave us a general idea of current
practices in use. Based upon the workshop results and existing literature we
created an interview guide and conducted semi-structured interviews. The face-
to-face interviews took place between April and June 2013 with five participants
in different organizations. We interviewed participants from a variety of roles
to ensure an inclusion of different perspectives on the topic. The interviews
had an approximate duration of 60 minutes and took place at the participants’
workplace. Before each interview, we asked the participant for permission to

82 S.H. Zijdemans and C.J. Stettina

record the interview. We mentioned that all data from the interview will be
anonymized. All interviews were voice recorded and transcribed. We further
asked participants to provide process descriptions if available.

The structure of the semi-structure interviews was as follows: We started with
general questions about the participant, the organization, their knowledge on
(Agile) software development and contracting. We then continued with questions
related to their experiences with contracts in Agile projects and challenges they
are facing. Example questions were: How does the process of acquiring projects
look like in your organization (from initial project request to start of develop-
ment)? What are important aspects to consider when contracting Agile software
projects? What are the challenges you are facing with current contracts in Agile
projects? What do you think could be improved in your current way of contracting
software projects?

The interview questions were continuously revised in course of the study.
Given the variety of backgrounds of participants, we altered the questions ac-
cording to a given situation (e.g. special knowledge in a particular area or limited
in another). For example, with one of the participants who is a jurist in R&D,
we skipped some of the more technical software development questions.

3.2 Data Analysis

To analyze the data from the interviews, we applied a qualitative data coding
technique similar to that of Grounded Theory (GT) by Glaser and Strauss [15].
We used the coding technique, in contrary to GT, however, we used semi-
structured interview guides based on existing literature and findings from the
previously conducted workshop. The method is especially suitable for areas of
research that have not been studied in great detail before. Such would allow us
to collect rich information while enabling direct exchange with the practitioners.

All interviews have been fully transcribed. After the transcription, we per-
formed ‘open coding’ [15] using the tool Open Code 1. There, the transcripts
were analyzed line by line and inspected for recurring key themes. Each key
theme was then assigned a ‘code’ (i.e. a descriptive label), which forms a level
of abstraction in analyzing the transcripts. By constantly comparing the codes
against each other (i.e. Grounded Theory’s constant comparison method), we
categorized the codes to extract underlying concepts. An example:

Quote: “In calculating our price, we ensure that there is a certain financial
buffer for us, we use it for contingency planning. We define that buffer upfront
based on our expectations and if along the way the customer [makes change
requests] then we can be easier about it.

Key Theme: “Contingency planning for fixed-price projects”
Code: Fixed-price modifications
Category: Fixed-price

1 http://www.phmed.umu.se/english/

divisions/epidemiology/research/open-code/

http://www.phmed.umu.se/english/divisions/epidemiology/research/open-code/
http://www.phmed.umu.se/english/divisions/epidemiology/research/open-code/

Contracting in Agile Software Projects 83

4 Results

In this section we present the results collected. An overview of the participants
is given in Table 1. In order to preserve the participants’ confidentiality, we
assign a an ID to each participant (P1-P5). All interviewees have several years of
experience with contracting and contract negotiations in software projects. The
majority of participants apply Scrum in their projects. P1 is a jurist in a legal
department and does not apply any project management framework directly.
P2 is familiar with agile methodologies, however, rather than implementing a
particular method the company applies a few agile practices such as iterative
development and frequent customer reviews. The size of the organizations varied
heavily among the participants; from 10 to 145.000 employees. Supportive quotes
will be provided, which have been translated from Dutch.

Table 1. Interview participants and descriptive variables

P
a
rt
ic
ip
a
n
t

T
y
p
e
o
f

O
rg

a
n
iz
a
ti
o
n

S
iz
e
o
f

O
rg

a
n
iz
a
ti
o
n

F
u
n
c
ti
o
n

A
g
il
e

m
e
th

o
d

E
x
p
e
ri
e
n
c
e

P1 R&D Large Jurist - Legal advisor in contract negotiations

P2 Web Small Co-owner - Contract negotiation with customers
Development

P3 Auditing, Large Partner Scrum Contract negotiation with customers
Tax Advisory,
Consulting

P4 Consulting &
Training

Large ScrumMaster,
Coach

Scrum Training and consulting on business
agility and performance improvement

P5 Software Large Agile Scrum Research in Agile
Development consultant

In Figure 1 we present an overview of all the categories that we have distin-
guished from the different codes. To provide a quantitative view, all the cate-
gories were assembled and ranked by the the amount of codes they contained
(Fig. 1). We divided the categories into two groups: concrete practices and af-
fecting factors. As we can see in the figure, the majority of codes is related to
concrete practices discussed by our participants. In total we found 330 codes
distributed over 31 categories.

During the coding we identified the major challenges in Agile projects men-
tioned by our participants as:

1. Lack of Customer Involvement: if the customer is not involved in the project
enough, it will be more difficult for the supplier to develop the right system.

2. Difficulties in Scope Change: if the entire scope of the project has been com-
pletely specified in the contract, scope changes become very difficult.

84 S.H. Zijdemans and C.J. Stettina

Fig. 1. Overview of the categories and the amount of codes they contain

3. Lack of Trust: Before the project has started, customers tend to lack trust in
that, by using the Agile approach, the supplier can deliver the right system
without having to specify the system completely upfront.

4. Too much Trust: When the project is started, customers tend to have too
much trust in that the supplier will deliver a good system, which in turn
leads to less effort being put in the project by the customer.

4.1 Concrete Practices in Use

Is this section we will report on the practices discussed by our participants. By
such we mean observable patterns of human action such as ‘payment per sprint’.

Fixed Price. ‘Fixed Price’ was mentioned many times. Besides the challenges
regarding fixed-price contracts that have been described in related research liter-
ature (e.g. the customer’s desire for certainty and upfront specification), another
important distinction was often emphasized: the distinction between specifica-
tions and expectations.

“it’s way more important to meet the expectations than the specifications.
Of course you do need specifications, but those should be more like goals:
‘what is the intended goal of the system?’. That is, however, difficult
to state [formally], but it’s better to verify the system against the goals
instead of the specifications.” - P4.

Contracting in Agile Software Projects 85

Payment per Sprint. Among the participants that actively use Agile meth-
ods, the opinions on payment per sprint varied widely. While P4 has “never
seen contracts done in that way”, P3 currently uses this method of payment
with success, and is confident that this is a very effective way of handling the
payments in Scrum projects. In contrary to the adVANTAGE pricing model [3],
this organization uses a fixed price per sprint.

“Billing is easy; I want to do that per Sprint. I want to do the billing
as soon as possible... however it doesn’t always work, because before you
know it you’re behind 2-3 weeks. But in general...there will be a bill per
Sprint, and we try to do this as close to the end of the Sprint as possible.
It is a fixed amount per Sprint by the way, so whether or not we make
the exact agreed hours or not, that doesn’t matter. This also has to do
with the current economic conditions. Every company is trying to invoice
quickly these days, because payments are taking so long.” - P3.

Benefits. P3 believes that one of the benefits for the supplier is the fast payment,
and thereby some reduction of risk. The benefit of payment per sprint for the
customer is the flexibility that can be offered in multiple aspects of the rela-
tionship. In the contract an agreement is stated for a certain amount of sprints.
Every time the agreed amount of sprints has been completed, the customer can
buy more sprints. At the start of the project customers can agree to buy a small
amount of sprints to get introduced to the Agile approach. In these sprints the
customer can witness the Product Backlog being created and managed, and he
could receive the first part of the system.

“I always say ’You only get on board for one sprint, and when you’re
dissatisfied with a sprint, we can always just say goodbye’. Those are
always enlightening insights for the customer.” - P3.

P3 elaborates that it is of course the idea to build the desired system to-
gether, but it is best to offer options like these to the customer just in case the
collaboration works out differently. Another benefit that was mentioned by P3,
is that the payment directly follows the acceptance of the sprint, which makes
the payment more ‘natural’ for the customer.

“It’s very logical right? You have a sprint, you get a report with the
sprint, you get a demo with the sprint, well then it’s pretty logical to add
a bill to the sprint as well.” - P3.

Disadvantages. P4 stated that a disadvantage could lie in the fact that such a
contract could create a short term vision. When there is a contract for a couple
of sprints, the supplier will likely focus on these sprints and try to please the
customer by presenting as much functionality as possible. This would tempt
developers to put the quality of the system at risk by creating a technical debt,
leading to poor software architecture.

P3 mentioned that this payment structure requires discipline in the financial
aspect. He stated that his environment — one of the largest professional services

86 S.H. Zijdemans and C.J. Stettina

organizations in the world, that mostly does financial advisory — plays a role
in the successful realization of this payment method.

“ However this requires discipline in the financial aspect, something that
IT people are not very good at. I am being helped with that by my envi-
ronment; in this house they always know everything financially.” - P3.

Agile Collaboration Agreement. When all the features have been formally
specified upfront, then there is very little room for any scope change. P5 stated
that it is essential to solve this problem, and that ideally in Agile contracts “scope
change should be freed”. To free scope change P5 suggested forming a joint-
venture, or setting up ‘Collaboration Agreements’ for Agile software projects.

“One way is to form a joint-venture. Then the software supplier gets
a share of the profit...I believe this is a possible way to do it. Another
option is aimed towards Collaboration Agreements..that would contain
things like the responsibilities and expectations of the parties” - P5.

The importance of proper collaboration and trust in Agile projects was also
mentioned by P3 and P4. They believe that the customer should monitor the
progress of the project more. According to them the responsibilities and expec-
tations of the customer should be clarified and stated in Agile contracts for more
effective collaboration, and a higher chance of project success.

“I think the best would be a pure Agile way, in which you, as a customer,
can watch over the progress...very frequently...And of course, when you
see that the team performs well, then you give them a bit more freedom,
but if you get the impression of ‘this doesn’t suffice’, well then as a cus-
tomer I would be on that a bit tighter...And it’s very possible to state
that in a contract I think.” - P4.

P3 emphasized that “on the one hand customers should have more trust, and
on the other hand they should have less trust”. They should have more trust in the
fact that they can get a good end result without a complete upfront specification.
“They should have less trust that, once they have started the relationship, the
supplier will make it all alright. They have to critically watch the supplier”.

Early Termination. Something that was often mentioned, was the ‘Money
for Nothing’ part of Sutherland’s ‘Money for Nothing, Change for Free’ [16],
which is an agreement that in the case when the customer decides to terminate
the project early (because he is satisfied enough with the delivered increments
of the system), he will pay 20% of the remaining budget to the supplier. This
can partly be seen as a bonus for delivering enough business value sooner than
expected. The other part is a risk premium, since the supplier’s resources have
to be reallocated unexpectedly (P5). P4 and P5 both have not seen this being
put to use very often, although they both believe that this element is required
in the ideal Agile contract.

Contracting in Agile Software Projects 87

P3 reiterated the possibility to terminate a project early due to ongoing chal-
lenges. However, he was not familiar with the idea of customers terminating a
successful project early. Even though a customer might be satisfied with the
deliverables, budget and personnel have already been allocated. This makes it
rather unlikely to stop a project before the planned end date.

“I have never seen that in a contract. It’s very funny, because it’s actu-
ally very logical to do it like that. That’s very good. Although it can be
seen that many customers have a lot of trouble with de-scoping, it’s very
hard to decide that you don’t want something, even though it barely has
additional business value. Customers are not used to that.” - P3.

Two-phase Contract. To handle the ‘time and money’ aspect of Agile con-
tracting, P5 recommended a ‘Two-phase Contract’, which is inspired by the Cone
of Uncertainty (McConnell, 1997). Especially in the beginning of a project, there
is a lot of uncertainty (about the scope, price, duration etc.). This gradually
declines along the duration of the project. Two-phase contracts take this into
account and divides the project into two phases. The first phase is a relatively
short phase aimed at getting through the initial uncertainty and creating a base
of trust between the customer and supplier. P5 recommended to use fixed-price
for this phase since it is relatively short, and the required effort can be estimated
relatively easily. In this phase the productivity of the team is witnessed by the
customer, there is a more accurate view on the requirements, the main impedi-
ments have been identified and an increment of the system has been delivered.
When those elements are already in place, the parties could basically make any
contract type work well for the second phase (e.g. fixed-price, T&M etc.).

4.2 Affecting Factors

Size. The size of the organization (supplier side or customer side) and the size
of the project all play a role in determining whether this method of payment is
feasible. P3 explained that smaller projects have an upfront total price estimate,
and a planning of the sprints.

“But smaller projects, there you first have a total price estimate and a
planning of the sprints. So formally they also buy sprints, but there is a
bit more specification of the system....so a bit more towards a waterfall-
like description of the end result. But when I look at other Agile contracts,
this is pretty Agile.” - P3.

P2 (Web development) did not see any added value in doing the payments
per cycle for his organization, because he does not have very complex cases.

Government Waterfall. Something that was mentioned by multiple partic-
ipants was the regulations that are associated with software projects for the
government. Governmental software projects should always have a complete up-
front specification, price estimation and deadline.

88 S.H. Zijdemans and C.J. Stettina

“The contract model, that’s where you really see the friction between wa-
terfall and [Scrum]...And especially in the government, all the standards
are aimed towards waterfall-like constructions, where everything is spec-
ified very clearly. ” - P3.

Further, as dictated by EU regulations, no bilateral communication between
principal and service provider is allowed before the contract has been awarded

Customer Involvement. An aspect that often poses a big challenge in Ag-
ile projects is the lack of customer involvement [17]. P3 explained his current
experience with regard to customer involvement, and underlines its importance.

“We also invite the customer, and if he joins in more than once a week,
then that can be seen as often. Something that also happens often is that
the product owner goes and works at the customer’s site. In that case he
is present [with us] less than you’d ideally want to, but then that’s also
understandable.” - P3.

Understanding Jurists. When asked what current challenges are in contract-
ing from jurists’ perspective, P1 stated that when jurists are making a contract
for (two) parties, they often don’t really know what the underlying intentions
from these parties are. This somewhat limits them in their ability of setting up
correct and accurate contracts.

“What I often encounter is that many times jurists don’t know, what the
intentions are of the parties.” - P1.

This was confirmed by P5, who explained that he had conducted a work-
shop at a Dutch organization of jurists. This workshop aimed to get the jurists
thinking about possible solutions. So far they believe that a solution based on
Collaboration Agreements is the most feasible, and P5 said to believe that it is
largely a matter of time before the effect of ’Agile Collaboration Agreements’ is
discovered.

5 Discussion

Following the description of main contracting types and the perceptions of our
interviewees towards those, we will now proceed to discuss these types and their
suitability in different context in Table 2.

According to McLeod and MacDonell [18] there are four main factor categories
contributing to software development project outcomes, these are: Project Con-
tent, Institutional Context, People and Development Processes [18]. The factors
influence the suitability of a contract type for a particular project (e.g. projects
with ambiguous requirements can be well combined with exit arrangements,
governments generally require fixed-price contracts). During contract negotia-
tion some of these factors are easier to adjust than others (e.g. development

Contracting in Agile Software Projects 89

process and project content are generally more flexible and easier to adjust than
institutional context). Here we acknowledge the strong influence of contracting
practices on the development process, as a contract can enforce a specific soft-
ware development process. Following this line of thought, we consider Project
Content, Institutional Context and People as independent factors that determine
a project context. The contract practices then have to be selected accordingly
based on these first three factors.

Further, based on our discussions with participants and contract elements in
literature (e.g. incentives, uncertainty mitigation [5,9]) we made a distinction
between four categories of contracting practices as depicted in Table 2: 1) Con-
tract Basis, 2) an Incentive element 3) an Uncertainty Mitigation element and
4) an Governance element. The contract basis contains agreements on fairly ba-
sic contracting matters: the pricing model, delivery date and the scope of the
system. However, since these basic agreements have proved to be insufficient
in many project contexts, different variations and additions have been adopted
in practice to overcome these challenges. The incentive element contains prac-
tices that focus on the unfair risk distribution that has often been associated
with software development [3][7][9][10][11]. Leveraging additional incentive with
a specific party can be used to balance the risk distribution for a project. The
uncertainty mitigation element focuses on mitigating the uncertainty concerning
the price, scope or deadline estimates that have to be made in the project. The
introduction of a governance element to an Agile contract is focused on estab-
lishing a collaboration between the parties that is required for Agile software
projects. This primarily aims to increase the amount of customer involvement
in the project.

Contract basis In our interviews we found that fixed-price contracts are
mainly used in projects for the government, or small projects. Despite of
the negative connotations that fixed-price contracts have received in literature
[3][9][10][11], fixed-price contracts have proved to work well in small projects,
due to the fact that the requirements can generally be specified more accurately
if the scope is small. Further, fixed-price agreements have been mentioned as ef-
ficient for small projects, as suppliers can avoid efforts associated with payments
per sprint such as additional administration and billing.

We found that payment per sprint can be a good solution to increase the
quality of the end result when the requirements are ambiguous, since this allows
the scope to be specified incrementally. However, this can be regarded as un-
necessary to implement in small projects, in which fixed-price contracts can also
be used, since payment per sprint does not provide the customer with certainty
about the price, and the time of delivery.

T&M contracts are not popular in Agile projects [3][7], because they put all
the risk on the customer’s side. However, we found that when there is mutual
trust (i.e. supplier tries to work efficiently, and customer trusts this), T&M
contracts can provide a very easy and straightforward payment structure.

Incentive Target-price contracts provide incentive for the supplier to deliver
the system quickly, while not assuming all of the project risk (as is the case with

90 S.H. Zijdemans and C.J. Stettina

Table 2. Preliminary framework for understanding contracting practices as affected in
project contexts. Practice contributes benefits predominantly for: Project Owner (��),
Supplier (��), both (�), none (�).

Contracting Practices (affect Development Process)

Contract Basis Incentive Uncertainty Governance
Mitigation

F
ix
e
d
-P

ri
c
e
/
S
c
o
p
e

T
im

e
&

M
a
te
ri
a
l

P
a
y
p
e
r
S
p
ri
n
t

T
a
rg

e
t-
P
ri
c
e

In
c
e
n
ti
v
e
F
e
e
/

B
o
n
u
s
P
e
n
a
tl
y

E
x
it

A
rr
a
n
g
e
m
e
n
t

R
is
k
B
u
ff
e
r

T
w
o
P
h
a
se

C
o
ll
a
b
o
ra

ti
o
n

A
g
re
e
m
e
n
t

Project Content
Focus on Budget �� �� �� � � � � �� �
Focus on Quality � � � � � � � � �

Focus on Time �� �� � � � � � � �
Ambiguous requirements � � � � � � � � �

Large Size Project � �� � � � � � � �
Small Size Project � �� � � � � � � �

Institutional Context
Government � � � � � � � � �

People
Uncertain Customer Involvement � � � � � � � � �

Low Trust �� � � � � � � � �

fixed-price contracts), since any cost overruns are shared evenly. Pricing models
can be expanded with an incentive fee (i.e. provision for the adjustment of the
total profit), that provides the supplier with an incentive to deliver the system
more quickly or to reduce the costs. It is not recommended to use incentive fees
when the requirement for the system are ambiguous [5].

Uncertainty Mitigation In our interviews we found that a risk buffer is
a practice that is often used by the supplier to mitigate the uncertainty that
revolves around the estimates that have to be made in fixed-price contracts.
This buffer contains a part of the budget and a part of the project time span,
and can be used by the supplier to handle any ‘unforeseen’ change requests in
the last phases of the project. The customer does not need to be aware of this.

In our interviews and in literature [10] we found that the flexibility of the Two-
Phase contract makes it a suitable contract type in different contexts of Agile
projects. After the first phase (i.e. the most uncertain period of the project),
the budget and time estimates for the rest of the project can be made more
accurately. The breakdown into two phases can be particularly helpful in large
projects with ambiguous requirements. Two different pricing models can be ap-
plied in this contract type, and these can be selected according to project cir-
cumstances (e.g. preferences of the customer).

Governance A collaboration agreement can be included in a contract when
the amount of customer involvement is uncertain or expected to be low (e.g. if

Contracting in Agile Software Projects 91

the customer is new to the Agile principles). In the Agile approach, the cus-
tomer has an important role during the project, which is often not understood.
A collaboration agreement helps create a common understanding by explicitly
focusing on the responsibilities and expectations of the collaboration, and having
the customer formally agree on this.

Based on the main challenges identified in our data (lack of customer involve-
ment, difficulties in scope change, lack of- and too much trust), collaboration
agreements can help by: Including collaboration expectations in contracts and
creating an understanding of Agile values across the parties. Further, as col-
laboration agreements define how the teams work together expectations towards
documentation and testing can be added. Especially as there is quite some uncer-
tainty in Agile methods regarding documentation requirements [19,17], clarifying
these expectations here can be helpful.

Although the contracting practices each have their benefits, many of them
require additional effort in order to be implemented correctly. It is up to project
managers (or whoever is in charge of choosing a specific contract type) to assess
this trade-off, and to evaluate whether the practice is applicable in the specific
project context.

5.1 Bias and Limitations

Although we followed a rigorous research process there are obvious limitations
to our study. The major restriction is the limited amount of participants. We
based our data on a workshop conducted with eight participants and five semi-
structured interviews. Our sample might be difficult to reproduce and is not
representative. To address external validity we support our preliminary model
with findings available in agile as well as in traditional project management
literature. To address construct validity we conducted several reality checks with
experts and revised the final paper and preliminary model with IT lawyers. We
believe that the quotes and extracted code categories put into perspective with
already available individual case studies, provide a good overview of relevant
themes and a solid ground for a further quantitative research.

6 Conclusions

In this paper we discuss contracting practices for Agile software development
projects. First, we review common contracting types as discussed in Agile and
traditional project management literature, and present our empirical evaluation
of these contracting types applied in practice. Second, we analyze and divide con-
tracting types into four categories of contracting practices (basis, incentive, risk
mitigation and governance) and affecting factors (project content, institutional
context and people). Finally, based on our analysis and empirical evidence, we
give concrete recommendations to practitioners.

Based on our study the categories of contract practices presented in Table 2
contribute to the understanding of different configurations of contracts. In that

92 S.H. Zijdemans and C.J. Stettina

sense we can only provide examples of such configurations and their advantages
and disadvantages in practice. Their tailoring for a project needs to be carefully
considered by the involved parties. To what extent such arrangements can differ
is illustrated in the following examples:

1. Small size web development project: fixed-price contract with a statement of
hours and scope, and a collaboration agreement.

2. Medium size projects, with an intermediate risk level but opportunities for
value creation with preliminary functionality delivered (e.g. e-Commerce or
infrastructure): payment-per-sprint contract with a collaboration agreement

3. Large enterprise-wide implementation projects, with high risk of making in-
accurate cost estimates and difficulty to elicit clear requirements from the
customer: Multi-phase contract, with fixed-price in the first phase, where the
planning is made, and a Collaborative Agile Contract in the next phases.
Payments are made after each delivered increment of the system.

4. Large governmental R&D system development project, with high level of un-
certainty (comparable to large Agile software projects): Two-phase contract
with collaboration agreement. Target-price in first phase (concept definition),
T&M in second phase (system development and demonstration)

To scholars our findings contribute a better understanding of contracting prac-
tices in context. To practitioners we provide a preliminary framework to under-
stand basic contracting types, their elements, and choose them according to a
respective project context. We would like to help building a shared understand-
ing and trust across project teams and legal consultants to help making better
contracting arrangements in the future. As such this paper contributes to man-
agerial and governance aspects of Agile organizations and how collaborations
across such can be formed.

6.1 Recommendations for Research and Practice

To get a better understanding of the interdisciplinary possibilities and chal-
lenges, especially to understand procurement in the public sector, further inter-
views with jurists, public administrators and economists should prove beneficial.
Further, the preliminary framework presented in Table 2 provides good opportu-
nities to be elaborated and strengthened in a more quantitative research setting.

Acknowledgments. This research project has been supported by the Living
Lab The Hague project co-funded with support from the European Regional De-
velopment Fund of the European Union. We thank all participants for generously
contributing to this study.

Contracting in Agile Software Projects 93

References

1. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information Software Technology 50(9-10), 833–859 (2008)

2. Boehm, B., Turner, R.: Management challenges to implementing agile processes in
traditional development organizations. IEEE Software 22(5), 30–39 (2005)

3. Book, M., Gruhn, V., Striemer, R.: adVANTAGE: A fair pricing model for agile
software development contracting. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111,
pp. 193–200. Springer, Heidelberg (2012)

4. Hoda, R., Noble, J., Marshall, S.: Negotiating contracts for agile projects: A prac-
tical perspective. In: Abrahamsson, P., Marchesi, M., Maurer, F. (eds.) XP 2009.
LNBIP, vol. 31, pp. 186–191. Springer, Heidelberg (2009)

5. Kerzner, H.R.: Project Management: A Systems Approach to Planning, Scheduling,
and Controlling. Wiley (2009)

6. Molokken-Ostvold, K., Furulund, K.M.: The relationship between customer collab-
oration and software project overruns. In: Agile Conference (AGILE), pp. 72–83.
IEEE (2007)

7. Steven, P.: 10 contracts for your next agile software project (2009),
http://agilesoftwaredevelopment.com/blog/peterstev/10-agile-contracts

(accessed: April 14, 2013)
8. Hofbauer, J., Sanders, G.: Defense industrial initiatives current issues: Cost-plus

contracts (2008), http://csis.org/files/media/csis/pubs/
081016 diig cost plus.pdf (accessed: November 14, 2013)

9. Opelt, A., Gloger, B., Pfarl, W., Mittermayr, R.: Agile Contracts: Creating and
Managing Successful Projects with Scrum. Wiley (2013)

10. Arbogast, T., Larman, C., Vodde, B.: Agile contracts primer (2012),
http://www.agilecontracts.org/agile_contracts_primer.pdf (accessed:
November 20, 2013)

11. Thorup, L., Jensen, B.: Collaborative agile contracts. In: Agile Conference, AGILE
2009, pp. 195–200. IEEE (2009)

12. Concha, M., Visconti, M., Astudillo, H.: Agile commitments: Enhancing business
risk management in agile development projects, pp. 149–152 (2007)

13. Yin, R.K.: Case Study Research: Design and Methods (Applied Social Research
Methods), 4th edn. Sage Publications (2009)

14. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

15. Glaser, B.G., Strauss, A.L.: The discovery of grounded theory: Strategies for qual-
itative research. Transaction Books (2009)

16. Krebs, J.: Agile Portfolio Management. Microsoft Press (2008)
17. Hoda, R., Kruchten, P., Noble, J., Marshall, S.: Agility in context. In: Proceedings

of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA 2010, pp. 74–88. ACM, NY (2010)

18. McLeod, L., MacDonell, S.G.: Factors that affect software systems development
project outcomes: A survey of research. ACM Computing Surveys (CSUR) 43(4),
24 (2011)

19. Stettina, C.J., Kroon, E.: Is there an agile handover? an empirical study of doc-
umentation and project handover practices across agile software teams. In: 19th
ICE & IEEE-ITMC International Conference, The Hague, Netherlands (2013)

http://agilesoftwaredevelopment.com/blog/peterstev/10-agile-contracts
http://csis.org/files/media/csis/pubs/081016_diig_cost_plus.pdf
http://csis.org/files/media/csis/pubs/081016_diig_cost_plus.pdf
http://www.agilecontracts.org/agile_contracts_primer.pdf

Maturing in Agile: What Is It About?

Rafaela Mantovani Fontana1,2, Sheila Reinehr1, and Andreia Malucelli1

1 Pontif́ıcia Universidade Católica do Paraná (PUCPR)
1155 Imaculada Conceição st, Curitiba, PR, Brazil

2 Universidade Federal do Paraná (UFPR)
1225 Dr. Alcides Vieira Arcoverde st, Curitiba, PR, Brazil

rafaela.fontana@ufpr.br, sheila.reinehr@pucpr.br, malu@ppgia.pucpr.br

Abstract. Maturity in agile software development is a subject still in
definition. Although a number of models have been proposed, they usu-
ally adapt agile practices to CMMI-DEV requirements or differ among
authors. The objective of this study was to identify how agile practition-
ers define a road map to maturity. We conducted a survey with Brazilian
agilists and analyzed data using statistical Chi-square method. Our find-
ings suggest that practitioners’ opinion is that a prescribed model to agile
maturity would not be useful – we propose, then, an initial guide for ma-
turity. This guide defines some essential practices, but space should be
left for teams to do the job as they please.

Keywords: maturity, agile software development, software process im-
provement.

1 Introduction

Maturity in agile software development has been discussed in literature under
two main approaches. On the one hand, adopters of traditional software process
improvement methods combine agile methods with prescriptive process definition
and control, as defined by Capability Maturity Model Integration – Development
(CMMI-DEV) ([26], [4], [6], [9], [16], [11], [32], [20]) or ISO/IEC 15504 ([38]).
On the other hand, agilists define models to get mature by other means than
increasing processes control: the focus is on keeping agile practices and agile
values ([24], [30], [27], [25]).

The issue with the first approach is that higher maturity levels hampers keep-
ing agility – the detailed processes coding and controlling naturally slows down
the pacing ([26], [20]). The second approach does not shift the focus of agile
methods, sustaining agility. The issue here, however, is that models are still ini-
tial ([7]), few approaches have been scientifically tested ([28]) and there are some
evidences that agile practitioners do not realize benefits in having prescriptive
maturity models ([30], [28], [17]).

As agile community still lacks a clear definition on how a team could get
mature with agile methods, we conducted this study to identify how practi-
tioners define the road map to maturity in agile software development. This

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 94–109, 2014.
c© Springer International Publishing Switzerland 2014

Maturing in Agile: What Is It About? 95

research was based on a survey in an agile conference in Brazil and data were
statistically analyzed. The findings interest practitioners and researchers as they
complement current agile maturity models and go further suggesting new issues
to be addressed.

2 Related Work

A number of maturity and adoption models for agile methods have been proposed
in the last years. Apart from the initiatives to adapt agile methods to fit CMMI-
DEV assessment requirements ([26], [4], [6], [9], [16], [11], [32], [20]), the agile
maturity models focus on developing agile values and practices by means of
stages or levels.

The Packlick’s empirical model describes a goal oriented approach with 5
levels to reach maturity ([24]). Nottonson and DeLong model, developed based
on the experience of a single company, is based on 3 steps of agile adoption
([23]). More structured approaches have been proposed by Sidky and colleagues
([30]), Qumer and Henderson-Sellers ([27]) and Patel and Ramachandran ([25]).

Sidky and colleagues ([30]) propose a model where each level comprises a
number of practices that address principles from the agile manifesto. Agile adop-
tion is done on a four-stage process: 1) identify discontinuing factors; 2) project
level assessment; 3) organizational assessment; and 4) reconciliation. The matu-
rity levels are, from lowest to highest, the “Collaborative”, where the focus is
on communication and collaboration between stakeholders; the “Evolutionary”,
where the focus is on continuous delivery of software; the “Effective”, where the
focus is on adopting engineering practices; the “Adaptive”, where the focus is
on responding to change; and “Encompassing”, where the focus is on sustaining
agility.

The model presented by Qumer and Henderson-Sellers ([27]) is part of a frame-
work (Agile Software Solution Framework) that allows measuring agility and
integrating it to governance. The maturity levels are 1) Agile Infancy, character-
ized by speed, flexibility and responsiveness; 2) Agile Initial, which is commu-
nication oriented; 3) Agile Realization, which focus on executable artifacts; 4)
Agile Value, when the team is people oriented; 5) Agile Smart, when the focus is
on learning; and 6) Agile Progress, characterized by lean production and keeping
agile.

The structure proposed by Patel and Ramachandran ([25]) is similar to CMMI-
DEV model as maturity is gained through the implementation of key process
areas. The maturity levels are five, starting with the “Initial”, when environ-
ment is unstable. Next, comes the “Explored”, focused on project planning and
requirements; the third is “Defined”, where the team works on customer satis-
faction and improvements in communication; then the “Improved” level, imple-
menting risk management; and, last, “Sustained”, which focus is on customer
and developer satisfaction and collecting metrics.

Beyond these, other purposes are available from industry practice, but not
scientifically tested yet ([28]) and the standard for a maturity model in agile

96 R.M. Fontana, S. Reinehr, and A. Malucelli

software development is still on the way ([7]). What should be realized is that
agile community has been trying to build a concept for maturity that leaves aside
the increasing process definition and control stated by the traditional CMMI-
DEV.

Other approaches to measure agility have also been proposed, not specifically
related to maturity gaining. These approaches intent to measure how agile a team
is ([19], [35]), to evaluate agility comparatively ([36]), to relate agile practices
to project success ([1]), to define practices to assess maturity ([7]), to assess the
adequacy of an agile method ([31]), or to identify if agile practices match the
organization strategy ([17]).

To build a theoretical basis for this research, we consolidated the practices
suggested by these studies using mind mapping and grouped them according
to Software Engineering Body of Knowledge (SWEBOK) areas ([2]). This was
done using a mind mapping tool: we created a map grouping the practices by
nodes that identified their author. Then, with the help of the tool, we iteratively
reviewed the practices and dragged them to new nodes that grouped them ac-
cording to SWEBOK areas. Identifying each author with a particular color, we
kept the reference to the source. Some agile practices did not fit any area and
were classified as “Customer” and “Environment”. Table 2 presents the resulting
group of practices for each area.

Table 1. Agile practices related to the items in the survey

Area Practices Survey Statement

Software
Requirements

Product Backlog, Minimal big
requirements and design up front,
Evolutionary Requirements, Story
formation, Requirements, Technical
design, Emergence, Level of detail,
Communication focus, Light
requirements, Traditional analysis,
Metaphor

Focus on agile
requirements

Software Design Simple Design, Architecture and
configuration, Architecture modeling

Focus on software
architecture

Software Construction Collective code ownership, Build
process, Refactoring, Pair
programming, Code standards,
Database practice, Continuous
Integration

Focus on agile coding

Software
Configuration
Management

Software Configuration Management,
Source code management

Software Testing Automated Unit Tests, Customer
Acceptance Tests, Test driven
development, Test Metrics

Focus on agile testing

Maturing in Agile: What Is It About? 97

Software Engineering
Management /
Software Project
Planning

Planning Game, Planning levels,
When do we plan, Timeboxes,
Iteration Length, Iterative and
incremental development, Short
Releases, Continuous Delivery, Agile
Project Estimation, Planning for
critical variables, Sources of dates and
estimates

Focus on agile
planning

Software Engineering
Management /
Review and
Evaluation

Sustainable Pace, Daily Progress
Tracking meetings, Retrospective
meetings, Iteration progress tracking
and reporting

Focus on agile project
monitoring

Software Engineering
Tools and Methods

Response to stress, Focus,
Communication, Team learning,
Collaboration, Simplicity, Management
style, Shared responsibility, Just in
Time, Self-Organizing Teams,
Continuous Feedback, Agile
Documentation, Appropriate
distribution of expertise

Focus on agile values
on team

Software Quality Revision and light tests, Traditional
quality assurance, Code analysis and
inspection, Agile quality assurance,
Inspection Frequency

Focus on agile quality
assurance

Environment Infrastructure, People, Geographical
distribution, Organization distribution,
Organizational complexity, Regulatory
compliance, Physical setup reflecting
agile philosophy, Team composition,
Team member location, Title and
salary alignment, Domain complexity,
Technical complexity, Enterprise
discipline

Focus on defining an
agile physical
environment

Customer Communication Customer
involvement, Responsiveness to
business, Client-driven iterations,
Onsite Customer

Focus on involved
customer

Software Engineering
Process

Process / governance, Assurance /
governance

Focus on metrics,
Focus on defining
processes, Focus on
controlling processes

98 R.M. Fontana, S. Reinehr, and A. Malucelli

The consolidated list presented in Table 1 reports how agility has been as-
sessed in literature. It allows to securely build a set of activities performed by
an agile team and, for that reason, they provided the basis to the questionnaire
used in this study to identify a road map to maturity in agile methods. Thus,
the third column shows how they were presented to practitioners analysis, as
explained in the next section.

3 Research Design

We conducted a survey with Brazilian agile practitioners during the Agile Trends
2013 event in São Paulo, Brazil. The purpose was to quickly inquire event par-
ticipants about their opinion on how would be a road map for an agile team
to get mature. We used a printed questionnaire that occupied half a page for
simplicity and agility on answering.

The set of practices used by different authors to assess agility was translated
to empirical domain ([15]) and grouped in issues where an agile team could em-
phasize work to develop maturity. For example, “Software Requirements” has
practices for eliciting agile requirements, thus, we called them “Focus on agile re-
quirements”.“Software Design” has agile design practices, so we grouped them in
“Focus on agile architecture”, and the remaining were classified as shown in Ta-
ble 1. For “Software Engineering Process” area, the focus was divided separately
in metrics, defining and controlling processes, to ease respondent evaluation. For
now on, we will call each of these “focuses” simply as practices.

The resulting group of 13 practices were listed and respondents had to number
them, from 1 to 13, thinking about an incremental sequence of implementation of
practices to get mature. Respondents were free to leave practices blank (which
meant they though it was not relevant), place more than one practice at the
same numbering, or include other practices not listed. Respondents were also
asked about the usefulness of having a model to assist teams to become mature
in agile software development. There was a space to explain their responses.

We got 87 respondents, from 10 different cities in Brazil. The average experi-
ence in software development was 10 years and the average experience in agile
software development was 3.6 years. 31 respondents declared to have more than
3 years of experience in agile methods and 39 to have up to 3 years. From the
total, 70 agreed to number the practices and the other 17 questionnaires were
left blank, numbered equally or with other comments.

The first analysis was done on the question about the usefulness of an agile
maturity model and on the open space where respondents gave their opinion.
Next, for each numbered practice, we conducted three Chi-Square tests for each
practice. The first verified if the practice was considered relevant in a road map
to maturity. The second, if there was a trend for it to be implemented in the
beginning, in the middle, or in the end of the road map to maturity. And, the
third, verified if experienced (more than 3 years) and non-experienced (up to 3
years) practitioners had the same opinion on practices numbering. These tests
are described in the next subsections.

Maturing in Agile: What Is It About? 99

3.1 Relevance Test

For each practice, we verified if practitioners think it is relevant in a path to
maturity. For that, the following null hypothesis was defined:

Hypothesis 1. The probability to consider the practice relevant (to number it)
is equals to the probability to consider the practice not relevant (to leave it blank).

3.2 Implementation Sequence test

To identify if practitioners place practices in some significant sequence, or if this
sequence is not relevant, for each practice, the following null hypotheses was
tested:

Hypothesis 2. All numberings (1 to 13) have the same probability to be chosen
by respondents (there is no preference for a particular classification).

Once identified there is a numbering trend, we grouped the numbering gave
by respondents to each practice in 3 classifications:

– when numbered as 1, 2 or 3, it was classified to an essential level;
– when numbered as 4, 5, 6, 7, 8, or 9, it was classified to an intermediate

level; and
– when numbered as 10, 11, 12 or 13, it was classified to a desirable level.

For each classification (essential, intermediate or desirable), the average per-
centage of responses given to inner practices was calculated. Thus, for example,
when an specific practice was numbered by 5% of respondents as 1, by 7% of
respondents as 2 and by 10% of respondents as 3, its average percentage in es-
sential level is 7.30%. Analyzing the average percentage of each classification we
were able to realize where most respondents concentrate each practice (in the
beginning, in the middle or in the end of maturing process).

3.3 Differences between Experienced and Non-experienced
Practitioners

As respondents had different experience levels with agile methods, we tested if
non-experienced practitioners had the same opinion on numbering the practices
as experienced practitioners. Then, for each practice, the null hypothesis tested
was:

Hypothesis 3. There is the same distribution of numberings for experienced
practitioners and for non-experienced practitioners.

100 R.M. Fontana, S. Reinehr, and A. Malucelli

3.4 Threats to Validity

We chose this research approach because participants in a corporate agile event
usually have a good practical experience. When argued, they could provide their
perception on how they have seen companies improving their work with ag-
ile methods. However, it limits our conclusions to the perceived road map to
maturity in agile software development. In addition to that, although we have
included in the survey practitioners from all over the country, the small sample
size makes our findings initial and subject to future validation.

Next section presents resulting data for the usefulness of an agile maturity
model and the results for the three hypothesis tests.

4 Data Analysis

This section shows the responses analysis in three subsections. The first shows if
respondents think an agile maturity model would be useful; the second presents
individual practices analysis (results for Hypothesis 1 and 2 tests) and the third
identifies the differences between the opinion of experienced and non-experienced
practitioners (result for Hypothesis 3 test).

4.1 The Usefulness of an Agile Maturity Model

When argued if a model would be useful to help teams to get mature in agile
software development, 60 (69%) respondents answered that yes, it would be
useful; and 24 (28%) respondents said it would not be useful. Three left it blank.

From the ones that think that, yes, it would be useful, the main comments on
it is that a model would help organizations to recognize the implementation of
agile methods, to help as a guide, to define agility, and to help in the beginning
of agile adoption. Respondents also pointed out that a model limits the team,
but as a guide it would be helpful.

From the respondents that do not think it would be useful, the comments are
that maturity is too much dependent on the context, that there is not a model
that could fit all organizations. They said that a model would make processes
rigid, limiting the application of agile values, of creativity. For them, a model
would help only in the beginning of maturing process: to get mature, a team has
to experiment and learn.

4.2 The Relevant Practices to Maturity

Table 2 shows the resulting data for Hypothesis 1 and 2 considering all practi-
tioners responses.

For all responses, the test on Hypothesis 1 was refused for all practices. It
means that all of them are relevant in the road map to gain maturity. Even
though, it is important to notice the percentage of respondents that left the
practice blank, as non relevant. In general, the least associated with the essential

Maturing in Agile: What Is It About? 101

Table 2. Relevance and average percentage of responses in each classification level
(essential, intermediate or desirable), considering ALL participants. P>0.05 (practices
highlighted in gray, for Hypothesis 2 test) mean that the practice was not statistically
related to a specific level. Boldface emphasizes where highest percentage is for each
practice.

Focus on Per-
ception
of irrel-
evance

Essen-
tial

Interme-
diate

Desi-
rable

p

Agile values in team 4.30% 28.86% 1.49% 1.12% <0.001
Involved customer 8.60% 18.23% 5.21% 3.52% <0.001
Agile planning 8.60% 15.10% 8.85% 0.39% <0.001
Agile requirements 10.00%11.64% 9.79% 1.59% <0.001
Agile testing 12.90%9.84% 9.56% 3.28% 0.011
Agile coding 15.90% 9.77% 10.06% 2.59% 0.003
Defining an agile physical env. 21.40% 9.70% 7.58% 6.36% 0.503
Defining processes 31.40% 7.64% 4.86% 11.98%0.022
Agile quality assurance 17.10% 7.47% 8.33% 6.90% 0.824
Software architecture 20.30% 6.06% 11.21% 3.64% 0.005
Agile project monitoring 22.90% 5.56% 8.64% 7.87% 0.509
Metrics 28.60% 3.33% 7.67% 11.00%0.038
Controlling processes 32.90% 2.84% 5.32% 14.89%<0.001

classification, the least relevant, also. There were practices, for example, that
around 30% of respondents think they are not relevant to maturity (e. g. defining
processes and controlling processes).

On testing Hypothesis 2, the practices highlighted in gray are the ones where
p>0.05, meaning that the hypothesis of no preference for a particular classifi-
cation (essential, intermediate or desirable) is not rejected. Thus, the practices
“defining an agile environment”, “agile quality assurance” and “agile project
monitoring” could be implemented at any time, there is no specific sequence.

The practices where p<0.05 are the ones where it was possible to identify
a trend of implementation sequence. The highest percentage number for each
practice appears in boldface, placing it in an essential, intermediate or desirable
classification. Thus, according to data, in the road map to maturity, a team
should focus in (1) Agile values on team; (2) Involved customer; (3) Agile plan-
ning; (4) Agile requirements; (5) Agile testing; (6) Agile coding; (7) Software
architecture; (8) Metrics; (9) Defining processes and (10) Controlling processes.
For agile testing, we understand it is in the frontier from essential to intermediate
level as values have a difference of less than 0.5%.

A different scenario is uncovered when testing hypothesis for the experienced
practitioners responses. Table 3 shows the data. Here, when testing Hypothesis
1, some practices presented p>0.05, meaning it was not possible to reject it.
Thus, these practices may not be relevant in the road map to maturity. They
are underlined in Table 3. P values for them were 0.369 to “Defining processes”,
0.106 to “Metrics” and 0.590 to “Controlling processes”.

102 R.M. Fontana, S. Reinehr, and A. Malucelli

When tested for Hypothesis 2, experienced practitioners responses did not
reject it for more practices. The lines highlighted in gray in Table 3 are those
where it was not possible to identify a trend in numbering meaning, thus, there
is no specific sequence for implementation. These are the “Defining an agile
environment”, “Software architecture”, “Agile project monitoring” and “Agile
quality assurance”.

The other practices had numbering distributions on classification levels that
enabled the rejection of Hypothesis 2 (p<0.05), which allows the inference of an
sequence of implementation. Highest average percentage values appear in bold-
face for each practice in Table 3. From the most essential to the least essential,
the sequence of practices was (1) Agile values in team, (2) Involved customer, (3)
Agile requirements, (4) Agile coding, (5) Agile planning, and (6) Agile testing.

Table 3. Data considering EXPERIENCED participants. Underlined practices mean
they are not relevant, when tested for Hypothesis 1. P>0.05 (highlighted in gray, for
Hypothesis 2 test) mean it is not possible to place the practice in a specific level.
Boldface emphasizes highest percentage for each practice.

Focus on Per-
ception
of irrel-
evance

Essen-
tial

Interme-
diate

Desi-
rable

p

Agile values in team 0.00% 31.18% 0.54% 0.81% <0.001
Involved customer 9.70% 20.24% 4.76% 2.68% <0.001
Agile requirements 11.80%16.67% 8.33% 0.00% <0.001
Agile coding 23.30%14.49% 9.42% 0.00% 0.003
Agile planning 9.70% 14.29% 9.52% 0.00% 0.001
Defining an agile physical env. 29.00%12.12% 7.58% 4.55% 0.244
Agile testing 19.40%12.00%10.67% 0.00% 0.004
Software architecture 30.00%11.11% 8.73% 3.57% 0.224
Defining processes 41.90% 9.26% 3.70% 12.50% 0.102
Agile project monitoring 29.00% 9.09% 8.33% 5.68% 0.704
Agile quality assurance 19.40% 6.67% 10.67% 4.00% 0.165
Metrics 35.50% 6.67% 7.50% 8.75% 0.903
Controlling processes 45.20% 5.88% 3.92% 14.71% 0.040

Filtering responses from practitioners with up to 3 years of experience in ag-
ile software development, for Hypothesis 1, all practices were rejected, meaning
they are all relevant to non-experienced practitioners. For Hypothesis 2, Table 4
shows in gray the practices where p>0.05, meaning that, for these, it is not pos-
sible to infer a sequence of implementation. They could be implemented at any
time. They were “Agile testing”, “Defining an agile environment”, “Agile quality
assurance”, “Agile coding”, “Defining process” and “Agile project monitoring”.

For the practices where Hypothesis 2 test resulted in p<0.05, there is a possi-
bility to infer the sequence, from the most essential, to intermediate and, then, de-
sirable practices. The highest average percentages for each practice is highlighted
with boldface in Table 4 and indicate when practices should be implemented to

Maturing in Agile: What Is It About? 103

Table 4. Data for NON-EXPERIENCED practitioners. P>0.05 (highlighted in gray,
for Hypothesis 2 test) mean the practice cannot be related to a specific level. Boldface
emphasizes the highest percentage for each practice.

Focus on Per-
ception
of irrel-
evance

Essen-
tial

Interme-
diate

Desi-
rable

p

Agile values in team 7.70% 26.85% 2.31% 1.39% <0.001
Involved customer 7.70% 16.67% 5.56% 4.17% 0.001
Agile planning 7.70% 15.74% 8.33% 0.69% <0.001
Agile testing 7.70% 8.33% 8.80% 5.56% 0.534
Defining an agile physical env. 15.40% 8.08% 7.58% 7.58% 0.987
Agile quality assurance 15.40% 8.08% 6.57% 9.09% 0.711
Agile requirements 8.30% 7.07% 11.11% 3.03% 0.034
Agile coding 10.30% 6.67% 10.48% 4.29% 0.112
Defining processes 23.10% 6.67% 5.56% 11.67% 0.161
Agile project monitoring 17.90% 3.13% 8.85% 9.38% 0.182
Software architecture 12.80% 2.94% 12.75% 3.68% 0.002
Metrics 23.10% 1.11% 7.78% 12.50%0.013
Controlling processes 23.10% 1.11% 6.11% 15.00%0.001

gain maturity. The implementation sequence, for non-experienced, would be (1)
Agile values in team, (2) Involved customer, (3) Agile planning, (4) Agile require-
ments, (5) Software architecture; (6) Metrics and (7) Controlling processes.

There was an open space on questionnaire for respondents to mention other
practices they found relevant for agile maturity. Most practitioners have men-
tioned specific agile values (as adapting to changes, continuous delivery, focus on
people, team work, customer in the team), which were already part of the given
13 practices. But, it is important to mention two other practices that were cited
by more than one practitioner: the focus on learning and the focus on delivering
value to business.

4.3 The Differences between Practitioners Opinion

There were differences on the responses of experienced and non-experienced prac-
titioners. Table 5 shows these practices where the test to Hypothesis 3 resulted in
p<0.05, meaning that practitioners disagreed on the implementation sequence.

The “Agile requirements”, for experienced practitioners should be imple-
mented in essential (50%) or intermediate levels (50%). For non-experienced,
majority placed it in intermediate level (66.7%), then came essential level (21.2%)
and, some considered implementing it at desirable level (12.1%).

For the practice “Software architecture”, experienced practitioners placed it
among the three levels: essential (33.3%), intermediate (52.4%) and desirable
(14.3%). The non-experienced placed it mostly on intermediate level (76.5%),
then on desirable (14.7%) and a few on essential (8.8%).

104 R.M. Fontana, S. Reinehr, and A. Malucelli

Table 5. Practices where opinion diverged among experienced and non-experienced
practitioners (p<0.05)

Focus on p
Agile requirements 0.017
Software architecture 0.029
Agile coding 0.020
Agile testing 0.025

Practitioners also disagreed on the implementation of agile coding practices.
Among experienced, 43.5% placed it as essential, 56.5% as intermediate and non
(0%) as desirable. Among non-experienced, a different scenario: 20% on essential,
62.9% on intermediate and 17.1% on desirable.

For the “Agile testing”, 36% of experienced practitioners placed it as essential,
while 25% of non-experienced did the same. As intermediate, 64% of experienced
placed as intermediate, while 52.8% of non-experienced. And no experienced
practitioner said it is desirable (0%), while 22.2% of non-experienced said so.

For the other 9 practices, as p>0.05, it is argued that experienced and non-
experienced agree on the placement of practices among essential, intermediate
and desirable classifications.

5 Discussion

We found that the opinion of practitioners is that maturing in agile is not
about following a predefined and detailed path to maturity. Firstly, as a rel-
evant amount of practitioners pointed out that an agile maturity model is not
useful because organizations are too different in context, we propose that there
is a need for a guide to maturity, and not for a model. Second, we still can iden-
tify some essential practices that may provide the basis to maturity, but space
should be left for teams to do the job as they please.

On respect to the usefulness of a model, studies on traditional software process
improvement endeavors report that small companies usually do not accomplish
the benefits ([34]). Actually, on day-to-day basis, people focus on having the
job done ([3]), and codified processes tend to be abandoned to stabilize in a
“minimum process” ([12]). Organizational management literature shows that
companies that work in high velocity markets and need to be fast – as agile
software development teams – cannot work with detailed codified process. Rules
have to be simple to enable people to create novelty, to innovate ([14]). When
teams are recognized as complex adaptive systems ([33]) it is understood that
the behavior is emergent – the self-organization – and trials to command and
control overcome its potential ([22]). For agile teams, the trend to tailor methods
according to context is already established ([29], [5], [10], [12], [18], [8]) and it
suggests that agile practitioners prefer to do the job as their context demands,
with no commitment to predefined and detailed processes or rules.

Maturing in Agile: What Is It About? 105

On respect to the road map to maturity, our findings suggest that agile meth-
ods cannot focus on traditional CMMI-DEV increasing process control and def-
inition – experienced practitioners do not even think it is important to agile
maturity. Based mainly on experienced practitioners opinion, we could identify
a group of practices that should be implemented as a basis (e.g. agile values,
involved customer, agile planning and agile requirements), others to be imple-
mented as intermediate (e.g. agile testing and agile coding) and some that could
be implemented at any time (e. g. software architecture, agile physical environ-
ment, agile quality assurance and agile project monitoring).

These results corroborate with findings from the extensive Brazilian study
from Melo and colleagues ([37]), which have realized that agile teams with 3 to
5 years of experience focus on planning practices and more experienced teams
(more than 5 years) focus on practices related to coding and testing. According
to their study, as experience grows, more agile practices are adopted. And, in-
terestingly, they have reported that experienced companies sometimes abandon
some planning practices, like estimation techniques, which is another evidence
of tailoring in agile methods.

We found evidence that there is a group of essential practices and it is impor-
tant to implement them before the remaining to create an essential foundation
to agile maturity. Although organizations have their particular way to improve,
there are a group of practices, the so-called, “best practices” that need to be im-
plemented ([14]) to provide the basis to the emergence of the context-specific ma-
turity. Experienced practitioners actually agree on these essential best practices
and non-experienced practitioners still do not realize them exactly the same way.

The process-related practices – metrics, defining processes and controlling
processes – were mainly classified as desirable on our survey. For experienced
practitioners, they were not directly related to agile maturity. As we recognize
the importance of having a software process, even not being the main focus,
we believe they are optional to gain maturity in agile software development.
After all essential and intermediate practices are established, metrics, process
definition and control could be placed to improve this agile basis, and not to
overcome it. Based on these outcomes, Fig. 1 proposes an initial guide to agile
software development maturity.

Fig. 1. An initial guide to agile software development maturity

106 R.M. Fontana, S. Reinehr, and A. Malucelli

The main contribution of this study is that experienced practitioners find
that maturity in agile software development should be built over agile values,
and, for that, exact codification of the road map is probably not possible. It
raises the important issue on how assessments could be performed without this
codification.

Organizational maturity has been mainly expressed as the adherence to a
structured process, but other perspectives have also been purposed, as the em-
phasis on people and the emphasis on learning ([21]). The different perspectives
for assessing maturity point out that this assessment may be more subjective
than we are used to ([21]).

Our purpose to address this issue is following the clues of some studies that
have already been proposing the evaluation or description of software processes
based on how efficient it is to reach objectives ([24], [18],[17]). This goals-based
approach would leave space for teams to do the job as they please. Recent studies
from Sidky and colleagues ([30]) and Kettunen ([17]) support this approach
reporting exactly this need to describe – and not prescribe – the road map to
maturity.

The findings of this study go beyond current studies that have been imple-
menting agile and CMMI-DEV simultaneously. These initiatives build maturity
over traditional processes definition and control. We are consonant to some cur-
rent agile maturity models, in the sense that maturity has to be built over agile
values, but we complement them in the sense that there is evidence that agile
practitioners do not believe in a prescriptive road map to get mature.

6 Conclusions

We conducted a survey with agile practitioners to find out how would be a
road map to mature in agile software development. Our findings show that agile
practitioners disagree with the need for a maturity model because the way teams
implement agility is too context-dependent. The purpose, then, is to have a guide
to maturity. This guide points somewhat predefined sequence of practices, but
there are also practices that could be implemented at any time and some that
are recognized as optional.

This study was made exclusively with Brazilian practitioners quickly inquired
during an event, and, thus, the results are based on practitioners report, and
not on real projects observation. For this reason, the proposed guide intends to
be initial.

We want to argue on the probable impossibility of predefining this path to
maturity and to instigate some research on how to develop maturity leaving
space to emergency of behaviors. Researchers have already recognized that agile
methods have revolutionized software engineering ([13]) and, to keep it, maturity
needs also to be rethought in some more subjective ways ([21]) to allow agile
teams to get mature without leaving its values aside.

Maturing in Agile: What Is It About? 107

This work was part of an exploratory stage of a PhD thesis that now intends
to deepen this guide definition and to find out the mechanisms teams apply to
gain this context-specific agile maturity.

Acknowledgments. We are thankful to Agile Trends 2013 organization com-
mittee, in special to Dairton Bassi and Prof. Dr. Tiago Silva da Silva, who
supported the application of the survey during the event.

References

1. Abbas, N., Gravell, A.M., Wills, G.B.: Using Factor Analysis to Generate Clusters
of Agile Practices – A guide for agile process improvement. In: Agile Conference
(2010)

2. Abran, A., Moore, J.W.: SWEBOK - guide to the software engineering body of
knowledge. IEEE CS Professional Practices Committee (2004)

3. Adolph, S., Krutchen, P., Hall, W.: Reconciling perspectives: A grounded theory
of how people manage the process of software development. J. Syst. Softw. 85,
1269–1286 (2012)

4. Anderson, D.J.: Stretching Agile to fit CMMI Level 3 the story of creating MSF
for CMMI Process Improvement at Microsoft Corporation. In: Proceedings of the
Agile Conference, ADC 2005 (2005)

5. Armbrust, O., Rombach, D.: The right process for each context: objective evi-
dence needed. In: ICSSP 2011: Proceedings of the 2011 International Conference
on Software and Systems Process, pp. 237–241 (2011)

6. Baker, S.W.: Formalizing Agility, Part 2: How an Agile Organization Embraced
the CMMI. In: Proceedings of the AGILE 2006 Conference (2006)

7. Buglione, L.: Light Maturity Models (LMM): an Agile application. In: Profes 2011:
Proceedings of the 12th International Conference on Product Focused Software
Development and Process Improvement (2011)

8. Bustard, D., Wilkie, G., Greer, D.: The Maturation of Agile Software Development
Principles and Practice: Observations on Successive Industrial Studies in 2010 and
2012. In: 20th Annual IEEE International Conference and Workshops on the En-
gineering of Computer Based Systems, ECBS (2013), doi:10.1109/ECBS.2013.11

9. Caffery, F.M., Pikkarainen, M., Richardson, I.: AHAA Agile, Hybrid Assessment
Method for Automotive, Safety Critical SMEs. In: ICSE 2008: Proceedings of the
30th International Conference on Software Engineering (2008)

10. de Cesare, S., Lycett, M., Macredie, R.D., Patel, C., Paul, R.: Examining Percep-
tions of Agility in Software Development Practice. Commun. ACM 53 (2010)

11. Cohan, S., Glazer, H.: An Agile Development Teams Quest for CMMI Maturity
Level 5. In: Agile Conference (2009)

12. Coleman, G., O’Connor, R.: Investigating software process in practice: A grounded
theory perspective. J. Syst. Softw. 81, 772–784 (2008)

13. Dingsöyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodolo-
gies: Towards explaining agile software development. J. Syst. Softw. 85, 1213–1221
(2012)

108 R.M. Fontana, S. Reinehr, and A. Malucelli

14. Eisenhardt, K.M., Martin, J.A.: Dynamic Capabilities: What are they? Strat.
Mgmt. J. 21, 1105–1121 (2000)

15. Forza, C.: Survey research in operations management: a process-based perspective.
Int. J. Oper. Prod. Manag. 22(2), 152–194 (2002)

16. Jakobsen, C.R., Johnson, K.A.: Mature Agile with a Twist of CMMI. In: Agile
Conference (2008), doi:10.1109/Agile.2008.10

17. Kettunen, P.: Systematizing Software Development Agility: Towards an Enterprise
Capability Improvement Framework. Journal of Enterprise Transformation 2(2),
81–104 (2012)

18. Kirk, D., Tempero, E.: A lightweight framework for describing software practices.
J. Syst. Softw. 85, 582–595 (2012)

19. Layman, L., Williams, L., Cunningham, L.: Motivations and Measurements in an
Agile Case Study. In: Proceedings of the 2004 Workshop on Quantitative Tech-
niques for Software Agile Process, pp. 14–24 (2004)

20. Lukasiewicz, K., Miler, J.: Improving agility and discipline of software develop-
ment with the Scrum and CMMI. IET Software 6, 416–422 (2012), doi:10.1049/iet-
sen.2011.0193

21. Maier, A.M., Moutrie, J., Clarkson, J.: Assessing Organizational Capabilities: Re-
viewing and Guiding the Development of Maturity Grids. IEEE Transactions on
Engineering Management 59 (2012)

22. McDaniel Jr., R.R.: Management Strategies for Complex Adaptive Systems. Per-
formance Improvement Quarterly 20(2), 21–42 (2007)

23. Nottonson, K., DeLong, K.: Crawl, Walk, Run: 4 Years of Agile Adoption at Baby-
Center.com. In: Agile 2008 Conference (2008)

24. Packlick, J.: The Agility Maturity Map a Goal Oriented Approach to Agile Im-
provement. In: Agile 2007 (2007)

25. Patel, C., Ramachandran, M.: Agile Maturity Model (AMM): A Software Process
Improvement framework for Agile Software Development Practices. Int. J. Softw.
Eng. 2 (2009)

26. Paulk, M.: Extreme Programming from a CMM Perspective. IEEE Software (2001)

27. Qumer, A., Henderson-Sellers, B.: A framework to support the evaluation, adoption
and improvement of agile methods in practice. J. Syst. Softw. 81, 1899–1919 (2008)

28. Schweigert, T., Nevalainen, R., Vohwinkel, D., Korsaa, M., Biro, M.: Agile Maturity
Model: Oxymoron or the Next Level of Understanding. In: Mas, A., Mesquida, A.,
Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2012. CCIS, vol. 290, pp.
289–294. Springer, Heidelberg (2012)

29. Sheffield, J., Lemétayer, J.: Factor associated with the software development agility
of successful projects. Int. J. Proj. Manag. (2012),
doi: 10.1016/j.ijproman.2012.09.011

30. Sidky, A., Arthur, J., Bohner, S.: A disciplined approach to adopting agile practices:
the agile adoption framework. Innovations Syst. Softw. Eng. 3, 203–216 (2007),
doi:10.1007/s11334-007-0026-z

31. Soundararajan, S., Arthur, J.D., Balci, O.: A Methodology for Assessing Agile
Software Development Methods. In: Agile Conference (2012)

32. Spoelstra, W., Iacob, M., Van Sinderen, M.: Software Reuse in Agile Development
Organizations A Conceptual Management Tool. In: SAC 2011: Proceedings of the
2011 ACM Symposium on Applied Computing (2011)

33. Stacey, R.: Complexity and Creativity in Organizations. Berret-Koehler Publishers,
San Francisco (1996)

Maturing in Agile: What Is It About? 109

34. Staples, M., Niazi, M., Jeffery, R., Abrahams, A., Byatt, P., Murphy, R.: An ex-
ploratory study of why organizations do not adopt CMMI. J. Syst. Softw. 80,
883–895 (2007)

35. Williams, L., Krebs, W., Layman, L., Antón, A.: Toward a Framework for Eval-
uating Extreme Programming. In: 8th International Conference on Empirical As-
sessment in Software Engineering (EASE 2004), pp. 11–20 (2004)

36. Williams, L., Rubin, K., Cohn, M.: Driving Process Improvement Via Comparative
Agility Assessment. In: Agile Conference (2010)

37. Melo, C.O., Santos, V., Katayama, E., Corbucci, H., Prikladnicki, R., Goldman, A.,
Kon, F.: The evolution of agile software development in Brazil. J. Braz. Comput.
Soc. 19, 523–552 (2013), doi:10.1007/s13173-013-0114-x

38. Lami, G., Falcini, F.: Is ISO/IEC 15504 Applicable to Agile Methods? In: Abra-
hamsson, P., Marchesi, M., Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 130–135.
Springer, Heidelberg (2009)

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 110–125, 2014.
© Springer International Publishing Switzerland 2014

Why We Need a Granularity Concept for User Stories

Olga Liskin, Raphael Pham, Stephan Kiesling, and Kurt Schneider

Software Engineering Group, Leibniz Universität Hannover, Germany
{olga.liskin,raphael.pham,stephan.kiesling,

kurt.schneider}@inf.uni-hannover.de

Abstract. User stories are a widespread instrument for representing
requirements. They describe small user-oriented parts of the system and guide
the daily work of developers. Often however, user stories are too coarse, so that
misunderstandings or dependencies remain unforeseeable. Granularity of user
stories needs to be investigated more, but at the same time is a hard-to-grasp
concept.

This paper investigates Expected Implementation Duration (EID) of a user
story as a characteristic of granularity. We want to find out, whether it is
suitable as a quality aspect and can help software teams improve their user
stories.

We have conducted a study with software engineering practitioners. There,
many user stories had a relatively high EID of four or more days. Many
developers state to have experienced certain problems to occur more often with
such coarse user stories. Our findings emphasize the importance to reflect on
granularity when working with user stories.

Keywords: user stories, user requirements, requirements quality.

1 Introduction

Communication plays a crucial role in software development [3]. Collaboration of a
group of developers demands for an effective way of exchanging information and
coordination. Communication is especially important with regard to software
requirements. Inadequate communication between team members can lead to team
members misunderstanding core requirements [6] and subsequently to the
development of undesired software - thus jeopardizing the project’s success.

User stories, as one form of requirements, have the potential to divide a complex
system into small user oriented pieces, which can be implemented independently. At
the same time, such user stories have a great influence on the daily work of all
involved team members. The quality of user stories impacts communication and
coordination in a project and therefore plays an important role. When trying to
understand, how user stories impact the daily work of a software team, their
granularity is an interesting aspect.

The granularity of a user story can heavily impact its quality: A user story with
otherwise good quality features (such as a clear priority and attached acceptance tests)

 Why We Need a Granularity Concept for User Stories 111

could still be disastrously underestimated by developers, if it is too coarsely grained.
The reason behind this is that a flawed granularity indicates a number of problems
with a user story. A coarsely grained user story could be formulated unclearly and
pose difficulties for estimating the associated effort. This can also point to inter-team
and customer-related communication gaps.

Granularity of a user story has many facets. It can be understood in terms of:

• Clarity/vagueness. If a user story leaves out a lot of information, it is
written vaguely.

• Concreteness/abstraction. A user story can describe the desired
functionality as an abstract concept or already sketch a concrete
manifestation of this concept.

• Scope. This represents the scope of the system functionality that is
described or meant by the information given in a user story. A user story
that implies a lot of system functionality (and according implementation
work) would have a large scope.

While all three aspects are important for the quality of a user story, we focus on

granularity in the sense of scope size. In order to change the scope of a user story, the
desired functionality must be changed. For example, in order to reduce
implementation work, some of the desired functionality must be removed or the story
must be split into smaller ones. In contrast, the clarity or abstractness of a user story is
varied by providing different information about the desired functionality that the
customer has in mind, while the functionality remains the same.

The three aspects are orthogonal. For example, a user story can be clear and have a
high scope size (imply a lot of implementation work), while another story can have
the same scope size, but be vague. However, there is a chance that reducing the scope
of a user story by splitting it into multiple smaller stories can improve its clarity and
help make it more concrete. This aspect needs further research though.

In practice, some scope-related aspects like effort or complexity of user stories are
estimated in order to characterize user stories [5]. For this, abstract scales, like t-shirt
sizes or Fibonacci numbers are used, so that, again, individual values mean different
things to different teams.

Therefore, we see the need for a more tangible and comparable concept in order to
be able to investigate granularity of user stories. We define the Expected
Implementation Duration (EID) of a user story as a viable concept for quantifying the
scope of a user story. Then, we demonstrate why it is a good quality aspect for user
stories and why it should be taken into account when working with user stories.

We picked user stories for our study because we think that differences in the
understandings of what a user story is are smaller for user stories than for other
requirements concepts. Further, user stories are known to take a relatively small
amount of time to be implemented [4]. However, we think that our findings are
applicable to other requirements concepts as well.

The paper is structured as follows: In the next section, we present related literature.
Section 3 shows the research questions we have based our study upon. In Section 4

112 O. Liskin et al.

the study design is sketched, followed by the study results in Section 5. Section 6
discusses Threats to Validity. We conclude with a discussion and outlook.

2 Related Work

In agile software development, user stories and story cards are a widely practiced
form of documenting requirements. The activity of estimating user stories has been in
the focus of recent literature [5]. Miranda et al. [10] focus on improving these
estimation strategies as well as improving the estimations. Haugen, Mahniç et al. and
Tamrakar et al. [7][9][13] examine whether introduction of planning poker improves
the team’s ability to estimate user stories. Furthermore, Imaz and Benyon [8] describe
a way to enhance traceability between user stories as pre-requirements and semi-
formal requirements such as use cases. Cohn [5] specifies how to split up user stories.
However, Patel and Ramachandran [11] describe the lack of clear guidelines or rules
for aspects of a good user story and motivate research in this area.

According to Cohn [5], the ideal days measurement is as good as story points – as
long as the organizational overhead is ignored. He proposes to estimate user stories in
ideal days and emphasizes to not rely on elapsed days as a measurement. EID is
related to Cohn’s notion of ideal days. This study is a first step to understand how this
measure is perceived and handled by practitioners.

