Model-Driven Event Query Generation
for Business Process Monitoring*

Michael Backmann, Anne Baumgrass, Nico Herzberg,
Andreas Meyer, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam, Germany
Michael .Backmann@student.hpi.uni-potsdam.de
{Anne .Baumgrass,Nico.Herzberg, Andreas.Meyer,
Mathias.Weske}@hpi.uni-potsdam.de

Abstract. While executing business processes, a variety of events is produced
that is valuable for getting insights about the process execution. Specifically, these
events can be processed by Complex Event Processing (CEP) engines to deliver
a base for business process monitoring. Mobile, flexible, and distributed business
processes challenge existing process monitoring techniques, especially if process
execution is partially done manually. Thus, it is not trivial to decide where the
required business process execution information can be found, how this informa-
tion can be extracted, and to which point in the process it belongs to. Tackling
these challenges, we present a model-driven approach to support the automated
creation of CEP queries for process monitoring. For this purpose, we decompose
a process model that includes monitoring information into its structural compo-
nents. Those are transformed to CEP queries to monitor business process execu-
tion based on events. For illustration, we show an implementation for Business
Process Model and Notation (BPMN) and describe possible applications.

Keywords: Business Process Management, Complex Event Processing, Busi-
ness Process Monitoring, Event Pattern Language Query Generation.

1 Introduction

During business process execution, various systems and services produce a variety of
data, messages, and events that are valuable for gaining insights about business process
execution [13]. This data enables business process monitoring, e.g., to ensure a business
process is executed as expected. However, nowadays, business processes are executed
in different places, times, and by a variety of people or devices leading to more mobile,
flexible, and distributed business processes. In a business process, activities are executed
automatically and manually, where manual execution may be supported by information
systems. In this environment, the different systems used to execute business processes
generate a large amount of events (e.g., Global Positioning System (GPS) signals of
driving trucks) that can be used to enable the monitoring of business processes across
enterprise boundaries [6, 11, 15].

* The research leading to these results has received funding from the European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement 318275 (GET Service).

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 406418, 2014.
(© Springer International Publishing Switzerland 2014

Model-Driven Event Query Generation for Business Process Monitoring 407

The detection and processing of events originating from different systems can be
handled by Complex Event Processing (CEP) engines [9, 13]. In contrast, the orchestra-
tion and enactment of business processes is in the control of Business Process Manage-
ment (BPM) systems [16, 19] in semi-automated environments. Existing works argues
that the incorporation of modeling process logic and describing complex event patterns
is essential to capture the overall process context [2]. Thus, there is the need to comple-
ment the modeling and execution of business processes in semi-automated execution
environments with CEP capabilities.

In this paper, we demonstrate the combination of BPM with CEP for monitoring
business process execution in semi-automated environments. We utilize the Refined
Process Structure Tree (RPST) [17] to decompose process models into their structural
components. Subsequently, these components are automatically transformed into CEP
queries using an Event Pattern Language (EPL). For process modeling, we use Busi-
ness Process Model and Notation (BPMN) [14] enriched with process event monitoring
points (PEMPs) [11] that specify where which events are expected during execution.
The corresponding CEP queries derived from the BPMN model are represented by Es-
per EPL [3, 8]. Although we use BPMN and Esper, the general approach presented
in this paper is not restricted to a certain process modeling notation nor an EPL. The
concept of PEMPs allows to exactly specify which parts of a process model shall be
monitored, while existing approaches aim at monitoring each construct of the process
model. This may lead to unexpectedly incomplete event logs resulting in severe issues
with respect to CEP. In summary, the query generation presented in this paper can be
conducted without the need to learn a specific syntax of an EPL and helps if either only
parts of a process are of interest or some parts are not observable due to missing sensors,
for instance.

