
Alessio R. Lomuscio Surya Nepal
Fabio Patrizi Boualem Benatallah
Ivona Brandić (Eds.)

 123

CCSA, CSB, PASCEB, SWESE, WESOA, and PhD Symposium
Berlin, Germany, December 2–5, 2013
Revised Selected Papers

Service-Oriented
Computing –
ICSOC 2013 WorkshopsLN

CS
 8

37
7

Se
rv

ice
s S

cie
nc

e

Lecture Notes in Computer Science 8377
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Services Science

Subline of Lectures Notes in Computer Science

Subline Editors-in-Chief

Robert J.T. Morris, IBM Research, USA

Michael P. Papazoglou, University of Tilburg, The Netherlands

Darrell Williamson, CSIRO, Sydney, Australia

Subline Editorial Board

Boualem Bentallah, Australia

Athman Bouguettaya, Australia

Murthy Devarakonda, USA

Carlo Ghezzi, Italy

Chi-Hung Chi, China

Hani Jamjoom, USA

Paul Klingt, The Netherlands

Ingolf Krueger, USA

Paul Maglio, USA

Christos Nikolaou, Greece

Klaus Pohl, Germany

Stefan Tai, Germany

Yuzuru Tanaka, Japan

Christopher Ward, USA

Alessio R. Lomuscio Surya Nepal
Fabio Patrizi Boualem Benatallah
Ivona Brandić (Eds.)

Service-Oriented
Computing–
ICSOC 2013Workshops

CCSA, CSB, PASCEB, SWESE, WESOA,
and PhD Symposium
Berlin, Germany, December 2-5, 2013
Revised Selected Papers

13

Volume Editors

Alessio R. Lomuscio
Imperial College London, UK
E-mail: a.lomuscio@imperial.ac.uk

Surya Nepal
CSIRO Computational Informatics, Marsfield, NSW, Australia
E-mail: surya.nepal@csiro.au

Fabio Patrizi
Sapienza Università di Roma, Italy
E-mail: patrizi@dis.uniroma1.it

Boualem Benatallah
The University of New South Wales, Sydney, NSW, Australia
E-mail: boualem@cse.unsw.edu.au

Ivona Brandić
Vienna University of Technology, Austria
E-mail: ivona@infosys.tuwien.ac.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-06858-9 e-ISBN 978-3-319-06859-6
DOI 10.1007/978-3-319-06859-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014937671

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the satellite events that were held in
conjunction with the 2013 International Conference on Service-Oriented Com-
puting (ICSOC 2013), which took place in Berlin, Germany, December 2-5, 2013.
The satellite events provide venues for specialist groups to engage in focused
discussions on specific sub-areas within service-oriented computing. The satel-
lite events significantly helped to enrich the main conference both by expanding
the scope of the scientific topics discussed at the conference and by attracting
participants from the wider community. The selected scientific satellite events
consisted of two tracks: a workshop track and a PhD symposium track.

The ICSOC 2013 workshop track consisted of five workshops on a range of
topics in the area of service-oriented computing. The workshops were held on
December 2, 2013. Each workshop had its own chairs and Program Committee
who were responsible for the selection of papers. The overall organization for
the workshop program, including the selection of the workshop proposals, was
carried out by Alessio Lomuscio and Surya Nepal. The following workshops were
held:

– Third International Workshop on Cloud Computing and Scientific Applica-
tions (CCSA 2013)

– First International Workshop on Cloud Service Brokerage (CSB 2013)
– First International Workshop on Pervasive Analytical Service Clouds for the

Enterprise and Beyond (PASCEB 2013)
– 9th international workshop on Semantic Web-Enabled Software Engineering

(SWESE 2013)
– 9th International Workshop on Engineering Service-Oriented Applications

(WESOA 2013)

The ICSOC 2013 PhD Symposium Track provided a forum for PhD students
to present and discuss their research among their peers. It also provided PhD
students with an opportunity to get advice and share experiences on their ap-
proach to research and thesis planning. The PhD symposium Track was chaired
by Fabio Patrizi, Boualem Benatallah, and Ivona Brandic.

As editors of the volume we wish to thank the workshop and symposium
authors and panelists, as well as the workshop Organizing Committees, who
contributed to this important aspect of the conference. We hope the proceedings

VI Preface

will serve as a valuable reference for researchers and practitioners working in the
service-oriented computing domain and its emerging applications.

February 2014 Alessio Lomuscio
Surya Nepal
Fabio Patrizi

Boualem Benatallah
Ivona Brandic

Organization

ICSOC Workshop Co-chairs

Alessio R. Lomuscio Imperial College London, UK
Surya Nepal CSIRO, Australia

PhD Symposium Chairs

Boualem Benatallah University of New South Wales, Australia
Ivona Brandić Vienna University of Technology, Austria
Fabio Patrizi Sapienza University of Rome, Italy

Organizers

Third International Workshop on Cloud Computing and Scientific
Applications (CCSA)

Suraj Pandey IBM Research, Australia
Surya Nepal CSIRO, Australia

9th International Workshop on Engineering Service-Oriented
Applications (WESOA 2013)

George Feuerlicht HCTD, University of Technology, Sydney,
Australia

Winfried Lamersdorf University of Hamburg, Germany
Guadalupe Ortiz University of Cádiz, Spain
Christian Zirpins SEEBURGER AG, Germany

First International Workshop on Cloud Service Brokerage CSB 2013

Gregoris Mentzas National Technical University of Athens,
Greece

Anthony J.H. Simons University of Sheffield, UK
Iraklis Paraskakis South-East European Research Centre,

Thessaloniki, Greece

VIII Organization

9th International Workshop on Semantic Web-Enabled Software
Engineering (SWESE 2013)

Gerd Gröner Institute for Web Science and Technologies,
University of Koblenz-Landau, Germany

Jeff Z. Pan Department of Computing Science, University
of Aberdeen, UK

Yuting Zhao Department of computing science, University of
Aberdeen, UK

Elisa F. Kendall Sandpiper Software, Inc., USA

First International Workshop on Pervasive Analytical Service Clouds
for the Enterprise and Beyond (PACEB 2013)

Alex Norta Independent Researcher, Finland
Claudia-Melania Chituc Eindhoven University of Technology (TU/e),

The Netherlands
Roman Vacuĺın IBM Research - Watson Lab, USA
Hong-Linh Truong Vienna University of Technology, Austria
Lam-Son Lê University of Wollongong, Australia
Weishan Zhang China University of Petroleum, China
Klaus Marius Hansen University of Copenhagen, Denmark
Paolo Bellavista DEIS, Università di Bologna, Italy
JieHan Zhou Uniersity of Oulu, Finland
Yu Deng IBM T.J. Watson Research Center, USA
Liangzhao Zeng IBM T.J. Watson Research Center, USA

Table of Contents

Engineering Service-Oriented Applications
WESOA 2013

Introduction to the 9th International Workshop on Engineering
Service-Oriented Applications (WESOA’13) . 1

George Feuerlicht, Winfried Lamersdorf, Guadalupe Ortiz, and
Christian Zirpins

From Process Models to Business Process Architectures: Connecting
the Layers . 4

Rami-Habib Eid-Sabbagh and Mathias Weske

Goal-Driven Composition of Business Process Models 16
Benjamin Nagel, Christian Gerth, and Gregor Engels

Integrating Service Release Management with Service Solution
Design . 28

Heiko Ludwig, Juan Cappi, Valeria Becker, Bairbre Stewart, and
Susan Meade

Practical Compiler-Based User Support during the Development
of Business Processes . 40

Thomas M. Prinz and Wolfram Amme

Model Checking GSM-Based Multi-Agent Systems 54
Pavel Gonzalez, Andreas Griesmayer, and Alessio Lomuscio

Towards Modeling and Execution of Collective Adaptive Systems 69
Vasilios Andrikopoulos, Antonio Bucchiarone,
Santiago Gómez Sáez, Dimka Karastoyanova, and
Claudio Antares Mezzina

A Requirements-Based Model for Effort Estimation in Service-Oriented
Systems . 82

Bertrand Verlaine, Ivan J. Jureta, and Stéphane Faulkner

Augmenting Complex Problem Solving with Hybrid Compute Units 95
Hong-Linh Truong, Hoa Khanh Dam, Aditya Ghose, and
Schahram Dustdar

X Table of Contents

Towards Automating the Detection of Event Sources 111
Nico Herzberg, Oleh Khovalko, Anne Baumgrass, and Mathias Weske

Discovering Pattern-Based Mediator Services from Communication
Logs . 123

Christian Gierds and Dirk Fahland

Cloud Service Brokerage CSB 2013

Cloud Service Brokerage - 2013: Methods and Mechanisms 135
Gregoris Mentzas, Anthony J.H. Simons, and Iraklis Paraskakis

A Comparison Framework and Review of Service Brokerage Solutions
for Cloud Architectures . 137

Frank Fowley, Claus Pahl, and Li Zhang

Brokerage for Quality Assurance and Optimisation of Cloud Services:
An Analysis of Key Requirements . 150

Dimitrios Kourtesis, Konstantinos Bratanis, Andreas Friesen,
Yiannis Verginadis, Anthony J.H. Simons, Alessandro Rossini,
Antonia Schwichtenberg, and Panagiotis Gouvas

Towards Value-Driven Business Modelling Based on Service
Brokerage . 163

Yucong Duan, Keman Huang, Ajay Kattepur, and Wencai Du

Introducing Policy-Driven Governance and Service Level Failure
Mitigation in Cloud Service Brokers: Challenges Ahead 177

Konstantinos Bratanis and Dimitrios Kourtesis

Model-Based Testing in Cloud Brokerage Scenarios 192
Mariam Kiran, Andreas Friesen, Anthony J.H. Simons, and
Wolfgang K.R. Schwach

Value-Added Modelling and Analysis in Service Value Brokerage 209
Yucong Duan, Yongzhi Wang, Jinpeng Wei, Ajay Kattepur, and
Wencai Du

Semantic Web Enabled Software Engineering
SWESE 2013

Introduction to the Proceedings of the 9th International Workshop
on Semantic Web Enabled Software Engineering (SWESE) 2013 223

Gerd Gröner, Jeff Z. Pan, Yuting Zhao, Elisa F. Kendall, and
Ljiljana Stojanovic

Management of Variability in Modular Ontology Development 225
Melanie Langermeier, Peter Rosina, Heiner Oberkampf,
Thomas Driessen, and Bernhard Bauer

Table of Contents XI

Towards Automated Service Matchmaking and Planning
for Multi-Agent Systems with OWL-S – Approach and Challenges 240

Johannes Fähndrich, Nils Masuch, Hilmi Yildirim, and
Sahin Albayrak

Re-engineering the ISO 15926 Data Model: A Multi-level Metamodel
Perspective . 248

Andreas Jordan, Matt Selway, Georg Grossmann,
Wolfgang Mayer, and Markus Stumptner

Fluent Calculus-Based Semantic Web Service Composition
and Verification Using WSSL . 256

George Baryannis and Dimitris Plexousakis

Template-Based Ontology Population for Smart Environments
Configuration . 271

Sebastián Aced López, Dario Bonino, and Fulvio Corno

Cloud Computing and Scientific Applications
CCSA 2013

Introduction to the 3rd International Workshop on Cloud Computing
and Scientific Applications (CCSA’13) . 279

Suraj Pandey and Surya Nepal

SLA-Aware Load Balancing in a Web-Based Cloud System
over OpenStack . 281

Jordi Vilaplana, Francesc Solsona, Jordi Mateo, and Ivan Teixido

Are Public Clouds Elastic Enough for Scientific Computing? 294
Guilherme Galante, Luis Carlos Erpen De Bona,
Antonio Roberto Mury, and Bruno Schulze

A Light-Weight Framework for Bridge-Building from Desktop
to Cloud . 308

Kewei Duan, Julian Padget, and H. Alicia Kim

Planning and Scheduling Data Processing Workflows in the Cloud
with Quality-of-Data Constraints . 324

Sérgio Esteves and Lúıs Veiga

Galaxy + Hadoop: Toward a Collaborative and Scalable Image
Processing Toolbox in Cloud . 339

Shiping Chen, Tomasz Bednarz, Piotr Szul, Dadong Wang,
Yulia Arzhaeva, Neil Burdett, Alex Khassapov, John Zic,
Surya Nepal, Tim Gurevey, and John Taylor

XII Table of Contents

SciLightning: A Cloud Provenance-Based Event Notification for Parallel
Workflows . 352

Julliano Trindade Pintas, Daniel de Oliveira, Kary A.C.S. Ocaña,
Eduardo Ogasawara, and Marta Mattoso

Energy Savings on a Cloud-Based Opportunistic Infrastructure 366
Johnatan E. Pecero, Cesar O. Diaz, Harold Castro,
Mario Villamizar, Germán Sotelo, and Pascal Bouvry

Pervasive Analytical Service Clouds
for the Enterprise and Beyond PACEB 2013

Introduction to the Proceedings of the Workshop on Pervasive
Analytical Service Clouds for the Enterprise and Beyond (PASCEB)
2013 . 379

A. Norta, Weishan Zhang, C.M. Chituc, and R. Vaculin

Towards a Formal Model for Cloud Computing . 381
Zakaria Benzadri, Faiza Belala, and Chafia Bouanaka

An Optimized Strategy for Data Service Response with Template-Based
Caching and Compression . 394

Zhang Peng, Xu Kefu, Li Yan, and Guo Li

Model-Driven Event Query Generation for Business Process
Monitoring . 406

Michael Backmann, Anne Baumgrass, Nico Herzberg,
Andreas Meyer, and Mathias Weske

Enabling Semantic Complex Event Processing in the Domain
of Logistics . 419

Tobias Metzke, Andreas Rogge-Solti, Anne Baumgrass,
Jan Mendling, and Mathias Weske

Towards Self-adaptation Planning for Complex Service-Based
Systems . 432

Azlan Ismail and Valeria Cardellini

Towards an Integration Platform for Bioinformatics Services 445
Guzmán Llamb́ıas, Laura González, and Raúl Ruggia

Requirements to Pervasive System Continuous Deployment 457
Clément Escoffier, Ozan Günalp, and Philippe Lalanda

Table of Contents XIII

Towards Structure-Based Quality Awareness in Software Ecosystem
Use . 469

Klaus Marius Hansen and Weishan Zhang

An Adaptive Enterprise Service Bus Infrastructure for Service Based
Systems . 480

Laura González, Jorge Luis Laborde, Mat́ıas Galnares,
Mauricio Fenoglio, and Raúl Ruggia

Dynamic Adaptation of Business Process Based on Context Changes:
A Rule-Oriented Approach . 492

Guangchang Hu, Budan Wu, and Junliang Chen

Flexible Component Migration in an OSGi Based Pervasive Cloud
Infrastructure . 505

Weishan Zhang, Licheng Chen, Qinghua Lu, Peiying Zhang, and
Su Yang

Hybrid Emotion Recognition Using Semantic Similarity 515
Zhanshan Zhang, Xin Meng, Peiying Zhang, Weishan Zhang, and
Qinghua Lu

PhD Symposium

ICSOC PhD Symposium 2013 . 527
Fabio Patrizi, Boualem Benatallah, and Ivona Brandic

Towards the Automated Synthesis of Data Dependent Service
Controllers . 528

Franziska Bathelt-Tok and Sabine Glesner

Multi-agent Approach for Managing Workflows in an Inter-Cloud
Environment . 535

Sofiane Bendoukha

An Information-Centric System for Building the Web of Things 543
Stefano Turchi

Testing of Distributed Service-Oriented Systems . 551
Faris Nizamic

Automation of the SLA Life Cycle in Cloud Computing 557
Waheed Aslam Ghumman

Towards a Dynamic Declarative Service Workflow Reference Model 563
Damian Clarke

XIV Table of Contents

A Context-Aware Access Control Framework for Software Services 569
A.S.M. Kayes, Jun Han, and Alan Colman

Description and Composition of Services towards the Web-Telecom
Convergence . 578

Terence Ambra

Author Index . 585

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 1–3, 2014.
© Springer International Publishing Switzerland 2014

Introduction to the 9th International Workshop on
Engineering Service-Oriented Applications (WESOA’13)

George Feuerlicht1,2, Winfried Lamersdorf3,
Guadalupe Ortiz4, and Christian Zirpins5

1 Prague University of Economics
jirif@vse.cz

2 University of Technology, Sydney
george.feuerlicht@uts.edu.au

3 University of Hamburg
lamersdorf@informatik.unihamburg.de

4 University of Cádiz
guadalupe.ortiz@uca.es

5 SEEBURGER AG
c.zirpins@seeburger.de

The Workshop on Engineering Service Oriented Applications (WESOA’13) focuses
on core service software engineering issues keeping pace with new developments
such as methods for engineering of cloud services. Over the past nine years the
WESOA workshop has been able to attract high-quality contributions across a range
of service engineering topics with recent proceedings published by Springer in the
LNCS series. The ninth Workshop on Engineering Service Oriented Applications
(WESOA’13) was held in Berlin, Germany on 2 December 2013. We have received
twenty-four submissions and following review of each paper by at least three
reviewers we accepted ten papers for presentation at the workshop and publication in
the ICSOC’2013 Workshop Proceedings. The workshop included an excellent
keynote presentation by Tom Baeyens, the CEO of Effektif.com titled "A decade of
open API's", followed by ten papers organized into three sessions. The first session
focused on Business Processes and I.T. Services Management and included papers
titled: From Process Models to Business Process Architectures: Connecting the
Layers by Rami-Habib Eid-Sabbagh and Mathias Weske, Integrating Service Release
Management with Service Solutioning Processes by Heiko Ludwig, Juan Cappi,
Valeria Becker, Bairbre Stewart and Susan Meade, and Practical Compiler-based
User Support during the Development of Business Processes by Thomas M. Prinz and
Wolfram Amme. The second session focused on Automating Process Discovery and
Composition and included papers titled: Towards Automating the Detection of Event
Sources by Nico Herzberg, Oleh Khovalko, Anne Baumgrass, and Mathias Weske,
Discovering Pattern-Based Mediator Services from Communication Logs by
Christian Gierds and Dirk Fahland, and Goal-driven Composition of Business Process
Models by Benjamin Nagel, Christian Gerth, and Gregor Engels. The final session
included papers on Modelling Service-Oriented and Adaptive Systems: Model
Checking GSM-Based Multi-Agent Systems by Pavel Gonzalez, Andreas Griesmayer,
and Alessio Lomuscio, Towards Modelling and Execution of Collective Adaptive

2 G. Feuerlicht et al.

Systems by Vasilios Andrikopoulos, Antonio Bucchiarone, Santiago Gomez Saez,
Dimka Karastoyanova, and Claudio Antares Mezzina, A Requirements-based Model
for Effort Estimation in Service-oriented Systems by Bertrand Verlaine, Ivan J. Jureta,
and Stephane Faulkner, and Augmenting Complex Problem Solving with Hybrid
Compute Units by Hong-Linh Truong, Hoa Khanh Dam, Aditya Ghose and Schahram
Dustdar. The workshop provided an effective platform for exchange of ideas and
extensive discussion of topics covered by paper presentations.

Workshop Organizers

George Feuerlicht, University of Technology, Sydney, Australia, Prague
University of Economics, Czech Republic

Winfried Lamersdorf, University of Hamburg, Germany
Guadalupe Ortiz, University of Cádiz, Spain
Christian Zirpins, SEEBURGER AG, Germany

Program Committee

Marco Aiello, University of Groningen, The Netherlands
Vasilios Andrikopoulos, University of Stuttgart, Germany
Muneera Bano, University of Technology, Sydney, Australia
Alena Buchalcevova, Prague University of Economics, Czech Republic
Anis Charfi, SAP Research CEC Darmstadt, Germany
Javier Cubo, University of Malaga, Spain
Daniel Florian, University of Trento, Italy
Valeria de Castro, Universidad Rey Juan Carlos, Spain
Laura Gonzalez, Universidad de la República, Uruguay
Paul Greenfield, CSIRO, Australia
Dimka Karastoyanova, University of Stuttgart, Germany
Agnes Koschmieder, Karlsruhe Institute of Technology, Germany
Mark Little, Red Hat, United States
Leszek Maciaszek, Wroclaw University of Economics, Poland
Michael Maximilien, IBM Almaden Research, United States
Massimo Mecella, Univ. Roma LA SAPIENZA, Italy
Daniel Moldt, University of Hamburg, Germany
Rebecca Parsons, ThoughtWorks, United States
Achille Peternier, Università della Svizzera Italiana, Switzerland
Pierluigi Plebani, Politecnico di Milano, Italy
Franco Raimondi, Middlesex University, United Kingdom
Wolfgang Reisig, Humboldt-University Berlin, Germany
Norbert Ritter, University of Hamburg, Germany
Nelly Schuster, FZI Forschungszentrum Informatik, Germany
Yi Wei, University of Notre Dame, United States of America
Olaf Zimmermann, ABB, Switzerland
Didar Zowghi, University of Technology, Sydney, Australia

 Introduction to the 9th International Workshop on WESOA’13 3

Acknowledgements. Guadalupe Ortiz thanks for the support from Ministerio de
Ciencia e Innovación (TIN2011-27242). George Feuerlicht wishes to acknowledge
the support of GAČR (Grant Agency, Czech Republic) grant No. P403/11/0574 and
ARC Grant Design of Service Interfaces (2004000242).

The organizers of the WESOA’13 workshop would like to thank all authors for
their contributions to this workshop, and members of the program committee whose
expert input made this workshop possible. Finally, we thank ICSOC’13 workshop
chairs Alessio Lomuscio and Surya Nepal for their direction and guidance.

From Process Models to Business Process

Architectures: Connecting the Layers

Rami-Habib Eid-Sabbagh and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
{rami.eidsabbagh,mathias.weske}@hpi.uni-potsdam.de

Abstract. Business process management has become a standard com-
modity to manage and improve business operations in organisations.
Large process model collections emerged. Managing, and maintaining
them has become a major area of research. Business process architec-
tures (BPAs) have been introduced to support this task focusing on
interdependencies between processes. Both the process and BPA layer
are often modeled independently, creating inconsistencies between both
layers. However, a consistent overview on process interdependencies on
BPA level is of high importance, especially in regard to assessing the im-
pact of change when optimising business process collaborations. In this
paper, we propose a formal approach to extract BPAs from process model
collections connecting process layer and BPA layer for assuring consis-
tency between them. Interdependencies between process models will be
reflected in trigger and message flows on BPA level giving a high level
overview of process collaboration as well as allowing its formal verifica-
tion with existing approaches. We will show the extraction of BPAs from
process model collections on a running example modeled in BPMN.

1 Introduction

In the last decade business process management has become prevalent in public
and private organisations for managing, maintaining, and improving business op-
erations. Large process collections emerge that consist of hundreds or thousands
of process models [1]. The large amount of processes requires to provide process
managers with an overview of the process model collection. Business process ar-
chitectures have been introduced to provide an overview on the processes in an
organisation and their interdependencies. In most business process architecture
(BPA) approaches, processes are only listed along organisational, object-based or
function-based aspects so that process and BPA layer are modeled independently,
leading to inconsistencies between both layers.

However, the production of goods or the delivery of services often is the result
of a complex interaction of many processes that each contribute a part to the final
result. Fig. 1 shows a simple example from the public administration that consists
of three processes. An architect applies for a construction permit by submitting
the relevant documents to the building authority. After an initial evaluation of
the documents the building authority involves several experts depending on the

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 4–15, 2014.
c© Springer International Publishing Switzerland 2014

From Process Models to BPAs: Connecting the Layers 5

A
rc

h
it

ec
t

Architect

Job
received

Apply for
construct ion

permit
Applicat ion

sent
Decision
received

Plan
next step

Job
planned

Bu
ild

in
g

 A
u

th
o

ri
ty

Building Authority

Applicat ion
received

Examine
documents

Evaluate
complete

applicat ion

Notify
applicant

about result
Examinat ion
decision sent

2 to 5 t imes
executed

2 to 5 t imes
executed

Collect expert
reports

Order expert
report

Applicat ion
documents

Formal
decision

Construct ion
information

Ex
p

er
t

Request for
expert
report

received

Examine
documents

Write expert
report

Expert
report
sent

Expert
report

Fig. 1. Simple Construction Permit Application

complexity of the construction project. After the experts provide their evaluation
of the case, the building authority decides on the application and informs the
architect about it.

To depict such interdependencies between processes on a higher level, we pro-
pose a formal approach to extract BPAs proposed by [2,3] from process model
collections and connect process model layer and BPA layer in a consistent way.
The resulting BPA provides an overview on the underlying complex process inter-
dependencies for evaluating the resources required in regard to process instances,
and the impact of change in regard to process optimisation. It also allows for
initial correctness analysis on BPA level with approaches presented in [2,3].

The remainder of this paper is structured as follows: Section 2 introduces
the formal foundations of process model collections, process models and BPAs.
Section 3 presents process structures that depict the interdependencies between
processes, namely, trigger and message flows, as well as their multiplicity aspects.
Section 4 describes the BPA extraction algorithm from process model collections.
Section 5 embeds our approach into current research, followed by Section 6 that
concludes the paper.

2 Foundations

This section introduces the formal concepts for the extraction of business process
architectures from business process model collections. First, we will introduce
the formal definition of process models and process model collections. Then we
present the formal definition of BPAs that depict the interdependencies of the
process models in the process collection on an abstract level.

A process model describes a business process in an organisation. It consists of
nodes (i.e., events, activities, and gateways), data objects, and sequence flows.

6 R.-H. Eid-Sabbagh and M. Weske

Definition 1 (Process Model). A process model M is a tuple (N,D, CF) in
which:
◦ N ⊆ A∪G∪E is the set of nodes being activities A, XOR-gateways G, and
events E

◦ D is a finite non-empty set of data objects.
◦ N and D are disjoint.
◦ CF ⊆ N ×N is the sequence flow between the nodes
◦ •n, n• describe the preset, respectively postset of a node n that contains the
predecessor, respectively successor nodes of n.

In this initial approach we assume and limit our process models to be sequences
(including simple cycles), and structurally and behaviorally sound, i.e., that each
process model has only one start and end node, and that each remaining node
is on a path between those two nodes.

By PM we denote a process model collection. In the following we introduce
the definition of a process model collection and the message flow relations that
depict the interdependencies between processes in a process model collection.

Definition 2 (Process Model Collection). Let M = (M1, ...,Mn) be a set
of process models. The tuple PM = (M, O, F) is a tuple consisting of a set of
process models describing a process model collection in which
◦ Mi depicts each process model in PM , the process model collection.
◦ Oi ⊆ Ai ∪ Ei is a subset of nodes consisting of only activities and events
which take part in the interaction between two or more processes.

◦ MFi,j ⊆ Oi × Oj , i �= j describes the message flow relation between two
process models where (o1, o2) ∈ MF with o1 ∈ M1 and o2 ∈ M2, i.e., the
nodes belong to two different process models.

◦ F ⊆ CF ∪ MF is the overall set of flows in the process model collection
where CF and MF are disjoint.

Process model collections usually contain hundreds or thousands of process
models that describe the operations of a company [1]. The production of goods
or the delivery of services often is the result of a collaboration between several
processes that are loosely connected through message flows or data interdepen-
dencies. However, not all processes are connected with each other.

Business process architectures describe all processes of an organisation and
their interdependencies on an abstract level giving an overview of the process
interdependencies in a process model collection. A BPA consists of BPA subsets
that all together form the BPA of the process model collection. Each BPA subset
describes a group of processes that, e.g., produce a good or deliver a service
in collaboration. These groups can be found on the first level of a business
process architecture. On a lower level, process models describe the control flow
of processes in a detailed and explicit way.

Each extracted BPA process is understood as a sequence of events, which
are interconnected by message and trigger flows, depicting the process inter-
action. The interaction found on process model level needs to be mapped to
two concepts on BPA level, trigger and message flows. Trigger flows explicitly

From Process Models to BPAs: Connecting the Layers 7

show the instantiation of processes, i.e., that one process instantiates another
process by sending it a trigger flow without that, it could not start. Message
flows depict the interaction between two or more instantiated processes. To be
able to show and analyse the amount of instances required in a business process
collaboration BPAs allow to model multiple instances in various ways by BPA
multiplicties. This term subsumes the sending and receiving of variably many
messages and triggers to and fro multiple process instances of several processes.
In [3] correctness criteria for BPAs with multiplicities were proposed as well as
a transformation into Petri nets for model checking them. In the following we
present the formal definition of BPAs.

Definition 3 (Business Process Architecture, Based on [2,3]). A Busi-
ness Process Architecture is a tuple (E, V, L, I, χ, μ,=), in which:

◦ E is a set of events, partitioned in start events, ES , end events EE , interme-
diate throwing events ET , and intermediate catching events EC .

◦ V is a partition of E representing a set of business processes.
◦ v ∈ V is a sequence of events, v = 〈e1, ..., en〉 such that e1 ∈ ES is a
start event, en ∈ EE an end event, and ei ∈ EC ∪ ET for 1 < i < n are
intermediate events.

◦ L ⊆ (ET ∪ EE)× EC is a message flow relation.
◦ I ⊆ (ET ∪ EE)× ES is a trigger relation.
◦ χ ⊆ {((e, e1), (e, e2)) | (e, e1), (e, e2) ∈ L ∪ I} is a conflict relation indicating
flows that are mutually exclusive.

◦ μ : E → P (N0) denotes the multiplicity set of an event.
◦ =⊆ (ET × EC) ∪ (EC × ET) is an equivalence relation between events of
the same process, demanding they send resp. receive the same number of
messages.

The conflict relation χ describes an alternative between two flows from one event
e that exclude each other. E.g., if sending event e has two flows (e, e1), (e, e2) ∈ I
and (e, e1)χ (e, e2), then it sends a trigger flow to either e1 or e2, instantiating
only one of the two processes [3]. The multiplicity set μ contains all valid numbers
of messages or trigger signals an event can send or receive. μ(e) = {1} is called
trivial and is omitted in graphical representation. The preset •e = {e′ ∈ EE ∪
ET | (e′, e) ∈ I ∪ L} of e contains the events with an outgoing relation to e ∈ E.
The set e• = {e′ ∈ ES ∪ EC | (e, e′) ∈ I ∪ L}, called postset of e, consists of the
events with an incoming relation from e ∈ E [2,3].

3 Process Model Elements and Process Structures
Involved in Process Interdependencies

In this section, we present different elements of process models and process struc-
tures that are involved in the interaction between process models showing their
interdependency. We examined process models modeled in different process mod-
eling notations as Event Driven Process Chains (EPCs) or the Business Process
Modeling Notation (BPMN) [4]. An excerpt of the most common structures
observed will be presented and explained in detail.

8 R.-H. Eid-Sabbagh and M. Weske

3.1 Basic Process Elements

EPCs and BPMN are the most prevalent process modeling languages for BPM.
EPCs in general are rather underspecified and lack well defined syntax and
semantics [5]. They consist of only few elements.

Start
Events

Catching
Intermediate

Events

Throwing
Intermediate

Events

End
Events

Task

Loop
Task

Message

Data
Object

Sequence Flow

Message Flow

(a) Basic BPMN Elements

Event

Funct ion

Process
Interface

Data Object

Text Note

Form

@

Email Letter

(b) EPC Elements

Fig. 2. Selected BPMN and EPC Elements

BPMN has become a de facto stan-
dard for BPM and eases the modeling
of complex business operations with a
variety of elements [6]. Fig. 2 shows
selected BPMN (Fig. 2(a)) and EPC
(Fig. 2(b)) elements that are used for
modeling interaction or referring to in-
terdependencies between several pro-
cess models.

The interaction between processes
often is depicted by events, e.g. “doc-
ument received”, or by activities, e.g.
“send documents”. More hidden, but
also commonly found, data access de-
picts an interaction between processes
in regard to writing and later reading
of the same data object.

In Fig. 2(a) a small selection of
the various BPMN start, intermedi-
ate, and end events are depicted.
Start and catching intermediate events
can be grouped as receiving events,
that receive a trigger (start event) or
some information (intermediate catch-
ing event) from an external source.
Throwing intermediate events and end
events can be regarded as sending

events, that send information to other processes. In Fig. 2(a) only message and
signal events were depicted as representation of the various sending and receiv-
ing event types of BPMN 2.0. In many cases the sending of information is also
depicted by a task symbol, e.g. labeled with “send documents” and a message
flow that connects to another process. BPMN differs between sequence flow (the
internal control flow) and the message flow that depicts the interaction with
other processes. Fig. 2(a) shows also the message and normal data object.

The EPC elements in Fig. 2(b) are events, functions, and a group of symbols
representing data objects. EPC function elements are the equivalent to BPMN
tasks. Similarly, they can be used to depict external communication by their
label, e.g., when labeled “receive documents”. In EPCs there are several data
object elements that are depicted on the right part of Fig. 2(b), showing the data
objects form, or normal data object among others. In EPCs there is no specific
message flow symbol, hence in many cases the interaction between processes

From Process Models to BPAs: Connecting the Layers 9

Pr
o

ce
ss

 P
1

Task b

A

Pr
o

ce
ss

 P
2

Task X Task Y Task Z

Pr
o

ce
ss

 P
3

A

Task R

B

Task S

Pr
o

ce
ss

 P
4

A

Task L

B

Task M

Fig. 3. Exemplary Patterns Found in BPMN Process Models

can only be detected by the data objects, events, labels of activities, or the
process interface symbol. The process interface elements can be considered as
special event that instantiates other processes and in this way also expresses an
interdependency between processes.

3.2 Process Interaction Structures

While examining business process models we identified several process structures
that depict business process interdependencies that should be reflected in a BPA.
Fig. 3 shows some exemplary process structures that can be found in BPMN
models but are not restricted to them. In Fig. 3 we see four process models
P1, P2, P3, and P4. Processes P1 and P2 depict different ways of message exchange.
First process P1 sends a message to process P2 via an intermediate throwing
event. Process P2, receiving it via its start event, is instantiated by this message.
The further information exchange between both processes is performed by a
combination of sending and receiving tasks, and sending and receiving events.
In BPMN this exchange is always associated by a message flow, a dotted arc,
that connects the communicating nodes.

Looking at the signal end event of process P1 one can hardly notice from the
process model that it is connected to the start signal events of processes P3 and
P4 by matching labels. Labels of nodes in process models need to be considered
for depicting the interdependency between processes on BPA level. In Fig. 3
process P1 broadcasts a signal and instantiates both processes P3 and P4. We
consider such relations also message flows, although they are hidden in the visual
representation and assume them given for the BPA extraction.

For EPCs this is rather common as they do not have the concept of message
flow between processes. Intermediate sending and receiving events are hard to
identify which can only be done by matching their labels. EPC process interfaces
are used for describing a message flow or instantiating other processes in some
cases. These aspects need to be considered when extracting a BPA from a process
model collection. We regard them as message flow and assume them to be given
when extracting BPAs.

Data objects play an important role and are another source of interdependency
between processes. In BPMN and EPCs the reading and writing of a data object
can be expressed. This needs to be reflected in a given BPA concept. The writing
and reading of a data object can be considered the sending and receiving of

10 R.-H. Eid-Sabbagh and M. Weske

Pr
o

ce
ss

 P
1

2 to 5 t imes
executed

2 to 5 t imes
executed

Task BTask A

Pr
o

ce
ss

 P
2

Task X Task Y

Pr
o

ce
ss

 P
1

Task A

Pr
o

ce
ss

 P
2

Task X

Fig. 4. Loops and Multiplicity Aspects in Process Models

an information. Generally this is modeled by the sending of a message that in
the end contains the reference to the according data object. Depending on the
occurrence of this operation in the process model this can be mapped to a trigger
or message flow on BPA level.

To result in a complete BPA we need to assign multiplicities to BPA process
events. Fig. 4 shows on the left hand side the sending of several messages through
a multi-instance task by process P1 that instantiates process P2 several times
and the receiving of answer messages from several process instances of P2.

The diagram on the right side shows a similar concept, a simple loop construct
in the BPMN model. Task A of process P1 is executed several times instantiating
multiple instances of process P2. Both patterns need to be extracted and trans-
formed to BPA process event multiplicities. In Fig. 1 the multi-instance activities
have an annotation that sets the lower and upper bound of execution times of
that task. Currently we consider only such simple loop and multi-instance con-
structs that can easily be mapped to BPA multiplicities. We assume that the
lower and upper bound of multi-instance activities and loops is given and can
be extracted from the process model elements.

4 Extraction of BPAs

This section describes how a business process architecture is extracted from a
process model collection. This is performed in two steps. First, BPA processes
are derived from the process models in the process model collection. Second, the
interdependencies between the processes in regard to trigger and message flows
are inserted into the BPA, based on the interactions detected in the process
model collection. The result is a BPA showing the content of the process model
collection in an abstract way and highlighting the complex interdependencies for
optimisation and restructuring efforts for example.

Extraction of BPA processes from process models. To derive a BPA process from
a process model in the process model collection we need to detect the elements
that interact with other processes that were introduced in Section 3. Fig. 5
shows the extraction of a BPA from a process model.

From Process Models to BPAs: Connecting the Layers 11

Each process model has one start and one end node that can be an ac-
tivity or an event. Those nodes do not have a preset or postset respectively

A
rc

h
it

ec
t

Job
received

Apply for
construct ion

permit
Applicat ion

sent
Decision
received

Plan
next step

Job
planned

(a) BPMN Process

Construction Permit
Application

e1 e4

e3e2

(b) Extracted BPA Process

Fig. 5. Extraction of BPA Process

in regard to their control flow. The
first node of a process model being
an event or activity maps to the the
start event of the BPA process. Simi-
larly the end node of a process model
maps to the end event of the BPA pro-
cess. Of all intermediary nodes of the
process model only those nodes that
take part in a message flow will be
mapped to the according BPA process
event. E.g. in 5(a) the intermediate
throwing event “Application sent” of
the process is mapped to the intermedi-
ate throwing event e2 in the BPA pro-
cess. If the node was a sending activity
it would also be mapped to an inter-

mediate throwing event. In general all sending nodes, be it events, activities, or
written data objects, forms, documents, that are read from another process in a
later step, will be mapped to an intermediate throwing event of a BPA process.
In a similar way receiving elements are mapped to intermediate catching events
of the BPA process, e.g. the catching intermediate event “Decision received” is
mapped to the intermediate catching event e3 of the BPA process.

All other nodes that are neither a start or end node, nor a node taking part in a
message flow, are ignored and not represented in the BPA process as only elements
that depict interaction are of interest. E.g., the task node “Apply for construction
permit” is not mapped to an intermediate event in the BPA process as it does not
take part in any interaction. If the node to be extracted to a BPA process event
is a loop activity, or taking part in a simple loop as in Fig. 4 depicted, then the
BPA process’s event is annotated with the according multiplicity, the lower and
upper bound of that loop, or that loop activity. If the node is just executed once in
the process model we assign a trivial multiplicity to the event in the BPA process.
The trivial multiplicity is not depicted in a BPA process diagram.

Extracting interdependencies between process models. After having performed
the extraction of all processes in the process model collection we need to add
the trigger and message flows that connect the BPA processes in a BPA. The
interdependencies between processes can be attributed to specific elements in
the process models introduced in the previous section. The main construct are
message flows that connect combinations of the activity and event nodes of
process models. Data interdependency are encapsulated in message flows and
also need to be transformed into according BPA trigger and message flows. We
consider matching signal events in BPMN, and matching events and process
interfaces in EPCs as message flows in our formalism that will be introduced in
the next paragraph. All message flows between process models that have a start

12 R.-H. Eid-Sabbagh and M. Weske

node as receiving partner are mapped to a BPA trigger flow. All message flows
between process models that have an intermediate node as receiving partner are
mapped to a BPA message flow. For each message flow pair found in the process
model collection we introduce the according trigger or message flow in the BPA
by connecting the according sending and receiving events of the BPA processes.

Construction Permit
Application

e1 e4

e3e2

Application
Examinatione5

e8

e6

2...5

Expert Report
Creation

|||e9

e10

e7

2...5

Fig. 6. Extracted BPA construc-
tion permit application

Fig. 6 shows the extracted BPA from the
introductory scenario in Fig. 1. Each pro-
cess model was transformed to a BPA pro-
cess that only consists of the elements that
interact with other processes. The start node
and end node are always extracted to a BPA
process as they show the instantiation and
termination of a process. If the start event
of a BPA process is not in relation with any
other process then the process is instanti-
ated by an external stimulus, in our scenario
the architect receiving a job. All other nodes,
e.g., tasks that are only performed internally
are ignored and not extracted to the BPA
level, e.g. the “Examine documents” task of
the building authority process was not trans-
ferred to BPA level as it concerns no other
process. All interdependencies in form of mes-

sage flows were transformed to either trigger or message flows on BPA level. E.g.,
the sending activity “Order expert report” that targets the message start event
of the “Expert report” process was transformed into a trigger flow in the BPA.
The multiplicity annotation of process two was reflected in the multiplicity set
of the according events.

BPA extraction formalism. The following definition describes the extraction of
BPA processes from process models in a formal way.

Definition 4 (Process Model to BPA Process Transformation). Let
M = (N,D, CF) be a sequential process model of a process collection PM .
Let M ′ = (N ′,D′, CF ′) be a second process model that interacts with M . Let
V = (S, T, C, Z) be a BPA process model, where S is the set of start events,
T the set of throwing intermediate events, C the set of catching intermediate
events, and Z the set of end events. The transformation from a process model
into a BPA process is defined as follows:

◦ S = {es ∈ E|n ∈ N ∧ •n = ∅}
◦ T = {et ∈ E|n ∈ N ∧ n•, •n �= ∅ ∧ (n, n′) ∈ MF,n′ ∈ M ′}
◦ C = {ec ∈ E|n ∈ N ∧ n•, •n �= ∅ ∧ (n′, n) ∈ MF,n′ ∈ M ′}
◦ Z = {ee ∈ E|n ∈ N ∩M ∧ n• = ∅ ∧ (n, n′) ∈ MF,n′ ∈ M ′}
◦ mult(n) = μ(e) denotes that the multiplicity of a BPA event is equal to the
execution times of the process model’s node.

From Process Models to BPAs: Connecting the Layers 13

In the following we describe the consistency criteria between BPA and process
model layer of a process model collection in a formal way. In summary, the
formalism requires that each BPA element of a process collection’s BPA must
have a partner element on the lower more detailed process model layer.

Definition 5 (Consistency Criteria). Let M = (M1, ...,Mn) be a set of
process models. Let PM = (M,MF) be a process model collection. LetA =⋃

Mi∈MAi, E =
⋃

Mi∈MEi. The according BPA = (E, V, L, I, μ, χ,=) needs to
comply to the following consistency criteria.

◦ MF → L ∪ I is a function that maps the message interaction on process
model level to trigger and message flows on BPA level.

◦ ES = {n ∈ (Ai ∪ Ei) : •n = ∅ ∧ n �= •∅}
◦ ET = {n ∈ (Ai ∪Ei) : •n, n• �= ∅ ∧ ∃b ∈ Aj ∪Ej , i �= j : (n, b) ∈ MF}
◦ EC = {n ∈ (Ai ∪ Ei) : •n, n• �= ∅ ∧ ∃b ∈ Aj ∪ Ej , i �= j : (b, n) ∈ MF}
◦ EE = {n ∈ (Ai ∪ Ei) : •n �= ∅ ∧ n• = ∅}
◦ I = {(n1, n2) ∈ MF : �n3 ∈ N : (n3, n2) ∈ CF}
◦ L = {(n1, n2) ∈ MF : ∃n3 ∈ N : (n3, n2) ∈ CF}

The setting of the conflict relation between two processes and the setting equiv-
alence relation has to be performed by an process expert as such information is
difficult to gather from process models. [7] propose to use data objects and their
data object lifecycles to derive conflict relations between processes in Business
Process Data Architectures.

5 Related Work

In in the last decade the research on BPAs has re-gained attention. Dijkman
et al. [8] present an extensive survey of BPA approaches. They provide descrip-
tive examples how to design BPAs for each of the five main BPA categories, func-
tion based, goal-based, action-based, object-based, and reference-based. However,
the approaches presented do not formally link the lower process model level to
the BPA level. Fettke et al. [9] present a survey on BPA approaches that are
business process reference model based. Their focus is rather the evaluation of
classifications of process models than the actual design of BPAs.

Scheer et al. [10] present a BPA approach that consist of four levels; process
engineering, process planning and control, workflow control, and application sys-
tems. They describe how the layers are interconnected but do not provide a
methodology to maintain the layers in a consistent way. Business process models
are classified into categories but their interdependencies are not clearly depicted.

Green and Ould [11] describe and evaluate the RIVA process architecture,
a BPA methodology they developed. They also provide guidelines on how to
create a BPA according to the RIVA methodology. The steps described do not
represent any concrete algorithm to create a consistent BPA for a process model
collection.

14 R.-H. Eid-Sabbagh and M. Weske

[12] propose a value based methodology to provide an overview on business
collaboration and to examine the value of the collaboration for each participant.
Their aim is to depict the value exchange on a higher level providing consistency
rules for their different representation layer. In a similar way our consistency
criteria assure that all elements in the BPA also have a counterpart on process
model level.

Smirnov et al. [13,14] present a methodology for process model abstraction.
Similar to BPAs their aim is to provide an overview on the most important
aspects of a complex process model. Their approach provides a formal definition
for abstracting process elements of a process model. Instead of having a single
view our BPA concentrates on extracting an overview about interdependent
processes and their interaction.

The importance of depicting and analysing service interaction and business
process choreographies are elaborated in [15,16]. Decker and Weske [15] present
an approach to examine the behavioral consistency and compatibility of interact-
ing processes in process choreographies. Using Bi-simulation they identify if two
services have consistent behavior. They focus rather on the interaction behavior
and one to one interaction between two processes rather than considering larger
process collaborations.

Our BPA concept touches before presented approaches. Similarly to [15,16]
it looks at interaction but with a broader scope and on more abstract level. In
reference to other BPA approaches it also gives an overview on a process model
collections focusing on trigger and message flows dependencies, an important
aspect for maintaining and optimising process collaboration. The extraction ap-
proach presented in this paper provides a novel method to generate a BPA from
a process model collection that is consistent with the lower and more detailed
business process layer.

6 Conclusion

Large process model collections need a compact overview for process managers
to easily grasp the interdependencies between process models. Many BPA ap-
proaches provide such an overview but usually do not assure consistency between
the BPA and the process model layer. To be able to look at interdependencies
between process models in regard to instantiation and message flow, we intro-
duced an approach to extract a BPA for a process model collection from its
inherent process models. For this we presented process model elements of EPCs
and BPMN models that partake in process interaction and described often oc-
curring process structures that depict process instantiation and message flows.
Based on those findings we presented an algorithm and formalism to extract
BPA processes and BPA trigger and message flows from the process models in
a process model collection resulting in a consistent BPA.

This was an initial approach that showed the extraction of BPAs from process
model collections with sequential processes. In future work we will look at more
complex process models and develop an approach to map those to our BPA
concept. We also currently work on tool support for BPAs.

From Process Models to BPAs: Connecting the Layers 15

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures,
2nd edn. Springer (2012)

2. Eid-Sabbagh, R.-H., Weske, M.: Analyzing Business Process Architectures. In: Sali-
nesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 208–223.
Springer, Heidelberg (2013)

3. Eid-Sabbagh, R.-H., Hewelt, M., Weske, M.: Business Process Architectures with
Multiplicities: Transformation and Correctness. In: Daniel, F., Wang, J., Weber, B.
(eds.) BPM 2013. LNCS, vol. 8094, pp. 227–234. Springer, Heidelberg (2013)

4. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)
5. van der Aalst, W.M.P.: Formalization and verification of event-driven process

chains. Information and Software Technology 41(10), 639–650 (1999)
6. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process

models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)
7. Eid-Sabbagh, R.-H., Hewelt, M., Meyer, A., Weske, M.: Deriving Business Pro-

cess Data Architecturesfrom Process Model Collections. In: Basu, S., Pautasso, C.,
Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 533–540. Springer,
Heidelberg (2013)

8. Dijkman, R.M., Vanderfeesten, I., Reijers, H.A.: The Road to a Business Process
Architecture: An Overview of Approaches and their Use. BETA Working Paper
WP-350, Eindhoven University of Technology, The Netherlands (2011)

9. Fettke, P., Loos, P.: Classification of reference models: a methodology and its ap-
plication. Information Systems and e-Business Management 1(1), 35–53 (2003)

10. Scheer, A.W., Nüttgens, M.: ARIS Architecture and Reference Models for Business
Process Management. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business
Process Management. LNCS, vol. 1806, pp. 376–389. Springer, Heidelberg (2000)

11. Green, S., Ould, M.A.: The Primacy of Process Architecture. In: CAiSE Workshops
(2), pp. 154–159 (2004)

12. Zlatev, Z., Wombacher, A.: Consistency Between e 3 -value Models and Activity
Diagrams in a Multi-perspective Development Method. In: Meersman, R., Tari, Z.
(eds.) OTM 2005. LNCS, vol. 3760, pp. 520–538. Springer, Heidelberg (2005)

13. Smirnov, S., Reijers, H.A., Nugteren, T., Weske, M.: Business process model ab-
straction: theory and practice. Universitätsverlag Potsdam (2010)

14. Smirnov, S., Reijers, H.A., Weske, M.: A semantic approach for business process
model abstraction. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS,
vol. 6741, pp. 497–511. Springer, Heidelberg (2011)

15. Decker, G., Weske, M.: Behavioral consistency for B2B process integration. In:
Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS,
vol. 4495, pp. 81–95. Springer, Heidelberg (2007)

16. van der Aalst, W.M.P., Mooij, A.J., Stahl, C., Wolf, K.: Service Interaction: Pat-
terns, Formalization, and Analysis. In: Bernardo, M., Padovani, L., Zavattaro, G.
(eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

Goal-Driven Composition

of Business Process Models

Benjamin Nagel, Christian Gerth, and Gregor Engels

s-lab - Software Quality Lab
University of Paderborn

Zukunftsmeile 1
33102 Paderborn, Germany

{bnagel,gerth,engels}@s-lab.upb.de

Abstract. Goal-driven requirements engineering is a well-known ap-
proach for the systematic elicitation and specification of strategic busi-
ness goals in early phases of software engineering processes. From these
goals concrete operations can be derived that are composed in terms
of a business process model. Lacking consistency between goal models
and derived business processes especially with respect to the dependen-
cies between goals can result in an implementation that is not in line
with the actual business objectives. Hence, constraints indicated from
these dependencies need to be considered in the derivation of business
process models. In previous work, we introduced the extended goal mod-
eling language Kaos4SOA that provides comprehensive modeling capa-
bilities for temporal and logical dependencies among goals. Further, we
presented an approach to validate the consistency between goal models
and business process models regarding these dependencies. Extending
the previous work, this paper presents a constructive approach for the
derivation of consistent business processes from goal models. We intro-
duce an algorithm that calculates logically encapsulated business process
fragments from a given goal model and describe how these fragments can
be composed to a business process model that fulfills the given temporal
constraints.

Keywords: Requirements engineering, goal models, business process
models, business process composition.

1 Introduction

Goal-driven requirements engineering has emerged as a paradigm for the elici-
tation and specification of requirements in an early phase of the software lifecy-
cle [9,19]. Goal models support the systematic definition of objectives in terms of
goals that are structured hierarchically in a goal tree. In the domain of service-
oriented enterprise applications these goal models are usually used to capture
business goals that need to be achieved. By the iterative refinement of these
goals, concrete operations are identified, that need to be performed to achieve

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 16–27, 2014.
c© Springer International Publishing Switzerland 2014

Goal-Driven Composition of Business Process Models 17

the defined goals [1,20]. These operations are used as input for the definition of
business processes composing these operations to a sequence of activities.

Recent research addresses the relations between goal models and business
process models by different approaches that explicitly consider the links and
relationships between elements in goal models and business process models [6,8].
The explicit consideration of these links ensures completeness and traceability
among both models.

However, the initial composition of operations to business processes is still an
open challenge.The identified operations cannot be composed in an arbritraryway,
since thedifferent types of relationshipsbetweengoals (AND-,OR-decompositions)
need tobe considered. Inaddition, domain-specificknowledge of stakeholders about
dependencies between goal, e.g. the order in which goals need to be achieved, have
to be considered as well.

In previous work we contributed two extensions addressing this topic. In [14]
we presented an extension of KAOS goal models, termed Kaos4SOA. This
approach enables the specification of temporal and logical dependencies among
goals. Hereby, we enable the elicitation and modeling of the stakeholders’ knowl-
edge about dependencies among goals that need to be considered in the deriva-
tion of business processes. Further, we presented a consistency validation
approach in [13]. We demonstrated the generation of formalized business pro-
cess quality constraints from these goal dependencies and showed how a derived
business process model can be validated against these constraints.

Extending the previous work, we introduce a constructive approach for the
systematic derivation of consistent business process models from Kaos4SOA goal
models. To solve the composition problem in a sufficient way we state the fol-
lowing requirements to our approach. First, it can not be guaranteed that all
operations are constrained in a way, that they can be composed unambiguously,
i.e. there is no unique valid business process model that achieves the goals and
fulfills the defined quality constraints. Second, the usage of model-checking pro-
vides a high degree of automation, but the computational complexity often raises
performance issues especially for large business process models with a high num-
ber of constraints to be validated. To enable an efficient usage of model-checking
that guides the process designers, the number of process elements and constraints
that are validated need to be reduced.

Addressing these requirements, we present a goal-driven approach that enables
the systematic derivation of consistent business process models from goal mod-
els. By analyzing the logical decompositions through the goal model, business
process fragments are calculated encapsulating a set of dependent operations.
Applying a set of business process patterns, the operations in each fragment
are composed considering the dependencies among them. Dependencies between
these fragments are calculated and finally, the fragments are composed to a
business process model according to the temporal dependencies by using model-
checking techniques.

By realizing the presented solution our approach makes the following
contributions:

18 B. Nagel, C. Gerth, and G. Engels

1. A method for the automatic identification and clustering of business process
fragments from a given goal model.

2. A pattern-based approach for the composition of operations in fragments.
3. An model-checking approach for the composition of business process models

based on fragments, which are significantly smaller than the business process
itself.

The remainder of the paper is structured as follows. In Section 2 we introduce
the foundations for our work. Our approach for the goal-driven composition of
business processes is presented in Section 3. Related work is discussed in Section 4
and finally Section 5 concludes this paper.

2 Foundations

2.1 Goal Models

Recent research in goal-driven requirements engineering brought up several
approaches for the elicitation and specification of goal models. For the expres-
sion of these goal models, different notations, like KAOS [5], Tropos [4] and
i* [21] have been developed, that provide languages for the definition of goals
and relationships among them. Due to its expressiveness and understandability
KAOS has been adopted by several approaches [3,8] to specify goal models in
the domain of service-oriented systems.

To illustrate the modeling capabilities of KAOS, an example is depicted in
Figure 1 that defines a simplified goal model from the scenario introduced in [10].
Fulfill book order is the overall root goal that is decomposed to four subgoals.
The AND-decomposition expresses that all subgoals need to be achieved in order
to achieve the higher-level goal. These subgoals can be further decomposed as
exemplary shown for the goal Payment received. This goal is OR-decomposed to
the subsubgoals Payment via credit card and Payment via money order, which
means that the payment can be received by either credit card or money order.

As illustrated by the ellipses, each leaf goal is operationalized to one or more
operations. For example the goalBook delivered is achieved by performing the op-
erationsDeliver to courier andCourier delivers to customer. Thatmeans all opera-
tions assigned to a leaf goal need to be performed in order to achieve it sufficiently.

In previous work we extended KAOS by a concept for expressing temporal re-
lationships between goals and a more precise definition of logical decompositions.
To avoid an increasing complexity of the goal models, the temporal dependen-
cies are expressed by goal annotations. The dependency predecessor/successor
between two goals G1 and G2 expresses that a goal needs to be achieved be-
fore or after another goal. Temporal dependencies can only be defined between
goals that are AND-decomposed through the whole hierarchy of the goal model,
because it is not feasible to define a mandatory temporal dependency among
alternative goals in an OR-decomposition.

An example of an order dependency for the goal model depicted in Figure 1
is the dependency between goal Books delivered and Books available that states

Goal-Driven Composition of Business Process Models 19

Fulfill
book order

Quote give

Books
delivered

Books
available

Payment
received

Payment via
credit card

Payment via
money order

Books
ordered

Books
acquired

Customer
requests quote

Provide quote

Place order to
supplier

Supplier
ships books

Books arrive at
warehouse

Deliver
 to courier

Courier delivers
to customer

Get credit
card number

Get credit card
authorization

Charge credit
card

Customer sends
money order

Receive money
order

AND

AND

OR

Fig. 1. Exemplary KAOS Goal Model

that the books cannot be delivered until they are available. To express this de-
pendency the goal Books delivered is annotated with Order.PredecessorBooks
available. A temporal succeeding dependency can be specified between the goals
Payment received and Books delivered. To make sure that the books are deliv-
ered after the payment has been received the following annotation can be used.
The strict order dependency is expressed with the annotation Order.Successor

Books delivered.
To enable a more precise specification of the decomposition relations between

goals we introduced the XOR-decomposition for the explicit distinction of de-
pendencies from the inclusive-OR provided by the KAOS notation. Applied to
our running example the OR-decomposition of goal Payment received is not pre-
cise enough, since the OR-decomposition between subgoals Payment via credit
card and Payment via money order should be exclusive as the customer will pay
either by credit card or money order and not both. The updated decomposition
with the corresponding conditions is depicted in Figure 2. Our extension also
facilitates the definition of conditions for inclusive-OR decompositions.

2.2 Business Process Modeling

Business process models provide visual representations for business processes
by describing sequences of activities and gateways connected by edges, defining
the order in which the activities are performed. These models enable a com-
mon understanding, the analysis of business processes, and also define the re-
quired composition of services. To precisely specify business process models in an

20 B. Nagel, C. Gerth, and G. Engels

Payment
received

Payment via
credit card

Payment via
money order

XOR

Condition Payment.CreditCard =
True

Condition Payment.CreditCard =
False

Fig. 2. Exemplary Definition of XOR-decomposition

understandable way, existing process modeling languages like BPMN [16] or
UML activity diagrams [15] can be used.

In our approach, we leverage the generic business process modeling language
introduced in [7]. Business process models defined in this language can be trans-
lated to BPMN. Hence, the usage of this language does not reduce the applica-
bility of our approach. Compared to existing modeling languages this notation
supports the explicit definition of business process fragments. A business process
fragment encloses a set of business process model elements. These fragments are
single-entry-single-exit fragments, that means they have a unique single entry
node and a unique one exit node.

3 Approach

To enable the derivation of business process models from goal models, we intro-
duce the goal-driven approach illustrated in Figure 3. As input for our approach
we use a given goal model following the Kaos4SOA notation and a set of CTL
constraints. These constraints are formal representations of the temporal and
logical dependencies that are identified and defined by the approach presented
in [13]. By an iterative refinement the used CTL constraints are expressed on
the level of operations, i.e. they express constraints between operations.

In the first step, business process fragments which cluster logically related
operations are identifed from the goal model. The operations in each fragment
are composed using a set of business process patterns according to their logical
dependencies in the goal model. By using the given CTL constraint, temporal
dependencies between fragments are calculated based on the clustered opera-
tions. Using these constraints the fragments are composed to a valid business
process model. The three steps of our approach are explained in the following.

3.1 Clustering of Business Process Fragments

The first step of our approach calculates business process fragments from a
given goal model. To that extent, we identify operations that can be clustered in
fragments. The operations in the fragments can be composed by applying a set
of defined business process patterns based on their logical relationships. For this
purpose, all decomposition links through the goal model need to be considered
for each operation. Therefore we provide a top-down approach starting from the
root goal that considers the complete hierarchy of decomposition links.

Goal-Driven Composition of Business Process Models 21

Goal
model

CTL
constraints

Business process model

Calculation of temporal
dependencies between fragments

Composition of business process
model

Clustering of business process
fragments

Section 3.1

Section 3.2

Section 3.3

Fig. 3. Conceptual Overview of the proposed Approach

The clustering algorithm is specified in Algorithm 1 and explained in the
following. Starting from the root goal, the first fragment is created representing
the overall business process that is composed. Then, for each child-goal the
algorithm is executed recursively. For each child, that is not a leaf-goal, the
further processing depends on the type of decomposition that the goal is part
of.

Following the KAOS semantics all goals and it’s assigned operations are con-
sidered in the business process composition, but of course some goals may be
optional, e.g. in an OR-decision. Hence, an AND-decomposition does not intend
an additional logical dependency despite the fact that all goals need to be con-
sidered. That means, we are able to create logically independent fragments for
each goal in an AND-decomposition. The composition of the different fragments
with respect to the temporal dependencies among them is part of the following
steps.

In our approach the goals are used as temporary elements in the business
process model that are refined to subgoals and finally replaced by the operations
fulfilling these goals. To compose the goals and operations according to their
logical relations, we leverage the business process patterns proposed in [18]. An
overview of the patterns used in our algorithm is given in Figure 4. Goals in an
OR-decomposition are composed by applying an inclusive-OR gateway (P3). In
the case of an conditional OR-decomposition the defined conditions are added to
the OR-gateway and pattern P4 is applied. The goals in an XOR-decomposition
are composed by an exclusive OR gateway using pattern P5.

22 B. Nagel, C. Gerth, and G. Engels

Algorithm 1. Cluster Business Process Fragments

function ClusterFragments(Goal goal, Fragment frag)
if goal.isRootGoal() then

processModel = createProcessModel(goal.name)
for all childGoal in goal.getChildGoals() do

ClusterFragments(childGoal, processModel)

else if goal.isLeafGoal() then
for all operation in goal.getOperations() do

newFrag.addElement(operation)
if goal.getOperations().count() ≥ 2 then

if operation canBeParallelizedWithOperationIn(newFrag) then
composition = applyProcessPattern(P2)

else
composition = applyProcessPattern(P1)

replace(goal, composition)
else

replace(goal,operation)

else
if goal.isPartOfORDecomposition then

applyProcessFragment(P3)
else if goal.isPartOfCondORDecomposition then

applyProcessFragment(P4)
else if goal.isPartOfXORDecomposition then

applyProcessPattern(P5)
else � AND-decomposition

newFrag = createFragment(goal.name)
frag.addElement(newFrag)

for all childGoal in goal.childGoals do
ClusterFragments(childGoal, newFrag)

Following the algorithm each goal in the model is refined until a leaf goal is
reached. Finally, each goal is replaced by its operations. If a goal is operational-
ized by exactly one operation, it is replaced by it. More than one operation
means that all operations need to be performed to achieve the stated goal. In
this case it is checked if the execution of the operations can be parallized. De-
pending on that, the pattern P2 (parallel execution possible) or P1 (no parallel
execution possible) is applied to compose the operations. The order in which the
operations need to be performed in a sequence (P1) is decided manually by the
business process designer.

An exemplary execution of the algorithm for an excerpt of the running
example is shown in Figure 5, which uses the running example introduced in
Section 2.1 with the XOR decomposition depicted in Figure 2. Following the de-
composition links in the goal model, a new fragment Payment received is created
and added to the process Fulfill book order. The two subgoals are added to the
fragment by applying pattern P5, adding an exclusive OR. The temporary goal
construct is then replaced by its operations. In this example the goal Payment

Goal-Driven Composition of Business Process Models 23

A

B

A

B

Condition

False

True

A

B

Condition 1

Condition 2

A

B

(P1) Sequence

(P2) Parallel split

(P3) Inclusive OR

(P4) Conditional inclusive OR

(P5) Exclusive OR (XOR)

Fig. 4. Business Process Patterns (based on [18])

via credit card is replaced by three operations composed as a sequence (pattern
P1).

The result of the presented algorithm is a frame for a business process model
that encapsulates all required operations clustered in business process fragments.
To complete the business process model, the fragments need to be composed. For
this purpose, we first calculate temporal dependencies between these fragments
(Section 3.2) and provide a composition approach based on model-checking (Sec-
tion 3.3).

3.2 Calculation of Temporal Dependencies between Fragments

To enable the composition of the clustered fragments temporal dependencies
between operations contained in the fragments need to be considered. As dis-
cussed in Section 2.1 temporal dependencies can only be defined between goals in
AND-decompositions. Following Algorithm 1 the goals in AND-decompositions
are encapsulated in different fragment, which means that temporal dependencies
are always stated between operations in different business process fragments.

Algorithm 2 provides a precise definition of the proposed calculation approach.
The algorithm iterates through all stated temporal constraints. Each constraint
is defined by expressing temporal relations between two or more operations. To
derive constraints for fragments, each operation in the constraint is replaced by
the business process fragment it is assigned to.

24 B. Nagel, C. Gerth, and G. Engels

Process Fulfill book order

Process Fulfill book order

Fragment Payment received...

Process Fulfill book order

Fragment Payment received...

Payment by
credit card?

Yes

No

Fragment Payment received

Get credit card
number

Get credit card
authorization

Charge
credit card

createFragment(Payment received)
add(Payment received)

applyPattern(P5)

applyPattern(P1)

Payment via
credit card

Payment via
money order

Payment by
credit card?

Yes

No Payment via
money order

Fig. 5. Exemplary Execution of Composition Algorithm

Algorithm 2. Calculate Temporal Dependencies between Fragments

function CalculateFragDependencies(TempConstraints tempConstraints)
for all tempConstraint in tempConstraints do

operations = tempConstraint.getElements()
for all operation in operations do

tempConstraint.replaceoperation, operation.getFragment()

As a result, the algorithm provides a set of CTL constraints that define tempo-
ral dependencies among the clustered business process fragments. For example,
the temporal succeeding dependency between two fragments F1 and F2 is ex-
pressed in CTL as follows: AG(F1 → AF (F2)). In the next step, the identified
fragments and the dependencies among them are used to compose a valid busi-
ness process model that fulfills the given constraints.

Goal-Driven Composition of Business Process Models 25

3.3 Composition of Business Process Model

Depending on the specification in the goal model, the number of constraints it-
self as well as the number of constrained fragments can vary. That means, not
all business process fragments do have temporal relations with other fragments.
As a consequence, in some cases only parts of the business process model can be
composed automatically based on the given constraints. For all unconstrained
fragments our approach favors the manual composition rather than automati-
cally choose an arbitrary position.

Therefore, the composition of the business process model in our approach com-
prises two steps. In the first step, a valid composition of the constrained business
fragments is calculated automatically. Second, the unconstrained fragment are
integrated manually into the business process model.

For the constructive composition of a business process based on a set of con-
straints the possible combinations need to be validated. Details for the definition
of possible compositions and their verification can be found, e.g. in [17]. The ad-
vantage of our approach is that not all combinations of all available operations
need to be considered. By using the clustered business process fragments, the
number of elements that need to composed and as consequence the number of
combinations that need to be verified can be reduced significantly.

After a valid composition has been identified, the unconstrained fragments
need to integrated into the business process model as well. We consider this a
completely manual step based on the domain knowledge of the business analyst.

4 Related Work

The derivation of operationalized requirements and architectural models has
been addressed by recent research [12,20] which does not specificly address the
composition of business process models. In [22] a pattern-based approach is
presented that supports the derivation of component diagrams from goal models.
While this work focuses on structural aspects the derivation of business process
models is not considered in terms of a concrete algorithm for the calculation of
a process composition.

For the domain of adaptive, service-oriented system the work in [2] intro-
duces an approach for the automated service composition by matching pre- and
postconditions of operations from goal models. This approach requires an exact
matching of these conditions to provide a complete composition.

In [11] an approach for the derivation of business processmodels from goalmod-
els is proposed. By presenting a defined procedure this work provides methodical
guidance for the identification of services and their compositions, but does not pro-
vide any kind of automated composition capabilities. Based on a qualitative pref-
erence analysis, the framework presented in [17] automatically calculates service
compositions. Compared to our approach this framework does not consider tem-
poral constraints for the composition and does not address the problem of checking
constraints for evolving business process models. In contrast, our approach explic-
itly considers the efficient validation against constraints. The improvement of the

26 B. Nagel, C. Gerth, and G. Engels

efficiency is achieved by applying the concept of business process fragments. By
defining the constraints on the level of these fragments, the number of required
validations can be reduced significantly.

5 Conclusion and Future Work

In this paper, we presented an approach for the guided composition of business
process models in a goal-driven way. We proposed an algorithm that identifies
and clusters related operations to business process fragments and we describe
how these fragments can be composed to a business process model by using
model-checking techniques. In summary, we provide an approach that provides
a high degree of automation but also considers involvement of domain experts
and business analysts during the composition.

As future work, we aim for a tool implementation of the presented approach.
Based on the existing workbench presented in [13,14] the composition algorithm
will be implemented by integrating a model checker (e.g. NuSMV1). Using this
tool support we will perform comprehensive case studies to evaluate the efficiency
and applicability of our approach. A main aspect in the evaluation will be the
investigation of the actual improvement of the model-checking scalability by
using the business fragments.

References

1. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements
from goal models. In: Proc. of the 31st Int. Conf. on Software Engineering, ICSE
2009, pp. 265–275. IEEE Computer Society (2009)

2. Baresi, L., Pasquale, L.: Adaptive Goals for Self-Adaptive Service Compositions.
In: 2010 IEEE International Conference on Web Services (ICWS), pp. 353–360.
IEEE (2010)

3. Baresi, L., Pasquale, L.: Adaptation Goals for Adaptive Service-oriented Architec-
tures. In: Relating Software Requirements and Architecture, pp. 161–181. Springer,
Heidelberg (2011)

4. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS:
An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems (2004)

5. Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed concept acquisition
in requirements elicitation. In: Proceedings of the 6th International Workshop on
Software Specification and Design, IWSSD 1991, pp. 14–21. IEEE Computer So-
ciety Press (1991)

6. Dubois, E., Petit, M., Yu, E.: From Early to Late Formal Requirements: A Process-
Control Case Study. In: Proc. of the 9th Int. Workshop on Software Specification
and Design, p. 34. IEEE Computer Society (1998)

7. Gerth, C., Küster, J.M., Engels, G.: Language-Independent Change Management
of Process Models. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795,
pp. 152–166. Springer, Heidelberg (2009)

1 http://nusmv.fbk.eu/

http://nusmv.fbk.eu/

Goal-Driven Composition of Business Process Models 27

8. Koliadis, G., Ghose, A.: Relating Business Process Models to Goal-Oriented
Requirements Models in KAOS. In: Hoffmann, A., Kang, B.-H., Richards, D.,
Tsumoto, S. (eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 25–39. Springer,
Heidelberg (2006)

9. Lapouchnian, A.: Goal-Oriented Requirements Engineering: An Overview of the
Current Research. Requirements Engineering 8(3), 32 (2005)

10. Liaskos, S., McIlraith, S., Sohrabi, S., Mylopoulos, J.: Integrating preferences into
goal models for requirements engineering. In: 2010 18th IEEE International Re-
quirements Engineering Conference (RE), pp. 135–144 (2010)

11. Lo, A., Yu, E.: From Business Models to Service-Oriented Design: A Reference
Catalog Approach. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.)
ER 2007. LNCS, vol. 4801, pp. 87–101. Springer, Heidelberg (2007)

12. Mart́ınez, A., Pastor, Ó., Mylopoulos, J., Giorgini, P.: From Early to Late Re-
quirements: A Goal-Based Approach. In: Kolp, M., Henderson-Sellers, B., Moura-
tidis, H., Garcia, A., Ghose, A.K., Bresciani, P. (eds.) AOIS 2006. LNCS (LNAI),
vol. 4898, pp. 123–142. Springer, Heidelberg (2008)

13. Nagel, B., Gerth, C., Post, J., Engels, G.: Ensuring Consistency among Business
Goals and Business Process Models. In: Proceedings of 16th IEEE International
Enterprise Distributed Object Computing Conference (EDOC), pp. 17–26 (2013)

14. Nagel, B., Gerth, C., Post, J., Engels, G.: Kaos4SOA - Extending KAOS Mod-
els with Temporal and Logical Dependencies. In: Proceedings of the CAiSE 2013
Forum at the 25th International Conference on Advanced Information Systems
Engineering (CAiSE), pp. 9–16 (2013)

15. OMG. OMG Unified Modeling Language (OMG UML) Superstructure (2010)
16. OMG. Business Process Model and Notation (BPMN) (2011)
17. Oster, Z.J., Ali, S.A., Santhanam, G.R., Basu, S., Roop, P.S.: A service composition

framework based on goal-oriented requirements engineering, model checking, and
qualitative preference analysis. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.)
ICSOC 2012. LNCS, vol. 7636, pp. 283–297. Springer, Heidelberg (2012)

18. Russell, N., Hofstede, A.H.M.T., Mulyar, N.: Workflow ControlFlow patterns: A
revised view. Technical report (2006)

19. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of the Fifth IEEE International Symposium on Requirements Engi-
neering, pp. 249–262 (2001)

20. van Lamsweerde, A.: From System Goals to Software Architecture. In: Bernardo,
M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg
(2003)

21. Yu, E.S.-K.: Towards Modeling and Reasoning Support for Early-Phase Require-
ments Engineering. In: Proc. of the 3rd IEEE Int. Symposium on Requirements
Engineering, pp. 226–235. IEEE Computer Society (1997)

22. Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.: From Goals to
High-Variability Software Design. In: Foundations of Intelligent Systems, pp. 1–16
(2008)

Integrating Service Release Management

with Service Solution Design

Heiko Ludwig�, Juan Cappi, Valeria Becker, Bairbre Stewart, and Susan Meade

IBM Almaden Research Center and IBM Global Technology Services
650 Harry Road, San Jose, CA 95120, USA
{hludwig,jmcappi,beckerv}@us.ibm.com

http://www.almaden.ibm.com/

Abstract. Web-delivered services such as Web or Cloud services are
often made available to users in a fast cadence of releases, taking ad-
vantage of the single deployment environment of a centrally controlled
service. This enables organizations to bring service enhancements to cus-
tomers in a timely way and respond quickly to market demands. Orga-
nizations use multiple Web-delivered services by one or multiple vendors
to compose complex solutions to their business problems in conjunction
with standard applications and custom implementation and delivery ser-
vices. Designing these complex solutions often takes considerable time
and multiple new releases of a service and a changed service roadmap
may have influence on a customer’s solution design. Existing IT service
management and software development best practices do not consider the
relationship between service release management and service design suf-
ficiently to address frequent releases and changes to a service roadmap.
This paper discusses the relationship from both the point of view of
the service provider and the service customer and proposes an approach
to manage those interdependencies between service design and release
management.

Keywords: Release management, service management, cloud services,
web services, best practices, service solution design.

1 Introduction

Being based on a virtualization layer and being accessed online, Web and Cloud
services can be and typically are continuously improved with new features by
their providers, often employing an ”agile” method and following the paradigm of
continuous delivery [1]. This enables service providers to bring service enhance-
ments to customers in a timely way and respond quickly to market demands.
Facebook, for example, upgrades its service multiple times per month. This holds
for Web services and all abstraction levels of a Cloud, from infrastructure to soft-
ware. While this high-frequency approach to release management enables clients

� Thanks to Tim Kensing and John Hallowell of IBM Global Technology Services for
their guidance.

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 28–39, 2014.
c© Springer International Publishing Switzerland 2014

http://www.almaden.ibm.com/

Service Release Management and Service Design 29

to take advantage of improvements immediately it requires a deployment pro-
cess different from the deployment to a traditional, more static service delivery
environment.

In typical traditional service management settings this has not been an issue.
In an in-house service management situation, adding new functionality would
have been part of a global change process in which all stakeholders would have
been consulted. This would include ongoing solution development using these
services, which we refer to in this paper as solutioning. Solutioning refers to
the process of designing a service in all its aspects, including its use of services,
planning the purchasing of hardware and software as well as planning software
development and deployment. Best practices from multiple bodies have been
defined to address this issue such as the IT Infrastructure Library volume on
Service Transition (ITIL) [2] or the CobiT process ”Manage Changes” [3]. Service
users can weigh in on service priorities and the details of features needed or the
evolution of existing features. Release management and change management are
part of service transition in the ITIL sense, where a number of changes being
associate with a release.

Web or Cloud services to be consumed by outsiders mostly consider release
management from a go-to-market and from an operational perspective. Software
product (line) management and - more recently and derived from it - service
product management identify and organize features of services and group them
into releases according to technical synergy and market demand [4]. Services are
launched to the market or tested beforehand with key customers, potentially
adjusting service features based on feedback. Several approaches exist to man-
age changes to existing services in a way that includes current users, e.g. [5]
and, more generally [6]. However, service management best practices and the
service product management discipline do not offer adequate guidance how to
relate a complex service solution design process - or a set of them - defining a
comprehensive service implementation project with fast-paced release processes.

Different approaches such as [7] have been proposed to reconcile an agile de-
velopment approach with software product management. This generally entails
extending SCRUM principles to the software product process but does not ad-
dress how to provide guidance to service designers planning to use the process
nor how to use the planned service solution designs as inputs to the product
design.

The objective of this paper is to discuss the interdependencies of solutioning
and service release processes, propose a mechanism to manage these interdepen-
dencies, and outline how both service provider and a service client defining a
solution benefits from this approach. Along these lines the paper is organized as
follows: In the next section we discuss issue of integrating solutioning and release
management. Subsequently, we provide a model of the interdependent artifacts
and sketch how the interdependent processes can be managed. This is followed
by a description of an example implementation. Finally, we conclude discussing
the benefits for stakeholders.

30 H. Ludwig et al.

2 Issues Integrating Service Solution Design with Release
Management

As discussed in the introduction of this paper, the solutioning or service design
process traditionally considers designing higher-level services or applications as
a service composition or a service implementation. This can be based on one
or more services being provided by potentially different service providers. Using
services from differing parties has become quite common practice, for example,
Web or mobile applications integrating login services, payment services or Cloud
services, performing their own capacity management. The advent of fast release
cycles, in part driven by agile development approaches or just the advantage to
build on a single deployment platform, brought with it the need to deal with
frequent releases and potential changes of release plans.

Core to any integration of the solutioning and release management processes
is the notion of the roadmap of future releases. Releases have a release date asso-
ciated with them and a set of features, which are available from the time of the
release date on. New roadmaps can be published by a service provider, changing
feature assignments to releases, release dates and introducing new features and
releases.

Dealing with a roadmap in a fast-paced environment raises issues both from
a perspective of the solutioning process as well as from the release management
perspective: How to put together a good roadmap for the overall benefit of the
service provider? How to design the best solution given the roadmaps for a given
set of services available?

2.1 Complex Solution Design in a Context of Fast-Evolving Services

Complex solutioning is usually conducted in a team that plans a technical
implementation - the solution - for a problem and also considers how it can
be delivered from a timing and business perspective. It is conducted in the form
of a structured process that adds different technical, managerial, and business
specialists to the team as needed. The deliverables of the solutioning process
typically include:

– a list of resources to be used, including Web-delivered services, software and
hardware products, as well as implementation labor;

– a solution design that outlines how all the different services and products
will deliver the final result;

– a project plan that identifies which resources are needed at which point in
time;

– a business case justifying the investment.

Solution design decisions related to service usage depend on the set of features
the services will provide. For example, if a solutioning team is considering using
an infrastructure-as-a-service Cloud service to run its application it might need
to also use a backup service. If the Cloud service provides an image backup

Service Release Management and Service Design 31

feature the solution may take this into consideration in their solution design. If
the Cloud service does not provide this feature, the solution might plan for a
separate backup service. The Cloud service’s roadmap may plan for image-level
backup in the future. If the project plan foresees this feature at the time of
need this service can be used. Else another backup service may be used in the
interim. A planned feature may justify using a more expensive service - in our
case for the Cloud service - if the future feature availability makes the additional
backup service obsolete. As this example shows, the understanding of a service’s
roadmap is important for the solutioning process using fast-evolving services.

Solutioning using a set of services that are rapidly adding features faces differ-
ent challenges depending on the context in which the solutioning is performed.
The way solutioning and release management integrate depends on who the
service roadmap – or its parts – is known to.

If the solutioning team is part of the same organization than the service
provider the roadmap can be fully visible to the solutioning team. While fre-
quent roadmap changes might be disruptive to the solutioning processes, this
is acceptable since no external client commitment has been made to a client.
A provider-side solutioning process offers more flexibility to the service release
management. However, provider-side solutioning is often not possible or desirable
from a client perspective wanting to build solutions based on multiple providers’
services.

If the solutioning team in not in the provider organization it is either a user
organization or a 3rd party designing a solution for the commissioning organi-
zation. In this scenario the solutioning team wants to understand the roadmaps
of all services under consideration. Disruptive changes to the roadmap such as
moving out feature release dates or removal of features from the roadmap alto-
gether are undesirable and reflect negatively on the service provider. A service
provider has to trade off announcing its features ahead of time, attracting client,
with the potential need of withdrawing a feature or moving it out if unforeseen
obstacles to feature implementation occur. This may include underestimated
technical effort, service capacity problems or changes in product strategy.

Once a solution has been created containing Web-delivered services the client
organization wants to obtain a commitment regarding the roadmap to be able to
implement its project plan. If a roadmap of a service changes when solution im-
plementation started a change process with adequate mitigation to the changes
in feature availability has to performed. Both, service provider and client will
want to avoid such a roadmap change.

2.2 Release Management with Roadmaps

While a service user benefits from having service roadmap information available
early and reliably a service provider benefits from understanding which clients
plan to use features of its service, maybe also for which purpose. Specific client
plans to use features enables much more accurate analysis about feature demand
than traditional methods of elicitation such as collecting requirements from ex-
isting clients, focus groups and other marketing instruments. This enables a

32 H. Ludwig et al.

service provider to prioritize features and design the roadmap correspondingly.
If the number of clients is sufficient a provider’s release management can per-
form further analysis of feature demand such as feature correlation etc., leading
to better input for release planning.

As mentioned in the previous section, the benefit of collecting information of
planned feature use must be traded off with the risk of disappointing potential
clients from a service provider release management’s point of view. The further
back planned releases are the more susceptible their features are to delays or
changes. Also, release management may learn that certain features it published
may not be very popular after all and move them back or remove them from
the roadmap. This might cause opposition from the few customers that planned
using them and needs to be mitigated. In any case, the service provider’s release
management can analyze impact of changes to a roadmap based on solutioning
projects underway and those already committed to a customer.

3 Approach to Manage Solution and Feature
Interdependencies

Coordinating the interdependence between solutioning and release management
relies on a shared model of roadmaps, solutions and their relationships. Based
on this shared model stakeholders in the service can coordinate how to best fit
solutions onto services and how to best shape the service roadmap given feature
demand by solutions.

3.1 Model of Dependencies

The notion of a roadmap in the proposed approach is taken from the service and
software management disciplines: Features are associated with releases. Releases
have a release date. A roadmap is a set of releases published as a version at
a specific time. The structure is represented as a graph whose leaf nodes are
features as illustrated in figure 1.

The example shows a roadmap V1 for a Cloud service with three planned
releases, each labeled with the calendar week of the planned release. Each release
has two or three features associated with it.

New versions can be made available by the service provider’s Release Man-
agers (RMs) when release plans change, resulting in a new version of the graph.
Changes to roadmaps may contain changed release dates, moves of features from
one release to another, addition and removal of features as well as feature merges,
splits and changes to a feature’s scope. Figure 2 illustrates possible roadmap
changes.

In this example the new version of the roadmap includes multiple changes:
Feature F3 has been moved from Release 1 to Release 2. Feature 5 has been
removed from the roadmap. A new feature - F8, (CentOS support) - has been
added to Release 3 and the release date of Release 3 has been moved from the
2nd week to the 4th week of 2014.

Service Release Management and Service Design 33

Fig. 1. Roadmap graph

Fig. 2. Modified, new version of a roadmap graph

Interdependencies between features of a service roadmap and solutioning pro-
cesses are represented in the dependency matrix of this service. The relationship
of a solutioning process and a feature is a need and is associated with a specific
need data when the project plan of the solution requires it to be available.

Figure 3 illustrates the dependency matrix of our example roadmap - the
feature set of roadmap V1 and 4 assumed solutions. Each solution requires a
different set of features for its specific solution, each at specific dates. Solutions
in the examples are labeled with their state, planned or committed. The depen-
dency matrix is updated each time a new roadmap version is published or a new
solution is added.

In addition to feature need dates, solutioning teams may also provide more
information about their solution for the purpose of analyzing better the impact
of roadmap changes onto solutions affected. The set of attributes depends on
the specific service domain but may include the number of users using the so-
lution, the cost or revenue associated with it, metrics of the quantity of service

34 H. Ludwig et al.

Fig. 3. Dependency matrix

consumption such as the number of VMs in a Cloud scenario and so forth. This
enables to better assess the impact of roadmap changes in terms of those metrics
meaningful to release management and solutioning teams.

A solution that works with multiple services - and hence multiple roadmaps -
must consolidate these roadmaps for an overall point of view. Likewise, a service
provider publishing roadmaps for different services individually also needs to
consolidate the respective dependency matrices.

3.2 Managing Interdependencies

Managing interdependencies falls into 3 settings: The solutioning team self-
manages its roadmap dependencies; the release management assess its roadmap
impact; a coordination board comprising both solutioning and release manage-
ment to make solution commitments and to resolves issues.

1. As solutioning teams add their solutions to the dependency matrix they can
analyze themselves whether their project plan is feasible with their solution
design they have chosen and the feature dependencies it entails. If changes
occur to the roadmap they can choose to change their solution design to,
say, take advent of a new feature or mitigate the postponement of another
feature. This self-service approach entails small coordination overhead and
self-enables solutioning teams.

2. Release managers can use information from the dependency matrix for their
roadmap planning. Based on the time of need, features can be assigned to
later releases if not much need has been articulated yet or moved to earlier
ones if there is significant demand. Features can also be prioritized based on
properties of the solution that plans to use them, e.g., the number of VMs
or the associated revenue, as discussed above.

Service Release Management and Service Design 35

This roadmap-based approach brings a significant advantage to release man-
agement that a traditional, market research-based approach does not have;
roadmaps can be based, in part, on actual planned or committed demand.

3. The Coordination Board is the collective of release management and other
service delivery representatives as well as the solutioning teams. It is the body
that commits to planned solutions and thereby moves them from panned to
committed states. This typically entails a commitment to a client, e.g., a
sale or statement of work.

In some cases solutioning teams will disagree with roadmap decisions of
release management that are to the disadvantage of their solutioning project.
The solutioning process and release management have to reconcile their dif-
ferences and find roadmap adjustments, short term solutions or alternate
solution designs to address the needs of service users. In current practice
this is a quite common occurrence and many service providers spend much
time on board meetings if roadmaps are used, which is primarily the case for
provider-internal solution teams. Managing a dependency matrix will enable
a more fact-based discussion based on total feature demand by solutions.

By maintaining the dependency matrix along with roadmap and solution
information significantly reduces the coordination effort between solutioning and
release management based on this shared, available information.

4 Implementation

The proposed approach has been implemented for evaluation in current practice
in the Cloud space. The system is a Web 2.0 application which is divided in
several modules customized for the primary stakeholders release management,
solutioning and coordination board, as shown in Figure 4.

The Roadmap Module provides functionality for release managers to record
when a release plan changes, creating a new version of the roadmap. A new
version will be in draft state until it is published. When the roadmap is in draft
state, release managers are able to enter a new release by applying changes to
the previous one, e.g., change release dates, move features from one release to
another, as well as add and remove features from the roadmap. Once the changes
are done the new version can be published and it will be available for solutioning
teams.

The Customer Solution Module provides functionality for solutioning teams
to create their projects using the features from the most recent roadmap avail-
able. Solutioning teams can specify solution attributes such as the client name,
organization, geography, the VM capacity as well as the planned time of need
of the features. The system allows solutioning teams to check the consistency of
their project with the Cloud service roadmap, highlighting feature need dates
prior to, or close to, availability time in red, green, yellow colors. After all prop-
erties and needs are included in the project, solution teams can send planned
solutions to the Coordination Board for commitment.

36 H. Ludwig et al.

Fig. 4. High-level architecture and interactions

The Customer Solution Review Module provides functionality for the Board
Review to analyze the requirements for each project. The system allows Board
Review to check when the project was created, which version of the roadmap
has been used, highlighting feature need dates prior to, or close to, availability
time in red, green, yellow colors. The system helps the Board Review to create
an assessment for solutioning teams for the final commitment decision or ask for
additional information from the solution team lead.

The Reports and Analysis Module provides different reports for the Coordina-
tion board and Release Management, e.g. Requirements and Affected Solutions
or a Summary of Commitments. The system uses the dependency matrix of fea-
tures and solutioning projects to inform the status of deployment projects base
on changes on the roadmap, see Figure 5.

As mentioned before, release managers can publish a new roadmap version
changing feature assignments to releases, release dates and introducing new fea-
tures and releases or taking features off the roadmap. It could affect solutions
already approved by the Coordination Board. Summary of Commits helps to
visualize graphically and in one single page the impact of roadmaps changes on
customers commitments.

The Summary of Commits reports shows a view on the dependency matrix
in the form of an impact matrix with all features on the left side and solutions
on the top. The first column is the feature title, followed by release number and
availability date. The rest of the columns are the clients with the actual state

Service Release Management and Service Design 37

Fig. 5. Screen capture of the dependency matrix implementation

and each cell shows the need date of the feature for the particular Customer
and previous and actual state of the feature requirement. Full coloring means
no impact with the most recent roadmap changes. The split color means the
most recent roadmap change has impacted in the committed feature for the
client, showing previous/new state from left to right. For example, a green cell
represents a commitment for that feature and solution that has not been affected.
A split cell green/red is a feature which has changed the availability date and
now the customer will not have it by the date required. Grey feature text and
light coloring means that this feature has ben removed.

The implementation is deploying at the time of writing. We collect data for
future evaluation of the effectiveness of the approach.

5 Related Work and Discussion

This paper addresses the novel issue of interlinking the design of complex service
solutions with a fast-paces service release process. Software product line manage-
ment has addressed the issue of releasing new version of a software product [4].
Fast-paced release cycles lead to the adoption of agile approaches such as [7]. [8]
describe a case study on the adoption of agile software product line management.
While the latter approach envisions fast response to stakeholder requirements
in an agile way, it does not address the issue of how to enable complex service
solution design and use this type of information for roadmap prioritization.

The roadmap graph used in the approach proposed in this paper borrows
from feature modeling, an established technique of product line management.
Feature models represent the relationships between features of a software or
service product and can be analyzed to give guidance product managers as well

38 H. Ludwig et al.

as those using the product [9]. The roadmap graph of this paper does not capture
this semantics but assigns features releases and captures roadmap changes as
graph transformations. While containing features as elements the edge semantics
is different and it adds releases and changes to the graph model. [10] propose to
reverse engineer feature models from feature use. This is related to our approach
but we consider planned use and add the timing prospective to our roadmap
model.

Coordinating different service management processes has been subject to the
creation of best practices such as [2] and [3]. The issue of fast release cycles,
cross-organizational use and the need to integrate with complex solution design
processes are not covered by those standards. While [6] and [5] address the issue
of fast pace and crossing organizational boundaries they do not address the
integration with solutioning and do not consider the feature perspective of a
planned change of service.

While different proposed approaches provide pieces to the puzzle the this
paper proposes a reliable interlink between release management and service so-
lution design processes.

6 Summary and Conclusion

While frequent improvements to a services platform like a Cloud or Web service
provides a great opportunity for users to benefit from these improvements in a
timely way the approach proposed in this paper enables users to take advantage
of new features in a systematic and coordinated way. In addition, service release
managers can take advantage of the additional information of how their cloud
platform is planned to be used by their clients, enabling them to adjust to client
demand and to provide new services based on specific client needs, not marketing
projections. The core concepts on which our approach is based is the roadmap
and the dependency matrix to solutioning projects, providing the foundation to
coordinating the interrelationship between release management and solutioning
processes.

Conceptually, the proposed approach complements related work in software
and service product line management and in service management, bridging the
gap between them in this new, fast-paced environment.

The paper describes work in progress. The feasibility of the approach has been
shown in the implementation of the approach. Its effectiveness is currently being
studied from service solution designers’ and release managers’ point of views.

References

1. Humble, J., Farley, D.: Continuous delivery: reliable software releases through
build, test, and deployment automation. Pearson Education (2010)

2. Lacy, S., McFarlane, I.: Service Transitions, ITIL, Version 3 (2007)
3. IT Governance Institute: CobiT 4.1. (2007)
4. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering.

Springer (2005)

Service Release Management and Service Design 39

5. Wassermann, B., Ludwig, H., Laredo, J., Bhattacharya, K., Pasquale, L.: Dis-
tributed cross-domain change management. In: Proceedings of the International
Conference on Web Services (2009)

6. Ludwig, H., Laredo, J., Bhattacharya, K., Pasquale, L., Wassermann, B.: REST-
based management of loosely coupled services. In: Proceedings of the 18th Inter-
national Conference on World Wide Web (2009)

7. Vlaanderen, K., Jansen, S., Brinkkemper, S., Jaspers, E.: The agile requirements
refinery: Applying scrum principles to software product management. Information
and Software Technology 53(1), 58–70 (2011)

8. Hanssen, G.K., Fægri, T.E.: Process fusion: An industrial case study on agile soft-
ware product line engineering. Journal of Systems and Software 81(6), 843–854
(2008)

9. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated reasoning on feature
models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 491–503. Springer, Heidelberg (2005)

10. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: 2011 33rd International Conference on Software Engineering
(ICSE), pp. 461–470. IEEE (2011)

Practical Compiler-Based User Support during
the Development of Business Processes

Thomas M. Prinz and Wolfram Amme

Friedrich Schiller University Jena
07743 Jena, Germany

{Thomas.Prinz,Wolfram.Amme}@uni-jena.de

Abstract. An erroneous execution of business processes causes high
costs and could damage the prestige of the providing company. Therefore,
validation of the correctness of business processes is essential. In general,
business processes are described with Petri nets semantics, even though
this kind of description allows only algorithms with a worse processing
time and bad failure information to this moment.

In this paper, we describe new compiler-based techniques that could
be used instead of Petri net algorithms for the verification of business
processes. Basic idea of our approach is, to start analyses on different
points of workflow graphs and to find potential structural errors. These
developed techniques improved other known approaches, as it guarantees
a precise visualization and explanation of all determined structural errors,
which substantially supports the development of business processes.

1 Introduction

Business processes, e.g., service orchestrations, can have two kinds of structural
errors: deadlocks and lack of synchronization [1], whereas deadlocks are situa-
tions in which the execution within business processes blocks partly, and lack of
synchronization are situations in which parts of business processes are executed
twice unintentionally. The absence of deadlocks and lack of synchronization in
business processes is called soundness in the literature [2,3], whereas we prefer
to call it structural correctness like Sadiq and Orloswka [1], since soundness
describes the overall correctness.

Current soundness checker tools are based on Petri nets, or on workflow
graphs, which are similar to control flow graphs using explicit parallelism. Most
Petri net-based techniques [4,5] use state space exploration to determine struc-
tural errors. This allows the determination of exactly one runtime error, which
even could be unsolvable, since it could be caused by a previous error. Take the
business process in BPMN notation of Fig. 1 as example. It is possible, that
after the execution of the parallel diverging gateway F 1 the parallel converging
gateway J1 will be executed, however, the task T 1 has still a control flow, since
there is a classical lack of synchronization situation. If this control flow arrives at
J1, then there is a deadlock situation. The state space exploration could find the
deadlock situation firstly, however, bug-fixing this deadlock seems not to be the

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 40–53, 2014.
c© Springer International Publishing Switzerland 2014

Practical Compiler-Based User Support 41

F1 M1 J1

T1

T2

Fig. 1. A lack of synchronization causes a deadlock

best solution to get a correct business process. Therefore, such an information is
useless in development tools. Furthermore, state space exploration can lead to an
exponential processing time in the size of the Petri net in general. Summarized,
they are rather unusable within development tools for business processes.

The best known technique is the SESE decomposition [6], which works on
workflow graphs and decomposes the graph into subgraphs called fragments.
For each fragment only a single error may be detected, and this error can be
visualized by highlighting the corresponding fragment. In other words, the SESE
decomposition cannot find all structural errors in a fragment. Furthermore, there
are some complex fragments, which cannot be addressed by this approach.

Overall, there is no development support tool for business processes being
fast, complete and informative. In this paper, we describe new compiler-based
techniques, which work directly on workflow graphs and statically determine
deadlocks and lack of synchronization, i.e., independent of previously executed
workflow graph parts. Compared to other techniques, it guarantees a precise
visualization and explanation of all structural errors, which considerabily assists
the development of business processes and fulfilles most of the requirements.

This paper is structured as follows. In Section 2, we refresh the definitions of
workflow graphs and structural correctness, followed by an informal description
of our approach (Section 3). Section 4 describes the properties of structural
errors, whereas Section 5 applying them for determination. The approach will be
evaluated in Section 6 and compared to other techniques in Section 7. Eventually,
Section 8 concludes the paper.

2 Preliminaries

Formally, a workflow graph is a directed graph WFG = (N, E) such that N
consists of activities Nactivities, forks Nforks, joins Njoins, splits Nsplits, merges
Nmerges, one start, and end node. The end node, each activity, split, and fork
has exactly one incoming edge; whereas the start node, each activity, merge, and
join has exactly one outgoing edge. Splits and forks have at least two outgoing

42 T.M. Prinz and W. Amme

edges, and merges and joins have at least two incoming edges. Furthermore, each
node lies on a path from the start to the end node. A workflow graph is called
simple if for each edge e = (n1, n2) ∈ E the source n1 or the target n2 is an
activity.

Fig. 2. A workflow graph

Figure 2 shows an example work-
flow graph. The start and end node
are depicted as (thick) circles, and an
activity is depicted as rectangle. Forks
and joins are illustrated as thin rect-
angles, whereas splits and merges are
depicted as (thick) diamonds.

The semantics of workflow graphs
used in this paper is similar to the
semantics of control flow graphs. The
execution of a workflow graph begins
at the start node and follows the flow
described by the directed graph. An
activity, a split, a merge, a fork, and the end node can be executed when a
control flow reaches an incoming edge of these nodes, whereas a join can only
fire if all incoming edges are reached by a control flow. After executing a split,
it decides nondeterministically, which outgoing edge will be followed by the con-
trol flow in workflow graphs without data aspects. After the execution of a fork,
parallel control flows will be built for each outgoing edge.

Without loss of generality, we assume each workflow graph is simple for the
remainder of this paper, since there is a fast transformation from common to
simple workflow graphs, e.g., by placing a new activity on each edge. This allows
a description of the incoming and outgoing edges of a node with the direct
predecessor and direct successor nodes. We write •n to describe the set of direct
predecessor nodes of n, i.e., ∀np ∈ •n : (np, n) ∈ E. Furthermore, we write n• to
describe the set of direct successor nodes of n, i.e., ∀ns ∈ n• : (n, ns) ∈ E.

Paths will be used to describe control flows within workflow graphs. Formally,
a path P = (n1, n2, . . . , nm−1, nm) is a sequence of nodes of N
such that ∀i ∈ {1, . . . , m − 1} : (ni, ni+1) ∈ E. A path is called direct if
n2, . . . , nm−1 �= n1, nm; and simple if all nodes on the path are pairwise different.

The structural correctness will be defined by the absence of deadlocks and
lack of synchronization. Thereby, a deadlock in a join can be reached if it was
not executed as often as each of its direct predecessor nodes and cannot fire in
future. Furthermore, a reachable fork causes a lack of synchronization when
its execution may cause a node to be executed twice in series. A workflow
graph is structurally correct if it has neither deadlocks nor lack of synchroniza-
tion.

Practical Compiler-Based User Support 43

S

A2

A3

A1

EA6A0 S1 J1

A5

A4

S2 J2

Fig. 3. An unreachable deadlock in join J2

3 Informal Description

The basic idea of our approach is to start the analysis for structural correct-
ness on different points (nodes) of the workflow graph, called entrypoints. It is
comparable to a compiler, which tries to find a next safe program point to find
further errors after a compile time error was found. For example, Figure 3 shows
a workflow graph containing two deadlocks. Starting an analysis in the start
node shows only a deadlock at the join J1, whereas restarting the analysis at
the split S2 detects another deadlock in join J2.

Each node of a workflow graph can be an entrypoint. In order to avoid wrong
analysis results, the entrypoints have to be chosen carefully. For example, the
activity A4 of Fig. 3 is not a good entrypoint to show a possible deadlock in
join J2, because it has no path to all direct predecessor nodes of this join. To
find suitable entrypoints, they will be chosen with regard to another node, e.g.,
a join.

Definition 1 (Entrypoint). A node n1 is an entrypoint of a node n2 if after
an execution of n1 the execution of n2 could follow.

An entrypoint n1 of a node n2 is called safe if after each execution of n1 the
execution of n2 follows. Furthermore, an entrypoint n1 of a node n2 is called
closest if on at least one path from n1 to n2 lies no other entrypoint of n2.

For example, the entrypoints of activity A1 are the nodes S, A0 and S1 in Fig.
3. A1 has S1 as closest but not safe entrypoint, since not each execution of S1
causes A1 to be executed. A safe and closest entrypoint of the split S1 is the
activity A0. The joins J1 and J2 have no entrypoints, since no node within the
workflow graph could cause the joins to be executed.

4 Properties of Structural Errors

In this section, we show some properties of structural errors. The proofs are out
of the scope of this paper, however, the interested reader may find them in the
technical report [7].

Safe entrypoints of joins are excellent entrypoints for the determination of
deadlocks, referred to as activation points.

44 T.M. Prinz and W. Amme

Definition 2 (Activation Point). A node n1 is an (closest) activation point
of a node n2 if n1 is a (closest) safe entrypoint of n2.

With regard to activation points and to joins, the following lemma combines
some properties of a join.

Lemma 1 (Properties of a Join). Let WFG be a workflow graph. Then, the
following holds:

1. each activation point of a join is an activation point of the joins direct pre-
decessor nodes.

2. each closest activation point of a join is a fork.

Summarized, all closest activation points of a join should be forks and are activa-
tion points of all direct predecessor nodes of that join. Knowing these properties,
the following theorem could be used for the determination of deadlocks within
workflow graphs without lack of synchronization.

Theorem 1 (Deadlock). Let WFG be a workflow graph, which is free of lack
of synchronization.

join ∈ Njoins has a deadlock
⇒

on at least one path from the start node to join or from join to itself lies no
activation point of join.

In other words, before any control flow ever arrives at a join within a workflow
graph free of lack of synchronization, an activation point of this join must be
executed to prevent a deadlock. The basic idea of the proof is to show that after
each execution of an activation point, the join will be executed and a remaining
deadlock is only caused by lack of synchronization.

The entrypoints for the determination of lack of synchronization are forks,
since only forks build more than one control flow, that can cause an execution
of a node twice in series. Indeed, control flows will be described by paths within
workflow graphs.

Definition 3 (Intersection Point). Let fork ∈ Nforks and suc1, suc2∈fork•,
suc1 �= suc2.

An intersection point of suc1 and suc2 is a node ∩-point with a direct path
from suc1 and suc2 to ∩-point without node fork. It is called closest if it is the
first common node of such two direct paths. We write ι(suc1, suc2) for all closest
intersection points of suc1 and suc2.

Intersection points can be used to determine lack of synchronization, since they
represent combination points of control flows. Furthermore, all control flows from
the same fork have to be combined in joins, before the fork can be executed again
or the end node is reached. This fact will be used in the following theorem.

Practical Compiler-Based User Support 45

Theorem 2 (Lack of Synchronization). Let WFG be a workflow graph, end
its end node and fork ∈ Nforks. Furthermore, let stop1, stop2 ∈ {fork, end}.

from the execution of fork follows a lack of synchronization
⇒

∃suc1, suc2 ∈ fork•, suc1 �= suc2 :
ι(suc1, suc2) �⊆ Njoins, or

∃ direct path1 = (suc1, . . . , stop1), path2 = (suc2, . . . , stop2) :
path1 ∩ path2 = ∅.

The basic idea of the proof is to show that no two control flows built by a fork
can ever execute the same node twice in series.

The conditions used in Theorem 1 and 2 describe a superset of deadlocks and
lack of synchronisation, since parts of it never occur at runtime, because forgoing
deadlocks will prevent their execution. Therefore, we call them potential.

Nevertheless, the structural correctness of a business process can be proven
if we can show that no potential deadlock and lack of synchronization arise in
its corresponding workflow graph. In addition, with the successive elimination of
deadlocks and lack of synchronization during the development process, a moment
will be reached at which the set of potential errors equals the set of real errors.
In this sense, based on conditions used in Theorem 1 and 2, a finite development
process could be defined, which eventually can be used for the determination of
real deadlocks and real lack of synchronization.

5 Determination of Structural Errors

The basic idea of the overall algorithm for detecting structural errors is the
iteration over two steps until the workflow graph is structurally correct. The
first step determines potential lack of synchronization, which are then bug-fixed
by the user. Afterwards, the potential deadlocks will be determined, which will
also be bug-fixed.

Basically, to determine potential deadlocks, each path from the start node to a
join and from this join to itself is checked, whether it contains a fork as a closest
activation point. If this does not hold true for a certain join, then this join has
a potential deadlock. The determination of potential lack of synchronization is
straightforward to Theorem 2, i.e., all paths from direct successor nodes of a fork
to the end node and to the fork itself will be determined and pairwise examined:
if both paths of all pairs have a first common node and this is a join, the fork is
said to be free of causing lack of synchronization.

5.1 Determination of Potential Deadlocks

In the following, let join ∈ Njoins. The first step of the algorithm finds all entry-
points for join. Thereby, the focus lies on entrypoints which are forks. Afterwards,
the closest entrypoints of join will be determined. These closest entrypoints have
to be checked to be safe, i.e., they are activation points. Eventually, the algorithm
checks the conditions of Theorem 1.

46 T.M. Prinz and W. Amme

S EF1

F2

J1

J2

Fig. 4. Two forks and two joins

1. Determine the entrypoints. With regard to Lemma 1, closest activation points
of node join can only be forks, which have a direct path to each direct predecessor
node of join. But this basic lemma is not sufficient to proof that a fork is an
entrypoint of a join.

For example, a look on Fig. 4 shows, that the fork F 2 is no entrypoint of J2,
because no execution of F 2 follows an execution of J2. The execution will be
stopped by the join J1, because F 2 is not an entrypoint of J1.

Instead of searching the entrypoints for join, we determine for each fork the
set of nodes for which it is an entrypoint, called the scope of a fork.

Definition 4 (Scope of Forks). Let fork ∈ Nforks. The scope σ(fork) is a
set of nodes with σ(fork) = {n : fork is an entrypoint of n}.

A fork fork is an entrypoint of each of its direct successor nodes, since the
workflow graph is simple. Furthermore, if a node n is not a join and has a
direct predecessor node for which fork is an entrypoint, then n has fork also as
entrypoint, since n can be executed if at least one predecessor node was executed.
At last, if the node n is a join and each of its direct predecessor nodes has fork
as entrypoint, then fork is also an entrypoint of n, since n can be executed when
all of its direct predecessor nodes were executed. Hence, the scope σ(fork) of a
fork could be determined recursively with the algorithm in Fig. 5.

Input: A fork fork and σ(fork) ← ∅
Output: The scope σ(fork) of fork
1: for all suc ∈ fork• do
2: determineScope(suc)
3:
4: function determineScope(current)
5: if current /∈ σ(fork) then
6: if current /∈ Njoins then
7: commonCase(current)
8: else
9: joinCase(current)

10: function commonCase(current)
11: σ(fork) ← σ(fork) ∪ {current}
12: for all suc ∈ current• do
13: determineScope(suc)
14:
15: function joinCase(current)
16: if •current ⊆ σ(fork) then
17: σ(fork) ← σ(fork) ∪ {current}
18: for all suc ∈ current• do
19: determineScope(suc)

Fig. 5. Determine the scope of a fork

Practical Compiler-Based User Support 47

A fork is an entrypoint of a join if the join is within the scope of the fork. After
the determination of each scope of each fork, the set Σ(join) can be determined
containing all entrypoints being forks of join. If Σ(join) is empty for join, then
join cannot have closest activation points, i.e., join has a potential deadlock.

2. Determine closest entrypoints. From the definition of closest entrypoints,
there has to be at least one path from an entrypoint of a node n to this
node n, which contains no other entrypoint of n. The closest entrypoints
Σclosest(join) ⊆ Σ(join) can be determined efficiently with a backward depth-
first search. It searches the entrypoints of join. If such an entrypoint was reached,
then this entrypoint is marked as a closest entrypoint of join, and the depth-
first search stops the ongoing traverse of this path. If the start node or join was
reached, then join has a potential deadlock.

3. Determine closest activation points. Referring to Lemma 1, the closest entry-
point fork is a closest activation point for join if fork is an activation point
for each pre ∈ •join. As mentioned before, fork is an activation point of a
pre ∈ •join when the execution of pre follows after the execution of fork. More
specifically, there is a direct path from fork to pre which will be guaranteed
to be executed. In general, there could be more than one path from fork to
pre, e.g., the paths start of different direct successor nodes of fork; or decisions
(splits) creates a divergence. Therefore, we merge all the direct paths starting in
the same direct successor node of fork and ending in pre. This union of paths
is called deliverer, because it describes how a control could be delivered from a
direct successor node of fork to pre.

Definition 5 (Deliverer). Let join ∈ Njoins, pre ∈ •join, fork ∈ Nforks is a
closest entrypoint of join, and suc ∈ fork•, which has a direct path to pre.

A deliverer of join between suc and pre is a set of nodes
δ(fork, join, suc, pre) = {n : n lies on a direct path from fork to join containing
suc and pre}.

With the help of the definition of deliverers, the safeness of a closest entrypoint,
i.e., the closest activation points, could be formulated as follows.

Lemma 2 (Safeness). Let join ∈ Njoins, and fork be a closest entrypoint of
join.

fork is a safe and closest entrypoint of join iff ∀pre ∈ •join, ∃suc ∈ fork• :
δ(fork, join, suc, pre) will be guaranteed to be executed.

A deliverer δ(fork, join, suc, pre) will be guarenteed to be executed if it neither
contains a deadlock nor control flows can leave it. Since fork must be a closest
activation point of join, it has to be an activation point of all joins within this
deliverer. Without loss of generality, we assume that fork is an activation point
of all these joins.

Furthermore, an execution of δ(fork, join, suc, pre) is given if the control
flow cannot leave this deliverer. The only node where it is possible to leave a

48 T.M. Prinz and W. Amme

Input: a workflow graph W F G = (N, E)
Output: all joins with a potential deadlock
1: determine scope σ for all forks and entrypoints Σ for all joins
2: for all join ∈ Njoins do
3: determine the last entrypoints Σlast(join) with a backward depth-first search
4: for all entrypoint ∈ Σlast(join) do
5: determine all deliverers Δ(entrypoint, join) for each direct successor node

of entrypoint and predecessor node of join
6: for all δ(entrypoint, join, suc, pre) ∈ Δ(entrypoint, join) do
7: determine guaranteed execution of δ(entrypoint, join, suc, pre)
8: if δ(entrypoint, join, suc, pre) is guaranteed to be executed then
9: mark pre as safe for entrypoint

10: if not all pre ∈ •join are marked as safe for entrypoint then
11: eliminate entrypoint from Σlast(join)
12: do a backward depth-first search with begin in join and which stops in a

traversation of a path on a fork ∈ Σlast(join)
13: if the start node or join were reached by the depth-first search then
14: mark join as deadlock

Fig. 6. Determine potential deadlocks

deliverer is a split. Thus, if δ(fork, join, suc, pre) contains a split, which has a
path outside this deliverer, then an execution is not guaranteed.

Lemma 3 (Guaranteed execution). Let δ(fork, join, suc, pre) be a deliverer
whose fork is an activation point of all inner joins.

The execution of δ(fork, join, suc, pre) is guaranteed iff
∀split ∈ (δ(fork, join, suc, pre) ∩ Nsplits) : split• ⊆ δ(fork, join, suc, pre).

Summarized, the safeness of each closest entrypoint of a join can be determined,
i.e., the set Σactivation(njoin).

4. Check the conditions of Theorem 1. This could be proved easily by a backward
depth-first search with begin at join. It searches the closest activation points of
join. If such an activation point was found, it stops the further traverse of this
path. If it reaches the start node or join itself, join has a potential deadlock.

The overall algorithm is shown in Fig. 6 and has a cubic runtime complexity,
although faster implementations are possible.

5.2 Determination of Potential Lack of Synchronization

In the following, let suc1, suc2 ∈ fork•, suc1 �= suc2. Furthermore, let
path1 = (suc1, . . . , stop1) and path2 = (suc2, . . . , stop2) be two direct paths with
stop1, stop2 ∈ {fork, end}, whereas end is the end node. Note, Theorem 2 states
that a lack of synchronization will be caused directly by fork if there are two
paths with path1 ∩ path2 = ∅, or the closest common node of them is not a join.

Practical Compiler-Based User Support 49

Since forks are the entrypoints for the determination of potential lack of
synchronzation, the analysis is done for each fork. The first step of the al-
gorithm determines for each direct successor node suc of fork the set of all
direct paths paths(suc) from suc to fork and from suc to the end node. The
next step checks for each pair (suc1, suc2) if there is a pair (path1, path2) ∈
paths(suc1) × paths(suc2), where paths path1, path2 are disjoint or have a clos-
est intersection point not being a join.

1. Find the sets paths(suc1), paths(suc2). As mentioned before, for a suc ∈ fork•
holds that paths(suc) = {p : p is a direct path from suc to fork or from suc to
the end node }. Theoretically, there could be any number of such paths, because
the workflow graph may contain loops. To address this fact, only the simple
paths from a suc ∈ fork• to fork and to the end node will be determined.

Finding all simple paths between two nodes in a directed graph is called an
all simple paths problem and a fast algorithm can be found in Pahl et al. [8].

2. Checks done for each (path1, path2) ∈ paths(suc1) × paths(suc2). The check
path1 ∩ path2 = ∅ will be done first guaranteeing the absence of closest intersec-
tion points. If path1 ∩ path2 = ∅, fork has a potential lack of synchronization.

For the second check, it holds that path1 ∩ path2 �= ∅. Furthermore, each node
of path1 ∩ path2 is an intersection point of suc1, suc2. An intersection point
∩-point of suc1, suc2 in path1 ∩ path2 is closest by definition, when it has a
pre ∈ • ∩ -point with pre ∈ path1 and pre /∈ path2, and vice versa.

Summarized, the closest intersection point of suc1, suc2 within path1 and
path2 can be determined by iterating over each intersection point within
path1 ∩ path2 and applying the definition. If the found closest intersection point
is not a join, then fork has a potential lack of synchronization.

The overall algorithm will be shown in Fig. 7. This implementation of the
algorithm was presented at this point for a better understanding. Although the
runtime complexity of the algorithm looks inacceptable, it is possible to build an
algorithm which runs in quadratic time, like used in our implementation [7,9].

6 Evaluation

We have implemented the algorithms in Java to detect structural errors in
workflow graphs. To check the practical application of the approach, we have
evaluated it twice, (1) in the Activiti BPMN 2.0 designer, a modeler for business
processes, and (2) as a soundness verification tool. Tools and benchmarks are
available on www.bpmn-compiler.org and https://sourceforge.net/
projects/bpmojo

Activiti BPMN 2.0 designer. To verify the usability of the structural correct-
ness approach, we have implemented the algorithms for the Activiti BPMN 2.0
designer (http://activiti.org).

www.bpmn-compiler.org
https://sourceforge.net/projects/bpmojo
https://sourceforge.net/projects/bpmojo
http://activiti.org

50 T.M. Prinz and W. Amme

Input: a workflow graph W F G = (N, E)
Output: all forks which could cause a potential lack of synchronization
1: for all fork ∈ Nforks do
2: for all suc ∈ fork• do
3: determine paths(suc)
4: for all (suc1, suc2) ∈ (fork • ×fork•), suc1 �= suc2 do
5: for all (path1, path2) ∈ paths(suc1) × paths(suc2) do
6: if path1 ∩ path2 = ∅ then
7: mark fork as lack of synchronization
8: else
9: Find closest intersection point ∩-point within path1 and path2

10: if ∩-point /∈ Njoins then
11: mark fork as lack of synchronization

Fig. 7. Determine potential lack of synchronization

Figure 8 depicts an illustration of the tool highlighting a detected lack of syn-
chronization within the graphical model, and showing a list of all errors. Practi-
cally, the structural correctness analysis is upon every change to the graphical
model without a visible delay.

Soundness verification tool. The comparison of the processing time to other
soundness verification approaches was the primary goal of the evaluation of the
algorithms as soundness verification tool. The benchmark contains real-world
business processes of IBM [3]. It is splitted in 5 libraries, i.e., A, B1, B2, B3 and
C. This benchmark was also used by Fahland et al. [3]. A PNML [10] file was
used as input describing a Petri net and then transformed into a workflow graph.
By using Petri nets, we can directly compare the results with other tools like
LoLA [5].

For benchmark evaluation, we have changed our algorithms to stop structural
analysis upon first error. Furthermore, the algorithm was tuned to answer the
yes-no question if the workflow graph is structurally correct or incorrect.

Our runtime environment was a 64 bit Intel R© CoreTM2 CPU E6300 proces-
sor and 2 GB main memory Linux 3.1.0 system. We ran each of the 5 libraries 10
times, removed the two best and worst results and calculated the average time.

We have chosen LoLA to compare our solution with existing tools. The SESE
decomposition approach is hard to compare, because a standalone implementa-
tion was not available and it depends on other soundness verification approachs.
Table 1 shows the results of the benchmark evaluation.

Compared to LoLA, our algorithm is 150 times faster. This is not the major
result, since LoLA was not build to verify business processes. Fahland et al.
[3] have shown that SESE decomposition and the Woflan tool have comparable
runtimes like LoLA. Summarized, our approach is faster than the state-of-the-art
tools compared by Fahland et al. [3].

Practical Compiler-Based User Support 51

Fig. 8. Visualizing control-flow errors in Activiti

Table 1. Results of the benchmark evaluation

Library: A B1 B2 B3 C

Analysis time [ms] 16.4 15.4 20.7 28.4 1.7
Analysis time LoLA [ms] 2373.0 2395.9 3126.1 3651.3 303.8
Per process avg./max. [ms] 0.06/0.28 0.06/0.36 0.06/0.47 0.07/0.69 0.06/0.31
Per process LoLA avg. [ms] 8.5 8.4 8.7 8.7 9.5

7 Related Work

The fastest free choice Petri net soundness verification approach uses the rank
theorem [2], i.e., a mathematical theorem of linear algebra. It has at least a
cubical time complexity in the size of the workflow graph, but does not provide
diagnostic information. The other approach to determine the soundness of free
choice Petri nets is model checking with tools like Woflan [4] or LoLA [5]. Thus,
a search on the state space of the free choice Petri net will be performed. This
technique can lead to an exponential processing time in the size of the free choice
Petri net. However, it supplies a failure trace (or execution sequence) that leads
to the first error found. It is not possible to detect all failures with this technique.

Primarily, techniques working directly on the workflow graph restrict them to
acyclic or restricted, e.g., Perumal and Mahanti [11]. Although they could have
a very fast processing time and could provide very detailed failure information,
they restrict the completeness of the soundness checking tool directly, render-
ing it inapplicable. An exception and the best known technique for soundness

52 T.M. Prinz and W. Amme

checking is performing a SESE decomposition [6]. It decompose the workflow
graph in subgraphs which have a single entry and a single exit. This decomposi-
tion could be done in linear time complexity by constructing a Refined Process
Structure Tree [12]. Each of the subgraphs will be checked first by the applica-
tion of heuristics. Uncovered subgraphs then will be checked by other techniques,
like space state exploration. Because subgraphs are usually smaller than the en-
tire workflow graph, the state space exploration performs fast [3]. However, an
exponentially processing time in the size of the workflow graph is still possible.
Summarized, the SESE decomposition in addition to the heuristics works fast
and gives detailed and localized failure information, but the heuristics do not
cover all cases.

Our new approach to verify structural correctness is comparable to the SESE
decomposition approach of Vanhatalo et al. [6]. Both techniques find failures in
isolation. However, the SESE decomposition found only one failure per fragment,
while our approach found all potential errors. Furthermore, the SESE decompo-
sition does not always find the structural reason of failures. Therefore, an user
cannot repair these structures. In conclusion, our approach is complete, i.e., it
finds all structural failures.

8 Conclusion

In this paper, new compiler-based techniques to determine the structural cor-
rectness, i.e., the soundness, of a workflow graph were introduced. They directly
work on workflow graphs, in order to guarantee a precise visualization and ex-
planation of all determined structural errors, which substantially supports build-
ing business processes. Furthermore, the delevoped techniques demonstrate that
well-known compiler techniques can be used for business processes. It is possible
to perform a structural correctness analysis in each development step, which
directly visualizes errors within the editor and shows only failures which must
be fixed.

Major issues for future work are including data aspects in our techniques by
transforming business processes into CSSA-based workflow graphs [13,14].

References

1. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Inf. Syst. 25(2), 117–134 (2000)

2. van der Aalst, W.M.P., Hirnschall, A., Verbeek, H.M.W(E.): An alternative way to
analyze workflow graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T.
(eds.) CAiSE 2002. LNCS, vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

3. Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on
demand: Instantaneous soundness checking of industrial business process models.
Data Knowl. Eng. 70(5), 448–466 (2011)

4. Verbeek, H.M.W(E.), van der Aalst, W.M.P.: Woflan 2.0 A petri-net-based work-
flow diagnosis tool. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS,
vol. 1825, pp. 475–484. Springer, Heidelberg (2000)

Practical Compiler-Based User Support 53

5. Wolf, K.: Generating petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.)
ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)

6. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analy-
sis for business process models through SESE decomposition. In: Krämer, B.J., Lin,
K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer,
Heidelberg (2007)

7. Prinz, T.M., Amme, W.: Practical compiler-based user support during the de-
velopment of business processes. Technical Report Math/Inf/02/13. (June 2013),
http://www.bpmn-compiler.org

8. Pahl, P.J., Damrath, R.: Mathematical Foundations of Computational Engineering:
A Handbook, 1st edn. Springer, Heidelberg (2001)

9. Prinz, T.M., Spieß, N., Amme, W.: A first step towards a compiler for business
processes. In: Cohen, A. (ed.) CC 2014 (ETAPS). LNCS, vol. 8409, pp. 238–243.
Springer, Heidelberg (to be published, 2014)

10. Billington, J., Christensen, S., van Hee, K.M., Kindler, E., Kummer, O., Petrucci,
L., Post, R., Stehno, C., Weber, M.: The petri net markup language: Concepts,
technology, and tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003.
LNCS, vol. 2679, pp. 483–505. Springer, Heidelberg (2003)

11. Perumal, S., Mahanti, A.: A graph-search based algorithm for verifying workflow
graphs. In: 2012 23rd International Workshop on Database and Expert Systems
Applications, pp. 992–996 (2005)

12. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 100–115.
Springer, Heidelberg (2008)

13. Amme, W., Martens, A., Moser, S.: Advanced verification of distributed ws-bpel
business processes incorporating cssa-based data flow analysis. International Jour-
nal of Business Process Integration and Management 4(1), 47–59 (2009)

14. Heinze, T.S., Amme, W., Moser, S.: A restructuring method for WS-BPEL business
processes based on extended workflow graphs. In: Dayal, U., Eder, J., Koehler, J.,
Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 211–228. Springer, Heidelberg
(2009)

http://www.bpmn-compiler.org

Model Checking GSM-Based Multi-Agent

Systems�

Pavel Gonzalez1, Andreas Griesmayer2, and Alessio Lomuscio1

1 Department of Computing, Imperial College, London
{pavel.gonzalez09,a.lomuscio}@imperial.ac.uk

2 ARM, Cambridge
andreas.griesmayer@arm.com

Abstract. Artifact systems are a novel paradigm for implementing ser-
vice oriented computing. Business artifacts include both data and process
descriptions at interface level thereby providing more sophisticated and
powerful service inter-operation capabilities. In this paper we put for-
ward a technique for the practical verification of business artifacts in the
context of multi-agent systems. We extend GSM, a modelling language
for artifact systems, to multi-agent systems and map it into a variant of
AC-MAS, a semantics for reasoning about artifact systems. We introduce
a symbolic model checker for verifying GSM-based multi-agent systems.
We evaluate the tool on a scenario from the service community.

1 Introduction

It has long been argued [1, 2] that agents are a fitting paradigm for service ori-
ented computing (SOC). Indeed, agent-based research has contributed a wealth
of techniques ranging from verification [3], protocols [4] and actual prototype im-
plementations [5]. SOC is currently a fast moving research area with significant
industrial involvement where highly scalable implementations play a key role.
Agent-based solutions can shape developments in SOC if they remain anchored
to emerging paradigms being put forward by the leading players in the area.

An increasingly popular paradigm being investigated in SOC is that of busi-
ness artifacts [6]. In this approach data, not only processes, play a key part in
the service description and implementations. While in traditional service compo-
sition processes are advertised at interface level, in the artifact approach both pro-
cesses and the data structures are given equal prominence. Guard-Stage-Milestone
(GSM) has recently been put forward [7] as a language for implementing busi-
ness artifacts. GSM is a declarative language that provides a description of stages,
which are clusters of activity pertaining to some artifact data-structure. Stages

� This research was supported by the EU FP7 projects ACSI (FP7-ICT-257593). Work
by the author Andreas Griesmayer was conducted in part at Imperial College London
and supported by the Marie Curie Fellowship “DiVerMAS” (FP7-PEOPLE-252184).
Alessio Lomuscio acknowledges support from the UK EPSRC through the Leadership
Fellowship grant “Trusted Autonomous Systems” (EP/I00520X/1).

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 54–68, 2014.
c© Springer International Publishing Switzerland 2014

Model Checking GSM-Based Multi-Agent Systems 55

are governed by guards controlling their activation and milestones determining
whether or not the stage goals have been reached. The Guard-Stage-Milestone
(GSM) approach to artifact systems [7] is particularly suitable for large unstruc-
tured processes where users have the freedom to decide what actions they perform
and in what order. GSM is substantially influencing the emerging Case Manage-
mentModelling Notation standard [8]. IBMWatson developed Barcelona, a web-
based application for modelling and execution of GSM-based artifact systems [7].
Barcelonaprovides a fullymodel-driven environmentwhere a business operations
model of an artifact system is created in a web-based design editor component, and
then directly used for deployment on an execution engine.

While business artifacts are an attractive methodology for developing busi-
ness processes and GSM-based services are a rapidly evolving area of research,
they lack fully-fledged automatic methodologies for verification, orchestration
and choreography. In this paper we put forward a technique and an implementa-
tion for the practical verification of business artifacts from a multi-agent system
perspective. Specifically, we give a MAS-based formal model to GSM systems
and define the model checking problem on this model. We observe the problem is
undecidable in general, but note that as long as we can show the system operates
within bounds, the problem is decidable. Within these parameters the method-
ology we report is sound and complete. We have built an implementation to
verify automatically whether a GSM system, including a number of agents, sat-
isfies given temporal-epistemic specifications which may include quantification
over artifact instances. We test the technique against a noteworthy application
developed by IBM.

Several contributions have so far studied the verification problem from a the-
oretical perspective [9–12]. The results obtained identify fragments of decidable
settings either through restrictions on the specification language or the seman-
tics. While these results are certainly valuable, they provide no methodology for
the practical verification of GSM-based systems.

The work presented in this paper is based on [13] where GSMC, a model checker
for GSM, is introduced. However, the semantics of the underlying formalism
is one of plain transition systems and no support for agents in the system is
provided. With no agents being present, no support is offered for views and
windows, two key concepts that we fully support here. Additionally, as their
concern is focused purely on the artifact system, the specification language only
supports temporal logic, thereby making impossible to verify the information-
theoretic properties of agents throughout an exchange as we do here.

2 The Guard-Stage-Milestone Artifact Model

Artifact systems form a conceptual basis for modelling and implementing busi-
ness processes [6] and are given in terms of artifact types, which correspond to
classes of key business entities. Each type has a lifecycle model, which describes
the structure of the business process, and an information model, which gives an
integrated view of the business data and the progress of the business process.

56 P. Gonzalez, A. Griesmayer, and A. Lomuscio

research()

prepare()

Preparing

Collecting Parts

Receiving
Assembling

part
received

all parts
received

receive part()

Research & Order parts
ordered collected

submitted

assemble()

Fig. 1. A lifecycle model

The artifact system interacts with its environment via events. Our formal model
of GSM is in line with [7].

GSM provides a declarative, hierarchical mechanism for specifying lifecycle
models. Figure 1 gives a portion of the lifecycle of a manufacturing process and
represents the core concepts: The boxes denote stages, which represent clusters of
activity designed to achieve milestones (◦) that represent operational objectives.
A guard (
) triggers activities in a stage when a certain condition is fulfilled.
Stages are organised hierarchically, where the roots are called top-level stages, the
leaves are called atomic stages and the non-leaf nodes are called composite stages.
Atomic stages contain tasks that perform automated actions. Stages can run in
parallel and own at least one milestone and one guard, while both milestones
and guards belong to exactly one stage. A stage becomes open when one of its
guards is fulfilled and closed when one of its milestones is achieved.

The example above gives the portion of the lifecycle of a manufacturing pro-
cess that handles the procuring of the required building parts and the organi-
sation of the assembly. When a new order is received by the manufacturer, the
submitted event is sent to the artifact system, which triggers the guard of the
Preparing stage, and in turn starts with Collecting Parts. When this stage is
open, an employee of the manufacturer researches the required components and
sends the research event to the artifact system which in turn processes the order
of the required parts. When a part is received (event part received), the Assem-
bling of the available parts is triggered; when all parts are received and collected,
the Preparing stage can be closed. More details on this lifecycle will be discussed
in Section 6.

Formally, an artifact system holds a number of artifact instances ι of artifact
type AT = 〈R,Att, Lcyc〉, with R the name of the artifact type; Att the infor-
mation model as set of attributes; and Lcyc the lifecycle model. The information
model Att is partitioned into the set Attdata of data attributes to hold business
data and the set Attstatus of status attributes to capture the state of the lifecycle
model. Each stage (resp. milestone), has a Boolean status attribute in Attstatus,
which is true iff the stage is active (resp. the milestone has been achieved). Both

Model Checking GSM-Based Multi-Agent Systems 57

milestones and guards are controlled declaratively through sentries. A sentry of
an artifact instance ι is an expression χ(ι) in terms of incoming events and the
status of the instance.

The progress of the lifecycle is driven by incoming events containing payloads,
which are called applicable if the lifecycle is ready to consume them. An event
with a specific payload is called a typed external event.

Definition 1 (Event Type). An event type ET is a tuple ET = 〈E,AT,
A1, . . . , Al〉, where E is the name of the event type, AT is an artifact type, and
Ai ∈ Attdata, where Attdata is the set of data attributes of AT .

In addition, the opening of an atomic stage activates a task associated with the
stage. It either performs an automated system task, such as the creation of a new
instance, or corresponds to an operation outside the artifact system. Agents are
not directly present in the GSM model, but it is assumed that human or artificial
entities perform tasks and generate events for the system.

Definition 2 (GSM Model). A GSM model Γ is a set of n artifact types ATi

for 1 ≤ i ≤ n and m event types ETj for 1 ≤ j ≤ m.

Definition 3 (Snapshot of GSM Model). A pre-snapshot of Γ is an assign-
ment Σ that maps each attribute A ∈ Attι of each active artifact instance ι to
an element in the domain of A. A snapshot of Γ is a pre-snapshot that satis-
fies the following GSM invariants: all sub-stages of a closed stage are closed; all
milestones of an open stage are not achieved; at most one milestone of a stage
can be achieved at any time.

The operational semantics for GSM is based on the notion of a business step
(B-step). This is an atomic unit that corresponds to the effect of processing one
incoming event into the state of the artifact system. A B-step is computed by so
called PAC rules which are formed from the sentries of the GSM model and has
the form of a tuple (Σ, e,Σ′, Gen), where Σ, Σ′ are snapshots, e is an incoming
external event, and Gen is a set of outgoing external events generated by opening
atomic stages during the B-step. For more details on the computation of a B-step
please refer to [13].

3 Agent-Based GSM

A GSM program only deals with the machinery related to the artifact system but
does not provide a description of the agents interacting with it. To conduct the
verification of agent-based GSM systems via model checking, we define Agent-
Based GSM (A-GSM) as an extension of GSM with a set of external agents.

The artifact system and agents communicate using events, where the avail-
able events for an agent depend on the current state. The system progresses by
non-deterministically selecting an agent, which sends an event and triggers the
execution of the AS. Selection of the event and execution of the AS are seen as
one step, a stable state has no pending events.

58 P. Gonzalez, A. Griesmayer, and A. Lomuscio

1

00

ν

ω

0000

1

Fig. 2. Static and Dynamic visibility in A-GSM

3.1 Agent Description

Here we outline how the agents are specified and interact with GSM, thereby
defining an A-GSM instance. The behaviour of an agent is determined by the
permitted access to the artifact system AS and by local decisions regarding
events to send. The former is determined by an agent’s role, while the latter are
defined for each agent individually.

The role is defined using the view ν for the visible attributes, the window ω
to select the visible instances, and the set of events ε that are accepted by AS.
While ν and ε are simple lists, ωi(ι) is a formula that is evaluated for a specific
artifact instance ι and an agent i. The instance is exposed to the agent only if
ωi(ι) evaluates to true. In addition to the role, the description of an agent also
contains a protocol ℘ to determine its behaviour depending on the visible state
of the AS, the agent’s unique ID, and its private variables.

The concepts of ν, ω and ε are powerful tools to define the aspects agents
can see and the ways they can interact with an artifact system. In Figure 2 the
lines correspond to artifact instances that were created during run-time and the
columns correspond to data attributes. ν defines a static view of the system, as it
hides for each agent a fixed set of attributes depending on his role. For example,
a Customer can only see that the state of an order moved from assembling to
shipping, while a Manufacturer sees more detail, e.g., on suppliers. In contrast,
ω gives a dynamic selection of the parts of the AS an agent can access in terms
of the state of artifact instances as it hides complete instances depending on
the current state. For instance, a Manufacturer may only see instances that
represent unfinished orders while the window of a Customer can use the ID to
restrict access to its own orders only.

Figure 3 gives an example of agent’s description file. Visible data attributes
are listed in the view field. The window field contains the formula for ωi(ι),
where $$ is a placeholder for the agent’s ID. The field instantiation lists all
artifact types that agents of this role may instantiate; the corresponding in-
stantiation events are added to ε. To specify the status attributes and events
that are added to ν and ε, the field transformation holds a set of GSM

Model Checking GSM-Based Multi-Agent Systems 59

role Customer {

view: CustomerId, ManufacturerId;

window: CustomerId == $$;

instantiation: CO;

transformation: condense_stage(CO, Preparing);

};

agent Diogenes {

role: Customer;

vars: bool cancelled = false;

protocol:

Create_CO: CustomerId == "Diogenes" -> cancelled = cancelled,

OnCancel: true -> cancelled = true;

};

Fig. 3. An agent definition file

operators that allow to hide parts of the GSM model Γ . Valid commands here
are hide stage status("S") and hide milestone("m") to hide the status at-
tributes of stage S and milestone m respectively, and delegate sentry("s")

to remove events from εi if they are only used in sentry s. For convenience,
the macro operators condense stage("S") and eliminate stage("S") hide
all sub-stages or all information including guards and milestones respectively.

The private variables of an agent are defined in a list var of variable names
x with their type and initial value. The protocol lists entries of the form e :

γ -> μ for all events e the agent can send. Multiple entries for the same event
are treated as a disjunction. The condition γ is given in terms of data attributes
of the instance ι, the payload, and the private variables. It defines the protocol
function ℘i(ι, x), which gives the set of events e with their respective payloads
that can be sent in the current state. The protocol also gives an update function
μi(e, x), which computes new assignments for the local variables depending on
the selected event and the local state of the agent. By imposing conditions on
the payload of an event e, ℘ also allows the agent to assign a specific value to its
parameters, e.g., CustomerId is a parameter of Create CO.

To handle automated tasks, we define an AutoAgent, which handles service
calls and computations in the GSM model Γ and returns the result to the artifact
system in form of an event. The AutoAgent holds pending tasks in a buffer t, has
full access to Γ , and can send the return messages at any time, but is otherwise
handled like any other agent.

4 Artifact-Centric Multi-Agent Systems

To analyse interactions within a GSM-based artifact system, we use artifact-
centric multi-agent systems (AC-MAS) [10, 14], a semantics based on interpreted
systems [15, 16]. As a GSM system supports multiple active artifact instances,
we require a limited form of quantification. We therefore introduce IQ-CTLK,

60 P. Gonzalez, A. Griesmayer, and A. Lomuscio

an extended version of CTLK, which is frequently used to describe agents that
share a common environment. IQ-CTLK is a temporal-epistemic specification
language with quantification over artifact instances. We give a formal mapping
f : A-GSM → AC-MAS, such that f preserves satisfaction of formulas in the
specification language IQ-CTLK.

4.1 Formal Model

In an AC-MAS a set of agents A share an environment E constituted by the
artifact system, i.e., the underlying elements of the environment are evolving
artifacts of type R. The environment and an agent i ∈ A have a local state (LE

and Li respectively), where the agent can observe parts of the environment (i.e.,
some of the artifact instances in it). The local state of an agent thus comprises
private data for the agent and observable aspects of the artifact system. We
write lE(s) to represent the local state of the environment in the global state s,
and li(s) to represent the local state of agent i.

Definition 4 (Environment). The environment represents an artifact system
AS and is a tuple E = 〈LE , ActE , PE〉, where LE is the set of local states;
ActE is the set of local actions, which correspond to the interface of the AS; and
PE : LE → 2ActE is the environment’s protocol function, which enables actions
to be executed depending on the local state of the AS.

An agent is defined formally as:

Definition 5 (Agent). An agent in an AS is a tuple i = 〈Li, Acti, Pi〉, where
Li is the set of local states including the observable aspect of the AS; Acti is the
set of local actions corresponding to events that can be sent by the agent onto the
AS and including an action skip for performing a null action; and Pi : Li → 2Acti

is the local protocol function.