Wake [14] suggests with INVEST1 six quality criteria for a good user story. One of
these says that a user story should be small. With our work, we try to further
concretize this criterion. First, EID is a possible means to determine whether a user
story is small. Further, it is not known yet, whether it is easy to measure and act on
story size in practice. Second, so far publications only explain theoretically why a
small story is good. We want to substantiate this with real data and experiences from
practice.

Many studies have been conducted in the field of agile requirements engineering in
order to understand the practitioners’ perspectives. Cao and Ramesh [2] revealed agile
RE practices in an empirical study. Bjarnason et al. [1] examine overscoping and
therewith bring up a topic that is also related to planning with requirements. With a
user study on user story implementation duration we try to complement these works
to help understand how agile requirements are handled in industry.

3 Expected Implementation Duration as a Quality Aspect
for User Stories

In our context, the term granularity represents the scope of the system functionality
that is described or meant by the information given in a user story. Expected
implementation duration is a way of quantifying the scope size of a user story.

1 Independent, Negotiable, Valuable, Estimable, Small, Testable.

 Why We Need a Granularity Concept for User Stories 113

By Expected Implementation Duration we mean the estimated time (in days) that a
developer or pair will need to implement a user story. Implementation of a user story
includes coding as well as all other tasks that the developer performs to deliver a user
story, such as designing or testing. Like Cohn’s concept of ideal days [5], EID ignores
tasks that are not related to a user story but are done in-between its implementation.

Expected implementation duration has the potential to add new value to the
characterization of user stories. This can generally improve the development
timetable. If the estimation of implementation time for a user story exceeds a certain
threshold (for example, one week or more), chances are high that it becomes more
inaccurate. Humans are better at grasping events when they are in the near future.
When thinking about events that cover a long period of time, it is easy to forget an
event or to misestimate one of these events. If implementation time takes a week or
more, a seemingly simple user story with low complexity can still be underestimated
in terms of when it will actually be finished. Likewise, a user story that is described in
much detail, might still be missing information if its expected implementation
duration is too long.

However, the expected implementation duration is still an estimation. And, as with
other metrics, estimated values can be wrong. In this context, we are not aiming at
hourly precision. Literature suggests that a user story should not take more than one
or two days to be implemented [12]. The reality of implementation durations of user
stories often looks different. In the study presented by this paper, 50% of the
participants have stated that 30% or more of their user stories require more than four
days to be implemented. We want to raise awareness to this quality aspect, so that in
the future, user stories are shrunk to an implementation time of no more than one day.

In order to show that Expected Implementation Duration is a valid aspect, we
propose the following research questions:

RQ1: Is Expected Implementation Duration easy to measure?
A quality aspect is only applicable, if the user is able to measure it and is able to
obtain meaningful values. We investigate if practitioners are able to express the EID
of a user story. Furthermore, we inquired how practitioners measure other aspects of a
user story, such as its complexity.

RQ2: Which actual Expected Implementation Duration values do user stories in
current software projects have?
In order to understand how teams handle their user stories with respect to Expected
Implementation Duration, it is also meaningful to get a picture of current EID values
in real projects. It is especially interesting to see, how big differences are among
projects as well as among user stories within the same project.

RQ3: Is it possible to control Expected Implementation Duration for user stories
by splitting them?
Obtaining the current EID characteristics for a user story is beneficial. However, users
should also be able to influence it. We investigate what opinion practitioners have of
splitting user stories and at what size user stories should be split. We are interested in

114 O. Liskin et al.

experiences they have made when splitting user stories and which problems arise
when doing so.

RQ4: Is Expected Implementation Duration a relevant factor for user stories?
We want to clarify whether the EID is worth investigating by investigating its
relevance. If other quality aspects, such as a clear priority, are more important for a
workable user story than its EID, developers will not need to focus on it.

We found that EID or related aspects are perceived as easy to assess. The

participants used different strategies for this, but had problems with under-
/overestimation (RQ1, Section 5.1). The actual EID values stated in the study vary
among most projects. User stories that take four days or longer have a relatively high
portion of 32% (RQ2, Section 5.2). The participants believed that it is possible to split
user stories in many cases, especially when they take longer than four days. However,
we found various challenges with splitting user stories (RQ3, Section 5.3). Further,
we found that the scope size of a user story controls many relevant aspects such as
communication, planning, and detection of dependencies (RQ4, Section 5.4).

4 Survey

To gain a first understanding of how practitioners handle user requirements with
regard to its “size”, we conducted a two-staged study using two separate online
questionnaires. Our target population were practitioners with experience in industrial
software projects. The GitHub Archive2 records any user activity (forking, pull
requesting, commenting) on the social coding site GitHub3. We queried the GitHub
Archive for users who had specified a company name (non-empty string) in their
GitHub profile and had been active on GitHub at the beginning of September 2013.

In a preliminary study, we invited 400 GitHub users to participate in a
questionnaire and received 68 answers (response rate 17%). We encouraged the user
to share experiences from an industrial project, but let her answer for a private project
if needed. This first questionnaire covered three topics: Which form did the
participant’s requirements take (user stories, use cases, UML models, plain text), what
factors made a good requirement and what challenges did the participant have when
handling these requirements. This first round of broad questions and answers enabled
us to focus our efforts on more specific challenges: Challenges regarding inter-team
communication seemed to be less prominent than others and were subsequently not
investigated further. Furthermore, the number of different forms of requirements
documentation (user stories, use cases, UML models, etc.) left us with only a vague
understanding of how the practitioners handled their requirements in particular.

Hence, for the main questionnaire in mid-September 2013, we concretely focused
on user stories. We invited 600 GitHub users to partake in this second questionnaire
and received 72 answers (12% answer rate). This questionnaire enquired more deeply

2 http://www.githubarchive.org/
3 http://github.com

how the questionees judged
estimation would work as a

5 Results

Of the 72 answers from the
no experience with user sto
the final set of answers sinc
using user stories. Of the r
experiences with user storie
not able to estimate the ex
important foundation of ou
the final set of answers as
participant did not state her
projects. Eventually, we c
participants from private p
project sizes for this popula
many projects they have wo
of the participants’ general

5.1 Measurability of Ex

Can developers estimate t
We asked the participants, w
user story into considerat
participants) stated that tim
2), while 9% (5) saw no c
story cards, but did not com
whether or not they were a
15% (8) of the participants

Why We Need a Granularity Concept for User Stories

d the implementation time of a user story and whether
a well-defined concept (see Section Results).

e main questionnaire, 27 (38%) participants stated to h
ories. The answers of these participants were removed fr
ce the invitation directly addressed users with experience
remaining 45, 33 (73%) participants enlisted to report
es in industrial software projects. However, 4 of those w
xpected implementation time of a user story. As this is
ur questions, we removed these participants’ answers fr
s well. 11 participants reported on private projects. O
r project’s origin – we counted her answers towards priv
counted 41 participants from industrial projects and
projects, resulting in a total of 53 usable answers. T
ation are shown in Fig.1. We asked the participants, in h
orked with user stories. This gave us a better understand
experience with user stories.

Fig. 1. Population characterization

xpected Implementation Duration (RQ 1)

the expected time for implementation?
whether or not they take the estimated time to implemen
tion when rating the effort of a user story. 49%

me estimation was a factor for rating a user story (see F
connection. Seven participants generally did not rate th
mment further on the matter. We also asked the question
able to estimate a story card’s expected time to implem
 reported to be able do so and that they always work w

115

this

have
rom
e in
t on

were
s an
rom
One
vate

12
The
how
ding

nt a
(26
Fig.
heir
nees
ent.

with

116 O. Liskin et al.

user stories that were est
Additionally, 55% (29) of
did not do this on a daily ba

Fig. 2. Consider

Methods for estimating th
We inquired further and as
the expected implementatio
3 from private projects) rep
guessing freely and not em
admitted to often underesti
There isn't any science beh
we don't even track the am
whether or not we were acc
time it takes to complete
participants used elaborate
abstract story points to t
experienced developers (“B
can then directly map this
team.”). Participants report
which involved time estim
developers tried to gain a
estimating the implement
experience and based their
would be compared to a
baseline. Participants tried
would refuse user stories
estimate implementation ti
Foreign technologies have
numerous unknowns. Such
phase.”). User story estima

imated according to the expected implementation ti
participants claimed to be able to do so, if necessary,

asis. 3 participants did not answer this question.

ration of time to implement when rating a user story

he expected implementation time of a user story
sked the developers to specify their strategy for estimat
on time of a user story. 6 participants (3 from industry
ported to use only a vague review or team discussion or j

mploying any clear methodology. Interestingly, one of th
imate the implementation time (“We basically just gu

hind the amount of time expected to complete a story,
mount of hours we actually work on it so that we can ga
curate. I believe we drastically underestimate the amoun
e a story, though.”). On the other hand, two indu
e strategies such as the Planning Poker game and mapp
time values. However, this seemed to work best w
Based on our understanding of the value of a story point
s to a time estimate. This *only* works with a seaso
ed more generally on estimation strategies for user stor

mation. These started by a clarification phase in which
a thorough understanding of the given user story. W
tation time, developers often relied on their gene
estimates on similar, existing systems. Often, user sto

another, using the simplest user story as a well-kno
to eliminate unknown technologies and unknown risks
that did not comply their requirements (“… I refuse

ime if they involve technologies that are foreign to
no place in implementation user stories as they introd

h issues have to be figured out before the implementat
ation sometimes involved skill assessment of the curr

me.
but

ting
and
just

hem
ess.
and

auge
nt of
stry

ping
with
t we
ned

ries,
the

When
eral
ries
own
and
e to
me.

duce
tion
rent

 Why We Need a Granularity Concept for User Stories 117

team. Developers would also try to analyze the user story’s impact on existing
components of the system, its test suite or legacy systems (“Breakdown of tasks,
evaluation of the code quality of the legacy (any existing code is legacy in this sense)
code that the new functionality needs to integrate with”). Eventually, most developers
tried to split user stories up. Some participants used abstract measures (“as-simple-as-
possible”), others had found hard time values to work best (“16 hours”, “around a
day”, “Make sure the story is a good size (a week of work max IMO)”).

Problems when estimating the expected implementation time
We enquired what kind of problems were experienced, when estimating the time of
implementation for a user story. Firstly, we wanted to know, whether over- or
underestimation was a problem and proposed each an over- and underestimation
option. Secondly, we intended to gain further insights into other problems and added a
third, user-editable option. All three choices could apply in any combination
[checkboxes]. Of the final data set of 53 usable participants, none had left the answer
to this question blank. Seven participants added their own answer, which we will
explain further below, and we counted these seven answers against over- or
underestimation. Table 1 shows the distribution of answers in detail. 12 participants
found over- and underestimation to be problematic and we counted these answers
both towards over- and underestimation. In Table 1, we see that underestimation of
implementation time seems to be more problematic for developers than constant
overestimation. One could argue that overestimation does not seem as problematic to
a developer – she has finished her work before deadline after all – and, thus,
overestimation is underrepresented here. However, no such comment or indication
was given by our questionees.

Two participants deemed the expected implementation time to be unreliable,
especially when handling unknown technologies (“When utilizing unfamiliar
technologies I've noticed that story estimates are mostly inaccurate.”). Two other
participants found user stories to inaccurately state user intentions and thus being hard
to estimate time wise (“The user stories in general rarely reflect what the actual user
will use the software for causing unforeseen changes during the scrumlike iterative
feedback process”). Another two participants seemed to have no problems with a little
over- or underestimation and also linked this to the complexity or novelty of the user
story (“Sometimes over, sometimes under, but for simplest or repetitive stories the
estimates are quite precise.”).

Table 1. Number of participants who have experienced over- and underestimation. 'Com.'
stands for 'Comments'.

ov
er

-
es

ti
m

at
io

n

 underestimation
yes no

yes 12 5 17
no 17 Com.: 7
 29

118 O. Liskin et al.

5.2 Characterization o
(RQ2)

We asked the participants w
work with typically have. W
5 days, and more than one
points to reflect the distribu

34 participants have ans
points. Figure 3 depicts ho
options in total. 43% of the
last only one day or les
aggregated). Thus, 57% of
More specifically, 13% eve

Fig. 3 also distinguishe
assigned) and private proje
seen. In both groups, short
user stories. However, in p
into the “a few hours”-categ
to 16%. On the other hand,
(26%) than in private proje
week are more prominent in

Fig. 3. D

In Table 2, we aggregate
possible durations. For exam
about user stories with an E
1 week. Further, we diffe
percent points that is high
aggregated groups. From th
(53%) have assigned 30 or
days to complete. This mea

19%

16%

30%

0% 20

All
(3400 points)

industrial
(2500 points)

private
(900 points)

of Expected Implementation Duration of User Stor

which expected implementation durations user stories t
We presented 5 options – a few hours, one day, 1-3 days
week - and asked the participants to distribute 100 perc

ution of the different durations for their user stories.
swered this question. In total, they have distributed 34
ow the 3400 points were distributed to the different E
e total quantity of points was assigned to user stories t
ss (answers for option “one day” and “a few hou
all rated user stories in this study take longer than one d

en take longer than one week.
es the distribution of points for industrial (2500 po
ects (900 points assigned). Here, some peculiarities can
t under-one-day user stories make up for about half of
private projects, a greater part (30%) of that amount f
gory. In industry, these hours-long user stories only add
one-day user stories are more present in industrial proje
cts (18%). Then again, user stories that take more than
n private projects (21% vs. 11%).

Distribution of different user story durations

ed the distributed points. First, we aggregated the differ
mple, the column “more than 4 days” contains informat
EID of 4-5 days and user stories with an EID of more t
erentiated, how many users have allocated a number
her than a certain threshold (left column) to each of
his table, we can see that more than half of the responde
r more of 100 points to user stories that take more tha
ans, for more than half of the respondents about one third

24%

26%

18%

25%

27%

17%

19%

20%

14%

13%

11%

21%

0% 40% 60% 80% 100%

a few hours

1 day

1-3 days

4-5 days

more than
week

ries

they
s, 4-
cent

400
EID
that
urs”
day.

oints
n be

the
falls
d up
ects
one

rent
tion
than
r of
the

ents
an 4
d of

s

1

their user stories take more
stated that about two thirds

Table 2. Percent of the questi
according sizes

Allocated
Points

One da
more

>=0
>=10
>=20
>=30
>=40
>=50
>=60
>=70
>=80
>=90

5.3 Controlling Expect

Experience in splitting use
Of the 39 people who answ
up a user story before while

Possibility to split user sto
We proposed different dur
days, 4 to 5 days) for one u
that they could split such a
long user stories most part
Four participants even said
parts. For a user story whic
that it should always be sp
that a user story of 4-5 days

Fig. 4. Could a user story with
smaller stories? (n= 39)

Why We Need a Granularity Concept for User Stories

e than 4 days. Furthermore, 58% of the respondents h
(60%) of their user stories last more than one day.

ionees who have allocated x or more points to user stories of

ay or more than 1
day

more than 4
days

more than 1
week

100 100 100 100
97,06 97,06 88,24 58,82
97,06 94,12 70,59 29,41
97,06 85,29 52,94 11,76
97,06 73,53 38,24 11,76
97,06 67,65 29,41 5,88
88,24 58,82 17,65 2,94
85,29 35,29 8,82 2,94
67,65 26,47 2,94 2,94

50 11,76 0 0

ted Implementation Duration (RQ3)

er stories
wered this part of the questionnaire, 90% stated to have s
e 10% had no experience with splitting a user story.

ories
rations for expected implementation time (1 day, 1 t
user story and asked the participants whether they thou
a user story. The results are depicted in Fig. 4. For 1-d
ticipants stated that such a story can be split sometim

d that such a user story always should be split into sma
ch is expected to take 4-5 days, most participants thou

plit into smaller user stories. Only three participants sta
s could only sometimes be split into smaller pieces.

h the given expected implementation duration (EID) be split

119

have

f the

0
2

6
6
8
4
4
4
0

split

to 3
ught
day-
mes.
aller
ught
ated

into

120 O. Liskin et al.

Challenges with splitting user stories
We asked the participants to describe problems they have encountered, when trying to
split a user story. In total, 14 participants have mentioned problems. The most
prominent problem was regarding dependencies. Six of the participants mentioned
dependencies in their replies. Four respondents noted that user stories were sometimes
lacking in clarity and therefore additional communication with the customer was
required for splitting these user stories. This is an interesting aspect: The process of
splitting a user story might reveal a user story that needs clarification. Further, one
participant mentioned that a user story which gets too small, is not very valuable
without other user stories.

5.4 Relevance of Expected Implementation Duration (RQ4)

Problems occurring when granularity is wrong
We wanted to know whether a long or a short EID caused specific problems. In total,
24 users commented to having experienced problems with stories that had a long EID,
while seven users declined. Four participants found hidden additional effort needs
problematic: This was the case, when requirements were unclear and additional effort
was needed for clarification. Also, longer user stories were associated with a higher
probability of encountering problems. Four participants mentioned problems brought
by change, both for customer-initiated change or inter-team driven change.

Three users suggested different strategies to avoid these problems a priori. For
example, the user story with the longest EID would be given the lowest priority by the
customer or removed altogether.

When asked whether they have encountered problems with user stories with a short
EID, 13 participants affirmed while 20 participants stated to not have had any
problems. The 13 comments about problems with short user stories all came from
industrial projects. Again, one person stated hidden additional effort as a problem,
referring to a case when important functionality had simply been forgotten to specify.
The most dominant problem, brought up by five participants, was the difficulty to
stick to the estimation. In their experience, small user stories had been under- as well
as overestimated. This was caused, for example, by wrong expectations of third party
libraries.

While changes were stated as a problem with long user stories, nobody had brought
up this problem for short user stories.

Relevance of EID for Communication
We believe that an increase in EID can lead to a less sketched-out user story and that
this increase has effects on the communication between customer and developer. We
tried to find out if participants have experienced effects of insufficient communication
when handling a user story with a high EID. We presented a selection of
communication problems to the participants and inquired whether they have
experienced any of these effects or what they thought about them. Fig. 5 shows the
suggested problems and the respective distributions among the participants.

Noticeably, most parti
handling big user stories: e
(“one has to change more d
causing unnecessary develo
was expected”). Also, bigg
cycle. A significant numbe
feedback for a user story
this story”).

This finding is very imp
for EID when handling us
customer are the basis of a
guideline for estimating the
of misjudging the EID con
have to deal with user storie
effects follow: the crucial
change requests rises.

Additionally, some pra
exactly what the customer w
customer’s requirements”).
participants also disagreed o

Fig. 5. Degrees of ag

Relevance of EID for Tan
The other aspect we wan
tangibility of a user story. T
implementing a user story,
risks. User stories that are

Why We Need a Granularity Concept for User Stories

cipants have experienced clarification problems w
either the number of post-development changes increa

details afterwards”) or details were not clearly sketched o
opment (“more probable that one develops more than w
ger user stories influence the customer-developer feedb
er of users reported to have to wait longer for gather

y (“it takes longer until one can gather feedback ab

portant and underlines the important role of a valid conc
ser stories: short and effective feedback cycles with
any serious agile software development. Without a use
e implementation duration correctly, the developer is at r
nsiderably. In this situation, the developer will ultimat
es that take longer than expected – and the aforementio
customer feedback cycle is disturbed and the number

ctitioners have experienced that it is harder to deli
wanted when a user story is large (“it is harder to meet
 This statement, however, had the least affirmation. M
or had experienced the contrary.

greement on suggested communication problems (n=41)

gibility for Implementation
nted to investigate with respect to EID relevance is
The better a developer can picture all necessary actions
the more likely it is that she will notice dependencies

e too coarse can carry the risk to grow unexpectedly,

121

when
ased
out,

what
back
ring
bout

cept
the

eful
risk
tely
ned
r of

iver
the
any

the
 for
and
for

122 O. Liskin et al.

example due to underestim
participants have experienc
presented a selection of id
inquired about the participa
the respective experiences o

The two most prominent
duration estimations and e
necessary (“our estimation
true more often” and “I can
in order to implement it”)
confirm the statements fro
stories are indeed perceive
that they could better estim
(“I can estimate better with

Again, these findings un
practitioners assessed an EI
be precise more often and
story’s implementation dura
that will take longer and cre

The claim that a smaller
unexpectedly in time/comp
either disagreed with this st
topic of this section, some p
that sometimes a user story
technical details or third par

Fig. 6. Degr

mated dependencies. In this part, we describe whether
ced a better tangibility with smaller user stories. Again,
deas - benefits that smaller user stories can have -
ants’ experiences. Fig. 6 shows the suggested benefits
of the participants.
t statements are that smaller user stories allow more prec
estimations about which actions within the code will
of how long a user story will take is more precise i.e. i

n estimate better how many code parts I will have to to
). Here, more than 65% of the participants were able
om their own experience. This indicates that smaller u
d to be more tangible. Further, the participants confirm

mate which dependencies a user story has when it is sma
how many other

nderline the importance of a useful concept for EID: W
ID for a user story to be small, this estimation turned ou

d thus enabling the developer to correctly judge this u
ation. This way, the developer can try to avoid user sto
eate risks of communication (see previous paragraph).
r user story will less often grow (“it will less often gr
plexity”) was objected the most. 30% of the participa
tatement or even have experienced the contrary. In the f
participants had stated problems of this kind. They repor
y was just small because the developers had underestima
rty libraries.

rees of agreement on suggested benefits (n=41)

our
 we
and
and

cise
l be
it is

ouch
e to
user
med
aller

When
ut to
user
ries

row
ants
first
rted
ated

 Why We Need a Granularity Concept for User Stories 123

6 Threats to Validity

This study is a first step into recognizing the granularity of user stories. Our study
resulted in 41 usable practitioner answers and 12 answers from private developers
(results of the second, more focused questionnaire). Although we presented a fair
amount of data points, we refrained from a more sophisticated statistical analysis.
However, our study focuses on practitioner’s opinions and real experiences and
mostly deals with qualitative data. In this sense our study presents a trend analysis.

We are aware that the voluntary nature of our study is a threat to internal validity.
Our population sample is self-chosen: we did not offer any kind of compensation and
practitioners and private users participated voluntarily. This leaves the questionees’
motivation to participate undefined.

This study introduces a new aspect of requirements quality, the expected
implementation duration. Questioning the practitioner online and not in a personal
interview could potentially lead to a different understanding of concepts like user
story and user requirements. We tried to mitigate this threat to construct validity by
explaining our understanding of such concepts in the questionnaire where necessary.
Furthermore, our dataset and questionees’ comments do not indicate an underlying
misunderstanding.

Our study design only distinguishes between private and industrial users of user
stories, regardless of the actual implementation of such user stories practiced or the
requirements process. This is a threat to both construct validity and external validity.
However, this study should serve as a first understanding of the EID-related issues of
user stories and requirements. We believe that the presented concept of EID can be
applied to most of the currently practiced variants of user stories. A follow-up study
could analyze this more thoroughly.

We used a non-empty string in the company-tag of GitHub profiles to find
practitioners in the sense of developers that develop software for a living. However, a
non-empty company name string does not automatically ensure that this person
currently works in a software company. We mitigated this threat to construct validity
by specifically asking the participant to state whether she will report experiences
about an industrial or private project.

7 Discussion and Outlook

We have presented Expected Implementation Duration as a concept to grasp the
granularity of user stories. In a study with 72 participants we have seen that EID is a
measurable and influenceable concept. A peek into real projects reveals that user story
sizes (in the sense of EID) vary widely between different projects but also among
single projects. More than half of the participants have stated to work in projects
where more than 30% of user stories take four days or more. At the same time the
practitioners state certain problems they have with large as well as small user stories.

We have seen that working with small user stories cannot prevent a project from
unexpected surprises. Small user stories still can grow unexpectedly in time or

124 O. Liskin et al.

complexity. Nevertheless, keeping an eye on EID can help developers get more
manageable requirements. Concretely, smaller user stories are perceived as more
tangible and predictable, they help keeping feedback-cycles short, and they entail less
post-development changes.

We do not present a perfect duration for user stories. The perfect duration probably
does not exist, since different story granularities are well-suited for different tasks.
However, this paper emphasizes the importance of EID as an aspect of user stories.

Using EID as a metric could influence the estimations. Developers could make
smaller estimations because they want to look better and have smaller stories. We do
not want to encourage developers to kid themselves. We also do not see the necessity
for this as long as there are alternative ways to influence EID, such as splitting a user
story. However, there are risks and it would be interesting to see the effects of
introducing EID as a quality metric for user stories in a real project.

After revealing requirements granularity as an important factor in requirements
engineering, we see many interesting directions for more research. The developers’
views on user story granularity and its effects should be complemented by the
customers’ or product owners’ perspectives. It is especially likely that having very
small user stories, and therefore many of them, can be a burden for product owners. In
this case, having different views with different granularities on the same set of user
requirements can be an interesting solution.

Further, we believe that the concept of EID can also be transferred to other types of
requirements. Here, as we have seen, measuring the EID of a user requirement
introduces interesting challenges, because there are so many different understandings
of what a user requirement is.

Many participants of our first questionnaire have stated to split user requirements
into more technical work packages and then actually work on these. The relation
between a user requirement and a work package would also be an interesting aspect
arising from our study.

References

1. Bjarnason, E., Wnuk, K., Regnell, B.: Are you biting off more than you can chew? A case
study on causes and effects of overscoping in large-scale software engineering.
Information & Software Technology 54(10), 1107–1124 (2012)

2. Cao, L., Ramesh, B.: Agile requirements engineering practices: An empirical study. IEEE
Software 25, 60–67 (2008)

3. Cockburn, A., Highsmith, J.: Agile software development, the people factor. IEEE
Computer 34(11), 131–133 (2001)

4. Cohn, M.: User Stories Applied: For Agile Software Development. Prentice Hall (2004)
5. Cohn, M.: Agile Estimating and Planning. Pearson Education (2005)
6. Coughlan, J., Macredie, R.D.: Effective communication in requirements elicitation: A

comparison of methodologies. Requirements Engineering 7(2), 47–60 (2002)
7. Haugen, N.C.: An empirical study of using planning poker for user story estimation. In:

Agile Conference 2006, pp. 9–34 (2006)
8. Imaz, M., Benyon, D.: How stories capture interaction. In: INTERACT 1999, IFIP TC.13,

pp. 321–328. IOS Press (1999)

 Why We Need a Granularity Concept for User Stories 125

9. Mahniç, V., Hovelja, T.: On using planning poker for estimating user stories. Journal of
Systems and Software 85(9), 2086–2095 (2012)

10. Miranda, E., Bourque, P., Abran, A.: Sizing user stories using paired comparisons.
Information and Software Technology 51(9), 1327–1337 (2009)

11. Patel, C., Ramachandran, M.: Story card based agile software development. International
Journal of Hybrid Information Technology 2(2), 125–140 (2009)

12. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall (2002)
13. Tamrakar, R., Jørgensen, M.: Does the use of Fibonacci numbers in Planning Poker affect

effort estimates? In: Proceedings of the 16th International Conference on Evaluation &
Assessment in Software Engineering (EASE 2012), pp. 228–232 (2012)

14. Wake, W.C.: INVEST in Good Stories, and SMART Tasks. XP123 (2003), http://
xp123.com/articles/invest-in-good-stories-and-smart-tasks/

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 126–142, 2014.
© Springer International Publishing Switzerland 2014

Self-organized Learning in Software Factory:
Experiences and Lessons Learned

Xiaofeng Wang1, Ilaria Lunesu2, Juha Rikkila1,
Martina Matta2, and Pekka Abrahamsson1

1 Free University of Bozen-Bolzano, Bolzano, Italy
{xiaofeng.wang,juha.rikkila,pekka.abrahamsson}@unibz.it

2 University of Cagliari, Cagliari, Italy
{ilaria.lunesu,martina.matta}@diee.unica.it

Abstract. Self-organization is one of the key agile principles. How it can be
applied in an educational context is not explored extensively. In this paper we
draw on relevant educational literature as the theoretical basis to investigate the
self-organized learning that happens in Software Factory, an experimental,
shared educational platform between several universities. Based on a
comparative case study of two Software Factories we identified a set of themes
that can potentially explain self-organization from the learning viewpoint.
These themes include self-decided learning goals and personalized learning
outcomes, peer teaching through active collaboration, diversity is the key and
the personal attitude towards the learning matters. We also reported how
students perceive the necessary infrastructure and the role of traditional
lecturing and teachers in the Software Factory context. The study contributes to
a better offering of learning experience in software engineering education by
making most out of the self-organized learning approach.

Keywords: Self-organization, self-organized learning, Software Factory,
agile approaches, software engineering education, diversity.

1 Introduction

One serious challenge faced by software engineering education is that software
engineering cannot be taught exclusively in the classroom, because it is a competence
and not just a body of knowledge [1]. To address the challenge, many educators resort
to agile approaches as one key source of inspiration to improve software engineering
education, and have introduced an increasing percentage of practice and hands-on
experience in software engineering courses (e.g. [2], [3], [4]). However, traditional
teaching/lecturing always plays a key part of the game.

What happens if we were to give up this element and leave the learning completely
to the students themselves? Self-organization is one of the key agile principles and
has been actively advocated for software development teams. Is it equally applicable
in an educational context where students rather than teachers are made primarily

 Self-organized Learning in Software Factory: Experiences and Lessons Learned 127

responsible to meet their educational needs? In fact self-organized learning has been
discussed in the education literature for different educational purposes and in various
settings [5]. However, it is seldom discussed in the context of software engineering
education.

Software Factory [6] is a shared educational platform for universities to hold
courses where students are engaged in a real-world project developing software
jointly or separately. Software Factory relies on self-organization as its primary way
of organizing the work. Earlier studies in the Software Factory context [7], [8] have
shown how self-organization in software development teams is enabled. However,
self-organization has not been examined from the learning viewpoint.

In this paper we report the case study findings of two Software Factory courses
held in two different universities, to better understand the self-organized learning
approach in software engineering education. We have conducted 27 interviews with
the students from both software factories. The analysis of interview data and other
related case materials reveal that self-organized learning can be an effective approach
for learning if certain pre-conditions and enabling factors are in place. Consequently
the role of traditional teaching will be bound to change if we want to continue
meeting the needs of the software industry.

The rest of the paper is organized as follows. In the next section we review a set of
studies focusing on the agile approaches in software engineering education and the
education literature on self-organized learning. Section 3 contains the research
approach that explains how we conducted the case study and analysed the collected
data, and provides the key information on the two Software Factory courses. The
empirical findings are presented in Section 4. The following section carries
the findings further and discusses about their implications. The last section concludes
the paper with the outlook of future work.

2 Literature Review

2.1 Agile Approaches for Software Engineering Education

Since the start of agile software movement marked by the Agile Manifesto in 2001,
different agile approaches have been introduced in software engineering education.
Monett [4] argues that agile approaches play the double roles, both as subjects and
means of education. Not only the agile theory and practice are taught and experienced
in class, also the teaching itself, and consequently the learning, should be adapted to
changing requirements and priorities in each edition of the course. In this study we
focus on agile approaches as means to deliver learning in software engineering
education. Since we set out to understand the self-organized learning approach, we
arrange the related work in the order of the increased focus on the active role of
students in their own learning experience and decreased reliance on external teaching.

Several early studies were focused on applying agile approaches to improve
teaching techniques. Bergin et al. [9] investigate the tools and techniques of XP that
can be used to enhance teaching processes. They claim that many of the agile ideas
are more broadly applicable. The emphasis on individuals and interactions can

128 X. Wang et al.

provide students with an incentive to reflect on and adjust the process, rather than
blindly following it. Alfonso and Botia [2] propose an iterative and agile process
model in a software engineering undergraduate course. The proposed model serves
both as an educational technique (for teachers) and as a subject of learning (for
students). Drawn upon the analogy of project management, the model prescribes the
sequence of tasks for teaching the topics of any discipline. Wondering how to find
what are the requirements for a robust methodology for teaching software
engineering, Mann and Smith [3] have attempted for several years to expose students
to “real world” situations, while maintaining a positive and constructive learning
environment. An agile framework that incorporates agile development approaches in
a structured manner is proposed for teaching software engineering. Werner et al. [10]
guide their students through the process of developing software using an industrial
modification of Scrum, which is called Three-Sprint Scrum. They also ask students to
periodically reflect on the use of the processes.

Other studies emphasize more on practice-based, hands-on learning experience as a
necessary complement of teaching. Student projects or lab exercises are the forms
commonly used to acquire it. Reichlmayr [11] offers a vision that the educational
objective of a program should be to provide a solid foundation for a student's life-long
professional growth. Based on this vision, a team-based project is run in the
introductory software engineering course that attempts to address the challenges using
agile development techniques. Layman et al. [12] also contend that the overall goal of
a software engineering course is to teach students practical techniques and tools that
they will encounter in professional software development. Their teaching approach is
focused on tools and techniques rather than lecture-based concepts, which involves a
weekly lab component that takes the place of the third lecture. Rico and Sayani [13]
introduce hands-on experience into their software engineering course utilizing agile
methods. They ask institutional researchers who had been experimenting with agile
methods and publishing their results to adapt agile methods and design the lesson plan
for the capstone course. The students can use the agile method of their choice, such as
Scrum, Extreme Programming, etc. Each student team will develop a general-purpose
business-to-consumer (B2C) website for buying and selling digital media products.
Mahnic [14] describes a capstone course in which students are asked to work as
Scrum teams, responsible for the implementation of a set of user stories. The study
shows the achievement of teaching goals and provides empirical evaluation of
students' progress in estimation and planning skills. With a focus on teaching human
interaction and work-life balance, Schroeder and Klarl [15] allow the students to
experience a full agile product development cycle in the risk-free academic
environment. They take the approach of teaching by example and specifically rely on
agile processes and the state-of-the-art tooling support implemented in the lab course.
All students have taken part in a programming lab that focused on programming
activities.

It is worth noting that Software Factory term has been used by Chao and Randles
[16], which is different from Software Factory introduced in this paper. The authors
introduce a teaching and learning strategy that integrates meaningful community
service with instruction and reflection to enrich the learning experience, teach

 Self-organized Learning in Software Factory: Experiences and Lessons Learned 129

students civic responsibility, and strengthen communities. The Software Factory
provides the service-learning experience through a controlled classroom and
laboratory environment with instruction on various software engineering tools and
methodologies that are commonplace in industry. The students are exposed to the
real-world problems associated with software engineering and gain valuable
experiences in situations that they will be faced in industry.

In summary, despite the abundant literature and different proposals of applying
agile approaches to software engineering courses, self-organized learning as a
potentially effective education approach has received far less attention in this context.

2.2 Self-organized Learning in Education

Broadly speaking, almost all teaching-learning interactions can be classified as one of
the following types, as suggested by Mitra [17]:

1) Those where the teacher or external resource determines the learning content
and methodology,

2) Those where the teacher or external resource determines the learning, in
consultation with the learners, and

3) Those where the learners determine their own learning outcomes and how
they will go about it.

Further, it is argued that any curriculum can be divided into three parts in order for
learners to acquire the necessary competence [18]:

1) A part that needs a human teacher who is conversant with the subject matter
and teaching methodology,

2) A part that needs an assistant who is somewhat more knowledgeable than the
learner, and

3) A part that needs resources and a peer group alone.

The distribution of curricula into the three parts would depend on the nature of the
subject. For the third type of education/learning course, a model called MIE
(Minimally Invasive Education) is proposed [17], [19]. It involves exposing the
learner to the learning environment without any instruction. The concept of MIE has
been evolved into SOLE (Self-Organized Learning Environment) over the recent
years [20], [21].

A list of benefits that students can gain from a self-organized learning approach
include having fun, increased motivation to learn about more subjects and ideas,
taking ownership of their own learning experience, developing habits to become a
lifelong learner, improved creativity and problem-solving abilities, and strengthened
interpersonal skills [22].

However, self-organized learning has its limits [21]. In unsupervised environments,
different students do what they like doing and therefore tend to excel in their
particular areas of interest. Not everybody learns something about everything. Some
individuals may benefit; others may not. With the presence of a friendly mediator

130 X. Wang et al.

who provides supervision but exercises minimal intervention (encouraging rather than
teaching), these issues are less likely to be a problem.

The experiments based on which the self-organized learning approach has been
developed were conducted with young-aged kids for the purpose of computer literacy
using Internet. Would this approach apply in other settings such as software
engineering education at the higher education level? Our study aspires to shed some
lights on the understanding of self-organized learning in this setting.

3 Research Approach

The overall research approach employed in our study is multiple-case study. Each
case is a Software Factory course. As described earlier in Introduction, Software
Factory is considered an ideal setting to study self-organized learning. We studied two
Software Factory courses, one at Free University of Bozen-Bolzano, the other at
University of Cagliari. Both sessions were held in the Spring semester of 2013. More
details are presented in Table 1.

Table 1. The profiles of the two Software Factory sessions

Software Factory Name Bolzano SF Cagliari SF

Starting date 04/03/2013 18/03/2013
Duration 11 weeks 9 weeks
Study level Undergraduate/post-

graduate
Undergraduate/post-
graduate/PhD

Credit Points 8 4 for undergraduate/post-
graduate, 8 for PhD

No. of students involved 21 9
No. of official teaching staff 2 None
No. of projects hosted 3 1
Max. Team size 14 (further divided into

smaller sub-teams)
8

Students participation No working time defined 8 hours per day, twice per
week

Apart from collecting related contextual information, such as the setups of the

factories, the projects implemented, etc., we conducted a set of 27 interviews with
almost all the students who participated in the courses. The students were individually
interviewed and all the interviews were audio recorded and transcribed verbatim later
on. The data analysis followed the within-case analysis and cross-case comparison
steps that are suggested in [23]. We coded the interview data following an open
coding process, which allowed the codes to emerge from the data.

Before the case study findings are reported, the detailed contextual information on
the two Software Factory courses is provided in the following sub-sections.

 Self-organized Learning in Software Factory: Experiences and Lessons Learned 131

3.1 Bolzano SF

The Bolzano SF course started in early March 2013 and lasted 11 weeks. This is the
second Software Factory session held in the university. The course is an 8 credit-point
course offered to both post-graduate and undergraduate students. One teacher and one
teaching assistant were officially assigned to the course.

In total 21 students have participated. 15 of them are master students, 13 from the
Computer Science Faculty, one from the management discipline and another having
design background. Six are undergraduate students, among them three are Computer
Science students and another three are from the Art and Design Faculty. These
students have highly diversified cultural backgrounds. The nationalities include
Italian, Croatian, German, Polish, Indian, American, Vietnamese and Nigerian.

Three projects have been developed at and owned by Bolzano SF: Memoree,
Glasshub and RaspberryPi Cloud. Memoree was based on the business idea of a local
entrepreneur who needed to develop a prototype to prove his idea. The intended
software solution packed personal photos, videos and audios into a memory package
and shared it among friends. The entrepreneur played the customer role for the
Memoree project and made himself available all through the course. The Glasshub
project was to build a knowledge and information-sharing portal for the Software
Factory network, and the two teaching staff played the role of the customer. The third
project, RaspberryPi Cloud, was a hardware/software project which built a computing
cluster based on hundreds of low-cost RaspberryPi mini computers. The purpose was
to provide cost effective cloud infrastructure to the university students and faculty
members for educational purposes. The technology and programming skills required
by each project were different from one to another. The students with computer
science and management background chose to work on one of the three projects
according to their own interests, and the design students were rotated among the
projects.

Two introductory lectures were held in the beginning of the course, one
introducing the nature of Software Factory, the other on agile methods and practices.
There was no teaching scheduled, only the weekly demos of the project progresses.
There was no obligation for the students to be present at the factory except for the
demo sessions. The students met with their team members at their own time, either in
or outside the factory.

The course ended with a public event where the students presented their projects to
the university and local communities. The students were evaluated jointly by the
customers, the team members and the course instructors based on the results of the
projects and their performance during the course.

3.2 Cagliari SF

The Cagliari SF course started on March 18th 2013 and finished on May 15th 2013.
Similarly this is the second session at University of Cagliari. The course is available
to the students at all levels of university study. It counts 4 credit points for post-
graduate and undergraduate students but 8 credit points for PhD students.

132 X. Wang et al.

There were nine students participated in the course, including three master
students, four undergraduates and two PhD students. Eight were from the Faculty of
Electronic Engineering and Computer Science and one undergraduate student from
linguistics background. Different from the students at Bolzano SF that are
international, the students at Cagliari SF are all Italians.

There were no official teachers involved in Cagliari SF. One of the PhD students
with a complete knowledge of the project and all the relevant technologies played the
role of coordinator/coach of the team.

Apart from one student who participated in the Glasshub project of Bolzano SF
remotely, the other eight students all worked on the Matchall2 project. Matchall2
created a personal communication engine based on innovative principles and
functionalities, with a web implementation and diffusion strategy. The final product
intended to provide a labeling facility (precisely a bookmarklet) that allowed one to
classify and categorize pictures and videos in a customized manner using tags. A local
entrepreneur played the role of the product owner.

No formal lectures were held at Cagliari SF. Pair programming was adopted and
pairs were freely formed. The only requirement was an expert student should pair
with a less experienced one. The students were free to choose the tasks according to
their own interests. They came to the factory twice per week to work on the project.
The working day was established as 8 hours. During a working day the students
worked in a professional manner.

At the end of the course each student was asked to produce a report on the work
they have done in the factory, and was evaluated based on it and the “passion and
devotion” each one dedicated to achieve the results.

4 Findings

When the interviewed students commented on the experience they had in their
respective Software Factories, “positive”, “interesting”, “stimulating”, “optimal” are
the words they used. The practical, real-life experience of interacting with customers
and developing software is very much appreciated, as one student in Bolzano SF who
is an exchange student from USA commented:

“If I really have to select the primary things that I benefited, I would say, a
practical environment, an actual environment for developing software,
whereas with a lot of other courses I’ve taken, even like those which were
ended ‘software engineering’ it’s really theoretical, highly theoretical, not
practically applying the skills actually building software”.

It is echoed by the comments from the Cagliari SF students. One student
commented that the Software Factory environment can be easily related to a real
office setting and provides the feeling of working in a real company.

At both Software Factories, teamwork, various technical knowledge, and the way
of managing work were the significant learning outcomes frequently mentioned by
the interviewed students.

 Self-organized Learning in Software Factory: Experiences and Lessons Learned 133

Main themes regarding self-organized learning emerged from the data analysis of
the two cases are reported in the following sub-sections.

4.1 Self-decided Learning Goals and Personalized Learning Outcome

The overall prescribed learning objectives of the Software Factory sessions were for
students to experience and learn agile software development and the way of working
in highly uncertain situations. However, what each individual student would and
could learn varied greatly. The learning goals were essentially set up by the students
themselves, as one student at Bolzano SF commented:

“The course is not like pre-defined, sort of the same ‘you take from this
course X, Y and Z’. It is really you commit to it and … [get] whatever you
could make of it”.

The students had the possibility to collaborate on real projects where they could
decide technologies, architecture and so on. Different students worked on different
projects or different parts of a project, therefore the technical knowledge and skills
they had to learn were greatly different. This huge difference made traditional
teaching difficult and inefficient and favored more a self-organized learning style.
The freedom of setting up own learning goals was also considered by the students “a
fun way” of learning. One Bolzano SF student recalled his experience of exploring a
cloud storage solution for the Memoree project:

“I thought this is really interesting, and I could do it because nobody knows
it, and let’s do it, I mean let’s take some risk, let’s take a chance”.

It is interesting to note that, even though Bolzano SF did not set the minimal effort
needed from the students, they would put significant effort voluntarily nevertheless.
Several students claimed that they worked hard on this course, as shown by the
following quote from one Bolzano SF student:

“I don’t think I spent less time on this course than what I spent on other
courses definitely, because it’s difficult. If you have a class you know it’s like
2[pm] to 4[pm] and that’s it. But this is like you can’t say you are leaving it
because work is not done”.

At Cagliari SF, even though a working day was established as 8-hour long, the
students often remained longer than required to work on the project. In general they
got into the working mode immediately when they came into the factory and worked
with passion.

Personalized learning outcomes were achieved through pursuing self-decided
learning goals. The students who did not have any working experience emphasized
that they learnt how to work in a team and the way to manage work. Less technically
competent students put more focuses on their improvement of technical knowledge
and skills. The designers who were specialized on product designs acquired
competence in user interface and web design. Experienced working students learnt
more on how to teach others and interact with people from different disciplines. The
two Software Factories allowed their students to learn by doing in a friendly and risk-
free environment.

134 X. Wang et al.

4.2 Peer Teaching through Active Collaboration

Self-organized learning does not mean self-teaching. In effect, in both Software
Factories, it took the form of peer teaching: “we have all been learning from each
other”, and “it is ‘give and take’”, as the Bolzano SF students explained.

Peer teaching happened naturally through active collaboration on projects, which
creates opportunities for one to learn certain knowledge or skills one does not have
from others who know better. One Cagliari SF student recalled that:

“Surely the fact of open space and working closely with a partner help both
to communicate and collaborate and above all to share knowledge between
us, then ultimately to improve our learning experience”.

Peer teaching through collaboration could also take away the pressure from the
students and bring a relaxing learning experience. At Cagliari SF, due to the
implementation of pair programming, less experienced or skilled students were
constantly supervised by those who are more experienced or skilled, even if just by a
little bit. The result has been positive from both the point of view of work and
learning perspective. One feels free to ask any kind of doubt or uncertainty.

Meanwhile, peer teaching has been a learning process for both involved. The
students learnt how to answer questions when being asked. They also learnt to
appreciate the difficulties faced by others that were often different from those
encountered themselves personally. As a Cagliari SF student put it eloquently:

“[Peer teaching] contributed to the growth of both. In fact the student with
no experience learned to make ‘something’. And the expert student
consolidated his ideas and learned to mentor another person, which is
anyway part of the expertise needed to acquire for his own career”.

When such peer teaching happened through active collaboration, the students
found that the Software Factory environments were “stimulating”, and it was true for
both the students who had no working experience beforehand and those who had
various working or company internship experience.

4.3 Diversity Is the Key

Diversity was one of the key factors that both Software Factory students associated
with their self-organized learning experience. Diversity had several facets in the two
Software Factory settings. The first important facet was the competence diversity.
This was especially evident at Cagliari SF. The students had very different technical
skills and knowledge. One knew well Java, HTML, Javascript, etc. Another had good
knowledge of semantic web and foreign languages. There was a student with no
experience in software development and another expert student who had skills in
PHP, Java, C scripting, VisualBasic, HTML, HTML5, CSS, Javascript, Postgresq,
and knowledge about agile methods. The consequence of competence diversity was
evident and positive. It led to active interaction and exchange of knowledge among
the students.

 Self-organized Learning in Software Factory: Experiences and Lessons Learned 135

Diverse skillset in problem solving approaches also enabled the mutual learning,
even in the case where the students had skills in the same domain and at the similar
level. For example, two Bolzano SF students worked on the Android solution for the
Memoree project. Both had strong Android knowledge and Java programming skills.
Nonetheless the learning was happening between them. As the Cagliari SF students
argued, because each person had a different method to solve problems compared with
that of others, each one could learn from others. In this way there was continuous
collaboration for finding more efficient solutions that are difficult for each single
person to find out.

Diversity in disciplines was another facet that contributed to the positive learning
experience at both Software Factories. The students at Bolzano SF came from
computer science, design and management disciplines. Similarly the students at
Cagliari SF came from engineering and linguistics backgrounds. This diversity
enlarged the pool of competences that the two factories could offer for learning. The
students learnt to look at software development through the perspectives of other
disciplines. For many of them this was the first time they were actually able to do so.
A computer science student at Bolzano SF gave an example of how he and the
designers looked at a login page differently:

“I just look at it, like ‘oh I need to create a page and add text and fields of
user name and password. They [the designers] look at it in a different way, in
the sense of ‘oh the color theme should be appropriate, we should put
customized images here and there’. It’s just different ways of thinking about
it”.

The consequence of this diversity was so positive that a working student at
Bolzano SF who has computer science background commented that he would repeat
this type of experiment of collaborating with designers in his company.

Meanwhile, the design students involved in Bolzano SF also found that to work
with computer science students allowed them to talk “with someone which has the
same objective but respecting each other in the different fields”. Similarly, the
linguistics student at Cagliari SF commented:

“I came from a linguistics background. The fact that I found myself working
with people who have completely different skills from mine was very exciting,
also from the point of view of deepening my own knowledge and improving
the work”.

Culture diversity was a facet present in Bolzano SF but not in Cagliari SF. Several
Bolzano SF students did comment on this diversity but how it influenced the self-
organized learning experience was not obvious in the Bolzano SF case.

4.4 Personal Attitude Matters

Self-organized learning may not happen even if the condition of diversity is satisfied.
The students need to be motivated to interact with each other and willing to learn
from each other. A design student at Bolzano SF was working with the Memoree

136 X. Wang et al.

team. She observed that the team was very motivated. They were using Google+
actively and looking forward to meeting up and to sharing. Based on this observation
she commented that:

“The attitude matters a lot. If people are not interested, they are not looking
forward to meet up. They just want to know what they should do. That’s all”.

The motivation should be self-generated, since “when you motivate yourself, you
learn, and encourage yourself to do it”, as explained by a Bolzano SF student. There
can be different self-motivating factors. For example, curiosity played as a self-
motivating factor for a design student at Bolzano SF. When being asked how learning
happened to him, he explained that he was driven by his curiosity to understand what
others were doing. Helping others can be another self-motivating factory, as a
Cagliari student put it: “there is happiness in helping other fellow students”.

With such positive attitudes in minds, the students would offer learning experience
to others voluntarily and proactively. When all the students were motivated, positive
learning experience was created, as a Bolzano SF student observed:

“Everybody gives its contribution and then both try to enrich the process with
their thoughts and proposals and so on… Everybody is contributing”.

4.5 Minimal Infrastructure

At Bolzano SF there are five rooms in the Faculty building dedicated to the factory,
which are connected by a long corridor. The rooms are of the similar size and none is
spacious enough to hold a team of more than seven people to work, but sufficient for
meeting purposes. The furniture in the factory is limited to large-sized tables and
chairs. White boards and flip charts are available in every room. There is no other IT
equipment apart from one desktop and attached audio/video devices that were
intended for the weekly demo. Wi-Fi connection is provided by the university. An
electronic kanban board is used to track the progress of the projects.

Similarly Cagliari SF is also equipped with minimal infrastructure. It is located in a
big room in an old palace very close to Cagliari city center. The room is bright, wide
and clean. It is equipped with independent comfortable tables and swivel chairs.
There are 4 big screens to show the code or documentation. On the wall, visible to all,
there is a white board that the team can use to explain ideas, the architecture of the
project and so on. A physical kanban board is present in the room to manage the
development process. The Internet connection, the camera and microphone for
audio/video meetings are available.

Most students from both software factories believed that the environments and the
infrastructure provided were “cool” and sufficient for the purpose of the course. Some
commented that they found the environments comfortable which put them at ease. It
seems that the minimal infrastructure provided at both software factories was not
constraining the self-organized learning from happening.

 Self-organized Learning in Software Factory: Experiences and Lessons Learned 137

4.6 The Changing Role of Teachers

There were no regular lectures scheduled in either of the Software Factory courses.
When being asked if they missed lecturing experience, almost all the students at both
factories answered with a firm “no”. Since the types of knowledge acquired at the
factories were highly practical, e.g., teamwork, technical know-hows, the students
believed that learning by doing was the only effective way, as a Cagliari SF student
argued adequately:

“In my opinion the team worked exactly because of the reciprocal
collaboration among students without any person dictating the path to
follow, and because of the fact that the students had opportunities to try by
themselves how to solve various problems and choose the most effective
solution”.

Instead of the teacher role, many students commented on the usefulness of an
expert role that could offer help and consultancy in complex and difficult situations,
without being involved in the work of the students directly. As the suggestion from a
Cagliari SF student shows:

“What helps, more than anything else, is a guide or a reference person for
students. Apart from that, the students are able to self-manage the activities.
It’s important to have a reference person who is able to bring the
development process back to the right track at the moments needed. For the
rest, give students enough freedom to learn how to manage themselves”.

In Cagliari SF, a couple of senior students played such a role, and it was highly
appreciated by the students. These senior students were considered competent and had
an overview of the problems. They were able and available to explain the problems
and provide supports when needed, even though they do not belong to any specific
project. In contrast, such a role did not exist evidently in Bolzano SF. Indeed some
students expressed the wish to have it “because sometimes it’s good to have expert to
check everything or show us better point of the direction we should go”.

If an expert role was in place, the very existence of the teacher role may be seen as
the “threat” to the other, as one Cagliari SF student suggested. Then is there still a
place for a teacher and traditional lecturing if students are self-organized to learn in a
practice-oriented course? If yes, what are the functions of a teacher?

At Bolzano SF, a couple of introductory lectures on what Software Factory was,
how the course was organized, and an introduction to agile software development
were held in the beginning of the session. Several students commented on the
usefulness of these lessons but warned that there should not have too many.

Meanwhile, the interviewed students emphasized on the importance of having
fixed, regular meetings where all the students could meet together to get feedback
from their fellow students, even if they were not working on the same project. No
fixed meetings were scheduled in Cagliari SF, and students expressed the wish of
having it, as evidenced by the following quote:

“One suggestion would be to have a meeting at least once a week to check
the situation and put together the work of each team, as each team works on

138 X. Wang et al.

a different task. The work that has been done was positive, but just a small
meeting of only 5 minutes to better integrate [would be good], even if the
level of interaction [at our Software Factory] was great”.

Instead at Bolzano SF weekly demo sessions were scheduled to show the progress
of the projects. However, since the presence at those sessions was not obligatory,
there were always students missing at each meeting. As a result the meeting was
found not so beneficial from the learning perspective as they should have been. Some
students believed that maybe it was “too flexible” for the students without obligatory
presence.

In this case the role of a teacher could be useful to ensure the presence of the
students at regular meetings or weekly demos, as suggested by the Bolzano SF
students. It was an official role and assumed a sort of “authority” for the students
from a ceremonial perspective.

5 Discussion

It can be seen from the analysis of the two Software Factory courses at two
universities that self-organized learning can be an effective way for students to
acquire knowledge and competences on software engineering topics. It is also a fun
way of learning, more interesting and exciting than the classroom-based, teaching-
dominant approaches. Students can decide themselves what their learning goals
should be and consequently what learning outcomes they could obtain. Greater
autonomy is generally associated with greater responsibility as well. In a self-
organized learning environment, making learning happen is the main responsibility of
students themselves, not of teachers whom are generally held responsible for how
well students learn in a classroom-based learning environment.

Based on our case study findings, it is worth clarifying that self-organized learning
is not the same thing as self-learning. Self-learning happens in the Software Factory
context as it does in normal classroom settings. But it is not the main form of learning
in Software Factory. The main form of learning is peer teaching through active
collaboration. Therefore in a self-organized learning environment students are not left
on their own devices to pursue their respective learning goals, no matter how different
one’s goals are from those of another person. Our study shows that a few introductory
courses early on, such as the agile lecture in Bolzano SF in the beginning, and certain
ceremonies, such as weekly demo sessions, when students can get together in an
organized manner, can facilitate self-organized learning to happen. In line with the
understanding in agile literature that self-organizing teams does not mean there is no
management but it takes a different form [24], self-organized learning does not mean
lectures or other education forms do not exist. They can happen in a self-organized
learning environment to complement the learning experience of students.

Our case study findings also suggest that self-organized learning does not happen
automatically by putting students to work together. Some basic elements and pre-
conditions have to be in place to make it happen. The two factory cases indicate that
diversity is a key driving factor that makes self-organized learning possible. Diversity

 Self-organized Learning in Software Factory: Experiences and Lessons Learned 139

has many facets, including competency diversity, diversity in cognitive abilities such
as problem solving and diversity in study disciplines. This finding can be better
understood by drawing upon the complexity studies on self-organization. According
to the complexity theory, self-organization of a system is an emergent property that
cannot be manipulated but only facilitated by diversity, interaction and
interdependence among parts [25]. Therefore, to maximize the possibility of self-
organized learning, students should have diversified competences, backgrounds and
profiles. Of course in many cases the degree of diversity is not in the control of the
educators since it is not possible to decide who can attend the courses beforehand.
Nonetheless it is important to be aware that diversity is to be preserved, not controlled
or suppressed.

Self-motivation is another factor that plays a key role in self-organized learning.
Our study reveals that intrinsic motivating factors, such as curiosity and altruism,
enable a positive and proactive attitude towards interaction and collaboration among
students, which in turn can facilitate the happening of peer teaching. Similarly,
educators may have very limited influence on self-motivation and intrinsic motivating
factors that each student may possess. Again nonetheless it is the responsibility of
educators to preserve the existence of self-motivation through building a positive
learning environment.

With regard to the roles of traditional classroom teaching and teachers, they are not
completely obsolete but minimized in a self-organized learning environment.
Ceremony keeper and environment preserver are the new functions of a teacher who
is considered an official figure of a course. However, it needs to be cautioned that the
official nature of a teacher may compromise the self-organized learning experience of
students by being a potential “threat” to more knowledgeable and senior students and
experts. Ideally the teacher is an expert in all the learning subjects of a course, which
can reduce the cost of having external experts or support to students. The key issue to
consider is how to balance the different roles concurrently and it can become an
additional challenge for the teacher. Students who have done the Software Factory
course in the past could also be hired as mentors for the future courses as employed
e.g. in University of Helsinki’s Software Factory context [8].

Finally it needs to be emphasized that self-organized learning may not be an
effective approach for every type of educational program. The Software Factory
courses are focused on practical knowledge in software engineering education,
Students work in an organization without history, established rules or routines. They
self-develop these to meet the needs of the given context. The Software Factory
approach therefore falls into the category of an educational curriculum in which
learners determine their own learning outcomes and which only needs resources and a
team of peers, as suggested by Mitra [17, 18]. Therefore, educators need to analyze
and understand better the nature of a curriculum they offer before embarking on the
self-organized learning approach. Other aspects to consider are the duration of a
course and the number of participating students. The experience in our Software
Factories show that self-organized learning can be effective for short courses of 7 to
12 weeks and the class size of 10 to 20 people. It is yet to understand better whether it
is an applicable approach to larger classes and longer courses.

140 X. Wang et al.

There are limitations in our study that can potentially threat the validity of the
findings reported in the paper. First of all we have drawn on two Software Factory
cases only. The generalizability of the findings to other Software Factory settings or
to other educational context, e.g., in non-IT disciplines, where self-organized learning
is utilized, is yet to be verified. Another limitation is that we relied on the opinions of
the students only in the study. The perspectives of other stakeholders, such as
teachers, external customers, experts, etc., were not included in the current research
design. As a result the findings reflected only the perspective of students, and may not
depict a whole and comprehensive picture of self-organized learning. Last but not
least, we have relied on the self-explanation of students regarding the effectiveness of
self-organized learning. We did not measure it using objective instruments due to the
exploratory and qualitative nature of the study. In another Software Factory setting
the learning outcomes as well as relevant factors have been studied quantitatively
[26]. The evaluation approach can be incorporated in our future study to provide more
refined and accurate understanding of self-organized learning.

6 Conclusion

Our study is one of the first ones to investigate the self-organized learning approach
in software engineering education. Drawing upon two Software Factory courses held
in two different universities and the interviews with 27 students who have participated
in the courses, we were able to provide a better understanding of the self-organized
learning phenomenon. The emerging themes include self-decided learning goals and
personalized learning outcomes, peer teaching through active collaboration, diversity
is the key and personal attitude towards learning matters. A better understanding of
the necessary infrastructure and the role of teaching and teachers in a self-organized
learning environment is also offered. The implications of the findings for practice are
discussed in the previous section.

Our study opened several avenues for future research on self-organized learning in
educational settings. Multiple perspectives on self-organized learning, including both
students, teachers and other stakeholders, will allow a more comprehensive
understanding of the phenomenon, and thus enable more grounded and holistic
reflection on traditional education versus new approaches such as self-organized
learning. Systematic evaluation of the advantages and disadvantages of the approach
is also necessary. Another potential research direction is to examine the potential
linkage and synergy between self-organized learning and other approaches
implemented in software engineering education, such as problem-based learning,
studio approach, and software internship, to derive new and better educational
approaches for the software engineering discipline.

Acknowledgments. We thank the students who participated in both Software Factory
courses in Bolzano and Cagliari, Italy. The students cordially gave us consents to
interview them and collaborated on this study. This research is supported by Regione
Autonoma della Sardegna (RAS), Regional Law No. 7-2007, project CRP-17938
LEAN 2.0.

 Self-organized Learning in Software Factory: Experiences and Lessons Learned 141

References

1. Jazayeri, M.: The education of a software engineer. In: Conference on Automated
Software Engineering, pp. 1–10 (2004)

2. Alfonso, M., Botia, A.: An iterative and agile process model for teaching software
engineering. In: 18th Conf. Softw. Eng. Educ. Train., pp. 9–16 (2005)

3. Mann, S., Smith, L.: Arriving at an agile framework for teaching software engineering. In:
Annu. Conf. Natl. Advis. Comm....., pp. 183–190 (2006)

4. Monett, D.: Agile Project-Based Teaching and Learning. world-comp.org (2013)
5. Mitra, S.: Self organising systems for mass computer literacy: Findings from the “hole in

the wall” experiments. Int. J. Dev. Issues 4, 71–81 (2005)
6. Abrahamsson, P., Kettunen, P., Fagerholm, F.: The set-up of a software engineering

research infrastructure of the 2010s. In: Proceedings of the 11th International Conference
on Product Focused Software, PROFES 2010, pp. 112–114. ACM Press, New York (2010)

7. Karhatsu, H., Ikonen, M., Kettunen, P., Fagerholm, F., Abrahamsson, P.: Building Blocks
for Self-Organizing Software Development Teams: A Framework Model and Empirical
Pilot Study. In: ICSTE 2010, pp. 1–8 (2010)

8. Fagerholm, F., Oza, N., Munch, J.: A platform for teaching applied distributed software
development: The ongoing journey of the Helsinki software factory. In: CTGDSD 2013,
pp. 1–5 (2013)

9. Bergin, J., Kussmaul, C., Reichlmayr, T., Caristi, J., Pollice, G.: Agile development in
computer science education. In: Proceedings of the 36th SIGCSE Technical Symposium
on Computer Science Education -SIGCSE 2005, pp. 130–131. ACM Press, New York
(2005)

10. Werner, L., Arcamone, D., Ross, B.: Using Scrum in a quarter-length undergraduate
software engineering course. J. Comput. Sci. Coll. 27, 140–150 (2012)

11. Reichlmayr, T.: The agile approach in an undergraduate software engineering course
project. In: 33rd Annual Frontiers in Education, FIE 2003, pp. S2C_13–S2C_18. IEEE
(2003)

12. Layman, L., Cornwell, T., Williams, L.: Personality types, learning styles, and an agile
approach to software engineering education. In: Proc. 37th SIGCSE Tech. Symp. Comput.
Sci. Educ. - SIGCSE 2006, p. 428 (2006)

13. Rico, D.F., Sayani, H.H.: Use of Agile Methods in Software Engineering Education. In:
2009 Agile Conference, pp. 174–179. IEEE (2009)

14. Mahnic, V.: A Capstone Course on Agile Software Development Using Scrum. IEEE
Trans. Educ. 55, 99–106 (2012)

15. Schroeder, A., Klarl, A.: Teaching agile software development through lab courses. In:
EDUCON 2012 IEEE (2012)

16. Chao, J., Randles, M.: Agile Software Factory for Student Service Learning. In: 2009 22nd
Conference on Software Engineering Education and Training, pp. 34–40. IEEE (2009)

17. Mitra, S.: Minimally invasive education for mass computer literacy. In: CRIDALA 2000,
Hong Kong, pp. 1–22 (2000)

18. Mitra, S.: Minimally invasive education: a progress report on the “hole-in-the-wall”
experiments. Br. J. Educ. Technol. 34, 367–371 (2003)

19. Dangwal, R., Jha, S., Kapur, P.: Impact of Minimally Invasive Education on children: an
Indian perspective. Br. J. Educ. Technol. 37, 295–298 (2006)

142 X. Wang et al.

20. Mitra, S.: Self organising systems for mass computer literacy: Findings from the “hole in
the wall” experiments. Int. J. Dev. Issues. 4, 71–81 (2005)

21. Mitra, S., Dangwal, R.: Limits to self-organising systems of learning-the Kalikuppam
experiment. Br. J. Educ. Technol. 41, 672–688 (2010)

22. Mitra, S.: How to Bring Self-Organized Learning Environments to Your Community
(2013), http://www.ted.com/pages/sole_toolkit

23. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Inc. (2003)
24. Vidgen, R., Wang, X.: Coevolving Systems and the Organization of Agile Software

Development. Inf. Syst. Res. 20, 355–376 (2009)
25. Lichtenstein, B.B., Plowman, D.A.: The leadership of emergence: A complex systems

leadership theory of emergence at successive organizational levels (2009)
26. Ovais, A.M., Liukkunen, K., Markkula, J.: Student perceptions and attitudes towards the

software factory as a learning environment. In: EDUCON (2014)

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 143–156, 2014.
© Springer International Publishing Switzerland 2014

Using Agile Methods to Implement a Laboratory
for Software Product Quality Evaluation

Javier Verdugo1, Moisés Rodríguez1, and Mario Piattini1,2

1 Alarcos Quality Center, Paseo de la Universidad 4, 13071, Ciudad Real, Spain
{javier.verdugo,moises.rodriguez,

mario.piattini}@alarcosqualitycenter.com
2 Institute of Information Technologies and Systems, University of Castilla–La Mancha,

Camino de Moledores s/n, 13051, Ciudad Real, Spain
Mario.Piattini@uclm.es

Abstract. In this paper we discuss how we at Alarcos Quality Center
implemented AQCLab, the first laboratory in the world to be accredited as
meeting ISO/IEC 17025 for software product quality evaluation based on the
ISO/IEC 25000 series of standards. We implemented AQC Lab following agile
principles by means of an adaptation of the Scrum methodology. This work
method helped us to progress in a challenging context which had several
similarities to software development, where the requirements were uncertain
from the start.

Keywords: Software, quality evaluation, ISO/IEC 25000, SQuaRE, agile
implementation, accredited laboratory, ISO/IEC 17025.

1 Introduction

Alarcos Quality Center (from now on referred to as AQC) is a Spanish company that
was spun off from the Alarcos Research Group at the University of Castilla-La
Mancha in 2008. It was founded with the goal of providing its customers (software
factories and development departments, as well as software acquirers) with software
quality assurance services. Though AQC is relatively young, we have over fifteen
years of experience in software quality research that has already been carried out by
the Alarcos Research Group.

After several projects that involved software process improvement, we realized
that, though good development processes are of great help in the effort, they do not
always lead to quality software; we became aware that the best way to evaluate
quality in software products is by measuring and evaluating their own characteristics,
not those of the processes followed.

That is why we decided to focus our work on developing a new service in an area
that was not as well-known and widespread as others in the software industry: Indeed
it is still not so widely-recognized, even now; we are talking about software product
evaluation.

144 J. Verdugo, M. Rodríguez, and M. Piattini

By 2010, the new series of International Standards ISO/IEC 25000 [1] (known as
Software product Quality Requirements and Evaluation - SQuaRE) was still in an
early stage of development. We decided to take ISO/IEC 25000 as the basis for our
software quality evaluations, even though the main standards in the series – the
quality model and the evaluation process – were still under development. Four years
later, SQuaRE is still being developed, though it has matured considerably and most
of the main standards of the series have already been released. These include the
quality model –presented in ISO/IEC 25010 [2] - and the evaluation process –defined
in ISO/IEC 25040 [3].

At the beginning, there was a fair amount of uncertainty about how to deal with the
implementation process, as it was a rather complex task in a not very well-known
ground that involved a lot of research and experimentation. Right at that point, we
knew we would have to:

• Develop a quality model. Starting from the quality model defined in ISO/IEC
25010, which specifies only top-level quality characteristics and their sub-
characteristics, it would be essential for us to identify metrics and define how to
aggregate their values to evaluate the top-level elements of the model.

• Implement an evaluation framework. We would have to identify tools that provide
measurements for the metrics defined in the quality model. We would also need to
develop a tool that takes those measurements and aggregates them according to our
criteria so that we can obtain quality assessments for the top-level elements of the
model.

• Define the evaluation process. Based on the evaluation process defined in ISO/IEC
25040, we would have to decide how to adapt that process to our circumstances.

The specific requirements to implement those three main work products were not
totally clear from the start, given that it was difficult to define the scope of that
endeavor completely. We thus realized that we would have to identify those
requirements and deal with potential change along the way.

At that time, agile methods and techniques for software development had been
around for a few years, and after a slow but steady rise and spread they were starting
to become really popular in the industry. One of the most popular agile methods,
Scrum [4], was a great exponent of the impact that the agile trend was having on the
industry.