The remainder of this paper is structured as follows. Section 2 introduces the set of
basic notations that we use throughout the paper. Next, Section 3 describes the scenario
including its process model which is used in this paper to demonstrate our approach.
Our automation of the query generation from process models is given in Section 4. It
includes the three necessary steps to generate CEP queries and the description of their
implementation. Afterwards, the application areas of our approach are shown in Section
5 followed by the comparison of our approach with related work in Section 6. Finally,
Section 7 concludes this paper.

2 Preliminaries

Working with CEP requires a profound understanding of events and their utilization.
An event is a real-world happening occurring in a particular point in time at a certain
place in a certain context [13]. Capturing an event in an information system requires the
transformation of an event into an event object, each being classified by an event object
type [11]. In the process context, we define both concepts as follows.

Definition 1 (Event object). An event object £ = (type, id, P, timestamp, C) refers
to an event object fype £T, has a unique identifier id, refers to a set P of process
instances being affected by the event object, has a timestamp indicating the occurrence
time, and contains an additional event content C. o

408 M. Backmann et al.

di: t :
1STup disrupted

e nitialized]LM’L ready
’ skip N i
skipped

Fig. 1. Activity life cycle (cf. [19])

Definition 2 (Event object type). An event object type ET = (name, cd) refers to a
unique name indicating the object type identifier and has a content description cd of a
particular event being of this event type. o

As indicated in Definition 1, event objects affect one or several process instances by
indicating, for instance, process state changes. Each process instance refers to exactly
one process model, which we define as follows.

Definition 3 (Process model). A process model M = (N, F,n, i, 1) contains of a fi-
nite non-empty set N C AUFE UG of flow nodes being activities A, events E, and gate-
ways G. Events E C ESUE'UEF are distinguished into start events E?S, intermediate
events F7, and end events E¥. I C N x N represents the control flow relation which
constraints the partial order of nodes. Functions n : E° U E¥ — {plain, message}
and p : BT — {message,time, cancel, error} assign a type to each event. Function
1 : G — {xor,and} assigns a type to each gateway. o

We require each process model to be structural sound and block-structured'. Process
monitoring deals with capturing events based on node execution; but monitoring on
node level may be too coarse-grained. Assuming, there exist waiting times between the
execution of two activities, the termination of the first activity does not indicate the
start of the second one such that multiple measures are needed. Therefore, we utilize
the concept of life cycles for nodes of a process model [19] and attach PEMPs to the
state transitions of the node life cycles [11]. Formally, we define a node life cycle as
follows.

Definition 4 (Node life cycle). A node life cycle L = (S, T,) contains of a finite
non-empty set .S of states and a finite set 7' C § x S of state transitions. Let £ be the
set of all node life cycles defined for the nodes /N of process model M. Then, there
exists a function ¢ : N — L assigning a node life cycle to eachnode n € N of M. o

Fig. 1 depicts the life cycle L 4 for activities consisting of states initialized, ready, run-
ning, terminated, disrupted, and skipped connected by transitions (i)nitialize, (e)nable,
(b)egin, (t)erminate, (d)isrupt, and (s)kip. For events and gateways, we utilize a sub-
set of these states removing states running and disrupted and the transitions leading to

! The process model contains exactly one start and one end event and each node is on a path from
that start event to the end event. Each activity has exactly one incoming and one outgoing edge,
each start event has one outgoing and no incoming edges, each end event has one incoming
and no outgoing edges, each gateway has at least three edges with either exactly one incoming
or exactly one outgoing edge, and for each merging gateway there exists a splitting one.

Model-Driven Event Query Generation for Business Process Monitoring 409

G_et Check Mount
assigned : .
X container container
container
O Truck

Drive to
container
location

>0 >0 Container departured
ex e b rejected
>0
JE e i ! b ex
Container location Arrived Asked for Container documents Container Container
received at location container received received mounted

Fig. 2. Business process model of a container pick-up process modeled in BPMN with
associated node life cycles and event object types

them. Further, the states ready and terminate are connected via transition (ex)ecute. We
distinguish state transitions into the ones observable by occurring events and the ones
requiring the context of the process instance to deduce their triggering. For a given node
of a process model, each state transition belongs to either group. Utilizing PEMPs for
process monitoring is independent from the process instance execution. Thus, a PEMP
can only be attached to state transitions being directly observable.