An agent i and the environment E communicate by synchronisation on actions,
where ActE corresponds to events enabled by the artifact system, and Acti ⊆
ActE ∪ {skip} is the set of local actions corresponding to events
that can be executed by the agent and the idle action skip. Given the rela-
tion between notions of action in interpreted systems and event in GSM, we
use these terms interchangeably in the rest of the paper. As in plain interpreted
systems, protocols are used to select the actions performed in a given state.

Following the terminology of [14] we define an AC-MAS as the composition
of the environment and a number of agents as follows:

Definition 6 (AC-MAS). Given an environment E and a set of agents A, an
artifact-centric multi-agent system is a tuple P = 〈S, I, τ〉, where S ⊆ LE ×
L1 × · · · × Ln is the set of reachable global states; I is the initial state; and τ :
S×Act → 2S with Act = ActE×Act1×· · ·×Actn is the global transition relation.
The transition τ(s, α) is defined for α = 〈aE , a1, . . . , an〉 iff aE ∈ PE(lE(s)), and
∃0≤i<n : ai ∈ Pi(li(s)), aE = ai ∧ ∀j �=i : aj = skip.

Model Checking GSM-Based Multi-Agent Systems 61

Intuitively, the conditions on the transition relation limit the communication
between agents and environment such that environment and agent agree on
the same action. The environment enables actions when the artifact system is
ready to consume them, while the agent i decides on the actions to execute
depending on a local strategy encoded in Pi. Only one agent can interact with
the environment at a time while the others are idle.

We write s → s′ iff there exists an action α, such that s′ ∈ τ(s, α), and call
s′ the successor of s. A run r from s is an infinite sequence s0 → s1 → . . . with
s0 = s. We write r[i] for the i-th state in the run and rs for the set of all runs
starting from s. A state s′ is reachable from s if there is a run from s that contains
s′. In line with the semantics of epistemic logic [16], we say that the states s and
s′ are epistemically indistinguishable for agent i, or ∼i, iff li(s) = li(s

′).

4.2 The Logic IQ-CTLK

We are interested in specifying temporal-epistemic properties of agents interact-
ing with the artifact system, as well as the system itself. Since GSM supports
the dynamic creation of unnamed artifacts, the properties need to be indepen-
dent of the actual number or possible IDs of artifact instances in the system. To
specify such properties we here define a temporal-epistemic logic that supports
quantification over the artifact instances. We call the logic IQ-CTLK, for In-
stance Quantified CTLK, where CTLK is the usual epistemic logic on branching
time. It is a subset of FO-CTLK where quantification can only be over artifact
instances but not data. The syntax is defined in BNF notation as follows:

ϕ :: = p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ)

| Kiϕ | ∀x : R ϕ | ∃x : R ϕ

where R is the name of an artifact type and p is an atomic proposition over the
agents’ private data and the attributes of active instances that are specified in
terms of instance variables bound by the quantification operators. The quantified
instance variables range over the active instances of a given artifact type R in
the state where the quantification is evaluated and must be bound. We write
R(s) for the set of instances of type R in s.

The defined operators are read as follows: EXϕ means there is a next state in
which ϕ holds ; EGϕ conveys there is a run where ϕ holds in every state; E(ϕUψ)
denotes there is a run in which ϕ holds until ψ holds ; Kiϕ: expresses agent i
knows ϕ; ∀x : R represents for all instances of type R; and ∃x : R says there
is an instance of type R. The remaining CTL operators can be constructed by
combination of the ones given above in the standard way. For example, AG ∀x :
OrderAF Kix.sent encodes the property expressing that in any reachable state,
agent i will eventually know that the attribute sent is set to true for every active
instance of type Order.

62 P. Gonzalez, A. Griesmayer, and A. Lomuscio

We inductively define the semantics of IQ-CTLK over an AC-MAS P as fol-
lows. A formula ϕ is true in a state s of P , written (P , s) |= ϕ, iff:

(P , s) |= p iff p ∈ s

(P , s) |= ¬ϕ iff it is not the case that(P , s) |= ϕ

(P , s) |= ϕ1 ∨ ϕ2 iff (P , s) |= ϕ1 or (P , s) |= ϕ2

(P , s) |= EXϕ iff ∃s′ : s → s′ and (P , s′) |= ϕ

(P , s) |= EGϕ iff ∃r∈rs : ∀i≥0 : (P , r[i]) |= ϕ

(P , s) |= E(ϕUψ) iff ∃r∈rs : ∃k≥0 : (P , r[k]) |= ψ and

∀j<k(P , r[j]) |= ϕ

(P , s) |= Kiϕ iff ∀s′ ∈ S : s ∼i s
′ implies (P , s′) |= ϕ

(P , s) |= ∀x : R ϕ iff ∀u ∈ R(s) : (P , s) |= ϕ[u/x]

(P , s) |= ∃x : R ϕ iff ∃u ∈ R(s) : (P , s) |= ϕ[u/x]

The above semantics provides an information-theoretic definition of knowl-
edge, i.e., Ki expresses what agent i can infer from the information available to
him. An agent knows that ϕ is true in state s if ϕ is true in all states s′, which
the agent cannot distinguish from s. Finally, given an AC-MAS model P and an
IQ-CTLK specification ϕ, the model checking problem concerns the decision as
to whether the formula ϕ holds at the initial state of P .

Note that the above semantics provides an information-theoretic definition
of knowledge, i.e., Ki expresses what agent i can infer from the information
available to him. An agent knows that ϕ is true in state s if ϕ is true in all states
s′, which the agent cannot distinguish from s. This means the agent does not
need to build a knowledge base, from which he can deduce new information, since
he already knows everything he could possibly deduce in a certain situation.

Given an AC-MAS model P and an IQ-CTLK specification ϕ, the model
checking problem concerns establishing whether the formula ϕ holds at the initial
state of P , written P |= ϕ. In the context of our formal model, an AC-MAS P
satisfies ϕ if (P , I) |= ϕ. Intuitively this means that the model P satisfies ϕ if ϕ
is true in the initial state of P .

This was shown to be undecidable on similar semantic structures and more
expressive logics [11]. In the following sections, we will achieve decidability by
bounding the data and the number of instances present. We will also show the
implementation of the technique to demonstrate its feasibility.

4.3 Mapping to Agent-Based GSM to AC-MAS

We now establish the formal mapping f : A-GSM → AC-MAS. Note that the
semantics for the local states and protocols of agents in A-GSM are given
in terms of AC-MAS. We define the map by constructing the environment
〈LE , ActE , PE〉 from the GSM model Γ of a given artifact system and create
an agent 〈L0, Act0, P0〉 for the AutoAgent, and 〈Li, Acti, Pi〉 with 1 ≤ i ≤ n

Model Checking GSM-Based Multi-Agent Systems 63

for each external A-GSM agent. We identify a GSM event e with an AC-MAS
action a and will omit the conversion in the following for ease of presentation.
The sets of actions ActE , Act0, and Acti are thus directly defined by the events
the AS provides and the permissions of the agents.

Global state: To construct a global AC-MAS state 〈lE , l0, . . . , ln〉 ∈ S from an
snapshot Σ, an AutoAgent buffer t and the local agent states xi, we identify lE
with Σ and l0 with t. The local states l1, . . . , ln of the external agent comprise
the state of the private variables xi and the projections Σ|i of the environment
snapshot such that:

Σ|i = {ι | ∃ι′∈Σ : ωi(ι
′) ∧ ι = ι′|νi}

where ι′|νi is the restriction of the artifact instance ι′ to the variables in νi
(variables not in νi are replaced by ⊥).

The initial state I is the empty state without any artifact instances in Σ or
pending tasks in l0. Private variables are initialised to their initial value.

Protocol: By construction, GSM executes only applicable events and blocks all
others. Artifact instantiation events are always permitted. This is reflected in
the environment protocol PE :

PE(Σ) = {a | ∃ι∈Σ : (χ ∈ X(Γ) ∧ χ(ι, a)) ∨ a ∈ inst}

where X(Γ) is the set of all sentries in the milestones and guards of Γ and
χ(ι, a) is the evaluation of a sentry χ with respect to the action a and status
attributes Attstatus ∈ ι. We write inst for the set of artifact instantiation events.
The AutoAgent stores the set of pending tasks in its buffer t and sends them
at a later point to Γ . Thus, the protocol simply selects any pending task from
its buffer by using the expression P0(t) = {a|a ∈ t}. The protocol of an agent
i gives the set of actions that are available in visible instances of its local state
and satisfy its local protocol:

Pi(li) = {a | ∃ι∈li : a ∈ εi(ι) ∩ ℘i(ι, xi)}

These components suffice to instantiate a full AC-MAS from Definition 6.
With these details in place we conclude the formal map from A-GSM to AC-
MAS. In the remainder of the paper we present an implementation of a model
checker for IQ-CTLK on AC-MAS.

5 Implementation

To perform AC-MAS model checking, we have extended GSMC [13] model check-
ing. The new version, numbered 0.8.51, is written in C++ and uses the CUDD

1 The pre-compiled binaries of the tool can be downloaded from
http://www.doc.ic.ac.uk/~pg809/gsmc/0.8.5.tar.gz

http://www.doc.ic.ac.uk/~pg809/gsmc/0.8.5.tar.gz

64 P. Gonzalez, A. Griesmayer, and A. Lomuscio

Fig. 4. Architecture of GSMC

library [17] for the back-end symbolic computations. GSMC builds the model and
the transition relation and performs a symbolic state space exploration based
on BDDs. The GSM model and the specification of the AutoAgent are directly
loaded from the BarcelonaXML input file; agent definitions are given in form of
a configuration file as shown in Figure 3. The internal architecture of the model
checker is illustrated in Figure 4.

To obtain finite state models, we introduce a bound on the number of instances
that can be generated and use abstraction to create finite data; an overflow flag
indicates if the bound was reached during a run. We allocate BDD variables for
the states of the agents and the maximum number of artifact instances present
in a run. The basic layout of the BDD data structure is shown in Figure 5.
We introduce an Overflow flag that indicates if the number of instances or data
values were exceeded in a run. We pay special attention to this case because some
of the results of the check may be unsound and require a re-check with higher
bounds. We also capture the Event ID and Payload of the next action a that is
to be executed. The artifact instances correspond to Σ. The actual number and
size of these fields depend on the artifact type and the bounds that are fixed at
the start of the verification. The special flag Created in each artifact instance
indicates whether it was instantiated in the corresponding run. The task buffer
fields t with a Pending flag and the corresponding payload belong conceptually
to the AutoAgent, but are stored in the artifact state space for technical reasons.
Private variables of agents complete the data structure.

Any IQ-CTLK formula ϕ to be verified is first rewritten by replacing the quan-
tification operators with formulas that range over the actual instances. However,
because artifact instances are created dynamically at run-time, the number of
active instances is not known a priori and needs to be considered in the formula.

Model Checking GSM-Based Multi-Agent Systems 65

Ov
er

flo
w

Ev
en

t I
D

Pa
yl

oa
d

Ta
sk

 P
en

di
ng

Ta
sk

 P
ay

lo
ad

Da
ta

At
tri

bu
tes

St
atu

s A
ttr

ib
ut

es

Cr
ea

ted

Task
Buffer t

Artifact
Instances Σ

Pending
Event e

Private Agent
Variables

...

A
ge
nt

1

A
ge
nt

n

Fig. 5. Layout of the BDD data structure

We use the expression created(ι) to check if an instance was created (the Created
flag is set) and rewrite the quantified formulas as follows:

∀x : ϕ ⇒
∧
ι∈Γ

created(ι) → ϕ

∃x : ϕ ⇒
∨
ι∈Γ

created(ι) ∧ ϕ

Note that, for any existential formula to be valid, at least one of the artifact
instances needs to be active; this is not the case in the initial state because no ar-
tifact instance has been created yet. Quantifiers can be arbitrarily nested and are
resolved recursively. Once the details above are considered, GSMC follows existing
methodologies to perform the verification of temporal-epistemic formulas [18].

5.1 Limitations

The bound in the number of instances restricts the possible behaviour of the
system, while data abstraction leads to an over approximation. This may lead to
loss of soundness or completeness when the limit of artifact instances is reached.
The exact outcome depends on the type of the property considered. A violation of
a universal property, for instance, does denote a violation on the full unbounded
model even if the bound was exceeded during the computation. If an existential
property is not satisfied, no conclusion can be drawn regarding the full model
in general. These are limitations in the technique at present but, as we show in
the following, interesting scenarios can still be analysed.

6 Experimental Results

We evaluated GSMC on the Order-to-Cash scenario, a simplified version of the
IBM back-end order management application supplied by IBM Research [7]. In
this scenario a manufacturer schedules the assembly of a product based on a

66 P. Gonzalez, A. Griesmayer, and A. Lomuscio

Table 1. Properties of the Order-To-Cash case study

AG ∀x : CO((x.BId = Dio ∧ ¬x.Cancelled) → KDio EF x.Received) (1)

EF ∃x : CO(x.BId �= Dio ∧KDio x.Received) (2)

AG ∀x : CO((x.BId = Dio ∧ x.Ready) → KDiox.Parts = 3) (3)

EF ∃x : CO(x.BId = Dio ∧ x.Cancelled ∧ ¬Dio.cancelled) (4)

confirmed purchase order from a customer. Typically, a product requires several
components that are sourced from different suppliers. After all components have
been delivered the product is assembled and shipped to the customer.

The GSM program is specified in the form of a single-artifact Barcelona

schema consisting of 9 stages and 11 milestones. To verify the model we per-
formed small modifications to abstract from concrete products and created three
agent roles for the above scenario: 1) a Customer who creates an artifact instance
that represents the order and can only see instances they created; 2) a Manu-
facturer who fulfils the order and can see only uncompleted instances of orders
sent to him by a customer; and 3) a Carrier who ships the finished product to
the customer, and who can see only instances of orders that are to be shipped
via them.

Figure 1 gives the lifecycle of the Preparing stage. It is controlled solely by
the manufacturer, who, upon receiving the order, launches a research process to
identify suitable suppliers and orders the required components. The assembling
process can begin when the first component is received and remains active until
all the components are collected. This is modelled by introducing a counter; the
process is considered complete when 3 components have arrived.

Table 1 reports the properties we checked for different numbers of agents and
artifact instances, where Dio is a customer agent (Diogenes) and CO stands for
the CustomerOrder artifact type. Property (1) represents that Diogenes knows
that, unless he cancels an order, the product can always be received in all of
his orders. (i.e., that there is no deadlock in processing an order: An order can
always be delivered or is cancelled). To check that the order is private to the
customer, property (2) expresses that Diogenes may know a product is received
for an order with different owner. Property (3) encodes the ability of an agent
to deduce information it can not directly observe by checking if Diogenes always
knows there are 3 Parts collected in all of his orders when the milestone Ready is
achieved. Property (4) implies that an agent other than Diogenes can cancel an
order that belongs to Diogenes. This is done by using a private variable, which
is set true only if Diogenes executed the Cancelled event.

We ran the tests on a 64-bit Fedora 17 Linux machine with a 2.10GHz Intel
Core i7 processor and 4GB RAM and measured the number of reachable states,
memory used, and CPU time required. The model checker evaluated the proper-
ties (1) and (3) to be true and the properties (2) and (4) to be false in the model.
This is in line with our intuition of the model and shows that the GSM program
of Order-to-Cash application is indeed correct with respect to the requirements.

Model Checking GSM-Based Multi-Agent Systems 67

Table 2. Reachable states, memory and time usage for different numbers of artifact
instances ι and agents

3 agents 15 agents
#ι #states MB s #states MB s

1 1.17 e2 27 0.1 2.92 e3 31 0.2

2 3.71 e3 52 0.7 4.16 e6 70 4.9

3 1.16 e5 64 5.9 5.82 e9 84 65.5

4 3.67 e6 96 42.1 8.01 e12 222 360.2

5 1.18 e8 195 176.7 1.09 e16 539 1419.6

Table 2 reports the performance for 3 agents (one for each role) and 15 agents
respectively (6 customers, 5 manufacturers, and 4 carriers). We see that the
run-time grows exponentially with the number of artifact instances, while the
number of agents influences the resource usage only moderately. This is because
additional agents add fewer states than additional artifact instances. The results
show that the tool has the ability to effectively handle large state spaces, which
is required to model realistic artifact systems with complex agent interactions.

7 Conclusions

In this paper we put forward a technique for the practical verification of GSM-
based MAS. The approach consists of defining a formal map from the declarative,
executable language GSM to an extension of previously studied artifact-centric
MAS, a semantics for reasoning about MAS in a quantified setting of the ar-
tifact system environment. We reported on a fully-fledged model checker that
implements this formal map and supports temporal-epistemic specifications in
which quantification is allowed over artifact instances. The experimental results
obtained against the Order-to-Cash application led us to conclude that the prac-
tical verification of reasonably sophisticated GSM-based MAS is feasible and
scalable in valuable scenarios in business processes and services. However, GSM
and Barcelona are still a topic of active research and development and sophisti-
cated and stable models are hard to come by.

We plan to extend the work reported here in a number of ways, including the
support of limited quantification over data. Theoretical studies [10, 14] point to
high-undecidability in settings where unbounded data is present. For this reason
we will work on existential abstraction and data abstraction to achieve a transfer
of the verification outcome from abstract to concrete models. In particular we
work on 3 valued abstraction [19], an abstraction technique that supports the
detection of insufficient information in the abstraction.

68 P. Gonzalez, A. Griesmayer, and A. Lomuscio

References

1. Singh, M., Rao, A.S., Georgeff, M.: Formal methods in DAI: Logic-based represen-
tation and reasoning. In: Weiß, G. (ed.) Multiagent Systems: A Modern Approach
to Distributed Artifical Intelligence, pp. 331–376. MIT Press (1999)

2. Bultan, T., Su, J., Fu, X.: Analyzing conversations of web services. IEEE Internet
Computing 10(1), 18–25 (2006)

3. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract regulated service
composition. Autonomous Agents and Multi-Agent Systems 24(3), 345–373 (2012)

4. Singh, M.P., Huhns, M.N.: Service-oriented computing - semantics, processes,
agents. Wiley (2005)

5. Baldoni, M., Baroglio, C., Mascardi, V.: Special issue: Agents, web services and
ontologies: Integrated methodologies. Multiagent and Grid Systems 6(2), 103–104
(2010)

6. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling busi-
ness operations and processes. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering 32(3), 3–9 (2009)

7. Hull, R., Damaggio, E., De Masellis, R., et al.: Business artifacts with guard-stage-
milestone lifecycles: managing artifact interactions with conditions and events. In:
Proceedings of the International Conference on Distributed Event-Based Systems
(DEBS 2011), pp. 51–62 (2011)

8. Object Management Group: Proposal for: Case management modeling and nota-
tion (CMMN) specification 1.0, Document bmi/12-02-09 (February 2012)

9. Deutsch, A., Sui, L., Vianu, V.: Specification and verification of data-driven web
applications. Journal of Computer and System Sciences 73(3), 442–474 (2007)

10. Hariri, B.B., Calvanese, D., Giacomo, G.D., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. CoRR (2012)

11. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed artifact systems
via data abstraction. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.)
ICSOC 2011. LNCS, vol. 7084, pp. 142–156. Springer, Heidelberg (2011)

12. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of GSM-based artifact-
centric systems through finite abstraction. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 17–31. Springer, Heidelberg (2012)

13. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verifying GSM-based business arti-
facts. In: Proceedings of ICWS 2012, pp. 25–32 (2012)

14. Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the ver-
ification of artifact-centric systems. In: Proceedings of Principles of Knowledge
Representation and Reasoning (KR 2012), pp. 319–328 (2012)

15. Parikh, R., Ramanujam, R.: Distributed processes and the logic of knowledge. In:
Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 256–268. Springer,
Heidelberg (1985)

16. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
The MIT Press (1995)

17. Somenzi, F.: CUDD: CU decision diagram package - release 2.5.0 (2012),
http://vlsi.colorado.edu/~fabio/CUDD/ (January 2013)

18. Lomuscio, A., Qu, H., Raimondi, F.: Mcmas: A model checker for the verifica-
tion of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

19. Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. In-
formation and Computation 206(11), 1313–1333 (2008)

http://vlsi.colorado.edu/~fabio/CUDD/

Towards Modeling and Execution
of Collective Adaptive Systems

Vasilios Andrikopoulos1, Antonio Bucchiarone2, Santiago Gómez Sáez1,
Dimka Karastoyanova1, and Claudio Antares Mezzina2

1 IAAS, University of Stuttgart
Universitaetsstr. 38, 70569 Stuttgart, Germany

{andrikopoulos,karastoyanova,gomez-saez}@iaas.uni-stuttgart.de
2 Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy

{bucchiarone,mezzina}@fbk.eu

Abstract. Collective Adaptive Systems comprise large numbers of heterogeneous
entities that can join and leave the system at any time depending on their own ob-
jectives. In the scope of pervasive computing, both physical and virtual entities
may exist, e.g., buses and their passengers using mobile devices, as well as city-
wide traffic coordination systems. In this paper we introduce a novel conceptual
framework that enables Collective Adaptive Systems based on well-founded and
widely accepted paradigms and technologies like service orientation, distributed
systems, context-aware computing and adaptation of composite systems. Toward
achieving this goal, we also present an architecture that underpins the envisioned
framework, discuss the current state of our implementation effort, and we outline
the open issues and challenges in the field.

1 Introduction

Collective systems comprise heterogeneous entities collaborating towards the achieve-
ment of their own objectives, and the overall objective of the collective. Such systems
are usually large scale, typically consisting of both physical and virtual entities dis-
tributed both organizationally and geographically. In this sense, collective systems ex-
hibit characteristics of both service-oriented and pervasive computing. Furthermore, due
to the dynamic nature of the environment they operate in, they have to possess adapta-
tion capabilities.

In our previous work in the ALLOW project, we enabled orchestrations of physi-
cal entities [8,16] as the model for individual entities in a collective system. A single
entity is modeled using a pervasive flow modeling its functionality, the services it ex-
poses and the functionality a partner entity needs to implement in order to interact with
the physical entity. Moreover, the pervasive flows are adaptable in terms of abstract
tasks/activities, which can be refined during the execution depending on the goal of the
entity. However, this work relies on a model restricting the capabilities of entities to a
single behavioral description in terms of Adaptive Pervasive Flows (APFs), and ignores
the collaborative aspect in their behavior.

For this purpose, in the current work as part of the ALLOW Ensembles project1,
we aim at defining a Collective Adaptive System (CAS) [19], and the underpinning

1 ALLOW Ensembles: http://www.allow-ensembles.eu

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 69–81, 2014.
c© Springer International Publishing Switzerland 2014

http://www.allow-ensembles.eu

70 V. Andrikopoulos et al.

concepts supporting modeling, execution and adaptation of CAS entities, and their in-
teractions. Toward this goal, we use an approach inspired by biological systems. In
particular, we propose to model and manage entities as collections of cells encapsulat-
ing their functionality. Entities collaborate with each other to achieve their objectives in
the context of ensembles describing the interactions among them.

The contributions of this work can therefore be summarized as follows:

1. Starting from a motivating scenario (Section 2), we introduce a CAS framework
(Section 3) defining a conceptual model and the life cycle of systems realizing this
model.

2. We introduce an architecture enabling the modeling, execution and adaptation of
CAS as distributed, large scale, pervasive systems and we discuss its implementa-
tion based on well-established technologies (Section 4).

The paper closes with a summary of related work (Section 5), and concludes with an
outline of research challenges and future work (Section 6).

2 Motivating Scenario

Supporting citizens mobility within the urban environment is a priority for municipali-
ties worldwide. Although a network of multi-modal transportation systems (e.g., buses,
trains, metro), services (e.g., car sharing, bike sharing, car pooling), and smart tech-
nologies (e.g., sensors for parking availability, smart traffic lights, integrated transport
pass) are necessary to better manage mobility, they are not sufficient. Citizens must be
offered accurate travel information, where and when such information is needed to take
decisions that will make their journeys more efficient and enjoyable. In order to deliver
“smart services” to citizens, available systems should be interconnected in a synergistic
manner constituting a system of systems. The FlexiBus scenario is a case of such sys-
tem. The goal is to develop a system to support the management and operation of Flex-
iBuses (FlexiBus Management System (FBMS)), where actors (i.e., passengers, buses,
route managers, bus assistance manager etc.) need to cooperate with each other towards
fulfilling both individual and collective goals and procedures. As shown in Fig. 1, the
system must be able to manage different routes at the same time (e.g. blue and red) set
by passengers by allowing pre-booking of pick up points.

More specifically, each Passenger can request a trip to one of the predefined destina-
tions in the system, asking to start at a certain time and from a preferred pickup point.
The system should manage also special requests from each passenger like traveling with
normal or extra sized luggage, or disability related requirements. Each passenger can
pay their trip directly in the bus (cash, with a credit card or a monthly pass) or through
the FlexiBus company web site. Furthermore, during the route execution, each passen-
ger waiting for a bus can be notified for problems on a selected route (e.g. bus delays,
accidents, etc.) Each Bus Driver is assigned by the FBMS a precise route to execute,
including the list of passengers assigned to it, and a unique final destination (e.g. Trento
city center in Fig. 1). During the route realization, each flexibus can also accept pas-
sengers that have not booked only if there are available seats. Bus drivers communicate
with an assigned Route Manager to ask for the next pick-up point and to communicate

Towards Modeling and Execution of Collective Adaptive Systems 71

Fig. 1. The FlexiBus Scenario

information like passengers check-in. Different routes are created by a Route Planner
that organizes them to satisfy all passenger requirements (i.e. arrival time and destina-
tion) and to optimize bus costs (i.e. shorter distance, less energy consumptions, etc.).
To find the set of possible routes, the Route Planner communicates with the FlexiBus
Manager in order to collect necessary information (i.e. traffic, closed roads, events, etc.)
and available resources (i.e. available buses), and to generate alternative routes. A Bus
Assistance Service is also available for bus drivers to report problems that occur along
one route and request for advice/specific activities to be performed (e.g. notify police
for an accident, pickup a bus for repair). Finally, a Payment Service is the entity that
interfaces with various payment systems in order to ensure that ticket purchases are
handled correctly.

The system needs to deal with the dynamic nature of the scenario, both in terms of
the variability of the actors involved and of their goals, and of the exogenous context
changes, e.g. bus damages, passenger requests cancellations, traffic jams, roads closed
due to accidents, etc. affecting its operation. Moreover, some of the tasks executed by
the actors require customization for different environmental situations, like passenger
preferences and requirements (e.g. payment with cash or credit card, trip together with
a friend, etc.).

3 Overall Framework for CAS

In this section we present our framework to model and execute Collective Adaptive
Systems like the FBMS described above.

3.1 Conceptual Model

We model a CAS as a set of entities that can collaborate with each other in order to
accomplish their business objectives and in some cases common objectives, and for

72 V. Andrikopoulos et al.

Fig. 2. The Trip Booking Cell Flow

that form one or more ensembles. Moreover, to enable interaction among entities, each
entity exposes one or more cells.

Cells are uniquely identifiable building blocks representing a concrete functionality
in a larger, multi-cellular system. Implementing the functionality may involve interact-
ing with other cells through pre-defined protocols. Therefore each cell is defined in
terms of its behavior (flow) and protocol, describing the interaction with other cells and
exposed process fragments [15]. For example, the passenger trip booking in the Flex-
iBus scenario is performed by a specific functionality of the Route Manager entity and
it is an example of a cell in the FBMS (see Fig. 2). Among the activities that comprise
this flow is Payment, which is marked as an abstract activity, in the sense that it requires
another cell, or a composition of cells, to implement this functionality. Selecting these
cells can be done either during design or run time of the cell at hand.

Cells can be created from each other through differentiation. Cell differentiation is
the process of modifying/adapting the protocol or flow of an existing cell, resulting in
a new cell with more specific functionality. Differentiation can take place either during
the instantiation of the cell, or during its lifetime (i.e. in runtime). Accepting only credit
cards as part of the Payment activity in Fig. 2 is a case of cell differentiation from
the generic cell able to handle different payment options into a cell with more specific
functionality. The actual functionality of the Payment activity can actually be provided
by another cell, e.g. by the Payment Manager/Service.

After instantiation in the CAS cell instances belong to distinct entities and each cell
instance belongs to exactly one entity. An entity is a physical or virtual organizational
unit aggregating a set of cells. Cells can either be unique in an entity, or they can be
replicated by the entity through instantiation as many times as necessary. The Route
Manager in the FlexiBus scenario, for example, is an entity containing the Trip Booking
cell (Fig. 2) and a Route Assignment cell (Fig. 3a) managing the execution of the route.
Each entity has a context in which it operates, expressed as a set of stateful properties
representing the status of the environment of the entity, e.g. PaymentStatus in Fig. 2.
The entity context is accessible and shared by its cells and cells may keep cell specific
context. In addition, an entity has a set of goals, e.g. ensure that the PaymentStatus
context property is set to “paid” at the end of the cell flow execution, that it attempts to
fulfill by initiating or participating in one or more ensembles.

An ensemble is a set of cells from different entities collaborating with each other to
fulfill the objectives of the various entities. Each ensemble is initiated and terminated

Towards Modeling and Execution of Collective Adaptive Systems 73

(a) Route Assignment Cell Flow (Route
Manager)

(b) Route Execution Cell Flow (Bus Driver)

Fig. 3. Examples of Cells and Associated Entities

by one entity, but more than one entities are expected and allowed to join and leave
through the ensemble’s lifetime. The Route Assignment cell of the Route Manager en-
tity (Fig. 3a) for example, forms an ensemble with the Route Execution Cell of the
Bus Driver entity (Fig. 3b) to successfully coordinate the two entities in executing a
(FlexiBus) route. Note that one entity may be involved in more than one ensembles
simultaneously.

3.2 Lifecycle

The lifecycle of ensembles is depicted in Fig. 4. We distinguish two major phases: de-
sign time and run time. During the design time phase the ensembles of a CAS are
modeled as choreographies and the cells are expressed as Adaptive Pervasive Flows
(APFs) [8]. Modeling choreographies implies defining the visible behavior of the par-
ticipants (i.e. cell protocols), the sequence of exchanged messages, and the types of
the exchanged data. During the Generation & Refinement step the resulting choreog-
raphy definition is first transformed into APF skeletons — one for each participant —
which also contain the functionality required to support the defined interaction protocol
(i.e. sending and receiving messages from partners, data structures for storing the data,
etc.). In the subsequent refinement, each APF is edited so that it is completed to an
executable APF. Note that the design time phase of choreography subsumes the design
time for APFs, i.e. participant implementations/processes. Any kind of adaptation dur-
ing the design phase of APFs realizes a differentiation of cells. The possible adaptation
actions are inserting, deleting and substituting activities and control flow connectors in
the APF, changing the data dependencies, editing the context model, and injecting a
process fragment that specifies the functionality of an abstract activity.

The deployment step uses the APF skeletons from the previous step, their service
interfaces, and deployment information about the binding strategies for each of the
services to be used. After the deployment the choreography can be executed collectively
by APF instances, i.e. the APFs are made available for instantiation by the execution
environment. The instantiation of one of the APFs initiates the choreography, which is
the beginning of the run time phase for the choreography. More than one APF model
may be designated as an initiating one, e.g. the Route ensemble may be initiated by a

74 V. Andrikopoulos et al.

Ensemble/Choreography

Cells/APF

Cell/APF Instances

Design Time

Run Time

Deployment &
Instantiation

Generation &
Refinement

Fig. 4. Lifecycle of Ensembles

cell of the bus or by a cell in a passenger entity. However, if an instance of one APF
initiates a choreography, instances of the other participating APFs can only join the
initiated choreography, e.g. if a bus cell has started the Route ensemble, passengers can
only join the initiated choreography following the predefined rules for passenger check
in.

The choreography is completed successfully when the objectives of the entities par-
ticipating in the ensemble are achieved through executing all APFs in it successfully, or
even if some of the cells/APFs have abandoned the ensemble, e.g. if a passenger leaves
the bus and moves to another transportation vehicle due to changes in their objectives.
For the latter case, fault handling and/or adaptation steps may need to be performed. A
choreography is completed abnormally if all participant APFs have been terminated. In
this case either the choreography has reached a state for which a termination has been
predefined (e.g. the bus breaks down and there is no available one to substitute it, there-
fore passengers have to join another ensemble, i.e. wait for the next FlexiBus or use an
alternative transportation means), or none of the fault handling and/or adaptation steps
have been able to complete the choreography successfully. The runtime phase subsumes
monitoring and adaptation of choreographies, as well as the runtime and monitoring and
adaptation phases of APFs. Adaptation of choreographies is done through adaptation of
the visible behavior of the cells and through a change of the interaction protocol among
them, including message exchange sequence and message types. Adaptation of an APF
may not entail adaptation of the choreography.

4 Realization

4.1 Architecture

The architecture for the modeling and execution of CAS comprises two major com-
ponent groups (see Fig. 5) which cover the phases of the CAS lifecycle discussed in
Section 3.2. More specifically, the Modeling Tool comprises three major components:

Towards Modeling and Execution of Collective Adaptive Systems 75

Modeling tool

Runtime environment

ESB

Adaptation Manager

Planner Translator

Domain
Builder

Entity
Management

System

Monitoring
Information

Choreography Processes

Execution Engine

Domain
Models

Context

Fig. 5. Architecture overview

a Choreography Modeler to create choreography models for the ensembles, a Trans-
former to generate the APF skeletons that can be completed to executable processes by
the participant organizations using the APF Editor component, and an APF Editor (also
called process editor) to allow the visualization and modification of APF models.

The Runtime Environment enacts the choreographies. In particular this means that
the resulting executable APF models are deployed on one or more Execution En-
gines and can be instantiated at any time. The Deployment & Instantiation steps are
implementation-specific for each Execution Engine. In order to support the execution
of APFs containing abstract activities, the Execution Engine has to be able to start
the execution of incomplete processes, allowing the injection of additional activities
into APFs. Furthermore, the Execution Engine has to provide fault handling capabili-
ties, both for pre-defined fault and compensation handlers in the APF models, and for
failures in the Runtime Environment like service failures and unavailability of other
components in the Environment. The Execution Engine has to support user-defined ad
hoc control flow changes (e.g. deletion, insertion, substitution of one more activities
in the flow). Some of these adaptations require one or more planning steps, for exam-
ple, in order to resolve abstract activities into concrete ones and to handle the reaction
to not pre-modeled faults occurring during the execution of the APF. The component
providing this planning functionality is the Adaptation Manager.

Once the Adaptation Manager is notified about an execution problem, a change in
the context or goals of cells, it decides on the adaptation strategy to be used (horizon-
tal adaptation, vertical adaptation, other adaptation strategies etc. [9]). The choice of
the adaptation strategy determines the adaptation goal, which is passed to the Domain
Builder together with the information about the current context. The Domain Builder
builds an initial version of the adaptation problem consisting of a context model, a set
of available annotated fragments, current context configuration (i.e. the state of context
properties), and a set of goal context configurations. The Domain Builder extracts all
necessary specification from a repository of Domain Models. Taking into account the
current context and adaptation goals, the Domain Builder simplifies the context model
by pruning all unreachable configurations and removes all services that are useless for

76 V. Andrikopoulos et al.

the specified goal. With this optimization the size of the planning domain is significantly
reduced. The Translator component translates an adaptation problem into a planning
problem, which is resolved by the Planner. It is also responsible for transforming the
results of the Planner into executable APF fragments. Finally, the resulting APF frag-
ment expressing the actions necessary for realizing the adaptation strategy is sent to the
Execution Engine, that integrates it into the APF instance.

The Entity Management System (EMS) deals with all aspects of entity management:
persistence storage and management of APF models and associated entities, access con-
trol of APF models and instances, and context provisioning and management. When the
EMS creates a new entity, it deploys the entity APFs to the execution engine, adds cor-
responding context properties to the entity context model, and puts all the entity-related
specifications (such as fragments models and the context property diagrams provided
by the entity) into the Domain Models storage. When the entity “exits” the CAS, in-
verse actions are performed. The EMS is responsible for storing the system context (i.e.
a set of context properties of all active entities) and constantly synchronizes its current
configuration with the application domain by monitoring the environment of the entity.
Note that the system context is a simplified view of the application domain. The EMS
allows the Adaptation Manager to access the APF models and instances needed for
the planning step. Context information is used by the Execution Engine for different
purposes: as part of the execution of the APFs, as a trigger for adaptation, and as a
configuration parameter for the planning step.

All components (Execution Engine, EMS, Adaptation Manager) should be provided
as services and communicate through an Enterprise Service Bus (ESB) solution to facil-
itate their integration. Given the fact that multiple organizational domains may use the
Runtime Environment, it is necessary to offer multi-tenancy capabilities out of the box
for all components in the Environment. Furthermore, the Runtime Environment may
contain more than one instances of its components, distributed across on-premises and
off-premises Cloud infrastructures, for scalability purposes. This has to be taken into
consideration during the integration of the individual components.

4.2 Implementation

In the following we present the status of the implementation of the presented architec-
ture. In particular, we have developed the modeling tool as an Eclipse Graphical Edi-
tor. For purposes of expressing choreographies we use the BPEL4Chor language [13]
(which is an extension of the WS-BPEL language), and WS-BPEL [25] for implement-
ing the APFs. The user can model the participants in the choreography/ensemble as sep-
arate entities and define the interaction among them, including the abstract data types
used and the sequence of exchanged messages. BPEL4Chor code is automatically gen-
erated by the tool for the choreography, for the list of participants in the choreography
and the data exchanged among them. The components implementing the transforma-
tion from choreography definition in BPEL4Chor to BPEL process skeletons for each
participant and their service interfaces in WSDL, presented in [32], are part of the tool
as well as the Eclipse perspective for modeling and editing BPEL processes. The BPEL
modeling perspective is an extension of the BPEL Eclipse designer [28]. It is used to
view the BPEL skeletons and include additional process elements in order to define the

Towards Modeling and Execution of Collective Adaptive Systems 77

participants implementation of the choreography role (e.g. bus, passenger, route man-
ager processes). This manual refinement step is simplified by allowing to use predefined
process fragments, which are available in the tool catalogue and stored and managed in
the process fragment library Fragmento [27].

Additionally, we have extended the tool with a monitoring component for processes,
so that during the execution of the APF instances the user can view their status and
also adapt manually the instance that is currently being monitored. For this purpose
the modeling tool uses run time information from the execution engine provided via
its monitoring component. The interaction between the modeling tool, monitoring com-
ponent and execution engine supports also the runtime adaptation of APFs processes
using mechanisms like control flow change (inserting, deleting or substituting process
activities and control connectors), changes in the data used in the process instance, and
triggering re-execution of some of the already executed activities through [29].

The additional tasks of the Adaptation Manager component are realized by ASTRO-
CAptEvo2 [26], a comprehensive framework for defining highly adaptable service-based
systems (SBSs) and supporting their context-aware execution. It can deal with two dif-
ferent adaptation needs: the need to refine an abstract activity within a process instance
(i.e. vertical adaptation), and the need to resolve the violation of a context precondition
of an activity that has to be executed (i.e. horizontal adaptation). In the second case, the
aim of adaptation is to solve the violation by bringing the system to a situation where
the process execution can be resumed. Both adaptation mechanisms rely on sophisti-
cated AI planning techniques for the automated composition of services [5]. Moreover,
it is able to execute complex adaptation strategies that are realized through combining a
few adaptation mechanisms and executing them in a precise order, enabling support for
addressing complex adaptation problems that cannot be resolved by a single adaptation
mechanism [10].

The execution engine for APFs, i.e. the executable processes of the participants in
the choreography, is an extended Apache ODE Engine3, an open source implementation
of BPEL. We have extended the engine to support the integration with the modeling
tool for the purposes of monitoring, the adaptation mechanisms mentioned above as
well as with the ability to stop, suspend and resume a process instance in the engine
from the modeling tool [28]. For the ESB component of the architecture we use the
ESBMT multi-tenant aware ESB solution, as presented in [30,31]. ESBMT enhances the
Apache ServiceMix solution4 with multi-tenant communication support within service
endpoints deployed in the ESB, and multi-tenant aware dynamic endpoint deployment
and management capabilities.

The Entity Management System manages all active entities within a CAS. Currently
both the entity management and context management parts of the EMS are under con-
struction. Our CAS modeling tool is also missing features supporting modeling of con-
text in the choreographies and APFs. Adaptation mechanisms performing a reaction
to context change or driven by context information are also not yet designed and im-
plemented. Our execution engine prototype does not currently support the injection of

2 http://www.astroproject.org/captevo
3 Apache ODE: http://ode.apache.org/
4 Apache ServiceMix: http://servicemix.apache.org

http://www.astroproject.org/captevo
http://ode.apache.org/
http://servicemix.apache.org

78 V. Andrikopoulos et al.

fragments directly into the process instance; note that this is possible for the design time
phase. This is due to the fact that the previously presented implementation [26] of this
mechanism needs to be integrated in the current implementation. Currently we are also
working towards implementation of multi-tenancy of the APF execution engine.

5 Related Work

Collective or adaptive aspects of complex systems have been studied in various
domains. For example in Swarm Intelligence entities are essentially homogeneous and
are able to adapt their behavior considering only local knowledge [11,22]. In existing
systems from Autonomic computing the entity types are typically limited and the adap-
tation is guided by predefined policies with the objective to optimize the system rather
than evolve it [1,7,23]. In Service-based systems utilized on Internet of Things, entities
are hidden behind the basic abstraction of services, which are designed independently
by different service providers, and approaches to automatically compose services to
achieve a predefined goal like user specific [18] and/or business goals [24] are the fo-
cus. Multi-agent based systems concentrate on defining the rules (norms) for regulating
the collective work of different agents [12,21]. Most of the results obtained in these
domains are tailored to solve problems specific for the domain at hand using a specific
language or model but do not present a generic solution for all aspects of collective
adaptive systems.

Different choreography modeling approaches have been proposed in [3,14,17,20].
Two key approaches followed when modeling choreographies are interaction and in-
terconnection modeling [3]. The former has interaction activities supporting atomic
interactions between participants, while the latter interconnects the communication ac-
tivities of each participant in a choreography. WS-CDL [17] is a choreography language
following the interaction modeling approach. It exhibits however a strong dependency
between semantic and syntactic aspects, specifically in the definition requirement of
message exchange formats between participants at design time [4], lacks support for
describing choreographies with an unknown participants number [20], and does not de-
fine guidelines for mapping between the choreography modeling language and existing
orchestration languages, such as WS-BPEL [25]. The Savara5 project for example is
based on behavior specification and choreography specification using WS-CDL, and
behavior simulation, and generation and implementation of business processes using
BPEL and Web services. Despite the similarities in some of the used technologies with
our approach however, and due to the use of the interaction modeling approach requir-
ing explicit specifications of choreographies and orchestrations, the Savara approach
does not allow for dynamically joining and leaving the choreography.

An example of an interconnection modeling approach is the CHOReOS Integrated
Development and Runtime Environment which focuses on the implementation and en-
actment of ultra large scale choreographies of services6. By exploiting the notion of mod-
els and models@runtime [6] techniques, the CHOReOS Environment provides support

5 http://www.jboss.org/savara
6 CHOReOS: Large Scale Choreographies for the Future Internet:
http://www.choreos.eu/

http://www.jboss.org/savara
http://www.choreos.eu/

Towards Modeling and Execution of Collective Adaptive Systems 79

for a top-down and cross-cutting choreographies incorporating the design, enactment,
and adaptation of services during runtime. The adaptation requirements addressed in
the CHOReOS Environment (react to participants unavailability, or when the SLA is
not accomplished) are only a subset of the requirements on ensembles, where context
changes in pervasive environments, structural changes in the ensemble, or cells leaving
the ensemble, adapting to utility fluctuations etc. are of interest. In the scope of the Open
Knowledge European project7, the interconnection modeling approach is supported by
using the Multiagent Protocol (MAP) Web service choreography language for specify-
ing the interaction between peers, which are connected to the services participating in
the choreography. Services must be deployed prior to the choreography enactment and
the MAP language does not focus on adaptation features. These features present clear
deficits with respect to modeling CAS adaptation and the runtime reaction to changes
in a service-oriented pervasive environment.

The interaction modeling approach called BPELgold [20] is based on BPEL4Chor
[14]. The coordination logic of participants in choreographies is enabled by an ESB.
Both BPEL4Chor and BPELgold decouple the choreography specification from com-
munication specific details, allowing for dynamic ensemble adaptation during runtime.
However, while these approaches possess the required flexibility for defining ensembles
no execution environment is currently available for them.

6 Conclusion and Future Work

Collective Adaptive Systems (CAS) are characterized by heterogeneous entities that
can join and leave the system at any time towards fulfilling their own objectives. These
entities may be physical or virtual, and interact with each other as part of the collective.
CAS systems are naturally distributed, both in terms of the participating entities (i.e.
geographical location and/or organizational affiliation), and the required infrastructure
to support them. In order to enable CAS exhibiting these properties, in this work we
introduce a conceptual model inspired by biological systems which comprises collec-
tions of cells (functional building blocks) organized into entities (organizational units),
interacting with each other in ensembles (collaborations between cells).

In order to discuss the realization of this model, we map its elements to existing tech-
nologies and present a lifecycle for the ensembles based on them. We also introduce
an architecture for a CAS that ensures complete coverage of the lifecycle, and present
the current status of its implementation. Future work focuses on creating an improved
context model and provisioning techniques for entities participating in ensembles in dif-
ferent application domains, e.g. in eScience [2], and managing the adaptation of chore-
ographies. Consequently, the components of the prototype implementation discussed in
the previous sections have to be extended, and all the remaining components integrated.
In addition, different distribution and deployment options for the Runtime Environment
will be investigated in order to identify the optimal solution for different CAS.

Acknowledgment. This work is partially funded by the FP7 EU-FET project 600792
ALLOW Ensembles.

7 Open Knowledge: http://www.openk.org/

http://www.openk.org/

80 V. Andrikopoulos et al.

References

1. Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: Towards a General Model for
Self-Adaptive Systems. In: WETICE, pp. 48–53 (2012)

2. Andrikopoulos, V., Gómez Sáez, S., Karastoyanova, D., Weiß, A.: Towards Collaborative,
Dynamic & Complex Systems. In: Proceedings of SOCA 2013. IEEE (December 2013) (to
appear)

3. Barker, A., Walton, C.D., Robertson, D.: Choreographing Web Services. IEEE Transactions
on Services Computing 2, 152–166 (2009)

4. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of the Web Services Choreography
Description Language (WS-CDL). BPTrends (March 2005),
http://www.bptrends.com/

5. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of Web services via planning in
asynchronous domains. Artif. Intell. 174(3-4), 316–361 (2010)

6. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42, 22–27 (2009)
7. Bruni, R., Corradini, A., Gadducci, F., Lluch Lafuente, A., Vandin, A.: A Conceptual Frame-

work for Adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212,
pp. 240–254. Springer, Heidelberg (2012)

8. Bucchiarone, A., Lafuente, A.L., Marconi, A., Pistore, M.: A Formalisation of Adaptable
Pervasive Flows. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 61–75.
Springer, Heidelberg (2010)

9. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic Adaptation of Fragment-
Based and Context-Aware Business Processes. In: Proceedings of ICWS 2012, pp. 33–41
(2012)

10. Bucchiarone, A., Marconi, A., Pistore, M., Traveso, P., Bertoli, P., Kazhamiakin, R.: Domain
Objects for Continuous Context-Aware Adaptation of Service-based Systems. In: Proceed-
ings of ICWS 2013, pp. 571–578 (2013) (to appear)

11. Pinciroli, C., et al.: ARGoS: A modular, multi-engine simulator for heterogeneous swarm
robotics. In: Proceedings of IROS. pp. 5027–5034 (2011)

12. Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-based collab-
oration patterns for autonomic service ensembles. In: CTS, pp. 508–515 (2011)

13. Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling Service Choreogra-
phies Using BPMN and BPEL4Chor. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 79–93. Springer, Heidelberg (2008)

14. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for Modeling
Choreographies. In: Proceedings of ICWS 2007 (2007)

15. Eberle, H., Unger, T., Leymann, F.: Process Fragments. In: Meersman, R., Dillon, T., Herrero,
P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 398–405. Springer, Heidelberg (2009)

16. Herrmann, K., Rothermel, K., Kortuem, G., Dulay, N.: Adaptable Pervasive Flows - An
Emerging Technology for Pervasive Adaptation. In: Proceedings of PerAda 2008. IEEE
(2008)

17. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.: Web Services
Choreography Description Language Version 1.0 (November 2005)

18. Kazhamiakin, R., Paolucci, M., Pistore, M., Raik, H.: Modelling and Automated Composi-
tion of User-Centric Services. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010,
Part I. LNCS, vol. 6426, pp. 291–308. Springer, Heidelberg (2010)

19. Kernbach, S., Schmickl, T., Timmis, J.: Collective Adaptive Systems: Challenges Beyond
Evolvability. ACM Computing Research Repository (CoRR) (August 2011)

http://www.bptrends.com/

Towards Modeling and Execution of Collective Adaptive Systems 81

20. Kopp, O., Engler, L., van Lessen, T., Leymann, F., Nitzsche, J.: Interaction Choreogra-
phy Models in BPEL: Choreographies on the Enterprise Service Bus. In: Fleischmann, A.,
Schmidt, W., Singer, R., Seese, D. (eds.) S-BPM ONE 2010. CCIS, vol. 138, pp. 36–53.
Springer, Heidelberg (2011)

21. Lavinal, E., Desprats, T., Raynaud, Y.: A generic multi-agent conceptual framework towards
self-management. In: NOMS, pp. 394–403 (2006)

22. Levi, P., Kernbach, S.: Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolu-
tion. Springer (2010)

23. Lewis, P., Platzner, M., Yao, X.: An outlook for self-awareness in computing systems. Aware-
ness Magazine (2012)

24. Marconi, A., Pistore, M., Traverso, P.: Automated Composition of Web Services: The
ASTRO Approach. IEEE Data Eng. Bull. 31(3), 23–26 (2008)

25. OASIS: Web Services Business Process Execution Language Version 2.0 (April 2007)
26. Raik, H., Bucchiarone, A., Khurshid, N., Marconi, A., Pistore, M.: ASTRO-CAptEvo: Dy-

namic Context-Aware Adaptation for Service-Based Systems. In: Proceedings of SERVICES,
pp. 385–392 (2012)

27. Schumm, D., Karastoyanova, D., Leymann, F., Strauch, S.: Fragmento: Advanced Process
Fragment Library. In: Proceedings of ISD 2010, pp. 659–670. Springer (2010)

28. Sonntag, M., Hahn, M., Karastoyanova, D.: Mayflower - Explorative Modeling of Scientific
Workflows with BPEL. In: Proceedings of the Demo Track of BPM 2012. CEUR Workshop
Proceedings, pp. 1–5 (2012)

29. Sonntag, M., Karastoyanova, D.: Ad hoc Iteration and Re-execution of Activities in Work-
flows. International Journal on Advances in Software 5(1&2), 91–109 (2012)

30. Strauch, S., Andrikopoulos, V., Leymann, F., Muhler, D.: ESBMT: Enabling Multi-Tenancy in
Enterprise Service Buses. In: Proceedings of CloudCom 2012, pp. 456–463. IEEE Computer
Society Press (December 2012)

31. Strauch, S., Andrikopoulos, V., Sáez, S.G., Leymann, F., Muhler, D.: Enabling Tenant-Aware
Administration and Management for JBI Environments. In: Proceedings of SOCA 2012,
pp. 206–213. IEEE Computer Society Conference Publishing Services (December 2012)

32. Weiß, A., Andrikopoulos, V., Gómez Sáez, S., Karastoyanova, D., Vukojevic-Haupt, K.:
Modeling Choreographies using the BPEL4Chor Designer: An Evaluation Based on Case
Studies. Tech. Rep. 2013/03, IAAS, University of Stuttgart (2013)

A Requirements-Based Model for Effort Estimation
in Service-Oriented Systems

Bertrand Verlaine, Ivan J. Jureta, and Stéphane Faulkner

PReCISE Research Center, University of Namur
Rempart de la Vierge, 8, BE-5000 Namur, Belgium

{bertrand.verlaine,ivan.jureta,stephane.faulkner}@unamur.be

Abstract. Assessing the development costs of an application remains an arduous
task for many project managers. Using new technologies and specific software
architectures makes this job even more complicated. In order to help people in
charge of this kind of work, we propose a model for estimating the effort required
to implement a service-oriented system. Its starting point lies in the requirements
and the specifications of the system-to-be. It is able to provide an estimate of the
development effort needed. The latter is expressed in a temporal measurement
unit, easily convertible into a monetary value. The model proposed takes into
account the three types of system complexity, i.e., the structural, the conceptual
and the computational complexity.

Keywords: Software Engineering, Service-oriented Computing, Development
Costs Estimation.

1 Introduction

“How much will it cost to develop a given Information System (IS)?” remains one of the
main issues for project managers. The rapid evolution of technologies as well as some
new IS development paradigms do not often facilitate this work. In this paper, we focus
on Service-oriented Systems (SoS), i.e., ISs based on the Service-oriented Computing
(SoC) paradigm. Its main component, the service, is a black box: only messages sent and
received are known. Consequently, some software features are no longer programmed
while the exchanges of messages must be developed. As recently underlined, assessing
the cost of SOA development deserves more attention: “Current approaches to costing
[SOA] projects are very limited and have only been applied to specific types of SOA

such as Service Development or SOA Application Development” [1]. In response, we
propose a requirements-based model for estimating a priori the effort needed to develop
a SoS. To do so, we adapt and extend an existing model to best suit to the service-
oriented paradigm. The results provided consists of an estimation of the development
effort required to carry out the SoS implementation. This estimate is based on the three
types of software complexity, i.e., the structural, the computational and the conceptual
complexity [2, Chap. 5]. The measurement unit of the estimate provided is temporal in
order to avoid focussing on a specific social policy applied in a given country.

This paper proceeds by first analysing the related literature based on which we con-
clude that an adapted model for SoS is needed (§2). Then, the methodology followed

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 82–94, 2014.
c© Springer International Publishing Switzerland 2014

A Requirements-Based Model for Effort Estimation in SoS 83

is detailed (§3) and the model is developed accordingly (§4). In §5, an example case
illustrates the use of the model. Conclusion and future work are presented in §6.

2 Related Work

Existing methods used for estimating a priori the software development costs are either
experts-based methods or model-based methods. Model-based methods use algorithms,
heuristics computations and/or old projects data. Experts-based methods rely on human
expertise and depend on experts’ intuition, knowledge and unconscious processes. We
decide to focus on a model-based approach in the scope of this work.

Model-based estimation techniques are principally grounded on analogies, empirical
studies and/or system-to-be analysis. To be effective, the first kind of techniques needs
lots of data collected during previous projects. The objective is to find the similarities
with the current project. This technique is close to experts-based methods but it is applied
with much more formalism and, often, the use of probabilistic principles. Analogy-based
techniques, e.g., [3, 4], face a recurring issue: they need highly skilled workers and they
cannot be applied in young organizations because of a lack of historical data. That could
be a problem in SoC seeing that it is a young paradigm which evolves quickly.

The second kind of techniques is based on empirical research, whereby situation-
based models are proposed. In some sense, they generalize analogy techniques. One
well-known initiative is COCOMO [5]. The core idea is that the development costs grow
exponentially when the system-to-be grows in size. The problem is that the development
of a SoS often combines several development strategies and processes: the underlying ser-
vices can communicate without any restrictions on their own development technologies.
As a result, COCOMO models and similar techniques are often over-calibrated as under-
lined by Tansey & Stroulia [6]. These authors attempted unsuccessfully to propose an
empirical model based on COCOMO to estimate SoS development costs. They were con-
strained to conclude that SoS development also involves developing and adapting declar-
ative composition specifications, which leads to fundamentally different processes.

The third kind of techniques consists of an analysis of the system-to-be structure in
order to measure its characteristics impacting the development costs. One well-known
technique is the use of function points based on which the software size is estimated. It
is a measurement unit which captures the amount of functionalities of an IS [7, 8]. In this
way, Santillo uses the COSMIC measurement method and, actually, he mainly focuses
on the determination of the boundary of an SoS [9]. He also identifies one critical issue:
from a functional point of view, SoC is different from traditional software architectures.
New measurement methods are therefore essential for sizing SoS: we need new rules and
new attributes appropriate to the SoC paradigm [9]. Nevertheless, the idea of using the
function points deserves further research, which is what we aim for this paper.

2.1 Software Development Costs Estimation in Service-Oriented Computing

In [10], the authors use the Work Breakdown Structure (WBS) for costing SoS. This is
a decomposition technique that tries to make a granular list of planned tasks often rep-
resented as a tree. It helps to reduce the mean relative error and possible slippages in

84 B. Verlaine, I.J. Jureta, and S. Faulkner

Structural complexity Computational complexity Conceptual complexity

Step 1

Step 2

Step 3

Analysis of the system-to-be
specifications

Analysis of the environment
of the system-to-be

Analysis of the development
staff productivity

Fig. 1. Illustration of the proposed model structure and its main components

project deliverables. After the SoS decomposition in atomic tasks, the authors propose
an algorithm to estimate the development costs of the system-to-be.

A second related work tackles the defect prediction issue in SoS [11]. To do so, the
authors use COCOMO to estimate the size of the future SoS. The paper does not solve the
main issue explained above, i.e., different strategies and processes can be used during
a SoC project, and one variable used in their model –the infrastructure factor– is not
clearly defined. It seems they use a COCOMO coefficient estimated based on common
software.

In [12], the authors propose an estimation framework for SoS by reducing the total
software complexity. They propose to decompose the SoS into smaller parts. Then, each
of them is separately estimated. However, it is not clear how all the values resulting from
the individual estimation are aggregated to provide a single figure.

3 Methodology Followed

Instead of measuring the SoS development costs –which depend on many unrelated
variables such as the wage level– we propose to measure the effort needed, i.e., the
number of staff per period needed to carry out the development tasks. To do this, we
first evaluate the SoS complexity from which we can deduce the total effort needed.
We take into account the three main sources of software complexity [2, Chap. 5]. The
structural complexity refers to the software design and structure such as the quantity
of data stored, the operations achieved, the user interfaces required and so on. As
show in Fig. 1, the structural complexity is captured in our model through the analy-
sis of the SoS specifications. This step is the starting point. Specifying the SoS could
be achieved thanks to a modelling language, e.g., UML, or with a framework such as
IEEE SRS1. In the scope of this work, that choice is not important as long as one is
able to identify the significant factors –defined below– impacting the structural com-
plexity. The computational complexity refers to the way that the computation is being
performed. This kind of complexity is captured via an analysis of the system-to-be
environment (the second step in Fig. 1). The conceptual complexity is related to the
difficulty to understand the system-to-be objectives and its requirements. It refers to
the cognitive processes and the capabilities of the programmers. In our model, the ef-
fort estimation is adjusted to the development staff productivity (the third step in Fig. 1).

1 The IEEE SRS framework was consulted the last time in February 2013 at
http://standards.ieee.org/findstds/standard/829-2008.html

http://standards.ieee.org/findstds/standard/829-2008.html

A Requirements-Based Model for Effort Estimation in SoS 85

Table 1. Characteristics of the SoS Complexity Model along with their acronyms

IC (Input Complexity): Complexity due to data inputs received by the system-to-be.
OC (Output Complexity): Complexity due to the data outputs that the system-to-be has to send

to its environment.
DSC (Data Storage Complexity): Complexity due to persistent data that the SoS has to store.
WS (Weight Source): Weight allocated to an input or output source type (see Table 2).
WT (Weight Type): Weight allocated to a specific type of input or output (see Table 2).
WST (Weight Storage Type): Weight allocated to a type of storage destination (see Table 2).
IOC (Input Output Complexity): Sum of the IC, OC and DSC.
FRC (Functional Requirements Complexity): Complexity due to the implementation of func-

tional stakeholder’s needs.
NFRC (Non-Functional Requirements Complexity): Complexity due to the implementation of

non-functional stakeholder’s needs.
FI (Functions to Implement): Features that have to be entirely implemented in the system-to-

be.
FS (Functions as a Service): Features that will not be coded because services will be used

instead.
QA (Quality Attribute): Primary characteristics coming from the non-functional requirements

which state how the functional requirements will be delivered.
QSA (Quality Sub-Attribute): Secondary characteristics refining each QA.
RC (Requirements Complexity): Sum of the FRC and NFRC.
PC (Product Complexity): Complexity of the SoS due to the tasks that it will perform; it sums

the IOC and RC.
DCI (Design Constraints Imposed): Complexity due to constraints and rules to follow during

the system-to-be development.
C (Constraint): Any environment characteristic of the development work or of the system-to-

be that limits and/or control what the development team can do.
IFC (Interface Complexity): Complexity due to the interfaces to implement in the system-to-

be.
I (Interface): Integration with another IS or creation of a user interface.
SDLC (Software Deployment Location Complexity): Complexity due to the type of users who

will access to the SoS as well as their location.
UC (User Class weight): Weight associated with a user class.
L (Location): Number of the different access locations for a specific user class.
SFC (System Feature Complexity): Complexity due to specific features to be added to the

system-to-be.
FE (Feature): Distinguishing characteristic of a software item aiming at enhancing its look or

its feel.

4 A Model for Effort Estimation in SoS Development

4.1 Software-Intrinsic Complexity Estimation in Service-Oriented Systems

The SoS Complexity Model. The model proposed should first help to estimate the
structural complexity of the SoS (see the first step in Fig. 1). To do so, we adapt and
improve an existing model [13]. The latter allows to compute the software-intrinsic
complexity before its coding. It analyses stakeholders’ requirements expressed in nat-
ural language and categorizes them into three groups –critical, optional and normal

86 B. Verlaine, I.J. Jureta, and S. Faulkner

Table 2. Sources and type weights for the input, output and data storage complexity

Parameter Description Weight

Input/Output
Sources

External Input/Output through Devices 1
Input/Output from files, databases and other pieces of software 2
Input/Output from outside systems 3

Input/Output
Types

Text, string, integer and float 1
Image, picture, graphic and animation 2
Audio and video 3

Data Storage
Types

Local data storage 1
Remote data storage 2

requirements– according to eleven axioms. The “normal category” is the default cate-
gory when the classification algorithm does not succeed to select one of the two other
categories. From our point of view, this method faces two problems. First of all, the re-
quirements categorization is complex and imprecise (cf. the default category used when
no decision is made). Secondly, the complexity estimation does not take into account
some specific features of the SoC such as the use of external services to provide system
features. In [13], once a requirement is specified, all of its underlying features increase
the software complexity. Despite these two flaws, this model performs well during the
tests and comparisons with similar initiatives [13–15]. This is why it is a sound basis
on which a specific model for the SoC could be built.

In the rest of this section, we identify the characteristics –defined in Table 1– of SoS

and how they increase structural complexity based on the model proposed in [13].
Input Output Complexity. The Input Output Complexity (IOC) gathers the complexity
of the input (IC), output (OC) and data storage complexity (DSC) together. Table 2 lists
the different weights, picked up from [13], for the types and sources of IC, OC and DSC.

IC =

3∑
i=1

3∑
j=1

Iij ×WSi ×WTj (1)

where Iij is the number of inputs of the source i and being of the type j identified in
the system-to-be specifications; WSi and WTj are respectively the weight of the input
source i and the input weight of the type j as listed in Table 2. In order to compute the
OC value, you substitute the variable Iij by Oij in Equation 1.

The use of services to perform some functionalities involves data exchanges between
the providers and the consumers of services. The WSDL technology is commonly used
for describing service capabilities and communication processes [16]. Two versions
of the WSDL protocol currently exit (WSDL 1.1 and 2.0), but their relevant parts for
our model are identical. <operation/> tags define service functions. Each operation
consists of one or several input and output tag(s), i.e., messages exchanges, which must
be considered as an input/output source from outside systems. Most of the time, the
type to apply is “text” seeing that messages exchanged are XML documents.

Equation 2 states how to compute the DSC.

DSC =

2∑
i=1

Si ×WSTi (2)

A Requirements-Based Model for Effort Estimation in SoS 87

where Si is the number of data storage of type i and WSTi is the weight of the type i.
The IOC value is the addition of the IC, OC and DSC values.

Requirement Complexity. The Functional Requirements Complexity (FRC) value cap-
tures the complexity of a given functionality. As some functions can be fulfilled thanks
to the use of (composite) services, they should not all be taken into account for the
computation of the FRC complexity value. Let F be the set which includes all the SoS’
functions. F contains two sub-sets: FI and FS for, respectively, the Functions to Im-
plement set and the Functions as Services set which will not be fully developed because
(composite) services will be used instead. They do not increase the RFC value as stated
in Equation 3.

FRC =

n∑
i=1

m∑
j=1

FIi × SFij +

k∑
k=1

FSk (3)

where FIi is the ith function of FI and SFij is the jth sub-function obtained after
the decomposition of the function FIi. FSk is the kth function of FS outsourced as
services. In this case, only the main function –i.e., the (composite) service being used–
increases the FRC value. Although its computational complexity is hidden, developers
have to implement the exchanges of messages between the service used and the SoS.

Non-functional requirements are criteria related to the way the functional require-
ments will be performed; its complexity value can be computed as stated in Equation 4.

NFRC =

6∑
i=1

n∑
i=1

QAi ×QSAj (4)

where QAi is the main quality attribute i and QSAj is the quality sub-attributes j
related to QAi. The quality attributes proposed are those of the ISO/IEC-9126 stan-
dard2 [17].

The Requirement Complexity (RC) is the addition of the FRC and the NFRC.
Product Complexity. The Product Complexity (PC) captures the SoS complexity based
on its overall computations. It is obtained by multiplying the IOC and the RC values [13].
Design Constraints Imposed. The Design Constraints Imposed (DCI) refers to the num-
ber of constraints to consider during the development of the SoS such as regulations,
hardware to reuse, database structures, imposed development languages, etc. Of course,
the constraints imposed on the software modules used as services are not taken into
account. These services are black boxes for service customers, only the constraints con-
cerning the communication are relevant for the computation of the DCI.

DCI =

n∑
i=1

Ci (5)

where Ci is the ith constraint type imposed; its value is to number of constraints i.

2 The main quality attributes of the ISO/IEC-9126 standard are Functionality, Reliability, Usabil-
ity, Efficiency, Maintainability and Portability. See [17] for more information.

88 B. Verlaine, I.J. Jureta, and S. Faulkner

Interface Complexity. The Interface Complexity (IFC) is computed based on the number
of external integrations and user interfaces needed in the future software.

IFC =

n∑
i=1

Ii (6)

where Ii is the ith external interface to develop. Ii has a value ranging from one to x
depending of the number of integrations to carry out: a user interface has a value of one
while the value of an interface used to integrate multiple systems corresponds to the
number of ISs to interconnect. Each service used counts for one interface.
Software Deployment Location Complexity. The Software Deployment Location Com-
plexity (SDLC) is the software complexity due to the types of users accessing the system-
to-be combined with the different locations from where they will access it.

SDLC =

4∑
i=1

UCi × Li (7)

where UCi is the user class weight and Li is the number of locations from which the
user belonging to the user class i will access the software. User classes are [13]: ca-
sual end users occasionally accessing the SoS (weight of 1), naive or parametric users
dealing with the database in preconfigured processes (weight of 2), sophisticated users
using applications aligned with complex requirements and/or infrequent business pro-
cesses (weight of 3), and standalone users working with specific software by using
ready-made program packages (weight of 4).
System Feature Complexity. The System Feature Complexity (SFC) refers to specific
features to be added to enhance the look and the feel of the system-to-be.

SFC =

n∑
i=1

FEi (8)

where FEi is the feature i with a weight of 1.
Computation of the SOS RBC value. The Service-Oriented System Requirements-based
Complexity (SOS RBC) value can be computed as follows:

SOS RBC = (PC +DCI + IFC + SFC)× SDLC (9)

Note Sharma & Kushwaha also include the “personal complexity attribute” (PCA)
in their complexity measurement model [13, 18]. However, the structural complexity
measure should only take into account the software structure and not the capabilities of
the development staff. The latter should only impact the development effort needed.

Validation of the Complexity Model. Here is a theoretical validation of the model we
proposed in this section based on the validation framework for the software complexity
measurement process of Kitchenham et al. [19].

Property 1: For an attribute to be measurable, it must allow different entities [i.e., dif-
ferent specifications of systems-to-be] to be distinguished from one other.

A Requirements-Based Model for Effort Estimation in SoS 89

All attributes used in the Equations 1 to 9 are clearly defined and distinguishable from
each other (see Table 1). They cover the specifications of a SoS. Therefore, the SOS RBC

model should give different values for different SoS specifications.
Property 2: A valid measure must obey the representation condition, i.e., it must pre-
serve our intuitive notions about the attribute and the way in which it distinguishes
entities.

This property refers to the psychological complexity, also called conceptual complex-
ity, –i.e., the complexity due to the efforts needed for a given human being to understand
and to perform a specific software development task– which cannot interfere with the
structural complexity . The latter is the kind of complexity that the SOS RBC model
has to capture. All the attributes used are only related to countable and distinguishable
intrinsic characteristics of the system-to-be without any relations with the development
staff capabilities. We conclude that this property is respected by the SOS RBC model.

Property 3: Each unit of an attribute contributing to a valid measure is equivalent.
Each identical attribute in the system-to-be will have the same weight and importance

in the estimation regardless its position in the specifications.
These three properties are necessary to validate a complexity measurement process,

but not sufficient [19]. Indirect measurements must also respect properties 4 and 5.

Property 4: For indirect measurements processes, the measure computed must be based
on a dimensionally consistent model, with consistent measurement units while avoiding
any unexpected discontinuities.

Our model aims at measuring the complexity of software specifications. All the at-
tributes evaluated to compute the model are intrinsic features of the SoS impacting its
complexity.

Property 5: To validate a measurement instrument, we need to confirm that the mea-
surement instrument accurately measures attribute values in a given unit.

This property asks for a definition of the measured attributes and their unit. In this pa-
per, we propose a semi-formal definition of the measurement instrument –the best solu-
tion is to propose a formal one– based on both mathematical tools and literal definitions.

4.2 Estimation of the Total Intrinsic Size of the System-to-be

In order to estimate the total development effort needed, the model is adjusted with the
Technical Complexity Factors (TCF) [7, 8]. They are used to capture the computational
complexity (see the second step in Fig. 1). The TCFs are significant characteristics of the
software development project which influence the amount of work needed. Each TCF

is associated to a Degree of Influence (DI) ranging from 0 (no influence) to 5 (strong
influence). They must be estimated by the development team based on the requirements
and on the system-to-be environment3.

Equation 10 expresses TCF value (TCFV) in a mathematical form [8].

3 The sixteen TFCs are Complex processing, Data communication, Distributed functions, End
user efficiency, Facilitate change, Heavily used configuration, Installation ease, Multiple sites,
On-line data entry, On-line update, Operational ease, Performance, Reusability, Security con-
cerns, Third parties IS and Transaction rate. See [7, 8] in order to have more details about the
TCF’s and the process to follow in order to estimate the appropriate DI for a TCF.

90 B. Verlaine, I.J. Jureta, and S. Faulkner

TCFV = 0.65 + 0.01×
16∑
i=1

DIi (10)

where DIi is the degree of influence of the ith TCF.
The adjusted SOS RBC (A-SOS RBC) is the SOS RBC value times the TCFV [8].

A-SOS RBC = SOS RBC × TCFV (11)

4.3 Estimation of the Total Development Work Needed

The estimation of the SoS Requirements-based Effort (SOS RBE) value is based on the
A-SOS RBC. The SOS RBE is significantly related to the productivity of the development
staff –it captures the conceptual complexity (see the third step in Fig. 1). The staff pro-
ductivity is the ratio between the number of code lines written and the time required. It
depends on the language used since the latter can be more or less complex, expressive,
flexible, etc. The Quantitative Software Management firm (QSM), specialized in quan-
titative aspects of software, makes available the productivity of development staff for
many languages. These values result from empirical research achieved on more than
2190 projects. For all the studied languages, QSM proposes the average value, the me-
dian as well as the lowest and the highest value of the number of lines of code needed4.
For instance, the values of the J2EE language are, respectively, 46, 49, 15 and 67.

Equation 12 states how to compute the SOS RBE.

SOS RBE =
(A-SOS RBC × L)

P
(12)

where L is the number of code lines needed per function point as stated by the QSM

company. P is the productivity of the development staff express in lines of code per
period. The SOS RBE value estimates the number of periods needed for the implemen-
tation of the SoS. The unit of the SOS RBE is the same than the period unit of P . The
development productivity variables P and L may lack of precision. There are two more
sophisticated approaches. The first one lies in calculating the ratio between the number
of code lines and development time needed for previous internal projects (see, e.g., [20]).
A second approach is to use a parametric estimation model built upon empirical data
(see, e.g., [21]). A complete discussion of this topic is out of the scope of this paper.

5 Example Case of the Proposed Effort Estimation Model

A company active in the food industry would like a new IS in order to improve the
purchase management. With the new IS, a significant amount of orders should be auto-
matically sent. Currently, workers have to manually carry out all the orders. It exists a
legacy IS which manages the outgoing orders. Only its main function will be kept and
exposed as a service –it estimates the stock level needed.

4 All the results of this research are available at http://www.qsm.com/resources/
function-point-languages-table . Last consultation in July 2013, the 3rd.

http://www.qsm.com/resources/function-point-languages-table
http://www.qsm.com/resources/function-point-languages-table

A Requirements-Based Model for Effort Estimation in SoS 91

Fig. 2. Activity diagram of the use case View stock level

First, the system-to-be specified with UML has to satisfy the following main use cases.
View stock level: the system-to-be should enable the purchase department to consult
the stock levels for all existing products. Carry out analysis of purchases: the stock
manager would like to have a specific interface to analyse the purchases made (mainly
with descriptive statistics and underlying graphic illustrations). Manage order error:
the purchase manager is in charge of the errors management detected when outgoing
orders are delivered and encoded by a warehouse worker. Send automatic order: one of
the main requirements of the company is to enable automatic sending of orders when a
given threshold is reached. The use cases were refined with other UML diagrams. As an
example, Fig. 2 represents the Activity diagram refining the use case: View stock level.

The IOC identified in the studied Activity diagram is 13: the IC is 5, the OC is 13 and
the DSC is 0. E.g., for the activity “Select stock item(s)”, the OC is 2× 1 because of the
request in the database (source weight is 2) allowing to display all the possible stock
item(s) stored as string (type weigh is 1). The IC is 1× 1 because of the selection made
by the user through a device, e.g., the mouse or the keyboard.

Concerning the FRC, the use cases compose the functions set; their sub-functions are
the steps of their respective Activity diagrams. The FRC value for the studied Activity
diagram is 10 (1 × 9 + 1); 1 because we study here the sub-functions of only one
main function, i.e., one use case, 9 because there are nine sub-functions –send normal
order(s) and carry out urgent order(s) are extends use cases and thus refined in other
Activity diagrams; the activity Estimate the production level (for the period) will be
achieved through the use of a Web Service (WS) (+1).

Based on the stakeholders’ non-functional requirements, the NFRC value is 10. The
total RC value identified in this Activity Diagram is 20 (10 + 10).

The stakeholders explain they want to use the J2EE development platform (one con-
straint) and the WS technologies –WSDL, SOAP and HTTP (three constraints)– in order

92 B. Verlaine, I.J. Jureta, and S. Faulkner

to reuse the legacy application. Last but not least, the SoS will be hosted on the existing
application server (one constraint). The total DCI value is 5 (1 + 3 + 1).

The IFC value identified in the studied Activity Diagram is 16. There is one interface
with the Warehouse Management IS, one with the 13 provider ISs, one user interface
for the workers at the purchase department and one interface for the WS used.

In this example, two user classes were identified: the workers at the Purchase
Department and their manager. Both of these two classes are parametric users (weight
of 2). They should access the system-to-be from their company offices. The SDLC value
is 2 (2 × 1).

No additional system features were required for this Activity. The SFC value is
thus 0.

Once this work done for all the SoS specifications, the SOS RBC value can be com-
puted. The result of this analysis based on Equations 1 to 9 is5: SOS RBC = 5170.

The SOS RBC value is then adjusted with the TCF’s applicable to this system-to-
be such as, e.g., Distributed functions, Facilitate change and Third parties IS, with a
DI value of, respectively, 2, 1 and 5 evaluated as described in [7, 8]. The TCFV is:
0.65 + 0.01× 27 = 0.96. The A-SOS RBC value is: 5170× 0.92 = 4756.4.

The last step is the computation of the total work needed for the implementation
of the system-to-be. The reference language used is J2EE: L = 46 (cf. §4.3). The
productivity of the staff development has been estimated to 37 lines per hour thanks
to an analysis of previous projects. So, the total development effort needed is: SOS

RBE = 4756.4×46
37

∼= 5790 hours. Once the average cost per hour known, the financial
forecasting of the total development costs of the system-to-be can be drawn up.

6 Conclusions and Future Work

The model proposed, based on the specifications of a SoS, enables to compute the es-
timated development effort needed for its development. Eliciting, modelling and spec-
ifying correctly the requirements remain a significant success factor in the use of our
model.

As underlined in §3, the three sources of software complexity –i.e., the structural, the
conceptual and the computational complexity– are covered by the estimation model pro-
posed. The analysis of the system-to-be specifications identifies the different software
attributes of the structural complexity and put values behind each one (cf. Equations 1
to 9 from which the SOS RBC value can be computed). The TCFs used to adjust the
SOS RBC value (cf. Equation 11) aim at adding the computational complexity to the1
model proposed. Indeed, they refer to the way that the stakeholders’ requirements will
be processed in the system-to-be according to its environment. Lastly, the third step in
the model use takes into account the conceptual complexity. This is achieved thanks to
Equation 12 in which the productivity of the development staff is added comparatively
to the development language chosen for the project.

However, we put aside some difficulties. First, the system-to-be can be coded with
more than one language while allowing the use of other programming languages for

5 The detailed calculation is: ((IC + OC + DSC) × (FRC + NFRC) + DCI + IFC +
SFC)× SDLC = ((21 + 33 + 5)× (33 + 10) + 8 + 39 + 1)× 2 = 5170.

A Requirements-Based Model for Effort Estimation in SoS 93

implementing the services used. Secondly, the productivity of the development staff
deserves more attention. Although this problem is out of the scope of this work, one
significant question remains unsolved: Is the productivity of development staff the same
for SoC projects than for projects in line with other computing paradigms? To the best
of our knowledge, there is no clear answer to this question.

References

1. O’Brien, L.: Keynote Talk: Scope, cost and effort estimation for SOA projects. In: Proceed-
ings of the 12th IEEE International Enterprise Distributed Object Computing Conference
Workshop (EDOCW), p. 254. IEEE Computer Society (2009)

2. Laird, L.M., Brennan, M.C.: Software Measurement and Estimation: A Practical Approach.
Quantitative Software Engineering Series. Wiley - IEEE Computer Society (2007)

3. Bielak, J.: Improving Size Estimates Using Historical Data. IEEE Software 17(6), 27–35
(2000)

4. Pendharkar, P.C.: Probabilistic estimation of software size and effort. Expert Systems with
Applications 37(6), 4435–4440 (2010)

5. Boehm, B.: Software Engineering Economics. Prentice-Hall (1981)
6. Tansey, B., Stroulia, E.: Valuating Software Service Development: Integrating COCOMO II

and Real Options Theory. In: Proceedings of the First International Workshop on Economics
of Software and Computation, pp. 8–10. IEEE Computer Society (2007)

7. Albrecht, A.J.: Function points as a measure of productivity. In: GUIDE 53 Meeting (1981)
8. Symons, C.R.: Function Point Analysis: Difficulties and Improvements. IEEE Transactions

on Software Engineering 14, 2–11 (1988)
9. Santillo, L.: Seizing and sizing SOA applications with COSMIC Function Points. In: Pro-

ceedings of the 4th Software Measurement European Forum (SMEF 2007), pp. 155–166
(2007)

10. Oladimeji, Y.L., Folorunso, O., Taofeek, A.A., Adejumobi, A.I.: A Framework for Costing
Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure (WBS) Ap-
proach. Global Journal of Computer Science and Technology 11, 35–47 (2011)

11. Liu, J., Xu, Z., Qiao, J., Lin, S.: A defect prediction model for software based on service
oriented architecture using EXPERT COCOMO. In: Proceedings of the 21st Annual Inter-
national Conference on Chinese Control and Decision Conference (CCDC 2009), pp. 2639–
2642. IEEE Computer Society (2009)

12. Li, Z., Keung, J.: Software Cost Estimation Framework for Service-Oriented Architecture
Systems Using Divide-and-Conquer Approach. In: The Fifth IEEE International Symposium
on Service-Oriented System Engineering (SOSE 2010), pp. 47–54. IEEE Computer Society
(2010)

13. Sharma, A., Kushwaha, D.S.: Natural language based component extraction from require-
ment engineering document and its complexity analysis. ACM SIGSOFT Software Engi-
neering Notes 36(1), 1–14 (2011)

14. Sharma, A., Kushwaha, D.S.: Complexity measure based on requirement engineering doc-
ument and its validation. In: International Conference on Computer and Communication
Technology (ICCCT 2010), pp. 608–615. IEEE Computer Society (2010)

15. Sharma, A., Kushwaha, D.S.: A complexity measure based on requirement engineering doc-
ument. Journal of Computer Science and Engineering 1(1), 112–117 (2010)

16. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented Computing. Communications of
the ACM 46(10), 24–28 (2003)

94 B. Verlaine, I.J. Jureta, and S. Faulkner

17. ISO/IEC: 25010 - Systems and software engineering - Systems and software Quality Require-
ments and Evaluation (SQuaRE) - System and software quality models. Technical report, The
International Organization for Standardization (2010)

18. Sharma, A., Kushwaha, D.S.: An Improved SRS Document Based Software Complexity Es-
timation and Its Robustness Analysis. In: Computer Networks and Information Technologies.
CCIS, vol. 142, pp. 111–117. Springer, Heidelberg (2011)

19. Kitchenham, B., Pfleeger, S.L., Fenton, N.E.: Towards a Framework for Software Measure-
ment Validation. IEEE Transactions on Software Engineering 21(12), 929–943 (1995)

20. Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B.: A SLOC counting standard. In: The 22nd
International Annual Forum on COCOMO and Systems/Software Cost Modeling (2007)

21. Cataldo, M., Herbsleb, J.D., Carley, K.M.: Socio-technical Congruence: A Framework for
Assessing the Impact of Technical and Work Dependencies on Software Development Pro-
ductivity. In: Proceedings of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 2–11. ACM Press (2008)

Augmenting Complex Problem Solving
with Hybrid Compute Units

Hong-Linh Truong1, Hoa Khanh Dam2, Aditya Ghose2, and Schahram Dustdar1

1 Distributed Systems Group, Vienna University of Technology, Austria
{truong,dustdar}@dsg.tuwien.ac.at

2 University of Wollongong, Australia
{hoa,aditya}@uow.edu.au

Abstract. Combining software-based and human-based services is crucial for
several complex problems that cannot be solved using software-based services
alone. In this paper, we present novel methods for modeling and developing
hybrid compute units of software-based and human-based services. We discuss
high-level programming elements for different types of software- and human-
based service units and their relationships. In particular, we focus on novel
programming elements reflecting hybridity, collectiveness and adaptiveness prop-
erties, such as elasticity and social connection dependencies, and on-demand and
pay-per-use economic properties, such as cost, quality and benefits, for com-
plex problem solving. Based on these programming elements, we present pro-
gramming constructs and patterns for building complex applications using hybrid
services.

1 Introduction

Recently, several novel concepts have been introduced to exploit human computing
capabilities together with machine computing capabilities. This combination has intro-
duced a new form of “computing model” that includes both machine-based and human-
based “computers”. In this emerging computing model, machine-based and human-based
computing elements are interconnected in different ways, thus it is possible to support
different programming models built on top of them.

Indeed, there are different ways to develop applications atop such a new computing
model. In the current research approaches, human-based capabilities are usually provi-
sioned via “crowdsourcing” platforms [1] or specific human-task plug-ins [2,3]. These
approaches achieve human and software integration mainly using (specific) platform
integration. The main programming model is mostly the workflow which is however not
flexible enough for programming different types of interactions among multiple types of
services. In these approaches, essential programming elements representing software-
based services (SBS) and human-based services (HBS) cannot be programmed directly
into applications. Furthermore, these approaches do not provide a uniform view of SBS
and HBS, and let the developer perform the complex tasks of establishing relationships
between SBS and HBS. In addition, although SBS and HBS can be provisioned using
cloud provisioning models (thus they can be requested and initiated on-demand under

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 95–110, 2014.
c© Springer International Publishing Switzerland 2014

96 H.-L. Truong et al.

different quality, cost and benefit models), there is a lack of mechanisms to program
explicitly quality, cost, and benefit constraints for complex elastic applications.

In this paper, we view the “new computing model” as a collection of diverse and het-
erogeneous SBS and HBS that can be provisioned (e.g., by cloud computing models)
on-demand under different cost, benefits and quality models. This view is very differ-
ent from human-based workflows of which tasks and flows are (statically) mapped to
humans. More specifically, our model considers humans as a service unit, like software
service units, and takes into account diverse types of relationships among human-based
and software-based service units, quality, cost and benefit properties. Our approach
provides concepts for developing such applications where hybrid service units, their re-
lationships, and cost, quality and benefits are first-class programming elements. Hence,
our approach provides a higher level of abstraction and a flexible way for combining
hybridity, collectiveness and adaptiveness of human-based and software-based services.

The rest of this paper is organized as follows: Section 2 discusses background, related
work and our approach. Section 3 serves to describe programming elements covering
units, relationships and non-functional parameters. In Section 4 we describe high-level
programming constructs. Section 5 illustrates an example of how our approach works
in practice. We conclude the paper and outline our future work in Section 6.

2 Background and Related Work

Several types of SBS, such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service
(PaaS), Software-as-a-Service (SaaS), and Data-as-a-Service (DaaS), have been avail-
able and widely used in practice. Among these types of SBS, SaaS and IaaS are well
conceptualized using service models and the developer can easily program and utilize
SBS, their data and control flows, using APIs, such as, JClouds1, Boto2 and Open-
Stack3. On the other hand, HBS have been emerging and several work have devoted for
virtualizing HBS and integrating them with SBS. Most systems support HBS in terms
of providing specific platforms and plug-ins. Cloud APIs for interfacing to humans and
on-demand accessing HBS have been proposed [4]. Although, such existing work has,
to some extent, yet matured, there is an increasing demand for applications that use
both HBS and SBS. However, existing programming languages and tools do not con-
sider and exploit well the use of HBS and SBS together, in a flexible, on-demand, and
pay-per-use manner. In the following, we discuss our main related work.

Software-Based Service Units Constructs: There exist several frameworks for engi-
neering and executing cloud applications using different IaaS, PaaS and SaaS, such as
Aneka [5], BOOM [6]. They abstract cloud resources and support different program-
ming models, such as MapReduce and dataflows. But they do not consider hybrid ser-
vices consisting of SBS and HBS and do not provide high level programming constructs
for modelling the relationships among HBS and SBS. Most of them rely on traditional
relationships among SBS, such as control and data dependencies, modeled in specific
application structure descriptions, workflows and declarative programming languages.

1 http://www.jclouds.org/
2 http://docs.pythonboto.org/en/latest/index.html
3 http://www.openstack.org/

http://www.jclouds.org/
http://docs.pythonboto.org/en/latest/index.html
http://www.openstack.org/

Augmenting Complex Problem Solving with Hybrid Compute Units 97

Human Computation Programming Frameworks: There have been an increasing
number of programming frameworks for human computation introduced in recent years.
Most of existing work (e.g., Crowdforge [1], TurKit [2]) consider human workers as
being homogeneous and interchangeable, which is useful in developing crowdsourc-
ing solutions where scalability and availability are the main issues. Such frameworks,
however, provide limited notion of identity, human skills, and social relationships which
are important in developing an ecosystem of connected, heterogeneous people and soft-
ware. The recent Jabberwocky framework [7] has addressed this issue to some extent by
providing a programming environment for both human and machine computation. Jab-
berwocky also allows the programmer to specify types of people based on personal
properties and expertise and route tasks based on social structure. However, Jabber-
wocky does not allow to explicitly model the relationships between people and ma-
chines. General-purpose programming languages for human computation, such as
CrowdLang [8], do not rely on service models and do not consider quality, cost, bene-
fits and elasticity as first-class entities in programming and constructing hybrid compute
units.

High-Level Constructs for Hybrid Compute Units: Using several low level APIs for
accessing SBS, like JClouds, Boto, and OpenStack, the developer can define SBS ob-
jects and establish data and control flows. Our previous work (e.g., [4]) has focused on
providing well-defined APIs for provisioning HBS. However, there is a lack of support
for programming different types of relationships among SBS and HBS. The developer
has to do this on his/her own. As a result, he/she would find it difficult to code such
relationships due to the lack of well-defined programming elements, in particular those
related to cost, benefit, quality constraints and to mixed compositions of SBS and HBS.
The use of generic “building blocks” abstracting patterns and providing them via APIs
to simplify the developer task is well-known in SBS in clouds [9]. However, no high-
level program constructs and code generation have been proposed for HBS and SBS in
cloud environments.

Compared with existing work we are focusing on combining HBS and SBS for
hybrid compute units using service computing and cloud computing models. Our ap-
proach supports unified framework for human and software, and provide high-level
programming constructs for different types of services, relationships, and cost, quality,
and benefits models.

3 Fundamental Elements for Hybrid Compute Units

3.1 Service-Based Compute Units

In our model, at the core of SBS and HBS there are “processing units”, realized via
either machine CPUs/cores or human brains. To program an application, the developer
can exploit an SBS or HBS via an abstract service unit. Therefore, an application devel-
oped in our framework is abstractly viewed as consisting of a number of service-based
compute units (see Figure 1) and their interactions. A Unit can perform a number func-
tions (e.g., detecting a pattern in or enriching the quality of an image) with input and
output data. A unit also has a number of cost, benefit, and quality properties (see Sec-
tion 3.3 for more details). A unit can be either a SBS (Software-Based Service) or HBS

98 H.-L. Truong et al.

(Human-Based Service). We further divide HBS into ICU (Individual Compute Unit
– representing a service offered by an individual) and SCU (Social Compute Unit –
representing a service offered by a team). Both HBS and SBS units can potentially sup-
port elasticity in terms of capability (resource), cost and quality [10]. For example, a
SBS for data analytics can increase its cost when being asked to provide higher analysis
accuracy or a SCU can reduce its size and the cost when being asked to reduce the qual-
ity of the result. To support solving complex problems with elastic service units, we
model elasticity capability (ElasticityCapability) and associate it with Unit.

Fig. 1. A conceptual model for elements in programming hybrid compute units

A SBS unit can be in number of known software forms offered in cloud computing
models, such as IaaS (e.g., Amazon EC), DaaS (e.g., Microsoft Azure Data Market-
place), PaaS (e.g., Google App Engine) or SaaS (e.g., Salesforce.com). Although many
ongoing work is still being developed for SBS, SBS are already extensively explored in
terms of service management, capabilities, and function modeling. Therefore, we rely
on existing common models for representing SBS.

For HBS, their computing capability is specified in terms of human skills and skill
levels. Therefore, in our model a HBS unit has a set of Skills, each of which is asso-
ciated with a skill level. Those skills and skill levels can be defined consistently within
a particular service provisioning platform (using evaluation techniques, benchmarking,
or mapping skills from different sources into a common view for the whole platform).
Therefore, we associate each HBS with a Human Power Unit (HPU) [4], a value defined
by the HBS provisioning platform to describe the computing power of the HBS based
on its skills and skill levels, which are always associated with specific Archetypes
indicating the domain in which the skills are established.

Augmenting Complex Problem Solving with Hybrid Compute Units 99

By combining a set of HBS and SBS, we introduce hybrid compute units (HCUs).
A HCU is a collective, hybrid service-based units among which there exist different
types of relationships, covering human-specific, software-specific, as well as human-
software specific ones. A HCU, as a collective unit, can be elastic: it can be expanded
and reduced based on specific conditions.

3.2 Relationships between Service Units

Using cloud computing provisioning models in which SBS and HBS are abstractly
represented under the same service unit model with pay-per-use and on-demand ser-
vice usage, a range of programming elements reflecting relationships among different
types of service units are important and useful in building complex applications. Table
1 describes different types of relationships between service units that we consider as
important programming elements, each of which applies to HBS, SBS or HCU.

Table 1. Different types of relationships between services

Relationship
Type

HBS SBS HCU Description

Similarity Yes Yes Yes This traditional type of relationship indicates how similar
a service is to another. In principle, similarity can be mea-
sured in terms of functions, non-functional parameters and
social contexts.

Composition Yes Yes Yes This well-known type of service relationships indicates that
a service is composed of several other services.

Data depen-
dency

Yes Yes Yes A service depends on another service if the former requires
the latter for providing a certain data for one of its func-
tions.

Control depen-
dency

Yes Yes Yes A service depends on another service if the outcome of lat-
ter determines whether former should be executed or not.

Location
dependency

Yes Yes Yes The locations of two service units are dependent, e.g., co-
located in the same data center or country

Forwarding Yes Yes Yes This is a form of brokering/outsourcing in which a task is
forwarded form one service to another.

Delegation Yes Yes Yes This is a form of brokering/outsourcing in which a service
delegates a task to another service.

Social relation Yes No Yes This relationship describes different types of social rela-
tions (e.g. family or Linkedin connection) between two ser-
vices.

Elasticity Yes Yes Yes This relationship describes how a service unit is formed by
elasticizing another service unit, e.g. via resizing, replac-
ing or (de)composing elements of the later to offer similar
functions but different cost, benefit and quality at runtime.

Similarity. Given that certain tasks can be conducted by software or human, develop-
ers will need to compare HBS and SBS in order to select suitable ones for the tasks. We
extend traditional similarity among SBS for HBS (e.g., simulation result analysis can be

100 H.-L. Truong et al.

provided by two different research teams which are similar in terms of archetype and/or
cost) or between HBS and SBS (e.g., specific image patterns can be detected by scien-
tists or image processing software). From the programming perspective, similarity can
be specified in applications in terms of cost and quality (for all unit types), archetype
(between HBS units), capability (between SBS units) and function (between HBS and
SBS units).

Composition. Composing HBS and SBS units for complex tasks are possible. There-
fore, we extend traditional composition relationships to cover also composites of hybrid
services, such as describing how ICU can be composed with SBS to establish human-
based filter. Composition can be in different forms such as data or control decomposi-
tion, and can be structured in different ways (e.g., star vs. ring structure).

Dependency. We support the classical view of dependency between services in terms
of data (a service requires data provided by another service) and control (a service
requires an successful completion of another service). Data and control dependencies
can be programmed for any types of SBS and HBS. In particular, data exchange between
two units can be conducted via other service units (e.g., two HBS can exchange data via
Dropbox – a SBS). Furthermore, we consider location dependency which is crucial in
clouds due to not only performance but also compliance requirements. Developers can
use the location dependency to control the co-location of services.

Brokering. We consider brokering relationships for work distribution among service
units. Two types of brokering relationships are considered: delegation (a service manip-
ulates a request/response and delegates the request/response to/from another services)
and forwarding (a service just forwards request/result to/from another service). With
hybrid services, such relationships can also be established between a SBS and a HBS,
e.g., a SBS can decide where a SBS or an HBS will be used for evaluating the quality
of data based on the type of the data.

Social Relation. When using HBS for certain tasks in complex applications, we may
require specific social relations among HBS solving the tasks, for example, two scien-
tists who have conducted a joint research before. To support this, social relations are
considered as programming elements.

Elasticity. This emerging relationship is due to the elasticity capability of services at
runtime [10]. To the consumer, elasticity means that the expected service function is
unchanged but the cost, benefits and/or quality can be scaled up/down at runtime. To
the service provider, to enable the elasticity of costs, benefits, and/or quality, at runtime
service units can be replaced by different variants or similar units or (re)composed by
adding/removing appropriate units, or new compositions are introduced.

3.3 Quality, Cost, and Benefits

SBS and HBS have common and distinguishable quality, cost and benefit properties.
In order to allow programmers to specify these properties, we support the following
programming elements:

Augmenting Complex Problem Solving with Hybrid Compute Units 101

– Quality: represents common quality metrics and models for processing units and
data. Quality can be further classified into Performance for processing capa-
bilities of service units and QoD (quality of data) for input/output of service units.
Performance and QoD can have several other sub entities, such as Response-
Time, Availability, Accuracy, and Completeness.

– Cost: represents monetary pricing models, such as charging or rewarding models.
– Benefits: represents non-monetary benefits. It is classified into different entities,

such as Return-on-Opportunity or Promotion.

We consider these properties as first-class programming elements since service units
are constrained by various types of cost, benefit and quality models and the service
provider wants to program her SBS/HBS/HCU to be able to scale in/out with expected
quality under desirable cost and benefit at runtime. For example, in a situation with sev-
eral real-time events signaling an emergency situation, an HCU might be programmed to
reduce the accuracy of analytics in order to meet the response time to quickly react to the
situation. On the other hand, in non-critical situations it could be programmed to utilize
more (cheap) HBS to minimize the cost, maximize the accuracy, but accept an increasing
response time as a trade-off. Therefore, treating these properties as first-class program-
ming elements will allow the developer to explicitly specify, control, and enforce elastic
constraints.

4 High-Level Constructs for Hybrid Compute Units

From our proposed fundamental elements, in order to assist the development of complex
applications, we develop a number of high-level constructs for service units and the
relationships between them that help establish interactions among units in a hybrid
compute unit. Those constructs correspond to the conceptual model elements presented
in Figure 1. Constructs for service units have a set of APIs that can be called upon
the units. Constructs for a relationship have a set of (usage) patterns that can be used
to establish the relationship. Constructs for cost, quality and benefits also have a set of
APIs for specifying expected costs, quality and benefits. Using high-level programming
constructs the developer can focus on the logic of the hybrid compute unit, instead of
dealing with implementation-specific details of service units and complex algorithms
for establishing relationships among units.

Table 2 presents main programming constructs for relationships, each of which is
abstractly represented as a function which takes a number of arguments. There are two
types of functions: one that takes grounded variables (denoted as capital letters) as ar-
guments, and one that takes free variable (denoted as lower case letters) as arguments.
The latter is denoted with the symbol “?” in the function name. In the following, we
explain some possible algorithmic patterns for high-level constructs for relationships:

Similarity. The construct similarity(U, V, criteria) represents a similarity relation-
ship between units U and V with regard to a given criteria (namely “Cost”, “Quality”,

102 H.-L. Truong et al.

Table 2. High-level constructs for relationships in hybrid compute units

Construct Description

similarity(U,V, criteria) true if U is similar to V w.r.t. criteria
datadependency(U,D, [M,]V) U producing data D which is needed by V . The optional

medium is the location associated with a DaaS (e.g., a
Dropbox URL) where the data will be placed and shared.

controldependency(U,V) declares that V should execute only after U finishes.
locationdependency(U, V, ctx, path) declares that U and V should be linked in a given location

context (e.g., country or data center) with a path in that
context (e.g., city or server rack)

composition(structure, type,
U1, U2, · · · , Un)

construct a composition of U1, U2, ...,Un for a given struc-
ture model and type

forward(U, t, V) U forwards task t to V .
delegate(U, t, V) U delegates task t to V .
socialrelation(U,V, ctx, path) returns a distance relation between U and V in a given

social context.
?elasticity(U, [Func,]NFPs, x) x is a new form of U or x provides function Func to sat-

isfy given cost/quality/benefit models specified in NFPs.

“Archetype”, or “Function”). A variant of this construct is ?similarity(U, x, criteria)
which returns a set of units similar to U with regard to a given criteria and store them
in a free variable x. Pseudo algorithmic for this construct usages is shown below.

i f (c r i t e r i a == "Cost") re tu rn s imCos t (U, V) ;
e l s e i f (c r i t e r i a == "Quality") re tu rn s i m Q u a l i t y (U, V) ;
e l s e i f (c r i t e r i a == "Archetype" && U. t y p e == HBS && V. t y p e ==

HBS) re tu rn (U . Arche type == V. Arche type) ;
e l s e i f (c r i t e r i a == "Function") re tu rn U. F u n c t i o n ==V. F u n c t i o n ;
re tu rn f a l s e ;

Data Dependency. The construct datadependency(U,D,M, V) states that V de-
pends on U for data D and medium M where the data is stored. Variants of this
construct include ?datadependency(x,D,M, V) (find unit x which provides data D
needed by unit V), ?datadependency(U,D,M, x) (find unit x which needs data D),
and ?datadependency(U,D, x[c], V) (find a medium x that can be used to share D
between U and V satisfying a given constraint c). Pseudo algorithmic code for data
dependency constructs are shown in the following:

d a t a d e p e n d e n c y (U, D, M, V) {
Uni t s t o r a g e U n i t = M;
i f (M== n u l l) s t o r a g e U n i t = getDedaul tMedium ()
r e q u e s t U s t o r e s D i n t o s t o r a g e U n i t
/ / g e t t h e URI i n d i c a t i n g t h e l o c a t i o n o f t h e da ta
URI u r i = s t o r a g e U n i t . getURI (D)
r e q u e s t V a c c e s s D from u r i

}

Augmenting Complex Problem Solving with Hybrid Compute Units 103

Location Dependency. The construct locationdependency(U, V, ctx, path) estab-
lishes a location dependency between U and V based on a specific context ctx and
a specific path in cxt. Here ctx can represent human-specific location context, such
as the cloud platform providing HBS (e.g., based on Amazon Mechanical Turk) or the
country, or cloud data center locations hosting SBS (e.g., Amazon EC2 EU site). The
path can indicate further dependencies in ctx, such as the same city or the same server
rack in a data center.

Brokering. Delegation and forwarding relations are simply represented by
delegate(U, task, V) and forward(U, task, V) where task is a given task that
needs to be delegated or forwarded. A variant of the delegation construct is
?delegate(U, task, x) which finds a appropriate unit x that U can delegate task t to.
Pseudo code generated for delegate(U, task, x) are given as follows:

f o r u : l i s t U n i t ()
f o r f : u . l i s t F u n c t i o n ()

i f ((f . i n p u t == t a s k . i n) && f . o u t p u t == t a s k . o u t) {
u . e x e c u t e (t a s k) ;
U . w a i t U n t i l (t a s k . f i n i s h e d == t rue) ;
U . a d d I n p u t (t a s k . o u t) ;
re tu rn ;

}

Social Relations. The construct socialrelation(U, V, ctx, path) returns a distance
between U and V (HBS only) via social relations in a given social context, denoted
by (cxt, path). It can also be used to establish a social relation constraint between U
and V . The context ctx is a social network (e.g., Linkedin) and path is a specific group
in that network (e.g., data scientist). A negative distance (e.g., -1) indicates that there
is no social relation found between U and V , whilst a value of 0 indicates that they
belongs to the same given social group (e.g., in data science group on Linkedin). On
the other hand, a positive value indicates that they are related via some third parties
who are directly related with them, e.g., A is a Linkedin colleague of B, B is a col-
league of C, then the distance between A and C is 1. In order to find a HBS that is
socially related to a given HBS within a specified distance, one can use the construct
?socialrelation(U, x, distance, ctx, path). The pseudo algorithmic code for
?socialrelation(U, x, distance, ctx, path) construct is as follows:

? s o c i a l r e l a t i o n (U, x , d i s t a n c e , c tx , p a t h) {
f o r hbs : l i s t H B S ()

/ / g e t t h e subgraph o f t h e s o c i a l ne twork w i t h i n a c o n t e x t
Graph s o c i a l N e t = g e t S o c i a l N e t w o r k (c t x) ;
/ / f i n d t h e d i s t a n c e
i n t d = s o c i a l . f i n d D i s t a n c e (U, hbs , p a t h) ;
i f d <= d i s t a n c e

x . addElement (hbs) ;
re tu rn x ;

}

104 H.-L. Truong et al.

Elasticity. Elasticity construct can be used for different purposes. In the simplest case,
the construct ?elasticity(U, elasticityReq, x) returns a new unit x that offer similar
functions as unit U does but guarantees the elasticity requirement elasticityReq:

f o r v : l i s t U n i t () {
boolean r e s u l t = s i m i l a r i t y (U, v ,’’ f u n c t i o n ’’)
i f (r e s u l t)

E l a s t i c i t y C a p a b i l i t y e l a s C a p = v .
g e t E l a s t i c i t y C a p a b i l i t y () ;

r e s u l t = r e s u l t && (matches (e l a sCap , e l a s t i c i t y R e q) ;
i f (r e s u l t) re tu rn x ;

}

Elasticity construct ?elasticity(Func, elasticityReq, x) returns a (new) unit x that
offers function Func as long as the elasticity requirement is met.

5 Illustrating Examples and Comparison

5.1 Towards the Prototype Implementation

We are currently implementing our model of hybrid compute units and correspond-
ing programming elements and constructs in our Vienna Elastic Computing Model
(VieCOM)4 using Java. Figure 2 depicts the general architecture of our prototype in
which hybrid collective adaptive systems (hCAS) could be programmed using our pro-
gramming elements and constructs.

Fig. 2. The architecture of our approach

5.2 Illustrative Application

To illustrate the “expressiveness” of our programming models, we use an illustrative ap-
plication which is based on a real-world simulation application. Consider a multi-scale
simulation application that utilizes different software as simulation solvers and visu-
alization services. Typically, the simulation application includes several components,

4 dsg.tuwien.ac.at/research/viecom

dsg.tuwien.ac.at/research/viecom

Augmenting Complex Problem Solving with Hybrid Compute Units 105

Fig. 3. Expected simulation components and their interactions using both SBS and HBS

each of which is a SBS unit performing a particular task. These components can be
used to pre-process data, execute solver engines, post-process results and analyze final
results. In such an application, the quality of input, and the intermediate and final result-
ing data is crucial. Therefore, several components for evaluating quality of data (QoD)
can be introduced into the application. Currently, such QoD evaluation components are
rarely designed in the application. When redesigning the simulation application with
QoD evaluation components, we face a problem: evaluating QoD cannot be done fully
by SBS and we need to augment the application with human-based services to carry out
runtime quality evaluation [11]. Furthermore, whether the employment of software or
human-based service units for QoD evaluation is dependent on runtime aspects. Based
on this application, we present how our programming elements and high-level con-
structs can be useful for implementing complex tasks using cloud APIs for SBS and
HBS units.

Figure 3 describes expected simulation components and control flows using both
SBS and HBS. Typically, only four main components are described in the sim-
ulation, namely pre-processing, solving, post-processing, and data
analysis. However, by employing QoD-aware activities, we can introduce several
new components for evaluating QoD and utilizing QoD to control the simulation. In
the following we will illustrate how our programming elements and constructs can sim-
plify the development of such new components and their interactions. For the sake of
simplicity, we will not show the whole applications but illustrate main parts.

QoD Evaluation. QoDEvaluation components can be implemented different: (i) only
SBS is needed, for example, in the QoDEvaluation step before pre-processing,
(ii) SBS or HBS is used interchangeably, for example, in the QoDEvaluation after
pre-processing, or (iii) only HBS is used, e.g., in QoDEvaluation after solving.

Let preprocessingUnit be the SBS unit performing pre-processing activity.
Let qodEvalUnit be the service unit required for QoDEvaluation. The following
code excerpt shows how we can program two units to perform the QoD evaluation and
preprocessing:

106 H.-L. Truong et al.

/ / c r e a t e an i n s t a n c e o f s o f t w a r e u n i t
SBS p r e p r o c e s s i n g U n i t =new SBS () ;
F i l e d a t a =new F i l e (f i l eName) ;
/ / . . .
/ / c r e a t e a n o t h e r u n i t f o r QoD e v a l u a t i o n
SBS qodE va lUni t = new SBS () ;
A r r a y L i s t pa raT ype = new A r r a y L i s t () ;
pa raT ype . add (F i l e . c l a s s . getName ()) ;
/ / t h e u n i t must s u p p o r t q o d E v a l u a t e f u n c t i o n which r e t u r n s a

v a l u e i n [0 , 1]
qodE va lUni t . s e t F u n c t i o n ("qodEvaluate" , paraType , Double . c l a s s .

getName ()) ;
/ / . . .
A r r a y L i s t params = new A r r a y L i s t () ;
params . add (d a t a) ;
/ / c a l l qod e v a l u a t i o n u n i t
Double r e s u l t =(Double) qodE va lUni t . e x e c u t e ("qodEvaluate" , params)

;
O b j e c t p r e P r o c e s s e d D a t a = n u l l ;
/ / c a l l p r e p r o c e s s i n g a c t i v i t y i f QoD i s s a t i s f i e d
i f (r e s u l t > 0 . 9) {

p r e P r o c e s s e d D a t a= p r e p r o c e s s i n g U n i t . e x e c u t e ("
preprocessing" , params) ;

}

Specifying Location Dependency. Let solverUnit be the solver SBS unit. The
following code excerpt shows how to make sure that the preprocessingUnit and
solvingUnit should be colocated in the same data center in order to minimize the
data transfer among them:

/ / c r e a t e a new s o f t w a r e u n i t f o r s i m u l a t i o n s o l v e r s
SBS s o l v e r U n i t = new SBS ("solver") ;
/ / make s u r e t h e s o l v e r u n i t and t h e p r e p r o c e s s i n g u n i t are i n

t h e same data c e n t e r
R e l a t i o n s h i p . l o c a t i o n D e p e n d e n c y (p r e p r o c e s s i n g U n i t , s o l v e r U n i t ,"

AmazonEC2:Europe") ;
A r r a y L i s t params1 = new A r r a y L i s t () ;
params1 . add (p r e P r o c e s s e d D a t a) ;
/ / e x e c u t e s o l v e r u n i t w i t h i n p u t da ta from p r e p r o c e s s i n g u n i t
O b j e c t s o l v e r R e s u l t = s o l v e r U n i t . e x e c u t e ("solving" , params1) ;

Programming Elasticity and Collectiveness in Solving Steps. Using different con-
structs, the programmer can invoke different types of units to deal with different situa-
tions. The following code excerpt shows examples of using ICU to check why the data
is bad or to find solvers that can handle dirty data as long as they meet cost and quality
requirements:

Augmenting Complex Problem Solving with Hybrid Compute Units 107

Double q o d P r e P r o c e s s e d D a t a =
(Double) qodE va lUni t . e x e c u t e ("qodEvaluate" , params1) ;

/ / g e t an ICU t o check why da ta i s bad
i f (q o d P r e P r o c e s s e d D a t a < 0 . 5) {
/ / i n i t i a t e a new u n i t

ICU d a t a S c i e n t i s t = new ICU () ;
/ / c r e a t e a dropbox p l a c e f o r s h a r i n g da ta

DropboxAPI<WebAuthSession> scuDropbox = n u l l ;
/ /
DropboxAPI . DropboxLink l i n k = scuDropbox . s h a r e ("/hbscloud") ;

/ / ask t h e c l o u d o f HBS t o i n v o k e t h e ICU
VieCOMHBS vieCOMHBS = new VieCOMHBSImpl () ;
vieCOMHBS . s t a r tHBS (d a t a S c i e n t i s t) ;
HBSMessage msg = new HBSMessage () ;
msg . se tMsg ("pls. use shared dropbox for communication " + l i n k .

u r l) ;
vieCOMHBS . sendMessageToHBS (d a t a S c i e n t i s t , msg) ;

} e l s e i f (q o d P r e P r o c e s s e d D a t a < 0 . 7) {
/ / i n t h i s case , we j u s t need a s o f t w a r e t o c l e a n t h e da ta

SBS d a t a C l e a n s i n g = new SBS ("datacleaner") ;
/ / . . .

} e l s e i f (q o d P r e P r o c e s s e d D a t a < 0 . 9) {
/ / s p e c i f y some s t a t i c p r o p e r t i e s o f t h e s o l v e r
SBS s o l v e r U n i t 2 = new SBS ("solver") ;
s o l v e r U n i t 2 . c a p a b i l i t i e s . p u t ("DIRTY_DATA" , Boolean . va lueOf (

t rue)) ;
/ / s p e c i f y e x p e c t e d c o s t and accuracy s u p p o r t
CostModel cos tMode l = new CostModel () ;
cos tMode l . p r i c e = 100 ; / / max i n EUR
cos tMode l . usageTime = 1000 ∗ 60 ∗ 6 0 ; / / 1 hour
Q u a l i t y q u a l i t y = new Q u a l i t y () ;
q u a l i t y . name = Q u a l i t y .ACCURACY;
q u a l i t y . v a l u e = 0 . 9 5 ; / / minimum v a l u e
A r r a y L i s t n f p s = new A r r a y L i s t () ;
n f p s . add (q u a l i t y) ; n f p s . add (cos tMode l) ;
/ / f i n d s o l v e r s met q u a l i t y and c o s t needs
SBS e l a s t i c S o l v e r U n i t = (SBS) R e l a t i o n s h i p . e l a s t i c i t y (

s o l v e r U n i t 2 , n f p s) ; O b j e c t s o l v e r R e s u l t 2 =
e l a s t i c S o l v e r U n i t . e x e c u t e ("solving" , params1) ;

} e l s e {
/ /

}

Forwarding and Delegating Analysis Request. After post-processing, in data
analysis, an analyst can capture an unknown pattern which he/she can forward
to his/her research connectors, who have a social relation to him/her in Linkedin.

108 H.-L. Truong et al.

A professor may receive this pattern and he/she delegates the analysis tasks to his/her
SCU, a set of graduate students. The following code excerpt shows the above-mentioned
illustrative tasks:

ICU d a t a S c i e n t i s t = new ICU () ;
/ /
ICU f U n i t = new ICU () ;
R e l a t i o n s h i p . s o c i a l r e l a t i o n (d a t a S c i e n t i s t , fUni t , 1 ,"Linkedin:

DataScienceGroup/TUWien") ;
R e l a t i o n s h i p . f o r w a r d (da t a , f U n i t) ;
/ / . . .

SCU studentSCU = new SCU () ;
/ / . .
R e l a t i o n s h i p . d e l e g a t e (da t a , s tudentSCU) ;

5.3 Comparison of Programming Models for Cloud Applications

We also conduct a comparison of our approach with other prominent programming
frameworks for cloud applications. The set of features that are considered in this com-
parison is:

– Proactive human service: support for proactively invoking human-based service
units through human’s capabilities are utilized.

– Elasticity: support for adapting services against changing non-functional parame-
ters.

– Team interaction/collaborative patterns: support for interactions and/or collabora-
tion patterns among different services to establish teamwork.

– Social structure/relations: support to request services based on social structure
and/or relations.

– Unified framework for human and software: allow the developer to naturally pro-
gram software services and human-based services in similar ways.

– Cross-platform: work with any cloud platform that hooks into the framework and
and can support execution across several platforms in the same program.

Programming Feature Crowdforge TurKit Jabberwocky JClouds OpenStack VieCOM

Proactive human service N N Y N N Y
Explicit cost/benefits/quality N N N N N Y
Elasticity N N N N N Y
Team interaction/collabora-
tive patterns

N N N N N Y

Social structure/relations N N Y N N Y
Unified framework for hu-
man and software

N N Y N N Y

Cross-platform N N Y Y Y Y

Fig. 4. Comparison of different programming models for cloud applications

Augmenting Complex Problem Solving with Hybrid Compute Units 109

Figure 4 describes our comparison. It is not a strange result that, conceptually, our
approach (VieCOM) supports several features, in particular, covering both SBS and
HBS. The main reason is that currently existing frameworks focus either on SBS or
HBS. While Jabberwocky also supports SBS and HBS, it does not support programming
elements for defining costs, benefits and quality as well as elasticity relations.

6 Conclusions and Future Work

Emerging pay-per-use models, on-demand service acquisition, and advanced human-
machine integration techniques enable the provisioning of human and machine capabil-
ities under the same service model to support the development of complex applications.
In this paper, we investigate high level programming supports for solving complex prob-
lems using software-based and human-based compute units. We have presented a range
of possible fundamental programming elements abstracting software and people and
several possible high-level constructs. As the paper mainly discusses about high-level
models and constructs, our validation is limited to illustrating examples and compar-
isons. We believe that programming elements and high-level programming constructs
presented in this paper can be foundations for the development of domain-specific lan-
guages and software engineering processes for hybrid compute units. Our future work
involves further developing our prototype and tooling support for the proposed high-
level programming constructs.

Acknowledgment. The work mentioned in this paper is partially supported by the EU
FP7 SmartSociety.

References

1. Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: CrowdForge: crowdsourcing complex work.
In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Tech-
nology, UIST 2011, pp. 43–52. ACM, New York (2011)

2. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Turkit: tools for iterative tasks on me-
chanical turk. In: Proceedings of the ACM SIGKDD Workshop on Human Computation,
HCOMP 2009, pp. 29–30. ACM, New York (2009)

3. Marcus, A., Wu, E., Karger, D., Madden, S., Miller, R.: Human-powered sorts and joins.
Proc. VLDB Endow. 5, 13–24 (2011)

4. Truong, H.-L., Dustdar, S., Bhattacharya, K.: Programming hybrid services in the cloud. In:
Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 96–110.
Springer, Heidelberg (2012)

5. Calheiros, R.N., Vecchiola, C., Karunamoorthy, D., Buyya, R.: The Aneka platform and qos-
driven resource provisioning for elastic applications on hybrid clouds. Future Generation
Comp. Syst. 28(6), 861–870 (2012)

6. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.: DEDALUS:
Datalog in time and space. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog
2010. LNCS, vol. 6702, pp. 262–281. Springer, Heidelberg (2011)

7. Ahmad, S., Battle, A., Malkani, Z., Kamvar, S.: The jabberwocky programming environment
for structured social computing. In: Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, UIST 2011, pp. 53–64. ACM, New York (2011)

110 H.-L. Truong et al.

8. Minder, P., Bernstein, A.: crowdLang: A programming language for the systematic explo-
ration of human computation systems. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J.,
Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 124–137. Springer, Heidelberg (2012)

9. Fehling, C., Leymann, F., Ruetschlin, J., Schumm, D.: Pattern-based development and man-
agement of cloud applications. Future Internet 4(1), 110–141 (2012)

10. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes. IEEE Internet
Computing 15(5), 66–71 (2011)

11. Reiter, M., Breitenbücher, U., Dustdar, S., Karastoyanova, D., Leymann, F., Truong, H.L.: A
novel framework for monitoring and analyzing quality of data in simulation workflows. In:
eScience, pp. 105–112. IEEE Computer Society (2011)

Towards Automating the Detection of Event Sources

Nico Herzberg, Oleh Khovalko, Anne Baumgrass, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Straße 2-3, 14482 Potsdam

{nico.herzberg,oleh.khovalko,anne.baumgrass,
mathias.weske}@hpi.uni-potsdam.de

Abstract. During business process execution, various systems and services pro-
duce a variety of data, messages, and events that are valuable for gaining insights
about business processes, e.g., to ensure a business process is executed as ex-
pected. However, these data, messages, and events usually originate from differ-
ent kinds of sources, each specified by different kinds of descriptions. This variety
makes it difficult to automate the detection of relevant event sources for business
process monitoring. In this paper, we present a course of actions to automatically
associate different event sources to event object types required for business pro-
cess monitoring. In particular, in a three-step approach we determine the similar-
ity of event sources to event object types, rank those results, and derive a mapping
between their attributes. Thus, relevant event sources and their bindings to speci-
fied event object types of business processes can be automatically identified. The
approach is implemented and evaluated using schema matching techniques for a
specific use case that is aligned with real-world energy processes, data, messages,
and events.

1 Introduction

Service-Oriented Architecture (SOA) enables flexible operations by utilizing highly-
distributed and loosely-coupled applications [1]. These applications use different func-
tions encapsulated as services by information systems that are based on the SOA
paradigm. These services interact with each other by the means of messages and events
[2]. In parallel, these messages and events provide information required for operations
(executed by services or humans) in an organization.

Nowadays, frequent changing markets and customer requirements force companies
to quickly adapt their operations to stay competitive within their environment. That is
why they strive to run their operations in a process-oriented way using tools and prac-
tices from Business Process Management (BPM) to achieve their goals. BPM comprises
concepts, methods, and techniques to support the design, administration, configuration,
enactment, and analysis of business processes [3].

One of the current research areas of BPM is Business Process Intelligence (BPI)
that comprises process analysis, monitoring, and mining [4]. During the execution of
business processes – run of the process instances – services and humans are utilized to
fulfill certain tasks and at the same time events can occur which represent the real world
happenings and the current process state. This information about process execution is

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 111–122, 2014.
c© Springer International Publishing Switzerland 2014

112 N. Herzberg et al.

essential for analysis and improvement of business processes. It can be used for mon-
itoring, to identify current and predict upcoming process steps by observing occurred
events, and deriving process behavior from them [5,6]. However, processing events in
distributed and heterogeneous environments in a semantically meaningful way requires
explicit information about the structure and semantics of events. This is enabled by the
framework presented by Herzberg et. al [7], but includes mostly manual steps to identify
and connect the right event sources. These steps are subject for automation.

In this paper, we introduce a three-step approach that enables us to automatically
identify an event source in a collection of event sources which matches a given Event
Object Type (EOT) of a business process. It determines the similarity of event sources
to event object types, ranks those results, and derives a mapping between their attributes.
Thus, this technique establishes the basis for fine-grained business process monitoring
by allowing the monitoring of an unlimited amount of events that originate from differ-
ent kinds of sources and are specified by different kinds of descriptions.

The remainder of the paper is structured as follows. In Section 2, we introduce basic
concepts and terms we build on, followed by the introduction of our use case from the
utilities domain, in Section 3. In Section 4, we describe our approach of detecting event
sources and detail the three main steps. The evaluation of the presented approach using
schema matching techniques based on the introduced use case is explained in Section 5.
In Section 6, related work is considered before we conclude our work in Section 7.

2 Preliminaries

In our work, we explicitly distinguish between real-world events and event objects. A
real-world event happens in a particular point in time at a certain place in a certain
context (cf. [8,9]). The context describes the situation in which the event has happened.
Real-world events that are represented in information systems are called event objects.
An event object is an object that represents, encodes, or records a real-world event,
generally for the purpose of computer processing [10]. We embed our approach in the
framework from Herzberg et. al [7] which is described below.

Real-world events are observed and published as machine-readable event objects
via event sources (see Fig. 1). Typically, an event source publishes one specific type of
event objects, e.g., the European Energy Exchange publishes the values of the European
Electricity Index. The event source description defines the structure and semantics of
event objects the event source provides.

The structure of event objects that need to be processed is described by an EOT
(see Fig. 1). In particular, the EOT (i) defines the structure of the event content and (ii)
provides the rules for mapping the information of real-world events into event objects,
the so-called binding.

Definition 1 (Event Object Type (EOT))
An event object type EOT = (cd, bind) consists of a specification of the event content
structure cd and a binding bind that describes the way how the information of a concrete
event source needs to be utilized to form an event object.

A binding is a function specifying the rules and methods to extract real-world event
information from the event sources for an EOT. The implementation of the extraction

Towards Automating the Detection of Event Sources 113

Business
Process Model

Node Process Event
Monitoring Point

Event Object
Type Event Object

Event Source
DescriptionEvent SourceReal-world

Event

contains

includes

references

specifies

observes specifies

1

*
*

1

1 *

1

1
publishes

*

*

1..*
1

* 1

Fig. 1. The connection between a business process model and real-world events

of real-world event information can be established by applying techniques and methods
from the domain of Complex Event Processing (CEP).

Event objects need to be assigned to specific points in the business process to enable
BPI. Business processes are specified in business process models.

Definition 2 (Business Process Model)
A business process model M = (N,F) consists of nodes N and flow relations F ⊆
N × N that connect nodes. Every node n ∈ N has an assigned life cycle C : N →
2S × 2T consisting of states S and state transitions T ⊆ S × S.

We utilize the concept of Process Event Monitoring Points (PEMPs) that define at which
point in a process an event object is expected [7] (see Fig. 1). Therefore, a PEMP refer-
ences an EOT. This connection is defined during design time in a process model. The
points in the process model a PEMP can be assigned to are described by life cycles of
the nodes, i.e., activities, gateways, and events. Assigning PEMPs on node life cycle
level enables fine-grained BPI.

Definition 3 (Process Event Monitoring Point)
Let M = (N,F) be a process model and C(n) = (S′, T ′) the node life cycle consisting
of states S′ ∈ 2S and state transitions T ′ ∈ 2T for a node n ∈ N . A process event
monitoring point is a tuple PEMP = (M,n, t, E), where M is the process model it is
contained in, n ∈ N is the node it is created for, t ∈ T ′ is the state transition within the
node life cycle of n, and E represents the set of references to its defined EOTs.

3 Use Case

We introduce the approach of automating the event source detection along an example
from the utilities domain. We consider the change of an energy supplier (COS) at the
distribution organization from the request of a COS until all parties are informed about
the COS or the rejection of the transactions. As a common technique to represent busi-
ness processes, we illustrate the described process using a Business Process Model and
Notation (BPMN) [11] process model shown in the upper part of Fig. 2. A customer
requests a change of supplier at its new selected energy supplier. This request is then
forwarded to the distributor by the new supplier and therewith, the change of supplier

114 N. Herzberg et al.

Fig. 2. Framework proposed by Herzberg et. al [7] applied to an use case from the utilities do-
main: business process model for handling the change of an energy supplier for a household from
the distributor point of view, PEMPs associated to the node state transitions (e)nable, (b)egin,
(t)erminate, or (ex)ecute, EOTs, and event sources

process at distributor site starts (start event). Afterwards the request is checked (Check
Change of Supplier) for feasibility by the distributor and the corresponding acceptance
or rejection is handled (Accept Request and Reject Request). In case the COS is accepted
by the distributor a notification about the change of supplier is send to the old energy
provider (Inform old Supplier). Afterwards, no further activities have to be performed
by the client and the process ends (end event).

The data created during that process deliver valuable insights about the progress
of each process instance. In our recent approach [7], we introduced a framework that
allows to define PEMPs with which we are able to associate EOTs originating from
different sources to business processes and enable BPI. Fig. 2 illustrates this association.
Below the process model, the PEMPs are associated with state transitions of activities,
start or end events, and thus contain the connection to a business process. To transform
real-world events from different event sources to events relevant for the business process
we define EOTs. We assume the association of an EOT to a PEMP is given and focus
on identifying the binding between an EOT and an event source.

Examples for the use case are taken from real-world cases of the energy market. In
particular, we used the data of the Association of Swiss Electricity Companies1. It pro-
vides 73 publicly available XML schema definitions (XSDs) which describe the mes-
sage interchange format of Swiss electricity market2 and represent our event sources.
Their structure is rather complex, as they are interlinked with each other and con-
tain a lot of complex element structure descriptions. For instance, the COS request
schema definition (RequestToMPA) and its linked core component, shown in Listing 1.1,

1 http://www.strom.ch/
2 Schemas, descriptions, and examples are available at:
http://www.strom.ch/de/dossiers/strommarkt/sdat.html

http://www.strom.ch/
http://www.strom.ch/de/dossiers/strommarkt/sdat.html

Towards Automating the Detection of Event Sources 115

imports 30 other schemas, defines 22 elements and 62 complex types used for the struc-
ture definition. In Line 12 of Listing 1.1, we see the structure in which the switch date
period of the COS request is indicated. This element is defined by a complex type, see
Line 20, which refers to another simple type, see Line 26.

Furthermore, the systems used for message exchange, as well as the content of the
COS-related messages may differ for each supplier that is communicating with the dis-
tribution organization in this process. Because of that numerous amount of structure
information it is difficult to manually define the binding between the event sources and
the defined EOTs. Therefore, an automatic approach is necessary.

Listing 1.1. An excerpt of a COS request schema definition (RequestToMPA)

1 <xsd:schema xmlns:rsm=”http://www.strom.ch” ...>
2 <xsd:element name=”RequestToMPA 10” type=”rsm:RequestToMPAType 10”/>
3 <xsd:complexType name=”RequestToMPAType 10”>
4 <xsd:element name=”MeteringPoint”>
5 <xsd:complexType>
6 <xsd:complexContent>
7 <xsd:extension base=”rsm:EnergyMeteringPointLocationType”>
8 <xsd:sequence>
9 <xsd:element name=”BalanceResponsible” type=”rsm:EnergyPartyType”

minOccurs=”0”/>
10 <xsd:element name=”BalanceSupplier” type=”rsm:EnergyPartyType” minOccurs=”

0”/>
11 <xsd:element name=”Consumer” type=”rsm:ConsumerEnergyPartyType”

minOccurs=”0”/>
12 <xsd:element name=”SwitchDate” type=”rsm:SwitchDatePeriodType”/>
13 </xsd:sequence>
14 </xsd:extension>
15 </xsd:complexContent>
16 </xsd:complexType>
17 </xsd:element>
18 ...
19 </xsd:complexType>
20 <xsd:complexType name=”SwitchDatePeriodType”>
21 <xsd:choice>
22 <xsd:element name=”StartDate” type=”rsm:EnergyDateType”/>
23 <xsd:element name=”EndDate” type=”rsm:EnergyDateType”/>
24 </xsd:choice>
25 </xsd:complexType>
26 <xsd:simpleType name=”EnergyDateType”>
27 <xsd:restriction base=”udt:DateType”>
28 <xsd:pattern value=”.{4}−.{2}−.{2}”/>
29 </xsd:restriction>
30 </xsd:simpleType>
31 ...
32 </xsd:schema>

To monitor the start of the process, we define an EOT indicating the execution of the
start event, see Listing 1.2. Because of business needs, we are explicitly interested in
information about a COS request (MPA Request), consumer, switch date, and balance
supplier.

Listing 1.2. The EOT definition to identify events for starting a change of supplier process

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <xs:schema xmlns:rsm=”http://www.strom.ch” xmlns:xsd=”http://www.w3.org/2001/XMLSchema”...>
3 <xs:element name=”MPA Request” type=”xs:string”></xs:element>
4 <xs:element name=”Consumer” type=”xs:string”></xs:element>
5 <xs:element name=”Date” type=”xs:date”></xs:element>
6 <xs:element name=”BalanceSupplier” type=”xs:string”></xs:element>
7 </xs:schema>

116 N. Herzberg et al.

Listing 1.3 shows an excerpt of a real-world event from the event source for the
COS requests. To transform such an event to an event relevant for the given business
process, we need to define a binding between EOT1 and the event source structure
RequestToMPA 10. Manually derived from the example, we can define a binding bind
of EOT1 including, for example, the switch date:
EOT1.Date = RequestToMPA 10.Switch.MeteringPoint.SwitchDate.StartDate.

The other elements of EOT1 can be mapped and the binding of the other EOTs
can be defined accordingly. Establishing this bindings manually is time-consuming and
error-prone, therefore, we present an approach establishing the bindings automatically.

Listing 1.3. Event of event source COS request

1 <rsm:RequestToMPA 10 xsi:schemaLocation=”http://www.strom.ch RequestToMPA 1p0.xsd” xmlns:rsm=”http://
www.strom.ch” xmlns:xsi=”http://www.w3.org/2001/XMLSchema−instance”> ...

2 <rsm:Switch>
3 <rsm:DocumentID>DID Beispiel 3 2 1 x LiefWec 10 11c</rsm:DocumentID>
4 <rsm:MeteringPoint>
5 <rsm:VSENationalID schemeID=”VSE” schemeAgencyID=”260”>

CH9999901234500000000000000000002</rsm:VSENationalID>
6 <rsm:BalanceSupplier>
7 <rsm:ID><rsm:EICID schemeAgencyID=”305”>12X−PARTY−A−000K</rsm:EICID></

rsm:ID>
8 </rsm:BalanceSupplier>
9 <rsm:SwitchDate><rsm:StartDate>2008−06−30</rsm:StartDate></rsm:SwitchDate>

10 ...
11 </rsm:MeteringPoint>
12 </rsm:Switch>
13 </rsm:RequestToMPA 10>

4 Approach to Detect Bindings between EOTs and Event Sources

As defined in Section 2, EOTs are defined in a PEMP for a process model. In this paper,
we assume the EOTs for a business process are known and relevant event sources with
its descriptions are available. Thus, we focus on the association of event sources to
corresponding EOTs. We perform our approach in three steps (see Fig. 3), which are
closely interrelated, but should be considered isolated as they can be implemented by
different tools, algorithms, or means.

Fig. 3. Approach for the detection of suitable event sources for given EOTs

4.1 Step 1: Determine the Similarity between Event Sources and EOTs

In a collection of event sources, e.g., systems providing XML data, we aim at identify-
ing those event sources that are similar and suitable to a defined EOT. This identification
is conducted by comparing the elements of an EOT with every event source available
and computing their similarity value.

Towards Automating the Detection of Event Sources 117

A comparison requires the description and structural properties of the events orig-
inating from an event source and those that are expected for the EOT. The structural
descriptions of event sources need to be stored in a repository, e.g., a database storing
the descriptions as XSD files. The search of event sources in the repository can be uti-
lized by matchers that compare the descriptions. As we cannot assume that each event
source description is completely contained in an EOT and vice versa, element-level
matchers are required that consider elements in isolation and ignore element’s substruc-
ture and components. For instance, the fact that the elements Date defined in the EOT
(see Listing 1.2) and the SwitchDate from the event source (see Listing 1.1) are likely to
match (although contained in different sub-elements) can be derived by a name-based
element-level matching without considering the hierarchical structure of the descrip-
tions. As result of a comparison, we receive a matrix for each event source that includes
the similarity values between the elements of the compared event source and the EOT.

Afterwards, the similarity values in each matrix need to be aggregated to receive a
global similarity value for the EOT and the event source. It is likely to estimate the
degree of the similarity is given by a normalized numeric value in the range 0 to 1, in
order to identify the best matching event source. For example, in our scenario, the total
amount of 73 event sources must be compared with the given EOT shown in 1.2 to
calculate the overall similarity values.

4.2 Step 2: Rank and Determine Suitable Event Sources for an EOT

In this step, event sources that may deliver information for the requested EOT are ranked
based on their overall similarity from highest to lowest. We use the computed similarity
values of each comparison of an event source description with the EOT specification
from the previous step. The assumption is that higher overall similarity values indicate
the better suitability of the event sources to the EOT. However, note that these values do
not contain an evaluation of how suitable the mappings of each attribute are. Therefore,
it may be required that a domain expert looks into the set of event sources ranked at
the first places to exactly evaluate their fitness. As we are aiming at automating the
process of event detection, we use the event source ranked at the first place for further
processing. According to our scenario, we rank all 73 event sources based on their
similarity to the requested EOT shown in Listing 1.2. Such a ranking should indicate
that the event source RequestToMPA 10 will satisfy the given EOT most probably.

4.3 Step 3: Derive the Binding between an EOT and an Event Source

For the highly ranked event source(s) the binding is derived, so that for the requested
elements or attributes in the EOT a corresponding counterpart from the event source(s)
is assigned. The binding defines the rules and methods to extract raw event information
from the data source within the information system landscape required for the events of
the given EOT. To establish the binding the resulting similarity matrix from step 1 can
be reused. Same as for the global similarity, we assume that the higher similarity value
are better suited and thus they are used for the matching of elements. Therefore, each
required binding is produced by utilizing the element in the event source with the most
promising similarity value. For example, it is likely to assume that the similarity value

118 N. Herzberg et al.

between the elements Date (of the EOT) and SwitchDate (of the event source) is higher
then a value between Date and Consumer.

Based on the similarity matrix, we can obtain a binding of every element described
by the EOT to an element in the determined event source. Using this technique, we
can derive a binding between the EOT1 requested in the scenario and the event source
RequestToMPA 10 describing that, for example, the content for filling Date can be
found in R2MPAType 10.Switch.MeteringPoint.SwitchDate. This binding can then be
used to generate CEP-queries and process events in a CEP engine or to generate XPath-
like pattern and process XML documents using Extensible Stylesheet Language Trans-
formation (XSLT), for instance. Both can be used to detect corresponding events and
data coming from different sources but belonging to the specified EOT. In this context,
the existing Event Processing Platform (EPP) [6,7]3 can be used as it is able to receive
events from different kinds of sources, check the format of these events, associate them
with an EOT, and then normalize, store, process, and forward them via the platform.

5 Evaluation Using Schema Matching

We show the applicability of our approach by using schema matching to implement the
three steps and evaluate it for the use case described in Section 3. By automating the
event source detection, we can decrease the efforts for enabling process monitoring and
analysis in distributed and heterogeneous environments. In this evaluation, we did not
investigate the quality of the matching results.

In general, schema matching techniques are used to identify an alignment that ex-
presses the correspondence between elements and attributes belonging to different
schemas or ontologies [12,13]. A schema can be, for example, an XSD, a database
schema, an Electronic Data Interchange For Administration, Commerce and Trans-
port (EDIFACT) message definition, or an event type definition. To apply schema match-
ing, we assume that each event source as well as the EOT are represented by a schema,
i.e., an XSD that describes the events produced by that event source as well as the ex-
pected events in a formal and standardized manner. This assumption is reasonable since
XML is a common standardized data interchange format.

5.1 Evaluation Setup

For our experiment, we used a state-of-the-art schema matching tool called Onto-
Builder4 to implement the identification and matching of suitable event sources for
EOTs. For the comparison in the OntoBuilder, we first defined an EOT in form of an
XSD for each PEMP required by the use case in Section 3. The related XSDs of the
event sources are taken from the data set provided by the Association of Swiss Electric-
ity Companies (see Section 3). Second, each XSD was imported in the OntoBuilder and
transformed to a generic ontology structure. Third, we conducted a schema matching
for each pair of a target (EOT) and source schema (event source).