Seeing that agile principles addressed the same problems we had (dealing with
uncertainty via evolutionary development, as well as providing a flexible response to
change), though in a different context (software development), we decided to study
which of those practices could be applicable and useful to our case. For this purpose,
we took several training courses and workshops on Scrum that helped us to
understand it better and get a better vision of the framework as a whole. Once we had
a better knowledge of Scrum, we decided to adopt some of its practices and adapt
them to our own objectives.

One month after we started to work on our software product quality evaluation
service, and while researching other standards related to evaluation, we found out
about ISO/IEC 17025 [5]. This standard specifies the general requirements for

Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 145

laboratories to carry out tests and/or calibrations competently. To meet those
requirements, laboratories have to implement a management system for their quality,
administrative and technical operations.

Accreditation complying with ISO/IEC 17025 means the formal recognition by an
accreditation body of the technical competency of the laboratory and its capability to
provide correct and trustable results. In this regard, accreditation to ISO/IEC 17025
differs from certification to ISO 9001, which solely confirms that a company adheres
to, and operates under, a documented quality system. To that end, accreditation bodies
perform a thorough evaluation of laboratories, confirming that they:

• Count on qualified and experienced staff.
• Have the necessary equipment and infrastructure for suitable performance of their

activities.
• Employ suitable and validated work methods and procedures.
• Perform techniques for quality evaluation of results.
• Inform their clients about test results in a suitable manner, providing clear and

precise reports.
• Adhere to, and operate under, a quality system.

We considered that we would be making a valuable contribution in implementing a
laboratory that would carry out tests consisting in the evaluation of software product
quality; that is how AQC Lab emerged. We decided to pursue laboratory accreditation
for several reasons:

• It would guarantee the integrity and competence of AQC Lab in its performance of
software product quality evaluations.

• It would be a distinguishing feature and a key factor in keeping an edge over
competition.

• Laboratory accreditation would result in an internationally-recognized service, as
ISO/IEC 17025 is the best-known and most generally-accepted international
standard for laboratory evaluation. In addition, accreditation bodies from different
countries co-operate under multilateral agreements.

Implementing a laboratory that complied with ISO/IEC 17025 resulted in a whole
new set of requirements, in addition to those we had already identified in relation to
developing our software quality evaluation service. To meet the requirements of the
laboratory accreditation scheme, we had to implement and document many different
processes (both technical and administrative), produce formats, and keep records that
documented and showed how those processes were carried out.

After a period of a year and a half of implementing, testing and validating our
evaluation method, we carried out the first software quality evaluations for customers.
Six months later, in 2012, AQC Lab became the first laboratory in the world to be
given accreditation to perform software quality evaluation tests under ISO/IEC 17025.

The rest of the paper is organized as follows: in section 2 we discuss the two
approaches to the adoption of Agile methodologies, which are either following them
strictly or adapting them to fit the context of each project. In section 3 we describe

146 J. Verdugo, M. Rodríguez, and M. Piattini

how we adapted Scrum to implement AQC Lab. Section 4 presents the conclusions of
the paper, describing what we found most useful in our adaptation of Scrum.

2 Adapting Agile Methods

Since the emergence of Agile methods, there has been dispute among Agile advocates
over the issue of whether to adopt methods “by the book”, or rather to adapt them to
serve the specific context of each company or development team. Even though
nowadays this dispute has been overcome for the most part, there are still some
practitioners that hold opposing views regarding this matter.

On the one hand, there are Agile advocates, commonly known as evangelists, who
encourage all projects to follow every single practice of the Agile method in question
to the letter. They argue that adopting the method as a whole is the only way to take
full advantage of it, and any deviation from what is established by their authors would
result in not realizing its full benefits. A quote from Kent Beck about XP practices [6]
sums this reasoning up: “No single practice works well by itself; each needs the other
practices to keep them in balance”.

One of the fathers of Scrum, Ken Schwaber, coined a term for any deviation from
the rules, roles and time boxes established in Scrum: “ScrumBut” (a term that gained
popularity; some people later turned this into the more humorous “ScrumButt”). A
ScrumBut can therefore be considered as an inappropriate variation of Scrum that
hampers the team from getting the most out of it. Schwaber explains that ScrumButs
follow the pattern (ScrumBut) (reason or excuse) (workaround). An example of this
would be “(We use Scrum, but) (having a daily scrum every day is too much
overhead,) (so we only have one per week.)”. This example shows a kind of
adaptation that negates the advantages of Scrum. In this case, the tailoring leads to not
knowing the real progress of the sprint at the right time, in the right way; that in turn,
leads to the possibility that the goals established for that sprint may not be met.

On many occasions, ScrumButs have their origins in a dysfunction in the
development team and its inability to fix it. This results in the modification of the
method, not because that is what is intended, but because the bad habits in the team
do not let them find the way to adopt the method correctly.

On the other hand, an increasing number of practitioners and researchers, as stated
in [7], argue that Agile development methods and practices should be adapted to fit
the context in which they are adopted. These authors contend that, as with any other
kind of adaptation, a tailored method may indeed not represent a reasonable
adaptation of the original method. The “wrongdoing”, however, is not in the act of
adaptation itself, but rather in the nature or scope of the adaptation when it is not done
suitably. They consider that being restrictive in adapting Agile methods is a kind of a
paradox, because, as Conboy and Fitzgerald conclude in [8], “the very name “agile”
suggests that the method should be easily adjusted to suit its environment”.

This approach to Agility is based on the idea that a project cannot be viewed as an
independent part of its surrounding context. Rather, the method followed to manage
the project is affected by the interaction of the development team and their

Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 147

organizational culture. It is difficult to keep any element that is external to the method
from not affecting it in one way or another. Because of this, the practitioners that
follow this approach stand for understanding how Agility can be adapted in context
and take advantage of that situation. In this case, the main focus is on adapting the
methods in a way that makes sense and improves the performance of the development
team. This can only be done by understanding really well the purpose of the practices
that will be adapted, introducing only the changes needed to make them work better in
the context of each specific project or development team. Otherwise these
adaptations, in the case of Scrum, would become negative Scrumbuts; the kind that
make a team's performance worse.

There are practitioners and researchers, and we count ourselves among them, who
believe that some of the Agile methodologies can even be adapted to other
environments outside software development. A good example of this would be
Scrum. This framework can be, and actually has been, adapted to different contexts
other than software development, due to its strong focus on project management and
its independence of specific technical practices.

For example, in [9], the authors present Score, an adaptation of Scrum to manage
the mentoring of students in the context of an academic research group. The authors
claim that ever since they have been carrying out some of the practices of Scrum,
especially the daily scrum, the mentoring has been more efficient, and both the
mentors and the students have benefitted from this new approach. For mentors, it is
now easier to keep up-to-date with their students’ progress, and when students are
struggling, it takes less time to address what is not going right. Authors assert that
students say they are more productive, more enthusiastic about research, and have
better interactions with other students and with their adviser, feeling there is a real
sense of community in the group since they began to use Score.

In [10], the author discusses how they applied an agile methodology in an
academic environment, and provides insights for non-software industries on how agile
is not a set of rigid rules, but a philosophy that can be applied to get maximally
effective results with a mindset for continued change.

The authors of [11], among whom is Jeff Sutherland –co-creator of Scrum,
together with Ken Schwaber -, describe how Scrum has been adopted in the sales and
account management teams at the company iSense in the effort to take more control
over the sales process they carry out. They conclude that implementing Scrum has led
to escalating revenue and a sustainable competitive advantage.

On reading [12], we see how the author describes the experiences with Agile
methods in a marketing department, as well as the series of adjustments they had to
make to overcome some problems they had during the first months of adoption.

On a more exotic note, [13] describes how an Italian company producing luxury
bathtubs and showers adopted Agile and Lean methods in many departments of the
company, explaining how they adapted them to a non-software context.

The growing importance of Agile methods in project management is also reflected
by the fact that the Project Management Institute (PMI) has developed a certification
for project management practitioners who are adopting Agile approaches in their
projects. This certification, known as PMI Agile Certified Practitioner (PMI-ACP),

148 J. Verdugo, M. Rodríguez, and M. Piattini

recognizes an individual’s expertise in using agile practices in their projects, while
demonstrating their increased professional versatility through agile tools and
techniques.

In the next sub-section we set out how we adapted Scrum in the implementation of
our laboratory for software product quality evaluation tests; this is an endeavor that
not only involved software development, but also process implementation, as well as
a great deal of research.

3 Implementing AQC Lab

Although Scrum was conceived as a software development framework, it centers on
management practices. Being involved in the software industry, though not
developing software ourselves, we at AQC saw that Scrum could be applied in
contexts other than software development. In our case, we saw Scrum would be suited
to our purpose of putting a software quality evaluation service into operation, which
would later expand and turn into implementation of a laboratory, AQC Lab,
accredited as complying with ISO/IEC 17025 for conducting software quality
evaluation tests.

Implementing AQC Lab involved different high-level tasks that would in turn
encompass more specific tasks:

• Defining a quality model based on ISO/IEC 25010. As the standard only defines
the high-level elements of the model (quality characteristics and its sub-
characteristics), we would have to define which metrics affect the characteristics
and sub-characteristics. We would also need to specify how to aggregate and
combine their values so as to obtain a reasonable indicator of the quality of the
software evaluated. For this purpose, we would define a hierarchical model and the
methods or functions for obtaining values of higher-level element from the values
of the elements on lower levels. Initially, we centered on the characteristic of
Maintainability and its five subcharacteristics.

• Defining an evaluation process based on ISO/IEC 25040. We would have to define
the steps to take, along with the specific way to carry out the activities of the
evaluation process described in ISO/IEC 25040.

• Developing an automated evaluation framework. Once we had decided which
metrics would be part of the quality model, we would need to look for tools that
allowed us to get their values from the products analyzed. It would also be
necessary to develop a software system that took the values of the metrics and
carried out their aggregation, thereby obtaining quality values for the high-level
elements in the model. This system would consist of three parts: a “core” that
performed the aggregations and stored the results of the evaluation in a database, a
Maven plugin that allowed the automated execution of the “core”, together with a
web tool that showed the results of the evaluation in a helpful, attractive and
practical way.

• Defining, documenting and establishing the Quality Management System of the
laboratory. The QMS would consist of a Quality Manual, along with

Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 149

administration and technical processes, technical instructions, records and formats.
For example, some of the administration processes involved internal auditing,
personnel training and qualification, documentation control, control of non-
conformities, corrective and preventive actions, and management reviews. Some
examples of the technical processes carried out are: result quality assurance,
validation of the quality model, validation of the software analysis tools used in
evaluations, report elaboration and test item manipulation. Some examples of
technical instructions are the ones that define how to configure the execution of the
different analysis tools in the context of the evaluation framework, as well as their
installation and deployment.

Seeing that the scope of the matter at hand was quite vast and our team size was
very small (three people), we saw fit to use an iterative and incremental approach. In
addition, the scope of some of the tasks was uncertain initially, and we knew some of
the requirements might change during the implementation; (for example, when we
started the definition of our quality model and evaluation process, the ISO/IEC 25010
and ISO/IEC 25040 standards were still draft versions that might have changed once
the final version was released).

Even though Scrum was developed with software development in mind, we found
similarities between software development and what we had to do, as both are unique
creative efforts that require the development of different components and demand
knowledge in diverse areas. Nevertheless, our endeavor also entailed software
development, since we had to develop the evaluation framework. For that task we
were also able to take full advantage of Scrum.

All of these circumstances led us to choose Scrum as the best approach for
managing the implementation of AQC Lab.

Of course, we knew there were also differences between implementing AQC Lab
and developing software. For instance, the extent of research, experimentation and
validation involved was larger in our case than what you typically have in a software
development project. The particular circumstances of our context made it necessary to
adapt some of the practices of Scrum, while at the same time ignoring some of the
rules.

Below is a description of the adapted Scrum process that we followed:

• We kept the three roles described in Scrum. In our case there was no external
client; because of that, the role of Product Owner was assigned to our CTO, as he
had the appropriate characteristics: product vision and leadership. As we were a
small team of just three people, the role of Scrum Master was shared by the same
person as above, since he also had the best characteristics to fill this particular role;
he possessed the capacity to facilitate the process, resolve impediments, enforce
time boxes and promote improvement. The other two people made up the
Development Team, although in the implementation of a few of the elements of the
Product Backlog, the person holding the Product Owner/Scrum Master roles also
took a small part in the Development Team. Having one person that plays both the
roles of Scrum Master and Product Owner is considered among most practitioners
to have potential for a conflict of interests, due to the fact that the same person is

150 J. Verdugo, M. Rodríguez, and M. Piattini

responsible for supporting and protecting the team, as well as for “pushing” the
team to get more business value out of the product being developed. Even thought
the potential for conflict exists, it does not necessarily have to materialize if the
person playing both roles finds the right balance between the interests related to
each of them. In a very small team without external client, the dual role solution is
perfectly viable as long as the Scrum Master/Product Owner is able to support the
team while ensuring they keep a sustainable development pace. In this case, time
constraints may be the main problem to deal with, as performing the tasks related
to both roles can be quite time-consuming.

• We kept all of the elements to implement in the Product Backlog (PB), and made it
accessible for everyone via Google Docs (now Google Drive). The items in the PB
were prioritized by the Product Owner. The PB was a living artifact, dividing the
top-priority items into more specific and granular ones when we had enough
knowledge to do so. Occasionally, implementing some items led to the discovery
of new requirements, as well as to a change of scope; this was subsequently
reflected in the PB. The whole team took part in estimating the effort that PB items
would take.

• The effort required for the elements in the PB was not always as small as
recommended by Scrum experts. Due to some of the items requiring a lot of
research and trial and error, it was impossible to break them down into smaller
items. For this same reason, some of the items did not fit a sprint, which meant that
we broke one of the rules of Scrum.

• We had a Sprint Backlog (SB) for each Sprint. An example of the structure of the
SB is given in Table 1. The items in the Sprint Backlog were extracted from the
top-priority items in the PB. We kept the status of each item (“pending” – “done”)
in the SB, along with an estimate of the remaining time to be completed. This
estimate was updated by the Development Team every day after the Daily Scrum.
We also used Sprint burn-down charts to monitor the progress of the Sprint and the
remaining effort, since the SB always had the information of the remaining effort
updated to present estimates (Fig. 2 shows an example). The SB, like the PB, was
accessible via Google Docs. We did not find it necessary to have a physical board
to keep the information about the tasks, as we found it more useful to keep it
centralized in the SB.

• We started each Sprint with a Sprint planning meeting where the whole team took
part. The first point in this meeting was to establish the duration of the Sprint. At
first, the Sprints were three weeks long, but we later decided to make them four
weeks long, since the nature of the tasks (longer than what is usual in software
development) made it feel more consistent to have longer Sprints. The main
advantage of a shorter sprint is allowing the team to detect earlier if the product
being developed does not meet the needs of the client. This way, the risk of
developing the wrong product is reduced. In our case, this potential risk was not a
problem, since the Product Owner attended the Daily Scrums and was completely
aware of the progress being made during the Sprint. More information about the
Sprints is given in Table 2. Once the duration of the Sprint was established, the
team revised the PB and decided as a group which set of PB items would be

Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 151

implemented. The set was decided based on the priorities assigned by the Product
Owner, as well as the effort estimation made by the whole team. Based on this
information, the team would decide which set of items would be achievable in the
time box established for the Sprint. Once the items were chosen, the whole team
debated which tasks each item would entail and in which order they should be
performed. The list of tasks to perform for each item was also included in the SB.
The recommendation to have tasks that require one day or less of work was often
difficult to fulfill, due to what has been explained above –the degree of research
and experimentation involved. The planning meeting usually took us about an
hour.

Table 1. Structure of the Sprint Backlog and example of part of its content during Sprint #9

PB Item Remaining
effort

Status Tasks

Visualization module:
AQC Lab-web

12 Pending Pending:
- Include Line chart for evolution of
Characteristic values for selected project
in Historic page
- Include Line chart for evolution of
Subharacteristic values for selected
project in Historic page
Done:
- Include TreeMap chart with info from
all projects in Home Page
- Include Kiviat chart of selected project
in Characteristic page
- Include Kiviat chart of selected project
in Subcharacteristic page
…

Validation of the test
method

0 Done Pending:
Done:
- Research and select software products
to use in validation
- Download source code of selected
products
- Evaluate selected products
- Extract information from bug tracking
systems

… … … …

• In each Sprint, the team performed the different tasks for the PB items that had
been committed to in a collaborative way. For the PB items that involved software
development, the recommendations of Scrum were followed: the team focused on
producing, within the Sprint, software that had been tested and which, at the end of
the Sprint, actually worked. For other PB items, like documents or forms, we also
tried to always have a revised version at the end of the Sprint.

152 J. Verdugo, M. Rodr

Fig. 1. Burn-down chart for Sp
which was updated after the D
we can see in this figure, the in
the velocity necessary to comp

• We conducted a Sprint
usually had the review m
we had the planning me
review, and the Product O
had been done and whi
some of the tasks made
take. Because of that, in
usually there would b
Nonetheless, as we gain
PB items and related ta
amount of tasks to perfo
the group then discussed
how they were solved. W
involved software develo
other work products, we
been done during the S
product to show per se. T
of a document, and thes
end of the Sprint. After
meeting to look back on
as the whole team wa
adjustments were necess

ríguez, and M. Piattini

print #1. The line with dots shows the estimated remaining eff
Daily Scrum. The straight thin line represents the ideal trend
nitial estimations were too optimistic and the team could not k
plete all the committed PB items.

review and retrospective meeting after every Sprint.
meeting first, which took us about an hour; right afterwar
eeting for the next Sprint. The whole team took part in
Owner led the discussion about which committed PB ite
ich had not been carried out. The experimental nature
them rather unpredictable as regards the effort they wo
n the first Sprints our estimates were quite off target
e many unfinished items at the end of each Spr

ned experience, our estimates of the effort required for
asks got better, which led us to choose a more adequ
orm in later Sprints. After reviewing the work comple
d what problems they had had during the Sprint, outlin
We then had a live demonstration of the work products t
opment (some elements of the evaluation framework).
e did not usually have a live demonstration of what
print, because it was often the case that there was no
The result of a task would often be a document or a sect
e results were reviewed as they were produced, not at
the review, we would usually have a quick retrospect

n and discuss the process. It usually took only a short ti
as comfortable with the process and we all felt f
ary.

fort,
. As
keep

We
rds,
the

ems
e of
ould
and
rint.
the

uate
ted,

ning
that
For
had
ot a
tion
the

tive
me,
few

Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 153

Table 2. Details of some Sprints in the implementation of AQC Lab

Sprint # Dates Main goals
01 27/08/10 - 21/09/10 Research and define Metrics for Maintainability.

Research tools that provide values for the metrics in the
Maintainability model.

02 21/09/10 – 15/10/10 Define functions to aggregate metric values and obtain
values for high-level elements of the Maintainability
model.
Set thresholds for metric values.

03 18/10/10 – 12/11/10 Design the architecture of the evaluation framework.
Document the Maintainability model.
Produce the QMS Quality Manual.
Refine metrics (filter rules from static source code
analyzers).

04 15/11/10 – 03/12/10 Develop business domain and data layer of the
evaluation framework.
Document administrative procedures (documentation
control, organization, and personnel).
Document technical procedures (tool configuration).

05 03/12/10 – 24/12/10 Develop the evaluation engine of the evaluation
framework (tool result integration and aggregation of
values).
Create personnel records (training, authorizations, etc.).

06 10/01/11 – 31/01/11 Develop the evaluation engine of the evaluation
framework (tool result integration and aggregation of
values).
Define and document evaluation process (test method).
Document administrative procedures (internal audits,
management reviews).

07 31/01/11 – 18/02/11 Develop automation module of the evaluation
framework (plugin for Maven).
Document technical procedures (threshold revision).
Create forms and records related to administrative
procedures (document control, internal audits, etc.)

08 21/02/11 – 11/03/11 Develop visualization module of the evaluation
framework (data visualization).
Improve core of evaluation framework: improve multi-
module product evaluation.
Define procedure for validation of the test method.

… … …
22 02/05/12 – 01/06/12 Perform the internal audit.

Carry out evaluation of product AAA for client BBB.
23 04/06/12 – 06/07/12 Define and implement corrective actions for non-

conformities detected in internal audit.
Carry out evaluation of product XXX for client YYY.

24 16/07/12 – 10/08/12 Receive accreditation audit.
Produce documentation requested by accreditation
body auditors.
Define and implement corrective actions for non-
conformities detected in accreditation audit.

154 J. Verdugo, M. Rodríguez, and M. Piattini

• We conducted Daily Scrums; the whole team, including the Product Owner, took
part in these. In these quick meetings each team member reported on what had
been done the previous day, the problems he had faced, and what he would do that
day. The Daily Scrums were usually kept to no more than fifteen minutes, though
there were days on which discussing some topics (like how to tackle the problems
the team members faced) would prolong the meeting. However, we sometimes
found it useful to go beyond the fifteen minute time-box, since this gave us a good
opportunity to share the vision of the Product Owner about topics that mattered to
the development team.

4 Conclusions and Future Work

Methodologies and process frameworks, such as Scrum, are supported by a lot of
effort and empirical research whose goal is to test how the practices they define
interrelate and work together to attain their intended benefits. Each one of their
components and practices serves a specific purpose and is essential to the successful
usage of the methodology or process framework. In a nutshell, they are not part of the
methodology simply because of some whim; teams have to take that into account
when they adapt a methodology to their own circumstances.

Nonetheless, we advocate for a contextual approach to Agile methods, adapting the
elements to suit the context in which they are adopted. It seems paradoxical to affirm
that an Agile method cannot be adapted and that it must be followed strictly.

Even though it is a software development framework, we found Scrum really
useful for our purpose of implementing a software evaluation laboratory. We believe,
moreover, that it can be easily adapted to other contexts outside the realm of software
development, since it focuses mainly on project management. We do concur that
method adaptations have to be done carefully, though. You have to be perfectly clear
about the purpose of each element of the method that you are changing, as well as
how that change affects what really matters, i.e., the performance of the team.

We found Scrum to be really well-crafted for project management. It enabled us to
get different levels of zoom on the information required to monitor the progress of the
project:

• The Product Backlog provided us with a general snapshot of what has to be done,
with the advantage that it was not a static snapshot, since it was updated constantly
to reflect newly-discovered scope throughout the project. Moreover, this snapshot
provided closer detail about what was most important at each point in time, via the
priorities specified for its items.

• The Sprint Backlog provided a sharper focus on what was important within the
time box of a month (or less). It allowed us to concentrate on the most urgent
items, taking an incremental approach that made implementation easier.

• The Daily Scrum allowed us to know how we were progressing on a day-by-day
basis. We found the Daily Scrum to be the most useful practice in Scrum, as it
improved our decision-making by keeping the whole team involved. It made for

Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation 155

better performance; since everybody in the team knew what the others were doing,
each individual could lend a hand to other members when they had issues to solve.

Achieving the accreditation may be considered a major milestone in the
implementation of AQC Lab. However, that did not mean that we had reached the end
of the road. Since the accreditation, we have been working on expanding the scope of
the evaluations carried out by the laboratory; we are defining evaluation models for
other quality characteristics, like Functional Suitability and Usability, or researching
and developing tools to measure the metrics related to those characteristics; we are
also researching tools to evaluate Maintainability on software products developed
with other programming languages not supported initially, like Groovy and Objective
C, etc. We are still using Scrum to manage all this work.

In addition, maintaining accreditation requires the continual improvement of the
QMS that governs the activity of the laboratory. This correct operation and
improvement is monitored by the accreditation body via follow-up audits. We have
just received our first follow-up audit and we have had very positive feedback from
the audit team. The effectiveness of our QMS is a consequence of the fact that we also
use Scrum to manage the operation of AQC Lab, which involves carrying out
software quality evaluation tests and performing administrative and technical
activities, as well as implementing improvement actions.

Acknowledgements. This work has been funded by the GEODAS-BC project
(Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo
Regional FEDER, TIN2012-37493-C03-01) and by the ECU: Evaluación y
Certificación de la fUncionalidad del Producto Software project (Consejería de
Empleo y Economía y Fondo Europeo de Desarrollo Regional FEDER,
1313CALT0056).

References

1. SO/IEC 25000:2005 - Software Engineering – Software product Quality Requirements and
Evaluation (SQuaRE) – Guide to SQuaRE. International Organization for Standardization,
Geneva, Switzerland (2005)

2. ISO/IEC 25010:2011 - Software Engineering – Software product Quality Requirements
and Evaluation (SQuaRE) – System and software quality models. International
Organization for Standardization, Geneva, Switzerland (2005)

3. ISO/IEC 25040:2011 - Software Engineering – Software product Quality Requirements
and Evaluation (SQuaRE) – Evaluation process. International Organization for
Standardization, Geneva, Switzerland (2005)

4. Schwaber, K.: Scrum Development Process. In: Business Object Design and
Implementation, pp. 117–134. Springer, London (1997)

5. ISO/IEC 17025:2005 - General requirements for the competence of testing and calibration
laboratories. International Organization for Standardization, Geneva, Switzerland (2005)

6. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston
(2000)

156 J. Verdugo, M. Rodríguez, and M. Piattini

7. Hoda, R., Kruchten, P., Noble, J., Marshall, S.: Agility in Context. In: Proceedings of the
ACM International Conference on Object Oriented Programming Systems, Languages, and
Applications (OOPSLA 2010), pp. 74–88. ACM, New York (2010)

8. Conboy, K., Fitzgerald, B.: The Views of Experts on the Current State of Agile Method
Tailoring. In: McMaster, T., Wastell, D., Ferneley, E., DeGross, J.I. (eds.) Organizational
Dynamics of Technology-Based Innovation: Diversifying the Research Agenda. IFIP
International Federation for Information Processing, vol. 235, pp. 217–234. Springer,
Heidelberg (2007)

9. Hicks, M., Foster, J.S.: Adapting Scrum to Managing a Research Group. Technical Report
CS-TR-4966, University of Maryland, Department of Computer Science (2010)

10. Willeke, M.H.H.: Agile in Academics: Applying Agile to Instructional Design. In:
Proceedings of the 2011 Agile Conference (AGILE 2011), pp. 246–251. IEEE Computer
Society, Washington (2011)

11. van Solingen, R., Sutherland, J., de Waard, D.: Scrum in Sales: How to Improve Account
Management and Sales Processes. In: Proceedings of the 2011 Agile Conference (AGILE
2011), pp. 284–288. IEEE Computer Society, Washington (2011)

12. DeFauw, R.: Can Marketing Go Agile? In: Proceedings of the 2012 Agile Conference
(AGILE 2012), pp. 136–140. IEEE Computer Society (2012)

13. Mazzanti, G.: Agile in the Bathtub: Developing and Producing Bathtubs the Agile Way.
In: Proceedings of the 2012 Agile Conference (AGILE 2012), pp. 197–203. IEEE
Computer Society (2012)

Software Metrics in Agile Software:

An Empirical Study

Giuseppe Destefanis1, Steve Counsell2, Giulio Concas1, and Roberto Tonelli1

1 DIEE, University of Cagliari, Italy
{giuseppe.destefanis,concas,roberto.tonelli}@diee.unica.it

2 Brunel University, Kingston Lane, Uxbridge, UK
steve.counsell@brunel.ac.uk

Abstract. This paper presents a software metrics analysis of eight
object-oriented systems. Five systems had been developed using Agile
methodologies and three using plan-driven methodologies; three systems
were written in Python and five in Java. For each system, we considered
10 traditional metrics such as LOC and the Chidamber and Kemerer met-
rics. These metrics were computed at class level. In our study we present
empirical results considering systems developed with Agile methodolo-
gies and we compare them with previous results for non Agile systems. In
particular, we verify that the distributions of software metrics in a soft-
ware system developed using Agile methodologies does not differ from
the distribution in systems developed using plan-driven methodologies.

Keywords: agile, software metrics, data mining, object-oriented pro-
gramming.

1 Introduction

Software engineers have been trying to measure software to gain quantitative
insights into its properties and quality since its inception. IEEE defines Soft-
ware Engineering as the application of a ”systematic, disciplined, quantifiable
approach to the development, operation and maintenance of software.” With
the advent of the object-oriented (OO) approach, specific measures have been
introduced to evaluate the quality of software systems. The rationale behind
OO metrics is that a good design must keep complexity low, and this can be
accomplished by minimising coupling and increasing cohesion. The first attempt
in this direction was Chidamber and Kemerer’s metrics suite (CK), and these
have became the most popular OO metrics suite and the process of defining
new measures is still a vibrant research area; that said, theoretical reasons sup-
porting the adoption of specific metrics is not enough. Software engineers need
to have empirical evidence that these metrics are actually related to software
quality. Unfortunately, ”software quality” is an elusive concept, software being
an immaterial entity that cannot be physically measured in traditional ways.
In general software quality has many different meanings, it is associated with
practices that lead to software products that are accurate, effective, delivered on
time and within budget.

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 157–170, 2014.
c© Springer International Publishing Switzerland 2014

158 G. Destefanis et al.

It is still difficult to relate software metrics to the phenomena we want to
improve and to reduce the complexity of software, new development methodolo-
gies and tools are being introduced.In particular, to our knowledge, there are no
studies investigating the distribution of traditional metrics in software developed
using Agile methodologies. [19].

In this paper, we attempt to present the results about software metrics dis-
tributions on 8 open source software system, (5 developed using Agile method-
ologies, 3 developed using plan-driven methodologies, 5 developed using Java,
3 developed using Python) in order to study possible differences due to Agile
methodologies. We considered the following systems:

– FlossAR [4]: a program to manage the Register of Research of universities
and research institutes. floss-AR was developed with a full OO approach and
released with GPL v.2 open source license.

– jAPS (Java Agile Portal System) [5] is a Web application, implemented
through a specialization of an open source software project that is a Java
framework for Web portal creation. This system is certified as a software
developed using Agile methodologies.

– OpenErp [7]: OpenERP is an open-source enterprise resource planning
(ERP) software actively programmed, supported, and organized by Open-
ERP s.a. OpenERP similar to many open source projects where customized
programming, support and other services are also provided by an active
global community and partner network. OpenERP is developed using agile
software development and test-driven development methodologies.

– OpenBravo [6]: Openbravo ERP is a web-based ERP business solution
for small and medium sized companies released under the Openbravo Public
License, the program is among the top ten most active projects of Sourceforge
as of January 2008. OpenBravo is also known as Openbravo Agile Erp.

– Zope [8]: Zope is a community project concerned with free and open-source,
OO web application server written in the Python programming language.
Zope stands for ”Z Object Publishing Environment” and was the first system
using the now common object publishing methodology for the Web. Zope
has been recognized as a Python killer app, an application that helped put
Python in the spotlight. The Zope project pioneered the practice of sprints
for open source software development. Sprints are intensive development
sessions when programmers, often from different countries, gather in one
room and work together for a couple of days or even several weeks. During
the sprints, various practices drawn from agile software development are
used, such as pair programming and test-driven development

– Ant [1]: Apache Ant is a software tool for automating software build pro-
cesses. It is similar to Make but is implemented using the Java language,
requires the Java platform and is best suited to building Java projects.

– Weka (Waikato Environment for Knowledge Analysis) [3] is a pop-
ular suite of machine learning software written in Java, developed at the
University of Waikato, New Zealand. Weka is free software available under
the GNU General Public License.

Software Metrics in Agile Software: An Empirical Study 159

– Blender [2]: Blender is a free and open-source 3D computer graphics soft-
ware product used for creating animated films, visual effects, art, 3D printed
models, interactive 3D applications and video games.

OpenERP and OpenBravo are both ERP systems developed using Agile
methodologies but written using different languages: OpenERP in Python, Open-
Bravo in Java (information about the use of Agile methodologies are available
on their respective websites [7], [6]). This fact is interesting for evaluating dif-
ferences between programming languages. For Japs and Zope it is possible to
check information about Agile methodologies during development phases on re-
spective websites. Regarding to floss-AR system, according to further discussions
with the developers team, the following Agile practices have been applied:

• Pair programming

• Stand Up Meeting

• Refactoring

• On Site Customer

Pair Programming is an Agile Software development technique in which two
developers work together at one workstation. The driver writes code while the
observer reviews each line of code. A Stand Up Meeting is a daily team meet-
ing held to provide a status update to the team members. Refactoring is the
process of restructuring an existing body of code altering its internal structure
without changing its external behavior. On Site Customer describes the need
to have on-site access to people who have the authority and ability to provide
information pertaining to the system being developed and to make pertinent and
timely decisions regarding the requiriments. Results presented in this paper are
not conclusive because we have analyzed only open source software; the link be-
tween open source development and the Agile methodology is under-researched
- Adams et al. [10] studied gaps between Agile development and open source de-
velopment. This work is a starting point and clearly, further research is needed
to prove and validate differences between metrics distributions generated by Ag-
ile methodologies and those generated by plan-driven methodologies, especially
considering proprietary software developed by companies.

In this paper, we answer the following research questions:

• RQ1: Is it possible to recognize the use of Agile methodologies through the
analysis of software metrics?

• RQ2: Metrics distributions generated from software developed using Agile
methodologies are similar to metrics distributions generated from software
developed using plan-driven methodologies?

• RQ3: It is possible to assert that metric distributions generated from Agile
methodologies are related to better quality software?

All data considered in this paper are available online at
http://agile.diee.unica.it/xp2014.

160 G. Destefanis et al.

2 Related Work

Several studies have analyzed software metric distributions with regard to study
software quality and to define a methodology for guiding the softare process
development, but to our knowledge no studies have tried to analyze the relation-
ship between software metrics and software development methodologies as Agile
processes. Therefore many empirical studies have been performed to validate
empirically the CK suite from these two aspects, showing an acceptable corre-
lation between CK metrics values and software fault-proneness and difficulty of
maintenance [11], [12], [13], [14]. Other OO metrics suites have also been pro-
posed, MOOD [17] and by Lorenz and Kidd [18], but the CK suite is by far the
most popular.

In Adams et al. [9] it is argued that the impact of certain Agile practices
(in this case, specifically sprinting) on a Free Software project can be partially
assessed through analysis of code repository logs, using average commits per day
as a metric. In the paper, sprints from two Free Software projects (Plone and
KDE PIM) are assessed and two hypotheses are formulated: do sprints increase
productivity? Are Free Software projects more productive after sprints compared
with before? The primary contribution of the paper is to show how sprinting
creates a large increase in productivity both during the event and immediately
after the event itself: this argues for more in-depth studies focussing on the
nature of sprinting.

Adams et al. in [10] argue that it is possible to quantify the level of agility
displayed by Open Source projects. An indicator of agility, the Mean Developer
Engagement (MDE) metric is introduced and tested through the analysis of pub-
lic project data. Projects sampled from two repositories (KDE and SourceForge)
are studied and a hypothesis is formulated: projects from the two samples display
a similar level of MDE. The paper provides two main contributions: first, the
MDE metric is shown to vary significantly between the KDE and SourceForge
projects. Second, by combining MDE with a project’s lifespan, it is also shown
that SourceForge projects have insufficient uptake of new developers resulting
in more active, shorter, initial activity and in a quicker ”burning out” of the
projects.

Concas et al. [15] present an extensive analysis of software metrics for 111
OO systems written in Java. For each system, authors considered 18 traditional
metrics such as LOC and CK metrics, as well as metrics derived from complex
network theory and social network analysis; they also considered two metrics at
system level, namely the total number of classes and interfaces and the fractal
dimension. They discuss the distribution of these metrics and their correlation
both at class and system level. They found that most metrics followed a lep-
tokurtotic distribution. Only a couple of metrics have patent normal behaviour
while three others are very irregular and even bimodal.

In Concas et al. [16] the authors present a comprehensive study of an imple-
mentation of the Smalltalk OO system, one of the first and purest OO program-
ming environment, searching for scaling laws in its properties. They studied ten
system properties, including the distributions of variable and method names,

Software Metrics in Agile Software: An Empirical Study 161

inheritance hierarchies, class and method sizes, system architecture graph. They
systematically found Pareto or log-normal distributions in these properties. Pro-
gramming activity, even when modelled from a statistical perspective, can not be
modelled as a random addition of independent increments with finite variance; it
exhibits strong organic dependencies on what has been already developed. There
is a comparison of the results with similar results obtained for large Java sys-
tems. The work shows how the Yule process is able to stochastically model the
generation of several of the power-laws found, identifying the process parameters
and comparing theoretical and empirical tail indexes. The authors discuss how
the distributions found are related to existing OO metrics such as CK’s and how
they could provide a starting point for measuring the quality of a whole system,
versus that of single classes. In fact, the usual evaluation of systems based on
mean and standard deviation of metrics can be misleading.

3 Methodology

The aim of this paper is to investigate possible relationship between software
metrics obtained from software developed using Agile methodologies and soft-
ware developed using plan-driven methodologies. Our corpus includes: Open-
ERP, OpenBravo, Zope, Japs, Ant, Weka, FlossAR, Japs.

We built the software graph of each project analyzing the source code, where
the nodes of the graph are associated to the classes of the system. Using this
graph, we computed 10 metrics on each node of the graph. We designed and
wrote all the code for building the software graph and for computing on it all
the considered metrics. The statistical analysis on the results were performed
using R.

– IFANIN: Number of immediate base classes;
– NOC: Number of Children (CK): number of directed subclasses of the class;
– NIM: Number of instance methods, methods defined in a class that are only

accessible through an object of that class;
– NIV: Number of instance variables, variables defined in a class that are only

accessable through an object of that class;
– WMC: Weigthed methods per class (CK), a weighted sum of all the methods

defined in a class.
– RFC: Response For a Class (CK): the sum of the number of methods defined

in the class and the cardinality of the set of methods called by them and
belonging to external classes.

– LOC: Lines of code of the class, excluding blank lines and comments.
– CLOC: Lines of comments of the class.
– NOfS: number of declared statement;
– DIT: Depth of Inheritance Tree (CK), length of longest path from a given

class to the root class in the inheritance hierarchy.

For each metric, we computed five statistics on all the classes of a system,
aimed at giving a global measure of the value of the metrics for all the classes
of the system. These statistics are:

162 G. Destefanis et al.

– Mean: the mean of the metric;
– Median: the median of the metric;
– First Quartile: lower quartile = 25th percentile (splits off the lowest 25% of

data from the highest 75%);
– Third Quartile: upper quartile = 75th percentile (splits off the highest 25%

of data from the lowest 75%);
– Standard deviation of the metric.

We calculated the complementary cumulative distribution function (CCDF)
for each metric to assess the distribution type. All CCDF representations of met-
rics considered in this paper are available at http://agile.diee.unica.it/xp2014.
We have reported the most interesting in the results section.

4 Results

Table 1, shows caratheristics of our corpus in terms of development language,
Agile methodologies (Yes if used, No if not used), number of classes. In the high
part of the table there are systems developed using plan-driven methodologies,
in the lower part of the table are systems developed using Agile methodologies
(we mantain this convention in the other tables of the paper).

Table 1. Corpus description

System Language Agile # of Classes

Ant Java No 1670
Blender Python No 2276
Weka Java No 1934

FlossAR Java Yes 1441
Japs Java Yes 456
OpenBravo Java Yes 1513
OpenERP Python Yes 1741
Zope Python Yes 6852

The corpus is homogeneus enough considering the size (number of classes) of
analyzed systems, except for Japs and Zope. The first has 456 classes and the lat-
ter 6852 classes. This is a desired work set in order to test hypothesis considering
two outliers. As may be seen below (tabs. 2,4,5,6) there is no evident relation-
ship between number of classes and the average value of metrics considered. The
first result is related to metrics differences between systems developed in Java
and systems developed in Python. Python is a general-purpose, high-level OO
programming language. Its design philosophy emphasizes code readability and
its syntax allows programmers to express concepts in fewer lines of code than
would be possible in languages such as Java. The language provides constructs
intended to enable clear programs on both a small and large scale.

Software Metrics in Agile Software: An Empirical Study 163

Table 2 shows LOC statistics from the analyzed systems and the average
LOC (per class) of systems developed using Python are significantly lower than
systems developed in Java (regardless of the development methodology used). It
is well known that the LOC metric is well related with code defects [23], and the
Python language allows the developer to mantain a low level of LOC. Blender has
38.14 as average LOC value against 80.87 of Ant and 130,9 of Weka. Considering
the use of Agile methodologies tab. 2 shows that there is no influence: FlossAR
has 122.1 (higher than Ant), OpenBravo 137.5, and OpenERP 67.14 (higher than
Blender). OpenERP and OpenBravo are ERP systems (management systems)
and there are several large classes (in terms of lines of code) related to database
writing and reading operations.

Table 2. Lines of Code

System Min 1st Qu Median Mean 3rd Qu Max Sd

Ant 0 12 34 80.87 90 1586 137.52
Blender 1 9 18 38.14 37 1892 80.91
Weka 2 8 35 130.9 147 4078 247.27

FlossAR 2 41 96 122.1 142 6198 204.8
Japs 0 27.75 54.5 78.78 102.2 595 78.82
OpenBravo 1 24 65 137.5 156 3330 229.7
OpenERP 1 12 29 67.14 70 3686 143.15
Zope 1 4 11 33.57 33 1227 72.4

From Tab.3 we considered the number of lines related to code comments.
Tab.3 shows that systems developed using Python have a low average value of
CLOC (Blender 3.32, OpenERP 4.4, Zope 3.04) and one tentative proposal might
be that the design philosophy of Python language emphasizes code readability
reducing comments.

Table 3. Comment line of code

System Min 1st Qu Median Mean 3rd Qu Max Sd

Ant 0 1 13 45.45 47 1319 94.92
Blender 0 0 0 3.32 2 289 13.16
Weka 0 0 12 65.82 83.75 1141 115.77

FlossAR 0 4 23 36.14 47 1342 57.47
Japs 0 0 5 13.05 18 122 19.55
OpenBravo 0 0 3 21.98 18 870 59.7
OpenERP 0 0 0 4.4 2 384 17.85
Zope 0 0 0 3.04 1 303 11.94

The second result is that systems developed using Agile methodologies are
less commented than systems developed using plan-driven methodologies. Sup-
port for this interpretation comes from fast development and frequent releases

164 G. Destefanis et al.

Table 4. DIT

System Min 1st Qu Median Mean 3rd Qu Max Sd

Ant 0 1 2 2.29 3 7 1.23
Blender 0 1 1 1.03 1 6 0.61
Weka 1 1 1 1.89 2 7 1.38

FlossAR 1 1 1 1.71 2 5 0.87
Japs 1 2 3 2.55 3 6 1.08
OpenBravo 0 1 2 2.38 4 5 1.3
OpenERP 0 1 1 1.47 2 5 0.89
Zope 0 1 1 1.66 2 10 1.43

Table 5. RFC

System Min 1st Qu Median Mean 3rd Qu Max Sd

Ant 2 17 29 42.37 58 663 34.44
Blender 0 1 2 3.57 3 119 6.78
Weka 13 14 21 95.26 51.75 890 200.8

FlossAR 13 21 25 27.53 30 112 11.92
Japs 13 22 30 36.21 44 114 20.02
OpenBravo 1 18 33 47.01 93 135 32.73
OpenERP 0 1 3 13.33 12 150 26.47
Zope 0 1 4 11.77 12 251 23.64

Table 6. WMC

System Min 1st Qu Median Mean 3rd Qu Max Sd

Ant 0 2 4 8.08 10 125 10.82
Blender 0 1 2 2.39 2 84 4.41
Weka 0 1 3 8.63 11 127 12.5

FlossAR 0 4 9 10.85 13 99 10.2
Japs 0 3 6 8.74 12 55 7.72
OpenBravo 0 2 4 7.2 8 122 10.44
OpenERP 0 1 2 3.83 4 106 6.93
Zope 0 0 2 3.42 4 207 6.65

characterizing Agile methodologies. Data from Tab.4 shows that also considering
the DIT metric it is not possible to highlight the use of Agile methodologies. As
tab.4 shows, there is not a significant difference (Mean column) between the two
groups. Differences exist between software developed in Python and software
developed in Java.

Tabs.5 and 6 show that for the RFC and WMC metrics it is not possible to
distinguish the use of Agile methodologies. No significant differences were found
between the non-Agile set and Agile set. Also in this case, differences exists be-
tween software developed in Python and software developed in Java. Figs. 1,
2, 3, present the CCDF ditributions considering LOC, RFC and WMC. It is

Software Metrics in Agile Software: An Empirical Study 165

Fig. 1. LOC CCDF distributions

apparent from these figures that there are not differences (in terms of CCDF)
between software developed using Agile methodologies and software developed
using plan-driven methodologies. Considering Fig.6 that contains CCDF distri-
butions of the WMC metric, there is an evident difference between Blender and
the others systems. The difference is due to the language; Blender is developed
using Python and as can be seen from Tab.6, the mean value of WMC for sys-
tems developed in Python (Blender, Zope, OpenERP) is lower than the mean
value for systems developed using Java.

4.1 Discussion

According to these results, we can now answer to the research questions:
RQ1: Is it possible to recognize the use of Agile methodologies during
the software devolopment process analyzing software metrics?
The answer to this research question is negative. According to Tabs 2, 5, 6, 4
and considering Figs. 1,2,3 the metrics distributions of classes across systems are
approximately the same. These empirical results suggest that the use of Agile
methodologies and programming practices does not influence the distribution of
metrics in the classes.

166 G. Destefanis et al.

Fig. 2. RFC CCDF distributions

RQ2: Metrics distributions generated from software developed using
Agile methodologies are similar to metrics distributions generated
from software developed using plan-driven methodologies?
The answer is yes, as it is possible to see in Figs. 1,2, 3, the CCDF ditributions
are the same. Small differences exist in the RFC ditribution of Zope, but con-
sidering our data it is not possible to assert that there differences due to use of
Agile methodologies.
RQ3: It is possible to assert that metrics distribution generated from
Agile methodologies are related to better quality of software?
The answer is negative; metrics distributions are practically the same. In systems
developed using Agile methodologies, the LOC distribution does not demonstrate
major differences. Considering the average values for each software project un-
der consideration, we obtain similar values. Even in systems developed in Python,
which still requires fewer lines of code to express a concept (compared to Java), the
LOC distribution is similar to LOC distribution obtained from system developed
using Java.

Software Metrics in Agile Software: An Empirical Study 167

In conclusion, the development methodology does not seem to affect metric
distributions.

5 Threats to Validity

Threats to construct validity are related to the Agile methodologies not used dur-
ing the system’s development (like TDD and continuous integration). This may
influence our conclusion that the use of agile methodologies may improve soft-
ware quality, given that Agile development has been adopted partially. Threats
to external validity are related to generalization of our conclusions. With re-
gard to the system studied in this work we considered only open source systems
written in Java and Python and this could affect the generality of the study;
our results are not meant to representative of all environments or programming
languages. Commercial software is typically developed using different platforms
and technologies, with strict deadlines and cost limitation and by developers
with different experiences.

Fig. 3. WMC CCDF distributions

168 G. Destefanis et al.

6 Conclusions

In this paper, we presented an analysis of a set of software metrics, performed on
8 number of open source Systems (3 written in Python, 5 written in Java, 5 devel-
oped using Agile methodologies, 3 developed using plan-driven methodologies).
The size, in classes, of the analyzed projects ranges from 456 to 6852. Overall, we
analyzed 17882 classes. The motivation of this work was to understand metric
distributions in Agile open source software and to highlight potentially interest-
ing features of software metrics. Our analysis shows that the metrics distribution
among systems remains roughly the same as that found in non Agile systems.
Thus, the adoption of Agile methodologies does not influence such distribution.

We can conclude that software metrics may be helpful in evaluating the quality
of an Agile software project during the development process. A tool like the one
used in the present work could be used in order to monitor the different stages
of development and possibly to control the temporal evolution of each category
of metrics. Considering the natural adaptiveness of Agile development, it could
be useful to monitor software metrics in order to increase the software quality
and decrease the amount of defects.

References

1. Ant: http://ant.apache.org
2. Blender: http://www.blender.org/
3. Weka: http://www.cs.waikato.ac.nz/ml/weka/
4. Floss-AR: http://www.flosslab.it/node/20
5. JAPS: Java agile portal system, http://www.japsportal.org
6. OpenBravo: http://www.openbravo.com
7. OpenERP: https://www.openerp.com
8. Zope: http://www.zope.org
9. Adams, P.J., Capiluppi, A.: Bridging the gap between agile and free software ap-

proaches: The impact of sprinting. In: Multi-Disciplinary Advancement in Open
Source Software and Processes, p. 54 (2011)

10. Adams, P.J., Capiluppi, A., De Groot, A.: Detecting agility of open source projects
through developer engagement. In: Open Source Development, Communities and
Quality, pp. 333–341. Springer US (2008)

11. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

12. Chidamber, S.R., Darcy, D., Kemerer, C.F.: Managerial Use of Metrics for Object-
Oriented Software: An Exploratory Analysis. IEEE Transactions on Software En-
gineering 24(8), 629–639 (1998)

13. Basili, V.R., Briand, L., Melo, W.: A Validation of Object-Oriented Design Metrics
as Quality Indicators. IEEE Transactions on Software Engineering 22(10), 751–761
(1996)

14. Subramanyam, R., Krishnan, M.S.: Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity: Implications for Software Defects. IEEE Transactions
on Software Engineering 29(4), 297–310 (2003)

http://ant.apache.org
http://www.blender.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.flosslab.it/node/20
http://www.japsportal.org
http://www.openbravo.com
https://www.openerp.com
http://www.zope.org

Software Metrics in Agile Software: An Empirical Study 169

15. Concas, G., Marchesi, M., Murgia, A., Pinna, S., Tonelli, R.: Assessing traditional
and new metrics for object-oriented systems. In: Proceedings of the 2010 ICSE
Workshop on Emerging Trends in Software Metrics, pp. 24–31. ACM (2010)

16. Concas, G., Marchesi, M., Pinna, S., Serra, N.: Power-laws in a large object-
oriented software system. IEEE Transactions on Software Engineering 33(10), 687–
708 (2007)

17. Brito e Abreu: The MOOD Metrics Set. In: Proc. ECOOP 1995 Workshop on
Metrics (1995)

18. Lorenz, M., Kidd, J.: Object-oriented software metrics: a practical guide. Prentice-
Hall, Inc., Upper Saddle River (1994)

19. Agile Manifesto, http://www.agilemanifesto.org
20. Mohammad, A., Li, W.: An empirical study of system design instability metric

and design evolution in an agile software process. Journal of Systems and Soft-
ware 74(3), 269–274 (2005)

21. Alshayeb, M., Li, W.: An empirical validation of object-oriented metrics in two
different iterative software processes. IEEE Transactions on Software Engineer-
ing 29(11), 1043–1049 (2003)

22. Olague, H.M., et al.: Empirical validation of three software metrics suites to predict
fault-proneness of object-oriented classes developed using highly iterative or agile
software development processes. IEEE Transactions on Software Engineering 33(6),
402–419 (2007)

23. Zhang, H.: An investigation of the relationships between lines of code and defects.
In: IEEE International Conference on Software Maintenance, ICSM 2009. IEEE
(2009)

24. Dorairaj, S., Noble, J., Malik, P.: Understanding Team Dynamics in Distributed
Agile Software Development. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp.
47–61. Springer, Heidelberg (2012)

25. Bachmann, A., Bernstein, A.: Software process data quality and characteristics:
a historical view on open and closed source projects. In: IWPSE-Evol 2009 Pro-
ceedings of the Joint International and Annual ERCIM Workshops on Principles
of Software Evolution (IWPSE) and Software Evolution (Evol) Workshops. ACM
(2009)

26. Dyb̊a, T., Dingsyr, T.: Empirical studies of agile software development: A system-
atic review. Information and Software Technology 50(9), 833–859 (2008)

27. Concas, G., Marchesi, M., Destefanis, G., Tonelli, R.: An empirical study of soft-
ware metrics for assessing the phases of an agile project. International Journal of
Software Engineering and Knowledge Engineering 22, 525–548 (2012)

28. Tasharofi, S., Ramsin, R.: Process Patterns for Agile Methodologies. In: Ralyté, J.,
Brinkkemper, S., Henderson-Sellers, B. (eds.) Proceeding of: Situational Method
Engineering: Fundamentals and Experiences, Geneva, Switzerland, September 12-
14. IFIP – The International Federation for Information Processing, vol. 244, pp.
222–237. Springer, Bostan (2007)

29. Martin, R.: Agile Software Development: Principles, Patterns, and Practices. Pren-
tice Hall PTR, Upper Saddle River (2003)

30. Hoda, R., Noble, J., Marshall, S.: How much is just enough?: some documentation
patterns on Agile projects. In: Proceedings of the 15th European Conference on
Pattern Languages of Programs (EuroPLoP 2010), Article 13, 13 pages. ACM,
New York (2010)

http://www.agilemanifesto.org

170 G. Destefanis et al.

31. Martinez, J., Diaz, J., Perez, J., Garbajosa, J.: Software Product Line Engineering
Approach for Enhancing Agile Methodologies. In: Abrahamsson, P., Marchesi, M.,
Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 247–248. Springer, Heidelberg
(2009)

32. Olague, H.M., et al.: An empirical validation of objectoriented class complexity
metrics and their ability to predict errorprone classes in highly iterative, or agile,
software: a case study. Journal of Software Maintenance and Evolution: Research
and Practice 20(3), 171–197 (2008)

33. Hartmann, D., Dymond, R.: Appropriate agile measurement: Using metrics and
diagnostics to deliver business value. In: Agile Conference 2006. IEEE (2006)

34. Frank, M., Martel, S.: On the productivity of agile software practices: An industrial
case study (2002) (retrieved september 20, 2004)

35. Concas, G., Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R.: Micro Patterns in
Agile Software. In: Baumeister, H., Weber, B. (eds.) XP 2013. LNBIP, vol. 149,
pp. 210–222. Springer, Heidelberg (2013)

36. Olague, Hector, M., et al.: An empirical validation of objectoriented class com-
plexity metrics and their ability to predict errorprone classes in highly iterative,
or agile, software: a case study. Journal of Software Maintenance and Evolution:
Research and Practice 20(3), 171–197 (2008)

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 171–186, 2014.
© Springer International Publishing Switzerland 2014

Visualizing Testing Activities to Support Continuous
Integration: A Multiple Case Study

Agneta Nilsson, Jan Bosch, and Christian Berger

Software Engineering Division, Dpmt of Computer Science and Engineering, Chalmers
University of Technology, University of Gothenburg, Gothenburg, Sweden

Abstract. While efficient testing arrangements are the key for software
companies that are striving for continuous integration, most companies struggle
with arranging these highly complex and interconnected testing activities. There
is often a lack of an adequate overview of companies’ end-to-end testing
activities, which tend to lead to problems such as double work, slow feedback
loops, too many issues found during post-development, disconnected
organizations, and unpredictable release schedules. We report from a multiple-
case study in which we explore current testing arrangements at five different
software development sites. The outcome of the study is a visualization
technique of the testing activities involved from unit and component level to
product and release level that support the identification of improvement areas.
This model for visualizing the end-to-end testing activities for a system has
been used to visualize these five cases and has been validated empirically.

Keywords: continuous integration, software testing, and visualization.

1 Introduction

Software development companies are increasingly striving towards continuous
integration in their efforts to deliver high quality software faster and faster.
Continuous integration is an agile development practice, which has become
increasingly popular with the growing agile movement [1], [2]. The agile movement
advocates flexibility, efficiency, and speed to meet the ever-changing customer
requirements and market needs. Continuous integration is about integrating software
parts in order to assembling a complete system continuously, i.e. frequently, and
throughout all phases in the development cycle [3].

The anticipated benefits of continuous integration are e.g. to improve release
frequency and predictability, increase developer productivity, and improve
communication [4]. However, there is currently no consensus on continuous
integration as a single homogeneous practice, and there are great differences of
experienced benefits in both literature and practice [4]. Many software development
companies are struggling to achieve continuous integration and the benefits they were
expecting.

172 A. Nilsson, J. Bosch, and C. Berger

One common and well-known bottleneck when introducing continuous integration
is testing [1], particularly for large and complex software with many dependencies
such as software intensive embedded systems. Efficient testing arrangements are the
key for achieving continuous integration, and arranging these are highly complex. The
complexity faced by developers and test engineers often leads to problems such as
double work, slow feedback-loops, too many issues still present in the post-
development, disconnected organizations, and unpredictable release schedules due to
issues identified lately. In this multiple case study, we explore current testing
arrangements at five different software development sites (four companies). We aim
to improve our understanding of how testing activities are arranged, and how to
support companies in their efforts towards continuous integration by providing right
communications means about test efforts throughout the process.

The rest of the paper is structured as follows: In Section 2, related work is
discussed; Section 3 describes the approach, which we have followed to realize our
case study with five different development sites; Section 4 summarizes the challenges
in testing, with which the companies that we have investigated are faced; Section 5
introduces our “CIViT” Continuous Integration Visualization Technique that helps
companies to describe intuitively their testing efforts. Section 6 validates our CIViT
model before our article closes with a conclusion and an outlook for future work.

2 Background and Related Work

Continuous integration is the consequent continuation of applying unit tests and
automated regression testing as quality assurance during the software development. In
its most agile variant, teams evolve towards test-driven (TDD) or even test-first
development, where new code is only added to fulfill the previously added test cases,
which formally describe the function to be realized [5]. Large companies even of the
size of Google are nowadays not only able to implement the concept of test-driven
development for a large variety of products ranging from “software only” up to
“software/hardware” products”; they are also able to coach and improve their product
development teams towards a better project hygiene and better and faster ways of
testing [6].

The goal for this paper is to make the currently applied testing activities explicit to
all involved stakeholders. Therefore, a suitable visualization technique is the basis for
the communication between these different parties. To evaluate existing visualization
techniques, we addressed the following research question: Which visualization
techniques for testing activities are available that (criterion 1) focus on the entire
product deployment/release process, (criterion 2) are proven to be successfully
applicable in industrial contexts, and (criterion 3) considered to be the important
decision support methodology to improve the overarching testing processes towards
continuous integration?

We re-evaluated the results from the systematic literature review [4], performed by
one of the co-authors together with another researcher, to address the aforementioned
research question. Holck and Jørgensen [3] analyze the continuous integration process

 Visualizing Testing Activities to Support Continuous Integration 173

on the example of open source software (OSS) FreeBSD (operating system) and
Mozilla (web browser suite). Due to the different nature of OSS, which – as they state
– is “focusing on stability and performance” in their examples, a comparison to
business-value driven commercial products is difficult. Therefore, the aforementioned
three criteria are not applicable to their examples. Furthermore, their work does not
suggest a taxonomy for describing and visualizing the dependencies and drawbacks of
the currently applied software quality assurance process.

A number of studies report on various ways to communicate build status. In the
work from Sturdevant [7], the adaptation of the freely available tool CruiseControl is
outlined with the focus of the support for test process itself. Concerning the
aforementioned criteria, the author focuses on end-to-end testing (criterion 1) applied
at Jet Propulsion Labs (criterion 2) mainly considering cost-efficiency of testing
(criterion 3). However, in contrast to our work, no specific visualization technique is
suggested or applied with different dimensions to outline deficiencies of the
surrounding test process.

Downs et al. [8] provide guidelines for build monitoring systems in their work.
They focus on how problems from broken builds or defects committed to a
centralized repository are utilized within a software development team. Concerning
our research question, they investigate only communication among developers and
testers (criterion 1) by conducting interviews with software developers and testers
(criterion 2) to derive guidelines how communication channels between developers
and testers should be utilized (criterion 3). In contrast to our work, they do not focus
on visualization of inefficiencies of the overall test process.

Stolberg presents in his work a technical description of a continuous integration
framework [9] by following Fowler’s checklist of 10 practices for continuous
integration. Thus, he was able to visualize the status quo of the quality assurance
process before and after implementing a continuous integration environment. Thus,
his work focuses on the entire test and deployment process (criterion 1) using an
experience report within an industrial setting (criterion 2). As results, continuous
integration improved the quality assurance (criterion 3), however in contrast to our
work, he did not propose a visualization scheme to unveil testing process bottlenecks.

Kim et al. present in their works [10], [11] a technical description of a test
automation framework by applying the tool CruiseControl. They mainly focus on the
test automation technology (criterion 1) applied to an industrial context (criterion 2)
to improve the communication between involved stakeholders (criterion 3). However,
they do not visualize the test process and its inefficiencies at large as we propose in
our work.

Hoffman et al. [12] describe in their work how the tool chain
cmake/ctest/cdash/cpack has been applied to a research lab of the Department of
Defense. This work was mainly driven by employees of the supporting company of
the aforementioned tools and thus, should be considered as an experience report. With
respect to our research question, they focus on all aspects of the test and deployment
process but from the tool support perspective (criterion 1) in the context of a research
lab for high-performance computing (criterion 2). They conclude that the proposed
tool chain is effective (criterion 3), however, they do not describe how to visualize the
current status of the test process at large to derive improvement initiatives.

174 A. Nilsson, J. Bosch, and C. Berger

Ablett et al. [13] present “BuildBot” as a means to enforce the fixing of broken
builds. With respect to our research question, they focus only on results from a
continuous integration server (criterion 1) evaluated among a group of students
(criterion 2). Thus, no evidence is given for industrial benefits (criterion 3). In
comparison to our work, they do not focus on the overall test process and a
subsequent visualization of its dependencies and deficiencies.

Yuksel et al. [14] present a technical description of a test automation framework.
Regarding the aforementioned criteria, they are partly focusing on the entire process,
which still includes some manual tasks (criterion 1), to ensure the quality of multi-
platform control system (criterion 2); they achieve an improved quality of the code
but they do not visualize interdependencies or deficiencies of the overall test process.
However, they summarize the status of automation and periodicity in a tabular
representation, which includes similar dimensions as we propose for our visualization
technique. In contrast to our technique however, they do not describe the test process
in a comparable granularity including dependencies to derive actions for the
responsible management for improving the test process.

Lacoste describes in his work the introduction of continuous integration for the tool
“LaunchPad”, which is used by several open source software projects [15].
Concerning our research question, his work focuses to run test-suites before
integrating newly added features (criterion 1) by applying them to the widely used
software “LaunchPad” (criterion 2). As a result, the testing process could improve its
efficiency (criterion 3) but in contrast to our work, no visualization of
interdependencies and bottlenecks is provided.

Goodman and Elbaz provide an experience report [16] focusing on the entire
deployment/release process (criterion 1) for an industrial project (criterion 2). Their
work confirms the need of an adequate visualization scheme for the test process to
make inefficiencies in the infrastructure explicit to the management e.g. to take action
on improvement initiatives (criterion 3). However, they do not propose a visualization
methodology as we do in our work.

Downs et al. analyze the impact of ambient systems to notify about the build status
[17]. They primarily focus on the influence of notification means like lighting devices
on the quality of commits from developers, i.e. if the number of failed builds
decreases while the total number of all commits is still similar. With respect to our
research question, they focus only on build status notification (criterion 1) by
evaluating their hypotheses among team members of an agile team in an industrial
setting (criterion 2) to investigate the impact of these ambient devices within a
software development process (criterion 3). However, a visualization scheme as
proposed by our work is neither outlined nor addressed.

To summarize our findings on the aforementioned research question, continuous
integration as the fundamental principle of the software development, testing, and
deployment process in agile teams is implemented increasingly. However, we are not
aware of any work, which proposed a structured and easily applicable test process
description and classification scheme, which unveils interdependencies and
bottlenecks of the overarching test process to derive test process improvement
initiatives. Furthermore, no other work exists that evaluates such a taxonomy
systematically in a multiple case study.

 Visualizing Testing Activities to Support Continuous Integration 175

3 Research Approach

In this paper, we report from a multiple case study [18] involving five software
development sites from four companies that are striving towards continuous
deployment of software. The four companies are large, developing complex software
intensive embedded systems. The companies range in size from around 10.000 to
115.000 employees of which the number or R&D staff ranges from a few thousand to
close to 25.000. Depending on the company, from 30% to more than 80% of the R&D
staff work with software. As most of the existing research and industrial practice
related to continuous integration is concerned with, typically, smaller companies in
the SaaS and Web 2.0 domain, we believe that studying continuous integration at
embedded systems companies is particularly relevant.

In our study, we have focused on specific sites within these companies with
demarcated products and projects. Two companies are within the automotive industry,
one company is within the defense industry, and one company is within the telecom
industry. The first three companies can be described as largely doing traditional
development with various degrees of agile practices established and moving towards
continuous integration. The fourth company can be described as a company with
some degree of established practices for continuous integration. The companies’
existing testing infrastructure, tools, and ways of working did not sufficiently support
a transition to continuous integration.

This research is conducted within the Software Center1, a research center for
collaboration between Chalmers University of Technology, the University of
Gothenburg, Malmö University and seven software-intensive companies in the
Nordics with the aim to conduct research projects together.

The research question we focused on was: How can we visualize end-to-end testing
activities in order to support the transformation towards continuous integration?
With end-to-end testing, we refer to all code, from code written by individual
engineers to product release. The aim of this research is to gain insights into how to
support the transition towards continuous deployment in the software development
industry. The transition from traditional software development to continuous
deployment is dependent on and intertwined in complex organizational structures and
processes, which makes it particularly suited for a case study approach [18], [19].

Data collection was conducted through group-interviews, workshops, and
complementing email correspondence to ensure triangulation of data [18], [20]. We
conducted group interviews [21] at each company site, using a semi-structured
interview guide, each lasting approximately 2 hours, which has been recorded and
transcribed afterwards. Each group comprised of 5-6 people, and we conducted the
interviews with both questions answered in a round-robin-style to make sure that all
participants were heard, as well as facilitating ample free discussions as needed. The
members of each group were working together and knew each other well in order to
be sufficiently comfortable to discussing freely together. We covered questions on
what testing activities each site were conducting, the frequency of these and how long

1
 www.software-center.se

176 A. Nilsson, J. Bosch, and C. Berger

the feedback loop for each testing activity was, and their experiences of challenges
and enablers during their processes.

We arranged two joint workshops with representatives from the various research
sites to jointly share and discuss the tentative results from the ongoing research, as
well as to further discuss their situations, reflections, and ideas of how to proceed.
Each workshop lasted approximately three hours, and the involved researchers took
careful notes of these discussions.

In the data analysis, we focused on synthesizing the data from the different sites by
identifying common denominators in their descriptions of their current testing
activities. The two dimensions scope, and periodicity emerged during the group
interviews as a common way of discussing the sites’ testing activities. Each site
described their testing activities starting from their lowest level, continuing with the
subsequent levels until the released product level. We also focused on understanding
how frequently these testing activities were conducted and how long time their
feedback loops took. In the analysis, we translated the local labels used at the
different sites to more general levels of scope (referred to as component, subsystem,
partial product, full product, release, customer), and similarly a more general
periodicity (referred to as immediate/minutes, hour, day, week, month, once/release),
to create the CIViT model as presented in this paper that captures and reflects the
overview of each site. Having identified the two dimensions and the various labels for
these dimensions, we iteratively tried out various ways to illustrate the current testing
activities at a site. Eventually a box with four squares emerged to represent the
different testing activities (referred to as functional, quality, legacy, edge). In order to
illustrate coverage of these testing activities, we introduced a color scheme, and a
similar color scheme was introduced to illustrate the level of automation.

As a first validation of the model, we interpreted the data from each company and
created a CIViT model of their current testing activities. These models were then
shared with each company site and confirmed as an accurate representation of their
current testing activities. Some minor adjustments were made based on discussions
with some of the sites about the interpretations of some of testing activities, mainly
regarding interpretation of data such as the level of coverage or regarding the scope
whether it would be regarded as subsystem or partial product in their context.

A second validation was conducted when each company used their CIViT model to
identify a box to focus on for improvement. Each site found the model helpful as a
basis for discussions about the current situation, and to decide what area to target and
in what way, e.g. increase periodicity, increase scope, increase coverage in any of the
testing areas, or increase the level of automation. The selected improvement initiative
was followed-up and again the model was used to identify the intended initiative and
the outcome of the initiative.

4 Problem Statement

Verification and validation of software systems through testing of software is a
widespread activity that has been studied extensively over the last decades [22].

 Visualizing Testing Activities to Support Continuous Integration 177

Traditionally, in the waterfall model of development, the testing activities were
performed at the end of the development process, after the implementation of the
software had been completed and the organization would move on to testing and fault
fixing. With the increasing popularity of agile development methods, industrial
practice, and consequently research, has moved towards more frequent testing during
the development cycle as the ambition is to being able to deliver at the end of each
agile sprint, i.e. every 2-4 weeks. Some companies have even adopted approaches
where every check-in of code results in the release of software, resulting in dozens of
releases of the software per day [23].