Definition 5 (Process event monitoring point). Let M/ be a process model, L a node
life cycle, and O, C T7p, the set of state transitions not requiring process instance
information. Then, a process event monitoring point is a tuple PEM P = (M, n,t, et),
where M is the process model it is contained in, n € NN is the node of the process model
it is created for, ¢ € Oy, is a state transition within the node life cycle L it is created for,
and et € £T is an event object type specifying the event object to be recognized. o

3 Scenario

Next, a business process from the logistics domain is used as scenario to discuss the
approach presented in this paper (see Fig. 2). Assume, a terminal stores containers from
different companies and provides them to truck drivers as requested by the owners of the
container. First, the truck driver needs to drive to the pick-up location of the terminal.
Arrived there, the driver gets the container assigned to her regarding the company the
driver is executing the transport for. Second, the driver checks the container she received
for several aspects like, for instance, sufficient capacity, special capabilities as cooling
means if required, tidiness, and intactness. While the first two mentioned checks are
rather guaranteed aspects due to the booking in advance of containers, the two latter
aspects are very critical. If any of the checks leads to a negative result, the task Check
container gets canceled and the corresponding intermediate event is raised. As next
step, the driver gets another container, which she checks again. If all checks succeed,
the driver can mount the container to her truck and depart from the pick-up location.
To each task, event, and gateway of the process model shown in Fig. 2, a life cy-
cle is assigned that consists of the states and transitions introduced above. For activ-
ities, the state transitions enable, begin, and terminate are potentially observable by

410 M. Backmann et al.

occurring events. For gateways and events, such state transitions are enable and exe-
cute. In contrast, the disruption of an activity by an attached intermediate event or the
skip of an activity due to exclusiveness cannot be observed directly. For instance, the
triggering of state transition disrupt can only be deduced by observing the execution
of that attached event. Potentially, each of these observable transitions is connected to
a PEMP [10] used for process observation. However, this does not mean that each ob-
servable transition is actually monitored during process execution. Transitions may be
excluded from monitoring due to unavailable capturing mechanisms for corresponding
event data or due to the stakeholders’ interests. For instance, the start of the process is
observable when the driver receives the location where she should pick up the container.
For activity Drive to container location, we receive GPS coordinates that we
aggregate to identify when the truck arrived at its destination; i.e., activity termination
takes place. In contrast, activity Check container cannot be observed, because it is
a manual task without any system interaction. Likewise, the intermediate cancellation
event cannot be captured, because it is a manual interaction between the driver and
the pick-up location worker. However, indirectly, the happening of both can be derived
whenever another container is requested. Altogether, we are able to observe at least
one state transition for the tasks Drive to container location, Get assigned
container, and Mount container, the start and end events as well as the gateway
by recognizing events of the event object types specified in the lower part of Fig. 2.
Task Check container and the attached intermediate cancellation event cannot be
observed.

4 Query Generation

Monitoring the execution of a process instance requires CEP queries to recognize state
transitions of its given process model. Next, we introduce the algorithm enabling the au-
tomatic generation of such queries from a process model with attached Process Event
Monitoring Points (PEMPs) as introduced above. This algorithm comprises three main
steps which will be explained in detail in the following sections. First, a RPST is cre-
ated from a given process model (see Section 4.1). The RPST is based on the edges
of a process model, but for the actual query generation, we require the nodes. There-
fore, in a second step, we transform the RPST into a component tree representing the
structure of the process model based on nodes (see Section 4.2). Finally, we utilize this
component tree and automatically create the CEP queries for the given process model
(see Section 4.3).

Fig. 3 illustrates the first two steps of this algorithm for the process model introduced
in Section 3 and again shown in Fig. 3a. Fig. 3b depicts its graph used to construct the
RPST given in Fig. 3c. The resulting component tree is presented in Fig. 3d and its
transformation (resp. step three) to CEP queries in Section 4.3. The implementation for
this particular case is given in Section 4.4.