3 Downloads, tutorials, and further information can be found at:
http://bpt.hpi.uni-potsdam.de/Public/EPP

4 See http://ontobuilder.bitbucket.org/

http://bpt.hpi.uni-potsdam.de/Public/EPP
http://ontobuilder.bitbucket.org/

Towards Automating the Detection of Event Sources 119

Table 1. Excerpt of results for matching of EOT1 and event sources

Event source schema Average similarity

1 RequestToMPA 1p0.xsd 0.78
2 ResponseFromMPA Confirm 1p0.xsd 0.71
3 NotificationFromMPA 1p0.xsd 0.67

In the OntoBuilder, the schema matching is based on a sequence of two kinds of
matchers: (1) first line matchers and (2) second line matchers. The first line matchers
are applied to two schemas to determine their similarity using textual and structural
heuristics. For each schema pair a first line matcher produces a similarity matrix which
contains the similarity value for each attribute pair of those two schemas. In our use
case each similarity value is calculated by comparing the names as well as the data
types of the schema attributes. For this reason, we used the OBTermMatch algorithm for
the name comparison and the OBValueMatch algorithm for the data type comparison.
Then, a second line matcher is applied to the similarity matrix together with a set of
constraints (e.g., allowing only 1:1 mappings of attributes) that returns for each attribute
of the target schema a corresponding attribute of the source schema together with its
computed similarity value. OBStableMariage was used as a second line matcher that
implements the stable marriage algorithm for royal couples [14], extended for unequal
sets of schema attributes.

Following this setup, our approach uses schema matching in the OntoBuilder as fol-
lows: for step 1 the overall similarity of the EOT to an event source is calculated as
the arithmetic mean of their similarity values, for step 2 the overall similarity values of
the event sources for each EOT are ranked, and for step 3 the binding is derived
from the matching between the attributes of event sources to attributes of the EOT.

5.2 Evaluation Results

The results presented in Table 1 show an excerpt of found event source descriptions
that match the event type EOT1 (see Listing 1.2) ordered by their computed overall
similarity. The event source description RequestToMPA 1p0.xsd, which represents the
event source RequestToMPA 10 (see Listing 1.1), is ranked with the highest similarity of
0.78. It describes the supplier change request to a metering point administrator within
Association of Swiss Electricity Companies and corresponds to the definition of the
EOT1 (see Listing 1.2).

Next, the matching of attributes were computed in the OntoBuilder. For example,
using the OBTermMatch algorithm, which includes a set of weighted string compari-
son algorithms for similarity calculation, we receive a similarity between Date (EOT)
and SwitchDate (event source) of 0.46, while the similarity between Consumer (EOT)
and Consumer (event source) is 1. Table 2 shows the results of the mappings for each
attribute of the EOT1 to the attributes of the best matched event source description
(RequestToMPA 1p0.xsd) and the similarity values for each mapping.

120 N. Herzberg et al.

Table 2. Results for matching the attributes of EOT1 and the best ranked event source description
RequestToMPA 1p0.xsd

EOT1 attribute RequestToMPA 1p0.xsd attribute sim. value

MPA Request RequestToMPA 10 0.65
Consumer R2MPAType 10.Switch.MeteringPoint.Consumer 1.00
Date R2MPAType 10.Switch.MeteringPoint.SwitchDate 0.46
BalanceSupplier R2MPAType 10.Switch.MeteringPoint.BalanceSupplier 1.00

5.3 Evaluation Discussion

The produced results show that schema matching can be used for the identification of
event sources in our introduced use case. The approach allows to identify heterogeneous
event sources for a given EOT and to derive bindings for each of event sources. The
derived bindings can, for example, be used to generate and run CEP-queries.

We argue that schema matching is a reasonable technique which can be used for an
automated detection of event sources. However, the quality of the produced results may
highly depend on the selected matching algorithms as well as on their configuration set-
tings and may vary with the examined data set. Furthermore, the selection and adaption
of first and second line matcher algorithms have a high impact on the outcome of the
produced matching. Additional element-level matchings such as on type, description,
and key property can be applied as well (see [12]).

In this paper, we focus on the binding of event sources to EOTs. Although the combi-
nation and association of several varying EOTs to one PEMP as well as the combination
and association of several varying event sources to one EOT is possible. While illustrat-
ing our approach, we did not analyze these details, however, we plan to consider them
in future work.

6 Related Work

Baier and Mendling introduce an approach to map events from event logs to activities
in process models [15,16]. The mapping approach suggests relations between events
and activities at type and instance level in an automated manner. These relations are
derived from a comparison between the name of event types and activity’s name and
description. We complement this approach by considering all attributes of EOTs and of
the event sources to identify a matching between these.

Other approaches in the area of complex event processing e.g., [17] address the prob-
lem of semantic decoupling of event subscriber and publisher in heterogeneous event-
based systems. For instance, the approach of Hasan et al. includes an event model, a
subscription model, and a matching model that leverage semantics of events and sub-
scriptions (resp. EOT) to establish approximate matching.

Our work is also related to the area on automated or semi-automated techniques for
schema matching, surveyed, for instance, in [12] and [18]. These techniques leverage
textual and structural similarity measures, and apply different strategies to derive corre-
spondences between concepts from such a similarity assessment [19]. While the results

Towards Automating the Detection of Event Sources 121

of schema matchers have been exceptional for distinguished settings, they are inherently
uncertain due to the enormous ambiguity and heterogeneity of data description [20].

Several approaches were proposed to address the problem of service retrieval - a
process of finding a set of service candidates for a given consumer request. The lack
of an appropriate service description can be identified as one of the main challenges
during the process of service retrieval [21]. Various approaches, e.g., [22], address these
challenges using diverse information retrieval techniques. While these approaches allow
the service consumer to reach high levels of recall, they remain to be prone to low
precision [23].

A few works use schema matching techniques in service retrieval. In [24], the authors
propose an approach to compute the similarity between web services under considera-
tion of a tree edit distance. However, the introduced approach can be applied on the
interface definition of web services only. It does not consider the exchanged data and
their instances as it is needed for event source detection.

7 Conclusion

We automated the association of event sources to EOTs required by PEMPs in a busi-
ness process and therewith enabled event source detection as basis for BPI. In particu-
lar, specified EOTs for business process monitoring are used to identify relevant event
sources. The found event sources are ranked according their computed similarity to the
requested EOT and a binding between the highest ranked event source and the EOT is
generated. During business process execution, these bindings can be used to identify
event objects for a business process in an event stream. We implemented the approach
using schema matching and evaluated its applicability for an use case that is aligned
with a real-world process from the utilities domain.

For future work, we plan to consider the combination and association of several vary-
ing EOTs to one PEMP as well as the combination and association of several varying
event sources to one EOT. Furthermore, we aim to extend our evaluation using different
kinds of configurations and combinations of matching algorithms and, thus, improve the
quality of event source detection.

Acknowledgement. The research leading to these results has received funding from
the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement 318275 (GET Service) and from the German Research Association (DFG)
under project number WE 1930/8-1.

References

1. Papazoglou, M.P., Heuvel, W.J.: Service oriented architectures: approaches, technologies and
research issues. The VLDB Journal 16(3) (July 2007)

2. Levina, O., Stantchev, V.: Realizing Event-Driven SOA. In: 4th International Conference on
Internet and Web Applications and Services, ICIW (2009)

3. Weske, M.: Business Process Management - Concepts, Languages, Architectures, 2nd edn.
Springer (2012)

122 N. Herzberg et al.

4. van der Aalst, W.: Process Mining: Overview and Opportunities. ACM Transactions on Man-
agement Information Systems (TMIS) 3(2) (July 2012)

5. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-Based
Monitoring of Process Execution Violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.)
BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg (2011)

6. Bülow, S., Backmann, M., Herzberg, N., Hille, T., Meyer, A., Ulm, B., Wong, T.Y., Weske,
M.: Monitoring of Business Processes with Complex Event Processing. In: BPM Workshops.
Springer (2013) (accepted for publication)

7. Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business Process
Management. In: IEEE International EDOC Conference, Vancouver (2013)

8. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co (2011)
9. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-

tributed Enterprise Systems. Addison-Wesley (2002)
10. Luckham, D., Schulte, R.: Event Processing Glossary - Version 2.0 (July 2011),

http://www.complexevents.com/wp-content/
uploads/2011/08/EPTS Event Processing Glossary v2.pdf

11. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011),
http://www.omg.org/spec/BPMN/2.0/

12. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The
VLDB Journal 10(4) (2001)

13. Euzenat, J., Shvaiko, P.: Ontology matching, vol. 18. Springer, Heidelberg (2007)
14. Marie, A., Gal, A.: On the Stable Marriage of Maximum Weight Royal Couples. In: AAAI

Workshop on Information Integration on the Web (2007)
15. Baier, T., Mendling, J.: Bridging Abstraction Layers in Process Mining by Automated Match-

ing of Events and Activities. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 17–32. Springer, Heidelberg (2013)

16. Baier, T., Mendling, J.: Bridging Abstraction Layers in Process Mining: Event to Activity
Mapping. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider,
I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147, pp. 109–123. Springer, Hei-
delberg (2013)

17. Hasan, S., O’Riain, S., Curry, E.: Approximate semantic matching of heterogeneous events.
In: 6th ACM International Conference on Distributed Event-Based Systems, DEBS (2012)

18. Bellahsene, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping. Springer (2011)
19. Gal, A., Sagi, T.: Tuning the ensemble selection process of schema matchers. Information

Systems 35(8) (2010)
20. Gal, A.: Managing Uncertainty in Schema Matching with Top-K Schema Mappings. In: Spac-

capietra, S., Aberer, K., Cudré-Mauroux, P. (eds.) Journal on Data Semantics VI. LNCS,
vol. 4090, pp. 90–114. Springer, Heidelberg (2006)

21. Kuropka, D., Troeger, P., Staab, S., Weske, M.: Semantic Service Provisioning. Springer
(2008)

22. Wang, Y., Stroulia, E.: Flexible Interface Matching for Web-Service Discovery. In: 4th Int.
Conference on Web Information Systems Engineering (WISE). IEEE Computer Society
(2003)

23. Klein, M., Bernstein, A.: Toward high-precision service retrieval. IEEE Internet Comput-
ing 8(1), 30–36 (2004)

24. Hao, Y., Zhang, Y.: Web services discovery based on schema matching. In: 13th Australasian
Conference on Computer Science (ACSC), vol. 62, pp. 107–113. Australian Computer Soci-
ety, Inc. (2007)

http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
http://www.complexevents.com/wp-content/uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf
http://www.omg.org/spec/BPMN/2.0/

Discovering Pattern-Based Mediator Services
from Communication Logs

Christian Gierds1 and Dirk Fahland2

1 Humboldt-Universität zu Berlin, Department of Computer Science, Germany
gierds@informatik.hu-berlin.de

2 Technische Universiteit Eindhoven, The Netherlands
d.fahland@tue.nl

Abstract. Process discovery is a technique for deriving a conceptual high-level
process model from the execution logs of a running implementation. The tech-
nique is particularly useful when no high-level model is available or in case of
significant gaps between process documentation and implementation. The discov-
ered model makes the implementation accessible to various kinds of analysis for
functional and non-functional properties. In this paper we extend process discov-
ery to mediator services (or adapters) which adapt the messaging protocols of 2
or more otherwise incompatible services. We propose a technique that takes as
input logs of communication behaviors — one log for each service connected to
the adapter — and a library of high-level data transformation rules relevant for the
domain of the adapter, and then returns an operational adapter model describing
the control-flow and the data flow of the adapter in terms of Coloured Petri Nets –
if such model exists. We discuss benefits and limitations of this idea and evaluate
it with a prototype implementation on industrial size models.

Keywords: Process Mining, Service Mining, Pattern Based Design, Coloured
Petri nets, synthesis.

1 Introduction

The central idea of Service-oriented Computing (SoC) is to build complex distributed
systems by connecting and integrating software components or services. Often a system
integrates existing components that are not directly compatible with each other, but are
made compatible through mediator services or adapters, also known as middleware [22].
Incompatibilities may arise due to incompatible service interfaces (available operations
and message types), due to incompatible protocols of stateful services, or due to se-
mantic mismatches between message contents. A mediator service sits between two
or more other services and remedies these mismatches for instance through reordering
messages sent by one service into a different protocol, or by processing, decomposing,
and enriching messages to be compatible for the receiving service.

In larger systems, mediator services play a central role as they provide the flexibil-
ity to integrate existing key functionality in many different ways. This flexibility is key
when designing new integrations for existing components or optimizing existing inte-
grations. In both cases, the existing mediator services have to be considered to either

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 123–134, 2014.
c© Springer International Publishing Switzerland 2014

124 C. Gierds and D. Fahland

identify whether a particular mediator service already exists, or which properties this
mediator service has. Ideally, one would analyze high level conceptual models of a
mediator services, for instance using the abstract concepts provided by the Enterprise
Integration Patterns (EIP) [10]. However, in many architectures in practice, e.g., Enter-
prise Service Buses (ESB) such as JBoss ESB [11], mediator services are implemented
in software code only. The particular integration of two or more services may only arise
from multiple software artifacts that are difficult to identify in the first place. In such
situations, understanding and optimizing existing software-based integrations becomes
a laborious, and error-prone task.

In this paper, we address the problem of automatically extracting a high-level con-
ceptual model of a mediator service from the communication logs of an existing integra-
tion. The communication log of a service stores at which point in time the service sent
or received a particular message. The implemented mediator service received and sent
exactly the messages recorded in the event logs of the service to which it is connected.
In this paper, we present a technique to extract from these event logs an operational
model of a mediator service in terms of a Coloured Petri Net (CPN) [12]. This CPN de-
scribes the message flow and message transformations between the connected services
that fits the communication behavior recorded in the logs.

We proceed as follows. In Section 2, we consider existing works on extracting mod-
els from event logs, and analyze the problem of extracting mediator services. Section 3
presents a conceptually simple formulation of our approach; Section 4 covers an exper-
imental evaluation of our approach together with some thoughts of optimizing it. We
discuss related work in Section 5 and conclude in Section 6.

2 Extracting Models from Event Logs

In this section, we discuss the problem of extracting behavioral models from logs that
contain recorded events of previous executions. We first consider the “classical” prob-
lem of process mining [1] and available solutions, and then analyze the problem of
extracting models of mediator services.

2.1 Classical Process Mining

Process mining comprises various techniques to analyze information recorded in event
logs. The most prominent technique, process discovery, takes as input an event log L
and returns a process model M that describes the behavior in L. [1]

An event e in an event log usually has a type, written e.type, indicating what kind
of activity or operation happened, a timestamp (e.time) indicating when e happened,
and possibly a number of attributes, e.g., describing the data that was involved in the
occurrence of e. All events that occurred in the same instance of the process together
form a case. Typically, the events of one case are recorded in a trace t = e1e2 . . . en
where events are ordered by their timestamps; a log is a set L = {t1, . . . , tm} of traces.

As our running example we consider a service providing beverages. The service
offers tea (T) for costs of 1, and lemonade (L) for costs of 2; the choice for the beverage
is made implicitly through the amount paid by the customer. Two possible traces of
this service are t1 = (?m, time = 3, amt = 1), (!T, time = 6, bev = Tea) and

Discovering Pattern-Based Mediator Services from Communication Logs 125

t2 = (?m, time = 7, amt = 2), (!L, time = 9, bev = Lem). In t1, the service has
received money (?m) worth of 1e at time 3 and sent a tea (!T), at time 6; in t2, 2e were
received at time 7 and the corresponding lemonade was sent at time 9 (!L).

?m

!T!L

Fig. 1. Possi-
ble Result

A large number of process discovery algorithms exist to extract a pro-
cess model M from an event log; see [1]. The α-algorithm, for instance,
could extract from the log L = {t1, t2} the model shown in Fig. 1. Most
process discovery techniques create for each event type (?m, !T , !L) in L
a separate activity, and then synthesize control-flow structures that “best”
explain the behavior in L where “best” is measured in terms of different
quality criteria: a model fits the log if it can reproduce any trace in the
log; a model is precise wrt. the log if it does not allow for arbitrary more
behavior than recorded in the log; finally, a model should be simple. The
model in Fig. 1 can reproduce both traces t1 and t2, that is, it fits the log.
Though, the model is imprecise because it ignores the data attribute amt

of ?m: it would also return a lemonade for the price of 1e. Generally, these quality cri-
teria are competing: one often cannot find a fitting model that is precise and simple. [4]

2.2 The Problem of Discovering Mediator Services

In this paper, we consider a setting that is slightly different from classical process dis-
covery. In our setting, we are considering an implementation S1 ⊕M ⊕ S2 where two
services S1 and S2 are integrated through a mediator service M .

For example, in addition to the beverage service S1 of Fig. 1 we consider a customer
S2 that wants to order a hot beverage (H) or a cold beverage (C) from S1. The customer
can only pay in denominations of 1e: to order a hot beverage from the beverage service,
the customer pays 1e and then explicitly places the order (!O) and then receives the
beverage; to order a cold beverage, the customer pays 2e, places the order, and receives
the beverage. The mediator serviceM has to fulfill different tasks: the multiple payment
by the customer have to be summed up into a single payment, and the type of beverage
provided by the service has to be translated into the terminology of the customer (a hot
tea vs. a cold lemonade).

All services S1, S2, and M are implemented, for instance in Java code, and running
in a Service-Oriented Architecture [17] such as JBoss ESB [11]. The implementation
recorded event logs L1 and L2 of invocations of the services S1 and S2, respectively.

Following the SOC paradigm of hiding implementation details behind an interface,
the event logs L1 and L2 should only contain events related to interactions of S1 and
S2 with their environment; events of activities not related to the interface do not have
to be recorded. For example, L1 = {t1, t2} with t1 = (?m, time = 3, amt = 1),
(!T, time = 6, bev = Tea) and t2 = (?m, time = 8, amt = 2), (!L, time = 9,
bev = Lem), and L2 = {s1, s2} with s1 = (!p, time = 1, amt = 1), (?ack, time =
2), (!o, time = 4), (?B, time = 7, temp = Hot) and s2 = (!p, time = 4, amt =
1), (?ack, time = 5), (!p, time = 7, amt = 1), (?ack, time = 8), (!o, time = 10),
(?B, time = 13, temp = Cold).

In this setting, we want to discover from logs L1 and L2 a model of the mediator
service M so that the following criteria hold:

126 C. Gierds and D. Fahland

1. M fits L1 and L2, that is, M describes how messages produced by S1 or S2 as
described in the logs L1 and L2 are transformed, aggregated, and forwarded by
M so that S1 and S2 can receive these messages as described in L1 and L2. For
example, the two payment events !p in s2 describe that two payment messages p
with contents amt = 1 are sent by S2 at times 4 and 7. The model M has to
aggregate these into a message m with contents amt = 2 that can be received by
S1 at time 8 (as recorded in t2).

2. M is precise, that is M is deterministic wrt. transforming messages based on their
contents. Unlike the model in Fig. 1, M shall have no ambiguous choice about how
a particular message shall be treated. Otherwise M would describe an integration
that could potentially deadlock.

3. M is simple, that is M contains as few message transformation activities as possible.

While the criteria for M are similar to classical process mining, our setting renders
existing process mining techniques inapplicable. Here, we are not given a log LM of
the mediator service M , but only logs L1 and L2 of the connected services. The events
recorded in L1 and L2 are not events of activities in M , but we have to discover activ-
ities of M . The cases in L1 are independent from the cases in L2; we do not have any
information about cases of M , and how cases of M relate to cases of L1 and of L2.
Altogether, this gives rise to the following challenges.

1. A technique to extract a model for M from logs L1 and L2 has to infer activities of
M from events of the services S1 and S2 recorded in L1 and L2.

2. The technique has to correlate cases in L1 to cases in L2 to correctly describe event
of S1 sending a message lead to an event in S2 receiving a (transformed) message.

3. The traces in L1 and L2 may not only concern communication between S1 and
S2 only. Typically S1 may be used in other service compositions. Thus, not every
trace of L1 has a corresponding trace in L2, and vice versa. M has to distinguish
correlated from non-correlated traces.

4. As S1 and S2 are incompatible, M has to describe how messages produced by
S1 are transformed into messages received by S2 (and vice versa), in particular
considering the data values exchanged between S1 and S2.

As in process mining we need to define a search space for the models to discover. Typ-
ically a technique cannot discover any arbitrary model, but is restricted by some under-
lying assumptions like discovering a sound or block-structured model.

In Section 3 we present a technique that overcomes these challenges and produces a
pattern-based model of the mediator M that fits the logs, is simple, and precise through
determinism. The resulting model will be a Coloured Petri Net, which we recall next.

2.3 Coloured Petri Nets

Coloured Petri Nets (CPN) [12] extend classical Petri nets with the notion of data; they
are successfully applied in research and industry in modeling and analyzing distributed
systems [20].

A Petri Net processes resources called tokens. Places hold these resources, and tran-
sitions process them. A flow relation connects places with transitions and vice versa.

Discovering Pattern-Based Mediator Services from Communication Logs 127

chan1

chan2

recv
req

send
rep

p1

p2

(cid, x)

Request

Reply

enforce
reply

(cid, x)

(i, z)(i, z)

cid

cid

CorrelationIDType

[cid = i]

1'23 ++
1'42

1'(42,"ping")

1'(23,"pong")

Request

Reply

(a) Before firing send rep

chan1

chan2

recv
req

send
rep

p1

p2

(cid, x)

Request

Reply

enforce
reply

(cid, x)

(i, z)(i, z)

cid

cid

CorrelationIDType

[cid = i]

1'42

1'(42,"ping")

1'(23,"pong")

Request

Reply

(b) After firing send rep

Fig. 2. Behavior of CPN: Effect of firing of and send rep

In CPN each token is a value (called color) of some type (called colorset). Each place
is typed with a specific colorset and holds only tokens of that type. Each arc of the
flow relation is labeled with either a variable, or a complex term such as function ap-
plications or complex data structures. The labels of arcs adjacent to a transition express
which tokens the transition consumes and produces as explained below. In addition, a
transition can have a guard to restrict consumption and production of tokens. The state
of a CPN is a marking describing a distribution of tokens (colors) over places of the
respective colorset.

Figure 2 shows an example for a CPN (we have chosen the Request-Reply pattern
of the EIP as it shows all aspects of CPN); as usual, a circle depicts a place, a rectangle
depicts a transition, and the arcs depict the flow relation. This basic structure already
dictates that transition recv req has to consume a resource from place chan1 and that it
produces new resources on places p1 and enforce reply. Places chan1 and p1 have type
Request, enforce reply has type CorrelationIDType, and p2 and chan2 have type Reply.
Identifiers like cid or x in the arc inscription are variables, (cid,x) then is a tuple. The
transition send rep has the guard [cid = i], meaning it may only fire, if cid and i are equal.
In Fig. 2a, we have the following marking: place p1 holds token (42,”ping”) (a tuple of
the colors 42 and ”ping”), place enforce reply holds token 23 and 42, and place p2 holds
token (23,”pong”).

The behavior of a CPN is described by firing transitions, which consume and produce
tokens. For that, the inscriptions of each incoming arc have to be bound to a token on
the corresponding place. Only if we find a complete binding and do not violate a guard,
a transition is allowed to fire.

In Fig. 2a transition send rep can fire for the binding i = 23, x = ”pong”, and
cid = 23. The guard of send rep ensures that i and cid are bound to the same value.
Firing means that the tokens bound to the inscription on the incoming arcs are removed,
and a token corresponding to the inscription of each outgoing arc is produced on the
appropriate place. The result of firing send rep is shown in Fig. 2b.

Please note, in the following we will omit the names for places, and instead write
inside a place its type if needed.

128 C. Gierds and D. Fahland

3 Pattern-Based Mediator Discovery

This sections presents our main contribution. For logs L1 and L2 given for service S1

and S2 we want to discover a model of mediator service M acting between S1 and S2

and conforming to L1 and L2. We use CPN patterns to describe the fundamental build-
ing blocks of M , we describe the search space for M , and we check conformance of
M based on replaying; that is, by comparing a model’s run with the logs. The resulting
model for M shall be fit and precise with respect to the logs.

We can compare our approach to solving a jigsaw puzzle, where the CPN patterns
represent the single pieces that we try to arrange, and the replay checks whether the
resulting picture of the puzzle makes sense.

3.1 Patterns as Building Blocks

A mediator transfers and transforms messages between services based on ontological
description of message types. For discovering a model of a mediator we have at least
to know its basic abilities; how it is able to relate events in S1 and S2. We advocate
the idea to use patterns for describing relations between messages. A pattern does not
only describe a semantic relation between messages, but also control flow to fulfill this
relation.

Enterprise Integration Patterns (EIP) [10] are typical example for pattern-based de-
sign. This collection of patterns allows to specifically model single parts of a mediator.
We have provided a translation to Coloured Petri Nets [6] in previous work. In the fol-
lowing we will only consider CPN patterns knowing that they are backed by EIP for
modeling. Using patterns as building blocks allows us to look at a mediator in a more
structured way. In our approach we exploit the idea of building pattern based mediators
and use a set of patterns to describe our search space.

In order to make our approach feasible, we have to define a search space. Firstly, we
assume only finitely many different patterns. Secondly, we restrict the number of times
each pattern is allowed to be used. In general, there can be infinitely many combinations
of patterns, if we are allowed to use them arbitrarily often. Allowing an unbounded num-
ber of candidates would render our approach semi-decidable. We could stop checking,
if we find a conforming candidate, otherwise we would need to explore further combi-
nations of patterns.

Although introducing a finite set of patterns may seem like a considerable restriction
to the set of discoverable services, especially EIP show that such a set is suitable for
describing a multitude of complex systems. As the patterns itself are simple, they can
be provided by a domain user.

As running example we pick up the beverage vending machine. Figure 3 shows it
on the left together with the customer service as described in Sec. 2.2 on the right.
Figure 3b shows the patterns we want to use. Pattern P1 can accumulatee coins — each
coin being acknowledged — , P2 forwards a lemonade as cold drink, P3 a tea as hot
drink, and finally P4 allows to forward the one beverage sent by the vending machine
to the customer. The mediator we want to discover should resemble the structure shown
in Fig. 3b.

Discovering Pattern-Based Mediator Services from Communication Logs 129

?m

!T
!L

mc

md

md

x

Tea

Lem

x

x x
[x=1][x=2]

(a) Vending machine

 P4 P3

 P2

P1

mc

md

md

db

db

ColdLem

Tea Hot

dc
c

c

c

da

x

x+c

dd

xx

db

db

db

b

b

b

b

(b) Patterns

dc !p
1

!p
1

!o!o

?B

?B

dd

db
Hot

Cold

da

(c) Customer

Fig. 3. Services and Patterns

3.2 Building Candidates

A pattern or building block P in our approach now is a small CPN with distinctive
places that act as input and output places. The set P is the set of all building blocks. We
are allowed to combine two building blocks P1, P2 ∈ P by merging an input place of
P1 with an output place of P2, if they have the same type. Please note, that P1 and P2

can actually be the same building block used multiple times. A model is called P-based,
if and only if it can be built by combining building blocks from P .

The first step is, that for each combination of building blocks, where each building
block is used at most k times, we check for every type of places, if there is an equal
number of input and output places.

Definition 1 (Type-Valid Combination). Let P be a set of n building block patterns
and k a given number restricting how often each pattern is allows to be used. Then the
combination combo ∈ {0, . . . , k}n is an n-dimensional vector over the numbers 0 to k
indicating that pattern Pi ∈ P shall be used combo[i] times.

Such a combination combo is called type-valid if and only if for each type used in the
log interfaces and patterns the number of input and output places with this type equals.

In our running example as seen in Fig. 3 using each pattern P1, ..., P4 once leads to a
type-valid combination. The interface of the services also contribute to the counting as
they represent the interfaces of the logs. The left service has 1 input place of type mc
and 2 output places of type md. Using patterns P2 and P3 we have 2 output places of
type db facing only 1 input place of the same type in the right service. Using pattern
P4 equalizes the numbers. For the rest of the types we also have the same number
input and output places. Using P2 twice, but P3 never would also result in a type-valid
combination; however, not a suitable mediator.

For each of these combinations found in the first step, we then build pairs of input
and output places of the same type. Every possible pair then is valid except for the case
where we would pair an input and output place of the same pattern.

130 C. Gierds and D. Fahland

Definition 2 (Candidate). A P-based candidate is the result of a valid pairing of input
and output places in a type-valid combination combo over P with at most k uses of
each pattern P ∈ P .

In our running example, different pairings are for instance possible for the input places
of P2 and P3 in the way how they are connected to the vending service. As they have
the same type, any pairing with the lower two places with type md of the service is
valid.

3.3 Replaying Logs

The replay does not only serve to check fitness for a pair of cases, but in our case also to
find a correlation C between the given logs. Whenever a pair of cases can be completely
replayed, we assume the two cases to be correlated; i.e., we assume that these two
cases actually interacted with each other when they have been recorded. If we find two
such correlated cases, we do not need to check them with other traces again. Since we
consider deterministic behavior for the mediator, there cannot be any better correlation.

Definition 3 (Correlation by Replay). For two logs L1 and L2 we define a correlation
C ⊂ L1 ×L2 between the single cases of L1 and L2. We correlate each case only once,
and a pair of cases (case1, case2) ∈ L1×L2 is correlated, if the pair can be completely
replayed for a candidate — meaning (case1, case2) ∈ C.

Please note, that although the choice of a pair is arbitrary, the number of correlated
traces must be always the same. Otherwise, we could have cases case1, case1′ ∈ L1

and case2, case2′ ∈ L2 and the pair (case1, case2) ∈ C would hinder us to find the
pairs (case1, case2′) and (case1′ , case2). With this assumption we know that we can
completely replay case1 with case2 as well as case2′ . However, we assume determin-
ism, such that the behavior implied by case1 does not influence whether case2 or case2′
can occur. And neither can case1′ influence this, such that the pair (case1′ , case2′) must
also be in C.

In replay, we now have to replay events of a case in exactly the same order with
exactly the values. We therefore translate a case into a sequence of CPN transitions
ordered by places. Each transition then is connected with a corresponding interface
place and sends/receives the value given in the log. For case t1 we show an example
in Fig. 4. As we can see, the structure on the right exactly follows the recorded case.
The vending service’s interface place that is not used in this case stays unconnected
with rest of the case structure. This structure, however, is paired with a candidate as
dictated by the pairing and then we simulate the whole system and check whether we
can completely replay the chosen case pair.

By translating a case into a sequence of transitions in such a way, we impose the
constraint that a candidate needs to send or receive a message in exactly the same order
and with the same content as given in the log. The sequence of events in the case and
the replay shall be identical.

We repeat this kind of replay for all possible pairs of cases. For each candidate we
determine the number of correlated pairs and as result we choose a candidate with the
best fitness.

Discovering Pattern-Based Mediator Services from Communication Logs 131

t1 = (?m, time = 3, amt = 1), (!T, time = 6, bev = Tea)

(a) Case t1

?m !T

mc mdmd

1
Tea

(b) Transition sequence for t1

Fig. 4. Replay of a case

4 Evaluation

We have implemented a proof-of-concept prototype for checking our approach on ex-
amples of reasonable size. The prototype is implemented in Java and uses the Ac-
cess/CPN [21] library which is a Coloured Petri Net simulator used in the replays. So
far, the prototype is not publicly available, but we plan to integrate the technique as a
plugin in the process mining framework ProM [19]. The following examples were done
on a standard Linux PC.

4.1 Results

Running Example. For the running example we provided the interfaces and the patterns
as described above. The generated logs contain each 101 cases totaling in 10201 pos-
sible pairs. However, after checking for overlapping timestamps only 101 pairs remain
— when creating the logs only one instance was running at the same time. We allowed
our tool to use each pattern at most twice which results in the 12 candidates. The overall
time for the complete approach is 5.1 minutes, where building the 12 candidates took
1.5 seconds, and just running the replays took 7.6 seconds. The remaining time was
spent for loading the simulator and syntax checking the candidates.

Industrial Example. As industrial example we use Google’s Checkout Service and a
self-designed webshop payment interface. We do not introduce the two service in detail
here, but refer to our previous work on pattern-based design of mediator services [6].
Checkout [8] is a stateful payment back-end provided by Google. The webshop shall
use this back-end, however in our design communication is only possible via a medi-
ator service. With the help of Enterprise Integration Patterns [10] we modeled such a
mediator and then translate it to Coloured Petri Nets.

For our check we created logs for Checkout and the webshop with 200 cases. A case
has between 4 and 26 events using 6 different types of events, 2494 case pairs are pos-
sible when considering overlapping timestamps. We provide 9 different patterns, some
of which need to be used up to 3 times. We find only 1 type-valid combination for these
patterns (with a total of 12 patterns uses), however, 1728 possible candidates by pair-
ing input and output places. After applying a heuristic (see below) 432 candidates need
to be checked. Finally we can rediscover the original mediator with complete fitness.
Many other candidates show partial fitness in various degrees. Running the experiments
takes around 33 hours, where building the candidates takes 170 seconds and just run-
ning the replays without loading and syntax checking the candidates takes around 24
hours, or around 3 minutes per experiment. During each replay around 50,000 to 70,000

132 C. Gierds and D. Fahland

transitions were fired showing the slow performance when tokens remain after running
an uncorrelated case pair.

4.2 Heuristics for Runtime Improvement

Our practical experiments show, that model candidates can be found in a reasonable
time. However, the replay takes a considerable time. Due to the lack of alternatives to
the used CPN library we have also implemented some heuristics to reduce the effort for
replay.

Restricting Possible Case Pairs. Although the correlation of cases needs to be deter-
mined, we can exclude certain combinations. Looking at timestamps included for each
event, we can safely assume, that correlated cases must have overlapping points of time
during which there were executed. We can exclude every pair, where this is not given. If
we have deeper domain knowledge, we may even exclude more pairs based on further
event values or certain execution conditions.

Partial Replay. If a case pair is not related, then normally we can often recognize this
already after the first exchange of a message, i.e., after a message has been routed from
one service to the other. We check the candidate models structurally for corresponding
messages, and then replay the logs only up to the point, when the first messages must
have been exchanged. Many candidate models are structurally equal in this part, such
that we can exclude whole sets of candidate, if the partial replay does not succeed.

Possible Further Improvements. Further work on this approach should focus on the
problem of long replays. This can either be done by accelerating the actual replay, or by
further restricting the possible candidates. As we consider data aspects, using semantic
analysis of a candidate might help to exclude further candidates in a shorter amount of
time.

5 Related Techniques

With respect to process mining there are no techniques that we can directly apply as we
have the change of perspective in our approach. In process mining the discovered model
shall contain the event classes used in the logs. In our setting the event classes are only
used in checking conformance, because the logs just describe the interaction with the
model we want to discover. To get an overview on process mining we refer to van der
Aalst’s book on Process Mining [1]. Similarly, service discovery (e.g., [7,9,13,15–17])
results in a service using the event classes of the log as activities neglecting service
with rich internal or unobservable behavior, or using complex building blocks as in our
approach.

A first solution for the problem described in this paper might be to discover the ser-
vices S1 and S2 first, and then use existing techniques to synthesize a mediator services.
However, in that case we cannot directly influence the fitness of the mediator service.
Both S1 and S2 have individual fitness to the logs, but existing techniques do not allow

Discovering Pattern-Based Mediator Services from Communication Logs 133

to control the discovery with respect to message mediation. In the worst case, the dis-
covered models are even not adaptable, such that no mediator service can be generated.

Our setting is closer related to Service Composition [18]. The idea there is to use
existing services as building blocks and compose them in order to derive a complex
composition that fulfills a given service specification. Often stateless atomic services
are considered (e.g., [23]), only needing the services to build a certain structure and
interaction is correct anyway; there cannot occur behavioral problems by interaction as
opposed in our setting. Furthermore, we cannot define a target service as goal, such that
we cannot apply such ideas in our setting.

In context of stateful service, service orchestration can be applied (e.g., [5]). A fixed
set of stateful services is orchestrated; that is, a further service is generated that interacts
with the given services, such that the interaction with an environment fulfills a certain
specification. In our setting, however, we do not want to orchestrate the building blocks,
but we actually want to compose them and let them interact directly. Furthermore we
want to consider cases, where building blocks are used multiple times. There are also
results on service composition that actually just compose a set of given services to meet
a certain specification (e.g., [3]). Compared to our setting they can help us to build the
candidates, but they do not check conformance to logs especially with respect to data
values.

Correlation discovery [2, 9, 14] can help us in replay, but these approaches do not
tackle the problem to find a model that is able to realize the found correlation.

Many of the existing publications can be used to further improve our approach, how-
ever, to the best of our knowledge, our approach of building pattern-based candidates
and check their conformance is a new perspective in the area of service mining.

6 Conclusion and Outlook

We have presented an approach for discovering a mediator service. We use as input logs
of the communication behavior of its interaction partner and a set patterns for structur-
ing the search space. In order to make the discovery feasible at all, we introduced some
restrictions, that allows us to discover a model not only in theory, but also in practice.

We consider our result a first step for tackling the problem and see much room for
improvement. On the one hand, we may loosen the bounds on the number of patterns.
Techniques for service composition allow to discover composition of basic services
without necessarily restricting their number. We could use such techniques for finding
candidates. On the other hand, the replay takes a considerable time so far, and an acceler-
ation of the conformance checking is desirable. We see chances in further preprocessing
the cases based on the values used, but also on semantic analysis of the patterns. In the
second case we could exclude more candidate based on insufficient data transformation.

Last but not least, we may even introduce some form of non-determinism. We want
to allow value-substitution acknowledging that some data seem to occur arbitrarily, but
do not change during the run of a service instance. Although a case demands a different
value, it can fit perfectly if we substitute that value.

134 C. Gierds and D. Fahland

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

2. Basu, S., Casati, F., Daniel, F.: Toward web service dependency discovery for SOA manage-
ment. In: IEEE SCC (2), pp. 422–429 (2008)

3. Bertoli, P., Kazhamiakin, R., Paolucci, M., Pistore, M., Raik, H., Wagner, M.: Control flow
requirements for automated service composition. In: ICWS, pp. 17–24 (2009)

4. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision,
generalization and simplicity in process discovery. In: Meersman, R., et al. (eds.) OTM 2012,
Part I. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012)

5. Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic service
composition and synthesis: the roman model. IEEE Data Eng. Bull. 31(3), 18–22 (2008)

6. Fahland, D., Gierds, C.: Analyzing and Completing Middleware Designs for Enterprise In-
tegration Using Coloured Petri Nets. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE
2013. LNCS, vol. 7908, pp. 400–416. Springer, Heidelberg (2013)

7. Gombotz, R., Dustdar, S.: On web services workflow mining. In: Bussler, C.J., Haller, A.
(eds.) BPM 2005. LNCS, vol. 3812, pp. 216–228. Springer, Heidelberg (2006)

8. Google: Checkout, https://checkout.google.com/ (retrieved June 10, 2013)
9. Guabtni, A., Motahari-Nezhad, H.R., Benatallah, B.: Using graph aggregation for service

interaction message correlation. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS,
vol. 6741, pp. 642–656. Springer, Heidelberg (2011)

10. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

11. JBoss: JBoss ESB, http://labs.jboss.com/jbossesb/
12. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of Concurrent

Systems. Springer (2009)
13. Motahari Nezhad, H.R., Saint-Paul, R., Benatallah, B., Casati, F.: Deriving protocol models

from imperfect service conversation logs. IEEE Trans. Knowl. Data Eng. 20(12), 1683–1698
(2008)

14. Motahari Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for pro-
cess discovery from web service interaction logs. VLDB J. 20(3), 417–444 (2011)

15. Müller, R., van der Aalst, W.M.P., Stahl, C.: Conformance checking of services using the
best matching private view. In: WS-FM, pp. 49–68 (2012)

16. Musaraj, K., Yoshida, T., Daniel, F., Hacid, M.S., Casati, F., Benatallah, B.: Message corre-
lation and web service protocol mining from inaccurate logs. In: ICWS, pp. 259–266 (2010)

17. Papazoglou, M.P.: Web Services - Principles and Technology. Prentice Hall (2008)
18. Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J.,

Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)
19. TU/e, P.M.G.: ProM Tools, http://www.promtools.org/ (retrieved June 10, 2013)
20. University of Aarhus - Department of Computer Science: CPnets - industrial use,

http://cs.au.dk/cpnets/industrial-use/ (retrieved June 10, 2013)
21. Westergaard, M., Kristensen, L.M.: The access/CPN framework: A tool for interacting with

the CPN tools simulator. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS,
vol. 5606, pp. 313–322. Springer, Heidelberg (2009)

22. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Trans. Pro-
gram. Lang. Syst. 19(2), 292–333 (1997)

23. Zheng, G., Bouguettaya, A.: Service mining on the web. IEEE T. Services Computing 2(1),
65–78 (2009)

https://checkout.google.com/
http://labs.jboss.com/jbossesb/
http://www.promtools.org/
http://cs.au.dk/cpnets/industrial-use/

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 135–136, 2014.
© Springer International Publishing Switzerland 2014

Cloud Service Brokerage - 2013:
Methods and Mechanisms

Gregoris Mentzas1, Anthony J.H. Simons2, and Iraklis Paraskakis3

1 Institute of Communication and Computer Systems,
National Technical University of Athens,

Iroon Polytechniou 9, 15773 Zografou, Greece
gmentzas@mail.ntua.gr

2 Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello, Sheffield S1 4DP, United Kingdom

a.j.simons@sheffield.ac.uk
3 South-East European Research Centre,

Proxenou Koromila 24, 54622 Thessaloniki, Greece
iparaskakis@seerc.org

Abstract. In the future, the Cloud will evolve into a rich ecosystem of service
providers and consumers, each building upon the offerings of others. Cloud
service brokers will play an important role, mediating between providers and
consumers. As well as providing vertical integration and value-added
aggregation of services, brokers will play an increased role in continuous
quality assurance and optimization. This may range from setting common
standards for service specification, providing mechanisms for lifecycle
governance and service certification, to automatic arbitrage respecting
consumer preferences, continuous optimization of service delivery, failure
prevention and recovery at runtime. This workshop introduces some of these
anticipated methods and investigates some of the mechanisms envisaged in
future Cloud service brokerage.

Preface

This volume contains the proceedings of the 1st International Workshop on Cloud
Service Brokerage (CSB-2013), which was held on 2 December 2013 in the historic
city of Berlin, co-located with the 11th International Conference on Service Oriented
Computing. The theme of this first workshop, which is sponsored by the EU FP7
Broker@Cloud project, is the investigation of methods and mechanisms to be
deployed in future Cloud service brokerage.

It is an exciting time to be working in the area of Cloud computing. The world is
waking up to the fact that in the future, we will be more likely to work in a location-
independent way, with our personal and business-related information following us
around as we go, accessed virtually in cyberspace. Large companies such as IBM
have already realised the cost savings benefits of closing down under-utilized server
rooms and migrating to a private Cloud, hosted on fewer, more efficiently operated

 G. Mentzas, A.J.H. Simons, and I. Paraskakis

136

data centres. The market is growing rapidly for infrastructure, platform, and software
service providers, such as Salesforce, Amazon, Microsoft, Oracle, Google, SAP,
SoftLayer, Terremark, Rackspace, and NetSuite, who have reported turnovers in their
Cloud-facing businesses ranging from $1-3bn in 2013, demonstrating the increasing
value in Cloud computing.

However, this is only the beginning. We are currently experiencing a highly
competitive period, where the big vendors are seeking to establish their products in
the marketplace. But we expect a more cooperative model to emerge as the market
settles, with further vendors emerging, who are more open and build upon other
vendors’ offerings. This has already started, with the Heroku platform consuming
Amazon infrastructure. Similarly, many bespoke CRM systems integrate already with
Google Apps, providing mobile maps and calendars. In the future, Cloud Service
Brokers will play a role in matching providers with consumers at each level in the
Cloud stack. Industry analysts such as Gartner and Forrester have foreseen brokers
playing the role of intermediaries, either integrating different partners, or aggregating
their services, offering added value on brokered platforms.

The emergence of the Cloud Service Broker was the motivation behind the EU FP7
Broker@Cloud project, whose goal is to investigate methods and mechanisms for
continuous quality assurance and optimization for Cloud service brokerage. This
workshop reports some of the early findings from that project; but also presents an
equal number of papers from outside the consortium. Three papers describe the birth
of this new business model in cyberspace. Fowley, et al. look at different emerging
models for Cloud service brokerage; while Kourtesis, et al. analyse the key
requirements for delivering quality assurance and optimization in Cloud service
brokerage. Duan et al. investigate value-driven business modelling, describing the
incentives to brokers and others who operate in the Cloud. A further three papers
look in detail at some of the technologies that will realize the goals described above.
Bratanis and Kourtesis look at the whole notion of lifecycle governance in the Cloud,
and the kinds of monitoring mechanisms needed for failure prevention and recovery.
Kiran, et al. show how providing simple model-based specifications for services
supports a powerful testing methodology to increase trust in the quality of service
behaviour, and also acts as a powerful force for standardisation. Finally, Duan et al.
offer a value-added modelling approach to describing the revenue increments earned
by different players, including brokers, in the Cloud.

We, the workshop chairs, are grateful to our international and widely-experienced
Programme Committee, who selected the most interesting six papers from twelve
submissions. Altogether, the papers collected here represent a diverse range of
analyses, ranging from the envisioning of the future, to the technical challenges and
solutions and the measurement of economic benefits for Cloud Service Brokerage.
We hope that you find these insights stimulating!

Acknowledgement. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 318392, the Broker@Cloud project (www.broker-cloud.eu).

A Comparison Framework and Review of Service

Brokerage Solutions for Cloud Architectures

Frank Fowley1, Claus Pahl1, and Li Zhang2

1 IC4, Dublin City University, Dublin 9, Ireland
2 Northeastern University, Software College, Shenyang, China

Abstract. Cloud service brokerage has been identified as a key concern
for future cloud technology development and research. We compare ser-
vice brokerage solutions. A range of specific concerns like architecture,
programming and quality will be looked at. We apply a 2-pronged classi-
fication and comparison framework. We will identify challenges and wider
research objectives based on an identification of cloud broker architec-
ture concerns and technical requirements for service brokerage solutions.
We will discuss complex cloud architecture concerns such as commoditi-
sation and federation of integrated, vertical cloud stacks.

Keywords: Cloud Broker, Service Brokerage, Architecture Patterns,
Cloud Broker Comparison, State-of-the-art Review, Research Challenges.

1 Introduction

Several organisations active in the cloud technology area, such as Gartner and
NIST [13,21], have identified cloud service brokerage as an important architec-
tural challenge. Architecture and programming model concerns are key enabler
of any service brokerage solution that mediates between different providers by
integrating, aggregating and customising services from different providers. We
compare cloud service management and brokerage solutions, i.e. we discuss a
broader classification in terms of components and features of cloud service bro-
kers, specifically looking at architecture, language and quality as technical as-
pects in a refined, more descriptive model. We address challenges based on an
identification of cloud broker architecture patterns for service brokerage solu-
tions. Our key contribution is a discussion of service broker solutions based on
a 2-pronged comparison framework. Such a dedicated framework does not exist
for cloud brokers and goes beyond existing service taxonomies such as [14].

The paper is organised as follows. Cloud service brokerage is introduced in
Section 2. Section 3 discusses wider architectural concerns. In Section 4, we
introduce and apply the comparison framework. These investigations lead into
a broader research challenges discussion in Section 5.

2 Cloud Service Brokerage

Gartner and NIST define Cloud Service Brokerage [13,21]. They follow a sim-
ilar three-pronged classification. They define a cloud broker as an entity that

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 137–149, 2014.
c© Springer International Publishing Switzerland 2014

138 F. Fowley, C. Pahl, and L. Zhang

manages the use, performance and delivery of cloud services and negotiates re-
lationships between cloud providers and cloud consumers [12].

In this overview of key concepts, we follow Gartner. Aggregation is actually
singled out by both organisations. NIST intermediation and Gartner customisa-
tion focus on enhancing existing service. NIST arbitration and Gartner integra-
tion have in common a flexible mediation and integration of different systems.

– Aggregation is about delivering two or more services to possibly many con-
sumers, not necessarily providing new functionality, integration or customi-
sation, but offering centralised management of SLAs and security.

– Customisation is about altering or adding capabilities, here to change or
improve and enhance the service function, possibly combined with analytics.

– Integration addresses the challenges of making independent services work
together as a combined offering, which is often integration of a vertical cloud
stack or data/process integration within a layer. Classical techniques such
as transformation, mediation and orchestration are the solutions.

We now look at the possible impact of the different cloud layers IaaS and
PaaS on cloud service broker requirements. Brokers have to deal with various
cloud layer-specific concerns [5], e.g. for IaaS these are:

– The key IaaS need is elasticity. With techniques such as replication, provi-
sioned services can be scaled. Images can be replicated and moved to other,
interoperable offerings and platforms to create a virtual layered environment.

– Problems that arise are that platform engines are often proprietary or do not
replicate fully unless standards like OVF for VMs are used. Also, replicating
an image with data needs bandwidth, which requires optimised solutions.

– Image and data handling aims to minimise replication and manage deletion,
use segmentation for services, differentiate user-data and images/services
to optimise and include intelligent data management such as map-reduce
techniques. Horizontal scaling often requires the full dataset to be replicated.
Vertical scaling can be based on data segmentation and distribution.

This indicates that automation is here of critical importance as the cloud elas-
ticity need is the driver of these techniques. For the PaaS layer:

– Platforms need to facilitate composition and service mashups [11,4].
– For most applications, base image duplication can suffice, but too many

users per application generally require full replication with customer-specific
data/code. In case base images (e.g. for .NET) are available, we only need
to replicate service instances, but not a full image.

– Further problems arise for composition as QoS is generally not compositional,
e.g. the security of a composition is determined by its weakest link.

Automated management is a key concern. Standardisation in terms of OVF as
an image format or OCCI as an interface for infrastructure-level resource man-
agement functionality are solutions. Interoperability can be achieved through
standardisation – based on open and published standards or de-facto based on

A Comparison Framework for Cloud Service Brokerage Solutions 139

widely used open-source or proprietary systems. A problem is that even stan-
dards often do not succeed. Some proposals in the Web services stack (WS-*)
are examples. Problems encountered are diversion of specifications, the slow pro-
cess of standardisation and competing standardisation bodies – the latter is an
obvious problem in the cloud domain, where organisations from different areas
of IT and computing are active (SNIA, DMTF, OMG, W3C, OGF etc). While
some mature standards exist for the services domain in the context of Web Ser-
vices (W3C, OASIS etc), cloud services are not necessarily WS-compliant. Some
solutions exist IaaS standards like OCCI and CIMI cover service lifecycle man-
agement, TOSCA addresses portability and CDMI is about data management.
IaaS open-source systems supporting these standards are Openstack, which is a
lifecycle management product in the line of CIMI and OCCI aims, or the mO-
SAIC API that supports composition and mashups at an infrastructure level
[20]. PaaS systems include Cloudify, a management tool for vertical cloud stack
integration, and Compatible One, a broker for horizontal integration [8,9].

3 Cloud Service Broker Architectures

Cloud brokerage solutions build up on existing virtualisation, cloud platform
and IaaS/PaaS/SaaS offerings. We can single out three architecture patterns:

– Cloud Management: supports the design, deployment, provisioning and mon-
itoring of cloud resources, e.g. through management portals. This is an ex-
tension of the core lifecycle management (LCM), adding monitoring features
or graphical forms of interaction. Rudimentary features for the integration
of compatible services can be provided.

A management layer is often identified in cloud architecture to manage-
ment that facilitate efficient and scalable provisioning in a number of the
platforms reviewed below.

– Cloud Broker Platform: supports the broker activity types discussed earlier –
aggregation, customisation, integration – which needs a specific language to
describe services in a uniform way and to define the integration mechanism.
The origin of this is the common broker pattern from software design pat-
terns, applied to a cloud setting.

– Cloud Marketplace: builds up on broker platform to provide a marketplace
to bring providers and customers together. Again, service description for core
and integrated services plays a role for functionality and technical quality
aspects. Trust is the second key element that needs to be facilitated.

Marketplaces for apps are omnipresent and this marketplace pattern is a
reflection of upcoming cloud-specific marketplaces (DT will be mentioned as
a sample case below).

These layers can be put on top of the classical cloud architecture layers SaaS,
PaaS and IaaS. The discussion below will show that a fine-grained character-
isation of cloud brokerage solutions, even beyond these three is necessary to

140 F. Fowley, C. Pahl, and L. Zhang

identify and distinguish specific challenges. We look into open-source solutions
(or solutions provided by publicly funded projects) as these are well-documented.

3.1 Open-Source Solutions

Open-source solutions can thus be categorised based on the presented scheme:

– Open IaaS: OpenStack, for instance, is a basic IaaS cloud manager that
transforms data-centres to become IaaS clouds [25].

– Open PaaS: OpenShift and CloudFoundry are open PaaS platforms assisting
the cloud app developer by commoditising the software stack [7,24].

The Open IaaS/PaaS solutions can be differentiated from respective IaaS/PaaS
brokers. In the following, we will try to point out the salient differences between
some cloud brokers that go beyond IaaS/PaaS management solutions. Optimis
and CompatibleOne are IaaS-oriented, and only 4CaaSt targets PaaS and to
some extent also the SaaS domain. There is, however, SaaS broker activity in
the commercial space.

An observation here is that the broker pattern receives attention and that
reusable solutions are in development, starting with the IaaS layer, but includ-
ing IaaS and PaaS over time. The existence of marketplaces, which are interesting
for the diverse SaaS space, indicates the existence of broker solution. The AppDi-
rect commercial broker is an example. However, a wider range of commoditised,
ready-to-use broker platforms can be expected in the future – to service the
different broker types defined, but also provide a fuller range of features as our
discussion of the open-source solutions indicates.

4 Service Management and Brokerage Comparison

In this section, we compare cloud solutions using a dedicated 2-pronged frame-
work, which we will introduce first.

– The first is a categorisation schema for a basic classification (Tables 1, 2).
– The second is a more detailed, descriptive classification (Tables 3 to 5).

We compare a number of selected solutions, essentially open-source solutions or
publicly funded frameworks.

In Tables 1 and 2, we categorise a number of solutions
[7,8,10,16,18,23,20,24,25,34,1,9]. We categorise languages in terms of the
cloud layer support, but also specific features or functions each of them
provides. We have defined a comparison framework to categorise solutions along
the following concerns:

– System Type: Multi Cloud API Library, IaaS Fabric Controller, Open PaaS
Solution, Open PaaS Provider.

– Distribution Model: Open Source (for all solutions considered).

A Comparison Framework for Cloud Service Brokerage Solutions 141

Table 1. Open Source Clouds - System Category and Type

Name Category
Cloud
Layer

Multi
Cloud API

Library

IaaS
Fabric

Controller

Open
PaaS

Solution

Open
PaaS

Provider

OpenNebula CLOUD FABRIC CONTROLLER IaaS Y

OpenStack CLOUD FABRIC CONTROLLER IaaS Y

libcloud API LIBRARY PaaS Y

jclouds API LIBRARY PaaS Y

simpleAPI API LIBRARY PaaS Y

DeltaCloud API SERVER PaaS Y

Cloudify CLOUD DEVOPS & LCM PaaS Y Y

Mosaic PAAS PaaS Y Y

Cloud Foundry PAAS PaaS Y Y Y

OpenShift PAAS PaaS Y

CompatibleOne IAAS BROKER PaaS Y

4Caast SERVICE BROKER PaaS
Optimis IAAS BROKER PaaS Y

CATEGORIES and TYPE

Table 2. Open Source Clouds - Core Capabilities and Features/Components

Name
Multi IaaS
Support

Multi
Language /

Multi
Framework Multi Stack

Service
Description
Language

Native Data
store

Native
Message

Queue
Programming

Model
Elasticity
Scalability

QoS / SLA
Monitoring

Service
Discovery /

Composition Broker
Market-
Place

OpenNebula

OpenStack Y

libcloud Y

jclouds Y

simpleAPI Y

DeltaCloud Y

Cloudify Y Y Y Y Y Y Y

Mosaic Y Y Y Y Y Y Y Y

Cloud Foundry Y Y Y Y

OpenShift Y Y Y

CompatibleOne Y Y Y Y Y Y Y

4Caast Y Y Y Y Y Y Y
Optimis Y Y Y Y Y Y

CORE FEATURES ADVANCED FEATURESCORE CAPABILITES

– Core Capabilities: Multi-IaaS Support, Multi Language / Multi Framework
Support, Multi Stack Support.

– Core Features/Components (development and deployment time): Service De-
scription Language, Native Data Store, Native Message Queue, Program-
ming Model, Elasticity & Scalability, QoS/SLA Monitoring.

– Advanced Features/Components: Service Discovery/Composition, Broker,
Marketplace – towards broker and marketplace features.

We chose these concerns to, firstly, broadly categorise the solution in terms of is
main function (the system type that indicates its target layer and central function
in that layer) and whether it is proprietary or open-source. Secondly, a range
of standard properties and individual components are singled out. Properties
chosen here (the Core Capabilities) refer to necessary capabilities for brokers to
integrate offerings. The two features categories organised a number of system
components into common and more advanced ones.

In the following we review various solutions with respect to three facets: archi-
tecture & interoperability, languages & programming, and quality. This format
allows us to drill down and compare using a more descriptive format. We will not

142 F. Fowley, C. Pahl, and L. Zhang

Table 3. Architecture and Interoperability

Cloudify CloudFoundry OpenShift Compatible1 4Caast

Archi-
tecture

- Console for
platform com-
mands. Web
management
console for mon-
itoring.
- Service Man-
ager uses script-
ing (recipe) to
cater for middle-
ware stack
- Cloud Con-
troller is REST
endpoint to
manage app
deployment &
control; injects
agent on VM
to install & or-
chestrate app
deploy/monitor/
scale
- Cloud Driver:
VM templates
for different
IaaS clouds in
configuration.
Triggers host
provisioning

- Console
pushes app to
cloud; deploy-
ment manage-
ment / configu-
ration through
console
- Controller
runs as a cloud
VM on the tar-
get IaaS; con-
trols all Cloud-
ify spawned
cloud VMs.
Does not man-
age IaaS layer
functions. The
IaaS provider
must support
Cloudify. Apps
created using
Cloudify are
deployed to
Cloudify VMs
controlled by a
cloud controller
on Cloudify-
compliant IaaS
clouds.

- Divided into
control plane
(Broker) and
messaging /
application
hosting in-
frastructure
(Nodes).
- Controller is
command CLI
shell, used to
create apps.
GIT for app
management /
deployment.
- Gear is appli-
cation con-
tainer and
a virtual
server/node
accessed via
ssh. Cartridge
service runs on
a Gear. App
LCM scripts
allow for post-
deployment
action hooks to
run on VMs.

- ACCORDS
exposes features
through REST
API.
- Parser val-
idates Man-
ifest against
CORDS schema
and maps ele-
ments to valid
OCCI categories
which are then
instantiated.
- Publisher pro-
vides which end-
point serves
which cate-
gories. Parser
runs and pro-
duces a plan of
OCCI instances
for resolution
(instance can
receive/send
data).
- Broker pro-
cesses plan
and invokes in-
stances.

- Execution
Container REC
runs instances.
- Deployment
Manager maps
deployment
model (service
template, QoS
constraints) to
OVF. Service
Manager de-
ploys images
using Claudia.
- REC includes
an agent (ap-
plication LCM,
control) and a
server (storage,
config data).
Deployment
Server (Chef)
talks to Ser-
vice and REC
Manager. OVF
Manager cre-
ates extended
OVFs from ab-
stract resolved
BluePrints.

Clouds
Sup-
ported
/
Inter-
oper-
ability

Supports Azure,
OpenStack,
CloudStack,
EC2, Rackspace,
Terramark
(buildable
for any of the
jclouds above)

Supports AWS,
vSphere, Open-
stack, Rack-
space. Is hosted
as public PaaS
on Cloudify.
Private cloud is
available.

Uses Delta-
Cloud; app
runs on Red-
Hat certified
public cloud
(needs delta-
cloud support).

OCCI provider
interfaces
(PROCCIs)
for OpenStack,
OpenNebula
and Azure (also
SlapOS and
SlapGrid).

FlexiScale
driver pro-
vided. Open-
Nebula sup-
ported. Generic
IaaS Cloud
API through
Tcloud.

consider all 13 products initially compare, but only select the most advanced ones
for each aspect. This second, deeper and more descriptive classification schema
is based on three facets.

Architecture and Interoperability. The solution architecture is a key
element in the definition of a broker. Of practical relevance are the existing, typ-
ically lower-layer solutions that the system supports. This is an interoperability
concern. CompatibleOne is OCCI-compatible in its support for VM manage-
ment. For instance, Mosaic assumes a Linux OS, which runs Mosaic App Com-
ponents (called CloudLets). A number of common commercial cloud solutions
are supported by Mosaic, including Amazon and Rackspace products.

A Comparison Framework for Cloud Service Brokerage Solutions 143

In Table 3, a number of PaaS-level solutions are summarised in terms of
these two aspects. Common are the utilisation of configuration management
solutions, such as Chef or GIT. The deployment is managed through consoles
or APIs, mapping PaaS-level requests down to IaaS operations. As often many
IaaS solutions are supported, interoperability is a critical concern.

Languages and Programming. Service description plays a key role for
interoperability [28]. For selected solutions, we look at the following three as-
pects:

– service language – the core notation, including the coverage of concerns ver-
tically (PaaS/IaaS integration) and horizontally (full lifecycle management)
and how this is manipulated (format and API).

– programming model – using the language to program brokerage solutions,
linking to SOA principles and other development paradigms.

– service engineering – covering wider design and architecture concerns, in-
cluding monitoring and mashups.

Cloudify, for instance, uses application recipes and resource node templates in
the form of Groovy scripts as the programming model. A service recipe contains
LCM scripts, monitoring probes and IaaS resources requirements. Mosaic uses an
OWL ontology as the notation and a component-based application programming
model for portability of apps across Mosaic-compliant clouds. More solutions
are compared in Table 4. Patterns emerge as solutions to compose, connect and
manage clouds in distributed contexts.

Quality. Scalability and elasticity are specific cloud concerns, and need to
be addressed by the service description notation. Load balancers are typically
used to control elasticity based on monitored key performance indicators (KPIs).
Multi-tenancy, if available, can alleviate elasticity problems. Based on specifica-
tions, these are looked after by configuration management tools to set up probes
and monitoring tools to collect and analyse data. Table 5 covers these concerns.

Summary. We can categorise the open-source solutions based on some of
the central aspects. This summarises a selection of currently available solutions
in terms of their support aims and allows us to identify trends. Developers are
supported in three categories: a) API library: libcloud, Jcloud, deltacloud, b)
Devops: Cloudify and c) Full PaaS: CloudFoundry, OpenShift. A trend goes from
provider-oriented solutions to developer-oriented solutions to end user-oriented
cloud management [3] – 4Caast being an example of the latter.

5 Challenges – Brokers, Markets and Federated Clouds

The need for interoperability becomes apparent in the context of cloud service bro-
kerage, where independent actors in the ecosystem integrate, aggregate/compose
and customise/adapt existing services [13,21]. End-to-end personalisationbecomes
achievable. Prosumers create mashups from existing services.

From the above comparison between various cloud solutions, we can note a
difference between the needs of cloud brokerage and cloud marketplaces. We did
already introduce them as different patterns above.

144 F. Fowley, C. Pahl, and L. Zhang

Table 4. Service Language, Programming Model and Service Engineering

Reservoir Compatible One 4Caast Optimis

Service
Language

Service Defini-
tion Manifest for
metadata; software
stack (OS, middle-
ware, app, config,
data) in a virtual
image; has service
descriptions for
contracts between
service provider SP
and infrastructure
provider IP.
Manifests (OVF)
relate abstract en-
tities and LCM /
operation of ser-
vices. Feedback
between SP and IP
allows IP to scale
and monitor.

Units of Service
Manifest: Image &
Infrastructure. Im-
age: System (base
OS) & Package
(stack config); In-
frastructure: Stor-
age, Compute &
Network. Image is
description of man-
ual app build. Im-
age has agent that
is embedded in VM
& runs on startup.
Agent is script to
run required con-
figuration, set up
monitoring probes,
or download com-
ponents.

Resources and Ser-
vices are described
in a Blueprint BP,
which is an ab-
stract description
of what needs to
be resolved into
infrastructure enti-
ties. BPs are stored
and managed in a
BP repository via a
REST API. A BP
is resolved when all
requirements are
fulfilled by another
BP, via the Reso-
lution Engine (is
service orchestra-
tion feature).

Service Manifest
includes sections
per component per
VM. Service Regis-
ter has sections for
SP requirements
and IP capabilities,
VM abstract de-
scription, TREC
(trust, risk, eco-
efficiency, cost),
elasticity, data pro-
tection. Optimis
also provides a
cloud provider de-
scription schema
for a SP to provide
its capabilities in
an XML Optimis-
compliant format.

Program-
ming
Model

Elasticity is defined
using ECA rules to
scale infrastructure
dynamically based
on application KPI
metrics. Rules in
OCL.

PaaS4Dev: Java
EE services (EE5/6
web profile) & En-
terprise OSGi ser-
vices (http, jndi,
transaction) for
development

Uses Active MQ,
postgresql, jonas,
ow2orchestra,
apache serv bus.
Ontology-based BP
schema using Jena,
SPARQL.

Java schemas, jaxb,
xmlbeans, REST,
monitor; also jax-
ws, cxf, javagat.
IDE is Eclipse with
plugin for Optimis
core classes.

Service
Engi-
neering

Service provision-
ing described in
Deployment De-
scriptor. Service
configuration au-
tomation based on
Xen configuration.
Service Elasticity
is achieved through
mapping Manifest
KPIs with run-time
metrics gathered
by app monitoring
agents.

- Nested manifests
support service
composition.
- COSACS mod-
ule embeds in VM
image mechanisms
to manage lifecy-
cle actions, e.g.
post-creation mon-
itoring setup and
appliance configu-
ration, in conjunc-
tion with image
production module.

- Request Lan-
guage BRL & re-
quest patterns cre-
ate Blueprint BP
service specifica-
tion - mapped to
cloud operations
and cloud mgmt
API calls. Mashup
for composition.
- BP consists of BP
images, contains
functional, KPI &
policy parameters.

Toolkit provides
image mgmt, con-
text manager in-
jects context in-
formation to VMs
and Elasticity En-
gine to add/remove
resources. Service
Deployment Op-
timiser optimises
placement of ser-
vices. Configu-
ration using the
Toolkit IDE.

– The brokerage needs to automate as far as possible the process of matching
service requirements with resource capacity and capabilities [33]. The ideal
would be a total commoditisation of IaaS so that any compute resource, be it
from a private OpenStack cloud or a public EC2 instance, could be plugged
into a user’s compute capacity. Therefore, interoperability will remain of im-
portance. In this regard, it is useful to look at new areas of compatibility that
should be considered in matching that are not handled by brokers currently.

A Comparison Framework for Cloud Service Brokerage Solutions 145

Table 5. Quality: Scalability/Elasticity and SLAs

CloudFoundry OpenShift Compatible1 4Caast Optimis

Elasticity
/ Scala-
bility

Can add/re-
move in-
stances for
scalability
and increase/
decrease CPU
& memory
limits on VMs

- Gears au-
tomatically
added/removed
as load changes
- Multi-tenancy
efficiency using
multi-gears on
same VM

Elasticity
is provided
by the load
balancer
module for
the IaaS
resources.

Not in current
release.

The toolkit in-
cludes an Elas-
ticity Engine to
add / remove
resources.

QoS /
SLA
Monitor-
ing

There is only
a basic log-
ging facility
with Cloud
foundry but
there are
many third-
party Cloud
Foundry mon-
itoring plug-
ins can be
used to pro-
vide applica-
tion monitor-
ing, such as
Hyperic.

The application
scaling, when
automatic, is
based on con-
current appli-
cation request
thresholds. The
amount of re-
sources con-
sumed by an
application can
be monitored
and viewed
from the Con-
sole.

via
COMONS
Monitoring
module.

Monitoring
based on probe
injection on
PICs via REST.
Modified JAS-
MINe frame-
work provides
dynamic probe
deployment &
config. Chef
recipe configs
VM probes to
be used by REC
manager. Mon-
itoring is based
on collectd stats
for forecasting.

Framework uses
REST to get
CPU/disk usage
from monitor-
ing. Monitors
reside on log-
ical/physical
nodes and run
as scripts to feed
data to moni-
tor store. SLA
Manager built
using WSAG4J
is implemen-
tation of OGF
WS-Agreement
standard.

For example, none of the three open-source solutions that were assessed con-
sidered data integrity as a matching criterion; however, they all included
performance in their criteria. Security policy is another aspect that has a
technical nature, but is also abstract insofar as it can be implemented by a
cloud provider. Data integrity and security policy enforcement, if considered
as criteria when evaluating cloud interoperability, may need to be formalised
using a language to describe common aspects, similar to the languages that
have been created to model other cloud entities.

– The marketplace will need to additionally focus on the architecture of the
applications as well as the cloud. The appstore model appears to be the de-
facto model of choice for the marketplace, but this seems more an admission
of the success of the Apple initiative rather than any research. There may be
a potential to explore other forms of the online marketplace suitable to cloud
apps and their composition [19,11]. This could also be pushed to an even
more commodity-based scenario where all services could be registered on a
wide-area multi-marketplace scale facilitating an even greater eco-system.

Commoditisation. The commoditisation of cloud services is an emerging need
from the discussion above – specifically from the language and programming
facet. A trend is to move from the lower IaaS layer to PaaS and onwards to

146 F. Fowley, C. Pahl, and L. Zhang

encompass SaaS, aiming to integrate lower layers – 4CaaSt is an example. To
make this work, services at all layers need to be available for a uniform way of
processing in terms of selection, adaptation, integration and aggregation. Com-
moditisation is the concept to capture this need. Some concrete observations
related to the reviewed three open-source solutions are: fully functional image
and vertical stack building capabilities (CompatibleOne leadership), operational
support of service composition (4CaaSt leadership) and graphical manipulation
of service abstractions (Optimis leadership). Facilitated can commoditisation be
through a uniform representation through description templates such as recipes,
manifests or blueprints. These need to cover the architecture stack and meet the
language and quality concerns discussed in Section 4. Commercial providers are
equally working on the commoditisation of cloud services as described above.

Commoditisation is an enabler of marketplace functions that sit on top of a
broker. Thus, additional challenges and requirements for marketplaces are:

– Data integration and security enforcement as non-functional requirements.
– Social network functions allow service ratings by the communities.
– SLA management to be integrated, e.g. in terms of monitoring results.

Commoditisation needs to be facilitated through an operational development and
deployment model. It therefore acts as an enabler. Trust is an equally important
concern that more difficult to facilitate technically than commoditisation. A
mechanism is needed for not only vetting individual providers, but also to allow
this to happen in layered, federated and brokered cloud solutions.

In another direction, there has not been a proliferation of cloud capacity
clearing-houses that would operate similar to a spot market to allow clouds to
buy and sell spare cloud capacity on a very short-term basis. It is not clear
what new areas of research would be needed to facilitate such a movement in
the cloud. It seems reasonable that, with the continued commoditisation of the
cloud by brokers and marketplaces, such a trend could be seen eventually.

Federated Clouds. Federation is the second requirement for brokerage solutions
[6], i.e. to work across independently managed and provided cloud offerings of
often heterogeneous nature. Challenges and requirements in this context arising
from the architecture and interoperability discussion (the first facet) are:

– Reference architectures – e.g. NIST cloud brokerage reference architecture.
– Scope of control – the management of configuration and deployment based

on integrated and/or standards-based techniques [17].
– Federation and syndication – as forms of distributed cloud architectures [32].

6 Conclusions

We have introduced the main concepts of service brokerage for clouds, using some
concrete systems and platforms to identify current trends and challenges and com-
pare current, primarily open-source solutions. Brokerage relies on interoperability,
quality-of-service and other architectural principles. Brokers and marketplaces

A Comparison Framework for Cloud Service Brokerage Solutions 147

will play a central role for new adopters migrating into the cloud or between cloud
providers [15,29]. Brokers will act as first points of call.

A 2-pronged comparison framework is the first contribution where we pro-
vided a first categorisation scheme to characterise the solution in terms of type,
common components and features. The second scheme is a more descriptive,
layered taxonomy starting with architecture and interoperability, languages and
programming, and quality as facets.

An observation of our comparison based on the framework is the emergence
of cloud broker solutions on top of cloud management. A further separation of
marketplaces, often in the form of appstores, is necessary. A number of activities
work in this direction. Compatible One is a good example showing how OCCI
is used as an infrastructure foundation and built upon to provider PaaS-level
brokerage. 4CaaSt in a similar vein aims to integrate the layers and move toward
a marketplace solution. Commercial solutions, such as DT and UShareSoft, show
already existing brokerage and marketplace solutions ranging from images to
software services, essentially commoditising the respective cloud resources.

Service description mechanisms discussed in [22,31,27] (in the form of mani-
fests, recipes and blueprints) , but also in standards like TOSCA and CloudML,
can serve to abstract, manipulate and compose cloud service offerings in an effort
to commoditise the cloud. These description mechanisms, based on an abstract
model serve two purposes: Firstly, to abstractly capture, present and manipulate
cloud resources. Secondly, to serve as a starting point to link to configuration
and other deployment concerns in federated clouds. Thus, commoditisation and
federation emerge as challenges from our discussion.

Acknowledgments. This research has been supported by the Irish Centre for
Cloud Computing and Commerce, an Irish national Technology Centre funded
by Enterprise Ireland and the Irish Industrial Development Authority.

References

1. 4Caast. 4CaaSt PaaS Cloud Platform (2013),
http://4caast.morfeo-project.org/

2. Barrett, R., Patcas, L.M., Pahl, C., Murphy, J.: Model Driven Distribution Pattern
Design for Dynamic Web Service Compositions. In: International Conference on
Web Engineering ICWE 2006, pp. 129–136. ACM Press, Palo Alto (2006)

3. Benson, T., Akella, A., Sahu, S., Shaikh, A.: Peeking into the Cloud: Toward User-
Driven Cloud Management. In: CloudS 2010 Conference, Sydney, Australia (2010)

4. Benslimane, D., Dustdar, S., Sheth, A.: Services Mashups: The New Generation of
Web Applications. Internet Computing 12(5), 13–15 (2008)

5. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for
the Inter-cloud: Protocols and Formats for Cloud Computing Interoperability. In:
Intl. Conf. Internet and Web Appl. and Services (2009)

6. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-Oriented Federation of
Cloud Computing Environments for Scaling of Application Services. In: Hsu, C.-
H., Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081,
pp. 13–31. Springer, Heidelberg (2010)

http://4caast.morfeo-project.org/

148 F. Fowley, C. Pahl, and L. Zhang

7. Cloud Foundry. Open Source PaaS Cloud Provider Interface (2013),
http://www.cloudfoundry.org/

8. Cloudify. Cloudify Open PaaS Stack (2013), http://www.cloudifysource.org/

9. CompatibleOne. Open Source Cloud Broker (2013),
http://www.compatibleone.org/

10. DeltaCloud. Deltacloud REST cloud abstraction API (2013),
http://deltacloud.apache.org/

11. Fehling, C., Mietzner, R.: Composite as a Service: Cloud Application Structures,
Provisioning, and Management. Information Technology 53(4), 188–194 (2011)

12. Forrester Research. Cloud Brokers Will Reshape The Cloud (2012),
http://www.cordys.com/ufc/file2/ cordyscms sites/download/

09b57cd3eb6474f1fda1cfd62ddf094d/pu/

13. Gartner - Cloud Services Brokerage. Gartner Research (2013),
http://www.gartner.com/it-glossary/cloud-services-brokerage-csb

14. Höfer, C.N., Karagiannis, G.: Cloud computing services: taxonomy and compari-
son. Journal of Internet Services and Applications 2(2), 81–94 (2011)

15. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud Migration Research: A Systematic Re-
view. IEEE Transactions on Cloud Computing (2013)

16. Jclouds. jclouds Java and Clojure Cloud API (2013), http://www.jclouds.org/

17. Konstantinou, A.V., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Sniblel, E.:
An Architecture for Virtual Solution Composition and Deployment in Infrastruc-
ture Clouds. Intl. Workshop on Virtualization Technologies in Distr. Computing
(2009)

18. Libcloud. Apache Libcloud Python library (2013), http://libcloud.apache.org/

19. Mietzner, R., Leymann, F., Papazoglou, M.: Defining Composite Configurable SaaS
Application Packages Using SCA, Variability Descriptors and Multi-tenancy Pat-
terns. In: Intl. Conf. on Internet and Web Applications and Services (2008)

20. Mosaic. mOSAIC Multiple Cloud API (2013), http://www.mosaic-cloud.eu/

21. NIST. Cloud Computing Reference Architecture (2011),
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505

22. Nguyen, D.K., Lelli, F., Taher, Y., Parkin, M., Papazoglou, M.P., van den Heuvel,
W.-J.: Blueprint Template Support for Engineering Cloud-Based Services. In:
Abramowicz, W., Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.)
ServiceWave 2011. LNCS, vol. 6994, pp. 26–37. Springer, Heidelberg (2011)

23. OpenNebula. OpenNebula - Open Source Data Center Virtualization (2013),
http://opennebula.org/

24. OpenShift. Cloud computing platform (2013), https://openshift.redhat.com/

25. OpenStack. OpenStack Open Source Cloud Computing Software (2013),
http://www.openstack.org/

26. Optimis. Optimis - Optimized Infrastructure Services (2013),
http://www.optimis-project.eu/

27. Pahl, C.: Layered Ontological Modelling for Web Service-Oriented Model-Driven
Architecture. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS,
vol. 3748, pp. 88–102. Springer, Heidelberg (2005)

28. Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based Modelling of Architectural
Styles. Information and Software Technology (IST) 1(12), 1739–1749 (2009)

29. Pahl, C., Xiong, H.: Migration to PaaS Clouds - Migration Process and Archi-
tectural Concerns. IEEE 7th International Symposium on the Maintenance and
Evolution of Service-Oriented and Cloud-Based Systems MESOCA 2013 (2013)

http://www.cloudfoundry.org/
http://www.cloudifysource.org/
http://www.compatibleone.org/
http://deltacloud.apache.org/
http://www.cordys.com/ufc/file2/cordyscms_sites/download/09b57cd3eb6474f1fda1cfd62ddf094d/pu/
http://www.cordys.com/ufc/file2/cordyscms_sites/download/09b57cd3eb6474f1fda1cfd62ddf094d/pu/
http://www.gartner.com/it-glossary/cloud-services-brokerage-csb
http://www.jclouds.org/
http://libcloud.apache.org/
http://www.mosaic-cloud.eu/
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://opennebula.org/
https://openshift.redhat.com/
http://www.openstack.org/
http://www.optimis-project.eu/

A Comparison Framework for Cloud Service Brokerage Solutions 149

30. Pahl, C., Xiong, H., Walshe, R.: A Comparison of On-premise to Cloud Migration
Approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013)

31. Papazoglou, M.P., van den Heuvel, W.J.: Blueprinting the Cloud. IEEE Internet
Computing (November 2011)

32. Paya, A., Marinescu, D.C.: Clustering Algorithms for Scale-free Networks and Ap-
plications to Cloud Resource Management (2013)

33. Rodero-Merino, L., Vaquero, L.M., Gil, V., Galn, F., Fontn, J., Montero, R.S.,
Llorente, I.M.: From Infrastructure Delivery to Service Management in Clouds.
Future Generation Computer Systems 26, 226–1240 (2010)

34. simpleAPI. Simple API for XML (2013),
http://en.wikipedia.org/wiki/Simple_API_for_XML

35. Sun, L., Dong, H., Ashraf, J.: Survey of Service Description Languages and Their
Issues in Cloud Computing. In: Eighth International Conference on Semantics,
Knowledge and Grids (SKG) 2012, pp. 128–135. IEEE (2012)

http://en.wikipedia.org/wiki/Simple_API_for_XML

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 150–162, 2014.
© Springer International Publishing Switzerland 2014

Brokerage for Quality Assurance
and Optimisation of Cloud Services:

An Analysis of Key Requirements

Dimitrios Kourtesis1,2, Konstantinos Bratanis1,2, Andreas Friesen3,
Yiannis Verginadis4, Anthony J.H. Simons2, Alessandro Rossini5,

Antonia Schwichtenberg6, and Panagiotis Gouvas7

1 South-East European Research Centre, International Faculty, The University of Sheffield,
24 Proxenou Koromila Street, Thessaloniki, 54622, Greece

{dkourtesis,kobratanis}@seerc.org
2 Department of Computer Science, The University of Sheffield,

Regent Court 211 Portobello Street, Sheffield, S1 4DP, United Kingdom
{d.kourtesis,k.bratanis,a.simons}@dcs.shef.ac.uk

3 SAP AG, Vincenz-Priessnitz-Strasse 1, Karlsruhe, 76131, Germany
andreas.friesen@sap.com

4 Institute of Communications and Computer Systems,
National Technical University of Athens, Zografou, Athens, 15780, Greece

jverg@mail.ntua.gr
5 SINTEF, P.O. Box 124 Blindern, 0314 Oslo, Norway

alessandro.rossini@sintef.no
6 CAS Software AG, Wilhelm-Schickard-Str. 10-12, 76131 Karlsruhe, Germany

Antonia.Schwichtenberg@cas.de
7 Singular Logic S.A., A. Panagouli & Siniosoglou Str., Nea Ionia, 14234 Athens, Greece

pgouvas@gmail.com

Abstract. As the number of cloud service providers grows and the requirements
of cloud service consumers become more complex, the latter will come to
depend more and more on the intermediation services of cloud service brokers.
Continuous quality assurance and optimisation of services is becoming a
mission-critical objective that many consumers will find difficult to address
without help from cloud service intermediaries. The Broker@Cloud project
envisages a software framework that will make it easier for cloud service
intermediaries to address this need, and this paper provides an analysis of key
requirements for this framework. We discuss the methodology that we followed
to capture these requirements, which involved defining a conceptual service
lifecycle model, carrying out a series of Design Thinking workshops, and
formalising requirements based on an agile requirements information model.
Then, we present the key requirements identified through this process in the
form of summarised results.

Keywords: Cloud Service Brokerage, Cloud Service Broker, Requirements
Analysis Methodology, Quality Assurance, Optimisation, Cloud Services.

 Brokerage for Quality Assurance and Optimisation of Cloud Services 151

1 Introduction

As the number of cloud service providers grows and the requirements of cloud service
consumers become more complex, the need for third party entities to intermediate
between consumers and providers of cloud services is becoming stronger. A number
of cloud service intermediaries have already appeared on the market, helping
enterprises to find and to compare cloud services (e.g. service marketplaces), to
develop and to customise services (e.g. application Platform as a Service offerings), to
integrate services (e.g. integration Platform as a Service offerings), and more [1].
What all these intermediation services have in common is that they offer a form of
brokerage for cloud services. Cloud Service Brokerage (CSB)1 is becoming
increasingly recognised as a key component of the cloud computing value chain [2]
with market analysts predicting that it will soon be the fastest growing segment of the
cloud computing market [3].

Consumers of cloud services will come to depend more and more on the
intermediation services of cloud service brokers, and as the needs of consumers
evolve, so will the intermediation services offered by the brokers. A type of
intermediation service with high added value to consumers, especially to those who
rely on multiple external cloud service providers for their daily operations, will be
brokerage for continuous quality assurance and optimisation of cloud services.

Broker@Cloud [4] is an EU-sponsored collaborative research project that was set
up to investigate the challenges associated with introducing such capabilities into
cloud service brokers. The project will deliver an extensible software framework
allowing cloud service intermediaries to equip their platforms with advanced means
for continuous quality assurance and optimisation of cloud services. The framework
will comprise methods and mechanisms for platform-neutral description of enterprise
cloud services; cloud service governance and quality control; cloud service failure
prevention and recovery; and continuous optimisation of cloud services.

This paper reports on the methodology employed in the scope of Broker@Cloud to
capture the high-level requirements for the envisaged framework, and presents the
results obtained from this analysis. In Section 2 we set the context for this work by
motivating the need for continuous quality assurance and optimisation brokerage for
cloud services. In Section 3 we discuss the methodology that we followed to derive
key requirements for the software framework. The methodology section comprises
three parts: the cloud service lifecycle model that we used as conceptual framework to
guide our thinking about cloud service brokerage requirements, the Design Thinking
process that we followed to collect requirements, and the specification methodology
that we followed to formalise the requirements. To the best of our knowledge there
are not any similar requirements analysis efforts from the state-of-the-art that are
focusing specifically to brokerage for quality assurance and optimisation of cloud

1 There is an on-going debate on the definition of Cloud Service Brokerage, with disagreement

over the characteristics that an intermediary should have in order to qualify as a Cloud
Service Broker. The authors understand Cloud Service Brokerage as a business model, and
we use the term Cloud Service Broker to denote an (IT) role of a business entity that creates
value for consumers and providers of cloud services by acting as an intermediary.

152 D. Kourtesis et al.

services. In Section 4 we provide the actual requirements in the form of summarised
results. For a full description of the results we refer the reader to [5], which covers the
requirements analysis in full extent.

2 The Need for Cloud Service Brokers with Continuous
Quality Assurance and Optimisation Capabilities

We are already witnessing a growing number of cloud service intermediaries that
allow consumers to integrate, customise or aggregate cloud services [6]. In the future,
however, service consumers will require much more sophisticated brokerage services,
going far beyond the capabilities of today's cloud service brokers. One such type of
brokerage services will be continuous quality assurance and optimisation [7].

As users come to depend on more and more cloud services, it will become
increasingly more difficult to keep track of how these services evolve over time —
through changes to their terms of provision, to their APIs, or variations in service
performance and availability. Moreover, it will become increasingly more difficult to
stay on top of all the implications that a change to a service can have, such as whether
or not there is continuing compliance to different policies and regulations, continuing
conformance to normative technical specifications or Service Level Agreements, and
generally, continuous fulfilment of all the different kinds of functional and non-
functional requirements surrounding a particular service’s usage. The proliferation of
increasing numbers of cloud services with similar functionality and comparable terms
of provision will contribute to complexity, forcing users to invest more and more
effort in identifying alternatives to the cloud services they are using.

For all these reasons, continuous quality assurance and optimisation of cloud
services will become increasingly difficult for individual consumers to cope with by
themselves, creating opportunities for a market of cloud service intermediaries
addressing these needs. Brokerage services will step up to help consumers make sure
that the cloud services they rely on meet quality standards on a continuous basis, and
that they represent the optimal set of services to be using at any given time [1].

Much of the enabling technology that is needed to support continuous quality
assurance and optimisation brokerage is certainly not new. Recent years have seen a
proliferation of many relevant proprietary and open source tools that could provide
building blocks for the implementation of such capabilities in brokers. Examples
include tools for monitoring and managing applications, services and virtualised
infrastructures, or tools for integrating heterogeneous data, processes and applications
[1]. However, there exists no consolidated software design theory or set of best
practices on how to engineer brokerage capabilities of this kind, and there is lack of
dedicated software tools to build on [8].

Broker@Cloud aims to bridge this gap by delivering an extensible software
framework which will allow cloud service intermediaries to equip their platforms with
core capabilities for continuous quality assurance and optimisation of cloud services.

The framework will comprise methods and mechanisms for governance and quality
control of cloud services, prevention and recovery of failures, as well as continuous

 Brokerage for Quality Assurance and Optimisation of Cloud Services 153

optimisation, building on common means for platform-neutral description of cloud
services.

3 The Requirements Derivation Process

In this section we describe the process that was followed in the scope of
Broker@Cloud to derive the key requirements for the envisaged continuous quality
assurance and optimisation brokerage framework. In Section 3.1 we present an
abstract model of the cloud service lifecycle, the role of which was to frame our
thinking about cloud service brokerage requirements. Then, in Section 3.2 we outline
the Design Thinking process that was followed to organise the requirements analysis
effort. Finally, in Section 3.3 we present the requirements information model that we
adopted to formalise the requirements.

3.1 Service Lifecycle Model

To guide our requirements derivation process we started with defining a generic cloud
service lifecycle model. The motivation behind defining this model as the first step in
the requirements analysis process was to ensure that we have a consistent
conceptualisation of the context in which the sought software brokerage framework is
meant to operate. The model is generic as it covers phases and processes that are
relevant in a variety of settings, with no grounding to a specific type of cloud service
delivery platform or cloud service intermediary.

Our abstract lifecycle model comprises three plus one phases. The first three are
Service Engineering, Service Onboarding, and Service Operation. The fourth,
crosscutting phase is Service Evolution. The phases and processes under each phase
are illustrated in Figure 1.

By analogy with software engineering, the service lifecycle starts with the Service
Engineering phase. The Service Engineering phase consists of Design, Development
and Testing processes, carried out by the cloud service provider.

Once a cloud service has been successfully developed and tested, and a “go to
market” decision has been taken by the cloud service provider, the service enters the
Service Onboarding phase. Processes under this phase include Registration,
Certification/Assessment, and, once the service is successfully qualified, Enrolment,
to make the service visible to potential consumers and make it available for
subscription.

A service enters the Service Operation phase with the first Cloud Service
Consumer deciding to use the service. The tasks performed during this phase can
vary significantly from one setting to another, depending on the nature of the cloud
service (e.g. if integration is required) and the conditions of its usage as agreed
between the parties involved. Typical processes under this phase include Service
Management, Support and Assurance, to manage relationships and meet agreed usage
conditions.

154 D. Kourtesis et al.

Finally, there is a fourth, Service Evolution phase which cuts across the whole
lifespan of a service. The prominent process here is Change Management.
Ultimately, the service lifespan ends with the process of Deprovisioning the service.

Fig. 1. Service Lifecycle Model

3.2 The Design Thinking Process for Deriving Requirements

To capture key requirements with respect to the framework developed by
Broker@Cloud we carried out a series of Design Thinking workshops [9] with two
companies that are active in the cloud computing market as cloud service providers
and cloud service intermediaries. Both companies see potential in introducing
capabilities for continuous quality assurance and optimisation into their cloud
platforms and are presently considering a technology roadmap towards this direction.

We note that the Design Thinking is a methodology for collaborative analysis of
the problem and solution space within a predefined timeframe. It takes into account
requirements from different users and guides the design thinking team through the
identification and prioritization of requirements profiles and corresponding solutions
associated to different identified user types (personas). The scope and the approach of
the Design Thinking methodology is very well fitting the challenge we are facing and
is proved to be very helpful for derivation of requirements in our case, since our
requirements analysis is based upon general state-of-the-art analysis and in-depth
analysis of two industrial cloud platforms in the PaaS/SaaS area. Furthermore, it takes
into consideration views of different stakeholders of the platform ecosystems.

Through Design Thinking workshops we gathered and analysed the requirements
for the Broker@Cloud framework by mapping the existing and planned activities of
the two pilot cloud platforms onto the phases and processes of our generic Service
Lifecycle Model.

A Design Thinking process could have up to seven stages: define, research, ideate,
prototype, choose, implement, and learn. Within these seven steps, problems can be
framed, the right questions can be asked, more ideas can be created, and the best

 Brokerage for Quality Assurance and Optimisation of Cloud Services 155

answers can be chosen. The steps are not linear; they can occur in parallel and can be
repeated. For our requirements analysis we chose to apply a four stage Design
Thinking process consisting of research, synthesis, ideation, and prototyping. The
additional synthesis step was introduced to combine the results of separate
investigations. In the research and synthesis steps we identified requirements. In the
ideation and prototyping phases we focused on identification and prototyping of
methods and mechanisms providing solutions to the chosen requirements.

For the research phase we relied on customer interviews. We developed a
questionnaire guiding interviewers and interviewees from each company through
different aspects of current and future usage of the cloud platform of each company,
asking which processes they could imagine handing off to intermediaries, what kinds
of optimisation they consider to be relevant, etc. The interviews were conducted with
a number of employees from each cloud platform company who work in different
positions and therefore have different perspectives on the theme of cloud service
brokerage. The interviews were collated and analysed to extract information relevant
to continuous quality assurance and optimisation. The information was classified and
clustered by topic, and the interviewees were asked to prioritise the requirements for
their usage scenarios. In the ideation phase we selected some requirements with high
priority to develop solution ideas. This was performed through subsequent steps of
brainstorming, clustering and selection. The selected solution ideas were taken into
the prototyping phase to develop conceptual paper-based prototypes, in order to
investigate the technical feasibility of the identified solutions and obtain feedback.

3.3 Requirements Specification Methodology

We used the results from the Design Thinking workshops as starting point for
identifying, clustering and analysing requirements for cloud service brokerage,
focusing on requirements for the continuous quality assurance and optimisation
capabilities outlined earlier.

To formalise these requirements, we followed a methodology inspired by the agile
requirements information model of Leffingwell and Aalto [10], who propose to think
of requirements in terms of Themes, Epics, Features and User Stories. According to
Leffingwell and Aalto, these four concepts represent different forms of expressing
user need and implied benefit, but at different levels of abstraction [10]. Variants of
this requirements analysis model have become very popular in agile software
development, especially in connection with agile methodologies such as Scrum and
Kanban [11]. Building on this information model, we organised requirements into
Themes, Epics, Capabilities and User Stories. The four concepts are explained below
and the logical relationships between them are illustrated in Figure 2.

Themes and Epics. A Theme is a strategic level objective of a software product. For
instance, one of the strategic Themes for our proposed brokerage framework is
‘Governance and Quality Control’. An Epic, on the other hand, is a high level
expression of a customer need. Derived from the portfolio of strategic product
Themes, Epics are units of software development work that are intended to deliver the

156 D. Kourtesis et al.

value of a Theme and need to be prioritised, estimated and planned as part of the
software development process [10]. In our methodology, every Epic is associated with
exactly one Theme, whilst a Theme is associated with many Epics. For instance, one
of the Epics for our software framework is ‘Service Certification’, and it maps to the
Theme of ‘Governance and Quality Control’. The Theme of ‘Governance and Quality
Control’ is mapped to four Epics in total: ‘Service Certification’, ‘SLA Enforcement’,
‘Policy Enforcement’ and ‘Service Lifecycle Management’.

Capabilities. A Capability is analogous to a Feature in the requirements information
model of Leffingwell and Aalto. Capabilities can be understood as high level,
complex (and possibly composite) services to be provided by a software system to
fulfil a user need. As Leffingwell and Aalto put it, the purpose of this concept is to
“bridge the gap from the problem domain (understanding user needs) to the solution
domain (specific requirements intended to address the user needs)” [10]. In our
methodology, a Capability may be mapped to more than one Epic. For example,
‘Policy Evaluation’ represents a Capability associated with two Epics: ‘Service
Certification’ and ‘Service Lifecycle Management’.

User Stories. A User Story is a brief statement of intent describing something the
system needs to do for the user. A User Story often takes the following canonical
form: “As a <role>, I want <goal/desire> so that <benefit>”. User Stories should
comply with “INVEST” properties, which means that they should be "Independent,
Negotiable, Valuable, Estimatable, Small and Testable". In our methodology, each
User Story maps to exactly one Capability and to exactly one Epic. For example, one
User Story is the following: ‘As a <broker>, I want to <check service descriptions
against (broker's or consumers') policies> so that <I can recommend them with
confidence>’. This User Story is associated with the ‘Service Certification’ Epic, and
at the same time with the ‘Policy Evaluation’ Capability. The mapping of User
Stories to Epics helps to capture the context in which a certain Capability is put into
use, as exemplified by a User Story.

Fig. 2. Requirements information model adopted in Broker@Cloud

 Brokerage for Quality Assurance and Optimisation of Cloud Services 157

4 Key Requirements for a Software Framework Enabling
Continuous Quality Assurance and Optimisation

In this section we summarise our requirements formalisation, by presenting the
Themes, Epics and Capabilities that we identified. The results of our requirements
analysis process include 4 Themes, 9 Epics, 15 Capabilities and 38 User Stories. Due
to space limitations User Stories are not presented in this paper. For the complete list
of User Stories that exemplify the Epics presented here we refer the reader to [5],
which describes the requirements analysis results in full extent.

4.1 Themes and Epics

Governance and Quality Control. This Theme is concerned with managing the
lifecycle of cloud services as they evolve; creating policies with respect to technical,
business and legal aspects of service delivery and checking services for policy
compliance; continuously monitoring services for conformance to Service Level
Agreements; repetitively testing services to certify conformance to specifications or
regulations and compatibility with expected behaviour. We have identified four Epics
for the Governance and Quality Control Theme. The Epics are introduced in the table
below (Table 1):

Table 1. Epics associated with the Governance and Quality Control Theme

No Name Description Service
Lifecycle

E1 Service
certification

Service certification is a process that occurs during
the onboarding and evolution of a cloud service. The
process aims at certifying that a cloud service
conforms to various requirements of the broker (e.g.
pricing, fault-tolerance, correctness, etc.).

Onboarding,
Evolution

E2 SLA
enforcement

SLA enforcement is a process that aims at
guaranteeing the expected service levels with respect
to the agreements in place between a cloud service
provider and a consumer.

Operation

E3 Policy
enforcement

Policy enforcement is a process aiming at
guaranteeing the conformance of the brokered cloud
services to a variety of policies [12] – where policies
may originate from different stakeholders.

Onboarding,
Evolution

E4 Service
lifecycle
management

Service lifecycle management is a process that aims
at controlling the evolution of different governed
entities (e.g. providers, consumers, services, etc.)
within the ecosystem of the broker.

Onboarding,
Operation,
Evolution

Failure Prevention and Recovery. This Theme is concerned with the reactive and
proactive detection of cloud service failures; selection of suitable adaptation strategies to
prevent or to recover from problematic situations as they surface; recommendation or
(where possible) automated enactment of appropriate adaptation actions such as service

158 D. Kourtesis et al.

substitution or renegotiation of service terms. We have identified two Epics for the
Failure Prevention and Recovery Theme. They are introduced below (Table 2).

Table 2. Epics associated with the Failure Prevention and Recovery Theme

No Name Description Service
Lifecycle

E5 Failure
identification

Failure identification is a process that aims at the
detection of failures that have either occurred or are
likely to happen in the near future, by monitoring
and analysing runtime data, through a combination
of different monitoring approaches [14].

Operation,
Evolution

E6 Failure
prevention &
recovery
decision
making

Failure prevention & recovery decision making is a
process that aims at the suggestion of actions to
recover from a failure, or to prevent an impending
failure, by analysing an identified failure in order to
decide a corrective action.

Operation,
Evolution

Service Optimisation. This Theme is concerned with continuously identifying
opportunities to optimise the set of services consumed by an enterprise with respect to
different goals such as cost, quality, or functionality; ranking of optimisation
alternatives through multi-criteria decision making, based on precise and imprecise
characteristics of services and their providers thus exploiting a large number of QoS
attributes, such as accountability, agility, assurance of service, cost, performance,
usability. We have identified three Epics for the Service Optimisation Theme. The
Epics are summarised below (Table 3).

Table 3. Epics associated with the Service Optimisation Theme

No Name Description Service
Lifecycle

E7 Consumer
preferences
analysis

Consumer preferences analysis is a process that aims
at the aggregation and processing of user preferences
(e.g. regarding functionality, precise and imprecise
criteria [13]) in a unified way. It involves the
management of criteria values expressed as crisp
numbers or linguistic terms, in order to enhance the
optimisation mechanism.

Operation,
Evolution

E8 Optimisation
opportunity
identification

Optimisation opportunity identification is a process
that aims at identifying appropriate situations during
which optimisation can be performed.

Onboarding,
Operation,
Evolution

E9 Optimisation
decision
making

Optimisation decision making is a process that aims
at deciding the appropriate optimisation action and
recommending that to relevant stakeholders.

Onboarding,
Operation,
Evolution

Platform-Neutral Cloud Service Description. The first three Themes described
above are concerned with processes executed in different phases of the Service
Lifecycle to achieve certain quality assurance and optimisation characteristics. This
Theme is concerned with declarative descriptions of inputs/outputs consumed/
produced by the above processes. Hence, it is a cross-cutting concern that appears in

 Brokerage for Quality Assurance and Optimisation of Cloud Services 159

the majority of the Epics presented so far. Platform-neutrality of descriptions is a
precondition for addressing the above themes in the frame of an interoperable
software framework. Many of the functional capabilities rely on the availability of
certain kinds of suitable declarative descriptions defining the format of their inputs
and outputs. The most of those descriptions can be specified as an integral part of a
service or policy description. Therefore we define requirements on platform-neutral
cloud service description by considering declarative descriptions such as service
description and policy description to be capabilities as well.

4.2 Capabilities

To bridge the gap from the problem domain (understanding user needs) to the solution
domain (specific requirements intended to address the user needs) we have identified
15 Capabilities as key requirements for our envisaged brokerage framework. The
Capabilities are summarised in Table 4. For each Capability we provide a short
description and the identifier of the Epics that it helps to realise.

Table 4. Capabilities and their association with Epics

No Name Description Epics
C1 Functional testing

(blackbox)
Functional testing is a capability that aims at
validating the conformance of a cloud service to its
behavioural specification, which is provided as part of
the service description.

E1

C2 Policy evaluation
(e.g. pricing
model, security
characteristics)

Policy evaluation is a capability that aims at checking
if a process or an artefact complies with various
policies established by different stakeholders
(consumers, providers or broker).

E1, E4

C3 Code auditing
(whitebox)

Code auditing is a capability that refers to the manual
or automated inspection of the implementation of a
cloud service with the intention to uncover faults,
inconsistencies, security vulnerabilities and other
issues.

E1

C4 Service description Service description is a capability that aims at
representing information about a cloud service in a
form suitable to allow other capabilities in the same
software framework to fulfil their goal.

E1

C5 Policy description Policy description is a capability that aims at
representing the policies of the various stakeholders
(consumers, providers or broker), in order to enable
policy evaluation.

E1

C6 Consumer
optimisation
preference
description

Consumer optimisation preference is a capability that
aims at representing the consumer preferences to be
considered for the purposes of optimisation.

E7

C7 Consumer
optimisation
preference analysis

Consumer optimisation preference analysis is a
capability that aims at handling and exploiting
preferences expressed as crisp numbers or as
linguistic terms in a unified way, in order to enhance
optimisation.

E7

160 D. Kourtesis et al.

Table 4. (Continued.)

C8 Monitoring Monitoring is a capability that aims at collecting,
aggregating and correlating runtime and marketplace
data, in order to facilitate several capabilities of the
broker.

E2,
E3,
E5, E8

C9 Optimisation
analysis

Optimisation analysis is a capability that aims at
analysing optimisation opportunities, in order to
identify optimisation actions.

E8, E9

C10 Optimisation
recommendation

Optimisation recommendation is a capability that
aims at reasoning about alternative optimisation
actions, in order to recommend the best alternatives
to the relevant stakeholders.

E9

C11 Optimisation
validation

Optimisation validation is a capability that aims at
collecting feedback about the recommended
optimisation actions, in order to improve the
optimisation process.

E9

C12 Failure recovery
& prevention
rules description

Failure recovery & prevention rules description is a
capability that aims at representing the rules required
for reasoning about potential failure recovery and
prevention actions.

E6

C13 Failure analysis Failure analysis is a capability that aims at identifying
the cause of a failure which has already occurred or is
impending, and to reason about the appropriate
recovery or prevention actions.

E5, E6

C14 Failure recovery
& prevention
recommendation

Failure recovery & prevention recommendation is a
capability that aims at recommending the best
alternative recovery or prevention actions to the
relevant stakeholders.

E6

C15 Failure prevention
and recovery
validation

Failure recovery & prevention validation is a
capability that aims at collecting feedback about the
recommended recovery or prevention actions, to
improve the failure recovery and prevention process.

E6

5 Conclusions

As the number of cloud service providers grows and the requirements of cloud service
consumers become more complex, the latter will come to depend more and more on
the intermediation services of cloud service brokers. For many cloud service
consumers, continuous quality assurance and optimisation of cloud services will
become a mission-critical objective that they will find difficult to cope with by
themselves, thus creating room for intermediaries to offer their services.

Broker@Cloud is a research project aiming to make it easier for cloud service
intermediaries to address this emerging need. This is to be achieved by creating an
extensible brokerage framework that allows cloud service intermediaries to equip their
platforms with core capabilities for continuous quality assurance and optimisation of
cloud services. The framework will comprise methods and mechanisms for governance
and quality control of cloud services, prevention and recovery of failures, as well as

 Brokerage for Quality Assurance and Optimisation of Cloud Services 161

continuous optimisation of cloud service usage, building on common means for
platform-neutral description of cloud services.

In this paper we reported on the methodology followed to capture high-level
requirements for the envisaged framework, and presented the results obtained from
this first-level analysis. We presented the abstract cloud service lifecycle model
which helped us to frame our requirements thinking, presented the Design Thinking
process that was followed to derive initial requirements, and discussed our adopted
information model for the formalisation of requirements. We then presented the key
requirements identified through this process in the form of summarised results.

The Design Thinking process that was followed was rather effective in helping us
to kick-start the requirements analysis process and to derive initial requirements from
two companies that are already offering a number of cloud services on the market and
are presently considering enhancing their platforms with capabilities for continuous
quality assurance and optimisation of cloud services. This process served as
groundwork for further internal discussion and reflection, and shed light on critical
aspects to consider. The agile requirements capturing methodology that we followed
was effective in helping us to ground these insights and to move forward, from
analysis to specification. The resulting identified requirements are organised around
4 Themes, 9 Epics, 15 Capabilities and 38 User Stories. Next steps of this work
include early prototypes to cover the core requirements discussed here. This will be
the first step towards defining and implementing the architecture of a framework
bringing capabilities for continuous quality assurance and optimisation brokerage
closer to the reach of cloud service intermediaries.

Acknowledgments. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement n°328392, the Broker@Cloud project (www.broker-cloud.eu).

References

1. Verginadis, Y., Patiniotakis, I., Mentzas, G., Kourtesis, D., Bratanis, K., Friesen, A.,
Simons, A.J.H., Kiran, M., Horn, G., Rossini, A., Schwichtenberg, A., Gouvas, P.: D2.1
State of the art and research baseline. Broker@Cloud Project deliverable (2013)

2. Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D.: Cloud Computing
Reference Architecture, pp. 292–500. National Institute of Standards and Technology,
USA (2011)

3. Plummer, D., Lheureux, B., Karamouzis, F.: Defining Cloud Service Brokerage: Taking
Intermediation to the Next Level. Gartner (2010)

4. Broker@Cloud project website, http://www.broker-cloud.eu/
5. Kourtesis, D., Bratanis, K., Friesen, A., Simons, A., Kiran, M., Verginadis, Y., Rossini, A.,

Schwichtenberg, A., Gouvas, P.: D2.3 Requirements Analysis Report. Broker@Cloud
Project deliverable (2013)

6. Cloud Services Brokerage Is Dominated by Three Primary Roles. Gartner (2011)
7. Bratanis, K., Kourtesis, D., Paraskakis, I., Verginadis, Y., Mentzas, G., Simons, A.,

Friesen, A., Braun, S.: A Research Roadmap for Bringing Continuous Quality Assurance
and Optimization to Enterprise Cloud Service Brokers. eChallenges (2013)

162 D. Kourtesis et al.

8. Kourtesis, D., Bratanis, K.: Towards Continuous Quality Assurance in Future Enterprise
Cloud Service Brokers. In: Proceedings of the 8th South East European Doctoral Student
Conference, SEERC (2013)

9. Cross, N.: Design Thinking: Understanding How Designers Think and Work. Berg,
Oxford UK and New York (2011)

10. Leffingwell, D., Aalto, J.: A Lean and Scalable Requirements Information Model for the
Agile Enterprise. Leffingwell LLC(2009)

11. Kniberg, H., Skarin, M.: Kanban and Scrum - Making the Most of Both. LULU (2010)
12. Kourtesis, D.: Towards an Ontology-driven Governance Framework for Cloud Application

Platforms. Tech. Rep. CS-11-11. Department of Computer Science, The University of
Sheffield, Sheffield (2011)

13. Patiniotakis, I., Rizou, S., Verginadis, Y., Mentzas, G.: Managing Imprecise
Criteria in Cloud Service Ranking with a Fuzzy Multi-criteria Decision Making Method.
In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135,
pp. 34–48. Springer, Heidelberg (2013)

14. Bratanis, K.: Towards Engineering Multi-layer Monitoring and Adaptation of Service-
based Applications. Tech. Rep. CS-12-04. Department of Computer Science, The
University of Sheffield, Sheffield (2012)

Towards Value-Driven Business Modelling Based

on Service Brokerage

Yucong Duan1, Keman Huang2, Ajay Kattepur3, and Wencai Du1

1 College of Information Science and Technology, Hainan University, China
duanyucong@hotmail.com, wencai@hainu.edu.cn

2 Department of Automation, Tsinghua University, China
victoryhkm@gmail.com

3 ARLES Group, INRIA Paris-Rocquencourt, France
ajay.kattepur@inria.fr

Abstract. Service engineering is an emerging interdisciplinary subject
which crosscuts business modeling, knowledge management and eco-
nomic analysis. To satisfy service providers’ profiting goals, the service
system modeling needs to take care of both the short and long run cus-
tomer satisfaction. The ideology of value driven design fits well for this
need. We propose to work towards value driven design by introducing a
form of service design patterns, we call service value broker(SVB), with
the aim to shorten the distance between economical analysis and IT im-
plementation and increase the value added on all sides. SVB allow us
to not only study the value added in terms of functional and business
aspects, but also reason about the need for brokerage across various do-
mains. In this paper, we model the basis of SVB and its network based
organization architecture in the background of Cloud.

1 Introduction

Software design patterns [1] have been well studied with formal semantics and
applications in multiple domains. In case of service oriented computing (SOC)
applications, such design patterns[2] may yield a standard for composing services
dependent on improvement in functional, Quality of Service (QoS) or business
contractual aspects. Most existing work focuses on a specific functionality or
quality property from a technical perspective which does not directly cater the
core value of service applications where providers’ side profitability and growth
depend more directly on customer satisfaction[3] in short run and customer loy-
alty in long run[4]. ”Value Driven Design”[5] promotes a movement that is using
economic theory to transform the system engineering to better utilize optimiza-
tion to improve complex design. Enlightened by this ideology, we work towards
the foundation of integrating the IT implemenation, business modeling and eco-
nomic analysis by introducing the Service Value Broker (SVB) [6] pattern. SVB
has been already proposed for cloud service brokerage [7] which we foresee as an
important characteristic of the optimization of the E-Service composition of [8]
E-Service Economics. To the best of our knowledge, there is little work available

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 163–176, 2014.
c© Springer International Publishing Switzerland 2014

164 Y. Duan et al.

in this field. We show that at multiple domains , such patterns may be applied to
improve services’ performance. Emphasis is placed on situations where mismatch
of customer requirements and provided services may occur.These are solved by
introducing a SVB pattern to improve the resulting composite outputs. In cases
where composite services may be improved, the DSVB patterns are also intro-
duced which can traverse the entire composition space to achieve improvements.
A simulation is performed which shows improvements of multiple metrics based
on the broker patterns introduced.

The rest of the paper is organized as follows: Section 2 presents related work of
SVB. Section 3 models the knowledge foundation of SVB. Section 4 demonstrates
SVB patterns in the Cloud architecture. Section 5 models a two-level E-contract
based implementation framework. Section 6 explains the case for the service
contract broker. Section 7 provides a simulation to demonstrate the SVB pattern
in use. This is followed by conclusions with future directions.

2 Related Work

Cloud service brokerage [9] has been identified by many organizations as an
key architectural challenge in the Cloud era. In general, most of existing broker
research [10,11] focus on using brokers to discover, match, negotiate and select
services [12] with best QoS in a service composition. Srikumar et al. [13] adopt
brokers to enable grid resource searching and distribution where a broker works
mostly as an autonomous agent [14]. D’Mello et al. [15] employ brokers to select
qualified services in terms of QoS of SLA for service composition. Loreto et
al. [16] use brokers to integrate telephone business and IT world by means of
an intermediate layer. Rosenberg and Dustdar [17] use brokers to bridge the
difference between heterogeneous business rules. Bichler et al. [18] promote to use
brokers to enhance the application level interpretability of electronic commerce.

SVB distinguishes from these approach since it starts from the service contract
which covers more issues than SLA. SVB is related to services not only on the
technological level which covers all three layers of SaaS, PaaS and IaaS of a
Cloud architecture, as most SLA based approaches [19], but also on the business
level [17,20]. By integrating business services and technology services with value
modeling, SVB identifies a bigger diagram where it can be successfully applied
above QoS assurance [21].

3 Modeling the Foundation of SVB

In this section, we model the SVB pattern in terms of value, exchange, brokers
and composition from the formal view of conceptualization [22].

3.1 Value

Combining the perspective of conceptualization [22] and multiple semantics [23],
the concept of value is denoted as: concept(value). In business modeling, an

Towards Value-Driven Business Modelling Based on Service Brokerage 165

Fig. 1. Value vs. Value added

intuitive expression of value [24] can be found in Fig. 1. Value and value added
are modeled along a conceptual route of “Ontological level → Implementation
level → Business level”. The Ontological level models the essential difference for
cognition purpose as“difference vs. same/equal”. The implementation level mod-
els the basic implementation relationship from “exchange” to “reuse” at trans-
action level which is distinguished for (a) original requirement and (b) newly
identified usages. Newly identified usages demands a difference from existing re-
quirements. The concept(value) bears several meanings which are denoted as
semantic{value}.

semantic{value}= {difference (observation
(object(x))), existence(object(x))}

It means that a meaningful difference can be observed on an existing object in
contrast to other objects. The positiveness of the observed difference motivates
a business exchange. The observation can either be tangible or intangible.

3.2 Exchange

We improve the explanation from [6,24] as follows: value is realized by exchanging
of goods which include information, data, activities, for the purpose of imple-
mentation of users’ requirements. The existence of the difference of the goods is

166 Y. Duan et al.

required for supporting difference in the value. In a business transaction, users’
satisfaction concerning an exchange comes from the positive difference of the
expected value of goods. An exchange/transaction should be motivated on both
sides of roles of source(A) and target(B). This motivation can exist only when
both sides observe a positive value, by subtracting the self evaluated value of the
owned object from the self evaluated value of the target one.

3.3 Brokerage

We have introduced the concept of service value broker (SVB) in [6]. Here we
give the following definitions:

– Service Value Broker (SVB): driven by a value based goal, when a direct
service composition cannot meet some required constraints from the service
contract [25] or service level agreement(SLA) such as response time, loca-
tion, license area, available period, currency format. If the introduction of a
intermediate service can help to solve these problems and enable a service
composition to be qualified, the introduced intermediate service is a SVB.

– Direct Service Value Broker (DSVB): direct SVB is a special type of SVB
resulting from a composition of services. This composition must bring more
value to the stakeholder who introduces the DSVB. By value we mean not
only monetary value but also non-monetary such as reputation and brand
value, etc.

Normally a service transaction is driven by an economical goal marked with a
service value scope (SVS) which is denoted as:
SVS = (FBV, OMV)
FBV is the fixed bottom value which is demanded as a profit threshold for a
business transaction. OMV is the maximum value which is an open value in
most business following the maximization of profit. The SVS is the result of a
service composition composition(x) where the involved services are denoted as
x. In general, a SVS is denoted as follows:

SV Sins = SV S(composition(x))

When the restriction SV Sins ≤ FBV applies, an independent decision con-
sists of canceling the service. However if other transactions rely on this transac-
tion for constructing an integrated business value, or the transaction is viewed as
contributing to accumulated value from a long run economical view [4], then the
SVB is expected to enable a business transaction. Even those not qualified can-
didate services could be considered to be transformed into qualified candidates
through the introduction of SVB.

When the restriction of SV Sins ≥ FBV is met, the main goal is the max-
imization of the value of SV Sins. DSVS can be introduced for this purpose.

Towards Value-Driven Business Modelling Based on Service Brokerage 167

Besides introducing new services to replace existing services in a composition,
the adjustment of the order of existing services by means of DSVS might also
change the value of SV Sins.

3.4 Composition of SVB and DSVB

In basic situations SVB can be introduced to solve direct constraints which
are faced in a service composition in the context of a service transaction. DSVB
is introduced for the optimization of a service system in terms of output value.

In Composed Situations. DSVB is the exhaustive search pattern: it requires
the traversing of all possible service compositions before a decision is made. SVB
can function as a transformer which transforms previous not qualified services or
service compositions into qualified candidate service compositions which should
be considered by DSVB. In a real world engineering practice, we can not follow
strictly the theoretical conclusion which is drawn here. We can follow a simple
process aimed at scaling down the candidate services using matchmaking before
a service composition and introduce SVB in case that very few candidates are
available. DSVB will include proactive SVB activities only when there is suf-
ficient time left after an initial solution has been found and an optimization is
planned.

4 Service Value Broker Patterns: Scenarios and Brokers
in Cloud Architecture

When implementing SVB orDSVB, usually service contracts [25] are required for
both locating the mismatching situations and identification of possible solutions.
The driving force of applying SVB or DSVB is to minimally realize expected
functionality and optionally attain the highest added value.

We denote the contract on the source end of an exchange asCS, the contract on
the target end of an exchange as CT, the input of SVB/DSVB contract as iSVB
and the output of a SVB/DSVB contract as oSVB. There is no requirement
that the iSVB and oSVB belong to the same service since the integration of a
parallel set of SVB/DSVB is allowed. We propose to demonstrate the brokerage
within Cloud based on the three-layer architecture of SaaS, PaaS, and IaaS. Fig. 2
demonstrates the brokers in relationship with the three layer Cloud architecture.

4.1 Brokers at the SaaS Layer

There are many kinds of SVB at the SaaS layer. One example is as follows:
Price (PR ∈ DB): the price for the service usage is set at “10-20 USD/ month

for USA users” while the customers require “5-10 USD/ month for Asia user”.
Problem: PR|CS > PR|CT

SV S = (0, δ(PR|CT , PR|CS))

168 Y. Duan et al.

Price broker : the price broker is implemented with flexible strategies such as
asking a location broker to convey the requests coming from USA to Asia. If
the final price after subtracting the cost due to the introduction of the location
broker is lower than the original price, the location broker actually implements
the role of price broker. There will be other forms of price broker which depend
on the specific constraints of the service contracts of both the request and the
response sides.
Solution: (PR|CS = PR|iSV B) AND (PR|oSV B = PR|CT)

4.2 Brokers at the PaaS Layer

There are many kinds of SVB at the PaaS layer. One example is as follows:
File/data format (FF ∈ DB): requested to provide files with ”MS word

format” while the provider supplies only files with ”pdf or ps format”.
Problem: FF |CS ! = FF |CT

SV S = (0, δ(FF |CT , FF |CS))
File/data format broker : a service which can convert file format from ”pdf or ps
format” to ”MS word format” has the possibility of playing the broker.
Solution: (FF |CS = FF |iSV B)AND(FF |oSV B = FF |CT)

Fig. 2. SVB and DSVB in the context of Cloud

Towards Value-Driven Business Modelling Based on Service Brokerage 169

4.3 Brokers at the IaaS Layer

There are many kinds of SVB at the IaaS layer. One example is as follows:
Network traffic (NT ∈ DQ): requests are limited to “band width of 50 MB/

Minute” while customers require “100 MB/Minute”.
Problem: NT |CS < NT |CT

SV S = (0, δ(NT |CT , NT |CS))
Network traffic broker : a service which can firstly take the request from the
customer side of “100MB/Minute”, secondarily separate the request into two
parallel tasks and finally distribute the two tasks for two services of “band width
of 50 MB/Minute ”, can play the broker.
Solution:

∑
(RA|CS = RA|iSV B) AND (RA|oSV B >= RA|CT)

4.4 The Brokerage Crossing Three Layers

There are also some kinds of SVB which cross different layers of IaaS, PaaS and
IaaS. For example, security will crosscut all three layers:

Security limit (SL ∈ DS): there will be many security restrictions which
might be difficult for a functional service to fulfill.
Problem: SL|CS ! = SL|CT

SV S = (0, δ(SL|CT , SL|CS))
Security broker : a distributed mode of public-private key architecture can be in-
troduced to enhance the security level of the provided service while not breaking
the integrity of the original service. For example, the introduction of audition
service and a keying system, can help to avoid a denial-of-service attack (DoS)
on the main service.
Solution: (SL|CS = SL|iSV B) AND (SL|oSV B = SL|CT)

4.5 Value Broker

Value broker or DSVB is a general form of price broker. It is different from
previous brokers which are introduced to solve a mismatch in the conditions for
composition, which is demanded rigidly by a service matchmaking process [25].
Value broker is introduced as a mean for the implementation of the optimization
process leading to a better business profit for the stakeholder who employs the
service based transaction. A glance of value broker enabled maximization of the
business solution space is shown in Fig. 3 [24]. In theory, during the implementa-
tion of a DSVB, all possible service compositions should be considered, including
those situations where service compositions are enabled by SVB through bridg-
ing the functionality mismatching among original services.

Fig. 2 demonstrates a scenario where mismatching situations of security, net
traffic and IP between two services represented by E-Contracts are bridged by
SVB : Security broker, Network traffic broker and IP broker ; the optimization
for deployment is fulfilled by the Deployment broker DSVB. It also shows that
brokers can be composed for complex functionalities. For a service transaction
comprising more than two parties, there will be the chance to introduce a Com-
position broker DSVB to optimize the organization.

170 Y. Duan et al.

Fig. 3. DVBS enabled maximization of business solution space

5 Two-Level E-contract Based Implementation
Framework

In the service ecosystem, due to the interface of the services and their correlation
history, the services in the ecosystem will form the composable relation between
each other which means that the two services can be used to form a composition
to offer added-value for the consumers. As the number of services available for
consumers is increasing rapidly, there are many services which offer the simi-
lar functionality. For examples,all of ”Google Map”, ”Baidu Map”, ”Yahoo Map”
and ”Facebook Map” provide the map related services. These services with the
similar functionality will form a specific domain. The service in the same do-
main can somehow replace each other with some adapters [26]. Furthermore, the
providers will publish services into the ecosystem so that the consumers can use
the services to fulfill their requirement. Some providers such as Google, Yahoo
and Amazon will offer different services in different domains so that they may
offer the complete solution for the consumers. Some others will provide a few
specific services in the specific domain. Taking Twilio as an example, it focuses
on telephony and only offers the Twilio service in the telephony domain for the

Towards Value-Driven Business Modelling Based on Service Brokerage 171

consumers. As different providers perform well in different domain, the providers
will assign the contract with the others to form a vertical alliance or horizontal
alliance to guarantee their core competencies [27]: the providers who provide
similar services may assign contracts with each other so that they can get the
replace services to increase the fault-tolerance for the consumers; the providers
who provide the composable services may assign contracts with each other that
they can increase the Qos for the whole composition.

Thus we can get a two-level service contract framework in the service ecosys-
tem which consists of two networks: the service composable network is a directed
network in which each node refers to a service and each edge refers to the com-
posability between two services, the direction of the edge refers that the output
of the source service can be the input or part of the input for the target ser-
vice. The provider contract network is an undirected network in which each node
refers to a provider and each edge refers to the service contract assigned by two
providers.

Fig. 4 demonstrates a two-level service contract network framework for the
service ecosystem which consists two networks: the service composable network
which refers to the composablity among services, and the provider contract net-
work which refers to the contract relation among providers.

Example: For the illustration shown in Fig. 4 , providers Pa, Pb, Pc, Pd,
Pe form the provider contract network based on their contract with each other.
Provider Pa offers service S1 and S2, Provider Pb offers services S3, S4 and S5,
etc. Service s1, s2, s3, s4, s5, s6, s7, s8 and s9 construct the service composable
network and S1, s3, and s6 are similar in the functionality that they form a
specific domain.

6 The Case for the Service Contract Broker

6.1 Service Contract Broker for Service Selection

The requirement of the consumer is becoming more complex. Sometime single
services cannot fulfill the requirement that they need to select some services
to form compositions. If the services are provided by different providers, the
providers with a contract can help to guarantee the reputation of the compo-
sition. For example, Pd and Pc have a contract while it is not for Pd and Pb,
the composition for s6 and s7 will gain a higher reputation than s6 and s5. In
this case, the service contract broker will suggest services with higher reputa-
tion for the consumers. Even if the services are provided by the same provider,
sometimes the QoS cannot meet the consumers’ requirement. For example, s1
and s2 can fulfill the consumer’s functionality requirement while the price is too
high for the consumer. In this case, the service contract broker will help to find
the services which are offered by the provider’s contractors and then use the
service to replace the similar service to fix the mismatch for the consumers. For
example, suppose that s3 is much cheaper than s1 and then the broker will use
s3 to replace s1 and offer s3 and s2 for the consumers.

172 Y. Duan et al.

Fig. 4. Two-level service contract network framework

6.2 Service Contract Broker for Service Emerging

For the providers with a strong contract, if the services they offer are not com-
posable, the providers will intend to build an adapter among their services so
that their alliance can gain higher competitiveness in the ecosystem. For exam-
ple, Pb offers service s4 which can be composed with s9 provided by Pe and
there is no contract between these two providers. Also Pc offers service s8 which
has a similar functionality as s9, however there is huge mismatch between s4 and
s8. As Pb and Pc builds a strong contract relation with each other, they may
modify the interface of their services to make them composable or create a new
service together to bridge their services. In this case, the service contract broker
will offer the suggestion for new services. Thus the service contract broker can
promote the growth of the service ecosystem.

7 Simulating SVB

In order to simulate SVB patterns and their effect on customer value [28], we
make use of the scenario provided in Fig. 5. While Customer 1 accesses the
sequence of services directly, Customer 2 makes use of SV B brokers to aid in
his response. This may come from multiple domains of values.

This scenario is simulated using Monte-Carlo simulations in MATLAB with
distributions representing various domains of functional, QoS and business value
aspects studied in Section 4. Values such as response time and availability are
modeled as heavy tailed distributions [29]. Request amount and Network Traffic
are modeled with exponential distributions; Price, License Values and Security

Towards Value-Driven Business Modelling Based on Service Brokerage 173

Security

Customer 1

Service A

Service B

Customer 1
Response

Request

Service A

SVB Service

SVB Service

Service B

Response
Customer 2

Request
Customer 2

BrokerBroker Domains

Location
Reputation Limit

License Restriction
Security Limit

Price
Currency Exchange

Business

Request Amount

Available Time

Network Traffic
Response Time

Storage Quantity LimitFunctional

QoS

Fig. 5. Scenario comparing two customers

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

Response Time, Availability (milliseconds)

C
um

ul
at

iv
e

D
en

si
ty

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Request Amount, Network Traffic (per minute)

C
um

ul
at

iv
e

D
en

si
ty

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Price, License Value, Security Level (value units)

C
um

ul
at

iv
e

D
en

si
ty

Unbrokered Services
SVB aided Services
Customer 1
Customer 2

Unbrokered Services
SVB Aided Services
Customer 1
Customer 2

Unbrokered Services
SVB Aided Services
Customer 1
Customer 2

Fig. 6. Monte-Carlo runs of two customers’ output behaviors

Levels are drawn from uniform distributions. Note that some brokers such as
Location and Reputation Limit would require a real-world implementation over
actual services and are exempted from this analysis. Such a probabilistic model
for value is consistent with perspectives of function/QoS/business [29,30].

As observed in Fig. 6, the inclusion of an SVB broker improves multiple
domains. The response time distribution and network traffic show lower values
for customer 2. This is traded off with the necessity to pay higher cost values that
can provide better security and license values. Though this is a representative
example, it can be envisioned as being applicable to real world applications. The

174 Y. Duan et al.

service broker can provide access to valuable upgrades in multiple domains that
should be encouraged.

From a business perspective, the improved performance due to the introduc-
tion of a broker could provide better contractual agreements to a composition of
these services. In spite of higher costing services, the tradeoffs can be improved
in multiple contractual domains of QoS, security and composition efficiency. As-
pects provided by the DSVB such as testing and advertisement provide further
impetus to the adoption of brokers for business based services.

8 Conclusion and Future Work

This paper presents a value driven design approach that introduces service value
brokers as a new form of service design patterns. With this approach, we try
to leverage traditional design approaches [2] in order to cope also with business
and economical aspects that affect service selection and composition from a value
driven design perspective. We present our work towards building an architecture
for service brokerage composition in Cloud.

Individually, SVBs can be viewed as plain service design patterns [2] when
they are used for fulfilling the same functionalities or quality properties. However,
from a process perspective, SVBs are firstly designed and deployed according to
the highest level of economical consideration and profiting context; secondarily,
they address specific functionalities and quality requirements. This is usually the
reverse process that takes place for plain design patterns. The evaluation of plain
design patterns is relatively independent from their combined deployment. How-
ever, the evaluation of a SVB depends on the integrated business value analysis
of the whole project and with relationship to cooperating SVB. Moreover, the
deployment of SVB is expected to be accompanying a value model [5]. In the
next steps, we will continue with the labeling of SVB with economical properties.

In order to plan and assess a value based composition, we want to explore
the constraint space and variability space of the value in SVB compositions. We
will proceed to the analysis of usability and applicability aspects concerning the
adoption of SVBs in E-Service contracts.

Acknowledgment. This paper was supported in part by CNSF grant 61162010
and 61363007 and byHNUResearchprogramgrantKYQD1242 andHDSF201310.
We thank Prof. Zibin Zheng for precious advice.

References

1. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design patterns: Abstrac-
tion and reuse of object-oriented design. In: Wang, J. (ed.) ECOOP 1993. LNCS,
vol. 707, pp. 406–431. Springer, Heidelberg (1993)

2. Erl, T.: SOA Design Patterns, 1st edn. Prentice Hall PTR, Upper Saddle River
(2009)

Towards Value-Driven Business Modelling Based on Service Brokerage 175

3. Heskett, J.L., Jones, T.O., Loveman, G.W., Sasser, W.E., Schlesinger, L.: Putting
the Service-Profit Chain to Work. Harvard Business Review, 118–129 (July-August
2008)

4. Feldstein, M.: Domestic saving and international capital movements in the long run
and the short run. Technical Report 947, National Bureau of Economic Research
(1982)

5. Collopy, P., Hollingsworth, P.: Value-driven design. Journal of Aircraft 48(3),
749–759 (2011)

6. Duan, Y.: Modeling service value transfer beyond normalization. In: SNPD,
pp. 811–816 (2012)

7. Plummer, D.: Cloud services brokerage: A must-have for most organizations. Gart-
ner, Inc. (2012)

8. Kattepur, A., Benveniste, A., Jard, C.: Optimizing decisions in web services orches-
trations. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.)ICSOC 2011,
LNCS, vol. 7084, pp. 77–91. Springer, Heidelberg (2011)

9. Fowley, F., Pahl, C., Zhang, L.: A comparison framework and review of service bro-
kerage solutions for cloud architectures. In: Service-Oriented Computing - ICSOC
2013 Workshops and Ph.D. Symposium (2013)

10. Pan, Z., Baik, J.: Qos broker-based trust model for effective web service selection.
In: Proceedings of the 11th IASTED SEA2007, Anaheim, CA, USA, pp. 590–595
(2007)

11. Kumar, P.S.A., Mahadevan, G., Krishn, C.G.: Article: A qos towards dynamic web
services recapitulation and selection. International. Journal of Computer Applica-
tions 54(4), 12–18 (2012)

12. Shi, C., Lin, D., Ishida, T.: User-centered qos computation for web service selection.
In: ICWS, pp. 456–463 (2012)

13. Venugopal, S., Buyya, R., Winton, L.: A grid service broker for scheduling dis-
tributed data-oriented applications on global grids. In: Proceedings of the 2nd
workshop on Middleware for grid computing, MGC 2004, 75–80 (2004)

14. Qian, Z., Lu, S., Xie, L.: Mobile-agent-based web service composition. In: 4th Intl.
conf. on Grid and Cooperative Computing, pp. 35–46

15. D’Mello, D.A., Ananthanarayana, V.S., Thilagam, S.: A qos broker based architec-
ture for dynamic web service selection. In: Proceedings of AMS 2008, pp. 101–106
(2008)

16. Loreto, S., Mecklin, T., Opsenica, M., Rissanen, H.M.: Service broker architecture:
location business case and mashups. Comm. Mag. 47(4), 97–103 (2009)

17. Rosenberg, F., Dustdar, S.: Design and implementation of a service-oriented busi-
ness rules broker. In: CECW, pp. 55–63 (2005)

18. Bichler, M., Segev, A., Beam, C.: An electronic broker for business-to-business
electronic commerce on the internet. Int. J. Cooperative Inf. Syst. 7(4), 315–330
(1998)

19. Yu, T., Lin, K.J.: A broker-based framework for qos-aware web service composition.
In: EEE, pp. 22–29 (2005)

20. Ferreira, J.E., Braghetto, K.R., Takai, O.K., Pu, C.: Transactional recovery support
for robust exception handling in business process services. In: ICWS, pp. 303–310
(2012)

21. Kourtesis, D., Bratanis, K., Friesen, A., Verginadis, Y., Simons, A.J.H., Rossini, A.,
Schwichtenberg, A., Gouvas, P.: Brokerage for quality assurance and optimization
of cloud services: an analysis of key requirements. In: Service-Oriented Computing
- ICSOC 2013 Workshops and Ph.D. Symposium (2013)

176 Y. Duan et al.

22. Duan, Y., Cruz, C.: Formalizing semantic of natural language through conceptu-
alization from existence. IJIMT 2(1), 37–42 (2011)

23. Duan, Y.: Semantics Computation: Towards Identifying Answers from Problem
Expressions. In: SSNE, pp. 19–24 (2011)

24. Duan, Y.: Value Modeling and Calculation for Everything as a Service (XaaS)
based on Reuse. In: Proceedings of SNPD 2012, 162–167 (2012)

25. Duan, Y.: Service Contracts: Current state and Future Directions. In: ICWS,
pp. 664–665 (2012)

26. Tan, W., Zhou, M.: Business and Scientific Workflows: A Web Service-Oriented
Approach. IEEE Press Series on Systems Science and Engineering. Wiley (2013)

27. Huang, K., Fan, Y., Tan, W., Qian, M.: Bsnet: a network-based framework for
service-oriented business ecosystem management. Concurrency and Computation:
Practice and Experience 25(13), 1861–1878 (2013)

28. Duan, Y., Kattepur, A., Zagarese, Q., Du, W.: Service value broker patterns: In-
tegrating business modeling and economic analysis with knowledge management
(short paper). In: SOCA, pp. 140–145 (2013)

29. Kattepur, A.: Importance sampling of probabilistic contracts in web services.
In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS,
vol. 7084, pp. 557–565. Springer, Heidelberg (2011)

30. Kattepur, A., Benveniste, A., Jard, C.: Negotiation strategies for probabilistic con-
tracts in web services orchestrations. In: ICWS, pp. 106–113 (2012)

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 177–191, 2014.
© Springer International Publishing Switzerland 2014

Introducing Policy-Driven Governance and Service
Level Failure Mitigation in Cloud Service Brokers:

Challenges Ahead

Konstantinos Bratanis1,2 and Dimitrios Kourtesis1,2

1 South-East European Research Centre,
International Faculty, The University of Sheffield,

24 Proxenou Koromila Street, Thessaloniki, 54622, Greece
{kobratanis,dkourtesis}@seerc.org

2 Department of Computer Science, The University of Sheffield,
Regent Court 211 Portobello Street, Sheffield, S1 4DP, United Kingdom

{k.bratanis,d.kourtesis}@dcs.shef.ac.uk

Abstract. Cloud service brokerage represents a novel operational model in the
scope of cloud computing. A cloud broker acts as an intermediary between a
service provider and a service consumer with the goal of adding as much value
as possible to the service being provisioned and consumed. Continuous quality
assurance is a type of brokerage capability having high value to both providers
and consumers of cloud services. At the same time, it can be among the most
challenging kinds of capability for cloud service brokers to realise. In this paper
we focus on two specific themes within this scope. We present a motivating
scenario and outline key research challenges associated with introducing policy-
driven governance and service level failure mitigation capabilities in brokers.

Keywords: Cloud computing, cloud service brokerage, continuous quality
assurance, policy-driven governance, service level failure mitigation.

1 Introduction

With the increasing adoption of cloud computing the enterprise IT environment is
progressively transformed into a matrix of interwoven infrastructure, platform and
application services, delivered from diverse providers. As the number of providers
grows and the requirements of consumers become more complex, the need for entities
to assume a role of intermediation between providers and consumers is becoming
stronger. Cloud service intermediation is increasingly recognised as an indispensable
component of the cloud computing value chain.

Examples of existing cloud service intermediation offerings include services
helping enterprises to find and compare cloud services (e.g. marketplaces/stores), to
develop and customise services (e.g. application platform as a service offerings), to
integrate services (e.g. integration platform as a service), to monitor and manage
services, and many more. Despite differences with respect to the capabilities such

178 K. Bratanis and D. Kourtesis

cloud service intermediaries offer, or how these capabilities are combined, they
have one thing in common: making it easier, safer and more productive for
cloud computing adopters to navigate, integrate, consume, extend and maintain cloud
services. According to Gartner, this is precisely the value proposition of a ‘Cloud
Services Brokerage’, a term coined in 2010 to refer to the emerging role of brokers in
the context of cloud computing [1].

In the future, enterprises will require brokerage capabilities that are much more
sophisticated than what is on offer by cloud service intermediaries today. Continuous
quality assurance of cloud services is one such type of brokerage capability; foreseen
to be most valuable for service consumers, but at the same time rather challenging for
future brokers to implement.

In this paper we are briefly introducing the concept of cloud service brokerage
(CSB) and motivating the need for continuous quality assurance as an important
intermediation capability of future enterprise cloud service brokers. We focus our
attention on two specific forms of continuous quality assurance intermediation: (i)
policy-driven cloud service governance and (ii) service level failure mitigation for
cloud services. For each area we present key challenges and provide an overview of
related work.

2 Cloud Service Brokerage

As an enterprise comes to rely on an increasing number of externally-sourced cloud
services, it becomes more difficult for the enterprise to keep track of when and how
these third-party services evolve. Service evolution may be the result of change that is
intentional – such as when the provider makes changes to a service’s terms of
provision, changes to its implementation, or changes to its deployment environment,
but also unintentional – such as when the provider suffers an unexpected failure or
variation in service performance.

Because of the complexity inherent in consuming multiple services from different
cloud service providers, it becomes increasingly more difficult for the service
consumer to appreciate all the different kinds of impact that a change to a service can
have. A change to a service may mean that the service is no longer conformant to the
internal policies of the consumer or to regulations that the consumer is required to
observe, or more generally, that the service no longer fulfils the consumer’s
objectives and needs to be replaced.