The companies studied in this paper, which predominantly operate in the software
intensive embedded systems industry, have had similar developments towards agile
practices over the last decade. Some testing efforts are performed more frequently and
in a more automated fashion. However, due to the complexity and size of the systems
developed by these companies, it became clear that several challenges around the
verification and validation of the systems produced by these companies remained.
These challenges can be summarized as follows:

No End-to-end Overview of Testing in Companies: During the interviews at the
companies, it became abundantly clear that very few people, if anyone in
the company, had a holistic, complete overview of all the testing activities going on in
the development process, ranging from the individual developer checking in code to
the release of a system to customers. Everyone involved in the verification process
understood their own part really well and, by and large, knew who they received
software assets from, whom to deliver these assets after completing their task and
how to report issues. However, there was very limited understanding of the end-to-
end process. This problem resulted in several additional problems.

Significant Duplicate Testing Efforts: Due to the lack of understanding of the type
and quality of testing performed by others and the ambition to minimize the number
of faults that slip through, every activity in the testing process repeated significant
amounts of testing already performed by others. This caused both longer testing
cycles and a reduction of focus on the areas of testing best performed in the current
step in the end-to-end verification process.

Slow Feedback Loops: In all interviews, the challenge of long feedback loops was
raised as a key challenge. Even though virtually all companies employ forms of unit
testing by individual engineers that give feedback within minutes, receiving feedback
on the quality of the code from all perspectives, i.e. correct functionality, not breaking
any legacy functionality and achieving the desired quality requirements, would
typically take several weeks if not months. As an illustrative anecdote, one engineer
received testing results about a month after returning from a six-month paternity leave
on code that he had written before his leave.

Late Testing of Quality Attributes: A common challenge at the interviewed case
study companies is that testing of quality attributes of the system, e.g. performance,
robustness, upgradability, etc., took place late in the development cycle and that
identified issues, e.g. significantly degraded performance, caused unpredictable
development efforts late in the process at a time when the organization can least
afford it.

178 A. Nilsson, J. Bosch, and C. Berger

Ad-hoc, Tactical Improvement Efforts: In the case study companies, the
verification activity was viewed as a challenge that required improvement efforts.
However, the improvement efforts that were presented tended to be mostly tactical in
nature, driven in a bottom-up fashion by a team responsible for one step in the process
and based on limited understanding of the end-to-end nature of the verification
process and the key issues.

When analyzing the data from the interviews at the case study companies for root
causes, we realized that the problems that were identified share a common root cause
that, if addressed, alleviates these problems significantly: the lack of a holistic, end-
to-end understanding of the testing activities and their periodicity, i.e. the frequency
of executing the testing activities. Once the organization has a solid understanding of
these issues, changing when and how testing activities are performed becomes
significantly easier as well as it allows for much easier understanding of the
implications of changes.

Based on our analysis of root causes, in the next section we present our solution for
addressing the lack of holistic, end-to-end understanding. The model has been
validated with the case study companies and currently used to drive strategic
improvement activities in testing.

5 Continuous Integration Visualization Technique (CIViT)

Customers expect quality from the products that they receive from the manufacturer
or system provider. Verification has been part of the development of software
intensive systems for as long as we have written code and interestingly the practices
around testing have evolved only slowly. In the case study companies, we have
identified that many testing activities take place in different organizations with
different coverage of the requirements of the system. In response to this, we have
developed a visualization technique called CIViT to show all testing activities
performed around a product or product platform. The visualization technique is used
by the companies to address the challenges that were discussed in the previous
section.

Table 1 presents the different testing activities and their frequency at each
participating site. The suggested dimensions “product granularity” and “periodicity”
evolved during our workshops with the industrial partners. Based on the companies’
feedback and reports, we could cluster their technical and organizational approaches
into these two dimensions. Afterwards, we could also validate these dimensions with
the work from Yuksel et al. [14], who are using a similar classification scheme but
only in tabular form.

Next, we first introduce the types of testing that are visualized. Subsequently, we
describe the scopes of the testing activities. Then, the periodicity of the testing
activities is discussed. The section is concluded with an illustrative example of a
CIViT model from one of the case study companies followed by a summary.

 Visualizing Testing Activities to Support Continuous Integration 179

Table 1. Research sites and their key testing activities

Research Site Testing activities, frequency, and time for feedback loop

Site 1 V1 (SW, minutes)

V2 (SW, minutes)

V3 (SW + HW, 2 weeks, 8 weeks)

V4 (SW + HW, 8 weeks)

V5 (System, 10 weeks)

V6 (Real product)
Site 2 Design (unit/component/system level, seconds, 30m minutes, 8 hours)

Function (system level, 8 -12 hours, 20 hours)

System (system level, 4 hours, 1 week, x weeks)

Integration (network, weeks)

Solution ()

Customer ()
Site 3 Individual (unit/component, seconds)

Team (unit/component/function/load, 10 min)

Logical product (unit/component/function/full legacy, minutes; 2 hours, 3-30 days)

Real product (feature/integration, daily, weekly, 12-14 weeks)

Release (acceptance, year, once, 10 days)

Customer ()
Site 4 Unit (seconds, minutes, daily)

Lab (function,

Subsystem (integration/verification, weeks, months)

System (integration, weeks, months)

Release (acceptance, two times)

Site 5 Unit (seconds, minutes)

Subsystem (months)

System (six months)

Release (six months)

5.1 Types of Testing

CIViT is concerned with four types of testing: new functionality, legacy functionality,
quality attributes, and edge cases. These types of testing are described in more detail
below.

New functionality testing is concerned with testing the functionality that is
currently under development. As agile methods typically encourage or demand test-
driven development, the test cases resulting from TDD fall into this category.

The second category of testing is concerned with legacy functionality, i.e.
functionality that has already been built and operates according to its specification.
The importance of testing legacy functionality is driven from the desire to have
expansion in the functionality that the system provides without relapses. This requires
frequent testing of legacy functionality to ensure that ongoing development efforts
have not caused unwanted side-effects where new functionality works but legacy
functionality now fails to function.

180 A. Nilsson, J. Bosch, and C. Berger

Quality attributes constitute the third category of testing. Quality attributes such as
performance, reliability, safety, and security are affected by ongoing development and
it is important to ensure that these quality attributes do not start to deteriorate below
the minimal acceptable level. Similar to the case of legacy functionality, the intent of
frequent testing of quality attributes is to guarantee that the system continues to
satisfy the quality requirements and to avoid a situation where late in a development
cycle significant effort has to be dedicated to improving deteriorated quality attribute
levels.

Finally, there is a category that is not often mentioned in the literature, but that,
based on the interviews at the case study companies, we have experienced as
important: edge cases. Edge case testing is concerned with testing really unlikely or
weird situations that, often, originate from faults that slipped through to customers
and that were discovered after significant investigative effort. The company obviously
wants to avoid similar situations in the future and consequently adds test cases to test
for these specific exceptional situations.

In Fig. 1, we show the four squares forming a bigger square. The “F” stands for
new functionality and the “L” for legacy functionality. The “Q” represents quality
attributes and “E” edge cases. Each smaller square can have one of five colors,
ranging from red to green. The color of the square refers to the level of coverage of all
test cases in the specific square. In the figure, the mapping between coverage and
color-coding is shown in the upper right.

Furthermore, the line around the four squares can have one of three colors, again
ranging from red to green, which indicates the level of automation of the testing. The
lower right part of the figure shows the mapping between colors and level of
automation.

Fig. 1. The four types of testing in the CIViT model with explained color coding and mapping
to coverage and automation. Red equals no coverage/no automation, orange equals partial
coverage/automation, and green equals complete coverage/fully automated.

5.2 Scope of Testing

The second aspect of CIViT is the scope of testing. Scope, in this case, refers to the
segment of the overall system that is tested as well as the level of trust that can be
associated with the test results. CIViT is concerned with five main levels, ranging
from a component, a subsystem, a partial product, the full product, on-site release

 Visualizing Testing Activities to Support Continuous Integration 181

testing and, finally, customer-site release testing. Below we describe each scope in
more detail:

Component: A component or module is a part of the system that can be the scope of
an individual engineers or a small team, in case of pair-wise programming. At this
level, typically unit testing takes place.

Subsystem: In the case of component teams, a subsystem is often the scope of
responsibility for a team or a small set of teams. At the subsystem level, the types of
test cases are broader in the area of covered functionality and less white-box than the
previous level.

Partial Product: Especially in the case of embedded systems, system level testing
can only take place realistically in case some parts of the mechanics and hardware of
the system are available and other parts are simulated. Frequently, companies build
test rigs that combine the most important aspects in a structure that allows for testing
the primary functional and quality requirements.

Product: No matter how accurate a test rig is in terms of providing a realistic testing
environment, there still are significant needs to test the full product with all parts
present, including mechanics, hardware and all software. The challenge with product-
level testing is that the cost of providing the full product often is quite high and not all
teams can have full and continuous access to the product. Also, in cases where the
hardware and mechanics are developed in parallel with the software, the full product
typically becomes available only late in the development process.

Release: Organizations are keen to minimize the number of issues that reach the
customer and in response often create a separate release organization that tests the full
product for all aspects that are of importance to the customer. The release
organization is concerned with completeness of testing, including edge cases and
quality attributes of secondary priority. Typically, the focus of release testing is on
completeness and ensuring the expected functionality and quality at the customer site.

Customer: Finally, in the case of lower volumes, but highly priced embedded
systems, the company often installs the system or product at the customer site and
performs testing activities to ensure the correct operation of the system in the context
of the customer.

Finally, it is important to recognize that the levels describing the scope of testing
are not mutually exclusive, but rather the contrary. In practice, there are significant
testing activities at each or at least at most levels.

5.3 Periodicity of Testing

Finally, CIViT is concerned with the periodicity of testing, which we define as a
combination of the frequency of a testing activity and the time between the start of the
testing activity and the availability of feedback from that testing activity. Again, we
identify three levels of periodicity, i.e. “in the development workflow” (minutes and

182 A. Nilsson, J. Bosch, and C. Berger

hours), “disrupting the development workflow” (days and weeks) and finally “outside
the development workflow” (months and once per release).

Although the case study companies were quite pleased with giving feedback within
days or one or a few weeks, the fact is that this is experienced as disruptive to the
development workflow. In this case, the team working on a feature typically has
moved on to other tasks and errors that are returned after days or weeks require the
team to return to work that had already been completed. At this point, the engineers
that originally implemented the feature need to stop working on what they were
concerned with, make a context switch, make the change, submit the updated code
and return to the task that they were working on now.

The even longer periodicity, i.e. months or once per release, often results in high-
level, more complicated system errors that cannot be allocated to a team that did the
original implementation. Hence, these tasks are assigned to dedicated teams or
randomly to the development teams. Focusing on these errors is outside the normal
development workflow in that the teams are not temporarily disrupted from
development, but rather perform error fixing for a period of time without other tasks
in the pipeline.

Finally, rather than providing exact feedback loop length, CIViT is concerned with
indicating the order of magnitude of the feedback loop. For instance, the point
“hours” indicates from one to a small number of hours, but clearly less than a day.

Fig. 2. An example instantiation of the CIViT model from one of the participating companies

5.4 Illustrative Example

To illustrate the CIViT model, below we show an example from one of the case study
companies in Fig. 2. One can derive significant information from this chart, including
the following:

• The organization uses automated unit testing for some parts of the
functionality at the component level.

• At the subsystem level, automated testing of part of the functional, legacy
and quality requirements takes place.

 Visualizing Testing Activities to Support Continuous Integration 183

• The company does not employ partial product testing, but rather performs
testing at the full product. Different tests take place every couple of hours,
every day or days and every week or small number of weeks.

• Manual testing of all requirements and edge cases takes place once per
release.

• Finally, at the customer site a subset of the requirements is tested to
guarantee correct “in situ” operation of the system.

5.5 Summary

The CIViT model aims to visualize the testing activities that an organization deploys
to achieve the desired quality levels during the development of a product or system.
The model was developed in response to the observation that many researchers and,
sometimes, even practitioners assume that the validation of a system or product
occurs in a single location in the timeline of development as well as in the
organization. In practice, this is obviously more complicated and the CIViT model
visualizes this complexity while providing a simple overview that can be used for
selection and prioritization of improvement activities.

6 Validation

In this study, we aim to improve our understanding of how testing activities are
arranged, and how to support companies in their efforts towards continuous
integration. We identified a number of challenges that remain around the verification
and validation of the systems produced by the companies involved in this study. We
developed the CIViT as a solution for addressing these challenges:

No End-to-end Overview of Testing in Companies: The CIViT model has been
validated in a two-step process by all five cases in this multiple case study. As a first
validation step, the data from each company were carefully analyzed and translated
into the CIViT model for each company. Each company has reviewed and confirmed
their model as a fair reflection of their end-to-end testing activities at the studied site.
The feedback from the companies was positive that the model provides a useful
overview of their end-to-end testing activities. The model helps to gain a clear
overview and understanding of the end-to-end process of testing activities. As a
second validation step we used the model for each company to identify what testing
activities in their model that they would like to focus on to improve. Each company
considered the model helpful as a basis for discussion about the current situation, and
to decide what area to target on and in what way, e.g. increase periodicity, increase
scope, increase coverage in any of the testing areas, or increase the level of
automation. Each company selected a specific box in their model and explicated in
what way they aimed to improve the selected testing activities, for example by
increasing periodicity from e.g. month to week, or by increasing scope from e.g.
subsystem to partial product. We followed-up the improvement initiative again using

184 A. Nilsson, J. Bosch, and C. Berger

the model to discuss the intended initiative and the outcome of the initiative, and
again the model proved useful as a basis for these discussions.

Significant Duplicate Testing Efforts: The overview provided by the CIViT model
enables useful discussions that reveal what type and quality of testing that are
performed within the settings. The study shows that this is helpful to identify
unintended and undesired duplicate testing efforts, as well as to ensure that sufficient
testing efforts are in place at the various levels of the end-to-end process.

Slow Feedback Loops: In a similar way, the CIViT model both visualizes directly
the periodicity of the involved testing activities and consequently reveal their
feedback loops in the settings, and enables useful discussions about what would be
reasonable and desired times of feedback loops within the end-to-end process of
testing activities.

Late Testing of Quality Attributes: The CIViT model also directly visualizes what
different types of testing that are dealt with in the involved testing activities. For
example, the study shows that this helps to reveal to what extent the testing of quality
attributes, e.g. performance and robustness, takes place and when. As this is
commonly dealt with late in the development cycle, the companies find the CIViT
model useful to visualize the current end-to-end process of the various testing
activities and that it serves as a useful basis for discussing reasonable and desired
ambitions regarding the testing of quality attributes.

Ad-hoc, Tactical Improvement Efforts: Based on the overview that the CIViT
model provides, it also enables useful discussions of the testing activities that are
performed within the settings regarding what areas would be suitable to improve and
how. This helps the companies to move away from the typical ad-hoc approach
towards improvement efforts and have a better understanding of the end-to-end
verification process and the key issues when they make decisions about what to do
and how.

7 Conclusions and Future Work

In this work, we have collaborated with five software development sites from four
companies affiliated with the Software Center. We have unveiled weaknesses and
hurdles in the companies’ evolution towards continuous integration to meet their
customers and markets’ needs.

Based on our findings, we have developed our holistic Continuous Integration
Visualization Technique CIViT to provide a useful overview of end-to-end testing
activities. Thus, engineers, testers, and managers have been enabled for the first time
according to our studies on related work to see, understand, and act accordingly on an
integrated and overarching test process.

The validation of the CIViT model carried out the involved companies confirms
that the model serves as a solution to the lack of a holistic, end-to-end understanding
of the testing activities and their periodicity. It also confirms that by enabling the
organization a solid understanding of the end-to-end testing activities, it enables the

 Visualizing Testing Activities to Support Continuous Integration 185

organizations to identify how to best change their testing activities and to
understanding the implications of changes. Companies that participated, as well as
additional companies, have been using the model after the completion of the study
and claim that the model is particularly useful as a basis for discussion, which help to
identify problems and to reason about suitable measures.

While CIViT is our first step towards a simple and intuitive yet powerful
visualization and test process improvement techniques, further aspects need to be
addressed and investigated. As immediate next steps, we want to further analyze the
motivations behind a selected test process improvement initiative. Furthermore, we
need to understand commonalities and differences in the charts from the involved
companies to derive guidelines where to focus on improvements and how to organize
them.

Acknowledgments. This study would not have been possible without the help of the
involved partners from the Software Center. Thus, we would like to thank all
engineers, testers, and managers who participated in our study.

References

1. Fowler, M.: Continuous integration (2007), http://martinfowler.com/
articles/continuousIntegration.html

2. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C.,
Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for the Agile Software
Development (2001)

3. Holck, J., Jørgensen, N.: Continuous Integration and Quality Assurance: A Case Study of
Two Open Source Projects. Australian Journal of Information Systems 11(1), 40–53
(2004)

4. Ståhl, D., Bosch, J.: Modeling continuous integration practice differences in industry
software development. Journal of Systems and Software 87, 48–59 (2014)

5. Beck, K.: Test Driven Development: By Example. Addison-Wesley Professional (2002)
6. Whittaker, J.A., Arbon, C., Carollo, J.: How Google Tests Software. Addison-Wesley

Professional (2012)
7. Sturdevant, K.: Cruisin’ and Chillin’: Testing the Java-Based Distributed Ground Data

System ‘Chill’ with CruiseControl. In: Aerospace Conference 2007, pp. 1–8 (2007)
8. Downs, J., Hosking, J., Plimmer, B.: Status Communication in Agile Software Teams: A

Case Study. In: Proceedings of the Fifth International Conference on Software Engineering
Advances, pp. 82–87 (2010)

9. Stolberg, S.: Enabling Agile Testing through Continuous Integration. In: Proceedings of
the Agile Conference, pp. 369–374 (2009)

10. Kim, E.H., Na, J.C., Ryoo, S.M.: Implementing an Effective Test Automation Framework.
In: Proceedings of the 33rd Annual IEEE International Computer Software and
Applications Conference, pp. 534–538 (2009)

11. Kim, E.H., Na, J.C., Ryoo, S.M.: Test Automation Framework for Implementing
Continuous Integration. In: Proceedings of the Sixth International Conference on
Information Technology: New Generations, pp. 784–789 (2009)

186 A. Nilsson, J. Bosch, and C. Berger

12. Hoffman, B., Cole, D., Vines, J.: Software Process for Rapid Development of HPC
Software Using CMake. In: Proceedings of the DoD High Performance Computing
Modernization Program Users Group Conference, pp. 378–382 (2009)

13. Ablett, R., Sharlin, E., Maurer, F., Denzinger, J., Schock, C.: BuildBot: Robotic
Monitoring of Agile Software Development Teams. In: Proceedings of the 16th IEEE
International Symposium on Robot and Human Interactive Communication, pp. 931–936
(2007)

14. Yuksel, H.M., Tuzun, E., Gelirli, E., Biyikli, E., Baykal, B.: Using Continuous Integration
and Automated Test Techniques for a Robust C4ISR System. In: Proceedings of the 24th
International Symposium on Computer and Information Sciences, pp. 734–748 (2009)

15. Lacoste, F.: Killing the Gatekeeper: Introducing a Continuous Integration System. In:
Proceedings of the Agile Conference, pp. 387–392 (2009)

16. Goodman, D., Elbaz, M.: ‘It’s not the pants, it’s the people in the pants’ Learnings from
The Gap Agile Transformation. In: Proceedings of the Agile Conference, pp. 112–115
(2008)

17. Downs, J., Plimmer, B., Hosking, J.: Ambient Awareness of Build Status in Collocated
Software Teams. In: Proceedings of the 34th International Conference on Software
Engineering (ICSE), pp. 507–517 (2012)

18. Yin, R.K.: Case study research: design and methods. Sage-Publications, Newbury Park
(1994)

19. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

20. Patton, M.Q.: How to Use Qualitative Methods in Evaluation. Sage Publications, Newbury
Park (1987)

21. Myers, M.D., Newman, M.: The qualitative interview in IS research: Examining the craft.
Information and Organization 17, 2–26 (2007)

22. Bertolino, A.: Software testing research: Achievements, challenges, dreams. In:
Proceedings of Future of Software Engineering (2007)

23. Ries, E.: The Lean Startup: How Constant Innovation Creates Radically Successful
Businesses. Portfolio Penguin (2011)

Comparing a Hybrid Testing Process

with Scripted and Exploratory Testing:
An Experimental Study with Practitioners

Syed Muhammad Ali Shah, Usman Sattar Alvi,
Cigdem Gencel, and Kai Petersen

Politecnico di Torino, 24 10129 Torino, Italy
Seamless AB, Stockholm, Sweden

Free University of Bolzano-Bozen, 39100 Bolzano (Bozen), Italy
Blekinge Institute of Technology, Karlskrona, Sweden

syed.shah@polito.it, usman.alvi@seamless.se, cigdem.gencel@unibz.it,
kai.petersen@bth.se

Abstract. This study presents an experimental study comparing the
testing quality of a Hybrid Testing (HT) process with the commonly used
approaches in industry: Scripted Testing (ST) and Exploratory Testing
(ET). The study was conducted in an international IT service company
in Sweden with the involvement of six experienced testers. Two measures
were used for comparison: 1) defect detection effectiveness (DDE) and
2) functionality coverage (FC). The results indicated that HT performed
better in terms of DDE than ST and worse than ET. In terms of FC,
HT performed better than ET, while no significant differences were ob-
served between the HT and ST. Furthermore, HT performed best for
experienced testers, but worse with less experienced testers.

Keywords: Exploratory Testing, Scripted Testing, Hybrid Testing, Ex-
periment, Industrial.

1 Introduction

The common testing process in industry is scripted testing (ST) (also referred to
as prescriptive or test case based testing [1]). ST is a plan-driven testing process
where test cases are designed prior to test execution in order to structure and
to guide the testing tasks. This approach provides several benefits such as test
awareness, test coverage, repeatability, and tracking [2],[3].

However, some recent studies indicate that the use of rigorous and well-
documented ST is not very common [4],[5],[6]. One reason stated by Itkonen
[7] was that documenting every scenario in a test case being very time consum-
ing and hence testers requiring more time in writing test cases as compared to
actually executing them. Furthermore, Andersson and Runeson [2] mentioned
that testers do not often rely on the test cases while actually executing them.

Furthermore, Itkonen [7] mentioned that the actual effectiveness and impor-
tance of these pre-designed test cases in terms of defect detection efficiency is

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 187–202, 2014.
c© Springer International Publishing Switzerland 2014

188 S.M.A. Shah et al.

also unknown. Agruss et al. [2] and Andersson et al. [5] claimed that if all the pre
designed test cases pass in the first execution, chances of finding any new bugs
by executing the same test set again are nominal. Kaner [8] described another
limitation of using predesigned test cases as the need to redesign the test cases
for every new version of the software.

Exploratory testing (ET) is another testing approach, which has also become
popular particularly in the agile world [9],[10]. In ET, tests are not planned and
defined in advance, but are dynamically designed, executed, and modified [11].
As defined by [12] “Exploratory testing is simultaneous learning, test design, and
test execution”. Therefore, ET embraces similar values as agile development and
combines learning, test design, and test execution into one test approach [9].
Following this approach, testers can freely explore an application by utilizing
human intuition and experience [13],[14]. As it is not explicit how testers make
this exploration, ET is often referred to as ’ad hoc’ testing [2]. Recently, the
term ’exploratory’ was introduced by a group of testing experts instead of ’ad
hoc’ [12] to avoid wrong perception of this approach.

A few studies such as [15],[16],[3] mentioned that ET makes better use of
testers creativity and skills to discover the bugs that ST may not uncover because
of its mechanical nature. On the other hand, some shortcomings of the ET
approach have been also reported such as; the difficulty in assessing whether
all features are tested, unavailability of oracles, and invisibility of the quality of
testing [16],[3],[6]. Furthermore, Agruss et al. [2] stated that ET is not suitable
while performing acceptance testing.

In our previous study [17], we made a comprehensive review of the strengths
and weaknesses of ST and ET by performing a systematic literature review and
conducting interviews with testing experts in industry. One of the significant
findings of our study was that the performance of ST and ET with respect to
testing quality depend on a number of conditions. For example, quality of testing
when using ST depends on the test case design, which depends on the skills,
experience, and domain knowledge of the test designers as well as the previous
documents from which the product requirements are inherited. On the other
hand, the quality of the testing when using ET depends on skills, experience,
and domain knowledge of the testers who execute the tests.

Therefore, a number of researchers and practitioners [2],[15],[3] highlighted
that organisations can benefit more if they use ET in addition to ST, as they
are in fact complementary approaches. In general, there is a general interest
in industry for a hybrid testing (HT) approach unifying the two approaches,
which is, for example, visible in lively discussions in industry oriented blogs.
Therefore, in our previous study [17], we designed a hybrid testing (HT) process
incorporating the different aspects of ST and ET to mitigate the weaknesses of
one by leveraging on the benefits of the other.

In this study, we empirically evaluated the test design and test execution
phases of the HT process through an experimental study in a software company.
Our research question was formulated as ”How does a hybrid testing process
affect testing quality as compared to ST and ET?”

Comparing a Hybrid Testing Process with Scripted and Exploratory Testing 189

This paper is organised as follows. In Section 2, we provide a short description
of the HT process that this study is based on. In Section 3, we present our
research methodology. The results are presented and discussed in Section 4. The
conclusions are given in Section 5.

2 Background

This section provides background information on the HT process [17] (Figure 1),
which we evaluated in the experimental study in terms of testing quality. Here,
we do not discuss the whole process defined, but only provide background on
test design and implementation and test execution sub-processes. The other sub-
processes were not in the scope of the experimental study. A detailed account
of the overall process and the differences between them is given in [17], which
forms the foundation for this work.

Test Design & Implementation: In HT test design, Requirement Based Test
Cases (RBTC) [18] and test missions are introduced to enable both high function-
ality coverage and defect detection effectiveness in addition to cost effectiveness
through reducing the test bed size. RBTC specify those test cases that are de-
fined only from the requirements specification. The “test mission” is a concrete
instruction for testing and the problem being looked for.

Test Execution: The test execution part is highly flexible. Both RBTCs and
the test missions are executed, which were designed in test design phase. First,
a tester has given the freedom to freely explore the application in order to learn
and get knowledge about it. After that, RBTCs and then the test missions are
executed and the execution artifacts are recorded. A session is an uninterrupted
block of test time slot assigned to a specific test mission in which test mission
has to be executed.

3 Method

We evaluated the test design and test execution phases of the HT process in
terms of testing quality (defect detection effectiveness and functionality cover-
age) through an experimental study. The aim of the evaluation was to test the
introduction of HT under a realistic scenario from an industrial standpoint where
practitioners first use ST and then migrate to ET and thereafter to HT where
different versions of the same software are tested, each version having different
defects. Our main research question (RQ) was as follows: RQ: How does a hybrid
process affect the testing quality (DDE, FC) in comparison to ST and ET?

Overall, by using the template of Goal Question Metric paradigm [19], the
intend of the experimental study can be summarized as:

– Analyze the introduction of ET and HT in an organization originally using
ST for the purpose of evaluation and proposition generation

– With respect to defect detection effectiveness (DDE) and functionality cov-
erage (FC)

190 S.M.A. Shah et al.

1. Test Planning 8. Monitoring and
Control

2a RBTC
Design and

Implementation

2b Test Mission
Design and

Implementation

3 Test
Environment Set

Up

4a Free
Exploration

4b RBTC
Execution

4c Test Mission
Execution

7 Test
Completion

5 Test Incident
Reporting

6 Debriefing

2. Test Design and
Implementation

4. Test Execution

[further testing needed]

[further testing needed]

[further testing needed]

[else]

[else]

[else]

[report indicates need re-planning]
[else] [debriefing decides on

need for re-planning]

[debriefing indicates
 need for redesign]

[else]

freely explore
system]

[test against
requirements]

[fulfull test
mission]

[need to re-
evaluate]

[else]

[need to re-plan]

[else]

Fig. 1. HT Process

– From the point of view of the researcher
– In the context of experienced industry practitioners (at least 3 years of expe-

rience) using the testing approaches from a black box testing perspective on
different versions of a calculator software with different bugs seeded.

With respect to testing techniques this means that no white-box approaches
were applied, such as covering statements, branches, or decisions. From a black-
box perspectives the practitioners freely explored the application using ET, no
techniques were prescribed for that. The same applies to HT where test mission
statements were used. Test coverage was hence measured in terms of functionality
coverage.

Comparing a Hybrid Testing Process with Scripted and Exploratory Testing 191

The null and alternative hypotheses for the experiment were as follows:

– Detect Detection Effectiveness (DDE)
• H10: There is no significant difference between HT, ST and ET
• H11: DDE by HT (DDEHT) is higher than by ST (DDEST)
• H12: DDE by HT (DDEHT) is higher than by ET (DDEET)

– Functionality Coverage (FC)
• H20: There is no significant difference between HT, ST and ET
• H21: FC by HT (FCHT) is higher than by ST (FCST)
• H22: FC by HT (FCHT) is higher than by ET (FCET)

Experimental Planning and Design: This experimental study was con-
ducted at Logica AB in Sweden (Logica is currently owned by CGI). Logica
AB was an international IT service company that creates value by integrating
people, business and IT. It had around 39,000 employees, 5,200 of who work in
Sweden. The company provided business-consulting, systems integration, devel-
opment, testing and outsourcing services to all around the world.

We designed the experiment as a “One factor with more than two treatments”
[20]. The factor here is the testing approach used with three treatments: ST, ET
and HT. The main differences between the three treatments are described in
Table 1.

Table 1. Treatment characterization and examples

Treatment Characterization Example Instructions

ST The test cases used are the formal detailed
level test cases, describing every procedure
and condition required for testing with in-
puts and expected outcomes. That is, they
also contained the test data.

Test case: Addition of two numbers
Steps: First, go to the application. Per-
form the addition of two numbers, i.e.
2+2.
Expected outcome: Correct operation
and correct answer given (i.e. 4).
Test status: Pass or Fail.

ET No test cases are provided, testers can
freely explore the application.

No information due to free exploration

HT During HT, RBTCs and test missions were
provided allowing the practitioners to uti-
lize the process. The RBTCs, which are the
functional requirement based test cases,
were used to assure that high priority re-
quirements went under test first (no test
data). The test missions are the particu-
lar scenarios for the testing tasks specify-
ing what specific test problems the tester
is required to look on.

RBTC: Perform the operations to
check the addition functionality work-
ing accordingly.
Expected output: The addition func-
tionality should work accordingly.
Test status: Pass or Fail.

Application: The case application was a calculator application with 11 func-
tions developed by the first two authors of this paper. One application with three
versions was developed with the same functionality, but was seeded with differ-
ent defects for each of the experiment sessions. That is, if in one version (e.g.
seed 1) division is working without defects, this might not be the case in another

192 S.M.A. Shah et al.

version (e.g. seed 2 or seed 3). In total, 25 defects were seeded into each version
of the application. The defects were not the same per application, but were of
similar types. That is, the testers would not benefit by figuring out a defect once
and then could easily discover the same defect with a different testing process.
A colleague not involved in the experiment to avoid biasing the results did the
seeding of defects. The only information provided to that person was that differ-
ent types of defects should be seeded, e.g. cosmetic, quality requirements such
as response time, functional defects, etc.

The application was tested using ST, ET, and HT, consecutively. This ap-
plication was chosen to ensure that the practitioners were familiar with the
application domain so that there would not be learning effect when they tested
the application first with ST, secondly with ET, and finally with HT. In other
words, they were as familiar with the application in the beginning as in the end.

Furthermore, for practical reasons, the choice of a calculator application means
that the testers would test a small set of functions of an application they are
familiar with and have domain knowledge about within a limited amount of time
available in the company. However, the alternative, i.e. choosing a version of the
systems developed at the company, would not have been feasible due to the lack
of experimental control, e.g. with respect to defect population and other factors
that would influence/bias the testers in their testing. Therefore, we suggest using
the results of this study as an input for proposition generation when conducting
future studies (for example in the form of a case study) to learn more about the
longitudinal effects of introducing HT into practice.

Test cases: For ST implementation, the designed test cases were provided to
the testers. The test cases were written before seeding the defects. That way we
avoided writing test cases biased towards the seeded defects. The test cases were
documented in the form of test scenarios stating pre-conditions, scenario steps,
and post conditions. An example for a scenario step is to conduct a calculation
with mixed operations (e.g. multiplication and addition). According to our pre-
study and without time limitation the test cases, provided to the subjects for
ST and HT, would have identified most of the defects in each seed.

Subjects: The subjects of the experiment were selected from the same com-
pany. Giving the potential experiment subjects a questionnaire; we identified 6
subjects considering their experience: T1 (5 years); T2 & T4 (more than 5 years);
T3 & T5 (test managers with more than 10 years) and T6 (more than 3 years).
The same subjects having similar backgrounds participated in the experiment
for each treatment to reduce measurement error due to subject heterogeneity,
and thus to increase statistical power when sample size is small [21].

Observed Outcome Metrics: In order to be able to compare the testing quality
of HT to ST and ET, we chose to use two metrics: (1) ’defect detection effec-
tiveness (DDE)’, and (2) ’functionality coverage (FC)’. Both metrics are in ratio
scale and, therefore could be used in further statistical tests. Here, DDE cor-
responds to total number of detected defects out of all seeded defects. We talk
about defect detection effectiveness instead of efficiency as time has not been
considered as a factor in comparing the outcome.

Comparing a Hybrid Testing Process with Scripted and Exploratory Testing 193

FC corresponds to total number of incorrectly implemented or missing func-
tions detected out of all functions implemented in the software. However for
the experiment, all functions of the application were seeded with some defects.
Therefore, in this case, FC is the number of detected functions with defects out
of the total defective functions. For example, if 6 functionalities are identified
to have defects out of 11 functions implemented, this means that the testers
achieved 55% functionality coverage. We should note that, we did not need to
normalize these values against the number of total seeded defects and total
number of functions, as these were the same for all versions of the Calculator
application. Therefore, for DDE, we only report the total number of defects de-
tected whereas for FC, the total number of incorrectly implemented or missing
functions detected.

Experiment Execution: Before the experiment date, we gave an initial presen-
tation about the experiment and general guidelines for how to perform the tests
using each testing approach. All three versions of the test application were de-
ployed to the laptops of the subjects as well. As the subjects had no access to the
source code of the application, this ensured that testers conducted a black-box
test of the application.

The experiment was held in two sessions (training and test execution) and
totally took two hours. During the first session, we gave detailed instructions
for each test approach. Then we provided the subjects with templates for bug
investigation report, session sheet and RBTC forms, which were designed to
collect experiment related data such as bugs, types of bugs and functionality
tested, etc. The first session lasted for 15 minutes and extra 15 minutes were
given for additional questions in order to clarify any ambiguities. The subjects
were requested not to communicate during the experiment with other testers
and concentrate only on the experiment.

The second session was the actual experiment execution session. Maximum
30 minutes was allocated to execute tests using each testing approach. In this
session, first, Calculator application with seed 1 was tested using ST. The pre-
designed test cases were provided to the subjects. It was explicitly mentioned
to strictly follow the test steps in the test cases and in case they felt a need to
divert from the test steps they were asked to state so in the bug report with the
reasons and any related outcomes.

Then, Calculator application with seed 2 was tested using ET. No test cases
were provided to the subjects. Therefore, they had to perform free testing and
they were not bound to follow any test cases or test steps. They only needed to
log the identified bugs in the bug sheet. Bug report template was also given to
the subjects in order to log the identified bugs.

Finally, Calculator application with seed 3 was tested using HT. The RBTCs
and test missions were provided to the subjects. They executed the test mis-
sions after completely performing the RBTC. While performing a test mission,
subjects were told that they should look into the specified area as mentioned on
the test sheet but they can use their ideas and follow whatever steps they want
to. At the same time they should also write down some high-level test steps,

194 S.M.A. Shah et al.

which they performed during a session. Upon completion, all relevant material
including the test cases, RBTCs, test sessions and bug sheets were collected.

Validity Threats: For the experimental study the following validity threats
have to be considered. The application, which was used for the experiment was
a simple calculator with eleven functionalities. We do not know how the results
would have been influenced if this had been a larger and more complex applica-
tion. Therefore, the conclusions of this experiment are limited, but were useful
for formulating propositions for future studies. However, as pointed out earlier
the application reduced the threat of learning effect as how a calculator works is
common knowledge. Hence, there was a trade-off to be made between a complex
application and learning effect.

On the other hand, even though we controlled the learning effect with respect
to the application to some extent, there still exist a learning effect for how to test
the application. In order to evaluate an as realistic scenario as possible from an
industrial standpoint (a company developing a software using ST adopts ET and
later on evolves it to HT with the software having changes in defect population
over time) the learning effect could only partially be controlled. That is, in the
first run testers had test cases given to the subjects, and with that had ideas
what inputs they could use. Hence, they could utilize this knowledge during their
testing in the next step (free exploration). Furthermore, if they are finding new
interesting tests, this knowledge could again be used to improve. Overall, this
is a threat to control the learning effect, while in practice the situation would
be similar, where when adopting a new practice, the testers would carry on the
knowledge to the new practice. Hence, this is a threat to theoretical validity,
while it strengthens external validity.

Another validity threat is the limitation of the FC measure used in relation
to extent of testing. As many functions have more than one defect, it is possible
that the function was marked as covered by identifying only one defect and
other defects in that function might have remained undetected. Such scenario
is possible but we think that this should not cause too much impact on the
experiment outcomes as the seeded defects were of similar types and related to
functionality of a function. Therefore, there is a limited chance that one might
find a defect related to functionality and missed the other similar defect related
to same functionality.

Another threat to validity is the sample size used. Three treatments, each
having six subjects were tested. The small number of subjects in each group
could be a potential threat from two perspectives: a practical perspective and a
statistical perspective. In order to increase the statistical power, we first reduced
the subject heterogeneity by having a background check and using subjects from
only one company. Furthermore, we used a powerful statistical test. Our power
calculations showed both large effect size and power for the significant differences
observed.

However, we should note that a threat from a practical perspective still
exists as, if the subjects were not completely homogenous, the effect of the
difference between them could not be ruled out given that the sample is not

Comparing a Hybrid Testing Process with Scripted and Exploratory Testing 195

representative for a larger population of testers. Furthermore, no novice testers
were part of the experiment. That is, more data points would reduce the risk of
lack of heterogeneity.

Finally, the experimental study was scoped to testing quality (defect detection
effectiveness and functionality coverage). However, cost effectiveness, customer
satisfaction and some other aspects of the nature of processes (such as risk
management etc.) are important outcome variables as well. Hence, they need to
be evaluated in further case studies to observe, for example, how much effort is
required to test a sufficiently large system in a real world setting, as this would
provide rich information on cost or the impacts of HT on customer satisfaction
and risk management etc.

Overall, the results hence provide indications that later on can be used as
hypotheses in the forthcoming empirical studies (for example, validation studies
in the form of controlled experiments or evaluation studies in the form of case
studies) in different contexts and further studies. We also would like to emphasize
that our analysis provides input to meta-analysis that later allows to aggregate
experiments (hence we presented the statistics in detail to allow for that), which
with every additional experiment would add an important piece to the overall
evidence.

4 Results and Discussion

We analyzed the collected data by first evaluating it using descriptive statistics
and then performing hypothesis testing.

Defect Detection Effectiveness (DDE): In total, 25 defects were seeded into
each version of the application. The numbers of detected defects, found by each
subject against each alternative treatment are presented in Table 2.

Table 2. Defect Detection Effectiveness (The number of detected defects)

Subject ST ET HT

T1 6 12 10
T2 7 13 11
T3 6 15 12
T4 8 12 10
T5 9 16 13
T6 6 11 8

The descriptive statistics of the three treatments, including median, mean,
standard deviation, skewness and kurtosis are given in Table 3 and the box plots
for the number of detected defects are shown in Figure 2.

As this experimental study was designed to have 3 treatments to compare (i.e.,
ET and ST to HT), we first used Analysis of variance (ANOVA), which enables
detecting significant differences between the treatments as a whole instead of
separate t-tests comparing each treatment with another. We chose this analysis
technique as it is reliable when being applied to small samples [22].

An important assumption underlying the ANOVA is that all treatments have
similar variance. Therefore, we checked the data for “homogeneity of variance”.

196 S.M.A. Shah et al.

Table 3. Descriptive statistics for the number of detected defects for three treatments

Approach Median Mean Std. Dev. Skewness Kurtosis

ST 6.5 7 1.26 0.592 1.56
ET 12.5 13.16 1.94 0.425 1.43
HT 10.5 10.67 1.75 -0.165 1.78

HTETST

18

16

14

12

10

8

6

4

2

0

Test Process

D
D

E

Fig. 2. Box plots of number of detected defects for three treatments

We looked up the table for Fmax [22] for the number of treatments in our data
and the degrees of freedom (number of replicates per treatment -1). The variance
ratio, F was found to be 2.2. As this is smaller than Fmax which is 10.8 for 3
treatments and 5 degrees of freedom at p-value = 0.05, there was no need to
transform the data (cf [22]).

Table 4 shows the ANOVA results for DDE, where u = number of treatments
and v = number of replicates (The total “Degree of freedom” (df) is one less
than the total no of data entries).

Table 4. ANOVA Summary for DDE

Source of variance Sum of
squares (SS)

Degrees of freedom (df) Mean square
(=SS/df)

Between groups (bg) 115.44 u-1=2 57.72
Within groups (wg) 42.17 u(v − 1)=15 2.81
Total 157.61 (uv)− 1=17

The tabulated value for the variance ratio for p=0.05 was found as F=3.7. The
variance ratio for the experiment (F=20.53) exceeds this and even exceeds the
tabulated F value for p = 0.001 (F=11.3). This shows that there is a significant
difference between treatments and hence H10 was rejected.

We further tested the alternative hypotheses by assuming that the calculations
of ANOVA are the same as that of a t-test.

Comparing a Hybrid Testing Process with Scripted and Exploratory Testing 197

First, the least significance difference (LSD) between any of the means is
calculated for p=0.05 (the level of probability chosen for the t value) using the

following formula: LSD = t − value × σd, where σ2
d = 2×SS/df

n . Hence, we
obtained LSD as 2.92 for t-value (t=2.13) and σd: 1.37

Table 5 shows the differences between the means of treatments for DDE as well
as LSD (p=0.05). Two means would be significantly different from one another
if they differ by more than LSD. The results showed that HT provided higher
DDE than ST (i.e., H11 is accepted) whereas HT provided lower DDE than ET
(i.e., H12 is rejected).

Table 5. The Differences between the Means of Treatments for DDE

Treatment pairs χ1 − χ2 LSD = t× (σd)

DDEET −DDEST 6.17 2.92
DDEET −DDEHT 2.50
DDEHT −DDEST 3.67

After having performed the ANOVA analysis, we made statistical power analy-
sis [23] (t-test for the difference between two independent means), retrospectively
(see Table 6).

Table 6. Power analysis results for the differences between the means of ST, ET and
HT treatments for DDE (sample sizes for group 1 and group 2 = 6, α=0.05, DF=10,
and Critical t=1.81)

Pair of treatment Effect size (d) Power (1-β)

ET versus ST 3.77 0.99
HT versus ET 1.35 0.70
HT versus ST 2.41 0.99

So, we conclude that our results are significant as both the effect size values
and the statistical power are larger than the conventional values [21] (that is
Power=0.80 and effect size=0.2(small), 0.5 (medium) or 0.80 (large)) despite
the small sample size used in this experimental study.

Functionality coverage: The functionality covered by each experiment subjects
against each treatment is presented in Table 7.

Table 7. Functionality Coverage (Total number of incorrectly implemented or missing
functionalities detected)

Subject ST ET HT

T1 7 5 7
T2 9 6 8
T3 8 9 11
T4 7 7 9
T5 8 6 10
T6 8 7 8

198 S.M.A. Shah et al.

The descriptive statistics of the three treatments, including median, standard
deviation, skewness and kurtosis are given in Table 8 and the box plots for the
number of detected defects are shown in Figure 3.

Table 8. Descriptive statistics for functionality coverage of three treatments

Approach Median Mean Std. Dev. Skewness Kurtosis

ST 8 7.83 0.75 0.208 1.76
ET 6.5 6.67 1,37 0.593 2.17
HT 8.5 8.83 1.47 0.279 1.54

HTETST

12

10

8

6

4

2

0

Test Process

FC

Fig. 3. Box plot of functionality coverage for three treatments

As we did for DDE, we checked the data for FC for “homogeneity of variance”.
The variance ratio, F was found to be 3.87. As this is smaller than Fmax which
is 10.8 for 3 treatments and 5 degrees of freedom at P = 0.05, there was no need
to transform the data.

A single t-test was performed to see if there are differences between the means
at a chosen probability level (p−value = 0.05). Table 9 shows the values of sum
of squares for FC.

Table 9. ANOVA Summary for FC

Source of variance Sum of
squares (SS)

Degrees of freedom (df) Mean square
(=SS/df)

Between groups (bg) 14.11 u-1=2 7.06
Within groups (wg) 23 u(v − 1)=15 1.53
Total 37.11 (uv)− 1=17

The tabulated value of F (p = 0.05) was found as 3.7 . Our calculated F value
(F = 4.6) is higher than this limit, meaning that there is a significant difference
between the treatments. Therefore, the null hypotheses H20 was rejected.

Comparing a Hybrid Testing Process with Scripted and Exploratory Testing 199

We further tested the alternative hypotheses by calculated the least signifi-
cance difference (LSD) between the two means and comparing this value to the
differences between the means of two treatments. Table 10 shows the differences
between the means of treatments for FC as well as LSD (p=0.05).

Table 10. The Differences between the Means of Treatments for FC

Treatment pairs χ1 − χ2 LSD = t× (σd)

FCET − FCST 1.16 2.15
FCHT − FCST 1
FCHT − FCET 2.16

The results showed that only the difference between the means of HT and
ET (at p=0.05) is slightly greater than 2.15. Therefore, we conclude that HT
provided higher FC than ET (i.e., H22 is accepted)). No significant differences
were observed between the means of HT and ST (i.e., H21 is rejected).

After having performed the ANOVA analysis, we again made a post hoc (ret-
rospective) statistical power analysis. The results are shown in Table 11.

So, we conclude that our result for the difference between HT and ET is
significant as both the effect size value and the statistical power are larger than
the conventional values [21]. As for the differences between HT and ST as well
as ST and ET, no significance was observed between the means, which might
be due to low statistical power values associated with the tests and, therefore
should be further investigated.

Table 11. Power analysis results for the differences between the means of ST, ET and
HT treatments for FC (sample sizes for group 1 and group 2 = 6, α=0.05, DF=10,
and Critical t=1.81)

Pair of treatment Effect size(d) Power(1-β)

ET versus ST 1.05 0.52
HT versus ET 1.52 0.80
HT versus ST 0.86 0.40

As a summary, our alternative hypothesis tests showed that in terms of defect
detection effectiveness, HT performed better than ST and worse than ET. In
terms of functionality coverage, HT performed better than ET.

Experience: When different subjects are compared with respect to their per-
formance considering their experience levels:

– All subjects were more successful in terms of DDE when they implemented
ET. Testers T3 and T5 who hold the maximum level of testing experience
(more than ten years) performed better than other subjects when they used
either ET or HT. Interestingly, tester T3 was not very effective in terms of
DDE when he used ST and in terms of FC when he used ET. However, both
T3 and T5 outperformed in terms of FC when they implemented HT.

– Testers T1, T2 and T4, who hold same level of experience (five years), were
also similar in detecting defects when they used the same approach. They
all found higher number of defects implementing ET as compared to HT

200 S.M.A. Shah et al.

and ST. For FC, these subjects on the average covered the same number
of functionalities implementing the ST and HT. However, they were not as
successful in terms of FC when they implemented ET.

– Tester T6 who holds the less experience among all, detected more defects
in comparison to ST when implemented ET and HT, but still less than the
other subjects. For FC on the other hand, this subject performed similarly
as the other moderate level experienced subjects.

From the box-plots in combination with the observations mentioned above
some interesting propositions can be derived that should be checked in larger,
controlled experiments and industrial case studies. Note that these observations
were made in a situation where limited amount of time is available for testing,
and that no novice testers participated in the experiment.

– FC: Figure 5 and Table 17 show descriptive statistics for all three treatments.
The median values for ST and HT are very close whereas HT shows much
higher standard deviation. Highly experienced testers (T3 and T5 with more
than 10 years of experience) perform best in terms of FC when using HT.
With a moderate level of experience (3-5 years) ST and HT seem to perform
similar. When comparing ET and HT we could see that each tester achieves
higher test coverage with HT than ET (see Table 7).

– DDE: Figure 4 and Table 12 show that ET outperforms ST and HT. For each
of the testers we could see that they perform better with ET and HT than
with ST. Furthermore, every tester performed better with ET than with
HT. The standard deviation shows that experienced testers benefit more
from having freedom in exploring.

5 Conclusion

In this research we conducted a experimental study comparing a hybrid testing
process incorporating scripted and exploratory testing. The study was conducted
with industry practitioners.

The results indicate that HT is more effective in defect detection than ST
and less effective than ET. In terms of functionality coverage, HT performs
better than ET. As the statistical power results showed both large effect size
and power, we conclude that our results are significant. On the other hand, for
FC, no significant differences between the means of HT and ST as well as ST
and ET were observed. This might also be due to low statistical power which
should be tested in future studies. These results indicate that the HT process
provides a compromise solution for testing quality.

Implications Related to Experience: Looking at the individual data points in
the results, some interesting patterns were also brought into light, which led to the
following proposition: If one aims at high DDE then ET process should be chosen,
especially for experienced testers. However, if FC is important at the same time,
HT performed best for experienced testers, but not worse with less experienced
testers. Hence the optimum solution for high DDE and FC would be to choose

Comparing a Hybrid Testing Process with Scripted and Exploratory Testing 201

HT. Only using ST is not recommended as after the experiment testers reported
that they did not like to use ST as it limits their creativity and does not allow them
to bring in their experience and competence, which was also reflected in the poor
results ST achieved in comparison to ET and HT with respect to DDE. Given the
limitations of the experimental study (see validity threats), these statements only
provide indications that need to be further evaluated in future studies.

Furthermore, which process to choose seems to depend also on the experi-
ence level (or may be skills) of the tester. Our final observations revealed HT
to perform best for experienced testers, but worse with less experienced testers.
Therefore, the skills, experience and domain knowledge of testers should also be
taken into account for future studies. For example, Itkonen et al. [16] and Juristo
et al. [24] found that different testers have varying test case designs even though
they follow the same test case design strategy. That is, there are indications
that the outcome of the test case design varies with individual experience and
skill. A survey of literature related to comparisons between novices and experts
has shown that experience has positive effects on various parameters. For exam-
ple, Sim et al. [25] reported that experience has a positive effect with respect
to domain knowledge, speed of completing tasks, ability to identify meaning-
ful patterns, superior recall because experts organize short-term and long-term
memory more efficiently, etc.

Our study contributes to highlight the importance of experience. In future
work experiments should focus on exploring the role of experience further.

HT and Agile: It was observed that with time-boxed iterations there is limited
time for testing, in particular fitting enough testing in an iteration is perceived
a challenge [26]. Hence, even though not widely considered an agile practice, the
flexibility that HT provides (in particular for experienced testers) merits further
investigations to understand how to integrate HT as an agile practice into the
set of agile practices, and how it can be beneficial when combined with other
agile practices (such as time-boxing).

References

1. ISO/IEC: 29119-2: Test processes, international software testing standard. Tech-
nical report (2013)

2. Agruss, C., Johnson, B.: Ad hoc software testing, a perspective on exploration and
improvisation. Technical report, Florida Institute of Technology, USA (April 2000)

3. Itkonen, J., Mäntylä,M., Lassenius, C.: Howdo testers do it? an exploratory study on
manual testing practices. In: Proceedings of the Third International Symposium on
Empirical Software Engineering andMeasurement (ESEM2009), pp. 494–497 (2009)

4. Ahonen, J.J., Junttila, T., Sakkinen,M.: Impacts of the organizational model on test-
ing: Three industrial cases. Empirical Software Engineering 9(4), 275–296 (2004)

5. Andersson, C., Runeson, P.: Verification and validation in industry – a qualitative
survey on the state of practice. In: International Symposium on Empirical Software
Engineering (ISESE 2002), pp. 37–47 (2002)

6. Itkonen, J., Rautiainen, K.: Exploratory testing: a multiple case study. In: Inter-
national Symposium on Empirical Software Engineering (ISESE 2005), pp. 84–93
(2005)

202 S.M.A. Shah et al.

7. Itkonen, J.: Do test cases really matter? An experiment comparing test case based
and exploratory testing. PhD thesis, Helsinki University of Technology, Finland
(2008)

8. Kaner, C., Falk, J., Nguyen, H.Q.: Testing computer software, 2nd edn. Van Nos-
trand Reinhold, New York (1993)

9. Crispin, L., Gregory, J.: Agile Testing: A Practical Guide for Testers and Agile
Teams. Addison-Wesley (2009)

10. Itkonen, J., Rautiainen, K., Lassenius, C.: Toward an understanding of quality
assurance in agile software development. International Journal of Agile Manufac-
turing 8(2), 39–49 (2005)

11. Bourque, P., Dupuis, R.: Guide to the software engineering body of knowledge (swe-
bok). Technical report. IEEE Computer Society, Los Alamitos, California (2004)

12. Bach, J.: Exploratory testing. In: Veenendal, E.V. (ed.) The Testing Practitioner.
UTN Publishers (2005)

13. Bach, J.: Session-based test management. Software Testing and Quality Engineer-
ing Magazine 2 (2000)

14. Shoaib, L., Nadeem, A., Akbar, A.: An empirical evaluation of the influence of
human personality on exploratory software testing. In: Proceedings of the IEEE
13th International Multitopic Conference (INMIC 2009), pp. 1–6 (2009)

15. Copeland, L.: A practitioner’s guide to software test design. Artech House, Boston
(2004)

16. Itkonen, J., Mäntylä, M., Lassenius, C.: Defect detection efficiency: Test case based
vs. exploratory testing. In: Proceedings of the First International Symposium on
Empirical Software Engineering and Measurement (ESEM 2007), pp. 61–70 (2007)

17. Shah, S.M.A., Gencel, C., Alvi, U.S., Petersen, K.: Towards a hybrid testing process
unifying exploratory testing and scripted testing. Journal of Software Maintenance
and Evolution: Research and Practice (2013)

18. Tahat, L.H., Bader, A., Vaysburg, B., Korel, B.: Requirement-based automated
black-box test generation. In: Proceedings of the 25th International Computer
Software and Applications Conference (COMPSAC 2001), pp. 489–495 (2001)

19. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach.
Encyclopedia of Software Engineering 2, 528–532 (1994)

20. Wohlin, C.: Experimentation in software engineering: an introduction. Kluwer,
Boston (2000)

21. Dyb̊a, T., Kampenes, V.B., Sjøberg, D.I.K.: A systematic review of statisti-
cal power in software engineering experiments. Information & Software Technol-
ogy 48(8), 745–755 (2006)

22. David, H.A.: Upper 5 and 1% points of the maximum f-ratio. Biometrika 39(3),
422–424 (1952)

23. Cohen, J.: Statistical power analysis for the behavioral sciences, 2nd edn. L. Erl-
baum Associates, Hillsdale (1988)

24. Juristo, N., Moreno, A.M., Vegas, S.: Reviewing 25 years of testing technique ex-
periments. Empirical Software Engineering 9(1-2), 7–44 (2004)

25. Sim, S.E., Ratanotayanon, S., Aiyelokun, O., Morris, E.: An initial study to develop
an empirical test for software engineering expertise. Institute for Software Research,
University of California, Irvine, CA, USA, Technical Report# UCI-ISR-06-6 (2006)

26. Petersen, K., Wohlin, C.: A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case. Journal
of Systems and Software 82(9), 1479–1490 (2009)

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 203–217, 2014.
© Springer International Publishing Switzerland 2014

Impediments to Flow: Rethinking the Lean Concept
of ‘Waste’ in Modern Software Development

Ken Power and Kieran Conboy

1 Cisco Systems, Galway, Ireland
ken.power@gmail.com

2 National University of Ireland, Galway, Ireland
kieran.conboy@nuigalway.ie

Abstract. Eliminating waste is a core principle of lean thinking. Despite the
emergence of literature that applies lean in the software domain, an underlying
analysis of this literature reveals the fundamental interpretation of waste has
remained largely unchanged since its origins in manufacturing. Lean defines
waste as any activity that does not directly add value as perceived by the
customer. Software development is a creative design activity, not a production
activity, and agile teams and organizations are more akin to complex adaptive
self-organizing systems than repetitive production lines. Waste has different
meaning in such systems. This paper reframes the lean concept of waste as
impediments to flow in complex human systems. Drawing from ongoing
research, this paper presents an updated categorization to describe the
impediments faced by teams and organizations. The categories are extra
features, delays, handovers, failure demand, work in progress, context
switching, unnecessary motion, extra processes, and unmet human potential.
These categories provide a foundation for helping teams and organizations to
see, measure and reduce impediments to flow in their systems.

Keywords: agile, lean, waste, impediment, flow, value, complexity, human
systems dynamics, extra features, delays, handovers, failure demand, work in
progress, context switching, unnecessary motion, extra processes, unmet human
potential.

1 Introduction

The first step in creating a lean organization is learning to see and manage waste
[1, 2]. Lean defines waste as any activity that does not directly add value as perceived
by the customer [1]. However, the waste metaphor does not translate comfortably
from its origins in automobile manufacturing to modern knowledge work [3]. End-to-
end flow of work through the system is still a valuable goal for teams and
organizations, yet smooth flow remains difficult or unachievable for many. Teams
and organizations attempting to achieve flow face many impediments. Removing
impediments to flow is critical to improving a team’s or organization’s process [4].
The translations of the lean concept of waste in the agile literature to date have

204 K. Power and K. Conboy

focused on an almost literal translation of the wastes of manufacturing production.
These translations are inconsistent and lack a coherent presentation in the context of
modern knowledge work, including software development. This paper proposes that a
more appropriate perspective on the lean concept of waste for the complexity of 21st
century teams and organizations of knowledge workers is to reframe waste as
impediments to flow. Its not that we simply use the terms interchangeably; they are
different but related concepts. Waste still exists in software development. However,
this paper argues that a focus on impediments to flow is more appropriate. There are
cases where waste leads to impediments, and impediments lead to waste. There are
cases where the lens of impediments is a more useful perspective than the lens of
waste.

2 Background

The original waste categories were created in the 1940s to address problems and
promote a focus on cost reduction in the automobile-manufacturing domain. There are
several definitions of waste in the literature. Ohno originally identified seven
categories of waste in business and manufacturing processes [2]. Ohno originally
described seven categories of waste in manufacturing, explaining the number seven
comes from an old Japanese expression “He without bad habits has seven”, which
Ohno used to reinforce the point that “even if you think there’s no waste you will find
at least seven types.” [5]. Liker added an eighth waste to give what have become
known as the eight wastes of the Toyota Production System [6]. Definitions of waste
vary, and include defining waste as those elements of production that increase cost
without adding value [2], or activities that do not contribute to operations [7]. The lean
production literature defines waste as “any human activity that consumes resources
but creates no value” [8]. Definitions of waste in software development have largely
just reused the TPS and lean production definitions, emphasizing waste as anything
that does not add value from the perspective of the customer [1], or that consume time
and effort, therefore creating costs, without adding value [9] [10] [11] [4]. Lean Startup
simply restates the TPS definition [12] [13]. Other bodies of work in manufacturing
and product development use between seven and ten categories of waste [14].

Among the few authors who have written about the dissonance that comes from
applying the concept of waste from the manufacturing domain to modern product
development are Reinertsen [15], Shalloway [4] and Anderson [3, 16]. Anderson
refers to “wasteful” activities in economic terms as costs, and describes three types of
cost [3]. Transaction costs are the setup and teardown costs incurred by software
projects. Coordination costs are any activities that involve communication and
scheduling. The third cost, Failure load, is what Anderson defines as demand
generated by customers “that might have been avoided through higher quality
delivered earlier” [3].

Although there is much the software industry can learn from the manufacturing
domain, agile teams and organizations are better understood as complex adaptive
systems (CAS) that are self-organizing and have emergent properties. Dooley notes

 Impediments to Flow: Rethinking the Lean Concept of ‘Waste’ 205

that “the prevailing paradigm of a given era’s management theories has historically
mimicked the prevailing paradigm of that era’s scientific theories” [17]. The
complexity sciences have emerged as one of the prevailing paradigms for modern
management thinking in general [18, 19], and agile management in particular [20].
Stacey has shown that “all organisations are complex adaptive systems in which
groups and individuals are the agents” [21]. Waste has different meanings in such
systems. Acknowledging nature of modern software development, the Scrum
framework is specifically designed to deal with complex adaptive problems.
Sutherland and Schwaber write that Scrum is a framework “within which people can
address complex adaptive problems, while productively and creatively delivering
products of the highest possible value” [22].

3 Impediments to Flow

This research has found that discussing ‘waste’ is an emotive topic in teams and
organizations. It is not easy for people to see that the activities they are engaged in,
which can vary from wasteful tasks to the core of their job description, are actually
waste from a holistic systems perspective. Anderson writes that “a focus on flow,
rather than a focus on waste elimination, is proving a better catalyst for continuous
improvement within knowledge work activities such as software development” [16].

It has proven relatively easier to talk to people, teams and organizations about what
slows them down, what impacts the flow of work through their organization. This
research has also found that coming from the perspective of impediments reveals
much more about what is happening within the system. By taking a purely waste-
focused perspective, people tend to focus on efficiencies and costs. By taking an
impediment-focused perspective, people tend to focus more on effectiveness and
optimizing the flow of value.

Frameworks such as Scrum place an explicit focus on removing impediments,
though without defining what impediments are, or providing guidance on learning to
see, understand or manage impediments [22]. This research has found that people
have difficulty understanding what an impediment is, how to see them, how to
measure and quantify their impact, and how to reduce them. Using the definition and
categories presented in this can paper help teams and organizations to see
impediments, and give them a foundation for understanding, measuring and reducing
the impediments so that work flows more smoothly through their system. While this
research addresses all these areas, the scope of this paper is to provide a foundation
for defining impediments and present a set of impediment categories that are used to
develop the habit of spotting patterns in human systems.

Part of the challenge relates to the balance between efficiency and effectiveness.
As DeMarco notes “you’re efficient when you do something with minimum waste. And
you’re effective when you’re doing the right something” [23]. A focus purely on waste
leads to a focus on efficiency, possibly at the expense of effectiveness. A focus on
impediments, on the other hand, balances the discussion with an emphasis on
effectiveness. Research by Wang has shown that “agility requires waste to be

206 K. Power and K. Conboy

eliminated but only to the extent where its [the organization’s] ability to respond to
change is not hindered. This does not remove the need to be economical, only lowers
its priority” [24]. Removing waste is a valuable goal in a production process, and a
useful metaphor for the parts of software development that are a production activity.
Removing impediments is a more useful metaphor for the creative work that is the
design activity (including architecture, design, coding, testing) of software
development.

Another example of where the perspective of impediments is more useful than that
of waste comes into play when considering variability. TPS emphasizes removing
variability from the manufacturing process through eliminating waste [5]. Variability
in product development, on the other hand, is something to be embraced [15]. In agile
software development, a perspective that emphasizes removing impediments to
innovation is more useful than one that seeks to eliminate variability.

3.1 Definitions of Value, Flow and Impediment

The Merriam-Webster dictionary defines value as “usefulness or importance” [25].
According to Liker, what defines value is the answer to the question “What does the
customer want from this process?” [6]. In other words, is what the team or
organization doing delivering value for the customer? Value Stream Maps are one
technique for visualizing the process that delivers customer value. According to Beck,
XP team members do only what is needed to create value for the customer [26].
Scrum is designed to reveal the efficacy of the product management and development
practices used to deliver value so that teams and organizations can improve [22].
Value has more than direct financial connotations. For the purposes of this research,
value is anything the customer wants, and any activity that is useful or important in
the context of providing value to customers.

Beck defines flow as one of the core principles of XP: “Flow in software
development is delivering a steady flow of valuable software by engaging in all the
activities of development simultaneously” [26]. When creating XP, Beck chose
practices that are “biased towards a continuous flow of activities rather than discrete
phases”.

The Merriam-Webster dictionary defines an impediment as “something that makes
it difficult to do or complete something; something that interferes with movement or
progress” [27]. Synonyms include obstacle, hindrance, obstruction, interference and
encumbrance. From a CAS perspective, an impediment is anything that inhibits the
system from achieving its purpose or goal. From a lean perspective, one purpose of an
organization is to deliver value to its customers, and balance the needs of its wider
community of stakeholders. Combining these two perspectives gives this definition:

An impediment is anything that obstructs the smooth flow of work through the

system and/or interferes with the system achieving its goals.

 Impediments to Flow: Rethinking the Lean Concept of ‘Waste’ 207

So, determining if something is an impediment, can be based on the answer to two
questions; (1) is this thing obstructing or preventing the work from flowing smoothly
through the system? (2) Is this thing preventing the system from achieving its goals?
If the answer is ‘yes’ to either or both of these questions, it is an impediment to flow.

There is a relationship between wastes and impediments. From the earlier
definition of waste, it can be seen that the definition of impediments includes waste,
but broadens the perspective. In other words, a waste is an impediment if it obstructs
the smooth flow of work through the system, or interferes with the fitness of the
system. A waste causes an impediment if it results in something that obstructs the
smooth flow of work through the system, or interferes with the fitness of the system.
This multi-dimensional perspective gives us a more reasoned way to assess waste in
the context of impediments.

4 Impediments in Complex Adaptive Human Systems

Wang and Conboy express a concern about whether CAS is appropriate to the study
of human organizations, given its origins in the natural sciences and suggest “a
combination of CAS theory with appropriate social theories might be a promising
avenue” [28]. Recognizing that concern, this research uses a particular field of CAS
study called Human Systems Dynamics, or HSD [29]. Self-organization is widely
acknowledged as a key property of successful agile teams [30]. HSD provides a
model for understanding self-organization in human systems.

HSD defines a CAS as a “collection of individual agents who have the freedom to
act in unpredictable ways, and whose actions are interconnected such that they
produce system-wide patterns” [31, 32]. HSD uses three core elements to describe
systems: containers, differences and exchanges (CDE). Containers are boundaries
within which self-organization of human systems occurs. This is accomplished
through focusing and constraining the interactions among the agents in the system.
Examples include teams and organizations. Differences establish the potential for
change in a human system, creating the possibility for the system to self-organize to a
new state. Exchanges, also known as Transforming Exchanges, are interactions
between the agents (people, teams, etc.) in a Container, and are “a necessary
condition for self-organizing processes to occur” [29].

In software development, and lean in general, flow is a system goal. Impediments
to flow show up in the system-wide patterns that emerge as the agents interact to
achieve flow. The diagram in Fig. 1 illustrates this. As the agents interact, patterns
emerge in the system. Impediments influence the patterns that emerge, and create a
tension in the system that in turn influences the behavior of the agents.

208 K. Power and K. Conboy

Fig. 1. Impediments influence the system-wide patterns in a CAS

5 Nine Categories of Impediments to Flow

This paper presents a framework of nine impediment categories that is built on the
literature from manufacturing [2], lean production [33], lean thinking [8], lean
software development [1, 11, 34, 35], product development flow [15], construction
[36, 37] and healthcare [38, 39] and other sources [40].

The 9 categories of impediments to flow in software development, as identified in
this research, are: 1. Extra Features 2. Delays 3. Handovers 4. Failure Demand 5. Work In Progress

6. Context Switching 7. Unnecessary Motion 8. Extra Processes 9. Unmet Human Potential
Each of these impediments is present in human systems. As with waste, having a

set of categories helps reinforce the habit of seeing impediments in human systems
[34]. In CAS terms, these impediments show up as patterns in human systems, as
discussed in section 4 above. For the purposes of this research, and attempting to see
and understand impediments, categories give a useful frame of reference and help

 Impediments to Flow: Rethinking the Lean Concept of ‘Waste’ 209

form the habit of seeing these patterns. The nine impediments are described in turn in
the following sub-sections, and summarized in section 5.10 below. These are explored
fully in a separate work [40].

5.1 Extra Features

Extra Features are those features that are added without either a proven need or valid
hypothesis. Extra features impede the flow of valuable work through the system by
consuming time and effort that could otherwise be spent on more value-adding work.
They later prove to add no value for customers, or delay the delivery of more valuable
features.

Liker refers to overproduction [6]. Beck notes software development “is full of the
waste of overproduction”, including “elaborate architectures that are never used”
and “documentation no one reads until it is irrelevant or misleading” [26].

A Standish group report shows that approximately 45% of features in a typical
system are never used, with 19% rarely used [1]. Extra features can be architecture
features as well as business features.

Adding extra features significantly slows down feedback and revenue generation,
as the product could be release sooner with fewer features. Many organizations do not
consider the hidden economic costs of adding features that customers don’t want, or
for which there is not a sufficient demand. Beyond the initial costs to develop the
feature, these hidden costs include:

• Time invested in maintaining the feature, possibly in multiple branches.
• Time invested in Failure Demand related to the feature, e.g., fixing defects,

refactoring, or managing technical debt.
• The motivation of the team that developed the feature.