Model-Driven Event Query Generation for Business Process Monitoring 411

b
Drive to ®) Get assigned Check Mount
container container container container
location (a) (c) (d)® (f) Trock

departured (o)

(U}
>0 *>0>0

Container
rejected (e)

ex e b [t]
>0 >0 *->0>0 0->0
ee[! ebex

Container location Arrived Asked for Container documents Container Container
received at location container received received mounted

(a)

(,a @b 1Bl (AhH (Fo) i a JLOOPT)
. . (B1)]
I N =
| | I | 1'SEQ2 1 1 SEQ3 !
(P2 1P P2 | e]
a (AN — 1 N—
(b,c) (c,d) (d,e) (e,b) b c d b d e
(c) (]

Fig. 3. Scenario as (a) BPMN model, (b) graph, (c) RPST, and (d) component tree

4.1 Creation of the RPST

In order to generate queries from a process model, it is necessary to split the model into
smaller parts (sub-graphs). In particular, we use the RPST that decomposes a model re-
spectively the graph into a hierarchy of single-entry / single-exit (SESE) blocks. These
SESE blocks have special characteristics as they are canonical fragments. A fragment is
canonical if its contained nodes do not overlap with the nodes of another fragment, i.e.,
the nodes of canonical fragments can either interleave or be disjoint. A formal definition
is provided in [17]. Thus, the RPST is a tree which contains the canonical fragments
of a graph as tree nodes and the edges between nodes of the graph as tree leaves (see
Fig. 3c). Additionally, this decomposition provides special characteristics for the canon-
ical fragments which are derived from the so called triconnected components. Note that
each canonical fragment is also a triconnected component each of which being either a
bond, a polygon, or a rigid (see [17]).

412 M. Backmann et al.

4.2 Transformation of a RPST to a Component Tree

In the second step, the RPST is transformed into a node-oriented tree, the so called
component tree. This tree contains a component for every canonical fragment and
its leaves are build from the edges of this fragment. For example, Fig. 3d shows that
for every canonical fragment (P1, B1, P2 and P3) from the RPST shown in Fig. 3c
a component is created in the component tree. The edges of a graph contained in the
RPST such as (b, ¢) and (¢, d) for the P2-fragment are then split up into its contained
notes b, ¢ and d. These nodes represent the XOR-gateway as well as the Get assigned
container and the check container activity.

Afterwards, we assign a type to every component of the tree. The component types
characterize the behavior of the component and are distinguished into AND, XOR, Se-
quence, Loop and SubProcess. The assumption of block-structuredness enables an easy
mapping of polygons to sequences and bonds to the other mentioned component types.
AND, XOR, Sequence, and Loop represent the control flow structure with AND- or
XOR-Gateways, while SubProcess indicates an entire subprocess as component. Cor-
responding to that, the scenario process model contains three components of type Se-
quence (SEQ1, SEQ2, SEQ3) and one component of type Loop (LOOP1) (see Fig. 3d).

4.3 Query Generation from the Component Tree

Finally, we generate event processing queries from component trees to monitor the ex-
ecution of a process model. A query is generated for every node in the component tree.
Depending on the component types, we generate different types of queries. In addition,
we consider the PEMPs of a process model to create queries for state transitions. These
state transition queries allow to monitor the life cycles of observable process nodes.

A CEP query can be written in any EPL, e.g., Esper [3]. Using an EPL allows to
query an event stream and use patterns as part of the query to define particular ordering
relations among the events and its event types respectively. For demonstration, we used
the Esper Query Language. The CEP query pattern for the component types and state
transitions of BPMN in Esper are summarized in Table 4.3, where et;..et1; € ET are
the event types that are expected. These event types can be defined in a PEMP. As a
subprocess is a specific type of an activity that can contain several other flow nodes and
control flows, it is transformed to CEP queries as complement of the other patterns. For
example, the process shown in Fig. 2 could be seen as subprocess part of a complete
transportation chain including planning and invoicing.