Cloud service brokerage represents a new type of service and emerging business
model in the space of cloud computing which is aimed at helping enterprises to
address such challenges and to mitigate the risks that ensue from the complexity in
large-scale cloud service usage [1]. In an analogy to the way other kinds of
intermediaries operate within different areas of traditional commerce, a cloud service
broker is an entity that works on behalf of a consumer of cloud services to
intermediate and to add value to the services being consumed.

Much of the enabling technology that is needed to support different cloud service
brokerage capabilities is certainly not new. Recent years have seen a proliferation of
many relevant proprietary and open source tools that can provide building blocks for
the implementation of such services, such as tools for monitoring and managing

 Introducing Policy-Driven Governance and Service Level Failure Mitigation 179

applications and virtual infrastructures, or tools for integrating heterogeneous
processes and applications. Companies such as SpotCloud1, Vordel2, Rightscale3,
JitterBit4, or SnapLogic5, who have already created offerings based on such enabling
technologies, can be considered early examples of cloud service brokerages.

The kinds of intermediation capability offered by most of today’s cloud service
brokers relate to cloud service discovery, integration, customisation, or aggregation
[2]. But as cloud service consumption grows and quality assurance becomes more of a
problem to cloud service users, intermediation capabilities for continuous quality
assurance of cloud services will become more and more prevalent.

Intermediation for continuous quality assurance of cloud services represents an
open research topic which, to the best of our knowledge, is only now receiving
attention by research communities working on related fields. At the time of this
writing the theoretical and pragmatic challenges of introducing continuous quality
assurance functions in brokers of cloud services remain largely unexplored.

3 Continuous Quality Assurance Intermediation Example

In this section we present an abstract usage scenario that exemplifies two new forms
of continuous quality assurance intermediation: policy-driven governance and service
level failure mitigation for cloud services.

We assume a setting where a cloud service broker operates an online platform,
though which it offers continuous quality assurance intermediation for cloud services.
The broker’s customers are enterprises that make extensive use of third-party cloud
services and prefer to outsource their continuous quality assurance functions to a
specialised and trusted third-party entity – the broker. The broker allows service
consumers to exercise fine grained control over the cloud services they rely on. This
is achieved by allowing consumers to express their objectives about how cloud
services should be delivered to them, in the form of policies. The brokerage platform
then undertakes to ensure that the objectives in the policies are met. Service
consumption objectives may relate to the pricing characteristics of a cloud service, its
security features, its availability guarantees, and many other service attributes. The
brokerage platform is capable of monitoring service delivery on a continuous basis,
detecting violations of consumer policies, and proposing mitigation measures.

Providers of cloud services who are interested in making their services available to
the customers that the broker is serving need to onboard their services to the
brokerage platform. For this to be done, providers need to create descriptions of their
cloud services. The broker maintains its own vocabulary for service description that
providers have to use. This vocabulary can be understood as a kind of reference
model for cloud service attributes that allows a service description to be reconcilable

1 http://www.spotcloud.com/
2 http://www.vordel.com/
3 http://www.rightscale.com
4 http://www.jitterbit.com/
5 http://www.snaplogic.com/

180 K. Bratanis and D. Kourtesis

with descriptions of other cloud services as well as with consumers’ policies. The
broker offers the same description vocabulary to consumers, in order for them to
create their own custom policies about the services they consume through the broker.
Once a cloud service is accepted for onboarding into the brokerage platform it is
continuously monitored for quality assurance purposes. Intentional or unintentional
changes to the service or to its associated descriptive artefacts will be detected and
evaluated as soon as they occur, allowing the consumer to be notified early and to
take appropriate mitigation measures to continue meeting their service consumption
objectives.

Below we provide a step-by-step walkthrough of a usage scenario where the three
roles (broker, provider and consumer) are interacting. To improve readability we have
decomposed the scenario into four phases. The interactions between roles in each
phase are illustrated with the help of a respective BPMN diagram.

Phase 1: Service Onboarding

1. The provider creates a description of the service to be onboarded based on
the broker’s vocabulary and submits the description to the broker. The
description references a wide range of service characteristics, including the
service’s pricing, security features, and reliability guarantees.

2. The broker checks if the service description includes all necessary
description elements. The provider is not obliged to describe a service with
respect to all of the attributes listed in the broker’s vocabulary but some
service attributes are required. Service availability over a defined period of
time is one such mandatory description element6. For the service in question
the provider commits to availability of 99.92% on a monthly basis.

3. The broker determines that the service description includes all of the
required description elements, onboards the service, and starts to monitor the
service and its associated description artefacts for changes.

Fig. 1. The flow of service onboarding activities

6 For example, the availability guarantees that Amazon offers for its EC2 and EBS services is a

Monthly Uptime Percentage of at least 99.95% (as of June 2013). In the event that Amazon
does not meet this commitment, consumers receive service credit as compensation.

 Introducing Policy-Driven Governance and Service Level Failure Mitigation 181

Phase 2: Service Selection

4. The consumer discovers the service in the broker’s service directory and
subscribes to use it.

5. The consumer creates a policy governing how the service should be
delivered. Based on the broker’s vocabulary, the policy states that monthly
service availability should be no less than 99.90%7 and the time it takes for
the service to recover from a failure should be no more than 30 minutes per
outage. This is the recovery time objective (RTO) policy of the consumer.

6. The consumer submits the policy to the broker so that the latter can monitor
the compliance of the selected service to the consumer’s policy on a
continuous basis.

7. The broker evaluates the consumer’s policy against the description of the
selected service and determines that the service description is conformant to
the policy. The broker takes no further action.

Fig. 2. The flow of policy conformance evaluation activities during service selection

Phase 3: Change to the Service’s Terms of Provision

8. The provider updates the service description, changing the service
availability commitment to 99.95%.

9. The broker detects the change in the service description artefact and carries
out a conformance check to determine whether or not this creates a conflict
with the consumer’s policy. The change is not found to raise any
conformance issues because the new availability commitment (99.95%) is
higher than the consumer’s monthly availability objective (99.90%). The
broker takes no further action.8

7 In a 24x7 setting, 99.90% availability translates to 43 min and 12 sec of downtime per month.
8

 In case the change to the service’s terms of provision gave rise to a violation of the
consumer’s policy (e.g. if the new availability commitment was 99.85%) the broker would
have alerted the consumer to take action. This could mean substituting the service or lowering
the consumer’s expectations in their RTO policy.

182 K. Bratanis and D. Kourtesis

Fig. 3. The flow of policy conformance evaluation activities upon a change to the service
caused by updating its terms of provision

Phase 4: Change to the Service’s Availability

10. The service provider experiences an unexpected failure that causes service
outage.

11. The broker detects a change in service availability (downtime).
12. The broker alerts both the consumer and the provider about the failure.
13. The broker starts a timer to track the service’s downtime. At the same time, it

proactively attempts to identify alternative services to potentially serve as
substitutes for the failing service.

14. The broker predicts that the time it will take for the service to resume
operation (time to recovery, or TTR) is 12 minutes. This is shorter than the
objective of 30 minutes per outage as specified in the consumer’s RTO
policy. The broker concludes that the service is likely to recover within a
time period that is tolerable for the consumer, and takes no further action.

15. The 12 minute period lapses and the service is still down, which means that
the broker’s predicted TTR was optimistic. The broker concludes that it is
very likely that the provider will not be able to meet the consumer’s RTO of
30 minutes9, thus causing a major disruption to business continuity for the
consumer.

16. The broker alerts the consumer to obtain approval to proactively substitute
the service with one of the identified candidates before downtime exceeds
the consumer’s tolerable threshold. At the same time, it also alerts the
provider.

17. The consumer approves the proactive substitution of the service. The broker
has thus helped the consumer to mitigate the impact from a potential service
level failure due to a sustained service outage and the consequent violation of
the consumer’s RTO. In doing so, the broker has helped the consumer to
meet their objectives with respect to business continuity.

9 In case the predicted TTR value was greater than the RTO specified in the consumer’s policy

(e.g. if the broker predicted a TTR of 31 minutes), the broker would have immediately alerted
the consumer to obtain approval for proactive service substitution.

 Introducing Policy-Driven Governance and Service Level Failure Mitigation 183

Fig. 4. The flow of service level failure mitigation activities upon a change to the service
caused by an unexpected outage

For more example scenarios of continuous quality assurance intermediation we
refer the interested reader to [3].

4 Challenges for Continuous Quality Assurance Intermediation

In this section we discuss the challenges associated with introducing capabilities for
policy-driven service governance and service level failure mitigation in cloud service
brokers. A research roadmap that considers other intermediation capabilities in the
broader scope of continuous quality assurance and optimisation can be found in [4].

4.1 Challenges of Policy-Driven Governance for Cloud Services

Because of the fact that cloud service brokers intermediate between a consumer of
cloud services and multiple service providers, they are uniquely positioned to address
the need of the consumer to exercise as much control as possible over the external
services on which it relies. This can be understood as a problem of cloud service

184 K. Bratanis and D. Kourtesis

governance. In this context we take governance to mean the enforcement of policies
to manage the lifecycle of a cloud service as seen from the consumer’s perspective, as
well as to apply quality control over the service and its associated artefacts. These two
concerns map onto two complementary forms of policy-driven governance: process
governance and artefact governance.

Process governance refers to defining and enforcing policies to ensure that cloud
services are selected, tested, used and retired in a structured and disciplined manner,
with explicit conditions for transitioning from one service lifecycle phase to the next.
Artefact governance, on the other hand, refers to defining and enforcing policies to
ensure that artefacts associated with cloud services conform to certain technical or
business constraints.

Some key challenges in the scope of supporting policy-driven governance inside a
cloud service brokerage platform include:

• How to achieve adequate separation of concerns in the design of the
brokerage platform’s governance support system? In designing a governance
support system we need to take into account the fact that there are three main
roles at play in a policy-driven governance setting: (1) the role of providing the
policies, (2) the role of providing data about the resources which are governed
by the policies, and (3) the role of evaluating the governed resource data
against the policies. In the scenario of Section 3 these roles are assumed by the
service consumer, the service provider and the service broker, respectively.
Each role has a different primary concern (i.e. maintaining governance
policies, maintaining data about governed resources, and maintaining
mechanisms to evaluate policies). The governance support system should be
designed so as to facilitate all of them. As Baker puts it, “if we are attempting
to separate concern A from concern B, then we are seeking a design that
provides that variations in A do not induce or require a corresponding change
in B (and usually, the converse)” [5]. For instance, in our context, this means
that if the service consumer changes the way that a governance policy is
represented this should not induce a change in how cloud service providers
represent governed resource data, or how the broker evaluates service provider
data against service consumer policies. The entities assuming the three roles
should be allowed to evolve independently of each other.

• How to effectively represent governance policies and governed resource data?
The means of policy representation determine the ease with which policies can
be: (1) analysed in a systematic way for validation/troubleshooting and policy
evaluation, (2) shared with other stakeholders in a cloud service ecosystem, (3)
exchanged between different software systems, (4) cross-referenced to other
policies so as to keep track of relationships between policies at different
hierarchical levels and be able to know which policy needs to change when
some other policy changes, (5) cross-referenced to classes of governed
resources so as to keep track of which policies are relevant to each kind of
governed resource. Likewise, the means of representing governed resource
data determine the ease with which the data can be: (1) analysed in a
systematic way for validation/troubleshooting and policy evaluation, (2) shared
with other stakeholders in a cloud service ecosystem, (3) exchanged between
different software systems, (4) cross-referenced to other governed resource

 Introducing Policy-Driven Governance and Service Level Failure Mitigation 185

data so as to keep track of dependencies between cloud services and between
cloud service artefacts, (5) cross-referenced to policies so as to keep track of
which policies are applicable to each governed resource. Notably, the way in
which this challenge is met in the design of a governance support system is
highly relevant to how adequately the first challenge above can be addressed
(separation of concerns).

4.2 Challenges of Service Level Failure Mitigation for Cloud Services

The service levels delivered by cloud services cannot be assumed to be static. Service
performance may degrade over time, and infrastructure failures (i.e. failures of servers
or network equipment) may result in outages. When service performance does not
meet the service level objectives(s) that a consumer has specified this is called a
service level failure. This means that a temporary failure to the service delivery
infrastructure of a provider may not necessarily give rise to a service level failure for
a particular consumer. Consumers need to monitor their service level objectives and
to mitigate the impact of service level failures when these occur. This creates scope
for a cloud service broker to offer highly valuable services as an intermediary.

The goal of service level failure mitigation is to assist the consumer to avoid or
minimise the impact from a potential failure of the service to meet the consumer’s
targets. Mitigation of service level failures requires processes for monitoring various
metrics about the operation of a cloud service and generating predictions about how
the values of those metrics will evolve. Based on the predictions, the likelihood of the
service to continue meeting the consumer’s service level objectives can be assessed. If
there is indication of an impending service level failure the broker can issue early
warnings to consumers allowing them to take proactive mitigation measures.

Key challenges in the scope of developing intermediation mechanisms for service
level failure mitigation for cloud services include the following:

• Which metrics are relevant and useful for consumers and which of those
should the broker collect data for? The cloud service broker has to support
metrics that are useful to consumers, by performing data collection for those
metrics and predicting impending failures of the service providers to meet the
consumer’s objectives. For example, some useful metrics include availability,
throughput, completion time, response time, mean downtime and others.
However, there is no uniform standard for metrics used across cloud service
providers, which makes it more challenging for the broker to monitor the same
metric in different providers.

• How to implement scalable monitoring for different types of metrics from a
large number of cloud services, without overwhelming the cloud service
broker, or introducing additional overhead to the cloud service? The broker
has to monitor metrics for a continuously increasing number of cloud services
and analyse them in near real-time to identify impending failures of the
provider to meet the consumers’ objectives. The broker has to offer affordable
means for service providers to publish data about the service for monitoring,
because most service providers do not have appropriate interfaces in place.
In addition, the broker has to minimise the overhead introduced to the cloud
services as a result of the monitoring activity.

186 K. Bratanis and D. Kourtesis

• Which is the most appropriate prediction technique that the cloud service
broker can employ for identifying impeding service level failures with
acceptable accuracy? The broker has to analyse the monitored data about the
metrics by applying appropriate prediction techniques for determining future
values of metrics, preferably in near real-time. The broker has to deal with the
use and maintenance of different prediction models, depending on the type of
the monitored data, and instantiate those models for making predictions in
massive scale. The broker has to generate predictions for several metrics which
concern many cloud services and several objectives of a large number of
consumers who use those services.

5 Related Work

5.1 Related Work on Policy-Driven Cloud Service Governance

A look at different cloud service intermediaries, such as cloud application platform
providers, reveals different approaches and tools for policy-driven governance over
processes and artefacts. Development and deployment of cloud services on the Intuit
Partner Platform10 proceeds through four phases, each of which is called ‘a line of
development’. The phases are called development, quality assurance, staging, and
publishing. Similarly, on Heroku11, add-ons (i.e. third-party services) advance through
the phases of development, alpha, private beta, beta, and general availability. In
Force.com12 the majority of quality checks on cloud service artefacts are associated
with a particular phase towards the end of the development and deployment process,
referred to as ‘security review’ – though the scope of the review carried out is actually
much broader than security.

The industrial state of the art in policy-based governance follows closely on the
evolution of tools supporting different aspects of service governance, such as artefact
cataloguing and storage, service lifecycle management, dependency tracking, and
policy enforcement. Those tools are typically integrated within some kind of registry
and repository system [6], [7]. Vendors of today’s governance registry and repository
systems support different means by which policies can be encoded and enforced [8],
[9], [10]. As shown by a recent survey of methods for policy management in
contemporary open source registry and repository systems [11], a major weakness in
the state of the art is the lack of proper separation of concerns with regard to defining
rules for governance and acting upon them. Policy definition and policy enforcement
are entangled in the implementation of a single software component – the policy
evaluation engine. For the most part, the rules that a policy comprises are encoded in
an imperative manner, in the same programming language that the registry and
repository system has been implemented, and as part of the same code that checks the
data for violations. This can be shown to create many negative side effects.

10 https://developer.intuit.com/
11 https://www.heroku.com/
12 http://www.force.com/

 Introducing Policy-Driven Governance and Service Level Failure Mitigation 187

To avoid the problems stemming from insufficient separation of concerns, recent
works in the field of policy-based systems management stress the importance of
designing software applications such that business rules are kept separate from the
core program logic. It is best for such rules to be captured though policy-specification
languages and to be consulted at run-time when user activity dictates to do so [12].

Several works motivated by similar objectives have focused on the enhancement of
existing policy languages and tools with ontology-based methods of representation
and processing. The most prominent early works along this line were KAoS [13],
Ponder [14], and Rei [15]. Other, more recent works in a similar direction are those
by Kolovski et al. [16] and Kolovski and Parsia [17].

Several recent research efforts and industrial pilot projects have been turning their
attention to the benefits that the application of ontology-based modelling and
reasoning can have with respect to different aspects of software engineering [18]. As
Bergman points out [19], many of the benefits which are generally obtained by
ontology-centric approaches to the development of information systems are attributed
to the fact that the locus of effort is shifted from software development and
maintenance to the creation and modification of knowledge structures. Uschold cites
six important benefits which result from the increased level of abstraction and the use
of formal structures and methods in ontology-driven information systems: reduced
conceptual gap; increased automation; reduced development times; increased
reliability; increased agility/flexibility; decreased maintenance costs [20].

The above benefits of ontology-centric approaches to information systems
engineering, in combination with the Semantic Web standards and tools currently
available [21] appear to provide a promising foundation for addressing the
shortcomings of policy management in contemporary governance support systems
[11]. Results from efforts with similar objectives are already being reported in the
wider context of policy-driven systems management, such as the work by IBM on the
transformation of sources of management data into Linked Data providers to allow for
uniform logic-based queries over heterogeneous systems in a network [22].

5.2 Related Work on Service Level Failure Mitigation for Cloud Services

Over the past decade there has been an increasing interest in incorporating self-
managing capabilities in software systems, motivated by high complexity involved in
the everyday administration, as well as the detection, diagnosis, and resolution of
failures in software systems. The research fields of Autonomic Computing [23] and
Self-Adaptive Systems [24] continue to demonstrate fundamental advances towards
understanding the challenges associated with the aforementioned research directions.
Several approaches have been proposed for partially addressing the detection of
failures, the diagnosis process to identify the cause of failure and, the automation of
adaptation actions, as a solution to recovering from failures.

Recent research works on cloud service monitoring [25], [26] focus on the
infrastructure level, and do not consider cloud services related to the platform and the
application levels. The monitoring techniques found in the field of service-oriented
computing can provide a useful inspiration for addressing those two levels.

Research in self-adaptive service-based systems outlined in Papazoglou et al. [27]
can serve as the foundation for exploring novel mechanisms for service level failure

188 K. Bratanis and D. Kourtesis

mitigation in the context of cloud service brokerage, since cloud services, ranging
from programmatically-accessible web APIs to complex software applications
delivered as a service, present characteristics similar to those of services in the
service-oriented architecture. Therefore, the research literature focusing on self-
adaptive service-based systems is considered highly relevant.

Monitoring is well studied in self-adaptive service-based systems. Monitoring
approaches follow either a push mode, where events or data are sent to a monitoring
component, or a pull mode, where a monitoring component queries the subject of
monitoring. Such approaches range from verification of service behaviour [28] and
evaluating rules for detecting SLA violations [29] to dependency analysis for
identifying causes offending some KPIs [30] and complex event processing for
detecting situations based on the correlation of basic events [31], [32].

There exist approaches that attempt to proactively prevent failures from occurring
by systematically testing services to uncover failures and deviations of quality of
service from what is expected. Existing approaches for testing service-based systems
mostly focus on testing during design-time, which is similar to testing of traditional
software systems [33]. Others, like PROSA [34], exploit online testing [35] at run-
time in order to proactively trigger adaptation. The focus of these approaches is to
prevent QoS degradation of the service-based system.

A more relevant work is the PREvent framework [36], [37], which integrates
event-based monitoring, prediction of SLA violations using machine learning, and
runtime prevention of such violations at the provider-side by triggering adaptation
actions in service compositions. There are also few other similar works [38], [39]
concerned with prediction that make use of historical data regarding the execution of
a business process to predict the performance of process instances.

The goal of the aforementioned works is to help the provider to prevent failures
from occurring at the provider-side, whereas in our work we aim at helping a service
consumer to avoid the impact of the provider’s failure to meet the consumer’s
objectives. Furthermore, these approaches come from a different domain than cloud
computing and they do not consider the intermediary’s perspective, which aims at
adding value to service consumers. Nevertheless, they offer inspiration for
investigating prediction techniques for mitigation of service level failure realised by a
cloud service broker. To the best of our knowledge, our work is the first that
addresses service level failure mitigation in the context of cloud service brokerage.

6 Conclusion and Future Work

In this paper we have examined two facets of continuous quality assurance
intermediation that we expect to become increasingly important in the scope of cloud
service brokerage: policy-driven governance for cloud service and service level
failure mitigation for cloud services. We presented an example scenario which
demonstrates the utility of such types of continuous quality assurance intermediation
capability. We attempted to introduce some basic concepts and key challenges, and to
provide a glimpse of related work that one can build upon to develop solutions.

Our future work relative to policy-driven governance will focus on evaluating a
new approach to the design of governance support systems that addresses the

 Introducing Policy-Driven Governance and Service Level Failure Mitigation 189

challenges discussed in section 4.1. This new approach overcomes many of the
limitations in existing governance support systems and is natively suitable for use in a
cloud service brokerage context. The solution builds on Linked Data principles and
Semantic Web technologies [40] and comprises four major components: 1) a cloud
service governance ontology serving as common vocabulary for describing
governance policies and governed resources; 2) a methodology for encoding
governance policies that facilitates better knowledge management about governance
operations and enables automated semantic analysis of governance policies; 3)
mechanisms to automatically generate semantic descriptions of governed resources by
means of transformation from their native representation into Linked Data; and 4) a
generic and reusable infrastructure to automatically evaluate descriptions of governed
resources against applicable policies. Past research by Kourtesis et al. [11], [41] will
serve as baseline to this work.

In the context of service level failure mitigation, our future work will focus on
addressing the three challenges mentioned in section 4.2 through the development of a
scalable approach for monitoring and prediction of metrics comprising three major
components: 1) a set of metrics that are relevant to cloud service consumers; 2) a
scalable software architecture for data collection based on the convergence of the
“push” and “pull” communication paradigms and the use of Linked Data principles;
3) a study of failure prediction approaches using machine learning techniques
appropriate for generating predictions for different kinds of metrics. We will use as
baseline previous work on engineering of monitoring architectures for service-based
systems [42], measuring many kinds of non-functional and functional properties of
services [43] and the different metrics across the cloud stack [44].

References

1. Benoit, J., Lheureux, D., Plummer, C.: Cloud Services Brokerages: The Dawn of the Next
Intermediation Age. Gartner (2010)

2. Verginadis, Y., Patiniotakis, I., Mentzas, G., Kourtesis, D., Bratanis, K., Friesen, A.,
Simons, A.J.H., Kiran, M., Horn, G., Rossini, A., Schwichtenberg, A., Gouvas, P.: D2.1
State of the art and research baseline. Broker@Cloud Project deliverable (2013)

3. Kourtesis, D., Bratanis, K., Friesen, A., Simons, A.J.H., Kiran, M., Verginadis, Y.,
Rossini, A., Schwichtenberg, A., Gouvas, P.: D2.3 Requirements Analysis Report.
Broker@Cloud Project deliverable (2013)

4. Bratanis, K., Kourtesis, D., Paraskakis, I., Verginadis, Y., Mentzas, G., Simons, A.J.H.,
Friesen, A., Braun, S.: A Research Roadmap for Bringing Continuous Quality Assurance
and Optimization to Enterprise Cloud Service Brokers. In: Proc. of eChallenges 2013,
Dublin, Ireland (2013)

5. Baker, M.: The Lost Art of Separating Concerns.InfoQ (2006)
6. Marks, E.A.: Service-Oriented Architecture Governance for the Services Driven

Enterprise. John Wiley & Sons, Hoboken (2008)
7. Zhang, L., Zhou, Q.: CCOA: Cloud Computing Open Architecture. In: Proc. 2009 IEEE

Int. Conf. on Web Services (ICWS 2009), pp. 607–616. IEEE (2009)
8. WSO2 Governance Registry,

http://wso2.com/products/governance-registry/

190 K. Bratanis and D. Kourtesis

9. IBM WebSphere Service Registry and Repository,
http://www.ibm.com/software/integration/wsrr/

10. Oracle Service Registry, http://www.oracle.com/us/
products/middleware/soa/service-registry/overview/index.html

11. Kourtesis, D.: Towards an ontology-driven governance framework for cloud application
platforms, Dept. Comp. Sci. Univ. Sheffield, UK. Tech. Rep. CS-11-11 (2011)

12. Fisler, K., Krishnamurthi, S., Dougherty, D.J.: Embracing policy engineering. In: Proc. of
the FSE/SDP Workshop on Future of Software Engineering Research. ACM (2010)

13. Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A., Dalton, J., Aitken, S.: KAoS
Policy Management for Semantic Web Services. In: IEEE Intelligent Systems, vol. 19(4),
pp. 32–41. IEEE (2004)

14. Damianou, N., Dulay, N., Lupu, E.C., Sloman, M.: The Ponder Policy Specification
Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995,
pp. 18–38. Springer, Heidelberg (2001)

15. Kagal, L., Finin, T., Johshi, A.: A Policy Language for a Pervasive Computing
Environment. In: Proc. of the 4th IEEE Int. Workshop on Policies for Distributed Systems
and Networks, pp. 63–74. IEEE, Washington, DC (2003)

16. Kolovski, V., Parsia, B., Katz, Y., Hendler, J.: Representing Web Service Policies in
OWL-DL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 461–475. Springer, Heidelberg (2005)

17. Kolovski, V., Parsia, B.: WS-Policy and beyond: application of OWL defaults to Web
service policies. In: Proc. of the 2nd Int. Semantic Web Policy Workshop, USA (2006)

18. Gasevic, D., Kaviani, N., Milanovic, M.: Ontologies and Software Engineering. In:
Handbook on Ontologies, 2nd edn., pp. 593–615. Springer, Heidelberg (2009)

19. Bergman, M.: Ontology-Driven Apps Using Generic Applications, AI3 blog (2011)
20. Uschold, M.: Ontology-Driven Information Systems: Past, Present and Future. In:

Eschenbach, C., Gruninger, M. (eds.) Proc. of the 5th Int. Conf. on Formal Ontology in
Information Systems (FOIS 2008), pp. 3–18. IOS Press, The Netherlands (2008)

21. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies.
Chapman & HallCRC (2009)

22. Feridun, M., Tanner, A.: Using linked data for systems management. In: Proc. of the IEEE
Network Operations and Management Symposium, NOMS (2010)

23. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, models, and
applications. ACM Computing Surveys 40(3), 1–28 (2008)

24. Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems 4, 1–42 (2009)

25. Bertolino, A., Calabro, A., Lonetti, F., Sabetta, A.: GLIMPSE: a generic and flexible
monitoring infrastructure. In: Proceedings of the 13th European Workshop on Dependable
Computing, New York, NY, USA, pp. 73–78 (2011)

26. Romano, L., De Mari, D., Jerzak, Z., Fetzer, C.: A Novel Approach to QoS Monitoring in
the Cloud. In: Proceedings of the First International Conference on Data Compression,
Communications and Processing (CCP), pp. 45–51 (2011)

27. Papazoglou, M., Pohl, K., Parkin, M., Metzger, A. (eds.): Service research challenges and
solutions for the future internet: S-Cube - towards engineering, managing and adapting
service-based systems. Springer, Berlin (2010)

28. Dranidis, D., Ramollari, E., Kourtesis, D.: Run-time Verification of Behavioural
Conformance for Conversational Web Services. In: Proceedings of the 7th IEEE European
Conference on Web Services, ECOWS (2009)

 Introducing Policy-Driven Governance and Service Level Failure Mitigation 191

29. OriolHilari, M., Marco Gomez, J., Franch, X., Ameller, D.: Monitoring Adaptable SOA
Systems using SALMon. In: Proceedings of the 1st Workshop on Monitoring, Adaptation
and Beyond (MONA+), pp. 19–28 (2008)

30. Wetzstein, B., Leitner, P., Rosenberg, F., Dustdar, S., Leymann, F.: Identifying influential
factors of business process performance using dependency analysis. Enterp. Inf. Syst. 5(1),
79–98 (2011)

31. Baresi, L., Caporuscio, M., Ghezzi, C., Guinea, S.: Model-Driven Management of
Services. In: Proceedings of the 2010 IEEE 8th European Conference on Web Services
(ECOWS), pp. 147–154 (2010)

32. Hermosillo, G., Seinturier, L., Duchien, L.: Using Complex Event Processing for Dynamic
Business Process Adaptation. In: Proc. of the IEEE SCC 2010, pp. 466 (2010)

33. Gehlert, A., Metzger, A., Karastoyanova, D., Kazhamiakin, R., Pohl, K., Leymann, F.,
Pistore, M.: Integrating Perfective and Corrective Adaptation of Service-based
Applications. In: Dustdar, S., Li, F. (eds.) Service Engineering: European Research Results
Book, pp. 137–169. Springer (2011)

34. Hielscher, J., Kazhamiakin, R., Metzger, A., Pistore, M.: A framework for proactive self-
adaptation of service-based applications based on online testing. In: Mähönen, P., Pohl, K.,
Priol, T. (eds.) ServiceWave 2008. LNCS, vol. 5377, pp. 122–133. Springer, Heidelberg
(2008)

35. Dranidis, D., Metzger, A., Kourtesis, D.: Enabling Proactive Adaptation through Just-in-
Time Testing of Conversational Services. In: Di Nitto, E., Yahyapour, R. (eds.)
ServiceWave 2010. LNCS, vol. 6481, pp. 63–75. Springer, Heidelberg (2010)

36. Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.:
Runtime prediction of service level agreement violations for composite services. In: Dan,
A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 176–
186. Springer, Heidelberg (2010)

37. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, Prediction and
Prevention of SLA Violations in Composite Services. In: Proceedings of the 2010 IEEE
International Conference on Web Services (ICWS 2010), pp. 369–376. IEEE (2010)

38. Sahai, A., Machiraju, V., Sayal, M., Van Moorsel, A., Casati, F.: Automated SLA
monitoring for web services. In: Feridun, M., Kropf, P.G., Babin, G. (eds.) DSOM 2002.
LNCS, vol. 2506, pp. 28–41. Springer, Heidelberg (2002)

39. Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-Driven Quality of Service Prediction.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp.
147–161. Springer, Heidelberg (2008)

40. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space. In:
Synthesis Lectures on the Semantic Web: Theory and Technology, vol. 1(1), pp. 1–136.
Morgan and Claypool (2011)

41. Kourtesis, D., Paraskakis, I., Simons, A.J.H.: Policy-driven governance in cloud
application platforms: an ontology-based approach. In: Proc. 4th. Int. Workshop on
Ontology-Driven Information Systems Engineering (2012)

42. Bratanis, K.: Towards engineering multi-layer monitoring and adaptation of service-based
applications, Dept. Comp. Sci. Univ. Sheffield, UK. Tech. Rep. CS-12-04 (2012)

43. Bratanis, K., Dranidis, D., Simons, A.J.H.: An Extensible Architecture for Run-time
Monitoring of Conversational Web Services. In: Proc. of the 3rd International Workshop
on Monitoring, Adaptation and Beyond / ECOWS 2010, pp. 9–16. ACM (2010)

44. Bratanis, K., Dranidis, D., Simons, A.J.H.: SLAs for cross-layer adaptation and monitoring
of service-based applications: A case study. In: Proc. of the International Workshop on
Quality Assurance for Service-Based Applications, p. 28. ACM (2011)

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 192–208, 2014.
© Springer International Publishing Switzerland 2014

Model-Based Testing in Cloud Brokerage Scenarios

Mariam Kiran1, Andreas Friesen2, Anthony J.H. Simons1,
and Wolfgang K.R. Schwach2

1 Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello, Sheffield S1 4DP, United Kingdom

{M.Kiran,A.J.Simons}@sheffield.ac.uk
2 SAP AG, Vincenz-Prießnitz-Str. 1, 76131 Karlsruhe, Germany

{Andreas.Friesen,Wolfgang.Karl.Rainer.Schwach}@sap.com

Abstract. In future Cloud ecosystems, brokers will mediate between service
providers and consumers, playing an increased role in quality assurance,
checking services for functional compliance to agreed standards, among other
aspects. To date, most Software-as-a-Service (SaaS) testing has been performed
manually, requiring duplicated effort at the development, certification and
deployment stages of the service lifecycle. This paper presents a strategy for
achieving automated testing for certification and re-certification of SaaS
applications, based on the adoption of simple state-based and functional
specifications. High-level test suites are generated from specifications, by
algorithms that provide the necessary and sufficient coverage. The high-level
tests must be grounded for each implementation technology, whether SOAP,
REST or rich-client. Two examples of grounding are presented, one into SOAP
for a traditional web service and the other into Selenium for a SAP HANA rich-
client application. The results demonstrate good test coverage. Further work is
required to fully automate the grounding.

Keywords: Model-based Testing, Cloud Service Brokerage, Cloud Broker,
Web Service Testing, Lifecycle Governance.

1 Introduction

Business are shifting to Cloud computing as a new paradigm and a 5th utility service
after water, electricity, gas and telephony [1] to save money on infrastructure
maintenance and technical personnel. Increasingly complex Cloud ecosystems are
arising, which offer various kinds of intermediation services that cater to the large
number of consumers and service providers. Examples of such intermediation include
finding services needed from a range of providers or marketplaces, integrating services
with ERP systems, aggregating services for added-value, or monitoring and managing
them. Cloud brokerage is the term given to explain this business model [2].

Cloud brokerage caters to a variety of capabilities supporting the needs of
consumers and providers. In addition to integration and discovery, quality assurance
(QA) is an important role for the broker as well. Mechanisms for QA may include
such techniques as SLA monitoring, policy checks or service testing. Few examples

 Model-Based Testing in Cloud Brokerage Scenarios 193

of such mechanisms have appeared in the Cloud so far, although CloudKick [3]
provided monitoring, and Rightscale [4] provided load-balancing as services. This
paper reports on some work conducted by the EU FP7 project Broker@Cloud that
explicitly targets the functional testing of services in the Cloud, as part of a suite of
quality assurance mechanisms. The paper presents a complete model-based testing
methodology supporting automatic test generation for software services that are
offered in Cloud brokerage scenarios.

In the rest of this paper, section 2 introduces the Cloud brokerage scenarios in
which model-based testing is an enabling technology for functional QA. Section 3
presents the specification and test generation methodology. Section 4 illustrates two
case studies, for which model-based tests were generated. Section 5 concludes with
an analysis of the approach so far.

2 Functional Testing in Cloud Brokerage Scenarios

Previous research on service testing has come out of strategies for testing Service-
Oriented Architectures (SOA) [5, 6, 7, 8]. The emphasis is on provider-based testing
of services, using translations into agreed web standards [5]. For example, Bertolino
et al. [6] translate category-partition testing to XML [6], Heckel et al. devise a graph-
based approach [7] and a contract-based approach [8] to exercise service functional
protocols in a black-box way. A few approaches [9, 10, 11] have developed finite
state-based testing methods, recognizing the state-based nature of services, but find it
necessary to augment web standards, which only describe service interfaces (WSDL1)
and message formats (SOAP2), with additional semantic information, in order to
capture how the services should behave. These research prototypes have yet to be
taken up in industry, where provider-based service testing typically relies on writing
manual tests to cover common usage scenarios.

In the future, functional testing may form a much stronger integral part of service
development, certification and composition in Cloud ecosystems. Not only is there a
need for a standard way to specify services for assuring compatibility, but testing will
form part of the trust-building process at multiple stages in the service lifecycle:

• Providers will wish to offer comparable services that conform to agreed
standards (in a competitive market).

• Brokers will publish these standards and offer a certification process for
validating services as part of their onboarding onto a given platform.

• Consumers will want to verify their correct behaviour, before they use
services, or compose applications around them.

We expect this to emerge in the same way as standards for certifying security, or
for general software development. To provide such a level of assurance, it will be
necessary to reduce the difficulty and cost of repeatedly recertifying services, where
these are constantly evolving and being upgraded. Model-based testing is one
enabling technology that may be exploited to support automatic test re-generation and

1 Web Services Description Language.
2 Simple Object Access Protocol.

194 M. Kiran et al.

re-testing when functional specifications are changed. Below, we describe the future
business context for certifying services in the Cloud and investigate the potential
benefits of model-based testing.

2.1 Cloud Brokerage and the Service Lifecycle Model

Service intermediation, or brokerage, is becoming increasingly recognized as a key
component of the Cloud computing value chain [2]. We propose a Service Lifecycle
Model (SLM) to describe systematically the relevant processes governing services in
the context of Cloud brokerage. The SLM consists of four phases. The first three are
related to the stages of service provision: Service Engineering, Service Onboarding,
and Service Operation. The fourth is the on-going Service Evolution phase.

Fig. 1. The proposed Service Lifecycle Model

By analogy with software engineering, the service lifecycle starts with Service
Engineering. The Service Engineering phase consists of Design, Development and
Testing steps, carried out by the service provider. Once a Cloud service has been
successfully developed and tested, and a “go to market” decision has been taken by
the provider, the service enters the Service Onboarding phase. This phase consists of
Registration, Certification/Assessment and, once the service is successfully qualified,
Enrolment, to make the service visible to potential consumers and make it available
for subscription. A service enters the Service Operation phase with the first consumer
deciding to use the service. The most typical tasks are Service Management and

 Model-Based Testing in Cloud Brokerage Scenarios 195

Assurance to manage relationships and meet agreed usage conditions. Finally, there
is a fourth, Service Evolution phase which cuts across the whole lifespan of a service.
The main task here is Change Management. Ultimately, the service lifespan ends
with the Deprovisioning of the service.

It is clear that functional testing forms part of this lifecycle. Service testing
currently relies on informal usage scenarios offered by the provider for certification
purposes, which typically describe only part of the service’s behaviour (SAP; CAS
Software; SingularLogic)3. Testing determines whether the scenarios execute as
specified, but tests are usually incomplete. While providers make use of test execution
engines such as JUnit (for code) and Selenium (for web interfaces), tests are devised
manually and this represents a large effort, duplicated at different stages of the
lifecycle. Furthermore, there is no unified testing approach adopted by providers and
brokers, since there is no shared formal specification of the service, so it is unclear
whether the same QA has been applied across different service implementations, or
across different host platforms. The need for commonality in service description and
repeatable quality assurance after testing on multiple platforms is what distinguishes
the current research from other work on service testing [5-11].

To address this, we propose a common model-based testing approach, offered as a
service to providers, hosting platforms, brokers and consumers, as a means to close
this interoperability gap and offer a shared level of QA. Brokers will publish common
specifications and providers will agree to develop services up to these specifications.
During the development stage, providers will test the services thoroughly. During the
certification stage, brokers will validate the service up to the expected specification,
using model-based testing. Testing may be repeated whenever a service is deployed
to a different platform requiring a different implementation strategy (or grounding,
see below), whether as a RESTful4 web service, or a SOA-based web service using
WSDL and SOAP, or even a rich-client application written in bespoke JavaScript.
Internal improvements which do not change the interface may be validated by
retesting. Service upgrades will need to offer a modified specification, from which
all-new tests are generated. This will significantly help with the re-certification of
comparable services, in a rapidly evolving Cloud ecosystem.

2.2 Model-Based Testing as an Enabling Technology

Model-based testing (MBT) is a methodology in which the designer supplies a
specification, or model, that succinctly describes the behaviour of a software system,
from which tests are eventually generated. The kinds of model or specification may
include: a state-based specification, a functional specification, UML with OCL5 pre-
and postconditions, or a language grammar [12, 13]. The model serves as an oracle
when generating tests for the system, linking specific test inputs with expected
outputs [14, 5] deriving the correct results for the tests. The test generation algorithm

3 Personal communication, Broker@Cloud industry partners.
4 Representational State Transfer - standard HTTP running on TCP/IP.
5 Object Constraint Language, part of the Unified Modelling Language.

196 M. Kiran et al.

also makes use of the model to determine the necessary and sufficient test coverage,
up to some assumptions about the system-under-test [14].

Algorithm-driven test generation creates test-cases missed by developers (blind spots
in their perceived behaviour of the system) and avoids duplicate tests that redundantly
check a property more than once. The tests are then executed on the system, whose
actual outputs are validated against the expected outputs. The advantages of MBT are
the creation of a model, which can be internally verified for completeness and
consistency, the automatic generation of test suites, the ability to determine the
necessary system coverage and the automatic execution of the tests. The disadvantages
are that the approach demands certain skills of testers in understanding the models, and
that testing sometimes leads to state-space explosion [15].

The demands of software testing require that you drive an implementation through
all of its states and transitions and observe that the implementation corresponds to the
specification after each step. One of the first extended finite-state machine models to
support this was Laycock’s Stream X-machine (SXM) [16], which captures the
behaviour of a software system in a fully-observable step-wise fashion. This work
was extended by Holcombe and Ipate [14], who resolved the problem of the state
explosion by abstraction into hierarchies of nested SXMs, which could be tested
separately. Their proof of the equivalence of the nested machines to the expanded flat
machine resulted in a tractable testing methodology that was guaranteed to find all
faults in a system after testing [17].

Most work on testing software services has to date focused on Service-Oriented
Architectures (SOA) rather than specifically on the Cloud [5], although the
mechanisms are similar. SOA services are published using WSDL6 interfaces that
typically support testing only single operations. However, Ramollari et al. [9]
presented an approach that leveraged extra semantic information attached to
SAWSDL7, in the form of production rules (RIF-PRD8), which supported the
inference of a Stream X-Machine that was then used to generate complete functional
tests. Ma et al. [10] also adopted Stream X-Machine based testing techniques to
automatically generate test cases for BPEL9 processes. Ramollari [11] used a similar
approach to test SOA using explicit X-Machine specifications attached to SAWSDL
service descriptions and using SOAP10 communication. This work was the first to
explore the symmetrical problems of grounding and lifting, the two-way translation
between high-level abstract tests and low-level concrete tests for particular
architectures.

Recent work [18, 19] has explored test generation for rich-client applications,
where the application’s state is maintained as a DOM11-tree, manipulated both by
client-side user-interactions and via asynchronous AJAX callbacks from the server-
side. These approaches rely on automatic inference of a state-based model of the
application, from which suitable test sequences might be determined. Whereas one
method [19] failed to use the model to determine full coverage, relying instead on

 6 Web Service Description Language.
 7 Semantic Annotations for WSDL and XML Schema.
 8 Rule Interchange Format-Production Rule Dialect.
 9 Business Process Execution Language.
10 Simple Object Access Protocol.
11 Document Object Model.

 Model-Based Testing in Cloud Brokerage Scenarios 197

property-based testing, the other [18] converted all sequences into Selenium tests to
drive the user interface, a useful approach to grounding tests for rich-client
applications that we also explore in section 4 below.

3 Testing Methodology in Cloud Brokerage

We expect functional testing to be embedded into the relevant processes of the
Service Lifecycle Model. Figure 2 illustrates the stages in the testing process. A
specification (model) of a Cloud service is created and linked into its service
description. This description is first published to a broker during the onboarding of
the first service of its kind. Once a specification is available, high-level test sequences
may be generated, offering a guaranteed level of state and transition coverage, linking
expected inputs and outputs. Since these will be expressed in a platform-neutral way,
it is necessary to translate the high-level tests into concrete tests, for a particular
architecture, a process we call grounding. The concrete test suite may then be
executed, to produce pass/fail test reports.

Fig. 2. Activity diagram illustrating the model-based testing methodology

This testing process may be offered at different stages of the service lifecycle. For
example, a provider may use an existing service specification to generate tests for a
new, replacement service in development; or a broker may perform functional testing
prior to certifying a service for a particular platform. The functional testing capability
may also be offered as-a-service, for the convenience of other service providers, or to
consumers wishing to gain confidence in the service.

3.1 Design of the XML Specification Model

XML was chosen for the design of the common specification model, since both Cloud
and SOA already make extensive use of XML. The specification of a service consists
firstly of a functional part, which expresses the signatures of the service’s operations
and their inputs, outputs, branching conditions and state update effects on variables
defined in memory. The second part consists of a finite-state machine specification,
capturing the high-level control states of the service and its allowed transitions, where
these are labelled with the names of distinct request/response (event/action) pairs
taken from the operations. The specification language reported here is still a working
prototype and is subject to revision.

198 M. Kiran et al.

The BNF for the main XML elements of the specification language is presented in
figure 3, in which the notation x ::= <y, z, …> denotes a sequence of dependent
children and x ::= y | z | denotes a set of alternative specializations. The set of XML
attributes associated with each node are shown in set-braces.

Service{name} ::= <Memory, Protocol, Machine>

Memory ::= <Constant*, Variable*, Assignment*>

Protocol ::= <Operation+>

Operation{name} ::= <Request, Response+>

Message{name, type} ::= Request | Response

Request{name, type} ::= <Input*>

Response{name, type} ::= <Condition?, Output*, Effect?>

Machine{name} ::= <State+, Transition*>

State{name, initial?, final?} ::= <Transition*>

Transition{name, source, target}

Condition ::= <Predicate>

Predicate ::= Comparison | Proposition | Membership

Effect ::= <Assignment+>

Expression{name, type} ::= Parameter | Function

Parameter{name, type} ::= Constant | Variable | Input | Output

Function{name, type} ::= Assignment | Predicate | Arithmetic

 | Manipulation

Assignment{name, type} ::= <(Variable | Output), Expression>

Proposition{name, type} ::= <Predicate, Predicate>

Comparison{name, type} ::= <Expression, Expression>

Membership{name, type} ::= <Expression, Expression>

Arithmetic{name, type} ::= <Expression, Expression>

Manipulation{name, type} ::= <Expression, Expression, Expression?>

Fig. 3. BNF (Backus-Naur Form) of the service specification language

3.2 Procedure for Generating Complete Functional Tests

A version of the Stream X-Machine test generation algorithm [10, 7] was used to
generate high-level test sequences from the specification. The algorithm determines
the state cover by breadth-first search, then constructs languages of events, consisting
of all possible interleaved sequences of length 1, 2, .., k, up to some chosen coverage
criterion. These are concatenated onto the state cover to generate the high-level
coverage sequences. For low values of k = 2..4, it is possible to ensure that:

• all specification states exist in the implementation;
• no unexpected states exist, such as ill-behaved clones of the expected states;
• all specified target states of transitions also exist in the implementation;
• no unexpected transitions exist in the implementation.

 Model-Based Testing in Cloud Brokerage Scenarios 199

The sequences were then simulated in a model of the machine and protocol, to
determine which sequences should be accepted or rejected. Attempting to traverse a
missing transition should always be rejected, whereas traversing a present transition
may be allowed conditionally, according to the guards governing each response.
Where guards govern an input, more than one test case should be generated, to cover
each input partition. The result is a tree of high-level tests, also expressed in XML,
corresponding to positive sequences that should succeed, and negative sequences that
should fail, when presented to the implementation.

The automatic algorithm ensured that every distinct case in the specification was
covered by at least one test; and also that the tests were minimal (non-redundant) and
exhaustive up to the assumptions in the specification. The algorithm determined the
extent of testing needed to achieve the coverage goals, up to assumptions about
redundancy in the implementation. The algorithmic nature of test generation means
that it is possible to re-test, or generate new tests (after a service upgrade) to the same
coverage levels, promoting a degree of uniformity in QA.

4 Analysis and Evaluation via Case Studies

Two case studies were developed to prototype the test grounding strategy. The first
study was a traditional web service, implemented using Java, WSDL and SOAP. The
second study was a rich-client application developed for the SAP HANA Platform-as-
a-Service (PaaS), which currently offers independent software vendors (ISVs) a
platform and a manual certification process for onboarding their third-party web
services. Whereas the first study focused on the feasibility of translating high-level
tests into SOAP, the second study also investigated ways of supplying grounding
information for creating Selenium tests, as an additional part of the specification.

4.1 Case Study: A Shopping Cart Web Service

The first case study was created as a stand-alone web service, as though developed by
a provider seeking to offer a SOA application, similar to others available in the Cloud.
The provider was allowed to develop the service as they liked (c.f. the Service
Engineering phase), and also provided the specification for it, indicating the service’s
expected behaviour using the XML specification language of figure 3.

Fig. 4. Client-server architecture for a Shopping Cart web service

200 M. Kiran et al.

Figure 4 illustrates the client/server architecture of the Shopping Cart web service.
The client’s presentation logic offered a list of items to purchase, as shown in the
screenshot of figure 5. A Java servlet modelled the control logic, whose high-level
control states and transitions are illustrated by the diagram in figure 6.

Fig. 5. The web form offered by the client-side of the Shopping Cart

Fig. 6. The state machine for the server-side of the Shopping Cart

The memory-state of the application, which corresponded to the items currently
ticked in the web-form, was stored in a database on the server-side. Communication

 Model-Based Testing in Cloud Brokerage Scenarios 201

between the client and server was via SOAP messages and WSDL interfaces. The
client-side issued commands as SOAP requests, which were interpreted on the server-
side. After responding and updating the data state, the server returned a SOAP
response, indicating the action taken. The client-side used Java wrappers to issue
SOAP messages and interpret the responses, which allowed comparison of actual and
expected values.

Figure 6 shows the state machine representing the intended design of the Shopping
Cart service. The states: S = {InitialiseApplication, Shopping, CheckingOut, Done}
represent the control stages in the shopping lifecycle. The alphabet of the machine:
A = {initialise/error, initialize/initOK, additem/displayShoppingList, removeitem/
displayShoppingList, checkout/displayShoppingList, commit/checkoutOK} represents
the complete set of operations. The state-transition logic shows when particular
operations are allowed, for example, the client must connect successfully to the
shopping service before adding items to the cart; and after checking out no further
items may be added. The labels on the transitions correspond to event/action pairs that
eventually correspond to SOAP request/response messages, in this implementation.

The state machine and abstract functional behaviour were encoded in the XML
specification language, and then passed to an independent agent acting as a broker.
From this, abstract coverage sequences were generated by algorithm, using the
parameter setting k=1, yielding the transition cover (sufficient for an implementation
with no redundant states). This test-set attempts to reach every single state and then
fire every possible valid and invalid transition. The sequences were filtered by the
machine to identify present/missing transitions, and then filtered by the functional
specification, to identify the conditions guarding certain transitions.

<TestSuite id="0">

 <Sequence id="1" source="Init" target="Init"/>

 <Sequence id="2" source="Init" target="Shopping">

 <TestStep id="3" name="initialise/initOK">

 <Request id="4" name="initialise" type="Request">

 <Condition id="5">

 <Comparison id="6" name="equals" type="Boolean">

 <Variable id="7" name="isServerReady" type="Boolean"/>

 <Constant id="8" name="true" type="Boolean"/>

 </Comparison>

 </Condition>

 </Request>

 <Response id="9" name="initOK" type="Success"/>

 </TestStep>

 </Sequence>

 … <!-- omitted further Sequence elements -->

</TestSuite>

Fig. 7. Fragment of a high-level test suite for the Shopping Cart

202 M. Kiran et al.

Figure 7 illustrates a fragment of the resulting high-level test suite. The first empty
sequence denotes a test to determine whether the application can be initialized. The
second sequence shows the single step necessary to reach the Shopping state, with
extra information about the memory-state of the server needed to satisfy the
precondition guard. The response denotes a positive test step confirming expected
behaviour; negative test steps were also synthesized for requests that should be
ignored in certain states (corresponding to missing transitions in the model).

These high-level tests were given back to the provider, who then had the task of
grounding these sequences as SOAP request/response pairs, where a request
transmitted the input data, and a response showed which action had been triggered. In
this first study, the grounding was performed by hand, following simple rules for
converting the high-level tests. The purpose of this was to determine whether a
mapping to SOAP was feasible, and whether testing could observe the properties
required by the testing method [14, 16, 17]. For example, to achieve output
distinguishability, it is necessary to identify uniquely which transition fires in
response to each input.

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Header/>

 <S:Body>

 <ns2:getSelectedProduct xmlns:ns2="http://service.amazonian.org/">

 <pnames>tele</pnames>

 </ns2:getSelectedProduct>

 </S:Body>

</S:Envelope>

<?xml version="1.0" encoding="UTF-8"?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <ns2:getSelectedProductResponse

 xmlns:ns2="http://service.amazonian.org/">

 <return> * Good News, You have just bought: tele</return>

 </ns2:getSelectedProductResponse>

 </S:Body>

</S:Envelope>

Fig. 8. SOAP request and response for the addItem/displayShoppingList action

Figure 8 shows the SOAP request sent when the user checks the tele box on the
client-side. The response indicates the success of the addItem request. Further SOAP
responses were created for each action, including planned error-handling and an
explicit null response for events that are ignored in the current state, corresponding to
missing transitions in the state-transition diagram. A JUnit test driver was built on the
client-side, driving a Java EE wrapper-class that issued the SOAP requests and
unpacked the SOAP responses. During testing, it was found that the implemented
service did not always signal explicitly when it had ignored a request, as required by
the specification. This was considered a successful testing outcome.

 Model-Based Testing in Cloud Brokerage Scenarios 203

4.2 Case Study: A SAP HANA Cloud Application

The second case study was created as a software service, designed to be deployed on
an existing Cloud platform, SAP HANA. As above, the provider was allowed to
develop the service, but designed this up to a specification, written in the XML
specification language, that was regulated by an independent agent, acting as a broker.
Unlike the previous case study, which used the open standards WSDL and SOAP, this
study had a bespoke rich-client implementation, so would prove significantly more
difficult to test, in the grounding phase.

Fig. 9. Rich-client application for a Contact List built on the SAP HANA platform

Fig. 10. The state machine for the SAP HANA Contact List application

204 M. Kiran et al.

Figure 9 shows a screenshot of the web service for maintaining a Contact List,
deployed as a rich-client application on the SAP HANA Cloud PaaS. The application
allows the user to add names, or remove selected names from a list of contacts.
Figure 10 shows the corresponding control logic of the state machine specification.
Only the successful cases of each operation were modelled explicitly, using guards on
the responses. Thus, all errors were treated as missing transitions, which were later
signalled using a pop-up dialog box in the grounding of the tests. In the case of
failure, the state should not change. High-level test coverage sequences were
generated from the model, in the same manner as described above.

In this second case study, we were particularly interested in providing broker
support for testing a non-standard or unknown implementation. In such a situation, it
is clearly the provider’s responsibility to identify the route to grounding the high-level
test suite. The provider decided that the best strategy was to treat the rich-client’s
web interface as the entry-point to the service, so suggested grounding the tests as
generated Selenium code, to drive the client’s browser in predetermined ways.

Selenium [20] is a tool that is conventionally used for recording user interactions in
a web-browser, which can later be replayed as tests. Here, the provider wished to
derive the concrete Selenium tests from the high-level test sequences, derived in turn
from the broker’s specification (see figure 2) and use them to drive client’s browser,
and hence the deployed SAP HANA Cloud service, through all of its states and
transitions. The goal was to convert all abstract sequences into concrete Selenium
tests, which, if executed without reporting errors, signify that the application has
conformed to the specification.

<TestSuite id="0">

 <Sequence id="1" source="EmptyTable" target="EmptyTable"/>

 <Sequence id="2" source="EmptyTable" target="NonEmptyTable">

 <TestStep id="3" name="addEntry/addEntryOK">

 <Request id="4" name="addEntry">

 <Input id="5" name="forename" type="String"/>

 <Input id="6" name="surname" type="String"/>

 </Request>

 <Response id="7" name="addEntryOK" type="success"/>

 </TestStep>

 </Sequence>

 … <!-- omitted further Sequence elements -->

</TestSuite>

Fig. 11. Fragment of generated high-level test suite for the Contact List

Figure 11 focuses on the abstract test sequence with id=2, showing the inputs
required by the addEntry request that triggers the addEntryOK response. To support
the grounding to Selenium, extra grounding information was added to the functional
part of the specification of the addEntry operation, shown in figure 12.

 Model-Based Testing in Cloud Brokerage Scenarios 205

<Operation name="addEntry">

 <Request name="addEntry">

 <Input name = “forename” type = “String”>

 <Grounding>

 <Target>Selenium<Target/>

 <ElementType>TextField</ElementType>

 <ElementID>firstNameFieldId</ElementID>

 <TestValue>John</TestValue>

 </Grounding>

 </Input>

 <Input name="surname" type=”String”>

 <Grounding>

 <Target>Selenium<Target/>

 <ElementType>TextField</ElementType>

 <ElementID>lastNameFieldId</ElementID>

 <TestValue>Smith</TestValue>

 </Grounding>

 </Input>

 <Grounding>

 <Target>Selenium<Target/>

 <ElementType>Button</ElementType>

 <ElementID>addPersonButtonId</ElementID>

 <Action>click</Action>

 </Grounding>

 </Request>

 <Response name="addEntryOK" type="success">

 <Grounding>

 … <!-- omitted grounding info, to report success -->

 </Grounding>

 … <!-- omitted Effect, for updating memory -->

 </Response>

</Operation>

Fig. 12. Fragment of the functional specification for Contact List, with grounding information

The new idea here is that an XML sub-language for grounding may be created to
support the grounding of the high-level test suites in any particular technology. The
Selenium engine is driven by a table of instructions provided in an XML DOM-tree12,
which also records the before- and after-states of each interaction. In figure 12, the
Grounding nodes contain extra information about the Selenium DOM-tree elements
to insert as part of the test input data, along with the Selenium button-click event that
should be triggered to fire the addEntry request. This information was created by the
service provider, in a similar format to the original functional specification. The
bespoke grounding algorithm ensured that, whenever an addEntry request was listed

12 Document Object Model - memory representation of an XML file.

206 M. Kiran et al.

in the high-level tests (see figure 11), this would be matched against the addEntry
operation in the grounding information (see figure 12), which supplied the input and
button-click data for generating the concrete Selenium test instructions. Code
snippets from the DOM-tree generated for the Selenium driver are shown in figure 13:

<tr> <td>type</td> <td>id=firstNameFieldId</td> <td></td> </tr>
<tr> <td>sendKeys</td> <td>id=firstNameFieldId</td> <td>John</td> </tr>

<tr> <td>type</td> <td>id=lastNameFieldId</td> <td></td> </tr>

<tr> <td>sendKeys</td> <td>id=lastNameFieldId</td> <td>Smith</td> </tr>

<tr> <td>click</td> <td>id=addPersonButtonId</td> <td></td> </tr>

Fig. 13. Sample code generated for the Selenium test driver, for the Contact List

As above, the grounding algorithm was only partially automated; but enough was
learned to see how a fully automated method might be developed, using translation
strategies similar to the Visitor Design Pattern [21]. It seems likely that, whereas a
broker may eventually be expected to provide standard groundings for SOAP and
WSDL services, non-standard implementations will always require bespoke
grounding strategies, supplied by the service provider.

During testing of this application, it was found that the implemented service did
not exactly follow the state-based model, as required by the specification. After
removing the last entry from the table, it was found that the implemented service
remained in the state RowSelected instead of switching into the state EmptyTable.
This was a successful testing outcome demonstrating the discovery of a (non-obvious)
incorrect behavior.

5 Conclusions

This paper presents early results from the development of a standard method and a
supporting mechanism for automated functional testing in the Cloud. The mechanism
supports (at least) the certification phase of a Service Lifecycle Model, as operated by
Cloud service brokers, and may also support providers during the service engineering
phase, and consumers during the operation phase. Some service consumers may also
be providers, seeking to compose larger services out of smaller ones, hence will be
interested in validating component services in the Cloud.

Central to this effort is the development of a common service specification
language. The XML specification language was able to model adequately the two
case studies described, and is also fairly close in its syntax to other service description
languages, such as Linked USDL13 [22], so is likely to be acceptable in the
community. Once a specification has been parsed, the resulting model also supports
symbolic checking for the completeness of the specification (for missing transitions
and exhaustiveness of the guards). This is essential if the mechanism is to be widely

13 Unified Service Description Language.

 Model-Based Testing in Cloud Brokerage Scenarios 207

adopted by developers who are not necessarily trained in formal methods. The fully
automatic generation of high-level tests was successful in achieving levels of
coverage not yet found in manual service testing in industry. This was borne out in
the feedback from industry partners (SAP; CAS Software; SingularLogic) and also
demonstrated in the detection of some non-obvious faults in the case studies.

The work on automated grounding is still incomplete, but a manually-assisted
grounding strategy was shown, for the sake of demonstrating the general strategy and
the fault-finding potential of the concrete tests. Future work will concentrate on
building an improved model simulator and test oracle; and on developing automatic
groundings for certain standard service implementation technologies. This may go
some way towards the goal of providing Testing-as-a-Service in the Cloud [23].

Acknowledgment. The research leading to these results has received funding from
the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 328392, the Broker@Cloud project (www.broker-cloud.eu).

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and
Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th
Utility. Future Generation Computer Systems 25, 599–616 (2008)

2. Plummer, D.C., Lheureux, B.J., Karamouzis, F.: Defining Cloud Services Brokerage:
Taking Intermediation to the Next Level. Report ID G00206187. Gartner, Inc. (2010)

3. Rao, L.: Using CloudKick to manage Amazon Webservices’ EC2. TechCrunch,
http://techcrunch.com/2009/03/16/y-combinators-cloudkick-
offers-simple-cloud-management-system/ (March 16, 2009)

4. Higginbotham, S.: Rightscale Makes Multiple Clouds Work. GigaOM,
http://gigaom.com/2008/09/17/
rightscale-makes-multiple-clouds-work/ (September 17, 2008)

5. Bozkurt, M., Harman, M., Hassoun, Y.: Testing & Verification in Service-Oriented
Architecture: A Survey. Software Testing, Verification and Reliability 32(4), 261–313
(2012)

6. Bertolino, A., Frantzen, L., Polini, A., Tretmans, J.: Audition of Web Services for Testing
Conformance to Open Specified Protocols. In: Reussner, R., Stafford, J.A., Szyperski, C.
(eds.) Architecting Systems. LNCS, vol. 3938, pp. 1–25. Springer, Heidelberg (2006)

7. Heckel, R., Mariani, L.: Automatic Conformance Testing of Web Services. In: Cerioli, M.
(ed.) FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg (2005)

8. Heckel, R., Lohmann, M.: Towards Contract-based Testing of Web Services. In: Proc. Int.
Workshop on Test and Analysis of Component Based Systems, Barcelona, Spain. ENTCS,
vol. 116, pp. 145–156 (2004)

9. Ramollari, E., Kourtesis, D., Dranidis, D., Simons, A.J.H.: Leveraging Semantic Web
Service Descriptions for Validation by Automated Functional Testing. In: Aroyo, L., et al.
(eds.) ESWC 2009. LNCS, vol. 5554, pp. 593–607. Springer, Heidelberg (2009)

10. Ma, C., Wu, J., Zhang, T., Zhang, Y., Cai, X.: Testing BPEL with Stream X-Machine. In:
Proceedings of the 2008 International Symposium on Information Science and
Engineering, pp. 578–582. IEEE Computer Society, Shanghai (2008)

208 M. Kiran et al.

11. Ramollari, E.: Automated Verification and Testing of Third-Party Web Services. PhD
Thesis, Dept. of Computer Science, University of Sheffield, UK (2012)

12. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan
Kaufmann, Burlington (2007)

13. Pretschner, A., Philipps, J.: Methodological Issues in Model-Based Testing. In: Broy, M.,
Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of
Reactive Systems. LNCS, vol. 3472, pp. 281–291. Springer, Heidelberg (2005)

14. Holcombe, W.M.L., Ipate, F.: Correct Systems - Building a Business Process Solution.
Applied Computing Series. Springer, Berlin (1998)

15. El-Far, I.K., Whittaker, J.A.: Model-Based Software Testing. In: Marciniak, J.J. (ed.)
Encyclopedia of Software Engineering. John Wiley & Sons, London (2002)

16. Laycock, G.: The Theory and Practice of Specification Based Software Testing. PhD
Thesis. Dept. of Computer Science, University of Sheffield, UK (1993)

17. Ipate, F., Holcombe, W.M.L.: An integration testing method which is proved to find all
faults. Int. J. Comp. Math. 63, 159–178 (1997)

18. Marchetto, A., Tonella, P., Ricca, F.: State-Based Testing of Ajax Web Applications. In:
Proceedings of the 2008 International Conference on Software Testing, Verification, and
Validation, pp. 121–130. IEEE Computer Society Press, Washington, DC (2008)

19. Mesbah, A., van Deursen, A., Roest, D.: Invariant-Based Automatic Testing of Modern
Web Applications. IEEE Trans. Software. Eng. 38(1), 35–53 (2012)

20. Selenium, H.Q.: Browser Automation, http://www.seleniumhq.org/
21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of Reusable

Object-Oriented Software. Addison-Wesley (1996)
22. KMI and SAP Research: Linked USDL, http://www.linked-usdl.org
23. Yang, Y., Onita, C., Dhaliwal, J., Zhang, X.: TESTQUAL: conceptualizing software

testing as a service. In: Proc. 15th Americas Conf. on Information Systems, USA,
paper 608 (2009)

Value-Added Modelling and Analysis

in Service Value Brokerage

Yucong Duan1, Yongzhi Wang2, Jinpeng Wei2,
Ajay Kattepur3, and Wencai Du1

1 College of Information Science and Technology, Hainan University, China
duanyucong@hotmail.com, wencai@hainu.edu.cn
2 Florida International University, Miami, USA

{ywang032,weijp}@cis.fiu.edu
3 ARLES Group, INRIA Paris-Rocquencourt, France

ajay.kattepur@inria.fr

Abstract. In our previous work, we have introduced various Service
Value Broker (SVB) patterns which integrate business modeling, knowl-
edge management and economic analysis. We have identified that value
added is a main driving force for adoption and application of SVB by
different stakeholders including providers, customers and public adminis-
trators. Based on an e-tourism platform, we analyze the sources of value
added which could originate in SVB application from the perspective
of various stakeholders. We model the situations of value added balanc-
ing and tradeoff in the background of long run and short run economi-
cal goals. Experiments and simulations are developed for demonstration
purpose.

1 Introduction

Software design patterns [1] have been proved, proposed and verified successfully
in the modeling processes of multiple technical domains. However for model-
ing service oriented computing (SOC) applications, design patterns have to be
adapted according to value of Quality of Service (QoS) or business contractual
aspects. We refer to this as the Service Value Broker (SVB) pattern [2]. Brokers
have already been proposed for cloud service brokerage [3] which we foresee as
an important characteristics of the optimization of E-Service Economics [4]. The
related definitions are as follows [2]:

– Service Value Broker (SVB): driven by a value based goal, when a direct
service composition cannot meet some required constraints from the service
contract [5] or service level agreement(SLA) such as response time, loca-
tion, license area, available period, currency format. If the introduction of a
intermediate service can help to solve these problems and enable a service
composition to be qualified, the introduced intermediate service is a SVB.

– Direct Service Value Broker (DSVB): direct SVB is a special type of SVB
resulting from a composition of services. This composition must bring more

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 209–222, 2014.
c© Springer International Publishing Switzerland 2014

210 Y. Duan et al.

value to the stakeholder who introduces the DSVB. By value we mean not
only monetary value but also non-monetary such as reputation and brand
value, etc.

In this paper, we propose to use SVB as the base to integrate three impor-
tant sides of a service ecosystem: service provider, service customer and public
administration [6]. Each of these three sides maintains an independent interest
or value system and at the same time relates to others as an element of an
global value calculation system. SVB is expected to function as an important
source of value added for optimizing the whole system under the comprehensive
evaluation/measure in terms of increased business value added.

The rest of the paper is organized as follows: Section2 presents background
knowledge and the general scenario. Section 3 presents the analysis of the sources
of value added brought by introducing SVB. Section 4 presents the scenario of
modeling and calculation of value added. This is followed by related work in
Section 5 and conclusions with future directions in Section 6.

2 The Background and Scenario

2.1 Demonstration of SVB

We denote the service contract on the source end of an exchange as CS, the
contract on the target end of an exchange as CT, the input of SVB/DSVB
contract as iSVB and the output of a SVB/DSVB contract as oSVB.

– Weather forecasting: weather forecast is a costly and challenging task,
however a lot of organizations might need this service with specific precision
request.

Weather forecasting broker : by subcontracting the weather forecasting to
a professional service, it actually implement a reuse of resources including
professional knowledge, etc. Similarly we can identify numerous application
level brokers such as: vender broker, data cleaning broker, etc.

– Information privacy: during a transaction, some pieces of information
which are not required or are not necessary for a transaction might be re-
quired or leaked without notice.

Information privacy broker : a service which checks and restricts the usages
of service information based on a necessary-only policy may play the broker.

There are various situations where SVBs are composed with different cardi-
nalities of “1:1”, “1:n”, “m:n”, and sequences. Figure 1 shows the state diagram
of a E-Service in a SVB composition process. A traditional process is embedded
as a comparison. During a traditional process, a service is firstly discovered and
then it will go through a sequential process of “matchmaking → selection →
composition”. The result is a local solution which does not fully take advantage

Value-Added Modelling and Analysis in Service Value Brokerage 211

Fig. 1. The object flow

of the potential of the flexibility of E-Services in a scalable cloud environment.
When the business value is given the highest priority, the subcontracting rela-
tionship implemented by SVB could bring potentially higher value. SVB based
solution can fully explore the potential of the available resources, for the process-
ing only when one of the conditions of: (a) the assigned search time is finished,
(b) the cost reaches limit, and (c) all possible subcontract scenarios have been
explored, has been met, the search will end. The result will be a global best value
in terms of business gains on all parties.

2.2 The General Business Scenario

Figure 2 shows the general scenario of multiple service values from mainly three
sources. We summarize them as follows:

1. Provider value (PRV) - At the service provider side, business value needs
to be considered from the temporal dimension as short run vs. long run

212 Y. Duan et al.

Fig. 2. Integrating value considerations from multiple stakeholder with value brokerage

target which will decide specific business strategies such as new product
advertisement, promotion, sell out, etc. Among providers the value can be
classified into two categories:
– Negative competitive cost - Negative competitive cost occurs when other

business competitors who offer similar services bid for the same order or
market.

– Positive cooperative wins - When service vendors who offer related or
similar services agree on some fixed conditions such as market share, sells
area, etc, they can build some cooperations to profit from the customer
side such as lifting the price of services or charges of maintenance, etc.

2. Customer value (CSV) - Service customers in general have independent views
on the value of the targeted services. However customers can socialize with
other customers to query the quality of a service from others’ experiences
and comments. The experience information or news/advertisment propa-
gated through social media among customers is playing an increasing role
in promoting sales and adjusting commerce behavior. Customers can also
build federations to protect their shared interests against malicious service
providers with shared cost. Small scale of customer cooperation can cooper-
ate to win promotion sale packages from providers in a win-win manner.

3. Public value (PUV) - The public administration is the third party which can
play the juridical role for solving the argumentation. The public adminis-
tration also has other critical responsibilities: (i) monitor the service market
through economical analysis to avoid the competition between the provider

Value-Added Modelling and Analysis in Service Value Brokerage 213

and customer side to enter an Zero-Sum game; (ii) employ public policies to
intervene the strong cooperation against customer interests at the provider
side, or collusive customers [7], etc.

2.3 Domain Knowledge Based Classification of SVB

From the domain of E-Tourism, we have identified many application areas which
can be implemented with SVB in different categories[8] which is shown in
Figure 3.

Fig. 3. Empirical SVB classification from a knowledge management perspective

3 The Analysis on Value Added

3.1 Sources of Value Added

Building an E-Tourism architecture on top of SVB are expected to have several
possible advantages if well managed including the following basic situations:

– Added value of PRV - On the provider side, SVB can bring more business
chances through relating otherwise not related business together such as cre-
ating an international language translation platform which can redistribute

214 Y. Duan et al.

translation request to individual translation service providers. The added
value �PRV on a specific provider XP can simplified as as the multiplying of
the increased amount of request �req with the difference of the price �price.
In more detail, we assume the original price, request number and SB (service
broker) cost as pri0, req0 and SB0 respectively, and the new price and re-
quest number as pri0+ �pri , req0+ �req and SB0+ �SB respectively. The
added value of provider is formulated as follows:

�PRV (XP)

= (pri0+ �pri ∗(req0+ �req)− pri0 ∗ req0 − ((SB0+ �SB)− SB0)

=�req ∗pri0 + (�req +req0)∗ �pri − �SB

The cost on the broker provider XPSV B can be assumed to be balanced to
simply the calculation here for demonstration purpose. But in real situa-
tion, there can be added value on XPSV B through reuse of information and
operation, etc [9].

– Added value of CSV - On the customer side, SVB can bring more opportu-
nities through sub-contract [2] relationships for customers to find expected
services with the highest comprehensive value. The added value �CSV on a
specific customer XC side can simplified as the sum of the gains from the
saved cost on service payment �pay , the increased satisfaction �sat and the
cost for extra searching �cos. In more detail, we assume the original payment,
satisfaction and extra search cost as pay0, sat0 and cos0 respectively. We also
assume the new price and request number as pay0+ �pay , sat0+ �sat and
cos0+ �cos respectively. Here we regulate that satisfaction degree sat0 and
sat0+ �sat ranges between -1.0 and 1.0. Negative value means a negative
satisfaction. Positive value means a positive satisfaction. The added value of
customer is :

�CSV (XC)

= ((1+sat0+ �sat)∗(pay0+ �pay)−(cos0+ �cos))−((1+sat0)∗pay0−cos0)

=�sat ∗pay0 + (1+ �sat +sat0)∗ �pay − �cos

– Added value of PUV - On the public administrative side, SVB can be utilized
for several important purposes which include the follows:

• Added value of PUVcompetition- play the judical role which can lower the
cost of market adjustment in comparison with the free market situation
where Zero-Sum game can hurt the gain of both CSV and PRV. The
gains can be calculated as:

�competition= Σavoid(loss(PRV))− cost(interfere(PUV)).

• Added value of PUVcooperation- SVB can also be used to interfere the
forming of a dominating side in the provider side through collusive co-
operation which will hurt the regular competition and the gain of CSV.
The gains can be calculated as:

�cooperation= Σavoid(malpractice)− cost(tradeoff(PUV)).

Value-Added Modelling and Analysis in Service Value Brokerage 215

• Added value of PUVsecurity- SVB can be employed to provide public
qualified third party security services which will save the total spends
from the individual cooperations. The gains can be calculated as:

�security= Σincreaseefficency(individual)− cost(security(PUV)).

• Added value of PUVBigData- SVB can be employed by the public ad-
ministration to evaluate the technological innovations such as Big Data
processing for both personalization and public intelligence, and harness
their implementation to avoid their malpractice in terms of both business
value and social effect. The gains can be calculated as:

�BigData= Σavoid(malpractice)− cost(tradeoff(PUV)).

The general added value brought from public side can be calculated as:

�PUV = Σ �competition +Σ �cooperation +Σ �security +Σ �BigData.

Fig. 4. The metamodel of the brokerage supported value added attaining

The metamodel of SVB is shown in Figure 4. It shows: (a) the inherent ar-
chitecture of SVB with regard to well known concepts such as interface, broker,
E-Service, E-Contract, SLA, and public facility[6] which includes law, local policy
and administration; (b) the relationship with target problems including service
mismatching processing, service selection, optimization and their composition;
(c) the target solution in the form of SVB value including functional value, QoS
value, security value and business value in general; (d) the sources of added value
related to technological innovation related to Big Data processing, new usage dis-
covery and SVB application. Different from traditional brokers which focus on
functional value and QoS, the value which is implemented by SVB requires the
composition of business value and functional value.

216 Y. Duan et al.

3.2 Tradeoff on Long Run vs. Short Run

Influence Factors. In classical economics, the profit mode of a business trans-
action will be distinguished as long run vs. short run [10]. In a long run, factors
such as cost and price will be modeled as variables in contrast to being modeled
as fixed amount in a short run. This difference will be reflected directly to value
added accumulation towards profit-maximization. For a short run mode, the
value added of �PRV or �CSV or �PUV will be positive as long as the marginal
cost is lower than the marginal revenue which represents the added profit corre-
sponding to the increase of a unit of production. Similarly a production decrease
strategy can be made. There are several variability which should be taken as
knowledge rules to guide the attaining of the profit-maximization considering
both long run and short run.

– Cost/price adjustment - by taking advantage of the timely processing of E-
Contracts, SVB can realize timely adjusting price to balance the ratio of
price/cost for a short run.

– Marketing plan - SVB can be composed to implement complex price strate-
gies of a long run such as at the beginning of a business, the marginal cost
is allowed to be greater than the marginal price to implement the marketing
strategy of advertisement, the price can be increased since after to gain the
main profit, and a sold out can be planned to recollect the money flow for
an investment with higher reward business, etc. The general evaluation can
be positive as long as the average profit in a long run is positive.

– History based prediction - the transaction history of customers/providers can
be analyzed based on the added value calculation on the top of SVB to make
decision on the adaptation of price and production.

– Public policy implementation - the public side can employ the power of Big
Data processing to analyze added value from various sources covering both
�PRV and �CSV . Corresponding encouragement policies can be made when
the∑

(�PRV + �CSV)

is decreasing or the acceleration of the increase of the

�
∑

(�PRV + �CSV)/�time

is decreasing. Intervention can also be introduced to interfere the situation
that the provider side dominates the price making against customer side
through the monitoring of the ratio of∑

(�PRV)/
∑

(�CSV) .

4 Experiment

We implement a prototype system to demonstrate the added value brought by in-
troduction of SVB. We pick the personalization (right lower corner of Figure 2 as
an example to show how SVB can improve the value of both the service provider
and the customer sides. In the E-tourism, recommending suitable restaurants for

Value-Added Modelling and Analysis in Service Value Brokerage 217

tourists will increase the degree of their satisfaction. As a result, it will bring
higher profit for both the restaurant and tourism company sides. With a SVB,
both parties’s attained values are added. Our system offers a value based bro-
kerage service to make personalized restaurant recommendation based on the
history rating record provided by previous customers. By delegating recommen-
dation service to value based broker, our experiment shows that such a system
could provide added value to both the service provider (tourism company) and
the customer (tourist) sides. Specifically, the tourism company (TC) usually del-
egates the recommendation service to the service broker (SB). It authorizes the
SB to access its history records regarding to customers’ rating towards restau-
rants they have visited. TC expects the recommendation service provided by
SB to bring added value to both TC and customers. In order to maximize the
added value to both customer and TC, SB can sub-contract the recommenda-
tion service to multiple analytic service providers (ASPS) in order to evaluation
their recommendation service quality and find the best recommendation service.
Suppose SB finds that ASPi offers the best recommendation method, SB will
only delegate TC’s recommendation service to ASPi in the future.

Our experiment uses ”Restaurant & Consumer Data”dataset1 from UC Irvine
Machine Learning repository to show the above scenario and the effect of SVB in
leveraging the added value. We only use the file rating final.csv, which records
1161 ratings from 138 customers. Each record is a rating of a customer to-
wards a restaurant. The possible rating values are 0, 1, 2. We preprocess the
data set and feed the following format to SB: ”customerid | restaurantid |
customer′srating”. We assume that each ASP uses Mahout Recommender2 as
an analytic tool to perform item based recommender. However, different ASP
uses different similarity measurements. The similarity measurement which each
ASP uses is shown in Table 1. The output of the Mahout Recommender is the
top ten most recommended restaurants for each customer, along with the pre-
dicted rating. In order to test the accuracy of each ASP’s recommendations. SB
partitions TC’s history data into two parts. The first partition consists of 80%
of data. The second partition consists of the remaining 20%. For each ASP, SB
first feeds it with the first partition so that ASP could learn the rating rule
of customers and return the recommendation output. After that, SB will check
the accuracy of the recommendation output against the ratings in the second
partition. Using the second partition as the ground truth, SB determines the
quality of each ASP. It computes the Mean Squared Error (MSE) between the
ground truth and each ASP’s recommendation output. If the ratings of a specific
customer towards a specific restaurant appear in both the ground truth and the
ASP output, the square of the rating difference is considered in MSE. Intuitively,
a lower value of MSE which a ASP will generate means a higher recommenda-
tion quality. Different MSE generated from different ASP is shown in Table 1.
(We will explain the Recommendation Accuracy later.) The figure indicates that

1 http://archive.ics.uci.edu/ml/index.html
2 https://cwiki.apache.org/confluence/display/MAHOUT/

Recommender+Documentation

http://archive.ics.uci.edu/ml/index.html
https://cwiki.apache.org/confluence/display/MAHOUT/Recommender+Documentation
https://cwiki.apache.org/confluence/display/MAHOUT/Recommender+Documentation

218 Y. Duan et al.

Table 1. Mean Squared Errors with different similarity measurements

ASP # Similarity Measurement MSE Recommendation Accuracy

1 Co-occurrence 1.80 0.5

2 Log likelihood 1.80 0.5

3 Tanimoto coefficient 1.81 0.5

4 city block 1.80 0.5

5 cosine 1.79 0.5

6 Pearson correlation 1.45 0.8

7 Euclidean distance 1.80 0.5

ASP #6, which uses Pearson correlation similarity measurement, generates the
lowest MSE. When SB finds the best ASP (ASP #6), it will delegate the future
recommendation service only to such an ASP.

We model the added value of both the provider (TC) and the customer
(tourist) with the employment of SB. According to Section 3, the added val-
ues of the provider and the customer are as follows:

– Added value of PRV - The added value of PRV involves the original price
and requests (pri0 and req0), added number of customer satisfaction (�req

), unit price increase (�pri),and the recommendation service fee charged by
the SB (�SB). That is �PRV (XP) =�req ∗pri0+(�req +req0)∗ �pri − �SB

– Added value of CSV - The added value of CSV involves the original payment
and the original degree of satisfaction (pay0 and sat0), payment increment
for a meal (�pay), the degree of increased satisfaction (�sat), and the cost
of extra search (�cos). That is

�CSV (XC) =�sat ∗pay0 + (1+ �sat +sat0)∗ �pay − �cos

We assume the unit price of a meal on average is m0, the recommendation
service fee charged by the ASP is r per customer, the delegation fee charged
by the service value broker is b. We also assume the total number of customers
TC feeds to the SB for the recommendation evaluation is t. The number of
customers TC feeds to the SB for the future recommendation is f. We define a
recommendation is satisfactory if the customer’s actual rating is no less than
the recommendation rating by a tolerance threshold, marked as δ. We define the
Recommendation Accuracy (RA) as the fraction of satisfactory recommendations
in all the recommendations. That is

RA = #ofsatisfactoryrecommendations
#ofrecommendations

In our experiment case, we only consider the recommendation where the
customer-restaurant pair appears in the ground truth. For those recommen-
dations, if the rating of a customer towards a restaurant appears in both the
ground truth and the ASP output, a recommendation of the ASP is satisfactory
only if the ASP’s rating is no less than the ground truth rating by δ. The RA is
the ratio of satisfactory recommendation to the total recommendations. We set
δ as 1.0 in the experiment. We get the RA of each ASP in the last column of

Value-Added Modelling and Analysis in Service Value Brokerage 219

Table 1. Consistent with the MSE, ASP # 6 generates a better recommendation
accuracy (0.8), compared to other ASPS (0.5). We assume that the recommen-
dation accuracy provided by SB is RA. The original recommendation accuracy
without using SVB is RA0. We list all the parameters for the added value model
in Table 2. , along with the experiment value we choose. For simplicity, we assume
that the meal price increases and the extra search cost as 0. We also assume the
original customer satisfactory is 0, the SVB added satisfactory is 1.0, the original
recommendation accuracy without using SVB is RA0. If the customer will make
a request only if a recommendation is satisfactory, the number of requests the f
future customers will make with and without SVB will be f ∗ RA and f ∗ RA0

respectively. We set RA as 0.8 (according to Table 1), and RA0 as 0.5, which
is equal to the other ASP’s recommendation. The number of customers for the
training or testing is the number of customers in the recommendation evaluation,
which is 138. The number of candidate ASPS NASP are 7. The SVB service fee
cost includes the broker fee b and the ASP service fee. The service fee charged
by ASP is r per customer. At the recommendation evaluation, SB delegates the
service to NASP ASPS . So the service fee in this phase is NASP � t ∗ r. Later,
SB delegates the service to only one ASP. The cost in this phase is f ∗ r.

Table 2. Parameters of added value SVB Model

symbol name experiment value

pri0, pay0 original meal unit price m0

r recommendation fee per customer r

b recommendation broker fee b

RA SVB recommendation accuracy 0.8

RA0 Original recommendation accuracy 0.5

t # of customers for training or testing 138

f # of future customers f

δ tolerate threshold 1.0

NASP # of candidate ASP 7

�pri meal price increment 0

�req request number increment f ∗ (RA−RA0) = 0.3 ∗ f
�SB Service fee cost for SVB NASP ∗ t ∗ r + f ∗ r + b =

(966 + f) ∗ r + b

�pay meal price increment 0

�sat satisfactory increment 1

�cos extra search cost 0

sat0 original satisfactory 0

We compute the added value with the values listed in Table 2. We have �PRV

(XP) = 0.3 ∗ f ∗m0 − (966 + f) ∗ r − b
�CSV (XC) = m0

Since m0 > 0, the added value for the customer is positive. In order for the
added value of provider to be positive, we have 0.3∗f ∗m0− (966+f)∗ r− b > 0

Solving the inequation by f, we have f > b+966∗r
0.3∗m0−r

220 Y. Duan et al.

To give readers an intuitive understanding, we assume the meal price is $10,
the broker fee is $1,000, and the recommendation service fee for each customer is
$0.1. We get f > 378.1. That is to say, TC will gain added value from the SVB
when SB provides restaurant recommendation for more than 378 customers.

5 Related Work

Brokers are envisioned to be a key concern in cloud era, whether in the basic
forms of storage brokerage and computation brokerage, or in the advanced form
of solution brokerage [11]. Most of existing broker research [12,13,14,15,16,17]
focus on using brokers to discover, match, negotiate and select services [18] with
best QoS in a service composition. Yu and Li [19] utilize service brokers to meet
SLAs in service lifecycle [20]. However, their solution supports only one QoS
constraint and a single point of failure. Srikumar et al. [21] adopt brokers to
enable grid resource searching and distribution where a broker works mostly as
an autonomous agent [22]. D’Mello et al. [23] employ brokers to select qualified
services in terms of QoS of SLA for service composition. Loreto et al. [24] use
brokers to integrate telephone business and IT world by means of an intermediate
layer. Rosenberg and Dustdar [25] use brokers to bridge the difference between
heterogeneous business rules. Bichler et al. [26] promote to use brokers to enhance
the application level interpretability of electronic commerce. SVB is a value
oriented form of“design by unit” [27] which contributes to enable the elasticity of
cloud computing. SVB distinguishes from these approach since it starts from the
service contract which covers more issues than SLA. SVB is related to services
not only on the technological level, as most SLA based approaches [19], but also
on the business level [25,28]. By integrating business services and technology
services with value modeling, SVB identifies a bigger diagram where it can be
successfully applied.

6 Conclusion and Future Work

Service value broker (SVB) is a critical element for constructing a coming era of
E-Service Economics since it coherently supports IT implementation of service
system and integration of business strategies under the analysis of economical
goals. We have empirically collected useful SVBs which can be reused directly
by stakeholder in [8]. Value added is a main driven force for adoption and appli-
cation of SVB by different stakeholder. In this paper, we have analyzed various
sources of value added covering service including providers, customers and the
public administrative sides. We modeled the value added calculation and analy-
sis based on experimental data to demonstrate the advantage of applying SVB.
In the future, we will improve the added value modeling modules on each parties
and consider comprehensive business applications in the E-Tourism markets in
Hainan province for further refinement and validations.

Value-Added Modelling and Analysis in Service Value Brokerage 221

Acknowledgment. This paper was supported in part by CNSF grant 61162010
and 61363007 and by HNU Research program grant KYQD1242 and
HDSF201310.

References

1. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.M.: Design patterns: Abstrac-
tion and reuse of object-oriented design. In: Wang, J. (ed.) ECOOP 1993. LNCS,
vol. 707, pp. 406–431. Springer, Heidelberg (1993)

2. Duan, Y., Kattepur, A., Du, W.: Service value broker patterns: Integrating business
modeling and economic analysis with knowledge management. In: IEEE ICWS,
pp. 615–616 (June 2013)

3. Plummer, D.: Cloud services brokerage: A must-have for most organizations.
4. Kattepur, A., Benveniste, A., Jard, C.: Optimizing decisions in web services or-

chestrations. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011, LNCS, vol. 7084, pp. 77–91. Springer, Heidelberg (2011)

5. Duan, Y.: Service Contracts: Current state and Future Directionsmeasure. In:
ICWS, pp. 664–665 (2012)

6. Duan, Y.: A Survey on Service Contract. In: SNPD, pp. 805–810. IEEE Computer
Society Press (2012)

7. Wang, Y., Wei, J.: Viaf: Verification-based integrity assurance framework for
mapreduce. In: IEEE CLOUD, pp. 300–307 (2011)

8. Duan, Y., Kattepur, A., Zhou, H., Chang, Y., Huang, M., Du, W.: Service value
broker patterns: An empirical collection. In: IEEE SNPD, pp. 675–682 (2013)

9. Duan, Y.: Value Modeling and Calculation for Everything as a Service (XaaS)
based on Reuse. In: Proceedings of SNPD 2012. IEEE Computer Society (2012)

10. Feldstein, M.: Domestic saving and international capital movements in the long run
and the short run. Technical Report 947, National Bureau of Economic Research
(1982)

11. Fowley, F., Pahl, C., Zhang, L.: A comparison framework and review of service bro-
kerage solutions for cloud architectures. In: Service-Oriented Computing - ICSOC
2013 Workshops and PhD Symposium (2013)

12. Pan, Z., Baik, J.: Qos broker-based trust model for effective web service selection.
In: Proceedings of the 11th IASTED SEA2007, Anaheim, CA, USA, pp. 590–595
(2007)

13. Kumar, P.S.A., Mahadevan, G., Krishna, C.G.: Article: A qos towards dynamic
web services recapitulation and selection. International Journal of Computer Ap-
plications 54(4), 12–18 (2012)

14. Ran, S.: A model for web services discovery with qos. SIGecom Exch. 4(1), 1–10
(2003)

15. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and dy-
namic service composition in eFlow. In: Wangler, B., Bergman, L.D. (eds.) CAiSE
2000. LNCS, vol. 1789, pp. 13–31. Springer, Heidelberg (2000)

16. Moore, B., Mahmoud, Q.H.: A service broker and business model for saas applica-
tions. In: AICCSA, pp. 322–329 (2009)

17. Farmer, R., Raybone, A., Uddin, R., Odetayo, M., Chao, K.M.: Metadata discovery
for a service-broker architecture. In: Proceedings of the 2008 IEEE International
Conference on e-Business Engineering, pp. 173–178 (2008)

222 Y. Duan et al.

18. Shi, C., Lin, D., Ishida, T.: User-centered qos computation for web service selection.
In: ICWS, pp. 456–463 (2012)

19. Yu, T., Lin, K.-J.: A broker-based framework for qos-aware web service composi-
tion. In: EEE, pp. 22–29 (2005)

20. Gkourtesis, D., Bratanis, K., Friesen, A., Verginadis, Y., Simons, A.J.H., Rossini,
A., Schwichtenberg, A., Gouvas, P.: Brokerage for quality assurance and optimiza-
tion of cloud services: an analysis of key requirements. In: Service-Oriented Com-
puting - ICSOC 2013 Workshops and PhD Symposium (2013)

21. Venugopal, S., Buyya, R., Winton, L.: A grid service broker for scheduling dis-
tributed data-oriented applications on global grids. In: MGC, pp. 75–80 (2004)

22. Qian, Z., Lu, S., Xie, L.: Mobile-agent-based web service composition. In: Zhuge,
H., Fox, G.C. (eds.) GCC 2005. LNCS, vol. 3795, pp. 35–46. Springer, Heidelberg
(2005)

23. D’Mello, D.A., Ananthanarayana, V.S., Thilagam, S.: A qos broker based architec-
ture for dynamic web service selection. In: Proceedings of AMS 2008, pp. 101–106
(2008)

24. Loreto, S., Mecklin, T., Opsenica, M., Rissanen, H.-M.: Service broker architecture:
location business case and mashups. Comm. Mag. 47(4), 97–103 (2009)

25. Rosenberg, F., Dustdar, S.: Design and implementation of a service-oriented busi-
ness rules broker. In: CECW, pp. 55–63 (2005)

26. Bichler, M., Segev, A., Beam, C.: An electronic broker for business-to-business
electronic commerce on the internet. Int. J. Cooperative Inf. Syst. 7(4), 315–330
(1998)

27. Tai, S., Leitner, P., Dustdar, S.: Design by units: Abstractions for human and com-
pute resources for elastic systems. IEEE Internet Computing 16(4), 84–88 (2012)

28. Ferreira, J.E., Braghetto, K.R., Takai, O.K., Pu, C.: Transactional recovery support
for robust exception handling in business process services. In: ICWS, pp. 303–310
(2012)

Introduction to the Proceedings of the 9th International
Workshop on Semantic Web Enabled Software

Engineering (SWESE) 2013

Gerd Gröner1, Jeff Z. Pan2, Yuting Zhao2, Elisa F. Kendall3, and Ljiljana Stojanovic4

1Paluno – The Ruhr Institute for Software Technology
University of Duisburg-Essen, Germany

2University of Aberdeen
Aberdeen, UK

3Sandpiper Software Inc.
USA

4FZI, Forschungszentrum Informatik
Karlsruhe, Germany

Preface

The 9th international workshop on Semantic Web Enabled Software Engineering
(SWESE) has been hold in conjunction with the 11th International Conference on Ser-
vice Oriented Computing (ICSOC 2013) in Berlin, Germany. This workshop builds on
prior events and have begun to explore and evaluate the potential of Semantic Web tech-
nologies in software, system and service engineering. Semantic Web technologies pro-
vide understandable modeling formalisms and tractable reasoning services with widely
established tool support. In this workshop series, we are interested in applying Semantic
Web technologies to support, improve and ease both the process and product of software
and service development.

The advent of the World Wide Web has led many corporations to web-enable their
business applications and to adopt web service standard in systems and platforms. How-
ever, as a next step, it is expected that technologies and methods from the Semantic Web
research will provide various benefits to software and service engineering. Over the past
years, there have been several attempts to bring together languages and tools, such as
the Unified Modeling Language (UML), developed for software engineering, with Se-
mantic Web languages such as RDF and OWL. The Semantic Web Best Practice and
Deployment Working Group (SWBPD) in W3C included a Software Engineering Task
Force (SETF) to investigate potential benefits.

The SWESE 2013 workshop has been a successful event in terms of high quality
presentations, valuable and constructive discussions, and interesting and novel research
papers. The workshop was started with a retrospection on related research and research
questions that have been addressed in the European project MOST (Marrying Ontolo-
gies and Software Technologies), presented by the workshop organizers. Thereafter,
novel research results on Semantic Web technologies in software and service engineer-
ing has been shown. Several papers addressed (Web) service discovery, composition
and matchmaking. A new approach for Web service composition based on fluent cal-
culus has been discussed. Another approach uses OWL-S in a multi-agent system for

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 223–224, 2014.
c© Springer International Publishing Switzerland 2014

224 G. Gröner et al.

service matchmaking and planning. Another area of the workshop was variability man-
agement in ontologies. Ontologies for data models, domain models and population of
domain models has been extensively discusses and the presented research results out-
lined interesting solutions to contemporary software and service engineering problems.

We sincerely thank the program committee members of SWESE 2013 for their great
support in the reviewing process. We would also like to thank the authors and workshop
participants for their involvement.

The SWESE 2013 organizers

Management of Variability in Modular Ontology
Development

Melanie Langermeier1, Peter Rosina1, Heiner Oberkampf1,2,
Thomas Driessen1, and Bernhard Bauer1

1 Software Methodologies for Distributed Systems, University Augsburg, Germany
2 Siemens AG, Corporate Technology, Munich, Germany

Abstract. The field of variability management deals with the formalization of
mandatory, alternative and optional domain concepts in product line engineering.
Ontologies in turn, describe domain knowledge in form of predicates,
subjects and constraints in various forms. Based on existing ontology mapping
approaches, we developed a method to organize a set of modular ontologies using
the concepts of variability management (MOVO). This ontology driven variabil-
ity model can be stepwise adapted to the needs of a business driven one, resulting
in a variability model that fits the needs of business and makes modular ontolo-
gies reusable in a simple manner. In order to avoid a technological break and to
benefit from the opportunities that ontologies offer, the resulting variability model
is expressed in an ontology itself. The approach is evaluated by one case study
with enterprise architecture ontologies.

Keywords: Modular Ontology Management, Variability Management, Feature
Models, Ontology Mapping.

1 Introduction

Knowledge management (KM) is a central aspect in organizations. KM tools mainly
rely on knowledge models, specifying how knowledge is represented. In general, there
is not one single knowledge model which could be used within all applications or tools.
In contrast, the knowledge models used in KM tools are largely dependent on the appli-
cation and/or the customer’s/department’s needs. Within one organization, different de-
partments might need different models to describe their knowledge, even though parts
of their models describe similar aspects. Since the creation of knowledge models is
costly and error prone, it is desirable to reuse existing knowledge models which have
proven to be useful and only customize them to specific needs. Modular developed
knowledge models allow to reuse parts and ease the customization. Similar to software
products, knowledge models have certain logical and functional dependencies. What
we need, is a mechanism to make these dependencies between modules of knowledge
models transparent in order to enable a flexible combination of them.

In classical software product lines, the variability management has proven to be
useful. Thereby, commonalities and differences between domain concepts are made ex-
plicit and allow an effective management of the variability in the product development
process. This systematical approach enables a consequent reuse of existing concepts and

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 225–239, 2014.
c© Springer International Publishing Switzerland 2014

226 M. Langermeier et al.

makes possible combinations and dependencies transparent [7]. This general-purpose
and reusable methodology is not only applicable to software products.

Ontologies, and in particular the Web Ontology Language OWL 21, have become
very popular for the representation of knowledge. Ontologies offer a flexible and pow-
erful way to represent a shared understanding of a conceptualization of some domain
[15]. Efficient reuse of (parts of) ontologies is one of the main goals behind modular
ontology development [24]. OWL offers some mechanisms, such as the owl:import
relation, to combine and integrate ontologies. The use of logical axioms contained in
different ontologies, however, restricts the possible combinations. A formalism repre-
senting these restrictions is needed.

The management of possible combinations of modular knowledge models is similar
to the management of variabilities in software products. In this paper, we describe the
use of variability management for the management of modular ontologies (MOVO), i.e.,
to describe the logical and functional dependencies between ontologies. Each possible
variant is described through a set of features, that are linked to ontology modules. In our
scenario, the knowledge engineer (KE) iteratively selects ontology modules from the
ontology repository and creates the variability model (VM) using these ontology mod-
ules. In each iterative step, validations are run on the ontology to check the consistency
of the VM. The resulting VMs are realized with feature models, formalized in OWL,
and stored in a VM Repository. They are instantiated to create specific customized ap-
plication ontologies. Formalizing feature models with OWL avoids a technology break
and enables the use of reasoning capabilities to support the KE by detecting and dis-
solving inconsistencies in individual and aligned ontologies. We evaluate our approach
with an enterprise architecture (EA) case study.

The remainder of the paper is organized as follows: in section 2 we describe the state
of the art in modular ontology development and variability management, followed by an
overview of related work in section 3. Based on this, we describe our proposed method
in section 4 and their technical realization in section 5. The evaluation is done with the
aid of our use case in section 6, before we conclude our work in section 7.

2 State of the Art

2.1 Modular Ontology Development

Large ontologies have certain disadvantages regarding reuse and performance. Modu-
lar ontology development tries to overcome these obstacles. The general idea is to keep
ontologies small in creating ontology modules focusing on one particular aspect to en-
hance (partial) reuse and performance (e.g. more efficient reasoning), ease maintenance
(smaller ontologies are easier to comprehend) and collaborative development as well as
harmonization and interoperability (using common upper ontologies, it is easier to iden-
tify mappings). Details can be found in [24] and [25]. These modules themselves are
again ontologies [12]. Application ontologies, which have to cover different topics, are
created using several small ontologies (modules). A number of different promising ap-
proaches have already been investigated and evaluated [25]. In accord with [21], modu-
larized ontologies cover two separate topics: (1) module extraction (i.e., modularization

1 http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/

Modular Ontology Management Using Feature Models 227

of existing large ontologies into smaller logically consistent modules) and (2) modular
development (i.e., the creation of modular (non-redundant, orthogonal) ontologies). Our
work targets the management of ontology modules and their composition into one appli-
cation ontology. With OWL 2, we have a standardized vocabulary for the description of
ontology meta data such as the ontology IRI, owl:versionInfo, or owl:versionIRI
and relations between ontologies such as owl:imports, owl:backwardCompatible-
With, owl:incompatibleWith or owl:priorVersion. All relations between ontolo-
gies, except owl:imports, are annotation properties and have only a documentation
purpose or describe functional dependencies.

Similarly, the Vocabulary of a Friend ontology2 (VOAF) defines properties to express
relations between RDFS vocabularies or OWL ontologies: for instance,voaf:reliesOn,
voaf:extends,voaf:specializes orvoaf:generalizes can be used to indicate how
some ontology is related to others. Besides relations between ontologies, OWL also of-
fers relations between concepts of different ontologies, e.g., stating equivalence between
individuals and classes respectively. These relations are regarded by standard reasoners.
With owl:imports, other ontologies can be included into an ontology through reference
onto the other ontology’s IRI. Critic concerning this approach has come up, because it
is not possible to only import parts of another ontology, but only all the axioms of the
other ontology. Therefore, if just a subset of another ontology is needed, a modulariza-
tion can be helpful. Simply referencing single entities of another ontology, without using
the owl:imports construct, does not transfer its semantics and context. Working with
modules leads to ontology mappings to align different modules. According to [8] there
are three types of mappings: i.) mapping between one integrated global ontology and var-
ious local ontologies; ii.) mapping between different local ontologies; and iii.) ontology
merging and alignment. Since our work focuses on the management and composition of
ontology modules, we mainly deal with the second and third type of mappings.

2.2 Variability Management

The discipline of variability management deals with the consequent and explicit docu-
mentation of the variability of software artifacts in product line engineering [7]. Vari-
ability is the "ability of a system or artifact to be extended, changed, customized, or
configured for use in a specific context" [23]. Through a consequent and explicit repre-
sentation of variabilities using variability modeling techniques, the software engineers
are able to manage those and thus complexity in the development process can be re-
duced [23]. An overview of variability techniques can be found in [7] and [23]. One of
the major benefits is the systematic reuse of existing artifacts [6,18,7]. The development
of a product in product families is done in two steps: first, in the domain engineering,
the commonalities and differences of the products are determined and a set of reusable
artifacts like a product family architecture and a set of components is created. Second,
during application engineering, the final products are build through configuration of the
reusable artifacts [23,6].

Features are a widely used concept for the identification and documentation of vari-
abilities. In the context of software product lines, they are defined as logical units of

2 http://purl.org/vocommons/voaf

http://purl.org/vocommons/voaf

228 M. Langermeier et al.

behavior that are visible to the end-user [13,3]. These features are encapsulated within
components at the architectural level and thus enable an easy inclusion or exclusion of
single components [18].

Fig. 1. Graphical notation of the FODA Feature
model [17]

Kang et al. introduced in 1990
the Feature-Oriented Domain Analysis
(FODA) with the first Feature Mod-
els. They replaced the formerly used
sequence diagrams. The intent of the
author was "to capture in a model
the end-user’s (and customer’s) under-
standing of the general capabilities of
applications in a domain" [17]. Fig-
ure 1 depicts the graphical notation of
Kang’s feature models. The different features of a domain are structured in Parent-
Child-Relationships, which result in a feature tree. Depending on the connection be-
tween parent and child, the semantics between both is defined as follows:

Optional
Feature:

defined by a line with a circle at its end; can, but has not to be, chosen,
if the parent feature is selected.

Mandatory
Feature:

defined by a line without an additional decoration; has to be selected, if
the parent feature is selected.

Alternate
Feature:

defined by two or more lines, that are connected via an arc; exactly one
of those has be chosen if the parent feature is selected.

Composition
Rule:

dependencies between features of different sub-trees, that can not be
expressed in the hierarchical way of the feature tree.
Requires: a feature has to be selected, based on the selection of

another feature.
Mutually
exclusive with:

a feature must not be selected if another feature is al-
ready selected.

This kind of feature model is restricted to the analysis phase of a software project.
Kang et al. extended his approach to the design phase of a project (Feature-oriented
reuse method, FORM) [16]. In order to be able to reference possible implementations
of a feature in code, Kang et al. introduced the concept of layers, explicit generalizations
and an implemented-by reference. Czarnecki et al. extended the FODA Feature model
with concepts for the assignment of cardinalities to features and feature groups, the
assignment of data types to features and the definition of references from features to the
root of another feature tree [10].

3 Related Work

The state of the art regarding modular ontologies, as well as mappings, are described
in section 2.1. There, we also described existing vocabularies for relations between on-
tologies like, e.g., those provided by OWL or VOAF. In this section, we describe related
work regarding the use of ontologies to represent feature models and to use established

Modular Ontology Management Using Feature Models 229

reasoning mechanisms to validate them. The expressiveness of feature models (FM)
in comparison to ontologies is analyzed, for instance, in [11]. They identified, that ba-
sic feature models are less expressive than OWL ontologies. However, there exist sev-
eral extensions of basic feature models enhancing the expressiveness, e.g., the addition
of attributes, the cloning of entities or feature value constraints. [26] describe, which
requirements should be fulfilled by a Semantic Web technology-based feature model:
automated inconsistency detection, reasoning efficiency, scalability, expressivity and
debugging aids. They state, that "OWL can be adopted to reason and check feature
models effectively". OWL DL syntax is used to represent feature models, where fea-
ture nodes are represented as OWL classes. They demonstrate that all of the standard
feature model relations (mandatory, optional, alternative, or) as well as simple con-
straints (excludes, requires) can be represented. Similarly, [27] use OWL DL to rep-
resent feature models, even though the modeling is significantly different to [26]. In
[27], classes are used to represent features, compositions, feature attributes and feature
relations. OWL properties are used to represent feature to feature constraints, attribute
value constraints and compositional properties. The consistency is checked using an
OWL DL reasoner and SWRL rules, e.g., the mutual exclusiveness of certain proper-
ties. In summary, the model presented by [27] is even more expressive than the one
presented by [26]. Another approach of using ontologies for modeling variability in a
product/service family domain is presented in [19]. In this approach not only the vari-
ability itself is captured in an ontology, but also the reasons that led to the respective
variability point.

[20] use FMs and ontologies to support the selection of features in multi-cloud con-
figurations. Their method proposes to create the FM first, then map a cloud (the domain)
ontology’s concepts to the FM’s features until every connection is established. These
procedures are performed manually by domain experts. Afterwards, they are validating
their model. In contrast to our approach, they are using EMF meta models, resp. XMI
models, that represent their FMs, as well as their ontologies and mapping models. This
way, ontological (OWL) reasoning cannot be performed, but they propose using a SAT
solver, for instance Sat4j [2], for checking the FM’s configuration validity.

4 Method

Fig. 2. Overview of the concepts in
MOVO

In the following, we propose our method for
the management of variability in modular ontol-
ogy development (MOVO). This method aims to
address the issues of modular ontology develop-
ment described in section 3. Thereby, our method
focuses on dealing with the complexity of manda-
tory and optional dependencies between the sin-
gle modules as well as mandatory exclusions
between them. Figure 2 shows the main concepts
of MOVO as well as the two phases of the method.
In the first step, the KE has to select the modular
ontologies, which will be stored in the ontology

230 M. Langermeier et al.

repository. Based on those ontologies an ontological variability model VMO is defined.
VMO formalizes the dependencies between the modular ontologies that are annotated
in the ontologies. It defines allowed and not allowed variants of the application on-
tology. The variants are defined using features which could/should be (not) included.
Each feature can, but has not to, be linked to one or more modular ontologies. Based on
VMO, the KE creates VMI through selection of features and relationships and addition
of stronger constraints according to specific domain requirements. This model formal-
izes the dependencies according to the requirements from the domain while considering
the ontological restrictions. In other words, it formalizes which variants make sense and
which not in combination with what is allowed and what is not allowed.

VMO formalizes the dependencies annotated in the ontologies whereas VMI cus-
tomizes these constraints according to specific domain requirements. We differentiate
between these models to be able to differentiate between ontological and domain spe-
cific requirements and therefore enable the creation of several VMI for different do-
mains upon one set of ontological modules. The method ensures that the created VMI

is consistent according to the owl:import and owl:incompatibleWith assertions,
which can be made in the single ontological modules. After the creation of a consistent
VMI by the KE, the domain expert can easily create consistent configurations for his
application ontology. Figure 3 illustrates the relationships between the concepts used in
MOVO.

Fig. 3. Concepts and their relationships required for the definition of the VM

In the following, the definition of the ontological VM, along with the creation of the
ontology repository, the definition of the integrated VM as well as the configuration of
an application ontology, are described in more detail. The technical realization of those
steps is described in section 5.

4.1 Define Ontological Variability Model VMO

Before the ontological variability model VMO can be determined, the KE has to fill the
ontology repository. There are several sources for modular ontologies: reuse of exist-
ing ontologies, modularization of existing bigger ontologies or creation of new ontolo-
gies. Creating mappings between different vocabularies can either be done manually or
with the assistance of automated methods. These methods for matching heterogeneous
resource models with semantic technologies are introduced and explained in [22].

In the next step, the meta data and assertions of the modular ontologies in the
repository are analyzed to determine the dependencies between them. For this work
we decided to focus on the assertions that can be realized using OWL 2. These are
the owl:import and the version informations. Whereas from the later one only the
owl:incompatibleWith has effects for the definition of consistent variants. At the
moment, OWL 2 does not offer an annotation property that expresses an inconsistency

Modular Ontology Management Using Feature Models 231

between two different ontologies. Therefore, we introduce an movo:inconsistent re-
lationship, to be able to assert such an information. To create VMO for each modular
ontology, one feature will be created with a link to the corresponding ontology. The
dependencies between the ontologies are then formalized in the ontological VM. This
model is consistent in sense of allowed combinations of the modular ontologies, but
it must not necessarily fulfill certain requirements of the domain. This newly created
VMO acts as the bootstrapping VM for the following creation of VMI .

4.2 Define Integrated Variability Model VMI

The integrated Variability Model VMI can extend and restrict VMO to be conform to
specific requirements of the application domain. Thereby, new features or relations can
be added and existing relations between features can be strengthened. For the creation
of VMI , the KE has to select a root feature(existing from VMO or new one), and then
repeats the following loop until all desired features are considered.

i.) Select a parent feature from V MI or a new one
ii.) Select a child feature from VMO or VMI or a new one

iii.) Determination of valid relations that can be used to connect those features
iv.) Select the new features’ type of relation
v.) Automatic addition of the features with their relations to VMI

vi.) Optional: add further cross-tree constraints

Cross-tree constraints can be necessary, for example, when defining that a specific map-
ping ontology OntA2OntB should be always used for two ontologies OntA and OntB.
In this case, the constraint OntA∧OntB → OntA2OntB is necessary to ensure that the
mapping ontology OntA2OntB is selected when OntA and OntB are selected. Finally
the KE has an integrated VM which represents all allowed and useful variants of the
application ontology.

4.3 Configuration of a Specific Knowledge Model

Preliminary for this step is the defined VMI . The domain expert is then able to create
a specific configuration which serves as an application ontology. Therefore, he selects
those features from a list of selectable features he wants to have included in his config-
uration. After each feature he selects, a consistency check will take place. First, it will
be checked, if there is any required feature that is not yet included in the final configu-
ration. If so, then this feature will be included. Second, after the addition of a feature,
all features that are excluded by this feature will be deleted from the list of selectable
features. At the beginning, the list of selectable features SF includes all features that
are in VMI : SF := { f | f ∈ VMI}. The list of selected features in the configuration C
is empty at the beginning. If a feature f from SF should be inserted into C the insert
function is defined as followed:

insert(f) := addToCon f iguration(f)∧ removeExludedFeatures(f)∧
(∀reqF.((reqF ∈ SF ∧ f → reqF)→ insert(reqF))

With addToCon f iguration(f) : C :=C∪{ f }
removeExludedFeatures(f) : SF := SF\{exclF | exclF ∈ SF ∧ f →¬exclF}

232 M. Langermeier et al.

SF ensures that only features can be selected that fit to the current state of the con-
figuration. The last point ensures that no feature will be dismissed that is required by a
selected feature in the configuration. After the domain experts has defined his configu-
ration of features, the corresponding ontologies to the features have to be selected and
composed to the resulting application ontology.

5 Technical Realization

Along with our method described in the previous chapter, we describe the technical re-
alization of the two main steps: the creation of the ontological and integrated variability
model (VMO and VMI) and the instantiation of VMI . The technical realization is exem-
plary demonstrated using the FODA feature model from [17] described in section 3. In
this context, we are using Protégé3 to create our ontologies and a Fuseki Server4 as a
triple store for our prototype implementation.

5.1 Variability Model Ontology

The VMO is specified using OWL 2 semantics. The central class of the VMO is
movo:Feature. An instance of movo:Feature represents a node of the VM and might
be related to some ontology of the ontology repository using the object property movo:
isRealizedIn. As described in section 3, OWL and especially OWL 2 specify sev-
eral annotation properties for meta information of ontologies and relations between
ontologies. Some of them are shown in figure 4. These annotation properties are not
interpreted by reasoners, thus the idea is to translate these annotation properties (which
describe the coherence between different ontologies) to object properties in
VMO. For instance, we defined the object properties movo:excludes (for
owl:incompatibleWith) and movo:requires (for owl:imports). The property
movo:excludes is a symmetric property and is mutual exclusive with movo:requires
(using owl:propertyDisjointWith).

Fig. 4. The Variability Model Ontology combined with OWL 2 Ontology structure [4]

This is similar to ideas presented in [27] where "Incompatible and Excludes are
defined as symmetric properties. Some are mutual exclusive: (Requires, Excludes),
(Requires, Incompatible), (Uses, Excludes), (Extends, Incompatible)". Other OWL
annotation properties like owl:backwardCompatibleWith, owl:priorVersion,

3 http://protege.stanford.edu/; 11/09/2013
4 http://jena.apache.org/documentation/serving_data/; 11/09/2013

http://protege.stanford.edu/
http://jena.apache.org/documentation/serving_data/

Modular Ontology Management Using Feature Models 233

owl:deprecated, etc. can be used or realized in VMO as well and will be consid-
ered. In addition to the representation of OWL properties, VMO has to capture feature
model semantics presented in section 2 so that the KE can express further dependencies.
For instance, we define properties for optional and mandatory properties, i.e., the re-
lations movo:hasOptionalFeature and movo:hasMandatoryFeature. Again, these
properties are mutually exclusive. In our prototype implementation we are using the
movo:hasMandatoryFeature and movo:requires relations as logically equivalent
properties, because the difference is only important for the graphically distinguished
visualization as a feature model tree for the user.

Furthermore, we have a class movo:Composition with the subclass movo:Alterna-
tive_Composition to represent alternative compositions (AC). When the AC is
created, the source feature is related to the movo:Alternative_Composition via the
object property movo:hasAlternativeFeatures. Other compositions, for instance an
OR composition can be added. Furthermore, enhancements can be made in order to
consider the extensions of the FORM feature model, e.g., the cardinalities. The work
of [27] demonstrates that OWL DL in combination with some rule language like, e.g.,
SWRL can be used to represent even more sophisticated feature model constraints.

5.2 Creation of V MO with Mapping Semantic

Our prototype implementation is realized using a Apache Jena Fuseki triple store with
two data sets, one for the ontology repository (ontrepo) and one for the Variability
Model Ontology (vmo). We separate ontologies in our repository using named graphs
and use the following procedure to create the ontological variability model VMO: First,
for all ontologies in the repository, instances of movo:Feature are created in the dataset
vmo. Second, the dependencies between ontologies, such as import relations, are trans-
ferred to relations between features (see listing 1.1).

INSERT {
?feature a movo:Feature ;
movo:isRealizedIn ?ont ;
movo:requires ?req .

}
WHERE {

SERVICE <http :// localhost :3030/ontrepo/query > {
SELECT ?feature ?ont ?req ?excl WHERE {

?x owl:ontologyIRI ?ont .
OPTIONAL { ?ont owl:imports ?r .

BIND (URI(CONCAT("http ://www.ds-lab.org/←↩
ontologies /2013/7/ variabilityOntology #", ←↩
strafter(str(?r), "http ://www.ds-lab.org/←↩
movo/ea/"))) AS ?req) }

BIND (URI(CONCAT("http ://www.ds-lab.org/ontologies←↩
/2013/7/ variabilityOntology #", strafter(str(?←↩
ont), "http ://www.ds-lab.org/movo/ea/"))) AS ?←↩
feature)

}}}

Listing 1.1. Extract of SPARQL statement example for the creation of the ontological Variability
Model V MO

234 M. Langermeier et al.

The feature is related to its source ontology by the movo:isRealizedIn property.
Furthermore, the dependencies between different ontologies are extracted and inter-
preted, e.g., owl:imports to movo:requires, using the same SPARQL statement.
For other dependencies, such as owl:incompatibleWith or movo:inconsistent, we
have similar update queries. More precisely, for each relation between ontologies, a
corresponding relation is added for the respective features. Since the import and in-
compatible relations only exist occasionally, we use the OPTIONAL statement for these
object properties. In this context, we are substituting the resources’ URI paths from
the ontology repository’s source ontologies’ location with the new feature ontology’s
URI path. Thus, the dependencies between ontologies are transformed to the variability
model ontology.

During the creation of VMO, the OWL reasoner and additional SPARQL queries can
be used to check the consistency of the created feature model [26]. For instance, it is
checked that there are no features related with contradictory properties movo:excludes
and movo:requires at the same time. We are also using SPARQL queries to receive all
dependent features, i.e., the required features of the selected feature and thus can add
them automatically to our VMO. Following the principles of the Semantic Web Stack,
it is generally advised to use the Rule Interchange Format (RIF) for expressing rules.
For instance, RIF would be suitable for stating complex composition rules. Since up to
now, RIF is still immature and tool support is hardly available, we use SPARQL in our
implementation to insert relations between features.

5.3 Creation of V MI

The creation of VMI is done according to section 4.2. Thereby, the features created for
VMO can be reused, but it is also possible to add new features as place-holder features,
that do not yet have a relation to an ontology of the ontology repository. For each new
feature, a new instance of movo:Feature is created and stored in a named graph for
the respective VMI . To ensure that V MI is conform to VMO, the integrated variability
model will be defined iteratively. In each step, only consistent constraints can be added
to the model. The following pseudo code 1.2 represents this procedure.

select ROOT FEATURE root
insert(root)
LOOP

select PARENT FEATURE p
select CHILD FEATURE[S] c = {c1, .., cn}
if (|c| = 1)

then ask(required), ask(hasMandatoryFeature), ask←↩
(excludes)

else ask(alternateComposition)
select POSSIBLE RELATION relation
for all (x in (c or p); x not in VMI)

insert (x)
insert(relation)
OPT: if(ask(crossTreeConstraint))

then insert(crossTreeConstraint)
END LOOP

Listing 1.2. The procedure for creating V MI

Modular Ontology Management Using Feature Models 235

To ensure the consistency, the following SPARQL queries are defined:

insert(feature): adds an existing feature from VMO to VMI with all (transitively)
required features

ask/insert(required|hasMandatoryFeature|excludes): asks if possible or inserts the
respective relationship between a parent and one child

ask/insert(alternateComposition): asks if possible or inserts an alternate composition
between a parent and a set of childs

ask/insert(crossTreeConstraint): asks if possible or inserts a specific cross tree con-
straint, typically in a manner like ’feature1 requires feature2’ or ’feature1 excludes
feature2’

For selecting a specific feature, the following constraints must be satisfied:

select ROOT FEATURE: root ∈VMO or root is a new feature
select PARENT FEATURE: parent ∈VMO ∪VMI or parent is a new feature
select CHILD FEATURES: c = c1, .., c2 with ci ∈ {VMO ∪VMI} or ci is a new feature

During the creation of object properties between the selected features, some constraints
have to be fulfilled: for the sake of simplicity, we only allow the creation of relations
between exactly two different features (an exception is the alternative composition(see
below)). Additionally, there can only be exactly one or zero relations between two dif-
ferent features. These constraints will be checked using the ask queries. Only when
these queries return true, the KE can fulfill an insert of the relationship. Adding the
movo:hasOptionalFeature or the movo:requires relation is only valid if there is no
movo:excludes between the source feature and an existing transitive movo:requires
path to the target feature. Adding a movo:excludes relation is only valid if there is no
transitive movo:requires or movo:hasOptionalFeature in VMO or VMI .

A precondition for the creation of the alternative composition (AC) is the non-
existence of any relationship from the source feature to any of its target features. We
also forbid a transitive movo:requires relation between any two features that are in the
set of the AC. Besides, to keep it simple, another constraint is that we do not allow the
creation of nested or overlapping ACs. This constraint could be relaxed in the future.
When the AC is created, the source feature is related to the movo:Alternative_Com-
position via the object property movo:hasAlternativeFeatures. Simultaneously,
we add movo:excludes relations between all members of the AC, since it represents
an XOR selection. The AC is the only existing relation between more than two features.
Once VMI is finished, it is saved in a fresh data store.

5.4 Instantiation of VMI

The instantiation of VMI corresponds to the creation of the user configuration C (com-
pare section 4). We create a new data set and add a property to each feature in VMI

that expresses its status: selectable, selected and not selectable. According to the rules
already described earlier, we automatically select all required features by querying the
transitive paths and disable the not selectable features in case of a movo:excludes resp.
AC relation. The validation of our user configuration using OWL is not part of this pa-
per, because there already exist some reliable approaches (see, e.g., [26] or [27]). Once
the final configuration has been found, the qualified ontologies, including the mappings
between them, are deployed as the compound application ontology .

236 M. Langermeier et al.

6 Evaluation

The design and implementation of enterprise architecture (EA) methods and analyses
are dependent on the meta model used in the organization. Typical for EA is, that each
organization has its own meta model for EA. Typical for EA is also, that this meta model
depends on already existing ones in the different organization units. For example, the
process modelers have their model about processes, the IT administrator has its model
about the infrastructure and the software development unit has its meta model about the
application landscape. To increase the acceptance of the enterprise architecture in the
organization, it should be built with respect to those existing models.

Fig. 5. Modules and their relationships in the EA Use Case

Especially for those providing tool support for EA, this issue is a challenge. On the
one hand, the organizations want to rely on existing frameworks and meta models, but,
on the other hand, they also want to adapt them to their specific needs. To illustrate this
problem, we choose two meta models for enterprise architecture, modularize them, and
establish a variant model, which allows a flexible combination of different parts of the
meta model. This enables the tool provider, who plays the role of the KE, to establish
methods, that support the enterprise architect, independently from the final meta model
or with respect to a special selection. The enterprise architect, which will be the domain
expert, can easily create his desired configuration which will act as his customized meta
model.

For the case study we choose the TOGAF Core Content Metamodel5, a standard
from the Open Group, and the meta model behind the enterprise architecture tool iter-
aplan6. To get modular ontologies, we first divided the two meta models into smaller
modules according to the architecture layers the frameworks present. The relationships
between these layers are represented through import relationships and mapping ontolo-
gies. I.e. there exist two different mappings from Iterplan Information System to the
TOGAF Application module, that cannot be used together. All determined modules
with the mapping ontologies and imports are shown in figure 5. This set of modules
represents the ontology repository. The generated VMO formalizes the owl:imports

5 http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap34.html
6 http://www.iteraplan.de

http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap34.html
http://www.iteraplan.de

Modular Ontology Management Using Feature Models 237

Fig. 6. Feature Model V MI in the EA Use Case

and owl:incompatibleWith relationships. All relationships are correctly transformed
into required and exclude relationships.

For the further evaluation, we define and establish an integrated variability model
by selecting the desired features and adding further constraints. The shaded rectangles
highlight a possible configuration. The integrated variability model with the configura-
tion is shown in figure 6. VMI is conform to VMO and we are able to model all require-
ments from the domain. All ask queries enable us to insert the desired relationships.
Additionally, every other required module, that we do not explicitly select, is inserted.
To model the alternate choice between the iteraplan business and the TOGAF business
module, we create a feature, that is not linked to any ontology. This enables the mod-
eling of a choice between several features. We also introduce such empty features for
the other architectural layers, since the resulting feature model is more comprehensive
for a domain expert. These empty features are depicted by dashed lines surrounding
the rectangles. Furthermore, we introduce one more feature that is not related to any
ontology. This ontology has to be added if this feature is selected in a configuration.

Our test set for the evaluation, including the data sets, queries and a documentation,
has been published at http://megastore.uni-augsburg.de/get/HAth0VS7qw/ .

7 Conclusion

In this paper, we proposed a method for the management of modular ontological mod-
els. We especially addressed the problem that the dependencies between the single mod-
ules can not be specified using the standard OWL vocabulary. We use the concept of
variability management in software product line engineering and adapted it to the do-
main of modular ontology management to be able to formalize possible combinations of
the modules. Therefore, we defined a mapping from the OWL concepts owl:imports
and owl:incompatibleWith as well as from movo:inconsistent to the concepts
movo:requires, movo:excludes, movo:hasMandatoryFeature and movo:Alter-
native_Composition to determine an ontological variability model. Additionally, we
provide a method to create an integrated variability model which is, on the one hand,
conform to the ontological variability model, which specifies what is allowed and what
not. On the other hand, it specifies what makes sense and what not in the resp. business

http://megastore.uni-augsburg.de/get/HAth0VS7qw/

238 M. Langermeier et al.

domain. Based on the integrated variability model, a domain expert can easily create
her application ontology through selection of those features she wants to have. The re-
quired set of ontologies to create the application ontology can then be retrieved from the
variability model using existing feature model solver. To be able to use the reasoning
techniques of ontologies we defined the variability model ontology to express the VMs
in ontologies.

Our method enables the reuse and flexible combination of knowledge modules in
several application ontologies. Thereby, it ensures that the resulting application ontol-
ogy is conform to the annotations that are made in the ontology modules and also to
the requirements that the KE specified. Our goal is to support KEs in assembling a
customized ontology set by providing a modeling environment that applies semantic
technologies.

Future work has to be done to explicitly provide methods to adapt the variability
model when changes in the ontology or requirements for the features have taken place.
In our prototype implementation, we are just using two annotations of the given OWL
functionality for combining modular ontologies. In the future, we want to cover ad-
ditional annotation possibilities in OWL, vocabularies like VOAF and also consider
more expressive approaches for defining coherences between the ontologies. Alterna-
tive approaches, like E-Connections [9], Package Based Description Logics (P-DL) [1],
Distributed Description Logics (DLL) [5] or the Interface-based modular ontology For-
malism (IBF) [14] are eligible alternatives and extensions for modular ontologies. These
approaches offer similar functionalities: they offer bridge rules between multiple on-
tologies, a specific point of views interpretation for modular ontologies or the support
for well-defined interfaces between the ontological modules. Therefore, we also want to
extend the expressiveness of the method and the variability model ontology, e.g., with
an OR composition or cardinalities.

References

1. Bao, J., Caragea, D., Honavar, V.G.: Modular ontologies - A formal investigation of se-
mantics and expressivity. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006.
LNCS, vol. 4185, pp. 616–631. Springer, Heidelberg (2006)

2. Berre, D.L., Parrain, A.: The Sat4j library, release 2.2. JSAT 7(2-3), 6–59 (2010)
3. Beuche, D., Papajewski, H., Schrder-Preikschat, W.: Variability management with feature

models. Science of Computer Programming 53(3) (December 2004)
4. Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sattler, U., Smith,

M.: OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax.
Tr, W3C (2009)

5. Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from
Peer Sources. Journal on Data Semantics 1, 153–184 (2003)

6. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J.H., Pohl, K.: Variability issues in
software product lines. In: van der Linden, F. (ed.) PFE 2002. LNCS, vol. 2290, pp. 13–21.
Springer, Heidelberg (2002)

7. Chen, L., Babar, M.A., Ali, N.: Variability management in software product lines: a sys-
tematic review. In: Proceedings of the 13th International Software Product Line Conference,
SPLC 2009, pp. 81–90 (2009)

8. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD Rec. 35(3), 34–41
(2006)

Modular Ontology Management Using Feature Models 239

9. Cuenca Grau, B., Parsia, B., Sirin, E.: Ontology integration using ε-connections. In:
Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS,
vol. 5445, pp. 293–320. Springer, Heidelberg (2009)

10. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using Feature Models. In:
Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Heidelberg (2004)

11. Czarnecki, K., Hwan, C., Kalleberg, K.T.: Feature Models are Views on Ontologies. In: Soft-
ware Product Line Conference, vol. 1 (2006)

12. d’Aquin, M., Haase, P., Rudolph, S., Euzenat, J., Zimmermann, A., Dzbor, M., Iglesias, M.,
Jacques, Y., Caracciolo, C., Aranda, C.B., Gomez, J.M.: NeOn Formalisms for Modulariza-
tion: Syntax, Semantics, Algebra. Deliverable 1.1.3, NeOn Integrated Project (2008)

13. de Oliveira Junior, E.A., Gimenes, I.M., Huzita, E.H.M., Maldonado, J.C.: A variability man-
agement process for software product lines. In: Proceedings of the 2005 Conference of the
Centre for Advanced Studies on Collaborative Research, pp. 225–241 (2005)

14. Ensan, F.: Semantic Interface-Based Modular Ontology Framework. PhD thesis, University
of New Brunswick (2010)

15. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing.
International Journal Human-Computer Studies 43, 907–928 (1993)

16. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse
method with domain-specific reference architectures. Annals of Software Engineering 5(1),
143–168 (1998)

17. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical report. Carnegie-Mellon University Software
Engineering Institute (1990)

18. Lee, J., Muthig, D.: Feature-oriented variability management in product line engineering.
Communications of the ACM - Software Product Line 49(12) (December 2006)

19. Mohan, K., Ramesh, B.: Ontology-based support for variability management in product and
families. In: Proceedings of the 36th Annual Hawaii International Conference on System
Sciences, p. 9. IEEE (2003)

20. Quinton, C., Haderer, N., Rouvoy, R., Duchien, L.: Towards multi-cloud configurations using
feature models and ontologies. In: Proceedings of the 2013 International Workshop on Multi-
Cloud Applications and Federated Clouds, MultiCloud 2013, pp. 21–26. ACM, New York
(2013)

21. Rector, A., Brandt, S., Drummond, N., Horridge, M., Pulestin, C., Stevens, R.: Engineering
use cases for modular development of ontologies in OWL. Applied Ontology 7, 113–132
(2012)

22. Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Challenges. IEEE
Transactions on Knowledge and Data Engineering 25(1), 158–176 (2013)

23. Sinnema, M., Deelstra, S.: Classifying variability modeling techniques. Journal of Informa-
tion and Software Technology 49(7) (July 2007)

24. Spaccapietra, S., Menken, M., Stuckenschmidt, H., Wache, H., Serafini, L., Tamilin, A.:
D2.1.3.1 - Report on Modularization of Ontologies (July 2005)

25. Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies. LNCS,
vol. 5445. Springer, Berlin (2009)

26. Wang, H.H., Li, Y.F., Sun, J., Zhang, H., Pan, J.: Verifying feature models using OWL. Web
Semantics: Science, Services and Agents on the World Wide Web 5(2), 117–129 (2007)

27. Zaid, L.A., Kleinermann, F., De Troyer, O.: Applying semantic web technology to feature
modeling. In: Proceedings of the 2009 ACM Symposium on Applied Computing, SAC 2009.
ACM, New York (2009)

Towards Automated Service Matchmaking
and Planning for Multi-Agent Systems

with OWL-S – Approach and Challenges

Johannes Fähndrich, Nils Masuch, Hilmi Yildirim, and Sahin Albayrak

DAI-Labor, TU Berlin
Ernst-Reuter-Platz 7, 10587 Berlin, Germany
forename.surname@dai-labor.de

Abstract. In the past, the demand for modular, distributed and dynamic com-
puter systems has increased rapidly. In the field of multi-agent systems (MAS)
many of the current approaches try to account for these requirements. In this
paper we discuss the shortcomings of the semantic service selection component
SeMa2, propose improvements and describe an integration concept into a multi-
agent framework. Further, we illustrate how this system can be extended by an
automated service composition component using methods from the AI planning
community.

Keywords: OWL-S, Automated Service Selection, Automated Service
Composition, Planning, Multi-Agent Systems.

1 Introduction

Distributed systems based on the Service Oriented Architecture (SOA) paradigm have
become more and more popular in recent years. One of its inherent strengths is the
definition of a clear autonomy of each service, which means that it is represented as a
separate module. Further, services are designed for enhancing the reusability as well as
the interoperability which is one of the key issues for distributed systems. Especially
when talking about huge computer systems with different providers and parties involved
these attributes are essential.

In order to cope with dynamic aspects in huge systems, such as the immediate
(dis-)appearance of services, solutions to adapt the process via an automated service
selection and composition are desirable. As a first step, service matching techniques
have been developed that enable the automated selection of services. However, this is
not enough when the system has to deal with complex goals, where the involvement
of different services is necessary. In this case, the system needs some form of auto-
mated service composition solution, which can also be interpreted as planning. In the
area of multi-agent systems and AI in general there has been done research leading to
approaches, such as hierarchical task networks (HTN) or STRIPS.

In this paper we propose to combine semantic service technologies of the SOA com-
munity with the planning techniques of the AI community. We do so by using our
semantic service matchmaking component SeMa2 [12] as a fundament and discuss the

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 240–247, 2014.
c© Springer International Publishing Switzerland 2014

Towards Automated Service Matchmaking and Planning for MAS 241

adaptions necessary to set up an HTN planning component, which is capable of being
integrated into a service-oriented multi-agent framework.

The remainder of the paper is structured as follows. In section 2 we will shortly
present the current status of our service matching component SeMa2 and provide new
concepts for its improvement in detail. In section 3 we describe our concept of extend-
ing SeMa2 by a planning component integrated into a multi-agent system. Section 4
presents the related work in automated service composition. Finally, we close with a
conclusion.

2 Automated Service Matchmaking - The SeMa2 Approach

The service matcher SeMa2 follows a hybrid approach combining logic-based and non-
logic-based matching techniques using OWL-S and SWRL. Figure 1 shows all relevant
components, for example the OWLS-ServiceAnalyzer as the document parser/writer and
the MatcherController which triggers all different matching techniques and aggregates
them to a single result. As for the non-logic-based evaluation SeMa2 processes syn-
tactical comparison on service names (ServiceName Matcher) and service descriptions
(TextSimilarity Matcher) based upon well-known lexicographic techniques, such as Jac-
card index or Hamming distance. Further, three different approaches are used for logic-
based matching, namely the Taxonomy Matcher, the RuleStructure Matcher and the
Rule Evaluator.

All these results are combined via linear weighted aggregation, with no adaptability
so far. At the S3 Contest 2012 SeMa2 performed well regarding the precision coming
with the best matching accuracy in graded relevance ranking. However, at the contest
Rule Evaluation (due to missing ABox information) and RuleStructure Matching (due
to syntactic incompatibility of the SWRL services) were not integrated. Internal tests
with modified service descriptions have shown, that the integration of rule structure
matching has even a minimal negative influence on the results lowering the average
precision based on the nDCG-measure from 92,7% to 92,1%. Since there is no obvious
reason for that and we consider rule matching as an important part for the matcher to
be used in a planning component we decided to formalize our approach at first and then
focus on improving the aggregation concept of the different matching techniques.

2.1 Scoring and Aggregation of Different Matching Techniques

Due to the best-first search we are aiming to use in our planning component, the results
of the Precondition and Effect (PE) matching are crucial. The rule structure component
has multiple matching layers and thus has many decision points on how to rate full, par-
tial or other matches. A further challenge is the assignment of weights to the different
matching results to achieve a single score for a service. Each scoring for the equivalence
of two concepts can be seen as an expert opinion assigning a probability to the match.
For example there could be an expert on semantic distance based scoring and one on
logic based scoring. The resulting probability of equivalence is published to be used
by an aggregation method. Doing so, the scorings of an expert will be formalized as
pi(R,S) ∈ [0,1] with R,S being a request and a service and i ∈ {1, . . . ,n} representing

242 J. Fähndrich et al.

Fig. 1. The component architecture of SeMa2

one of the n different expert opinions. Right now, each of the expert opinions are evalu-
ated in a static way mapping a concrete result (e.g. full match, sub match, super match)
to a fixed value.

In the following we propose different scoring methods to extend the PE matching
and present one example in a probabilistic framework similar to [1,7]. Afterwards some
aggregation methods taken from information fusion will be presented to create a prob-
abilistic matching score. In SeMa2 the comparison of concepts is reduced to the equiv-
alence of the URI of ontology and concept. Here a collection of possible extensions
is presented. Semantic distance based scoring [19] analyzes the embedded ontology
of two concepts to find the shortest path from one concept to another. WordNet based
scoring [1] can be used to find lexical similarity in used words. If two concepts out of
different ontologies need to be matched a bipartite matching score is able to rate the
similarity by i.e. the maximum cardinality match counting the edges between the dif-
ferent concepts. More sophisticated methods use ontology matching to find a semantic
relation between concepts. Logic based scoring like proposed in Approximated Logical
Matching [7] are further scoring methods using reasoning on formal features of the
rules describing the preconditions and effects.