The opportunity costs associated with time lost on these other costs means the
company could have been investing the time and money in something more valuable.

5.2 Delays

A delay is a situation in which something happens later than it should, and implies a
holding back, usually by interference, from completion or arrival. [41]. Delays
impede the flow of work through the system by adding to the overall lead time from
request or idea to delivered product or service.

This impediment is also called waiting or time on hand [6]. The Poppendiecks note
that “one of the biggest wastes in software development is usually waiting for things
to happen” [1].

Delays can take many forms in teams and organizations. There is the delay that
results from waiting for an activity to start or end. There is delayed learning. There is
delay in information flow, resulting in the people who need the information to do their
jobs do not get it in a timely fashion. This either causes them to wait, or to fill in the
missing information with guesses.

210 K. Power and K. Conboy

Delays prevent the organization from delivering value to the customer as quickly
as possible [1]. The ability of a team or organization to respond to an idea or request
is directly related to the delays in the system. Reinertsen asserts that 85% of product
development organizations do not understand the cost of delay associated with their
projects or features [15]. He argues that understanding delay is so critical that, if
organizations were to quantify just one thing, they should quantify the cost of delay,
which he codifies as “The Principle of Quantified Cost of Delay”. Brooks noted the
“severe financial, as well as psychological, repercussions” of delays discovered late
in a project [26]. Delays can have a cumulative effect. Brooks notes the secondary
costs incurred by other projects waiting on the delayed project can far outweigh all
other costs.

5.3 Handovers

Handovers occur whenever incomplete work must be handed over from one person or
group to another. Handovers impede the flow of work through the system by adding
delays, requiring more people, or losing knowledge as work is handed over from one
person or group to another. Handovers are also referred to in the literature as hand-offs.

Ward argues that handovers are the most fundamental waste in companies because
they separate knowledge, responsibility, action and feedback [42]. The Poppendiecks
describe a case study from Ericsson that illustrates the cost of handovers [35]:
“handovers of information between functions tended to be inefficient; both knowledge
and time were lost in every handover. As the number of handovers increased, the
problems tended to escalate nonlinearly. Furthermore, workers in each function were
assigned to multiple projects, causing severe multitasking that increased
inefficiencies. The inefficiencies of handovers and multitasking showed up as
decreased speed, and therefore slower time to market.”

5.4 Failure Demand

Failure demand refers to the demand placed on systems (including teams and
organizations) and is “demand caused by a failure to do something or do something
right for the customer” [43]. It is the opposite of value demand, where the demand on
systems is driven by value-adding work. [11] defines it as “the demand on the
resources of an organization caused by its own failures”. It impedes flow by
consuming time and effort that could be spent on value-adding work.

Failure Demand includes what TPS calls rework [2], and is an example of Type
Two muda [8]. Anderson calls it “Failure Load” [3].

Examples include defects, forced rework, technical debt, incomplete features,
incorrect features, poor customer service, poor design, and poor or insufficient
documentation. The Poppendiecks describe relearning, e.g., failing to remember what
was learned at least once already [34]. Impediments occur when a support team places
demands on a development team. Products that are difficult to integrate, deploy, or
configure all create large amounts of failure demand. If the software “gives operations
and support organizations problems, both you and they are wasting valuable time.” [11].

 Impediments to Flow: Rethinking the Lean Concept of ‘Waste’ 211

Eliminating failure demand has a large economic benefit. In the financial services
sector failure demand can vary from 20% to 45% of demand [43]. Seddon also shows
that in police forces, telecommunications and local authorities failure demand can be
as high as 50% to 80%. Removing failure demand can lead to enormous productivity
improvements.

5.5 Work in Progress

Work in progress is analogous to inventory in software development. It is work that is
not yet complete, and, therefore, does not yet provide any value to the business or the
customer. Too much work in progress impedes the flow of work through the system
by slowing down the flow of work for individual work items, and delaying the point
at which value can be realized.

The Poppendieck’s first book translated the TPS waste of “inventory” to “partially
done work” [1]. It is also referred to as work in process, but that term is overloaded in
software development.

Teams and organizations often get into trouble by having too much work in
progress. Lots of WIP is often mistakenly taken as a measure of progress. Beck gives
examples of waste resulting from excess work in progress, including “requirements
documents that rapidly grow obsolete”, and “code that goes months without being
integrated, tested, and executed in a production environment” [44].

Example impacts include starting lots of projects or work items, but taking a long
time to finish anything. Measuring progress in terms of perceived activity rather than
delivered value.

5.6 Context Switching

Context switching occurs when people or teams divide their attention between more
than one activity at a time [15]. Context switching impedes the flow of work through
the system by adding to the overall lead time from request or idea to delivered product
or service, and by causing failure demand and relearning. Context switching is
sometimes necessary; the advice from this research is to use it consciously,
deliberately and carefully. Unplanned context switching is generally worse than
planned context switching, though poorly planned context switching is also harmful.

Context switching is often called task switching in the literature [1]. Much of the
lean literature describes task switching as working on more than one thing at a time.
However, as the wider research represented by this paper shows, context switching in
knowledge work such as software development is caused by more than contending
with multiple work items or tasks.

Example impediments include a developer working on more than one user story at
a time. A tester working on more than one project at time. An engineer interrupted
while working on a design. A team tasked with working towards delivering two or
more projects at the same time. Meetings scheduled at times that guarantee
interruptions.

212 K. Power and K. Conboy

Impediments occur when people switch their focus from one context to another.
The cost includes more than lost time. Context switching is a root cause of some
instances of estimation problems. Developers often do not predict unplanned context
switches, deal with unplanned context switches effectively, or plan effectively for
known context switches. This leads to work taking significantly longer than
estimated.

In human systems the time that gets wasted is significant, but there are other costs
associated with context switching. These include the opportunity cost associated with
the interruption, as well as motivational costs. People have reported dissatisfaction
with repeated context switching because it does not allow them to properly engage
with the work, prevents them from contributing their best work, prevents them from
developing mastery of their skills, and contributes to feelings of guilt because they
feel they are letting down team members by not completing tasks or taking longer
than they committed.

5.7 Unnecessary Motion

Unnecessary motion is any movement of people, work or knowledge that is
avoidable, that impedes the smooth flow of work, or that creates additional
inefficiencies. A classic example in software is the unnecessary motion caused by not
having team members sitting together. Unnecessary motion impedes the flow of work
through the system by adding overhead and causing delays in information or decision-
making. TPS refers to the waste of unnecessary movement [6]. Authors translating
from TPS to software translate motion to ‘task switching’ ([1, 34] and [9]), but this
research more accurately reflects task switching under the wider heading of context
switching in 5.6 above.

5.8 Extra Processes

Extra processes generate extra work that consumes time and effort without adding
value. Extra processes impede the flow of work through the system by adding
additional steps, barriers, documentation, reviews, or other activities.

Extra processes is also referred to as overprocessing or incorrect processing [6]. In
their first book the Poppendiecks translate “Extra Processing” to “Extra Processes”
[1], and in a later book to “Relearning” – the waste often caused by long feedback
loops [34]. A simple example is the relearning that developers must do to reacquaint
themselves with code for a feature they worked on 6 months ago. For this research,
“relearning” is more appropriately categorized as “Failure Demand”. Another reason
this research does not use the term “relearning” is that it can cause confusion.
Learning is obviously a good thing in software development. Participants in focus
groups have also expressed confusion about the terms. Hibbs et al translate
overprocessing to “unneeded processes [9]”.

 Impediments to Flow: Rethinking the Lean Concept of ‘Waste’ 213

Examples include paperwork and documentation that add no value. Pursuing a
standard of quality that is higher than necessary. Time spent chasing an unreasonable
level of certainty in estimating projects or features. Manual tasks that could be
automated [9]. Forced conformance to centralized process checklists of “quality”
tasks [10].

Extra processes have a demotivating impact on people who are forced to comply
with non-value adding processes. Inefficiencies caused by poor tools or poor design
can lead to defects (failure demand).

5.9 Unmet Human Potential

Unmet human potential is the waste of not using or fostering people’s skills and
abilities to their full potential. Unmet human potential impedes the flow of work
through the system in many ways, though generally there is an opportunity cost
through failing to reach the potential capability of the system. The flow of work, and
the associated value created, is neither as effective nor efficient as it could be.

This is an expanded perspective on the waste of unused employee creativity [6].
This research categorizes this as “unmet human potential” because it goes beyond
lack of engagement or not using employee creativity. The Poppendiecks describe the
serious problem of not engaging people in the development process [34]. However,
they describe this in the context of “relearning”, which this research has framed more
appropriately as failure demand (section 5.4). Not engaging people is more
appropriately categorized under unmet human potential because it is a failure to take
advantage of people’s knowledge and creativity, removes ownership over their
process, and removes opportunities for learning and improvement.

Deming wrote the “greatest waste in America is failure to use the ability of people.
Money and time spent for training will be ineffective unless inhibitors to good work
are removed” [45].

It impedes the potential of the individual, the team and the organization. Research
into motivation has shown that engagement through sense of purpose, combined with
the opportunity to develop one’s skills and abilities, are vital ingredients in fostering
intrinsic motivation [46].

5.10 Summary of the Nine Impediments to Flow

Table 1 summarizes the definitions of each of the impediment categories, and how
they generally impede the flow of work through a system.

214 K. Power and K. Conboy

Table 1. Summary of Impediment Categories

Category Definition How it Impedes Flow
Extra
Features

Extra Features are those features that
are added without either a proven need
or valid hypothesis.

Extra features impede the flow of
valuable work through the system by
consuming time and effort that could
otherwise be spent on more value-adding
work. They later prove to add no value for
customers, or delay the delivery of more
valuable features.

Delays A delay is a situation in which something
happens later than it should, and implies
a holding back, usually by interference,
from completion or arrival.

Delays impede the flow of work through
the system by adding to the overall lead
time from request or idea to delivered
product or service.

Handovers Handovers occur whenever incomplete
work must be handed over from one
person or group to another.

Handovers impede the flow of work
through the system by adding delays,
requiring more people, or losing
knowledge as work is handed over from
one person or group to another.

Failure
Demand

Failure demand refers to the demand
placed on systems (including teams and
organizations) and is “demand caused by
a failure to do something or do
something right for the customer”

It impedes flow by consuming time and
effort that could be spent on value-
adding work.

Work In
Progress

Work in progress is analogous to
inventory in software development. It is
work that is not yet complete, and,
therefore, does not yet provide any
value to the business or the customer.

Too much work in progress impedes the
flow of work through the system by
slowing down the flow of work for
individual work items, and delaying the
point at which value can be realized.

Context
Switching

Context switching occurs when people
or teams divide their attention between
more than one activity at a time

Context switching impedes the flow of
work through the system by adding to the
overall lead time from request or idea to
delivered product or service, and by
causing failure demand and relearning.

Unnecessary
Motion

Unnecessary motion is any movement of people, work or knowledge that is avoidable, that impedes the smooth flow of work, or that creates additional inefficiencies

Unnecessary motion impedes the flow of
work through the system by adding
overhead and causing delays in
information or decision-making

Extra
Processes

Extra processes generate extra work that
consumes time and effort without
adding value

Extra processes impede the flow of work
through the system by adding additional
or incorrect/unsuitable activities

Unmet
Human
Potential

Unmet human potential is the waste of not using or fostering people’s skills and abilities to their full potential Generally there is an opportunity cost through failing to reach the potential capability of the system. The flow of work, and the associated value, is neither as effective nor efficient as it could be.

 Impediments to Flow: Rethinking the Lean Concept of ‘Waste’ 215

6 Conclusions

This paper presented an updated framework for categorizing impediments in agile
software development teams and organizations. The paper draws from ongoing
research by the authors, and provided examples from both the research results and
literature. The perspectives presented in this paper are compatible with, rather than
competing with, other work that seeks alternative views to the traditional metaphor of
waste from the manufacturing domain, in particular Anderson’s cost perspective [3]
and Reinertsen’s economic framework [15].

The research presented in this paper is part of an ongoing program of research
work by the authors. This paper provides the terminology and categories for
impediments to flow. Other work by the authors provides an analysis of the causes of
impediments, a detailed analysis of the impacts of the impediments, how to assess the
impact, and how to reduce impediments.

Using a management paradigm grounded in the complexity sciences helps to better
deal with the multi-dimensional nature of problems in software development. This
research views organizations, teams, and the entire value stream as Complex Adaptive
Systems, and uses Human Systems Dynamics (HSD) as a lens through which to better
understand such systems. The HSD lens also helps us understand how to influence
those systems to make improvements, such as removing impediments.

This paper provides the following:

• Reframe the lean concept of waste as impediments to flow.
• A set of nine categories of impediments to flow to help people see impediments.
• How each type of impediment impacts the flow of work.
• Examples of each type of impediment.
• Frame impediments to flow in the context of modern knowledge work, viewing

teams and organizations as complex adaptive human systems.

Using the categories presented in this paper, researchers and practitioners can
identify impediments to the flow of work in the patterns that emerge in the systems
occupied by teams and organizations.

References

1. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Addison-Wesley, Bostan (2003)

2. Ohno, T.: Toyota production system: beyond large-scale production. Productivity Press,
Cambridge (1988)

3. Anderson, D.J.: Kanban: Successful Evolutionary Change for Your Technology Business.
Blue Hole Press, Sequim (2010)

4. Shalloway, A., Beaver, G., Trott, J.: Lean-agile software development: achieving
enterprise agility. Addison-Wesley, Upper Saddle River (2010)

5. Ohno, T.: Taiichi Ohno’s Workplace Management, Special 100th Birthday Edition.
McGraw-Hill, New York (2013)

216 K. Power and K. Conboy

6. Liker, J.K.: The Toyota way: 14 management principles from the world’s greatest
manufacturer. McGraw-Hill, New York (2004)

7. Shingo, S.: A Study of the Toyota Production System. Productivity Press, New York
(1989)

8. Womack, J.P., Jones, D.T.: Lean Thinking: Banish Waste and Create Wealth in Your
Corporation. Simon and Schuster (2003)

9. Hibbs, C., Jewett, S., Sullivan, M.: The Art of Lean Software Development. O’Reilly
Media, Inc. (2009)

10. Larman, C., Vodde, B.: Scaling lean & agile development: thinking and organizational
tools for large-scale Scrum. Addison-Wesley, Boston (2009)

11. Poppendieck, M., Poppendieck, T.: Leading lean software development: results are not the
point. Addison-Wesley, Upper Saddle River (2010)

12. Ries, E.: The Lean Startup: How Constant Innovation Creates Radically Successful
Businesses. Penguin (2011)

13. Maurya, A.: Running Lean: Iterate from Plan A to a Plan That Works, 2nd edn. O’Reilly
Media, Inc. (2012)

14. Pessôa, M.V.P., Seering, W., Rebentisch, E., Bauch, C.: Understanding the Waste Net: A
Method for Waste Elimination Prioritization in Product Development. In: Global
Perspective for Competitive Enterprise, Economy and Ecology, pp. 233–242 (2009)

15. Reinertsen, D.G.: The principles of product development flow: second generation lean
product development. Celeritas, Redondo Beach (2009)

16. Anderson, D.J.: Lean Software Development. Lean Kanban University (LKU), Seattle
(2013)

17. Dooley, K.J.: A Complex Adaptive Systems Model of Organization Change. Nonlinear
Dynamics, Psychology and Life Sciences 1, 69–97 (1997)

18. Snowden, D.J., Boone, M.E.: A Leader’s Framework for Decision Making. Harvard
Business Review (2007)

19. Vasconcelos, F.C., Ramirez, R.: Complexity in business environments. Journal of Business
Research 64, 236–241 (2011)

20. Appelo, J.: Management 3.0: leading Agile developers, developing Agile leaders.
Addison-Wesley, Upper Saddle River (2011)

21. Stacey, R.: Emerging Strategies for a Chaotic Environment. Long Range Planning 29,
182–189 (1996)

22. Sutherland, J., Schwaber, K.: The Scrum Guide. The Definitive Guide to Scrum: The
Rules of the Game. Scrum.org (2013)

23. DeMarco, T.: Slack: getting past burnout, busywork, and the myth of total efficiency.
Broadway Books, New York (2001)

24. Wang, X.: Organizing to be Adaptive: a Complex Adaptive Systems based Framework for
Software Development Processes. School of Management, PhD. University of Bath (2007)

25. Merriam-Webster, http://www.merriam-webster.com/dictionary/value
26. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn.

Addison-Wesley, Boston (2005)
27. Merriam-Webster, http://www.merriam-webster.com/dictionary/

impediment
28. Wang, X., Conboy, K.: Understanding Agility in Software Development from a Complex

Adaptive Systems Perspective. In: 17th European Conference on Information Systems
(ECIS), Verona, Italy (2009)

29. Eoyang, G.H.: Conditions for Self-Organizing in Human Systems. Doctor of Philosophy.
The Union Institute and University (2001)

 Impediments to Flow: Rethinking the Lean Concept of ‘Waste’ 217

30. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Addison-Wesley,
Upper Saddle River (2010)

31. Eoyang, G.H.: Human Systems Dynamics Professional Certification Training Manual.
HSD Institute, Cohort 32 - Roffey Park, UK (2013)

32. Eoyang, G.H., Holladay, R.J.: Adaptive Action: Leveraging Uncertainty in Your
Organization. Stanford University Press, Stanford (2013)

33. Womack, J.P., Jones, D.T., Roos, D.: The machine that changed the world: the story of
lean production - Toyota’s secret weapon in the global car wars that is revolutionizing
world industry. Simon & Schuster, London (2007)

34. Poppendieck, M., Poppendieck, T.: Implementing lean software development: from
concept to cash. Addison-Wesley, London (2007)

35. Poppendieck, M., Poppendieck, T.: The Lean Mindset: Ask the Right Questions. Addison-
Wesley, Upper Saddle River (2013)

36. Mossman, A.: Creating value: a sufficient way to eliminate waste in lean design and lean
production. Lean Construction Journal 2009, 13–23 (2009)

37. Sadreddini, A.: Time for the UK construction industry to become Lean. Proceedings of the
Institution of Civil Engineers Civil Engineering Special Issue 165, 28–33 (2012)

38. Dickson, E.W., Anguelov, Z., Vetterick, D., Eller, A., Singh, S.: Use of Lean in the
Emergency Department: A Case Series of 4 Hospitals. Annals of Emergency Medicine 54,
504–510 (2009)

39. Jimmerson, C.L.: A3 problem solving for healthcare: a practical method for eliminating
waste. Healthcare Performance Press, New York (2007)

40. Power, K.: Impediments to Flow: Understanding the Lean Concept of ‘Waste’ in Self-
Organizing Human Systems. PhD. National University of Ireland, Galway, Ireland (in
Porgress)

41. Merriam-Webster, http://www.merriam-webster.com/dictionary/delay
42. Ward, A.C.: Lean Product and Process Development. The Lean Enterprise Institute Inc.,

Cambridge (2007)
43. Seddon, J.: Freedom from command & control: rethinking management for lean service.

Productivity Press, New York (2005)
44. Beck, K., Andres, C.: Extreme programming explained: embrace change. Addison-

Wesley, Boston (2005)
45. Deming, W.E.: Out of the Crisis. The MIT Press, Cambridge (1986)
46. Pink, D.H.: Drive: The Surprising Truth about what Motivates Us (2010)

Examining the Structure of Lean

and Agile Values among Software Developers

Fabian Fagerholm and Max Pagels

Department of Computer Science, University of Helsinki
P.O. Box 68, FI-00014 University of Helsinki, Finland

fabian.fagerholm@helsinki.fi, max.pagels@cs.helsinki.fi

Abstract. Gaining maximum benefit of Lean and Agile methods re-
quires a thorough understanding of their assumptions regarding culture,
mindset, and values. This paper examines the value system structure
of experienced developers working with Lean and Agile methods, and
compares it to universal human values and individual personality. We
developed and deployed an online survey on Lean and Agile values, with
embedded measures for universal values and personality. The resulting
data set, with 61 respondents, was analysed using agglomerative hierar-
chical clustering and multidimensional scaling. A value structure contain-
ing 11 Lean and Agile values was uncovered, yielding insight into how
Lean and Agile developers experience values in their work. The analysis
shows that Lean and Agile values are connected, but not equal, to uni-
versal values and personality. The proposed model can help practitioners
understand the ethos of Lean and Agile methodologies and to assess their
organisational culture. It may also help researchers to study models of
software developer experience and value systems.

Keywords: values, Agile software development, Lean software develop-
ment, survey, quantitative study, developer experience, human factors.

1 Introduction

In contemporary organisations, software teams often consist of people with var-
ied cultural backgrounds and different personal characteristics. While diversity
in knowledge and expertise can improve team performance, diversity in personal
values can lead to conflict and lower performance [1]. Several studies indicate
that diversity enhances performance by broadening the perspectives of work
groups [2]. A shared professional culture can help individuals overcome differ-
ences in personal values and perform better. Culture and values have been con-
sidered important in software development for several reasons. In an essay on
the history of the Agile Manifesto, Jim Highsmith, one of the founders of the
Agile movement, notes [3]:

At the core, I believe Agile Methodologists are really about “mushy” stuff –

about delivering good products to customers by operating in an environment

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 218–233, 2014.
c© Springer International Publishing Switzerland 2014

The Structure of Lean and Agile Values 219

that does more than talk about “people as our most important asset” but ac-

tually “acts” as if people were the most important, and lose the word “asset”.

So in the final analysis, the meteoric rise of interest in – and sometimes tremen-

dous criticism of – Agile Methodologies is about the mushy stuff of values and

culture.

Integrating culture and value concerns into the software development process
is a promising way to enhance developer experience [4]. While the importance of
these issues is easy to understand, values themselves are very difficult to grasp.
There is a lack of research illuminating the structure of values among software
developers working with Lean and Agile methodologies. Many previous studies
attempting to grasp the level of “agility” or “leanness” resort to checklists of
methodological procedures. An improved understanding of the values that form
the basis of individual reasoning and action, and their relationship to normative
values in the Lean and Agile software development philosophies, would allow a
discourse that goes beyond the practices that have been documented to date.
In this paper, we report on a quantitative survey study which examines the
structure of the Lean/Agile value system among professional software developers.

The rest of this paper is structured as follows. In Section 2, we first examine
theories of human values; belief systems that influence evaluation of events and
choice of action in broad and general terms. We then examine literature on Lean
and Agile approaches in both software engineering and other fields, in order to
gain a picture of possible value dimensions. In Section 3, we describe the research
design: the research questions, survey design, sampling, survey deployment, and
methods of analysis. In Section 4, we report the results of the study in detail.
In Section 5, we discuss the findings and limitations of the study. Finally, in
Section 6, we summarise the findings and outline some possible future directions.

2 Related Work

Software engineers’motivation has receivedmuch systematic attention [5,6,7].Mo-
tivation is moderated by complex socio-cognitive factors, including the cultural
context with its value system and individual personal characteristics [6]. Values
form an important component in motivation [8], and, thus influence performance
and overall work experience. An understanding of values is therefore vital for im-
proving many outcomes, including motivation and developer experience [4].

2.1 Theories of Human Values

Human values are deeply rooted, abstract motivations that guide, justify, or
explain attitudes, norms, opinions, and actions [9]. Values constitute concepts
or beliefs that serve as standards for desirable end-states or behaviours. They
are deeply linked to affect and the self-concept [10]: when a value is activated in
an individual, a corresponding feeling also occurs. Values prime attitudes and
guide the selection of behaviours and events [10,11,12,13]. They are ordered by

220 F. Fagerholm and M. Pagels

relative importance, forming a system of priorities to guide action [9]. Values are
sometimes divided into terminal and instrumental values (e.g. [10]). Terminal
values represent desirable end-states of existence – the goals that a person would
like to achieve during their lifetime. Instrumental values represent preferable
modes of behaviour – the means of achieving the terminal values. Values have
practical consequences in many everyday situations. They are the most abstract
type of social cognition used to guide general responses to classes of stimuli [14].
Values can guide the selection of behaviours and evaluation of events [13], and
they impact organisational outcomes [15], business ethics [16,17], and managerial
behaviour [18]. It should be noted that values do not focus on specific objects or
situations [10,8]. They explain behavioural patterns over longer periods of time
rather than specific behaviours in particular situations [19].

Values are thought to stem from three universal requirements for human exis-
tence: individual biological needs; the preconditions for coordinated social action;
and the survival and welfare needs of groups [13,12]. Values are influenced by the
cultures in which humans live. Hofstede’s extensive work on values found four
basic dimensions on which national cultures differ: Power Distance (the degree
of inequality considered normal), Uncertainty Avoidance (preference for struc-
tured situations), Individualism (preference to act as an individual rather than
as a group), and Masculinity (valuing things, power, and assertiveness more than
people, quality of life, and nurturance) [20].

Openness
to Change

Self-
enhancement Conservation

Self-
transcendence

Universalism

Benevolence

Conformity
Tradition

SecurityPower

Achievement

Stimulation

Self-direction

Hedonism

Fig. 1. Theoretical circumplex structure of relations among motivational types of val-
ues in the Schwartz model. (Adapted from Bilsky & Schwartz [21].)

The Schwartz [9,12,13] model of individual value differences has been widely
used in social and cross-cultural psychology. The theory has been extensively
verified in numerous countries, and postulates that values form a circumplex of
related motivations, so that adjacent values in the model are mutually compati-
ble (Figure 1). For example, the shared motivational emphasis in the combination
stimulation – self-direction is an intrinsic motivation for mastery and openness
to change, while the combination stimulation – hedonism represents a desire for
affectively pleasant arousal [9].

The Structure of Lean and Agile Values 221

2.2 Values in Lean and Agile Software Development Methodologies

Values play a special role in software development methodologies. Lean and
Agile concepts have become commonplace in today’s software development land-
scape. Both approaches have a core set of values that establish their fundamental
philosophies, forming a base for more practical rules and methods.

Lean Values. The term Lean Software Development was introduced in 2003
through the book “Lean Software Development: An Agile Toolkit” [22]. This
treatment of Lean is positioned in relation to Agile software development. How-
ever, the roots of Lean thinking extends further back in history. Lean, or Toyota
Production Systems (TPS), are just-in-time manufacturing systems initially de-
veloped at Toyota during 1948–1975 [23,24]. This approach concerns not only
manufacturing procedures, but is a comprehensive management philosophy – a
foundation for competitive strength that relies on a deeply ingrained corporate
culture [25]. In 2004, Jeffrey Liker published “The Toyota Way”, introducing
Toyota’s corporate culture and the TPS to a large audience and popularising
the Lean manufacturing philosophy [26].

The Toyota Way is the foundation of TPS [25,26]. It is a summary of the man-
agerial convictions and value systems inherited within Toyota as tacit knowledge;
a code of conduct for its employees at all levels [25]. Numerous companies have
attempted to emulate the structural parts of Lean, but have not succeeded in
introducing the accompanying organisational culture and mindset [27]. Several
authors have argued that Lean cannot be implemented effectively without also
implementing the underlying value system [25,27,26,28,29,23]. Liker attributes
the difficulties in introducing Lean to a disregard for the Toyota Way [26,25].
Liker points out that managerial understanding of the Toyota Way, and the abil-
ity to instil this thinking into the minds of workers, is essential in order to raise
the level of lean companies [26].

Several authors have summarised essential Lean thinking. According to Wom-
ack and Jones [30] and Liker [26], Lean focuses on identifying customer value
and delivering it by letting the product flow uninterrupted through a series of
value-adding processes. Thus waste becomes visible and can be eliminated. Liker
lists 14 Lean principles, including emphasising “a long-term philosophy, even at
the expense of short-term financial goals”; levelling workload to work “like the
tortoise, not the hare”, building “a culture of stopping to fix problems, to get
quality right the first time”, “[growing] leaders who thoroughly understand the
work, live the philosophy, and teach it to others”, making decisions “slowly by
consensus, [. . .] considering all options”, and “[becoming] a learning organization
through relentless reflection and continuous improvement” [26].

Agile Values. In manufacturing, Agile is often considered the next step after
Lean, but the two may also be viewed as complementary [31]. Agile software
development was a response to perceived difficulties stemming from a turbulent
business environment [32,33]. Though the term Agile software development was
introduced in its namesake manifesto in 2001 [34], few of its ideas are new. Lar-
man and Basili note that incremental and iterative development was in use as

222 F. Fagerholm and M. Pagels

early as 1957 [35], making the approach several decades old. The initial driving
force behind Agile software development consisted of practitioners and consul-
tants [36]. Combined with a lack of rigorous conceptual studies, the result is a
fragmented understanding of Agile, unclear definitions and even direct contradic-
tions. Meanwhile, a unique characteristic of Agile software development is that
it was founded on a set of core values [34]:

1. Individuals and interactions over processes and tools.
2. Working software over comprehensive documentation.
3. Customer collaboration over contract negotiation.
4. Responding to change over following a plan.

However, the perception and understanding of these values among practition-
ers is not necessarily literal. A critical analysis [37] examined the discourse
of key methodological contributors using Lasswell’s value framework [38], and
found strong expressions of enlightenment – valuing knowledge and insight – and
power – valuing possibly coercive influence to affect policies. Wealth and skill
were present to a lesser degree; rectitude, respect, affection, and well-being were
only weakly expressed. The study claims that this is a legitimisation strategy
to improve diffusion and industry adoption of Agile [37]. There is thus room to
consider whether the true values of Lean and Agile practitioners are different.
As practical enactments are often a combination of Lean and Agile, it is justified
to examine the value structure of both methodologies as a single expanded set.
While Lean and Agile can be considered complementary and partially overlap-
ping, it is not clear how the combination of their underlying value systems are
understood by practitioners, a gap that this study aims to address.

3 Research Design and Execution

We took a quantitative survey approach to examine the structure of Lean and
Agile values among software developers. We sought to expand the understanding
of this construct by addressing the following research questions:

RQ1 What is the structure of the Lean and Agile value system among software
developers?

RQ2 What is the relationship between the Lean and Agile value system and
the general human value system?

RQ3 What is the relationship between the Lean and Agile value system and
individual personality?

3.1 Survey Design

We designed a survey with inventories on human values, personality, and
Lean/Agile values. The survey was piloted twice with a small number of stu-
dents to adjust length, improve item wording, and remove low-quality items. We
used the Schwartz Portrait Values Questionnaire (PVQ) [12] to obtain a mea-
sure of human values for each respondent. The PVQ measures the ten basic value

The Structure of Lean and Agile Values 223

orientations shown in Figure 1. It consists of 21 short verbal descriptions, por-
traits, of different people, each implying an orientation towards a single value
type. For each, respondents must answer the question “How much like you is
this person?” on a six-point scale. We used the Ten-Item Personality Inventory
(TIPI) [39], a short instrument for assessing personality according to the Big Five
personality model. While being short, the TIPI correlates well with established
instruments such as the BFI, NEO-FFI, and NEO-PI-R, and although it does
not allow assessment of individual sub-scales, it is suitable for research purposes
when personality is not the main topic of research [39]. To assess Lean/Agile val-
ues, we devised a set of value statement items. These were derived from multiple
literature sources, including research articles and books aimed for practitioners.
Respondents were asked to indicate their agreement with each statement on a
seven-point Likert scale. We included several different wordings of items, and
items that were not explicitly given by any single source, but were implied. The
survey included a total of 94 items, available as supplementary material [40].

3.2 Sample and Survey Deployment

Our main focus at this stage of research was Finnish software developers who
work with Lean and/or Agile software development methods. However, we also
allowed respondents from other countries to participate. We deployed the survey
online during February to June 2013, and recruited participants from several
sources where we knew experienced software development professionals could
be reached. We directly contacted three companies in Finland; each agreed to
let one of their teams participate in the survey. In addition, we obtained a
number of respondents through social media discussion forums on relevant topics.
Finally, we ran a Google AdWords campaign, promoting the survey to people
who searched for related topics. Respondents were also recruited at scientific
conferences with industry participants.

3.3 Analysis Methods

We used agglomerative hierarchical clustering and nonmetric multidimensional
scaling to examine the structure of the responses. Agglomerative hierarchical
clustering is a statistical data analysis method [41]. In our case, each survey
response can be characterised as a point in a value space where Lean/Agile
value items constitute the spatial dimensions. The clustering initially considers
each point as an individual cluster, working bottom-up to iteratively join them
based on similarity, i.e. closeness in the multidimensional space. The resulting
tree structure reveals (dis)similarities in the data. We used cluster averages for
agglomeration, and correlation as the distance metric.

Multidimensional scaling (MDS) is a technique for reducing the dimension-
ality of a data set while retaining its discriminative properties [42]. MDS can
collapse a data set into a two-dimensional representation, allowing an accessible
visual representation of the data for interpretation. While value structures have
previously been examined using theory-based MDS, where value dimensions are

224 F. Fagerholm and M. Pagels

assigned initial locations, we chose not to use such an approach. The reasons
for this are twofold. First, our aim at this stage is not to confirm an articulated
hypothesis on Lean/Agile value structures but to explore the construct. Second,
current literature is too fragmented to support a single theory-based hypothesis.
This is contrary to the situation in, e.g., research on general human values, where
such theoretical support does exist (see e.g. [21]).

4 Analysis and Results

Of 61 received responses, 57 were retained after cleaning the data. Unfortunately,
due to several avenues used to contact potential respondents, the response rate
of the survey could not be determined. The respondents were between 22 and
62 years of age, with a median age of 35 years. 47 respondents were male, 7
female, and 3 did not disclose their gender. Respondents’ country of birth was
Finland (65%), Germany (7%), Sweden (7%), Turkey (4%) and USA (4%); other
countries (United Kingdom, Bangladesh, The Netherlands, Italy, Russia, Israel
and China) formed the remaining 13%. 72% of respondents currently lived in
Finland, and 63% were of Finnish nationality. 14% had completed high school
or vocational education, 31% had a Bachelor’s degree, and 46% a Master’s de-
gree. 86% were currently employed. The median years of work experience was
12. Respondents reported working in a wide range of positions, including soft-
ware development, testing, architecture, and coaching, product management, and
consulting. A small number of company owners and top management members
responded to the survey. Organisations ranged from small (less than 10 employ-
ees) to large (more than 1000 employees), with the mean size being between 100
and 499 employees. The demographics match the intended population, with a
relevant background and level of professional experience.

4.1 Structure of Lean and Agile Values

Figure 2 shows the hierarchical clustering of the Lean/Agile values data. Ten
clusters, highlighted with a solid surrounding box, have a confidence level of
p ≥ 0.9, indicating a large degree of support. An additional cluster and three
expanded clusters, indicated by dashed lines, have somewhat weaker confidence
levels (p ≥ 0.8 or higher) but are theoretically motivated. We examine the con-
tents of these clusters from left to right.

Valuing a Narrow Work Focus. The items in the first cluster represents
the view that software developers should focus on their technical work and not
deal with stakeholders or management of work: “Programmers are supposed to
write code, and it’s not their responsibility if tasks overlap or are unclear” (v80),
“User needs might be important, but software developers should focus on the
implementation details” (v22), “The main thing is just to get the work done,
it’s not my job to figure out work processes” (v65). This is contrary to ideas of
self-organisation, process ownership, continuous self-improvement, and inclusion
of the customer in the development process – notions that are valued in Agile
development.

The Structure of Lean and Agile Values 225

v1
7

v6
4

v2
0

v6
1 v4

5
v1

4
v4

4
v8 v4
3

v5
1

v8
0

v2
2

v6
5

v7
3

v5 v7
7 v4
6

v4
8

v7
5

v3
2

v8
9

v1
9

v3
1

v8
3

v7
2

v9
0

v6
8

v8
2

v6
0

v8
8 v2

6
v8

5
v2

9
v4

0
v3

5
v3

4
v8

6
v7

1
v5

0
v7

6
v4

9
v3

7
v4

7
v6

9
v7

0
v3

v6
2

v2
5

v9
1

v4
2

v1
1

v1
6

v9
v1

2
v2

7
v5

9
v5

6
v6

v6
3

v9
2

v4
1

v3
8

v5
5

v2
1

v5
8

v9
4

v1
0

v1 v1
8

v2
8

v7
9

v3
0

v3
9

v1
3

v8
4

v2
3

v7
4 v1

5
v6

7
v2

v3
3

v8
7

v8
1

v3
6

v5
3

v5
4

v4
v7 v7
8

v2
4

v6
6

v9
3

v5
2

v5
7

Cluster dendrogram with AU values (%)

7696 81
977676

98
69 898890 86

7886 8478 8977 8264 8379 799074 936867
889292 8391 958973 8484 8872738670 9280

75
80 90 98 5584 7062

64 8483 26683 8 68687080 87 88850 8170 78 0063 0
0

480 0
0 8748 0

980 0
0 00

0
0

0

au

Fig. 2. Hierarchical clustering dendrogram of Lean/Agile values data. Variables are
shown as leaves in the tree. The numbers in the branch junctions indicate the p-value of
the corresponding subtree. The value (AU) is the “approximately unbiased” p-value [43].
Clusters with p ≥ 0.9 (AU) are marked with a solid box; theoretically motivated clusters
are marked with a dashed-line box.

Valuing Flexibility in Task Execution and Leadership. The second clus-
ter includes beliefs concerning flexibility. “I try to be flexible and if someone
has an important task that is not in the iteration backlog, I do it anyway” (v73),
“Working on many things simultaneously makes me more productive” (v5), and
“I have no problem switching tasks even though I have already started another
task” (v77) (task-level flexibility). “Several product owners is better than one
product owner” (v46), and “To get more done in software projects, you must
work longer hours” (v48) point to flexibility in work direction and amount. One
person working on too many tasks simultaneously is against Agile and Lean
principles; working longer hours and having several product owners can be seen
as having an adverse effect on the ability to maintain a constant pace of devel-
opment, something that both Agile and Lean philosophies strive to achieve.

“Asking someone who already knows the answer to a question is always better
than figuring out the solution oneself” (v75), “The best software developers are
highly specialised and focus on their speciality” (v32), and “Only those with the
greatest knowledge and highest expertise in one particular area should make
decisions that have to do with that area” (v89) represent information-seeking
flexibility, and the view that expertise should lead to decision-making authority.
Agreement with these statements represent valuing a strong distinction between

226 F. Fagerholm and M. Pagels

leader and follower, and giving up individual control to follow given instructions.
The level of confidence in this cluster is lower than that of the other clusters
(p ≥ 0.8).

Valuing Planning and Preparation. The third cluster concerns the notion
that planning and preparation are important: “There has to be someone with
authority who regularly reviews and approves a team’s work before it can con-
tinue” (v83), “Great software is the result of a great plan which is carefully fol-
lowed” (v72), “To succeed in a software project, you must stick to the plan” (v90),
“It is beneficial to prepare stories or task descriptions months or weeks in ad-
vance” (v68), and “Work should not start before exact tasks and specifications
are ready” (v82). This cluster refers to planning and preparing before work starts
– the “big plan up front”. This is in conflict with the Agile avoidance of long-
term planning, preferring reactivity, and relying on feedback from development
iterations rather than detailed specifications. On the other hand, a long-term
perspective, the belief that a high-quality process will produce high-quality re-
sults, and the preference for slow and thorough decision-making, are present in
Lean thinking.

Valuing Adherence to the Process. The fourth cluster represents the belief
that processes should be strictly followed:“I prefer having everyone follow a
process rather than interacting with people to agree on what to do next” (v29),
“Even if something is broken in the software under development, the focus has to
be on what was planned, not on fixing everything” (v35), “I prefer large software
development teams rather than small ones” (v34), and “Great software is the
result of carefully applying a great software development process” (v86). This
view may be connected to a preference for working in large organisations (v34),
where the impact of individual deviation is negligible: “It’s ok to make up a
feature in order to justify the use of the latest technology” (v40).

Valuing Discipline. The fifth cluster emphasises discipline: “A development
process has to be followed strictly and with discipline” (v3), “Team members
should be able to justify why they use certain tools” (v62), and “Having no devel-
opment process leads to chaos and failed projects” (v25). However, the statement
“Great software is the result of constant replanning when changes occur” (v91) is
also within this cluster, indicating that discipline does not preclude responsive-
ness to change.

Valuing Reliance on People. The sixth cluster concerns valuing people, rep-
resented directly in the Agile Manifesto: “Having the best people in the project
is more important than having the best development tools” (v27), and “Hav-
ing the best people in the project is more important than spending time on
managing the process” (v59). However, by including some additional items in
this branch (Figure 2; p ≥ 0.87), we can see a more complicated picture: “Peo-
ple are more important for success than following a development process” (v12),
“If something is broken in the software under development, it should be fixed

The Structure of Lean and Agile Values 227

immediately” (v9), “If an ongoing task can be finished very soon, it should al-
ways be finished even if there is a more important task pending” (v42), “It is
very important for team members to know the contents of the contract(s) made
with the paying customer” (v11), and “It is impossible to fully plan a software
project” (v16). In this extended cluster, “valuing people” relates to responsive-
ness and knowledge of contractual obligations, and to the belief that planning a
software project is impossible. In other words, this value is instrumental, aiming
to increase performance, not necessarily to improve well-being.

Valuing the Freedom to Organise. The seventh cluster concerns self-
organisation and responsiveness: “In software development projects, I prefer to
just solve problems as they come rather than thinking far ahead” (v21), “The best
architectures and designs are created when teams can organise themselves” (v58),
and “Software development team members should be allowed to organise them-
selves in any way they see fit” (v94). Extending the cluster with three additional
items (p ≥ 0.85) yields a more complete picture: “Physically moving around
a lot lowers my productivity” (v10), “Software developers should be allowed to
freely choose any tools they wish to use” (v1), and “Software development team
members should have the authority to choose what they work on” (v18). This
cluster seems to be in opposition to the fifth cluster. High agreement here could
represent valuing freedom for developers to learn and organise their work.

Valuing a Sense of Purpose. The eighth cluster represents the value of know-
ing the purpose of one’s work and its role for an end goal: “Not knowing who the
end user is during a project is a big problem” (v79), “When implementing a fea-
ture, it is critical to know who needs it and why” (v30), and “All team members
must have a clear understanding of who the software is intended for” (v39).

Valuing Predictability and Justification. The ninth cluster concerns a de-
sire for uncertainty reduction. It is related to the desire to base action on evidence
and observation rather than prescribed rules or unjustified orders. “Before imple-
menting a feature, its value should be tested on end users” (v15), “Requirements
can change, but it should not be permitted to change requirements during an it-
eration” (v67), “I want to spend time on identifying and eliminating unnecessary
work in software development projects” (v2), “Tasks should always be doable in
one iteration” (v33), and “I need to feel sure that the goals set for each devel-
opment iteration are achievable” (v87). This cluster highlights a preference for
specific, justified, and time- or scope-limited commitment.

Valuing Collaboration. The tenth cluster shows another side of valuing peo-
ple: the desire for close, collaborative work: “I wish pair programming would
always be used in the projects I work in” (v4), “When faced with a large prob-
lem, everyone in a software development team should stop what they are doing
and work together to solve it” (v7), and “It is best to meet in person instead of
calling or emailing” (v78). This cluster separates the instrumental people values
in cluster four from the benefits of collaborative work, putting emphasis on the
value of working together.

228 F. Fagerholm and M. Pagels

Valuing Broad Stakeholder Involvement. The eleventh and final cluster
concerns customer involvement: “Great software is the result of the customer
constantly monitoring the project” (v24), and “Great software is the result of
close collaboration with the paying customer” (v66). In some ways, this is the
counterpart to the first cluster. By cluster inclusion criteria (p ≥ 0.88), we can
gain a broader understanding: “Everyone in a team should know what all the
others are working on” (v93), “My highest priority is to satisfy the customer by
continuously delivering valuable software” (v52), and “Working software is the
only right measure of project progress” (v57). Together, these items indicate valu-
ing customer involvement, with the customer and team co-creating the software.

4.2 Relationship to Human Values

In order to answer RQ2, we examined how the Lean/Agile value dimensions
obtained through clustering relate to general human values. Figure 3 shows a
two-dimensional MDS of both sets of value dimensions. Although there are some
relationships between the two, our Lean/Agile value dimensions exhibit a struc-
ture that is different from the universal values. On the horizontal axis, human
value dimensions are mostly centred, with Lean/Agile dimensions towards either
end. The latter can thus be seen as polarised variants of the former. This axis
represents a continuum ranging from an open, inclusive, and self-enhancing view
to more authoritative, plan-based, and conforming values. This axis can be seen
as representing the traditional dichotomy between “bureaucratic” and “people-
oriented” views of software development approaches. The two value systems are
more mixed on the vertical axis, but human values are present at either end. The

−6 −4 −2 0 2 4 6

−4
−2

0
2

4

NMDS1

N
M

D
S

2

UN

BE

TR

CO

SE

PO

AC

HE

ST

SDNWF

FLX

PNP

ATP

DIS

ROP

FTO

SOPPRE

COL
BSI

NWF:
FLX:

PNP:
ATP:
DIS:
ROP:
FTO:
SOP:
PRE:
COL:
BSI:
AC:
BE:
CO:
HE:
PO:
SD:
SE:
ST:
TR:
UN:

Narrow Work Focus
Flexibility in Task Execution
and Leadership
Planning and Preparation
Adherance to the Process
Discipline
Reliance on People
Freedom to Organise
Sense of Purpose
Predictability and Evidence
Collaboration
Broad Stakeholder Involvement
Achievement
Benevolence
Conformity
Hedonism
Power
Self direction
Security
Stimulation
Tradition
Universalism

Fig. 3. Two-dimensional MDS of Lean/Agile value dimensions combined with Schwartz
value data. The dimensions of the Lean/Agile values data are shown as variable names,
and the Schwartz value dimensions are shown as two capital letters.

The Structure of Lean and Agile Values 229

dimensions in the lower end are related to openness to change, those in the mid-
dle are mixed, and conservation values are located in the high end. Lean/Agile
values in the lower end can be interpreted as a relaxed attitude towards being led;
the ones in the middle reflect a balanced and disciplined view required for collab-
orative work and group decision-making; the higher end reflects a self-oriented
and more individualistic stance. This axis can be seen as a continuum of values
regarding decision-making, control, and ambition that ranges from a focus on
the self, through a collective view, and ends with carefreeness and flexibility to
the degree of giving up control.

56
47

45
22

18
12

25
41

11
14

34
50

8
10

23
38

17
13

52
3

58
4

36
7

1
15

43
48

5
29

19
16

30
26

39
9

28
33

32
51

PNPATPNWFFLXCESDISOROPFTOPRESOPABSIECOL

Fig. 4. One-dimensional MDS of Lean/Agile values combined with Big Five personality
traits. The numbers represent each respondent, while the letters represent Lean/Agile
values and personality traits. ES: Emotional stability, E: Extraversion, O: Openness to
experience, A: Agreeableness, C: Conscientiousness.

4.3 Relationship to Personality

Lean/Agile values may be expressions of individual personality. We therefore
examine the relationship between Lean/Agile values and personality traits. Fig-
ure 4 shows an MDS of the Lean/Agile values with the Big Five personality
traits. The data is scaled to a single dimension to gain an overall comparison.
The scale can be considered as a continuum ranging from adherence to processes
and roles, and submission to leadership, to a more collaborative and social ap-
proach to work. Extraversion, and to a slightly lesser extent, Agreeableness, tend
towards the latter end of the continuum. Openness to experience is close to Re-
liance on People, but interestingly, Discipline also falls near this personality trait.
The meaning of Discipline in the Lean/Agile values model may not refer to lack
of imagination or creativity, but rather to a systematic approach to dealing with
work. This corroborates the findings presented earlier (see Section 4.1, Disci-
pline). Emotional Stability and Conscientiousness are closely located. However,
they are far from the adherence end of the scale, indicating a stronger relation
to the values of professional, systematic openness and creativity.

5 Discussion and Limitations

We are now in a position to answer our research questions. RQ1 concerned the
structure of the Lean and Agile value system. Our analysis revealed eleven main
dimensions (see Section 4.1), providing a model for the Lean and Agile value
system. We can see that this model touches upon several aspects of software

230 F. Fagerholm and M. Pagels

development work. The value structure reflects the holistic, practice-oriented
approach in both Lean and Agile software development. It consists of a mixture
of human aspects on individual and group levels, concerns regarding process
adherence and flexibility, and notions of what is essential to meaningful work.
The model is a foundation on which further studies can be built, as well a
framework within which practitioners can position themselves.

RQ2 concerned the relationship between the value system and the general
human value system. The largest differences lie on a continuum ranging from
high preference for bureaucratic order to people-orientation, where differences in
Lean/Agile values are more pronounced. Similarities exist on a continuum regard-
ing type of decision-making, control, and ambition. Self-focus in universal values
was congruent with valuing individual decision-making and self-enhancement; a
collective focus was congruent with collaborative decision-making and benefiting
the group; and a focus on personal pleasure was congruent with relinquishing
personal ambition and following a direction chosen by others. Practitioners may
want to consider their placement on this continuum and compare the value sys-
tem of their local or corporate culture with their perception of Lean and Agile
values.

RQ3 concerned the relationship between the Lean/Agile value system and in-
dividual personality. Our interpretation is that the two may be weakly linked. A
preference for social values relates to the Extroversion/Agreeableness pair, while
valuing the systematic, creative, and organisational side is more related to Open-
ness to experience, Emotional stability, and Conscientiousness. However, values
pertaining to adherence to processes, roles, and leadership, do not seem connected
to personality. Valuing these dimensions may have more to do with company and
national culture, schooling, and the business area in which a person works.

The largest threat to validity in this study is the limited sample. It is biased
by lack of random selection and reliance on participant self-selection. It may
not be representative of a larger Finnish population. However, based on the de-
mographic characteristics of the sample, we argue that our results represent a
reasonable starting point for empirically examining the Lean and Agile value
construct. A second threat to validity is the possible bias in the survey instru-
ment. We are aware that the instrument may lack some aspects of Lean and
Agile thinking. However, the selection made here does represent a large number
of aspects in the literature, and we argue that it provides reasonable coverage
given the fragmented nature of the field.

6 Conclusions and Future Work

In this paper, we reported on a study that investigated the value structure among
Lean/Agile software developers. We found a model with eleven dimensions that
structures Lean/Agile values as perceived by practitioners. Our analysis indicates
that Lean/Agile values touch upon software development work as a whole rather
than being limited to specific sub-areas. Comparing the value system to universal
human values indicates that while there are some important links between the

The Structure of Lean and Agile Values 231

two, there are also areas where Lean/Agile values are more specific than universal
human values. Some weak links between the Lean/Agile values and individual
personality were also found.

The implications of our findings are twofold. First, practitioners can benefit
from making implicit values more explicit in their work. Basing software devel-
opment methodology on values can be beneficial: as values increase adaptive
fitness by providing individuals with flexible patterns of behavioural response
options [44], steering software development through values can be effective. In
other words, rather than specifying actions for specific situations, a values-based
approach allows practitioners to react dynamically in new and unforeseen situ-
ations. Also, a methodology that is compatible with cultural values has better
odds of being accepted by practitioners, thus increasing chances for positive
adoption. Being able to articulate the dimensions of the value system, rather
than speaking in terms of methodological practices, could facilitate clarity and
flexibility, increase opportunities for diversity in the workplace, and improve de-
veloper experience. This paper contributes a model which can be used for these
purposes in practice.

Second, our findings have implications for future research. The construct valid-
ity of the model proposed in this paper should be tested further. With larger and
more controlled samples, and by integrating the emerging literature on Lean soft-
ware development, the combination of Lean and Agile, and the scaling of Lean
and Agile methodologies, better validity may be obtained. Larger samples are
also needed for other statistical techniques such as factor analysis. Apart from
strengthening the results presented here, future research could benefit by exam-
ining Lean/Agile approaches from the perspective of culture and values rather
than from traditional software engineering constructs such as methodologies or
processes. As demonstrated in this paper, the often fuzzy and tacit understand-
ing of Lean/Agile software development held by practitioners in the field can
be made explicit by leveraging theory and research methods from social and
behavioural sciences. In our own work, we aim to explore the possibilities of an
improved sample to increase the breadth and validity of the results presented in
this paper. We encourage other researchers to replicate our findings and expand
the understanding of software development driven by values.

References

1. Liang, T.P., Liu, C.C., Lin, T.M., Lin, B.: Effect of team diversity on software
project performance. Industrial Management and Data Systems 107(5), 636–653
(2007)

2. Patrick, H.A., Kumar, V.R.: Managing Workplace Diversity. SAGE Open (2012)
3. Highsmith, J.: History: The Agile Manifesto (2001) (accessed January 01, 2014)
4. Fagerholm, F., Münch, J.: Developer Experience: Concept and Definition. In: Pro-

ceedings of the International Conference on Software and System Process, pp. 73–77
(2012)

5. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in Soft-
ware Engineering: A systematic literature review. Information and Software Tech-
nology 50(9-10), 860–878 (2008)

232 F. Fagerholm and M. Pagels

6. Sharp, H., Baddoo, N., Beecham, S., Hall, T., Robinson, H.: Models of motivation in
software engineering. Information and Software Technology 51(1), 219–233 (2009)

7. França, A., Gouveia, T., Santos, P., Santana, C., da Silva, F.: Motivation in soft-
ware engineering: A systematic review update. In: 15th Annual Conference on
Evaluation and Assessment in Software Engineering (EASE 2011), pp. 154–163
(2011)

8. Rokeach, M.: Understanding human values. Free Press, New York (1979)
9. Schwartz, S.: Universals in the content and structure of values: Theoretical ad-

vances and empirical tests in 20 countries. Advances in Experimental Social Psy-
chology 25(1), 1–65 (1992)

10. Rokeach, M.: The nature of human values. Free Press, New York (1973)
11. Feather, N.T.: Values, deservingness, and attitudes toward high achievers: Research

on tall poppies, pp. 215–251. Lawrence Erlbaum Associates, Inc., Hillsdale (1996)
12. Schwartz, S., Bilsky, W.: Toward a Theory of the Universal Content and Structure

of Values: Extensions and Cross-Cultural Replications. Journal of Personality and
Social Psychology 58(5), 878–891 (1990)

13. Schwartz, S., Bilsky, W.: Toward A Universal Psychological Structure of Human
Values. Journal of Personality and Social Psychology 53(3), 550–562 (1987)

14. Kahle, L.: Social values and consumer behavior: Research from the list of values,
pp. 135–151. Lawrence Erlbaum Associates, Inc. (1996)

15. Weeks, W., Kahle, L.: Social values and salespeople’s effort. Entrepreneurial versus
routine selling. Journal of Business Research 20(2), 183–190 (1990)

16. Feather, N.: Values, Valences, and Choice: The Influence of Values on the Perceived
Attractiveness and Choice of Alternatives. Journal of Personality and Social Psy-
chology 68(6), 1135–1151 (1995)

17. Mumford, M., Helton, W., Decker, B., Connelly, M., Doorn, J.V.: Values and Beliefs
Related to Ethical Decisions. Teaching Business Ethics 7(2), 139–170 (2003)

18. Smith, P., Peterson, M., Schwartz, S.: Cultural Values, Sources of Guidance, and
their Relevance to Managerial Behavior: A 47-Nation Study. Journal of Cross-
Cultural Psychology 33(2), 188–208 (2002)

19. Bond, M.H., Kwok, L., Schwartz, S.: Explaining Choices in Procedural and Dis-
tributive Justice Across Cultures. International Journal of Psychology 27(2), 211
(1992)

20. Hofstede, G.: Culture’s consequences: International differences in work-related val-
ues, vol. 5. Sage Publications, Inc. (1984)

21. Bilsky, W., Janik, M., Schwartz, S.: The Structural Organization of Human Values
– Evidence from Three Rounds of the European Social Survey (ESS). Journal of
Cross-Cultural Psychology 42(5), 759–776 (2011)

22. Poppendieck, M.: Lean Software Development: An Agile Toolkit. Addison-Wesley
Professional (2003)

23. Ōno, T.: Toyota production system: beyond large-scale production. Productivity
Press (1988)

24. Ward, A.: Lean product and process development. Lean Enterprise Institute (2007)
25. Saruta, M.: Toyota Production Systems: The ‘Toyota Way’ and Labour-

Management Relations. Asian Business & Management 5(4), 487 (2006)
26. Liker, J.: The Toyota Way: 14 Management Principles from the World’s Greatest

Manufacturer. McGraw-Hill, New York (2004)
27. Hines, P., Holwe, M., Rich, N.: Learning to evolve: A review of contemporary lean

thinking. International Journal of Operations & Production Management 24(9),
994–1011 (2004)

The Structure of Lean and Agile Values 233

28. Holweg, M., Pil, F.: Successful Build-To-Order Strategies Start With the Customer.
MIT Sloan Management Review 43(1), 74–83 (2001)

29. Womack, J.P., Jones, D., Roos, D.: The Machine That Changed the World. Simon
& Schuster (2007)

30. Womack, J.P., Jones, D.: Banish waste and create wealth in your corporation. Free
Press, New York (2003)

31. Naylor, J.B., Naim, M.M., Berry, D.: Leagility: Integrating the lean and agile manu-
facturing paradigms in the total supply chain. International Journal of Production
Economics 62(1-2), 107–118 (1999)

32. Cockburn, A., Highsmith, J.: Agile software development, the people factor. Com-
puter 34(11), 131–133 (2001)

33. Highsmith, J., Cockburn, A.: Agile software development: the business of innova-
tion. Computer 34(9), 120–127 (2001)

34. Alliance, T.A.: The Agile Manifesto (2001), http://www.agilemanifesto.org/ (ac-
cessed January 01, 2014)

35. Larman, C., Basili, V.: Iterative and Incremental Development: A Brief History.
Computer 36(6), 47–56 (2003)

36. Conboy, K.: Agility from first principles: Reconstructing the concept of agility in
information systems development. Information Systems Research 20(3), 329–354
(2009)

37. Lawrence, C., Rodriguez, P.: The Interpretation and Legitimization of Values in
Agile’s Organizing Vision. In: Proceedings of the European Conference on Infor-
mation Systems (ECIS), pp. 10–13 (2012)

38. Lasswell, H., Kaplan, A.: Power & Society: a Framework for Political Inquiry. Yale
University Press, New Haven (1950)

39. Gosling, S., Rentfrow, P., Swann, J.W.: A very brief measure of the Big-Five per-
sonality domains. Journal of Research in Personality 37(6), 504–528 (2003)

40. Fagerholm, F.: Lean and Agile Values Survey 2013. Technical report (2014),
http://www.cs.helsinki.fi/people/fabian.fagerholm/agilevalues2013/ (re-
trieved January 04, 2014)

41. Johnson, S.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)
42. Davison, M.: Introduction to Multidimensional Scaling and Its Applications. Ap-

plied Psychological Measurement 7(4), 373–379 (1983)
43. Suzuki, R., Shimodaira, H.: pvclust: Hierarchical Clustering with P-Values via

Multiscale Bootstrap Resampling, R package version 1.2-2 (2011)
44. Michod, R.E.: Biology and the origin of values, pp. 261–272. Aldine de Gruyter,

Hawthorne (1993)

http://www.agilemanifesto.org/
http://www.cs.helsinki.fi/people/fabian.fagerholm/agilevalues2013/

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 234–241, 2014.
© Springer International Publishing Switzerland 2014

Agile Methodologies in Web Programming: A Survey

Giulio Barabino1, Daniele Grechi1, Danilo Tigano1
Erika Corona2, and Giulio Concas2

1 DITEN, University of Genova, Italy
2 DIEE, University of Cagliari, Italy

{giulio.barabino,daniele.grechi,danilo.tigano}@unige.it,

{erika.corona,concas}@unica.it

Abstract. This paper reports the results from a survey concerning the use of
Agile Methodologies (AM), techniques and tools for Web Programming. The
survey lasted from October to December 2013, and involved 112 Web
application developers from 32 countries. Its main purpose was to assess the
usage of AMs, and of specific practices and tools, in the context of Web
programming and of related technologies, such as Content Management
Systems. The results confirm a broad adoption of AMs among Web developers,
and the prevalence of Scrum among AMs.

Keywords: Web programming, Agile Methodologies, CMS.

1 Introduction

Agile Methodologies is a name referring to a set of practices and processes for
software development that were created by experienced practitioners. The principles
inspiring AMs were formalized in 2001 in the “Agile Manifesto” [1]. The main goal
of AMs is to increase the ability to react and respond to changing customer, business
and technological needs at all organizational levels [2]. Several software companies
are moving to Agile software development to improve quality and productivity and to
reduce delivery times.

AMs are commonly reputed to be useful for driving the development of non-
critical systems under vague or changing requirements. This is exactly the context of
most Web applications. We call “Web application” a system that makes use of Web
browsers – possibly running on mobile devices – to interact with the user. So, a Web
application spans from simple or complex Web sites to mobile apps, to custom client-
server systems built using this approach.

The goal of this work is the study the extent to which, and how, AMs, Agile
practices and Agile tools are used by Web programmers. To achieve this goal we
investigated not only the specific AMs and practices used, but also the tools,
frameworks, databases and languages most commonly used for this type of
application.

 Agile Methodologies in Web Programming: A Survey 235

Some surveys on AM usage have already been published, such as ref. [3], or the very
detailed survey conducted annually by VersionOne [4]. However, our intent was to create
a specific survey to ascertain whether and how AMs are used for Web programming, a
sector of software engineering that has become very large in the past years.

The paper is organized as follows: in Section 2 we present the research method, the
gathered data and the results. Section 3 presents a discussion and concludes the paper.

2 Research Method and Gathered Data

Our survey includes 12 questions, and it is intended to be answered by personnel
involved in Web programming. It gathers information about the type and size of the
respondent's company, the possible usage of AMs or Agile practices, and the
technologies used during Web application development. It was created with
PollDaddy [5] because of its better flexibility compared to similar tools. The data
collection lasted for about three months, starting from October 2013 – survey
publishing date – to the end of December 2013. The survey was filled on the Web. It
was advertised through a call on the main reference sites related to the Agile world
and Web programming, through requests directly given at an Italian Agile conference,
and through emails sent to fellow researchers, asking them to forward it to the
software companies they were in contact with. Clearly, the respondent set cannot be
considered an unbiased sample of Web developers.

2.1 Main Features of the Sample

The total number of respondents is 112, divided in 78 “Agile” and 34 “non-Agile”
persons (6 respondents, 5.4% of the sample, belonging to the Italian Agile
Conference). Figure 1 shows with different levels of green the nations where the
respondents live and their relative number. As you can see, the survey was answered
by people living all over the world (32 countries). The heterogeneity of the sample is
in fact a prerequisite for the external validity of the results.

Fig. 1. Sample distribution

The first questions of the survey identify the user from a business point of view
(job role and type of company), together with the perceived use of Agile practices in
her/his working activities. Tables 1, 2 and 3 show the main characteristics of our sam-
ple, composed for the greatest part of software developers (42%) belonging to

236 G. Barabino et al.

small/medium companies (78%). We compare our results (first column of each fig-
ure) to those obtained by the 2013 VersionOne survey [4], where it is possible.

Table 1. Role of the respondents

Q1. What is your job at your company? % of total VersionOne [4]
Developer 42% 23%

Product/Project manager 19% -
Consultant 12% 33%

Other Option 11% 14%
Develop team leader

IT staff
Tester

10%
4%
4%

15%
3%

-

Table 2. Size of the sample

Q2. How many people do work in your company? % of total
From 11 to 100 people 36%

From 2 to 10 people 27%
Only one 15%

More than 500 people 12%
From 101 to 500 people 10%

Table 3. Percentage of Agilists

Q3. Do you use an Agile approach to
software development?

% of total VersionOne [4]

Yes 69% 88%
No 31% 12%

2.2 Agile Development Practices, Process and Technologies

Respondents who declared to use AMs (Agile users) were asked questions about the
specific AM and practices used, reported in Tables 4 and 5, respectively. For com-
pleteness, non-Agile respondents were asked a question about the kind of software
development process they use, reported in Table 6. Other questions were about what
language, CMS, DBMS and other tools were used at a basic use and about having at-
tained or not an Agile certification.

The first question asked to Agile users was “Which of the following Agile
Methodologies do you use the most?”, allowing three answers of decreasing relevance
(most, average, least used)1

. The answers confirmed the strong preference in the use
of Scrum [6] inside Agile users' projects: we have an overall usage of 65%. In second
place there was Extreme Programming [7], with 33% of answers. The respondent had
the option to insert other names besides the listed ones, as in most questions of our
survey. In this particular case, no further Agile Methodology was reported. The re-
sults are shown in Table 4.

1 In the case a respondent used only one or two technologies, we provided the options "I use

one of them / two only".

 Agile Methodologies in Web Programming: A Survey 237

Table 4. Diffusion and classification of the Agile Methodologies

Methodology Most used Average used Least used VersionOne [4]
SCRUM 23 13 5 55%
Extreme Programming 15 6 0 1%
Custom hybrid 5 3 2 10%
Lean 7 4 2 3%
SCRUMBAN 4 5 3 7%
Agile modeling 6 4 5 1%
Lean Kanban 6 5 6 -
None 4 18 31 -

Another question asked to Agile users investigated the most used Agile software
development practices. To this purpose, each Agile user had to specify the usage fre-
quency for each practice, choosing between sometimes, often, always and not used.
The answers are shown in Table 5, toghether with the percentage of always and often
answers on the total of Agile respondents, and compared to the VersionOne survey
[4]. AM usage within the software development area is quite homogeneous; the three
most used practices are: “open work area”, “daily standup meetings” and
“requirements expressed with user stories/features to be developed independently”.

Table 5. Agile software development practices

Q4. Which Agile software development
practices do you use?

Always Often Some-

times

Always or

Often perc.

VersionOne

[4]
Daily standup meetings 31 9 16 51% 85%

Open work area 31 12 9 55% 44%
Requirements expressed with user stories/

features to be developed independently
29 18 16 60% -

Digital taskboard 27 14 12 53% 45%
Feature - driven, time boxed iterations 27 22 10 63% -

Unit testing 26 17 13 55% 72%
Continuous integration 25 16 13 53% 58%

Iteration Planning meetings 25 19 11 56% 75%
Team based estimation 24 21 18 58% 69%

Refactoring 21 23 14 56% 47%
Analog taskboard 19 14 20 42% 22%
Burndown chart 19 10 22 37% 69%

Collective code ownership 19 21 15 51% 29%
Continuous customer involvement 17 24 23 53% -

Continuous Deployment 15 19 17 44% 25%
Test driven development (automated) 15 18 18 42% 38%
Cumulative flow diagram (Kanban) 11 9 25 26% 39%

Work in progress (WIP) limits/kanban board 11 11 24 28% 39%
Automated acceptance testing 8 8 31 21% 22%

Pair programming 6 15 31 27% 30%

238 G. Barabino et al.

Table 6. Software development process used

Q5.Which software development process do you use? Count Percentage
In house process 14 30%
Waterfall 8 17%
None 6 13%
Iterative/Incremental 6 13%
RUP 5 11%
Spiral 4 9%
In house certified process (ISO 9000 or CMMI) 3 6%
Other Option 1 2%

We then focused our attention on the usage of Agile tools. The development of a

Web project using AM is usually made with the help of one or more tools to plan and
develop in a right way. For that reason we proposed the question: “Which of the
following Agile tools do you use the most?”. There are a number of tools for Agile
business planning and we chose those that we thought were the most representative in
the category. Table 7 shows that Jira [8] is the most used tool by respondents; the
reasons are explained by its ductility and dissemination. In addition, Jira is suitable
for Scrum and Lean-Kanban development, and there are many additions that make it a
very Agile product. Another tool that is quite used is Bugzilla, which we included in
the survey despite it being a bug-tracking tool commonly used also in non-Agile
projects. We received some answers about some Agile tools that are not on the list.
More than one respondent indicated the following tools: “Excel”, “Google Docs”,
“RedMine” and “Pivotal Tracker”. Note also the high number of respondents who an-
swered “None”, an answer in line with the opinion of hard-core agilists that it is way
better to use tangible artefacts such as cards and boards rather than electronic tools.

Table 7. Diffusion and classification of Agile tools

Tool Most used Average used Least used VersionOne [4]
Jira 22 7 3 36%
Bugzilla 9 1 4 21%
None 8 23 30 -
MS TFS 5 1 1 26%
Extreme planner 3 5 1 4%
HP 2 0 0 26%
Xplanner 2 1 2 -
CA 1 1 0 1%
IBM Rational 0 1 2 6%
Scrumworks 0 0 2 -
Version One 0 0 2 41%

Finally, we tried to understand what is the most used language in Web

programming (server side) by asking the question: “Which of the following
languages/technologies for Web programming do you use the most?”.

 Agile Methodologies in Web Programming: A Survey 239

The results are clear and show the predominance of Java and JSP technology over
all others (Table 8). More than 50% of the respondents are using one of two
technologies among those listed. The result is not surprising, because Java and JSP
technologies are known to be the most used in the Web programming world. We also
noticed a moderate spread of ASP and ASP.net, in addition to using Php.