All the queries are ordered and nested according to the fact that they can depend
on each other. The triggering of one query can expedite the progress of other queries
which are on a higher hierarchy level. While the sequence in which the queries are
called is derived from the process-flow, the hierarchy is derived from structure of the
component tree. For instance, in Fig. 3d the query for LOOP1 depends on SEQ?2 that
itself depends on the state transition query for node c. Examples for the implementation
of these queries is given in Section 4.4.

Model-Driven Event Query Generation for Business Process Monitoring 413

Table 1. Esper patterns for query generation

BPMN pattern Esper pattern

Loop FROM PATTERN [(EVERY S4=et;) UNTIL EVERY S5=et; |

Sequence FROM PATTERN [(EVERY SO=et3 — EVERY Sl=et4) |

XOR FROM PATTERN [(EVERY SO=et5 OR EVERY Sl=ets)]

AND FROM PATTERN [(EVERY SO=et7 AND EVERY Sl=ets)]

State transition FROM P;ATTERN [(EVERY SO=etg — EVERY Sl=etio — EVERY
S2=et11) |

In addition, we support intermediate timer events and intermediate cancel events.
An intermediate timer event has a duration from which we generate a timer query that
waits for the specified time and signals the expiration of the timer duration. Intermediate
cancel events are attached to activities and subprocesses. The cancel events can indicate
the abortion of the node the cancel event is attached to. Thereby, it is possible to monitor
models with expected runtime exceptions.

4.4 TImplementation

A process can be monitored based on its process model. We have implemented a service
in our Event Processing Platform (EPP) [4, 11]® which generates the component tree
from a process model that includes PEMPs. We provide two combinations for importing
process models and defining its PEMPs. First, the business user may import BPMN-
specific models and directly adapt the PEMP definitions for specific nodes in the user
interface of the EPP. Second, we defined an BPMN extension* with which life cycles
and PEMPs can be attached to a node in a BPMN model used to derive CEP queries.
Thus, process models used in the EPP are specified in the BPMN-conform XML format
and include the representation of state transitions of activities, gateways, and events
using PEMPs. Finally, we take these annotated models and generate the CEP queries.

In our EPP, each query must be written and registered before the events can be cap-
tured and processed. The EPP registers each CEP query in Esper [3] via listeners. These
listeners get informed if the query matches observed events with the specified condi-
tions defined by the query. Based on the patterns given in Table 4.3, Listing 1.1 shows
the four queries in the Esper query language for our scenario process model in Section
3. These queries are derived from the component tree as described in Sections 4.2 and
4.3. As not every activity is observable the derived queries are restricted to those events
that are observable.

2 This query depends on the transitions that are observable for a node. In our case, only enable,

begin, and terminate are observable.
3 Downloads, tutorials, and further information can be found at:

http://bpt.hpi.uni-potsdam.de/Public/EPP
* Due to page limitations, we could not include this definition in the paper but provide it on our
websiteathttp://bpt.hpi.uni-potsdam.de/Public/EPP#BPMN_Extension.

http://bpt.hpi.uni-potsdam.de/Public/EPP
http://bpt.hpi.uni-potsdam.de/Public/EPP#BPMN_Extension

414 M. Backmann et al.

Listing 1.1. Monitoring queries using Esper

Stl:

SELECT =

FROM PATTERN [(EVERY SO=ContainerDocsReceived —> EVERY Sl=ContainerReceived)]

WHERE SetUtils .isIntersectionNotEmpty ({SO.ProcessInstances , SI.
ProcessInstances})

Seq2:

SELECT

FROM PATTERN [(EVERY S2=AskedForContainer —> EVERY S3=Stl)]

WHERE SetUtils . isIntersectionNotEmpty ({S2.ProcessInstances , S3.
ProcessInstances})

Loopl:

SELECT =

FROM PATTERN [(EVERY S4=Seq2) UNTIL EVERY S5=MountContainer]