Probabilistic Model of Opinion. To formalize such different scoring methods we
apply the results of Morris [13] and have modeled expert opinions as probabilities
pi(R,S). The following section will detail this model. As an expert observes two con-
cepts and elaborates their semantic distance we can abstract his opinion as pi(Θ |d)
where Θ is the subject of interest and d are the observations. An expert can then
collect evidence for his opinion by conducting multiple observations di. Each obser-
vation might then be interpreted as evidence to strengthen his opinion. Following Bey-
erer [2] a Bayesian interpretation of the probability the conditional probability pi(Θ |d)
could be interpreted as a degree of confidence or better a degree of belief. With such an

Towards Automated Service Matchmaking and Planning for MAS 243

interpretation we can use this formalism to model the expert opinions as described in
equation 1.

p(Θ |d)︸ ︷︷ ︸
A−Posteriori

=
p(d|Θ)p(Θ)

p(d)
∝

Likelihood−Function︷ ︸︸ ︷
p(d|Θ) p(Θ)︸ ︷︷ ︸

A−Priori

(1)

Here the subject of interest is Θ e.g. equivalence of a Horn-clause. The observations
or information used by the expert to assess its opinion is formalized in d. An example of
this d could be the attached ontologies to the concept in order to calculate the semantic
distance. The expert can update its opinion after observing another d using Bayesian
fusion by calculating the product described in equation 1. If one concept for exam-
ple is a hypernym of the other, p(d|Θ) could be proportional to the minimal distance
between those two concepts [19]. Further, p(Θ) allows the expert to formalize a-priory
knowledge about probability of Θ .

Opinion Aggregation. The opinions pi(Θ |d) are collected and need to be fused to one
score. Since the experts are not always equally important the possibility to prioritize
the weightings of the different expert opinions is a requirement for the fusion method.
With the probabilistic formalization of the expert opinions method like the Dempster-
Schafer theory of evidence [16], fuzzy logic or artificial neuronal networks can be used
for information fusion [3]. This work introduces a method of opinion aggregation called
pooling method formalized in a function K(p1, . . . , pn)(Θ). It is acquired by adapting a
weighted mean to the aggregation of opinions. We choose a weighted arithmetic mean
called linear opinion pool [18]. This arithmetic mean has been generalized by Genest [5]
to be able to use weights in the interval [−1,1] in a more general class of linear opinion
pools (GenLinOP). This opinion pool has the form of equation 2.

K(p1, . . . , pn)(Θ) =
n

∑
i=1

wi pi(Θ)+

[
1−

n

∑
i=1

wi

]
R(Θ) (2)

w1, . . . ,wn ∈ [−1,1] are weights and R is an arbitrary probability function, with the

restriction: ∀J ⊆ {1, . . . ,n} :

∣∣∣∣ ∑
j∈J

wj

∣∣∣∣≤ 1.

The method shown in equation 2 has been chosen because of its theoretical sound
standing. Other pooling methods have been and are continued to be evaluated which is
subject to research. The GenLinOP has the possibility to include – besides the opinion
of the group – an a-priori established probability which can be modeled as R(Θ).

Taking this theoretical framework as a basis we implement the different measures
used in the service matching as experts returning a probability pi(Θ) and aggregate
them with a pooling method K(p1, . . . , pn)(Θ). For an example we have adapted the
comparison of the arguments of a predicate. The probability here is as follows:

p(Θ) =

⎧⎪⎨
⎪⎩

1
dist(ar ,as)

, if 1 ≥ dist(ar,as)> 0

1.0 , if ar.getURI()≡ as.getURI()

0 , else

(3)

244 J. Fähndrich et al.

dist(ar,as) defines the distance between the two concepts as proposed above. In a
similar manner all other fixed values will be turned into probabilistic expert opinions.
With this change, we are able to distinguish partial argument matches. We want to
emphasize the importance of such a partial match for planning tasks. Here multiple ser-
vices can be used to fulfill the arguments of a predicate in a precondition. Thus on a
higher level: we are able to use multiple services to fulfill the preconditions of a succes-
sor task or state. For planning, we do not only need the probability after defuzzification,
but also the already matched elements with their matches. The extension from a binary
to a probabilistic representation is one step towards this goal.

Selecting one service to satisfy a query assumes that this given query has been fore-
seen and a corresponding service has been implemented. Without loss of generality we
assume that this is not always the case, making it necessary to compose multiple ser-
vices to fulfill a task. Thus using the service matcher as part of a planning component
rises the next challenge.

3 Automated Service Composition

Similar to Klusch [6] the approach of this paper aims at connecting the research area
of the semantic web with the flexibility and adaptiveness of agent planning. Here we
see services as actions and a plan as equivalent to a service composition. A goal state
in agent planning is modeled with the fulfillment of a query in the semantic web com-
munity. With this mapping of terms, we aim at building a Hierarchical Task Network
(HTN) planner, which uses web services to achieve a defined goal state. As basis for
our approach, we use the multi-agent system JIAC V [10] in which the agents have the
capability to publish their actions as web services including semantic service descrip-
tions [11]. The published service can then be used, like all other services contained in
the service directory. The agent provides the planning component with a goal descrip-
tion and its knowledge base. This is necessary so that the current state can be assessed
by the planner.

3.1 Challenges

In the following we will have a look at some challenges which arise by service com-
position. First of all, the preconditions of a service need to be split up as fine granular
as possible, enabling more services to fulfill a subset of them. This means to invert the
Lloyd-Topor Transformation [9]. Another challenge is to narrow the search space of
possible actions for each state. In the planning domain heuristics are used to choose
via best-first search, in the semantic web research area semantic descriptions are used
to decide if a service is useful for a given task. These semantic descriptions might al-
low sound heuristics and thus narrow the search space in the same way as in traditional
planning. Services can be separated into two classes: information gathering service
and world altering service. We postulate that the execution of information gathering
services at plan time might be helpful for the planning process. The challenge here is
how the adaption of an information gathering service (executed during plan time) is
reflected in the knowledge base, how they are reverted if the planner comes to a back-
tracking point and which adaption is communicated back to the agent instead of adding

Towards Automated Service Matchmaking and Planning for MAS 245

the information gathering service to the plan and re-executing it at plan execution time.
To be able to generalize a created plan as a non-primitive task in the HTN, the plan
including the information gathering services would be needed at the agent side. A more
technical design decision is the placement of the planner. To avoid a centralized solution
which would rise privacy issues, every agent could have a planning component which
would get the agent closer to the BDI paradigm. But in order to avoid the overhead
every node should instead provide a planner for its agents. In an multi-agent system, a
heterogeneous landscape of ontologies can be used among the agents, making ontology
matching a challenge worth while facing.

Fig. 2. Component diagram of the extended AI Planner

In more detail, we extend a Hierarchical Task Network (HTN) Planner as shown in
Figure 2. The gray components are off-topic for this paper. During a planning process
the retrieval of applicable services will be implemented by the SeMa2 service matcher,
searching for services in a service directory consisting of atomic services and compos-
ite services. The composite services are published plans or non-primitive tasks of the
HTN planner. The monitoring component measures the quality of the plan/orchestration
during execution and enables the heuristic to adapt to changes. Further plan execution
failures can be detected to initiate re-planning. The heuristic component evaluates the
matching results and creates a heuristic for the search component to guide its search.
The search is implemented as a best-first search. The planner has a copy of the knowl-
edge base of the agent which will be held in the planning knowledge base component,
which is responsible to be able to revert changes and to keep the knowledge base con-
sistent. The result of a planning process is a plan which consists of two parts. The first
part are the descriptions of the used services containing their grounding information.
The second part is the knowledge base needed by the agent to schedule and execute the
plan.

246 J. Fähndrich et al.

4 Related Work

The literature provides a huge set of different service composition approaches and con-
cepts. In this section we introduce some of these frameworks. One service composition
approach is WSPlan, developed by Peer [15]. WSPlan uses a knowledge base and ser-
vices described in WSDL extended by semantic annotations in a PDDL syntax. The
knowledge base and the annotations of web services are transformed into PDDL docu-
ments. It uses an online planning method for service composition which means that the
planning and execution is interleaved. Another service composition solution is OWLS-
XPlan, developed by Klusch [6]. It transforms OWL-S descriptions of services into
PDDLXML, an XML dialect for PDDL. For service composition it uses a combina-
tion of a Fast-Forward-planner and an HTN planner. There are other solutions which
also transform service descriptions into another description language for service com-
position. The solution developed by Okutan et al. [14] transforms OWL-S descriptions
of services into the Event Calculus framework in which actions and their effects are
expressed, the solution by Kuzu and Cicekli [8] transforms OWL-S descriptions into
PDDL and the solution by Sirin et al. [17] transforms OWL-S descriptions into the
SHOP2 domain to use SHOP2 as an HTN planner. There are also service composition
solutions which use multi-agent systems for load balancing. One approach which uses
a multi-agent system is the approach by El Falou et al. [4]. There is one central agent
which receives a request from a client which includes the initial and goal state. It for-
wards the request to service agents, each managing a group of web services. All service
agents compute a local partial plan and send it back to the central agent. The central
agent merges the partial plans together to obtain a global partial plan. Then it applies
it on the initial state to obtain a new state and sends a new request based on the new
state to the service agents. They in turn compute a new plan iterating until the goal state
is reached. A simular approach is DPAWSC (Distributed Planning Algorithm for Web
Service Composition) which also uses a multi-agent system for service composition.

The overview reveals that there exist different, mostly domain specific approaches
for solving the task of service composition with AI planning. The planner proposed in
this work will not transform service descriptions into a PDDL like description language.
Instead, the planning is done directly on the results of the semantic service matcher
and semantic service descriptions. This requires the creation of sound heuristics and
backtracking from dead-ends in the planning process.

5 Conclusion

Within this paper we discussed how our automated service selection component ap-
proach SeMa2 can be extended to fulfill needed requirements for service composition.
We presented SeMa2 shortly, specified the current shortcomings and proposed a formal-
ism how to aggregate the partial results in an adaptive way. Further, we presented our
initial concept of extending SeMa2 by an automated service composition component
using HTN planning on SWRL. Finally, we have shown how this work can fit into a
comprehensive multi-agent framework.

Towards Automated Service Matchmaking and Planning for MAS 247

References

1. Bener, A.B., Ozadali, V., Ilhan, E.S.: Semantic matchmaker with precondition and effect
matching using SWRL. Expert Systems with Applications 36(5), 9371–9377 (2009)

2. Beyerer, J.: Verfahren zur quantitativen statistischen Bewertung von Zusatzwissen in der
Messtechnik. VDI Fortschritt-Bericht, vol. 8. VDI/Verl. (1999)

3. Fähndrich, J.: Analyse von Verfahren zur Kombination von Expertenwissen in Form von
Wahrscheinlichkeitsverteilungen im Hinblick auf die verteilte lokale Bayes’sche Fusion.
Diploma thesis. Karlsruhe Institut of Technology (May 2010)

4. Falou, M.E., Bouzid, M., Mouaddib, A.-I., Vidal, T.: Automated Web Service Composition:
A Decentralised Multi-agent Approach. In: IEEE/WIC/ACM International Joint Conferences
on Web Intelligence and Intelligent Agent Technologies, vol. 1, pp. 387–394 (2009)

5. Genest, C.: Pooling operators with the marginalization property. The Canadian Journal of
Statistics/La Revue Canadienne de Statistique 12(2), 153–163 (1984)

6. Klusch, M., Gerber, A., Schmidt, M.: Semantic Web Service Composition Planning with
OWLS-Xplan. In: Proceedings of the 1st Int. AAAI Fall Symposium on Agents and the
Semantic Web, pp. 55–62 (2005)

7. Klusch, M., Kapahnke, P.: The iSeM matchmaker: A flexible approach for adaptive hybrid
semantic service selection. Web Semantics: Science, Services and Agents on the World Wide
Web 15, 1–14 (2012)

8. Kuzu, M., Cicekli, N.K.: Dynamic planning approach to automated web service composition.
Applied Intelligence 36(1), 1–28 (2012)

9. Leuschel, M., Craig, S.-J.: A Reconstruction of the Lloyd-Topor Transformation using Partial
Evaluation. In: Pre-Proceedings of LOPSTR, 2005 (2005)

10. Lützenberger, M., Küster, T., Konnerth, T., Thiele, A., Masuch, N., Heßler, A., Burkhardt,
M., Tonn, J., Kaiser, S., Keiser, J., Albayrak, S.: JIAC V — A MAS Framework for Industrial
Applications (Extended Abstract). In: Proceedings of the AAMAS 2013, Saint Paul, MN,
United States of America (2013)

11. Masuch, N., Brock, P.: Integration of semantic service description techniques into a multi-
agent framework. In: Trends in Practical Applications of Agents and Multiagent Systems,
pp. 155–162. Springer International Publishing (2013)

12. Masuch, N., Hirsch, B., Burkhardt, M., Heßler, A., Albayrak, S.: SeMa2: A Hybrid Semantic
Service Matching Approach. In: Semantic Web Services, pp. 35–47. Springer, Heidelberg
(2012)

13. Morris, P.A.: Combining expert judgments: A Bayesian approach. Management Science
23(7), 679–693 (1977)

14. Okutan, C., Cicekli, N.K.: A monolithic approach to automated composition of semantic web
services with the Event Calculus. Knowledge-Based Systems 23(5), 440–454 (2010)

15. Peer, J.: A PDDL Based Tool for Automatic Web Service Composition. In: Ohlbach, H.J.,
Schaffert, S. (eds.) PPSWR 2004. LNCS, vol. 3208, pp. 149–163. Springer, Heidelberg
(2004)

16. Shafer, G.: A mathematical theory of evidence, vol. 1. Princeton University Press (1976)
17. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for Web Service com-

position using SHOP2. Web Semantics: Science, Services and Agents on the World Wide
Web 1(4), 377 (2004)

18. Stone, M.: The opinion pool. The Annals of Mathematical Statistics 32(4), 1339–1342 (1961)
19. Wu, J., Wu, Z.: Similarity-based web service matchmaking. Services Computing (2005)

Re-engineering the ISO 15926 Data Model:

A Multi-level Metamodel Perspective

Andreas Jordan, Matt Selway, Georg Grossmann,
Wolfgang Mayer, and Markus Stumptner

University of South Australia
School of Information Technology and Mathematical Sciences

Adelaide, Australia
{andreas.jordan,matt.selway}@mymail.unisa.edu.au

{georg.grossmann,wolfgang.mayer,markus.stumptner}@unisa.edu.au

Abstract. The ISO 15926 standard was developed to facilitate the
integration of life-cycle data of process plants. The core of the stan-
dard is a highly generic and extensible data model trying to capture a
holistic view of the world. We investigated the standard from a software
modelling point of view and identified some challenges in terminology,
circular definitions and inconsistencies in relationships during the map-
ping from concepts specified in the standard to an object-oriented model.
This makes the standard difficult to understand and more challenging to
implement. In this paper we look at mapping the ISO 15926 data model
to a multilevel metamodel, and aim to formalise critical aspects of the
data model which will simplify the model and ease the adoption process.

Keywords: Conceptual modelling, multilevel modelling, metamodel
engineering.

1 Introduction

ISO 15926 was developed to capture information that is frequently exchanged
by organisations in the process-driven industry. Organisations that share data
across the life-cycle of assets spanning design, engineering, operations and main-
tenance require an infrastructure for interoperabiliy and hand-over of data in an
automated fashion. At the heart of the ISO standard is a generic data model
(ISO 15926-2) such that any organisation within the process-driven industry can
adopt and use. Combined with a reference data library (ISO 15926-4) and a set
of initial templates (ISO 15926-7) to facilitate intended use enables information
exchange at the semantic level.

However, in an effort to make the data model sufficiently generic to be suit-
able for adoption by a diverse range of organisations across the process-driven
industry, the model itself has become modelled in an unorthodox fashion from
an ontology engineering perspective because the specification of concepts and
their relations do not follow a formal ontology construction methodology [1,2].

The data model contains a number of significant issues from a software mod-
elling point of view. Many of these issues stem from the lack of accountability

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 248–255, 2014.
c© Springer International Publishing Switzerland 2014

Re-engineering the ISO 15926 Data Model 249

in the use of terms such as ‘instance’, ‘entity’, ‘object’ and ‘represent’ which
are used differently by different communities [3]. Others are caused by a ten-
dency to preemptively overspecialise parts of the data model. Moreover, despite
the standard purporting to enable information exchange at the semantic level,
its documentation illustrating its intended use places constraints on the various
classes but these constraints are missing from the data model, which can result
in modelling lifecycle information in a way not intended.

In this paper our objective is to map the data model of ISO 15926 into a
multilevel data model which we refer to as target model in the paper. By en-
abling metalevels of representation we are able to better represent the intended
meaning by simpler and consistent naming conventions, and adhering to con-
ventional ontological theories of roles, representation and mereology. Through
this re-engineering process we aim to simplify the mapping process for domain
experts.

The presence of concept names including terms like Class of Class, Class and
Individual intuitively suggests a minimum of three metalevels could be con-
structed. Therefore, the two levels of instantiation as made available by the Ob-
ject Management Group’s (OMG) Meta Object Facility (MOF) will not suffice
as we need to support modelling “ontological” classification across more than one
type/instance level. For this we employ the notion of multilevel metamodelling
such as has been proposed by Atkinson et al [4].

In previous work we investigated the principal application of a multi-level
modelling approach which revealed some of the challenges when applying an
object-oriented modelling approach on ISO 15926 [5]. This paper goes beyond
previous work and focuses on a more detailed discussion from an ontological
perspective, in particular on the specifications of representation, part-whole re-
lationships and roles.

Section 2 discusses related work, Section 3 discusses some key aspects of the
ISO 15926 data model in more detail, Section 4 briefly discusses some of the key
notions of multilevel metamodelling outlining our ideas for re-engineering the
flat data model into a multilevel model followed by our conclusion and further
work in Section 5.

2 Related Work

Our work on transforming the flat data model into a multilevel model is based on
model-based transformation. We use rules to extract/derive a model that allows
more than just the two metamodel levels offered by the MOF framework. This is
motivated by the ISO 15926 data model which contains a number of terms such
as Class of X and Class of Class of X which suggests the relationship between
these classes represent ontological instantiation. In multilevel modelling terms,
three ontological model levels would be needed to represent the ISO 15926 data
model.

In [4], Atkinson et al introduces a model element termed “clabject” to repre-
sent the dual nature of model elements that possess properties of both a ‘class’

250 A. Jordan et al.

with respect to model elements in the model level below and an ‘instance’ with
respect to model elements in the above model level. The work of De Lara et al in
[6] aims to move beyond the limitations of two meta-modelling levels by intro-
ducing a framework called MetaDepth that similarly provides an implementable
alternative to model-based transformations. Although using similar concepts as
[4], the framework extends the potency concept to constraints. Additional re-
lated work also includes that of Gonzalez-Perez et al [7] whose use of so-called
powertypes provide a mechanism to extend the influence of model elements to
beyond their immediate model-level. While this approach adopts the concept
of clabject, the approach differs from [4] and [6] in that the enabling factor for
providing a level-agnostic modelling approach employs the powertype pattern as
described by Odell in [8].

In addition to the multilevel modelling aspects of this work, we investigate
alternative conceptual elements to construct an ontology which incorporates a
more detailed ontological theory of roles, representation and mereology than
what is currently defined in ISO 15926-2. This is motivated by the need to
enable mapping at the semantic level between other standards in the process-
driven industry (e.g. MIMOSA’s OSA-EAI1) and ISO 15926.

In the area of computer science, research into roles began as early as 1977
with Bachman et al’s paper (see [9]). The advent of the semantic web has also
seen increased interest in developing a robust theory of roles of which a number
of contributions have been made, e.g. see [10,11,12]. Mizoguchi’s theory of roles
introduces a number of additional concepts, namely “Role Holder”(also referred
to as a qua-individual in [11]), “Role Concept” and “Role Player” where the
Role Holder is a composition of the Role Concept and the Role Player.

3 Discussion on ISO 15926-2 Concepts

Part 2 of the ISO 15926 standard describes the data model comprising some 201
concepts and forms the core of the standard. It provides a generic data model
for the representation of life-cycle information[5]. In this section we analyse a
number of concepts from the data model, discuss their ontological nature and
how an alternate representation can result in a more understandable ontology.

3.1 Modelling in 3D vs 4D

A conceptual model based on a 3D view of the world is fundamentally different to
modelling in 4D. One of the most important distinctions is recognising what con-
stitutes identity of an object [13]. Considered more in-line with a common-sense
understanding of the world, the 3D view considers the three spatial dimensions
separately from time, and recognises objects as having identity. In contrast, a
4D view treats time as a fourth dimension. The identity of an object is its tra-
jectory through space-time. An example is a person changing as they age. In a

1 http://www.mimosa.org/

http://www.mimosa.org/

Re-engineering the ISO 15926 Data Model 251

3D world-view, we accept that the person changes but their identity does not.
In a 4D world-view, the temporal part of a person at time t1 is not the same
as the temporal part of the person at time t2. In this world-view the identity of
the person would need to be determined by summing the temporal parts of the
person, summarised by the expression that the person’s identity is determined
by its “spatio-temporal envelope”. While elegant to express in abstract terms,
this does not provide an effective way to compute or reference identity.

A challenge in this work is the fact that ISO 15926 is modelled on the 4D
world view. While the 4D approach seems ideal for modelling the lifecycle of
assets, in terms of implementation and practicality, it becomes challenging to
minimize the complexity of queries relating to identity of objects. These types of
queries would not be possible using OWL or formulated as a SPARQL query but
would necessitate implementation in either a procedural or declarative language.
Moreover it makes understanding, applying and modelling in ISO 15926 more
complex, particularly when mapping 3D-based standards to it. Therefore, our
target model is based on the 3D world view.

One of the ways this impacts on the 3D model, is the handling of the concept
Possible Individual and its subtypes. This concept is defined as “A “thing” that
exists in space and time. This includes “things” which are imaginary or possibly
exist in the past, present or future.” [14]

The subtypes of Possible Individual include Physical Object, Event, Period -
in Time and Point in Time. These subtypes are treated the same in ISO 15926
due to the 4D world view. However, in the 3D world view, Physical Objects and
Events must be treated differently. Furthermore, in ISO 15926 a Point in Time
is an Event and those “events that are not points in time are spatial parts of a
Point in Time, defining the time of the event” [14].

An Event and a Point in Time are linked via a part-whole relationship where
the whole is the Point in Time an Event occurs. By adopting a 3D world view
in our multilevel model, we separate events and temporal concepts such that we
can use the more intuitive notion of an event occurring at a certain point in
time.

3.2 Representation of Concepts in the Real World

The specification of representation is particularly challenging because specifying
the user’s intention is not straight forward. Its definition in [14] is given as “A
representation of thing is a relationship that indicates that a possible individual
is a sign for a thing.”. To illustrate its meaning, it’s accompanying example is
as follows “The relationship between a nameplate with its serial number and
other data, and a particular pressure vessel (materialized physical object) is an
example of representation of thing that is an identification.” [14]

According to Mizoguchi et al in [13] he states a representation is only em-
bodied when it becomes a represented thing and consists of two parts, form and
content. The previous example can be misleading in that it can be interpreted
in different ways: For example, the nameplate itself could be the representation
and then be used to identify a pressure vessel. However, the intention of the user

252 A. Jordan et al.

might be to use the nameplate only as the medium which holds an identification
number rather than representation of the pressure vessel. It is the symbols com-
prising the serial number that is the representation of the pressure vessel. In ISO
15926-2, Identification is defined as a subclass of Representation of Thing. The
example is ambiguous in at least two senses, the first is whether the symbols
comprising the serial number are the representation of the pressure vessel or
the representation of the identification of the pressure vessel. Another ambigu-
ity relates to the inclusion of the terms “other data” mentioned in the example.
Does the “other data” form part of the representation of the Identification of the
pressure vessel or part of the representation of the pressure vessel itself? “Other
data” could refer to any property of the pressure vessel, e.g., max pressure rat-
ing, in which case, the “other data” does not form part of the representation of
either the identification of the pressure vessel nor the pressure vessel itself. To
disambiguate these types of issues ISO 15926-2 needs to be supplemented with
a more formal notion of representation.

3.3 Mereology - Part/Whole Relations

In order to adequately represent the different interpretations of mereological
relations, it is necessary to first distinguish between the different types that
exist. Winston et al in [15] identifies six distinct kinds of part-whole relations:

– Component/Integral Object E.g./ handle-cup
– Member/Collection E.g. tree-forest
– Portion/Mass E.g. slice-pie
– Stuff/Object E.g. steel-bike
– Feature/Activity E.g. paying-shopping
– Place/Area E.g. oasis-desert

Three key characteristics are used to distinguish each type of part-whole relation.
They are functional roles such as ‘an impeller is part-of a pump’, the similarity
of the parts with respect to the whole such as ‘a molecule of water is a part of
water’ and lastly whether the parts are separable from the whole. ISO 15926-2
also contains mereological relations and we apply the criteria outlined in [15] to
determine which category ISO 15926’s part-whole relations belong to.

Composition of Individual is the most abstract part-whole relation. We ar-
gue that it fits the “Member/Collection” relation type as no arrangement be-
tween its members is implied and therefore it does not satisfy the functional
criteria. Since both part and whole attributes are of type Possible Individual,
dissimilar objects can be involved in this type of relation and by definition the
Possible Individuals involved in the part/whole relation are separable.

However, Composition of Individual is also a catchall for other types of part-
whole relations. An example of Composition of Individual is that a grain of sand
is part of a pile of sand, which is a portion/mass relationship. Therefore, when
mapping a specific instance of Composition of Individual into the target model,
the entities that constitute the part and whole must be reasoned over in order
to determine the relationships correct classification.

Re-engineering the ISO 15926 Data Model 253

Arrangement of Individual is a specialisation of the concept
‘Composition of Individual’ that restricts the range of the ‘whole’ to an Ar-
ranged Individual, which is defined in [14] as “A possible individual that has
parts that play distinct roles with respect to the whole.”

Therefore, we argue that Arrangement of Individual be classified as a com-
ponent/integral object relationship. By classifying the way in which part/whole
relationships are utilised in ISO 15926 we can better support the mapping of
other standards to ISO 15926 through our target model.

Our target model involves representation in a 3D model with time and so
does not consider temporal events to contribute to the identity of an object.
Instead we employ Mizoguchi’s approach by treating a continuant as a role in
the context of a process[13].

3.4 Roles

A generally acceptable informal definition of a role is an entity that is played by
another entity in some context. From a pragmatic perspective we believe the role
theory of Mizoguchi is suitable to implement our domain ontology intended to be
used to map to ISO 15926-2. When trying to define the characteristics of roles,
the differing theories generally agree on a number of fundamental characteristics.

– Rigidity i.e. whether a role is essential/non-essential to all its instances.
– Externally founded i.e. roles require external concepts to define them
– Dynamicity i.e. entities can stop and start playing one or more roles

We suggest to adopt the theory of roles from Mizoguchi[13] and redefine the
role-related concepts in ISO 15926 based on this theory. The goal of this change
is to provide a more formal, robust and intuitive framework that appeals to a
commonsense understanding of roles and remove confusing terminology such as
Class Of Possible Role And Domain. ISO 15926-2 contains a number of types
that represent roles. These are given first-class status in the model where five
are specialisations of the entity Class and the remainder are reified relationships.
However ISO 15926 does not give detailed semantics for their intended use.
Further to the issue of comprehensibility the term role is used interchangeably to
refer to different kinds of roles whose semantics are quite different (see Table 1).
ISO 15926-2’s definition of role is loosely analogous to Mizoguchi’s role concept
in [10], however this is where the similarity ends. Although ISO 15926 provides
documentation on intended use, the data model does not adequately contain the
necessary semantics/constraints to properly enforce the use of roles. Therefore,
we believe the data model would benefit by introducing a more robust theory of
roles such as that by Mizoguchi in [10].

4 Multilevel Modelling

Research addressing a number of limitations to the UML began as early as 1997
and has continued through to the present day, e.g. see [16,4,6,7]. The major

254 A. Jordan et al.

Table 1. Role Kinds used in ISO 15926

Role Kind Semantics

UML Appear at either end of an association between two class objects
Description Logic Binary relationships which are interpreted as sets of pairs of

individuals and permit the establishment of role hierarchies
Mizoguchi Defines roles as a composition of a role concept and a potential

player of the role within a context.
Activity Describes an ISO 15926 ‘Role And Domain’ that occurs in the

context of an activity

issues surround UML’s instantiation mechanism when needing to model more
than two model levels which restrict the ability of classes to influence the seman-
tics of objects past a single model level[4]). Since UML’s adoption by the Object
Management Group (OMG) in 1997, it has become the standard modelling lan-
guage. Although the UML has shown significant value in many areas particularly
in the field of software engineering, despite its ubiquity a number of limitations
have been identified along the way. A key limitation relates to the instantiation
mechanism which can only carry information concerning attributes and asso-
ciations across a single level[4]. Proposed frameworks for multilevel modelling
supporting more than two instantiation levels have been around for more than
a decade (e.g. see [16,6]).

While OWL-DL supports punning, it’s semantics restrict its ability to enforce
two key properties of multilevel modelling, i.e. ‘potency’ and ‘level’. Moreover, its
accompanying rule language, the Semantic Web Rule Language (SWRL) does
not support rules between classes. For these reasons we are required to use a
more expressive language with which to implement our multilevel metamodel.

Of the 201 concepts comprising the ISO 15926 data model, 81 of the concepts
are prefixed with either class of X or class of class of X. This seems to imply that
there exists a minimum of three logical levels of instantiation. The definitions of
(most of) these 81 classes seem to also support this view, e.g. consider the three
classes listed in Table 2.

Table 2. Logical/Ontological instantiation

Concept Definition in ISO 15926-2 [14]

relationship “something that one thing has to do with another”
class of relationship “a class of abstract object whose members are

members of relationship”
class of class of relationship “a class of class whose members are instances

of class of relationship”

5 Conclusion and Future Work

In this paper we discussed a number of issues concerning the complexities and
modelling idiosynchrasies of ISO 15926. We proposed the use of a number of

Re-engineering the ISO 15926 Data Model 255

alternative theories covering roles, parthood and representation based on a 3D
world view intended to make the data model easier to understand and to imple-
ment through re-engineering into a multilevel metamodel. Future work consists
of implementing additional rules to discriminate between concepts that repre-
sent linguistic classification through the use of structural information of the class
hierarchy.

References

1. Guarino, N., Welty, C.A.: Evaluating ontological decisions with OntoClean.
Commun. ACM 45(2), 61–65 (2002)

2. Mizoguchi, R.: Tutorial on Ontological Engineering: Part 2: Ontology Development,
Tools and Languages. New Generation Comput. 22(1), 61–96 (2003)

3. Smith, B.: Against Idiosyncrasy in Ontology Development. In: Proc. of FOIS 2006,
pp. 15–26. IOS Press (2006)

4. Atkinson, C., Kühne, T.: The Essence of Multilevel Metamodeling. In: Gogolla,
M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 19–33. Springer, Heidelberg
(2001)

5. Jordan, A., Grossmann, G., Mayer, W., Selway, M., Stumptner, M.: On the Ap-
plication of Software Modelling Principles on ISO 15926. In: Proc. of MODELS
Workshop on Modelling of the Physical World (MOTPW 2012). ACM (2012)

6. de Lara, J., Guerra, E.: Deep meta-modelling with metaDepth. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010)

7. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling
framework. Software and System Modeling 5(1), 72–90 (2006)

8. Odell, J.J.: Power types. Journal of Object-Oriented Programming 7(2), 8 (1994)
9. Bachman, C.W., Daya, M.: The Role Concept in Data Models. In: Proc. of VLDB

1977, pp. 464–476. IEEE (1977)
10. Mizoguchi, R., Kozaki, K., Kitamura, Y.: Ontological Analyses of Roles. In: Proc.

of FedCSIS 2012, pp. 489–496 (2012)
11. Masolo, C., Guizzardi, G., Vieu, L., Bottazzi, E., Ferrario, R.: Relational roles and

qua-individuals. In: Proc. of AAAI Fall Symposium on Roles, an Interdisciplinary
Perspective, pp. 103–112. AAAI Press (2005)

12. Loebe, F.: Abstract vs. social roles - towards a general theoretical account of roles.
Applied Ontology 2(2), 127–158 (2007)

13. Mizoguchi, R.: Tutorial on Ontological Engineering: Part 3: Advanced Course of
Ontological Engineering. New Generation Comput. 22(2), 193–220 (2004)

14. I.S.O.: ISO 15926– Part 2: Data Model (2003)
15. Winston, M.E., Chaffin, R., Herrmann, D.: A Taxonomy of Part-Whole Relations.

Cognitive Science 11(4), 417–444 (1987)
16. Atkinson, C.: Meta-Modeling for Distributed Object Environments. In: Proc. of

EDOC 1997. IEEE (1997)

Fluent Calculus-Based Semantic Web Service

Composition and Verification Using WSSL

George Baryannis and Dimitris Plexousakis

Department of Computer Science, University of Crete, Heraklion, Greece
Institute of Computer Science, FORTH, Heraklion, Greece

{gmparg,dp}@csd.uoc.gr

Abstract. We propose a composition and verification framework for
Semantic Web Services specified using WSSL, a novel service specifica-
tion language based on the fluent calculus, that addresses issues related
to the frame, ramification and qualification problems. These deal with
the succinct and flexible representation of non-effects, indirect effects
and preconditions, respectively. The framework exploits the unique fea-
tures of WSSL, allowing, among others, for: compositions that take into
account ramifications of services; determining the feasibility of a com-
position a priori; and considering exogenous qualifications during the
verification process. The framework is implemented using FLUX-based
planning, supporting compositions with fundamental control constructs,
including nondeterministic ones such as conditionals and loops. Perfor-
mance is evaluated with regard to termination and execution time for
increasingly complex synthetic compositions.

Keywords: service composition, service verification, service specifica-
tion, frame problem, ramification problem, qualification problem.

1 Introduction

Semantic Web Services technologies aim to enable automatic and dynamic
interaction between software systems by combining the machine-interpretable
features of the Semantic Web and the Internet-accessible interfaces of Web ser-
vices [16]. The main discerning characteristic of Semantic Web Services involves
describing what a Service-Based Application (SBA) actually does (and possi-
bly how) in a way that is machine-interpretable, employing concepts that are
modeled using formal and semantically rich representations, such as ontologies.

The incorporation of Semantic Web features in the service world benefits all
phases of an SBA lifecycle, including service composition and verification. Ser-
vice composition encompasses all methods for creating SBAs by employing the
engineering principles of reusability and composability, with the aim of creating
value-added services that achieve functionality otherwise unattainable by atomic
services. Service verification, then, focuses on checking whether a service, atomic
or composite, meets some properties or conforms to a given specification.

Both service composition and service verification benefit greatly when ser-
vices are described using a formal, well-defined semantic specification language,

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 256–270, 2014.
c© Springer International Publishing Switzerland 2014

Fluent Calculus-Based Service Composition and Verification Using WSSL 257

detailing service behavior in the form of inputs, outputs, preconditions and ef-
fects (collectively known as IOPEs), using concepts defined in ontologies. Such a
specification language can assist in automatically deducing service composabil-
ity according to given composition patterns, by detecting inconsistencies among
service specifications; it is also indispensable in verification processes, since one
cannot determine whether a service satisfies a property if no detailed specifica-
tion of the service exists.

Service specifications usually include conditions that should hold before and
after service execution. This makes them prone to a family of problems, known
in the AI literature as the frame, ramification and qualification problems. The
frame problem stems from the need to express in a (service) specification not
only what is changed, but also what remains unchanged, as a safeguard against
inconsistencies and erroneous formal proofs. The ramification problem is directly
related, as it concerns itself with the ability to adequately represent and infer
information about the knock-on and indirect effects that might accompany the
direct effects of a service. Finally, the qualification problem deals with the inabil-
ity to take into account every circumstance and condition that must be met prior
to a service execution, especially in the case of qualifications that are outside
the scope of our knowledge and result in observed behavior that is inconsistent
with the specification.

In previous work [4], we defined the Web Service Specification Language
(WSSL), designed with the explicit purpose of addressing these problems by
exploiting existing solutions proposed for the fluent calculus formalism [20]. In
this work, we propose a composition and verification framework for services,
based on an extended version of WSSL that supports control and data flow
specification.

The fundamental innovative feature of the proposed framework is that it re-
lies on WSSL, the only service description language that supports solutions
to the aforementioned problems. Two major novel aspects rise from that fact:
the composition process takes advantage of complete behavioral specifications
of services, which includes taking ramifications into account, while verification
considers qualifications when attempting to provide explanations for unexpected
observed behavior.

The second but equally important innovative feature is the fact that the
framework supports semantics, while at the same time satisfying a series of
desirable requirements: the framework offers an automated way of producing
dynamic service compositions that support a multitude of control constructs
including non-deterministic ones, are QoS-aware, even under incomplete knowl-
edge of the initial state, while achieving scalability. As analyzed in Section 6,
to the best of our knowledge, no Semantic Web Service composition and verifi-
cation framework simultaneously satisfies all aforementioned requirements. The
proposed framework is implemented as a FLUX [19] planner that attempts to
achieve composition goals based on heuristic encodings of the planning problem,
while also answering verification queries, given a planning problem solution. The
framework is evaluated in order to investigate effectiveness and scalability issues.

258 G. Baryannis and D. Plexousakis

The rest of this paper is organized as follows. Section 2 offers a motivating
scenario illustrating the need for a composition framework that exploits the
unique features of WSSL, while Sect. 3 provides an overview of the language.
Section 4 extends WSSL to support control and data flow specification, followed
by a detailed presentation of the proposed framework, which is then evaluated
in Sect. 5. Section 6 offers a concise description of the most prominent related
work and Sect. 7 concludes and points out topics for future work.

2 Motivating Scenario

In this section, we present an indicative scenario that illustrates the motiva-
tion behind employing an expressive specification language, such as WSSL, to
facilitate service composition and verification. The scenario is inspired by Help-
MeOut, a process for vehicle drivers to get assistance in case of an emergency,
presented in [1]. In our scenario, a call center for road assistance can be reached
by vehicle drivers in need of assistance in two ways, via call or via SMS. In order
to effectively assist the driver, necessary information has to be collected, such as
the driver’s location and details about the problem encountered. Based on this
information, a search for the most suitable repair center is conducted and they
are dispatched to the driver’s location. After resolving the issue, the payment
process follows. Finally, a report is sent to the driver either electronically or
through traditional mail, depending on the driver’s choice.

Given a service repository containing services that implement the separate
tasks described above, we would like to automatically create a composite process
that realizes the complete HelpMeOut road assistance scenario, such as the one
shown in Fig. 1. The following features are also required:

– take into account ramifications of services when attempting to create a com-
position schema, e.g. the payment process has the knock-on effect of credit
card invalidation if a daily spending limit has been reached.

– verify the composability and correctness of a candidate composite process
that realizes the HelpMeOut scenario

– determine the changes in the state of affairs that are brought upon by a
successful execution of a HelpMeOut composite service

– determine the results of executing a HelpMeOut composition, even under
incomplete information, e.g. without knowing in advance if the user will
request electronic or mail delivery for the report.

– determine what went wrong when unexpected results occur, e.g. no report
is delivered to the driver, when all preceding tasks were successful.

Supporting all these features requires that services participating in the compo-
sition are described using semantically rich specifications that take into account
the frame, ramification and qualification problems. These problems have been
largely ignored by every Semantic Web Service description language that has
been proposed in recent years (SAWSDL [9], OWL-S [12] and WSML [22]) and
were the main motivation behind the creation of the Web Service Specification
Language (WSSL) [4], described in the following section.

Fluent Calculus-Based Service Composition and Verification Using WSSL 259

Receive
SMS

Receive
Call

Retrieve
Location

Retrieve
Status

Find
Mechanic

Receive
Payment

E-Deli
very?

E-Mail
Report

Mail
Report

XOR AND

Yes

No

Fig. 1. Composite process of the motivating scenario

3 Web Service Specification Language

In this section, we offer a brief overview of WSSL and its fluent calculus founda-
tions. A detailed definition and analysis of the language syntax and semantics,
as well as the problems it addresses, can be found in [4].

3.1 Fluent Calculus Basics

The fundamental entity of the fluent calculus is the fluent, a single atomic prop-
erty of the physical world which may change in the course of time. A state is
a snapshot of the environment at a certain moment. A fluent is equivalent to
a state where only this particular fluent holds. An action represents high-level
actions. Finally, a situation is a history of action performances. Predefined func-
tion Do maps an action to the situation after performing it, while State maps
situations to equivalent states. A fluent f is said to hold in a state z, if z can be
decomposed into two states, one of which is f : Holds(f, z).

While the fluent calculus was conceived for the field of autonomous robotics,
its modeling of dynamic environments is perfectly suited for service specifica-
tions. Services (atomic or composite) can be represented by actions, while fluents
can model the state of the world before and after executing a service operation.
The execution of a service and its effects can be described using the fluent calcu-
lus definitions that follow. A state formula Δ(z) is a first-order formula where
z is a free state variable, states occur exclusively in expressions of the form
Holds(f, z) and no actions or situations are allowed. A situation formula is
defined accordingly. Given an action A(x)1, a state variable z and a state for-
mula ΠA(z) (where z is free by definition and x may also be free), an action
precondition axiom is a formula Poss(A(x), z) ≡ ΠA(z), with the semantics
that action A is possible at state z, if and only if ΠA is true.

A state update axiom is a formula Poss(A(x), s) → (∃y)(Δ(s)∧
∧State(Do(A(x), s)) = State(s) + θ+ − θ−) stating that, if action A is possible
at situation s, executing it results in a successor state derived from State(s)
if we add fluents that have been made true (positive effects θ+) and subtract
falsified ones (negative effects θ−), under additional conditions Δ(s) (a situation
formula containing variables x and y). Note that disjunction can be used to

1 Note that actions may also have a vector variable as an argument (A(−→x))

260 G. Baryannis and D. Plexousakis

express multiple state updates with different Δ(s) formulas. As analyzed in [18],
state update axioms are a provably correct solution to the frame problem.

3.2 Defining WSSL Specifications

Service preconditions and postconditions can be directly represented using action
precondition axioms and state update axioms respectively. To represent service
inputs and outputs, we introduced two unary predicate symbols corresponding
to fluents, namely HasInput and HasOutput. HasInput denotes that the asso-
ciated argument is available to the service as an input while HasOutput denotes
that the associated argument is produced as a service output.

Definition 1. An input formula in z is a state formula I(z) with free state
variable z, which is composed exclusively of HasInput fluents. An output for-
mula O(z) is defined accordingly.

Apart from the frame problem, the fluent calculus offers a solution to the
problem of representing ramifications as well, using causal relationships that
link a ramification to the direct effect (or ramification) that brings it about
(see Chap. 9 in [20]). A causal relationship is formally defined as a for-
mula (∀)(Γ → Causes(z, p, n, z′, p′, n′, s) with the semantics that in situation
s, under conditions expressed in Γ , the positive and negative effects p and n
that have occurred cause an automatic update from state z to z′, with ef-
fects p′ and n′. A state update axiom with ramifications is a formula
Poss(A(x), s) → (∃y)(Δ(s)∧Ramify(z, θ+, θ−, z′, Do(A(x), s)), where Ramify
stands for applying any matching causal relationships in state z, leading to z′.

Finally, the fluent calculus offers a way to represent qualifications outside
the scope of our knowledge, solving the exogenous qualification problem (see
Chap. 10 in [20]) by modeling any unforeseen situation that obstructs an ac-
tion as an accident, represented by new predicate Acc(c, s), with the seman-
tics that accident c, which is a variable of new sort ACCIDENT , happened
in situation s. In order to assume away accidents, default logic rules are em-

ployed, such as :¬Acc(c,s)
¬Acc(c,s) , which is essentially a universal default on the non-

occurrence of all accidents. To express the case where no accident has taken
place, the conjunct (∀c)¬Acc(c, s) is included in the right-hand side of a state
update axiom. Any other accident case is expressed as a separate state up-
date using disjunction. Action precondition axioms are rewritten in the form
Poss(A(x), s) ≡ [(∀c)¬Acc(c, s) → ΠA(x, s)] meaning that A is possible at s
provided that no accidents have happened and the preconditions are true.

Using all of the above, we are able to formally define a WSSL specification:

Definition 2. A WSSL specification is a 6-tuple
S = 〈service, input,output,pre,post, causal,default〉 where:

– service: identifiers offering general information about the service (e.g. ser-
vice or operation name, invocation information), or the symbol nil,

– input: the required input of the service, expressed as input formulas

Fluent Calculus-Based Service Composition and Verification Using WSSL 261

– output: the expected output of the service, in the form of output formulas,
– pre: service preconditions, expressed as action precondition axioms,
– post: service postconditions, in the form of state update axioms,
– causal: causal relationships linking effects and ramifications,
– default: default qualifications formalized as default rules.

Table 1 offers a WSSL specification of indicative services for the tasks in the
motivating scenario (omitting Poss and no-accident clauses). We also defined
an XML syntax for WSSL, named WSSL/XML, in order to provide machine
readability for WSSL documents and facilitate standard parsing processes. The
XML Schema can be found online at www.csd.uoc.gr/˜gmparg/research.html.

Table 1. Example WSSL specifications

Service Inputs
ReceiveSMS/Call -
RetrieveLocation Holds(HasInput(request), ?z in)

RetrieveDiag Holds(HasInput(request), ?z in)
FindMech Holds(HasInput(status), ?z in) ∧ Holds(HasInput(loc), ?z in)
ReceivePay Holds(HasInput(payform), ?z in) ∧ Holds(HasInput(loc), ?z in)
EReport Holds(HasInput(invoice), ?z in)
MReport Holds(HasInput(invoice), ?z in)

Service Preconditions
ReceiveSMS/Call Holds(CallCenterUp)
RetrieveLocation Holds(GPSActive(user), ?z in)

RetrieveDiag Holds(SystemActive(vehicle), ?z in)
FindMech Holds(Rcvd(loc, ?user), ?z in)∧

Holds(Rcvd(status, vehicle), ?z in) ∧ ¬Holds(Solved(status, loc), ?z in)
ReceivePay Holds(HasInput(credCard), ?z in) ∧ Holds(Solved(status, loc), ?z in)
EReport Holds(PayCompleted(payform), ?z in)∧

Holds(Generated(mechlog), ?z in) ∧ ¬Holds(Emailed(report), ?z in)
MReport Holds(PayCompleted(payform), ?z in)∧

Holds(Generated(mechlog), ?z in) ∧ ¬Holds(Delivered(report), ?z in)

Service Outputs and Postconditions
ReceiveSMS ?z out =?z in + HasOutput(request) + Rcvd(request, sms)
ReceiveCall ?z out =?z in + HasOutput(request) + Rcvd(request, call)

RetrieveLocation ?z out =?z in + HasOutput(loc) + Rcvd(loc, user) − HasInput(request)
RetrieveDiag Ramify(?z in,HasOutput(status) + Rcvd(status, vehicle),

HasInput(request), ?z out)
FindMech ?z out =?z in + HasOutput(payform) + HasOutput(credCard)+

Solved(status, loc) − HasInput(status) − HasInput(loc)
ReceivePay ?z out =?z in + HasOutput(invoice) + PayCompleted(payform)

−HasInput(payform)
EReport ?z out =?z in + HasOutput(report) + Emailed(report) − HasInp(invoice)
MReport (∀?c)¬Acc(?c, ?s)(?z out =?z in + HasOutput(report) + Delivered(report)

−HasInput(invoice)) ∨ (∃deliv)(Acc(Failure(deliv, s)∧?z out =?z in)
Causal Relationships

?p = HasOutput(status) + Rcvd(status, vehicle)∧?n = HasInput(request) ⇒
Causes(?z, ?p, ?n, ?z + Generated(mechlog), ?p + Generated(mechlog), ?n, ?s)

DailyLimitReached(payform)∧?p = HasOutput(invoice) + PayCompleted(payform) ⇒
Causes(?z, ?p, ?n, ?z + Invalid(credCard), ?p + Invalid(credCard), ?n, ?s)

All fundamental entities of WSSL, from fluents to accidents, can be expressed
using concepts defined in service ontologies. It is envisioned that existing OWL-
S and WSMO descriptions can be ported to WSSL and then annotated to fill
up information related to causal relationships and accident modeling, resulting
in complete semantic service specifications that take into account the frame,
ramification and qualification problems.

262 G. Baryannis and D. Plexousakis

4 Composition and Verification of WSSL Services

In this section, we present a composition and verification framework for ser-
vices specified using WSSL. First, we extend WSSL to support control and data
flow of compositions, as well as planning and then analyze the composition and
verification capabilities separately.

4.1 WSSL for Composition

The definition of WSSL in Sect. 3 allows for black-box specifications of services
where only IOPEs are considered, disregarding any knowledge about its control
and data flow. In order to be able to employ WSSL for composition, we need to
extend it to include the definition of fundamental control constructs.

Definition 3. A tuple S ∪ 〈ε, ; , If, ·,+,⊕, Loop〉 is an extended WSSL sig-
nature for composition if S is a WSSL signature and: ε : ACTION (empty
action), If: FLUENT × ACTION × ACTION → ACTION (conditional ex-
ecution), Loop: FLUENT × ACTION → ACTION (iterative execution) and
; , ·,+,⊕ : ACTION × ACTION → ACTION (sequence, AND-Split/AND-
Join, OR-Split/OR-Join and XOR-Split/XOR-Join, respectively).

It follows that the foundational axioms that govern the fluent calculus and
WSSL, as expressed in [4], need to be extended in order to account for the
newly introduced function symbols. The extension is based on the definition and
analysis of control constructs conducted in previous work [2].

Definition 4. The foundational axioms for preconditions consist of:

1. Poss(ε, s) ≡ T
2. Poss(a1; a2, s) ≡ Poss(a1, s) ∧ Poss(a2, Do(a1, s))
3. Poss(If(f, a1, a2), s) ≡ [Holds(f, s) ∧ Poss(a1, s)] ∨ [¬Holds(f, s) ∧ Poss(a2, s)]
4. Poss(a1 · a2, s) ≡ Poss(a1 + a2, s) ≡ Poss(a1 ⊕ a2, s) ≡ Poss(a1, s) ∧ Poss(a2, s)
5. Poss(Loop(f, a1), s) ≡ [Holds(f, s) ⇒ Poss(a1, s)]∧

[Holds(f,Do(a1, s) ⇒ Poss(a1, Do(a1, s))] ∧ ...

These foundational axioms allow for calculating preconditions for composite
services, based on their composition schema. For instance, the precondition of the
RetrieveStatus/RetrieveLocation composition can be calculated using axiom 4 of
Definition 4 as the conjunction of the preconditions of the two services. Note that
this axiom may appear too strong for OR and XOR cases, but it stems directly
from the fact that, at design time, we do not know which branch is going to be
executed; hence, we cannot disregard either precondition. If such knowledge is
available at runtime, then the conditions may be adapted accordingly.

Definition 5. The foundational axioms for postconditions consist of:

1. State(Do(ε, s)) = State(s)
2. Poss(a1; a2, s) ⇒ State(Do(a1; a2, s)) = State(Do(a2, Do(a1, s)))

Fluent Calculus-Based Service Composition and Verification Using WSSL 263

3. Poss(If(f, a1, a2), s) ⇒ [Holds(f, s) ∧ State(Do(If(f, a1, a2), s)) = State(
Do(a1, s))] ∨ ¬[Holds(f, s) ∧ State(Do(If(f, a1, a2), s)) = State(Do(a2, s))]

4. Poss(a1 · a2, s) ⇒ State(Do(a1 ·a2, s)) = State(Do(a2, s))+ θ+1 − θ−1 = State(s)+
θ+2 − θ−2 + θ+1 − θ−1

5. Poss(a1 + a2, s) ⇒ [State(Do(a1 + a2, s)) = State(s) + θ+1 − θ−1]∨
[State(Do(a1 + a2, s)) = State(s) + θ+2 − θ−2]

6. Poss(a1 ⊕ a2, s) ⇒ [State(Do(a1 ⊕ a2, s)) = State(s) + θ+1 − θ−1]⊕
[State(Do(a1 ⊕ a2, s)) = State(s) + θ+2 − θ−2]

7. Poss(Loop(f, a1), s) ⇒ [¬Holds(f, s) ⇒ (State(Do(Loop(f, a1))), s) =
State(s)] ∧ [Holds(f, s) ∧ ¬Holds(f,Do(a1, s)) ⇒
(State(Do(Loop(f, a1), s))) = State(s) + θ+1 − θ−1] ∧ ...

These axioms complement the ones in Definition 4, resulting in a whole view
of a composite service execution. For instance, by combining the third axioms
in Definitions 4 and 5, we can express the fact that the conditional execution
of EReport and MReport requires only one of the two services’ preconditions to
be true, depending on the truth value of the condition fluent, while a successful
execution leads to a state change as a result of EReport or MReport.

Definitions 4 and 5 can be extended in a straightforward way for compositions
of more than two services. As it will be discussed later on, the nature of loops
leads to an infinite expression for the associated foundational axioms, which can
only be made finite if the number of iterations is known or limited beforehand.

Apart from defining control flow for service composition, WSSL needs to ac-
count for data flow as well. The following axiom models the simplest case of
routing between outputs and inputs of services:

Definition 6. The foundational axiom for data flow expresses the fact that
any produced output can potentially be consumed as an input from that state
onward and is written as Holds(HasOutput(f), z) ⇒ Holds(HasInput(f), z).

QoS-Awareness. By definition, any WSSL term can be associated with con-
cepts defined in a knowledge representation model, using IRI [8] sequences. For
instance, expressions used in WSSL preconditions can refer to concepts of any
origin, including ontology-based QoS models. We are investigating the integra-
tion of such a model, OWL-Q [11], with WSSL. OWL-Q is an OWL-S [12] ex-
tension that provides a semantic, rich and extensible model for describing QoS
aspects, which can be used by service providers to model QoS attributes. Such
models can be referenced in either WSSL specifications or queries, realizing in
that way QoS-aware service description and composition, respectively.

4.2 Service Composition Planning

Based on planning in the fluent calculus with FLUX (see Chap. 6 in [20]), we
define planning for service composition using WSSL.

Definition 7. A WSSL planning problem is defined as the problem of reaching
a goal state defined by a state formula Γ (z), starting from an initial state de-
fined by a state formula Φ(z). A WSSL plan is a sequence α1, ..., αn of service
executions, with n ≥ 0. The plan is a solution to the problem iff the following
holds: Poss([α1, ..., αn], Φ(z)) ∧ Γ{z/State(Do([α1, ..., αn], Φ(z)))}

264 G. Baryannis and D. Plexousakis

A planning problem is encoded in FLUX in a sound and complete way us-
ing the following two clauses: P (z, p, z) ⇐ Goal(z), p = [] and P (z, [a|p], zn ⇐
Poss(a, z), StateUpdate(z, a, z1, []), P (z1, p, zn), stating that if we are at the goal
state, the solution is either the empty plan, or a sequence of actions constructed
recursively until the goal state is reached. For the motivating scenario, a plan-
ning problem encoding is: AssistP lan(z, p, z) ⇐ Holds(Solved(status, location), z),

Holds(PayCompleted(payform),z),Holds(HasOutput(report), z), p = [] and

AssistP lan(z, [a|p], zn) ⇐ Poss(a, z), StateUpdate(z,a, z1, []), P (z1, p, zn).

Encodings based on Definition 7 have two major drawbacks: they do not
take into account the issues of termination and computational complexity and
can produce only sequential compositions. The first step towards handling both
issues is introducing heuristics, further specifying the planning encoding.

Definition 8. A heuristic encoding of a WSSL planning problem is
defined as a FLUX program Pplan defining a predicate P (z, p, zn) that describes
the problem of reaching a goal state Γ (z), starting from an initial state Φ(z).
The encoding is sound iff the following holds: for every computed answer θ to
the FLUX query ⇐ Φ(z) ∧ P (z, p, zn), pθ is a solution to the planning problem
and Poss(pθ, Φ(z)) ∧ Γ{z/State(Do(pθ, Φ(z)))}.

In order to consider plans more complex than sequences of services, heuristic
encodings need to include control construct definitions. Based on Definitions 4, 5
and 6, we extend the FLUX Prolog kernel with clauses that support fundamental
control constructs and data flow between inputs and outputs. For instance, plans
that contain looped executions are considered based on the following rules:

poss_loop(F,K,A,Z) :- K\==0, (holds(F,Z)->poss(A,Z)),update(Z,A,Z_PR),poss_loop(F,K-1,A,Z_PR).
state_update_loop(Z,F,K,A,Z_PR) :- not_holds(F,Z)->Z_PR=Z ; K\==0,(holds(F,Z),update(Z,A,Z_1),

not_holds(F,Z_1)) -> state_update(Z,A,Z_1), state_update_loop(Z_1,F,K-1,A,Z_PR).

The iterative nature of loops is expressed using Prolog rules that refer to
themselves. As already mentioned, it is necessary to impose an upper bound K
on the number of iterations, to avoid non-terminating executions. The complete
extended kernel can be found online at www.csd.uoc.gr/˜gmparg/research.html.
One possible heuristic encoding for the problem of the motivating scenario is:

assist_plan(Z,[A|P],Z_PR) :- A1=receivesms, A2=receivecall, A=xor(A1,A2),
poss_xor(A1,A2,Z), state_update_xor(Z,A1,A2, Z_1), assist_plan1(Z_1,P,Z_PR).

assist_plan1(Z,[A|P],Z_PR) :- A1=retrievelocation, A2=retrievediagnostics,
A=and(A1, A2), poss_and(A1,A2,Z),state_update_and(Z,A1,A2,Z_1),assist_plan2(Z_1,P,Z_PR).

assist_plan2(Z,[A|P],Z_PR) :- A=findmech, poss(A,Z),
state_update(Z,A,Z_1), assist_plan3(Z_1,P,Z_PR).

assist_plan3(Z,[A|P],Z_PR) :- A=receivepay, poss(A,Z),
state_update(Z,A,Z_1), assist_plan4(Z_1,P,Z_PR).

assist_plan4(Z,A,Z_PR) :- F=req_deliv, A1=ereport,A2=mreport, A=if(F,A1,A2),
poss_if(F,A1,A2,Z), state_update_if(Z,F,A1,A2,Z_PR).

Executing the FLUX query assist_plan([callcenterup, gpsactive(user1),

systemactive(vehicle1), req_deliv], P, Z_PR). will yield a plan corresponding
to the composite process of Fig. 1. FLUX is also able to handle incomplete
initial states thanks to embedded constraint handling rules. For instance, we
may exclude req_deliv (which corresponds to the user wanting the report e-
mailed to him) from the definition of the initial state and the planner will still
produce plans that assume either case, with or without that fluent.

Fluent Calculus-Based Service Composition and Verification Using WSSL 265

4.3 Verification

Given a generated plan that solves a planning problem, service verification aims
to check that the composite service that corresponds to the plan meets some
properties. The verification process in our framework focuses mainly on answer-
ing questions about the behavior of the composition. Examples of the properties
that can be verified are the following:

– Composability of a set of services: given a composition goal, the nature of
the composition process yields results about whether this particular set can
lead to a valid composition.

– Liveness and safety properties that check whether the composition plan
realizes the desired behavior.

– Conformance of an observed composite service behavior to the corresponding
plan specification and, in case conformance fails, possible explanations for
the conflict in order to perform troubleshooting actions.

For example, a liveness property in our motivating scenario would be to verify
whether the composition plan leads to the final report being delivered (either
by mail or electronically), by proving Emailed(report, z)∨Delivered(report, z),
where z is the final state, while a safety property would be to make sure that
payment is performed for the correct payment form (HasInput(payform, zin)∧
¬PayCompleted(payform2, z)). Verification queries of the third type can be an-
swered due to WSSL’s solution to the qualification problem. For instance, after
executing the composite process of Fig. 1, we observe its behavior in the form
of WSSL state descriptions and pose the query: in the final state z, is the goal
holds(solved(status, location), z), holds(paycompleted(form), z),

holds(hasoutput(report), z) satisfied? If the answer is no and no accidental
qualifications have been expressed, then the observed behavior is deemed in-
consistent with the composition specification. However, given the specification
shown in Table 1, the framework deduces that an accident has occurred, namely
failure(deliv). Such explanations are valuable for determining follow-up actions
to unexpected situations, such as re-executing services that failed or adapting
the composition in order to replace them.

4.4 Complexity, Decidability and Planning Efficiency

As discussed in [4], decidability results for WSSL are directly related to its foun-
dations in the fluent calculus, as well as default logic. Decidability is guaranteed
for the fragment that is equivalent to the two-variable situation calculus with
counting, and for default theories without prerequisites. Such results also hold
for the extended version that supports control and data flow, provided that an
upper bound on iterations is imposed for all loops.

In general, the planning problem is considered undecidable. Even in the case
of decidable planning problems, the complexity of finding a solution is directly
analogous to the number of choice points, since each choice point splits the search

266 G. Baryannis and D. Plexousakis

tree into two branches. Heuristic encodings based on problem-specific knowledge
can improve efficiency by trimming parts of the search tree that do not conform
to the heuristics definition. However, even then scalability is not guaranteed,
because increasing the problem size linearly may lead to a non-linear increase
in the number of choice points. In Sect. 5, we investigate scalability issues for
our framework, while a complexity and decidability analysis for heuristics-based
WSSL planning is part of ongoing research we are currently conducting.

For a given planning problem, there may be more than one solution. For
instance, in the motivating scenario, the goal of delivering the report can be
satisfied by two different tasks, EReport and MReport. The planner can either
return the first solution found, or generate all possible solutions and rank them
according to a ranking function. FLUX supports ranking based on cost.

4.5 Other Features

The fluent calculus foundations of WSSL imbue our framework with several
other interesting features. First of all, the fluent calculus has been extended to
support knowledge (or belief) states (see Chap. 5 in [20]), a generalization of ex-
pressing incomplete initial states (supported by our framework) in the direction
of defining which states are possible at a given situation, based on how complete
our knowledge is. Knowledge states, combined with non-determinism and qual-
ifications, allow for comprehensive modeling of partially observable behavior.

An especially desirable feature in the case of services is supporting asyn-
chronous execution, i.e. services that do not wait for a response after being in-
voked. Asynchronous services can be easily modeled as a pair of distinct WSSL
services, similarly to the invoke/receive combination of WS-BPEL [13], thanks
to the definition of states in WSSL: the first service has no postconditions, since
it simply invokes the operation, while the second has no preconditions, since
they have already been checked on invocation. Thus, the state after invoking the
service is decoupled from the state after receiving the reply.

Finally, WSSL compositions can be translated to executable processes based
on the included definition of control and data flow. For instance, plans com-
prising of WSSL services that do not contain invocation information can be
translated to abstract BPEL processes, which can then be concretized via suit-
able service discovery mechanisms. If WSSL specifications are linked to specific
service endpoints, then they directly lead to executable BPEL processes.

5 Experimental Evaluation

In order to evaluate the proposed composition framework, we run a series of
experiments, calculating the time needed for the planner to produce a valid
service composition plan, given a set of services, an initial state and a goal state.
To investigate scalability, we varied the complexity of the planning problem in
two ways: by increasing the size of the service repository and by allowing for more
elaborate plans. The service specifications are synthetically generated in FLUX,

Fluent Calculus-Based Service Composition and Verification Using WSSL 267

each one consisting of one or two sets of IOPEs. The computation time values
are an average of 10 runs in the ECLiPSe constraint programming system. The
evaluation was performed on an Intel R© Core

TM

i7-740QM processor running at
1.73GHz, with 6 GB RAM.

In the first two experiments, we examined the scalability of our approach
given simple composition schemas, considering only sequential composition in
the first and only parallel composition (AND-Split/Join) in the second. In both
cases, we increased linearly the number of services that need to be considered
in order to find an executable one at a given state. As shown in Fig. 2, even
for a repository of 1000 services, computation time is around 1 second, which
is rather efficient considering the fact that choice points increase from 1 in the
initial state to 1000 in the penultimate state.

101 102 103

0

1

2

3

4

Services

R
u
n
ti
m
e
(s
)

Sequential

Parallel

Seq+Par

101 102

10−2

10−1

100

101

102

103

Services

R
u
n
ti
m
e
(s
)

Seq+Par+Ramif

Fig. 2. Scalability results for compositions of varying complexity

For the third experiment, we combine the first two, creating a composition
schema of alternating sequential and parallel executions. Fig. 2 shows that there
is a reasonable increase to around 4 seconds for the case of 1000 services. Note
that other composition schemas such as OR and XOR Split/Join, conditionals
and loops are not included in our experiments, since their use is expected to be
dictated explicitly in heuristic encodings, as in the motivating scenario; in our
test sets, AND Split/Join schemas are always the first to evaluate to true.

In the final experiment, we investigate the effect of including ramifications
in service specifications. Each postcondition in our test set is associated with a
ramification through the inclusion of a causal rule (a 50% increase in the size
of specifications). Once again, we increase linearly the number of causal rules
that are considered until a matching one is found. As we can see in Fig. 2 on
the right, there is a significant increase in computation time, up to 2000 seconds
for 500 services. These results are expected, considering that the planner has to
examine around 500 causal rules one by one at the final states of the composition.
Note that real-world problems are expected to be much simpler than the ones
generated synthetically for our evaluation, since only some postconditions are
usually associated with ramifications.

268 G. Baryannis and D. Plexousakis

6 Related Work

Employing fluent calculus in order to solve the service composition problem has
been attempted in [7] and [6]. In both approaches, Semantic Web Services are
translated to fluent calculus theories and forward chaining composition algo-
rithms implemented using FLUX are proposed, with [6] considering QoS thresh-
olds as well. However, neither takes into account the fluent calculus extensions
that solve the ramification and qualification problems, resulting in frameworks
that ignore their effects and fail to capitalize on the benefits of their solutions,
such as expressing ramifications or explaining non-conforming behavior. More-
over, both planners produce at best sequences of parallel executions, disregarding
any other control constructs, such as the ones supported by our framework. Fi-
nally, their choice to model inputs and outputs using the KnowsV al macro is
invalid since, by definition, it was introduced to represent a subset of fluent-
related variables that is true in all possible states, and not the semantics of a
service input, which is a fluent that holds at the state before service execution.

Extensive literature exists that employs AI planning techniques to realize au-
tomated service composition. Klusch and Gerber [10] propose OWLS-XPlan, a
framework that combines the benefits of graph-based planning with HTN plan-
ning for service composition, while also employing re-planning techniques to
adjust outdated plans during execution time. However, the framework does not
support non-deterministic control constructs or planning with incomplete state
descriptions, while the authors do not consider QoS-awareness or the ramification
and qualification problems. The work of Peer [14] translates semantic Web ser-
vices to PDDL descriptions which are then fed to a VHPOP planner framework
that supports re-planning as well as non-determinism in the sense of consider-
ing failure in service executions. Looped execution, ramifications, QoS-awareness
and incomplete states are again not supported.

Arguably the most prominent realization of service composition using plan-
ning techniques is the WS-SYNT mechanism included in the ASTRO framework.
As analyzed in [5], WS-BPEL processes are translated into state transition sys-
tems (STSs), which are then combined to construct an STS that represents
all possible behaviors and afterwards this STS is searched in order to find sub-
systems of it that satisfy the composition goal. The solutions are then translated
back to executable WS-BPEL processes. This work realizes two features, namely
support for asynchronous services and translation to executable processes, that
are currently not supported by our framework but can be easily integrated, as
indicated in Section 4.5. Unlike our framework, however, WS-SYNT does not
support Semantic Web services (although one of the earliest works [21] in the
authors’ research line did), is not QoS-aware and, more importantly, does not
consider the frame, ramification and qualification problems and their effects.

[17] and [15] share similar logic foundations with our approach. [15] is based
on GOLOG, a logic programming language based on the situation calculus in
the same way that FLUX is based on the fluent calculus. The authors integrate
user preferences in a GOLOG-based planner, modeling them using a first-order
logic language. Employing preferences drastically limits the search space for

Fluent Calculus-Based Service Composition and Verification Using WSSL 269

the planner, resulting in significantly less computation time. [17] proposes the
representation of service I/O schemas and behavioral constraints as Horn clauses
and realizes service composition through logical inference as well as structural
analysis of Petri nets that model the Horn clause set and the goal. The resulting
compositions, however, are restricted to sequences of parallel executions, while
behavioral constraints in both approaches ignore knock-on or indirect effects and
accidental qualifications, which are supported in our framework.

7 Conclusions and Future Work

In this paper, we proposed a service composition and verification framework
using WSSL, a novel semantics-aware service specification language based on
the fluent calculus. The framework satisfies significant requirements such as au-
tomation, dynamicity, nondeterminism and incomplete state knowledge, in ad-
dition to supporting semantics and exploiting WSSL’s solutions to the frame,
ramification and qualification problems. Experimental evaluation shows that ef-
ficiency is achieved even in the presence of ramifications. The framework is an
effective demonstration of the benefits of rich semantic behavior specifications
in the context of service science and an indicative example of how such benefits
can be reaped for the purposes of service verification and composition.

Future work includes further concretizing the link between WSSL and
OWL-Q [11], exploring QoS-aware matchmaking and selection mechanisms and
identifying ways to improve efficiency by limiting the search space before the
planning process, as well as exploring graph-based rule optimization. Addition-
ally, we plan to build upon the discussion in Sect. 4.5 in order to support knowl-
edge states, asynchronous service interactions and derivation of executable com-
posite processes. Moreover, we intend to integrate the ideas of formal behavior
specifications in the lifecycle of Cloud-based services deployed on multiple Cloud
providers, as initially explored in [3].

Acknowledgments. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-
2013 under grant agreement 317715 (PaaSage), as well as the Special Account
for Research Grants, University of Crete (Grant No. 3742).

References

1. Ali, S.A., Roop, P.S., Warren, I., Bhatti, Z.E.: Unified Management of Control
Flow and Data Mismatches in Web Service Composition. In: Gao, J.Z., Lu, X.,
Younas, M., Zhu, H. (eds.) SOSE, pp. 93–101. IEEE (2011)

2. Baryannis, G., Carro, M., Plexousakis, D.: Deriving Specifications for Composite
Web Services. In: COMPSAC, pp. 432–437 (2012)

3. Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., Papaioannou, A., Plex-
ousakis, D., Zeginis, C.: Lifecycle Management of Service-based Applications on
Multi-Clouds: A Research Roadmap. In: Proceedings of the International work-
shop on Multi-Cloud Applications and Federated Clouds, pp. 13–20. ACM (2013)

270 G. Baryannis and D. Plexousakis

4. Baryannis, G., Plexousakis, D.: WSSL: A Fluent Calculus-Based Language for Web
Service Specifications. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013.
LNCS, vol. 7908, pp. 256–271. Springer, Heidelberg (2013)

5. Bertoli, P., Pistore, M., Traverso, P.: Automated composition of Web services via
planning in asynchronous domains. Artif. Intell. 174(3-4), 316–361 (2010)

6. Bhuvaneswari, A., Karpagam, G.R.: Applying Fluent Calculus for Automated and
Dynamic Semantic Web Service Composition. In: Proceedings of the 1st Interna-
tional Conference on Intelligent Semantic Web-Services and Applications (2010)

7. Chifu, V.R., Salomie, I., Harsa, I., Gherga, M.: Semantic Web Service Composition
Method Based on Fluent Calculus.. In: Watt, S.M., Negru, V., Ida, T., Jebelean,
T., Petcu, D. (eds.) SYNASC, pp. 325–332. IEEE Computer Society (2009)

8. Duerst, M., Suignard, M.: Internationalized Resource Identifiers (IRIs). RFC 3987
(2005)

9. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema. World
Wide Web Consortium, Recommendation REC-sawsdl-20070828 (August 2007)

10. Klusch, M., Gerber, A.: Semantic Web Service Composition Planning with OWLS-
Xplan. In: Proceedings of the 1st Int. AAAI Fall Symposium on Agents and the
Semantic Web, pp. 55–62 (2005)

11. Kritikos, K., Plexousakis, D.: Requirements for QoS-based web service description
and discovery. IEEE T. Services Computing 2(4), 320–337 (2009)

12. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic Markup for Web Services (2004)

13. OASIS: Web Services Business Process Execution Language Version 2.0. Specifi-
cation (April 2007)

14. Peer, J.: A POP-Based Replanning Agent for Automatic Web Service Composition.
In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 47–61.
Springer, Heidelberg (2005)

15. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web Service Composition via the Cus-
tomization of Golog Programs with User Preferences. In: Borgida, A.T., Chaudhri,
V.K., Giorgini, P., Yu, E.S. (eds.) Mylopoulos Festschrift. LNCS, vol. 5600,
pp. 319–334. Springer, Heidelberg (2009)

16. Studer, R., Grimm, S., Abecker, A. (eds.): Semantic Web Services. Springer, Berlin
(2007), http://www.springerlink.com/content/kj5458/

17. Tang, X., Jiang, C., Zhou, M.: Automatic Web service composition based on Horn
clauses and Petri nets. Expert Syst. Appl. 38(10), 13024–13031 (2011)

18. Thielscher, M.: The Fluent Calculus. Tech. Rep. CL-2000-01. Dresden University
of Technology (2000)

19. Thielscher, M.: FLUX: A Logic Programming Method for Reasoning Agents. CoRR
cs.AI/0408044 (2004)

20. Thielscher, M.: Reasoning Robots. Applied Logic Series, vol. 33. Springer, Nether-
lands (2005)

21. Traverso, P., Pistore, M.: Automated Composition of Semantic Web Services into
Executable Processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

22. WSML Working Group: The Web Service Modeling Language WSML (2008),
http://www.wsmo.org/wsml/wsml-syntax

http://www.springerlink.com/content/kj5458/
http://www.wsmo.org/wsml/wsml-syntax

Template-Based Ontology Population for Smart

Environments Configuration

Sebastián Aced López, Dario Bonino, and Fulvio Corno

Dipartimento di Automatica ed Informatica
Politecnico di Torino

Torino, Italy
{sebastian.acedlopez,dario.bonino,fulvio.corno}@polito.it

Abstract. Smart Environments is one of several domains in which
Semantic Web technologies are applied nowadays. Ontologies, in par-
ticular, are used as core modeling languages for representing devices,
systems and environments. Developing such ontologies, that typically
involve several device descriptions (individuals) and related information,
i.e., individuals of classes contributing to the device model, is often done
by a manual, time consuming, and error-prone approach.

This paper presents a template based approach, which increases ac-
curacy, ease of use, and time-effectiveness of the ontology population
process by reducing the amount of user-given information of about an
order of magnitude, with respect to the fully manual approach. User-
required information only pertains device features (e.g., name, location,
etc.) and never implies knowledge of Semantic Web technologies, thus
enabling end-user configuration of smart homes and buildings. Experi-
mental results with a prototypical implementation confirm the viability
of the approach on a real-world use case.

1 Introduction

Semantic Web technologies have allowed cities, workplaces and homes to become
smarter over the years by supporting explicit context representation, expressive
context querying, and flexible context reasoning [9]. Ontologies can be used to
model agents, contexts and behaviors, while SPARQL querying helps to easily
retrieve data from them, and reasoners can use these data to infer relations and
describe complex scenarios, enriching the model capabilities.

Modeling Smart Environments (SmEs) by means of ontologies enables the cre-
ation of a layer of abstraction, in which reality is represented in terms of classes,
properties and instances, and allows developers to work with conceptualizations
of real entities instead of dealing with low-level representations of them.

Adding new instances into the ontology is known as populating (or instanti-
ating) the ontology, and it is an essential part of almost every ontology based
application, especially in the SmE field, because the only way of configuring a
specific SmE, such as my-particular-room, is by creating specific instances, such
as my-particular-floor or my-particular-lamp. However, as it will be explained

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 271–278, 2014.
c© Springer International Publishing Switzerland 2014

272 S. Aced López, D. Bonino, and F. Corno

later, most of the available methods to populate ontologies are error prone and
time consuming.

This paper proposes an OWL-template based approach that allows accurate,
fast and semi-automatic population of ontologies that can be used in general,
but specifically helps in the configuration of SmEs.

2 Related Works

Even if many ontologies have been created and are actually being used in a
variety of fields such as SmE modeling, better methods to populate them are still
object of research due to the challenging nature of the task. However, like for the
content and the structure, population techniques (listed in [7]) change a lot from
one type of ontology to another. The approaches for ontology population found
in literature can be divided into two types depending on how the information to
generate the individuals is gathered: either through Information extraction or
User-given data.

Information extraction approaches assume that the needed information is
already available somewhere, it could be on text documents, Internet pages,
databases etc., so they extract and process it to identify pieces that fit as in-
stances of some reference ontology1. This is the case of the Artequakt system
[1], which automatically extracts biographical information from the web to in-
stantiate a reference ontology and generate artists biographies.

Approaches based on user-given data, on the converse, gather the information
needed for instantiation directly from the user, as proposed in [6] and in [4]. This
is the case in SmE context, since the needed information is specific for each par-
ticular environment configuration and cannot be mined elsewhere. However, few
of the approaches that gather information from the user, focus on the generation
of new individuals. Instead, they aim to support the design and creation of new
concept classes. See [5].

On the other hand, this paper presents an approach to enhance the creation
process of new individuals from already defined classes, exploiting different tech-
niques (inherited from the software engineering) based on automatic code gen-
eration and template modeling, which have already been proven appropriate for
working with ontologies [8].

3 Background

In this paper, examples and experimentation exploit a publicly available ontology
for smart environments named DogOnt2 [2]. It is organized in 5 main hierarchies
of concepts:

1 The term Reference ontology refers to an ontology containing the classes from which
the instances are going to be created.

2 http://elite.polito.it/ontologies/dogont

http://elite.polito.it/ontologies/dogont

Template-Based Ontology Population for Smart Environments Configuration 273

– Building Environment (BE): The concepts below this hierarchy are used to
describe the architectural spaces of built environments (Garage, Flat, Room,
etc.)

– Building Thing (BT): The concepts below this hierarchy are used to describe
the controllable (i.e., devices) and uncontrollable objects (e.g., furniture) of
a given environment.

– State: The concepts below this hierarchy are used to describe the working
configurations (observable status) that controllable BT objects can assume.

– Functionality: The concepts below this hierarchy are used to describe the
controllable BT objects capabilities.

– Network Component: The concepts below this hierarchy are used to describe
the technology-specific information needed for describing real-world devices.

Users configure specific SmEs by instantiating BE and BT concepts and by
connecting them according to the ontology-defined domain semantics.

4 Problem Statement

The population process, as stated previously, is time-consuming and error-prone
[7], mainly because of two challenging tasks it encompasses: instance properties
determination and implicitly derived instantiation. Figure 1 presents a DogOnt
fragment example to help to illustrate those concepts.

isIn

hasFloor

hasCeiling

hasCommand

hasStateValue

realStateValue

Lamp

On
CommandC

Off
CommandC

OnOff
Functionalityy

OnOff
State

hasCommand

OnState
Value

O St t

OffState
Value

OffSRoom

Floor

CeilingCeiling

"On"

"Off"

hasStateValue
realStateValue

CommandisA

isA

Building
ThingThing

isA

Building
Environment

isA

isA

isA

ControllableC ll bl
UncontrollableU

isA
isA

State ValueisA

isA

StateeisA

FunctionalityFunctionality
isA

hasFunctionality

hasState

A

Fig. 1. Ontology fragment showing a DogOnt Lamp class

Instance Properties Determination

When a class is instantiated, it is not easy to identify which properties must
be included in the new instance description, for it to be valid and logically
consistent, and which properties can, instead, be omitted. The former type of

274 S. Aced López, D. Bonino, and F. Corno

properties, namely Mandatory properties need to be created for the model to
be valid (under a logic and semantics standpoint) whereas the latter properties
(Optional properties) are not strictly required from a formal standpoint but
might be crucial for the model to be usable in the real world (e.g., the location
of a given device).

Classifying the properties of a class as mandatory or optional, helps to de-
termine which of them must and which of them may be part of a new instance
description. More in detail:

– Mandatory properties : A property is mandatory if, in the class definition of
a given individual, its Cardinality Constraint is at least one. In other words,
the class mandatory properties are those that an individual must include in
its description, to be considered a valid instance of such class. Figure 1 shows
the mandatory properties of Lamp class: hasState and hasFunctionality.

– Optional properties : Optional properties may be included in an individual
description but are not required for it to be a valid instance of any class.
The user decides whether to include optional properties in a particular in-
stance description. In the example of Figure 1, the optional property isIn is
represented by a dashed arrow.

Implicitly Derived Instantiation

Assuming that the properties of a new individual have been established some-
how and it has been determined which of them can be automatically generated,
the implicitly derived instantiation problem has to be solved. Implicitly derived
instantiation refers to the fact that sometimes the explicit creation of a new in-
stance, implicitly leads to the generation of additional individuals. This happens
when an explicitly created instance is described by object properties, because
they describe instances by associating them with other URI resources (classes or
individuals), that also need to be created in order to produce valid associations
and valid descriptions. This is illustrated better by Figure 1: when an instance
is created explicitly, for example a Lamp instance, and it has an object property,
such as hasState, implicitly another instance has to be created, in this case a
new OnOffState individual.

Implicitly derived instantiation becomes a problem in large and highly inter-
related ontologies because the creation of one instance can start a chain reaction
of instantiations, making of the population task a long and complex process.

5 Proposed Solution

In order to improve the ontology population process, and in particular to tackle
the inherent complexity of the tasks discussed in the previous section, a two
stage approach is proposed which aims at reducing the cardinality of informa-
tion needed from the user and at hiding ontology formalisms by only requiring

Template-Based Ontology Population for Smart Environments Configuration 275

actually needed data (e.g., device types and names instead of device instance def-
initions). The two stages exploit different techniques based on automatic code
generation and template modeling, respectively.

The information cardinality reduction is based on the identification of which
objects/properties require external information to be created. For example, in
DogOnt, to describe a room instance, the Room class property hasFloor must be
filled with a Floor individual manually defined by the user (two rooms can share
the same floor). Instead, other classes, e.g., OnOffStateValue, are completely
specified and individuals creation can be automatically carried. Moreover, if a
given class has mandatory properties that refer to fully specified classes, indi-
viduals of such a class can also be generated automatically, by implementing
a suitable recursive mechanism. In this way the amount of instances that need
manual creation can be greatly reduced, depending on the ontology branching
and the adopted modeling approach: highly specified models experience greater
improvements with respect to loosely specified ones. SmE ontologies typically
fall in the former typology.

Formalism hiding, instead, is obtained through a template-based mechanism
which models repetitive syntactical structures in OWL, (e.g., type definitions)
and replaces information that must be given by users with suitable placeholders
to be filled at configuration time. In such a way, the actual data that users are
required to fill decreases (contributing to an additional cardinality reduction)
and ontology constructs are completely hidden and exposed as free parameters
to be filled.

In such a way, this approach helps to populate ontologies more quickly (due
to cardinality reduction) and more accurately (templates are validated once and
ensure syntactical correctness) than in the current state of the art. More in detail,
the overall approach is divided in the following three phases, and is illustrated
in Figure 2:

Ontology
Templates

Template
Filler

OWL
files

1. 2.

3.

Ontology
Templates

1.

User
Interface

Template
Factory

Fig. 2. Block diagram of the proposed approach

5.1 Template Generation

The template generation phase, which is executed offline only once (unless the
reference ontology itself changes) by the Template Factory, aims to create a
template for each target class.

Templates are divided into two parts: a main block and a secondary block.
The main block contains the description of the target class instance (the main
instance) for whom the template is created. The secondary block contains the
descriptions of all the implicitly derived instances (secondary instances).

276 S. Aced López, D. Bonino, and F. Corno

In order to obtain a template, two steps have to be followed: reference on-
tology exploration, to determine and classify the properties used in the instance
descriptions and the template writing in which those instance descriptions are
structured and written in a template body.

Reference Ontology Exploration. To create a template of a target class, the
reference ontology is recursively explored to find all the classes and properties
“connected” to such a class, identifying which information shall be filled by
the user and which one can be generated by an unsupervised process. Such
an exploration is based on SPARQL querying. The query process retrieves the
properties that can be used to describe target classes, and the information needed
to classify those properties as mandatory or optional.

Exploration queries should be designed to exploit the specific characteristics
of each reference ontology. As an example, in the DogOnt ontology used through-
out this paper for illustrating the proposed approach, mandatory properties do
not have free parameters, whereas the optional object properties always have
them. Consequently, its particular exploration query only returns the necessary
information to classify properties in the following groups:

– Mandatory object properties
– Mandatory datatype properties
– Optional object properties

Template Writing. Once the template information is gathered and the class
properties properly classified, the template can be written. As stated before a
template is structured in blocks (main and secondary), each one describing an
instance. In general, such blocks contain:

– Namespace and main instance name placeholders.
– Static OWL statements: Corresponding to the mandatory properties with

no free parameters.
– Parametrized OWL statements: Corresponding to the mandatory properties

with free parameters, i.e., placeholders.
– Optional Statements: Corresponding to IF statements enclosing the optional

properties.
– A rdf:type property stating the class of the instance described in the block.

5.2 User Input Information

After the template generation phase, information from the user is required to
resolve the Optional Statements and to assign proper values to the template
placeholders. Such information could be gathered through any user interaction
mechanisms, e.g. through a graphical user interface (GUI). Figure 2 shows an
arrow that goes from the Template Factory to the UI block, to indicate that the
former must supply information, such as the placeholder labels, to configure the
latter.

Template-Based Ontology Population for Smart Environments Configuration 277

5.3 Ontology Consolidation

The last phase of the overall process, consists in merging the template-encoded
information with the data entered by the user. The latter, in particular, replaces
all the template placeholders providing a valid and fully consistent OWL instance
definition. The steps to consolidate it are very simple:

1. Replace all the namespace and main instance name placeholders.
2. Resolve the IF statements (if present) to determine which optional properties

to include in the instance description.
3. Replace the rest of the template placeholders.
4. Write the output OWL file.

6 Experimental Results

The template based approach exposed along this document has been initially
tested in a real world case of ontology-based smart environment configuration.
More precisely, experiments were carried to populate a specific SmE: the Simple
Home [3] which is based on the DogOnt ontology (1835 classes) and describes a
flat with several (114) domotic devices modeled by 1408 concept instances.

The prototype tool developed for experimentation uses the Jena framework
to manage the ontologies and the ARQ engine to issue SPARQL queries at the
template generation phase. User information is collected through a dynamically
generated JavaFX application which also drives the consolidation process. User
given information, is mapped to a set of automatically generated Java Beans
accompanying each template and providing the additional information to check
the correctness of filled data, e.g., the allowed placeholder filler classes. This set
of beans, is then used in the ontology consolidation phase by a Velocity Template
Engine to fill the templates.

Experimental results confirm that by following the approach presented in this
document, the effort and time that users spent manually populating such a large
ontology was significantly reduced by using templates: the entire population pro-
cess took, in fact, less than one day (vs. over a week in the fully manual case) and
only required to fill free parameters for the 114 devices (roughly 300 parameters)
instead of manually describing the 1408 required instances (amounting to about
7000 triples), with a cardinality reduction of over one order of magnitude.

7 Conclusions

This paper discussed a general template-based approach for effective ontology
population, with a particular focus on the smart environment domain. While
the general problem of implicitly derived instantiation affecting current tools
(e.g., general editors as Protégé) cannot be fully solved as ontology modeling
implies the creation of related instances, with a complexity that depends on the
ontology branching factor, template-based solutions, as the one presented, allow

278 S. Aced López, D. Bonino, and F. Corno

to greatly reduce the cardinality of user-given information and, at the same time
hide ontology-specific formalisms from the end users.

Preliminary experimental results, confirmed the viability of the proposed solu-
tion with over an order of magnitude reduction in the cardinality of information
required to users: about 300 parameters vs over 7000 triples.

Future works will involve extensive experimentation with users, by exploiting
different ontology models for SmEs and a thoroughly study of user interfaces for
filling free parameters.

References

1. Alani, H., Kim, S., Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H., Shadbolt, N.:
Using protege for automatic ontology instantiation. In: 7th International Protégé
Conference, Event Dates: July 6-9 (2004), http://eprints.soton.ac.uk/259479/

2. Bonino, D., Corno, F.: DogOnt - ontology modeling for intelligent domotic envi-
ronments. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 790–803. Springer,
Heidelberg (2008),
http://dblp.uni-trier.de/db/conf/semweb/iswc2008.html#BoninoC08

3. Bonino, D., Corno, F.: Dogsim: A state chart simulator for domotic environments.
In: PerCom Workshops, pp. 208–213. IEEE (2010),
http://dblp.uni-trier.de/db/conf/percom/percomw2010.html#BoninoC10

4. Doherty, L., Kumar, V., Winne, P.: Assisted ontology instantiation: a learningkit
perspective. In: Seventh IEEE International Conference on Advanced Learning Tech-
nologies, ICALT 2007, pp. 265–267 (2007)

5. Jupp, S., Horridge, M., Iannone, L., Klein, J., Owen, S., Schanstra, J., Stevens,
R., Wolstencroft, K.: Populous: A tool for populating templates for owl ontolo-
gies. In: Burger, A., Marshall, M.S., 0001, P.R., Paschke, A., Splendiani, A.
(eds.) SWAT4LS. CEUR Workshop Proceedings, vol. 698. CEUR-WS.org (2010),
http://dblp.uni-trier.de/db/conf/swat4ls/swat4ls2010.html#JuppHIKOSSW10

6. Kawamoto, K., Kitamura, Y., Tijerino, Y.: Kawawiki: A semantic wiki based on
rdf templates. In: WI-IATW 2006: Proceedings of the 2006 IEEE/WIC/ACM In-
ternational Conference on Web Intelligence and Intelligent Agent Technology, pp.
425–432. IEEE Computer Society, Washington, DC (2006),
http://portal.acm.org/citation.cfm?id=1194764

7. Maleshkova, M., Mart́ınez, I.: Ontology instantiation state of the art report. Tech.
rep. (2008)

8. Parreiras, F.S., Gröner, G., Walter, T., Staab, S.: A model-driven approach for
using templates in OWL ontologies. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010.
LNCS, vol. 6317, pp. 350–359. Springer, Heidelberg (2010),
http://dx.doi.org/10.1007/978-3-642-16438-5_25

9. Wang, X., Dong, J.S., Chin, C., Hettiarachchi, S., Zhang, D.: Semantic space: An
infrastructure for smart spaces. IEEE Pervasive Computing 3(3), 32–39 (2004)

http://eprints.soton.ac.uk/259479/
http://dblp.uni-trier.de/db/conf/semweb/iswc2008.html#BoninoC08
http://dblp.uni-trier.de/db/conf/percom/percomw2010.html#BoninoC10
http://dblp.uni-trier.de/db/conf/swat4ls/swat4ls2010.html#JuppHIKOSSW10
http://portal.acm.org/citation.cfm?id=1194764
http://dx.doi.org/10.1007/978-3-642-16438-5_25

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 279–280, 2014.
© Springer International Publishing Switzerland 2014

Introduction to the 3rd International Workshop on Cloud
Computing and Scientific Applications (CCSA’13)

Suraj Pandey1 and Surya Nepal2

1 IBM Research Australia
suraj.pandey@au.ibm.com

2 CSIRO Computational Informatics
surya.nepal@csiro.au

CCSA workshop has been formed to promote research and development activities
focused on enabling and scaling scientific applications using distributed computing
paradigms, such as cluster, Grid, and Cloud Computing. With the rapid emergence of
virtualized environments for accessing software systems and solutions, the volume of
users and their data are growing exponentially. According to the IDC, by 2020, when
the ICT industry reaches $5 billion - $1.7 billion larger than it is today - at least 80%
of the industry's growth will driven by 3rd platform technologies, such as cloud
services and big data analytics. Existing computing infrastructure, software system
designs, and use cases will have to take into account the enormity in volume of
requests, size of data, computing load, locality and type of users, and every growing
needs of all applications. Cloud computing promises reliable services delivered
through next-generation data centers that are built on compute and storage
virtualization technologies. Users will be able to access applications and data from a
Cloud anywhere in the world on demand. In other words, the Cloud appears to be a
single point of access for all the computing needs of users. The users are assured that
the Cloud infrastructure is robust and will always be available at any time. To address
the growing needs of both applications and Cloud computing paradigm, CCSA brings
together researchers and practitioners from around the world to share their
experiences, to focus on modeling, executing, and monitoring scientific applications
on Clouds.  In this workshop, there were 20 submissions. The committee decided to
accept 7 papers. The program also includes 1 invited talk as a keynote.

Summary of Papers Presented in the Workshop

The paper titled “SLA-Aware Load Balancing in a Web-Based Cloud System over
OpenStack” presents an architecture that enables load balancing of web-application
by distributing the load across virtual machines, while preserving the service-level-
agreement. The paper maintains the SLA by expanding the computing capacity
dynamically to avoid system overload by adding additional VMs when experiencing
sudden increases in the number of users and requests in system.

The paper titled “Are Public Clouds Elastic Enough for Scientific Computing?”
presents a review of solutions proposed by public cloud providers and points the open

280 S. Pandey and S. Nepal

issues and challenges in providing elasticity for scientific applications. It also
describes initiatives that are being developed in that space.

The paper titled “A light-weight framework for bridge-building from desktop to
cloud” describes a light-weight framework based on cloud and REST to address (i)
the heavy weight and diversity of infrastructures that inhibits sharing and
collaboration between services, (ii) the relatively complicated processes associated
with deployment and management of web services for non-disciplinary specialists,
and (iii) the relative technical difficulty in packaging the legacy software that
encapsulates key discipline knowledge for web-service environments.

The paper titled “Planning and Scheduling Data Processing Workflows in the
Cloud with Quality-of-Data Constraints” introduces a new scheduling criterion,
Quality-of-Data (QoD), that specifically focuses on continuous data processing
workflows, where the scheduler does not perform any reasoning about the impact new
input data may have in the workflow final output. The authors have illustrated the
viability of their research by developing a WaaS (Workflow-as-a-Service), a
workflow coordinator system for the Cloud where data is shared among tasks via
cloud-based columnar databases.

The paper titled “Galaxy + Hadoop: Toward a Collaborative and Scalable Image
Processing Toolbox in Cloud” presents a cloud-based image processing tool- box by
integrating Galaxy, Hadoop and CSIRO’s proprietary image processing tools. The
paper provides the integration architecture and technical details about the whole
system. In particular, it investigates the use of Hadoop to handle massive image
processing jobs.

The paper titled “SciLightning - a Cloud Provenance-based Event Notification for
Parallel Workflows” presents a workflow event notification mechanism based on
runtime monitoring of provenance data produced by parallel scientific workflow
systems in clouds. The paper also evaluated their proposed mechanism by monitoring
SciPhy, a large-scale parallel execution of a bioinformatics phylogenetic analysis
workflow.

The paper titled “Energy Savings on a Cloud-based Opportunistic Infrastructure”
presents the problem of virtual machines consolidation on the opportunistic cloud
computing resources. It investigates four workload packing algorithms that place a set
of virtual machines on the least number of physical machines to increase resource
utilization and to transition parts of the unused resources into a lower power states or
switching off. In addition, it empirically evaluates these heuristics on real workload
traces collected from our experimental opportunistic cloud, called UnaCloud.

Acknowledgement. We would like to thank Dr Shiping Chen for chairing the event.
We also thank EasyChair.org for providing the conference management system.

SLA-Aware Load Balancing in a Web-Based

Cloud System over OpenStack

Jordi Vilaplana, Francesc Solsona, Jordi Mateo, and Ivan Teixido

Dept. of Computer Science and INSPIRES, University of Lleida,
Jaume II 69, E-25001 Lleida, Spain

{jordi,francesc,jmateo,iteixido}@diei.udl.cat
http://gcd.udl.cat

Abstract. This paper focuses on the scalability problem in cloud-based
systems when changing the computing requirements, this is, when there
is a high degree of requesting service variability in cloud-computing en-
vironments. We study a specific scenario for web-based application de-
ployed in a cloud system, where the number of requests can change with
time. This paper deals with guaranteeing the SLA (Service-Level Agree-
ment) in scalable clouds with web-based load variability.

We present an architecture able to balance the load (mainly web-
browser applications) between different computing virtual machines. This
is accomplished by monitoring the system in order to determine when
to create or terminate virtual machines. A novel scheduling policy to
manage the requested cloud services based on the presented architecture
is also proposed.

The good results obtained by implementing the proposed architecture
in a real cloud framework prove the applicability of our proposal for
guaranteeing SLA.

1 Introduction

Cloud computing offers a wide range of benefits by moving the computing infras-
tructure to the Internet, reducing the costs for the maintenance and management
of hardware and software resources [2]. In cloud computing, hardware and soft-
ware services are more efficiently handled than in other High-Performance Com-
puting (HPC) infrastructure, as they can be added and released dynamically [4].
In our case, Virtual Machines (VM) will be the basic computing infrastructures
to be managed. Cloud computing has gained worldwide attention from many
researchers, but only a few have addressed the performance problem [6].

A Service-Level Agreement (SLA) is an agreement between a service provider
and a consumer, where the provider agrees to deliver a service to the consumer
under specific terms, such as time or performance. In order to comply with the
SLA, the service provider must closely monitor the QoS (Quality of Service)
through such parameters as throughput or response time [1]. In this scenario,
the SLA contract usually states that the consumer only pays for the resources
and services used according to negotiated QoS requirements at a given price [3].

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 281–293, 2014.
c© Springer International Publishing Switzerland 2014

http://gcd.udl.cat

282 J. Vilaplana et al.

To study and determine SLA-related issues is a big challenge mainly due to
the complex nature of cloud computing and especially to its high variability [8].
We do not focus on SLA cloud interface, specification or similar issues, such as
the SLAng project, a language for specifying Service-Level Agreements within
the ASP language [16].

We focus our research on designing a cloud-computing framework providing
QoS and high performance for a given SLA and number of HPC users. We have
based this on the response time as the QoS performance metric. Response time
is defined as the time spent by a request to be processed and a response to
be sent back to the client. Job response time is perhaps the most important
QoS metric in a cloud-computing context [3]. For this reason, it is also the QoS
parameter chosen in this work. This paper also deals with problems of variability
[8] and reliability [12], leaving aside such other cloud-computing issues as security
capabilities [9], cloud availability [10] and power-aware energy consumption [11].

As stated in [5], most current cloud-computing infrastructures consist of ser-
vices that are offered and delivered through a service center that can be accessed
from a web browser anywhere in the world. Thus, the cloud has a single access
point, accessed through a web browser. In addition, for the same reason, we also
consider that the main workload, the applications being executed in the cloud,
will be of the web-browser kind. As was pointed out in [7], user requests are
sent by users and redirected by the scheduler to the web servers (located at the
virtual machines) running a service application, which has an associated SLA.

The main contribution of this paper consists of a cloud-based architecture
capable of monitoring and managing cloud-computing resources, i.e. virtual ma-
chines (VMs). In other words, it takes into account the variability of cloud sys-
tems. In this model, the main component of this architecture is the scheduler
(acting as a load balancer), which will initialize or terminate VMs depending on
the current state of the system in order to comply with the SLA. We based this
on Ming [15], who presented a programming mechanism to automatically scale
computing resources on a cloud-based system based on workload information
and performance desire. It was based on the load activity by starting and shut-
ting down VM instances. The mechanism enables cloud applications to finish
submitted jobs within the deadline by controlling the amount of instances, and
reduces user costs by choosing appropriate instance types. As web-browser ap-
plications require a high response time performance, we have replaced a deadline
on the response time as the QoS metric.

We also apply and modify the ideas presented in [13,14], but applied to cloud
computing managing mainly web-browsing applications. In [13], a mechanism
for managing SLAs in a cloud computing environment using the Web Service
Level Agree- ment (WSLA) framework was proposed. In [14], Buyya presented
the main challenges and architectural elements of SLA-oriented resource man-
agement.

The proposed architecture was implemented using OpenStack1, which is an
open-source software that provides facilities for dynamically managing VMs.

1 http://www.openstack.org OpenStak. http://www.openstack.org

http://www.openstack.org
http://www.openstack.org

SLA-Aware Load Balancing in a Web-Based Cloud System 283

This adds additional value to the paper because the tests were performed on a
real platform.

The remainder of the paper is organized as follows. In Section 2 the archi-
tecture and implementation of our cloud proposal are presented. Section 3 is
focused in the main component, the scheduler. The experimentation showing
the good behavior of our cloud framework is presented in Section 4, where rep-
resentative workloads are tested and analyzed. Finally, Section 5 outlines the
main conclusions and possible research lines to explore in the near future.

2 Architecture and Implementation

The proposed architecture is schematically presented in Figure 1. It has been
designed to provide a certain degree of scalability and variability-aware and
reliability. Therefore, the architecture is divided between different physical sites,
which will host the different components of the system. In our case, it is composed
of two different sites: Site 1 and Site 2. Both sites are mode up of a single
physical machine. OpenStack is deployed on top of Site 1 and Site 2. Site 2 adds
redundancy, hence increasing the fault tolerance and reliability of the system and
to provide scalability. Note that additional sites could be added without major
changes to the underlying architecture.

Site 1 hosts the VM where the Load Balancer or simply the Scheduler is
located. The Scheduler acts as the entry point to the system. The Scheduler was
implemented using the Apache HTTP Server v2.2 2 with the mod proxy balancer
module. The mod proxy balancer is governed by the scheduling policy presented
in the next section (Section 3).

As we designed the cloud to operate as a web server, users will access the
system using a web browser. Thus, web-based applications are executed inside
and are deployed over the cloud computing components. That being said, HTTP
requests from different users enter the system through the Scheduler VM, which
decides which Computing VM (or simply VM) the request will be sent to. Once
a VM has been selected, the request is forwarded to it. The VMs are deployed
on top of the Apache Tomcat web server.

The communication between the Scheduler and the computing VM nodes
follows a master-worker paradigm. All computing VMs are configured with the
AJP3 protocol enabled, which is used by the scheduler to communicate with the
VMs. The AJP protocol enables inbound requests from a web server like Apache
HTTP server to be proxied to an application server like Apache Tomcat. It also
allows the web server to perform a basic monitoring of the applications being
executed in the cloud to determine their status and to know if the applications
are operative or not.

2 http://httpd.apache.org Apache HTTP Server. http://httpd.apache.org
3 http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

AJP. Apache Tomcat Connector - Apache JServ Protocol

http://httpd.apache.org
http://httpd.apache.org
http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

284 J. Vilaplana et al.

Fig. 1. System architecture

Each computing instance is created from a unique snapshot instance. A snap-
shot is an image created from a running VM. In OpenStack, a new snapshot can
be created using the following command:

$ nova image-create <uuid> <snapshot_name>,

where nova is a client of the OpenStack Nova API 4, image-create is a command
to create a new image by taking a snapshot of a running server, uuid is the unique
universal identifier of the VM running and snapshot name is the name assigned
to the newly created snapshot. Once this process is complete, the snapshot is
available for booting into a new VM instance.

The use of snapshots allows the VMs to be updated to newer versions of web
application very easily. Therefore, future upgrading processes or configuration
changes can be easily done and extended to the whole system without having to
update each node manually. This way, required changes can be done in a single
VM and then a snapshot of it created to be used to instantiate in other location.

Although this work is not focused on data-intensive architectures, the database
has been implemented using MySQL Cluster v7.3 5, a widely used open-source

4 http://api.openstack.org OpenStack Nova API. http://api.openstack.org
5 http://dev.mysql.com/downloads/cluster/ MySQL Cluster v7.3.
http://dev.mysql.com/downloads/cluster/

http://api.openstack.org
http://api.openstack.org
http://dev.mysql.com/downloads/cluster/
http://dev.mysql.com/downloads/cluster/

SLA-Aware Load Balancing in a Web-Based Cloud System 285

SQL database. By doing so, we achieve a higher degree of robustness and avail-
ability in the cloud framework. The MySQL Cluster is distributed between the
two sites, and can be implemented with the desired number of VMs in each
site. Having multiple computing and data VMs ensures a higher degree of load
scalability and reliability.

3 SLA-Aware Scheduling

First of all, we present the scheduling policy, named Pending Request Policy
(PRP). This policy assigns an incoming request to the VM with the lowest
number of active requests at that moment. Therefore, when a new request arrives,
it is assigned to the VM that is currently processing the fewest requests. This
policy performs very accurate balancing among the VMs when all requests have a
similar difficulty to be served. When some requests could need a lot of computing
resources and others may not, this policy would not be a good option. However,
web-based requests are usually evenly balanced, so it was the chosen scheduling
policy.

Next, PRP is defined formally. A normalized score is assigned to each VM.
This determines the number of requests that the scheduler will send to such a
VM. The normalized score is obtained as follows. Assuming that the scores of the
computing VMs (V Mi, where i = 1..n, n being the actual number of computing
VMs) are SVMi , the normalized score of VMi, namely NVMi , is obtained as
follows:

NV Mi =
SV Mi∑
k SV Mk

(1)

Therefore, the closer the normalized score is to one, the more requests will be
mapped to such a VM. This policy is based on the computing capacity of the
VMs, and allows us to decide which ones will process more requests.

Additional functionality is implemented through Python scripts and Open-
Stack.

Algorithm 1 describes in detail how the main script manages the creation and
termination of OpenStack instances (VMs). See Fig. 2 for additional explanation.
The script is responsible for guaranteeing the negotiated SLA for the overall
users. Tmax corresponds to the response time above which new VMs will be
launched in order to try to lower it. Therefore, Tmax should be close to, but no
higher than, the maximum user response time negotiated in the SLA agreement.
This is because new VMs become operational after an Initialization period of
time (see Fig. 2). Tmin corresponds to the response time below which additional
VMs will be terminated. Hence, Tmin should be below, an also close to, the
minimum user-negotiated response time.

The current response time of the system is calculated through the loadT est()
function (explained in Algorithm 3). It performs various HTTP requests and
calculates its average. Afterwards, if the average response time is above Tmax,
a new OpenStack instance is launched using the newInstance() function (de-
scribed in detail in Algorithm 2). If there is any error during the initialization of

286 J. Vilaplana et al.

Fig. 2. Scheduling diagram

Algorithm 1. main()

Require: maxT ime = Tmax

Require: minT ime = Tmin

Ensure: Tmax > Tmin

avgT ime = loadTest()
if avgT ime ≥ maxT ime then

instance ⇐ newInstance()
if instance == error then

sendAlert()
end if
addInstance(instance)
reloadConfig()

else if avgT ime < minT ime then
instance ⇐ terminateInstance()
removeInstance(instance)
reloadConfig()

end if

the new instance, an alert is sent using the sendAlert() function. This function
sends an email to a predefined email address to alert the system operator, as
human intervention is likely to be needed. Once the new VM is running, it is
added to the Apache HTTP Server configuration file, so that future incoming
requests are also mapped to this instance. Finally, the configuration is reloaded
through the reloadConfig() function to apply the previous modifications to the
Apache HTTP Server configuration file. This is done by performing a system call
to the Apache HTTP Server with the reload command. Note that by doing so,
the server is not restarted and, hence, there is no time penalties from resetting
the system.

Algorithm 2 describes the process of launching a new VM (namely
newInstance()). The openstack.newInstance() function uses the OpenStack
API v2 to communicate with the OpenStack framework. Internally, this func-

SLA-Aware Load Balancing in a Web-Based Cloud System 287

Algorithm 2. newInstance()

instance = openstack.newInstance()
retries = 0
while not openstack.isActive(instance) do

retries = retries+ 1
if retires > MAX RETRIES then

return error
end if
time.sleep(1)

end while
floatingIP = openstack.getF loatingIP ()
openstack.addF loatingIP (instance,floatingIP)
return instance

Algorithm 3. loadTest()

url = TEST URL
avgT ime = 0
errors = False
for i = 0; i < 10; i++ do

start = time.time()
code = urllib.urlopen(url).getcode()
end = time.time()
if code == 200 then

avgT ime+ = (end− start) ∗ 1000)
else

errors = True
break

end if
end for
if errors then

return loadTest()
else

returnavgT ime/10
end if

tion creates a new VM based on a snapshot instance. A maximum number of
retires (MAX RETRIES) is allowed. A snapshot is an image created from a
running VM. All the computing VMs are created using a snapshot, so when the
instance is booted, it is already prepared and configured to execute the desired
web-based application.

Algorithm 3 shows how the loadT est() function works. It performs 10 consec-
utive requests to the TEST URL web address. This parameter can be set to any
valid address, hence it is able to perform the requests against any application
endpoint. In our case, this parameter was set to the Internet address of the http
server of our cloud framework.

288 J. Vilaplana et al.

The start time is stored before each request. Then, the request is made and
the HTTP status code is stored in the code variable. The HTTP status code is
a numeric code associated with each response. In our case, we are interested in
the 200 OK status code, which is the standard response for a successful HTTP
request. Therefore, a 200 status code means that the request has been served
successfully. Thus, once the request has been processed, the end time is stored.
Then, if the request is successful, the time spent processing the request is added
to the avgT ime variable (in milliseconds). On the other hand, if the request
is not successful, the algorithm will restart the entire load test. If there are no
errors during the process, the average time is calculated and returned to the
main() function described in Algorithm 1.

The creation of a new VM is not instantaneous, therefore Algorithm 2 checks
the status of the new VM through the openstack.isActive(instance) function
and waits until its status becomes active. Note that a maximum number of retries
can be set by means of the MAX RETRIES variable. This avoids situations
where a new VM is never ready due to an unexpected error. Once active, it
assigns a floating (public) IP to that instance. Finally, the function returns the
newly-created instance.

The functions addInstance() and removeInstance() modify the Apache
HTTP Server configuration file (httpd.conf) by adding or removing lines repre-
senting VMs.

Algorithm 4. bashScript.sh

#!/bin/bash
while true do

/var/main.sh
sleep5

end while

Algorithm 4 describes the work of an additional script responsible for execut-
ing the main.sh script every 5 seconds. This way, every 5 seconds the system
will be tested in order to know its current average response time. Note that
the 5-second interval could be made longer or shorter depending on the type of
system and its characteristics.

4 Experimental Results

This section presents the experimental results obtained using the Apache JMeter
[17] tool. This tool allows a series of load tests to be performed by sending
HTTP requests to the system. This way, parametrized performance tests can be
automatically performed.

Site 1 hosts two computing VMs and one VM from the MySQL Database clus-
ter. Site 2 allocates one computing VM and one VM from the MySQL Database

SLA-Aware Load Balancing in a Web-Based Cloud System 289

Cluster. Each VM has 4GB RAM and 2 VCPU (Virtual CPU). A VCPU cor-
responds to one core of an AMD Opteron 6,100 processor running at 2.1 GHz.
The Scheduler was deployed on a VM with 512MB RAM and 1 VCPU in Site
1, as mentioned above.

The test plan was configured to simulate 600 different users. Each user per-
formed a total of 200 requests, with a 100-millisecond delay between each request.
A ramp-up period of 60 seconds was set. That means that all 600 users were
launched within 60 seconds.

4.1 Response Time

Figure 3 shows the average response time (in milliseconds) of the system when
using two computing VMs. The Scheduler was configured not to launch any ad-
ditional VM during the duration of this test. Therefore, the scheduling algorithm
described in Section 3 was not operative.

Fig. 3. Response time evolution without initializing additional VMs

It can be seen how response time increases sharply. Then it remains at be-
tween 2,000 and 4,000 milliseconds until the end of the test, when response time
decreases as users are finishing and the number of requests is dropping. This
test shows a severe saturation of the system, which leads to high response times.
In the last interval of time, the average response time decreases due to users
stopping sending requests and hence, the system load lowers.

The same test, with the same characteristics as described above was repeated
(see Fig. 4). This time, the scheduling algorithm was configured to initialize two
additional computing VMs (newInstance() and removeInstance() were executed
twice) when the average response time exceeded 500 milliseconds. This is Tmax

was set to 500.
From Figure 4 we can see how average response time increases sharply at the

beginning, like before, but stabilizes quickly and decreases continuously with new

290 J. Vilaplana et al.

Fig. 4. Response time evolution when initializing additional VMs

VMs added. Note that there is a significant interval of time between the instant
when the average response time exceeds 500 milliseconds and when it stops
growing. This is due to the fact that the new VMs are not activated instantly,
but rather take around 20 seconds to become operational (the Initialization
Time). We obviated testing the system when Tmin was underpassed because no
stress information about the cloud behavior is added at all.

4.2 Additional Performance Measurements

Further tests were done in order to measure additional performance metrics.
These metrics are the average response time, the median response time, the 90%
line and the throughput. The 90% line (also called the 90th percentile) is the
response time below which 90% of the request response times fall. In other words,
a 90% line value of X means that 90% of the requests have been processed in
X time or less. Consequently, 10% of the requests will be above and 90%, below
X time. The median is equivalent to the 50th percentile. The throughput metric
indicates the number of requests served per second. This metric can be useful for
determining the performance of the system and detecting when it has reached
its maximum capacity and become overloaded.

Fig. 5 shows the evolution of all these metrics (average, median, 90% line and
throughput) when performing tests with different loads using the two additional
computing nodes. The test plan was configured to simulate from 100 to 900 dif-
ferent users. Each user performed a total of 100 requests, with a 100-millisecond
delay between each request. A ramp-up period of 60 seconds was set for all tests.

The 90% line was added as percentiles are commonly used in service-level
agreements. It is a helpful complementary metric together with the median and
average values in terms of SLA. As we do not have complete control over the
Internet network, there can be momentary fluctuations that can greatly affect
results in terms of the maximum time required to process a request through a

SLA-Aware Load Balancing in a Web-Based Cloud System 291

test. For this reason, having a metric that takes most of the samples into account
can offer a more reliable estimation of the performance of the system. This can
be appreciated in Fig. 5. It can be seen how the average, median and 90% line
start increasing rapidly over 400,000 requests. However, system throughput keeps
steady until 800,000 requests, where it starts to drop. The median and average
do not increase as rapidly as the 90% line, thus giving more SLA information
about system behavior.

In Figure 6, the same tests were performed without additional VMs. It can be
seen how the system throughput starts decreasing when performing more than
600,000 requests and how the 90% line is significantly higher than in Figure 5.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 100 200 300 400 500 600 700 800 900

T
im

e
(m

s)

Requests (thousands)

Average
Median

90% Line
Throughput

Fig. 5. Evolution of multiple QoS metrics (average, median, 90% Line and throughput)
when using additional nodes

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200

 100 200 300 400 500 600 700 800 900

T
im

e
(m

s)

Requests (thousands)

Average
Median

90% Line
Throughput

Fig. 6. Evolution of multiple QoS metrics (average, median, 90% Line and throughput)
without additional nodes

292 J. Vilaplana et al.

It can be seen how, in this case, the average, median and 90% line start
increasing over the 300,000 requests. System throughput starts decreasing over
600,000 requests. Compared to the previous results (of Figure 5), we can state
that a significant increase in the overall performance of the system is obtained
by adding two additional computing VMs.

Note also on comparing both tests, that the 90% line can give much better in-
formation about guaranteeing SLA. While the average, median and throughput
metrics do not give much information about response time, the 90% clearly in-
form us that some action must be taken to reduce it (i.e. adding more computing
VMs).

5 Conclusions and Future Work

This paper presents a cloud-based system architecture able to successfully re-
spond to a high degree of variability complying with SLA agreements. We de-
veloped and implemented a cloud framework capable of detecting high response
times, initializing new VMs and configuring the Scheduler to detect them on
the fly. As our cloud mainly applies to web-based applications, response time
was used. Moreover, the architecture and implementation design are flexible
enough to allow dynamic changes to adapt to different requirements in terms
of maximum allowed response time (i.e. the negotiated user SLA agreement).
Experimental results show that it is possible to expand the computing capacity
dynamically to avoid system overload by adding additional VMs when experi-
encing abrupt increases in the number of users and requests in system. This
proves the good behavior of the system for correcting the problem of variability.

We still want to expand the architecture further by adding multiple schedulers
to avoid having a single point of failure and hence, increasing the fault tolerance
of the overall system. This could be achieved by using DNS Load Balancing.

We also plan to perform further experimentation with power-aware VM-
placement scheduling and VM-migration policies. In this regard, previous re-
search has been done with OpenStack with the OpenStack Neat project [18],
which is a framework for dynamic consolidation of VMs within OpenStack. Also,
further experimentation and testing with more complex load-balancing software
is planned in order to achieve a higher degree of complexity in the scheduler. We
have seen that instantiating and initializing a new VM is not instant, and there
is a significant delay between the moment when the new instance is required and
when the new instance is up and ready. For this reason, we plan to develop and
incorporate traffic prediction models in the scheduler.

Acknowledgment. This work was supported by the MEyC under contract
TIN2011-28689-C02-02. The authors are members of the research group 2009-
SGR145, funded by Generalitat de Catalunya.

SLA-Aware Load Balancing in a Web-Based Cloud System 293

References

1. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. J. Netw. Syst. Manage. 11(1), 57–81 (2003)

2. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A Break in the Clouds:
Towards a Cloud Definition. ACM SIGCOMM Computer Comm. Rev. 39, 50–55
(2008)

3. Aversa, R., Di Martino, B., Rak, M., Venticinque, S., Villano, U.: Performance
Prediction for HPC on Clouds. Cloud Computing: Principles and Paradigms (2011)

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

5. Xiong, K., Perros, H.: Service Performance and Analysis in Cloud Computing. In:
Proc. IEEE World Conf. Services, pp. 693–700 (2009)

6. Khazaei, H., Misic, J., Misic, V.: Performance Analysis of Cloud Computing Cen-
ters Using M/G/m/m+r.Queuing Systems. IEEE Transactions on parallel and dis-
tributed systems, vol 23(5) (2012)

7. Martin, J., Nilsson, A.: On service level agreements for IP networks. In: Proceedings
of the IEEE INFOCOM (2002)

8. Iosup, A., Yigitbasi, N., Epema, D.: On the Performance Variability of Production
Cloud Services. In: 11th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid 2011), pp. 104–113 (2011)

9. Varia, J.: Architection for the Cloud: Best Practices. Amazon Web Services (2010)
10. Martinello, M., Kaániche, M., Kanoun, K.: Web service availability: Impact of

error recovery and traffic model. Journal of Reliability Engineering and System
Safety 89(1), 6–16 (2005)

11. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual
machines in Cloud data centers. Concurrency and Computation: Practice and Ex-
periency 24(13), 1397–1420 (2012)

12. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reli-
ability. In: Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC
2010), pp. 193–204 (2010)

13. Patel, P., Ranabahu, A., Sheth, A.: Service Level Agreement in Cloud Computing.
In: Cloud Workshops at OOPSLA 2009 (2009),
http://knoesis.wright.edu/aboutus/visitors/summer2009/PatelReport.pdf

14. Buyya, R., Garg, S.K., Calheiros, R.N.: SLA-oriented resource provisioning for
cloud computing: Challenges, architecture, and solutions. In: Proceedings of the
International Conference on Cloud and Service Computing (CSC 2011), pp. 1–10
(2011)

15. Mao, M., Li, J., Humphrey, M.: Cloud Auto-scaling with Deadline and Budget
Constraints. In: Proceedings of the 11th IEEE/ACM International Conference on
GRID, pp. 41–48 (2010)

16. Lamanna, D.D., Skene, J., Emmerich, W.: Slang: A language for defining service
level agreements, pp. 100–106 (2003)

17. Apache JMeter website. Date of access: (July 19, 2013),
http://jmeter.apache.org/

18. Beloglazov, A., Buyya, R.: OpenStack Neat: A Framework for Dynamic Consoli-
dation of Virtual Machines in OpenStack Clouds - A Blueprint. Cloud Computing
and Distributed Systems (CLOUDS) Laboratory (2012)

http://knoesis.wright.edu/aboutus/visitors/summer2009/PatelReport.pdf
http://jmeter.apache.org/

Are Public Clouds Elastic Enough

for Scientific Computing?

Guilherme Galante1, Luis Carlos Erpen De Bona1,
Antonio Roberto Mury2, and Bruno Schulze2

1 Department of Informatics – Federal University of Paraná - UFPR
Curitiba, PR – Brazil

{ggalante,bona}@inf.ufpr
2 National Laboratory for Scientific Computing - LNCC

Petrpolis, RJ – Brazil
{aroberto,schulze}@lncc.br

Abstract. Elasticity can be seen as the ability of a system to increase or
decrease the computing resources allocated in a dynamic and on demand
way. It is an important feature provided by cloud computing, that has been
widely used in web applications and is also gaining attention in the sci-
entific community. Considering the possibilities of using elasticity in this
context, a question arises: “Are the available public cloud solutions suit-
able to support elastic scientific applications?” To answer the question, we
present a review of some solutions proposed by public cloud providers and
point the open issues and challenges in providing elasticity for scientific
applications. We also present some initiatives that are being developed in
order to overcome the current problems. In our opinion, current compu-
tational clouds have not yet reached the necessary maturity level to meet
all scientific applications elasticity requirements.

Keywords: Cloud computing, elasticity, scientific applications.

1 Introduction

Recently, cloud computing has emerged as an alternative for solving scientific
computing problems, with the promise of provisioning virtually infinite resources.
According to Simmhan et al. [1], the use of cloud computing environment can
be attractive to the scientific community in many ways, benefiting users that
own small applications, but also those who perform their experiments in su-
percomputing centers. In fact, several authors in the technical literature share
this opinion and present advantages and benefits of using cloud computing to
perform scientific experiments [2].

Cloud computing offers to end users a variety of resources from the hardware to
the application level, by charging them on a pay-per-use basis, allowing immediate
access to required resourceswithout theneed topurchase additional infrastructure.
In addition, an important characteristic, not available on traditional architectures
(e. g., clusters and grids), emerged on cloud computing: elasticity. Elasticity can

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 294–307, 2014.
c© Springer International Publishing Switzerland 2014

Are Public Clouds Elastic Enough for Scientific Computing? 295

be seen as the ability of a system to increase or decrease the computing resources
allocated in a dynamic and on demand way. Ideally, to the consumer, the capabili-
ties available for provisioning often appear to be unlimited and can be purchased in
any quantity at any time [3]. There are two elasticity types: vertical and horizontal.
In vertical elasticity resources, such as processing, memory and storage resources
can be added/removed from a running virtual instance. Horizontal elasticity is the
ability of the cloud to vary the number of VM’s allocated to a service according to
demand.

Traditionally, cloud elasticity has been used for scaling traditional web ap-
plications in order to handle unpredictable workloads, and enabling companies
to avoid the downfalls involved with the fixed provisioning (over and under-
provisioning) [4]. In scientific scenario, the use of cloud computing is discussed
in several studies [5][6], but the use of elasticity in scientific applications is a
subject that is starting to receive attention from research groups [7].

This interest is related to the benefits it can provide, including, improvements
in applications performance and cost reduction. Improvements in the perfor-
mance of applications can be achieved through dynamic allocation of additional
processing, memory, network and storage resources. Examples are the addition
of nodes in a master-slave application in order to reduce the execution time, and
the dynamic storage space allocation when data exceeds the capacity allocated
for the hosted environment in the cloud.

The cost reduction is relevant when using resources from public clouds, since
resources could be allocated on demand, instead allocating all of them at the
beginning of execution, avoiding over-provisioning. It could be used, for example,
in applications that use the MapReduce paradigm, where is possible to increase
the number of working nodes during the mapping and to scale back resources
during the reduction phase. Elastic applications can also increase computational
capabilities when cheaper resources became available. An example is the alloca-
tion of Amazon Spot Instances, when the price becomes advantageous [8].

Thus, considering the possibilities of using elasticity in the scientific context,
a question arises: are the available public cloud solutions suitable to support
elastic scientific applications? To answer this question, this paper presents a
survey covering the elasticity mechanisms offered by major public cloud providers
and analyses the limitations of the solutions in providing elasticity for scientific
applications. We also present some initiatives that are being developed in order
to overcome the current challenges.

1.1 Public Cloud Elasticity Mechanisms

In this section we present nine elasticity solutions proposed by major IaaS and
PaaS public providers. In general, most public cloud providers offer some elas-
ticity feature, from the most basic, to more elaborate automatic solutions.

Amazon Web Services [9], offers a mechanism called Auto-Scaling, as part of
the EC2 service. The solution is based on the concept of Auto Scaling Group
(ASG), which consists of a set of instances that can be used for an application.

296 G. Galante et al.

Amazon Auto-Scaling uses an reactive approach, in which, for each ASG there
is a set of rules that defines the number of VM’s to be added or released. The
metric values are provided by CloudWatch monitoring service, and include CPU
usage, network traffic, disk reads and writes. The solution also includes an API
and a command-line interface for manually access the scaling features.

Rackspace [10] also implements horizontal elasticity, but unlike Amazon, it does
not have a native automatic elasticity service. The provider offers an interface and
an API to control the amount of resources allocated, leaving to the user the im-
plementation of more elaborate automated mechanisms.

Similarly, GoGrid [11] has not built in elasticity capabilities, although it pro-
vides an API for remote control of the hosted virtual machines (VM’s). Thus, the
user is responsible for monitoring the service and taking the scaling decisions.
The creation and removal of resources is done through calls to the API. Besides
VM’s replication, GoGrid also support vertical elasticity for memory.

The solution provided by Joyent [12] is also based VM replication accessed via
API. However, the provider include an automatic feature called CPU bursting,
which temporarily increase the CPU capability of up to 400% in order to handle
workload spikes.

A more comprehensive elasticity solution is provided by Profitbriks [13].
According to its documentation, it is possible to use horizontal and vertical
elasticity, allowing changes in virtual environments manually (via interface) or
using an API. It allows an user to build a virtual server with the exact number
of cores it decides is right for the job (up to 62). This approach is different from
the adopted by other providers, such as, Rackspace, GoGrid and Amazon, that
offer pre-packaged machines configurations.

To overcome the lack of automated mechanisms of some cloud providers, tools
such as RightScale [14] has been developed. RightScale is a management plat-
form that provides control and elasticity capabilities for different public cloud
providers (Amazon, Rackspace, GoGrid, and others) and also for private cloud
solutions (CloudStack, Eucalyptus and OpenStack). The solution provides an
reactive mechanisms based on an Elasticity Daemon whose function is to mon-
itor the input queues, and to launch worker instances to process jobs in the
queue. Different scaling metrics (from hardware and applications) can be used
to determine the number of worker instances to launch and when to launch these
instances.

In order to take full advantage of the elasticity provided by clouds, it is nec-
essary more than just an elastic infrastructure. It is also necessary that the
applications have the ability to dynamically adapt itself according to changes
in its requirements. In general, applications developed in Platform-as-a-Service
(PaaS) clouds have implicit elasticity. These PaaS clouds provide execution envi-
ronments, called containers, in which users can execute their applications with-
out having to worry about which resources will be used. In this case, the cloud
manages automatically the resource allocation, so developers do not have to
constantly monitor the service status or interact to request more resources [15].

Are Public Clouds Elastic Enough for Scientific Computing? 297

An example of PaaS platform with elasticity support is Manjrasoft Aneka [16].
Aneka is a .NET-based application development platform, which offers a runtime
environment and a set of API’s that enable developers to build applications by
usingmultiple programmingmodels such asTaskProgramming,ThreadProgram-
ming and MapReduce Programming, which can leverage the compute resources
on either public or private Clouds. In Aneka, when an application needs more re-
sources, new container instances are executed to handle the demand, using local
or public cloud resources.

Other example is the Google AppEngine [17], a platform for developing scal-
able web applications (Java, Python, and JRuby) that run on top of server
infrastructure of Google. These applications are executed within a sandbox and
AppEngine take care of automatically scaling when needed.

Azure [18] is the solution provided by Microsoft for developing scalable appli-
cations for the Cloud using .NET framework. Despite offering platform services,
Azure does not provide an transparent elasticity control. The scaling of resources
(VM’s) is based on rules that the user defines specifically for an application.

Other cloud providers also provide elasticity mechanisms but the features
offered are not substantially distinct from presented above. Basically, the cur-
rent elasticity solutions offer a VM replication mechanism, accessed using an
API or via interfaces, and in some cases the resources allocation is managed au-
tomatically by a reactive controller, based in a set of rules. Vertical elasticity is
not fully addressed by most cloud providers. Other feature implemented in IaaS
and PaaS clouds is the load balancing. Load balancers are used to distribute the
workload among all available VM instances [19].

The solutions presented in this section and their characteristics are summa-
rized in Table 1.

Table 1. Elasticity Solutions Characteristics

System Service Mode Elasticity

Amazon [9] IaaS Automatic/API Horizontal

Rackspace [10] IaaS Manual/API Horizontal

GoGrid [11] IaaS Manual/API
Horizontal
Vertical (memory)

Joyent [12] IaaS Automatic/ Manual/API Horizontal

Profitbricks [13] IaaS Manual/API
Horizontal
Vertical

RightScale [14] IaaS (service) Automatic Horizontal

Aneka [16] PaaS Automatic
Horizontal
(container)

AppEngine [17] PaaS Automatic Horizontal

Azure [18] PaaS Automatic/ Manual/API Horizontal

298 G. Galante et al.

2 Challenges and Open Issues

Although many elasticity solutions has been developed by cloud providers, there
are some issues that must be addressed to enable the wide use of elasticity in
scientific applications.

2.1 Inappropriate Elasticity Mechanisms

Most of the elasticity solutions implemented by public providers were originally
developed for dynamic scaling server-based applications, such as http, e-mail
and databases. Most of these mechanisms are based on controlling the number
of virtual machines that host the applications server components and in the use
of load balancers to divide the workload among the many VM instances. The
control is carried out by an elasticity controller that employs data from a moni-
toring system to decide when instances must be added or removed. The decisions
are based on a set of rules that specify the conditions to trigger some actions
over the underlying cloud. Every condition is composed of a series of metrics
which are compared against a threshold to trigger actions over the underlying
cloud. These metrics include the number of connections, number of requests and
resources usage such as CPU, memory and I/O.

An example is presented in Figure 1, where it is possible to observe the
allocation of VM’s in function of the connected clients. The elasticity controller
uses the number of clients to dynamically allocate or deallocate VM’s, enabling
application to be ready to handle the load variations [20].

500 600100 200 300 4000
Time (hours)

Clients
VMs

Fig. 1. Use of elasticity in a web application. Adapted from [20].

Although these solutions are successfully employed in server-based applica-
tions, scientific applications cannot benefit from the use of these mechanisms.
Scientific applications have almost always been designed to use a fixed number
of resources, and cannot explore elasticity without appropriate support [21]. The

Are Public Clouds Elastic Enough for Scientific Computing? 299

simple addition of instances and the use of load balancers has no effect in these
applications since they are not able to detect and use these resources.

Most of scientific applications are executed in batch mode and their workloads
are defined by input files containing the data to be processed [22]. Besides, sci-
entific jobs tend to be resource-greedy, using intensively all provided resources.
Figure 2 illustrates this behavior in the execution of a scientific experiment (mul-
tithreaded 2D heat transfer). Note that all processing capabilities are constantly
used, independently from the number of threads/CPUs employed. The absence
of external requests and the constant and intense use of resources make ineffec-
tive the use of traditional elasticity mechanisms based in monitoring data.

100

400

200

0

%
 C

PU
Threads/C

PU

1

4

2

0:00 14:007:00
Time (minutes)

Fig. 2. Scientific application CPU usage with different number of threads

Using a elasticity mechanism such as offered by cloud providers, the high CPU
usage could indicate the need for additional resources, causing the allocation of
new virtual machines or new CPUs. However, the allocation of new resources
has no effect in the CPU usage, since application is not designed to use the extra
VM or CPU, and thus, more and more resources would be allocated indefinitely.
Likewise, the use of manual approach neither is applicable, since is not possible
to estimate the application state and if more resources are needed.

2.2 Resources Availability

Considering the available cloud platforms, none of them are able to accept the
instantiation of a system with thousands of virtual machines for the period of
time required to run a large scale scientific applications [23]. It happens because
the elasticity of a cloud computing provider is limited by its capacity, and con-
sequently, have to impose strict limits on the amount of resources that a single
user can acquire in each instant of time, neglecting the infinite resources promise
[24]. For instance, each Amazon EC2 regular customer has a limit of 20 reserved
instances and 100 spot instances per availability zone that they can purchase
each month; in Rackspace, all accounts have a preconfigured limit of 65 GB of
total memory or approximately 130 individual 512 MB servers per region.

300 G. Galante et al.

In fact, for the vast majority of users, the quota allowed is sufficient for
their applications (generally, web applications). But, considering the applica-
tions characteristics, most of science-related users may want to receive from the
cloud a high number of machines that could resemble a high-performance com-
puting cluster. As resource-intensive applications begin effectively to use cloud
computing, they will easily reach the scaling limits imposed by resources avail-
ability.

A possible solution to the resources availability problem is the use of multiple
clouds to ensure the required amount of resources. Some academic works [25][26]
have addressed this issue combining local and public clouds resources, however,
the combined use of different public clouds remains challenging.

The reason for the current poor portability and limited interoperability be-
tween clouds is the lack of standardized API’s, and consequently, each cloud
provider has its own way on how cloud clients/applications/users interact with
the cloud. As a consequence the interaction and migration of virtual machines
and applications between clouds is a hard, if not impossible, task. This lack im-
pacts on the development of mechanisms to provide large scale elastic computing
models, able to scale resources among different cloud providers.

2.3 Limited Resources Granularity

Ideally, resources should be available at any granularity, allowing users to dy-
namically allocate from a single CPU to a complete virtual cluster, enabling
different levels of elasticity [27]. However, in most IaaS clouds, clients acquire
resources as a fixed set of compute, memory, and I/O resources (instance types
in Amazon and server sizes in GoGrid and Rackspace). Renting a fixed combi-
nation of cloud resources does not reflect the applications demands [28].

There are a second point to be observed: Most of the cloud providers does not
support vertical elasticity, i. e., it is impossible add a single CPU, memory, or I/O
devices to a running VM. Changing the VM (or instance) type without rebooting
is not also addressed. This limitations restrict the use of elasticity by diverse
scientific applications, e. g., the ones that employ multithreaded parallelism or
have phases with distinct demands of memory and I/O.

2.4 Spin-Up and Spin-Down Time

The great advantage of the elasticity is the ability to dynamically provide re-
sources in response to a demand. However, one important fact in this dynamic
process is that though cloud users can make their acquisition requests at any
time, it may take some time for the acquired resources to be ready to use. This
time period is called spin-up time.

In a perfectly elastic cloud, resourcing is instantaneous, i. e., there is no time
delay between detecting load changes and changing resourcing levels [29]. How-
ever, in real world clouds, the startup time can vary (ranging from 1 to 10
minutes), depending on a number of factors including: type of cloud platform;

Are Public Clouds Elastic Enough for Scientific Computing? 301

operating system type; number, size, or speed of resources requested; the avail-
ability of spare resources in the requested region and the demand on the cloud
platform from other users. Thus, the resources provisioning could be slower than
expected, affecting the efficacy and efficiency of actual elasticity mechanisms in
handling highly dynamic workloads. Table 2 show the average VM spin-up time
on Amazon EC2 (m1.small), Azure (Small) and Rackspace (Type IV) instances
[30].

Table 2. Average VM spin-up time. Adapted from [30].

Cloud OS Image
Avg. Spin-up
Time

EC2 Linux(Fedora) ami-48aa4921 96.9 secs.

EC2
Windows (Win Server 2008)
ami-fbf93092

810.2 secs.

Azure WebRole default 374.8 secs.

Azure WorkerRole default 406.2 secs.

Azure VMRole - Win Server 2008R2 356.6 secs.

Rackspace Linux (Fedora) flavor 71 44.2 secs.

Rackspace Windows (Win Server 2008R2) flavor 28 429.2 secs.

In turn, spin-down time is the interval between no longer requiring a resource
and no longer paying for it [27], and is directly related to the costs of using the
cloud services. In Amazon, each partial instance-hour consumed will be billed
as a full hour, i. e. the spin-down time is up to 1 hour. In Azure, instance hours
are billed as full hours for each clock hour an instance is deployed. For example,
if you deploy an instance at 10:50 AM and delete the deployment at 11:10 AM,
you will be billed for two hours [18].

3 Towards Scientific Elastic Applications

Evaluating the challenges previously exposed, in this section we point some possi-
bilities of using the elasticity in scientific applications, and describe some solutions
that are being developed to overcome the challenges.

To address the problems related to inappropriate mechanisms we must con-
sider two situations: (1) the development of new applications for the cloud, and
(2) the execution of legacy applications in this environment type.

In new projects of scientific applications for the cloud, the applications must
be reduced to frameworks that can successfully exploit the cloud resources. One
possible approach is the use of building-blocks provided by PaaS clouds. In this
case, the elasticity should be included in the modules and components provided,
being managed transparently to the user. Generally, PaaS-based applications
use execution environments called containers, which could automatically adapt
their capabilities to satisfy the demands of the applications.

302 G. Galante et al.

Another interesting approach, is the use of the MapReduce paradigm [31],
that has gained popularity as a cloud computing framework on which to perform
automatically scalable distributed applications. This application model can scale
incrementally in the number of computing nodes. An user not only can launch
a number of servers at the beginning, but can also launch additional servers in
the middle of computation [8] [32]. The new servers can automatically figure out
the current job progress and poll the queues for work to process. Previous work
[33] has shown that MapReduce is well suited for simple, often embarrassingly
parallel problems, but shown significant problems with iterative algorithms, like
conjugate gradient, fast Fourier transform and block tridiagonal linear system
solvers [34].

In case of legacy applications, scientific workflows is an example of approach
that can benefit with cloud elasticity [35]. They can use the cloud capability to
increase or reduce the pool of resources according to the needs of the workflow
at any given time of processing [36]. Platforms and frameworks for executing
scientific workflows in the cloud are being developed in academy. Examples of
workflow system include Polyphony [37], Pegasus [38] and ClowdFlows [39].

Other legacy scientific applications (e. g. MPI, multithreaded) rely on IaaS
cloud services and solely utilize static execution modes, in which an instance of
VM is perceived as a cluster node [40]. To efficiently support elastic execution
across cloud infrastructures, tools and frameworks, with support to scientific
languages (C/C++, Fortran) and libraries are still required. Trying address this
issue, a couple of academic researches have developed solutions to enable the
development of elastic scientific applications. Some examples are the works of
Raveendran et al. [21], addressing MPI applications, Rajan et al. [41], focusing
on master-slave applications, and Galante and Bona [42] that present a platform
for development of elastic applications based on the use of elasticity primitives.