Table 8. Diffusion and classification of the programming languages

Language Most used Average used Least used
Java 25 9 10
JSP 14 13 3
ASP.NET 13 4 2
PHP 8 11 6
None 5 15 14
Ruby 5 4 5
ASP 4 2 2
Phyton 2 1 7
Perl 1 2 3
CGI 0 0 1

Another question, whose results we do not report in full for the sake of brevity,

was: “Which language framework (like Spring, Rails, Django, etc) do you use?”. The
results show a supremacy of Spring and a great fragmentation of the other framework.
Rails, Jsf and Django achieved good results, though. We asked also the question:
“Have you got, or has anyone in your team got, an Agile certification?”, whose
results are reported in Table 9.

Table 9. Agile certification

Language Count Percentage
None 78 70%
Certified Scrum Master (CSM) 26 23%
Others 8 7%
Kanban Certified Professional (KCP) 0 0

2.3 Use of CMS and Database

A question about the use of Content Management Systems (CMS): “Which CMS
Framework, if any, do you use for Web application development?” was directed to the
whole sample of respondents. A CMS greatly eases the management of website
content, and modern CMS allow also to integrate custom functionalities. The
respondents could choose more than one tool among eight, and could report others not
included in the list. The three most used CMS are Drupal, Joomla! and Wordpress.
We found also that 40% of respondents do not use any CMS. The results are
summarized in Table 10.

Table 11 shows the same results, highlighting the kind of user (Agile, non-Agile).
Note that only 24% of non-Agile users do not use a CMS in their work, against a 49%
of Agile users (Table 11). The most popular CMS among Agile users is Drupal, while

240 G. Barabino et al.

for non-Agile users we found Joomla! and Wordpress. In addition, four non-Agile
users said they use “Concrete5”.

Table 10. Use of CMS

CMS Number of replies
None 47
Drupal 25
Joomla! 22
Word Press 20
Other Option 16
OpenCms 13
FrontPage 6
WebMatrix 5
Plone 4

Table 11. Use of CMS: comparison between Agile and non-Agile users

CMS

Agile users non-Agile users
Number
of replies

Percentage Number
of replies

Percentage

None 39 49% 8 24%
Drupal 20 25% 5 15%
Joomla! 13 16% 9 27%
WordPress 11 14% 9 27%
Other options 6 8% 10 30%
OpenCms 5 6% 8 24%
WebMatrix 4 5% 1 3%
FrontPage 3 4% 3 9%
Plone 2 3% 2 6%

Finally, we investigated also what are the most used DBMS. Respondents could

choose one or more among the 15 designated DBMS. As seen in Table 12, the most
used DBMS are MySQL, Oracle and PostgreSQL Server. In this case, there is no
significant difference in the responses provided by Agile and non-Agile users. MySQL
is the most used by both categories, and only 3 on 112 respondents answered that they
do not use any Database.

Table 12. Use of Databases

Database Number of replies
MySQL 64
Oracle 39
PostgreSQL 35
Microsoft SQL Server 33
SQLite 17
MS Access 16
MongoDB 13
Other Option 9
DB2 (IBM proprietary) 6
Sybase 3
None 3

 Agile Methodologies in Web Programming: A Survey 241

3 Results and Conclusions

Cross-referencing the answers makes it possible to get some interesting results. Here
we just highlight some among the most interesting.

The majority of respondents that declare to use Scrum as the most widely used
methodology (60%), prefers to use Jira project management tool. Scrum users also
show a large span of preferences regarding the languages used, much broader than for
other respondents. Respondents who declared to use Extreme Programming and Lean
development tend to adopt technologies in a heterogeneous way, with no particular
correlation.

Also the DBMS used by respondents does not seem to be particularly correlated to
specific methodologies or tools.

Referring to Jira tool, it is used by 11 “Certified Scrum Masters (CSM)” (on a total
of 26). This makes Jira the preferred tool of CSM, with 43% of CSM respondents
using it. The use of the other very popular tool, Bugzilla, is not particularly correlated
to methodologies or certification. There are other correlations between using a
specific methodology in relation to a tool, but their significance level is not enough to
be presented here. This is due both to the size of the sample and to the heterogeneity
of the answers.

In conclusion, we presented a survey gathering many data about how Web
applications are actually developed, from the perspectives of process management,
programming language and frameworks, databases, use of Content Management
Systems, tools. These data were studied performing correlations between the various
answers, to assess if and to which extent specific AM and practices are linked to
specific technologies and tools.

We are presently working on extending the number of respondents to the survey, to
increase the significance level of our findings, and to complete the correlation
analysis of the results.

References

1. Manifesto for Agile Software Development, http://www.agilemanifesto.org/
2. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New Directions on

AgileMethods: A Comparative Analysis. In: Proceedings of the International Conference
on Software Engineering, Portland, Oregon, USA (2003)

3. West, D.: Water-Scrum-Fall is the Reality of Agile for Most Organizations Today (2011)
4. 8th Annual state of Agile Development Survey (2014)
5. Polldaddy, http://polldaddy.com/
6. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Upper

Saddle River (2001)
7. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley (2000)
8. https://www.atlassian.com/software/jira

How Many Eyeballs Does a Bug Need?
An Empirical Validation of Linus’ Law

Subhajit Datta1, Proshanta Sarkar2, Sutirtha Das2, Sonu Sreshtha2,
Prasanth Lade3, and Subhashis Majumder2

1 Singapore University of Technology and Design
subhajit.datta@acm.org

2 Heritage Institute of Technology
3 Arizona State University

Abstract. Linus’ Law reflects on a key characteristic of open source
software development: developers’ tendency to closely work together in
the bug resolution process. In this paper we empirically examine Linus’
Law using a data-set of 1,000+ Android bugs, owned by 70+ developers.
Our results indicate that encouraging developers to work closely with
one another has nuanced implications; while one form of contact may
help reduce bug resolution time, another form can have quite the oppo-
site effect. We present statistically significant evidence in support of our
results and discuss their relevance at the individual and organizational
levels.

Keywords: Linus’ Law, Android, Connection, Betweenness, Social Net-
work Analysis, Latent Dirichlet Allocation, Regression.

1 Introduction and Research Question

The agile manifesto announced in 2001, and the principles behind it emphasized
on “individuals and interactions” in large scale software development1. Around
the same time, Raymond’s influential paper invoked the metaphor of the bazaar
to highlight how myriad, spontaneous, and local interactions can fulfil global
objectives in developing large and complex open source software [1]. In Cathedral
and the Bazaar Raymond made a bold conjecture based on his observations of
Linux development, calling it Linus’ Law : “Given enough eyeballs, all bugs are
shallow”; or more formally: “Given a large enough beta-tester and co-developer
base, almost every problem will be characterized quickly and the fix will be
obvious to someone” [1].

With the progressively empirical nature of software engineering research,
anecdotal evidence needs to be complemented with statistically significant con-
clusions [2]. As is widely recognized, Linux is more than just an open source
operating system; its significance lies in harnessing the agile methodology of
software development in a truly novel way [1]. With this background, Linus’

1 http://agilemanifesto.org/

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 242–250, 2014.
c© Springer International Publishing Switzerland 2014

http://agilemanifesto.org/

Validating Linus’ Law 243

Law proclaims an interesting benefit of using agile methodologies by a wide and
distributed developer pool. To validate whether Linus’ Law captures merely a
fortuitous quirk of Linux development, or has wider relevance in large scale agile
development, we need to examine the law in a related but different development
scenario. Android’s2 wide currency in today’s computing milieu is indicated by
the level of its usage in mobile computing devices and active developer pool [3].
Derived from the Linux kernel and having a similar development methodology,
Android serves as an appropriate system for validating whether the claim of
Linus’ Law around the benefits of large scale agile practices indeed go beyond
Linux. In this paper we present results from examining Linus’ Law using Android
bug report data.

In earlier examinations of Linus’ Law using data from the Red Hat Enterprise
Linux 4, the PHP programming language and the Wireshark network protocol
analyzer, files with changes from nine or more developers were found to be 16
times more likely to have a vulnerability than files changed by fewer than nine
developers [4], [5]. Linus’ Law has also been called a “fallacy” due to the lack
of supporting evidence [6]. These and similar other studies point to a lack of
consensus on the validity as well as applicability of Linus’ Law [7].

Our examination of Linus’ Law using data from a large and widely used sys-
tem has implications at several levels. For individual developers, our results can
inform the benefits as well as costs of engaging closely with peers in the resolu-
tion of bugs. For managers, an understanding of Linus’ Law and its limitations
can be valuable for resource allocation. At the organizational level, our results
can guide decisions on whether and how latest trends like crowdsourcing may
help in bug resolution.

On the basis of the statements of Linus’ Law mentioned in the previous sec-
tion, we assume “eyeballs” to be a metaphor for focused developer attention on
a bug, and a “shallow” bug is one which is resolved quickly. Thus Linus’ Law
is taken to propose that bugs will be resolved faster if more developers attend to
them. The reference to “co-developer base” underscores a key expectation that
developers engage in the bug resolution process beyond the immediate bugs they
own. With this background, we arrive at our research question: Does higher
developer attention lead to Android bugs being resolved more quickly?

For developers, we need to identify attributes that reflect on the level of their
attention to resolving bugs. The spirit of agile development processes underly-
ing Linus’ Law encourages developers to engage across their peer group, sharing
knowledge, expertise, and responsibilities [1]. We posit that for developers, the
extent of connection and interpersonal influence in the project ecosystem is re-
lated to how quickly bugs are resolved. On the basis of these observations, we
refine the research question into the following hypotheses:

– H1: Developers who are more connected resolve their bugs more quickly.
– H2: Developers who have higher interpersonal influence resolve their bugs

more quickly.

2 www.android.com

www.android.com

244 S. Datta et al.

2 Methodology

Collecting Data: The Android bug reports data was accessed from a publicly
available online repository [8]. The source XML file was parsed and the data
persisted in a specifically designed MySQL database for easy querying. Each
bug was identified by a unique bug identifier, and had the following attributes:
title, status, owner, date opened, date closed, type, priority, component, stars,
reported by, description. Each comment had the following attributes: identifier of
the bug commented upon, commenter, date of comment, contents of comments.

Cleaning and Filtering Data: We calculated the resolution time for each
bug as the number of days between date the bug was opened and the date it
was closed. In the context of our study, we filtered the data by only considering
bugs which have been commented by more than one developer. From this set
we removed bugs with missing attributes or incorrectly recorded attributes (for
example the opened date being later in time than the closed date). Finally we
only considered bugs which had a resolution time of one year or less. We assume
that a bug which has not been resolved for more than a year is unlikely to have
attracted notable developer attention. Our final data-set consists of 1,016 bugs,
and 73 unique developers who own at least one of these bugs. Each bug in this
data-set has a unique owner; when we refer to a developer’s bug(s) in subsequent
discussion, we mean bug(s) which are owned by that developer.

Defining Developer Networks: We posit that developers can be connected
at two levels as they work together to resolve these bugs: by co-commenting
on bugs, which reflect shared interests and expertise, and through ownership of
bugs which are related to one another. These two levels seek to capture the well
recognized association between structure of work products and the structure of
communication surrounding the work products [9]. To capture these two levels
in our study, we construct the developer communication network (DCN) and
developer ownership network (DON), whose vertices(nodes) are developers. In
DCN two developers are connected by an edge (undirected link) if both have
commented on at least one bug. For constructing DON we build an intermediate
bug similarity network (BSN), whose vertices are bugs. In BSN, two bugs are
connected by an edge if they are similar to one another by the measure explained
below. In DON, two developers A and B are connected by an edge if there is at
least one pair of bugs bugA − bugB (bugA owned by A and bugB owned by B)
such that bugA and bugB are joined by an edge in BSN.

In large software systems involving many developers such as Android, when
a bug is raised its title and textual description are used to make a judgement on
how similar it is to other bugs that have been addressed earlier [10]. On the basis
of this judgement, the ownership of a bug gets decided; a bug is most likely to be
assigned to a developer who has resolved similar bugs earlier. Thus a key step in
the bug resolution process - assignment of ownership - is most often based on an
evaluation of the similarity between bugs. Thus we can assume that developers
owning bugs which are similar to one another are linked by a shared context.

Validating Linus’ Law 245

Detecting Bug Similarity: To automatically detect similarities between bugs,
we used a Latent Dirichlet Allocation (LDA) based approach. LDA considers
a document to be a mixture of a limited number of topics and each word in
the document can be attributed to one of these topics [11]. Given a corpus of
documents, LDA discovers a set of topics, keywords associated with each of the
topics and the specific mixture of these topics for each document in the corpus,
and expresses these information as probability distributions [12]. In developing
the LDA based topic models, we have used the collapsed Gibbs sampling method
[12], [13].

Having obtained the probability distribution over topics for each bug, we cal-
culate the similarity between all pairs of bugs in our data-set using the symmetric
Kullback Leibler Divergence (KLD) [14]. KLD is a distance measure between two
probability distributions. Since we seek to detect the most significant similarity
between bugs (thereby reducing false positives to largest possible extent), we
only connected two bugs by an edge in BSN if the corresponding KLD value was
in the 96 to 100th percentile.

Examining Hypotheses: On the basis of the data-set and the two networks
DCN and DON constructed as described above, we develop multiple linear re-
gression models to examine the hypotheses, whose results are presented next.

3 Results and Discussion

We build regression models for the set of developers owning bugs to examine
hypotheses H1 and H2. For the models we need to identify the dependent variable,
the independent variables, and the control variables. The models will allow us to
determine how the independent variables relate to the dependent variable, after
accounting for the effects of the control variables.

3.1 Model Development

We now describe the development of the model for developers.

Independent Variables: To validate hypothesis H1, we need to identify a pa-
rameter that captures how much a developer is connected to his/her peers in
the context of bug resolution. As defined in the Methodology section, DON cap-
tures how developers are linked to one another through the ownership of similar
bugs. The degree of a developer in DON is the number of other developers (s)he
is connected to via edges. As an established network metric, the degree of a
vertex is a measure of the extent of its connection [15]. Thus we calculate the
Connection of a developer as his/her degree in DON. For hypotheses H2, we
need a measure of a developer’s interpersonal influence in the collective enter-
prise of bug resolution. In social network analysis, the concept of betweenness
reflects how important a person is as an intermediary in the flow of information
between members of a network. Betweenness is measured by the betweenness
centrality of a vertex, which is the proportion of all geodesics between pairs of

246 S. Datta et al.

other vertices that include this vertex [15]. Individuals of higher betweenness are
in stronger positions to broker the interaction of others. In our context, devel-
opers of high Betweenness in DON are expected to know more about a diverse
range of bugs, and hence offer valuable guidance to other developers. On the
basis of this background, Connection and Betweenness are considered as the
independent variables in our model.

Dependent Variable: Both hypotheses H1 and H2 are concerned with how
developers may resolve their bugs quickly. As a dependent variable in our model,
we take the mean of the resolution time for all the bugs owned by a developer,
denoted by ResolutionTime. The distributions of the resolution times of bugs
owned by developers in our data-set have typically low skewness and kurtosis;
thus the mean is a reasonably accurate measure of central tendency.

Control Variables: By developing the model, we expect to understand how
Connection and Betweenness relates to ResolutionTime. However, to establish
the relationship between independent variables and the dependent variable, we
need to isolate some of the peripheral effects on the dependent variable. How
much a developer can work on a bug to quickly resolve it, is influenced by how
many bugs (s)he owns, or the total Workload. Additionally, since developers
are encouraged to advice one another, a developer’s SpanOfInterest - given by
the number of bugs the developer has commented on - can also be expected to
influence how quickly (s)he resolves his/her bugs. As defined in the Methodol-
ogy section, DCN links developers through the co-commenting of work items.
In social network analysis, clustering coefficient(CC)3 measures how closely an
individual is collaborating with others [15]. In our context, CollaborationLevel is
the extent to which a developer is working with others and is a likely influence on
how quickly (s)he resolves her bugs. Finally, we need to have a general sense of
how much interest a bug has generated in the Android community. The “stars”
field of bug report is “used in order to represent the number of people following
a bug” [3]. The mean number of stars across all bugs owned by a developer -
CommunityConcern - thus gives an indication of how much concern a developer’s
bugs have generated in the development ecosystem: a parameter that is likely
to influence how quickly his/her bugs are resolved. With this background, we
include Workload, SpanOfInterest, CollaborationLevel, and CommunityConcern
as control variables in our model.

Model Assumptions and Variable Transformations:With reference to Ta-
ble 1, column I gives the parameters of the base model which only considers the
effects of the control variables, while column II reflects the attention model that
additionally includes the independent variables. Multiple linear regression has
the underlying assumptions of linearity, normality, and homoscedasticity of the
residuals, and absence of multicollinearity between the independent variables.

3 In a network, the clustering coefficient (Cv) for a vertex v is defined as follows: If v
has a degree of kv , that is there are kv vertices directly linked to v, the maximum
number of edges between these kv vertices is kv choose 2 or kv ∗ (kv − 1)/2. If the
actual number of such edges existing is Nv , then Cv = 2 * Nv / kv ∗ (kv − 1) [15].

Validating Linus’ Law 247

The residual properties were verified using histogram, Q-Q plot and scatter plot
of the standardized residuals. Among the variables, Workload and SpanOfIn-
terest had a relatively high correlation (around 0.74), which is understandable
as developers who own more bugs tend to comment more. Since the Variance
Inflation Factors (VIF) of all variables were found to be below the upper limit
of 10 in both the base and attention models [16], absence of appreciable mul-
ticollinearity was established. With references to the descriptive statistics in
Table 1, although a skewness of around 3 for a variable is considered acceptable
for including it in a linear regression model, we considered various established
transformations for variables with relatively high values of absolute skewness,
for making their distributions close to a normal distribution [16]. Accordingly,
Workload and CommunityConcern variables were logarithmically transformed
before including in the model. On the basis of the above discussion we concluded
that the assumptions of linear multiple regression are valid within permissible
limits in our case [16].

Model Description and Validation: In columns I and II of Table 1, the
superscripts of the coefficients denote the range of their respective p values,
as we specify in the table caption. The p value for each coefficient is calculated
using the t-statistic and the Student’s t-distribution. In the table’s lower section,
overview of the models are given: N denotes the number of data points used in
building the model, in our case the number of developers who own bugs. R2 is
the coefficient of determination – the ratio of the regression sum of squares to the
total sum of squares; it indicates the goodness-of-fit of the regression model in
terms of the proportion of variability in the data-set that is accounted for by the
model. df denotes the degrees of freedom. F is the Fisher F-statistic - the ratio
of the variance in the data explained by the linear model divided by the variance
unexplained by the model. The p value is calculated using the F-statistic and the
F-distribution, and it indicates the overall statistical significance of the model.
For the coefficients as well as the overall regression, if p ≤ level of significance,
we conclude the corresponding result is statistically significant, based on null
hypothesis significance testing.

From columns I and II of Table 1, we notice that by adding the independent
variables, the R2 value increases considerably between the base and attention
models and the F-statistic also increases. Thus the independent variables have
enhanced the explanatory power of the model. The standard technique of 10-
fold cross validation was carried out by randomly partitioning the data into 10
sub-samples, training the interaction model with 9 sub-samples and validating
the model on the 10th sub-sample, and repeating this procedure 10 times. The
overall root mean square of prediction error from the cross validation process
was found to be 74.53.

3.2 Threats to Validity

We report results from an observational study rather than a controlled
experiment; thus in the statistical models developed, correlation does not imply

248 S. Datta et al.

causation. Threats to construct validity arise from whether the variables are
measured correctly. Although we have used established network metrics in our
models, we recognize structures like DCN, BSN, and DON can be defined in other
ways. We have used a LDA based approach for text similarity as simpler methods
like cosine similarity do not consider clusters of keywords that are likely to occur
together. We have also assumed that the elapsed time between bug opening and
closure represents the actual time taken to resolve the bug. Internal validity en-
sures a study is free from systemic errors and biases. As the Android data-set is
our only source of data, there is no notable threat to this type of validity. Exter-
nal validity is concernedwith the generalizability of the results.We report results
from studying only one data-set and the R2 values of the models show there may
be several other factors whose influence may not have been considered.We plan to
address them in our future work. Thus we do not claim our results to be generaliz-
able as yet.Reliability of a study is established when the results are reproducible.
Given access to the Android bug report data, our results are reproducible.

Table 1. Left: Results of regression for the effects on bug resolution
time.(Superscripts ’∗∗∗’, ’∗∗’, ’†’ denote p ≤ 0.0009, p ≤ 0.001, p ≤ 0.05, respectively)
Right: Descriptive statistics for model variables.

I II Mean Stdev Skew Kurtosis
Base model Attention model

Dependent variable
ResolutionTime 69.12 75.94 1.48 1.76

Intercept 81.60∗∗ 144.03∗∗∗

(24.62) (30.92)

Control variables
Workload −27.30 27.42 13.92 26.17 3.57 14.87

(20.24) (42.35)
SpanOfInterest 0.12 −0.004 53.44 12.19 2.33 4.18

(0.01) (0.11)
CollaborationLevel 16.68 15.03 0.63 0.35 -0.5 -1.01

(27.19) (25.77)
CommunityConcern −17.30 −10.54 11.46 23.93 3.51 18.11

(20.35) (19.65)

Independent variables
Connection −3.27∗∗ 37.51 18.79 0.02 -1.12

(1.11)

Betweenness 1.45† 17.67 25.48 1.80 2.92
(0.86)

N 73 73
R2 0.05 0.17
df 68 66
F 0.89 2.3
p 0.5 < 0.05

Validating Linus’ Law 249

3.3 Observations and Conclusions

On the basis of the details of the attention model in column II of Table 1, we
can make a number of observations. The overall attention model as well as the
relationship between both the independent variables and the dependent vari-
able is statistically significant. From the sign of the respective coefficients, we
notice that higher Connection for a developer relates to decreased Resolution-
Time whereas higher Betweenness relates to increased ResolutionTime. Quicker
resolution of bugs owned by a developer translates to lower ResolutionTime.
Thus results from the model supports hypothesis H1, but we find evidence to
contradict hypothesis H2.

Recalling that Connection is measured by the degree of a developer in DON,
our results indicate that more connected a developer is to other developers
through the ownership of similar bugs, (s)he is likely to be more deeply embed-
ded in the development ecosystem, which is found to facilitate quicker resolution
of the bugs owned by that developer. However, the more involved a developer
gets in brokering interactions between other developers through his/her posi-
tion of higher Betweenness, it appears that (s)he gets more distracted, which is
reflected in the increased ResolutionTime of the bugs (s)he owns.

These results have notable implications in the development of large software
systems. While developers need to be encouraged to connect directly with one
another, the pitfalls of getting too engaged in facilitating interactions between
other developers need to be recognized. As more complex software - many of
them open source - is being built by larger teams, understanding the nuances
of developer attention and its consequences is beneficial for individuals, man-
agement, and organizations. We can thus conclude that the broad assertion on
more “eyeballs” making bugs “shallow” obscures important subtleties in the re-
lationship between developer attention and how quickly bugs get resolved. While
developers need to be encouraged to connect with one another as they collec-
tively work on bug resolution, they also need to be sensitized to the challenges
of too much involvement in mediating interactions between other developers.

References

1. Raymond, E.S.: The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly (2001)

2. Shaw, M.: Continuing prospects for an engineering discipline of software. IEEE
Software 26, 64–67 (2009)

3. Guana, V., Rocha, F., Hindle, A., Stroulia, E.: Do the stars align? multidimensional
analysis of android’s layered architecture. In: 2012 9th IEEE Working Conference
on Mining Software Repositories (MSR), pp. 124–127 (2012)

4. Meneely, A., Williams, L.: Secure open source collaboration: An empirical study of
linus’ law. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security, pp. 453–462 (2009)

5. Meneely, A., Williams, L.: Strengthening the empirical analysis of the relationship
between linus’ law and software security. In: Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Software Engineering and Measurement,
ESEM 2010, pp. 9:1–9:10. ACM, New York (2010)

250 S. Datta et al.

6. Glass, R.L.: Facts and Fallacies of Software Engineering. Addison Wesley Profes-
sional, Pearson Education [distributor], Boston, Old Tappan (2002)

7. Wang, J., Carroll, J.M.: Behind linus’s law: A preliminary analysis of open source
software peer review practices in mozilla and python. In: 2011 International Confer-
ence on Collaboration Technologies and Systems (CTS), pp. 117–124. IEEE (May
2011)

8. Shihab, E., Kamei, Y., Bhattacharya, P.: Mining challenge 2012: The android plat-
form. In: The 9th Working Conference on Mining Software Repositories (2012)

9. Conway, M.: How do committees invent?. Datamation Journal, 28–31 (April 1968)
10. Jeong, G., Kim, S., Zimmermann, T.: Improving bug triage with bug tossing

graphs. In: ESEC/FSE 2009, pp. 111–120. ACM, New York (2009)
11. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. M. L. R. (March

2003)
12. Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Latent Semantic Analy-

sis: A Road to Meaning. Lawrence Erlbaum (2007)
13. Falessi, D., Cantone, G., Canfora, G.: Empirical principles and an industrial case

study in retrieving equivalent requirements via natural language processing tech-
niques. IEEE Transactions on Software Engineering 39(1), 18–44 (2013)

14. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math.
Statist. 22(1), 79–86 (1951)

15. Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Cond-
mat/0106096 (June 2001); Reviews of Modern Physics 74, 47 (2002)

16. Tabachnick, B., Fidell, L.: Using Multivariate Statistics. Pearson Education,
Boston (2007)

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 251–259, 2014.
© Springer International Publishing Switzerland 2014

The Theory and Practice of Randori Coding Dojos

John Rooksby1, Johanna Hunt2, and Xiaofeng Wang3

1 University of Glasgow, UK
2 Eventyr Ltd, UK

3 Free University of Bozen-Bolzano, Italy
john.rooksby@glasgow.ac.uk, johanna.hunt@eventyr.co.uk,

xiaofeng.wang@unibz.it

Abstract. The coding dojo is a technique for continuous learning and training.
Randori is one implementation format. Even though experience and lessons
learnt on how coding dojos could be better organized have been reported in
agile literature, the theoretical bases behind it have never been investigated. In
this paper we propose to use reflective practice as a sense-making device to
underpin the investigation and improvement of coding dojo for effective
learning. Based on the examination of two dojo sessions we argue that the
insights from the reflective practice and related theories can open new and
interesting inquiries on coding dojo, and eventually help to better understand
the dynamics of coding dojo, and improve the dojo practice accordingly.

Keywords: coding dojo, deliberate practice, reflective practice, reflect-in-
action, reflect-on-action, randori, agile methods, learning.

1 Introduction

“If I want to learn Judo, I will enroll at the nearest dojo, and show up for one hour
every week for the next two years, at the end of which I may opt for a more assiduous
course of study to progress in the art. Years of further training might be rewarded
with a black belt, which is merely the sign of ascent to a different stage of learning.
No master ever stops learning. If I want to learn object programming... my employer
will pack me off to a three-day Java course picked from this year's issue of a big
training firm's catalog.” [1]

No master, as Bossavit and Gaillot say, ever stops learning [1]. Bossavit and Gaillot’s
concern is with how professional developers can master their trade. In order to
support continuous learning, Bossavit and Gaillot appropriated the dojo format from
martial arts. They instigated a coding dojo in Paris, and the format has since been
replicated around the world ([2], [3], [4]). The coding dojo is by no means the only
available approach for professional developers to continuous learning (see [4] for an
overview of how one organisation supports this). But the coding dojo format
(specifically the “randori” format) is widely practiced and worthy of serious attention.

252 J. Rooksby, J. Hunt, and X. Wang

Although the dojo format has been discussed widely and is advocated in several
textbooks (e.g. [5]), few studies of how coding dojos are practiced have been
published. Luz et al. [6] have used interviews and questionnaires to find out about
people’s experience in dojos. They found dojos to be an activity that favours
“participation and collaboration in an inclusive learning environment”. A survey by
Bravo and Goldman [2] found “as far as participants’ perception goes, the coding
dojo is a very effective technique for learning agile practices, independently of how
much is already known about them.” These studies are of participants’ perceptions
and enjoyment of dojos. By doing retrospective evaluations (of what people say after
the event, rather than during it) these studies have avoided issues of what happens in a
dojo. The studies indicate there is value in dojos, but it is not clear where that value is.

We suggest that attention is turned to practice (by which we mean the embodied,
situated and practical conduct of the dojo itself). Much has been said about the coding
dojo format, but little about practice. We are well aware that coding dojos are rarely
rigidly organised, are often run by enthusiasts, and are often oriented more to local
needs and contingencies than any rulebook. But rather than dismiss such dojos as
falling short of a grand theory, we suggest that examining their practice gives an
opportunity to rethink and question the grander ideas. The paper will argue that rather
than tighten up conduct in dojos to more readily resemble “deliberate practice”[7],
that the theory itself should be rethought. A candidate ‘alternative’ theory we consider
is Schön’s “reflective practice” [8]. Schön advocated that learning is done through
practicing. He did not see practice as being a means to becoming so proficient that
one does not have to think when acting, but as a means of learning to think when
acting; becoming a “reflective practitioner”. The primary research question that
guides our investigation of the coding dojo is: Does the perspective of reflective
practice enable a better understanding of the coding dojo?

Section two of this paper will further outline the theory of the coding dojo, and
explain the papers focus on “randori” dojos. Section three will use examples from two
dojo sessions in the UK to consider how randori dojos play out in practice. Section
four will discuss the gap between theory and practice, and suggest that rather than
dismiss the dojos we observed as “bad practice” they can be better appreciated with
reference to an alternative theory of learning. Section five concludes the paper.

2 The Coding Dojo in Theory

The coding dojo, Bossavit and Gaillot [1] explain, has its origins in Thomas’ concept
of code kata. Kata is a Japanese term meaning (literally) form. The term is used in
martial arts to refer to choreographed movements that are practiced repeatedly. Dave
Thomas brought this idea to coding [9]. Thomas’ “code kata” are exercises for
developers to repeat over and over, striving for mastery. The purpose of kata, explains
Martin [5], is “to make the perfected movements automatic and instinctive so that they
are there when you need them … you repeat the exercise over and over again to train
your fingers how to move and react” (p.90). According to Martin, kata are useful for
learning hotkeys and navigation idioms, and techniques such as test driven

 The Theory and Practice of Randori Coding Dojos 253

development and constant integration. Most importantly, explains Martin, they enable
you to develop problem-solution pairs.

Inspired by code kata, Bossavit and Gaillot [1] looked further to martial arts
training and appropriated the idea of the dojo. Dojo is a Japanese term that means
literally place of the way. The term is used in martial arts to refer to a place of formal
training. As with code kata, the coding dojo was developed to support the
development of skill through repetitive practice. Indeed, the coding dojo can
incorporate kata. Unlike code kata however, dojos are fundamentally social and
cooperative.

Dojos can take one of several formats. At kata dojos, kata exercises are practiced
in advance and are then performed in front of an audience. Bache [10] describes of a
kata dojo workshop that it will comprise “perhaps 6 kata performances … [who] will
be chosen in advance and work in pairs.” Bache explains that the remaining
participants will be there to learn from and critique the pairs. The performances last
10 to 30 minutes, and are followed by feedback. Alternatively, wasa dojos are two-
person kata where the pair can either work cooperatively or spar with each other.
Martin [5] describes wasa dojos where developers take turns, the first writing a unit
test and the second implementing code to pass that test. Another format, the kake dojo
is discussed in [4]. Kake dojos are events at which a code with the same functionality
is simultaneously developed in two or more languages. A fourth format, the randori
dojo, is outlined below. The randori format is, in our experience, the most commonly
implemented, and constitutes the focus of this paper.

Randori is a term used in martial arts to describe free-style sparing. Martin [5]
describes of the randori coding dojo format: “With the screen projected on the wall,
one person writes a test and sits down. The next person makes the test pass, writes
another test and then sits down. … This can be done in sequence around the table, or
people can simply line up, as they feel so moved. In either case it is a lot of fun.”
Aniche et al. [4] describe a slightly different format in which, instead of writing one
thing and then sitting down, the pairs work “in time-boxed rounds (usually 5-7
minutes).” At the end of each time-box, the driver moves to the audience, the
navigator becomes the driver, and an audience member becomes the navigator.
Aniche et al. explain that the problems are usually simple and the goal is not to solve
them but to share knowledge, to practice and to learn. Martin [5] states: “It is
remarkable how much you can learn from these sessions. You can gain an immense
insight into the way other people solve problems. These insights can only serve to
broaden your own approach and improve your skill.”

The dojo format has grown from a recognition that deliberate practice over a
sustained period is at the heart of developing and improving expertise. “Practice” is
not meant here in the sense that the developer must be a practitioner, but that they
literally have to practice. The idea is not for on-the-job learning. Mastery from this
point of view is not gained solely through experience, but through discipline. The
developer should practice in the way a professional musician, and indeed a
practitioner of martial arts, must practice. But how exactly does the randori format fit
with this? How can taking turns (not just with people who may not agree with you,
but with people with different interests and competencies) constitute deliberate

254 J. Rooksby, J. Hunt, and X. Wang

practice? Is working in front of an audience on a shared project something that instils
discipline in the pair doing the doing, or something that enables the audience to
witness and consider discipline or the lack thereof? Or does the randori dojo depart
entirely from the idea of deliberate practice?

3 The Coding Dojo in Practice

We have obtained a set of twelve recordings (specifically screen and voice
recordings) made at a randori dojo organised in the UK. One of the authors of this
paper was the facilitator at these sessions. The other authors were not in attendance.
The facilitator gained advice from Bossavit and Gaillot before running the dojo
sessions. The advice she received was largely pragmatic. Some points were about
organisation “always meet at the same place and the same time - it helps to build a
community and a ritual”; “encourage discussions, but on green bar only, don't
discuss about the code when it's in an unstable state”. Other advice was more
practical “don’t cram too much into a session”; “use kata to introduce a new
language”. Other advice referred to cooperative aspects of the dojo: “keep a
collaborative journal”; “make the dojo everybody’s responsibility”. Finally, the
organiser was invited to: “Trust your process … part of the learning experience is
figuring out what is happening. … Part of building the community is about finding out
why you want to meet every week or so as a group. Answers will become clearer as
time goes by, provided that everyone feels free to talk and listens to others' opinions.”

The recordings have each been transcribed in full. Of our twelve recordings, half
contain independent sessions, and half contain tasks carried across sessions.
Participation in the sessions varied in number and mix of experience, with a hard core
of regular attendees and others who came and went. For the purposes of this paper we
selected two sessions for in-depth, qualitative analysis. Our method of analysis has
been very coarse and discursive. Essentially we have sought to understand and
characterize what happens in a dojo as the first step of analysis.

The two selected sessions both focus on the same task (one continues from the
other) and therefore constitute a pair. The sessions are on the task: “Write a Text
Adventure Game in Java. The game must contain: a house; a cat; a blue necktie; a
nodding dog ornament; something orange; a lift”. The task was originally intended
to be for one session, but at the end of the first session the participants elected to
continue on it during the next session. Both sessions saw 12 pairs work together in
time-boxed rounds of about 5 minutes. Each session had about 10 people in
attendance. The task itself was somewhat irreverent, but this is not to say the dojo was
not serious. A characteristic of this and other dojos was that the software and,
moreover, the interesting aspects of the problem for the participants to work on, were
not specified by the facilitator but were emergent in the dojo sessions themselves. The
fact that the participants elected to continue for a second session on this task attracted
us because it strongly indicates that they found something of value in their progress.

The first pair (a male and female) of the first session began by reading out the task.
They then talked about where to start. In their words:

 The Theory and Practice of Randori Coding Dojos 255

 “Is it just something like north, south, east, west, up, down kind of thing? Or are
we going to go for something completely weird and strange?"

“Do you think we need to think about that already?”
“Uh, I think we need to have a vague idea of which way we’re going.”

The pair continued to discuss where to start, and in what level of detail. The male,
as driver and thus with control of the keyboard, won out. This was not necessarily
through strength of argument but by starting to code, creating a public class "game”
within the first minute. The male suggested the best thing to do was implement a hash
map to represent locations. The choice was immediately met with questions of
clarification from the audience and a discussion of hash maps. Hash maps are data
structures that not everyone in the room was familiar or comfortable with, and not
something that everyone felt was necessarily the best data structure to use.

For the second round, the female switched to the driver role, and another male
joined her as navigator. The second and subsequent rounds largely continued to be
concerned with movement and location (and therefore only a subset of the broader
issues in implementing the game). Some work is also done on “items” to be found in
the game, but by the very end of the second dojo session, the participants built a game
in which it was simply possible to move between several arbitrary locations.

The second and subsequent sessions also continued to use hash maps. In fact, the
major topic of discussion, deliberation and sometimes argument during both dojo
sessions was hash maps: how, when and why should you implement these? For some
participants, hashmaps required basic explanation:

 “Yes, hashmaps contain keys and values, and so the key gets you the value.”

Interestingly, examples are present in the data of people not previously familiar
with hashmaps trying to put what is going on into their own words. Sometimes they
did so well; sometimes they had to be corrected. The discussions also covered ways of
implementing hashing in java:

 “There is with hashmap in Java, a rather neat way of doing this … we can get the
key set which will contain north, south, east and west, or what have you, and there’s a
list, we can ask whether it contains a direction we want to go in.”

The person who explained this, later realised that “it returns a set, not a list”. Even
he was learning and discovering, not simply instructing. Elsewhere the discussion
turned to consideration of whether and how hashmaps were appropriate in comparison
to and in conjunction with other forms of data structure:

“Personally, I don’t like the use of vectors, not that vectors are necessarily a bad
thing, but they’re lists which are designed for a much bigger environment, and I think
we should stick to the idea of a hashmap where you can look at a set via a string.”

We have said very little so far about how the participants’ work conformed to or
exemplified good practice. Concerns for agile methods, and good practice more
broadly, were present in the sessions but were far less pervasive than the discussions
of data structures. Unit tests were not spoken of, let alone implemented until the third
round, and it was not until round five that a test-driven development strategy was
introduced. The pair in sessions five and six included someone who was clearly
passionate and skilled in test-driven development, and he was able to show how this

256 J. Rooksby, J. Hunt, and X. Wang

could be done in this situation. Subsequent sessions did not continue with test-driven
development but this is not to say that the presence of this was ignored or forgotten,
indeed it was appreciated and is referred back to in later sessions as “inspiring”.
Regarding unit testing generally, there was an ebb and flow to this. Some pairs would
have a push on writing tests and testable code, whereas others would ignore the tests.
One pair even decided to comment out all the unit tests. Similar issues can be seen in
the data regarding refactoring, some would take this seriously and treat it as an
important part of their practice, while others did not. Some took their roles in pair
programming seriously, whereas others would not.

Each dojo session ended with a reflective discussion. A key consideration at the
end of the first session was whether it was a failure that they had not ended with a
functioning game. One person expressed dissatisfaction with having spent some much
time considering data structures and writing tests:

“We got tests. Tests on data structures!”

But others defended how the session had progressed. When asked whether the
“actual aim” of the dojo was “to get something functioning” or to get “really nice
crisp code that does a little bit” the majority consensus was the latter. One participant
pointed out:

“It's the journey not the destination.”

Clearly, the dojo was not a productive way of producing a game, but was it
actually valuable as a “journey”? What does it mean that the journey did not adhere to
best practices but that there was an ebb and flow to these? Some people heavily
oriented to test-driven development, refactoring and so on, others were unfamiliar
with these, and yet others were frustrated by them. We do not believe the situation we
have observed of this dojo is unique. The authors of this paper have experience of
running and participating in dojos other than the ones discussed here, and while there
has been a diversity of practices in these, never have we experienced a dojo run
strictly to agile principles.

4 Discussion

Considering the dojo in practice reveals there is something of a gulf between theory
and practice. At least, there seems to be something of a leap from kata to randori
dojos. The former is about repeating a good practice until it is perfected, but the latter
seems to rely on group dynamics and seems susceptible to what might be considered
poor or inexpert practice. With this in mind, we have been taking interest in the work
of Schön ([8], [11]).

Schön was concerned that professional work (not specifically programming, but
expert work more broadly) was too often misconstrued as the application of technical
knowledge to clearly defined problems. He believed this view devalued the
importance of skill and artistry in practice. He argued for “a new epistemology of
practice” and sought to demystify what constituted skill and artistry. This led him to
articulate what he called “reflection-in-action”. He explained that professionals
routinely grapple with “situations of uncertainty, uniqueness and conflict” and when

 The Theory and Practice of Randori Coding Dojos 257

doing so, they can be seen to “reflect-in-action”. Schön was not referring to a need for
taking time out to reflect but was interested in how thinking is intertwined with
action. Schön was interested, as Moon [12] puts it, “thinking on your feet”.

One of the professions Schön studied was architecture. He recognised that when
designing, architects are rarely confronted with a clear problem. Rather architects
articulate problems in conjunction with their solution. When architects work on
problem-solution pairs, they go through a “web a moves”, exploring options without
necessarily dismissing others, articulating parallel alternatives, and backtracking from
dead ends to other lines. He describes architects’ reasoning processes as thoroughly
dependent on talking and on sketching. Designing, he argued, is not a linear problem
solving but is a material, embodied practice in which alternatives are explored and a
problem-solution articulated. His description of designing has been influential, and
his ideas used to describe the software design.

Schön went on to question professional education, which he thought concentrated
too much on “technical knowledge” and too little on “skill” and “artistry”. Not only
were graduates leaving education with a lack of skill in their chosen profession, but a
lack of the ability to even recognise or articulate what skilful practice is. He
developed the idea of “the practicum”, a setting in which students could be coached
rather than instructed in a practice. This was not a call for students to be given work
experience, but to create a setting that approximates the practice world. Schön said the
practicum should be ”a virtual world, relatively free of the pressures, distractions,
and risks of the real one, to which, nevertheless, it refers”. This way, he explained,
practice happens in a double sense: the students engage, usually in simulated form, in
the practice they wish to learn; but the students also practice “as one practices the
piano”. Schön proposed the practicum should be under the guidance of “a studio
master” who would from time-to-time do conventional teaching, but would usually
function as a coach “whose main activities are demonstrating, advising, questioning,
and criticizing”. Schön pointed out that as a coach, the teacher does not oversee or
instruct each students every move, and that students will often be as important to one
another as the coach. In the practicum, the students are not just applying techniques
they have been taught in lectures or textbooks, but are developing and learning to
recognize skill.

The randori dojo, we suggest, resembles Schön‘s practicum. Both look beyond
‘technical knowledge’ and to artistry and skill. Both encourage learning in a virtual
world away from real world pressures. Both prioritise interaction among the students
over formal teaching, and to a degree the randori dojo allows for coaching.
Importantly, we suggest, Schön does not propose that the students in practicums
should already be proficient in skilled or best practice, but rather the practicum
provides a space in which the students can begin to recognize what skill actually is
and to develop these. Of course, there are differences between the dojo and the
practicum. Schön’s focus was on the training of pre-professionals whereas the dojo is
open to people already working as developers. The turn-taking structure and
collaborative format of the dojo is also different to Schön’s practicum where students
would work on individual projects. But on the whole we note some strong similarities.

258 J. Rooksby, J. Hunt, and X. Wang

With reference to Schön’s ideas we think it is possible to begin to see value in what
was happening in the dojo we reported above. The dojo rarely exemplified good
practice, but there were occasions of this and several discussions. With reference to
Schön we should consider that this might be characteristic of a group among which
there may be some who are skilled, and others who can barely recognize what skill is,
let alone understand which certain skills might be beneficial. Schön’s work enables us
to consider that in order to learn, it may be better that we allow the topics to emerge
and be worked out during the course of learning. We should perhaps not be worried if
we see that the learners are more interested in data structures than (say) test-driven
development. We should perhaps not be critical of the dojo participants for making
rash decisions or rejecting good practices (such as commenting out all the tests), but
rather understand that this is all part of a learning process - steps on a long road to
mastery.

The randori dojo, from this perspective, is unlike kata. It should not be about the
coach instructing the participants in a good practice to follow, and should not
necessarily see the coach intervene when something untoward happens. We might
better see the Randori dojo as allowing mastery to emerge through participants’
reflective action.

5 Conclusion

In this paper we have explained and characterised Randori dojos. We argue that these
are unlike kata (and kata dojos) and suggest that they are best understood not as
demonstrations among a group of best practice, but as cooperative learning where
good practice has the opportunity to emerge. We have suggested the work by Schön
on reflective practice and practicums offers an appropriate theoretical perspective to
consider randori dojos. Our work neither proves nor disproves the value of dojos, and
in fact shows that we are some way off being able to evaluate the effectiveness of
dojos – we are still deliberating what criteria to judge effectiveness by. The literature
on education and learning is expansive (not limited to Schön). It seems opening the
door to this raises many more questions than it settles.

References

1. Bossavit, L., Gaillot, E.: The Coder’s Dojo – A Different Way to Teach and Learn
Programming. In: Baumeister, H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS,
vol. 3556, pp. 290–291. Springer, Heidelberg (2005)

2. Bravo, M., Goldman, A.: Reinforcing the Learning of Agile Practices Using Coding
Dojos. In: Sillitti, A., Martin, A., Wang, X., Whitworth, E. (eds.) XP 2010. LNBIP,
vol. 48, pp. 379–380. Springer, Heidelberg (2010)

3. Sato, D.T., Corbucci, H., Bravo, M.V.: Coding Dojo: An Environment for Learning and
Sharing Agile Practices. In: Agile 2008 Conference, pp. 459–464. IEEE (2008)

4. Aniche, M.F., de Azevedo Silveira, G.: Increasing Learning in an Agile Environment:
Lessons Learned in an Agile Team. In: 2011 Agil. Conf., pp. 289–295 (2011)

 The Theory and Practice of Randori Coding Dojos 259

5. Martin, R.: The Clean Coder: A Code of Conduct for Professional Programmers (2011)
6. da Luz, R., Neto, A., Noronha, R.: Teaching TDD, the Coding Dojo Style. In: ICALT

2013, pp. 371–375 (2013)
7. Ericsson, K.A., Krampe, R.T., Tesch-romer, C., Ashworth, C., Carey, G., Grassia, J.,

Hastie, R., Heizmann, S., Kellogg, R., Levin, R., Lewis, C., Oliver, W., Poison, P.,
Rehder, R., Schlesinger, K., Schneider, V.: The Role of Deliberate Practice in the
Acquisition of Expert Performance 100, 363–406 (1993)

8. Schön, D.A.: The Reflective Practitioner: How Professionals Think in Action. Basic Books
(1984)

9. Thomas, D.: Code kata: How to become a better developer, codekata.pragprog.com
10. Bache, E.: Test Driven Development: Performing Art. In: Abrahamsson, P., Marchesi, M.,

Maurer, F. (eds.) XP 2009. LNBIP, vol. 31, pp. 217–218. Springer, Heidelberg (2009)
11. Schön, D.A.: Educating the Reflective Practitioner: Toward a New Design for Teaching

and Learning in the Professions. Jossey-Bass (1990)
12. Moon, J.A.: Reflection in Learning & Professional Development: Theory & Practice

(1999)

Locating Expertise in Agile Software

Development Projects

Mawarny Md. Rejab, James Noble, and George Allan

School of Engineering and Computer Science,
Victoria University of Wellington,

Wellington, New Zealand
{Mawarny.Md.Rejab,kjx,george.allan}@ecs.vuw.ac.nz

Abstract. Agile software development projects rely on the diversity of
team members’ expertise. It is vital to develop the meta-knowledge of the
available expertise in Agile teams. However, locating the internal exper-
tise in Agile teams is not explicitly reported in the literature. Through
a Grounded Theory study involving 16 Agile practitioners based in New
Zealand and Australia, we revealed four ways to identify internal exper-
tise in Agile software development projects: communicating frequently,
working closely together, declaring self-identified expertise, and using an
expertise directory. The outcome of this study will provide significant
insight into how Agile team members depend on each other in locating
their peers’ expertise, as well as quantify the level of expertise.

Keywords: locating expertise, expertise coordination, Agile software
development projects, Grounded Theory.

1 Introduction

Software development projects rely on expertise in producing quality software
products [16]. Expertise is a critical resource and it is important to ensure the
presence of sufficient expertise for the software development team [8]]. The ex-
pertise, however, is not adequate on its own [8], and it is important to leverage
the available expertise through expertise coordination.

Expertise coordination is defined as “the management of knowledge and skills
dependencies” [8]. This definition shows how team members should ideally de-
pend on each other in managing and utilizing their expertise resources. Expertise
coordination requires a team to recognize who has a particular expertise, when
and where they are needed, and how to access the expertise effectively[8]. Hence,
locating the source of expertise is a pivotal step in coordinating the expertise.

Knowing “who knows what” will determine who has a particular expertise [8]
and indirectly leads to developing a meta-knowledge of the available expertise
in their team. This is supported by Garrett and her colleagues [9] who claimed
that every team member should be aware of others’ expertise, particularly the
relevant expertise to perform tasks.

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 260–268, 2014.
c© Springer International Publishing Switzerland 2014

Locating Expertise in Agile Software Development Projects 261

In the context of Agile software development, Strode et al. [20] posited that
“know who knows what” will determine who has the sort of expertise in Agile
teams. Reasons for locating expertise in Agile teams are depicted in Table 1:

Table 1. Reasons for locating expertise in Agile teams

Reason Supported by

to bring the right team member with particular expertise to solve a

problem in a timely manner

Lee and Xia [13]

to develop a sense of “who we are” and a collective awareness of the

available expertise

Bielaczyc and Collins [3]

to select tasks by considering the capability other team members’ ca-

pabilities

Hoda et al. [12]

to pair with the right Agile team member, particularly in a new task Vanhanen and Kopi [21]

Thus, it is essential for Agile team members to locate who has which sort
of expertise, as well as quantify the level of the expertise of their peers. There
is a need to facilitate finding knowledge owners or experts in Agile teams [17].
However, locating the internal expertise in Agile teams is not explicitly reported
in the literature. This raises a question: How do Agile team members depend on
each other in locating expertise in Agile teams? To answer this question, we have
used the Grounded Theory methodology and interviewed 16 Agile practitioners
from various software companies based in New Zealand and Australia. This paper
aims to describe how Agile team members locate a source of internal expertise
in Agile teams.

The rest of this paper is structured as follows: the second section describes
Grounded Theory; the third section presents the findings of this study; the fourth
section presents the discussion; and the last section puts forward conclusions.

2 Research Methodology

Grounded Theory is an inductive research method that aims to infer new theories
from observed data [11]. Grounded Theory is suitable for this study since it is
applicable to explore human behaviour and social interaction [10]. Grounded
Theory is also appropriate to conceptualize and theorize about the underpinnings
of expertise coordination on Agile software development perspectives.

2.1 Data Collection

Semi-structured interviews have been carried out with 16 Agile practitioners
from different software organizations based in New Zealand and Australia, as
depicted in Table 2. Interviews provide reliable data sources because the re-
searcher has direct contact with participants during data collection [4] . This

262 M.M. Rejab, J. Noble, and G. Allan

situation enables us to gain a deeper understanding of participants concerns.
This study requires a broad range of Agile roles to enable the triangulation of
findings. Different roles provide different insights and perspectives toward locat-
ing expertise in Agile teams. As an on-going study, we will continue to collect
data until theoretical saturation has been reached, when no new data emerges
[11].

Table 2. Summary of Research Participants and Agile Project

Person Location Agile Role Agile Methods Project Domain

P1 New Zealand Developer XP and Scrum Mobile application

P2 New Zealand Agile Coach XP, Scrum, Kanban Not specified

P3 Australia Agile Consultant Not specified Not specified

P4 New Zealand Agile Coach Scrum and XP Education

P5 New Zealand Software Tester Not specified Printing

P6 Australia Team leader Not specified Accounting

P7 New Zealand Agile Consultant Scrum and XP Financial

P8 Australia Agile Coach Scrum, XP, Kanban, Lean Human resources

P9 New Zealand Business Analyst Not specified Insurance

P10 New Zealand Software Tester Scrum Education

P11 New Zealand Project Manager Scrum Education

P12 New Zealand Agile Coach Scrum and Kanban Not specified

P13 New Zealand Agile Coach Scrum and Kanban Government application

P14 New Zealand Product Owner Not specified Not specified

P15 New Zealand Agile Coach Scrum and Kanban Government application

P16 New Zealand Agile Coach Scrum and Kanban Government application

2.2 Data Analysis

The difference between Grounded Theory and other qualitative methods is the
continuous interplay between data collection and data analysis [5]. Glaser argues
that separating the data collection and data analysis prevents the emergence
of theory [11]. Data analysis is done as soon as the first interview has been
conducted.

Key point coding is used to analyze the interview transcripts in detail. We
collate the key points by examining phrases, words, sentences from the interview
transcripts [1]. Then, we construct codes by rephrasing key points with meaning-
ful labels. In order to look for similarities and differences, constant comparison is
used to compare every emerging code with the previous codes. Similar codes with
common themes are grouped together and emerge as a concept. Many concepts
emerge, and constant comparison is repeated until concepts form a category.
A category is a group of similar concepts that are used to generate the core
category. To date, several categories have been emerged from our data analysis
including “locating expertise”.

Locating Expertise in Agile Software Development Projects 263

3 Research Findings

The category “locating expertise” emerged from the data analysis, to describe
how Agile team members identify the relevant expertise in teams. This study
revealed four ways to identify expertise in Agile teams: communicating frequently,
working closely together, declaring self-identified expertise, and using an expertise
directory.

3.1 Communicating Frequently

A number of participants noted that through frequent and effective communica-
tion, they could determine who in a team possesses particular expertise.

“Depending on what you need. Is it domain expertise? Is it expertise
with leadership and communication? You need to mix all [expertise] to
be successful. So, talk to people and you’ll find out.”- P6, Team leader.

Agile team members can identify their team members’ expertise by enquiring
about the team members’ backgrounds, including working experiences, educa-
tional background, and proficient skills.

“In identifying the expertise, just talk to people and ask ‘what do you like
to do?’ or ‘what you have learned?’ ”. - P7, Agile Consultant.

In certain circumstances, Agile team members can identify who the experts
are in a particular area based on recommendations from other team members.
Communication among team members provides a space to disseminate the meta-
knowledge of the available expertise in Agile teams.

“You have people around talking to you, and you ask people, ‘which area
of code is the best known to whom?’ ” - P2, Agile Coach.

A daily stand up meeting provides a communication vehicle for Agile team
members to raise issues and obstacles that impeded their progress. As time is
limited, the focus should be on the identification of the right person with the
necessary expertise and solution. This situation leads to divulging the available
expertise in Agile teams.

“A daily stand up meeting is not just reporting progress but [it is pur-
posely] for team coordination. The main activity is to coordinate your
work with the members of the team. For example, ‘I have started with
the [user] story but I’m stuck. Can someone help me?’ ” - P4, Agile
Coach.

The information flowing freely through communication leads Agile team mem-
bers to get to know who has which sort of expertise. Through working closely
together, the identified expertise can be confirmed and quantified by peers.

264 M.M. Rejab, J. Noble, and G. Allan

3.2 Working Closely Together

Working closely together provides opportunities for Agile team members to iden-
tify and confirm their peers’ expertise when collaborating together.

“We can actually work together and then doing programming together.
We [work] in pairs, see and notice [the expertise].”- P2, Agile Coach.

Working closely together enables Agile team members to acquaint themselves
with the progress of expertise development of their peers. Collaboration provides
a space to assess and quantify the team members’ degree of expertise.

“The expertise comes in discussion on the [story] size. If someone is
less experienced, they might put the size differently from the experienced
person.” - P4, Agile Coach.

Agile team members also have ability to identify and quantify their peers’
expertise during task selection.

“....when the stories come out, they choose stories or works based on
their capability.” - P4, Agile Coach.

Most Agile activities and practices encourage Agile team members to work
together. There is no doubt that identifying expertise areas and levels can be
obtained through effective collaborations in Agile teams.

3.3 Declaring a Self-identified Expertise

A curriculum vitae is used to represent the expertise details for recruitment
purposes. In order to succeed in an interview, Agile team members convincingly
disclose their self-identified expertise to interviewers. This process provides a
clear picture of Agile team members’ expertise at the very beginning.

“They are telling you what they are good at. For example, ‘I’m a great
.NET developer’. So, start with that [declaration], put them into the role,
and observe them and see what they can do.” - P4, Agile Coach.

After joining an Agile team, Agile team members tend to expand their exper-
tise into other expertise areas. Some team members, however, are not aware of
the development of their team members’ expertise. This is the point where Agile
team members need to declare their expertise, in order to let others know what
they can contribute to Agile teams.

“We do a stand up meeting...we talk about challenges that we have faced.
Someone might know what the issue is about. They just said ‘Yup, I know
about that. We can talk about it later.’ ” - P5, Software Tester.

The main concern is how reliable the self-identification is, as it is basically
based on individual judgement. Thus, it is essential to verify the self-identified
expertise through communicating frequently and working closely together.

Locating Expertise in Agile Software Development Projects 265

3.4 Using an Expertise Directory

The expertise directory consists of expertise profiles of Agile team members.
The main function of expertise directory is to point where the expertise resides.
From P2’s perspective, communication is more valuable when finding relevant
expertise than using an expertise directory. This finding reveals that relying on
the expertise directory to find the relevant expertise is not the best option in
Agile teams.

“You need to talk. It is much more effective than go to some expertise
repository. How do you know the ‘cruft’ factor of the expertise repository
[sic].” - P2, Agile Coach.

There is a formidable challenge in using the expertise directory to search the
relevant expertise in Agile teams. The main issue is the realibility of expertise
directory in providing the accurate expertise profiles. The expertise directory
requires regular maintenance to update the expertise profiles. The updating task
needs someone in the Agile team to act as an administrator to maintain the tool
and this indirectly increases the workloads of the Agile teams.

“For example, I’m a beginner in Java programming. Then after 3 months,
I continued improving Java programming. So, who is going to update the
repository?” - P2, Agile Coach.

Despite the above perspective, participant P11 preferred to have an expertise
directory when selecting the right person with the right expertise for upcoming
software projects.

“We do have the skills database. We developed [it] ourselves. Each person
is expected to keep his or her profile and can be searched by others. If I
want to start a new project and I need X, Y , Z skills, I guarantee that
the skills database can provide these skills.”- P11, Project Manager.

P11 believed that there is no issue in updating the expertise directory. Every
staff member is required to update his or her expertise profiles to enable them
to be selected for upcoming projects when their expertise is aligned with the
project requirements.

“They are motivated to update their skills database. So, that means, for
the next exciting project, if they have the skills, they have a chance to be
called to join the project.” - P11, Project Manager.

Our findings revealed that the size of organization is a factor that influences
the organization’s preference in using the expertise directory. The growth of an
organization with an increased number of staff and projects contributes to the
high possibility of using the expertise directory.

266 M.M. Rejab, J. Noble, and G. Allan

“We realized that we have many projects coming. So, it is important to
get alignment between the project and people. When we started, we had
110 people, and now 200. It becomes harder to keep track of a lot of skills.
So, this tool helps me to identify the skills.” - P11, Project Manager.

Access to internal experts through an expertise directory tends to speed up
the expertise searching. The necessity of expertise directory however relies on
the organization’s need to locate a source of their staff’s expertise.

3.5 Discussion

This study discovered the ways to locate internal expertise in Agile teams. Lo-
cating expertise is a prevalent process to enable the expertise dependencies in
Agile software development teams [20]. Faraj and Sproull [8] and Shim et al. [19]
asserted that knowing expertise is a part of expertise coordination processes in
software development projects.

Several studies proposed an expertise directory as a medium to identify the
right expertise in software development projects [15]. One surprising point aris-
ing from this study is that most Agile team members prefer communication to
identify the relevant expertise rather the expertise directory. Through frequent
interactions, team members have opportunities to acquire more detailed informa-
tion about their peers’ expertise [6]. The frequency of communication positively
influences the awareness of team members’ expertise [7].

The expertise directory has been classified as a coordination tool for locating
expertise [18]. However, we found most Agile practitioners were reluctant to use
the expertise directory because of the difficulties in keeping the expertise profiles
up to date. This major drawback aligns with the research finding discovered
by Bertoni and Chirumalla [2]. Through technology improvement such as Web
2.0 tools, the expertise directory can be improved particularly in updating the
expertise profile [2]. Therefore, the right match between people and project can
be gained through the expertise directory[2].

Relying on communication is not adequate for locating the right expertise.
Communication enables Agile team members to identify the area of expertise,
but it is difficult to confirm and quantify the level of expertise. Integrating com-
munication with collaboration will strengthen the process in finding the right
expertise in Agile team. Working closely together enables Agile team members
to directly observe others’ expertise. Several researchers have revealed that indi-
viduals are better at identifying team members’ expertise when they spend more
time working together [14]. Wegner et al. [22] suggested that expertise can be
identified through direct observation, as well as self-disclosure.

Ultimately, our findings revealed that some Agile values, practices, and prin-
ciples provide spaces and opportunities for Agile team members to identify the
internal expertise in their teams. Through this study, Agile team members real-
ize effective ways to locate the source of internal expertise and indirectly increase
the awareness of the development of their peers’ expertise.

Locating Expertise in Agile Software Development Projects 267

3.6 Conclusion

This paper presents four ways Agile teams locate internal expertise: commu-
nicating frequently, working closely together, declaring self-identified expertise,
and using an expertise directory. Locating expertise ultimately leads to the de-
velopment of collective awareness of the expertise available in Agile teams and
tends to improve problem solving capabilities. Further data collection and anal-
ysis will reveal more ways to locate expertise in Agile teams. In future, we also
intend to investigate how Agile team members recognize the need for the identi-
fied expertise. There is no point having expertise available if team members fail
to recognize when and where the available expertise is needed.

References

1. Allan, G.: A critique of using grounded theory as a research method. Electronic
Journal of Business Research Methods 2(1), 1–10 (2003)

2. Bertoni, M., Chirumalla, K.: Leveraging web 2.0 in new product development:
Lessons learned from a cross-company study. J. UCS 17(4), 548–564 (2011)

3. Bielaczyc, K., Collins, A.: Learning communities in classrooms: A reconceptualiza-
tion of educational practice. In: Instructional-design Theories and Models: A New
Paradigm of Instructional Theory vol. 2, pp. 269–292 (1999)

4. Charmaz, K.: Constructing grounded theory: A practical guide through qualitative
analysis. Sage Publications Limited (2006)

5. Corbin, J.M., Strauss, A.: Grounded theory research: Procedures, canons, and eval-
uative criteria. Qualitative Sociology 13(1), 3–21 (1990)

6. Dessai, K., Kamat, M.: Application of social media for tracking knowledge in agile
software projects. Available at SSRN 2018845 (2012)

7. Ehrlich, K., Chang, K.: Leveraging expertise in global software teams: Going out-
side boundaries. In: International Conference on Global Software Engineering,
ICGSE 2006, pp. 149–158. IEEE (2006)

8. Faraj, S., Sproull, L.: Coordinating expertise in software development teams. Man-
agement Science, 1554–1568 (2000)

9. Garrett, S.K., Caldwell, B.S., Collins, S.T.: Supporting expertise coordination in
multidisciplinary project teams. In: Proceedings of the Human Factors and Er-
gonomics Society Annual Meeting, vol. 53, pp. 1008–1012. SAGE Publications
(2009)

10. Glaser, B.G.: Emergence vs forcing: Basics of grounded theory analysis. Sociology
Press (1992)

11. Glaser, B.G., Strauss, A.L.: The discovery of grounded theory: Strategies for qual-
itative research. Aldine de Gruyter (1967)

12. Hoda, R.: Self-organizing agile teams: A grounded theory. Phd Thesis, Victoria
University of Wellington (2011)

13. Lee, G., Xia, W.: Toward agile: An integrated analysis of quantitative and quali-
tative field data on software development agility. Mis Quarterly 34(1) (2010)

14. Littlepage, G., Robison, W., Reddington, K.: Effects of task experience and group
experience on group performance, member ability, and recognition of expertise.
Organizational Behavior and Human Decision Processes 69(2), 133–147 (1997)

268 M.M. Rejab, J. Noble, and G. Allan

15. Mockus, A., Herbsleb, J.: Expertise browser: a quantitative approach to identify-
ing expertise. In: Proceedings of the 24th International Conference on Software
Engineering, pp. 503–512. ACM (2002)

16. Ryan, S., O’Connor, R.V.: Social interaction, team tacit knowledge and transactive
memory: empirical support for the agile approach

17. Santos, V.A., Goldman, A., Santos, C.D.: Uncovering steady advances for an ex-
treme programming course, vol. 15, p. 2, Centro Latinoamericano de Estudios en
Informtica (2012)

18. Sarma, A., Van der Hoek, A., Redmiles, D.: The coordination pyramid: A perspec-
tive on the state of the art in coordination technology

19. Shim, J., Sheu, T., Chen, H., Jiang, J., Klein, G.: Coproduction in successful
software development projects. Information and Software Technology 52(10), 1062–
1068 (2010)

20. Strode, D.E., Huff, S.L.: A taxonomy of dependencies in agile software develop-
ment. In: ACIS 2012: Location, Location, Location: Proceedings of the 23rd Aus-
tralasian Conference on Information Systems 2012, pp. 1–10 (2012)

21. Vanhanen, J., Korpi, H.: Experiences of using pair programming in an agile project.
In: 40th Annual Hawaii International Conference on System Sciences, HICSS 2007,
p. 274b. IEEE (2007)

22. Wegner, D.M.: A computer network model of human transactive memory. Social
Cognition 13(3), 319–339 (1995)

Are Refactoring Practices Related

to Clusters in Java Software?

Giulio Concas, Cristina Monni, Matteo Orrù, and Roberto Tonelli

DIEE - Department of Electrical and Electronic Engineering
P.zza D’Armi, Cagliari, Italy

{concas,cristina.monni,matteo.orru}@diee.unica.it,
roberto.tonelli@dsf.unica.it

http://www.diee.unica.it

Abstract. Refactoring is widely used among the practices of Agile soft-
ware development. In this preliminary work we present an empirical
study carried out on several releases of 5 software systems written in
Java. We focus our attention on the effect of refactoring activities on the
topology of the software network. We find that refactoring activities in-
volve classes linked together into clusters inside the software network and
the clusters may be modified in different ways by the refactoring activity.
This could lead to significative changes in source code, whose knowledge
could be valuable for people involved in software development.

Keywords: Refactoring, Clustering, Software Networks.

1 Introduction

According to Fowler’s definition [1] refactoring is aimed at correcting code struc-
ture without affecting the external behaviour, consequently improving software
design - eliminating, for example, the presence of code smells [2]. It is a topic
of acknowledged interest in the field of software engineering, specifically when it
comes to Agile Methodologies. To the best of our knowledge, the state-of-the-art
approach for retrieving refactoring operations is based on the work of Kim and
Prete [3,4,5] and relies on the comparison of two different versions of the same
piece of code (e.g. a class) and the use of a template model to detect the spe-
cific refactoring. Since refactoring can be applied to densely connected classes,
the impact of a refactoring operation could be extended over the single class to
involve the other related classes. On the other hand, in recent years there has
been an increasing interest in the study of software systems using a software
network approach [6,7,8,9,10,11]. To our knowledge, how and to which extent
the impact of refactoring can spread over the associated software network has
not been thoroughly studied so far.

In this preliminary work we built software networks by looking at relationships
between classes (like dependency, inheritance and collaboration). This perspec-
tive allows to study software elements in the context of their reciprocal relation-
ships, without neglecting the aspects that could be measured with the traditional

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 269–276, 2014.
c© Springer International Publishing Switzerland 2014

http://www.diee.unica.it

270 G. Concas et al.

metrics [12,13]. We present a study performed combining these two different ap-
proaches. We aimed at understanding whether refactoring operations are applied
randomly to each class, or if they involve classes that are linked together. If refac-
toring shows the tendency to spread among linked classes, this information could
be helpful for developers to make predictions, to keep track of which classes need
to be refactored, or to detect other code smells.

In the following we report the empirical results of the investigation on refactor-
ing activities performed by developers on 29 releases among 5 popular software
systems written in Java: Ant, Azureus, Jedit, Jena and Xalan. First we parsed
the source code to recover the software networks of classes, then we recovered all
the refactorings related to these systems using RefFinder, and associated them
to the corresponding classes, or nodes, in the software network. Every release
was considered as an independent network. Eventually we performed a series
of analyses comparing sets of refactored files to sets of random sampled files,
in order to answer to our research question, namely to understand if refactor-
ing affects classes which tend to be linked together or not. In order to validate
our hypothesis we checked it against sub-networks extracted randomly from the
whole system. The innovative approach is to combine information gained by an-
alyzing source code differences given by RefFinder and a topological analysis
on software networks. We believe that the information retrieved by this kind of
analysis is valuable for developers for identifying a subset of classes for refac-
toring that could be worth to consider during software development. This paper
is organized as follows. In Section 2 we will briefly illustrate the literature on
refactoring analysis, and explain the main issues in this paper. In Section 3 we
present the analyzed systems, explain our methodology and define the cluster
measure used in this work. Finally we present and discuss our results in Section
4, and end with our conclusions in Section 5.