WHERE SetUtils . isIntersectionNotEmpty ({S4.ProcessInstances , S5.
ProcessInstances})

Seql:

SELECT

FROM PATTERN [(EVERY S6=ContainerLocReceived —> EVERY S7=ArrivedAtLocation —>
EVERY S8=Loopl) |

WHERE SetUtils .isIntersectionNotEmpty ({S6.ProcessInstances , S7.ProcessInstances
, S8.ProcessInstances})

At first, the St/ query monitors the sequence of two monitoring points with the event
types of the Get assigned container activity. While the definition of the sequen-
tial ordering of the events for this query is enclosed in PATTERN| . . .] in the FROM-
clause, the WHERE clause checks whether the events from both event types have oc-
curred for the same process instance. In the Seq2 query monitors whether the gateway
event is followed by the previously defined query (resp. Get assigned container ac-
tivity). Since activity Check container as well as the intermediate event Container
rejected are not observable, the Loopl query can only check if Seq2 is followed by
events belonging to the Mount container activity. Finally, we can use the Seq! to check
occurrences of events for process instances executing the process shown in Fig. 2.

It is possible to decouple the query creation from the monitoring part into a separate
service module. In this vein, it is possible to generate queries that are independent from
a specific EPL. Depending on the EPL used, it might require adaptations. In all cases, it
is required to represent the dependencies between the queries and enable the checking
of events through the graph of queries. For example, the termination of the LoopI query
is required for the complete observation of the Seq/ query and thus the whole process
execution.

5 Application

In this section, we exemplarily address three areas of BPM the presented approach can
be applied to: (i) monitoring of business process progress, (ii) monitoring of process
model deviations, and (iii) calculation of Key Performance Indicators (KPIs).

(i) Through the usage of our approach, it is possible to correlate events in a CEP
engine to the nodes of a process model. Therewith, the monitoring of a single process
execution can be established. As per the introduced framework, the life cycles for single

Model-Driven Event Query Generation for Business Process Monitoring 415

process nodes and for the components of the process model are observable. Thus, a
very detailed status of the execution progress for process instances can be presented.
Recognizing an event at a PEMP will predict the actual state of a process execution
and its performed activities. For example, when we see the events Container location
received and Arrived at location, we can infer that the activity Drive to container
location was fully performed.

(ii) Further, based on this monitoring information, deviations from the process model
during runtime can be determined. In comparison to the approaches of [18] or [1], we
do not create queries to detect deviations, but search for deviations on the basis of
the execution status of a process instance. The usage of the component tree allows to
determine order relations between the process nodes, which are similar to the order
relations defined in [18]. Every time a query is triggered in our approach, a special
monitoring component looks for execution deviations. By doing so, it is possible to
detect nodes which should be exclusive but were observed together in the same process
instance, nodes which should be in a strict sequential order but were monitored deviant
to this order, nodes which should be present but were absent during runtime of the
process instance, nodes which should occur only once but happened more often, and all
execution deviations for nodes which are contained in a loop.

However, the detection of execution deviations for nodes that are part of a loop is
limited, because exclusiveness, order, missing, or duplicate violations cannot be dis-
tinguished with certainty. For example, assuming activity Check container is ob-
servable allows to monitor both activities contained in the loop. In case, the trace
A,B,C,D,E,G,G,F’ is observed, a loop-deviation is detected. The deviation is moni-
tored, because event F, indicating the container was mounted, was monitored only once,
whereas the event G, indicating the performance of Check container, was observed
twice. Thus, it is possible that the events C,D,E for the XOR join and the activity Get
assigned container are missing for the second loop iteration or that the second
Check container activity instance represented by the second event G is a duplicate.