The second problem addressed is the resources availability. It is closely related
to the providers policies, but we believe that as demand grows, these limitations
will be overcomed gradually. The potential of cloud resources are enormous and
it became evident when a cluster composed by 1064 cc2.8xlarge instances (17024
cores) cluster was able to achieve 240.09 TeraFLOPS for the High Performance
Linpack benchmark, placing the cluster at 127th position in the June 2013 Top500
list.

As we said before, a possible solution to resources availability problem is the
use of multiple clouds, but there is a lack of standards that enable interoperabil-
ity. In this sense, some initiatives are attempting to create cloud standards. The
Cloud Computing Interoperability Forum [43], are working on the creation an
open and standardized cloud interface for the unification of various cloud API’s.
The IEEE [44] also has a project (P2301) on cloud portability and interoper-
ability.

Other (future) perspective is based on the cloud federation. A federated cloud
is the deployment and management of multiple external and internal cloud com-
puting services to match business needs [45]. In this scenario, the exceeding
demands of a cloud are fulfilled by leasing available computational and storage

Are Public Clouds Elastic Enough for Scientific Computing? 303

capabilities from other cloud service providers. Some architectures for cloud fed-
eration has been proposed [46] [47], but practical results are still preliminary.
Development of fundamental techniques and software systems that integrate
distributed clouds in a federated fashion is critical to enabling composition and
deployment of elastic application services.

The resources granularity issue is starting to be solved with the emergence of
providers like Profitbricks (see Section 1.1) that enable users to combine different
amounts of compute, memory, and I/O resources, i. e., offering vertical and
horizontal scaling. This feature is very valuable for real elasticity, since resources
can be allocated more efficiently.

Ben-Yehuda et al. [28] describe a perfect scenario, where compute, memory,
and I/O resources could be rented and charged for dynamic amounts and not
in fixed bundles. Clients rent VM’s with some minimal amount of resources,
and other resources needed are continuously rented in a fine-grained fashion.
The resources available for rent include processing, memory, and I/O resources,
as well as emerging resources such as accelerators, such as, FPGAs and GPUs.
Processing capacity is sold on a hardware-thread basis, or as number of cycles
per unit of time; memory is sold on the basis of frames; I/O is sold on the basis
of I/O devices with bandwidth and latency guarantees.

The last issue, spin-up and spin-down times, will be overcomed with the use of
new virtualization techniques and changing providers billing policy, respectively.
Some works [48] [49] [50] present techniques to speed up the virtual provisioning
process, but so far, these techniques have not yet been implemented by main-
stream providers. In turn, the spin-down problem could be solved by changing
the way providers charge by the use of resources. According to Brebner [29], even
though it is unlikely that any cloud platform are perfectly elastic, it is possible to
model it by assuming an extremely fine-grained cost model which only charges
for resources that are actually consumed: the byte transmitted, the byte stored,
and the millisecond of processing time.

To summarize, the challenges and perspectives of elasticity for scientific
applications are presented in Table 3.

4 Final Remarks

Based on the analysis and studies made so far, from the point of view of providing
elasticity, we argue that the use of cloud computing in supporting scientific
applications may be an advantageous tool. Nevertheless, some care must be taken
when using legacy applications, most of them will no fit to the current cloud
model, and specific developments must be made when designed new scientific
applications for this environment, to be able to use it in all its capability.

However, there are already scientific applications models (e. g. MapReduce
and workflows) that can immediately benefit and with appropriate adjustments
even more. Applications characterized by having data locality, loosely coupled,
high throughput and fault tolerant, are more appropriate for the current cloud
model.

304 G. Galante et al.

Table 3. Elasticity: challenges and possibilities

Challenge Possibilities
Related
Works

Inappropriate
elasticity mecha-
nisms

– Use of PaaS and MapReduce for new applica-
tions

– Workflows can be ported to clouds and adapted
to use the cloud elasticity;

– Development of new tools and frameworks

[40] [31] [33]
[34] [35] [37]
[38] [39] [21]
[41]

Resources avail-
ability and
Cloud interoper-
ability

– Creation standards for cloud interoperability
– Cloud Federation

[43] [44] [45]
[46] [47]

Limited resources
granularity

– Offering of replication and resizing of cloud re-
sources for processing, memory, storage and net-
working

[13]

Spin-up and spin-
down time

– Use of new virtualization techniques to speed up
the virtual resources provisioning process

– Changing providers billing policy in order to use
a fine-grained cost model which only charges for
resources actually consumed

[29] [48] [49]
[50]

According to the presented in this paper, the answer to the question “are the
available cloud solutions suitable to support elastic scientific applications?” is
that the current computational clouds have not yet reached the necessary matu-
rity level to meet all scientific applications requirements. We expect that in the
coming years, significant advances in virtualization and in cloud management,
allow the improvement of the elasticity solutions in scientific context.

Acknowledgment. This work is partially supported by CAPES and INCT-
MACC (CNPq grant nr. 573710/2008-2).

References

1. Simmhan, Y., van Ingen, C., Subramanian, G., Li, J.: Bridging the gap between
desktop and the cloud for escience applications. In: Proceedings of the 3rd Intl.
Conference on Cloud Computing, CLOUD 2010, pp. 474–481. IEEE (2010)

2. Srirama, S.N., Willmore, C., Ivanitev, V., Jakovits, P.: Desktop to Cloud Migration
of Scientific Experiments. In: 2nd International Workshop on Cloud Computing
and Scientific Applications, CCSA 2012. IEEE/ACM (2012)

3. Badger, L., Patt-Corner, R., Voas, J.: Draft cloud computing synopsis and recom-
mendations recommendations of the national institute of standards and technology.
Nist Special Publication 146, 84 (2011)

Are Public Clouds Elastic Enough for Scientific Computing? 305

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, A., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, L., Ionaharia, M.: A View of Cloud Computing.
Commun. ACM 53(4) (April 2010)

5. Wang, L., Zhan, J., Shi, W., Liang, Y.: In cloud, can scientific communities ben-
efit from the economies of scale? IEEE Transactions on Parallel and Distributed
Systems 23(2), 296–303 (2012)

6. Oliveira, D., Baiao, F.A., Mattoso, M.: Migrating Scientific Experiments to the
Cloud. HPC in the Cloud

7. Galante, G., Bona, L.C.E.: A survey on cloud computing elasticity. In: Proceedings
of the Intl. Workshop on Clouds and eScience Applications Management, CloudAM
2012. IEEE/ACM (2012)

8. Chohan, N., Castillo, C., Spreitzer, M., Steinder, M., Tantawi, A., Krintz, C.: See
Spot Run: Using Spot Instances for Mapreduce Workflows. In: Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud 2010.
USENIX Association (2010)

9. Amazon Web Services, http://aws.amazon.com/

10. Rackspace, http://www.rackspace.com/

11. GoGrid, http://www.gogrid.com/

12. Joyent, http://joyent.com/

13. Profitbricks, https://www.profitbricks.com/

14. RightScale, http://www.rightscale.com/

15. Caron, E., Rodero-Merino, L.: F. Desprez, A.M.: Auto-scaling, load balancing and
monitoring in commercial and open-source clouds. Technical Report 7857. INRIA
(2012)

16. Calheiros, R.N., Vecchiola, C., Karunamoorthy, D., Buyya, R.: The aneka platform
and qos-driven resource provisioning for elastic applications on hybrid clouds. Fu-
ture Generation Computer Systems 28(6), 861–870 (2011)

17. Google App. Engine, http://code.google.com/appengine

18. Microsoft Azure, http://www.windowsazure.com/

19. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in
the cloud. SIGCOMM Comput. Commun. Rev. 41, 45–52 (2011)

20. Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in the cloud using predictive
models for workload forecasting. In: Proceedings of the 4th Intl. Conference on
Cloud Computing, CLOUD 2011, pp. 500–507. IEEE (2011)

21. Raveendran, A., Bicer, T., Agrawal, G.: A framework for elastic execution of
existing mpi programs. In: Proceedings of the Intl. Symposium on Parallel and
Distributed Processing Workshops and PhD Forum, IPDPSW 2011, pp. 940–947.
IEEE (2011)

22. Wang, L., Zhan, J., Shi, W., Liang, Y.: In cloud, can scientific communities benefit
from the economies of scale? IEEE Trans. Parallel Distrib. Syst. 23(2), 296–303
(2012)

23. Costa, R., Brasileiro, F., de Souza Filho, G.L., Sousa, D.M.: Just in Time Clouds:
Enabling Highly-Elastic Public Clouds over Low Scale Amortized Resources. Tech-
nical report, Federal University of Campina Grande (2010)

24. Costa, R.,, F.B.: On the amplitude of the elasticity offered by public cloud com-
puting providers. Technical report, Federal University of Campina Grande (2011)

25. Fitó, J.O., Presa, I.G., Fernández, J.G.: Sla-driven elastic cloud hosting provider.
In: Proceedings of the 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing, PDP 2010, pp. 111–118. IEEE (2010)

http://aws.amazon.com/
http://www.rackspace.com/
http://www.gogrid.com/
http://joyent.com/
https://www.profitbricks.com/
http://www.rightscale.com/
http://code.google.com/appengine
http://www.windowsazure.com/

306 G. Galante et al.

26. Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically
extend site resources. In: Proceedings of the 10th Intl. Conference on Cluster,
Cloud and Grid Computing, pp. 43–52. IEEE (2010)

27. Islam, S., Lee, K., Fekete, A., Liu, A.: How a consumer can measure elasticity
for cloud platforms. Technical Report 680, School of Information Technologies,
University of Sydney (2011)

28. Ben-Yehuda, O.A., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: The Resource-as-a-
Service (RaaS) cloud. In: 4th USENIX Workshop on Hot Topics in Cloud Com-
puting, HotCloud 2011 (2012)

29. Brebner, P.: Is your cloud elastic enough?: performance modelling the elasticity of
infrastructure as a service (iaas) cloud applications. In: Proceedings of the Third
Joint WOSP/SIPEW Intl. Conference on Performance Engineering, ICPE 2012,
pp. 263–266. ACM (2012)

30. Mao, M., Humphrey, M.: A performance study on the vm startup time in the cloud.
In: Proceedings of the IEEE Fifth Intl. Conference on Cloud Computing, CLOUD
2012, pp. 423–430. IEEE (2012)

31. Srirama, S.N., Jakovits, P., Vainikko, E.: Adapting scientific computing problems
to clouds using mapreduce. Future Generation Computer Systems 28(1), 184–192
(2012)

32. Iordache, A., Morin, C., Parlavantzas, N., Riteau, P.: Resilin: Elastic MapReduce
over Multiple Clouds. Rapport de recherche RR-8081, INRIA (October 2012)

33. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

34. Bunch, C., Drawert, B., Norman, M.: MapScale: A Cloud Environment for Scien-
tific Computing. Technical report, University of California (June 2009)

35. Pandey, S., Karunamoorthy, D., Buyya, R.: Workflow Engine for Clouds. In:
Buyya, R., Broberg, J., Goscinski, A.M. (eds.) Cloud Computing: Principles and
Paradigms, pp. 321–342. John Wiley & Sons, Inc. (March 2011)

36. Byun, E.K., Kee, Y.S., Kim, J.S., Maeng, S.: Cost Optimized Provisioning of
Elastic Resources for Application Workflows. Future Gener. Comput. Syst. 27(8),
1011–1026 (2011)

37. Shams, K.S., Powell, M.W., Crockett, T.M., Norris, J.S., Rossi, R., Soderstrom,
T.: Polyphony: A workflow orchestration framework for cloud computing. In: Pro-
ceedings of the 10th IEEE/ACM Intl. Conference on Cluster, Cloud and Grid
Computing, CCGRID 2010, pp. 606–611. IEEE (2010)

38. Vöckler, J., Juve, G., Deelman, E., Rynge, M., Berriman, B.: Experiences us-
ing cloud computing for a scientific workflow application. In: Proceedings of the
2nd Intl. Workshop on Scientific Cloud Computing, ScienceCloud 2011, pp. 15–24.
ACM (2011)

39. Kranjc, J., Podpečan, V., Lavrač, N.: ClowdFlows: A cloud based scientific work-
flow platform. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD
2012, Part II. LNCS, vol. 7524, pp. 816–819. Springer, Heidelberg (2012)

40. Jha, S., Katz, D.S., Luckow, A., Merzky, A., Stamou, K.: Understanding Scientific
Applications for Cloud Environments. In: Buyya, R., Broberg, J., Goscinski, A.M.
(eds.) Cloud Computing: Principles and Paradigms, pp. 345–371. John Wiley &
Sons, Inc. (March 2011)

41. Rajan, D., Canino, A., Izaguirre, J.A., Thain, D.: Converting a high perfor-
mance application to an elastic cloud application. In: Proceedings of the 3rd Intl.
Conference on Cloud Computing Technology and Science, CLOUDCOM 2011,
pp. 383–390. IEEE (2011)

Are Public Clouds Elastic Enough for Scientific Computing? 307

42. Galante, G., Bona, L.C.E.: Constructing elastic scientific applications using elas-
ticity primitives. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen,
H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part V. LNCS,
vol. 7975, pp. 281–294. Springer, Heidelberg (2013)

43. CCIF: The Cloud Computing Interoperability Forum,
http://www.cloudforum.org/

44. IEEE: Cloud Profiles Working Group,
http://standards.ieee.org/develop/project/2301.html

45. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: Three-phase cross-cloud federation
model: The cloud sso authentication. In: Proceedings of Second Intl. Conference
on Advances in Future Internet, pp. 94–101 (2010)

46. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081,
pp. 13–31. Springer, Heidelberg (2010)

47. Villegas, D., Bobroff, N., Rodero, I., Delgado, J., Liu, Y., Devarakonda, A., Fong,
L., Sadjadi, S.M., Parashar, M.: Cloud federation in a layered service model. J.
Comput. Syst. Sci. 78(5), 1330–1344 (2012)

48. Zhu, J., Jiang, Z., Xiao, Z.: Twinkle: A fast resource provisioning mechanism for
internet services. In: Proceedings of the 30th IEEE Intl. Conference on Computer
Communications, INFOCOM 2011, pp. 802–810. IEEE (2011)

49. Tang, C.: Fvd: a high-performance virtual machine image format for cloud. In: Pro-
ceedings of the 2011 USENIX technical conference, USENIX 2011, p. 18. USENIX
Association (2011)

50. De, P., Gupta, M., Soni, M., Thatte, A.: Caching VM instances for fast VM
provisioning: A comparative evaluation. In: Kaklamanis, C., Papatheodorou, T.,
Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 325–336. Springer,
Heidelberg (2012)

http://www.cloudforum.org/
http://standards.ieee.org/develop/project/2301.html

A Light-Weight Framework for Bridge-Building
from Desktop to Cloud

Kewei Duan1,�, Julian Padget1, and H. Alicia Kim2

1 Department of Computer Science, University of Bath
{k.duan,j.a.padget}@bath.ac.uk

2 Department of Mechanical Engineering, University of Bath
h.a.kim@bath.ac.uk

Abstract. A significant trend in science research for at least the past decade
has been the increasing uptake of computational techniques (modelling) for in-
silico experimentation, which is trickling down from the grand challenges that
require capability computing to smaller-scale problems suited to capacity com-
puting. Such virtual experiments also establish an opportunity for collaboration
at a distance. At the same time, the development of web service and cloud tech-
nology, is providing a potential platform to support these activities. The problem
on which we focus is the technical hurdles for users without detailed knowledge
of such mechanisms – in a word, ‘accessibility’ – specifically: (i) the heavy
weight and diversity of infrastructures that inhibits shareability and collaboration
between services, (ii) the relatively complicated processes associated with de-
ployment and management of web services for non-disciplinary specialists, and
(iii) the relative technical difficulty in packaging the legacy software that encap-
sulates key discipline knowledge for web-service environments. In this paper,
we describe a light-weight framework based on cloud and REST to address the
above issues. The framework provides a model that allows users to deploy REST
services from the desktop on to computing infrastructure without modification
or recompilation, utilizing legacy applications developed for the command-line.
A behind-the-scenes facility provides asynchronous distributed staging of data
(built directly on HTTP and REST). We describe the framework, comprising the
service factory, data staging services and the desktop file manager overlay for
service deployment, and present experimental results regarding: (i) the improve-
ment in turnaround time from the data staging service, and (ii) the evaluation of
usefulness and usability of the framework through case studies in image process-
ing and in multi-disciplinary optimization.

1 Introduction

With the increasing uptake of computational techniques for in-silico experimentation,
scientists seek capacity computing power along with the means to collaborate at a
distance.

Web services in principle provide a convenient means to publish and share com-
putational representations of domain-specific knowledge, while grid computing has

� Student author.

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 308–323, 2014.
c© Springer International Publishing Switzerland 2014

A Light-Weight Framework for Bridge-Building from Desktop to Cloud 309

delivered the infrastructure for capability scientific computing[1–3]. More recently,
cloud computing, which can be seen as an evolution of the latter, offers a more ac-
cessible and flexible provisioning of capacity computing, that renders the usability is-
sues around complex infrastructure largely invisible to end users. It also shows benefits
for scientific applications in a wide range of domains[4–6]. However, there are still
hurdles for scientists who have limited technical knowledge of cloud computing infras-
tructure and of the use of new technology in scientific applications. We identify them
as: (i) the heavy weight and diversity of infrastructures that inhibits shareability and
collaboration among distributed services, (ii) the relatively complicated processes asso-
ciated with deployment and management of web services for non-discipline specialists,
(iii) the relative technical difficulty in packaging the legacy software that encapsulates
key discipline knowledge for web-service environments.

The aforementioned hurdles are determined by the nature of the end-user-scientist
and the resources that need to be deployed in the cloud. Most scientists who have lim-
ited knowledge of web services or cloud infrastructure may need to face the need to
learn new programming languages or system administrative skills for the purpose to
build scientific applications in the cloud or as web services. For example, an engineer
normally has the skill to develop desktop applications based on Fortran or Matlab, but
rarely has knowledge of or experience of web application development based on lan-
guages like Java or Python. On the other hand, with years of development, numerous
legacy codes and programs in which real domain-specific knowledge resides, may face
the predicament that a new round of coding and translating work is needed or they sim-
ply lose the ability to be re-developed because of the lack of source codes, documents
or language support1.

Our REST based light-weight framework lowers the barriers by providing a set of
GUI based client tools and a set of REST web services which serve as both portal for
service deployment and service execution by following the PaaS service model[7]. In
recent years, the REST architectural style[8] and REST-compliant Web services have
emerged and the approach has rapidly gained popularity due to its flexibility and sim-
plicity. Our framework is able to deploy legacy codes and command-line programs as
RESTful services, which can support a wide range of languages and tools, such as
C/C++, Fortran, Matlab, Python, Unix shell, JAVA, and some engineering design op-
timization frameworks, specifically OpenMDAO[9] and Dakota[10]. Furthermore, be-
cause the framework follows RESTful principles, it can be directly accessed from a
wide range of programming languages (such as a command line scripts/applications) or
a generic workflow management system (such as Taverna[11], see section 4) without
any additional library support or tools. The services are made into as web applica-
tions, based on easily obtainable, free, open-source tools, such as Apache-Tomcat and
MySQL. Embedded within the framework is a distributed data-flow mechanism, that
can enhance data-staging performance in the execution of composite services. Through
the desktop GUI tool, inexperienced users can learn about, create and use web services.
We demonstrate the framework operating both in the context of a private server and the
Amazon EC2 service, in order to show compatibility with both private and public cloud

1 In the worst case, only a binary of the program may exist, which happens to be executable due
to backwards hardware compatibility.

310 K. Duan, J. Padget, and H.A. Kim

provisioning. Hence, we believe it should be readily deployable on top of other IaaS
services with little change.

The primary technical contributions of the paper are: (i) the design of a RESTful
framework for the deployment of legacy codes through a service factory facility, (ii) an
architecture for the execution of those services, in which data services are supplied by
an asynchronous data-flow mechanism providing Data as a Service and control can be
provided by existing workflow engines, such as Taverna, and (iii) a desktop GUI and
file system overlay to provide the interface for service management. Complementary to
these is the social contribution, of providing access to web service functions, cloud com-
puting infrastructure and user-controlled means for sharing the scientific knowledge
embedded in computational resources (software). These aspects have been evaluated,
using recognized HCI practices[12, 13] on the one hand through participatory exercises
and surveys (usability) and on the other through two case studies (usefulness).

The rest of the paper is structured as follows. In Section 2, we discuss the challenges
of migrating scientific applications to cloud and related work. Section 3 introduces our
framework and the solutions proposed to meet those challenges. Section 4 evaluates the
framework in respect of three issues: (i) performance, (ii) user-based experiments, and
(iii) (two) case studies. Lastly, Section 5 presents conclusions and future work.

2 Related Work

Cloud computing is commonly categorized into three service models[7] known as
{Infrastructure, Platform, Software} as a Service (IaaS, PaaS and SaaS, respectively),
of which PaaS is the service model that provides the consumer with the capability to
deploy consumer-created or acquired applications onto infrastructure, thus creating an
instance of a service. Our aim is to provide access to cloud services so that regular users
can deploy their own (command-line) applications as services, share them with others
and utilise them in service workflows. We do this through the provision of a platform
that provides: (i) deployment services, and (ii) data storage and transfer services.

This paper focuses on the use of cloud platform for science and engineering appli-
cations, in which the platform enables applications to appear as web services, creating
a SaaS for public invocation. Our aim to provide a platform for users without sophis-
ticated programming skills to be able deploy web services. There are several generic
PaaS platforms like Google APP Engine [14] and Heroku [15], both of which provide
the means for users to deploy web applications on the providers’ public cloud infras-
tructure. However, both of them work via programming language APIs. For the purpose
of deploying an application into their infrastructures, users must either write applica-
tions in specific languages or modify original codes in those languages. Other potential
platforms – providing command-line interfaces – are: (i) CloudFoundry [16], which
provides an open-source mechanism for application deployment, however it uses its
own API – implemented for a range of popular languages – for service interaction,
rather than the standardised (REST) mechanisms that we adopt, and (ii) Openshift [17],
which aims to provide a platform for running web applications using cloud resources.
It too needs quite sophisticated skills to write applications in supported languages by
using the command-line administration tools specifically designed for this platform.

A Light-Weight Framework for Bridge-Building from Desktop to Cloud 311

The Generic Worker framework [18] has similar goals to our framework: it provides
PaaS service based on Microsoft’s Azure Cloud platform. Services can be deployed by
the client using command-line tools. They also adopt a distributed data transfer mech-
anism for performance enhancement. However, their services are tightly connected to
Azure service elements, such as Azure’s REST web service API and the Azure blob
store.

Additionally, toolkits such as Soaplab[19], Opal[20] and Generic Factory Service
(GFac)[2] wrap command-line applications for service deployment. Users can use them
to describe the command-line and parameters to create services. These too differ from
our framework in several ways:

1. We adopt a cloud infrastructure to provide the function of service deployment as
web service, which allows hot-plug style program uploading and deployment. The
above assume programs have been installed on the server and work as local tools on
a server that needs to be set up and configured every time a new service is deployed.

2. We consider the deployment of web service in a broader context, assuming services
will be composed, consequently a data staging mechanism is provided to assist in
the effective composition of services. The above tools do not consider data commu-
nication as part of their concern, which can in the worst case result in centralized
data transfer, when deployed as web services.

3. We provide a desktop GUI tool for clients to deploy web services based on command-
line programs. This avoids the need to learn and use the description languages
adopted in these tools (“Ajax Command Definition” in Soaplab, “serviceMap” in
GFac and “Metadata” in Opal), as well as the overheads involved in authoring, de-
bugging and maintaining such descriptions in parallel with the application.

Our framework should be deployable in any private cloud or any popular public
cloud based as it is on a set of open-source tools and standard protocols. The data can
also reside in any form of cloud computing storage, such as Dropbox, Ubuntu one,
OwnCloud or SpiderOak, for example. We also note that data elements in our frame-
work are transferred and stored without additional mark-up. To facilitate the delivery of
the right data at the right time in the right place, we have developed a data-flow style
Data-as-a-Service (DaaS) mechanism, called Datapool, that keeps all the data in their
original format (ie., no encoding, no wrapping) and provides for asynchronous data
transfer between services (described in detail in Section 3).

3 A Cloud-Based Framework for Scientific Applications

In this section, we describe our framework and how we believe it addresses the issues
raised by the hurdles we identified earlier. We approach these issues from three perspec-
tives: (i) service deployment, (ii) service invocation and execution, (iii) data staging.

3.1 Service Deployment

Scientific applications must be uploaded and registered with the framework before they
are available for invocation and execution in the cloud. There are three tasks at this

312 K. Duan, J. Padget, and H.A. Kim

(a) The main window of GUI tool

(b) The parameter window of GUI tool

Fig. 1. Windows of GUI tool

stage: (i) to upload and store the application and its dependencies in the cloud repos-
itory, (ii) to write and upload the description of the application to cloud for subse-
quent configuration and deployment, (iii) the configuration of authorization information
that controls who may access the service once deployed. These tasks are all performed
through the client GUI tool.

To illustrate the features of the deployment service, we use the screenshots shown in
Figure 1, where Figure 1(a) shows the main window of the GUI tool. Our aim here is to
make deployment tasks fit within the familiar range of operations of a desktop window
manager. The GUI tool is set up to connect with the delpoyment service in the cloud
through a URI with user authentication information. For the application uploading task,
the user packs the binary and dependencies into a self-contained folder as a compressed

A Light-Weight Framework for Bridge-Building from Desktop to Cloud 313

Fig. 2. Local folder for service description

Table 1. URIs of Datapool and Application Services

Methods URIs
PUT http://. . . /datapool/{Datapool Name}/{Data Object Name}
PUT http://. . . /datapool/{Datapool Name}?DO URI={Data Object URI}

Datapool GET http://. . . /datapool/{Datapool Name}/{Data Object Name}
Services GET http://. . . /datapool/{Datapool Name}

DELETE http://. . . /datapool/{Datapool Name}/{Data Object Name}
DELETE http://. . . /datapool/{Datapool Name}

PUT http://. . . /APP service/{Service Name}
Application GET http://. . . /APP service/{Service Name}?DP URI={Datapool URI}

Services DELETE http://. . . /APP service/{Service Name}
GET http://. . . /APP service/Service Info/{Service Name}

file and uploads it cloud side through the deployment service. The uploader can be started
from the menu when the user right-clicks on the compressed file2. In this case, a Java
executable which has two inputs and one output is uploaded. The Java runtime is a special
case that can be specified by ticking “Jar executable”. One another notable feature shown
in Figure 1(a) is the access permission setting. The user can choose whether a service
can be accessed by all users as a public service or by selected users. Permitted users
can be added in a separate window by the service owner clicking the Add Users button.
Figure 1(b) shows the parameter window of the GUI tool. In the deployment process
of Web service, the framework needs the information for mapping each command-line
argument into a parameter for the web service. At the same, the framework also needs
to generate a command-line for the invocation of the program. Therefore, this window
allows the description of a wide range of command-line I/O types, such as argument flag,
file path, standard I/O stream, etc. The framework identifies the binary file type through
the extension name of file name entered here as well.

2 Thanks to integration with the file manager. Although, in this case, the integration is with the
Nautilus file manager on Ubuntu, such overlays are common interface extensions on other
operating systems, so we view this as a generic technique.

314 K. Duan, J. Padget, and H.A. Kim

Lastly, users also need functions to remove, modify or redeploy the service, which
requires the service description. During the deployment process, the description – rep-
resented as a XML file – is uploaded as a cloud resource. At the same time, a copy is
stored in a designated local folder. Figure 2 shows the folder contains all the descrip-
tions. Users can operate on them by starting the GUI tool from the right-click menu,
to access operations for remove, modify and redeploy. The description of any service
that is removed is kept in the folder, identified by a cloud icon with a cross, for possible
future redeployment.

3.2 Service Invocation and Execution

Table 1 shows all the URIs of the two types of services. Datapool services are the ser-
vices for I/O data item manipulation (uploading, retrieval, etc.). Application services
include the services for application service deployment and execution. Uniform meth-
ods based on the HTTP protocol are allocated to each URI for each specific operation.
For example, the first and third service in the application services list have the same
URI, which denotes one application resource. The PUT method denotes a service de-
ployment operation, while DELETE denotes a service removal operation. These ser-
vices also support a role-based authorization system so that only an authenticated and
authorized user can access those services. Authentication is carried out over HTTP and
communication can be further encrypted and secured by HTTPS through the Transport
Layer Security (TLS) protocol. In Section 3.1, we describe the means to specify the
authorization permissions for a given service.

Of particular note are the datapool resources: each denotes a collection of data items,
addressable through an unique URI. Multiple Datapool instances can be generated and
customized through the Datapool service by the user. Each data item inside a Datapool
is also given an unique URI. Only the creator of each Datapool and the creator’s services
can access the content, which is ensured by the role-based authorization mechanism.
There are two advantages to organizing data in this way. First, because all the data items
and the data collection are directly associated with URIs, they are all web resources
that can be accessed over HTTP at any time rather than merely a data stream in the
form of extra layer of XML or other structure. Therefore, each data item can also be
transferred and kept in their original textual or binary format. Second, in the execution
of an application service, the URI of one Datapool that contains all the input data is
provided to the service. The application will pull the necessary data automatically from
the provided local or remote Datapool. In this way, the interfaces are unified for different
application services in the form of a URI, of which the Datapool URI is a constituent
as a query string. The second URI in the application services list in Table 1 illustrates
the unified format.

Figure 3 shows an example deployment using the framework. It contains one client
and two servers. Each server is composed of a pair of a Datapool and an Application
service, both of whose implementation is based on Apache-Tomcat. All the components
communicate with each other through REST services invocations. The execution of
application service depends on the data provided by its local Datapool, which are fed
through a file system. Figure 4 shows more details about the execution sequence in an
example workflow based on the framework in Figure 3. In this example, Application

A Light-Weight Framework for Bridge-Building from Desktop to Cloud 315

Fig. 3. The UML Deployment Diagram of the Framework Deployment Example

Service 1a(AS1a) consumes input D1. AS2a needs D2 and D3, which is the output
generated by AS1a, as inputs. As depicted, client’s duties are simplified to initializing
input data and dispatching control signals to Datapool and Application Services. There
are two essential features, which we emphasize here, namely: (i) inputs are uploaded
to Datapool separately and in advance, so that Step 1 and Step 2 are able to execute
concurrently (ii) DP2a can retrieve the input directly for AS2a in Step 12 and 13 from
the other Datapool service without data needing to pass via the client.

3.3 The Data Staging Mechanism

Data staging and how to control it are not new problems. Already in 1997 [21], adopted
the idea of distributed data-flows in a service composition framework to improve data
transfer performance, as did also [22] some years later. Similar ideas are embodied in
some distributed program execution engines, such as [23, 24], to overcome the bottle-
neck of data transfers. Meanwhile, several workflow management systems took up a
peer-to-peer style mechanism for intermediate data movement[25–27]. Although there
are differences in detail between the various aforementioned solutions, there is one
common aspect, namely the use of a private – by which we mean internal, or closed –
mechanism (functions are exposed by a set of developer defined specific interfaces and
operations) to handle data transfer. A further point in common is the need for address-
ability: in each case the data objects are assigned some unique label that allows them
to be accessed from any location on the network that is participating in the enactment
process. These works inspired our data staging mechanism based on cloud resources
and REST.

316 K. Duan, J. Padget, and H.A. Kim

Fig. 4. The UML Sequence Diagram of the Execution of Workflow Example

We can make two quite obvious remarks about dataflows between several services:
(i) for a given service invocation, the dataflow rarely involves the client or central con-
troller, which means that dataflows can (normally) be distributed (point-to-point), and
(ii) it is not uncommon that the necessary data objects (inputs) may come from differ-
ent sources, suggesting that data transfers can be initiated asynchronously before the
actual execution of a service. These constitute the properties our data staging mecha-
nism needs to satisfy.

Distributed Data Transfer. Figures 5 and 6 illustrate the essential difference between
a centralized and a distributed mechanism for data transfer. Figure 5 shows that both
control-flow and data-flow are centrally coordinated for each Web service invocation.
There is a high risk that the client or central controller becomes a bottleneck for data
communication among computation components. In Figure 6, the data-flows are dis-
tributed among Web services directly rather than passing through a central controller,
which also allows for the concurrent transfer of data items from different resources. This
process is also demonstrated in the example of Section 3.2. The client can also obtain
the complete set of data objects whenever it is desired. Hence, each service provider
takes care of the task of data storage instead of the client. Furthermore, each data

A Light-Weight Framework for Bridge-Building from Desktop to Cloud 317

Fig. 5. Centralized Data-Flows in Web Ser-
vices Compostion

Fig. 6. Distributed Data-Flows in Web Ser-
vices Composition

object has the capability to be identified and accessed universally through the Internet
by means of its URI.

Asynchronous Data Transfer. Under synchronous data transfer, because the data ref-
erences are controlled through the client, data transfer only starts when the last ser-
vice finishes and the next service invocation happens. However, with an asynchronous
method, the transfers start as and when each preceding service finishes. The transfers
are not synchronized with the invocation of the next service, rather data elements are
transferred and stored in the ‘next’ Datapool in advance, the benefits of which are anal-
ysed in [28].

4 Evaluation

4.1 Experiment on Usefulness and Usability

A formal experiment with an after-experiment survey is carried out to collect evidence
for the usefulness of the GUI tool-based service management mechanism. The objective
here is assess usage of the tool for users who do not have any experience of building or
deploying web services. A secondary aim is to collect evidence for the usability of the
GUI. In this experiment, four programs are provided to the evaluators. Three of them
have two inputs and one output, and are written in Java, Python and Unix shell, respec-
tively. The other has three inputs and two outputs and is written in Python. The exper-
iment has four stages: (i) a 3–5 minute training stage, which includes a tutorial video
and question time, (ii) three simple programs are provided to participants to deploy in an
order that they decide, while the time to complete the operation is recorded, (iii) a more
complicated program for which deployment time is also recorded, and (iv) completing
the survey.

Figure 7 shows the average time and full time range for deployment operations based
on data collected from 9 participants. We note that none of the subjects claimed any
prior experience of building or deploying web services.

In a question about their subjective views on simplicity with 5-point scales from very
easy (1) to very difficult (5), 2 out 9 said very easy (1), and the rest said easy (2). All the

318 K. Duan, J. Padget, and H.A. Kim

Fig. 7. The average time of deployment
operations

Fig. 8. The wing structure optimization process built
in Taverna

participants successfully deployed web services in around 2 minutes. In the randomly
ordered simpler cases, it can be noticed that there is a significant fall in the time taken.
It also can be noticed that after three test cases, the time taken for the more difficult
case is less than the first of the simple ones. The objective evidence obtained from this
experiment is that the GUI based mechanism is easy to learn and use for single service
deployment.

4.2 Case Studies

Image Processing Workflow. In this workflow, the binaries for PovRay[29] and
ImageMagick[30] are installed on the cloud-side of the framework. PovRay is a ray
tracing program to draw 3-D image from scene description that is written in the POV
description language. ImageMagick is a software suite to create, edit, compose, or con-
vert images. In this case, we create a workflow to output a 3-D image in png format
starting from a POV description as input, and then convert it to jpg format using Im-
ageMagick. Both of their execution processes are written as Unix shell scripts. The
uploaded package also includes related PovRay include files that serve as libraries for
3-D image generation. They are all deployed through the GUI tool as web services. In
the deployment process, PovRay dependency files in the format of inc are compressed
and uploaded to build the web service. The workflow contains two Datapool services
and two Application services. They are invoked from the client-side by an executable
script written in Python, which supports the invocation of RESTful web services. The
png file is an intermediate data object, which is not transferred back to the client. The

A Light-Weight Framework for Bridge-Building from Desktop to Cloud 319

Datapool service for ImageMagick receives this image as a URI reference (step 6 in
Figure 4).

This case study serves to demonstrate how the binary versions of two command-
line programs with libraries can be turned into web services and then invoked from a
command-line program written in Python.

Multi-Disciplinary Optimization (MDO) Workflow. Multi-disciplinary design opti-
mization (MDO) is a field of engineering that uses (multi-objective) optimization meth-
ods to solve design problems combining a number of disciplines. For the purpose of
demonstrating multi-disciplinary design optimization process as a web services com-
position, we use the Taverna workflow management system [11] to carry out the tasks
of composition, execution and monitoring, as in our previous work [28, 31]. The com-
position of services expressed as a workflow, is also able to operate in conjunction with
the distributed data staging mechanism of our framework, even though the intermedi-
ate data movement in Taverna is centralized in style. Figure 8 shows a screenshot of
the service composition design example, which serves to optimize the internal stiffness
distribution of a typical aircraft wing under coupled aerodynamics and structural con-
siderations. In Figure 8, the boxes Aerosolve, AeroLoad transfer, BLES3 are services
deployed based on three command line programs, written in Fortran and C. The boxes
GetInputs4Aerosolve, GetInputs4AeroLoad transfer, GetInputsBLES3 are the Datapool
services. The input ports built into Taverna are located at the top of Figure 8, and the
output ports are at the bottom. One local service, Data Retriever, retrieves the data
based on the URIs returned by the last application service.

Our framework can also deploy legacy MDO workflows based on existing MDO
frameworks like OpenMDAO[9] and Dakota[10]. OpenMDAO is based on Python and
a workflow is expressed as an executable python script. With the support of the Open-
MDAO runtime installed in a server (ie. cloud side), the deployment process can be
achieved as easily as for any other command-line program. Dakota has a different ex-
ecution approach in that the workflow is defined as a input file, which is then executed
by the Dakota runtime. With the Dakota runtime installed in server, the workflow can
be executed as a web service by simply uploading the input file through the Datapool
service.

This case study primarily serves to show how a popular workflow engine can enact
a workflow whose services are the result of our deployment mechanism, thus enabling
composition at a programmatic level and sharing of the discipline knowledge that is
embedded in software.

4.3 Comparison of Data Staging Performance

In order to evaluate the performance of services deployed using our new framework,
we have run the wing optimization process from Section 4.2 in two network-based
configurations: (i) with all the programs deployed as SOAP services and controlled
through a centralized client, including all the data transfers, constituting in effect a worst
case scenario for data overheads, and (ii) with the programs deployed as REST services,
using a centralized client for control, but the universal distributed flows framework for

320 K. Duan, J. Padget, and H.A. Kim

Fig. 9. Comparison of 1000 continuous executions

Fig. 10. Results of simple workflows with centralized and dis-
tributed data-flows

data. We first compare these two modes, where the programs or services are executed
in the same machine environment and the network environment is also the same.

To provide preliminary evidence that the REST web services with distributed data-
flows performs better than the centralized approach, we ran an experiment of 1000 con-
secutive executions for both processes in the same environment. The result is presented
in Figure 93. We can observe some spikes because of a changing network situation, but
the figure shows that the REST workflow is faster by a clear margin and also demon-

3 The x-axis only denotes the number of the run: it does not signify concurrent execution of
the two modes. The data from the two sets of runs is overlaid to facilitate comparison of the
execution times.

A Light-Weight Framework for Bridge-Building from Desktop to Cloud 321

strates lower variation. In order to asses data transfer costs, we wrote a workflow that
just moves data from client to one service, on to another, then back to the client. These
two services are deployed in two different VMs on the same LAN as the client. Client
and servers access each other by URIs. We set up two scenarios both using RESTful
services, but while one uses centralized transfer, the other uses the distributed method.
In the first scenario, the data transferred from the first service to the second is included
in the HTTP body, while in the second just the URIs are transferred and data is trans-
ferred in the background by the Datapool service. The results are shown in Figure 10.
Each workflow was run 10 times for the two scenarios and different data sizes to obtain
the mean value. The results suggest the expected trend, in that gains increase with the
size of data to be transferred. Crossover, in the test environment, occurs between and 1
and 2Mb, but clearly this will be different for different network environments.

5 Conclusion and Future Work

In this paper, we have presented evidence for the benefits arising from our light-weight
framework for the deployment and execution of scientific application in the cloud. With
our GUI based deployment mechanism, the technical barriers are lowered for non-
specialist usage of web services and cloud resources. The framework reduces the effort
for users to turn legacy codes and programs into web services and hence collaborate
with each other. The distributed and asynchronous data staging mechanism helps re-
duce end-to-end times by hiding the costs of data staging between services as well as
between client and service. This paper also evaluates the usefulness and usability of the
framework through a simple user study and case studies, showing how different types
of legacy programs and tools can cooperate seamlessly in workflow with the support of
our framework.

In future work, we need to address support for the construction and deployment
of composite services: one approach we have explored as proof-of-concept, is to treat
a Taverna workflow as a service to be executed, where the workflow description is
the data and the program is the enactment engine. Similar functionality should also
be achievable with Kepler [25]. A more serious issue however, is the dependence on
specific services, meaning there is a reliance on a service provided at a specific URL, as
against a specification of a service by, say, its profile (in OWL-S terminology), and the
late binding identification of suitable available candidate services close to enactment
time. A preliminary effort in this direction appears in [32], based on a matchmaker that
assumes WSDL format service descriptions, but a fresh approach that takes advantage
of REST seems desirable when this is revisited. Hence, we hope this framework will
allow more users to build their own services, and take advantage of the power offered
by service composition to enable collaboration. Finally, we propose to take advantage
of the availability of capacity computing facilities to support speculative enactment of
services, following the design set out in [33].

Acknowledgements. We thank Lizzie Gabe-Thomas for advice on experiment design
in user trials of the deployment tools and the participants for their help.

322 K. Duan, J. Padget, and H.A. Kim

References

1. Gannon, D., Ananthakrishnan, R., Krishnan, S., Govindaraju, M., Ramakrishnan, L., Slomin-
ski, A.: Grid Web Services and Application Factories. In: Grid Web Services and Application
Factories, pp. 251–264. John Wiley & Sons, Ltd. (2003)

2. Kandaswamy, G., Fang, L., Huang, Y., Shirasuna, S., Marru, S., Gannon, D.: Building web
services for scientific grid applications. IBM Journal of Research and Development 50(2.3),
249–260 (2006)

3. Sneed, H.M.: Integrating legacy software into a service oriented architecture. In: Proceedings
of the 10th European Conference on Software Maintenance and Reengineering, CSMR 2006,
p. 11. IEEE, Bari (2006)

4. Gorder, P.F.: Coming soon: Research in a cloud. Computing in Science and Engineer-
ing 10(6), 6–10 (2008)

5. Sullivan, F.: Guest editors introduction: Cloud computing for the sciences. Computing in
Science & Engineering 11, 10 (2009)

6. Rehr, J.J., Vila, F.D., Gardner, J.P., Svec, L., Prange, M.: Scientific computing in the cloud.
Computing in Science & Engineering 12(3), 34–43 (2010)

7. Mell, P., Grance, T.: The nist definition of cloud computing (draft). NIST special publica-
tion 800(145), 7 (2011)

8. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures. PhD thesis, University of California, Irvine (2000)

9. NASA Glenn Research Center: OpenMDAO, http://openmdao.org/ (accessed Jan-
uary 15, 2014)

10. Sandia National Laboratories: The DAKOTA Project, http://dakota.sandia.gov/
(accessed January 15, 2014)

11. School of Computer Science, University of Manchester: Taverna,
http://www.taverna.org.uk/ (accessed January 15, 2014)

12. Kitchenham, B.A.: Evaluating software engineering methods and tool part 1: The evaluation
context and evaluation methods. ACM SIGSOFT Software Engineering Notes 21(1), 11–14
(1996)

13. Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models:
current state and future directions. Data & Knowledge Engineering 55(3), 243–276 (2005)

14. Google: Google App Engine, http://developers.google.com/appengine/
(accessed January 15, 2014)

15. Lindenbaum, J., Wiggins, A., Henry, O.: Heroku (2008),http://www.heroku.com (ac-
cessed January 15, 2014)

16. GoPivotal, Inc.: Cloud Foundry, http://www.cloudfoundry.com/ (accessed Augest
24, 2014)

17. Red Hat, Inc.: Openshift, https://www.openshift.com/ (accessed January 15,
2014)

18. Simmhan, Y., van Ingen, C., Subramanian, G., Li, J.: Bridging the gap between desktop
and the cloud for escience applications. In: IEEE 3rd International Conference on Cloud
Computing (CLOUD), pp. 474–481. IEEE, Chengdu (2010)

19. Senger, M., Rice, P., Bleasby, A., Oinn, T., Uludag, M.: Soaplab2: more reliable Sesame door
to bioinformatics programs (2008)

20. Krishnan, S., Clementi, L., Ren, J., Papadopoulos, P., Li, W.: Design and evaluation of opal2:
A toolkit for scientific software as a service. In: 2009 World Conference on Services - I,
pp. 709–716. IEEE, Los Angeles (2009)

21. Alonso, G., Reinwald, B., Mohan, C.: Distributed data management in workflow environ-
ments. In: Proceedings of the Seventh International Workshop on Research Issues in Data
Engineering, pp. 82–90 (April 1997)

http://openmdao.org/
http://dakota.sandia.gov/
http://www.taverna.org.uk/
http://developers.google.com/appengine/
http://www.heroku.com
http://www.cloudfoundry.com/
https://www.openshift.com/

A Light-Weight Framework for Bridge-Building from Desktop to Cloud 323

22. Liu, D., Peng, J., Wiederhold, G., Sriram, R.D., Aruthor, C., Law, K.H., Law, K.H.: Compo-
sition of engineering web services with distributed data flows and computations (2005)

23. Murray, D.G., Schwarzkopf, M., Smowton, C., Smith, S., Madhavapeddy, A., Hand, S.:
CIEL: a universal execution engine for distributed data-flow computing. In: Proceedings
of the 8th USENIX Conference on Networked Systems Design and Implementation, NSDI
2011, p. 9. USENIX Association, Berkeley (2011)

24. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel pro-
grams from sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, EuroSys 2007, pp. 59–72. ACM, New
York (2007)

25. Davis, U.C., Santa Barbara, U.C., San Diego, U.C.: Kepler project,
https://kepler-project.org/ (accessed: January 15, 2014)

26. Cardiff University: Triana project, http://www.trianacode.org/ (accessed May
08, 2013)

27. Cao, J., Jarvis, S., Saini, S., Nudd, G.: Gridflow: workflow management for grid computing.
In: Proceedings of the CCGrid 3rd IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, 2003, pp. 198–205 (May 2003)

28. Duan, K., Padget, J., Kim, H.A., Hosobe, H.: Composition of engineering web services with
universal distributed data-flows framework based on roa. In: Proceedings of the Third Inter-
national Workshop on RESTful Design, pp. 41–48. ACM, Lyon (2012)

29. Persistence of Vision Raytracer Pty. Ltd.: Povray, http://www.povray.org/ (ac-
cessed Januray 15, 2013)

30. ImageMagick Studio: Imagemagick, http://www.imagemagick.org (accessed Jan-
uary 15, 2014)

31. Duan, K., Seowy, Y.V., Kim, H.A., Padget, J.: A Resource-Oriented Architecture for MDO
Framework. In: Proceeding of 8th AIAA Multidisciplinary Design Optimization Specialist
Conference, AIAA, Honolulu (2012)

32. Chapman, N., Ludwig, S., Naylor, W., Padget, J., Rana, O.: Matchmaking support for
dynamic workflow composition. In: Proceedings of 3rd IEEE International Conference
on eScience and Grid Computing, pp. 371–378. IEEE, Bangalore (2007), doi:10.1109/E-
SCIENCE.2007.48

33. Fukuta, N., Satoh, K., Yamaguchi, T.: Towards “Kiga-kiku” services on speculative computa-
tion. In: Yamaguchi, T. (ed.) PAKM 2008. LNCS (LNAI), vol. 5345, pp. 256–267. Springer,
Heidelberg (2008)

https://kepler-project.org/
http://www.trianacode.org/
http://www.povray.org/
http://www.imagemagick.org

Planning and Scheduling

Data Processing Workflows in the Cloud
with Quality-of-Data Constraints�

Sérgio Esteves and Lúıs Veiga

Instituto Superior Técnico - ULisboa
INESC-ID Lisboa, Distributed Systems Group, Portugal
sesteves@gsd.inesc-id.pt, luis.veiga@inesc-id.pt

Abstract. Data-intensive and long-lasting applications running in the
form of workflows are being increasingly more dispatched to cloud com-
puting systems. Current scheduling approaches for graphs of dependen-
cies fail to deliver high resource efficiency while keeping computation
costs low, especially for continuous data processing workflows, where the
scheduler does not perform any reasoning about the impact new input
data may have in the workflow final output. To face such stark challenge,
we introduce a new scheduling criterion, Quality-of-Data (QoD), which
describes the requirements about the data that worth the triggering of
tasks in workflows. Based on the QoD notion, we propose a novel service-
oriented scheduler planner, for continuous data processing workflows,
that is capable of enforcing QoD constraints and guide the scheduling to
attain resource efficiency, overall controlled performance, and task pri-
oritization. To contrast the advantages of our scheduling model against
others, we developed WaaS (Workflow-as-a-Service), a workflow coordi-
nator system for the Cloud where data is shared among tasks via cloud
columnar database.

1 Introduction

Data-intensive applications generally comprehend several distinct and inter-
connected processing steps that can be expressed through a directed acyclic
graph (DAG) and viewed as a workflow applying various transformations on the
data. Such applications have been used in a large number of fields, e.g., assess-
ing the level of pollution in a given city [17], detecting gravitational-waves [3],
weather forecasting [12], predicting earthquakes [7], among others. The com-
putation of such applications are being increasingly more dispatched to the
Cloud, taking advantage of the utility computing paradigm. In this environ-
ment, scheduling plays a crucial role on delivering high performance, resource
utilization and efficiency, while still meeting budget constraints.

� This work was partially supported by national funds through FCT - Fundação para
a Ciência e a Tecnologia, under projects PEst-OE/EEI/LA0021/2013, PTDC/EIA-
EIA/113613/2009.

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 324–338, 2014.
c© Springer International Publishing Switzerland 2014

Planning and Scheduling Data Processing Workflows 325

Scheduling algorithms for workflows in the Cloud usually try either to min-
imize the overall completion time (or makespan) given a fixed budget, or to
minimize the cost given a deadline. In workflows for continuous processing, re-
sources are often wasted due to the small impact that data given as new input
might have. This happens specially in monitoring activities, e.g., fire risk, air pol-
lution, observing near-earth objects. Moreover, Workflow Management Systems
(WMSs) typically disregard any semantics with respect to the output data, that
could be used to reason about the amount of re-executions needed for a given
data to be processed. As data may not always have the same impact and signif-
icance, we introduce a new scheduling constraint, named Quality-of-Data.

Quality-of-Data (QoD)1 describes the minimum impact that new input data
needs to have in order to trigger processing steps in a workflow. This impact is
measured in terms of data size, magnitude of values, and update frequency. Hav-
ing the QoD notion, we are thus able to change the workflow triggering semantics
to be guided by the volume and importance that data communicated between
processing steps might have on causing significant and meaningful changes in
the values of final output steps. QoD can also be seen as a metric of triggering
relaxation.

From the user (or consumer) point of view, reducing costs while meeting a
deadline is what matters most. In turn, cloud providers are interested in having
low prices and making resource utilization as efficient as possible. This volition
on both sides gains a special importance for long-running tasks, where intelligent
SLAs may come into place. These SLAs can be seen as QoD constraints that
allow cloud providers to give lower costs in exchange of some relaxation.

By allowing QoD-based relaxation, cloud services providing workflow execu-
tion (on a pay-per-execution basis) can define different service-level agreements
(SLA) with lower prices. With cloud consumers specifying QoD constraints for
each task, a WMS would be able to offer reduced prices due to resource sav-
ings, and still give the best possible quality within the QoD to normal-execution
range.

Having the current outlook, we propose the use of a novel workflow model
and introduce a new scheduling algorithm for the Cloud that is guided by QoD,
budget, and time constraints. We also present the design of WaaS (Workflow-as-
a-Service), a WMS platform that portrays our vision of a Cloud service offered at
the PaaS level, on top of of virtualization technology and the HBase [10] noSQL
storage, bridging the gap between traditional WMS and utility computing. Re-
sults show that we are able to reduce costs by the use of our QoD model.

The remainder of this paper is structured as follows. In the next section we
present our scheduling planner. The design and implementation of our framework
follow in Section 3, and its experimental evaluation goes in Section 4. Related
work is discussed in Section 5, and the paper concludes in Section 6.

1 Quality-of-Data is akin to Quality-of-Service, and should not be confused with issues
such as internal data correctness, semantic coherence, data adherence to real-life
sources, or data appropriateness for managerial and business decisions.

326 S. Esteves and L. Veiga

2 Scheduling Planner

Scheduling, whether it is located at the IaaS or PaaS level, is a core activity in
cloud computing that impacts the overall system performance and utilization.
Due to the inherent dependencies between computation and data, scheduling
workflow tasks is generally more difficult than scheduling embarrassingly-parallel
jobs. As stated before, most Cloud scheduling approaches for workflows aim at
single-shot workflow executions and only take into account simple constraints on
time and costs. The model we propose, which targets data-intensive workflows
for continuous and incremental processing, also enforces constraints over the data
communicated between tasks, while still fitting the utility paradigm. Our model
implies that data must be shared via NoSQL database, which achieves better
performance, scalability, and availability. We first describe our QoD model, and
then the scheduling planner which coordinates it.

2.1 Workflow Model with Quality-of-Data

Workflow tasks, with typical WMSs, usually communicate data via intermediate
files that are sent from a node to another, or using a distributed file system.
Sharing data through a NoSQL database, like in this work, allows us to reduce
bandwidth and increase reliability in the presence of failing nodes.

Our workflow model [9] is differentiated from the other typical models by
the following: the end of execution of a task A does not immediately trigger
its successor tasks; instead, they should only be triggered when A has gener-
ated output with sufficient impact in relation to the terminal task (outcome) of
the workflow (which can cause a node being executed multiple times with the
successor nodes being triggered only once). For example, a workflow that is con-
stantly processing data coming from a network of temperature sensors, to detect
fires in forests, would not need to be always computing tasks (e.g., calculating
hotspots, updating the risk level) whose output would not change significantly
in the presence of small jitters in temperature. The workflow will only issue a
displacement order to a fire department if more than a certain number of sensors
have detected a steep increase in temperature. This way, tasks would only need
to specify the minimum impact that their input data needs to have that is worth
their execution towards final outcomes.

The level of data changes necessary to trigger a task, denoted by QoD bound
κ, is specified through multi-dimensional vectors that associate QoD constraints
with data containers, such as a column or group of columns in a table of a
given column-oriented database. κ bounds the maximum level of changes through
numeric scalar vectors defined for each of the following orthogonal dimensions:
time (θ), sequence (σ), and value (ν).

Time. Specifies the maximum time a task can be on hold (without being trig-
gered) since its last execution occurred. Considering θ(o) provides the time (e.g.,
seconds) passed since the last execution of a task that is dependent on the avail-
ability of data in the object container o, this time constraint κθ enforces that
θ(o) < κθ at any given time.

Planning and Scheduling Data Processing Workflows 327

Sequence. Specifies the maximum number of updates that can be applied to
an object container o without triggering a task that depends on o. Considering
σ(o) indicates the number of applied updates over o, this sequence constraint κσ

enforces that σ(o) < κσ at any given time.

Value. Specifies the maximum relative divergence between the updated state of
an object container o and its initial state, or against a constant (e.g., top value),
since the last execution of a task dependent on o. Considering ν(o) provides that
difference (e.g., in percentage), this value constraint κν enforces that ν(o) < κν

at any given time. It captures the impact or importance of updates in the last
state.

A QoD bound can be regarded as an SLA (Service-level agreement), defining
the minimum performance required for a workflow application that is agreed
between consumers and providers.

2.2 Abstract Scheduling Planner

Generally, scheduling workflow tasks is a NP-complete problem. Therefore, we
provide here an approximation heuristic that attempts to minimize the costs
based on local optimal solutions. The QoD bounds are involved in this process
to offer price flexibility, which is very important for continuous processing.

We state the problem as a coordinator node attempting to map a workflow
graph G to available worker nodes in a way that minimizes costs and yet respects
time and QoD constraints. A single execution of each workflow graph must
be completed until a specified time limit L (e.g., in minutes). A task T has
a specification in terms of its complexity and tolerated relaxation QoD. This
complexity represents the computational cost a task has for being executed in
relation to a standard task in a standard machine (this section abstracts from
such details, they are given in Section 3). Tolerated relaxation consists in the
QoD constraints that are associated with the input data fed to each task.

Worker machines have a specification in terms of their current capability and
reference price. This capability is the power of the machine with its current load
availability (capability calculation is given in Section 3). Reference price is a
standard value that is then adjusted for current availability and load usage of
each worker.

The scheduling planning can be divided in two phases. First, tasks are or-
ganized into branches (e.g., Figure 1): connected tasks where each has exactly
one predecessor and one successor, except from the last task which can have
multiple successors (i.e., pipeline). Branches are ordered by their summed com-
plexity. Tasks that do not fit in the pipeline, are still treated as a pipeline, albeit
with a single task within. This means that such tasks will be simply allocated
to workers offering the best cost for them.

Second, inner branch scheduling is performed by starting from the most com-
plex branch to the least complex one. To schedule tasks inside a branch in an
optimal manner, we decompose the problem into a Markov Decision Process
(MDP) [16], since it is a common and proven effective technique for sequential
decision problems (e.g., [23]).

328 S. Esteves and L. Veiga

Fig. 1. Branches in a workflow

Fig. 2. Markov Decision Process diagram

Briefly, a MDP consists of a set of possible states S, a set of possible actions
A, a reward function R(S, a), and a transition model Tr(S, a, S′) describing each
action’s effects in each state. Since R values are guaranteed in our problem, we
use deterministic actions instead of stochastic actions, i.e., for each state and
action we specify a new state (Tr : S × A → S′). The core problem of MDP
is to find an optimal policy π(S) that specifies which action to take for every
state S.

Figure 2, depicts a diagram representing the decomposition of the problem.
Each state S in the model corresponds to a task and a time limit to the workflow
makespan. Actions represent the allocation of tasks to VM slots in workers.When
an action is taken, an immediate reward is given, i.e., 3 variables specifying
the time taken for 1 execution, the reference cost per hour, and the minimum
relaxation of data freshness, within specified QoD limits, that assures the lowest
price.

Finding the optimal policy π for each state S (i.e., choosing the right action
a to take when on state S) consists of minimizing the cumulative cost of the
rewards obtained when transitioning from S to a terminal state. Hence, we only
know the reward R(S, a) after following all possible transitions from state S′,
such that S×a → S′, to a final state. Nonetheless, the processing time, retrieved

Planning and Scheduling Data Processing Workflows 329

from the immediate reward of an action a, is discounted from the time limit L
when transitioning from S to S′ through a. If L is zero or lower in a state S, all
paths going through S are cut and it is necessary to find other paths. If there
is no other path, it means that it is not possible to compute all tasks in the
specified time limit.

To solve this optimization problem and optimally allocate tasks to workers
(i.e., with overall lowest cost and yet respecting time and QoD constraints), we
developed a dynamic programming algorithm, listed as follows.

1 def min cost (tasks , workers , totalTime , t imeLimit) :
2 i f not t a sk s :
3 return 0 , 0 , []
4 t = ta sk s [0]
5 minCost , minCostTime , minCostPath = f loat (’ i n f ’) , None , []
6 for w in workers :
7 i f not w. s l o t s :
8 continue
9 time = c a l c u l a t e t ime (t , w)

10 i f (totalTime + time > t imeLimit) :
11 continue
12 w. s l o t s −= 1
13 v1 , v2 , v3 = min cost (t a sk s [1 :] , workers , totalTime + time ,

t imeLimit)
14 w. s l o t s += 1
15 i f v2 == None | totalTime + time + v2 > t imeLimit :
16 continue
17 to ta lCos t = c a l c u l a t e c o s t (t , w) + v1
18 i f t o ta lCos t < minCost :
19 minCost = to ta lCos t
20 minCostTime = time + v2
21 minCostPath = [w. name] + v3
22 return minCost , minCostTime , minCostPath

Lines 1-5: contain the stop condition, when there are no more tasks/states to
follow; lines 6-13: contain the transition of states, thereby exploring all actions
of a current state (which is represented by task and totalTime); lines 10-11, 15-
16: check for whether the time limit was violated or not, causing the algorithm
to explore other actions at the same level; lines 18-21: store the minimum cost
found for the current state. Additionally, when a slot is locked (line 12) it can
no longer be used by successor tasks.

This algorithm runs in O(wt), where w is the number of workers and t the
number of tasks. Some optimizations were performed, namely caching the re-
wards of states, obtained by roaming the sub-graphs until the terminal state
in the MDP model (they were omitted from the algorithm above due to space
constraints). The whole process of planning and scheduling is synthesized in the
following:
1. Discover available workers and request cost and expected completion time for
every task. These values should be guaranteed for a certain time frame, which
should be higher than the time taken to perform the planning and allocate tasks.
2. Divide the workflow in pipelines.

330 S. Esteves and L. Veiga

3. Divide the overall time limit L per each pipeline and weighted by their summed
complexity.
4. Generate scheduling plans for each pipeline, starting from the most complex
and ending with the least complex.
5. Allocate tasks to workers according to the generated plans.
6. Start workflow execution and repeat steps 1, 4, and 5 if any worker fails.

3 WaaS Design and Implementation

In this section, we describe our proposed prototypical middleware framework
that embodies the vision of a WMS at the PaaS level, that we call Workflow-as-
a-Service (or WaaS). We approach its main design choices and the more relevant
implementation details. We address: i) workflow description and WMS integra-
tion, ii) the cost model, and iii) how resource allocation is enforced.

We envision a WaaS distributed network architecture in the Cloud, where
workflows are set up to be executed upon a cluster of worker machines con-
nected through a local, typically high-speed, network. A designated coordinator
machine, running the WaaS server VM instance, is in charge of allocating work-
flow tasks to available worker nodes (according to a scheduling algorithm), and
collect monitoring information regarding node load and capacity.

The input/output data is shared among tasks via a shared columnar noSQL
data store. Each worker node executes the workflow tasks scheduled to it as guest
VM instances, using Xen or QEMU/KVM[1] images, and in particular, a Xen
(or QEMU/KBM) virtual appliance with Linux OS, a JVM and a QoD-enabled
middleware for cloud noSQL storage.

The WaaS middleware carries out three major steps in its operation. First,
according to the workflow descriptions, WaaS performs the planning by exploring
scheduling alternatives for the workflow tasks and branches, carrying out the
algorithm described in Section 2. Then, according to the schedule calculated,
it performs the allocation of resources at nodes, by assigning the corresponding
VMs for tasks at nodes, according to their cost and available capacity. The
workflow is then started, and tasks continually re-executed according the QoD
parameters defined as new input becomes available and considered.

Additionally, all nodes inform the coordinator only of relevant changes in their
available capacity, so that the coordinator can adjust and fine-tune scheduling
and allocation decisions, since the coordinator makes use of declarative informa-
tion stating resource requirements for tasks. When new nodes are added to the
cluster or become unavailable, the scheduling must also be recalculated.

3.1 Workflow Description and WMS Integration

Workflow specification schemas need to be enhanced to include declarative in-
formation requiring for the scheduling. This is currently defined with special
comments in the workflow descriptions in DAGMan [6] files, that are parsed
by the WaaS framework. They should contain the description of the workflow

Planning and Scheduling Data Processing Workflows 331

graph where each processing step (to be executed as a task) is annotated specify-
ing explicitly the underlying data containers in the noSQL storage (e.g., tables,
columns, rows by ID or predicate, or combinations of any of these) it depends
on for its input.

This approach is used throughout as it preserves transparency and compati-
bility where workflows are deployed in other, non-enhanced WMS. Additionally,
in particular for the last processing step, it is necessary to specify the desired
significance factor: the percentage of variation in the output tabular data that
comprises a minimum semantically level of meaning to the workflow users, e.g.,
5%. The scheduling is repeated after a predefined parameter of N workflow
executions.

Regarding failure handling and cluster membership, if a node fails or every
time a node enters or parts, the scheduling is recalculated. Note that all data
is saved in the distributed storage (HBase cluster) and WMS can easily restart
tasks.

3.2 Cost Model

The costmodel ofWaaS is based on considering task complexity and dynamic price
definition. Assessing task complexity regarding processing and memory require-
ments has been explored in previous works [20,19,5]. Regarding CPU and memory
requirements, the base approach is inspired in CloudSim and uses declarative def-
initions of MIs (millions of instructions) and MBs of memory required. Addition-
ally, we leverage previous executions of tasks in a machine (e.g. one of the nodes)
against the requirements from a reference workload, a unitary cost task, e.g., Lin-
pack benchmark (as used in [20]), that can also be used to rank the relative capacity
of different worker nodes against a reference one.

Regardless of the approach employed, we can determine an estimate on how
long each task will take to complete with a given capacity awarded in the node
(i.e., time = task complexity/worker capacity). More than one task may share
a node resources for execution, but while ensuring resource and performance
isolation as described in the next subsection.

In the general case where the infrastructure is shared by many users and work-
flows, the price of executing each task is calculated depending on the resources
required pondered with the overall system load.

There is price elasticity: when resources are scarce or there are many users,
unitary prices increase, otherwise, when resources are overabundant, prices de-
crease, with a reference price, as previously addressed in P2P Grids [15].

Usually, the cost of executing a workflow for the first time, will be the sum
of the cost of executing its tasks. In the continuous execution model of WaaS,
although input is being updated or new input being provided (e.g., sensory
data), tasks are only re-executed when QoD parameters are reached. Therefore,
the saved executions (i.e. task executions that are avoided until QoD is reached)
will imply a lower total cost for a given number of workflow executions.

332 S. Esteves and L. Veiga

Additionally, since the interval between consecutive executions of a given task
can be significant, there is no point in paying (regardless of real money or some
form of credits) according to the common cloud cost model of VM hours of
execution, as these may be idle the majority of time. Therefore, we implement
a service where task executions are incurred only for the time of execution,
plus a tax of 10% to account for the overhead of reusing resources by switching
among guest VM instances that execute different tasks, possibly from different
workflows.

3.3 Resource Allocation and Isolation

As already said, resources at nodes are engaged as virtual machine instances, in
particular with images derived from virtual appliances described above. Thus,
when the scheduling decides to allocate a virtual machine based on a task require-
ments and price constrains, it essentially aims at two things: i) allocate enough
resources for the task, and ii) ensure that those resources and their availability
are not hindered by the scheduling of other tasks in the same node. We make
extensive use of virtualization technology to allow such fine-grained allocation
and acceptable performance isolation guarantees.

The VM instances can be preconfigured and prelaunched, ready to execute
a given workload, and by means of the WaaS component installed, can later
execute the workload of another task, without the need of being shutdown and
rebooted, easing resource sharing and reducing the amount of wasted resources.
Therefore, we configure the hypervisor in Xen to cap the percentage of physical
CPU(s) and physical memory awarded to a given VM according to the scheduling
decided. This can be repeated until the node capacity is fully allocated, with a
10% safety quota for middleware own operation. This can also be achieved, albeit
with less flexibility by parameterizing QEMU/KVM. This ensures that when a
task is scheduled to a node, the resources it is expected to make use of, are not
in contention with the resources required by other tasks executing at the same
time. Any degradation will be graceful and only when contention is very high.

Recall that worker top capacity is established assessing the performance of a
reference workload against the performance of the same workload against a ref-
erence machine. Regarding instantaneous available capacity at a node, in order
to fine-tune the information driving the scheduling (that is aware of VM alloca-
tions at each node) we resort to the SIGAR2 library that has enough precision
and is actually platform-independent.

4 Experimental Evaluation

This sections presents experimental evaluation that was carried out to show the
benefits of our approach. In particular, if our model can effectively reduce costs,
complying with deadlines, and use relaxation (corresponding to the percentage
of saved executions with the enforcement of QoD constraints).

2 http://support.hyperic.com/display/SIGAR/Home

http://support.hyperic.com/display/SIGAR/Home

Planning and Scheduling Data Processing Workflows 333

All tests were conducted using 6 machines with an Intel Core i7-2600K CPU
at 3.40GHz, 11926MB of available RAM memory, and HDD 7200RPM SATA
6Gb/s 32MB cache, connected by 1 Gigabit LAN.

We compared three different approaches with our algorithm: Greedy-time,
Greedy-cost, and Random. Greedy-time selects for each task the worker that of-
fers the minimum processing time at that moment. Similarly, Greedy-cost selects
at each step the worker that offers the minimum processing cost. And Random
selects a random worker for each task.

We conducted a simulation, built in Python, to compare our model with dif-
ferent approaches. Note that this simulation corresponds to the isolation of the
coordinator machine, so that it can be properly evaluated without the interfer-
ence (delays) of worker machines (i.e., tasks complexity and workers capacity
are synthetic). We generated hundreds of pipelines with 5, 10, and 15 tasks,
corresponding to workloads A, B, and C respectively. Note that the payload of
the intrinsic tasks were dummy content (i.e., we were only interested in the task
meta-data for the coordinator scheduling). Inside each workload, results were
averaged to reduce noise.

A B C

greedy−time
greedy−cost
random
WaaS

Workload

C
os

t

0
50

0
15

00

A B C

greedy−time
greedy−cost
random
WaaS

Workload

T
im

e
(m

in
ut

es
)

0
20

40

Fig. 3. Cost per hour (left) and time taken for pipeline execution (right)

Figure 3 (left) shows that our model, WaaS, can effectively reduce costs. The
gains are higher when there is more variance in the worker’s cost. The costs
achieved by our model, represent the critical path of the MDP model, and, since
no time limit was imposed, they are undoubtedly the minimum possible costs
for the considered workloads.

Figure 3 (right) shows that the time obtained with WaaS for a single pipeline
execution is not much different from the remaining approaches. Lower costs often
mean that workers with lower capabilities were used, and therefore the makespan
was higher.

Figure 4 illustrates the correlation observed between time (makespan) and
cost for 1000 samples of different pipelines with 10 tasks and in diverse worker
settings. Each sample, consisting of a different set of tasks and workers, was
executed for the 4 different algorithms, and we can observe that the cost increases
with the time. Unsurprisingly, this happens due to the cost and time functions
being directly proportional with the task complexity. WaaS appears always at
the bottom (blue points) with lower costs, as expected.

334 S. Esteves and L. Veiga

20 30 40 50

50
0

10
00

15
00

Time (minutes)

C
os

t

WaaS

greedy−time

greedy−cost

random

Fig. 4. Time cost correlation for 1000 samples

Time (minutes)

Ta
sk

 C
om

pl
et

io
n

(%
)

0

20

40

60

80

100

0 10 20 30

Time Limit

greedy−cost
greedy−time
random
WaaS

Fig. 5. Task completion over time

Through Figure 5 we may observe that our algorithm with WaaS exhibits the
highest task completion rate and is able to meet time limits, while others fail to
process the complete workflow inside specified time frames (i.e., roughly the last
20% of tasks are processed outside of the deadline). However, there is a price to
pay when such time frames are shrunk, as shown in the next figure.

Figure 6 depicts how costs vary with the imposed time limits L1, L2, and
L3. We can see that costs decrease with the expansion of time limits. There
is a point from which expanding more the deadline does not reduce the costs,
which corresponds to the time taken to go through the critical path, the one that
provides the lowest cost, in the MDP graph. Also, when the time limit is lower
than the MDP path with the minimum time, it is not possible to complete the
whole pipeline tasks inside the limit. Thus, there is an interval of time within
which users can adjust the limits.

Figure 7 shows the time evolution for planning with pipelines with different
number of tasks and workers (for simplicity, the number of workers is the same
as the number of tasks). Although we performed optimizations with the MDP-
based algorithm, we may see that time follows an exponential tendency with
the number of tasks, like stated in Section 2.2. For less than 15 pipeline tasks

Planning and Scheduling Data Processing Workflows 335

Time Limit (minutes)

C
os

t

800

820

840

860

28 29 30 31

L1 L2 L3

Fig. 6. Cost variation for different time limits

Number of Tasks

T
im

e
(s

ec
on

ds
)

0
5

10
15
20
25
30
35
40
45
50
55

5 10 15 20

Fig. 7. Time taken for planning

No relaxation
15%
30%
45%

Relaxation Level

C
os

t

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Fig. 8. Cost versus relaxation

the times obtained are negligible, and for more than 17 tasks the times start
to increase drastically (above 10 seconds). However, workflows containing more
than 10 tasks in pipeline are not common.3 Furthermore, there is still space for
optimization and parallelization on our MDP-based algorithm.

3 https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

336 S. Esteves and L. Veiga

We can see in Figure 8 how the cost varies with the level of relaxation for a
pipeline with 10 tasks where each was set to have levels of relaxation of 0 (no
relaxation), 15, 30, and 45%. The cost decreased down to 233 units with 45% of
relaxation.

5 Related Work

Many work has been done regarding scheduling of tasks in grid and cloud set-
tings. A subset of this work targets the scheduling of workflows in particular.
For example, [21,4,13] for Grid computing. Our model inherits from and extends
the traditional workflow model [24]. Next, we describe some solutions that are
closer and more related with our Quality-of-Data model.

In [25], it is proposed a cost-based workflow scheduling algorithm that is
capable of minimizing costs and meeting deadlines for result delivery. A MDP
is also used to perform the scheduling, however over different constraints (e.g.,
tasks can request different services from certain providers). The impact of data
in the results and workflow execution relaxation is not taken into account, unlike
in our model. Nonetheless, it has been a common approach to impose time limits,
instead of minimizing execution times [8].

In [18], authors claim that proposed heuristics for scheduling on heterogeneous
systems fail by not considering processors with different capabilities. Our model
also takes into account processors with different capabilities for scheduling, since
the times and relaxation are calculated based on that within the WaaS environ-
ment, however, data impact is also not taken into account in their solution. Also,
[13] presented a novel binding scheme to deal with heterogeneity presented in
grid and cloud environments, and improve performance by attending to such
different characteristics.

In [2], different task scheduling strategies forworkflow-based applications are ex-
plored. Authors claim that many existing systems for the Grid use matchmaking
strategies that do not consider overall efficiency for the set of (dependent) tasks to
be run. They compare typical task-based greedy algorithms with workflow-based
algorithms, that search for the entire workflow. Results show that workflow-based
approaches have a potential to work better on data-intensive scenarios even when
task estimates are inaccurate. This comes to strengthen our work, asmost schedul-
ing done, which is task-based, does not work well for workflows.

In [14], authors claim that most auto-scaling scheduling mechanism only con-
sider simple resource utilization indicators and do not consider both user perfor-
mance requirements and budgets constraints. They present an approach where
the basic computing elements are virtual machines (VMs) of various sizes/costs,
and, by dynamically allocating/deallocating VMs and scheduling tasks on the
most cost-efficient instances, they are able to reduce costs. This task-to-VM op-
timization was also tasked in [22], where a hierarchical scheduling strategy was
proposed. Furthermore, advantages of running in a virtual environment, even
remotely, over local environment are highlighted here [11]. We also provide a re-
source utilization metric representing not only the capacity of a worker machine,

Planning and Scheduling Data Processing Workflows 337

but also its current load usage. In addition to this mechanism we also combined
data relaxation which conveys in good cost savings.

6 Conclusion

This paper makes use of a novel workflow model for continuous data-intensive
computing proposing a new Cloud scheduling planner, capable of relaxing prices
and respecting time constraints, is proposed. This platform gains a special impor-
tance in e-science where long-lasting workflows are executed many times with-
out any new significant and meaningful results (many times only getting noise),
wasting monetary funds.

Evaluation results show that our approach is able to reduce costs while re-
specting time constraints. This cost reduction is higher for larger QoD contraints
(which result in larger relaxation). However, larger QoD values can cause higher
result deviations, but that problem is out of the scope of this paper.

To the best of our knowledge, no work in the cloud scheduling literature has
ever before tried to reason about the data impact on processing steps that cause
significant changes on the final workflow outcome for continuous and autonomic
processing. Therefore, we believe we have a compelling advancement over the
state-of-the-art.

References

1. Bartholomew, D.: Qemu: a multihost, multitarget emulator. Linux J. 2006(145), 3
(2006)

2. Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task
scheduling strategies for workflow-based applications in grids. In: Proceedings of
the Fifth IEEE International Symposium on Cluster Computing and the Grid
(CCGRID 2005), pp. 759–767. IEEE Computer Society, Washington, DC (2005)

3. Brown, D.A., Brady, P.R., Dietz, A., Cao, J., Johnson, B., McNabb, J.: A case study
on the use of workflow technologies for scientific analysis: Gravitational wave data
analysis. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows
for e-Science. Springer, London (2007)

4. Chen, W.-N., Zhang, J.: An ant colony optimization approach to a grid workflow
scheduling problem with various qos requirements. IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews 39(1), 29–43 (2009)

5. Costa, F., Silva, J.N., Veiga, L., Ferreira, P.: Large-scale volunteer computing over
the internet. J. Internet Services and Applications 3(3), 329–346 (2012)

6. Couvares, P., Kosar, T., Roy, A., Weber, J., Wenger, K.: Workflow management in
condor. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows
for e-Science, pp. 357–375. Springer, Heidelberg (2007)

7. Deelman, E., et al.: Managing large-scale workflow execution from resource pro-
visioning to provenance tracking: The cybershake example. In: Proceedings of
the Second IEEE International Conference on e-Science and Grid Computing, E-
SCIENCE 2006, p. 14. IEEE Computer Society, Washington, DC (2006)

8. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In:
Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 286–300. Springer,
Heidelberg (1999)

338 S. Esteves and L. Veiga

9. Esteves, S., Silva, J.N., Veiga, L.: Fluchi: a quality-driven dataflow model for data
intensive computing. Journal of Internet Services and Applications 4(1), 12 (2013)

10. George, L.: HBase: The Definitive Guide, 1st edn. O’Reilly Media (2011)
11. Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., Good,

J.: On the use of cloud computing for scientific workflows. In: EEE Fourth Inter-
national Conference on eScience, 2008, pp. 640–645 (2008)

12. Li, X., Plale, B., Vijayakumar, N., Ramachandran, R., Graves, S., Conover, H.:
Real-time storm detection and weather forecast activation through data mining
and events processing. Earth Science Informatics

13. Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor-Crummey, J., Liu, B.,
Johnsson, L.: Scheduling strategies for mapping application workflows onto the
grid. In: Proceedings of the 14th IEEE International Symposium on High Perfor-
mance Distributed Computing, HPDC-2014, pp. 125–134 (2005)

14. Mao, M., Humphrey, M.: Auto-scaling to minimize cost and meet application dead-
lines in cloud workflows. In: 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 1–12 (2011)

15. Oliveira, P., Ferreira, P., Veiga, L.: Gridlet economics: Resource management mod-
els and policies for cycle-sharing systems. In: Riekki, J., Ylianttila, M., Guo, M.
(eds.) GPC 2011. LNCS, vol. 6646, pp. 72–83. Springer, Heidelberg (2011)

16. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming, 1st edn. John Wiley & Sons, Inc., New York (1994)

17. Richards, M., Ghanem, M., Osmond, M., Guo, Y., Hassard, J.: Grid-based analysis
of air pollution data. Ecological Modelling 194(1-3), 274–286 (2006)

18. Shi, Z., Dongarra, J.J.: Scheduling workflow applications on processors with dif-
ferent capabilities. Future Gener. Comput. Syst. 22(6), 665–675 (2006)

19. Simão, J., Veiga, L.: Qoe-jvm: An adaptive and resource-aware java runtime for
cloud computing. In: OTM Conferences, vol. 2, pp. 566–583 (2012)

20. Veiga, L., Rodrigues, R., Ferreira, P.: Gigi: An ocean of gridlets on a “grid-for-the-
masses”. In: CCGRID, pp. 783–788. IEEE Computer Society (2007)

21. Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of scientific workflows in the
askalon grid environment. SIGMOD Rec. 34(3), 56–62 (2005)

22. Wu, Z., Liu, X., Ni, Z., Yuan, D., Yang, Y.: A market-oriented hierarchical schedul-
ing strategy in cloud workflow systems. The Journal of Supercomputing 63, 256–293
(2013)

23. Yih, Y., Thesen, A.: Semi-Markov Decision Models for Real-time Scheduling. Re-
search memorandum. School of Industrial Engineering, Purdue University (1991)

24. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing.
SIGMOD Rec. 34(3), 44–49 (2005)

25. Yu, J., Buyya, R., Tham, C.K.: Cost-based scheduling of scientific workflow ap-
plication on utility grids. In: Proceedings of the First International Conference on
e-Science and Grid Computing, E-SCIENCE 2005, pp. 140–147. IEEE Computer
Society, Washington, DC (2005)

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 339–351, 2014.
© Springer International Publishing Switzerland 2014

Galaxy + Hadoop: Toward a Collaborative and Scalable
Image Processing Toolbox in Cloud

Shiping Chen, Tomasz Bednarz, Piotr Szul, Dadong Wang, Yulia Arzhaeva,
Neil Burdett, Alex Khassapov, John Zic, Surya Nepal, Tim Gurevey, and John Taylor

CSIRO Computational Informatics (CCI), Australia
P.O. Box 76, Epping, NSW 1017, Australia
{Firstname.Lastname}@csiro.au

Abstract. With emergence and adoption of cloud computing, cloud has become
an effective collaboration platform for integrating various software tools to de-
liver as services. In this paper, we present a cloud-based image processing tool-
box by integrating Galaxy, Hadoop and our proprietary image processing tools.
This toolbox allows users to easily design and execute complex image
processing tasks by sharing various advanced image processing tools and scala-
ble cloud computation capacity. The paper provides the integration architecture
and technical details about the whole system. In particular, we present our in-
vestigations to use Hadoop to handle massive image processing jobs in the sys-
tem. A number of real image processing examples are used to demonstrate the
usefulness and scalability of this class of data-intensive applications.

Keywords: Galaxy, Hadoop, Image Processing, Workflow, Scalability,
Data-Intensive Computation.

1 Introduction

The concept of cloud computing has been widely adopted by both industry and re-
search community. As a result, a number of cloud providers came up to provide vari-
ous computing resources in business model of infrastructure as a service (IaaS), such
as Amazon S3 for storage service [1] and EC² for processing service [2]. Furthermore,
various software systems are developed and deployed onto to these public/private
cloud infrastructures in form of platform as a service (PaaS), e.g., Window Azure [3]
and Microsoft’s Google App Engine [4], or software as a service (SaaS), e.g., Sale-
force’s cloud-based CRM/ERP [5] and Apple’s iCloud [6].

Due to its scalable computing resources, low total ownership of cost (TOC), and
pay-as-go flexible cost model, Cloud has become an attract platform to start up busi-
ness and support research. For example, Dropbox founded in 2008 provides file
storage and sharing services by using cloud storage infrastructures [7]. Boxee, an
Israel-based start-up company, developed both software and hardware to allow users
to view, rate, recommend, and upload/download living media contends to/from clouds
[8]. On the other hand, research communities are leveraging clouds to facilitate vari-
ous researches, ranging from genome bank [9] to big data analysis [10].

340 S. Chen et al.

One trend within research communities is to establish a virtual environment, called
virtual laboratory (VL), by integrating and deploying various advanced proprietary
tools onto clouds [13]. This powerful concept allows researchers distributed in differ-
ent institutes to share and reuse these mature and advanced scientific tools to conduct
big and complicated research tasks, which used to be impossible in the past. However,
it is not an easy to build a VL. Facilitating a VL for a specific research community
needs a good understand to the domain and the real requirements from the communi-
ty. It also requires a well system design and implementation to provide a generic plat-
form for unifying and integrating the heterogeneous tools that may be developed in
different languages and have different requirements for the underlying operation sys-
tems and 3rd part software. In addition, scalability is another challenge as the loads
(the number of current users and/or data to be processed) increase.

In this paper, we present a cloud-based image process toolbox as one of key facili-
ties of Australian National Cloud Virtual Laboratory. The current implementation of
this toolbox integrates three advanced image processing tools developed by CSIRO,
which allows researchers to conduct complicated image processing analysis anytime
and anywhere. This paper introduces the system design and implementation of the
toolbox, including how to unify and integrate the image processing tools. Real science
images are used to demonstrate the features and usefulness of the cloud-based toolkit.
We also present our study of scaling the toolbox capability for processing massive big
images using Hadoop in cloud.

2 System Design and Implementation

2.1 Key Requirements

The aim of this work is to build a collaborative platform/toolbox for research com-
munities to share and reuse the advanced image processing algorithms and tools,
which otherwise are distributed alone in different organizations. Such an image
processing toolbox should meet the following key requirements:

• Web-scope sharing: Since the potential users can be very dynamic in terms of
organizations and domains, it would be proper to support browsers-based user in-
terface (UI) so that the services provided by the toolbox can be widely accessed via
Web.

• Workflow enabling: Usually, each algorithm/tool is designed for a specific
processing/analysis. As a result, there is a need for constructing workflows by
composing multiple tools together for a complicated image processing analysis.
The composed workflow can be packaged and published as a new tool for further
reuse and composition.

• Capability scaling: Due to the dynamic nature of this platform (dynamic load) and
image processing (dynamic image sizes and amounts), it requires the system
should have a scalable mechanism to handling potential large amount of concurrent
users and very big data in terms of image sizes and amounts.

 Galaxy + Hadoop: Toward a Collaborative and Scalable Image Processing Toolbox 341

2.2 System Architecture

Based on the above requirements, we designed and implemented a cloud-based image
processing toolbox system to integrate various advanced image processing tools,
whose overall software architecture is shown in Fig. 1.

Fig. 1. Software Architecture of CSIRO Image Toolbox

As seen in the above software architecture, the toolbox system consists of two
tiers: (1) Galaxy-based front-end; and (2) A set of image processing tools integrated
with Galaxy as back-end.

Galaxy [11] is an open source web-based platform for integrating scientific tools to
support research. It started up from bi-informatics domain, but has been widely
adopted by many research communities. The key reasons for us to adopt Galaxy are:
(a) it supports web browser user interface that makes our toolbox reachable by a large
range of research communities; (b) it supports workflows, which enables our users
(researchers) to conduct big and complex image processing analysis by composing
these shared tools in form of workflow; (c) it is widely supported by a range of cloud
infrastructures, such as Amazon EC²; and (d) it provides a simple and clean solution
to integrating 3rd-party tools onto the web platform. Galaxy and its technical details
are available at [14].

2.3 Image Processing Tools as Services

The purpose of this work is to deliver various image processing tools as services to
research communities. Through the Galaxy web portal, the following three advanced
image processing tools have been integrated into the collaboration platform:

• HCA-Vision (High Content Analysis) is software developed for automatically
identify the cell features in microscopy images. The technology can be used to
detect and locate proteomics, neurobiology and microbiology in cells, which al-
lows researchers to accurately measure cell changes and improve their understand-
ing of biological systems and processes [15].

• X-TRACT implements a large number of conventional and advanced algorithms for
2D and 3D X-ray image analysis and simulation. It provides tools for reconstruction

342 S. Chen et al.

and simulation of X-ray phase-contrast CT, including phase retrieval, parallel filtered
back projection (FBP), cone beam Feldkamp Davis Kress (FDK) algorithms etc. [16].

• MILXView is a 3D medical imaging analysis and visualization platform for clini-
cal applications. MILXView includes standard imaging functions, such as window-
ing, histogram inspection, panning, slicing, zooming, metadata inspection etc, as
well as a large number of analysis functions and complex image processing pipe-
lines. This tool allows rapid and accurate interpretations of 2D & 3D medical im-
ages [17].

2.4 Tools Integration

Galaxy provides a unify way to integrate new tools via a configuration file in xml, i.e.
the tool_config.xml as shown in Fig. 2. In this configuration file provides a list of file
names that refers to the actual configuration files (also in xml) for each tool, e.g.,
HCA.xml for the HCA-Vision tool. A tool configuration file specifies all information
required for the tool, including inputs, output and the scripts/commands to execute
the tool, e.g., HCA.py – a python script to call one or more HCA-Vision functions
according to the input at runtime. Fig. 2 illustrates the skeleton of the two configura-
tion files and their relationship with the executable scripts.

Fig. 2. How to integrate tools to Galaxy

With the above configurations, the three image processing tools become visible
and ready to be used via Galaxy web application as shown in Fig. 3.

 Galaxy + Hadoop: Toward a Collaborative and Scalable Image Processing Toolbox 343

2.5 Compose Functionalities to Form a Workflow

Galaxy has a built-in support for scientific workflows. It simply records each step as a
user is conducting analysis using the integrated tools by selecting a function from the
left-hand tools menu, specifying the inputs and the output for the function invocation
and executing the function on the left-hand menu. For example, to identify and mark
nuclear of cells in a microscopy image, we need the following three steps:

1. Select ‘get data’ from the tools menu to upload an image to the toolbox as shown
in Fig. 3 (a)

2. Select ‘detect nuclear’ from the functions of Cellular Imaging, specify its inputs,
and execute the function. The output image of the processing is obtained as shown
in Fig. 3 (b)

3. Select ‘detect nuclear’ from the functions of Cellular Imaging, specify the out-
comes of Step 1 and Sept 2 as its inputs and execute. The output image of the
processing is displayed as shown in Fig. 3 (c)

(a) Step 1 (b) Step 2

(c) Step 4 (d) Workflow extracted from the above
history

Fig. 3. The user interface of the image processing toolbox

344 S. Chen et al.

Fig. 4. Internal representation of a galaxy workflow

The collection of the recorded steps (also called history) for a particular data analy-
sis task constructs a chain of operations, which can be extracted to form a workflow
as shown in Fig. 3 (d). The workflow can be edited using Galaxy graphic user inter-
face (GUI) within a browser. Galaxy use JSON as its workflow internal representation
(IR) as shown in Fig. 4, which can be exported and imported across Galaxy platforms.

3 Scale Out Galaxy Using Hadoop

3.1 Requirements for Scalability

The above Galaxy-based image processing toolbox has been deployed onto a single
virtual machine of our private cloud for internal testing. However, as deploying onto a
public cloud for a large amount of users from different domains, there will be re-
quirements for scalability of the system. The scalability requirements can come from
the following sources:

R1. A large number of concurrent users: The image processing toolbox is supposed
to be deployed onto a public cloud and shared among a wide range of research
communities, such as medical, biologics, and bioinformatics. Potentially, there
can be a large number of users to access and use the system at the same time,
which requires the system is able to scale its capability to handle the increasing
number of concurrent users.

 Galaxy + Hadoop: Toward a Collaborative and Scalable Image Processing Toolbox 345

R2. Computation-intensive image processing: Some applications need to conduct
complicated processing on very large images, such as Synthetic-Aperture Ra-
dar (SAR) images [18]. This kind of image processing usually takes a lot of
CPU cycles and a long execution time. In this case, the image should be parti-
tioned into a set of small images that can be processed on multiple cloud Vir-
tual Machines (VMs) in parallel.

R3. Data-intensive image processing: Some users may apply a specific identical
processing function on a large number of images, e.g. microscope images and
CT images. In this case, the system needs a solution to hosting and processing
the large amount of images efficiently.

3.2 Using Hadoop for Data-Intensive Image Process

Scalability is a classic problem of software systems and has been well studied in lite-
rature [19]. Different scalability requirements need different technical solutions. For
example, while R1 can be addressed by scaling out Galaxy with CloudMan [20],
MPI-style parallel technology can be used for computation-intensive image
processing (R2) [21]. In this paper, we address R3 by exploring and evaluating using
Hadoop for data-intensive image processing, because of its elegant architecture and
capability of hosting and processing big data in parallel [22]. Fig. 5 shows the basic
software architecture of the Hadoop-based scale-out solution.

Fig. 5. Using Hadoop for parallel image process

3.3 Feed Hadoop with a Large Amount of Images

Hadoop was originally developed for text-based data processing. As a result, the
whole design and implementation are based on the abstraction of a set of pairs of
<key, value> computed and exchanged between map and reduce processes, where the
key and value usually refer to a text string and its unique attributes. It is straightfor-
ward for people to adopt Hadoop software-harnesses and examples for text-mining
based data mining applications. However, in our case, our inputs are a large amount
of images.

346 S. Chen et al.

There are a few technologies and research work on feeding Hadoop with images
(binary data), such as Hadoop Sequence File (HSF) [23], Apache Avro [24] and HIPI
(Hadoop Image Processing Interface) [25]. While the above three technologies are
slightly different in their functionalities and features, they share the same design prin-
cipal, i.e. compress and package multiple images into a big file to feed Hadoop. As a
result, they all need to pack the big files in advance. The corresponding data
reader/writer also needs to be provided to Hardoop for accessing to the specific
formatted file.

Fig. 6. Feed Hadoop with a list of image HDFS references

In this paper, we propose another way to feed Hadoop with a large amount of im-
ages as shown in Fig. 6. Instead of feeding Hadoop with data contents directly, we
can simply feed Hadoop a file, where lists all files’ URI as v of <k, v>. Each mapper
uses the assigned <k, v> to load the corresponding data contents (e.g. images) from
the source that each URI refers. In this way, we introduce an abstract layer between
Hadoop and its input data. This allows us to feed Hadoop with different data sources,
rather than the files from HDFS only. A simple comparison between the two solutions
is summarized in Table 1.

Table 1. Big File vs. URI Reference

 Pros. Cons.
Big File:
-SF,
-AVRO
-HIPI

• Directly feed with data
contents as <k,v> pair

• Can benefit from Hadoop
data-location-based sche-
dule

• Need pack before
processing

• Tightly tired with
HDFS

URI Ref-
erence

• Indirectly feed the data
with uri references

• Add another lay between
Hadoop and data

• Flexible to feed Hadoop
with data from different
sources

• Need coding in map
to get data from the
data sources

• Cannot benefit from
Hadoop data-
location-based
schedule

 Galaxy + Hadoop: Toward a Collaborative and Scalable Image Processing Toolbox 347

3.4 Integrate Hadoop with Non-Java Software

Almost of all Hadoop was implemented in java, except for some underlying native
components for performance purpose. As a result, it is nature and straightforward to
develop map/reduce in java and integrate with Hadoop. However, there are many
scientific software (such as our image processing tools) were implemented in C/C++,
and even FORTRAN. Therefore, integrating Hadoop with the non-java software is a
important software reuse requirement for using Hadoop to preserve the previous soft-
ware investments.

Basically, there are three ways to integrate non-java software with Hadoop: (a)
Hadoop Pipes; (b) Hadoop Stream; and (c) JNI (Java Native Interface). While Hadoop
pipes uses sockets for communication between Hadoop and non-java map/reduce
processes, Hadoop Stream uses standard I/O [22]. As a result, neither of the two tech-
nologies is suitable for binary images, due to performance and binary encoding con-
siderations. In our image toolbox system, we use JNI to integrate Hadoop with these
non-java image processing tools (libraries). We report our preliminary performance
testing results in next section.

4 Performance Evaluation

4.1 Performance Testing Environment

We conducted a set of tests to evaluate the performance of the software architecture
and the corresponding technologies that we adopted for the imaging process toolbox.
The testing environment is specified in Table 2.

Table 2. Testing environment specification

 Hardware/VM Software
Cloud
Server

• 1 VCPU (Small)
• 2GB RAM
• 10GB Disk

• Ubuntu 12.0.4 64bit
• Galaxy v2.5
• Hadoop 1.1.2
• Oracle JDK 7.0.25

Client • Dell Latitude Laptop
• Intel 2.6GHz CPU
• 4GB RAM
• 232GB Disk

• Window 7 SP1 32bit
• Firefox 23.0.1
• GridFTP 5.0
• WinSCP 5.1.0

4.2 Performance of Uploading Images to Cloud

The 1st step of using our toolbox to process images is to upload these images onto the
cloud where the Galaxy and Hadoop are deployed. When Galaxy provides browser-
based GUI for data uploading, Galaxy suggests using the 3rd-party tools to upload a
large amount of data. We tested using ftp and SCP to upload 1MB~1GB data from
my laptop to our private cloud. The test results are shown in Fig. 7.

348 S. Chen et al.

Fig. 7. Performance of uploading images to cloud

As shown in Fig. 7, both FTP and SCP are capable of transferring considerable big
(1GB) data over the WAN within a reasonable time (25~30 minutes). Note that our
tests are based on the default settings of FTP and SCP with no multiple port configu-
ration and performance tuning.

4.3 Performance of Packing Images for Hadoop

To feed Hadoop with multiple images, we need to pack the images into a sequence
file using Hadoop I/O APIs. In our tests, we pack 67 CT images for breast cancer
study, whose sizes are between 5~10MB. A few examples of these images are pro-
vided as follows:

…

…

Fig. 8. Performance of packing images for Hadoop

0

100

200

300

400

500

1 10 19 28 37 46 55 64
Image No.

Ti
m

e
in

 m
S

 Galaxy + Hadoop: Toward a Collaborative and Scalable Image Processing Toolbox 349

Fig. 8 shows the testing results of packing the 67 CT images on a single VM as
specified in Table 2. As we can see from the above results, it takes about 12 seconds
to pack 67 images (~415MB) on the testing platform, i.e. 174 ms for each (image) file
on average. The performance can be further improved by applying MapReduce to
generate sequence files in parallel for even more and/or bigger images.

4.4 Performance of Processing Images with Hadoop

We use the above sequence file as input to test the scalability of processing the im-
ages with Hadoop. Each image is filtered with multiple Gaussian-based filters at dif-
ferent scales. Then the histograms are computed in each filtered image over the breast
area. The output image is constructed as a matrix of histogram images: columns
represent filters. We conducted the above image processing with Hadoop using 1, 2
and 4 VM, respectively. The performance results are shown in Fig. 9. As we can see,
Hadoop scales well for processing multiple images in parallel as increasing numbers
of VMs.

(a) Run Time (a) Speedup

Fig. 9. Performance of parallel images processing with Hadoop

5 Related Work

Galaxy, as an open collaborative platform, has been widely used in the genomics
community. For examples, Ravi K. Madduri et al. used Galaxy for building an ad-
vanced sequencing analysis service [26]. Bo Liu et al. developed and deployed a high
performance scientific workflow platform in cloud by extending Galaxy with
Globus [27]. The work presented in this paper extends the application domain of
Galaxy to image processing by leveraging its web-based UI and simple tool integra-
tion architecture. We also enhance Galaxy by adding new common functionalities and
operations, such as upload and manage multiple images (files), which we will publish
in another paper.

Hadoop is a promising technology for distributed data storage (HDFS) and parallel
data processing (Map/Reduce) [22], and have been widely used for data-intensive
processing and analysis, such as page ranking [28], network traffic analysis [29] and
senior data management [30]. In fact, our work is strongly related to [31], i.e. both

350 S. Chen et al.

aims to enhance the scalability of (Galaxy vs. Kapler) workflow platforms. However,
our approach is different from each other. While they tightly integrate Kapler with
Hadoop at code level, our enhancement is loosely coupling. As a result, Hadoop is
transparent from Galaxy each other in our architecture, which provides more flexibili-
ty to plug-in and other parallel solutions.

6 Conclusion

In this paper, we present a cloud-based collaborative and scalable image processing
toolbox. Our toolbox offers an open and web-wide collaboration platform for image
processing by leveraging the user friendly interfaces and simple integration software
architecture of Galaxy. We also explored technologies and software architecture study
of using Hadoop for data-intensive image processing. We evaluated the performance
of technologies and operations for applying Hadoop for processing real CT images on
real cloud environment. Our testing results show that Hadoop is a feasible and scala-
ble solution to processing a large amount of images in cloud. We plan to extend this
work by exploring and evaluating more Hadoop applications with more VMs and
bigger (images) data.

References

1. http://aws.amazon.com/s3/
2. http://aws.amazon.com/ec2/
3. http://www.windowsazure.com/en-us/
4. https://cloud.google.com/products/
5. https://www.salesforce.com
6. https://www.icloud.com/
7. https://www.dropbox.com/
8. http://www.boxee.tv/
9. http://www.genecloud.org/

10. Agrawal, D., Das, S., Abbadi, A.E.: Big data and cloud computing: current state and future
opportunities. In: The 14th International Conference on Extending Database Technology
(EDBT/ICDT 2011), pp. 530–533 (2011)

11. Goecks, J., Nekrutenko, A.: James Taylorcorresponding and The Galaxy Team team: Ga-
laxy: a comprehensive approach for supporting accessible, reproducible, and transparent
computational research in the life sciences, Genome Biol. 11(8) (2010),
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2945788/

12. Singh, R.P., Keshav, S.: Tim Brecht: A cloud-based consumer-centric architecture for
energy data analytics. e-Energy, 63–74 (2013)

13. Roth, B., Hecht, R., Volz, B., Jablonski, S.: Towards a Generic Cloud-Based Virtual Re-
search Environment. COMPSAC Workshops 2011, 267–272 (2011)

14. https://main.g2.bx.psu.edu/
15. Wang, D., Lagerstrom, R., Sun, C., Bischof, L., Vallotton, P., Götte, M.: HCA-Vision: Auto-

mated Neurite Outgrowth Analysis. Journal of Biomolecular Screening 15(9), 1165–1170
(2010)

 Galaxy + Hadoop: Toward a Collaborative and Scalable Image Processing Toolbox 351

16. Gureyev, T.E., Nesterets, Y., Ternovski, D.: Toolbox for advanced x-ray image
processing. In: Proc. SPIE 8141, Advances in Computational Methods for X-Ray Optics
II, 81410B

17. Chandra, S., Dowling, J., Shen, K., et al.: Patient specific prostate segmentation in 3-D
magnetic resonance images. IEEE Transactions on Medical Imaging 31(10), 1955–1964
(2012)

18. Goller, A.: Parallel Processing Strategies for Large SAR Image Data Sets in a Distributed
Environment. Computing 62(4), 277–291 (1999)

19. Rosenblum, D.S.: Software System Scalability: Concepts and Technologies, Keynote talk
at ISEC (2009)

20. Afgan, E., Baker, D., Coraor, N., Chapman, B., Nekrutenko, A., Taylor, J.: Galaxy
CloudMan: Delivering Cloud Compute Clusters. BMC Bioinformatics 11(12) (2010)

21. Warfield, S.K., Jolesz, F.A., Kikinis, R.: A High Performance Computing Approach to the
Registration of Medical Imaging Data. Parallel Computing 24(9-10), 1345–1368 (1998)

22. Apache Hadoop: http://hadoop.apache.org/
23. http://wiki.apache.org/hadoop/SequenceFile
24. http://avro.apache.org/
25. Sweeney, C.: HIPI: A Hadoop Image Processing Interface for Image-Based MapReduce

Tasks, B.S. Thesis. University of Virginia, Department of Computer Science (2011)
26. Madduri, R.K., Dave, P., Sulakhe, D., Lacinski, L., Liu, B., Foster, I.T.: Experiences in

building a next-generation sequencing analysis service using galaxy, globus online and
Amazon web service. ACM XSEDE 2013, Article 34

27. Liu, B., Sotomayor, B., Madduri, R., Chard, K., Foster, I.: Deploying Bioinformatics
Workflows on Clouds with Galaxy and Globus Provision. In: SCC 2012, pp. 1087–1095
(2012)

28. Choi, H., Um, J., Yoon, H., Lee, M., Choi, Y., Lee, W., Song, S., Jung, H.: A partitioning tech-
nique for improving the performance of PageRank on Hadoop. In: ICCCT 2012, 458–461
(2012)

29. Lee, Y., Lee, Y.: Toward scalable internet traffic measurement and analysis with Hadoop.
SIGCOMM Comput. Commun. Rev. 43(1), 5–13 (2012)

30. Bao, Y., Ren, L., Zhang, L., Zhang, X., Luo, Y.: Massive sensor data management frame-
work in Cloud manufacturing based on Hadoop. Industrial Informatics (INDIN), 397–401

31. Wang, J., Crawl, D., Altintas, I.: Kepler + Hadoop: a general architecture facilitating data-
intensive applications in scientific workflow systems. ACM WORKS 2009, Article 12
(2009)

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 352–365, 2014.
© Springer International Publishing Switzerland 2014

SciLightning: A Cloud Provenance-Based Event
Notification for Parallel Workflows

Julliano Trindade Pintas1, Daniel de Oliveira2, Kary A.C.S. Ocaña1,
Eduardo Ogasawara3, and Marta Mattoso1

1 COPPE - Federal University of Rio de Janeiro, Brazil

2 IC/UFF - Fluminense Federal University, Brazil
3 Federal Center of Technological Education (CEFET/RJ), Brazil

{julliano,kary,marta}@cos.ufrj.br, danielcmo@ic.uff.br,

eogasawara@cefet-rj.br

Abstract. Conducting scientific experiments modeled as workflows is a
challenging task due to the complex management of several (often inter-related)
computer-based simulations. Many of these scientific workflows are compute
intensive and demand High Performance Computing environments to run, such
as virtual parallel machines in a cloud computing environment. These
workflows commonly present long-term "black-box" executions (i.e. several
days or weeks), thus making it very difficult for scientists to monitor its
execution course. We present a workflow event notification mechanism based
on runtime monitoring of provenance data produced by parallel scientific
workflow systems in clouds. This mechanism queries provenance data
generated at runtime for identifying preconfigured events and notifying
scientists using technologies such as Android devices and message services in
social networks such as Twitter. The proposed mechanism, named
SciLightning, was evaluated by monitoring SciPhy, a large-scale parallel
execution of a bioinformatics phylogenetic analysis workflow. SciPhy took six
days to complete its execution in Amazon AWS cloud environment using a
cloud parallel workflow engine called SciCumulus. The evaluation showed that
the proposed approach is effective with respect to monitoring and notifying
preconfigured events.

1 Introduction

Notification can be defined as the ability to perceive and to be conscious of events
that have happened in a specific context [1]. Depending on the scenario, the lack of
event notification can result in several different problems such as conflicts, duplicated
results or unnecessary computations that may lead to unnecessary financial cost and
time spent. In the context of large-scale scientific experiments, modeled as scientific
workflows [2], notification mechanisms are in fact essential [1,3]. Many scientific
workflows are executed 100,000 times or more using parallel Scientific Workflow
Management Systems (SWfMS) such as Turbine [4] , Pegasus [5], Tavaxy [6],

 SciLightning: A Cloud Provenance-Based Event Notification for Parallel Workflows 353

Askalon [7], Chiron [8] and SciCumulus [9] and varying its input parameter values,
thus consuming and producing a large volume of data. Although these workflow
systems execute on large amounts of High Performance Computing (HPC) resources,
as the workflow becomes increasingly complex (in terms of the number of times that
their activities are executed or as the volume of processed data increases), they tend to
execute for weeks or even months. This way, it is critical for scientists to be aware of
the execution status in order to analyze if the current execution complies with
scientists’ quality and performance criteria (e.g. total execution time, maximum
financial cost, reliability) or if scientists have to interfere in the execution (also known
as steering [10]). SWfMS have to monitor the workflow execution to provide the
necessary level of notification for scientists. Monitoring allows for performing
debugging, partial results analysis or failures at predetermined points in the workflow
structure. We have experienced the lack of monitoring while supporting workflow
execution in different domains from engineering [11,12] to biology [13–16].

However, it is not trivial to monitor the parallel execution of scientific workflows
in distributed environments [10]. For example, in the cloud, the same workflow can
be executed in several different HPC virtual machines, each one storing different
portions of data or executing different applications that are part of the workflow.
Many SWfMS already implement monitoring mechanisms for providing some kind of
notification features [17–19]. Each SWfMS usually designs and implements its
specific monitoring component [20], or provides log messages after the completion of
the workflow (i.e. post mortem analysis [21]). For workflows that are executed in the
cloud, the cloud environment providers also dispose tools that monitor the
performance of your hosted applications at runtime. There are also approaches that
are SWfMS-independent [20,22] that monitor workflow execution decoupled from
SWfMS. All of these approaches only consider performance analysis of the
environment (i.e. cloud monitors) or the workflow execution using traditional
monitoring packages such as NetLogger [23]. However, scientists need more than
cloud and workflow performance metrics to analyze or to interfere in a workflow
execution. In several cases, they need to access and analyze the contents of specific
resultant files (such as DNA sequences or a finite element mesh [24–26]) produced by
specific workflow executions. This way, the monitoring has to associate performance
metrics with produced domain-specific results to improve steering for scientists.

This type of analysis, that associates performance metrics and domain-specific
results, can be conducted by scientists using enriched workflow provenance data [27].
In provenance repositories scientists can find execution times, performance
information and domain-specific information to support their steering decisions. This
way, the monitoring mechanism could use the provenance data to identify important
events for the scientists and notify them, thus providing subsidies to take important
actions. However, this type of monitoring is not yet a reality in existing SWfMS. In
SWfMS such as Swift, Tavaxy or Pegasus, runtime workflow data is only available
after the execution finishes. It is not possible to query data provenance at runtime
making it difficult to implement workflow monitoring mechanisms that consider not
only performance but also domain-specific content. Other approaches such as
SciCumulus and Chiron already provide provenance data to be queried at runtime;

354 J.T. Pintas et al.

however, they do not present monitoring mechanisms. Currently, in these systems, the
scientist needs to perform periodic SQL queries to the provenance repository through
Database Management Systems (DBMS) or using log messages to be aware of the
scientific workflow executions steps, which is not desirable since this manual process
does not scale, it is tedious and error-prone.

This paper proposes SciLightning, an event notification mechanism based on the
monitoring of scientific workflows runtime provenance data. SciLightning is designed
to be coupled to different existing SWfMS with low effort. SciLightning queries
provenance data generated at runtime and notifies scientists about specific events that
are important (i.e. preconfigured events) using Android devices and message
mechanisms in social networks such as Twitter. This way, scientists can be aware of
the execution status of their workflows, since they are able to perform partial results
analysis or perform workflow steering actions. To evaluate SciLightning, we
monitored the parallel execution of SciPhy workflow [14] for phylogenetic analysis in
Amazon AWS cloud environment using SciCumulus workflow engine. The
evaluation showed that SciLightning is effective with respect to monitoring and
notifying preconfigured events thus improving scientists’ awareness.

Besides this introduction, this paper is organized as follows. Section 2 discusses
important issues of notification in scientific workflows. Section 3 describes
SciLightning with its conceptual architecture and the provenance model used. Section
4 presents the experimental results while Section 5 discusses related work. Finally
Section 6 concludes this paper and points to future work.

2 Monitoring in Scientific Workflows

A monitoring component for scientific workflows has to produce awareness
information about events that happen or have happened, in a one or a set, of scientific
workflow executions, reporting this information to scientists in a research group, in
order to improve the interaction between the research group members and allowing
them to interfere in the workflow execution to perform a fine-tuning in parameters or
explore different input data, i.e. steering.

In general, the awareness information (i.e. notification) is associated with the
research group (Who are the research group participants?), the group objectives
(What are the activities that should be executed within a scientific experiment? What
are the expected outcomes? Are the outcomes complying with quality and
performance criteria?), and the workflow activities execution and coordination (What
activities have finished? Is there any execution errors?). Workflow event notification
mechanisms have to be implemented within a SWfMS or coupled to a SWfMS to
support the generation of awareness information by monitoring parallel executions of
the workflow and the distribution of that information to research group members.
Using event information, participants of a research group can interfere in their own
workflows and can also coordinate interferences in workflow executions of other
participants, discovering and solving problems such as active failures and low quality
data produced. The participant role in a research group is important to determine the
kind of notification information he/she is interested in.

 SciLightning: A Cloud Provenance-Based Event Notification for Parallel Workflows 355

SciLightning considers three main roles: Executors, Coordinators and Analysts.
Executors are those computer science specialists who specify, model and execute the
workflow in the cloud using a shared workspace, typically distributed storages such as
Amazon S3. They are interested in performance information about the workflow
execution, and activity failures, i.e. computer scientists or technical support team.
Most existing monitoring mechanisms proposed in the technical literature are
designed to help this kind of user (e.g. Stampede [20,22]). Coordinators are users
who are responsible for the research group and can grant access to other scientists.
They usually need summarized and aggregated information about planned and
executed activities to identify situations where their interference is necessary.
Analysts are researchers who are responsible for analyzing the overall provenance
data (including file content) to discover if the scientific hypothesis was confirmed or
refuted. High level analysis queries might be “What are the produced phylogenetic
trees in the workflow execution ID number 451?” or “Is the DNA sequence
‘CCCATTGTTCTC’ part of any phylogenetic tree?” It is not simple to answer these
types of queries using existing monitoring mechanisms. The specific objective of
SciLightning is to support the gathering and distribution of awareness information
(i.e. notification) related to asynchronous interaction for executors, coordinators and
analysts.

3 The SciLightning Event Notification Mechanism

SciLightning is designed to provide monitoring information and to be a non-intrusive
approach regarding existing SWfMS. No change in the SWfMS is required as long as
provenance data is provided at runtime for querying. It is based on event notification.
Events are discovered using a specific interface (i.e. it can be SQL queries or a
provenance graph transversing). In addition, traditional monitoring mechanisms,
characterized by a central entity that polls individual workflows, are not adequate for
today’s large-scale scientific experiments. SciLightning components are distributed in
the cloud (in several virtual machines) to monitor different scientific workflows on
demand. Following we describe SciLightning architecture and its provenance model.

Architecture and Implementation
The architecture of SciLightning (Figure 1) is composed by five components: (i) Rule
Database (i.e. Rule DB): in this local database the coordinator configures which types
of events are captured and which type of notification information is delivered to
scientists; (ii) SciLightning Cartridge: it implements a cartridge [28] to interface
SciLightning and the SWfMS provenance repository. It accesses the notification rules
used to identify events by querying provenance data in the repository, (iii) SciLightning
Monitor: it monitors and analyzes provenance data provided at runtime by the SWfMS
through cartridges; (iv) SciLightning Social: it publishes notification messages on
social networks; and (v) SciLightning Mobile: sends notifications to Android-based
devices.

SciLightning needs to be aware of the provenance database schema to extract
required data, such as produced files, file content or activity and workflow execution
times. Thus, SciLightning has to implement and access a different type of cartridge

356 J.T. Pintas et al.

for each provenance repository. The implemented cartridge varies depending on how
provenance is stored. For example, if provenance data is stored in a relational
database, the cartridge has to implement a database view with a predefined signature
that returns the notification information to be delivered to scientists according to rules
stored in the Rule DB.

Fig. 1. Architecture of SciLightning

Rules are specified using an OCL-like [29] structure that is related to the tables in
the provenance repository. For example, if scientists want to be notified when a
specific set of biological sequences was aligned, they can configure a rule as
presented in Figure 2.

context Alignment /* context can be a table, a graph or a log file */

inv: self. owner. Consensus_Alignment = “CCCATTGTTCTC”

Fig. 2. Example of Notification Rule

All rules stored in the Rule DB have to be associated with the entities provided by
the cartridge. This way, any modification in these notification rules can be performed
without the need for adaptation of other components of SciLightning. The coordinator
configures the notification rules in SciLightning. These rules and also the specific

Mobile

SWfMS
Cloud Environment

Provenance
Repository

<<Workflow Definition>> <<Provenance Data>>

Cartridge

<<Provenance
Data>>

Monitor

Social

<<Event>>

Google Cloud Messaging
for Android

<<Notification>>

[Analyst]<<Notification>>

[Analyst]

Rule
DB

[Coordinator]

<<Rules>>

<<Provenance
Data>>

<<Notification>>

<<Notification>>

 SciLightning: A Cloud Provenance-Based Event Notification for Parallel Workflows 357

workflow’s monitoring parameters need to be informed/configured by the coordinator
through a simple Web interface. Moreover, since SciLightning is based on event
notification, the scientist defines the types of events that SciLightning needs to reacts.
Six types of events were identified: (i) Error in the Activity Execution - every
execution error of the monitored workflow activities are notified; (ii) Workflow
Termination - notification of workflow execution termination; (iii) Milestone - a
milestone can be of two types: Activity Start or Activity Termination. When each
defined milestone is reached, notification information is sent to scientists specifying
the milestone and time that it has been achieved; (iv) Generated File - one or more
regular expressions (i.e. regex) can be defined for monitoring the generated files. For
each file generated by the monitored scientific workflow that complies with at least
one of the defined regex notification, information is sent; (v) Activity with an Atypical
Duration - a query identifies activities with the execution time out of the threshold
(i.e. atypical durations), which are considered outliers. The default range threshold
execution time is 2.698 standard deviations when compared to the average [30], but
the coordinator can adjust it before each execution. To calculate this value, the
average and standard deviation of the execution time of each activity are estimated
using the provenance database; then the distance between the average and current
duration for each activity in execution is calculated; and (vi) Configurable Event -
This event is configured by the coordinator using the OCL-like rules such as the one
presented in Figure 2.

The SciLightning Monitor performs regular monitoring of the workflow executions
through queries to the provenance database (using SciLightning cartridge). The
monitoring frequency, i.e. the time between queries is configurable, with default value
of 2.0 minutes. Besides this main functionality, the SciLightning Monitor allows for
the registration of mobile devices and sends a notification to be handled by the
SciLightning Social and SciLightning Mobile components. The SciLightning Monitor
stores the identification token of each mobile device registered. Each identification
token is related to just one scientist and every scientist may have multiple devices
registered. When an event complies with the rules defined in the Rule DB,
notification information is sent to all mobile devices registered for this scientist. Upon
receiving the notification, a message is created in the status bar of the mobile device
in a specific Android app (in its current version). If the scientist needs to obtain
details of the notification, he/she can select the message in the status bar to open the
SciLightning Mobile application screen and list all notification received. The
SciLightning Mobile is an Android1 application that receives, stores and organizes
notification information sent by SciLightning Monitor. The Android platform was
chosen, among other technology options for mobile devices, as it is an open source
solution with free development tools. Also, it is used in a wide range of devices
(mobile phones, tablets and netbooks) from various manufacturers. To register the
SciLightning Mobile application, scientists need only to create an account and a
password in the Rule DB.

1 http://www.android.com/

358 J.T. Pintas et al.

Internally, the SciLightning Mobile registers the same account and password in the
Google’s Cloud to Device Message Service (C2DM)2 to send messages to Android
devices. SciLightning Mobile uses C2DM to dispatch notification to various Android-
based devices that are registered in the SciLightning. The SciLightning Social is a
component that acts as an interface between SciLightning and message features in
social networks. SciLightning Social accesses the social network API to publish the
monitoring results as messages in specific scientists’ accounts. The main idea here is
not to create a scientific social network but to benefit from a message service already
used by scientists (since many scientists have a Twitter or Facebook account). For
example, in the case of Twitter, SciLightning Social is associated with a specific
account (@SciLightning) configured to send notifications to scientists about the
workflows execution using direct messaging service (note that it does not send
workflow results, just the notification of events). To receive notifications, scientists
have only to follow the user @SciLightning. The coordinator can configure in the
Rule DB that a scientist can receive both Android and Social network notifications.

Provenance Model
SciLightning is a non-intrusive approach, which has its own local provenance model.
Besides monitoring and notifying scientists, SciLightning also stores data provenance
related to this monitoring process (i.e. when it identified an event and the notification
was received). This way changes performed using SciLightning do not impact the
SWfMS provenance database (e.g. the SciCumulus provenance database).
SciLightning entities are associated with the SWfMS using reference values. In this
paper we coupled SciLightning to SciCumulus using the value of the field ID (which
is a primary key). The model presented in Figure 3 shows the association between
SciLightning and SciCumulus provenance models. The SciLightning provenance
model allows for the definition and monitoring of parameters, the registration of the
SciLightning Mobile application and the control of scientists and research groups
while SciCumulus provenance model is responsible for storing prospective and
retrospective provenance [27,31]. Since explaining SciLightning entities is the focus
of this subsection, SciCumulus’ entities were also presented in white and without
attributes for not polluting the diagram (Figure 3).

The entity monitorWorkflow stores which workflows are monitored and which
users or groups are notified. Notification parameters can be defined for each
monitoring to configure, e.g., to send a notification when the workflow generates a
particular file or when the workflow reaches a certain milestone. These two
monitoring parameters are respectively represented by the entities monitorFile and
monitorMilestone. Scientists’ information, such as login and password (that are used
for registering the SciLightning Mobile application) and the Twitter account (used to
send notifications) are stored in the table user. This table user has an associated type
(userExecutor, userCoordinator and userAnalyst) and can be organized into research
groups through the entities group and the associative entity userGroup, which allows

2 C2DM is deprecated since June 26, 2012. Currently SciLightning is being adapted for using

Google Cloud Messaging for Android (GCM).

 SciLightning: A Cloud Provenance-Based Event Notification for Parallel Workflows 359

for notifications for all members of the group. The registration tokens of the
SciLightning Mobile application could not be stored in the entity user, since there
may exist several devices registered to the same user. For this reason, the entity
userDevice was created. The monitorLast is an auxiliary entity that stores the date of
the last monitoring performed, which aims to optimize provenance queries. Finally,
the monitorError is a domain entity that stores error codes and their respective
associated messages, which are used to format the error notifications to the scientist.

Fig. 3. The SciLightning provenance model coupled to SciCumulus

4 Experimental Evaluation

In this section, we analyze how SciLightning reacts to events when executing the
SciPhy workflow with the SciCumulus workflow engine. Following we detail Sciphy
workflow and presents experimental results.

SciPhy Workflow
Phylogenetic workflows aim at producing phylogenetic trees to support the
evolutionary relationships between organisms that are used by biologists to infer a
phylogeny (e.g., ancestral relationships among species of organisms). SciPhy [14] is a

360 J.T. Pintas et al.

phylogenetic analysis workflow which aims to processing a large collection of multi-
fasta files (each containing multiple biological sequences from different organisms) to
construct phylogenetic trees. It assists biologists to explore phylogeny and determine
the evolutionary life of genes or genomes of these organisms. The SciPhy workflow
consists of four main activities: (i) The construction of the multiple sequence
alignment (MSA), (ii) the conversion of the alignment format, (iii) the election of the
best evolutionary model, and (iv) the construction of the phylogenetic tree. These
activities respectively execute the following bioinformatics programs (i.e.,
applications): MSA programs (allowing the scientist to choose between MAFFT,
Kalign, ClustalW, Muscle, or ProbCons), ReadSeq, ModelGenerator, and RAxML.
SciPhy was designed to be executed in parallel, where each multi-fasta file is
processed independently in different virtual machines and due to the performance
fluctuations in the cloud environment, a typical execution of SciPhy presents from 2%
to 9% activities execution failure, which requires the biologist to follow the execution
to be aware of its state. This experience [13] motivated the design of SciLightning.

SciCumulus Cloud Workflow Engine
SciCumulus, proposed by Oliveira et al. [9], aims at scheduling, monitoring and load
balancing the parallel execution of scientific workflows dispatched from a common
workstation to the cloud such as Amazon AWS. SciCumulus orchestrates workflow
execution in a set of virtual machines that form a virtual cluster in the cloud,
providing resources dimensioning during the course of the workflow execution
[26,32]. SciCumulus provides computational support for parallelism in workflows
with runtime provenance, enabling queries to the performed at runtime by
SciLightning Monitor. However, SciCumulus, as well as other approaches, does not
provide more advanced mechanisms for monitoring and notification information that
assist the scientist to be aware of the execution status without needing to be physically
at a terminal. Currently, the monitoring mechanism in SciCumulus is based on SQL
queries (conducted by scientist) to the provenance relational database.

Experimental Results
For executing the experiments presented in this paper we coupled SciLightning to
SciCumulus engine executing in Amazon AWS environment. 16 amazon’s large
virtual machines (7.5 GB RAM, 850 GB storage, 2 virtual cores) were used in this
experiment. Each instantiated virtual machine is based on a 64-bit Linux Cent OS 5.5.
The experiment executed SciPhy consuming a dataset of 250 multi-fasta files
containing protein sequences, as detailed by Ocaña et al. [14]. Each execution
generated approximately 5,000 parallel activities. The entire execution of SciPhy was
monitored using SciLightning by approximately 6.3 days.

Among all SciLightning monitoring options the following events were chosen by
the scientist to monitor SciPhy: (i) Errors in activity executions; (ii) Workflow
Termination; (iii) Start and Termination of ModelGenerator activity; (iv) Generation
of files whose name complies the regular expression ^[A-Z]*.mafft; (v) Activities with
an atypical duration; and (vi) Generation of files whose content contains the

 SciLightning: A Cloud Provenance-Based Event Notification for Parallel Workflows 361

biological sequence “ACGTAGTCC”. To evaluate the results, we used metrics of
Positive Predictive Value (PPV) and True Positive Rate (TPR) [33] to verify the
success degree of each of the six types of events that are notified. For classification,
we used the terms true positives (tp), true negatives (tn), false positives (fp), and false
negatives (fn) [33]. Thus PPV and TPR can be calculated as presented by (1) and (2).
Table 1 presents the achieved results. (1) . (2)

Table 1. Experimental Results

Event tp fp fn tn PPV TPR
i 73 2 0 0 0.97 1
ii 1 0 0 0 1 1
iii 1 0 0 0 1 1
iv 1,701 0 0 0 1 1
v 38 11 0 0 0.77 1
vi 21 0 0 0 1 1

For each of the six types of events, SciLightning presented a TPR value of 1 (i.e.
100%), which means that it was able to retrieve only relevant events and send
notification information based on data provenance generated at runtime. However,
when we analyze the PPV value we can note that for two events (i - Failed Activities
and ii - Atypical Duration) the PPV value was 0.97 and 0.77 respectively. In the case
of failure detection it depends on the exit status of the activity execution provided by
the operational system to the workflow engine. This exit status is captured and stored
in the provenance repository. However, in two executions the activity executed
properly and the exit status was 1 (i.e. error). SciLightning provided a failure
notification when there was an absence of failure. In the case of atypical duration, an
activity is classified as with an atypical execution if its execution time exceeds 2.698
standard deviations (as suggested by Juristo and Moreno [34]) compared with the
average execution times already stored in the provenance repository. There was not
provenance data previously registered in the repository in the beginning of the
execution, which makes SciLightning consider all first executions of activities as
outliers. As new executions were computed, this atypical behavior ceased.

The second experiment analyzed the number of events and the number of
notifications on the course of workflow execution (Figure 4) during the first 840
seconds. Figure 4 presents the number of events in a certain period of time and the
number of notification information that were received at the mobile device or social
network message service. We can note that after a peak of identified events (i.e. black
line) there were also small peaks of received notifications (i.e. dashed line). Although
SciLightning sends a notification as soon as an event is identified, there is a delay for
this message to be received at the mobile device or at a social network message

362 J.T. Pintas et al.

service. In the mobile device this is even more critical since SciLightning is
susceptible to network traffic (i.e. internet connection since we are using
a cloud service) and the delay in C2DM service. In general, SciLightning
presents an acceptable communication delay for each notification presenting average
delay of μ = 88.7 seconds with standard deviation of σ = 25.3. A demonstration video
(interface in English, but explanations in Portuguese) is available at:
http://sites.google.com/site/scilightning/.

Fig. 4. Number of events and notifications during execution

5 Related Work

There are some studies in the literature that address the issue of monitoring scientific
workflows executed in parallel. Balis et al. [35] and Gil et al. [10] present a set of
monitoring and reporting requirements for scientific workflows. However, these
requirements are generic and could be applied in several of different systems.
Stampede [20,22] is one of the most prominent approaches that focus on monitoring
workflows. Stampede is a monitoring framework, which captures performance metrics
from workflows executed in a variety of environments. It captures information at the
OS level and uses execution logs. Similarly to SciLightning, Stampede monitors the
workflow at runtime; however, its monitoring only considers performance issues such
as execution times and network bottlenecks. Using Stampede we were not able to build
personalized events that are domain-specific to the scientific workflow. Tudruj et al.
[36] also provide monitoring mechanisms by using user-defined control-dedicated
processes called synchronizers. These synchronizers collect information about the state
of the application execution, but it cannot identify events such as atypical execution
times and domain-specific events.

0

20

40

60

80

100

120

140

160

0 51 97 10
7

11
8

12
3

13
1

13
9

14
5

15
1

20
1

20
8

21
5

22
7

23
3

23
8

26
1

27
3

28
3

29
6

31
3

32
0

32
6

34
4

35
1

36
5

54
9

56
3

57
6

58
9

60
7

64
3

68
9,

6

73
9,

1

78
8,

6

83
8,

1

N
um

be
r

of
 O

cc
ur

en
ce

s

Execution Time (in seconds)

Events Notifications

 SciLightning: A Cloud Provenance-Based Event Notification for Parallel Workflows 363

6 Final Remarks

Large-scale scientific experiments involve several executions of compute intensive
scientific workflows. These workflows need to be executed in parallel in HPC
environments, such as clouds. However, the workflow execution may involve
100,000 activities executions or more, and even using HPC, it may last for days or
weeks to complete. It is not acceptable that scientists monitor this execution on-line in
a terminal without steering tools. Monitoring a workflow execution is essential to
guarantee the reliability in the execution and check that it is going on the right track
[37]. To allow for scientists to interfere in a workflow execution, they must be aware
of what is happening in the execution using workflow steering mechanisms. In this
paper, we present an approach for monitoring and notifying of events in parallel
executions of scientific workflows, named SciLightning. Our approach uses
provenance data generated at runtime and events configured by scientists. Using
provenance data, SciLightning is able to identify and report events during the
workflow execution such as semantic errors in activities and inconsistent file
production workflow termination.

Our experimental evaluation showed that SciLightning is able to identify and
report all events defined by scientists. With the exception of the notification of the
atypical execution time and activity failure, all notifications presented 100% of
Positive Predictive Value, which showed that SciLightning is effective in identifying
and reporting events. SciLightning is designed to have a service-based architecture
that is generic and can be coupled to existing SWfMS such as SciCumulus or Swift,
since the provenance data is provided at runtime. Improving scientists’ awareness by
notifying workflow events at runtime is an essential requirement to allow interference
in the workflow execution from an abort execution until runtime fine-tuning of
parameters, or even the workflow adaptation during the execution [37].

Acknowledgments. This work was partially sponsored by CNPq, FAPERJ and CAPES.

References

[1] Kirsch-Pinheiro, M., de Lima, J.V., Borges, M.: A framework for awareness support in
groupware systems. In: The 7th International Conference on Computer Supported
Cooperative Work in Design, pp. 13–18 (2002)

[2] Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and e-Science: An
overview of workflow system features and capabilities. Future Generation Computer
Systems 25(5), 528–540 (2009)

[3] Sohlenkamp, M., Prinz, W., Fuchs, L.: PoliawaC: Design and evaluation of an
awareness-enhanced groupware client. AI & SOCIETY 14(1), 31–47 (2000)

[4] Wozniak, J., Armstrong, T., Maheshwari, K., Lusk, E., Katz, D., Wilde, M., Foster, I.:
Turbine: A distributed-memory dataflow engine for extreme-scale many-task
applications. In: Proceeding of 1st International Workshop on Scalable Workflow
Enactment Engines and Technologies (2012)

364 J.T. Pintas et al.

[5] Chen, W., Silva, R., Deelman, E., Sakellariou, R.: Balanced Task Clustering in Scientific
Workflows. In: Proc. of 9th IEEE International Conference on e-Science (2013)

[6] Abouelhoda, M., Issa, S., Ghanem, M.: Tavaxy: Integrating Taverna and Galaxy
workflows with cloud computing support. BMC Bioinformatics 13, 77 (2012)

[7] Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M.,
Truong, H.-L., Villazon, A., et al.: ASKALON: a Grid application development and
computing environment. In: 6th IEEE/ACM International Workshop on Grid Computing,
pp. 122–131 (2005)

[8] Ogasawara, E., Dias, J., Silva, V., Chirigati, F., Oliveira, D., Porto, F., Valduriez, P.,
Mattoso, M.: Chiron: A Parallel Engine for Algebraic Scientific Workflows. In:
Concurrency and Computation (2013)

[9] Oliveira, D., Ogasawara, E., Baião, F., Mattoso, M.: SciCumulus: A Lightweight Cloud
Middleware to Explore Many Task Computing Paradigm in Scientific Workflows. In:
3rd International Conference on Cloud Computing, pp. 378–385 (2010)

[10] Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny,
M., Moreau, L., et al.: Examining the Challenges of Scientific Workflows.
Computer 40(12), 24–32 (2007)

[11] Guerra, G., Rochinha, F., Elias, R., Oliveira, D., Ogasawara, E., Dias, J., Mattoso, M.,
Coutinho, A.L.G.A.: Uncertainty Quantification in Computational Predictive Models for
Fluid Dynamics Using Workflow Management Engine. International Journal for
Uncertainty Quantification 2(1), 53–71 (2012)

[12] Guerra, G., Rochinha, F., Elias, R., Coutinho, A., Braganholo, V., de Oliveira, D.,
Ogasawara, E., Chirigati, F., Mattoso, M.: Scientific Workflow Management System
Applied to Uncertainty Quantification in Large Eddy Simulation. In: Congresso Ibero
Americano de Métodos Computacionais em Engenharia, pp. 1–13 (2009)

[13] Ocaña, K.A.C.S., Oliveira, D., Dias, J., Ogasawara, E., Mattoso, M.: Optimizing
Phylogenetic Analysis Using SciHmm Cloud-based Scientific Workflow. In: 2011 IEEE
Seventh International Conference on e-Science (e-Science), pp. 190–197 (2011)

[14] Ocaña, K.A.C.S., de Oliveira, D., Ogasawara, E., Dávila, A.M.R., Lima, A.A.B.,
Mattoso, M.: SciPhy: A Cloud-Based Workflow for Phylogenetic Analysis of Drug
Targets in Protozoan Genomes. In: Norberto de Souza, O., Telles, G.P., Palakal, M.
(eds.) BSB 2011. LNCS, vol. 6832, pp. 66–70. Springer, Heidelberg (2011)

[15] Dudley, J.T., Pouliot, Y., Chen, R., Morgan, A.A., Butte, A.J.: Translational
bioinformatics in the cloud: an affordable alternative. Genome Medicine 2(8), 51 (2010)

[16] Addis, M., Ferris, J., Greenwood, M., Li, P., Marvin, D., Oinn, T., Wipat, A.:
Experiences with e-Science workflow specification and enactment in bioinformatics. In:
Proceedings of UK e-Science All Hands Meeting, pp. 459–467 (2003)

[17] Deelman, E., Mehta, G., Singh, G., Su, M.-H., Vahi, K.: Pegasus: Mapping Large-Scale
Workflows to Distributed Resources. In: Workflows for e-Science, pp. 376–394.
Springer, Heidelberg (2007)

[18] Taylor, I., Shields, M., Wang, I., Harrison, A.: The Triana Workflow Environment:
Architecture and Applications. In: Workflows for e-Science, pp. 320–339. Springer
(2007)

[19] Zhao, Y., Hategan, M., Clifford, B., Foster, I., von Laszewski, G., Nefedova, V., Raicu,
I., Stef-Praun, T., Wilde, M.: Swift: Fast, Reliable, Loosely Coupled Parallel
Computation. In: 3rd IEEE World Congress on Services, p. 206, 199 (2007)

[20] Gunter, D., Deelman, E., Samak, T., Brooks, C.H., Goode, M., Juve, G., Mehta, G.,
Moraes, P., Silva, F., et al.: Online workflow management and performance analysis with
Stampede. In: 2011 7th International Conference on Network and Service Management
(CNSM), pp. 1–10 (2011)

 SciLightning: A Cloud Provenance-Based Event Notification for Parallel Workflows 365

[21] Missier, P., Embury, S.M., Greenwood, M., Preece, A., Jin, B.: Managing information
quality in e-science: the qurator workbench. In: Proceedings of the 2007 ACM SIGMOD
international conference on Management of Data, pp. 1150–1152 (2007)

[22] Vahi, K., Harvey, I., Samak, T., Gunter, D., Evans, K., Rogers, D., Taylor, I., Goode, M.,
Silva, F., et al.: A General Approach to Real-Time Workflow Monitoring. In: 2012 SC
Companion High Performance Computing, Networking, Storage and Analysis (SCC),
pp. 108–118 (2012)

[23] Tierney, B., Johnston, W., Crowley, B., Hoo, G., Brooks, C., Gunter, D.: The NetLogger
Methodology for High Performance Distributed Systems Performance Analysis. In:
Proceedings of the 7th IEEE International Symposium on High Performance Distributed
Computing, p. 260 (1998)

[24] Elias, R.N., Paraizo, P.L.B., Coutinho, A.L.G.A.: Stabilized edge-based finite element
computation of gravity currents in lock-exchange configurations. International Journal
for Numerical Methods in Fluids 57, 1137–1152 (2008)

[25] Ocaña, K.A.C.S., de Oliveira, D., Horta, F., Dias, J., Ogasawara, E., Mattoso, M.:
Exploring molecular evolution reconstruction using a parallel cloud based scientific
workflow. In: de Souto, M.C.P., Kann, M.G. (eds.) BSB 2012. LNCS, vol. 7409,
pp. 179–191. Springer, Heidelberg (2012)

[26] Oliveira, D., Ocaña, K.A.C.S., Ogasawara, E., Dias, J., Gonçalves, J., Baião, F., Mattoso,
M.: Performance evaluation of parallel strategies in public clouds: A study with
phylogenomic workflows. Future Generation Computer Systems 29(7), 1816–1825
(2013)

[27] Freire, J., Koop, D., Santos, E., Silva, C.T.: Provenance for Computational Tasks: A
Survey. Computing in Science and Engineering 10(3), 11–21 (2008)

[28] Birsan, D.: On plug-ins and extensible architectures. Queue 3(2), 40–46 (2005)
[29] Warmer, J.B., Kleppe, A.G.: The object constraint language: getting your models ready

for MDA. Addison-Wesley, Boston (2003)
[30] Freedman, D., Pisani, R., Purves, R.: Statistics, 4th edn. W. W. Norton (2007)
[31] Davidson, S.B., Freire, J.: Provenance and scientific workflows: challenges and

opportunities. In: ACM SIGMOD International Conference on Management of Data,
pp. 1345–1350 (2008)

[32] Oliveira, D., Viana, V., Ogasawara, E., Ocana, K., Mattoso, M.: Dimensioning the virtual
cluster for parallel scientific workflows in clouds. In: Proceedings of the 4th ACM
Workshop on Scientific Cloud Computing, pp. 5–12 (2013)

[33] Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and
Technology behind Search, 2nd edn. Addison-Wesley Professional (2011)

[34] Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation, 1st edn.
Springer Publishing Company, Incorporated (2010)

[35] Balis, B., Bubak, M., Łabno, B.: Monitoring of Grid scientific workflows. Sci.
Program. 16(2-3), 205–216 (2008)

[36] Tudruj, M., Kopanski, D., Borkowski, J.: Dynamic Workflow Control with Global States
Monitoring, p. 44 (2007)

[37] Dias, J., Ogasawara, E., Oliveira, D., Porto, F., Coutinho, A., Mattoso, M.: Supporting
Dynamic Parameter Sweep in Adaptive and User-Steered Workflow. In: 6th Workshop
on Workflows in Support of Large-Scale Science, pp. 31–36 (2011)

Energy Savings on a Cloud-Based Opportunistic

Infrastructure

Johnatan E. Pecero1, Cesar O. Diaz1, Harold Castro2, Mario Villamizar2,
Germán Sotelo2, and Pascal Bouvry1

1 University of Luxembourg, L-1359 Luxembourg-Kirchberg, Luxembourg
{firstname.lastname}@uni.lu,

2 Universidad de los Andes, Bogotá D.C., Colombia
{hcastro,mj.villamizar24,ga.sotelo69}@uniandes.edu.co

Abstract. In this paper, we address energy savings on a Cloud-based
opportunistic infrastructure. The infrastructure implements opportunis-
tic design concepts to provide basic services, such as virtual CPUs, RAM
and Disk while profiting from unused capabilities of desktop computer
laboratories in a non-intrusive way.