2 Background

Refactorings are code changes which do not modify the external system be-
haviour [1]. Usually developers decide to apply refactoring by examining or
changing the software code while they are performing other operations [14],
such as bug fixing, addition of functionalities, or other code changes.

This process is widely used in Agile Development, where code is maintained
and extended repeatedly in order to avoid code decay. Decay can be caused for
example by unhealthy dependencies between classes or packages, bad allocation
of class responsibilities, too many responsibilities per method or class, duplicate
code, or simply confusion in the code. Changing code without refactoring can
worsen the decay process, thus refactoring can spare a lot of time and costs in
software development, by keeping the code easy to maintain and extend.

Our purpose is to understand the impact of refactoring on the topology and
coarse-grained structure of a software network, by studying the connections be-
tween classes before and after refactoring. This work can help to understand
whether other classes are good candidates for being refactored, once a class has

Are Refactoring Practices Related to Clusters in Java Software? 271

been chosen to be refactored, and this information can be made available for
developers who perform refactoring.

To perform our analysis, we build the software networks associated to every
release of our software projects and try to identify refactored classes and network
connections among them. We will make use of the knowledge and previous works
on software network systems, which can be found in [7,9,15,10,16].

The classes affected by refactoring have been retrievedwith the use ofRefFinder
[5], the most commonly used automatic tool for the detection of refactoring opera-
tions. The 72 refactorings catalogued by Fowler [1] have been investigated also by
other researchers with the purpose of finding other good techniques for automatic
detection different from RefFinder [17], [18], [4]. Nevertheless RefFinder currently
supports 65 of the 72 Fowler’s refactorings, representing the most exhaustive cov-
erage of all existing techniques. This tool compares two different software releases,
analyzing the changes occurred from the first to the last, and identifies the refac-
toring operations according to Fowler’s catalogue.The output is the set of all refac-
tored classes with the associated refactorings.

To our knowledge, our work represents the first attempt to analyze clustering
properties of refactored classes in a software network, and extends our previ-
ous work [19], which was a preliminary analysis on the clustering of classes in
two Java systems affected by different corrective and maintenance operations,
among which there were also refactorings. Other recent works [20,21] analyzed
refactorings in the context of software networks, presenting a relationship be-
tween refactorings and node degree, but not analyzing clustering properties.

3 Experimental Setting and Methodology

The systems analyzed belong to the Java Qualitas Corpus [22], [23] , release
version 20101126e, which contains 13 systems for a total of 414 versions. We
analyzed 5 systems: Ant, Azureus, Jedit, Jena and Xalan. In total, we have
analyzed 29 releases, for a dataset of tenths of thousands of classes.

We built the undirected network corresponding to each release by associating
nodes to Java classes, and links to relationships among them, like inheritance,
composition, dependencies, aggregation, association and so on. These relation-
ships have been obtained by parsing the source code.

We extracted the maximal connected component of the obtained software
networks and performed our analysis on them. We then used RefFinder [5] to
extract the information about refactoring activities for each release. RefFinder
analyzes the differences among the source code of two releases, the source and
the target, and identifies the occurred refactoring operations. We analyzed only
the refactorings associated by RefFinder to the source release, and we discarded
the refactorings associated to the target release. Every refactoring was associated
to the corresponding class, and so we were able to understand if classes affected
by refactoring are connected or not.

For every release, we performed a comparison between the clusters formed
only among refactored classes and the number of clusters formed by the same
number of classes selected at random among all system classes.

272 G. Concas et al.

We define a cluster of nodes at distance d as a set of nodes such that there
is at least one path of length d between each pair of nodes in the set. If d = 1,
every node inside the cluster is connected with at least another node in the
same cluster, so the latter is a connected subgraph. Given this definition, the
number of clusters formed inside a set of n nodes can be univocally determined,
and trivially it can vary from 1, if all the nodes are connected, to n when all the
nodes are isolated. Since we consider the links between classes as undirected, the
clusters do not depend on the direction of edges. We have found clusters formed
by classes affected by refactoring, and compared the number of these clusters
with the average number of clusters formed by a random selection of a number
of classes equal to the number of refactored classes. In Section 4 we illustrate
our results.

4 Results

Our work is aimed at understanding if refactoring activities are related to clus-
tering and connectivity inside a software network.

From every system we extracted the subsets of classes which have been affected
by a refactoring operation. We will refer to the size of the network by n and to
the size of the subsets of refactored classes by n′.

We selected randomly a subset of the same size n′ and computed inside each
subset the number of clusters, i.e. the number of connected subgraphs. We re-
peated this sampling 100 times in order to have significant statistics, and then
computed the average number of clusters found for every sampling. Then we also
computed the number of clusters (or connected subgraphs) formed by the sets
of refactored classes, to be compared with the average number of the random
case.

In the plot of Fig. 1 we show the number of clusters formed by refactored
classes, and the average number of clusters obtained by selecting at random the
same number of classes among all system classes. The plot shows that, given
a fixed cluster size, the random selection brings a higher number of clusters
compared to refactored classes. This means that refactoring mainly does not
affect classes in a random fashion, but if a class needs this operation, there is a
certain probability that also another class connected to the first will need to be
refactored. This could be of help in software development and maintenance. We
also would like to point out the nearly linear growth of the number of clusters
along with the number of classes selected, meaning that the random selection
forms a number of clusters related and almost equal to the number of classes, as
one would expect. These results confirm our previous analysis in [19], and they
are valid specifically for refactored classes.

In Fig. 2 we show an example of how refactoring activities could be related to a
change in the topology of a software network. The example we show is a compar-
ison between the releases 4.0.0.0 and 4.1.0.2 of the system Azureus. The figure
shows the two sets of classes affected by the refactoring Replace method with
method object. After the refactoring operation, the connectivity among classes

Are Refactoring Practices Related to Clusters in Java Software? 273

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

n. classes

n.
 c

lu
st

er
s

ant rand
ant ref
azureus rand
azureus ref
jedit rand
jedit ref
jena rand
jena ref
xalan rand
xalan ref

Fig. 1. Comparison between the average number of clusters found by the random
selection and the number of clusters formed by refactored classes. The average number
of clusters for the random case (empty points of different shapes) is systematically
bigger than in case of refactored classes, showing that the latter are more connected
with each other.

7

284

318

721

782

783

895

899

1033

1045

1046

1084

1103

1205

1267

7

284

318

721

782

783

899

895

10451033

1046

1084

11031205

1267

Fig. 2. Comparison between Azureus release 4.0.0.0 (left) and 4.1.0.2 (right). For each
release, we report the sets of classes affected by the refactoring named Replace method
with method object. The node corresponding to UrlFilter class has a squared shape
and it is black on the right plot.

has changed, since the cluster grows by the addition of new classes. In particular,
we can see that in the previous release, 4.0.0.0, the classes involved by this refac-
toring are 15, while in release 4.1.0.2 there is a bigger cluster, composed of 20
classes, among which there are also the classes which were subject to the same
refactoring, but nearly isolated in release 4.0.0.0, such as classes n. 1046 and

274 G. Concas et al.

n.7. We can consider for example the node n. 318 that corresponds to the class
PlatformConfigMessenger in release 4.0.0.0. This class contains methods called
urlCanRPC(String url) and urlCanRPC(String url, boolean showDebug).
In the next release, 4.1.0.2, these are found inside UrlFilter class, not present
in the previous release, that it is exactly the method object. The clustering co-
efficient changes from 0.2 to 0.3 and this is coherent with the kind of refactoring
applied. The analysis of cluster changes can thus be used to infer the kind of
refactoring applied.

5 Conclusion

We have tried to understand whether refactoring practices are related to the
cluster structure of Java software systems, by analyzing the source code of 29
releases among 5 systems from the Java Qualitas Corpus. After retrieving the
source code and building the software network for each release of the analyzed
systems, we extracted the refactoring operations using RefFinder.

We then analyzed every release of the software systems to understand if classes
are more connected with each other after undergoing a refactoring operation.
We compared the number of clusters formed by refactored classes to the average
number of clusters formed by a random selection of classes, where the size of the
sample was set equal to the number of refactored classes. We found that the ran-
dom selection gives always a number of clusters which is higher than the number
of clusters formed by refactored classes. This suggests that randomly selected
classes are poorly coupled with respect to refactored classes, thus confirming our
hypothesis.

Our identification of the presence of clusters among refactored classes can help
developers to distinguish and decide which other classes are good candidates for
being refactored, once a class or a file has been chosen to be refactored. In fact,
since refactored classes or files tend to form clusters, one should look at the near-
est neighbours of the refactored ones. Moreover, since we have shown an example
where refactoring activities change the cluster structure of a software network,
one can in principle understand something about these activities by simply an-
alyzing the cluster structure of subsequent releases of a software system. For
example, it could be possible to make a prediction about which classes need to
be refactored, or understand if some classes were refactored, by looking at the
cluster structure in the proximity of the involved classes. Our preliminar results
could be extended in order to understand if it is possible to make such predic-
tions. Since refactoring generally affects software quality by improving coupling
and cohesion, the clustering properties of refactoring activities could be also re-
lated to this feature, and then to software quality. For example, we could analyze
the topology of such clusters along software evolution to understand if they are
related to an improvement of software quality.

Our preliminary analysis involved only Java systems from the Qualitas Cor-
pus, but it could be extended to other systems in order to have a bigger statistics
and to better distinguish also among different types of refactoring. Indeed, this

Are Refactoring Practices Related to Clusters in Java Software? 275

analysis can be extended to the other types of refactorings from Fowler’s cat-
alogue, to understand also if some types of refactorings tend to form clusters
more than others. Our analysis involves different releases over time, and so it
can be also viewed as a study of software evolution for what concerns refactoring
activities.

Acknowledgments. This research is supported by Regione Autonoma della
Sardegna (RAS), Regional Law No. 7-2007, project CRP-17938 ”LEAN 2.0”.

References

1. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

2. Counsell, S., Hamza, H., Hierons, R.M.: An empirical investigation of code smell
‘deception’ and research contextualisation through paul’s criteria. CIT 18(4) (2010)

3. Kim, M., Gee, M., Loh, A., Rachatasumrit, N.: Ref-finder: A refactoring recon-
struction tool based on logic query templates. In: Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, FSE 2010, pp. 371–372. ACM, New York (2010)

4. Prete, K., Rachatasumrit, N., Sudan, N., Kim, M.: Template-based reconstruction
of complex refactorings. In: Proceedings of the 2010 IEEE International Confer-
ence on Software Maintenance, ICSM 2010, pp. 1–10. IEEE Computer Society,
Washington, DC (2010)

5. RefFinder, https://webspace.utexas.edu/kp9746/www/reffinder/
6. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of

Modern Physics 74, 47–97 (2002)
7. Kohring, G.A.: Complex dependencies in large software systems. Advances in Com-

plex Systems (ACS) 12(06), 565–581 (2009)
8. Li, D., Han, Y., Hu, J.: Complex network thinking in software engineering. In: Pro-

ceedings of the 2008 International Conference on Computer Science and Software
Engineering, CSSE 2008, vol. 01, pp. 264–268. IEEE Computer Society, Washing-
ton, DC (2008)

9. Myers, C.R.: Software systems as complex networks: Structure, function, and evolv-
ability of software collaboration graphs. Phys. Rev. E 68(4), 046116 (2003)

10. Valverde, S., Cancho, R., Sole, V.: Scale free networks from optimal design. Euro-
physics Letters 60 (2002)

11. Wen, L., Kirk, D., Dromey, R.G.: Software systems as complex networks. In:
Proceedings of the 6th IEEE International Conference on Cognitive Informatics,
COGINF 2007, pp. 106–115. IEEE Computer Society, Washington, DC (2007)

12. Chidamber, S., Kemerer, C.: A metrics suite for object-oriented design. IEEE
Trans. Software Eng. 20(6), 476–493 (1994)

13. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics: A Practical Approach.
Prentice Hall (1994)

14. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.
IEEE Transactions on Software Engineering 38(1), 5–18 (2012)

15. Šubelj, L., Bajec, M.: Community structure of complex software systems: Analysis
and applications. Physica A Statistical Mechanics and its Applications 390, 2968–
2975 (2011)

https://webspace.utexas.edu/kp9746/www/reffinder/

276 G. Concas et al.

16. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

17. Advani, D., Hassoun, Y., Counsell, S.: Extracting refactoring trends from open-
source software and a possible solution to the ‘related refactoring’ conundrum. In:
Proceedings of the 2006 ACM Symposium on Applied Computing, SAC 2006, pp.
1713–1720. ACM, New York (2006)

18. Arzoky, M., Swift, S., Tucker, A., Cain, J.: Munch: An efficient modularisation
strategy to assess the degree of refactoring on sequential source code checkings.
In: Proceedings of the 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation Workshops, ICSTW 2011, pp. 422–429. IEEE
Computer Society, Washington, DC (2011)

19. Concas, G., Monni, C., Orrù, M., Tonelli, R.: A study of the community structure
of a complex software network. In: Proceedings of the 2013 ICSE Workshop on
Emerging Trends in Software Metrics, WETSoM 2013, pp. 14–20. ACM, New York
(2013), doi:http://doi.acm.org/10.1145/1809223.1809227

20. Murgia, A., Marchesi, M., Concas, G., Tonelli, R., Counsell, S.: Parameter-based
refactoring and the relationship with fan-in/fan-out coupling. In: IEEE Interna-
tional Conference on Software Testing Verification and Validation Workshop, pp.
430–436 (2011)

21. Murgia, A., Tonelli, R., Marchesi, M., Concas, G., Counsell, S., McFall, J., Swift,
S.: Refactoring and its relationship with fan-in and fan-out: An empirical study.
In: Proceedings of the 16th European Conference on Software Maintenance and
Reengineering, CSMR 2012, pp. 63–72 (2012)

22. Java Qualitas Corpus, http://qualitascorpus.com/
23. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,

Noble, J.: Qualitas corpus: A curated collection of java code for empirical studies.
In: 2010 Asia Pacific Software Engineering Conference (APSEC 2010), pp. 336–345
(December 2010)

http://doi.acm.org/10.1145/1809223.1809227
http://qualitascorpus.com/

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 277–284, 2014.
© Springer International Publishing Switzerland 2014

Social Contracts, Simple Rules and Self-organization:
A Perspective on Agile Development

Ken Power

Cisco Systems
Galway
Ireland

ken.power@gmail.com

Abstract. Teams and organizations are complex adaptive systems. Self-
organization in complex adaptive systems evolves through a set of Simple
Rules. Self-organization is a core tenet of agile teams. Self-organization does
not mean everyone gets to do whatever they want to do. Team members create
contracts with each other. These contracts create boundaries, or containers,
within which self-organization can occur. Teams also create contracts with
other teams, the wider organization and other stakeholders. The contracts are
both implicit and explicit. Social contracts in complex adaptive systems are
more effective if they are based on Simple Rules. Social Contract Theory acts
as a lens through which we can better understand these social contracts in agile
teams. This paper represents ongoing research that examines the role of Simple
Rules and Social Contract Theory in fostering self-organization in agile
development teams. The paper discusses four examples of social contracts in
agile teams: definition of done, definition of ready, working agreements, and
retrospectives.

Keywords: definition of done, definition of ready, simple rules, social contract
theory, justice, social contracts, working agreements, agile, complexity,
complex adaptive system, human systems dynamics.

1 Introduction

Social contract theory has its roots in part in the work of 18th century political
philosopher Jean-Jacque Rousseau [1], and more recently in the work of moral and
political philosopher John Rawls, and his Theory of Justice [2]. Rawls’ primary focus
is the subject of justice in what he calls social organizations, and specifically “the way
in which the major social institutions distribute fundamental rights and duties and
determine the division of advantages from social cooperation”. In other words, people
in a social system have rights and benefits that are determined by the system. “The
basic structure is the primary subject of justice because its effects are so profound
and present from the start.” [2]. The philosopher and physician John Locke uses the
social contract to defend and protect particular values, and to institute an accountable
system of authority [3]. This paper discusses how these ideas apply to agile teams and
organizations.

278 K. Power

“Social contract arguments typically posit that individuals have consented, either
explicitly or tacitly, to surrender some of their freedoms and submit to the authority of
the ruler or magistrate (or to the decision of a majority), in exchange for protection of
their remaining rights” [4]. This definition is worth analyzing in the context of self-
organizing human systems in general, and agile software development teams in
particular. In the context of agile development teams:

• The individuals are the team members. They are also employees of the
organization.

• The “majority” is the team as a whole. There may also be a wider team, or “team
of teams”, such as a program where many teams deliver a large product or system.

• The ruler or magistrate is equivalent to the managers of the organization the
individuals and teams work for. There is an explicit contract of employment that
carries certain explicit and implicit obligations.

The first interpretation relates to “the decision of the majority”. A team, in order to
be successful, needs to agree how they are going to work together. These agreements
set expectations. Although individuals will have their own working style preferences,
there is a balance between accommodating individual preferences and doing what is
good for the group as a whole. In lean terms, this is an application of systems
thinking. So, a team will ideally have a facilitated discussion to agree their social
contracts. It is best if these social contracts are created by the people who are most
affected by them. There are other types of contracts, such as rules for driving on
motorways or taxation laws that are created by a few people and imposed through rule
of law. There are similar laws or contracts in the workplace, where people are subject
to employment law. The type of contract we are talking about with social contracts is
where the people governed by the contracts create, or at least have significant input,
into creating the contracts. In a “well-ordered social structure”, whether a society,
team or organization, each citizen of the social structure honors the social contract
because it is in their own self-interest, as long as enough of the other citizens of the
social structure also honor the contract [5].

Some writers in the agile community have mentioned social contracts. Israel Gat,
for example, wrote two Blogs about the advantages of creating social contracts
between teams and management, particularly at the start of an agile transition and in
the face of difficult situations such as impending layoffs [6, 7]. Alan Atlas writes how
social contracts form the basis for interaction between people, and defines a social
contract as “Working Agreement between non-peers. In an Agile context, social
contracts are written between a team and its management, or a team and its
encompassing organization” [8]. This paper takes a broader perspective, viewing
working agreements as an example of social contract, as described further in section
3.3 below. Jurgen Appelo cites Israel Gat’s Blog, and also mentions Social Contract
Theory, writing that the ideas translate well to organizations [9]. However, these blog
posts do not reference social contract theory, and none of these writers cite the social
contract theory literature or the work of Rawls. The research represented by this paper
expands on these perspectives to encompass social contract theory, and also to frame
social contracts in the context of the Simple Rules that govern emergent behavior and
self-organization in teams and organizations. This is the topic of the next section.

 Social Contracts, Simple Rules and Self-organization 279

2 Teams and Organizations as Complex Adaptive Systems

Dooley notes that “the prevailing paradigm of a given era’s management theories has
historically mimicked the prevailing paradigm of that era’s scientific theories” [10].
The complexity sciences have emerged as one of the prevailing paradigms for modern
management thinking in general [11, 12], and agile management in particular [13].
Stacey has shown that “all organisations are complex adaptive systems in which
groups and individuals are the agents” [14], and self-organization is widely
acknowledged as a key property of successful agile teams [15]. Agile methods
address this directly with Scrum, for example, defined as “a framework within which
people can address complex adaptive problems while productively and creatively
delivering products of the highest possible value” [16]. The creators of the Agile
Manifesto recognized this too, with the manifesto stating, “The best architectures,
requirements, and designs emerge from self-organizing teams.”

Human Systems Dynamics (HSD) provides a model for understanding self-
organization in human systems. HSD defines a CAS as a “collection of individual
agents who have the freedom to act in unpredictable ways, and whose actions are
interconnected such that they produce system-wide patterns” [17, 18]. Fig. 1
illustrates how system-wide patterns emerge as the agents in the system interact. Fig.
1 is a modified version of the picture used in HSD to represent emergent patterns in
complex human systems.

Fig. 1. Agents in a human system interact, guided by Simple Rules, to form patterns

HSD uses three core elements to describe systems: containers, differences and
exchanges (CDE). Containers are boundaries within which self-organization of
human systems occurs. This is accomplished through focusing and constraining the

280 K. Power

interactions among the agents in the system. Examples include teams and
organizations. Differences establish the potential for change in a human system,
creating the possibility for the system to self-organize to a new state. Exchanges, also
known as Transforming Exchanges, are interactions between the agents (people,
teams, etc.) in a Container, and are “a necessary condition for self-organizing
processes to occur” [19]. Making changes in a system is referred to as making an
intervention. For example, a Container intervention might alter the structure or
membership of a team, or change the social contract. Improving the communication
between the agile team and management is an example of an Exchange intervention.

2.1 Simple Rules

In CAS terms, Simple Rules support coherent actions among the agents in a system.
“If everyone follows the same short list of Simple Rules, then the group behaves in a
coherent way as a whole” [17]. Here are the HSD rules for creating Simple Rules
[17]:

• Include no more than 5 rules (plus or minus 2).
• Begin the rule with a verb.
• Work for everyone and every place in the system.
• Need at least one rule for each of the conditions of self-organization, i.e., a

Container rule, a Difference rule and an Exchange rule.
• Stated in the positive, i.e., states something to do, not something to not do.

Simple rules are not values. They are specific about telling you what to do; they do
not tell you what to feel or think [17]. Sometimes the rules will contradict each other,
which means the group will live with the ambiguity and make the appropriate
tradeoffs in the moment. The “rules” depend on individual freedom to interpret and
apply in unique situations. Rules play an important part in agile development. For
example, as well as specifying roles, events and artifacts, Scrum also includes a set of
rules that binds these things together [16].

3 Examples of Social Contracts in Agile Development

This section explores a number of common artifacts and ceremonies in agile
development from the perspective of social contracts.

3.1 Definition of Done

Definition of done is a set of agreements that defines what done means for a
potentially shippable product increment of a product. Everyone on the team, including
Scrum Masters and Product Owners, must have a common understanding of what
done means [16]. The line items of the definition of done are Simple Rules. Definition
of done creates a contract between the development team, the product owner and the
rest of the organization. The terms of that contract are effectively that the team is

 Social Contracts, Simple Rules and Self-organization 281

committing to satisfying each item in the definition before declaring a user story to be
done. When a user story is declared done, and accepted by the product owner, it
becomes part of a potentially shippable product. The team commits to getting the user
story done by following the Simple Rules, and hence fulfilling their part of the
contract. The organization commits to supporting the team and not coercing them into
taking shortcuts. The product owner commits to providing feedback, answering
questions, and generally being available to support the team in getting to done. The
Scrum Master makes sure that everyone is upholding their part of the social contract,
and when necessary, reminds people about the Simple Rules. The Scrum Master is
effectively the guardian of the Simple Rules and the social contract.

3.2 Definition of Ready

Definition of Ready is a set of Simple Rules adopted by an agile team to help them
remember all the things they need to do before a development team starts work on a
backlog item [20]. Where the development team is responsible for meeting definition
of done, product owners (or equivalent) are responsible for making sure work items
meet definition of ready. This creates a similar but different social contract to that
created by definition of done. This time, the emphasis is on the product owner to meet
the terms of the contract, and the team agrees to support them [21].

3.3 Working Agreements

Working agreements are common in healthy agile teams, and the agreements team
members make with each other about how they will work together are part of creating
the team’s culture [15]. There are explicit agreements, e.g., be on time for the daily
scrum meeting, don’t break the build, no meetings on Fridays. There are also implicit
agreements, e.g., be mindful about inviting people to meetings, send meeting invites
to named people rather than group aliases. Mike Cohn also describes the different
agreements a co-located team and a distributed team might make.

All of these agreements are examples of Simple Rules that create social contracts
that in turn influence the behavior of the people in the team. With reference to Fig. 1,
as the people (agents) in the system interact based on these Simple Rules, patterns
emerge. One such pattern might be that a developer is consistently late for the daily
standup. This will cause a tension in the system that in turn will influence the
behavior of the actors, or team members. What happens next will depend on the team.
They might remind each other of their working agreements (Simple Rules), or the
Scrum Master might remind them, and point out that one of the rules is being
violated. They have a choice to make around whether the rules are still serving them.
If so, the tardy developer might choose to respect the social contract formed by the
Simple Rules and start showing up on time. This resulting behavior will cause a new
pattern to emerge in the system.

3.4 Retrospectives

Retrospectives are a teams’ opportunity to inspect and adapt; to reflect on how they
are working and make necessary changes to their system. Teams usually hold
retrospectives at the end of each Sprint, and a bigger one at the end of each release.

282 K. Power

3.4.1 Retrospective Prime Directive
Retrospectives are intended to drive change. However, a human system cannot evolve
if the people are filled with anxiety. As Olsen and Eoyang note, “leaders and change
agents have a role in creating a safe space, at least safe enough for system agents to
take risks associated with movement and change” [22]. Norm Kerth created the
retrospective “Prime Directive”, which he defined as follows: “Regardless of what we
discover, we must understand and truly believe that everyone did the best job he or
she could, given what was known at the time, his or her skills and abilities, the
resources available, and the situation at hand.” [23]. The goal of this social contract
is to develop safety and trust among the retrospective participants so they can have an
open and honest discussion without fear of recrimination. If this contract is broken,
and the prime directive violated, the retrospective will fail to meet its goals.

3.4.2 Retrospective Second Directive
Dale Emery coined the Retrospective Second Directive to make explicit the central
element of responsibility in the team: “We accept the responsibility to change at least
one of the conditions that made our best less than we now want it to be.” [24]. This
creates a social contract in the team to accept the responsibility to make changes in
their system.

3.4.3 Ground Rules and Working Agreements
Jean Tabaka writes that Ground Rules “should be the team’s declaration of its self-
governance” [25]. The ground rules belong to the team, not the meeting facilitator,
and are “the boundaries a team believes can help it stay focused on their goal”. The
Ground Rules are an example of Simple Rules that create a social contract between
the meeting participants, so that they can work together to meet their goals. Ground
Rules are similar to what Diana Larsen and Esther Derby refer to as Working
Agreements for retrospectives. Larsen and Derby also emphasize that working
agreements belong to the team, not to the retrospective facilitator [26]. In alignment
with the guidelines for creating Simple Rules, retrospective working agreements
should number no more than five. While it is not possible to predict every situation
that will occur, “most groups can address the majority of situations with five working
agreements” [26].

4 Conclusions

 This paper described the connection between Social Contract Theory and agile teams,
viewing agile teams as complex adaptive systems. The field of Human Systems
Dynamics provides a suitable lens through which to view teams and organizations as
complex adaptive social systems, and defines necessary conditions for self-
organization using Containers, Differences and Exchanges. The social contracts in
agile teams and organizations are based on the Simple Rules that govern emergence
and self-organization.

 Social Contracts, Simple Rules and Self-organization 283

Simple Rules support coherent behaviors in a system. Definition of done,
definition of ready, and working agreements are all examples of social contracts,
created using Simple Rules, in agile teams and organizations. In addition, there are
examples of social contracts to be found in retrospectives, including the prime
directive, second directive and ground rules. These Simple Rules and Social Contracts
support emergent behaviors and self-organization.

Teams own their own Simple Rules. As teams adapt their Simple Rules, new
patterns are formed in the system. These patterns are governed by the social contracts
created by the Simple Rules. Violating the Simple Rules creates a tension in the
system that can be resolved by the team enforcing the rules or altering the rules (an
Exchange intervention), or by the team membership changing (a Container
intervention).

Social Contracts exist within agile teams, between agile teams, between agile
teams and management, and within management teams.

Further research on this topic will continue to explore social contracts and Simple
Rules in human systems, with a particular focus on agile teams and organizations.

References

1. Qvortrup, M.: The political philosophy of Jean-Jacques Rousseau: The impossibilty of
reason. Manchester University Press, Manchester (2003)

2. Rawls, J.: A Theory of Justice. Harvard University Press, Cambridge (1971)
3. Jos, P.H.: Social Contract Theory: Implications for Professional Ethics. The American

Review of Public Administration 36, 139–155 (2006)
4. Wikipedia, http://en.wikipedia.org/wiki/Social_contract
5. Binmore, K.G.: Game Theory and the Social Contract, Vol 2: Just Playing, vol. 2. The

MIT Press, Cambridge (1998)
6. Gat, I.: A Social Contract for Agile, http://theagileexecutive.com/2009/

02/03/a-social-contract-for-agile/
7. Gat, I.: Addition to the Social Contract, http://theagileexecutive.com/2009/

04/11/addition-to-the-social-contract/
8. Atlas, A.: Teach Your Boss to be Agile with a Social Contract,

http://theagileexecutive.com/2009/11/05/teach-your-boss-to-
be-agile-with-a-social-contract-guest-post-by-alan-atlas/

9. Appelo, J.: Management 3.0: Leading Agile Developers, Developing Agile Leaders.
Addison-Wesley, Upper Saddle River (2011)

10. Dooley, K.J.: A Complex Adaptive Systems Model of Organization Change. Nonlinear
Dynamics, Psychology and Life Sciences 1, 69–97 (1997)

11. Snowden, D.J., Boone, M.E.: A Leader’s Framework for Decision Making. Harvard
Business Review (2007)

12. Vasconcelos, F.C., Ramirez, R.: Complexity in business environments. Journal of Business
Research 64, 236–241 (2011)

13. Appelo, J.: Management 3.0: leading Agile developers, developing Agile leaders.
Addison-Wesley, Upper Saddle River (2011)

14. Stacey, R.: Emerging Strategies for a Chaotic Environment. Long Range Planning 29,
182–189 (1996)

284 K. Power

15. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Addison-Wesley,
Upper Saddle River (2010)

16. Sutherland, J., Schwaber, K.: The Scrum Guide. The Definitive Guide to Scrum: The
Rules of the Game. Scrum.org (2013)

17. Eoyang, G.H.: Human Systems Dynamics Professional Certification Training Manual.
HSD Institute, Cohort 32 - Roffey Park, UK (2013)

18. Eoyang, G.H., Holladay, R.J.: Adaptive Action: Leveraging Uncertainty in Your
Organization. Stanford University Press, Stanford (2013)

19. Eoyang, G.H.: Conditions for Self-Organizing in Human Systems. Doctor of Philosophy.
The Union Institute and University (2001)

20. Rubin, K.S.: Essential Scrum: a practical guide to the most popular Agile process.
Addison-Wesley, (Pearson Education [distributor]) London, Boston (2012)

21. Power, K.: Definition of Ready: An Experience Report from Teams at Cisco. In: Cantone,
G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 312–319. Springer, Heidelberg
(2014)

22. Olson, E.E., Eoyang, G.H.: Facilitating Organization Change: Lessons from Complexity
Science. Jossey-Bass/Pfeiffer, A Wiley Company, San Francisco (2001)

23. Kerth, N.: Project retrospectives: a handbook for team reviews. Dorset House Publishing,
New York (2001)

24. Emery, D.: The Second Directive, http://cwd.dhemery.com/2003/06/the_
second_directive/

25. Tabaka, J.: Collaboration Explained: Facilitation Skills for Software Project Leaders.
Addison-Wesley Professional, Upper Saddle River (2006)

26. Derby, E., Larsen, D.: Agile Retrospectives: Making Good Teams Great. The Pragmatic
Programmers, Raleigh (2006)

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 285–293, 2014.
© Springer International Publishing Switzerland 2014

Realizing Agile Software Enterprise Transformations
by Team Performance Development

Petri Kettunen

University of Helsinki
Department of Computer Science

P.O. Box 68, FI-00014 University of Helsinki, Finland
petri.kettunen@cs.helsinki.fi

Abstract. Many software-intensive new product development (NPD) based
enterprises pursuit nowadays agile transformations in order to sustain and
improve their performance and competitiveness. Agile software development
teams are by definition striving for high performance. However, in larger
organizations there can be a wide diversity of such teams. It is not so
straightforward to determine high performance for the teams, but by
understanding the overall performance aims of the enterprise, such diverse
teams bring competitive advantages to software development organizations.
Continuing our prior works, this paper addresses those issues by proposing a
performance analysis approach for agile software organizations. The overall
goal is to provide means to distinguish different high-performing agile software
teams, and consequently practical measures to establish and sustain
performance in different organizational transformations. The example cases
demonstrate how it is able to align and integrate team performance targets and
overall aims of industrial software organizations under agile transformations.

Keywords: agile software enterprise, organization design, team performance
management, transformation competencies, capability development.

1 Introduction

Teams and teamwork are central to agile software development. Moreover, not just
having teams but consciously concentrating on their performance is what brings the
agility benefits. Furthermore, since agile enterprises are by definition proficient at
change, it is necessary to understand the impacts of organizational changes to team
performance in order to avoid unintended negative effects. The ultimate aim of agile
software enterprise transformations is to achieve such ideal performance state of the
organization.

High-performing teamwork has been investigated in many fields over the years. In
particular, the success factors of new product development (NPD) teams are in
general relatively well known. However, the specific concerns and intrinsic properties
of modern agile software development teams are essentially less understood in
particular in larger scales. In all, it is not clearly understood, what high performance

286 P. Kettunen

means for agile software development enterprises in total, and how exactly such
effects and outcomes are achievable in transformational ways. Such fundamental
comprehension would greatly help to justify and execute agile transformations, and
leverage diverse teams to scale up at enterprise levels.

This paper approaches those issues by proposing a holistic performance analysis
approach for team-based agile software enterprises. The purpose is twofold:

1. Software development organizations can gauge their diverse teams with it for
organizational transformations.

2. Software teams themselves may utilize it for their own performance management
to support the attainment of the desired transformation state.

The rest of this paper is organized as follows. The next Section 2 reviews software
team performance measures in general and agile software enterprise development traits.
Section 3 presents the performance-based transformation analysis approach, followed
by certain industrial case examples in Section 4. Finally, Section 5 discusses the
proposition with implications and concluding pointers to further work in Section 6.

2 Software Team Performance and Agile Enterprises

Industrial-strength software product development is almost always done in teams,
even in globally virtual set-ups. Furthermore, software teams do not exist in isolation
in particular in larger product development enterprises. Moreover, in large-scale
organizations there are typically not just single teams but a network of interdependent
teams, passing even external company boundaries. In general, it is not reasonable to
attempt to define (high) performance of software teams without taking into account
the context. In all, the domain of the software (products) sets the main performance
criteria. There may considerable differences in different industries and competitive
environments (e.g., automotive embedded software vs. mobile games). Nevertheless,
it is possible to find many generally applicable ways and measures to device and
guide agile software teams towards high performance for the enterprises.

All in all, high performance of agile software enterprises and development teams is
apprehended in multidisciplinary ways spanning many areas of modern business
competence and R&D management, in particular: software engineering management
and leadership, knowledge-intensive NPD teamwork, and high-technology business
strategy and organizational development.

This paper focuses on software engineering (management) discipline. However, it
is fundamental to understand the connections to those related fields for instance with
respect to knowledge workers in general.

In practice there are usually many ways to affect the (high) performance with agile
software teams. In general, there is no one universal measure of software team
performance. To begin with, software teams can be seen as general work teams and
their performance accordingly [1].

Typically software team performance is associated with productivity [2]. However,
software development teams have usually multiple enterprise stakeholders – including

Realizing Agile Software Enterprise Transformations by Team Performance Development 287

the team members themselves – and consequently multiple different dimensions of
performance [3]. Agile software teams excel in their value creation not only for the
customers, but also for their organizations and for the team itself [4]. Conversely,
while waste lowers performance it is relative to the defined value.

Moreover, the measurement scales (high vs. low performance) vary for instance in
different product development domains. Multivariate measures are thus usually more
applicable. Consequently, different teams may have different performance targets
even within same larger organizations.

Prior literature has described many such possible software team performance
measures. Typical performance measures used in software-intensive organizations are
like the following ones: stakeholder-rated performance (e.g., product quality,
contribution to the firm performance), meeting user needs and company demands, and
process performance (development schedule, budget).

Although it is difficult to define general-purpose performance metrics for specific
software teams, the measurement systems can be developed based on existing general-
purpose frameworks to begin with. In particular, the ISO/IEC 15939 standard provides
such a platform [5]. It is imperative to know, who judges the success and when [6].

There is no universal recipe for creating and improving high-performing software
teams. However, such means can stem from the processes, tools, organization, and
most importantly the people in the team. Typical performance factors presented in the
extant literature are as follows: extensive sharing of financial and performance
information throughout the organization (with trust, open-book management) [7],
organizational constructs to facilitate longer-term process development and
improvement [8], clear mission, appropriate software life-cycle models [9], and
empowering leadership [10].

Notably many negative factors (weaknesses and impediments) can be inverted to
positive ones (strengths). Furthermore, those positive influences require typically certain
supporting organizational enablers on the one hand, and removing possible hindrances
and impediments on the other hand. Larger organizations should also be able to take a
competitive advantage of its diverse software teams and their unique strengths.

Finally, advancing from the software team level up to the enterprise level,
organizational development may comprise large-scale transformations. In general,
such enterprise transformations are radical changes in what business the organization
conducts and how it operates in total. The drivers for such transformations stem from
the need to respond to radical changes in the competitive environment, strategic
repositioning of the company, and the pressures for cost reductions and performance
improvements [11]. Conceptually, they can be defined as value deficiencies [12].

There are certain general-purpose enterprise transformation models published. For
instance Rouse defines such a transformation framework with the dimensions of
scope (ranging from the entire enterprise to work activities), ends, and means [12].

In case of software organizations, so-called agile transformations usually mean
adoption of agile software development methods and possibly also some more general
principles of the Agile Manifesto defined way of working. However, there are no
comprehensive models for realizing systematic transformations of large-scale agile
software enterprises [13], [14]. The purpose of this work is to address that integration
gap.

288 P. Kettunen

3 Framework for Team-Based Transformations

The approach proposed here integrates and further develops our prior works as
outlined in Table 1. The key idea here is that once the overall performance goals are
determined for the desired future state of the enterprise transformation (1), the
software team performance management can be oriented accordingly (2). There are
then typically different needs and opportunities for diverse agile software teams in the
enterprise (3).

Table 1. Framework foundations

BASE Groundwork Key Elements

1 Enterprise-level performance goals
determination [15]

• systematizing the strategic needs
• means / enablers to fulfill them

2 Software team performance aiming [16] • determining software team
performance portfolio in the overall
product development constellation

3 Team performance self-monitoring and
improvement [17]

• gauging software teams with respect
to their desired performance

Following that line of thinking in Fig. 1, agile teams and their performance can be

seen in a multidimensional space.

1

2

3

Fig. 1. Software development team contextual dimensioning1

Based on the prior works reviewed in Sect. 2 coupled with our groundwork
presented in Table 1, Table 2 charts such a conceptual dimensioning grid to address

1 The points 1-3 refer to Table 1.

Realizing Agile Software Enterprise Transformations by Team Performance Development 289

the objectives set in Sect. 1. It compiles a three-dimensional space for agile software
team transformational performance excellence.

Table 2. Team-based transformation management grid

DIM Scope (Fig. 1) (Agile)
Transformation Traits

Measures
Emphasis INSTRUMENTS (c.f., Table 1)

1 Company • needs and goal
attainment strategies

• ratings of (business) drivers and
(agility) goals

Goals • Agility Profiler [15]

2 R&D / Software
Development

• team diversity port-
folio coordination and
alignment

• team performance positioning (key
capabilities)

Means • Orientation Frame [16]

3 Teams • team performance
(self-)management

• performance profile gauges
Enablers • Capability Analyzer, Monitor [17]

The suggested way of realizing the frame (Table 2 dimensions 1-3, respectively) is:

1. Determine the strategic needs and goals for the (next) future desired state.
2. Discern the different software teams of the organization according to their main

orientation and purposes for achieving the future state (in particular with respect to
business excellence, operational excellence and growth objectives).

3. Set and guide the individual team performance targets accordingly.

Notably in larger enterprises with multiple teams, there are typically many
interdependencies. Such relations may affect the performance of individual software
teams both positively or negatively. For instance, if one team may have to wait for
high-quality, novel software assets (e.g., components) from an apparently slower
platform development team. It follows that not all teams need to improve in the same
respects (dimension 2) simultaneously. Agile software organizations realize that their
teams work in co-operation as a system, which should be optimized as a whole rather
than suboptimally as separate teams. Overall, the enterprise can also increase its
business agility by leveraging the diversity of its teams in the portfolio configuration.

In general, transformations are continuous processes since the drivers of the
transformations for modern software organizations tend to be in constant flux. The
three different dimensions in Table 2 can furthermore be viewed from an enterprise
system development perspective as follows:

• Industrial software development organizations have business goals to achieve.
• Their operational capabilities provide means to satisfy them.
• Agile software development organizations develop and improve continuously their

team capabilities, competence, and assets (including people) for sustainable future
excellence.

Specific performance measures on each dimension and also linkage relations
between them can be defined with such approaches as advanced Balanced Scorecards

290 P. Kettunen

(BSC), Baldrige and EFQM Excellence Models [18]. Considering the dimension 2 in
Table 2, typical performance measures for the operational excellence are in terms of
outputs, while the business excellence should be managed with respect to outcomes
and business impacts. The growth calls for more holistic measures – in particular on
intellectual capital (IC) [19]. In all, it follows that the measurement timescales are key
considerations in each dimension for interpreting the performance.

4 Case Examples

We have been working on agile/lean transformations for several large software
development enterprises. Although the framework presented here was not available
when those transformations were conducted, we can revisit them retrospectively as
partially validating examples.

Table 3 demonstrates how their identified transformation goals and strategies can
be conceived with the dimensioning frame presented in Table 2.

Table 3. Industrial agile enterprise transformation goal mappings

COMPANY Objectives Dimension (Table 2)
1 2 3 (Teams)

A Increase customer satisfaction
Better response to changes
Release promptness
Short, visible feedback cycle
Lean organizational model
Agile/Lean Adoption

B Continuous learning
Continuous improvement
Flexible frequent releases
Continuous velocity improvement
Better quality
Frequent code commits

C Increased customer satisfaction
Faster service delivery
Less efforts in service development

Table 3 illustrates how various informally identified transformation objectives can

be distinguished and leveled systematically. The next step would be to link the rows
and then to discern potentially missing ones following the three-step procedure
outlined in Sect. 3 to get a comprehensive set of team performance targets (dimension
3) supporting the strategic goals (dimension 1).

Often such linkages are not apparent. For instance the strategic business goal
(dimension 1) of increasing customer satisfaction (A and C) may be linked to multiple

Realizing Agile Software Enterprise Transformations by Team Performance Development 291

items of the dimensions 2 and 3.This suggests the usefulness of our framing approach.
The linkages can further be developed with such methods as GQM+Strategies [20].

Notably the case company transformations have been by and large successful with
respect to most of their objectives in Table 3. However, because of the retrospective,
theory-fitting approach done here, it is not possible tell conclusively how the
outcomes could have improved and the particular team performances impacts, if the
framework proposed here had been available when they proceeded.

Nevertheless, the case companies could now use it for continuing their
transformations. One of our key suggested insights based on the information here is
thereby that the different objectives in Table 3 can actually be conceived as goals,
means, and enablers like outlined in Table 2. The particular software team
performances should be guided accordingly.

5 Discussion

The fundamental tenet of this team-based transformation management approach is
that each team should be able to position itself in their particular organizational
context. Not all teams (in large organizations) have to be equal. It follows that the
company should continuously manage the performance portfolio of their teams. The
company may then choose to develop their total team capabilities for the desired
transformation state. Moreover, the company may also direct the transformation
strategies based on their current software team assets.

In more general, the teams of the enterprise can be seen as dynamic resources. That
kind of reconfigurability is one of the key premises of agile enterprises [21]. Our
approach supports that by providing systematic ways of managing the performance
portfolio of the teams.

Notably, since our approach is based on teams, we are also dealing with people
factors. This brings up organizational culture issues. Different configurations in the
transformation frame (Table 2) may require different organizational values and
operation principles. However, group culture is the underlying premise of the whole.

Our framing approach can be related to the transformation framework proposed by
Rouse [12]. However, while they emphasize work process changes (redesign) being
the core for transformations, we put teams to the epicenter. In contrast, our key
proposition here is that since software work processes are actually performed by
teams (and their individuals), the transformations are ultimately realized by
addressing them.

In sum, the conceptual transformation analysis frame constructed here is holistic
but necessarily coarse-grained. The intention is certainly not to suggest particular
transformation recipes for all organizations since transformational software team
performance is relative and organization-specific. However, the key idea is to guide
the moves in organizations to see their team performance in their overall enterprise
constellation from different perspectives and time horizons.

292 P. Kettunen

6 Conclusion

Most agile software development organizations are nowadays team-based. It follows
that such enterprises can be improved and even transformed by orienting the teams
and gauging their performance accordingly towards the desired states.

In this paper, we have proposed a team-based transformation analysis framework
for supporting such aims. It facilitates rationalizing the current team performance
goals and consequently (re)positioning and aligning the diverse teams of the
organization to achieve the desired transformation states. This makes it possible to
realize software enterprise transformations based on their existing and future teams.
The industrial case examples presented here illustrate how such team-based
transformational development can be conceived in practice.

Acknowledgements. This work was supported by TEKES as part of the Cloud
Software Program of DIGILE (Finnish Strategic Centre for Science, Technology and
Innovation in the field of ICT and digital business).

References

1. Hackman, J.R.: Leading Teams: Setting the Stage for Great Performances. Harvard
Business School Press, Boston (2002)

2. Petersen, K.: Measuring and predicting software productivity: A systematic map and
review. Information and Software Technology 53, 317–343 (2011)

3. Chenhall, R.H., Langfield-Smith, K.: Multiple Perspectives of Performance Measures.
European Management Journal 25(4), 266–282 (2007)

4. Patanakul, P., Shenhar, A.: Exploring the Concept of Value Creation in Program Planning
and Systems Engineering Processes. Systems Engineering 13(4), 340–352 (2009)

5. Staron, M., Meding, W., Karlsson, G.: Developing measurement systems: an industrial
case study. J. Softw. Maint. Evol.: Res. Pract. 23, 89–107 (2010)

6. Agresti, W.W.: Lightweight Software Metrics: The P10 Framework. IT Pro., pp. 12–16
(September-October 2006)

7. Pfeffer, J.: Seven Practices of Successful Organizations. California Management
Review 40(2), 96–124 (1998)

8. Glazer, H.: Love and Marriage: CMMI and Agile Need Each Other. CrossTalk 23(1), 29–
34 (2010)

9. Allen, M.: From Substandard to Successful Software. CrossTalk 22(4), 29–32 (2009)
10. Faraj, S., Sambamurthy, V.: Leadership of Information Systems Development Projects.

IEEE Trans. Engineering Management 53(2), 238–249 (2006)
11. Purchase, V., Parry, G., Valerdi, R., Nightingale, D., Mills, J.: Enterprise Transformations:

Why Are We Interested, What Is It, What Are the Challenges? Journal of Enterprise
Transformation 1, 14–33 (2011)

12. Rouse, W.B.: A theory of enterprise transformation. Systems Engineering 8(4), 279–295
(2005)

13. Kettunen, P.: Agile Software Development in Large-Scale New Product Development
Organization: Team-Level Perspective. Dissertation, Helsinki University of Technology,
Finland (2009)

Realizing Agile Software Enterprise Transformations by Team Performance Development 293

14. Laanti, M.: Agile Methods in Large-Scale Software Development Organizations –
Applicability and Model for Adoption. Dissertation, University of Oulu, Finland (2012)

15. Kettunen, P.: Systematizing Software-Development Agility: Toward an Enterprise
Capability Improvement Framework. Journal of Enterprise Transformation 2(2), 81–104
(2012)

16. Kettunen, P.: Orienting High Software Team Performance: Dimensions for Aligned
Excellence. In: Heidrich, J., Oivo, M., Jedlitschka, A., Baldassarre, M.T. (eds.) PROFES
2013. LNCS, vol. 7983, pp. 347–350. Springer, Heidelberg (2013)

17. Kettunen, P.: Directing High-Performing Software Teams: Proposal of a Capability-Based
Assessment Instrument Approach. In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD
2014. LNBIP, vol. 166, pp. 229–243. Springer, Heidelberg (2014)

18. Malz, A.C., Shenhar, A.J., Reilly, R.R.: Beyond the Balanced Scorecard: Refining the
Search for Organizational Success Measures. Long Range Planning 36, 187–204 (2003)

19. Athey, T.R., Orth, M.S.: Emerging Competency Methods for the Future. Human Resource
Management 38(3), 215–226 (1999)

20. Basili, V.R., Lindvall, M., Regardie, M., Seaman, C., Heidrich, J., Münch, J., Rombach,
D., Trendowicz, A.: Linking Software Development and Business Strategy through
Measurement. IEEE Computer 43(4), 57–65 (2010)

21. Goldman, S.L., Nagel, R.N., Preiss, K.: Agile competitors and virtual organizations:
strategies for enriching the customer. Van Nostrand Reinhold, New York (1995)

A Test-Driven Approach for Model-Based

Development of Powertrain Functions

Henrik Peters1, Christoph Knieke1, Oliver Brox2, Stefanie Jauns-Seyfried2,
Michael Krämer2, and Andreas Schulze2

1 Clausthal University of Technology, Department of Informatics,
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany
henrik.peters,christoph.knieke@tu-clausthal.de

2 Volkswagen AG,
Post box 15000, 38436 Wolfsburg, Germany
{oliver.brox,stefanie.jauns-seyfried,

michael.kraemer1,andreas.schulze}@volkswagen.de

Abstract. Vehicle functions for engine control units are modeled us-
ing a set of software units, so-called modules, specifying the discrete
and continuous behavior of the corresponding function. As required by
ISO26262, each module needs to be tested separately. Established tech-
niques for model-based testing necessitate a requirements specification
from which a test model can be derived. In practice, requirements are
specified by natural language and on the level of whole vehicle func-
tions instead of modules so that test models on module level can not
be derived directly. Therefore, we propose a systematic model-based,
test-driven approach to design a specification on the level of modules,
which is directly testable. We demonstrate our approach on a Selective
Catalytic Reduction system, a real world case study from automotive
software engineering.

Keywords: model-based testing, test-driven development, automotive
software engineering, embedded systems.

1 Introduction

There is a new trend in the automotive industry towards model-based devel-
opment. Software components are modeled with ASCET, MATLAB/Simulink,
Statemate or similar tools. Quality assurance is an important aspect in soft-
ware development for embedded systems. The ISO 26262 standard (“Road ve-
hicles – Functional safety”) [5] makes special demands on software development
for all safety-critical automotive systems. Besides model-based development,
model-based testing (MBT) is increasingly becoming an integral part of the
development process.

Part 6 (“Product development: software level”) of the ISO26262 standard
requires every software unit to be tested separately. In order to apply an MBT
approach at module level, a sufficient, detailed specification is required. However,

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 294–301, 2014.
c© Springer International Publishing Switzerland 2014

Model-Based Test-Driven Development of Powertrain Functions 295

requirements are often documented only at the function level. In addition, the
requirements documentation is usually performed exclusively in natural language
and therefore complicates the construction of a test model. Thus, the systematic
validation at module level is insufficient or accompanied by high efforts.

The testers’ and the developers’ roles in the development process need to be
filled by the same person, because the specification is not fine grained enough.
The actually required independent construction of a test model for testing against
a specification is therefore not given. This leads to the risk of missing the same
corner cases during software development as during testing. From the very static
software development process in model-based development follows the every day
life fact that all test activities are carried out after the actual development is
finished. Especially if there are just small changes in the software, there is a
danger that testing is completely omitted.

Integrating ideas of test-driven development (TDD) can help to tackle these
problems. The previously missing specification at module level is generated
throughout requirements engineering accompanying the concept phase and espe-
cially the development phase of every module. In this way, a testable specification
is generated in the form of a test model. Although the test model is still not con-
structed by an independent tester role (in TDD, no independent developer and
tester roles exist), “routine-blindness” is reduced by anticipating test activities.

This paper is organized as follows: First, we give an overview on related
work and introduce a real-world example from automotive software engineer-
ing at Volkswagen AG which serves as running example throughout this paper.
Next, some fundamentals concerning model-based testing, the tool Time Parti-
tion Testing (TPT), and test-driven development are given. Section 3 introduces
our test-driven approach for model-based development. The results of a case
study are discussed in Section 4. Section 5 concludes.

1.1 Related Work

There are many model-based testing approaches, but only a few are specialized
in testing the continuous behavior of closed-loop control systems.

An approach for functional black-box tests based on test models is devel-
oped in [10]. A signal-feature-oriented paradigm is generated enabling abstract
descriptions of signals and their properties. The introduced test framework is
realized in the MATLAB/Simulink environment.

In [6] a model-based testing approach for embedded automotive software is
proposed. A method and a tool called MTest is introduced. MTest provides
graphical notations for the development of test scenarios. Also MTest is a part
of AutomationDesk and therefore works mainly with MATLAB/Simulink.

The requirements for a test technology for discrete signals and continuous
flows are discussed in [8]. The requirements are compared with the only stan-
dardized test specification and implementation language TTCN-3 and TTCN-3
is extended to Continuous TTCN-3. Additionally, [8] presents concepts for spec-
ifying continuous and hybrid test behavior.

296 H. Peters et al.

Agile software development in automotive embedded systems is introduced in
[4]. This paper focuses on specialties of mass-produced systems where product
development as a whole is motivated by a plan-driven process. However, this
approach is tailored to infotainment systems whereas we focus on continuous
control systems.

For the integration of test-driven development in a model-based process, other
model-based test approaches can be used. However, our focus lies on TPT, be-
cause it suits particularly well due to the ability to describe continuous behavior.

1.2 Running Example

The reduction of pollutant emissions is an important challenge in the automotive
domain. An exhaust after-treatment system is the Selective Catalytic Reduction
(SCR). SCR is a means of reducing nitrogen oxides (NOx) contained in the
exhaust emissions.

Nitrogen oxides are converted into diatomic nitrogen (N2) and water (H2O).
For that purpose, a reducing agent is pumped through a heatable feed line to
the reducing agent injection valve. The reducing agent is carried in a separate
tank. In addition, the reducing agent injection valve is controlled by the ECU
and injects the reducing agent dosed into the exhaust tracts.

The SCR system consists of different sensors and actuators. The sensors in-
clude certain pressure and temperature sensors, and there are actuators like
pumps, heatings and valves.

We use SCR as a running example in this paper and demonstrate our approach
by an SCR case study. SCR is a typical medium-sized powertrain electronic func-
tion and shares several characteristics with other automotive systems: The SCR
function contains continuous control, interaction with actuators, and sensors,
user interaction (via displayboard), interaction with further subsystems, and
includes state-based behavior.

2 Fundamentals

2.1 Model-Based Testing

MBT can be divided into four main categories [9]:

1. Generation of test cases from an environment model
2. Generation of test cases with oracles from a behavioral model
3. Generation of test input data from a domain model
4. Generation of test scripts from abstract tests

Model-based testing approaches often focus on the second category, mainly
due to the ability to assess the executed test cases directly. All other approaches
cannot evaluate the test results without extra effort.

Fig. 1 shows how we apply MBT. Since we use the tool Time Partition Testing,
we are confronted with the third category. TPT extends the idea of domain mod-
eling, using testlets, to the opportunity of assessing test results automatically,
using assesslets.

Model-Based Test-Driven Development of Powertrain Functions 297

Oracles
(assesslets)

Domain Model
(testlets)

TPT

System Under Test
(e. g. ASCET Module)

Fig. 1. MBT in the context of software development for powertrain electronics

2.2 Time Partition Testing

Continuous behavior and its testing are having some specialties [2]. TPT is both
a new testing methodology for testing continuous behavior of embedded systems
in the automotive domain and a tool for supporting that methodology. TPT
supports the activities modeling, execution, evaluation, and documentation of
tests [7].

The platform-independent construction of test models is performed using a
graphical, state-based notation. Entire sequences of test scenarios are decom-
posed to phases with states and transition conditions. To execute test cases
automatically formal definitions are assigned to each element. All test cases of
a scenario are derived from a single state machine using the classification tree
method by combining the variation points.

The execution of test cases is platform-dependent by means of a test engine.
To run the same test cases in a model-in-the-loop (MiL), a software-in-the-
loop (SiL) or a hardware-in-the-loop (HiL) test, an abstract intermediate code
is used. During execution all signals involved are recorded.

To evaluate the recorded signals properties have to be specified that must
be met. The definition of a test oracle is difficult if the recorded signals are
complex and often it is impossible to define the systems’ behavior based only on
the outputs. Therefore, the recorded signals are abstracted in order to extract
information and to allow general statements. For example, TPT enables the
simple evaluation of threshold crossing or the simple comparison with reference
signals. Any assessment can be valid globally or temporarily.

Finally TPT allows a platform-independent documentation of the testing
activities in various formats, e.g. HyperText Markup Language (HTML) or
Portable Document Format (PDF).

2.3 Test-Driven Development

The idea of TDD is to write a test case first for any new code that is written.
The approach is based on a development cycle [1] that is represented in Fig. 2
[3].

As an advantage of this approach the newly generated source code is pre-
specified. In addition, a high coverage is achieved on the basis of unit tests.

298 H. Peters et al.

Add a test
Remove

duplications

Run the test

Make a change

[passed]

[failed]

Fig. 2. Test-driven development cycle

3 Test-Driven Approach

To start with our approach, some preparatory work is needed. The aim of the
development is to implement a complete function of the engine control unit
(ECU). However, currently our approach is limited on the development of a
single module. Therefore, the function to be developed has to be decomposed
into components, which are further divided into modules. For the decomposition
of the function, an established procedure is used in the development process.
During the first and the second decomposition, the respective interfaces have
to be specified (between components and modules respectively). The result is a
complete module architecture in which each module can be designed.

We have adapted the TDD cycle for model-based development, as well as
enhanced it for MBT. Fig. 3 shows the extended TDD cycle.

Requirement
Change the
test model

Refactor the
system model

Generate and
execute test cases

Change the
system model

[passed]

[failed]

Fig. 3. Extended TDD cycle for model-based development

Each cycle starts with a requirement, which has to be implemented. Instead
of writing a test directly, the test model is extended – based on criteria which are

Model-Based Test-Driven Development of Powertrain Functions 299

described in more detail later. In this step, the necessary assesslets for specifying
and checking the requirement and the necessary testlets to produce the desired
input data for the system under test (SUT) are modeled. In the following the
test cases are derived. TPT allows a manual selection of test cases and enables
an automatic generation based on the classification tree method. The following
steps are closely related to the original TDD approach (see Section 2.3), except
that we refer to models instead of code.

TDD focuses on unit tests to check the implementation. Since we use TDD
to design a testable specification, we are focusing on acceptance tests. To ensure
a high coverage of the generated code, we use coverage metrics like decision
coverage for measuring the test quality.

Requirements are formulated with the aid of assesslets in TPT so that they
can be viewed directly as a testable specification. Therefore, some properties
have to be met. At module level the specification describes a required behavior.
In order to observe behavior, signals are required, so that we define two rules:

1. We demand at least one requirement per signal.
2. We demand at least one signal per requirement.

It should be pointed out that the behavior of the respective signal may depend
on other signals, characteristic values, curves, maps or system constants, which
has to be considered.

In addition to these optional dependencies, a requirement has a unique name
and via the documentation capabilities of TPT it is possible to add further
descriptions (e.g., natural language comments, behavior or context diagrams,
etc.). Furthermore, the conventional rules for requirements engineering apply
(atomicity, consistency, etc.).

Each requirement must be covered by an acceptance test. According to the
TDD cycle a new requirement may only be implemented if the corresponding
acceptance test fails. This implies that defects which are not detected by a test
have to be reproduced by a test before the adaptation of the system model is
done [3]. Although acceptance tests are usually a kind of black-box testing, these
rules also apply to local signals of the respective module. That means that the
specification includes not only interface-related behavior. The test aspects of our
approach can be classified as a modification of grey-box testing.

4 Case Study

The software of SCR is divided into different components, e.g., the heater, the
pump, and the coordinator. The components itself are divided into modules.
The pump component, for instance, consists among other things of a module for
the pressure build-up after start, the controller, and the post-drive. We demon-
strate the approach exemplarily on an excerpt of the module for the pressure
build-up after start.

The interface of the module consists of an input, which provides the pressure
in the reducing agent line. Outputs are the required mass flow and the required

300 H. Peters et al.

duty cycle needed for the pressure build-up. The starting point is an unspecified
module except for the interface definition. Therefore, we begin to specify the be-
havior of the mass flow signal. The behavioral specification of the signal consists
of four assesslets, where the first one specifies the valid range of the signal. The
other three assesslets specify the behavior of the signal. During the specification
of the output it turns out that the modules’ behavior is dependent on an internal
state of the module. Therefore, a new, local signal for the specification of this
state is introduced. Further outputs are specified step-wise in the same manner.

In parallel with the behavioral specification using assesslets the domain model
is extended by means of testlets. Fig. 4 shows the decomposition of the modules’
test scenario into phases. Moreover, Fig. 4 demonstrates the selection of specific
variation points and therefore represents a concrete test case. Each testlet within
the test case is responsible for the generation of temporarily valid input data.

All test cases are generated using the classification tree method of TPT. The
execution takes place within a MiL test in ASCET.

In addition to the formal specification of the assesslets a natural language
description is added, which is used for the test documentation and which can
also be used for the modules’ documentation.

Fig. 4. The modules’ domain model with selected variation points

Results. Several modules within the SCR functionality have been successfully
developed. The test quality was evaluated by means of decision coverage. 109
of 111 branches were irrelevant1 or were covered. A coverage of 98 percent was
achieved without regarding the control flow, i. e. the programs’ structure.

5 Conclusion

Applying a test-driven approach to model-based development has turned out to
cope with the missing requirements specification on module level. The systematic

1 Some branches only were generated for the simulation code.

Model-Based Test-Driven Development of Powertrain Functions 301

anticipation of testing activities successfully allows the construction of a testable
specification while preventing the neglection of tests. In addition, misinterpre-
tations of the requirements are already reduced at module level. Furthermore,
the domain models provide valuable information for the further integration of
modules, e.g., for implementation in fixed-point arithmetic.

For the refactoring steps tool support is recommended [1]. As refactoring is
not supported by ASCET, however, refactoring had to be done manually for the
SCR function. During the following developments the effort of refactorings has
to be measured in order to decide on additional tool support.

Due to still missing vehicle measurements, the quality of the functionality is
difficult to evaluate. In the future, rapid prototyping experiments should assess
this quality after MiL tests.

In addition to further developments of the approach the existing limitation
on modules will be extended initially to components and then to functions.

References

1. Beck, K.: Test Driven Development. By Example. Addison-Wesley Longman (2002)
2. Bringmann, E.: Testing the Continuous Behavior of Embedded Systems. In: Pro-

ceedings of the 4th Workshop on System Testing and Validation (2007)
3. Dohmke, T.: Test-Driven Development of Embedded Control Systems: Applica-

tion in an Automotive Collision Prevention System. PhD thesis, Department of
Mechanical Engineering, Faculty of Engineering, University of Glasgow (2008)

4. Eklund, U., Bosch, J.: Applying Agile Development in Mass-Produced Embedded
Systems. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 31–46. Springer,
Heidelberg (2012)

5. International Organization for Standardization. ISO/DIS 26262: Road vehicles –
functional safety (2009)

6. Lamberg, K., Beine, M., Eschmann, M., Otterbach, R., Conrad, M., Fey, I.: Model-
based Testing of Embedded Automotive Software Using Mtest. In: SAE World
Congress 2004, Detroit, US (2004)

7. Lehmann, E.: Time Partition Testing – Systematischer Test des kontinuierlichen
Verhaltens von eingebetteten Systemen. PhD thesis, Fakultät IV – Elektrotechnik
und Informatik, TU Berlin (2004)

8. Schieferdecker, I., Bringmann, E., Großmann, J.: Continuous TTCN-3: Testing of
Embedded Control Systems. In: Proceedings of the 2006 International Workshop
on Software Engineering for Automotive Systems, SEAS 2006, pp. 29–36. ACM,
New York (2006)

9. Utting, M., Legeard, B.: Practical Model-Based Testing – A Tools Approach. Mor-
gan Kaufmann (2007)

10. Zander-Nowicka, J.: Model-based Testing of Real-Time Embedded Systems in the
Automotive Domain. PhD thesis, Fakultät IV – Elektrotechnik und Informatik,
TU Berlin (2009)

Archinotes: A Global Agile Architecture Design

Approach

Juan Urrego, Rafael Muñoz, Mauricio Mercado, and Daŕıo Correal

Systems and Computer
Engineering Department
Universidad de los Andes

Cra 1E No 19A-40, Bogotá, Colombia
{js.urrego110,r.munoz92,md.mercado49,dcorreal}@uniandes.edu.co

Abstract. Currently, many software developing organizations have
adopted work methodologies around Global Software Development
(GSD) in which the members of a geographically sparse team can co-
ordinate their activities through collaboration tools. Nevertheless, these
tools are focused primarily on the construction process rather than on
the concrete design. It is usual that this kind of organizations have teams
where its members are located in different cities or even countries. Due to
this, architects must forcefully adjust their calendars to schedule face-to-
face or virtual meetings where they can define the architecture together.
This paper’s objective is to propose a tool that supports Global Agile
Architecture Design (GAAD) approaches where architects can coordi-
nate, communicate and control a software architecture design process
while being geographically apart. To validate our proposal, we used the
Universidad de los Andes’ Software Architecture and Design course, were
the students had to design a software architecture based on a concrete
case study and an enterprise software development project to support
an electoral process in a public Colombian university. The tool that sup-
ported the GAAD process was Archinotes, a platform that allows the
design and documentation of software architectures in a collaborative
manner.

Keywords: Global software development, Software architecture, Agile
Architecture.

1 Introduction

Conway’s law states that the structure of a software mirrors the structure of the
organization that designed it [1]. For that reason, a lack of communication and
cohesion in an organization produces software with the same characteristics.
Therefore, engaging in projects that involve distributed teams, such as those
applying Global Software Development (GSD) approaches, can be too risky and
produce software without adequate integration between its components, if it is
not addressed properly. Conway [2] states that large distances imply problems

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 302–311, 2014.
c© Springer International Publishing Switzerland 2014

Archinotes: A Global Agile Architecture Design Approach 303

regarding first contact between distributed members, effective communication,
lack of trust, and issue resolution.

Currently, many software development organizations have adopted work
methodologies around GSD seeking for the members of geographically sparse
teams to coordinate their activities through collaboration tools. According to
[3], a lot of enterprises offshore their software development, and this trend be-
comes stronger each day. Nevertheless, this approach and the tools used in the
GSD process, are focused primarily on the product development process rather
than on the architecture of the system.

During software architecture design processes (SADP), many architects are
involved (i.e data architect, security architect, infrastructure architect, etc.) and
their activities and designs must be coherent and coordinated between them.
Moreover, most of the time these architects are located in different cities or
countries, thus they are forced to adjust their calendars to schedule face-to-
face or virtual meetings where they can define the architecture. The previous
scenario gets even more complex if the architecture team works in a traditional
big-design up-front approach to produce the complete architecture of the system,
which demands months of work from distributed people working on architectural
models. Furthermore, during the development phase, it is difficult to maintain
the architecture updated and to understand the rationale behind architectural
decisions.

We use the Global Agile Architecture Design (GAAD) term to describe geo-
graphically distributed architecture teams involved in the process of designing
software architectures following agile principles. In GAAD, architecture teams
avoid following a big-design up-front model by working in short sprints and
producing minimal architectural models to support the user histories selected
for each sprint. This paper presents Archinotes, a tool to support Global Agile
Architecture Design (GAAD) approaches where different architects can coordi-
nate, communicate and control an agile SADP while being geographically apart.
This document reports our experience using Archinotes in an educational and
industry contexts and the results and conclusions obtained so far.

The rest of this paper is structured as follows: Section 2 provides a general de-
scription of the functionalities of Archinotes. Section 3 explains how Archinotes
supports distributed teams following an agile approach. Section 4 reports our
experience after using Archinotes in an educational and enterprise scenarios. Fi-
nally, Section 5 presents the related work and Section 6 states conclusions and
future work.

2 Archinotes Overview

Archinotes is a platform to help geographically distributed architects build soft-
ware architectures collaboratively using mobile devices and following an ag-
ile approach. Archinotes’ main goal is to facilitate the software architecture
design and documentation process for distributed agile software development
methodologies.

304 J. Urrego et al.

2.1 Archinotes Architecture

Archinotes has 3 main components: (1) a mobile application for the architects,
(2) a storage system, and (3) the main processing server; as presented in Figure
1. The storage system and the main processing server store all of the platforms
project data and user information. The architects mobile application allows the
definition and prioritization of the quality requirements, stakeholders, user story
backlog, business drivers and architectural viewpoints.

Facebook

Main processor
dbArchitects app

Internet
communication

External systems

Server
Tablet

10.1”

Fig. 1. Architecture of the system

2.2 Archinotes Main Features

Taking into account the information display models defined in [4], we designed
Archinotes to avoid using conventional graphical representations of information
(tables, list, etc). To accomplish this, Archinotes main menu presents all avail-
able options by dividing them in two parts: the documentation that must be
defined before the construction of a software architecture, and the architectural
viewpoints (Figure 2).