(iii) Besides the application of our approach for process monitoring, we can utilize
the events relating to a particular PEMP to measure KPIs. We refer to the definition
of a KPI as stated in [19]. A KPI is linked to a business goal it is contributing to and
has a name and a data type. The KPI definition includes an algorithm that describes
how to measure the KPI, a target value, and upper and lower target margins. For KPI
measurement, the particular PEMPs can be used in the corresponding algorithm. As
described in Section 3, the terminal operator has the business goal to ensure a certain
customer satisfaction that is influenced by the duration the drivers need to spend at the
terminal to mount a container, for instance. Therefore, a KPI is defined that measures the
time between the truck driver getting the information about the location of the assigned
container to be mounted (start point of KPI measure) and the truck departure (end point
of KPI measure).

5 In accordance to Fig. 2: A is an event of the Event Object Type (EOT) Container location
received, B is an event of EOT Arrived at location, C is an event of EOT Asked for container, D
is an event of EOT Container documents received, E is an event of EOT Container received, F
is an event of EOT Container mounted, and G is the newly introduced event of EOT Container
checked for monitoring Check container.

416 M. Backmann et al.

Referring to the scenario described in Section 3, one can see that the KPI may be
influenced by the loop. In case a container is rejected, because of an identified damage
for instance, the start point of the KPI measure is passed again. This challenges the
measurement of the KPI, because it has to be decided whether the KPI measurement
is still valid (start point of the KPI measure is still the first occurrence of the event
captured at the beginning of activity Get assigned container) or the start point
of the KPI measure needs to be reset. This constellation is not trivial to handle, as we
cannot observe the entrance into the loop cycle explicitly, because the activity Check
container nor the event of rejecting the container can be observed. Thus, we cannot
differentiate whether the loop was intended as described in the process model and the
KPI measure needs to be reset, because the assignment of the container is not in the
responsibility of the terminal, or there was another execution of activity Get assigned
container by mistake or any other reason and the KPI measurement needs to be kept.

6 Related Work

Barros et al. [2] present a set of patterns describing relations and dependencies of events
in business processes that have to be captured in process models to observe the overall
process context. Their assessment of the modeling languages BPMN and Business Pro-
cess Execution Language (BPEL) resulted in their language proposal called Business
Event Modeling Notation (BEMN) [7], a graphical language for modeling composite
events in business processes. BEMN allows to define event rules, e.g., specific com-
binations of events, that are to be used in stand-alone diagrams or as integration into
BPMN. Similarly, Kunz et al. [12] introduce an approach to enhance the creation of
CEP queries. In particular, the approach presents how EPL statements can graphically
be represented by BPMN elements. In this way, the authors provide a means to model
CEP queries with a better usability for business users. Both modeling approaches, in [7]
and [12], focus on the representation of CEP in business processes. Complementary, our
approach includes a standard-conform extension of BPMN with which we are able to
automatically derive CEP queries from process models and not only check the process-
flow but also life cycle transitions of nodes via events.

In [1], the authors introduce techniques to automatically generate Esper queries by
taking a choreography model as a formalization of the process, however, without includ-
ing the life cycles of nodes or basing the approach on a specific modeling language.
Similar, Weidlich et al. [18] take BPMN models as basis to create EPL statements
to monitor process violations only. Both approaches presume complete and structured
event logs. Thus, they are not suited for processes that include non-observable events.
In our approach the process model must be annotated with PEMPs that bind events to
state transitions of BPMN elements as described in [11] first.

In the context of BPM, Dahanayake et al. [5] give an overview of Business Activity
Monitoring (BAM) and introduce a four class-categorization of BAM systems all basing
on events. Therefore, the approach presented in this paper can be applied to enable BAM
techniques and methods to provide valuable monitoring results by using the produced
extracted events as input.

Model-Driven Event Query Generation for Business Process Monitoring 417

7 Conclusion

We combined BPM with CEP to allow model-driven monitoring of business process
executions in semi-automated environments. In essence, we can decompose a process
model via a graph representation into a RPST, which we then transform into a compo-
nent tree, which in turn is the basis to derive CEP queries determining the status of an
execution. The constructs of a process model being considered for query generation are
specified by the stakeholder by attaching PEMPs to nodes of the process model. This
allows to specify the activities, events, and decisions to be observed in a process model
to especially receive information about happenings the stakeholder is interested in and
lowers the effort for creating those perticular queries manually. Further, the specifica-
tion of PEMPs to nodes of a process model is implemented in an EPP allowing business
users to do so without the need to know the technical specialties. In future work, we will
apply this approach to process monitoring and analysis tasks in general, e.g., runtime or
process cost analysis. Analyzing process event occurrences is another application area
the approach can contribute to.