We consider the problem of virtual machines consolidation on the
opportunistic cloud computing resources. We investigate four workload
packing algorithms that place a set of virtual machines on the least num-
ber of physical machines to increase resource utilization and to transition
parts of the unused resources into a lower power states or switching off.
We empirically evaluate these heuristics on real workload traces collected
from our experimental opportunistic cloud, called UnaCloud. The final
aim is to implement the best strategy on UnaCoud. The results show that
a consolidation algorithm implementing a policy taking into account fea-
tures and constraints of the opportunistic cloud saves energy more than
40% than related consolidation heuristics, over the percentage earned by
the opportunistic environment.

Keywords: cloud computing, green computing, performance of system.

1 Introduction

In this paper, we consider a Cloud-based opportunistic infrastructure called Un-
aCloud [1]. UnaCloud implements an Infrastructure as a Service cloud model
oriented to the provision of computing resources for the development of scien-
tific projects and to support related activities (i.e., to execute applications such
as BLAST, Hmmer or Gromacs). It uses a commodity underlying infrastructure
implementing opportunistic design concepts to provide computational resources
such as CPU, RAM and Disk, while profiting from the unused capabilities of
desktop computer laboratories in a non-intrusive manner offering some of the
most important advantages of cloud computing, as for example up-front invest-
ment elimination and the appearance of infinite resources available on demand.
UnaCloud is composed of (almost) homogeneous computing resources of com-
puter laboratories. This may not be the case for other opportunistic platforms

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 366–378, 2014.
c© Springer International Publishing Switzerland 2014

Energy Savings on a Cloud-Based Opportunistic Infrastructure 367

or community-based Cloud, in which private computer owners donate a portion
of their idle computing resources to be used by anyone inside a community for
supporting a specific project.

We aim to investigate energy savings on UnaCloud that can serve as a basis for
related opportunistic cloud models. Although UnaCloud offers the performance
capability of deploying Virtual Machines (VMs) in a sustainable way by using
idle resources opportunistically, it lacks of energy saving consideration during
the placement of the VMs. UnaCloud implements a random placement of VMs
to the idle resources of the Physical Machines (PMs).

Techniques such as Dynamic Voltage and Frequency Scaling and Dynamic
Power Management have been extensively studied and deployed to make the
Cloud infrastructure components power efficient [2,3]. The consolidation of VMs
to reduce the number of underutilized computing resources, and shutting down
the unused resources or to transition parts into a lower power state is another
efficient energy saving strategy. Therefore, in this paper we investigate four con-
solidation algorithms to minimize the Energy Consumption Rate (ECR) of Un-
aCloud. Three of the heuristics rely on classical bin-packing algorithms, and
one is an ad hoc (opportunistic) consolidation algorithm proposed in [4], that
places the VMs first on PMs already in use by a physical user. We empirically
evaluate these heuristics on real workload traces. We use cloud workloads based
on real production traces collected from the archives of UnaCloud. The traces
have been collected during one year. Real UnaCloud scenarios provide a realistic
VMs stream for performance evaluation based on simulations of VMs consolida-
tion algorithms. We present results obtained by simulations, while the ultimate
goal is to implement the best strategy on UnaCloud. The main reason is that
UnaCloud is a production cloud infrastructure already in use making it difficult
the implementation for testing the algorithms. However, based on the generated
results a work in progress is considering the implementation on UnaCloud.

Although Unacloud may aggregate desktops from independent individuals it
is meant to work with machines within a computer laboratory, each laboratory
is managed by a single administrator. It gives UnaCloud several advantages
in terms of homogeneity, control and risk of failures. In our tests, a computer
laboratory with 35 machines presents a maximum of two failures a day. Besides,
UnaCloud has been used to run Bag of Tasks applications, with many short-lived
jobs, making unnecessary to deal with checkpoints and fault tolerance issues [5].

This paper is organized as follows: Section 2 presents related work. Section 3
describes the energy consumption behavior on an opportunistic cloud infras-
tructure, and details the energy model. The evaluated consolidation algorithms
are described in Section 4. Section 5 presents the simulation results. Section 6
concludes the paper.

2 Related Work

The problem of VM allocation can be divided in two: the first part is admission
of new requests for VM provisioning and placing the VMs on hosts, whereas the

368 J.E. Pecero et al.

second part is optimization of current allocation of VMs. In this work we focus
on the first part of the VM allocation problem. This problem can be modeled as
a bin packing problem with variable bin sizes.

The problem in its single-objective variant is an NP-hard problem, and thus
is expensive to compute with increasing numbers of PMs and VMs. Different
heuristics and linear programming based solutions are used for getting a near
optimal solution. Several proposed power-aware packing algorithms use a variant
of First Fit Decreasing (FFD) heuristic to reduce resource fragmentation. Static
consolidation considers that resource utilization does not change during execu-
tion and the number of reconfigurations depends solely of creation and deletion
of VMs, one example is Entropy [6]. Dynamic VM management assumes that
resource needs change over time, and thus VMs can be moved during their execu-
tion in order to improve the optimality placement, one framework that considers
dynamic management of VMs is Snooze [7].

Verma et al. [8] modeled the VM workload placement as an instance of the
one dimensional bin-packing problem and extended FFD to perform the place-
ment. Li et al. [9] proposed the EnaCloud framework and a modified version of
the Best-Fit algorithm is implemented. Buyya et al. [10] presented simulation-
driven results for a workload consolidation algorithm based on a modified version
of the Best Fit Decreasing algorithm. The algorithm sorts all the VMs in decreas-
ing order of current utilization and allocate each VM to a host that provides the
least increase of power consumption due to this allocation. This allows leverag-
ing heterogeneity of the nodes by choosing the most power-efficient ones. Feller
et al. [11] dealt with the workload consolidation problem and model it as an
instance of the multi-dimensional bin-packing problem. The authors proposed
a nature-inspired workload consolidation algorithm based on the Ant Colony
Optimization framework. The proposed algorithm outperforms FFD, however,
at greater complexity. Beloglazow and Buyya [12] proposed a resource manage-
ment policy for virtualized cloud data centers. The objective is to consolidate
VMs leveraging live migration and switch off idle nodes to minimize power con-
sumption, while providing required Quality of Service.

Most of the related consolidation algorithms consider a pool of dedicated
computing resources, however the work in this paper differs from related state
of the art since we deal with an opportunistic cloud-based infrastructure.

3 Energy in an Opportunistic Cloud Environment

In this section we present the energy model. First, we present the energy function
of a desktop machine, then the energy model is described.

3.1 Parameter Tunning

In opportunistic cloud solutions there are some desktops computers which are
donned by users of the same or different institutions to aggregate processing
capabilities of the system. Those desktop computers can be modeled as a Set of

Energy Savings on a Cloud-Based Opportunistic Infrastructure 369

Physical Machines (SPMs) each one with some hardware specifications includ-
ing CPU cores, RAM memory, hard disk and networking. Researchers require
the execution of a Set of Virtual Machines (SVMs) each one requiring a mini-
mum hardware specification. Due to opportunistic environment, we assume that
there are two states (idle and busy) of a PM to be selected to deploy a VM,
and according to its state the ECR and the estimated execution time of a VM
executing a CPU-intensive task can change. To analyze the relation between the
CPU usage and the ECR consumed by a PM, experimental tests of a previous
and recent work [5] show that the CPU usage and ECR are not directly pro-
portional. Figure 1 shows the function f(x) (based on a regression calculated
on experimental tests) that allows to estimate the ECR of a PM according to
its CPU usage. Here we present CPU usage as the percentage provided by the
operating system which is in aggregation of the utilization across all cores of
the CPU.

Fig. 1. Desktop Computer energy consumption. f(x) = y(x) = 45.341x0.1651

Table 1 provides the ECRs required to execute a VM according to the state
of the PM. We assume that a VM will execute a CPU-intensive task during
a τ time. While the VM is in execution the ECR of the PM will increase to
f(x), where f(x) is a real function that returns the ECR of a PM given its CPU
usage percentage. The idle state represents a turned on PM without a user (a
student, administrative, etc.) using it while the VM is in execution. The busy
state represents a turned on PM with a user using it and a VM in execution.

When the physical machine is in idle state, the ECR consumed by the VMs is
equal to the difference between f(x) and f(0), where f(0) is the ECR consumed
by the PM while is in idle state and f(x) is the ECR when a virtual machine is in
execution (by number of cores required from VMs determining the CPU usage).
In the busy state, the ECR consumed by the VMs is equal to the difference
among f(x) + ECRMON , and ECRuser , where ECRMON is the ECR of the
monitor when there is a user using the PM, and ECRuser is the mean ECR of a

370 J.E. Pecero et al.

physical machine when there is a user using it and there is not a VM in execution.
In busy state the execution time of the VM takes more time because there is
an user consuming computational resources (and competing by the resources
required by the VM), therefore the execution time of the VM can be calculated
as 100/Lfree× τ , where Lfree is the percentage of CPU dedicated to the virtual
machine and τ is the estimated running time (provided on demand when a VM
is requested) of the VM. We assume that the execution time of an opportunistic
CPU intensive task is linearly proportional to the amount of processor used in
the PM that is running it. To estimate the percentage of CPU used by users of the
PMs, during daylight working hours we executed different tests that show that
the CPU utilization does not exceed 10% on average [13]. That is Lfree = 90%.

To estimate the ECR on different states, the results of Table 1 can be com-
pleted with the function f(x) depicted in Figure 1. Additional parameters such
as ECRMON and ECRUSER were calculated using specific tests. In tests us-
ing a commodity desktop computer, the ECRMON was equal to 20W and the
ECRUSER was equal to 87W [13].

Table 1. ECR used by a VM executing a CPU-intensive task

Computer Execution ECR for an intensive CPU Task
state with VM (ECR with VM - without VM)

1 (idle) τ f(x)− f(0)
2 (busy) 100

Lfree
× τ f(x) +ECRMON −ECRuser

τ is the sum of τuser and τfree if τuser is less than τ . τuser is given by the
time of the PM with an user when it is executing VMs and τfree is the rest of
the time to finish the VM, Eq 1 shows the relation of the execution time of the
VM when there is an user in the PM.

τ = 100
Lfree

τuser + τfree =
10
9 τuser + τfree

1.1× τuser + τ − τuser = 0.1× τuser + τ
(1)

Table 2 shows that from the energy consumption point of view, the best
desktop PMs to deploy a VM are those in a busy state.

Table 2. Experimental results of energy consumption

Computer Execution Mean ECR
state time (W)

1 (idle) τ f(x)− 47
2 (busy) 0.1× τuser + τ f(x) + 20− 87

Energy Savings on a Cloud-Based Opportunistic Infrastructure 371

3.2 Energy Model

In this section we show a mathematical description to calculate the ECR required
for executing a SVM on an opportunistic cloud infrastructure.

Once the consolidation process has finished, the program calculates the power
consumption. P core

i (t) is the power of a core i at time t that belongs to a PM.
Eq 2 shows how is defined this power.

P core
i (t) = si(t) ·

(
(1− yi(t))P

idleC
i + yi(t)P

workC
i

)
(2)

where P idleC
i and PworkC

i are power consumed in idle and work state of the
core. si(t) denotes if the core is on or not at time t as si(t) = 1 and si(t) = 0
respectively. yi(t) denotes if the core is working or not at time t. When a core
is on, without working, consumes P idleC

i but if the core is on and working, it
consume PworkC

i . The model assumes that power consumption of all system
components is essentially constant regardless of the machine activity.

The power consumption of a PM is denoted by Pmach
j (t) as Eq. 3 shows.

Pmach
j (t) = zj(t) ·

(
(1− wj(t))P

idleM
j + wj(t)P

workM
j (t)

)
(3)

where P idleM
j and PworkM

j are power consumed in idle and busy states of the PM.
zj(t) denotes different states of the PM as Eq. 4 shows. The value of zj(t) = 1.1
refers to the extra power consumption because of competing by the resources
required as aforementioned. wi(t) denotes if the core is working or not at time
t. Hence, power consumed by machine have direct relation to power consumed
by core.

zj(t) =

⎧⎨
⎩

1 if mach is on
1.1 if mach is on and user
0 otherwise

(4)

We assume that P idleM
j is the sum of P idleC

i of all cores belong to machine

j and is the same when machine is in idle state. PworkM
j is calculated from the

equation resulted from Figure 1 as Eq. 5 shows.

PworkM
j (t) = Vjinixj(t)

(
log10

Vjmax
Vjini

)
/2

(5)

where xj(t) is taken from Figure 1 as Eq. 6 shows. We have specific homo-
geneous machines with a behavior as it shows in Figure 1 and related with
Eq.5, we can deduce Vjini = 45.341 and if Vjmax = 97 we have PworkM

j (t) =

45.341xj(t)
0.1651.

xj(t) =
T u c

T c
× 100 (6)

Where T u c refers to Total used cores and T c refers to Total cores. As we
assumed for P idleM

j , we assume the power when a PM j is at full charge, it is
when all the cores are working, therefore we can deduce:

P idleM
j =

∑T c
i P idleC

i

Pmach
j (tmax) = PworkM

j (tmax) = PworkC
i × T c

PworkM
j (t) = P core

i · T u c

(7)

372 J.E. Pecero et al.

Now, from equations 5 and 7 we can conclude:

P idleM
j = Vjini

Pmach
jmax

= Vjmax

(8)

To calculate the energy consumed by a PM, once the placement process has
finished, we sort all the VMs assigned to each machine by execution time (et) in
descending order:

τ1 > τ2 (9)

where τ1 denotes the biggest execution time of VM in the machine assigned
and τ2 the next execution time in descending order. Using equation 10 we can
calculate the energy consumed by a PM

Ej =
T v−1∑
k=1

Pmach
j (τk) · (τk − τk+1) + Pmach

j (τT v) · (τT v) (10)

where T v refers to total of VMs assigned to a PM j. The total energy consumed
by the system is denoted as Etotal (see Eq. 11)

Etotal =

T m∑
j

Ej (11)

where T m refers to the total PMs in the system.

4 Evaluated Consolidation Strategies for UnaCloud

UnaCloud usually executes VMs to run CPU-intensive applications. Therefore,
we consider that the VMs consolidation problem is constrained by a single re-
source, in this case all the VMs are CPU bound, then the problem corresponds
to the one dimensional bin packing problem with different bin capacity (i.e.,
different number of cores per PM).

The most popular and used heuristics to deal with the one dimensional bin
packing problem are First-Fit, First-Fit Decreasing and Best-Fit algorithms [14].
These heuristics use a greedy weight function applied to the items such that
every item is assigned a single value. In case of First-Fit Decreasing and Best-
Fit algorithms the items are sorted and then placed sequentially into a decreasing
order. The heuristics, specially First-Fit Decreasing, are best known to be very
effective both in theory with performance guarantees and in practice. Several
systems have implemented variants of the three heuristics. Therefore, we consider
them to be evaluated in the context of UnaCloud.

To minimize the ECR rate used by the opportunistic cloud, the consolidation
strategies should try to place the VMs first on a PM in a busy state (i.e., with
a VM already assigned on it or with a physical user) that satisfies the VM
requirements, instead of placing the VM on a PM in a different state. In [4]

Energy Savings on a Cloud-Based Opportunistic Infrastructure 373

we proposed a packing algorithm that prioritizes the deployment of VMs on
PMs already in use. The algorithm, called Sorting in [4], is a variant of First-Fit
Decreasing. The algorithm starts by sorting the set of VMs and PMs. VMs are
sorted in decreasing order of required cores and estimated running time. PMs are
sorted by three attributes: (1) PMs that already have virtual machines running
on them, (2) PMs in busy state (a user is using them), and (3) PMs with more
available CPU cores. Then, VMs are placed on the PMs in a First-Fit policy.
After a VM is placed on a PM the ordered list of the PMs is sorted again. The
attributes used to sort PMs allow that PMs with a VM already assigned or
in a busy state have priority over the others, hence reducing the ECR rate as
described in Section 3.

Next section presents the evaluation comparison of First-Fit, First-Fit De-
creasing, Best-Fit, and Sorting using UnaCloud scenarios.

5 Experimental Results

This section presents the empirical evaluation of the investigated consolidation
algorithms. The aim is to gain a first insight into the performance of the algo-
rithms on different real scenarios before implementing the best one on UnaCloud.

UnaCloud currently has access to three computer labs with 109 desktop com-
puters, whose aggregated capabilities may deliver up to 592 processing cores (70
PMs have four cores each and 39 PMs with eight cores), 572 GB of RAM, 8 TB
of storage and 1TB of shared storage in a Network Attached Storage (NAS).

5.1 Workload

In order to provide performance comparison, we use workloads based on real VMs
production traces. Real UnaCloud scenarios provide a realistic VMs stream for
performance evaluation based on simulations of VMs allocation algorithms. In
this paper, traces from the archives of UnaCloud are used. The traces have been
collected during one year. The total number of VMs in the workload requested
during the year is up to 9800 each one requiring either 1, 2, 3, 4, 6, or 8 cores,
1, 2, 3, 4, 6, or 8 GB of RAM, and 20 GB of storage.

In order to estimate the energy consumed by a given placement, we use the
information provided in Section 3. The VMs are also characterized by different
time periods from 45 minutes up to 43200 minutes (≈ 720 h), the time requested
by users on demand to execute VMs. The ECR rate values represent the power
drawn by the PMs at the utilization given by the placement over the execution
time. We assume that when a PM does not have a VM assigned to it and a user
is not working on it the PM can be turned off. Hence, no energy is consumed by
the PM and is not included in the computation of the total ECR rate.

5.2 Experimental Scenarios

Different scenarios have been generated as follows. We consider that a given
percentage of PMs has a user working on it. To simulate the scenarios and gen-
erate the instances used by the consolidation algorithms, we vary the percentage

374 J.E. Pecero et al.

from 0% up to 50% with the increment 10%. We randomly assign a user to a
PM and we generate 30 instances for each scenario. The number of VMs to be
placed on the PMs varies from 40 up to 130 with the increment 10. We generate
30 instances at random for each size from the real traces and we used them
as workloads for all the simulations discussed below. The maximum number of
cores on each size is up to the total available physical cores in order to support
the worst packing scenario, in which all the PMs run at least one VM. We as-
sume that a physical user utilizes a PM during 60 minutes up to 240 minutes.
We randomly assign the time of the physical user working on the PM (uniformly
in the interval [60, 240]).

5.3 Algorithms Comparison

We measured the amount of provisioned PMs, and the ECR rate of the place-
ment for every algorithm. We report average results. We only report results for
scenarios assuming 0% and 50% of PMs with a user. The objective is to explore
the behavior of the investigated heuristics and the gain of the opportunistic
environment.

40 50 60 70 80 90 100 110 120 130

0% users in the machines

Amount of VMs

Am
ou

nt
 o

f P
M

s U
se

d

0
20

40
60

80

Heuristics

First−Fit
First−Fit Decreasing
Best−Fit
Sorting

Fig. 2. Number of PMs to place the VMs when there are no users in PMs

Figures 2 and 3 show the number of PMs used by each of the heuristics to
place all the VMs when there are no physical users using the PMs and when
50% of the machines already have a physical user, respectively. Figures 4 and 5
present the ECR rate for the considered scenarios without users and with 50%
of machines with a user, respectively.

Energy Savings on a Cloud-Based Opportunistic Infrastructure 375

40 50 60 70 80 90 100 110 120 130

50% users in the machines

Amount of VMs

Am
ou

nt
 o

f P
M

s U
se

d

0
20

40
60

80
10

0

Heuristics

First−Fit
First−Fit Decreasing
Best−Fit
Sorting

Fig. 3. Number of PMs to place the VMs when 50% of PMs have a physical user

As we can see the Sorting heuristic utilizes important lower amount of PMs
yielding to superior average PM optimization and significant ECR lower con-
sumption. The heuristic optimizes up to 41% more than First-Fit and First-Fit
decreasing, and 36% more than Best-Fit when there are no physical users in the
PMs. When 50% of the PMs are in an busy state Sorting requires 30% on average
less PMs than the related heuristics. The main reason that Sorting needs more
PMs in the second scenario is that it places the VMs to a maximum number of
PMs in a busy state.

We can observe that Sorting gains significant energy saving (i.e. low ECR)
regarding the related heuristics. The average gain of ECR by Sorting when no
users are assigned to PMs is up to 38% regarding First-Fit, up to 34% concerning
First-Fit Decreasing, and up to 35% with respect to Best-Fit. For the second
scenario whit 50% of busy PMs all the investigated heuristics gain more energy
than in the first scenario with all the PMs in an idle state. These results highlight
the benefits and advantages of an opportunistic cloud, in this case UnaCloud,
as a sustainable infrastructure.

The average ECR gain of Sorting is more important regarding related heuris-
tics than in the first scenario. Sorting optimizes 48% more energy than First-Fit,
it can gain up to 45% regarding First-Fit Decreasing, and up to 46% more than
Best-Fit. The results highlight that prioritizing busy PMs to place the VMS is
a good saving energy option to consolidate VMs.

It can be observed that First-Fit utilizes more PMs (approx. 4%) in the op-
portunistic environment to consolidate the VMs than Best-Fit in almost all the
scenarios, however the ECR rate is lower than Best-Fit. We consider that it is

376 J.E. Pecero et al.

40 50 60 70 80 90 100 110 120 130

0% users in the machines

Amount of VMs

En
er

gy
 C

on
su

m
pt

ion
 (=

kW
h)

0
20

40
60

80
10

0
12

0
Heuristics

First−Fit
First−Fit Decreasing
Best−Fit
Sorting

Fig. 4. Total ECR consumed when there are no users in PMs

40 50 60 70 80 90 100 110 120 130

50% users in the machines

Amount of VMs

En
er

gy
 C

on
su

m
pt

ion
 (=

kW
h)

0
20

40
60

80
10

0 Heuristics

First−Fit
First−Fit Decreasing
Best−Fit
Sorting

Fig. 5. Total ECR consumed when 50% of PMs have a physical user

Energy Savings on a Cloud-Based Opportunistic Infrastructure 377

due to the fact that First-Fit uses more PMs in an idle state than Best-Fit,
nevertheless for a shorter time of period than Best-Fit, hence the ECR rate is
less than Best-Fit.

6 Conclusions and Future Work

In this paper, we addressed energy savings on an opportunistic infrastructure,
specially for UnaCloud. We investigated and empirically evaluated four state of
the art consolidation algorithms. We focused on the optimization of the ECR
rate. We have simulated different scenarios using real workload traces. The re-
sults showed that the opportunistic infrastructure seems to be a good option as a
sustainable computing on demand infrastructure. The results also highlight that
a consolidation algorithm implementing a policy that prioritizes the placement of
VMs onto busy PMs can reduce the energy-consumption more than 40% against
related heuristics, over the percentage earned by the opportunistic environment.

A work in progress is the implementation of Sorting on UnaCloud. However,
we are adapting the heuristic by considering free-knowledge information (i.e.,
without assuming the estimated running time of VMs), and the dynamic feature
of the infrastructure. We also plan to consider more than one resource during the
placement of VMs, the problem can be modeled as a multi-dimensional packing
problem.

Acknowledgment. This work was completed with the support of the FNR
INTER/CNRS/11/03 Green@Cloud Project.

References

1. Rosales, E., Castro, H., Villamizar, M.: Unacloud: Opportunistic cloud computing
infrastructure as a service. In: Cloud Computing 2011, pp. 187–194. IARIA (2011)

2. Wang, L., Khan, S.U., Chen, D., Koodziej, J., Ranjan, R., Zhong Xu, C., Zomaya,
A.: Energy-aware parallel task scheduling in a cluster. Future Generation Computer
Systems 29(7), 1661–1670 (2013)

3. Bilal, K., Khan, S., Madani, S., Hayat, K., Khan, M., Min-Allah, N., Kolodziej,
J., Wang, L., Zeadally, S., Chen, D.: A survey on green communications using
adaptive link rate. Cluster Computing 16(3), 575–589 (2013)

4. Diaz, C., Castro, H., Villamizar, M., Pecero, J., Bouvry, P.: Energy-aware vm
allocation on an opportunistic cloud infrastructure. In: Proceedings of the 2013
13th IEEE/ACM Int. Symposium CCGRID, pp. 663–670. IEEE Computer Society
(2013)

5. Castro, H., Villamizar, M., Sotelo, G., Diaz, C., Pecero, J.E., Bouvry, P.: Green
flexible opportunistic computing with task consolidation and virtualization. Cluster
Computing, 1–13 (2012)

6. Hermenier, F., Lorca, X., Menaud, J.M., Muller, G., Lawall, J.: Entropy: a consoli-
dation manager for clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE 2009, pp. 41–50.
ACM, New York (2009)

378 J.E. Pecero et al.

7. Feller, E., Rilling, L., Morin, C.: Snooze: A scalable and autonomic virtual ma-
chine management framework for private clouds. In: Proceedings of the 2012 12th
IEEE/ACM Int. Symposium CCGRID, pp. 482–489. IEEE Computer Society,
Washington, DC (2012)

8. Verma, A., Ahuja, P., Neogi, A.: pMapper: Power and migration cost aware applica-
tion placement in virtualized systems. In: Issarny, V., Schantz, R. (eds.) Middleware
2008. LNCS, vol. 5346, pp. 243–264. Springer, Heidelberg (2008)

9. Li, B., Li, J., Huai, J., Wo, T., Li, Q., Zhong, L.: Enacloud: An energy-saving
application live placement approach for cloud computing environments. In: IEEE
CLOUD, pp. 17–24. IEEE (2009)

10. Buyya, R., Beloglazov, A., Abawajy, J.H.: Energy-efficient management of data
center resources for cloud computing: A vision, architectural elements, and open
challenges. In: Arabnia, H.R., Chiu, S.C., Gravvanis, G.A., Ito, M., Joe, K.,
Nishikawa, H., Solo, A.M.G. (eds.) PDPTA, pp. 6–20. CSREA Press (2010)

11. Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload place-
ment in clouds. In: Proceedings of the 2011 IEEE/ACM 12th Int. GRID, pp. 26–33.
IEEE Computer Society, Washington, DC (2011)

12. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud
data centers. In: Proceedings of the 2010 10th IEEE/ACM Int. Conference CC-
GRID, pp. 577–578 (2010)

13. Castro, H., Villamizar, M., Sotelo, G., Diaz, C.O., Pecero, J.E., Bouvry, P., Khan,
S.U.: Gfog: Green and flexible opportunistic grids. In: Khan, S.U., Wang, L.,
Zomaya, A.Y. (eds.) Scalable Computing and Communications, Theory and Prac-
tice. Wiley&Sons (forthcomming)

14. Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U.: Heuristics for vector bin pack-
ing (2011), http://research.microsoft.com/pubs/147927/VBPackingESA11.pdf
(accessed July 20, 2013)

http://research.microsoft.com/pubs/147927/VBPackingESA11.pdf

Introduction to the Proceedings of the Workshop
on Pervasive Analytical Service Clouds for the

Enterprise and Beyond (PASCEB) 2013

A. Norta1, Weishan Zhang2, C.M. Chituc3, and R. Vaculin4

1 Department of Informatics, Tallinn University of Technology, 12618 Tallinn, Estonia
alex.norta@gmail.com

2 Department of Software Engineering, China University of Petroleum, No. 66 Changjiang
West Road, Qingdao, China
zhangws@upc.edu.cn

3 TU-Eindhoven, PAV D.07, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
c.m.chituc@tue.nl

4 Thomas J. Watson Research Center, Yorktown Heights, NY USA
vaculinatus.ibm.com

1 Introduction

The First Workshop on Pervasive Analytical Service Clouds for the Enterprise and Be-
yond (PASCEB) 2013 was held in conjunction with the ICSOC’13 conference in Berlin,
Germany. The workshop focused on an emerging area addressing the gap of how to de-
sign socio-technical, dependable and secure cloud-service ecosystems for commercial
collaboration use. To establish separation of concerns, the addressed gap has different
aspects in terms of concepts, frameworks, technologies that facilitate the management
and coordination of large Internet of Things (IoT), -Services (IoS) and -People (IoP)
that comprise a service-ecosystem for collaborating towards a common goal for which
we envision a lifecycle. Integral is the analysis of large volumes of heterogeneous, high-
speed data sets, i.e., big data. With the latter, the quality of socio-technical collaboration
can evolve in a better way.

The PASCEB 2013 keynote of Prof. Schahram Dustar from the Distributed Systems
Group of TU-Vienna focused on elasticity in cloud-ecosystems from a socio-technical
perspective that examined how to integrate people, software services, and things into
one composite system, which can be modelled, programmed, and deployed on a large
scale in an elastic way. Furthermore, the thirteen full PASCEB-workshop papers were
selected after a thorough peer-review by the Workshop Program Committee Members
and fell into four categories of related topics. Following is a brief overview of the con-
tributions.

The first paper category takes a collaboration perspective of socio-technical service
clouds and comprises three papers. The paper ’Enabling Semantic Complex Event
Processing in the Domain of Logistics’ by authors T. Metzke, A. Rogge-Solti, A. Baum-
grass, J. Mendling, and M. Weske shows the benefits of semantic complex event pro-
cessing (SCEP) along a specific use case of tracking and tracing goods and processing
related events. The second paper titled ’Towards Self-Adaptation Planning for Complex

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 379–380, 2014.
c© Springer International Publishing Switzerland 2014

380 A. Norta et al.

Service-based Systems’ by A. Ismail and V. Cardellini proposes a multi-layer adaptation
planning with local- and global adaptation managers. Finally, the paper ’Towards an Inte-
gration Platform for Bioinformatics Services’ by authors G. Llambias, L. Gonzalez, and
R. Ruggia proposes enterprise middleware to integrate Bioinformatics services based on
a multi-level reference architecture with focus on mechanisms to provide asynchronous
communications, event-based interactions and data transformation capabilities.

The second PASCEB paper category on performance assessment and auditing in ser-
vice computing has one paper with the title ’Model-driven Event Query Generation for
Business Process Monitoring’ by authors M. Backmann, A. Baumgrass, N. Herzberg,
A. Meyer, and M. Weske that investigates where business process execution informa-
tion can be found, how this information can be extracted, and to which point in the
process it belongs to.

The third PASCEB paper category of analytics services on the clouds looks into mak-
ing use of big data and comprises two papers. The first one with the title ’An Optimized
Strategy for Data Service Response with Template-Based Caching and Compression’
by Z. Peng, X. Kefu, L. Yan, and G. Li uses a specific compression algorithm to de-
crease the volume of data transmitted from a message template to extract application-
relevant values from SOAP messages. The second paper with the title ’Towards a
Formal Model for Cloud Computing’ by Z. Benzadri, F. Belala, and C. Bouanaka focus
on modelling interactions between cloud services and customers based on Bigraphical
Reactive Systems.

The final fourth category of the workshop is on self-managing pervasive service sys-
tems in which the first paper has the title ’Towards Structure-Based Quality Awareness
in Software Ecosystem Use’ authored by K.M. Hansen and W. Zhang. This paper ex-
plores to which extent composition of components from a software ecosystem influences
software quality. The second paper with the title ’Hybrid Emotion Recognition Using
Semantic Similarity’ by Z. Zhang, X. Meng, P. Zhang, W. Zhang, and Q. Lu adds se-
mantic similarity to emotional keywords recognition to calculate the similarity between
the keywords in a talk of the user and the words in a knowledge base. The third paper with
the title ’Dynamic Adaptation of Business Process Based on Context Changes: A Rule-
Oriented Approach’ by G. Hu, B. Wu, and J. Chen describes the relationship between
services and their context as rules used to generate a solution with a mapping mecha-
nism. The paper with the title ’Component Migration in an OSGi based Pervasive Cloud
Infrastructure’ by W. Zhang, L. Chen, Q. Lu, P. Zhang, and S. Yang evaluate component
migration in different scenarios in terms of performance and power consumption. The
paper titled ’An Adaptive Enterprise Service Bus Infrastructure for Service Based Sys-
tems’ by L. Gonzalez, J.L. Laborde, M. Galnares, M. Fenoglio, and R. Ruggia presents
a JBossESB-based implementation demonstration. Lastly, the paper ’Requirements to
Pervasive System Continuous Deployment’ by C. Escoffier, O. Guenalp, and P. Lalanda
focuses on deployment challenges of pervasive applications in reaction to unknown and
fluctuating environments that makes traditional approaches unsuitable.

We sincerely thank the Program Committee Members of the PASCEB 2013 work-
shop for their time and support throughout the reviewing period.

Alex Norta, Claudia-Melania Chituc, Roman Vaculin, Weishan Zhang
PASCEB 2013 Workshop Chairs

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 381–393, 2014.
© Springer International Publishing Switzerland 2014

Towards a Formal Model for Cloud Computing

Zakaria Benzadri, Faiza Belala, and Chafia Bouanaka

LIRE Laboratory
Department of Software and Information Systems Technology

University of Constantine 2, Constantine, Algeria
benzadri@gmail.com, belalafaiza@hotmail.com,

c.bouanaka@umc.edu.dz

Abstract. The use of formal methods is an effective means to improve complex
systems reliability and quality. In this context, we adopt one of these methods to
formalize cloud computing concepts. We focus on modeling interactions
between cloud services and customers. Based on Bigraphical Reactive Systems,
the formalization process is realized via the definition of a Cloud General
Bigraph (CGB) obtained by associating; primarily, a CCB (Cloud Customers
Bigraph) to cloud customers. Then, a Cloud Services Bigraph (CSB) is pro-
posed to formally specify cloud services structure. Finally, juxtaposing these
two bigraphs (CSB and CCB) gives rise to the suited CGB. In addition, a natu-
ral specification of cloud deployment models is specified. This paper also ad-
dresses cloud service dynamics by defining a set of reaction rules on bigraphs in
a way that is amenable to reconfigure the designed cloud system.

Keywords: Cloud Computing, Bigraphical Reactive Systems, Formal Methods,
Cloud Model, Cloud General Bigraph, Cloud Customers Bigraph, Cloud Ser-
vices Bigraph.

1 Introduction

Software reusability has permanently triggered researchers and practitioners of software
engineering. From the notion of modules defined by Djikstra to the well-known web
services, we are still aiming on maximizing software reusability and thus reducing devel-
opment cost. Based on service oriented paradigm and service oriented architectures and
putting forward reduction of not only software development cost but also deployment
effort, cloud computing [1] generalizes service reuse to all computer resources. The main
principle behind this model is offering computing, storage, and software “as a service”. It
implies dynamic provisioning with on demand shared computing resources, and provides
computing resources as services in an attempt to reduce IT capital and operating costs.
Nevertheless, cloud computing is actually changing software design and development
practices and involves revisiting and redefining some fundamentals and concepts. Much
as service-oriented architecture (SOA), cloud architecture must be defined, governed, and
managed independently [2].

382 Z. Benzadri, F. Belala, and C. Bouanaka

Since it has emerged from the industry, a hard work of formalization is still needed to
overcome one of cloud computing main obstacles; namely bugs in Large-Scale
Distributed Systems – “one of the difficult challenges in cloud computing is removing
errors in these very large scale distributed systems” [3]. The main issue that still
needs to be addressed is the crucial absence of an appropriate model for cloud compu-
ting. This model might be able to support major cloud computing concepts specifica-
tion and allows formal modeling of high level services provided over the cloud
computing architecture.

In this work, we adopt Bigraphical Reactive Systems (BRS) proposed by Milner
et al. [4] to formally specify cloud services and customers and their interaction
schemes. The formalization process is realized via the definition of a Cloud General
Bigraph (CGB); obtained by primarily associating a CCB (Cloud Customers Bigraph)
to cloud customers. We enrich bigraphs signature with new controls (kinds of node)
EU and ISV representing respectively End User and Independent Software Vendor.
Then, we associate a Cloud Services Bigraph (CSB) to cloud services that also needs
an enrichment of bigraphs signature to support all service types; IaaS, PaaS and SaaS.
Finally, the juxtaposition of these two bigraphs (CSB and CCB) gives rise to the
suited CGB. Besides, the model allows a natural specification of cloud deployment
models. Cloud systems dynamics is specified via a set of reaction rules on both CSB
and CCB bigraphs.

This paper is presented in a coordinated and integrated manner, starting with
some fundamentals recall followed by presenting necessary definitions and rules that
constitute the Cloud General Bigraph. It is organized as follows. In section 2, we
present related work. A brief description of Bigraphical Reactive Systems and their
essential concepts is introduced in section 3. In section 4, our cloud computing model
is presented. Section 5 illustrates the proposed cloud formalization approach through
a well-known case study of the Cloud-Health system. Finally, conclusion and future
work are addressed in section 6.

2 Related Work

Nowadays researches on cloud computing are mainly focused on technical aspects,
yet a modest attention is devoted to the formalization of cloud computing fundamen-
tal concepts.

H. Dong et al. [5]. and T. Grandison et al. [6], gave some discussion and exploration
on establishing relationships between virtualization and Cloud Computing. Throughout
their work, they attempt to give out a formal definition of cloud computing from a virtu-
alization viewpoint using its theoretical basic concepts. S.-X. LUO et al. [7], propose an
access control model to achieve a fine-grained data confidentiality and scalability via a
formal definition of the HABAC model (Hierarchy Attribute-Based Access Control). A.
Adamov and V. Hahanov [8] define a security model for individual cyberspace (ICS)
protection as a means to ensure a secured user’s virtual environment. They establish an
analysis of security issues related to ICS and propose a conceptual model for modern
security environments. L Freitas et al. [9], present an abstract formalization of federated

 Towards a Formal Model for Cloud Computing 383

cloud workflows using the Z notation. They define various rule based properties to
restrict valid options with respect to: security and cost constraints. T. Binz et al. [10],
propose Enterprise Topology Graphs (ETG) as a formal model to describe an enterprise
topology. Based on the established graph theory, ETG is used to both formalize and
verify cloud systems. Besides, authors have shown how ETG can improve the environ-
mental impact of IT enterprise. R. He et al. [11], propose a trust model to specify trust-
worthiness and uncertainty of trust relationships between peers, namely cloud-model.
Their model is strange and unspecified; it cannot be directly applied to model trust, and
needs to be extended.

Up to now, however, cloud computing paradigm lacks a standard and formal defi-
nition of its basic concepts; service and deployment models, only some technological
attempts are realized; for virtualization as it has been done in [5] and [6], for security
as in [7], [8] and [9], or for IT enterprise as in [10].

Albeit, various models were adopted (Petri Nets [12] and [13], Semantic Technol-
ogy [14], MDA [15], Agent-Based [16], or Component Model [17]), they do not show
an efficient adequacy to cloud computing. Particularly, they deal with only one prob-
lem at a time. In this paper, BRS [4] will be adopted for two reasons. On the one
hand, the model emphasizes on both locality and connectivity that can be used to
specify cloud entities location and interconnection. On the other hand, bigraphical
reaction rules are very useful to formalize cloud services elasticity providing them the
ability to reconfigure themselves.

3 Bigraphical Reactive Systems

A bigraph as an ordinary graph is composed of nodes and edges, unlike nodes in a
bigraph can be nested giving rise to hierarchical and larger bigraphs. Additionally, a
bigraph is the result of composing a link graph; representing interconnection between
nodes, and a place graph; expressing physical locations of theses nodes, hence the
prefix ‘bi’ in bigraph.

3.1 Concrete Place Graph

The place graph consists of a forest of trees; each with its own root and servers to
model locality or containment of entities. The formal definition of a place graph is:

Definition 1 (Place Graph [4]).
A place graph is a 3-tuple (V, ctrl, prnt): m→n having an inner interface m and an
outer interface n, both are finite ordinals, used to index place graph sites and roots
respectively. Where: V is a finite set of nodes, ctrl:V →S is a control map assigning
controls to nodes. Each node has a control, which is an identifier belonging to a set
that is called a signature (usually denoted as S). Each control indicates how many
ports the node has, which controls are atomic (empty node), and which of the non-
atomic controls are active (node permitting reaction inside) or passive. Finally, prnt:
m⊎V→V⊎n is a parent map indicating the parent of each node.

384 Z. Benzadri, F. Belal

3.2 Concrete Link Gra

The link graph models syst
nodes and a set of hyper-ed
nect different nodes; tentac
follows:

Definition 2 (Link Graph [4
A link graph is a quadruple
outer interface Y; called re
Where: V and E are sets of
and link: X ⊎ P →E ⊎ Y is
link graph points, and E ⊎ Y

3.3 Concrete Bigraph

Having defined the place an
bigraph formal definition:

Definition 3 (Bigraph [4]).
A bigraph is a 5-tuple (V, E
consisting of a concrete pl
graph GL = (V, E, ctrl, link

Fig

These definitions make p
Additionally to graph the

son on bigraphs, an algebr
of bigraphs composition.
The language is summarize

T

Term
U.V
U|V
A⊗B
A◦B

la, and C. Bouanaka

aph

tem connectivity or assembly and is composed of a se
dges; meaning that each edge has multiple tentacles to c
cles are called ports. Formal definition of a link graph is

4]).
e (V, E, ctrl, link): X →Y having an inner interface X
espectively the inner and outer names of the link gra
nodes and edges respectively, ctrl: V→S is a control m

s a link map with P a set of ports. We shall call X ⊎ P
Y its links.

nd link graph independently, we combine them to obtai

E, ctrl, prnt, link): (m, X) → (n, Y), also written <GP, G
lace graph GP = (V, ctrl, prnt):m→n and a concrete l

k): X →Y.

g. 1. Anatomy of bigraphs (Source: [4])

precise the bigraph anatomy illustrated in Figure 1.
eory based definitions that are insufficient to formally r
aic representation is also proposed offering various for

ed in Table 1:

Table 1. Terms language for bigraphs

Meaning
Nesting. U contains V
Prime product
Juxtaposition
Composition.

et of
con-
s as

and
aph.

map,
the

in a

GL>,
link

rea-
rms

 Towards a Formal Model for Cloud Computing 385

While nesting a bigraph within another bigraph is realized via the composition
operation, placing them side-by-side is achieved using the juxtaposition operation
which is a useful way for combining bigraphs.

3.4 Bigraphical Reactive Systems

Once bigraph structure presented, its dynamics will be defined through a BRS, con-
sisting of a category of bigraphs and a set of reaction rules to be applied on them and
describing bigraphs structural dynamics.

Definition 4 (Reaction Rule [4]).
A reaction rule takes the form (R, R’, O) where R: mJ is a bigraph called redex (the
pattern to be changed), R’: m’J is also a bigraph called reactum (the changed pat-
tern), and O: m’m is a map of ordinals establishing the correspondence between
inner interfaces of R and R’.

BRS basic concepts introduced here will be exploited to formalize both cloud struc-
ture and dynamics in the following sections.

4 A Model for Cloud Computing

A bigraph represents orthogonal notions of locality and connectivity through the use
of two separate graph structures (place graph and link graph), so it is an elegant solu-
tion and formal approach to describe cloud computing actors and their relationships.
Cloud computing organization can be divided into two essential parts: the front-end
and the back-end; usually connected via internet. The Front-end encloses customer's
computer and necessary interface to access the cloud and the back-end contains the
cloud services. In the present work, we adapt bigraphs to specify customers, services
and their deployment models, and eventual interactions between them. Such formali-
zation defines a precise semantics to the considered concepts. Our cloud model is
called CGB (Cloud General Bigraph) which is a juxtaposition of two independent
bigraphs: the Cloud Services Bigraph (CSB) defining the back-end part and the Cloud
Customers Bigraph (CCB) modeling the front-end part. Additionally, a set of reaction
rules is defined to formalize dynamics of the cloud computing architecture.

4.1 Cloud Customers Bigraph

We propose a formal definition of a Cloud Customers Bigraph that captures essential
concepts identifying both, End users accessing only to SaaS and ISV (Independent
Software Vendor) accessing to IaaS and PaaS types of customers. We model cloud
customers as nodes equipped with specific controls to distinguish the two types of
cloud customers; End user and ISV. Both are atomic nodes and have many ports to
send their requests. We use the notation “a: (x, act)” where ‘a’ is a control with arity
(number of ports) ‘x’ and activity ‘act’. We also use the ar(-) map to identify the arity
of a given control, and we suggest a suitable graphical representation for each control
(see table 2).

386 Z. Benzadri, F. Belala, and C. Bouanaka

Definition 6 (Cloud Customers Bigraph).
The Cloud Customers Bigraph formalizing customers model takes the form (VCCB,
ECCB, ctrlCCB, GPCCB, GLCCB): <mCCB,XCCB>→<nCCB,YCCB>, with VCCB representing
all cloud customer nodes, ECCB is a finite set of edges, ctrlCCB: VCCB→ SCCB is a con-
trol map that assigns a control to each cloud customer. The signature SCCB is defined
by SCCB= {EU, ISV}. The map ar: SCCB →N assigns an arity to each control, where
ar(EU)= ar(ISV)=x and x>0. XCCB is the inner face and YCCB is the outer face. GPCCB
represents the corresponding place graph and GLCCB represents the link graph. There-
fore, the link map linkCCB :XCCB⊎ PCCB→ECCB⊎ YCCB, with a set of ports PCCB= {(v,i)
| i ∈ ar(ctrlCCB(v))}, i.e., a port is represented as a pair consisting of a node (from V)
and an index.

 In this definition, the signature of CCB is SCCB= {EU: (x, atomic), ISV: (x, atom-
ic)}. A suitable graphical representation of each control type is presented in table 2.

Table 2. Cloud Customers Signature

Control Activity G. Representation
EU (End User) Atomic

ISV(Independent
Software Vendor)

Atomic

4.2 Cloud Services Bigraph

Three different service models are deployed within a cloud architecture, to ensure
front end requests: Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS). Albeit, all available cloud services are modeled by
nodes in the Cloud Services Bigraph, controls attached to each nodes allow us to dis-
tinguish between the three categories of cloud services (see table 3). Additionally,
services stack is naturally modeled via the hierarchy of nodes within the place graph
(as shown in Figure 2) with respect to cloud services constraints. A node of control
IaaS (infrastructure) can only contain nodes of control PaaS (platform). Also, a node
of control PaaS can only contain nodes of control SaaS (software). Finally, a node of
control SaaS does not contain any node. Consequently, nodes of control IaaS and
PaaS are active, while nodes of control SaaS are atomic. Besides, we suggest a suita-
ble graphical representation to each control (see table 3).

Fig. 2. Cloud Services Place Graph

ctrlCSB(v0)=IaaS

ctrlCSB(v2)=SaaS

ctrlCSB(v1)=PaaS

V0

V1

V2

 Towards a Formal Model for Cloud Computing 387

To offer several access modes to cloud services, we propose that each cloud ser-
vice (node) gets three different ports: Public (blue color in table 3), Private (red color
in table 3), and Community (green color in table 3). As with Cloud Customers
Bigraph, we now give a formal definition of the Cloud Services Bigraph enriched
with a new map tpCSB (-) assigning a type to each node port.

Definition 7 (Cloud Services Bigraph).
A Cloud Services Bigraph is associated to cloud service models and takes the form
CSB = (VCSB, ECSB, ctrlCSB, GPCSB, GLCSB, tpCSB): <mCSB,XCSB>→<nCSB,YCSB>.
Where VCSB represents all cloud service nodes, ECSB is a finite set of edges, ctrlCSB:
VCSB→ SCSB is a control map that assigns a control to each cloud service. Controls
range over the signature SCSB= {IaaS, PaaS, SaaS} with a map ar: SCSB→N assigning
an arity to each control. Since each cloud service has three types of ports,
ar(IaaS)=ar(PaaS)=ar(SaaS)=3. XCSB is the inner face and YCSB is the outer face.
GPCSB represents its place graph and GLCSB represents a link graph, such that, linkCSB:
XCSB ⊎ PCSB →ECSB ⊎ YCSB, is a link map, with PCSB= {(v,i) | i ∈ ar(ctrlCSB(v))} is the
set of ports. Also, we define a new map assigning a type t∈PTCSB={PbP, CmP, PrP},
to each node port p ∈ PCSB, tpCSB: PCSB → PTCSB. So: tpCSB (p)=PbP if p is Public Port,
tpCSB (p)=CmP if p is Community Port, tpCSB (p)=PrP if p is Private Port.

In this definition, we summarize a suitable signature for CSB as follows:
SCSB={IaaS: (3, active), PaaS: (3, active), SaaS: (3, atomic)}.

Table 3. Cloud Services Signature

Control Activity G. representation Conditions

IaaS

Active

 ∀ U, N in VCSB, (U.N ∧ ctrlCSB(U)=IaaS) =>

ctrlCSB(N)=PaaS.

PaaS

Active

 ∀ U, N in VCSB, (U.N ∧ctrlCSB(U)=PaaS) =>

ctrlCSB(N)=SaaS.

SaaS

Atomic

∀ U in VCSB, ctrlCSB(U)=SaaS =>

{v in VCSB | U.N} = ∅.

4.3 Cloud General Bigraph

Once structural concepts of both cloud services and customers bigraphs have
been separately defined, their juxtaposition defines the cloud general bigraph. Its
place graph formally expresses cloud services and customers location. Its link
graph formally expresses interconnections, in terms of service request/response rela-
tionship, between cloud services and cloud customers. Formally, we have the
following definition.

388 Z. Benzadri, F. Belala, and C. Bouanaka

Definition 8 (Cloud General Bigraph).
A Cloud General Bigraph formalizing cloud computing, takes the form
CGB=CSB⊗CCB: ICSB⊗ ICCB→JCSB⊗ JCCB, where:
CSB⊗CCB =<GPCSB⊗GPCCB, GLCSB⊗GLCCB>, with:

• GPCSB⊗GPCCB: mCSB+mCCB →nCSB+nCCB is defined by

GPCSB⊗GPCCB = (VCSB⊎VCCB, ctrlCSB⊎ctrlCCB, prntCSB⊎ prntCCB).
• GLCSB⊗ GLCCB: XCSB⊎XCCB →YCSB⊎YCCB is defined by

GLCSB⊗GLCCB = (VCSB⊎VCCB, ECSB⊎ECCB, ctrlCSB⊎ctrlCCB, linkCSB⊎ linkCCB).

4.4 Cloud Deployment Models

Four cloud deployment models are identified in cloud computing. DM= {Public, Pri-
vate, Community, Hybrid}. To take in charge such models, a formal description is
done thanks to a meaningful interpretation of Cloud Services Bigraph. To identify
service deployment models, we propose a function depm: VCSB → DM, where VCSB

represents cloud services. Since interconnections between cloud services and cloud
customers are well defined via the link graph (GLCSB⊗GLCCB), whenever a cloud
service is connected to a cloud customer via a unique port, then service deployment
model corresponds to the type of the port being used. Otherwise, if a cloud service is
connected to cloud customers via various ports, then the cloud service is deployed as
a hybrid cloud. Figure 3 represents cloud deployment models, using a link graph that
is independent from locality, with C1, C2, C3 being Cloud customers and S1, S2, S3,
S4 Cloud services. For instance, the cloud customer C2 is relied to S1 cloud service
via its community port (CmP), so S1 is deployed as a community cloud (green color).
Also the cloud customers C1 and C3 are relied to the cloud service S4, the first one
with a public port (blue color) and the second one with a private port (red color), then
S4 is deployed as a hybrid cloud (orange color).

Formally, ∀ s ∈ VCSB, Ps={(s,i) | i ∈ ar(ctrlCSB(s))} represents the set of ports of s
and pb, pr, cm ∈ Ps, such that: tp(pb)=PbP, tp(pr)=PrP, and tp(cm)=CmP. e ∈ E,

 c ∈ VCCB and Pc={(c,i) | i ∈ ar(ctrlCCB(c))} represents the set of ports of c and p ∈
Pc. Such that:

• link(s,pb)=e and link(c,p)=e depm(s)= Public.
• link(s,pr)=e and link(c,p)=e depm(s)= Private.

Public

Private

Hybrid

Community
C1

C3
S1

S2 S3

S4

C2

Fig. 3. Cloud Deployment Models Link Graph

 Towards a Formal Model for Cloud Computing 389

• link(s,cm)=e and link(c,p)=e depm(s)= Community.
• (depm(s) = Public and (depm(s) = Private or depm(s)

= Community)) OR (depm(s) = Private and (depm(s) =
Public or depm(s) = Community)) OR (depm(s) = Commu-
nity and (depm(s) = Private or depm(s) = Public))
depm(s) = Hybrid.

4.5 Cloud Reaction Rules

We have now defined a Cloud General Bigraph in terms of its static structure, and
being, expressive enough to model cloud services and customers connectivity and
locality. To be moreover able to specify cloud system dynamics, CGB will be
equipped with a set of reaction rules.

Locality reconfiguration is effected by shifting a cloud service from a parent cloud
service to another one of the same control. Thereby, we propose two reaction rules
defining the dynamics of bigraphs in this context.

• Rule PLR (PaaS Locality Reconfiguration). It expresses the fact that a platform
may migrate from one infrastructure to another one. It changes the placing; a PaaS
(P1) inside an IaaS (I1) shifts to another IaaS (I2), so we write: [I1.P1|I2 -->
I1|I2.P1].

• Rule SLR (SaaS Locality Reconfiguration). Instead of migrating a platform to
another infrastructure, rule SLR changes the placing of a service from one platform
to another. A SaaS (S1) inside a PaaS (P1) shifts to another PaaS (P2), so we write:
[P1.S1|P2-->P1|P2.S1].

Fig. 4. Allocation Cloud Service Reaction Rule

Fig. 5. Liberation Cloud Service Reaction Rule

Connectivity reconfiguration changes only the linking—not the placing—in a
bigraph. We suggest that the redex (R) —the left-hand pattern—can match any cloud
service control (IaaS, PaaS, and SaaS), and we propose two reaction rules, defining
the dynamics of bigraphs in terms of service allocation. While, figure 4 bellow shows

C1 S1

e

C1 S1

R

4

R’

C2 S2

4

C2 S2

e

4

R R’

390 Z. Benzadri, F. Belala, and C. Bouanaka

a cloud customer (C1) allocating a cloud service (S1), figure 5 represents a cloud
customer (C2) liberating a cloud service (S2).

5 Case Study

Cloud-Health is a cloud system, allowing doctors to exchange information concerning
their patients. We present this example in order to illustrate how the Cloud General
Bigraph model is able to capture and formally represent all cloud computing aspects.

Let’s suppose that we have the following cloud services: three SaaS (S1, S2, S3) in
two PaaS (P1, P2) within only one IaaS (I1), see figure 6 for more details.

• S1 allows consulting doctors directories by supplying multiple information
(name, address, telephone, specialty), that can be used by everyone.

• S2 allows supplying administrative or medical information of every patient.
It can be used by doctors. Only a private access is allowed to patients in
order to modify their administrative information.

• S3 allows every doctor to manage his medical office. This service is only
used by the concerned doctor.

Fig. 6. Cloud Health General Bigraph

The cloud-health administrator ensures a smooth running of these three applica-
tions by supplying a private access to both PaaS (P1) and (P2).

According to our formalization approach, we can identify the CGB entities as
follows (see figure 6):

• S1, S2, S3, P1, P2, I1∈VCSB, where: ctrlCSB(S1)= ctrlCSB(S2)= ctrlCSB(S3)= SaaS,
ctrlCSB(P1)= ctrlCSB(P2)= PaaS, and ctrlCSB(I1)= IaaS.

• C1, C2, C3 ∈VCCB, where: ctrlCCB(C1)= ctrlCCB(C2)= EU (represents respectively
a doctor and a patient), and ctrlCCB(C3)= ISV (represents the administrator).

S1

S3

S2
P1

P2

I1

C3

C2

C1

Cloud Health Services Bigraph Cloud Health Customers Bigraph

e1

e2

e3

e4

e5

e6

 Towards a Formal Model for Cloud Computing 391

• The associated place graph in this case is represented in figure 7:

• e1, e2, e3, e4, e5, e6 ∈ ECGB, with each edge representing a connection between
cloud customers and cloud services.

• The associated link graph, in this case, models cloud system connectivity (see
figure 8):

Fig. 8. Link graph of Cloud Health

Obviously, depm(-) function; defined in section 4.4, returns in our case the follow-
ing values: depm(S1)=Public (edge e1 in figures 6 and 8), depm(S2)=Hybrid (edge e2
and e4 in figures 6 and 8), depm(S3)=Private (edge e3 in figure 6 and 8),
depm(P1)=Private (edge e5 in figures 6 and 8), and depm(P2)=Private (edge e6 in
figures 6 and 8).

Whenever a PaaS (P1) becomes unavailable for maintenance reasons, reconfigur-
ing S1 service can be applied in order to migrate S1 to P2 using the SLR reaction rule
(defined in section 4.5) which is denoted as follows:

[I1.(P1.(S1|S2)|P2.S3)I1.(P1.S2|P2.(S1|S3))]

6 Conclusion

Bigraphical Reactive Systems (BRS) have been adopted as a formal model for cloud
computing architecture specification. Two different bigraphs have been associated to
both cloud services and customers, by enriching them with new sorts of nodes and
ports. Their juxtaposition (CSB and CCB) gives rise to Cloud General Bigraph. The
defined bigraphs allow developers to correctly reason about all cloud computing fea-
tures, including modeling, composition, scheduling, monitoring and reconfiguration.

I1

P2 P1

C3

S1

C2 C1

S2 S3

Fig. 7. Place graph of Cloud Health

S3

P2

S2

S1

I1
e1

e2

e3
e4

e5

e6

P1

C1

C2

C3

392 Z. Benzadri, F. Belala, and C. Bouanaka

Particularly, we have shown how this model provides a flexible conceptual frame-
work where cloud deployment models can be naturally defined. A nice consequence
is that relationships between cloud services and cloud customers have been exploited
to formally define cloud architecture reconfiguration via a set of reaction rules. Our
ongoing work will focus on validating the proposed model by verifying some cloud
computing inherent properties. BigMC, a Bigraphical Model Checker [18] designed
to operate on Bigraphical Reactive Systems (BRS), will be used to formally model
check the chosen properties.

References

1. Mell, P., Grance, T.: The nist definition of cloud computing. Technical Report 800-145,
National Institute of Standards and Technology (NIST), Gaithersburg, MD (2011)

2. Marks, E.A., Lozano, B.: Executive’s Guide to Cloud Computing. John Wiley and Sons
Inc., Hoboken (2010)

3. Armbrust, M., Fox, A., Grith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patter-
son, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud
computing. Technical Report UCB/EECS-2009-28, EECS Department, University of Cali-
fornia, Berkeley (2009)

4. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press
(2009)

5. Dong, H., Hao, Q., Zhang, T., Zhang, B.: Formal discussion on relationship between virtu-
alization and cloud computing. In: 2010 International Conference on Parallel and Distri-
buted Computing, Applications and Technologies (PDCAT), pp. 448–453 (2010)

6. Grandison, T., Maximilien, E., Thorpe, S., Alba, A.: Towards a formal definition of a
computing cloud. In: 2010 6th World Congress on Services (SERVICES-1), pp. 191–192
(2010)

7. Luo, S.X., Liu, F.M., Ren, C.L.: A hierarchy attribute-based access control model for
cloud storage. In: 2011 International Conference on Machine Learning and Cybernetics
(ICMLC), vol. 3, pp. 1146–1150 (2011)

8. Adamov, A., Hahanov, V.: A security model of individual cyberspace. In: 2011 9th East-
West Design Test Symposium (EWDTS), pp. 169–172 (2011)

9. Freitas, L., Watson, P.: Formalising workflows partitioning over federated clouds: Multi-
level security and costs. In: 2012 IEEE Eighth World Congress on Services (SERVICES),
pp. 219–226 (2012)

10. Binz, T., Fehling, C., Leymann, F., Nowak, A., Schumm, D.: Formalizing the cloud
through enterprise topology graphs. In: 2012 IEEE 5th International Conference on Cloud
Computing (CLOUD), pp. 742–749 (2012)

11. He, R., Niu, J., Hu, K.: A novel approach to evaluate trustworthiness and uncertainty of
trust relationships in peer-to-peer computing. In: The Fifth International Conference on
Computer and Information Technology, CIT 2005, pp. 382–388 (2005)

12. Fitch, D.F., Xu, H.: A petri net model for secure and fault-tolerant cloud-based information
storage. In: SEKE, Knowledge Systems Institute Graduate School, pp. 333–339 (2012)

13. Fang, X., Wang, M., Wu, S.: A method for security evaluation in cloud computing based
on petri behavioral profiles. In: Yin, Z., Pan, L., Fang, X. (eds.) Proceedings of The Eighth
International Conference on Bio-Inspired Computing: Theories and Applications (BIC-
TA). AISC, vol. 212, pp. 587–593. Springer, Heidelberg (2013)

 Towards a Formal Model for Cloud Computing 393

14. Hu, L., Ying, S., Jia, X., Zhao, K.: Towards an Approach of Semantic Access Control for
Cloud Computing. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS,
vol. 5931, pp. 145–156. Springer, Heidelberg (2009)

15. Howard, F., George, S.: Formal methods in model-driven development for service oriented
and cloud computing (2010)

16. Sim, K.M.: Agent-based cloud computing. IEEE Transactions on Services Computing 5,
564–577 (2012)

17. Di Cosmo, R., Zacchiroli, S., Zavattaro, G.: Towards a Formal Component Model for the
Cloud. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS,
vol. 7504, pp. 156–171. Springer, Heidelberg (2012)

18. Perrone, G., Debois, S., Hildebrandt, T.T.: A model checker for bigraphs. In: Ossowski, S.,
Lecca, P. (eds.) SAC, pp. 1320–1325. ACM (2012)

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 394–405, 2014.
© Springer International Publishing Switzerland 2014

An Optimized Strategy for Data Service Response
with Template-Based Caching and Compression

Zhang Peng1,2, Xu Kefu1,2,*, Li Yan3, and Guo Li1,2

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 National Engineering Laboratory for Information Security Technologies, Beijing, China

3 National Computer Network Emergency Response Technical Team, Beijing, China
zhangpeng@software.ict.ac.cn, xukefu@iie.ac.cn

Abstract. Data service is a specialization of Web service, and end-users can
synthesize cross-organizational data by composing data services. As composite
schemes overlap each other, some primitive data services could be called re-
peatedly by composite data services, so that the response delay and server load
are aggravated. In this paper, an optimized strategy for data service response
with template-based caching and compression is proposed. Firstly, the strategy
uses the message template to extract the application-relevant values from SOAP
messages. Secondly, the strategy holds the objects from application-relevant
values rather than XML representations to decrease the overhead of SOAP
message parsing. Thirdly, the strategy uses the XMill compression algorithm to
decrease the volume of data transmitted. Extensive experiments based on
Spring-WS-Test benchmark demonstrate the strategy is an effective approach to
reduce response latency and server load compared to non-caching tehcnniques.

Keywords: data integration, message template, data caching, data compression,
SOAP, data service.

1 Introduction

Data services are software components that providing rich metadata, expressive lan-
guages, and APIs for service consumers to use to send queries and receive data from
service providers [1,2]. Data service hides the complexity of the multi-source and
heterogeneous data sources, and helps the implementation of user-steering data inte-
gration. Compared to the traditional data integration techniques, data service separates
the data access interface from the information system, which not only achieves loose
coupling between integrated schemes and data sources, but also has good scalability.
More importantly, data services have the same data schema, so that the user could
directly integrate data souces without middleware schema. Through data service com-
position, the scattered data from the organizations can be integrated seamlessly to
respond to transient business needs [3,4]. Nonetheless, as a specialization of Web
services, the very feature that makes data service universally usable for structured and

* Corresponding author.

 An Optimized Strategy for Data Service Response 395

semi-structured data sources, namely the adoption of the ubiquitous XML standard,
makes it difficult to reach the performance level required by large-scale data access.
A major performance bottleneck resides in widespread SOAP message processing.
The reason for SOAP message processing performance criticality is twofold:

1. On one hand, SOAP communication produces considerable network traffic, and
causes high latency.

2. On the other hand, and perhaps more importantly, the generation and parsing of
SOAP message, and their conversion to and from in memory application data can
be computationally expensive.

In addition, there are special features for data service as shown in Table 1 to diffe-
rentiate the effect providing service to make the SOAP processing performance
become more criticality.

Table 1. Data Providing Service vs Effect Providing Service

Aspects Data Providing Service Effect Providing Service

Core Function Data Query Business Process

Transfer Type Information Data Effect Data
Data Volumn Large-scale Small-scale

Intertal Logic Data Access Logic Business Logic

We found that most SOAP messages have similar byte representations. SOAP

messages created by the same implementation have the same message structure. In
addition, the number of SOAP implementations is relatively small. Therefore it seems
that the number of message patterns with which data service processor has to deal
should be very small. This is especially more likely in enterprise data integration,
where the message patterns are very limited and might be known to the server before-
hand. In such cases, it is inefficient to repeatedly parse the almost-same messages
each time.

<? xml version=”1.0” encoding=”UTF-8” ?>

<SOAP-ENV:Envelope xmlns:xsd=”…”

xmlns:SOAP-ENV=”…”

xmlns:xsi=”…”>

<SOAP-ENV:Body>

<nsl:getReport xmlns:nsl=”…”>

<nsl:eventReport>XXX</nsl:eventReport>

</nsl:getReport>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

<? xml version=”1.0” encoding=”UTF-8” ?>

<soap-Envelope xmlns:xsi=”…”

xmlns:xsd =”…”

xmlns:soap=”…”>

<soap-Body>

<getReport xmlns=”…”>

<eventReport>XXX</eventReport>

</getReport>

</soap-Body>

</soap-Envelope>

Fig. 1. SOAP messages created with Apache Axis and .NET

396 P. Zhang et al.

We also found that the application has far less interest in the literal message struc-
ture than the application-defined data structure. Figure 1 show the SOAP message
examples emitted by Apache Axis and .NET respectively. For both messages, the
application focuses on the string “XXX” rather than on the associated namespace
prefixes, etc. In other words, what is important for the application is returning the
event information corresponding to the symbol XXX, but not the parsing of the entire
SOAP envelope.

Fig. 2. The data services are called repeatedly

In addition, as composite schemes overlap each other, some primitive data services
usually are called repeatedly by different composite data services [2]. For example,
one client creates two composite data services denoted by (DS1∪DS2) Ri DS3 and
(DS2∪DS3)∪DS4 as shown in Figure 2, where DS1, DS2, DS3 and DS4 are primitive
data services, ∪ is union operation and Ri is join operation with respect to
attribute Ri. When the two composite data services are executed, the DS2 and DS3
will be called repeatedly, and the SOAP transfer involves the some results. So how to
optimize the data service communication based on above facts is our goal.

In this paper, a middleware Data Service Accelerator (DSA) is designed. The mid-
dleware takes into account the caching data structure and reduces the volume of data
transmitted through the combined use of caching of recent responses and data com-
pression techniques. We keep caching and data compression transparent and add a
proxy layer that intercepts exchange messages. The paper is organized as follows:
Section 2 introduces some related works. Section 3 introduces the DSA with the tem-
plate-based caching and compression in details. Section 4 is experiment and discus-
sion. Section 5 sums up with several concluding remarks.

2 Related Works

In Data Service environments, SOAP provides interoperability between the clients
and the service. However, as the client and the hosted services are connected by a
network and communicate through XML-encoded messages, substantial overhead is
induced due to (de)serialization. Special care must hence be taken to reduce the
response latency for data service invocations, and thus improve service throughput. In
this paper, we adopt template-based caching and data compression techniques to ad-
dress this performance issue of data services invocations.

 An Optimized Strategy for Data Service Response 397

A. Template-based

As mentioned previously, SOAP processing performance enhancement has been
widely researched [5, 6, 7]. Many approaches build on the simple observation that
SOAP message exchange usually involves a number of highly similar messages. Sev-
eral proposals addressing SOAP performance enhancement exploit the differential
SOAP parsing, in order to gain in performance, e.g., reducing execution time, increas-
ing throughput, and saving on network traffic. The main idea is to identify the
common parts of SOAP messages, to be processed once, regardless of the number of
messages. The main approaches to differential SOAP parsing include Template-based
[5], Multiple Templates [6] and Detecting Repeatable Structures [7].

B. Response Caching

Research on remote object caching for distributed systems [8] has caught substantial
attention, including efforts that target CORBA, SOAP objects, and Java RMI. An
efficient response cache mechanism appropriate for the Web Services architecture is
proposed by Takase et al [9]. This mechanism reduces the overhead of XML
processing and application object copying by optimized data representation. We
extend on this approach and add two additional techniques to further improve perfor-
mance, textual data compression and optimized data representation of cached entries.

C. XML Compression

XML, the foundation of the SOAP protocol, is a self descriptive textual format for
structured data. XML provides a good basis for interoperability and facilitates the
adaptation of services, but it is also renowned to be verbose. This verbosity, mainly
due to the excessive use of markup and metadata, can cause problems due to commu-
nication and processing overhead in resource-constrained environments such as small
wireless devices and in environments with network limitations. Fortunately, the im-
pact of this verbosity can be alleviated through the use of text compression tech-
niques. According to a summary [10], three categories of compression algorithms can
be used to reduce the verbosity of XML: general-purpose compression agnostic of
XML, algorithms based on the general knowledge that the data is XML-based, and
techniques that take advantage of the schema used for the particular XML documents
to be compressed. DSA does not depend on any specific compression algorithm.
While we currently use XMill [11], a general-purpose compression algorithm for
textual data, replacing this with another compression algorithm is straight-forward.

One can realize that the above techniques are not mutually exclusive, but are rather
complementary. Unfortunately, interference and synergy between different techniques
is not yet completely understood, and less works make some preliminary research
about combing these techniques. In this context, this paper makes efforts toward
combining these techniques, and gains some benefits.

398 P. Zhang et al.

3 Template-Based Caching and Compression

Based on the observations above, we implemented a middleware Data Service Acce-
lerator to execute three tasks. The first is to use the message template to extract the
application-relevant values from the SOAP messages. The second is to hold the
objects from the values rather than XML representations to decrease the overhead of
XML parsing. The third is to uses the XMill compression algorithm to decrease the
volume of XML transmitted. Here we describe its design and implementation.

3.1 Template-Based Extraction

Figure 3 shows an overview of our template-based processor, where the solid and
dotted lines denote the processing flow and the data flow respectively.

Fig. 3. The application-relevant values extraction based on message template

First, the incoming message is matched against the automaton that contains mul-
tiple message templates in a merged form. If the message matches any template, the
application-relevant values are extracted using the template and DOM processing is
done based on the extracted values. Otherwise, the processing is performed by an
ordinary DOM-based processor and a new template corresponding to the unmatched
message is generated. The new template is merged into the automaton, and thereafter
any messages having the same message structure can be matched against the template.
The resulting messages are same in both cases. The message template describes the
byte-level structure of SOAP messages. It consists of a few kinds of message frag-
ments: constant fragments corresponding to the unchanging parts in the messages and
variable fragments corresponding to the variable parts. All the application-relevant
values are regarded as variable parts. In Figure 3 the variable fragments are denoted

 An Optimized Strategy for Data Service Response 399

as “${variable_name}” and printed in bold italic. Since the template-based processor
initially has no information about the XML tree structure without help from DOM-
based processor, message templates are generated in cooperation with the DOM-
based processor. In order to tell where the application-relevant values start and end,
we implemented a specialized XML parser that can record the offset and length
information for each XML node. Using the DOM created by the specialized parser,
the DOM-based processor can select all of the application-relevant nodes and specify
them as the variable fragments with the offset and length information. Finally, the
message parts that were not selected in the previous process are consolidated as a
constant fragment, and a message template is generated from these fragments. Note
that DOM-based operations are performed only when a message with a new structure
arrives. Based on our observations, most messages match the existing templates and
the frequency of creating templates is low.

Let’s introduce the automaton. The automaton provides two interfaces, one for
matching the incoming messages and one for learning the new message templates. If
the incoming message matches any of the existing message templates, the matching
result returned is a map object that contains pairs of variable names and the corres-
ponding actual variable values. In Figure 3, for example, the incoming message is
matched against the message template and a map of {eventReport, <id>600651</id>
<Empolyees>…</Empolyees>} and so on is returned. The DOM operations are done
based on the extracted values. However, if the matching failed, the processor would
have had to create a new message template and make the automaton learn that tem-
plate, in preparation for the later incoming messages for which the new template
will be applied. Learning message templates means updating the state diagram in the
automaton. All of the templates inside the automaton are stored in a merged form and
can be represented as a state diagram.

Fig. 4. The message template

Figure 4 shows a simple example of a state diagram which has been created from
two message templates, where a solid line and a dotted line denote an actual state
transition and one or more transitions (intermediate states might be omitted), respec-
tively. Concretely in this example, this means two message templates have already
been learned. Since “<S: Envelope><S: Header>” and “</S: Header> ...” are common
to both messages, their paths are merged. As seen in the figure, one XML node (or
tag) does not necessarily correspond to one state.

After the application-relevant values have been extracted from the message,
there are no substantial differences in the operations themselves between the

400 P. Zhang et al.

template-based processor and the DOM-based one. They differ in the way they
retrieve the values from the message. The template-based processor uses template
matching while the DOM-based one traverses DOM tree. The next step is how to
transfer the extracted values over the network. For this purpose, the caching and com-
pression techniques in DSA are given in following sections.

3.2 Proxy-Based Caching

In the context of Web services, data representation requires the transformation of
application data into internal representations in the form of XML Infosets1. For data
services, this means that the internal XML Infoset representation is serialized into an
XML document before it is transferred over the network. As data services are plat-
form neutral and thus cannot depend on a specific wire protocol. This leaves us with
only one opportunity for communication performance improvements, namely data
representation. For this purpose, a caching layer is added to the data service frame-
work. This layer is provided through interface techniques instead of hard-coded
implementations in the data service engine. The DSA Client shown in Figure 5 is a
lightweight component that mediates communication between the data services client
and the remote DSA Proxy. It forwards requests from the data services client, buffers
the entire results, and responses to the data services client to acquire the results. The
DSA Client provides the ability to retrieve results from hash-based descriptions
(digest) sent by the proxy by maintaining an in-memory cache of recently received
results.

Fig. 5. Conceptual overview of the DSA architecture

1 http://www.w3.org/TR/xml-infoset/

 An Optimized Strategy for Data Service Response 401

The DSA Proxy shown in Figure 5 does not examine any request messages
received from the DSA Client but directly forwards them to the Data Service. Instead,
the proxy is responsible for inspecting response results received from the Data Ser-
vice provider. The proxy rapidly generates hash-based encodings of the results and
caches these encodings. If the results are similar to previous ones, only the hash
digests are sent to DSA. Note that the proxy does not need to keep the actual response
messages but only the digests. This enables the proxy to scale well also when many
clients are using the same service.

3.3 Data Handling at Service and Client Side

Figure 6(a) shows the dataflow for results handling at the DSA Proxy side. The DSA
Proxy first receives response results from the Data Services provider, and then checks
the size of the result. If the size of the result is less than a threshold value, the proxy
does not generate a hash digest of that result, but forwards it directly to DSA Client.
Otherwise, the proxy generates a digest of the result. DSA does not depend on any
specific hash function. Modern hash functions computes hash digests very fast. The
size of the digest depends on the hash function used, but is in general much smaller
than the size of the original response. In our prototype, we currently use SHA-1[12]
as the hash function and the size of each hashed result is thus 160 bits. The next step
is to check whether the hashed result already is stored in the cache. If so, the client
has requested this result before and the proxy only needs to transmit the hashed result.
Otherwise, the hashed result is new and the DSA Proxy stores it in the cache. The
proxy also compresses the original response message to a compact one before finally
transmitting it to the client side. This way, large messages are always compressed and
the amount of data transmitted over the network is reduced even if cache misses
occur.

Figure 6(b) shows the overall dataflow in the DSA Client. The first step in the
client is to inspect the type of a result received from the DSA Proxy. If the result mes-
sage is a hash digest, DSA retrieves the stored response result from cache through the
use of the received hash digest as key. Otherwise, DSA checks whether the result
is compressed and if so, the result is decompressed to the original one. Next, the
response result is stored in cache with the hash digest as key before it is passed to the
DSA client.

At the client side, the data representation for cached data is made efficient by
de-serializing responses only once and storing the resulting objects in the cache. This
way, upon a cache-hit, the client can immediately fetch the object from cache without
any parsing or de-serialization process, and the response latency is further reduced. In
detail, before delivering a response message to the client, the response result is con-
verted to an object in advance. This process is fulfilled by an XML parser, which can
be based either on DOM or SAX. If it is a DOM parser, a DOM tree object, as the
post-parsing representation, is created from the XML message. If the parser is a SAX
parser, the SAX parser reads the XML documents and notifies the de-serializer of the
SAX events sequentially. The de-serializer constructs the objects from the DOM
tree object or the SAX events sequence. As the parsing and de-serialization of XML

402 P. Zhang et al.

messages constitutes a large part of the Data Services overhead, caching of objects
instead of XML objects can significantly improve the performance of service
response caching.

(a). Dataflow for data handling at the DSA
Proxy side.

(b). Dataflow for data handling at DSA Client side.

Fig. 6. Dataflow for data handling

Experiment and Analysis

3.4 Benchmarking

We test the performance through industry standard benchmarks from Spring-WS-
Test2. Spring-WS-Test consists of a multi-threaded application that could performs
multiple data service calls in parallel in order to simulate a real life scenario with
multiple clients that access the services. Spring-WS-Test measures the throughput of
a system handling multiple types of data service invocations.

3.5 Experimental Setup

The experimental setup consists of a client side extended with a DSA Client module.
This client has five threads, one for each benchmark. The other part in the setup is the
server side that implements the data services. The server side is extended with a DSA

2 http://javacrumbs.net/spring-ws-test/

 An Optimized Strategy for Data Service Response 403

Proxy module. The two sides have identical system configurations, of which CPU
Intel Core i5, 3.09 GHz, Main Memory 4 GB, Operating System Win XP Professional
Edition, Application Server Apache Tomcat, version 6.0.14. The client side and the
server side are connected by a network router that allows us to control the bandwidth
and latency settings on the network. We focus our evaluation on three network confi-
gurations; 5 Mb/s, representative for severely constrained network paths, 20 Mb/s,
representative for moderately constrained network paths, and 100 Mb/s, representa-
tive for unconstrained networks. The last setup is used to investigate any potential
overhead of DSA in situations where bandwidth is not a limiting factor. Each client
submits a mix of invocations, with 20 % of the calls for each of the five benchmarks.
The number of invocations executed and the response time is accumulated during a
steady state period of 600 seconds and is reported at the end of the execution. Moreo-
ver, invocations during each execution have a certain repetition rate. For repeating
invocations the same request parameters are used and the response results from the
server are thus the same. Steering this repetition rate, i.e., the cache-hit ratio, enables
us to study the performance impact of caching in the DSA system. Using this setup,
we measured results for various combinations of number of clients, cache-hit ratio,
and network bandwidth for the following two configurations:

• The Native configuration, corresponding to Figure 5 where DSA layer is not
used.

• The DSA configuration, corresponding to Figure 5 where the DSA layer is used.
For a given number of client threads and a certain network bandwidth, compar-
ing these results to the corresponding Native ones investigates the potential
performance improvements.

3.6 Performance Analysis

When the cache-hit ratio is increased to 8 %, we observe in Figure 7 that the benefits
of caching balances out the overhead induced DSA and the performance Native and
DSA is almost identical for the EchoVoid, EchoStruct, and EchoSynthetic

Fig. 7. Throughput and response time with 8 % cache-hit ratio and a bandwidth of 5 Mb/s

0

50

100

150

200

250

300

350

400

450

Void Struct List Synthetic Info

T
h
r
o
u
g
h
p
u
t
(
r
e
q
u
e
s
t
s
/
s
)

Native

DSA

0

500

1000

1500

2000

2500

3000

3500

Void Struct List Synthetic Info

A
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Native

DSA

404 P. Zhang et al.

benchmarks. Furthermore, for this configuration, DSA gives around half the response
time of Native for EchoList and EchoInfo. We observe in Figure 8 that for 8 % cache-
hit ratio and a 20 Mb/s network, the response times of Native are similar to those of
DSA, except for the EchoList benchmark, where DSA performs substantially better.
As caching and data compression are more beneficial for slower networks, we note
that the performance improvement of using DSA is much higher for 5 Mb/s networks
than for 20 Mb/s ones.

Fig. 8. Throughput and response time with 8 % cache-hit ratio and a bandwidth of 20 Mb/s

Fig. 9. Throughput and response time with 8 % cache-hit ratio and a bandwidth of 20 Mb/s and
different number of concurrent client threads

Figure 9 illustrates, for a varying number of client’s threads, the performance of
Native and DSA for a 20 Mb/s network and a cache-hit ratio of 8 %. We note that the
performance improvement of DSA over Native increases with the number of client
threads. This suggests that DSA is a scalable solution that can improve both response
time and throughput for highly loaded data services.

0

100

200

300

400

500

600

Void Struct List Synthetic Info

T
h
r
o
u
g
h
p
u
t
(
r
e
q
u
e
s
t
s
/
s
)

Nat ive

DSA

0

500

1000

1500

2000

2500

Void Struct List Synthetic Info

A
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Native

DSA

0

50

100

150

200

250

300

350

400

450

500

0 50 100 200 300 400 500 600
Number of client threads

T
h
r
o
u
g
p
u
t
(
r
e
q
u
e
s
t
s
/
s
)

Native

DSA

0

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 200 300 400 500 600
Number of client threads

A
v
e
r
a
g
e

r
e
s
p
o
n
s
e

t
i
m
e
(
m
s
)

Native

DSA

 An Optimized Strategy for Data Service Response 405

4 Conclusion

Data Services have received substantial attention and there is a great deal of industry
excitement around the opportunities they provide. Most of the attention today has
focused on data service modeling and composition, leaving the performance problem
of data services somewhat ignored. In this paper, we focus on the response latency
issue that arises in data services invocations. Our solution demonstrates that the
impact of low network performance can be substantially reduced through caching and
compression.

Acknowledgements. The research work is supported by Supported by the National
High Technology Research and Development Program 863 under Grant
No.2011AA010703; the Strategic Priority Research Program of the Chinese Academy
of Sciences under Grant No.XDA06030602; the China Postdoctoral Science Founda-
tion under Grant No. 2013M541076.

References

1. Carey, M.J., Onose, N., Petropoulos, M.: Data Services. Communication of ACM 55(6),
86–97 (2012)

2. Zhang, P., Wang, G., Ji, G., Liu, C.: Optimization Update for Data Composition View
Based on Data Service. Chinese Journal of Computers 34(12), 2344–2354 (2011)

3. Han, Y., Wang, G., Ji, G., Zhang, P.: Situational data integration with data services and
nested table. In: Service Oriented Computing and Application, pp. 1–22 (2012)

4. Lin, H., Zhang, C., Zhang, P.: An optimization strategy for mashups performance based on
relational algebra. In: Sheng, Q.Z., Wang, G., Jensen, C.S., Xu, G. (eds.) APWeb 2012.
LNCS, vol. 7235, pp. 366–375. Springer, Heidelberg (2012)

5. Takeuchi, Y., Okamoto, T., Yokoyama, K., Matsuda, S.: A Differential-Analysis Ap-
proach for Improving SOAP Processing Performance. In: Proceedings of the IEEE Interna-
tional Conference on e-Technology, e-Commerce and e-Service (EEE 2005), pp. 472–479
(2005)

6. Makino, S., Tatsubori, M., Tamura, K., Nakamura, Y.: Improving WS Security Perfor-
mance with a Template Based Approach. In: ICWS 2005, pp. 581–588 (2005)

7. Teraguchi, M., Makino, S., Ueno, K., Chung, H.-V.: Optimized Web Services Security
Performance with Differential Parsing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 277–288. Springer, Heidelberg (2006)

8. Bal, H.E., Bhoedjang, R., Hofman, R., et al.: Performance evaluation of the Orca shared-
object system. ACM Trans. Comput. Syst. 16(1), 1–40 (1998)

9. Takase, T., Tatsubori, M.: Efficient Web Services response caching by selecting optimal
data representation. In: Proceedings of the 24th International Conference on Distributed
Computing Systems (ICDCS 2004), pp. 188–197. IEEE Computer Society (2004)

10. Ericsson, M.: The effects of XML compression on SOAP performance. WWW Jour-
nal 10(3), 279–307 (2007)

11. Liefke, H., Suciu, D.: XMill: an efficient compressor for XML data. ACM SIGMOD
Record, 153–164 (2000)

12. National Institute of Standards and Technology. Secure hash standard (May 2010),
http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf

Model-Driven Event Query Generation
for Business Process Monitoring∗

Michael Backmann, Anne Baumgrass, Nico Herzberg,
Andreas Meyer, and Mathias Weske

Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2–3, D-14482 Potsdam, Germany

Michael.Backmann@student.hpi.uni-potsdam.de
{Anne.Baumgrass,Nico.Herzberg,Andreas.Meyer,

Mathias.Weske}@hpi.uni-potsdam.de

Abstract. While executing business processes, a variety of events is produced
that is valuable for getting insights about the process execution. Specifically, these
events can be processed by Complex Event Processing (CEP) engines to deliver
a base for business process monitoring. Mobile, flexible, and distributed business
processes challenge existing process monitoring techniques, especially if process
execution is partially done manually. Thus, it is not trivial to decide where the
required business process execution information can be found, how this informa-
tion can be extracted, and to which point in the process it belongs to. Tackling
these challenges, we present a model-driven approach to support the automated
creation of CEP queries for process monitoring. For this purpose, we decompose
a process model that includes monitoring information into its structural compo-
nents. Those are transformed to CEP queries to monitor business process execu-
tion based on events. For illustration, we show an implementation for Business
Process Model and Notation (BPMN) and describe possible applications.

Keywords: Business Process Management, Complex Event Processing, Busi-
ness Process Monitoring, Event Pattern Language Query Generation.

1 Introduction

During business process execution, various systems and services produce a variety of
data, messages, and events that are valuable for gaining insights about business process
execution [13]. This data enables business process monitoring, e.g., to ensure a business
process is executed as expected. However, nowadays, business processes are executed
in different places, times, and by a variety of people or devices leading to more mobile,
flexible, and distributed business processes. In a business process, activities are executed
automatically and manually, where manual execution may be supported by information
systems. In this environment, the different systems used to execute business processes
generate a large amount of events (e.g., Global Positioning System (GPS) signals of
driving trucks) that can be used to enable the monitoring of business processes across
enterprise boundaries [6, 11, 15].

∗ The research leading to these results has received funding from the European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement 318275 (GET Service).

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 406–418, 2014.
c© Springer International Publishing Switzerland 2014

Model-Driven Event Query Generation for Business Process Monitoring 407

The detection and processing of events originating from different systems can be
handled by Complex Event Processing (CEP) engines [9,13]. In contrast, the orchestra-
tion and enactment of business processes is in the control of Business Process Manage-
ment (BPM) systems [16, 19] in semi-automated environments. Existing works argues
that the incorporation of modeling process logic and describing complex event patterns
is essential to capture the overall process context [2]. Thus, there is the need to comple-
ment the modeling and execution of business processes in semi-automated execution
environments with CEP capabilities.

In this paper, we demonstrate the combination of BPM with CEP for monitoring
business process execution in semi-automated environments. We utilize the Refined
Process Structure Tree (RPST) [17] to decompose process models into their structural
components. Subsequently, these components are automatically transformed into CEP
queries using an Event Pattern Language (EPL). For process modeling, we use Busi-
ness Process Model and Notation (BPMN) [14] enriched with process event monitoring
points (PEMPs) [11] that specify where which events are expected during execution.
The corresponding CEP queries derived from the BPMN model are represented by Es-
per EPL [3, 8]. Although we use BPMN and Esper, the general approach presented
in this paper is not restricted to a certain process modeling notation nor an EPL. The
concept of PEMPs allows to exactly specify which parts of a process model shall be
monitored, while existing approaches aim at monitoring each construct of the process
model. This may lead to unexpectedly incomplete event logs resulting in severe issues
with respect to CEP. In summary, the query generation presented in this paper can be
conducted without the need to learn a specific syntax of an EPL and helps if either only
parts of a process are of interest or some parts are not observable due to missing sensors,
for instance.

The remainder of this paper is structured as follows. Section 2 introduces the set of
basic notations that we use throughout the paper. Next, Section 3 describes the scenario
including its process model which is used in this paper to demonstrate our approach.
Our automation of the query generation from process models is given in Section 4. It
includes the three necessary steps to generate CEP queries and the description of their
implementation. Afterwards, the application areas of our approach are shown in Section
5 followed by the comparison of our approach with related work in Section 6. Finally,
Section 7 concludes this paper.

2 Preliminaries

Working with CEP requires a profound understanding of events and their utilization.
An event is a real-world happening occurring in a particular point in time at a certain
place in a certain context [13]. Capturing an event in an information system requires the
transformation of an event into an event object, each being classified by an event object
type [11]. In the process context, we define both concepts as follows.

Definition 1 (Event object). An event object E = (type, id, P, timestamp, C) refers
to an event object type ET , has a unique identifier id, refers to a set P of process
instances being affected by the event object, has a timestamp indicating the occurrence
time, and contains an additional event content C.

408 M. Backmann et al.

initialized ready running terminatedinitialize enable begin terminate

skippedskip

disrupted
disrupt

Fig. 1. Activity life cycle (cf. [19])

Definition 2 (Event object type). An event object type ET = (name, cd) refers to a
unique name indicating the object type identifier and has a content description cd of a
particular event being of this event type.

As indicated in Definition 1, event objects affect one or several process instances by
indicating, for instance, process state changes. Each process instance refers to exactly
one process model, which we define as follows.

Definition 3 (Process model). A process model M = (N,F, η, μ, ψ) contains of a fi-
nite non-empty set N ⊆ A∪E∪G of flow nodes being activities A, events E, and gate-
ways G. Events E ⊆ ES∪EI∪EE are distinguished into start events ES , intermediate
events EI , and end events EE . F ⊆ N ×N represents the control flow relation which
constraints the partial order of nodes. Functions η : ES ∪ EE → {plain,message}
and μ : EI → {message, time, cancel, error} assign a type to each event. Function
ψ : G → {xor, and} assigns a type to each gateway.

We require each process model to be structural sound and block-structured1. Process
monitoring deals with capturing events based on node execution; but monitoring on
node level may be too coarse-grained. Assuming, there exist waiting times between the
execution of two activities, the termination of the first activity does not indicate the
start of the second one such that multiple measures are needed. Therefore, we utilize
the concept of life cycles for nodes of a process model [19] and attach PEMPs to the
state transitions of the node life cycles [11]. Formally, we define a node life cycle as
follows.

Definition 4 (Node life cycle). A node life cycle L = (S, T, ϕ) contains of a finite
non-empty set S of states and a finite set T ⊆ S × S of state transitions. Let L be the
set of all node life cycles defined for the nodes N of process model M . Then, there
exists a function ϕ : N → L assigning a node life cycle to each node n ∈ N of M .

Fig. 1 depicts the life cycle LA for activities consisting of states initialized, ready, run-
ning, terminated, disrupted, and skipped connected by transitions (i)nitialize, (e)nable,
(b)egin, (t)erminate, (d)isrupt, and (s)kip. For events and gateways, we utilize a sub-
set of these states removing states running and disrupted and the transitions leading to

1 The process model contains exactly one start and one end event and each node is on a path from
that start event to the end event. Each activity has exactly one incoming and one outgoing edge,
each start event has one outgoing and no incoming edges, each end event has one incoming
and no outgoing edges, each gateway has at least three edges with either exactly one incoming
or exactly one outgoing edge, and for each merging gateway there exists a splitting one.

Model-Driven Event Query Generation for Business Process Monitoring 409

Fig. 2. Business process model of a container pick-up process modeled in BPMN with
associated node life cycles and event object types

them. Further, the states ready and terminate are connected via transition (ex)ecute. We
distinguish state transitions into the ones observable by occurring events and the ones
requiring the context of the process instance to deduce their triggering. For a given node
of a process model, each state transition belongs to either group. Utilizing PEMPs for
process monitoring is independent from the process instance execution. Thus, a PEMP
can only be attached to state transitions being directly observable.

Definition 5 (Process event monitoring point). Let M be a process model, L a node
life cycle, and OL ⊆ TL the set of state transitions not requiring process instance
information. Then, a process event monitoring point is a tuple PEMP = (M,n, t, et),
where M is the process model it is contained in, n ∈ N is the node of the process model
it is created for, t ∈ OL is a state transition within the node life cycle L it is created for,
and et ∈ ET is an event object type specifying the event object to be recognized.

3 Scenario

Next, a business process from the logistics domain is used as scenario to discuss the
approach presented in this paper (see Fig. 2). Assume, a terminal stores containers from
different companies and provides them to truck drivers as requested by the owners of the
container. First, the truck driver needs to drive to the pick-up location of the terminal.
Arrived there, the driver gets the container assigned to her regarding the company the
driver is executing the transport for. Second, the driver checks the container she received
for several aspects like, for instance, sufficient capacity, special capabilities as cooling
means if required, tidiness, and intactness. While the first two mentioned checks are
rather guaranteed aspects due to the booking in advance of containers, the two latter
aspects are very critical. If any of the checks leads to a negative result, the task Check

container gets canceled and the corresponding intermediate event is raised. As next
step, the driver gets another container, which she checks again. If all checks succeed,
the driver can mount the container to her truck and depart from the pick-up location.

To each task, event, and gateway of the process model shown in Fig. 2, a life cy-
cle is assigned that consists of the states and transitions introduced above. For activ-
ities, the state transitions enable, begin, and terminate are potentially observable by

410 M. Backmann et al.

occurring events. For gateways and events, such state transitions are enable and exe-
cute. In contrast, the disruption of an activity by an attached intermediate event or the
skip of an activity due to exclusiveness cannot be observed directly. For instance, the
triggering of state transition disrupt can only be deduced by observing the execution
of that attached event. Potentially, each of these observable transitions is connected to
a PEMP [10] used for process observation. However, this does not mean that each ob-
servable transition is actually monitored during process execution. Transitions may be
excluded from monitoring due to unavailable capturing mechanisms for corresponding
event data or due to the stakeholders’ interests. For instance, the start of the process is
observable when the driver receives the location where she should pick up the container.
For activity Drive to container location, we receive GPS coordinates that we
aggregate to identify when the truck arrived at its destination; i.e., activity termination
takes place. In contrast, activity Check container cannot be observed, because it is
a manual task without any system interaction. Likewise, the intermediate cancellation
event cannot be captured, because it is a manual interaction between the driver and
the pick-up location worker. However, indirectly, the happening of both can be derived
whenever another container is requested. Altogether, we are able to observe at least
one state transition for the tasks Drive to container location, Get assigned

container, and Mount container, the start and end events as well as the gateway
by recognizing events of the event object types specified in the lower part of Fig. 2.
Task Check container and the attached intermediate cancellation event cannot be
observed.

4 Query Generation

Monitoring the execution of a process instance requires CEP queries to recognize state
transitions of its given process model. Next, we introduce the algorithm enabling the au-
tomatic generation of such queries from a process model with attached Process Event
Monitoring Points (PEMPs) as introduced above. This algorithm comprises three main
steps which will be explained in detail in the following sections. First, a RPST is cre-
ated from a given process model (see Section 4.1). The RPST is based on the edges
of a process model, but for the actual query generation, we require the nodes. There-
fore, in a second step, we transform the RPST into a component tree representing the
structure of the process model based on nodes (see Section 4.2). Finally, we utilize this
component tree and automatically create the CEP queries for the given process model
(see Section 4.3).

Fig. 3 illustrates the first two steps of this algorithm for the process model introduced
in Section 3 and again shown in Fig. 3a. Fig. 3b depicts its graph used to construct the
RPST given in Fig. 3c. The resulting component tree is presented in Fig. 3d and its
transformation (resp. step three) to CEP queries in Section 4.3. The implementation for
this particular case is given in Section 4.4.

Model-Driven Event Query Generation for Business Process Monitoring 411

(a)

i a b

c

e

d f o

P1

P3

P2 B1

(b)

(c) (d)

Fig. 3. Scenario as (a) BPMN model, (b) graph, (c) RPST, and (d) component tree

4.1 Creation of the RPST

In order to generate queries from a process model, it is necessary to split the model into
smaller parts (sub-graphs). In particular, we use the RPST that decomposes a model re-
spectively the graph into a hierarchy of single-entry / single-exit (SESE) blocks. These
SESE blocks have special characteristics as they are canonical fragments. A fragment is
canonical if its contained nodes do not overlap with the nodes of another fragment, i.e.,
the nodes of canonical fragments can either interleave or be disjoint. A formal definition
is provided in [17]. Thus, the RPST is a tree which contains the canonical fragments
of a graph as tree nodes and the edges between nodes of the graph as tree leaves (see
Fig. 3c). Additionally, this decomposition provides special characteristics for the canon-
ical fragments which are derived from the so called triconnected components. Note that
each canonical fragment is also a triconnected component each of which being either a
bond, a polygon, or a rigid (see [17]).

412 M. Backmann et al.

4.2 Transformation of a RPST to a Component Tree

In the second step, the RPST is transformed into a node-oriented tree, the so called
component tree. This tree contains a component for every canonical fragment and
its leaves are build from the edges of this fragment. For example, Fig. 3d shows that
for every canonical fragment (P1, B1, P2 and P3) from the RPST shown in Fig. 3c
a component is created in the component tree. The edges of a graph contained in the
RPST such as (b, c) and (c, d) for the P2-fragment are then split up into its contained
notes b, c and d. These nodes represent the XOR-gateway as well as the Get assigned

container and the check container activity.
Afterwards, we assign a type to every component of the tree. The component types

characterize the behavior of the component and are distinguished into AND, XOR, Se-
quence, Loop and SubProcess. The assumption of block-structuredness enables an easy
mapping of polygons to sequences and bonds to the other mentioned component types.
AND, XOR, Sequence, and Loop represent the control flow structure with AND- or
XOR-Gateways, while SubProcess indicates an entire subprocess as component. Cor-
responding to that, the scenario process model contains three components of type Se-
quence (SEQ1, SEQ2, SEQ3) and one component of type Loop (LOOP1) (see Fig. 3d).

4.3 Query Generation from the Component Tree

Finally, we generate event processing queries from component trees to monitor the ex-
ecution of a process model. A query is generated for every node in the component tree.
Depending on the component types, we generate different types of queries. In addition,
we consider the PEMPs of a process model to create queries for state transitions. These
state transition queries allow to monitor the life cycles of observable process nodes.

A CEP query can be written in any EPL, e.g., Esper [3]. Using an EPL allows to
query an event stream and use patterns as part of the query to define particular ordering
relations among the events and its event types respectively. For demonstration, we used
the Esper Query Language. The CEP query pattern for the component types and state
transitions of BPMN in Esper are summarized in Table 4.3, where et1..et11 ∈ ET are
the event types that are expected. These event types can be defined in a PEMP. As a
subprocess is a specific type of an activity that can contain several other flow nodes and
control flows, it is transformed to CEP queries as complement of the other patterns. For
example, the process shown in Fig. 2 could be seen as subprocess part of a complete
transportation chain including planning and invoicing.

All the queries are ordered and nested according to the fact that they can depend
on each other. The triggering of one query can expedite the progress of other queries
which are on a higher hierarchy level. While the sequence in which the queries are
called is derived from the process-flow, the hierarchy is derived from structure of the
component tree. For instance, in Fig. 3d the query for LOOP1 depends on SEQ2 that
itself depends on the state transition query for node c. Examples for the implementation
of these queries is given in Section 4.4.

Model-Driven Event Query Generation for Business Process Monitoring 413

Table 1. Esper patterns for query generation

BPMN pattern Esper pattern

Loop FROM PATTERN [(EVERY S4=et1) UNTIL EVERY S5=et2]

Sequence FROM PATTERN [(EVERY S0=et3 → EVERY S1=et4)]

XOR FROM PATTERN [(EVERY S0=et5 OR EVERY S1=et6)]

AND FROM PATTERN [(EVERY S0=et7 AND EVERY S1=et8)]

State transition FROM PATTERN [(EVERY S0=et9 → EVERY S1=et10 → EVERY
S2=et11)]2

In addition, we support intermediate timer events and intermediate cancel events.
An intermediate timer event has a duration from which we generate a timer query that
waits for the specified time and signals the expiration of the timer duration. Intermediate
cancel events are attached to activities and subprocesses. The cancel events can indicate
the abortion of the node the cancel event is attached to. Thereby, it is possible to monitor
models with expected runtime exceptions.

4.4 Implementation

A process can be monitored based on its process model. We have implemented a service
in our Event Processing Platform (EPP) [4, 11]3 which generates the component tree
from a process model that includes PEMPs. We provide two combinations for importing
process models and defining its PEMPs. First, the business user may import BPMN-
specific models and directly adapt the PEMP definitions for specific nodes in the user
interface of the EPP. Second, we defined an BPMN extension4 with which life cycles
and PEMPs can be attached to a node in a BPMN model used to derive CEP queries.
Thus, process models used in the EPP are specified in the BPMN-conform XML format
and include the representation of state transitions of activities, gateways, and events
using PEMPs. Finally, we take these annotated models and generate the CEP queries.

In our EPP, each query must be written and registered before the events can be cap-
tured and processed. The EPP registers each CEP query in Esper [3] via listeners. These
listeners get informed if the query matches observed events with the specified condi-
tions defined by the query. Based on the patterns given in Table 4.3, Listing 1.1 shows
the four queries in the Esper query language for our scenario process model in Section
3. These queries are derived from the component tree as described in Sections 4.2 and
4.3. As not every activity is observable the derived queries are restricted to those events
that are observable.

2 This query depends on the transitions that are observable for a node. In our case, only enable,
begin, and terminate are observable.

3 Downloads, tutorials, and further information can be found at:
http://bpt.hpi.uni-potsdam.de/Public/EPP

4 Due to page limitations, we could not include this definition in the paper but provide it on our
website at http://bpt.hpi.uni-potsdam.de/Public/EPP#BPMN_Extension.

http://bpt.hpi.uni-potsdam.de/Public/EPP
http://bpt.hpi.uni-potsdam.de/Public/EPP#BPMN_Extension

414 M. Backmann et al.

Listing 1.1. Monitoring queries using Esper
S t 1 :
SELECT ∗
FROM PATTERN [(EVERY S0= C o n t a i n e r D o c s Re ce iv e d −> EVERY S1= C o n t a i n e r R e c e i v e d)]
WHERE S e t U t i l s . i s I n t e r s e c t i o n N o t E m p t y ({S0 . P r o c e s s I n s t a n c e s , S1 .

P r o c e s s I n s t a n c e s})

Seq2 :
SELECT ∗
FROM PATTERN [(EVERY S2= As kedForCon ta in e r −> EVERY S3= St1)]
WHERE S e t U t i l s . i s I n t e r s e c t i o n N o t E m p t y ({S2 . P r o c e s s I n s t a n c e s , S3 .

P r o c e s s I n s t a n c e s})

Loop1:
SELECT ∗
FROM PATTERN [(EVERY S4=Seq2) UNTIL EVERY S5= M ountCon ta ine r]
WHERE S e t U t i l s . i s I n t e r s e c t i o n N o t E m p t y ({S4 . P r o c e s s I n s t a n c e s , S5 .

P r o c e s s I n s t a n c e s})

Seq1 :
SELECT ∗
FROM PATTERN [(EVERY S6= C o n t a i n e r L o c R e c e iv e d −> EVERY S7= A r r i v e d A t L o c a t i o n −>

EVERY S8=Loop1)]
WHERE S e t U t i l s . i s I n t e r s e c t i o n N o t E m p t y ({S6 . P r o c e s s I n s t a n c e s , S7 . P r o c e s s I n s t a n c e s

, S8 . P r o c e s s I n s t a n c e s})

At first, the St1 query monitors the sequence of two monitoring points with the event
types of the Get assigned container activity. While the definition of the sequen-
tial ordering of the events for this query is enclosed in PATTERN[...] in the FROM-
clause, the WHERE clause checks whether the events from both event types have oc-
curred for the same process instance. In the Seq2 query monitors whether the gateway
event is followed by the previously defined query (resp. Get assigned container ac-
tivity). Since activity Check container as well as the intermediate event Container
rejected are not observable, the Loop1 query can only check if Seq2 is followed by
events belonging to the Mount container activity. Finally, we can use the Seq1 to check
occurrences of events for process instances executing the process shown in Fig. 2.

It is possible to decouple the query creation from the monitoring part into a separate
service module. In this vein, it is possible to generate queries that are independent from
a specific EPL. Depending on the EPL used, it might require adaptations. In all cases, it
is required to represent the dependencies between the queries and enable the checking
of events through the graph of queries. For example, the termination of the Loop1 query
is required for the complete observation of the Seq1 query and thus the whole process
execution.

5 Application

In this section, we exemplarily address three areas of BPM the presented approach can
be applied to: (i) monitoring of business process progress, (ii) monitoring of process
model deviations, and (iii) calculation of Key Performance Indicators (KPIs).

(i) Through the usage of our approach, it is possible to correlate events in a CEP
engine to the nodes of a process model. Therewith, the monitoring of a single process
execution can be established. As per the introduced framework, the life cycles for single

Model-Driven Event Query Generation for Business Process Monitoring 415

process nodes and for the components of the process model are observable. Thus, a
very detailed status of the execution progress for process instances can be presented.
Recognizing an event at a PEMP will predict the actual state of a process execution
and its performed activities. For example, when we see the events Container location
received and Arrived at location, we can infer that the activity Drive to container

location was fully performed.
(ii) Further, based on this monitoring information, deviations from the process model

during runtime can be determined. In comparison to the approaches of [18] or [1], we
do not create queries to detect deviations, but search for deviations on the basis of
the execution status of a process instance. The usage of the component tree allows to
determine order relations between the process nodes, which are similar to the order
relations defined in [18]. Every time a query is triggered in our approach, a special
monitoring component looks for execution deviations. By doing so, it is possible to
detect nodes which should be exclusive but were observed together in the same process
instance, nodes which should be in a strict sequential order but were monitored deviant
to this order, nodes which should be present but were absent during runtime of the
process instance, nodes which should occur only once but happened more often, and all
execution deviations for nodes which are contained in a loop.

However, the detection of execution deviations for nodes that are part of a loop is
limited, because exclusiveness, order, missing, or duplicate violations cannot be dis-
tinguished with certainty. For example, assuming activity Check container is ob-
servable allows to monitor both activities contained in the loop. In case, the trace
A,B,C,D,E,G,G,F5 is observed, a loop-deviation is detected. The deviation is moni-
tored, because event F, indicating the container was mounted, was monitored only once,
whereas the event G, indicating the performance of Check container, was observed
twice. Thus, it is possible that the events C,D,E for the XOR join and the activity Get

assigned container are missing for the second loop iteration or that the second
Check container activity instance represented by the second event G is a duplicate.

(iii) Besides the application of our approach for process monitoring, we can utilize
the events relating to a particular PEMP to measure KPIs. We refer to the definition
of a KPI as stated in [19]. A KPI is linked to a business goal it is contributing to and
has a name and a data type. The KPI definition includes an algorithm that describes
how to measure the KPI, a target value, and upper and lower target margins. For KPI
measurement, the particular PEMPs can be used in the corresponding algorithm. As
described in Section 3, the terminal operator has the business goal to ensure a certain
customer satisfaction that is influenced by the duration the drivers need to spend at the
terminal to mount a container, for instance. Therefore, a KPI is defined that measures the
time between the truck driver getting the information about the location of the assigned
container to be mounted (start point of KPI measure) and the truck departure (end point
of KPI measure).

5 In accordance to Fig. 2: A is an event of the Event Object Type (EOT) Container location
received, B is an event of EOT Arrived at location, C is an event of EOT Asked for container, D
is an event of EOT Container documents received, E is an event of EOT Container received, F
is an event of EOT Container mounted, and G is the newly introduced event of EOT Container
checked for monitoring Check container.

416 M. Backmann et al.

Referring to the scenario described in Section 3, one can see that the KPI may be
influenced by the loop. In case a container is rejected, because of an identified damage
for instance, the start point of the KPI measure is passed again. This challenges the
measurement of the KPI, because it has to be decided whether the KPI measurement
is still valid (start point of the KPI measure is still the first occurrence of the event
captured at the beginning of activity Get assigned container) or the start point
of the KPI measure needs to be reset. This constellation is not trivial to handle, as we
cannot observe the entrance into the loop cycle explicitly, because the activity Check

container nor the event of rejecting the container can be observed. Thus, we cannot
differentiate whether the loop was intended as described in the process model and the
KPI measure needs to be reset, because the assignment of the container is not in the
responsibility of the terminal, or there was another execution of activity Get assigned

container by mistake or any other reason and the KPI measurement needs to be kept.

6 Related Work

Barros et al. [2] present a set of patterns describing relations and dependencies of events
in business processes that have to be captured in process models to observe the overall
process context. Their assessment of the modeling languages BPMN and Business Pro-
cess Execution Language (BPEL) resulted in their language proposal called Business
Event Modeling Notation (BEMN) [7], a graphical language for modeling composite
events in business processes. BEMN allows to define event rules, e.g., specific com-
binations of events, that are to be used in stand-alone diagrams or as integration into
BPMN. Similarly, Kunz et al. [12] introduce an approach to enhance the creation of
CEP queries. In particular, the approach presents how EPL statements can graphically
be represented by BPMN elements. In this way, the authors provide a means to model
CEP queries with a better usability for business users. Both modeling approaches, in [7]
and [12], focus on the representation of CEP in business processes. Complementary, our
approach includes a standard-conform extension of BPMN with which we are able to
automatically derive CEP queries from process models and not only check the process-
flow but also life cycle transitions of nodes via events.

In [1], the authors introduce techniques to automatically generate Esper queries by
taking a choreography model as a formalization of the process, however, without includ-
ing the life cycles of nodes or basing the approach on a specific modeling language.
Similar, Weidlich et al. [18] take BPMN models as basis to create EPL statements
to monitor process violations only. Both approaches presume complete and structured
event logs. Thus, they are not suited for processes that include non-observable events.
In our approach the process model must be annotated with PEMPs that bind events to
state transitions of BPMN elements as described in [11] first.

In the context of BPM, Dahanayake et al. [5] give an overview of Business Activity
Monitoring (BAM) and introduce a four class-categorization of BAM systems all basing
on events. Therefore, the approach presented in this paper can be applied to enable BAM
techniques and methods to provide valuable monitoring results by using the produced
extracted events as input.

Model-Driven Event Query Generation for Business Process Monitoring 417

7 Conclusion

We combined BPM with CEP to allow model-driven monitoring of business process
executions in semi-automated environments. In essence, we can decompose a process
model via a graph representation into a RPST, which we then transform into a compo-
nent tree, which in turn is the basis to derive CEP queries determining the status of an
execution. The constructs of a process model being considered for query generation are
specified by the stakeholder by attaching PEMPs to nodes of the process model. This
allows to specify the activities, events, and decisions to be observed in a process model
to especially receive information about happenings the stakeholder is interested in and
lowers the effort for creating those perticular queries manually. Further, the specifica-
tion of PEMPs to nodes of a process model is implemented in an EPP allowing business
users to do so without the need to know the technical specialties. In future work, we will
apply this approach to process monitoring and analysis tasks in general, e.g., runtime or
process cost analysis. Analyzing process event occurrences is another application area
the approach can contribute to.

References

1. Baouab, A., Perrin, O., Godart, C.: An Optimized Derivation of Event Queries to Monitor
Choreography Violations. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012.
LNCS, vol. 7636, pp. 222–236. Springer, Heidelberg (2012)

2. Barros, A., Decker, G., Grosskopf, A.: Complex events in business processes. In: Abramow-
icz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 29–40. Springer, Heidelberg (2007)

3. Bernhardt, T., Vasseur, A.: Esper: Event stream processing and correlation. O’Reilly Media
(2007), published at http://onjava.com/

4. Bülow, S., Backmann, M., Herzberg, N., Hille, T., Meyer, A., Ulm, B., Wong, T.Y., Weske,
M.: Monitoring of Business Processes with Complex Event Processing. In: BPM Workshops.
Springer (2013) (accepted for publication)

5. Dahanayake, A., Welke, R., Cavalheiro, G.: Improving the Understanding of BAM Technol-
ogy for Real-time Decision Support. IJBIS 7(1), 1–26 (2011)

6. Daum, M., Götz, M., Domaschka, J.: Integrating CEP and BPM: how CEP realizes functional
requirements of BPM applications (industry article). In: DEBS, pp. 157–166 (2012)

7. Decker, G., Grosskopf, A., Barros, A.: A graphical notation for modeling complex events in
business processes. In: EDOC, pp. 27–36. IEEE (2007)

8. EsperTech: Esper - Complex Event Processing, http://esper.codehaus.org (as of
May 2013)

9. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co. (2011)
10. Herzberg, N., Kunze, M., Rogge-Solti, A.: Towards Process Evaluation in Non-automated

Process Execution Environments. In: Services and Their Composition, ZEUS (2012)
11. Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business Process

Management. In: EDOC. IEEE (2013) (accepted for publication)
12. Kunz, S., Fickinger, T., Prescher, J., Spengler, K.: Managing Complex Event Processes

with Business Process Modeling Notation. In: Mendling, J., Weidlich, M., Weske, M. (eds.)
BPMN 2010. LNBIP, vol. 67, pp. 78–90. Springer, Heidelberg (2010)

13. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing in Dis-
tributed Enterprise Systems. Addison-Wesley (2002)

14. OMG: Business Process Model and Notation (BPMN), Version 2.0 (2011)

http://onjava.com/
http://esper.codehaus.org

418 M. Backmann et al.

15. Rozsnyai, S., Lakshmanan, G.T., Muthusamy, V., Khalaf, R., Duftler, M.J.: Business Process
Insight: An Approach and Platform for the Discovery and Analysis of End-to-End Business
Processes. In: 2012 Annual of the SRII Global Conference (SRII), pp. 80–89. IEEE (2012)

16. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process management: A
survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS,
vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

17. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data & Knowledge
Engineering 68(9), 793–818 (2009)

18. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-Based
Monitoring of Process Execution Violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K.
(eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg (2011)

19. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn.
Springer (2012)

Enabling Semantic Complex Event Processing

in the Domain of Logistics�

Tobias Metzke1, Andreas Rogge-Solti1, Anne Baumgrass1,
Jan Mendling2, and Mathias Weske1

1 Hasso Plattner Institute at the University of Potsdam, Germany
tobias.metzke@student.hpi.uni-potsdam.de

{firstname.lastname}@hpi.uni-potsdam.de
2 Institute for Information Business at Vienna University

of Economics and Business, Austria
jan.mendling@wu.ac.at

Abstract. During the execution of business processes, companies gen-
erate vast amounts of events, which makes it hard to detect meaningful
process information that could be used for process analysis and improve-
ment. Complex event processing (CEP) can help in this matter by pro-
viding techniques for continuous analysis of events. The consideration of
domain knowledge can increase the performance of reasoning tasks but
it is different for each domain and depends on the requirements of these
domains. In this paper, an existing approach of combining CEP and on-
tological knowledge is applied to the domain of logistics. We show the
benefits of semantic complex event processing (SCEP) for logistics pro-
cesses along the specific use case of tracking and tracing goods and pro-
cessing related events. In particular, we provide a novel domain-specific
function that allows to detect meaningful events for a transportation
route. For the demonstration, a prototypical implementation of a system
enabling SCEP queries is introduced and analyzed in an experiment.

1 Introduction

The enterprise system landscape has significantly changed in the last decade.
Sensors are increasingly used to track objects via Global Positioning System
(GPS), measure temperature, energy consumption and other types of data. Sen-
sors provide this data in event streams. An event, in general, is something that
happens or occurs and might change the current state of a system [1].

For the detection of complex and meaningful patterns in event streams, users
can rely on different event operators and temporal relationships that are provided
by Complex Event Processing (CEP) technology [1]. The enrichment of event
streams with high-level knowledge is required for handling the context in which
the stream data is interpreted and analyzed [2]. At present, research in this area

� The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement 318275
(GET Service).

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 419–431, 2014.
c© Springer International Publishing Switzerland 2014

420 T. Metzke et al.

has formed the term of Semantic Complex Event Processing (SCEP) [2,3,4].
There are prototypes combining ontological knowledge with CEP techniques,
dealing with specific domains like smart grids, advanced facility management
and stock markets. The domain of logistics, however, has not been covered by
these considerations yet. In logistics, considerable amounts of event-based data
are produced, e.g. traffic and weather information [5]. These data are relevant for
logistics processes to ensure timely transport of goods [5,6]. Besides the events
that occur directly on the planned routes, also events in geographical proximity
of planned routes can affect logistics processes. For example, you might want
to circumnavigate congestions, flooded areas, or other dangerous regions in safe
distance.

In this paper, we address the need for domain-specific event operators to
serve logistics scenarios. Thereby, this paper makes the following contributions.
First, the usage of domain-specific knowledge in form of an ontology for CEP is
shown for the logistics domain. To use the DBpedia as a top-level ontology1 only
minor extensions where necessary. Second, we use SCEP to implement a novel
logistics-specific built-in function. This function is able to consider geo-spatial
distance and, thus, support the special requirements of logistics processes for
CEP query creation. In this way, our contribution can serve as a basis for a
convenient routing, re-routing and transportation of goods in the domain of
logistics. To demonstrate the applicability of the approach, we implemented a
lightweight SCEP prototype. This prototype is used in an evaluative experiment
to illustrate the effectiveness of the proposed concepts.

The remainder of this paper is structured as follows: Section 2 provides an
overview of the characteristics of CEP in the domain of logistics and introduces
several use cases. Section 3 outlines the general approach taken for the inclusion
of ontological knowledge in CEP and explains the mechanisms that allow for
semantic querying in logistics. Based on the SCEP concepts, Section 4 presents
the logistic-specific adaption for identifying transportation-related events. Fol-
lowing, Section 5 depicts the details of the prototypical implementation of the
approach before Section 6 evaluates the general benefits and shortcomings of
it. Section 7 then summarizes research related to the presented approach. This
work concludes with Section 8, summarizing the work done and providing an
outlook on future steps.

2 Usage of SCEP in Logistics

An important use case in the logistics domain is track and trace [5,6]. Logis-
tics service providers (LSPs) monitor their means of transportation like trucks,
ships, and containers on their respective routes worldwide. LSPs depend on the
detection of relevant complex events from numerous data sources. In particular,
events from external sources need to be correlated to the respective routes and
transportation means.

1 See http://dbpedia.org/About

http://dbpedia.org/About

Enabling SCEP in the Domain of Logistics 421

Weather events like floods and storms as well as road blockages can have an
impact on transporation routes. Therefore, events located near these routes can
affect the schedule of a transportation plan. Thus, LSPs need to detect those
events to be able to react appropriately and timely. The more information an
LSP gains on such events, the more precise its reaction can be. To this end,
complex event queries can be constructed to listen to event streams. Without
external knowledge, however, it is inconvenient to construct queries that capture
the necessary information for such scenarios. More specifically, query designers
would need to know the characteristics of all the routes that the LSP’s trucks,
ships, or containers are on. These specifics could include knowledge about the
waypoints on the routes, the overall lengths of the routes as well as the time
needed to complete them. This hampers convenient and efficient query creation
for this and more complex use cases. Therefore, CEP engines that are used in
logistics should make use of background knowledge.

SCEP engines [3,7,8] provide knowledge to query designers in a convenient
way, by abstracting from domain-specific complexities. Furthermore, semantic
technologies enable automatic normalization of event stream sources by seman-
tic annotation. With ontological background knowledge, a query designer can
conveniently create high-level queries that capture relevant information, instead
of having to cope with stream source specifics. Section 3 provides further infor-
mation on how semantically rich CEP queries can be written and how they are
evaluated.

3 Querying Semantic Events

Semantic CEP querying on event streams allows for the combination of CEP
and semantic web technologies. The user defines queries, in this case semantic
queries, which are registered in a semantic CEP engine. Incoming event streams
are monitored by this engine and evaluated against the defined user queries
with the help of ontological background knowledge and CEP capabilities. The
results of these evaluations are gathered and the user is informed about the
matching queries. The model of semantic events is introduced in Section 3.1. In
Section 3.2, the structure of SCEP queries and their difference to CEP queries is
given. Afterwards, the process of semantic querying is explained in Section 3.3.

3.1 Semantic Event Model

In order to integrate semantics in CEP queries, Zhou et al. [9] propose a
semantic event model that captures event attributes, their semantics, domain
entities and the relations between them. This model describes how event at-
tributes are matched to semantic entities and linked to external knowledge
bases in order to enrich the information of the events. In the end, incoming
raw events (e.g. lightweight data tuples) are transformed into semantic events
(graph-based data, see Fig. 1) that point into existing ontologies. Such ontologies
comprise entities, literals and links between them. The resulting graph structure

422 T. Metzke et al.

:event1 dbp:
Hamburg

dbo:
placedbp:

Flood
rdf:type

:Geo155.675864 12.568005

dbo:
latitude

dbo:
longitude

Fig. 1. A semantic event dynamically created from the raw event in Listing 1.1

allows for graph-specific queries and algorithms to be applied on the informa-
tion stored. There have been several approaches to introduce a common logistics
domain-ontology [10,11]. However, common knowledge ontologies (or top-level
ontologies) like the DBpedia include most of the transportation-related entities
already. Minor extensions to this knowledge base are provided in the paper where
necessary.

With the help of semantic events, semantic queries can be defined that make
use of knowledge in ontologies events are linked to. For example, the raw event
shown in Listing 1.1 is a flood warning for Hamburg, a city in Germany. Such
an event can be dynamically annotated either with the help of semantic annota-
tion techniques [12] or static mapping files that are maintained for specific event
streams [3]. The resulting semantic event is shown in Fig. 1. It references enti-
ties from the underlying DBpedia ontology like dbp:Flood and dbp:Hamburg. The
dbo namespace describes all DBpedia ontology predicates and some basic classes
while the dbp namespace primarily describes entities that have a Wikipedia web-
site. Thus, the event is linked to all the knowledge available for these two entities
in that ontology, indicated by the dotted circles and arrows. SCEP queries can
then use these connections and work with knowledge the event itself does not
provide but it is linked to.

Listing 1.1. An incoming raw event with a list of string-based key-value pairs

[(’type’, ’FloodWarning’), (’city’, ’Hamburg’), (’location’,’52.181701 11.600692’)]

3.2 Semantic Event Queries

Based on the semantic event model, a basic structure for semantic queries can
be introduced. These SCEP queries start with a traditional CEP pattern and
can further be specified by a semantic part as shown in Listing 1.2.

Enabling SCEP in the Domain of Logistics 423

Listing 1.2. Structure of a semantic query

SCEP Query ::=
[PREFIX <namespace>]
[CEP Subpattern ::=
SELECT <event∗, attribute∗, aggregation∗>
FROM <input stream AS event>∗
(WHERE <relational constraints>)?
(SEQ <event, event, ...>)?
(WINDOW <window specifications>)?]

[Semantic Subpattern ::=
{(<subject URI> <predicate URI> <object URI|Literal>.)∗}]

First, the CEP subpattern specifies the temporal and relational constraints of
events based on their attributes. The CEP subpattern consists of the traditional
SELECT and FROM statements specifying the data stream and the projection
of attributes and aggregations the query returns. The event specified in this pat-
tern will be passed on to the semantic subpattern upon evaluation process of an
incoming event. The where, sequence and window selectors are optional and help
to further specify the query. The CEP subpattern does not directly correspond
to one existing CEP language definition but rather generalizes common features
of several ones [8,13].

Second, the semantic subpattern places semantic constraints over events and
their associated domain entities [3]. Semantic patterns are written in SPARQL2

triple notation. The pattern is a list of statements that comprise a subject, a
predicate, and an object. While the subject and predicate have to be given by
an uniform resource identifier (URI), the object can be either defined by an URI
or a literal (e.g. a string, an integer, or any other data type) (see Listing 1.2).

Following the example use case of Section 2 and the event described in List-
ing 1.1 and Fig. 1, a query following the SCEP pattern is shown in Listing 1.3.
This specific query asks for the given event type and its geographical location, if
it contains information about the city of Hamburg in Germany and warns about
a flood.

Listing 1.3. An example for a SCEP query

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/resource/>
SELECT type, location
FROM WorldWeatherStream as $event
{$event dbo:place ?city.
$event rdf:type dbp:Flood.
filter(?city = dbp:Hamburg)}

2 See http://www.w3.org/TR/sparql11-query/

http://www.w3.org/TR/sparql11-query/

424 T. Metzke et al.

The query in Listing 1.3 basically works with information that is present in
the event itself and has simply been transferred into an ontology. Furthermore,
a SCEP query can work with data that is not provided by the event directly.
For example, the population of a city the event happens at could be taken into
account, although it is not provided by the event itself (see Listing 1.4).

3.3 Semantic CEP Querying

In order to semantically evaluate incoming events, they have to be transformed
into semantic events (see Section 3.1) and evaluated with the help of registered
semantic queries (see Section 3.2). More specifically, the semantic subpatterns of
the semantic queries are used for the semantic evaluation. Therefore, the seman-
tic part is transformed into a SPARQL ASK query3, as shown in Listing 1.4.

Listing 1.4. An example ASK query

PREFIX dbo: <http://dbpedia.org/ontology/>
ASK {$event dbo:place ?city.
?city dbo:populationTotal ?population.
filter(?population > 1500000)}

In general, these queries return either True or False upon evaluation. The
evaluation workflow of the given query displayed in Listing 1.4 for the event
shown in Fig. 1 would be the following:

1. Hamburg is saved into the variable ?city
2. The related total population (1,796,077) of this ?city is read from the knowl-

edge base, here DBpedia, and is saved into the variable ?population
3. The value of the ?population is compared to the specified 1.5 million
4. The ?population is higher than 1.5 million that is why the query returns

True, otherwise it would have returned False. If the ?city would not have
a population value in the DBpedia ontology, the ?population variable would
be empty and the query would return False.

As the semantic subpattern query for the example event in Listing 1.1 returns
True, it passes the event to a CEP evaluation module. In this module, the CEP
subpattern is evaluated for the event in the traditional CEP manner. If the
criteria of the CEP subpattern are fulfilled, the user is informed of a match with
his SCEP query. Details on how this is prototypically implemented are described
in Section 5.

4 Identifying Transportation-Related Events via SCEP

In the domain of logistics, the locality of events and their distance to trans-
portation routes are of special interest, as these events might be relevant to the

3 See http://www.w3.org/TR/sparql11-query/#ask

http://www.w3.org/TR/sparql11-query/#ask

Enabling SCEP in the Domain of Logistics 425

transportation plan and its execution (e.g., a flood event in a nearby location
could affect the transportation plan). We assume that a transportation route
is stored in an ontology consisting of route segments that have a start and an
end point, which in turn are places with geographical coordinates (in latitude
and longitude format). We want to determine, whether an event is in a given
distance to a route (i.e., whether it is relevant for transportation). Each route
segment can be checked independently. An event is transportation-relevant, if
it is nearby at least one segment. Fig. 2 shows three methods that determine
whether an event is relevant for a route. These methods were selected due to the
simplicity of their calculation and are described as follows.

(a) Point-to-point distance. (b) Point-to-line distance. (c) Ellipse inclusion.

Fig. 2. Three different ways of finding nearby events (E) to a route (A,B). (a) Distance
between two points. (b) Distance of a point to a line. (c) Ellipse inclusion and distance
of a point to a line.

Distance between two points. The event is considered transportation-
related, if the location of the event is closer to any of the points on the
route than a defined distance d. Assuming that the geographical points on
the route are dense, the error introduced by this simple solution can be ac-
ceptable. However, as Fig. 2a shows, if the distance between the points on
the route is high compared to d, a relevant event E lying between two route
points might not be detected.

Distance of a point to a line. The event is considered transportation-
related, if the location of the event is closer to the line between two con-
secutive points on a route than distance d. However, as Fig. 2b highlights,
events that are close enough to the line between two points are marked as
relevant even if the events are too far away from the two points on that line.

Ellipse inclusion. An event is considered transportation-related, if it lies
within the ellipse spanned by the two points and the defined distance d
with the formula a+ b < c+2 ∗ d, and if the distance of the event’s location
to the line between the two route points is less than distance d (cf. previ-
ous method). The addition of the ellipse constraint ensures that we do not
include events far from the route segments.

426 T. Metzke et al.

With current CEP querying, the task to find transportation-related events to
a route would require the query designer to know all the relevant transportation
plans, the geographical points on these plans and their order on the route. He
could then compute the distance according to the before mentioned methods.
Although the approach introduced by Zhou et al. [3] provides the knowledge
about transportation plans and their segments in a convenient way, a user would
still have to manually create a query that computes the distance of an event to
any of the segments in the transportation plans.

Therefore, the presented approach can be extended by a convenient built-
in function that serves exactly this purpose. A query example with the built-
in function is shown in Listing 1.5. As displayed, users can filter for specific
event types like floods and define, at what distance to the route they are to
be included. The example sets a distance threshold of 50km for floods nearby
the transportation route of plan LSP 1. In practice, domain experts need to
determine distance thresholds for the inclusion of events.

Listing 1.5. Usage of the built-in function nearby provided by the prototype

PREFIX dbo : <http : // dbpedia . org / onto logy/>
PREFIX dbp : <http : // dbpedia . org / r e sou r c e/>
PREFIX l o g i s t i c s : <http : // example . org / l o g i s t i c s#>
SELECT type , l o c a t i o n
FROM WorldWeatherStream as $event
{ $event rd f : type dbp : Flood .
$event dbo : p lace ? l o c a t i o n .
l o g i s t i c s : LSP 1 dbo : plan ? plan .
f i l t e r ($nearby (? l o c a t i on , ?plan , 50))}

On query registration, the query is automatically translated to a more com-
plex query including the necessary distance calculations4. Note that the rewritten
query comprises more than forty additional lines of SPARQL code in that exam-
ple. A query designer without the proposed method based on SCEP would have
to manually write that amount of additional code to enable the search of nearby
events for transportation plans. Our generated queries are less error-prone, as
they are generated from a shorter – and therefore, more understandable – query.
Furthermore, queries are also less error-prone, since the code is generated auto-
matically and individual mistakes can be avoided. Besides, once the improved
calculation of nearby search is implemented with the built-in method nearby,
all queries using the method benefit from that improvement automatically.

5 Implementation/Architecture

The concepts introduced in the previous sections were implemented in a proto-
type5 based on Python6 for server-side implementation and JavaScript on the

4 The rewritten query stub can be found at
http://bpt.hpi.uni-potsdam.de/pub/Public/EPP/nearby_function.txt

5 Instructions and downloads are available at:
http://bpt.hpi.uni-potsdam.de/Public/EPP#Semantic_Extension

6 See http://www.python.org/

http://bpt.hpi.uni-potsdam.de/pub/Public/EPP/nearby_function.txt
http://bpt.hpi.uni-potsdam.de/Public/EPP#Semantic_Extension
http://www.python.org/

Enabling SCEP in the Domain of Logistics 427

client side. The prototype , depicted in Fig. 3, provides a client-server archi-
tecture, serving a web interface that can be accessed through a common web
browser. In Fig. 3, the web interface is marked in gray, denoting that it has been
exchanged or added compared to the initial architecture, provided by Zhou et
al. [3]. This holds for all other components that are depicted in out architecture
as well. The SCEP engine includes an Resource Description Framework (RDF)
Server, namely Virtuoso RDF Triple Store7 which holds the ontologies neces-
sary for the use cases of the logistics domain mentioned before. It allows for
querying these ontologies through a web interface as well as programmatically.
The semantic engine is build around an existing CEP engine further described
by Herzberg et al. [14]. The CEP engine supports simple filtering, sequence and
aggregation patterns over event streams. It also allows for sliding time window
aggregations. It offers a web interface as well, allowing for the registration of
queries as well as the sending of events. The prototype we developed in this pa-
per provides additional semantic filtering functionality around the CEP engine
in order to enable SCEP querying on incoming event streams. These additional
modules, shown in Fig. 3, serve the following purposes:

Fig. 3. Architectural Component Overview

The Query Registration module processes the user queries entered through
the web interface of the SCEP engine. They are split into their semantic and
their CEP pattern, the latter of them is registered in the CEP engine for

7 See http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSTriple

http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VOSTriple

428 T. Metzke et al.

CEP evaluation later on. The semantic subpattern is stored in the server,
shown in the interface and evaluated on incoming event streams that match
the defined stream source in the CEP subpattern part.

The Ontological Library holds the defined knowledge bases in OWL8 format.
They capture the relations between semantic entities and rules defined for
them. Events are linked into these ontologies by pointing to any of their
entities. The Event Ontology reflects the semantic event model mentioned
before.

The Semantic Annotation module materializes semantic events from incom-
ing raw events arriving on a registered event stream source. Mapping files
describe the correlation between input event attributes and the semantic
event properties and entities. These mapping files can be static, direct map-
pings or dynamic mapping files that use semantic annotation techniques in
order to find the best matching semantic properties and entities for incoming
event attributes. For the prototype, the direct mappings are implemented.

The Semantic Evaluation module processes incoming semantic events and
evaluates them according to the workflow shown in Section 3.3. Therefore,
the registered semantic subpatterns that match the stream source of the
incoming event are evaluated for it with the help of the RDF Server. If a
semantic subpattern evaluates to True , the raw event associated to the
semantic event is passed on to the CEP Engine where the event is evaluated
with the corresponding CEP pattern of the semantic subpattern.

Finally, the CEP engine evaluates the passed raw events and performs the actions
registered in the CEP pattern when identifying a pattern match. For performance
reasons, if no registered semantic subpatterns associated to the event’s stream
exist, the raw events are not semantically annotated but passed on to the CEP
engine directly.

6 Experiment

The prototype presented in this paper basically relies on the concepts intro-
duced by Zhou et al. [3] and would therefore yield no new insights concerning
event throughput performance. However, the built-in function for nearby search
serving as a logistics specific extension may introduce new computational com-
plexity.

Therefore, the median response time of a query similar to the one depicted
in Listing 1.5 was measured with the help of the prototype introduced in Sec-
tion 5. The evaluation routes where given by a list of real-world transportation
routes containing different numbers of geographical points describing them. The
different routes contain 4, 8, 36, 187, 201, 388, 744, 1520, 3040, 6080, 12160,
24320, 48640, and 97280 points, where 97280 points can describe a route of ap-
proximately 16,000 kilometers with a GPS coordinate for every 170 meters. All
routes were stored in the Virtuoso Server in RDF triple format. For every route,

8 See http://www.w3.org/2004/OWL/

http://www.w3.org/2004/OWL/

Enabling SCEP in the Domain of Logistics 429

a query evaluating incoming events against the route was registered in the pro-
totype. Only one query was registered at a time in the system in order to avoid
dependencies between the response times of the queries. Each query was then
evaluated three times with a set of 400 randomly created events which were fed
into the system sequentially. The average of the measured response times builds
the final value for every query.

Fig. 4 displays the behavior of a query containing a nearby search. The re-
sponse times themselves are rather high compared to the prototype build by
Zhou et al. [3] due to the client-server architecture of the prototype (see Sec-
tion 5). The nearby search query however indicates a linear relationship between
points on the route and the response time of the query. When doubling the num-
ber of points on the transportation route from 48,640 to 97,280, the response
time grows by a factor of approximately 1.6. Thus, the overhead produced by
a nearby search can be well estimated and stays in a feasible range when in-
creasing the accuracy by introducing more points along a route. Further work
on decreasing the complexity while preserving the accuracy of the nearby search
could yield better results concerning computational overhead in the future.

Fig. 4. Response time of a query containing the nearBy function for different numbers
of points on a transportation route

7 Related Work

Recently, the fusion of complex event processing with semantic background
knowledge as presented in this paper has been widely researched [2,3,8,15,16].
Anicic et al. [17] proposed EP-SPARQL, an extension of the SPARQL language
that allows to process streams of data that are temporally related. They in-
troduced new language constructs that allow for queries not only on stored
background knowledge but also the time relations between incoming events.
With ETALIS, Anicic et al. [8] provided a rule-based deductive system that
acts as a semantic event processing engine and uses EP-SPARQL. Event queries
are written in SPARQL and enriched by the temporal operators introduced in
EP-SPARQL. All background knowledge and event queries are transformed into
Prolog rules and executed in a Prolog engine. While this approach is indepen-
dent from existing, traditional CEP engines, the approach presented in this paper
leverages their expressibility and performance.

430 T. Metzke et al.

Teymourian et al. [7] proposed a modular ontology model and architectural
vision for SCEP. In their architecture, the semantic knowledge base includes
ontologies and inferencing rules. They use a rule-based engine in order to process
the incoming event data and to evaluate the user queries. However, they do
not leverage existing CEP engines and their expertise and performance in the
field of event processing. Zhou et al. [3] built on the architectural model shown
in [7], employing a state of the art CEP engine instead of a rule-based engine
and extending the approach by the ability to evaluate historical event data as
well. They enable semantic event queries that can evaluate past, present, and
future event data. The approach presented in this paper builds on the proposed
architecture, event model, and query definitions. It explores the applicability of
the given approach for the domain of logistics, uses a recently build CEP engine
and extends the given approach by logistics specific ontologies and a built-in
function.