According to this approach, a distributed architecture team can perform the
following actions:

1. Stakeholder identification and prioritization: During a SADP, the
identification and prioritization of stakeholders is one of the most impor-
tant tasks. Archinotes merges the stakeholder theory of [5,6,7] resulting in a
set of predefined stakeholders and a new stakeholder prioritization method
called Stakeholder Atomic Model (SAM).

Archinotes: A Global Agile Architecture Design Approach 305

Fig. 2. Archinotes main menu

2. Business goals definition: In every software architecture project is very
important to identify and document the main concerns and business goals
of the organization and project. In Archinotes, we decided to use some sim-
ilar metrics of the Business Motivation Model (BMM) [8] to document and
identify the main business goals and drivers of the project.

3. Definition of constraints: Every engineering project has different con-
straints that we must document. In the case of Archinotes, as [5] recom-
mends, there are two kinds of constraints: (1) business constraints, which
are all the restrictions of the project itself; and (2) technological constraints,
which are software, hardware and development restrictions.

4. User stories: Using this module, the user can create a complete Product
Backlog using Epics, Features and User Stories. Each component will be
also associated with a concrete sprint, so the architecture owner (or scrum
master) can coordinate and document the design and development process
of the project.

5. Quality requirements: Archinotes users can define and create quality sce-
narios based in predefined quality attributes or design their own. In this
stage, the user will be able to define the utility tree together with quality
attributes and quality scenarios.

6. Modeler: Archinotes gives the possibility to design and coordinate archi-
tecture teams in real-time, despite geographical and temporal differences,
through architectural daily meetings. During a meeting, the users can see
their partners’ movements and add, edit or remove any architectural element
or relationship, at the same time that they track the architectural decisions
through the creation of annotations (Figure 4a). Archinotes allows to track
all the changes of the architecture by saving model changes during a daily
meeting, so the user can return to previous versions of the model as base of
newer versions (Figure 5b).

7. SAD print: Finally, after the SADP has finished, the user can automatically
generate a PDF version of the Software Architecture Document (SAD) that
presents a typical SAD template using the images and information provided
in previous modules.

306 J. Urrego et al.

(a) New quality scenario (b) New quality scenario

Fig. 3. Archinotes Modeler

3 Archinotes: A Supporting Tool for GAAD

As we previously stated, we introduce the GAAD term to describe the software
architecture design process applied by a distributed team. This process’ main
characteristic is the adoption of shorts periods of work (sprints) to incremen-
tally design and model the system’s architecture. In this section we explain how
Archinotes supports distributed teams and how agile principles are used in our
tool.

3.1 Distributed Teams Support

Archinotes supports collaborative work of distributed teams engaged in the de-
sign of software architectures in two different ways. Firstly, Archinotes provides
a collaboration mechanism to design architecture models in a synchronous way.
Distributed teams can participate remotely in synchronous working sessions to
create architectural views and architectural models. Figure 4a presents the model
editor provided by Archinotes to define collaborative modeling sessions.

Secondly, Archinotes supports asynchronous collaboration sessions by means
of text, audio and video annotations attached to architectural models in an
architectural view to store the rationale behind architectural decisions, which
can be revised by members of the team working at different time zones. Figure 4b
presents an example of an annotation associated to a component in a functional
architectural view.

3.2 Agile Architecture Design Support

Archinotes incorporates some of the agile principles followed by agile develop-
ment groups. For starters, Archinotes supports the definition of different archi-
tecture team roles, one of them being the Architecture Owner (AO) [9]. This role
is in charge of leading the daily architecture review sessions, which are limited in
time by Archinotes (usually 10 minutes) to focus the team on the critical points
to be designed each day. Figure 5a presents an example of an invitation to an
architectural review meeting scheduled by the Architecture Owner.

Archinotes: A Global Agile Architecture Design Approach 307

(a) Context model (b) Architectural annotations

Fig. 4. Archinotes Modeler

(a) Daily architectural review (b) Model timeline

Fig. 5. Agile Architectures

4 Lessons Learned

We used Archinotes in two different scenarios: an educational context and a real-
life project. In this section we report the two experiences using Archinotes and
highlight the results and difficulties learned so far.

4.1 Educational Scenario

At Universidad de Los Andes, the Systems and Computer Engineering Depart-
ment offers a Software Architecture course in its bachelor’s degree since 2004.
This course seeks to sharpen quality-requirement identification skills, as well as
tactics and strategies relevant to the design of mid-sized information systems [10].
During the semester, students validate their architectures through the develop-
ment of experiments in four different sprints. For each experiment, the students
must develop a software that addresses a specific set of quality attributes. These
students usually have different schedules between them (they might not all take
the same classes), and may not always be attentive to the projects progress. For
that reason, we introduced them to Archinotes so they could design a software
architecture in a distributed manner.

After using Archinotes during one semester, we developed an informal sur-
vey to understand the perception of the students and how they qualify their
experience with the tool and register improvement aspects to take into account.

308 J. Urrego et al.

Additionally, we compared the results obtained using Archinotes with the results
obtained in previous semesters.

Among the main conclusions we found that the students valued the idea of
avoiding synchronous, face-to-face meetings to work in the project. However,
they stated that they felt insecure of taking critical decisions on the architec-
ture while working alone. They stated that it is necessary to have face-to-face
meetings to solve critical problems. The use of the tool for non critical decision
and the fact that the client used was a mobile device were highly valued for the
students.

Additionally, the agile approach proposed by the tool was not performed by
the students as expected. In the first place, they argued that the main difficulty
to have synchronous daily architecture review meetings was the impossibility to
find a common available space in their agendas. On the other hand, the idea of
designing the architecture in an incremental basis, avoiding big-design up-front,
was more effective, comparing it to the results obtained in previous semesters.

4.2 Enterprise Electoral System

We wanted to analyze how agile architecture iterations changed according to the
development sprints and how Archinotes benefits de architecture design process.
In most public colombian universities, the selection of administrative roles such
as principal, faculty deans, and others, are done via internal elections, where the
teaching and administrative staff, as well as the students, select the succeeding
administrative roles of the university. For that reason, the university decided to
hire a software company to develop an electoral system, while preserving the
physical vote, to enhance the electoral process. The problem encountered was
that the university and the development team are located at the north-west
coast of Colombia, while the software architects are located at the center of the
country. To reduce travel costs and time, the company decided to use Archinotes
to have daily meetings and design the architecture in a remote, asynchronous,
real-time fashion.

To reduce geographical distances, Archinotes was used during the design and
development process of the electoral system. In this case, the software com-
pany decided to use Discipline Agile Delivery (DAD) as working framework and
support all the architecture and business documentation using Archinotes. Part
of the communication was supported via Archinotes and the rest using Google
Hangout. The idea was that they had two Software Architects, which design and
control de software architecture and development process remotely, in the main
head quarters in the capital and the development team of 3 junior developers
and a team leader in the north-west.

During the project, the architects designed a preliminary architecture using
Archinotes, including stakeholders and quality requirements identification. This
design was made co-located in a face-to-face meeting and the only participants
were the architects. Based on the architecture and stakeholder concerns, the
architects and the team leader, who is in a different city, defined the product
backlog through Archinotes. In this stage, a first sprint was released and the

Archinotes: A Global Agile Architecture Design Approach 309

developers began work. Every day, the architects and developers had coordi-
nation meetings through Google Hangout, where the members described their
work done. Sometimes, during this coordination meetings, the developers and/or
architects would identify errors in the architecture. When this occurred, the ar-
chitects decided to make an architectural daily review using Archinotes. In this
meting, the members of the team were involved, but architects were the only
ones with permissions to change the models. Nevertheless, the developers were
able to create annotations on the model, which would later be revised by the
architects to track all the questions, doubts and architectural decisions.

After 6 sprints of two weeks each, the development and architecture design
of the system were finished. During this process, the developers and architects
used Archinotes to support all the business and quality definitions, as well as
the software architecture. Our idea was to collect the project information and
analyze how the architecture changed through the development process, and
how that affected the team performance. During the project, we observed that
at the beginning of the development, the architecture changed frequently and
developers created a big amount of clarification annotations. This means that
the team did not have the best performance when the architecture was not
clear or incomplete. Figure 6 shows how the amount of annotations impacted
the development team performance. When the development team has doubts
the performance is low, but when the architecture was complete an clear, the
development process improves. In some cases the amount of annotations implied
a redefinition of user stories.

St
or

y
po

in
ts

Sprints

of
architecture
annotations

1 2 3 4 5 60

60

120

180

240

300

4

8

12

16

20

Fig. 6. Development process vs. architecture annotations

310 J. Urrego et al.

4.3 Limitations

Archinotes has been used so far in two different projects. We need more in-
formation and data to present statistically significant results. The conclusions
presented here have been gathered during the last six months of work and it’s
not enough to provide decisive conclusions.

5 Related Work

In this paper we proposed a tool called Archinotes that seeks to unify three core
concepts: geographic distribution, software architecture design and agility. We
researched different approaches and noticed that none of them is able to satisfy
the three core concepts. Next, we present the tools that try to solve each core
concept.

1. Geographic distribution: There are many tools that support geographi-
cally distributed teams such as Skype, Google Hangout, and WebEx, among
others. However, none of them help us design a software architecture or mon-
itor the state of a project. These tools help us communicate via text, audio,
and video in real-time.

2. Software architecture design (SA): There are many tools that helpe
SADPs such as Enterprise Architect, Microsoft Visio, and Papyrus, among
others; but none provide real-time functionalities. Other design tools such
as Cacoo, GenMyModel and Gliffy, provide real-time features and global
change tracking but bring only the basic models (mostly UML) without a
concrete work or framework context.

3. Agility: Tools such as Jira, Version One, Microsoft Sharepoint, and dot-
Project, among others can support any type of project or focus on software
projects, but none of them is focused in software architecture aspects.

There exists tools available in the market that, used together, supply some
of the Archinotes features. However, we require at least three different tools to
achieve this, which not only difficults the maintenance of a project, but also
impacts data integrity and security. With Archinotes, we are able to (1) create
voice and text annotations that refer to architectural decisions over an artifact;
(2) design in a collaborative manner a complete software architecture; and (3)
support agile concepts and artifacts.

6 Conclusions

Even though there are tools that allow sharing, real-time editing, and collabo-
rating, Archinotes makes it easy for architects and development teams to work
in a distributed manner. Additionally, its granularity allows better revisions and
work tracking.

One major result of Archinotes is that users were more inclined to have
daily meetings to review the overall architecture of the project, meaning that

Archinotes: A Global Agile Architecture Design Approach 311

Archinotes helps users that are not familiar to agile methodologies. Software
architecture is in fact needed all around the world, but the offer is focused where
the demand is low, so architects must travel long distances to be able to work
with teams of developers. Bringing a distributed tool like Archinotes allows soft-
ware architects and developers to work together without the hassle of traveling.

Another point worth mentioning is that users were satisfied with the use of
mobile devices to interact with Archinotes, However, most of them asked for a
desktop version of the tool stating that this version is better in terms of usability.
Given that, we are planning to include a desktop version in the next major release
of Archinotes.

References

1. Herbsleb, J.D., Grinter, R.E.: Architectures, coordination, and distance: Conway’s
law and beyond. IEEE Softw. 16(5), 63–70 (1999)

2. Conway, M.E.: How do committees invent. Datamation 14(4), 28–31 (1968)
3. Aspray, W.: Globalization and Offshoring of Software: A Report of the ACM Job

Migration Task Force; the Executive Summary, Findings, and Overview of a Com-
prehensive ACM Report on the Offshoring of Software Worldwide. ACM (2006)

4. Yau, N.: Visualize This: The FlowingData Guide to Design, Visualization, and
Statistics. Wiley (2011)

5. Rozanski, N., Woods, E.: Software Systems Architecture: Working with Stakehold-
ers Using Viewpoints and Perspectives. Pearson Education (2011)

6. Post, J., Preston, L., Sauter-Sachs, S.: Redefining the Corporation: Stakeholder
Management and Organizational Wealth. Stanford Business Books (2002)

7. Bourne, L.: Stakeholder Relationship Management: A Maturity Model for Organ-
isational Implementation. Ashgate Publishing, Limited (2012)

8. Group, B.R.: The business motivation model - business governance in a volatile
world, release 1.2. Technical report, Business Rules Group (2005)

9. Lines, M., Ambler, S.: Disciplined Agile Delivery: A Practitioner’s Guide to Agile
Software Delivery in the Enterprise. IBM Press (2012)

10. Urrego, J., Correal, D.: Archinotes: A tool for assisting software architecture
courses. In: 2013 IEEE 26th Conference on Software Engineering Education and
Training (CSEE T), pp. 80–88 (2013)

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 312–319, 2014.
© Springer International Publishing Switzerland 2014

Definition of Ready: An Experience Report
from Teams at Cisco

Ken Power

Cisco Systems
Galway
Ireland

ken.power@gmail.com

Abstract. Definition of Ready is a set of simple rules adopted by an agile team
to help them remember all the things they need to do before a development
team starts work on a backlog item. Not having a definition of ready can
seriously impede the flow of work through your system. This paper describes
where definition of ready fits in a team’s process, and how it can be used as a
synchronization point for teams and product owners. This paper presents an
example of definition of ready used by agile teams in Cisco. These teams have
developed three levels of ready that apply for user stories, sprints and releases.
The paper describes how definition of ready provides a focus for backlog
grooming, and some consequences of not meeting definition of ready. The
paper finishes with perspectives from different roles in the organization and
how they are affected by definition of ready.

Keywords: definition of ready, definition of done, simple rules, product
ownership, waste, flow, impediment to flow.

1 Introduction

This paper describes the concept of definition of ready, and shows how it is used in
agile teams. The paper uses a case study to describe the experiences of teams at Cisco
with adopting definition of ready. The experiences include situations where definition
of ready was not adopted.

1.1 What Is Definition of Ready?

Definition of ready is a set of agreements that define what ready means for a backlog
item. Ready in this context means the backlog item is sufficiently prepared that a team
can start to work on it [1]. The development team is responsible for meeting definition
of done; product owners (or equivalent) are responsible for making sure work items
meet definition of ready. Conceptually, the definition of ready is a checklist of the
types of work that the product owner is expected to successfully complete before the
work item can declare the work item is ready to be pulled in by the team. Being

 Definition of Ready: An Experience Report from Teams at Cisco 313

“ready” does not mean the user story or feature must be 100% defined; it needs to be
“ready enough” so that the team is confident they can successfully deliver the user
story, or that everyone has a common understanding of the risks.

Kenny Rubin provides an example definition of done [2]:

• Business value is clearly articulated.
• Details are sufficiently understood by the development team so it can make an

informed decision as to whether it can complete the PBI (Product Backlog Item).
• Dependencies are identified and no external dependencies would block the PBI

from being completed.
• Team is staffed appropriately to complete the PBI.
• The PBI is estimated and small enough to comfortably be completed in one sprint.
• Acceptance criteria are clear and testable.
• Performance criteria, if any, are defined and testable.
• Scrum team understands how to demonstrate the PBI at the sprint review.

Roman Pilcher mentions the idea of capturing “operational qualities” of a story as
constraint cards and attaching them to the story as part of getting the story ready [3].

1.2 Goals of Definition of Ready

Definition of Done and Definition of Ready act as social contracts in agile teams.
Together, they provide a boundary that stabilizes the team’s working environment,
prevents waste (time, delays, churn, working on the wrong things), remove
impediments, and avoids the accumulation of technical debt and quality debt. The
diagram in Fig. 1 shows how work passes through Sprint boundaries as it flows
through the system. Definition of ready acts as a check before work is allowed to
enter the Sprint. Definition of done acts as a check before work is allowed to leave the
Sprint. There is a saying we use from the agile community: “Let nothing into a Sprint
that is not Ready; let nothing out of a Sprint that is not Done”. Following these simple
rules avoids many frustrations and challenges (see section 2.3 below).

Fig. 1. Work passes through Sprint boundaries as it flows through the system

314 K. Power

1.3 Teams Using Kanban or Flow-Based Methods

Teams using Kanban or flow-based methods have a “Ready” queue in their workflow,
as shown in Fig. 2. The “ready” queue is the place from which teams pull work.
Product owners add work to the ready queue as the work items meet definition of
ready. Many teams use a Work In Progress (or WIP) limit on the ready queue to
prevent it from getting too full, and to recognize there is no point overfilling the ready
queue if the team cannot pull work through. The explicit WIP limit avoids an
impediment to the flow of work.

Fig. 2. Kanban board with a "ready" queue

Kanban teams also use explicit entry and exit policies for their workflow states.
Definition of ready serves as an explicit entry policy for the ready state.

1.4 The Lifecycle of Backlog Items

Fig. 3 shows the typical lifecycle of a backlog item, in this case a user story. The
horizontal axis is time, and shows some milestones in the life of a user story. The
vertical axis represents the level of focus on the user story. The diagram shows when
the user story is ready and when it is done. It also shows the differences in the level of
focus of the product owner and the development team. The product owner is more
focused than the development team while they are getting the user story into a ready
state. The team applies more focus once the user story is ready, and as they move it
towards done. The team’s focus heightens on this particular user story between the
ready and done states. They then move their focus to another user story.

 Definition of Ready: An Experience Report from Teams at Cisco 315

Fig. 3. Levels of focus on a user story over time

1.5 Cadence and Synchronization Points

The product owner and development team work at different cadences. They focus on
different things at different times. Time-boxed iterations (or Sprints) are one way to
synchronize their different areas of focus. Having a definition of ready that serves as a
set of mutual agreements between Product Owner and the rest of the team brings a
focus to upcoming Sprint synchronization points.

2 Case Study: Definition of Ready in Cisco

This section presents a complete example of definition of ready from a business unit
of over 400 people in Cisco. The teams are largely based in the US, Europe and
China. When teams in the business unit start using definition of ready in 2008, each
team would develop its own version. There were some teams that chose not to use
definition of ready. The teams that did not employ Definition of Ready at all faced
many consequences, some of which are mention in section 2.3. The teams are
responsible for the development of a portfolio of products and components with many
interdependencies across the teams. Because of these interdependencies, and because
of the challenges and impediments to flow the organization was seeing, they decided
to employ a common baseline definition of ready that applies to all teams.

Definition of Ready applies no matter what process the team is using. Teams have
a discussion about Definition of Ready, making sure they understand each point, and
the responsibilities this creates for their team. This discussion generally takes place at
the start of a new release, or when a new team is formed.

316 K. Power

2.1 Definition of Ready

The baseline Definition of Ready has three main elements. The first is Definition of
Ready for User Stories or other Work Items. Use this as a reminder of those things
you need to do before a User Story is ready to be pulled in by teams. The second is
Definition of Ready for Sprints, Iterations or Time boxes. Use this as a reminder of
those things you need to do before starting a Sprint or Time box. The third is
Definition of Ready for Releases. Use this as a reminder of those things you need to
do before starting a Release.

2.1.1 Definition of Ready for a User Story
The Definition of Ready for User Stories contains the following items:

• User Story defined
• User Story Acceptance Criteria defined
• User Story dependencies identified
• User Story sized by Delivery Team
• User Experience artifacts are Done, and reviewed by the Team
• Architecture criteria (performance, security, etc.) identified, where appropriate
• Person who will accept the User Story is identified
• Team has reviewed the User Story
• Team knows what it will mean to demo the User Story

2.1.2 Definition of Ready for a Sprint, Iteration or Time box
The Definition of Ready for a Sprint, Iteration or Time box contains the following
items:

• All User Stories meet Definition of Ready
• The team has made a forecast of what they think they can deliver
• The Sprint/Iteration/Time box goals are defined, understood and agreed
• The Sprint/Iteration/Time box Backlog is prioritized
• The Sprint/Iteration/Time box Backlog contains all defects, User Stories and other

work that the team is committing to, with no hidden work
• All team members have noted their capacity for the Iteration
• Capacity is filled to no more than 70% so there is some room to adapt
• The backlog contains Continuous Improvement items

2.1.3 Definition of Ready for a Release
Definition of Ready for Releases’ contains the following items:

• The Release has been categorized

as ‘Fixed Scope’ or ‘Fixed Date’
but not both

• The Release Backlog is prepared
• Work is sized

• Work is prioritized
• Market Value is understood and

communicated
• The Release Themes are identified

 Definition of Ready: An Experience Report from Teams at Cisco 317

• The MVO (Minimal Viable Offer)
is identified

• The MVO is not the full target
release content, i.e., allow scope for
negotiation

• Release Planning has taken place,
and the team has been involved

• Team and Product Owners agree
the Release Plan is a realistic
forecast

• Customers are engaged and
prepared to take the output of the
release, as well as interim drops of
the release

• Risk analysis is under way
• Interim milestone deliveries are

identified
• The Release backlog contains

Continuous Improvement items
• Quality targets are defined
• The team’s capacity is not planned

to 100%
• Capacity is planned for multiple

different areas
• New feature work, fixing defects,

reducing Quality Debt, reducing

Technical Debt, supporting
previous releases, and handling
unknown requests

• The right technical infrastructure is
in place to support the team

• All known dependencies are
aligned

• Architecture changes are
understood

• Stakeholders are identified
• Definition of Done is agreed
• Definition of Ready is agreed
• Communication and Coordination

model is defined
• Means of tracking progress is

understood
• Lessons learned from previous

Release Retrospective have been
incorporated

• Playtime / Innovation time is
included in the Release Plan

• Celebrations are included in the
Release Plan

2.2 Keeping the Backlog Ready

Backlog management or backlog grooming is the ongoing process of looking after the
product backlog and ensuring it is well maintained and up to date [4]. Product owners
will generally prepare backlog items in a grooming session, bringing in the team and
other people as needed. Definition of ready provides a focus for backlog grooming
sessions. At least once per sprint the team will attend a backlog grooming session to
participate in preparing upcoming user stories.

Getting user stories to meet Definition of Ready provides a focus for backlog
grooming sessions. Before the team will pull a user story into the current sprint, the
story must meet definition of ready. Backlog grooming needs to be continuous. The
closer the team is to implementing a user story, the higher their confidence should be
that they understand it, and can size it appropriately. The farther away in time they are
from implementing the user story, the lower the certainty we have in our estimates
and understanding. This is one reason why it is important to do continuous, rolling
planning. As more work is done to prepare the user stories and get them ready, the
teams confidence in their ability to deliver the stories increases. Part of the reason for
this is that working together to get a set of user stories ready facilitates shared
learning and collaboration.

318 K. Power

2.3 Consequences of Not Being Ready

Jeff Sutherland highlights some of the consequences of not being ready [5]. These
include estimating and forecasting problems, wasted time and energy, frustration,
working on the wrong things, and forced rework. The teams in this case study have
experienced all of these consequences. There were cases where teams would see user
stories for the first time at the Sprint planning meeting, where user stories were little
more than one-line phrase. The biggest gains seen through employing Definition of
Ready is reduction in churn, reduced delays and overall smoother flow of work.

2.4 Different Perspectives on Definition of Ready

This section presents perspectives on definition of ready from people playing different
roles in the organization.

Developer: “If a work item meets Definition of Ready then I have more confidence
that Product Owners know what they want, and we’ll spend less time churning. It
helps get everyone aligned, so we’re all focused on the feature I am developing.”

Tester / QA: “I know that the test scenarios and deployment scenarios have been
considered. Performance, interoperability and security criteria are known, and there
will be fewer surprises.”

Product Manager or Product Owner: “It requires me to put sufficient thought into
the features I am asking for. One-liners are not enough.”

Engineering Manager: “I want my teams to work in a productive environment,
where we can deliver at a sustainable predictable pace. I don’t want my teams
churning trying to figure out what it is we are meant to be delivering. Definition of
Ready helps me and my teams be more effective.”
Program Manager: “If I get a clear picture on which backlog items are ‘Ready’ then
I can extrapolate data from that. I can see, for example, if we are likely to meet a
delivery date or incremental milestone based on the state of the backlog. I can help
the team forecast potential problems and pitfalls that will hold them back.”

Director: “I want to understand my organization’s capacity to deliver. I want my
organization to be effective. For Portfolio-level items, I want to know when we are
done with the Portfolio-level analysis and work is ready for our teams to consume. I
need to be able to create reliable roadmaps that I can use to converse with customers
and other stakeholders. Knowing we’re really ‘Ready’ to begin a feature or initiative
helps me keep those roadmaps up-to-date.”

Scrum Master: “I want to help my Product Owners in meeting Definition of Ready
any way I can. I can do this in many ways, including helping with Backlog grooming,
user story splitting, etc. I want to help my team by not having them waste time on
work items that are not really ‘Ready’. When the going gets tough, and its tempting to
take short cuts, I’ll remind everyone of that we agreed to use Definition of Ready. I’ll
help tailor our Definition of Ready, and look for improvements.”

User Experience Designer: “For many work items, they are not Ready until my work
is Done. There’s a natural dependency. I have a responsibility to help the user story

 Definition of Ready: An Experience Report from Teams at Cisco 319

get to ‘Ready’ so our teams can start work. Sometimes, maybe due to capacity issues,
we will decide together that the team will start before I am Ready. In those cases, we
should all understand and accept the situation.”

Architect: “Sometimes I work on Portfolio or Cross-BU level initiatives that
eventually end up as features or other work on the backlogs of one or more teams.
Part of my responsibility is contributing to the work items being ‘Ready’ for teams to
pull in.”

Technical Writer: “Seeing a set of stories that are ready allows me to start writing
about the features, and work with the team to understand what it will do, before its
done. This lets me work more in parallel with the team, rather than lagging behind.”

3 Conclusions

Neglecting Definition of Ready creates waste and impediments to flow in teams and
organizations. The larger the teams and organization, and the larger the products they
are creating, the more there is potential for harmful waste. Use Definition of Ready to
bring a focus to Backlog Grooming meetings and Look-Ahead planning activities.
Product Owners can use it as a guide when preparing user stories for upcoming
Sprints. Teams can use it as a checklist to make sure that they have an increased
chance of success in delivering the completed user story, and that there is enough
thought gone into the user story before they start to deliver it.

Get your team together to agree a definition of ready. The simple rules form a type
of social contract in the team. It is important there is consensus to meeting definition
of ready. Understand what it means to be ‘ready’ to start a user story, a sprint and a
release. Look to your retrospectives to see what problems might be addressed by
having a definition of ready. Evolve your definition of ready as you learn more about
what works for you and your teams.

References

1. Power, K.: Definition of Ready,
http://systemagility.com/2011/05/17/definition-of-ready/

2. Rubin, K.S.: Essential Scrum: A practical guide to the most popular Agile process.
Addison-Wesley, Pearson Education [distributor] London, Boston (2012)

3. Pilcher, R.: The Definition of Ready, http://www.romanpichler.com/
blog/product-backlog/the-definition-of-ready/

4. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Addison-Wesley,
Upper Saddle River (2010)

5. Sutherland, J.: The Dangers of Not Being Done, Or Ready for that Matter,
http://scrum.jeffsutherland.com/2012/02/
on-march-9-jeff-will-be-giving-webinar.html

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 320–326, 2014.
© Springer International Publishing Switzerland 2014

Specification by Example with GUI Tests - How Could
That Work?

Emily Bache1 and Geoffrey Bache2

1 Bache Consulting, Göteborg, Sweden

2 Jeppesen Systems, Göteborg, Sweden
emily@bacheconsulting.com, geoff.bache@jeppesen.com

Abstract. Specification by Example is a collaborative method for developing
software. It involves a workshop where people representing various roles and
viewpoints discuss what is to be built, and come up with concrete example
scenarios. These scenarios later form the basis for automated (functional)
acceptance tests, and are sometimes called "Living Documentation", as they are
written in a Domain Specific Language and can be read by non-programmers.
GUI testing has traditionally used a record-replay paradigm that requires the
user interface exists before the tests can be created, and hence have been
considered incompatible with a Specification by Example approach. In this
experience report we will discuss how we have overcome this apparent
contradiction at Jeppesen, and relate an experience using the tool TextTest for
GUI testing of Jeppesen's next-generation Crew Management System.

Keywords: Specification by Example, GUI testing, ATDD, Capture-Replay
Testing.

1 Experiences Testing CMS at Jeppesen

Jeppesen has several successful products for crew planning and optimization, which
are in use at many airlines around the world. Some of the development teams in
Göteborg are working on a next-generation Crew Management System, (CMS),
where Geoff is a test automation specialist. Emily has worked as an external
consultant at Jeppesen, creating automated test cases and coaching testers and
developers.

CMS, is a rich-client application, with a large and complex GUI, comprising tens
of screens, several novel GUI widgets for presenting crew schedules, and over 150
000 hours of development. Development is currently proceeding using an agile
approach including Specification By Example, and Geoff has invented a testing
tool, TextTest, which is being used. In this paper we’ll describe the approach and
benefits.

 Specification by Example with GUI Tests - How Could That Work? 321

Fig. 1. Screenshot of the CMS user interface

2 Background to the Approach

2.1 Specification by Example

Specification by Example is a collaborative method for developing software, that
should help you to build the right software. Gojko Adzic has written several books
[1], about this method. He describes in some detail how you can hold specification
workshops where you collaboratively come up with example scenarios to help you
build the right thing.

In any agile method, the requirements process is a little different than with a
traditional, (waterfall), method. In agile, you can think of a “requirement” as having
three parts - the User Story, the Conversation, and the Example Scenarios.

The User Story is just a sentence or two written on an index card or similar. This
represents a small piece of functionality the user wants to be built. The index card is
actually just a promise of a Conversation.

The Conversation is the next part of the requirement. You get together several
people representing different perspectives, and discuss what is to be built. Usually this
includes at least three people representing different roles - the programmer who’ll be
writing the code, the tester who’ll test it, and the business analyst or product owner
who understands what the user is trying to achieve. Usually one of the concrete
outcomes of the Conversation is a list of Scenarios.

The Scenarios are example cases illustrating the feature and how it’s going to be
used. The idea is the programmer will be able to translate these examples directly into
test cases to use in a Test-Driven Development process as they build the code. The
Tester will be able to use them as a basis for further, exploratory testing, once the
feature is built. The Scenarios document for the business people how the feature is
supposed to work in practice. Some or all of the scenarios will be automated as
regression tests and continue to be run regularly as development of new features
continues.

322 E. Bache and G. Bache

Actually, Gojko writes in his book “Specification by Example” that this suite of
regression tests should be called “Living Documentation”. They are more than test
cases, they are a useful resource for the team, documenting how the system actually
behaves. Business people can refer to them when they are thinking about new
features. So it’s important that the regression tests preserve the original domain
specific language of the Scenarios, and are readable for non-programmers.

2.2 GUI Testing

Traditionally in waterfall projects, a lot of testing has been done through the GUI, and
there are many tools that use a Capture-Replay paradigm. A tester creates test cases by
starting the application, activating the recording tool, then clicking around in the GUI
following a test scenario, as the tool records a script of their actions. The tool can then
replay the script as an automated regression test.

Creating these kinds of tests is often left until near the end of the project, since they
require the GUI to be usable before the test can be recorded. This means the tests are
usually only used for critiquing the product, (finding defects), and give little support
to the team. As Janet Gregory and Lisa Crispin point out [2], in an agile project,
supporting the development team is an important role for automated tests. This mean
that the tests should be designed before the code they test.

Another problem with capture-replay tests like this is that the maintenance costs
are often prohibitive. The scripts that the tool creates are generally written in a
programming language, and are often fairly impossible to read or refactor. They are
tighly coupled to the exact widgets that the user clicked on, and break as soon as
anything in the GUI changes. The GUI is usually one of the most volatile parts of the
application, and particularly in an agile project where functionality is continually
being updated, widgets get moved, workflows get changed, and all test scripts that are
tightly coupled to them will need to be re-recorded.

One solution people have come up with is a pattern called “Page Objects”. For
example this is the recommended way to work with Selenium WebDriver, [3]. The
idea is you create an intermediate layer of code between the UI and your test cases.
It’s basically a layer of indirection to keep your test cases isolated from the volatility
of the GUI. What you end up with is test cases that read like a high-level domain
language description of what the user is doing, and Page Objects that abstract away all
the details of how they interact with widgets in the GUI.

Emily has done this on a previous project, and found it works pretty well, the
maintenance costs are managable. You still have to create and maintain this
abstraction layer of Page Objects, but now your test scripts are decoupled from the
details of the GUI. When a widget is moved or a workflow changed, you have only to
update a few Page Objects, not every single test script that uses that widget. With a
tool like Selenium, you design and code your Page Objects by hand, and once you’ve
got some, your recording tool becomes much less useful. It won’t let you record test
scripts that use your Page Objects to access your GUI. You find that test creation takes
longer than with a pure capture-replay approach, but on the other hand, the test
maintenance becomes managable.

 Specification by Example with GUI Tests - How Could That Work? 323

2.3 Tools for Specification by Example

Many people are doing Specification by Example using tools like Cucumber and
Fitnesse. These tools are set up to let you specify tests in a domain specific language
that is readable for non-programmers. In Cucumber, you have “feature” files which
contain the Feature descriptions and Scenarios from the “User Story” and
“Conversation” parts of your requirement.

As the programmer develops the feature, they will turn this file into an executable
test, by adding little pieces of code called “step definitions”. By the time the feature is
finished, the “feature” file is executable as a regression test.

Fitnesse works in a similar way, but this time the User Story and Scenarios are
written into a special wiki and formatted as tables. As the programmer builds the
code, they implement “fixture” code for each kind of table, connecting them to the
system under test.

So in both these tools you have a layer of indirection between the test case and the
system under test. Just like with Page Objects, there is a fair amount of time spent
writing and maintaining this layer.

When it comes to systems with a GUI, often the advice is to avoid testing via the
GUI. If you’re using Cucumber or Fitnesse and the test is written in a domain
language, there’s actually no need to use the same interface as the user, you can create
an API under the GUI that the tests use to access the business logic directly. This can
make your tests much more reliable and quick to execute.

In Jeppesen’s CMS, going under the GUI seems like a poor option. There is a lot of
functionality and visual information there that absolutely needs to be tested.

3 TextTest

This is a tool that Geoff has created and is being used for testing CMS at Jeppesen. It
has both a Capture-Replay tool for GUI testing, and is suitable for use with
Specification by Example. It’s open source and freely available to download - see
http://texttest.org [4]. Let’s look at how it works.

3.1 Record Tests in a Domain Specific Language

In Specification by Example, you need a way to take the Scenarios you come up with
before coding starts, and as coding progresses, make them executable as regression
tests. Usually this is the job of the programmer. As they develop the User Interface,
they follow a Scenario, and record steps in a test case. This involves clicking in the
GUI just like a real user would. Underneath, TextText is recording a script of actions,
but not in a programming language. TextTest uses a library of named domain actions,
that match the terms being used in the Scenario. As you’re recording, if you use a new
feature or widget that has no associated domain language action, TextTest prompts
you to create and name new ones.

324 E. Bache and G. Bache

Fig. 2. Screenshot of TextTest prompting you to create domain language

So now you can record test cases in your domain language. The “fixture code” -
that intermediate layer also known as Page Objects, Step Definitions, glue code - that
is all created for you by TextTest, in the form of configuration files. When you record
your test cases, you focus on creating the domain language, making test cases
expressive and readable.

open default plan and show rosters
change service type of activity JPO 503 for
Alpickney to K
change service type of activity JPO 2537 for
Brogan to M
undo
wait for completion of undo
close and discard changes

Fig. 3. Sample “use case” from a test case for CMS

Each of the steps in the example above is actually composed from a number of
lower-level interactions with particular widgets. TextTest lets you group and name a
sequence of domain language actions into a higher level domain term, so you can
easily raise the abstraction level of your test cases. The information connecting the
lower-level domain terms to actual widgets is achieved with a simple configuration
file.

This works because there’s a lot going on under the covers - TextTest hooks into
the GUI library to discover widget names and what data they are presenting. It does a
lot of work helping you to link up your user domain actions with runtime code
objects. That’s why TextTest at present only supports a few GUI libraries - notably
Eclipse Rich Client Platform.

 Specification by Example with GUI Tests - How Could That Work? 325

3.2 The GUI Log

The domain language part of the test is only half the story though. TextTest also
handles assertions rather differently than other tools, as you’ll notice by reading the
“use case” above - there are no “assert” or “check” statements in it. Most Capture-
Replay tools have you pause occasionally while recording a test case, and indicate
you want to check a particular widget or text is shown on the screen. TextTest doesn’t
do that. You just concentrate on recording what the user does.

All the while you’re recording a scenario, TextTest is generating a plain text log of
how the user interface looks, and what is changing. Conceptually, it’s as if it takes a
screenshot any time anything significant happens. The test case then comprises two
parts - the recorded actions, and the recorded GUI log. When you execute the test
case, TextTest replays the actions, and does a diff of the resulting GUI log against the
recording. Any diff will cause the test to fail, and report which part of the GUI has
changed.

Fig. 4. Excerpt from a GUI log of a test case for CMS

If you look at the GUI log excerpt above (figure 4), and compare it with the
screenshot shown in figure 1, I hope you’ll see the correspondence between the two.

For Jeppesen’s CMS, this means the test cases give us a very high assurance that
the GUI looks the way it’s supposed to. For this application, it’s crucial that all these
little green lines and boxes and pink blobs are all in exactly the right positions, and
are updated correctly when the user edits the Plan. Instead of each test case having to
pick out a few small things to check, by default each test case checks everything on
the screen.

Of course in practice it is useful to filter the GUI log, so most test cases ignore
common screens, and only actually check for screens that are important or different in
their particular scenario. We do find though that the default setting of checking
everything does mean we find subtle differences and bugs the test designer wasn’t
intending to find.

326 E. Bache and G. Bache

Because we’re using an ASCII representation of the screen, not a screenshot, it
makes it much easier to handle the test cases - they’re just plain text. You can store,
version control, update, diff and bulk-update these files with commonly available
tools. It also makes it straightforward to test your application using a virtual display,
and the tests execute very quickly and efficiently on a large compute cluster.

4 Conclusions

At Jeppesen we are developing a tool, TextTest, which can be used for GUI testing of
a rich-client applications. It lets you translate the kind of Scenarios you come up with
in Specification by Example into executable test cases, written in a Domain Specific
Language. These test cases are created using a Capture-Replay approach.

TextTest is suited to GUI-intensive applications where it really matters what is
shown on the screen, since it will record and assert against a textual representation of
the whole user interface. Creating ASCII-art “screenshots” makes the tests easier to
maintain compared with approaches that use an actual pictorial screenshot.

At present this approach and tool are being successfully used at Jeppesen to test
their next generation Crew Management System. We have an extensive suite of end-
to-end full system automated tests that are written in a Domain Specific Language
that is readable by non-programmers and business people. The full suite runs in
parallel on a linux cluster in under 15 minutes, as part of a Continuous Integration
setup. It often detects important regression errors just minutes after insertion.

References

1. Adzic, G.: Specification by Example, Bridging the Communcation Gap
2. Crispin, L., Gregory, J.: Agile Testing
3. Fowler, M.: Fowler’s bliki,

http://martinfowler.com/bliki/PageObject.html
4. http://texttest.org

G. Cantone and M. Marchesi (Eds.): XP 2014, LNBIP 179, pp. 327–335, 2014.
© Springer International Publishing Switzerland 2014

Towards Agile and Beyond: An Empirical Account
on the Challenges Involved When Advancing Software

Development Practices

Helena Holmström Olsson1 and Jan Bosch2

1 Department of Computer Science, Malmö University, Malmö, Sweden
helena.holmstrom.olsson@mah.se

2 Department of Computer Science and Engineering, Chalmers University of Technology,
Gothenburg, Sweden

jan.bosch@chalmers.se

Abstract. During the last decade, the vast majority of software companies have
adopted agile development practices. Now companies are looking to move
beyond agile and further advance their practices. In this paper, we report on the
experiences of a company in the embedded systems domain that is adopting
agile practices with the intention to move beyond agile and towards continuous
deployment of software. Based on case study research involving group
interviews and a web-based survey, we identify challenges in relation to (1) the
adoption of agile practices, (2) testing practices, (3) continuous deployment,
and (4) customer validation.

Keywords: Agile practices, beyond agile, continuous deployment, challenges.

1 Introduction

During the last decade, the vast majority of software development companies have
adopted agile development practices. With characteristics emphasizing the use of
short iterations and the development of small features, agile practices have increased
the ability for software development companies to better accommodate changing
customer requirements and fast changing market needs [1]. While there are a number
of studies focusing on different agile methods and techniques, and best practices in
relation to the adoption of these [2, 3, 4, 5], research focusing on the way in which the
adoption of agile practices is a means for achieving something else, i.e. how to move
beyond agile practices, is scarce.

In this paper, we share the experiences of a company in the embedded systems
domain that is in the process of adopting agile practices with the intention to move
towards continuous deployment of software. Our study provides an empirical account
of the company’s experiences so far, and it identifies challenges related to four areas,
i.e. the adoption of agile practices, testing practices, continuous deployment and
customer validation. Although this study is based on a single case, we have significant
experience from other similar companies that we use as a background and as part of

328 H.H. Olsson and J. Bosch

the theoretical framework underlying this research [6, 7, 8]. The contribution of this
paper is two-fold. First, we share the experiences of a large-scale software
development company in the process of adopting agile practices. Second, our study
outlines challenges that typically face companies adopting agile practices with the
intention to move towards continuous deployment of software.

The paper is organized as follows. In section 2, we outline the typical evolution
path for software development companies moving towards agile practices and
beyond. In section 3, we describe our research site and method. Section 4 presents the
findings, and in section 5 we discuss these findings. Finally, in section 6 we present
the conclusions.

2 Background

Based on our earlier work [6], we developed a model that most companies follow
when advancing their software development practices. We refer to this as the
“Stairway To Heaven” (see Figure 1).

Fig. 1. The ‘Stairway to Heaven’, i.e. the typical evolution path for software development
companies when moving towards agile practices and beyond

Our model depicts the transition from traditional development to agile practices
and beyond. We use this model as a background for understanding the challenges
associated with moving beyond agile practices and towards continuous deployment of
software.

2.1 Climbing the ‘Stairway to Heaven’

Traditional development is characterized by long development cycles and slow
customer feedback loops [9]. A company interested in moving towards agile practices
needs to re-organize large project groups into smaller cross-functional teams focusing
on features rather than components [6]. An agile development organization is
characterized by small cross-functional teams working in short development cycles
[2]. To move to continuous integration, companies need to develop automated tests
and code needs to be frequently checked in [6]. Continuous integration implies
practices that allow for frequent integration of work [10, 11]. To move towards

 Towards Agile and Beyond: An Empirical Account 329

continuous deployment, companies need to involve product management and release
in the short feedback cycles. Continuous deployment is where software functionality
is deployed continuously to customers [10]. At this point, product management and
customers are involved in short feedback cycles. The final step is where deployment
of software is seen as a starting point for development rather than delivery of the final
product. Recently, the concept of ‘experiment systems’ was defined as an experiment-
centric approach with the purpose of accelerating innovation through systematic and
continuous collection of user feedback [12, 13]. As a result, requirements evolve in
real-time based on data collected from customer use instead of being frozen early as
part of requirements prioritization [12].

3 Research Site and Method

This paper presents a case study conducted at the world leading company in network
video. The company offers products such as network cameras, video encoders, video
management software and camera applications for video surveillance. Currently, the
company is adopting agile development practices with the intention to advance
towards continuous deployment of software. From releasing products every 18
months, the company releases software at least twice a year using agile practices such
as sprints and daily stand-up meetings. When initiating this study, we met with a
management group including top-level managers, two team leaders, a test manager
and two software architects. During this meeting, the company representatives
expressed an interest in conducting an assessment of their adoption of agile practices.
They were interested in learning about peoples’ experiences so far, and what
challenges they face in moving further. As a result of the meeting, there was an
agreement to focus our study on four areas, i.e. (1) adoption of agile practices, (2)
testing practices, (3) continuous deployment, and (4) customer validation. These four
areas correspond to the second to fifth step in the ‘Stairway to Heaven’ model [6]. In
relation to area (1) we investigate to which extent the development organization has
adopted agile practices. In area (2) we investigate the testing practices and to what
extent these are being automated to allow for continuous integration. In area (3) we
investigate the frequency of software delivery, and in area (4) we investigate the
feedback loop to customers and to what extent customers validate software
functionality.

Our paper reports on a case study [14, 15] conducted between April – October
2013. The data collection methods used were semi-structured group interviews with
open-ended questions [15] and a web-based survey using a 7-point Likert scale [16].
For the group interviews, we met with a total of 44 people including developers,
testers, system architects, product owners, project managers and product specialists.
All group interviews were conducted in English and lasted for two hours. In total, we
have 10 hours of recordings and 40 pages of summarizing notes. Also, we conducted
a web-based survey. The survey was designed using a 7-point Likert scale where ‘1’
is ‘strongly disagree’ and ‘7’ is ‘strongly agree’. In total, the survey was distributed to
300 employees and after having had it accessible from late May to early September
2013 we got 115 responses.

330 H.H. Olsson and J. Bosch

4 Findings

In this section, we present the interview and survey findings. Our findings are related
to the four focus areas, i.e. (1) adoption of agile practices, (2) testing practices, (3)
continuous deployment, and (4) customer validation. These areas correspond to the
‘Stairway to Heaven’ model, which we use as a framework to assess the challenges
the company faces when moving further.

Adoption of agile practices: All groups within the company are experienced in
working agile. Especially, Scrum practices are widely adopted. The most common
practice is to organize work in sprints, and as can be seen in Figure 2, a majority of
the survey respondents agree when asking if they organize their work in sprints.

Fig. 2. “We organize our work in sprints” (1= strongly disagree and 7= strongly agree)

A common challenge is to have resources available within each agile team. Most of
the interviewees experience a situation in which they have to share important
resources, such as configuration, test and administration, with other teams. Another
challenge is to find a balance between expertise and general knowledge. As
experienced in some teams, expertise can be lost when trying to broaden knowledge
within a cross-functional team. At the same time, many people find the agile practices
helpful in that they encourage people to take on new tasks.

Testing practices: The inclusion of test activities in the sprints is a challenge. In
some of the teams, continuous integration practices are established and there is always
a shippable piece of functionality. On a team level, automated tests are common and
this is reflected in the survey (see Figure 3).

Fig. 3. “Verification and validation of code is fully automated on a team level” (1= strongly
disagree and 7= strongly agree)

 Towards Agile and Beyond: An Empirical Account 331

However, while automated tests are common in parts of the organization and while
some teams have full coverage, other parts of the organization find automated tests
difficult to apply. Also, analysis of tests is difficult and the interviewees wish for
better tools for this.

Continuous deployment: In the company, the ambition is to increase the frequency of
delivery. Currently, new functionality is released once or twice a year and the
company has already succeeded in shortening the release cycles that used to be close
to 18 months. The motivation for more frequent releases is the demand from
customers. According to the interviewees many customers ask for functionality once
per month and that is a frequency in which the company needs to be able to release.
When discussing rollback mechanisms, the only solution the company uses is to de-
grade to a previous version. Currently, there are no other efficient mechanisms if new
functionality causes problems (Figure 4):

Fig. 4. We have effective mechanisms to rollback deployment of new functionality that causes
problems” (1= strongly disagree and 7= strongly agree

Customer validation: Our study reveals that customer feedback is scarce. The main
input from customers is service and trouble reports that indicate an error in the
system. Most respondents feel distant from the customers and when asking whether
they know what features of the system that customers use, the answer is that the
majority does not (Figure 5). As a result of this, the company only gets feedback
when something doesn’t work, and this is not necessarily an indication of what
features that are used the most. Furthermore, data collected from the products is only
used to help troubleshooting and support activities but not for informing the
development organization about how individual features are used.

332 H.H. Olsson and J. Bosch

Fig. 5. “We know what features of our products that our customers use” (1= strongly disagree
and 7= strongly agree)

5 Discussion

Below, we discuss our findings, and we identify the challenges the company faces.
Our findings are summarized in Table 1.

Table 1. Challenges identified in relation to the four areas of investigation

Area: Challenges:
Scaling adoption of agile practices • Diverse adoption of agile practices

among teams.
• Complexity of team resource

allocation.
• Dependence on resources outside of

the team.
Automated testing of functionality • Difficulties in analyzing and

maintaining automated tests.
• Difficulty in removing or reducing

old tests.
Continuous deployment • Difficulties in establishing efficient

rollback mechanisms.
Data collection and use • No effective mechanisms for

analysis of customer data.
• Lack of understanding about feature

use.
• No pro-active use of customer data.

5.1 Scaling Adoption of Agile Practices

Our respondents experience a diverse adoption of agile practices, and a situation
where different products have different processes. One reason for this is the
characteristics of the products. The products are embedded systems that include
hardware as well as software, meaning that the lengths of development cycles are

 Towards Agile and Beyond: An Empirical Account 333

different for different parts of the system. As recognized by Bosch and Eklund [13],
many companies developing mass-produced embedded systems view software as a
necessity rather than as a strategic opportunity. While development of hardware is
part of well-established traditions, software introduces both opportunities and
challenges that have not been encountered before. Also, most companies in the
embedded systems domain have extensive supplier and subcontractor relationships
and the cost, effort and unpredictability of the deliverables from these external
partners are experienced as a true challenge for adoption of agile practices [13]. In our
case company, a majority of the teams experience a situation in which they are
dependent on resources outside of the team. This brings with it a number of
challenges. First, the efficiency of the organization is hampered [6, 17]. Furthermore,
the dependency on external resources makes team empowerment more difficult [2, 4].

5.2 Automated Testing of Functionality

Currently, the company experiences great variety in the adoption of automated tests.
While groups working with software-intensive parts for which they own the entire
development cycle have automated tests with full coverage, other groups operate in an
environment where manual testing is still the dominant practice. As reported in
literature, continuous integration is expected to improve release frequency and
predictability and increase developer productivity [18]. In the transition towards
automated testing practices, our study identifies two major challenges. First, one
difficulty is the analysis and maintenance of automated tests [11, 19]. Second, our
study reveals a situation in which it is easy to increase the number of tests, but very
difficult to remove or reduce the number of old tests. While the concept of continuous
integration is complex [11], our study shows that adopting these practices is a step
necessary in order to advance the adoption of agile practices.

5.3 Frequent Delivery of Software

The goal for our case company is to advance towards more frequent delivery of
software. In continuous deployment you automatically deploy code changes into the
software production line [10]. Based on our findings, we see a situation in which
customers to a greater extent ask for new functionality, and the overall experience is
that customers ask for new functionality as soon as they know they can get it. The
challenge is to have efficient rollback mechanisms to manage potential problems with
the deployment of new software. Our respondents report on a situation in which the
only way to rollback is to de-grade to the previous system version. While this is
common practice it is not considered a sufficient mechanism when moving to more
frequent deployment of software.

5.4 Data Collection and Use

With connected systems the opportunity to collect post-deployment data from
customers has significantly increased [8, 12, 20], and the cost of collecting data from

334 H.H. Olsson and J. Bosch

the customer is low [12]. Our study reveals that a huge amount of data is collected
after deployment at customer site. However, the use of this data is limited and it is not
used as input for the development organization. As a result, there is no general
understanding for what features that are actually used by customers [8]. Another
problem is that the feedback loop is slow and product management does not view
customer data as a mechanism for continuous customer validation of software
functionality.

6 Conclusions

In this paper, we share the experiences of a company in the embedded systems
domain that is adopting agile practices with the intention to move beyond agile and
towards continuous deployment of software. We identify the challenges they face in
relation to (1) the adoption of agile practices, (2) testing practices, (3) continuous
deployment, and (4) customer validation. Although our study is based on a single case
company, we believe that our findings are relevant for other companies with an
interest in adopting and advancing agile practices. Our results serve as input to
companies when assessing the maturity of their processes, and as input when planning
what actions need to be taken when transitioning towards agile and beyond.

References

1. Fogelström, N.D., Gorschek, T., Svahnberg, M., Olsson, P.: The Impact of Agile
Principles on Market-Driven Software Product Development. Journal of Software
Maintenance and Evolution: Research and Practice 22, 53–80 (2010)

2. Highsmith, J., Cockburn, A.: Agile Software Development: The business of innovation. In:
Software Management, pp. 120–122 (September 2001)

3. Beck, K.: Embracing Change with Extreme Programming. Computer 32(10), 70–77 (1999)
4. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley

(2004)
5. Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J.: New Directions on Agile

Methods: a comparative analysis. In: Proceedings of the 25th International Conference on
Software Engineering, Portland, Oregon, pp. 244–254 (2003)

6. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the Stairway to Heaven. In: Proceedings
of the 38th Euromicro Software Engineering Advanced Applications (SEAA) Conference,
Cesme, Turkey, September 5-7 (2012)

7. Olsson H.H., Bosch, J.: Towards, R.&.D. as Innovation Experiment Systems: A
Framework for Moving Beyond Agile Software Development. In: Proceedings of the
IASTED International Conference on Software Engineering (SE 2013), Innsbruck,
Austria, February 11-13 (2013)

8. Olsson, H.H., Bosch, J.: Post-deployment Data Collection in Software-Intensive
Embedded Products. In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150,
pp. 79–89. Springer, Heidelberg (2013)

9. Sommerville, I.: Software Engineering, 6th edn. Pearson Education, Essex (2001)
10. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,

Test and Deplyment Automation. Addison-Wesley, Boston (2011)

 Towards Agile and Beyond: An Empirical Account 335

11. Ståhl, D., Bosch, J.: Modeling continuous integration practice differences in industry
software development. Journal of Systems and Software, 48–59 (2014)

12. Bosch, J.: Building Products as Innovation Experiment Systems. In: Cusumano, M.A.,
Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer,
Heidelberg (2012)

13. Bosch, J., Eklund, U.: Eternal embedded software: Towards innovation experiment systems.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 19–31.
Springer, Heidelberg (2012)

14. Walsham, G.: Interpretive case studies in IS research: Nature and method. European
Journal of Information Systems 4, 74–81 (1995)

15. Runesson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14 (2009)

16. Allen, E., Seaman, C.: Likert Scales and Data Analyses. Quality Progress 2007, 64–65
(2007)

17. Williams, L., Cockburn, A.: Agile Software Development: It’s about feedback and change.
Computer 36(6), 39–43 (2003)

18. Goodman, D., Elbaz, M.: “It’s not the pants, it’s the people in the pants” Learnings from
The Gap Agile Transformation. In: Agile 2008 Conference, pp. 112–115 (2008)

19. Ablett, R., Sharlin, E., Maurer, F., Denzinger, J., Schock, C.: BuildBot: Robotic
Monitoring of Agile Software Development Teams. In: 16th IEEE International
Symposium on Robot and Human interactive Communication, pp. 931–936 (2007)

20. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on the
web: survey and practice guide. Data Mining and Knowledge Discovery 18(1), 140–181
(2009)

Author Index

Abrahamsson, Pekka 126
Allan, George 260
Alvi, Usman Sattar 187

Bache, Emily 320
Bache, Geoffrey 320
Barabino, Giulio 234
Berger, Christian 171
Bosch, Jan 171, 327
Brox, Oliver 294

Chaudron, Michel 46
Cohn, Mike 32
Conboy, Kieran 203
Concas, Giulio 157, 234, 269
Corona, Erika 234
Correal, Daŕıo 302
Counsell, Steve 157

Das, Sutirtha 242
Datta, Subhajit 242
Destefanis, Giuseppe 157
Doyle, Maureen 32

Evbota, Felix 46

Fagerholm, Fabian 218
Fontana, Rafaela Mantovani 94

Gencel, Cigdem 187
Grechi, Daniele 234
Gregory, Peggy 1

Heeager, Lise Tordrup 62
Hunt, Johanna 251

Jauns-Seyfried, Stefanie 294

Kaisti, Matti 16
Kettunen, Petri 285
Kiesling, Stephan 110
Knauss, Eric 46
Knieke, Christoph 294
Krämer, Michael 294

Lade, Prasanth 242
Lehtonen, Teijo 16
Liskin, Olga 110
Lunesu, Ilaria 126

Majumder, Subhashis 242
Mäkilä, Tuomas 16
Malucelli, Andreia 94
Matta, Martina 126
Mercado, Mauricio 302
Monni, Cristina 269
Mujunen, Tapio 16
Muñoz, Rafael 302

Nilsson, Agneta 171
Nobl, James 260

Olsson, Helena Holmström 46, 327
Orrù, Matteo 269

Pagels, Max 218
Peters, Henrik 294
Petersen, Kai 187
Pham, Raphael 110
Piattini, Mario 143
Plonka, Laura 1
Power, Ken 203, 277, 312

Rantala, Ville 16
Reinehr, Sheila 94
Rejab, Mawarny Md. 260
Rikkila, Juha 126
Rodŕıguez, Moisés 143
Rooksby, John 251
Rubin, Kenneth S. 32

Sandberg, Anna 46
Sarkar, Proshanta 242
Schneider, Kurt 110
Schulze, Andreas 294
Sekitoleko, Nelson 46
Shah, Syed Muhammad Ali 187
Sharp, Helen 1
Sreshtha, Sonu 242
Stettina, Christoph Johann 78

338 Author Index

Taylor, Katie 1

Tigano, Danilo 234

Tonelli, Roberto 157, 269

Urrego, Juan 302

Verdugo, Javier 143

Wang, Xiaofeng 126, 251
Williams, Laurie 32

Zijdemans, Shi Hao 78

	Preface
	Organization
	Table of Contents
	Agile Development
	UX Design in Agile: A DSDM Case Study
	1 Introduction
	2 The DSDM Framework
	3 Integrating Agile Development and UX Design
	3.1 Bringing People Together
	3.2 Aligning Developer and UX Designer Work Practices

	Research Approach
	4.1 Research Site
	4.2 Data Gathering and Analysis

	5 Findings
	5.1 Integrating UX Design during Feasibility and Foundations
	5.2 Integrating UX Design during Engineering

	6 Discussion
	6.1 Key Challenges in UX Design and DSDM Integration
	6.2 How DSDM Supports Integration
	6.3 Implications for DSDM and Other Agile Methods

	7 Conclusions
	References

	Agile Principles in the Embedded SystemDevelopment
	1 Introduction
	2 Characteristics of Embedded Systems Development
	2.1 Need for System Level Documentation
	2.2 Hardware-Software Interdependencies
	2.3 Heterogenous Teams with Different Skillsets
	2.4 Inflexibility due to Real-Time Functionality

	3 Mapping Principles of Agile Software Development to Embedded System Development
	3.1 Principles Concerning the Progress of Product Development
	3.2 Principles Concerning the Control of Change
	3.3 Principles Concerning People
	3.4 Principles Concerning Improvement of Agility

	4 Summary
	References

	Agile Software Development in Practice
	1 Introduction
	2 Comparative Agility
	3 Related Work
	4 Data Collection and Demographics
	5 State of the Practice
	5.1 Project Outcomes
	5.2 Agile Principles
	5.3 More and Less Popular Agile Practices

	6 Analysis of Principles and Outcomes
	6.1 Outcome Correlations
	6.2 Principle Correlations
	6.3 Statement Analysis

	7 Limitations
	References

	Agile Challenges and Contracting
	Technical Dependency Challengesin Large-Scale Agile Software Development
	1 Introduction
	2 Background: Large-Scale Agility, Technical Dependency, and Communication
	2.1 Agile Teams
	2.2 Large-Scale Agile
	2.3 Technical Dependency
	2.4 Communication

	3 Research Method
	3.1 Research Setting
	3.2 Research Approach
	3.3 Data Collection
	3.4 Data Analysis
	3.5 Threats to Validity

	4 Analysis and Interpretation
	4.1 Technical Dependency Challenges in Large-Scale Agile
	4.2 Likelihood of Technical Dependency Challenges
	4.3 Recommendations

	5 Discussion
	5.1 Implications for Practitioners
	5.2 Implications for Research

	6 Conclusion and Outlook
	References

	How Can Agile and Documentation-Driven Methods be Meshed in Practice?
	1 Introduction
	2 Agile and Documentation-Driven Methods
	2.1 Practice Areas of Agile and Documentation-Driven Methods

	3 Meshing
	4 Research Design
	4.1 Case 1: SmallSoft
	4.2 Case 2: LargeSoft
	4.3 Data Collection and Data Analysis

	5 Analysis of the Mesh in the Case Studies
	5.1 The Overall Mesh in the Case Studies
	5.2 The Mesh of the Practice Areas

	6 Discussion
	6.1 Customer Relations
	6.2 Documentation
	6.3 Requirements
	6.4 Development Strategy
	6.5 Communications and Knowledge Sharing
	6.6 Testing

	7 Conclusion
	References

	Contracting in Agile Software Projects:State of Art and How to Understand It
	1 Introduction
	2 Related Work
	3 Method
	3.1 Data Collection: Workshop and Semi-structured Interviews
	3.2 Data Analysis

	4 Results
	4.1 Concrete Practices in Use
	4.2 Affecting Factors

	5 Discussion
	5.1 Bias and Limitations

	6 Conclusions
	6.1 Recommendations for Research and Practice

	References

	Lessons Learned and Agile Maturity
	Maturing in Agile: What Is It About?
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 Relevance Test
	3.2 Implementation Sequence test
	3.3 Differences between Experienced and Non-experienced
	3.4 Threats to Validity

	4 Data Analysis
	4.1 The Usefulness of an Agile Maturity Model
	4.2 The Relevant Practices to Maturity
	4.3 The Differences between Practitioners Opinion

	5 Discussion
	6 Conclusions
	References

	Why We Need a Granularity Concept for User Stories
	1 Introduction
	2 Related Work
	3 Expected Implementation Duration as a Quality Aspect for User Stories
	4 Survey
	5 Results
	5.1 Measurability of Ex xpected Implementation Duration (RQ 1)
	5.2 Characterization of o Expected Implementation Duration of User Stor ries (RQ2)
	5.3 Controlling Expect ted Implementation Duration (RQ3)
	5.4 Relevance of Expected Implementation Duration (RQ4)

	6 Threats to Validity
	7 Discussion and Outlook
	References

	How to Evolve Software Engineering Teaching
	Self-organized Learning in Software Factory: Experiences and Lessons Learned
	1 Introduction
	2 Literature Review
	2.1 Agile Approaches for Software Engineering Education
	2.2 Self-organized Learning in Education

	3 Research Approach
	3.1 Bolzano SF
	3.2 Cagliari SF

	4 Findings
	4.1 Self-decided Learning Goals and Personalized Learning Outcome
	4.2 Peer Teaching through Active Collaboration
	4.3 Diversity Is the Key
	4.4 Personal Attitude Matters
	4.5 Minimal Infrastructure
	4.6 The Changing Role of Teachers

	5 Discussion
	6 Conclusion
	References

	Methods and Metrics
	Using Agile Methods to Implement a Laboratory for Software Product Quality Evaluation
	1 Introduction
	2 Adapting Agile Methods
	3 Implementing AQC Lab
	4 Conclusions and Future Work
	References

	Software Metrics in Agile Software:An Empirical Study
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	4.1 Discussion

	5 Threats to Validity
	6 Conclusions
	References

	Testing and Beyond
	Visualizing Testing Activities to Support Continuous Integration: A Multiple Case Study
	1 Introduction
	2 Background and Related Work
	3 Research Approach
	4 Problem Statement
	5 Continuous Integration Visualization Technique (CIViT)
	5.1 Types of Testing
	5.2 Scope of Testing
	5.3 Periodicity of Testing
	5.4 Illustrative Example
	5.5 Summary

	6 Validation
	7 Conclusions and Future Work
	References

	Comparing a Hybrid Testing Processwith Scripted and Exploratory Testing:An Experimental Study with Practitioners
	1 Introduction
	2 Background
	3 Method
	4 Results and Discussion
	5 Conclusion
	References

	Lean Development
	Impediments to Flow: Rethinking the Lean Concept of ‘Waste’ in Modern Software Development
	1 Introduction
	2 Background
	3 Impediments to Flow
	3.1 Definitions of Value, Flow and Impediment

	4 Impediments in Complex Adaptive Human Systems
	5 Nine Categories of Impediments to Flow
	5.1 Extra Features
	5.2 Delays
	5.3 Handovers
	5.4 Failure Demand
	5.5 Work in Progress
	5.6 Context Switching
	5.7 Unnecessary Motion
	5.8 Extra Processes
	5.9 Unmet Human Potential
	5.10 Summary of the Nine Impediments to Flow

	6 Conclusions
	References

	Examining the Structure of Leanand Agile Values among Software Developers
	1 Introduction
	2 Related Work
	2.1 Theories of Human Values
	2.2 Values in Lean and Agile Software Development Methodologies

	3 Research Design and Execution
	3.1 Survey Design
	3.2 Sample and Survey Deployment
	3.3 Analysis Methods

	4 Analysis and Results
	4.1 Structure of Lean and Agile Values
	4.2 Relationship to Human Values
	4.3 Relationship to Personality

	5 Discussion and Limitations
	6 Conclusions and Future Work
	References

	Short Papers
	Agile Methodologies in Web Programming: A Survey
	1 Introduction
	2 Research Method and Gathered Data
	2.1 Main Features of the Sample
	2.2 Agile Development Practices, Process and Technologies
	2.3 Use of CMS and Database

	Results and Conclusions
	References

	How Many Eyeballs Does a Bug Need?An Empirical Validation of Linus’ Law
	1 Introduction and Research Question
	2 Methodology
	3 Results and Discussion
	3.1 Model Development
	3.2 Threats to Validity
	3.3 Observations and Conclusions

	References

	The Theory and Practice of Randori Coding Dojos
	1 Introduction
	2 The Coding Dojo in Theory
	3 The Coding Dojo in Practice
	4 Discussion
	5 Conclusion
	References

	Locating Expertise in Agile SoftwareDevelopment Projects
	1 Introduction
	2 Research Methodology
	2.1 Data Collection
	2.2 Data Analysis

	3 Research Findings
	3.1 Communicating Frequently
	3.2 Working Closely Together
	3.3 Declaring a Self-identified Expertise
	3.4 Using an Expertise Directory
	3.5 Discussion
	3.6 Conclusion

	References

	Are Refactoring Practices Relatedto Clusters in Java Software?
	1 Introduction
	2 Background
	3 Experimental Setting and Methodology
	4 Results
	5 Conclusion
	References

	Social Contracts, Simple Rules and Self-organization: A Perspective on Agile Development
	1 Introduction
	2 Teams and Organizations as Complex Adaptive Systems
	2.1 Simple Rules

	3 Examples of Social Contracts in Agile Development
	3.1 Definition of Done
	3.2 Definition of Ready
	3.3 Working Agreements
	3.4 Retrospectives

	4 Conclusions
	References

	Realizing Agile Software Enterprise Transformations by Team Performance Development
	1 Introduction
	2 Software Team Performance and Agile Enterprises
	3 Framework for Team-Based Transformations
	4 Case Examples
	5 Discussion
	6 Conclusion
	References

	A Test-Driven Approach for Model-BasedDevelopment of Powertrain Functions
	1 Introduction
	1.1 Related Work
	1.2 Running Example

	2 Fundamentals
	2.1 Model-Based Testing
	2.2 Time Partition Testing
	2.3 Test-Driven Development

	3 Test-Driven Approach
	4 Case Study
	5 Conclusion
	References

	Experience Reports
	Archinotes: A Global Agile Architecture DesignApproach
	1 Introduction
	2 Archinotes Overview
	2.1 Archinotes Architecture
	2.2 Archinotes Main Features

	3 Archinotes: A Supporting Tool for GAAD
	3.1 Distributed Teams Support
	3.2 Agile Architecture Design Support

	4 Lessons Learned
	4.1 Educational Scenario
	4.2 Enterprise Electoral System
	4.3 Limitations

	5 Related Work
	6 Conclusions
	References

	Definition of Ready: An Experience Report from Teams at Cisco
	1 Introduction
	1.1 What Is Definition of Ready?
	1.2 Goals of Definition of Ready
	1.3 Teams Using Kanban or Flow-Based Methods
	1.4 The Lifecycle of Backlog Items
	1.5 Cadence and Synchronization Points

	2 Case Study: Definition of Ready in Cisco
	2.1 Definition of Ready
	2.2 Keeping the Backlog Ready
	2.3 Consequences of Not Being Ready
	2.4 Different Perspectives on Definition of Ready

	3 Conclusions
	References

	Specification by Example with GUI Tests - How Could That Work?
	1 Experiences Testing CMS at Jeppesen
	2 Background to the Approach
	2.1 Specification by Example
	2.2 GUI Testing
	2.3 Tools for Specification by Example

	3 TextTest
	3.1 Record Tests in a Domain Specific Language
	3.2 The GUI Log

	4 Conclusions
	References

	Towards Agile and Beyond: An Empirical Account on the Challenges Involved When Advancing Software Development Practices
	1 Introduction
	2 Background
	2.1 Climbing the ‘Stairway to Heaven’

	3 Research Site and Method
	4 Findings
	5 Discussion
	5.1 Scaling Adoption of Agile Practices
	5.2 Automated Testing of Functionality
	5.3 Frequent Delivery of Software
	5.4 Data Collection and Use

	6 Conclusions
	References

	Author Index