References

1. Baouab, A., Perrin, O., Godart, C.: An Optimized Derivation of Event Queries to Monitor
Choreography Violations. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012.
LNCS, vol. 7636, pp. 222-236. Springer, Heidelberg (2012)

2. Barros, A., Decker, G., Grosskopf, A.: Complex events in business processes. In: Abramow-
icz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 29-40. Springer, Heidelberg (2007)

3. Bernhardt, T., Vasseur, A.: Esper: Event stream processing and correlation. O’Reilly Media
(2007), published at http://onjava.com/

4. Biilow, S., Backmann, M., Herzberg, N., Hille, T., Meyer, A., Ulm, B., Wong, T.Y., Weske,
M.: Monitoring of Business Processes with Complex Event Processing. In: BPM Workshops.
Springer (2013) (accepted for publication)

5. Dahanayake, A., Welke, R., Cavalheiro, G.: Improving the Understanding of BAM Technol-
ogy for Real-time Decision Support. IJBIS 7(1), 1-26 (2011)

6. Daum, M., Gotz, M., Domaschka, J.: Integrating CEP and BPM: how CEP realizes functional
requirements of BPM applications (industry article). In: DEBS, pp. 157-166 (2012)

7. Decker, G., Grosskopf, A., Barros, A.: A graphical notation for modeling complex events in
business processes. In: EDOC, pp. 27-36. IEEE (2007)

8. EsperTech: Esper - Complex Event Processing, http: //esper.codehaus.org (as of
May 2013)

9. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co. (2011)

10. Herzberg, N., Kunze, M., Rogge-Solti, A.: Towards Process Evaluation in Non-automated
Process Execution Environments. In: Services and Their Composition, ZEUS (2012)

11. Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business Process
Management. In: EDOC. IEEE (2013) (accepted for publication)

12. Kunz, S., Fickinger, T., Prescher, J., Spengler, K.: Managing Complex Event Processes
with Business Process Modeling Notation. In: Mendling, J., Weidlich, M., Weske, M. (eds.)
BPMN 2010. LNBIP, vol. 67, pp. 78-90. Springer, Heidelberg (2010)

13. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Addison-Wesley (2002)

14. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)

http://onjava.com/
http://esper.codehaus.org

418 M. Backmann et al.

15. Rozsnyali, S., Lakshmanan, G.T., Muthusamy, V., Khalaf, R., Duftler, M.J.: Business Process
Insight: An Approach and Platform for the Discovery and Analysis of End-to-End Business
Processes. In: 2012 Annual of the SRII Global Conference (SRII), pp. 80-89. IEEE (2012)

16. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process management: A
survey. In: van der Aalst, W.M.P,, ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 1-12. Springer, Heidelberg (2003)

17. Vanhatalo, J., Volzer, H., Koehler, J.: The Refined Process Structure Tree. Data & Knowledge
Engineering 68(9), 793-818 (2009)

18. Weidlich, M., Ziekow, H., Mendling, J., Giinther, O., Weske, M., Desai, N.: Event-Based
Monitoring of Process Execution Violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K.
(eds.) BPM 2011. LNCS, vol. 6896, pp. 182-198. Springer, Heidelberg (2011)

19. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn.
Springer (2012)

	Model-Driven Event Query Generation for Business Process Monitoring
	1 Introduction
	2 Preliminaries
	3 Scenario
	4 Query Generation
	4.1 Creation of the RPST
	4.2 Transformation of a RPST to a Component Tree
	4.3 Query Generation from the Component Tree
	4.4 Implementation

	5 Application
	6 Related Work
	7 Conclusion
	References