The need for special functionality in the domain of logistics originates in the
typical use cases of this domain like tracking and tracing. It has been introduced
by van Dorp [5] and Shamsuzzoha et al. [6], highlighting the benefits and pos-
sibilities of real-time monitoring of transportations for the domain of logistics.
The presented approach employs an example from the tracking and tracing use
cases and outlines the effectiveness and expressibility of semantic CEP queries
in this domain.

In order to work on semantic background knowledge, it has to be provided
in the form of ontological knowledge. Approaches by Lian et al. [10] and Hoxha
et al. [11] have introduced how such ontologies can be established and which
concepts are relevant in the domain of logistics. The work presented in this paper
bases on concepts introduced in the DBpedia ontology like companies, means of
transportation, and geographical regions. The necessary extension points for this
ontology to work in the domain of logistics are minimal, this is why no logistics
specific ontology was used in the presented approach. However, more complex use
cases may imply the use of a specific ontology rather than a top-level ontology
like the DBpedia.

8 Conclusion

In this paper, the applicability of SCEP for the domain of logistics is evaluated.
The presented approach clearly shows that the use of domain-specific knowl-
edge in logistics can lead to expressive and convenient CEP query creations.
As shown, typical logistics use cases can benefit from the capabilities provided
by semantic web technologies with only a few adaption when it comes to se-
mantic event processing. The paper also introduces a prototype that leverages
the advantages of an existing CEP engine. Furthermore, the work outlines a
novel built-in functionality for logistics based on event query rewriting which
can easily be integrated in any similar SCEP approach. Nonetheless, the use of
domain-specific knowledge also introduces computational overhead compared to
state of the art CEP which has to be tackled by efficient implementations and

Enabling SCEP in the Domain of Logistics 431

caching mechanisms. Future work will focus on further logistics use cases and
their characteristics and needs in terms of CEP. Beyond that, the applicability
of other approaches to the logistics domain needs to be evaluated.

References

1. Luckham, D.C.: The Power of Events. Addison-Wesley (2002)
2. Teymourian, K., Rohde, M., Paschke, A.: Fusion of Background Knowledge and

Streams of Events. In: Proc. of the 6th ACM International Conference on Dis-
tributed Event-Based Systems (DEBS), pp. 302–313 (2012)

3. Zhou, Q., Simmhan, Y., Prasanna, V.: SCEPter: Semantic Complex Event Pro-
cessing over End-to-end Data Flows. Technical report, Technical Report 12-926.
Computer Science Department, University of Southern California (2012)

4. Walavalkar, O.B.: Streaming Knowledge Bases. ProQuest (2007)
5. Van Dorp, K.J.: Tracking and Tracing: A Structure for Development and Contem-

porary Practices. Logistics Information Management 15(1), 24–33 (2002)
6. Shamsuzzoha, A., Helo, P.T.: Real-time Tracking and Tracing System: Potentials

for the Logistics Network. In: Proceedings of the 2011 International Conference on
Industrial Engineering and Operations Management, pp. 22–24 (2011)

7. Teymourian, K., Paschke, A.: Enabling Knowledge-based Complex Event Process-
ing. In: Proc. of the 2010 EDBT/ICDT Workshops, vol. 37, pp. 1–37. ACM (2010)

8. Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream Reasoning and Complex
Event Processing in ETALIS. Semantic Web 3(4), 397–407 (2012)

9. Zhou, Q., Simmhan, Y., Prasanna, V.: Towards an Inexact Semantic Complex
Event Processing Framework. In: Proc. of the 5th ACM International Conference
on Distributed Event-based Systems (DEBS), pp. 401–402 (2011)

10. Lian, P., Park, D.W., Kwon, H.C.: Design of Logistics Ontology for Semantic Rep-
resenting of Situation in Logistics. In: Proc. of the 2nd Workshop on Digital Media
and its Application in Museum & Heritages, pp. 432–437. IEEE (2007)

11. Hoxha, J., Scheuermann, A., Bloehdorn, S.: An Approach to Formal and Seman-
tic Representation of Logistics Services. In: Proc. of the Workshop on Artificial
Intelligence and Logistics (AILog), pp. 73–78 (2010)

12. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic Annota-
tion, Indexing, and Retrieval. Web Semantics: Science, Services and Agents on the
World Wide Web 2(1) (2011)

13. Demers, A., Gehrke, J., Panda, B., Riedewald, M., Sharma, V., White, W.M., et
al.: Cayuga: A General Purpose Event Monitoring System. In: CIDR (2007)

14. Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business
Process Management. In: Proc. of the 17th IEEE International EDOC Conference
(2013)

15. Crapo, A., Wang, X., Lizzi, J., Larson, R.: The Semantically Enabled Smart Grid.
In: Proc. of the Grid-Interop Forum, vol. 2009, pp. 177–185 (2009)

16. Barbieri, D.F., Braga, D., Ceri, S., Grossniklaus, M.: An Execution Environment
for C-SPARQL Queries. In: Proc. of the 13th International Conference on Extend-
ing Database Technology, pp. 441–452. ACM (2010)

17. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: A Unified Lan-
guage for Event Processing and Stream Reasoning. In: Proc. of the 20th Interna-
tional Conference on World Wide Web, pp. 635–644. ACM (2011)

Towards Self-adaptation Planning

for Complex Service-Based Systems

Azlan Ismail1 and Valeria Cardellini2

1 Faculty of Computer and Mathematical Sciences
Universiti Teknologi MARA (UiTM), Malaysia

azlanismail@tmsk.uitm.edu.my
2 Department of Civil Engineering and Computer Science Engineering

University of Roma Tor Vergata, Italy
cardellini@ing.uniroma2.it

Abstract. A complex service-based system (CSBS), which comprises a
multi-layer structure possibly spanning multiple organizations, operates
in a highly dynamic and heterogeneous environment. At run time the
quality of service provided by a CSBS may suddenly change, so that vi-
olations of the Service Level Agreements (SLAs) established within and
across the boundaries of organizations can occur. Hence, a key manage-
ment choice is to design the CSBS as a self-adaptive system, so that
it can properly plan adaptation decisions to maintain the overall qual-
ity defined in the SLAs. However, the challenge in planning the CSBS
adaptation is the uncertainty effect of adaptation actions that can vari-
ously affect the multiple layers of the CSBS. In a dynamic and constantly
evolving environment, there is no guarantee that the adaptation action
taken at a given layer can have an overall positive effect. Furthermore,
the complexity of the cross-layer interactions makes the decision mak-
ing process a non-trivial task. In this paper, we address the problem by
proposing a multi-layer adaptation planning with local and global adap-
tation managers. The local manager is associated with a single planning
model, while the global manager is associated with a multiple planning
model. Both planning models are based on Markov Decision Processes
(MDPs) that provide a suitable technique to model decisions under un-
certainty. We present an example of scenario to show the practicality of
the proposed approach.

Keywords: Self-adaptation, Adaptation planning, Cross-layer services,
Markov Decision Process.

1 Introduction

Service-based systems are becoming increasingly complex (also called CSBS)
due to their multi-layer structure and the heterogeneous and dynamic execution
environment in which they operate [14]. The multi-layer structure of CSBS is
referred to the application, platform, and infrastructure layers. The application
layer consists of the composite software services to fulfill the business process

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 432–444, 2014.
c© Springer International Publishing Switzerland 2014

Towards Self-adaptation Planning for Complex Service-Based Systems 433

activities. The platform layer provides the computing platforms to execute and
manage services, while the infrastructure service layer provides the resources
(computing, storage, network) to provision software services. These layers are
inter-related to fulfill the CSBS’s goals. The complexity of CSBS imposes chal-
lenges in managing its lifecycle in a multi-cloud environment [2], where multiple
Clouds can be used in a concomitant way to offer the service and each of the
CSBS layers may be deployed by different Cloud providers.

Self-adaptation in autonomic computing [13] is the prominent paradigm to
manage and maintain the quality of service (QoS) of CSBS. The key idea of self-
adaptation is to introduce the IBM’s MAPE (Monitor, Analyze, Plan, Execute)
loop into the system. The self-adaptation goal is to alleviate the software man-
agement efforts in managing highly changing and evolving environments. During
run-time, the monitoring component observes the CSBS behavior and detects
or predicts any problematic situation such as failures and SLA violations [22]. If
a problematic condition is detected, the analysis component analyzes the situa-
tion to discover more information such as the impact, or the cause of the failure.
Then, the planning component decides the appropriate adaptation strategies to
be undertaken by the execution component.

The Quality of Service (QoS) of CSBS needs to be maintained during run-
time. The QoS characteristics are specified in an agreement known as Service
Level Agreement (SLA), which contains the contractual service levels to be met
by the services of each layer. The self-adaptation framework can utilize the mul-
tiple SLA information [7] to maintain the QoS of CSBS. The monitoring com-
ponent can use the contractual information to observe, detect, and predict any
SLA violation. The analysis component can use the contractual and the ob-
served information to discover new information, such as the impact region [10].
The planning component can use the discovered information to decide about
appropriate adaptation strategies, such as which layer to be adapted and what
kind of adaptation action to be executed.

Planning and deciding the appropriate adaptation actions are challenging re-
search problems. There are two core factors, namely, the complexity of CSBS
and the uncertainty effect, which need to be taken into consideration at the same
time. In general, there are several sources of uncertainty, such as those discussed
in the context of service delivery [20] and self-adaptive software systems [8].
Herein, the uncertainty effect refers to the CSBS state as a result of execut-
ing the adaptation actions. Meanwhile, the complexity refers to the multi-layer
interactions among services and the CSBS dynamism. These factors demand a
robust adaptation planning and failing to consider these factors may cause a
failure in maintaining the overall QoS of CSBS.

This paper contributes to twofolds. First, a conceptual framework of multi-
layer self-adaptive service-based system. The uniqueness of the framework is the
decentralized adaptation managers to support the multi-layer planning. Second,
a planning model based on Markov Decision Processes (MDPs) to appropriately
select the adaptation action for the respective service layer. This model can

434 A. Ismail and V. Cardellini

complement the existing decision making proposals in selecting the adaptation
strategy.

The remainder of this paper is organized as follows. We present a decentral-
ized self-adaptation architecture for multi-layer services in Section 2. Then, we
elaborate the model and the method for solving the adaptation planning prob-
lem in Section 3. We discuss a motivating example to illustrate the practicality
of the approach in Section 4. In Section 5, we analyze the related work. Finally,
we summarize and highlight future work in Section 6.

2 Self-adaptation Framework for CSBS

The key idea to enable self-adaptation in service-based systems is to adopt the
IBM’s MAPE reference framework [13]. It consists of four components (Moni-
tor, Analyze, Plan, and Execute) that interact in a feedback control loop. The
Monitor is responsible to observe the system behavior and to detect or predict
any problematic situation, e.g., a SLA violation. The Analyze component is re-
sponsible to gain more information about the identified problem and to decide
whether it occurs to trigger an adaptation. The Plan component is responsible
to produce a policy or a plan to support the adaptation. The generated plan
can contain which service layer(s) to be adapted and what adaptation action(s)
to be executed. Finally, the Execute component is responsible to execute the
planned adaptation actions.

A single MAPE has been argued as to be insufficient to adapt a CSBS due to
its multi-layer architecture. The main challenge of a multi-layer architecture is
the complexity of the system in dealing with changes and evolution. The com-
plexity is attributed to the vertical and horizontal dependencies among the ser-
vices in the CSBS. Thus, in this paper, we propose a self-adaptation framework
for CSBS with multiple MAPE loops as illustrated in Figure 1.

The framework consists of the adaptation managers and the CSBS. The adap-
tation manager is classified into two types of managers, namely the global adap-
tation manager (GAM) and the local adaptation managers (LAMs), on which
we focus below. The proposed framework follows the hierarchical control pattern
as discussed in [21]. This pattern is suitable to manage the complexity of self-
adaptation by providing a hierarchy of MAPE loops. The higher-level MAPE
loop concerns with the global adaptation, while the lower-level MAPE loops con-
cern with the local adaptation. In the case of demanding the local adaptation
only, this pattern can potentially reduce the adaptation time. Its drawback is
the possibility of not being able to achieve a global adaptation due to conflict
of interests from the lower level. Furthermore, the global MAPE loop might be
dealing with a considerable workload of adaptation requests triggered by the
lower MAPE loops. We will investigate in future work the evaluation of the
effectiveness and efficiency of the hierarchical control pattern.

Towards Self-adaptation Planning for Complex Service-Based Systems 435

Fig. 1. Self-adaptation framework for CSBS

2.1 Adaptation Managers

The framework contains two types of adaptation managers, GAM and LAMs,
which operate at different levels of abstraction and may operate at different time
scales.

The LAM is concerned with a single, specific layer of the service-based system.
It consists of all the MAPE components:(1) Monitor, which is responsible to
determine the abnormality within the layer; (2) Analysis, which is responsible
to determine whether an adaptation is required and what needs to be adapted;
(3) Planning, which is responsible to plan the appropriate adaptation action for
the layer; (4) Executor, which is responsible to execute the adaptation plan.

Meanwhile, the GAM is concerned with the overall service-based system. It
consists of all the MAPE components: (1) Monitor, which is responsible to mon-
itor the abnormality notification triggered by the local monitors; (2) Analysis,
which is in charge to determine the joint effect of the cross-layer adaptation;
(3) Planning, which is in charge to plan the appropriate adaptation strategy for
the entire system; and finally,(4) the Executor, which is in charge to properly
instruct the local executors to perform the adaptation.

2.2 Adaptation Interaction Process

The interaction among GAM, LAMs, and CSBS can be presented in terms of
a UML sequence diagram as depicted in Figure 2. The adaptation process is
perceived as a continuous activity of monitoring and adapting the CSBS.

Each LAM monitors the CSBS behavior at runtime, while the GAM monitors
each LAM. If an abnormal condition is detected at a specific layer, the respective
LAM Analyzer is executed and the respective LAM notifies the GAM. The LAM
proceeds with the local planning and then waits to synchronize with the GAM’s
decision.

From the GAM perspective, it performs a global analysis upon receiving the
notification. Then, the GAM analyzes the abnormal conditions to understand the

436 A. Ismail and V. Cardellini

Fig. 2. Interaction model of the adaptation process

effect on the cross-layer system. The outcomes of the analysis may fall into one
of these categories: (1) Affected, which is identified when more than one CSBS
layer is affected; (2) Not Affected, which is identified when the other layers are
not affected by the abnormal condition notified by the LAM.

Based on this outcome, the GAM performs either of the following: (1) let the
LAM operate locally; (2) handle the situation. The first case is triggered if the
GAM’s analysis results in Not Affected. In this case, the GAM skips the planning
activity and notifies the targeted LAM to perform the local adaptation. Upon
receiving this notification, the respective LAM executes the established plan. For
instance, if the LAM refers to the application layer, then a replanning process
will be executed by invoking an existing planner, i.e., the MOSES planner [6,5].

The second case is triggered when the GAM’s analysis results in Affected.
The GAM performs a global planning which determines the adaptation actions

Towards Self-adaptation Planning for Complex Service-Based Systems 437

for the multiple layers. Then, the GAM’s executor instructs all the LAMs to
execute the plan. Herein, the GAM decision will supersede the decision taken by
the respective LAM. Hence, the LAM will update the existing plan with a new
plan and execute the latter.

We provide the design for the planning component in the following section,
while the remaining framework components are beyond the scope of this paper
and are left to future work.

3 Adaptation Planning

In this section we present the adaptation planning component for the CSBS, first
introducing the selected methodology and then analyzing how we determine the
single and multiple planning strategies.

3.1 Overview of the Methodology

The technique we used to model the planning is based on decision-theoretic
planning and specifically on Markov Decision Processes (MDPs), that provide a
suitable framework to model the decision making process under uncertainty and
to take forward-looking decisions [3,17].

The basic MDP model is also known as centralized MDP and is suitable to
model a single planning problem. MDP has been applied in various application
domains, including multi-robot coordination and sensor network management.
The common MDP model consists of states, actions, transition probabilities, and
rewards. In addition, the model can be associated with finite and infinite horizon.
The optimal solution can be obtained by using stochastic dynamic programming
algorithms such as value iteration and policy iteration.

The centralized MDP is also determined as fully observable, which means the
agent has a full knowledge about the underlying state environment. However,
in certain situations an agent may only have a partial information about the
underlying state environment. Hence, a generalization of MDP was proposed,
also known as Partially Observable Markov Decision Process (POMDP) [11]. In
POMDP, the agent needs to establish its belief to the state environment in order
to determine the appropriate policy.

Several variants and generalizations of MDP and POMDP models have been
proposed in literature, especially related to the multi-agent decision processes.
Cooperative multi-agent systems are often modeled by Multi-agent MDP, Multi-
agent POMDP, decentralized MDP, or decentralized POMDP [18]. There are
some common elements to model the multi-agent systems [12], which include
the set of agents, the set of global states, the set of joint actions, the set of joint
observation, the joint transition function, the global reward, and the set of belief
states.

438 A. Ismail and V. Cardellini

In this study, we identify two types of planning approaches (i.e., single and
multiple) to support the adaptation planning process. The single planning ap-
proach concerns only a single layer of the CSBS. Hence, we model this type of
planning based on the centralized MDP. On the other hand, the multiple plan-
ning approach deals with multiple layers of the CSBS and therefore we model
this type of planning based on the multi-agent MDP (MMDP) [3], which is a
generalization of the centralized MDP.

3.2 Single Planning

We first present the problem formulation of the single planning using a single
MDP and explain how to achieve the optimal policy. The single planning will be
executed by a LAM. The single planning problem is modeled as a single MDP
with a tuple (S,A, P,R,H), where:

– S refers to the set of violation states associated to the services in a specific
layer. There are three possible stati for the state: normal, expected violation,
and violated.

– A refers to the set of possible adaptation actions to be executed associated
to a specific violation state. The action to be taken will change a state to the
next state. Herein, we consider a significative subset of adaptation actions
that can be executed at a specific service layer. For instance, the actions
that can be taken at the infrastructure layer include adding a new virtual
machine instance or migrating a virtual machine instance from one physical
machine to another machine. The possible actions at the platform layer may
include updating or redeploying a Web server. Meanwhile, the actions to
be considered at the application layer include replanting the workflow or
rebinding to different component services (i.e., through service selection) that
provide the same functionality but with different non-functional parameters
(e.g., response time, cost, availability, reputation).

– P is a transition function P : S×A → Δ(S). P (s′|s, a) denotes the transition
probability (uncertainty effect) of taking action a in state s which results in
a transition to state s′. For instance, a state s, e.g., violated, may change to
the next state s′, e.g., normal, if action a is taken with 0.9 probability.

– R is the reward function R : S×A → �. R(s, a) denotes the reward obtained
when action a is taken from a state s which a state transition to s′ occurs.
The reward can be viewed as a utility value of a specific layer in fulfilling the
layer objective. For instance, the objective of the application layer can be to
minimize the response time, and thus the utility value represents the response
time of taking an adaptation action. The objective of the infrastructure layer
can regard the minimization of the energy consumption and thus the utility
value represents the energy consumed in taking an adaptation action. For
simplicity, we assume the reward value takes either 1, 0, or -1. The reward 1
is assigned when state s′ holds the normal status. The 0 reward is assigned
for the expected violation status, while reward -1 is assigned for the violated
status.

Towards Self-adaptation Planning for Complex Service-Based Systems 439

– H is the finite horizon during which the policy can be computed. This period
is essential to ensure the proposed policy can maintain the quality assurance
of CSBS. For instance, the adaptation cycle can take up to a maximum of t
time to maintain the overall execution time.

Based on these elements, the optimal policy for the adaptation planning can
be formulated. The optimal policy refers to the best adaptation action to be
executed for evolving the state of a service to the next state. The policy is based
on Bellman equation, given as follows:

π∗(s) = argmaxa∈A{R(s, a) +
∑
s′

P (s′|s, a)V ∗(s′)} (1)

In Eq. 1, π∗(s) is the optimal policy (the best action to be taken) for state s.
The best action is obtained based on the maximum reward of the possible action
rewards R(s, a), the transition probability P (s′|s, a) and the value function of
the next state from the previous adaptation cycle V ∗(s′).

In contract to reward, the V value represents the long term objective to be
achieved by the specific layer through a set of adaptation cycle. Technically, the
V value can be formulated as follows:

V k(s) = {R(s, a) +
∑
s′

P (s′|s, a)V k−1(s′)} (2)

In Eq. 2, k refers to one of the steps in the finite horizon H . The optimal
solution can be achieved by using the standard algorithms, namely, the value
iteration in a finite horizon. In the algorithm, the initial V value of all states
can be set 0. Then, for each k, the V value will be computed iteratively until
the value converges, namely, V k(s)− V k−1(s′) < ε. After that, the best V value
is used to select the best action at step k.

3.3 Multiple Planning

The multiple planning is implemented whenever two or more layers are analyzed
as affected. This planning is essential to avoid conflicting adaptation objectives
at the different layers. For instance, the local planning at the infrastructure layer
aims to minimize the energy consumption by migrating some virtual machines.
This decision may affect the application layer which aims to minimize the re-
sponse time by replanning the workflow. Thus, a joint decision is needed and
can be achieved through multiple planning.

We model the multiple planning problem as multi-agent MDP [3] with a tuple
(I, S,A, P,R,H) where I is a set of agents, S is a set of global states, A is a
set of joint actions, P is the global transition function, R is the global reward
function and H is the horizon.

We map the elements in multi-agent MDP to the adaptation planning problem
as follows:

– I is a set of layers, namely the local adaptation managers (LAMs).

440 A. Ismail and V. Cardellini

– S is a set of global states of the CSBS. The global states can be factored
into local states observed by LAMs such as, S = Si × Sj where (i, j) ∈ I.
This means, each LAM will have a full observation on the states within a
specific service layer.

– A is a set of joint adaptation actions, A = Ai ×Aj where (i, j) ∈ I. Each Ai

represents the possible local adaptation actions available to a specific service
layer.

– P is a global transition function P : S × A → Δ(S). P (s′|s, a) denotes the
global transition probability of taking joint adaptation action a in global
state s which results in a transition to the global state s′. The global transi-
tion probability can be decomposed into a set of independent local transition
probabilities, given as follows:

P (s′|s, a) = P (s′i|si, ai)× P (s′j |sj , aj) (3)

– R is the global reward function R : S × A → �. R(s, a) denotes the global
reward obtained for taking the joint adaptation action a in state s and
transitioning to state s′. The global reward is obtained by the following:

R(s, a) =
∑
i∈I

Ri(si, ai) (4)

– H is the finite horizon during which the policy can be computed.

Based on the given model, the global optimal policy, which consists of a set
of joint policies, can be obtained on the basis of Eq. 1. In the latter, the reward
function refers to Eq. 4 and the transition function refers to Eq. 3.

4 Example and Discussion

In this section, we provide an example of scenario to show the practicality of
the proposed approach. The scenario refers to the citizen service center scenario
adopted from [1].

The public service center can be abstractly presented as a multi-layer service
as shown in Fig 3. At the highest level there is the application service layer,
which refers to the application of citizen service center. The middle layer is the
software service layer which consists of composite health and mobility services.
This composite service comprises of the booking service, healthcare service, and
mobility service. The lowest layer is the infrastructure service later which refers
to the actual service providers for each service in the software service layer.

Each of these layers is associated to the LAMs. For instance, the application
layer is managed by a specific LAM. Meanwhile, all LAMs are controlled by the
GAM.

To show the adaptation needs, let us assume that the infrastructure service
layer is detected as having a problematic behavior by the LAM’s monitor. The
problem can be due to many reasons, such as one of the call center providers has

Towards Self-adaptation Planning for Complex Service-Based Systems 441

Fig. 3. Citizen service center considered as use case scenario

been detected as unavailable. Due to this problem, the LAM’s analysis of the
infrastructure layer will notify the GAM’s monitor for a global analysis (refer to
Fig. 2).

The GAM’s analysis will assess the impact level of the problematic situation.
Conceptually, there are two possible outcomes; affected or not affected. If the
outcome is not affected, this means the other layers are not affected by the
condition, that is in our example the booking service can behave as a normal
service. In this case, the GAM will notify the LAM of the infrastructure layer
to handle locally the adaptation problem.

If the analysis outcome is affected, it means the other layers may violate
their QoS constraints due to the problematic condition, in this case the software
service layer. Thus, the GAM performs a further analysis to identify the impact
region (a set of affected services) which results in the booking service. Based on
such outcome, the GAM performs a global planning to determine the appropriate
adaptation action for each service in each layer, namely, the booking service and
the respective call center provider.

In the context of local planning, the mapping between the scenario we consider
in this example and the MDP can be viewed as follows:

– States: the state of the call center provider which is violated;
– Actions: renegotiating the SLA or replacing the call center provider;
– Probability: the effect value of taking the possible actions from the current

state to the next state;
– Reward: the value assigned to the next state;
– Horizon: the number of iterations to address the problematic situation;
– Value: a value to quantify the goodness of the action.

By solving the MDP, a set of values will be obtained in relation to the possible
actions. Thus, the best action that maximizes the objective (as specified in Eq. 1)
will be selected and executed by the Executor component.

442 A. Ismail and V. Cardellini

5 Related Work

Adaptivity is one of the most challenging research problems for service-based
systems and the existing approaches can be mainly divided into three areas [4]: dy-
namic context-aware adaptation, user-centric adaptation, and multi-layer adap-
tation. In this paper, we address the multi-layer adaptation challenges.

The complexity and the uncertainty of a complex service-based system de-
mand for a robust adaptation planning in order to decide the appropriate adap-
tation actions during the runtime operations. The approach by Pernici and
Siadat [15] proposed a fuzzy-based solution to select the adaptation actions
based on QoS satisfaction. It differs from our work since the uncertainty is as-
sociated to the service behavior rather than to the adaptation action effect.
The works in [9,19,24] proposed and utilized Cross-layer Adaptation Manager
(CLAM) to handle the complexity of service-based systems in the adaptation
process. CLAM covers three aspects: first, the integrated platform to plug in ex-
isting adaptation and analysis tools; second, the cross-layer model of the service-
based system as core input; third, the rule-based analysis to construct alternative
cross-layer adaptation strategies. In contrast to our work, we address the uncer-
tainty planning challenge in deciding the adaptation strategies/actions. This is
essential since the actual effect of executing any adaptation action is unknown
and cannot be guaranteed. In [16] Popescu et al. proposed a methodology for the
dynamic and flexible adaptation of multi-layer applications that uses adaptation
templates and taxonomies of adaptation mismatches. However, their approach
focus on functional properties and cannot handle multiple mismatches that oc-
cur at the same time. Zeginis et al. proposed in [23] a framework that can deal
with both reactive and proactive cross-layer adaptation of service-based sys-
tems. While they focus on a cross-layer monitoring mechanism, we investigate
the adaptation phase.

The Model-based Self-Adaptation of SOA Systems (MOSES) framework [5]
aims to dynamically adapt service-based systems according to non-functional
QoS properties by acting at the SaaS layer. Our work aims to complement such
framework with a planning mechanism that takes the complexity (i.e., the multi-
layer model) and the uncertainty effect of adaptation actions into account.

6 Conclusions and Future Work

In this paper, we have proposed a conceptual architecture and interaction pro-
cess for self-adapting a complex service-based system. The architecture consists
of two adaptation managers to cater the global and local perspectives of the
adaptation. Furthermore, we have proposed a planning model based on MDP
techniques by considering the uncertainty and complexity factors of adapting a
complex service-based system. Our study shows the viability of MDP techniques
for realizing a multi-layer self-adaptation planning component.

In the future, we plan to analyze the performance of the proposed approach
as well as its computational complexity with respect to the system scale. We also

Towards Self-adaptation Planning for Complex Service-Based Systems 443

plan to explore reinforcement learning for realizing a decentralized multi-layer
adaptation planning where full knowledge of system dynamics is not required.

Acknowledgement. This work is supported by the Fundamental Research
Grant Scheme (600-RMI/FRGS 5/3 (164/2013)) funded by the Ministry of
Higher Education Malaysia (MOHE) and Universiti Teknologi MARA (UiTM),
Malaysia.

V. Cardellini also acknowledges the support of the European ICT COST Ac-
tion IC1304 Autonomous Control for a Reliable Internet of Services (ACROSS).

References

1. Armellin, G., Chiasera, A., Frankova, G., Pasquale, L., Torelli, F., Zacco, G.: The
eGovernment use case scenario service level agreements for Cloud computing. In:
Service Level Agreements for Cloud Computing, pp. 343–357. Springer (2011)

2. Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., Papaioannou, A., Plex-
ousakis, D., Zeginis, C.: Lifecycle management of service-based applications on
multi-clouds: a research roadmap. In: Proc. of 2013 Int’l Workshop on Multi-Cloud
Applications and Federated Clouds, MultiCloud 2013, pp. 13–20. ACM (2013)

3. Boutilier, C., Dean, T.L., Hanks, S.: Decision-theoretic planning: Structural as-
sumptions and computational leverage. Journal of Artificial Intelligence Re-
search 11(1), 1–94 (1999)

4. Bucchiarone, A., Kazhamiakin, R., Marconi, A., Pistore, M.: Adaptivity in dynamic
service-based systems. In: Proc. of 1st Workshop on European Software Services
and Systems Research - Results and Challenges, pp. 36–37 (2012)

5. Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Lo Presti, F., Mirandola,
F.: MOSES: A framework for QoS driven runtime adaptation of service-oriented
systems. IEEE Transactions on Software Engineering 38(5), 1138–1159 (2012)

6. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F.: Adaptive management
of composite services under percentile-based service level agreements. In: Maglio,
P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470,
pp. 381–395. Springer, Heidelberg (2010)

7. Comuzzi, M., Kotsokalis, C., Rathfelder, C., Theilmann, W., Winkler, U., Za-
cco, G.: A framework for multi-level SLA management. In: Dan, A., Gittler,
F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 187–196.
Springer, Heidelberg (2010)

8. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Self-Adaptive Systems. LNCS,
vol. 7475, pp. 214–238. Springer, Heidelberg (2013)

9. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring
and adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011)

10. Ismail, A., Yan, J., Shen, J.: Incremental service level agreements violation han-
dling with time impact analysis. Journal of Systems and Software 86(6), 1530–1544
(2013)

11. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)

444 A. Ismail and V. Cardellini

12. Kaufman, M., Roberts, S.: Coordination vs. information in multi-agent decision
processes. In: Proc. of 5th Workshop on Multi-agent Sequential Decision Making
in Uncertain Domains, MSDM 2010 (2010)

13. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-
puter 36(1), 41–50 (2003)

14. Marconi, A., Bucchiarone, A., Bratanis, K., Brogi, A., Camara, J., Dranidis, D.,
Giese, H., Kazhamiakink, R., de Lemos, R., Marquezan, C.C., Metzger, A.: Re-
search challenges on multi-layer and mixed-initiative monitoring and adaptation
for service-based systems. In: 2012 Workshop on European Software Services and
Systems Research - Results and Challenges (S-Cube), pp. 40–46. IEEE Computer
Society (2012)

15. Pernici, B., Siadat, S.H.: A fuzzy service adaptation based on QoS satisfaction.
In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 48–61.
Springer, Heidelberg (2011)

16. Popescu, R., A., Staikopoulos, P.L., Brogi, A., Clarke, S.: Taxonomy-driven adap-
tation of multi-layer applications using templates. In: Proc. of 4th IEEE Int’l Conf.
on Self-Adaptive and Self-Organizing Systems, SASO 2010, pp. 213–222 (2010)

17. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic, Dynamic Pro-
gramming. Wiley, New York (1994)

18. Pynadath, D.V., Tambe, M.: The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence
Research 16, 389–423 (2002)

19. Siadat, S.H., Zengin, A., Marconi, A., Pernici, B.: A fuzzy approach for ranking
adaptation strategies in CLAM. In: Proc. of 5th IEEE Int’l Conf. on Service-
Oriented Computing and Applications, SOCA 2012 (2012)

20. Varshney, L.R., Oppenheim, D.V.: Coordinating global service delivery in the pres-
ence of uncertainty. In: Proc. of 12th Int’l Research Symposium on Service Excel-
lence in Management (2011)

21. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke,
J., Andersson, J., Giese, H., Göschka, K.M.: On patterns for decentralized control
in self-adaptive systems. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Self-Adaptive Systems. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg (2013)

22. Zeginis, C., Kritikos, K., Garefalakis, P., Konsolaki, K., Magoutis, K., Plexousakis,
D.: Towards cross-layer monitoring of multi-cloud service-based applications. In:
Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135,
pp. 188–195. Springer, Heidelberg (2013)

23. Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: Towards proactive cross-
layer service adaptation. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 704–711. Springer, Heidelberg (2012)

24. Zengin, A., Kazhamiakin, R., Pistore, M.: CLAM: cross-layer management of adap-
tation decisions for service-based applications. In: Proc. of 2011 IEEE Int’l Conf.
on Web Services, ICWS 2011, pp. 698–699 (2011)

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 445–456, 2014.
© Springer International Publishing Switzerland 2014

Towards an Integration Platform
for Bioinformatics Services

Guzmán Llambías, Laura González, and Raúl Ruggia

Instituto de Computación, Facultad de Ingeniería, Universidad de la República, Uruguay
{gllambi,lauragon,ruggia}@fing.edu.uy

Abstract. Performing in-silico experiments, which involves an intensive access
to distributed services and information resources through Internet, is nowadays
one of the main activities in Bioinformatics. Although existing tools facilitate
the implementation of workflow-oriented applications, they lack of capabilities
to integrate services beyond low-scale applications, particularly integrating ser-
vices with heterogeneous interaction patterns and in a larger scale, ideally based
on a Platform as a Service paradigm. On the other hand, such integration
mechanisms are provided by middleware products like Enterprise Service Buses
(ESB). This paper proposes an integration platform, based on enterprise mid-
dleware, to integrate Bioinformatics services. It presents a multi-level reference
architecture and focuses on ESB-based mechanisms to provide asynchronous
communications, event-based interactions and data transformation capabilities.

Keywords: Platform as a Service (PaaS), Scientific Platforms, Middleware.

1 Introduction

An in-silico experiment is a procedure that uses computer-based resources (local and
remote) to test a hypothesis, derive a summary or search for patterns [1]. Bioinfor-
maticians develop these experiments using Workflow Management System tools,
specially adapted to the biological context, giving birth to scientific workflows.

Scientific workflow tools, notably Taverna [2], have revolutionized the way re-
searchers perform experiments by enabling them to use powerful computational tools
without needing a strong IT background. These tools enable to access external ser-
vices via Web Services, perform data format transformations, execute queries on large
databases and even request the execution of an experiment in the cloud [3]. Although
the generalized use of Taverna is a clear success indicator [2], it does not provide
suitable mechanisms to handle some particular characteristics of bioinformatics ser-
vices [4] (e.g. the polling approach followed by most biological service providers and
the use of different data formats in services). This fact turns the logic to be imple-
mented by workflows more complex. Furthermore, it doesn’t provide asynchronous
message-oriented mechanisms and quality of service management.

On the other side, middleware technologies which have been evolving during the
last years, provide abstractions and solutions to increasingly complex integration
issues (e.g. asynchronous communications and interoperable communications over

446 G. Llambías, L. González, and R. Ruggia

the internet) related to the construction and integration of distributed applications.
In particular, Enterprise Service Buses (ESB) and cloud-based Internet Service Buses
(ISB) [5], are sophisticated middleware technologies which enable to integrate highly
distributed and heterogeneous services. ESBs provide rich mediation capabilities (e.g.
message transformation and intermediate routing) which can be used to address mis-
matches between applications and services (e.g. regarding communication protocols,
message formats, interaction styles and quality of service) [6] [7].

This leads to the challenge of improving collaboration in bioinformatics commu-
nity by enhancing service-based integration capabilities and reducing the complexity
in the involved development. Such enhanced platforms should enable to integrate
bioinformatics Web-based services (e.g. NCBI Web Services) and experiment-
oriented workflow tools (e.g. Taverna) with general purpose mediation features and
other value-added capabilities. The ultimate goal is to put into practice a Platform
as a Service (PaaS) approach in the bioinformatics area, enabling an active participa-
tion of laboratories, researchers, and middleware and cloud computing suppliers and
developers.

This paper addresses these issues and proposes a reference integration platform for
the bioinformatics domain which, mediating between Taverna (Kepler1, Galaxy2, etc.)
and bioinformatics services, provide mechanisms that facilitate the development of
distributed scientific workflows and solve common challenges arising when perform-
ing this task. The proposed integration platform leverages mediation features of en-
terprise middleware (particularly ESBs), addresses identified integration requirements
by improving asynchronous interactions, event notification and message transforma-
tion capabilities, and provide the means to implement other value-added services.

This paper, which is part of a larger work jointly developed with the Bioinformat-
ics Unit of the Pasteur Institute at Montevideo, focuses on solutions oriented to me-
dium and large-scale integration platforms potentially involving cloud resources.

The rest of the paper is organized as follows. Section 2 presents background. Sec-
tion 3 presents a high level view of the proposed solution. Section 4 describes an
ESB-based design which provides solutions for some identified scenarios. Section 5
presents related work and finally, Section 6 presents conclusions and future work.

2 Background

2.1 Cloud Computing and PaaS

According to NIST [8], “Cloud computing is a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of configurable computing
resources that can be rapidly provisioned and released with minimal management
effort or service provider interaction”.

On the other side, Platform as a Service (PaaS) is one of the five service models
that compose Cloud Computing. It provides the consumer the capability to deploy, in
the cloud infrastructure, applications built on top of the elements (e.g. programming

1 https://kepler-project.org/
2 http://galaxyproject.org/

 Towards an Integration Platform for Bioinformatics Services 447

languages) supported by the provider. The consumer does not manage or control the
underlying cloud infrastructure, but he has control over the applications he deploys
and over configuration settings for the hosting environment [8].

2.2 Taverna and myGrid Project

myGrid3 is an e-science middleware project, whose main purpose is to provide mid-
dleware based tools of high abstraction that can simplify the development of bioin-
formatics experiments. One of the tools developed in this context is Taverna: a tool
that allows scientists to model their experiments as a composition of biological ser-
vices, building in this way scientific workflows. The main contribution of Taverna is
that it allows scientists with limited IT expertise, to be capable of developing their
experiments using advanced technologies such as Web Services, BioMart, R, etc [2].

2.3 Enterprise Service Bus (ESB)

An ESB is an environment belonging to the platform middleware systems category,
which provides sophisticated interconnectivity between services and enables to over-
come issues related to reliability, scalability and communications. Service interaction
using an ESB is based on a combination of the patterns: Asynchronous Queuing,
Event-Driven Messaging, Intermediate Routing, Policy Centralization, Reliable Mes-
saging, Rules Centralization and Transformation [9]. Additionally, interaction styles
define the way each actor may behave using an ESB.

ESB Design Patterns. Intermediate routing patterns dynamically determine the mes-
sage path according to different factors. More concretely, a content-based router
defines the message path based on its content and a recipient list routes the message to
a list of dynamically specified recipients.

Transformation patterns deal with the runtime transformation of messages. In [9]
the authors identify three types of transformations: data model transformation, data
format transformation and protocol bridging.

The Asynchronous Queuing pattern deals with the interactions of client and ser-
vices when synchronous communication can affect performance and reliability.

Interaction Styles. In [11], eight ESB interaction patterns are identified. These pat-
terns are abstract and define the way actors behave and interact in terms of synchro-
nous/asynchronous interfaces, level of assurance of delivery, handling of timeouts,
late responses, and error handling. In this paper, we focus on two interactions styles:
1) Synchronous update Request with acknowledgement and callback and 2) One-way
with status poll for completion.

3 http://www.mygrid.org.uk/

448 G. Llambías, L. González, and R. Ruggia

3 Towards a Bioinformatics Integration Platform

An environment for in-silico bioinformatic experiments includes, on one hand, local
bioinformatic tools (e.g. Taverna) which enable researchers to implement experiments
by composing resources. On the other hand, there are bioinformatic resources, espe-
cially external and distributed over the Internet (e.g. NCBI, EBI, DDBJ), which are
accessible via APIs, Web Services SOAP and REST.

Although bioinformatic tools like Taverna provide user oriented development fea-
tures, their lack of mediation mechanisms (e.g. asynchronous interactions, event man-
agement, declarative data transformations) and management functionalities (e.g. quality
of service, service policy) limits their ability to integrate all the involved elements.

The proposed Bioinformatics Integration Platform provides features to implement
an advanced interaction between bioinformatics applications and services (Fig. 1).
Concretely, it enables to perform not only traditional synchronic function invocations,
but also asynchronous interactions based on a request-response pattern and data trans-
formation mechanisms.

Fig. 1. The Bioinformatics Integration Platform in Context

The specification of the integration platform consists of several refinement levels.
The highest level, shown in Fig. 1, is independent from technical approaches and
laboratory application contexts. Specifications in a subsequent level are based on the
technical approaches followed to solve integration requirements in different labora-
tory scenarios by using specific middleware technologies. The third refinement level
introduces middleware product aspects related to specific implementations.

The following parts of this section focus on these aspects, starting with solutions
proposed to integration requirements (asynchronous interaction, events and notifica-
tion, and data transformation) and following with a classification of Laboratory sce-
narios characterized by their scale and service capabilities. The overall architecture,
based on the multilayer refinement specification, is presented at the end of the section.

3.1 Integration Requirements

Asynchronous Interactions. Nowadays, many biological service providers design
their Web Services using asynchronous communications due to the large amount of

 Towards an Integration Platform for Bioinformatics Services 449

time and resources they use to perform data processing. After studying some Web
Services of the NCBI456, we can argue that they were designed using a response poll-
ing model, where clients send a job request to the Web Service and receive a jobId, to
use afterwards and check for its status (waiting, running, finished). Only when the job
status is finished, the client can poll the response. Fig. 2 presents this model.

Fig. 2. Polling based asynchronous communi-
cation.

Fig. 3. Callback based asynchronous com-
munication

Although the polling model is very effective, it is not too efficient as it requires
three tasks and a loop to perform only one analysis. A callback approach as showed in
Fig. 3 is much more efficient and equally effective as the polling model. This paper
proposes that the design of asynchronous bioinformatics Web Services use a callback
approach instead of the polling model. If this is not possible, middleware technologies
should be used to mediate between client and service to reach this approach.

Events and Notifications. The completion of a workflow, the receipt of a message
from an external system or a timeout to finish a task, are different types of events
which are provided as natives features in many enterprise workflow management
tools (WS-BPEL, Windows Workflow Foundation, JBPM, etc). As far as we know,
Taverna does not have support for these features, and it has limited support for basic
event notifications (Atom feeds, email, SMS, Twitter and Jabber when workflows are
completed). The latter are very useful for human notification but are not suitable for
machine to machine notifications or the integration of Taverna to other information
systems. Some useful examples of notifications are Database updates (each update of
the Genbank database could be notified to Taverna to rerun existing workflows),
Receive notifications of available information from an external system (i.e. receive or

4 http://www.myexperiment.org/workflows/203.html
5 http://www.myexperiment.org/workflows/210.html
6 http://www.myexperiment.org/workflows/230.html

450 G. Llambías, L. González, and R. Ruggia

wait WS-BPEL activities) and Workflow completion (notify external systems by
more sophisticated means other than the ones supported nowadays).

This paper proposes the application of middleware-based technologies to provide a
notification mechanism based on the Publish/Subscribe design pattern, which could
allow Taverna to subscribe to events and notifications from external systems.

Transformation Services. As scientific workflows are usually based on the composi-
tion of third party services, scientists have to transform the output format of one ser-
vice to the input format of the next service (e.g. transform a plain text output into a
FASTA format input). A survey of 415 registered workflows in myExperiment found
that 30% of the tasks involved in each experiment were due to format changes, while
just 22% were due to task for invoking Web Services [12]. Therefore, shim services
are needed to accomplish the parsing and transformation of data formats [13], but this
task is hardened by the lack of accepted standards and data models. BioXSD [14] and
PhyloXML [15] are two examples of standardization initiatives for sequence align-
ment and phylogenetic data, with yet, low acceptance by the scientific community.

In [14], three possible scenarios are analysed based on how much alignment exists
between the input and output data formats. In the first scenario, services receive and
return data in plain text using the data type xsd:string. It is necessary to use shim ser-
vices to transform data formats. In the second scenario, services return and receive
data in xml format but the output data model is different from the input model of each
service. It is necessary to use shim services or xslt scripts to perform the transforma-
tions. Finally, in the third scenario, services use the same data model and xml format.
There is no need for transformations and data flows smoothly from one service to the
other.

Fig. 4. Middleware-based message transformations scenarios

It would be desirable to reduce as much as possible the burden of shim services
and try to seek for C scenarios, where there is no need for data parsing and transfor-
mations. Today, part of this objective can be achieved if the services use canonical
data formats based on international standards. However, much work has to be done in
this sense and in the meanwhile, alternative solutions are needed to achieve this goal.

 Towards an Integration Platform for Bioinformatics Services 451

This paper proposes to include intermediaries that provide standard service views
to clients. The intermediate broker will offer the same service to clients but in a suit-
able data format performing the necessary transformations (Fig. 4).

3.2 Laboratory Scenarios

The characteristics of the Bioinformatics Laboratories, especially the ability to export
new services, influences the way in which the Bioinformatics integration platform
may be used. The following classification enables to instantiate this aspect:

• Laboratory type 1: Uses Taverna as a standalone tool, using the native connectors
to consume biological services (WSDL, SoapLab, R).

• Laboratory type 2: Uses Taverna to consume biological services using the native
connector, while uses point-to-point middleware to consume services not supported
natively by Taverna. The number of middleware-based integrations is low.

• Laboratory type 3: Uses Taverna to consume compatible biological services while
uses a platform middleware to consume other services not compliant with native
Taverna integration. This type of laboratory is a large-scale service consumer.

• Laboratory type 4: Provides services to other laboratories while not necessarily
consumes. It focuses on interoperability and accessibility features. Uses point-to-
point or platform middleware depending on the number of provided services.

• Laboratory type 5: Provides Platforms as a Service (PaaS) and it doesn’t focus on
biological business aspects. One example of this type of Platforms is the Amazon
SWF. This type of laboratories uses platform middleware.

3.3 Overall Architecture

Globally, the Bioinformatics Integration Platform can be defined as a domain-specific
middleware, which provides abstractions and high quality services to solve common
integration requirements in a bioinformatics context. Its architecture, shown in Fig. 1
at the highest abstraction level, can be refined by instantiating three dimensions:

─ Integration functionalities: asynchronous interaction, events and notification,
and data transformation.

─ Laboratory scenarios: Laboratory types from 1 to 5.
─ Middleware technologies: Web Services, Message Queues, ESB & ISB.

Characterizing solutions through these dimensions enables to specify and imple-
ment them, keeping the consistency with the overall architecture and with other dif-
ferently instantiated solutions. Notably, Fig. 5 shows connections between specific
architectures for laboratory scenarios (type 1 to type 3) based on different middleware
technologies. In section 4, specific solutions are described for laboratories scenarios
type 4 and type 5, using ESB as middleware technology.

452 G. Llambías, L. González, and R. Ruggia

4 An ESB-Based Bioinformatics Integration Platform

The Bioinformatics Integration Platform can be designed and implemented using
various middleware technologies (Queues, Web Services, ESBs, etc). This section
presents an ESB-based Bioinformatics Integration Platform, which is suitable for
Platform as a Service (PaaS) development (Laboratory type 5 scenario), and shows
how the requirements of Section 3 are supported.

Fig. 5. Overall architecture instantiated in different laboratories

4.1 Asynchronous Communications

The proposed solution (Fig. 6) is ESB-based and follows the patterns: Asynchronous
Queuing (i.e. ESB message queues), Intermediate Routing (i.e. Content Based Router,
CBR) and Protocol Bridging (i.e. ESB Endpoints and ESB Connectors) [9].

Fig. 6. Asynchronous communications based
on ESB

Fig. 7. Events and notifications based on ESB
middleware

 Towards an Integration Platform for Bioinformatics Services 453

This solution involves defining two message queues in the ESB: one used to receive
messages from Taverna (TavernaQueueIn) and the other to send the responses (Taver-
naQueueOut) from the ESB to Taverna. The only subscriber of the TavernaQueueIn
message queue is a CBR, which inspects and routes messages to the biological service
through a specific ESB Connector, and uses messages’ content to identify the destination
service. All request messages must specify a destination service, which should be regis-
tered in the Platform’s Service Catalog. After processing the request, the service sends a
response message to the TavernaQueueOut queue, whose only subscriber (ESB Connec-
tor) forwards the message to Taverna. Since there may be multiple instances of Taverna
waiting for response messages, a replyTo attribute must be defined in the request mes-
sages to identify the destination instance.

4.2 Events and Notifications

The proposed solution is based on an ESB-oriented design and takes advantage of the
Publish&Subscribe and Protocol Bridging (i.e. Topic Endpoints and ESB Connectors)
design patterns [9]. This solution defines a topic in the ESB for each type of event or
notification to be managed by the Platform. Each topic is identified by a TopicID and
may have N publishers and M subscribers, where each subscriber may subscribe using
two different types: synchronous or asynchronous.

To notify an event to the Platform, the publisher creates a message with business
data and a TopicID, and sends it to the Endpoint Topic in the ESB. This component
places the message in the corresponding topic according to the TopicID and acknowl-
edges its reception. Each subscriber of the topic will receive a copy of the message
according to the chosen subscription type. For asynchronous subscribers, the topic
sends a copy to the ESB Connector associated with the service according to the com-
munication protocols and specific data format. Synchronous subscribers instead,
should query the topic through the Endpoint Topic for new messages.

4.3 Transformation Service

The design of this solution (Fig. 8) is ESB-based and applies the Content Based Rout-
ing, Canonical Data Model and Protocol Bridging (i.e. ESB Connectors and ESB End-
points) design patterns [9]. The solution consists in automatically determining the
format of the messages sent by Taverna and transforming them to the data format re-
quired by the service. To reduce the number of transformations to be configured, the
Canonical Data Model pattern is applied, transforming incoming messages to a canoni-
cal data model and later-on back to the specific service data format. A Content Based
Router is used to route incoming messages to the service. Native connectors are used
(ESB Connectors) to perform the communication between the ESB and services.

4.4 Implementation Details

To show the feasibility of the proposed approach and to analyse key implementation
aspects, prototypes were developed using JBoss ESB and NCBIs Web Services.

454 G. Llambías, L. González, and R. Ruggia

Concretely, Asynchronous Communications were implemented using JBoss’s
built-in features: ESB Queues and the CBR. Events and notification requirement were
implemented using ESB’s Topics. The transformation requirement was developed
using the JBoss’s CBR and XSLTs engines. The development of XSLT style sheets
were needed to be used by the message transformation engine. The ESB Connectors
used in all the scenarios were provided by JBoss’s SOAP Proxy. Finally, the ESB
Endpoint was also a JBoss’s JMS Listener and HTTP Gateway.

Fig. 8. Data/Model transformation based on ESB

5 Related Work

While different proposals have addressed asynchronous communications issues in
scientific workflows, they present limitations. Particularly, [16][17] assume that bio-
logical Web Services have WS-Addressing support while this is not frequent (e.g.
EBI, NCBI, DDBJ do not provide it). Our approach does not depend on this feature.

Notification mechanisms and events have also been addressed in Bioinformatics.
In [17] Apache ODE, a WS-BPEL engine, is extended to send notifications in an e-
science context. This solution has the limitation of being too coupled to Apache ODE.
In [18] a Web Services based message broker is proposed to send notifications. The
main difference with our approach is the scale of the solution: while this broker is
lightweight and suitable to be integrated into other platforms, our mechanism is part
of a wider integration platform for Bioinformatics built on top of an ESB. In [19] a
WS-Eventing middleware is proposed to improve interoperability between workflows
tools. This solution only allows synchronous subscriptions while ours also supports
asynchronous ones. In [20] a notification bus is proposed integrating all the compo-
nents. Unlike this proposal, our solution is based on a service oriented design and
leverages an existing ESB infrastructure.

Regarding format transformation, the excessive use of shim services is addressed
by automatically identifying which shim services are required to be included in the
workflow [13]. Our work proposes reducing as much as possible, their use. In [21] the
concept of Virtual Data Assembly Lines (VDAL) is presented to hide the use of shim

 Towards an Integration Platform for Bioinformatics Services 455

services to scientists. While VDALs are locally defined in each workflow, our solu-
tion provides a global view of the transformed service to the whole organization.

Unlike the previously described work, our approach aims to provide a comprehen-
sive domain-specific platform for bioinformatic services. This kind of platform pro-
vides building blocks and services adapted to a specific domain. The Open eHealth
Integration Platform [22] is a platform middleware for e-health aiming at providing
mechanisms to integrate e-health applications (e.g. HL7 message processing). In [23]
an ESB-based platform is proposed in the context of geographic information systems.
It uses mediation mechanisms (e.g. SOAP WMS-Wrapper) to facilitate the integration
of geographic Web Services and enterprise applications. To the best of our knowledge
there are not proposals of domain-specific integration platforms in the Bioinformatics
domain using enterprise middleware technologies.

6 Conclusions and Future Work

This paper addresses the issues of improving Bioinformatics laboratory collaboration
and proposes a reference integration platform which provides enhanced capabilities to
implement distributed and service-based systems.

The implementation approach, based on enterprise middleware technologies (ESB,
etc.), has shown to be capable of addressing the requirements of providing advanced
integration features and adequately connecting to Taverna and other Bioinformatics
services. Still, functionalities like processing very large data sets require further work.

The main contributions of this work consist in the analysis and identification of
relevant features to be provided in a Bioinformatics integration platform, the proposed
solution that can be applied to different types of laboratories, and the implementation
of prototypes that enabled to validate technologies and the implementation approach.

The work also constitutes a step forward on carrying out a Platform as a Service
(PaaS) approach for Bioinformatics.

Future work consists in extending the presented results with service composition
and policy rules management mechanisms. On the other hand, it could include the
conceptualization of Domain Specific integration platforms, beyond the Bioinformat-
ics context, based on a PaaS approach as well as on the here applied framework.

References

1. Stevens, R., Glover, K., Greenhalgh, C., Jennings, C., Pearce, S., Li, P., Radenkovic, M.,
Wipat, A.: Performing in silico Experiments on the Grid: A Users’ Perspective (2003)

2. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soilan-
dReyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall, F.,
Hard-isty, A., Nieva de la Hidalga, A., Balcazar Vargas, M.P., Sufi, S., Goble, C.: The Ta-
verna workflow suite: designing and executing workflows of Web Services on the desktop,
web or in the cloud. Nucleic Acids Research 41, W557–W561 (2013)

3. Dou, L., Zinn, D., McPhillips, T.M., Köhler, S., Riddle, S., Bowers, S., Ludäscher, B.:
Scientific workflow design 2.0: Demonstrating streaming data collections in Kepler, ICDE
2011, pp. 1296–1299 (2011)

456 G. Llambías, L. González, and R. Ruggia

4. Llambías, G., Ruggia, R.: Taverna: un ambiente para el desarrollo experimentos científi-
cos. Pedeciba Informatica

5. Ferguson, D.F.: The Internet Service Bus. In: Meersman, R., Tari, Z. (eds.) OTM 2007,
Part I. LNCS, vol. 4803, p. 5. Springer, Heidelberg (2007)

6. Schmidt, M.-T., Hutchison, B., Lambros, P., Phippen, R.: The enterprise service bus: mak-
ing service-oriented architecture real. IBM Syst. J. 44, 781–797 (2005)

7. Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25,
38–49 (1992)

8. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. NIST (2011)
9. Erl, T.: SOA design patterns. Prentice Hall, Upper Saddle River (2009)

10. Hohpe, G.: Enterprise integration patterns: designing, building, and deploying messaging
solutions [..] [..]. Addison-Wesley, Boston (2003)

11. Enterprise Connectivity Patterns: Implementing integration solutions with IBM’s Enter-
prise Service Bus products, http://www.ibm.com/developerworks/library/
ws-enterpriseconnectivitypatterns/

12. Wassink, I., van der Vet, P.E., Wolstencroft, K., Neerincx, P.B.T., Roos, M., Rauwerda,
H., Breit, T.M.: Analysing Scientific Workflows: Why Workflows Not Only Connect Web
Services. (presented at the July 2009)

13. Hull, D., Stevens, R., Lord, P., Wroe, C., Goble, C.: Treating shimantic web syndrome
with ontologies. University, Milton Keynes (2004)

14. Kalaš, M., Puntervoll, P., Joseph, A., Bartaševičiūtė, E., Töpfer, A., Venkataraman, P.,
Pettifer, S., Bryne, J.C., Ison, J., Blanchet, C., Rapacki, K., Jonassen, I.: BioXSD: the
common data-exchange format for everyday bioinformatics web services. Bioinformat-
ics 546, i540–i546 (2010)

15. Han, M.V., Zmasek, C.M.: phyloXML: XML for evolutionary biology and comparative
genomics. BMC Bioinformatics 10, 356 (2009)

16. Perera, S., Gannon, D.: Enabling Web Service extensions for scientific workflows. In:
Workshop on Workflows in Support of Large-Scale Science WORKS 2006, pp. 1–10
(2006)

17. Gunarathne, T., Herath, C., Chinthaka, E., Marru, S.: Experience with adapting a WS-
BPEL runtime for eScience workflows. In: Proceedings of the 5th Grid Computing Envi-
ron-ments Workshop, pp. 1–7. ACM, New York (2009)

18. Huang, Y., Slominski, E., Herath, C., Gannon, D.: Wsmessenger: A web services-based
messaging system for service-oriented grid computing. In: CCGrid (2006)

19. Alqaoud, A., Taylor, I., Jones, A.: Publish/subscribe as a model for scientific workflow in-
teroperability. In: Proceedings of the 4th Workshop on Workflows in Support of Large-
Scale Science, pp. 1:1–1:10. ACM, New York (2009)

20. Gannon, D., Christie, M., Marru, S., Shirasuna, S., Slominski, A.: Programming Paradigms
for Scientific Problem Solving Environments. In: Gaffney, P.W., Pool, J.C.T. (eds.) Grid-
Based Problem Solving Environments, pp. 3–15. Springer, US (2007)

21. Zinn, D., Bowers, S., McPhillips, T., Ludäscher, B.: Scientific workflow design with data
assembly lines. In: Proceedings of the 4th Workshop on Workflows in Support of Large-
Scale Science, pp. 14:1–14:10. ACM, New York (2009)

22. IPF Overview - Open eHealth Integration Platform 2.x - Confluence,
http://www.openehealth.org/display/ipf2/IPF+Overview

23. Rienzi, B., González, L., Ruggia, R.: Towards an ESB-Based Enterprise Integration Plat-
form for Geospatial Web Services. Presented at the GEOProcessing 2013, The Fifth Inter-
national Conference on Advanced Geographic Information Systems, Applications, and
Services (February 24, 2013)

Requirements to Pervasive System Continuous
Deployment

Clément Escoffier1,2, Ozan Günalp1, and Philippe Lalanda1

1 Université Grenoble Alpes, LIG, F-38041, Grenoble, France
{firstname.lastname}@imag.fr

2 Dynamis-Technologies, Grenoble, France
clement.escoffier@dynamis-technologies.com

Abstract. Pervasive applications present stringent requirements that
make their deployment especially challenging. The unknown and fluctu-
ating environment in which pervasive applications are executed makes
traditional approaches not suitable. In addition, the current trend to
build applications out of separated components and services makes the
deployment process inherently continuous and dynamic. In the last years,
we developed several industrial pervasive platforms and applications.
From these experiences, we identified ten requirements vital to support
the continuous deployment of pervasive systems. In this paper we present
these requirements and the associated challenges.

Keywords: Pervasive Computing, Continuous Deployment, Dynamism,
Requirements.

1 Introduction

Pervasive computing aims to remove the barrier between users and computing
systems by blending the computers into the users’ environment [1]. This vision
is becoming possible in the near future thanks to the recent evolutions in mo-
bile, wireless and sensor technologies. However, the development, deployment
and evolution of pervasive applications are difficult challenges [2,3,4]. Building
a robust pervasive application does not only require the business logic but a
large amount of code to deal with device heterogeneity and volatility, security
enforcement and adaptability.

A multitude of works are providing smart execution environments dealing with
the pervasive constraints at runtime on behalf of the application [5,6,7,8]. These
approaches distinguish the execution environment from the applications. The
platform deals with the device communication, manages the application schedul-
ing, and provides different technical services, simplifying the application code.
These approaches have proved their maturity reaching operational states [9]. A
large part of these works are built upon the service-oriented computing paradigm.
Indeed, pervasive applications are often subject to architectural reconfigurations
at runtime to cope with the changeability of the surrounding environment. The

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 457–468, 2014.
c© Springer International Publishing Switzerland 2014

458 C. Escoffier, O. Günalp, and P. Lalanda

loose-coupling and dynamic management of the service-orientation [10] allows
such reconfiguration, avoiding service disruptions [11].

Fewer works have been done on the deployment of such applications and
platforms. Unfortunately, the pervasive environment characteristics lead to nu-
merous challenges impacting the deployment process. The unknown nature and
variability of the environment, in which pervasive applications are executed, dis-
card traditional deployment approaches. The deployment process must not only
install the application’s components but also adapt them to the current and fu-
ture context situations (i.e. available devices, users, computation resources. . .).
In addition, continuous evolution of pervasive applications and platforms makes
the deployment process even more complex. As a consequence, specific tools
must be provided to manage the deployment of such systems in a robust and
industrial way.

In the last years, we implemented pervasive platforms and applications in
several industrial projects. Throughout these developments, we identified strin-
gent requirements that must be fulfilled to successfully support the continuous
deployment of pervasive systems. This paper presents the different requirements
for pervasive system deployment and confronts existing tools with these require-
ments.

This paper is organized as follows. After having briefly remembered the per-
vasive environment characteristics and the pervasive system deployment scope,
the different requirements are described. These requirements are organized in
two categories: the deployment platform and the deployment process. These
sections are followed by a comparison of industrial and academic works with
these requirements. This paper concludes by giving perspectives to successfully
implement a deployment support for pervasive systems.

2 The Pervasive Environment

Before presenting the key features of pervasive system deployment, let’s first
remind the characteristics of pervasive environment. The term ‘Pervasive‘ is
used as a synonym for ubiquitous, ambient, seamless and transparent: it is the
extension of software systems in the physical world. Pervasive systems offer so-
phisticated services to users by relying on smart, communicative, autonomous
and diffused objects. The ‘how‘ such features are provided is remarkable. Per-
vasive systems are so melted with the environment that features are accessible
seamlessly naturally and unobtrusively. This invisibility makes usages so easy
that users are consuming them even without noticing the system. However, this
invisibility makes the development of pervasive systems very strenuous.

Developing pervasive systems is not only a software development challenge. It
is an integration problem between devices, software applications and platforms.
This triptych is fundamental, but extremely delicate to achieve correctly. Indeed,
it involves tough aspects as the device volatility, continuous context evolution, se-
curity enforcement, privacy protection, and the so difficult but essential melting
of the user interactions with his/her environment. Supporting all these charac-
teristics have an obvious consequence on the application complexity. Software

Requirements to Pervasive System Continuous Deployment 459

engineering principles, methodologies, techniques and specific tools are required
to support pervasive application development.

A common approach to deal with the inherent complexity of pervasive appli-
cations is the distinction between the execution framework and the applications
(Figure 1). The execution framework is responsible for dealing with all non-
functional properties, such as persistence, security and remote management, on
behalf of the application. These applications running on such a platform are
much easier to develop, manage, and maintain because they rely on the features
provided by the specialized domain-centric platform. This architecture is not
new, and widely used in other domains such as enterprise applications [12,13]
and mediation platforms [14].

Fig. 1. Pervasive application server in its environment

In this paper, we define the pervasive system as the execution platform and
the set of applications running on it. The surrounding environment is composed
by the devices and users. Finally, the context is a set of data collected from
the environment and the platform, containing all the required information to
implement context-aware behavior [15].

3 Continuous Deployment of Pervasive Systems

Informally, the term software deployment refers to all the activities that make
a software system available for use [16]. It’s a post-production activity [17].
Generally, it is at this point in time that all user centric customization and
configuration takes place. Traditional deployment facilities are able to install
and activate resources (code, binaries, files, configurations. . .) on pre-defined
sites. Different works use different terms for defining manipulated resources such
as component, artifact and yet product. The deployment descriptor defines how
the deployment process will proceed.

460 C. Escoffier, O. Günalp, and P. Lalanda

The deployment process also includes the update and uninstallation of the de-
ployed artifacts [18]. The process can be triggered from the platform or remotely,
but an agent, present on the platform, deals with all the on-site activities [19].

Recently, continuous deployment approaches are becoming very popular [20].
Software systems are continuously updated with new versions continuously im-
proving the services provided to the users [21]. Continuous deployment opens
several possibilities such as the reduction of service disruptions and migration
between versions [22]. Although, providing these capabilities is intricate, contin-
uous deployment is particularly interesting for pervasive systems. The character-
istics of the pervasive environment induce unceasing installations, updates and
removals of software components. First, the platform itself is remotely operated,
and subject to regular updates. Second, applications are deployed on-demand,
and are updated regularly. Finally, whenever a new device type is discovered, a
software driver must be installed to correctly interact with the device. Unfor-
tunately, despite the ability of most of the deployment technologies to manage
some pre-defined variability, and drive adaptations [19,18], they are insufficient
for pervasive systems. The pervasive environment and system exhibit a large
degree of dynamism. Devices appear and disappear dynamically; users also ar-
rive, leave, or modify their intents. This dynamism does not only require actions
at installation time, but must keep these components continuously in-sync with
the changing environment. This characteristic extends the deployment process
with a continuously executed adaptation loop such as in [23]. The deployment
agent has to monitor and adapt the deployed system to environment changes.
Obviously these reconfigurations are only possible if the deployment descriptor
enables enough flexibility.

Fig. 2. Deployment agent on pervasive execution platform

Requirements to Pervasive System Continuous Deployment 461

Consequently, new deployment facilities must be provided to face the pervasive
environment characteristics. The requirements described in this paper must be
satisfied to successfully support pervasive application deployment (Figure 2).

4 Platform Requirements

The first category of requirement focuses on the deployment platform, i.e. the
facilities that must be provided by the execution environment to support the
continuous deployment of pervasive applications. The platform must provide
the ability to deploy components separately at runtime in a continuous way.
Because of the dynamism exhibited by the pervasive environment, the platform
must also provide configuration, introspection, architectural reconfiguration and
context mining capabilities.

4.1 Requirement PF.1 – Modular Dynamic Deployment Platform

Obviously, pervasive systems cannot be monolithic, the underlying execution
platform must provide modularity support. Monolithic approaches would not be
able to dynamically adapt themselves to unanticipated situations. The platforms
and applications must be composed by distinct modules that can be deployed
and updated individually. Modularity also requires dependency management.
Modules declares dependencies that must be handled by the deployment process.
The targeted entities can be a module, or be more abstract in order to introduce
variability and constraints.

As the deployment of a module must not disrupt the services offered by other
already deployed modules, the platform must offer dynamic deployment facilities.
Modules can be installed, uninstalled or updated dynamically without requiring
a restart of the platform and impacting the execution of unrelated components.

4.2 Requirement PF.2 – Configurability

The deployment process is not limited to transfer software components to the
execution environment; it also includes configurations. This requirement is par-
ticularly important in pervasive environment, as the configuration is one of the
most used levers to handle adaptations.

Because of the dynamic adaptations required by pervasive systems, the config-
urations must be updatable at runtime. The platform must provide mechanisms
to store configurations, update and apply them dynamically.

4.3 Requirement PF.3 – Introspection

Managing modules and configurations is not enough. The platform must also
provide information about the current modules and their states, and configura-
tions. Having such introspection facilities is an absolute requirement to let the
deployment process determines the changes to apply on the system.

462 C. Escoffier, O. Günalp, and P. Lalanda

The introspection layer must not be limited to the installed modules, but also
represent system specificities, available services, computational resources and
any data required by the deployment agent to drive the deployment process.

4.4 Requirement PF.4 – Architectural Reconfiguration Support

As stated above, pervasive applications often require architectural reconfigura-
tions [24] to meet the changing environment constraints. The platform must
provide all the required mechanisms to support such reconfigurations [25]. This
includes the management of state integrity of modules [26] and the reduction of
the service disruption [27]. Service-orientation is today widely used to support
dynamic reconfiguration support as in [11].

4.5 Requirement PF.5 – Context access

Finally, the last requirement for the platform is the context representation. Per-
vasive applications are context-aware, but the deployment process also depends
on the context. The continuous deployment process needs to consume contextual
data and performs deployment tasks in respond to the changes. Therefore, the
platform must provide means to retrieve and observe contextual information.

4.6 Related Work on Deployment Platforms

In this section we position well-known platforms and academic works against
presented platform requirements and compare them (Table 1). Nearly all de-
ployment solutions are built on existing platforms. They enhance standard func-
tionalities on these platforms for providing deployment operations.

Package managers, such as RPM [28] built on Linux systems, are heavily used
in the provisioning of industrial applications. The combination of the underly-
ing operating system and the package manager allow the installation, updates
and removal of packages dynamically. The package structure, their customiza-
tion and how dependencies are expressed make them an interesting approach to
build Linux-based pervasive systems. With the rise of Cloud Computing, new
tools have emerged to ease deployment in large-scale [29,30]. Infrastructure as
code [31] facilitates creating deployment descriptions. These systems support
configuration and reconfiguration of different types of systems. However, they
don not support architectural reconfiguration. Their context management is also
limited to predefined data.

The OSGi service platform has become the de-facto modular layer for the Java
Virtual Machine. OSGi defines a dynamic deployment platform fulfilling most of
the platform criteria. With modular deployment capabilities, OSGi constitutes
an important foundation for building Java-based deployment platforms. OSGi
supports way to support architectural reconfiguration by promoting service-
orientation. However it requires very complex code to manage it correctly. In
addition it does not provide any context support.

Requirements to Pervasive System Continuous Deployment 463

In academia, early works such as [32] concentrated on defining bases of de-
ployment platforms and stressed importance of modularity and the dynamic
update of modules. Later, platforms that provide dynamic reconfigurability fea-
ture [33,34] gained focus as foundations for deployment in pervasive environ-
ments.

By default, all of these systems satisfy introspection requirement, which is
absolutely necessary for any kind of deployment. However, they lack the context
mining ability. Without a proper access to contextual information, they cannot
be used for deploying pervasive systems.

Table 1. Positioning of deployment approaches against the platform requirements

Tools
Dynamic and

Modular
Deployment

Configurability Introspection
Architectural
Reconfigura-

tion

Context
representation

RPM w/
Linux � � � � �

Puppet w/
Linux � � � � ��

Chef w/ Linux � � � � ��
OSGi � � � �� �

JDrums[32] � � � � �
Sofa 2.0[33] � � � � �

5 Deployment Process Requirements

The previous section has constrained the execution platform. This section focuses
on the deployment process itself. The pervasive environment imposes several
characteristics to the deployment process.

Whether it is for an installation, update or uninstallation, the deployment
process is initiated either from the system or externally. Then, it analyzes the
deployment request and defines a deployment plan listing all the actions. This
process includes the selection and/or refinement of the components to deploy.
Because of the pervasive environment characteristics, the decisions taken during
the deployment process may become invalid, and adaptations must be applied
to keep the applications in an operational state.

5.1 Requirement P.1 – Pull and Push

The deployment process may be triggered either by system itself or push from
externally. In the first case, the system discovers a new required resource, such as
a device driver and asks the deployment agent to install the required artifacts. In
the second case, the deployment process is triggered by an external entity. It can
be the user having purchased a new application on a store, an application update
pushed by the application vendor or the platform operator updating technical
services.

464 C. Escoffier, O. Günalp, and P. Lalanda

The openness and uncertainty of the pervasive environment requires that the
pull and push are supported. More interestingly, the source of the push is not
unique. Multiple sources complexify the scheduling and prioritization of deploy-
ment requests.

5.2 Requirement P.2 – Determinism and Idempotence

Determinism is an essential property to make pervasive system deployment re-
producible. For a particular environment, on a specific platform, a singular de-
ployment process must always result to the same system. Such a capability is
critical for making the deployment process testable, and improve the reliability
of the deployment infrastructure.

In addition, the idempotence is also important. It implies that deployment of
already deployed artifacts would not change the system. This property is rarely
supported in traditional deployment platforms. Unfortunately, the multiplicity of
deployment sources makes the idempotence a requirement necessary but difficult
to satisfy.

5.3 Requirement P.3 – Transactional

The deployment process is constituted from a set of actions that change the
pervasive system. However, one ore more of these deployment actions can fail.
In this case, it is essential to rollback to an operational state, avoiding stale
situations. As a consequence, all the deployment activities must be executed
inside a transaction [35].

Many deployment technologies are supporting transactions, however in case
of the pervasive environment and its surrounding dynamism, transactions are
not only impacted by the deployment process but also by external events. This
aspect makes the transaction support very complex to implement.

5.4 Requirement P.4 – Adaptability and Customizability

One of the main differences between traditional deployment and pervasive system
deployment is unknown environment in which the applications are deployed. The
constantly changing target site entails the process to adapt itself. These adap-
tations include variability in the resource selection, resolution and activation.
This variability often relies on the dependencies and constraints expressed by
modules or in the deployment descriptor.

In addition, the platform is an active actor in the deployment process. It often
needs to participate to the resolution and decision making process to adapt the
deployed resources and their configurations. The deployment process should be
customizable according to platforms changing requirements and constraints. For
instance, the platform may provide the process with configuration data and
influence dependency resolution to fit the underlying system constraints.

Requirements to Pervasive System Continuous Deployment 465

5.5 Requirement P.5 – Continuous Adaptation

Deployment process adaptation does not only happen during the initial deploy-
ment. Throughout the lifetime of the system, adaptations are required such as
in [36]. Environmental changes may require to adapt already installed resources.
Newly installed applications may also ask for optimizations or reconfigurations
on technical services provided by the platform.

This continuous adaptation process is similar to the autonomic computing
loop proposed by [37]. In such paradigm, the deployment agent would be an
autonomic manager handling deployment requests, and adapting applications
when changes influence the component selection and/or configuration. Notice
that pervasive applications are often autonomic [38,39] and application’s auto-
nomic manager collaborate with the deployment agent as proposed in [40].

5.6 Related Work on Deployment Process

In this section, we position well-known platforms and academic works against
the presented process requirements. Table 2 summarizes this study.

Table 2. Positioning of deployment approaches against the process requirements

Tools Pull & Push
Determinism
&
Idempotence

Transactional
Process

Adaptable &
Customizable

Continuous
Adaptation

RPM w/
Linux Pull only � � � �

Puppet w/
Linux � � � � �

Chef w/ Linux � �� � � �
OSGi Pull only �� � � �

OSGi w/
Deployment

Admin
Pull Only � � � �

OSGi w/
Apache Ace Push Only � � � �
Software
Dock [19] Pull Only

Constraint-
based
Ap-

proaches [41,34]

Pull Only � � � ��

Package managers enhancing the operating system are providing very cus-
tomizable transactional deployment processes. Every module can extend the
process with pre- and post- actions. Unfortunately, they do not support external
push. In addition, they do not drive any continuous adaptation.

Tools like Puppet or Chef rely on package managers to support large-scale
deployment. Using a centralized master server, they can trigger deployment re-
motely. Thanks to the resource-based model promoted by Puppet, it supports

466 C. Escoffier, O. Günalp, and P. Lalanda

idempotence. However this feature makes the usage of Puppet much more com-
plex for administrators, requiring to shift their mind to this new model.

Software Docks [19] proposes a deployment agent supporting a very customiz-
able process. It can adapt deployed components to the current environment,
and install additional components according to the current constraints. Unfor-
tunately, they do not support continuous adaptation, and do not natively provide
a dynamic deployment platform.

Many tools rely on OSGi to enhance its deployment capabilities. The deploy-
ment admin provide a transaction model. Apache Ace is based on the deployment
admin and allow controlling deployments from a remote server. However both
do not provide enough flexibility to support pervasive deployment.

Several projects have proposed autonomic deployment process such as [41]
and [34]. The proposed approaches are based on constraint-solving to select the
components to install. However, none of them is supporting transactions, and
their support of the continuous adaptation is not deterministic.

6 Conclusion

The heterogeneity, uncertainty and dynamics of the pervasive environment are
not only making developing applications harder but also the deployment. In
addition, pervasive systems require advanced deployment scenarios, including
continuous deployment initiated from different sources. Because of the pervasive
environment characteristics, traditional deployment tools are not suitable.

This paper has presented ten requirements impacting the deployment platform
and process for supporting the continuous deployment of pervasive systems.
Unfortunately, existing tools do not fully match with these requirements. In
the near future, we aim to provide a tool suite to fully support the continuous
deployment of pervasive applications.

Trends such as infrastructure as code and resource-orientation are providing
very interesting features that may be used to implement pervasive deployment
facilities. However, variability must be infused within the language.

The context-awareness of the deployment platform is a very hard require-
ments. We believe that pervasive deployment must rely on a context engine
supporting advanced context mining capabilities and runtime extensibility.

Finally, applying the autonomic computing principles to support the contin-
uous adaptation is a very promising trend. It must go along with a platform
supporting architectural reconfiguration. It looks clear that the service-oriented
computing will play a central role in such platform.

References

1. Weiser, M.: The computer for the 21st century. In: Human-computer Interaction,
pp. 933–940. Morgan Kaufmann Publishers Inc. (1995)

2. Banavar, G., Bernstein, A.: Software infrastructure and design challenges for ubiq-
uitous computing applications. Communications of the ACM 45(12), 92–96 (2002)

Requirements to Pervasive System Continuous Deployment 467

3. Thackara, J.: The design challenge of pervasive computing. Interactions 8(3), 46–52
(2001)

4. Bhaskar, P., Ahamed, S.I.: Privacy in Pervasive Computing and Open Issues. In:
AERES, pp. 147–154. IEEE Computer Society (2007)

5. King, J., Bose, R., Yang, H.I., Pickles, S., Helal, A.: Atlas: A service-oriented sensor
platform: Hardware and middleware to enable programmable pervasive spaces. In:
Proceedings 2006 31st IEEE Conference on Local Computer Networks, pp. 630–638.
IEEE (2006)

6. Escoffier, C., Bourcier, J., Lalanda, P., Yu, J.: Towards a home application server.
In: Consumer Communications and Networking Conference, pp. 321–325 (2008)

7. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The Gator
Tech Smart House: a programmable pervasive space. Computer 38(3), 50–60 (2005)

8. Schreiber, F., Camplani, R., Fortunato, M., Marelli, M., Rota, G.: Perla: A lan-
guage and middleware architecture for data management and integration in per-
vasive information systems. IEEE Transactions on Software Engineering 38(2),
478–496 (2012)

9. Coll, J.F., Angskog, P., Chilo, J., Stenumgaard, P.: Industrial environment char-
acterization for future m2m applications. In: 2011 IEEE International Symposium
on Electromagnetic Compatibility (EMC), pp. 960–963. IEEE (2011)

10. Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and Di-
rections. In: Proceedings of the fourth International Conference on Web Informa-
tion Systems Engineering, Los Alamitos, CA, USA, pp. 3–12 (December 2003)

11. Escoffier, C., Bourret, P., Lalanda, P.: Managing Dynamism in Service Dependen-
cies. In: IEEE International Conference on Services Computing. IEEE Computer
Society, Los Alamitos (2013)

12. Burke, B., Monson-Haefel, R., Szczepaniak, M., Ostrowski, K.: Enterprise Jav-
aBeans 3.0., vol. 5. O’Reilly (2006)

13. Lowy, J.: Programming. NET Components: Design and Build. NET Applications
Using Component-Oriented Programming. O’Reilly (2009)

14. Chappell, D.A.: Enterprise Service Bus. O’Reilly Media, Inc. (2009)
15. Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Comput-

ing 5(1), 4–7 (2001)
16. Object Management Group: Deployment & Configuration of Component-based

Distributed Applications Specification - version 4.0. OMG (April)
17. Dearle, A.: Software deployment, past, present and future. In: 2007 Future of Soft-

ware Engineering. IEEE Computer Society pp. 269–284 (2007)
18. Carzaniga, A., Fuggetta, A., Hall, R.S., Heimbigner, D., Van Der Hoek, A., Wolf,

A.L.: A characterization framework for software deployment technologies. Techni-
cal report, DTIC Document (1998)

19. Hall, R.S., Heimbigner, D., Wolf, A.L.: A cooperative approach to support soft-
ware deployment using the software dock. In: Proceedings of the 21st International
Conference on Software Engineering, pp. 174–183. ACM (1999)

20. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley (2010)

21. Feitelson, D., Frachtenberg, E., Beck, K.: Development and Deployment at Face-
book. IEEE Internet Computing 17(4), 8–17 (2013)

22. Humble, J., Read, C., North, D.: The Deployment Production Line. In: Proceed-
ings of the Conference on AGILE 2006, pp. 113–118. IEEE Computer Society,
Washington, DC (2006)

468 C. Escoffier, O. Günalp, and P. Lalanda

23. Dong, X., Hariri, S., Xue, L., Chen, H., Zhang, M., Pavuluri, S., Rao, S.: Autono-
mia: an autonomic computing environment. In: IEEE Conference on Performance,
Computing, and Communications Conference, pp. 61–68 (2003)

24. Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D., Johnson, G., Medvidovic,
N., Quilici, A., Rosenblum, D.S., Wolf, A.L.: An architecture-based approach to self-
adaptive software. IEEE Intelligent Systems and Their Applications 14(3), 54–62
(1999)

25. Mikic-Rakic, M., Medvidovíc, N.: Architecture-level support for software compo-
nent deployment in resource constrained environments. In: Bishop, J.M. (ed.) CD
2002. LNCS, vol. 2370, pp. 31–50. Springer, Heidelberg (2002)

26. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. IEEE Transactions on Software Engineering 16(11), 1293–1306 (1990)

27. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A low disrup-
tive alternative to quiescence for ensuring safe dynamic updates. IEEE Transac-
tions on Software Engineering 33(12), 856–868 (2007)

28. Bailey, E.: Maximum RPM. Red Hat Software Inc. (February 1997)
29. Turnbull, J., McCune, J.: Pro Puppet. Apress (2011)
30. Nelson-Smith, S.: Test-Driven Infrastructure with Chef. O’Reilly (2011)
31. Spinellis, D.: Don’t Install Software by Hand. IEEE Software 29(4), 86–87 (2012)
32. Andersson, J.: A deployment system for pervasive computing. In: Proceedings of

the International Conference on Software Maintenance, pp. 262–270 (2000)
33. Bures, T., Hnetynka, P., Plasil, F.: Sofa 2.0: Balancing advanced features in a

hierarchical component model. In: Fourth International Conference on Software
Engineering Research, Management and Applications, pp. 40–48 (2006)

34. Hoareau, D., Mahéo, Y.: Middleware support for the deployment of ubiquitous
software components. Personal and Ubiquitous Computing 12(2), 167–178 (2008)

35. Coghlan, B.A., Walsh, J., Quigley, G., O’Callaghan, D., Childs, S., Kenny, E.:
Principles of transactional grid deployment. In: Sloot, P.M.A., Hoekstra, A.G.,
Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp. 88–97.
Springer, Heidelberg (2005), http://dx.doi.org/10.1007/11508380_11

36. Medvidovic, N., Malek, S.: Software deployment architecture and quality-of-service
in pervasive environments. In: International Workshop on Engineering of Software
Services for Pervasive Environments, pp. 47–51. ACM (2007)

37. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

38. Parashar, M., Liu, H., Li, Z., Matossian, V., Schmidt, C., Zhang, G., Hariri, S.: Au-
toMate: Enabling Autonomic Applications on the Grid. Cluster Computing 9(2),
161–174 (2006)

39. Diaconescu, A., Bourcier, J., Escoffier, C.: Autonomic iPOJO: Towards Self-
Managing Middleware for Ubiquitous Systems. In: IEEE International Conference
on Wireless and Mobile Computing, Networking and Communications, WIMOB
2008, pp. 472–477 (2008)

40. Maurel, Y., Diaconescu, A., Lalanda, P.: CEYLON: A Service-Oriented Framework
for Building Autonomic Managers. In: 2010 Seventh IEEE International Conference
and Workshops on Engineering of Autonomic and Autonomous Systems (2010)

41. Dearle, A., Kirby, G.N.C., McCarthy, A.: A framework for constraint-based devel-
opment and autonomic management of distributed applications. In: Proceedings
of the International Conference on Autonomic Computing, pp. 300–301 (2004)

http://dx.doi.org/10.1007/11508380_11

Towards Structure-Based Quality Awareness

in Software Ecosystem Use

Klaus Marius Hansen1 and Weishan Zhang2

1 Department of Computer Science
University of Copenhagen, Denmark

klausmh@diku.dk
2 China University of Petroleum, Qingdao, China

Abstract. Software ecosystems – a group of actors, one or more busi-
ness models that serve these actors in a possible wider sense than direct
revenues, one or more software platforms that the business models are
built upon and the relationships of the actors and business models –
are gaining importance in software development as a way of increasing
software innovation, decreasing internal development cost, and spreading
software platforms. Software quality, not only of individual applications
or components, but also of the software ecosystems as a whole is impor-
tant, but has not received much attention so far. We here aim to explore
to which extent composition of components from a software ecosystem
influences software quality. We do this in order to provide groundwork
for application awareness of software quality in a software ecosystem
context.

We ran the same Maven build tasks in 15 simultaneous releases (in-
cluding associated service releases) of Eclipse and measured time, energy,
and memory performance. Based on an analysis of the plugins installed
with the versions of Eclipse, we next found the structure of the subset of
the Eclipse software ecosystem that was used in each version. The per-
formance measurements and computed structure were then analyzed and
compared. We found that performance and structure changed consider-
ably throughout versions of Eclipse. While we found no direct correlation
between the evolution of the two, our exploratory study warrants further
study.

1 Introduction

Arguably, one of the reasons why Apple iOS and Google Android have gathered
the main smartphone market share is the abundance of applications that are
available for these platforms. The number of Android applications available is,
e.g., rapidly approaching 1,000,0001. These applications are not developed by
Apple or Google alone, but mostly by independent developers that use APIs,
tools, and frameworks provided by Apple and Google. Having developed an
application, developers can then choose to sell application (for a fee) using Ap-
ple’s or Google’s infrastructure (iOS App Store or Google Play). This symbiotic

1 http://www.appbrain.com/stats/number-of-android-apps

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 469–479, 2014.
c© Springer International Publishing Switzerland 2014

http://www.appbrain.com/stats/number-of-android-apps

470 K.M. Hansen and W. Zhang

relationship between actors (Apple, Google, developers, smartphone users) is in-
strumental in the platforms’ success and the backbone of what has been termed
“software ecosystems”.

It is not only within the smartphone (application) domain that software
ecosystems are becoming important and relevant. Another domain is software
development itself, where development tools such as Apache Maven or Eclipse
provide a base platform that is either a platform for an ecosystem or part of an
ecosystem itself. In such situations, the composition of elements in the software
ecosystem becomes important. Does one composition (or choice) of elements,
e.g., lead to better performance, more defects, or better productivity? In this
paper we provide an initial exploration of these questions in the context of
the Eclipse software ecosystem by i) analyzing the structure of the networks
of releases of the Eclipse software ecosystem and ii) by analyzing performance
characteristics of releases of the Eclipse software ecosystem.

The rest of this paper is structured as follows: First, we provide background
and point to related work (Section 2). We then (Section 3) describe the steps we
took in our exploratory analysis, followed by a discussion of the results obtained
(Section 4. Finally, we conclude and point to future work (Section 5).

2 Background and Related Work

This section introduces central concepts used in this paper and (very) briefly
discusses related work.

2.1 Software Ecosystems

Software ecosystems [1,2] may be defined as [2]

the interaction of a set of actors on top of a common technological plat-
form that results in a number of software solutions or services

Furthermore

Each actor is motivated by a set of interests or business models and
connected to the rest of the actors and the ecosystem as a whole with
symbiotic relationships, while, the technological platform is structured
in a way that allows the involvement and contribution of the different
actors.

Prominent examples of software ecosystems include Google’s Android and Ap-
ple’s iOS. Taking Android as an example, the common technological platform is
the Android operating system and the software services that are built on top are
manifested as applications on (in particular) Android-based smartphones. While
Google is central in providing Android, another key actor is arguably Samsung2

2 http://blogs.strategyanalytics.com/WSS/post/2013/05/15/Samsung-Captures

-95-Percent-Share-of-Global-Android-Smartphone-Profits-in-Q1-2013.aspx

http://blogs.strategyanalytics.com/WSS/post/2013/05/15/Samsung-Captures-95-Percent-Share-of-Global-Android-Smartphone-Profits-in-Q1-2013.aspx
http://blogs.strategyanalytics.com/WSS/post/2013/05/15/Samsung-Captures-95-Percent-Share-of-Global-Android-Smartphone-Profits-in-Q1-2013.aspx

Towards Structural Quality Awareness in Software Ecosystem Use 471

that sells the largest number of Android smartphones. In addition, independent
application developers may develop applications (“apps”) using Android’s APIs,
publish these on Google Play, and sell them, leaving a transaction fee (30%) for
Google.

Research on software ecosystems is increasing, but so far there has been little
research in the context of real-world software ecosystems [2]. This paper presents
research on the Eclipse ecosystem (that we discuss next) and on network analysis
of software ecosystems.

2.2 Eclipse

Eclipse3 is a platform for integrated development environments that can be
extended via plugins. One (the main) such extension is the widely-used Java
Development Tools (JDT) version of Eclipse that supports Java development.
Eclipse provides an API for extension via plugins and plugins be shared (and
even sold) on the Eclipse Marketplace4. As such, Eclipse delineates a software
ecosystem.

Plugins for Eclipse are written in Java and based on the OSGi specifica-
tions [3]. OSGi defines a dynamic component and service model for Java based on
bundles. Bundles are JAR files that have added metadata describing among oth-
ers their modularity in terms of imports and exports of Java packages. Bundles
are loaded by an OSGi framework that manages their lifecycle (installing, start-
ing, stopping, updating). The core of Eclipse is one such framework, Equinox.

While there have been many empirical studies of Eclipse (e.g., [4,5,6,7]), few
have investigated the structure of the Eclipse ecosystem as a network. Kidane
et al. [5] investigated social networks forming around Eclipse whereas we are
concerned with networks of bundles (as defined by dependencies) in Eclipse.

2.3 Network Analysis

Complex structures often formnetworks, a pattern of connections among things [8].
Examples of networks include social networks (in which people are connected, e.g.,
through their communication), the Web (in which web pages are connected via
links), and international trade (in which countries are connected through trade).
Networks are most often modelled as graphs of nodes (or vertices) and links (or
edges); in the social network example, a personwouldbe represented by a node that
would be connected to other nodes (persons) if those persons had communicated.

Given a network modelled as a graph, graph theoretical measures can then be
applied for network analysis [8]. In this paper, we apply such techniques to anal-
yse the Eclipse software ecosystem network of bundles. Manikas and Hansen [9]
previously used network analysis to analyse the structure of two OSGi frame-
works, but in this paper propose to compare the results of a structural analysis
to a performance analysis.

3 http://www.eclipse.org
4 http://marketplace.eclipse.org/

http://www.eclipse.org
http://marketplace.eclipse.org/

472 K.M. Hansen and W. Zhang

3 Method

We analyzed 7 ‘simultaneous’ releases of Eclipse (Europa, Galileo, Ganymede,
Helios, Indigo, Juno, and Kepler) versions of Eclipse and 9 service releases of
these (see Table 1) for the complete list. Throughout, we used the 32 bit Java
EE versions of Eclipse. For each of the 16 versions, we performed a dynamic
performance analysis and a static structural analysis5.

Table 1. Summary statistics of Eclipse versions

Release Version Release date #nodes

1 Europa 3.3 2007-06-29 173
2 Galileo 3.5 2009-06-24 247
3 Galileo SR1 3.5.1 248
4 Galileo SR2 3.5.2 249
5 Ganymede 3.4 2008-06-25 220
6 Ganymede SR1 3.4.1 221
7 Ganymede SR2 3.4.2 221
8 Helios 3.6 2010-06-23 249
9 Helios SR1 3.6.1 249
10 Indigo 3.7 2011-06-22 302
11 Indigo SR1 3.7.1 312

(Indigo SR2) 3.7.2 394
12 Juno 4.2 2012-06-27 394
13 Juno SR1 4.2.1 394
14 Juno SR2 4.2.2 398
15 Kepler 4.3 2013-06-26 383

3.1 Dynamic Analysis

For each Eclipse release, we performed the same following compilation steps 9
times using JVM 1.6.20-b02 with Windows 7 (64 bit) as operating system and
Thinkpad W700 T9400 2.53G CPU, 7200rpm hard disk, 4G DDR2 RAM as
hardware. The software system compiled was the open source Net4Care frame-
work6 in version 0.4. The compilation steps performed were:

– Start the appropriate Eclipse version
– Run “clean” using Maven
– Run “install” using Maven
– Shut down Eclipse

For each run, we (manually) recorded the state of Eclipse: “starting”, “started”,
“cleaning”, “cleaned”, “installing”, “installed”, “stopping”, and “stopped” and

5 We exclude Indigo SR2 from the dynamic analysis since our measurements for that
version were outliers.

6 http://www.net4care.org

http://www.net4care.org

Towards Structural Quality Awareness in Software Ecosystem Use 473

the transition time between states. During the runs, we recorded energy con-
sumption using a digital multimeter (a UNI-T UT71C Digital Multimeter). Fur-
thermore, we measured CPU, memory, internet connection, file, and thread usage
by the Eclipse process using the Python “psutil” module running in a separate
process.

3.2 Static Analysis

We analyzed the JAR files of the plugins in each Eclipse release. The “#nodes”
column in Table 1 presents a count of the number of plugins in each installation.
We based our analysis on the manifest files of the plugins. Based on the “Export-
Package” and “Import-Package” OSGi headers [3], we deduce that a plugin is
dependent on another if the first exports a package (as specified in the “Export-
Package” header) that the last imports (as specified in the “Import-Package”
header).

In this way, we construct a network for each release with plugins as nodes
and dependencies (as calculated above) as links. The networks were exported
to GraphML and imported into the Gephi graph visualization platform version
0.8.2. Using Gephi, we calculated the following (average) metrics:

– In-Degree: the number of links to a node
– Eccentricity: the distance from a node to the node furthest away in the

network
– Closeness Centrality: the average distance from a node to all other nodes
– Number of Nodes : the total number of nodes (i.e., plugins in our case) in the

network
– Number of Edges : the total number of edges (i.e., package import dependen-

cies in our case) in the network
– Betweenness Centrality: the sum of the proportions of shortest paths from

all nodes to all others nodes that pass through a node
– PageRank: a directed variant of Eigenvector Centrality in which nodes linked

to a node are considered (p = 0.85, ε = 0.0010) [10]
– Clustering Coefficient: for a node, the proportion of actual links between

the node’s neighbors to possible links
– Eigenvector Centrality: a measure of importance/centrality for a node in

which the centrality is proportional to the average centralities of its neighbors

Furthermore, we used download volumes (from http://www.eclipse.org/

downloads/packages/ (July 2013)) and defects counts (from https://bugs.

eclipse.org/bugs/query.cgi (July 2013)) to calculate the following additional
quality metrics [11]:

– Rate Of Usage: the number of downloads per day. For (gratis) open source
software this is arguably a value-based quality metric

– Open Defect Ratio: the number of open defect to the number of open plus
closed defects (plus 1). For Eclipse, we used counts of open defects in “JDT”
and classified defects with a “STATUS” of “UNCONFIRMED”, “NEW”,
“ASSIGNED”, and “REOPENED” as “open”. We classified “RESOLVED”,
“VERIFIED”, and “CLOSED” defects as “closed”.

http://www.eclipse.org/downloads/packages/
http://www.eclipse.org/downloads/packages/
https://bugs.eclipse.org/bugs/query.cgi
https://bugs.eclipse.org/bugs/query.cgi

474 K.M. Hansen and W. Zhang

4 Results

Figure 1 shows a typical run for our dynamic analyses. Eclipse initially allocates
ressources file, thread, and connection ressources (no connections are allocated
in this version). CPU usage is initially high, but then falls. Power usage remains
at about the same level.

Fig. 1. Example of runtime measurements for Eclipse Kepler. Graphs are made with
Matplotlib [12].

Focussing on power usage, Figure 2 shows box plots for each of the states of
the experiment and for each version of Eclipse. In general, there appears to be
little difference in the power usage among versions, but power usage is generally
highest in the “starting” state.

Average execution time varied across Eclipse version with Ganymede and
Helios being fastest and the most recent version, Kepler, being next (see Table 2).

Open Defect Ratio appears higher for later versions of Eclipse (Juno and
Kepler) but is most probably due to these versions having high Rate Of Usage
and having existed for shorter time (see Table 2).

Concerning the structure of the Eclipse dependencies, Figure 3 shows a visu-
alization of the dependency network. The three nodes with highest in-degree cor-
respond to org.eclipse.osgi (70), com.ibm.icu (52), and javax.xml (37). The four
nodes with highest out-degree correspond to org.eclipse.equinox.p2.reconciler.-
dropins (13), org.eclipse.ui.workbench (12), org.eclipse.equinox.p2.ui (12), and
org.eclipse.equinox.touchpoint.eclipse (12).

Towards Structural Quality Awareness in Software Ecosystem Use 475

a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Eclipse version number

35

40

45

50

55

60

65

P
o
w

e
r

Box plot of power per Eclipse version (starting)
b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Eclipse version number

35

40

45

50

55

60

65

70

P
o
w

e
r

Box plot of power per Eclipse version (cleaning)

c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Eclipse version number

35

40

45

50

55

60

65

70

75

80

P
o
w

e
r

Box plot of power per Eclipse version (installing)
d)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Eclipse version number

35

40

45

50

55

60

P
o
w

e
r

Box plot of power per Eclipse version (stopping)

Fig. 2. Boxplots of power usage of Eclipse versions in different states: a) starting, b)
cleaning, c) installing, d) stopping

Table 2. Quality data for Eclipse releases (July 2013)

Release Rate Of Usage Open Defect Ratio Execution time (s)

Europa n/a 0.19 91.33
Ganymede n/a 0.26 76.38
Galileo n/a 0.27 88.15
Helios n/a 0.30 76.12
Indigo 3365.91 0.36 86.34
Juno 11600.39 0.83 84.11
Kepler 5899.60 0.65 82.80

Finally, Table 3 (page 477) shows a summary of the (average) metrics for
the dependency networks. In general, the number of nodes (plugins) and edges
(dependencies) are increasing with releases (and unsurprisingly also in every
service release). The Kepler release is the only exception to this. Except for the
earliest Europa release, the average in-degree and clustering coefficient appears
stable, signifying that while new plugins are introduced these (and older plugins)
keep being used.

Average betweenness centrality appears to rise, with a peak for Juno. Looking
at Juno, there is a set of highly central nodes: org.eclipse.equinox.security (386.8),
org.eclipse.jetty.servlet (360.1), org.eclipse.jetty.server (347.0), org.eclipse.osgi.-
services ((315.1), and org.eclipse.jetty.util (306.2). Interestingly, the same is not

476 K.M. Hansen and W. Zhang

Fig. 3. Dependency network for Eclipse Kepler. The size and shade of nodes are pro-
portional to their degree.

the case for the PageRank and eigenvector centrality. It should be noted that av-
erages of some of the metrics are not necessarily a good characterization of their
distribution since they may be scale-free [13].

We further plotted the dynamic measurements and static network metrics
against each other. Figure 4 show the plots of CPU versus metrics. There appears
to be some correlation for a), b), c), d), and e). However, more detailed analysis
and measurements are necessary. For the memory measurements, the general
picture of correlation was the same; for other measurements there appeared to
be no correlations.

Towards Structural Quality Awareness in Software Ecosystem Use 477

T
a
b
le

3
.
A
v
er
a
g
e
n
et
w
o
rk

m
et
ri
cs

fo
r
E
cl
ip
se

re
le
a
se
s

R
el
ea
se

In
-D

eg
re
e
E
cc
en

tr
ic
it
y

C
lo
se
n
es
s

C
en

tr
a
li
ty

#
N
o
d
es

#
E
d
g
es

B
et
w
ee
n
n
es
s

C
en

tr
a
li
ty

P
a
g
eR

a
n
k
C
lu
st
er
in
g

C
o
effi

ci
en

t
E
ig
en

v
ec
to
r

C
en

tr
a
li
ty

E
u
ro
p
a

0
.5
4
9
1

0
.3
9
8
8

0
.3
7
1
8

1
7
3

9
5

0
.1
4
4
5

0
.0
0
5
8

0
.0
3
5
9

0
.0
1
8
6

G
a
li
le
o

1
.4
8
1
8

0
.7
8
1
4

0
.5
6
6
5

2
4
7

3
6
6

1
.2
8
7
4

0
.0
0
4

0
.0
7
3
8

0
.0
1
8
5

G
a
li
le
o
S
R
1

1
.3
4
6
8

0
.6
7
3
4

0
.5
2
0
7

2
4
8

3
3
4

0
.9
1
5
3

0
.0
0
4

0
.0
7
1
3

0
.0
1
8
5

G
a
li
le
o
S
R
2

1
.4
6
9
9

0
.7
7
5
1

0
.5
6
1
9

2
4
9

3
6
6

1
.2
7
7
1

0
.0
0
4

0
.0
7
3
2

0
.0
1
8
4

G
a
n
y
m
ed

e
1
.2
3
6
4

0
.7
0
4
5

0
.5
0
4
3

2
2
0

2
7
2

1
.1
3
1
8

0
.0
0
4
5

0
.0
6
9
1

0
.0
1
8
1

G
a
n
y
m
ed

e
S
R
1
1
.2
3
0
8

0
.7
0
1
4

0
.5
0
2
1

2
2
1

2
7
2

1
.1
2
6
7

0
.0
0
4
5

0
.0
6
8
8

0
.0
1
8

G
a
n
y
m
ed

e
S
R
2
1
.2
3
0
8

0
.6
9
6
8

0
.4
9
7
4

2
2
1

2
7
2

1
.1
3
1
2

0
.0
0
4
5

0
.0
6
8
5

0
.0
1
8

H
el
io
s

1
.4
9
8

0
.8
6
3
5

0
.6
4
1
6

2
4
9

3
7
3

1
.5
2
2
1

0
.0
0
4

0
.0
7
6
8

0
.0
1
8
3

H
el
io
s
S
R
1

1
.5
0
6

0
.8
6
3
5

0
.6
4
1
5

2
4
9

3
7
5

1
.5
2
6
1

0
.0
0
4

0
.0
7
7
5

0
.0
1
8
4

In
d
ig
o

1
.4
9
6
7

1
.1
6
2
3

0
.7
8
5
5

3
0
2

4
5
2

4
.2
3
8
4

0
.0
0
3
3

0
.0
9
1
2

0
.0
2
2
1

In
d
ig
o
S
R
1

1
.4
5
1
9

1
.0
6
7
3

0
.7
2
7
1

3
1
2

4
5
3

3
.3
7
1
8

0
.0
0
3
2

0
.0
9
2
6

0
.0
2
2
1

In
d
ig
o
S
R
2

1
.4
5
3
4

1
.2
2
8
3

0
.7
7
4
3

3
1
1

4
5
2

5
.0
8
3
6

0
.0
0
3
2

0
.0
9
3
9

0
.0
2
2
5

J
u
n
o

1
.4
1
3
7

1
.4
5
1
8

0
.9
2
3
3

3
9
4

5
5
7

9
.1
1
6
8

0
.0
0
2
5

0
.0
8
9
2

0
.0
1
7
5

J
u
n
o
S
R
1

1
.4
2
8
9

1
.4
2
6
4

0
.9
0
6
7

3
9
4

5
6
3

8
.8
7
0
6

0
.0
0
2
5

0
.0
8
5
6

0
.0
1
8
1

J
u
n
o
S
R
2

1
.3
4
4
2

0
.9
2
9
6

0
.6
5
1
9

3
9
8

5
3
5

2
.6
5
0
8

0
.0
0
2
5

0
.0
8
4
2

0
.0
1
4
5

K
ep

le
r

1
.3
8
6
4

1
.1
3
5
8

0
.7
1
4
2

3
8
3

5
3
1

4
.4
1
2
5

0
.0
0
2
6

0
.0
8
6
1

0
.0
1
4
7

478 K.M. Hansen and W. Zhang

a)

8 10 12 14 16 18 20 22 24
Mean cpu

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
M

e
a
n
 E

c
c
e
n
tr

ic
it

y
Cpu versus Eccentricity (all)

b)

8 10 12 14 16 18 20 22 24
Mean cpu

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 C

lo
s
e
n
e
s
s
 C

e
n
tr

a
li
ty

Cpu versus Closeness Centrality (all)

c)

8 10 12 14 16 18 20 22 24
Mean cpu

150

200

250

300

350

400

450

M
e
a
n
 N

u
m

b
e
r

o
f

N
o
d
e
s

Cpu versus Number of Nodes (all)
d)

8 10 12 14 16 18 20 22 24
Mean cpu

0

100

200

300

400

500

600

M
e
a
n
 N

u
m

b
e
r

o
f

E
d
g
e
s

Cpu versus Number of Edges (all)

e)

8 10 12 14 16 18 20 22 24
Mean cpu

2

0

2

4

6

8

10

M
e
a
n
 B

e
tw

e
e
n
n
e
s
s
 C

e
n
tr

a
li
ty

Cpu versus Betweenness Centrality (all)
f)

8 10 12 14 16 18 20 22 24
Mean cpu

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

M
e
a
n
 P

a
g
e
R

a
n
k

Cpu versus PageRank (all)

g)

8 10 12 14 16 18 20 22 24
Mean cpu

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

M
e
a
n
 C

lu
s
te

ri
n
g
 C

o
e
ff

ic
ie

n
t

Cpu versus Clustering Coefficient (all)
h)

8 10 12 14 16 18 20 22 24
Mean cpu

0.012

0.014

0.016

0.018

0.020

0.022

0.024

M
e
a
n
 E

ig
e
n
v
e
c
to

r
C

e
n
tr

a
li
ty

Cpu versus Eigenvector Centrality (all)

Fig. 4. Scatter plots of CPU usage versus network metrics for versions of Eclipse:
a) eccentricity, b) closeness centrality, c) number of nodes, d) number of edges, e)
betweenness centrality, f) PageRank, g) clustering coefficient, h) eigenvector centrality.

Towards Structural Quality Awareness in Software Ecosystem Use 479

5 Discussion and Future Work

This paper has been concerned with software ecosystem and in particular the
Eclipse software ecosystem. We analysed 15 (16) releases of Eclipse dynamically
(through a performance monitoring of a specific compilation task) and statically
(through analysis of the structure of the Eclipse software ecosystem as defined
by dependencies among bundles in it). Future work includes more thorough
dynamic analyses of software ecosystems such as Eclipse (e.g., with more and
more realistic tasks) and more fine-grained monitoring (e.g., on a bundle level).

In conclusion, we found that performance and structure changed considerably
throughout versions of Eclipse. However, we found no strong correlations between
the two and as such our study is exploratory.

Acknowledgements. We thank Feifei Shi and Pengcheng Duan for help in
performing the experiments that provided the data for this paper.

References

1. Bosch, J.: From software product lines to software ecosystems. In: Muthig, D.,
McGregor, J.D. (eds.) SPLC. ACM International Conference Proceeding Series,
vol. 446, pp. 111–119. ACM (2009)

2. Manikas, K., Hansen, K.M.: Software ecosystems a systematic literature review.
Journal of Systems and Software 86, 1294–1306 (2013)

3. The OSGI Alliance: OSGi Core Release 5 (2012),
http://www.osgi.org/Specifications/

4. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: ICSE
Workshops 2007 International Workshop on Predictor Models in Software Engi-
neering, PROMISE 2007, p. 9 (2007)

5. Kidane, Y., Gloor, P.: Correlating temporal communication patterns of the eclipse
open source community with performance and creativity. Computational and
Mathematical Organization Theory 13(1), 17–27 (2007)

6. Mens, T., Fernandez-Ramil, J., Degrandsart, S.: The evolution of Eclipse. In: IEEE
International Conference on Software Maintenance, ICSM 2008, pp. 386–395 (2008)

7. Zhang, H., Kim, S.: Monitoring software quality evolution for defects. IEEE Soft-
ware 27(4), 58–64 (2010)

8. Easley, D., Kleinberg, J.: Networks, crowds, and markets, vol. 8. Cambridge Uni-
versity Press (2010)

9. Hansen, K.M., Manikas, K.: Towards a Network Ecology of Software Ecosystems:
an Analysis of two OSGi Ecosystems. In: Proceedings of the 25th International
Conference on Software Engineering and Knowledge Engineering (SEKE 2013),
Boston, USA (July 2013)

10. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems 30(1), 107–117 (1998)

11. Hansen, K.M., Jonasson, K., Neukirchen, H.: An empirical study of software archi-
tectures’ effect on product quality. Journal of Systems and Software 84(7), 1233–1243
(2011)

12. Hunter, J.D.: Matplotlib: A 2D graphics environment. Computing In Science &
Engineering 9(3), 90–95 (2007)

13. Goh, K.I., Oh, E., Jeong, H., Kahng, B., Kim, D.: Classification of scale-free net-
works. Proceedings of the National Academy of Sciences 99, 12583–12588 (2002)

http://www.osgi.org/Specifications/

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 480–491, 2014.
© Springer International Publishing Switzerland 2014

An Adaptive Enterprise Service Bus Infrastructure
for Service Based Systems

Laura González, Jorge Luis Laborde, Matías Galnares,
Mauricio Fenoglio, and Raúl Ruggia

Instituto de Computación, Facultad de Ingeniería,
Universidad de la República, Uruguay

{lauragon,mgalnares,mfenoglio,ruggia}@fing.edu.uy

Abstract. Service-based systems (SBS) increasingly need adaptation capabilities
to agilely respond to unexpected changes (e.g. regarding quality of service). The
Enterprise Service Bus (ESB), a recognized infrastructure to support the
development of SBS, provides native mediation capabilities (e.g. message trans-
formation) which can be used to perform adaptation actions. However, the confi-
guration of these capabilities cannot usually be performed at runtime. To deal
with this limitation, Adaptive ESB Infrastructures have been proposed which le-
verage their mediation capabilities to deal with adaptation requirements in SBSs
in an automatic and dynamic way at runtime. This paper presents a JBossESB-
based implementation of an Adaptive ESB Infrastructure and demonstrates its
operation by describing their main functionalities. The paper also presents an
evaluation of the implemented solution.

Keywords: enterprise service bus, service-based systems, adaptation, mediation.

1 Introduction

As service-based systems (SBS) operate in an increasingly dynamic world, they need
adaptation capabilities to behave correctly despite unexpected changes. This becomes
especially relevant in internet-scale systems and virtual service-oriented enterprises
[1], where their massively distribution leads to several challenges regarding perfor-
mance, availability and security, among others [2].

A widely recognized approach to deal with highly distributed services is based on
Enterprise Service Buses (ESB) [3], which are a mainstream middleware to support
the implementation of SBS. Within an ESB-based infrastructure, services communi-
cate by sending messages through the ESB. This way, messages may be processed by
mediation flows, implementing integration and communication logic, which apply
different mediation operations to them (e.g. transformations). Furthermore, proposi-
tions like the Integration as a Service paradigm [4], and more concretely the Internet
Service Bus (ISB) [5], aim to apply these integration technologies in the context of
cloud-based and internet-scale SBS. ESB products usually support a wide range of
mediation capabilities including message transformation and intelligent routing [3].

 An Adaptive Enterprise Service Bus Infrastructure for Service Based Systems 481

However, while mediation flows can be used to react to unexpected changes (e.g. a
transformation can be set up to handle a change in a service contract), they usually
have to be configured at design time, in a per-service basis and in a slightly static
way. This restricts the rapid responsiveness of the system and the generality of the
solutions. Furthermore, in large-scale internet SBS (e.g. Internet of Things, Internet of
Services) is unreasonable to assume that every time a service changes (regarding its
contract or quality of service), all its clients will rapidly adapt. This motivates imple-
menting server-side mechanisms that reduce the risks of client incompatibility.

In order to address these limitations we proposed an Adaptive ESB Infrastructure
[2,6,7], which deals with adaptation requirements in SBSs by leveraging its mediation
capabilities and allowing them to be configured and applied dynamically and auto-
matically at runtime. The adaptive infrastructure is based on messaging and integra-
tion patterns commonly supported by most ESBs, so it provides a generic solution
which is likely to be implemented in most of these products. Although in our previous
work we developed some prototypes to validate the technical feasibility of the con-
ceptual solution, we had neither implemented the complete adaptive infrastructure nor
evaluated it regarding, for example, performance issues.

This paper describes a complete JBossESB-based implementation of the proposed
adaptive infrastructure and demonstrates its operation by describing their main func-
tionalities including the configuration of the adaptive behavior of services and the
runtime adaptation capabilities according to different situations (e.g. response time
degradation). The paper also presents an evaluation of the implemented solution in
terms of the overhead it introduces and the resources it uses.

The rest of the paper is organized as follows. Section 2 presents the Adaptive ESB
Infrastructure and its main components. Section 3 describes details on how this infra-
structure was implemented on top of the JBossESB product and demonstrates its main
functionalities. Section 4 presents an evaluation of the implemented solution. Section
5 presents related work. Finally, Section 6 presents conclusions and future work.

2 The Adaptive ESB Infrastructure

This section describes the Adaptive ESB Infrastructure [2,6,7] which, leveraging the
mediation capabilities provided by ESBs, has the ability to address adaptation
requirements in SBS in an automatic and dynamic way at runtime.

2.1 Overall Approach

In order to address adaptation requirements within the infrastructure, services are
invoked through Virtual Services deployed in the ESB, following Service Virtualiza-
tion patterns [8]. Also, for each supported mediation capability the infrastructure hosts
an Adaptation Service which performs a specific mediation operation (e.g. a trans-
formation). Adaptation Services are generic given that their behavior is not fully spe-
cified at design time, but it depends on run time information (e.g a Transformation
Service executes a different transformation logic for each incoming message).

482 L. González et al.

The general idea to achieve adaptation at runtime is to intercept all ESB messages
and, if an adaptation is required for the invoked Virtual Service, drive them through
Adaptation Flows. These flows, composed by Virtual and Adaptation Services,
include all the required mediations steps (e.g. transformations, routing) to carry out a
specific Adaptation Strategy (e.g. invoke an equivalent service).

Fig. 1 presents a general overview of the proposed solution where a client applica-
tion invokes a virtual service (SRV), which virtualizes an external Web Service.

Fig. 1. Adaptive ESB Infrastructure [6]

First, the client sends a message through the ESB (1) to invoke the service SRV.
The message is intercepted by an Adaptation Gateway following the Gateway pattern
[8], which applies a common set of mediations to all incoming ESB messages. Given
that there is an adaptation directive for SRV, the gateway attaches an Adaptation
Flow to the message and routes it to the first step in the flow (2). This is supported by
the itinerary-based routing pattern [3], which determines the message destination
based on an itinerary included in the message itself. In this case, the itinerary (i.e.
Adaptation Flow) consists of an Adaptation Service, which performs a transformation
(TRN), and a Virtual Service (SRV). Thus, the message is routed to the TRN service
which after performing the required transformation (specified in the message), routes
the message (3) to the next step in the flow (SRV). Finally, the service SRV invokes
the external Web Service (4) and, eventually, a response is returned to the client.

The infrastructure handles the conceptual elements of the S-Cube Adaptation and
Monitoring Framework [9], which generalizes and broadens the state of the art in
SOA adaptation. In particular, Monitoring Mechanisms refer to any mechanism to
check if the actual situation corresponds to the expected one. They are used to detect
Monitored Events (e.g. response time degradation), which represent the fact that there
is a difference with respect to the expected system state, functionality or environment.
Monitored Events trigger Adaptation Requirements (e.g. reduce response time) which
represent the need of changing the underlying system, in order to remove the differ-
ences between the actual situation and the expected one. Finally, Adaptation Strate-
gies define the possible ways to achieve these requirements (e.g. invoke an equivalent
services) and they are realized by Adaptation Mechanisms (e.g. routing a request).

 An Adaptive Enterprise Service Bus Infrastructure for Service Based Systems 483

2.2 Logical Architecture

Fig. 2 presents the logical architecture of the solution which consists of internal ESB
components and an Adaptation and Monitoring (AM) Engine.

Fig. 2. Logical Architecture of the Adaptive ESB Infrastructure [6]

At runtime, the Monitoring Manager sends monitored information (e.g. the average
response time of services) to the AM Engine, which is obtained by interacting with
the built-in ESB Monitoring Mechanisms. When the AM Engine receives this infor-
mation, it decides (based on services requirements and metadata) if an adaptation
directive (implementing an Adaptation Strategy) should be created for a given ser-
vice. If so, the directive (i.e. an Adaptation Flow) is sent to the Adaptation Manager
which stores it, so it can be attached to all the incoming messages for the service.

2.3 Implementing Specific Adaptation Strategies

ESB products natively include different mediation capabilities (e.g. transformations)
which are available as part of its execution environment. They can be configured
based on specific requirements and can be combined to create mediation flows.

In the context of this solution, these mediation capabilities constitute the Adapta-
tion Mechanisms supported by the infrastructure: transformations, routing, recipient
list, aggregator, cache and delayer [6]. In particular, the transformation mechanism
receives one message and returns another one, transformed according to a given trans-
formation logic (e.g. data model transformation), and the routing mechanism dynami-
cally determines the next service in the message path according to different factors.

In the proposed infrastructure, Adaptation Mechanisms are combined into Adapta-
tion Flows to implement Adaptation Strategies. The infrastructure supports strategies
to deal with Quality of Services (QoS) issues [6] and changes in service contracts [7]
(e.g. Defer Requests, Distribute Request to Equivalent Services).

Adaptation Strategies are specified using YAWL [10]. Fig. 3 presents the load
balancing strategy which was implemented using the routing and transformation me-
chanisms. In this case, messages are first processed by a routing mechanism which,
according to a load-balancing strategy, routes the message to the invoked service
(SRV-1) or to an equivalent service (SRV-2 or SRV-3). Given that services can use
different data models, transformations to and from a canonical data model may be

484 L. González et al.

needed. This strategy can be used, for example, to overcome a service saturation
situation.

Note that although the general structure of strategies is specified at design time,
their configuration is performed at runtime according to the involved service/s.

Fig. 3. Specification of the Load Balancing strategy using YAWL [6]

Fig. 4 presents all the elements, within the S-Cube Adaptation and Monitoring
Framework, supported by the infrastructure which can be extended as needed.

Fig. 4. Supported Adaptation and Monitoring Elements [2]

3 A JBossESB-Based Implementation

The infrastructure presented in Section 2 provides a generic solution to enhance gen-
eral purpose ESB products with adaptation capabilities, by extending them with the
components described in Fig. 2. This section presents a JBossESB-based implementa-
tion1 [11] of the Adaptive ESB Infrastructure.

3.1 Internal ESB Components

This section describes the implementation of the Internal ESB Components.

Virtual Services. The implementation of Virtual Services requires a way to consume
external Web Services and to expose them as Web Services through the ESB. Their
implementation in JBossESB was based on the SOAP-Proxy component, natively
provided by the product, which offers a direct way of implementing Virtual Services
by exposing an external Web Service through the ESB.

1 https://code.google.com/p/esb-adaptativo/

 An Adaptive Enterprise Service Bus Infrastructure for Service Based Systems 485

Adaptation Services. The implementation of Adaptation Services requires the adap-
tation mechanisms and a way to build ESB services based on these mechanisms.

Regarding adaptation mechanisms, JBossESB natively supports transformations,
routing, recipient list and aggregator. However, given that they only support design
time configuration (e.g. to use the transformation mechanism, the transformation logic
has to be specified at design time in a configuration file), we enhance them to be able
to obtain configuration values (e.g. the transformation logic) from the incoming mes-
sages. On the other side, the cache [12] and delayer mechanisms are not natively pro-
vided in JBossESB, but they were successfully implemented with the extensibility
mechanisms provided by this product.

In order to create Adaptation Services based on the previous mechanisms, we used
the native feature of JBossESB where each service is specified as an actions pipeline,
in which each action performs a mediation operation (e.g. a transformation).

Itinerary-Based Routing Support. JBossESB does not natively support this pattern,
so the product has to be enhanced with this capability. Our implementation uses a
graph representation of an itinerary which can be included in the messages passing
through the ESB. Also, Adaptation Services were built using a pipeline with two
actions: the first one executes the mediation operation over the message, and the
second one routes the message to the next step in the itinerary.

Adaptation Gateway. The Adaptation Gateway has to intercept all messages sent to
the ESB. This component was implemented as an ESB Service leveraging the native
HTTP-Gateway provided by JBossESB. In particular, an URL pattern was configured
so that this service is the only entry point to the infrastructure. Fig. 5 presents the
XML representation of the implementation of this component using this approach.

The Java class “GatewayAction” implements the specific logic of this component.
In particular, it has to interact with the Adaptation Manager to check if there is an
adaptation directive for the invoked service and, if so, it has to attach an Adaptation
Flow (i.e. an itinerary) to the message. In order to specify the service to be invoked,
clients has to use the wsa:To property of the WS-Addresing standard.

Fig. 5. Adaptation Gateway [11]

Adaptation Manager. The Adaptation Manager deals with the Adaptation Flows,
received from the AM Engine, and it provides this information to the Adaptation
Gateway when requested. The implementation of this component is based on an
in-memory HashMap. So, given the identification of a Virtual Service, the corres-
ponding Adaptation Flow (if any) can be obtained. As an additional feature, this com-
ponent stores the history of the applied Adaptation Flows for each Virtual Service.

486 L. González et al.

Monitoring Mechanisms and Manager. Monitoring mechanisms are used by the
platform to check if the actual situation corresponds to the expected one.

First, we developed mechanisms which monitor Virtual Service invocations by
leveraging the built-in monitoring features provided by JBossESB. In particular,
JBossESB exposed monitored information as Java MBeans which can be accessed by
clients with JMX support. This way, we implemented three Monitoring Mechanisms
by interacting with the “MessageCounter” MBean and obtaining the values for the
following attributes: messages successfully processed count, messages failed count
and overall service time processed.

Also we developed mechanisms to monitor the contracts of the virtualized Web
Services. They were implemented following the ideas of a tool2 which compares two
versions of a WSDL document and identifies the changes it suffered (e.g. a new oper-
ation). Also, we used the EasyWSDL3 library which allows manipulating WSDL
documents. When this mechanism is executed, it compares stored versions of WSDL
documents with the current ones. This way, the infrastructure can detect which
changes WSDL documents have suffered.

The Monitoring Manager interacts with the Monitoring Mechanisms to calculate
Monitored Properties for each service. Our implementation supports four properties:
number of invocations per time unit, ratio of successful responses, average response
time and changes in service contracts. After calculating the values of the Monitored
Properties, the Monitoring Manager sends them to the AM Engine.

Other Internal Components. Our implementation includes other internal compo-
nents: Service Registry and Service Requirements Manager. The Service Registry
allows registering services, specifying metadata for the services (e.g. XSLT transfor-
mations to and from the canonical data model of the platform) and specifying equiva-
lent services. The Service Requirement Manager allows specifying requirements for
the services which, along with the monitored information, allow detecting situations
that need to be handled. Service requirements can be specified, for example, based on
the monitored properties (e.g. average response time < 1000 ms).

3.2 AM Engine and Administrative Console

This section describes the implementation of the Adaptation and Monitoring Engine
and the Administrative Console.

Adaptation and Monitoring Engine. The AM Engine receives monitored data from
the Monitoring Manager, sends adaptation directives to the Adaptation Manager and
takes the different adaptation and monitored decisions required by the infrastructure.
This component also manages the Adaptation Events, Requirements and Strategies
supported by the platform.

Every time the Monitoring Manager sends new values for the Monitored Properties
for a given service, the AM Engine processes this information to generate, if needed,

2 http://www.membrane-soa.org/soa-model-doc/1.2/
 compare-wsdl-java-api.htm
3 http://easywsdl.ow2.org/

 An Adaptive Enterprise Service Bus Infrastructure for Service Based Systems 487

new adaptation directives for that service. This is done based on the monitored infor-
mation, service metadata and service requirements. The AM Engine also knows
which Adaptation Strategies can be used to deal with each Adaptation Requirement.

The engine also implements the required logic to select an Adaptation Strategy
(currently in a random way) in case more than one is applicable to deal with a given
Adaptation Requirement. As an additional feature, if more than one Adaptation Strat-
egy has to be applied (e.g. a service has more than one Adaptation Requirement) the
AM Engine combines various Adaptation Flows in a single one.

Administrative Console. The Administrative Console provides functionalities which
facilitate the configuration of the adaptive infrastructure through a graphical interface.
It also allows controlling and analyzing the adaptation processes generated for each
service. The implementation of the Administrative Console was based in JSF 2.1 and
in a set of components provided by the framework Primefaces 1.5. It is completely
decoupled from the ESB and from the AM Engine: it interacts with them via JMX.

3.3 Demonstration of the Main Functionalities

This section presents the main features of the Adaptive ESB Infrastructure by means
of the JBossESB-based implementation.

Fig. 6 presents the Administrative Console of the infrastructure which provides
functionalities grouped in three main categories: Virtual Services management, Adap-
tive Server (ESB) configuration and AM Engine configuration. On the right side of
the figure, three Virtual Services, virtualizing external Web Services, are listed.

Fig. 6. Administrative Console: Virtual Services Management

The Administrative Console allows configuring basic information of Virtual Ser-
vices (e.g. name, category), the transformations to and from the canonical data model
of the platform and it allows associating equivalent services. It also allows configur-
ing the adaptive behavior of services (e.g. the maximum number of invocations a
service can support in a given period of time).

The adaptive infrastructure identifies and responds to different situations. For
example, if a service is saturated by sending it more requests that the number it can
handle, the solution detects this situation and applies a suitable Adaptation Strategy to

488 L. González et al.

handle it. Also, the current Adaptation Flows implementing the selected strategies for
each Virtual Service are graphically visualized through the administrative console.

Fig. 7 shows the first two levels of the current Adaptation Flow for the service
DNICWS, which implements a Load Balancing strategy and expires in 283 seconds.

Fig. 7. Current Adaptation Flow for the Service DNICWS

Finally, the history of the applied Adaptation Flows for a given service can also be
visualized through the administrative console.

4 Evaluation of the JBoss-ESB Based Implementation

This section presents an evaluation of the implemented solution. The SoapUI tool
v4.5.1 was used to simulate service invocations and the VisualVM tool v1.3.5 was
used to monitor resource usage. The platform was run on a desktop PC with 4GB of
RAM and a dual-core processor of 3.2Ghz.

4.1 Overhead Introduced by the Infrastructure

We performed some tests in order to quantify the overhead in the invocations intro-
duced by the infrastructure. Table 1 presents the results of the tests which were
obtained based on 1200 invocations to a Web Service.

Table 1. Overhead in Invocations [11]

Adaptation Strategy Average Time (ms) Overhead (ms)

Direct invocation to the Service 18 N/A

Invocation through the Infrastructure 21 3

Invoke Equivalent Service 94 76

Use Previously Stored Information 6 N/A

Distribute Request to Equivalent Services 350 332

Load Balancing 129 111

Defer Requests 121 3

Modify Request / Response Messages 179 161

 An Adaptive Enterprise Service Bus Infrastructure for Service Based Systems 489

The first row in the table, correspond to a direct invocation to the Web Service.
The second row corresponds to an invocation to the Web Service through the infra-
structure but without applying any strategy. The rest of the rows correspond to invo-
cations to the Web Service where the different Adaptation Strategies were applied.
For a given strategy, the overhead value is calculated with respect to the time required
for a direct invocation.

We believe that the obtained values are acceptable, given that for most of the strat-
egies the overhead is less than 200 milliseconds.

4.2 Resource Usage

We also monitored the CPU and memory usage while the platform was operating and
applying different adaptation strategies.

As presented in Fig. 8, the first interval (1) had a normal CPU usage of around
40%. However, in the second interval (2) the usage was increased because the “Dis-
tribute to Equivalent Services” strategy was applied, which requires performing vari-
ous messages copies and transformations. In the third interval (3), after the execution
of this strategy was finished, the CPU usage decreased to a normal use again.

Fig. 8. CPU Usage [11]

Regarding memory usage, Fig. 9 presents similar characteristics, that is, the usage
increased when the “Distribute to Equivalent Services” strategy was applied. It also
allows visualizing that the solution does not present memory leaks, as the memory
usage at the end of the test is very similar to the one at the beginning.

Fig. 9. Memory Usage [11]

490 L. González et al.

5 Related Work

As stated in our previous work [1,6,7], dynamic adaptation in ESB has recently been
addressed. Most authors propose solutions that allow applying or configuring ESB
mediation capabilities in a more dynamic and automatic way. For example, a recent
work [13] proposes an Adaptive ESB as part of an Adaptive SOA platform. The
Adaptive ESB focuses on adapting service compositions by selecting at runtime
(based on past invocations and QoS values) the services to be invoked.

Related proposals, although dealing with dynamic and automatic adaptation in
ESBs, they use limited mediation capabilities, they are not extensible, and mediation
flows to be followed by messages are defined at design time. In turn, our solution uses
a wider and extensible range of mediation capabilities (e.g. cache and delayer). Also,
it enables to select concrete mediation flows for messages at run-time, which enables
to choose different strategies when an issue is detected (e.g. regarding response time).
Finally, our proposal aims at enhancing general purpose ESB products with adapta-
tion capabilities. To this, the proposed infrastructure is based on commonly supported
ESB patterns and it is not restricted to the characteristics of specific ESB products.

6 Conclusions and Future Work

This paper presented a JBossESB-based implementation of an adaptive ESB infra-
structure, which provides adaptation capabilities for implementing large-scale SBS.
The experimental results show the feasibility of this approach through an implementa-
tion based on a general purpose ESB product.

The main contributions of this paper consist of the proof-of-concept implementa-
tion of the complete adaptive ESB solution, which provides experimental results con-
cerning the development and the execution. Such results are crucial to better know
about the behavior of the followed approach as well as to identify aspects to improve.
Regarding the development, JBossESB features and other existing tools enabled a
direct implementation of most of the components of the solution. However, some
elements required significant ad-hoc development. Concerning execution, the over-
head introduced by the solution, which is one of the most critical aspects, appears to
be acceptable as preventing client execution failures. CPU and memory usage is also
acceptable. However, applying adaptation strategies which require significant mes-
sage copies and transformations increased this usage in a considerable way.

Beyond current results, this work aims at being a step forward for adding dynamic
adaptation capabilities to Internet SBS, notably based on ESBs.

This work is currently being extended by implementing different strategies as well
as by improving the overall system. The approach is being applied to implement
do-main-specific integration platforms for Geographic Information Systems [14] and
Bioinformatics. In addition, a research line on applying this kind of platform to Inter-
net of Things scenarios [15] and context-aware service systems [16] is ongoing.

Future work consists in specifying and prototyping other Adaptation Strategies,
addressing other Adaptation Requirements, as well as implementing the adaptive
infrastructure with other ESB products. Other topic to be addressed concerns the
application of Complex Event Processing mechanisms for the AM Engine.

 An Adaptive Enterprise Service Bus Infrastructure for Service Based Systems 491

References

1. Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web Ser-
vices. Prentice-Hall (2004)

2. González, L., Ruggia, R.: Adaptive ESB Infrastructure for Service Based Systems. In:
Adaptive Web Services for Modular and Reusable Software Development: Tactics and So-
lutions. IGI Global (2012)

3. Chappell, D.: Enterprise Service Bus: Theory in Practice. O’Reilly Media (2004)
4. Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing: Principles and Paradigms. Wi-

ley (2011)
5. Ferguson, D.F.: The internet service bus. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part

I. LNCS, vol. 4803, p. 5. Springer, Heidelberg (2007)
6. González, L., Ruggia, R.: Addressing QoS issues in service based systems through an

adaptive ESB infrastructure. In: Proceedings of the 6th Workshop on Middleware for Ser-
vice Oriented Computing - MW4SOC 2011, Lisbon, Portugal, pp. 1–7 (2011)

7. González, L., Ruggia, R.: Addressing the Dynamics of Services Contracts through an
Adaptive ESB Infrastructure. In: 1st International Workshop on Adaptive Services for the
Future Internet, Poznan, Poland (2011)

8. Wylie, H., Lambros, P.: Enterprise Connectivity Patterns: Implementing integration solu-
tions with IBM’s Enterprise Service Bus products

9. Kazhamiakin, R.: Adaptation and Monitoring in S-Cube: Global Vision and Roadmap. In:
Proceedings of the Workshop on Monitoring, Adaptation and Beyond (MONA+), Madrid,
Spain, pp. 67–76 (2009)

10. Hofstede, A.H.M., ter Aalst, W.M.P., van der Adams, M., Russell, N.: Modern Business
Process Automation: YAWL and its Support Environment. Springer (2009)

11. Laborde, J.L., Galnares, M., Fenoglio, M.: Implementación de una Plataforma ESB Adap-
tativa (2012), https://esb-adaptativo.googlecode.com/

12. Yan Fang, R., Ru, F., Zhong, T., Eoin, L., Harini, S., Banks, T., He, L.: Cache mediation
pattern specification: an overview

13. Masternak, T., Psiuk, M., Radziszowski, D., Szydlo, T., Szymacha, R., Zielinski, K.,
Zmuda, D.: ESB-Modern SOA Infrastructure. SOA Infrastructure Tools, Concepts And
Methods. Poznan University of Economics Press (2010)

14. Rienzi, B., González, L., Ruggia, R.: Towards an ESB-Based Enterprise Integration Plat-
form for Geospatial Web Services. In: The Fifth International Conference on Advanced
Geographic Information Systems, Applications, and Services, pp. 39–45 (2013)

15. González, L., Cubo, J., Brogi, A., Pimentel, E., Ruggia, R.: RunTime Verification of Be-
haviour Aware Mashups in the Internet of Things. Presented at the 3rd International Work-
shop on Adaptive Services for the Future Internet, Malaga, Spain (September 2013)

16. González, L., Ortiz, G.: An ESB based Infrastructure for Event Driven Context Aware
Web Services. Presented at the 3rd International Workshop on Adaptive Services for the
Future Internet, Malaga, Spain (September 2013)

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 492–504, 2014.
© Springer International Publishing Switzerland 2014

Dynamic Adaptation of Business Process
Based on Context Changes: A Rule-Oriented Approach

Guangchang Hu, Budan Wu, and Junliang Chen

State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876

{hgc,wubudan,chjl}@bupt.edu.cn

Abstract. In a dynamic environment, business process needs to be adjusted and
evolved in response to the changeable internal policies and external environment.
However, it is a time-consuming and laborious way by redesigning process
model and executing the process instance. In this paper, we propose a
rule-oriented approach to dynamically generate business process according to the
current context at runtime. To enable dynamic and context-aware adaptation, the
relationship between services and context is described as rules, which are then
used to generate the solution with a mapping mechanism. Two algorithms are
designed to generate the activity sequence at runtime, which is the solution of
process adaptation. In order to achieve the preference selection, a process
assessment strategy has been proposed to constrain the generated activity
sequence. Simulation experiments have been conducted to demonstrate the
efficiency of our approach.

Keywords: BPM, adaptation, dynamic assembly, service composition, con-
text-aware.

1 Introduction

Service-oriented computing is a new computing paradigm. There are many advantages
to organize business processes in the form of services [10]. A well designed business
process can increase effectiveness and add value for the enterprise. However, the abil-
ity to respond to the changes in business processes is very small. The changes come
from the adjustment of internal regulatory policy, as well as the impact of environment
context change [5]. Due to the changes, a predefined business process may become
unable to continue or no longer meeting the current business goals. So, business
process needs to be adjusted and evolved in response to the changeable internal policies
and external environment [14]. However, it will be a time-consuming and laborious
work by redesigning process model and executing the process instance. Therefore, how
to rapidly adjust the predefined business processes to meet business goals at runtime
according to the current context is a meaningful problem. Especially in Internet of
Things (IoT), the dynamic characteristics of the environment and the burstiness of
services will directly affect the running process instances. It has practical significance
to reassemble business activities to adapt to the changes by the way of dynamic plan-
ning at runtime.

 Dynamic Adaptation of Business Process Based on Context Changes 493

The traditional workflow mainly concern to design business process model by
analyzing business requirements at design stage, and execute the business process
instances at runtime [18]. Both the definition of process logic and the binding of ser-
vices can be realized at design stage. This kind of workflow is suitable for fixed busi-
ness, and it is a static process, e.g. alarm process using WS-BPEL. But in a dynamic
environment, the changing context or abnormal events will lead to the initial process
instances cannot continue. And the changes of application requirements will lead to
the initial business processes cannot meet the new business goals. Some changes are
unpredictable, and it may only occur once, or only reappear under the certain situations.
So, it is a time-consuming and laborious way to adapt to the changes by redefining the
process models back to the design stage. And it is a good solution to generate a tem-
porary process which meets business goals and user preferences by a rule-oriented
approach according to the current context and various rules at runtime.

2 Related Work

The process is too rigid is the main problem in traditional workflow management
systems (WFMSs). These systems are not suitable for handling rapidly evolving
processes [7]. The case-handling paradigm, such as FLOWer, is usually considered as a
much more flexible approach, which allowing users to modify the predefined model
[1]. A new generation of adaptive workflow management systems are developed
[8,19], such as ADEPT, which response to the demand of dynamic business process
management. However, both in case-handling and adaptive systems, process models
are presented in a process modeling language (e.g., Pi calculus, Petri nets [13], etc.),
which precisely prescribes the algorithm to be executed. Although case-handling and
adaptive systems allow for changes of models written in imperative languages, the
result remains an imperative model. This can result in many efforts to implement var-
ious changes over and over again. In order to avoid the mandatory features of these
modeling languages, Pesic et al. [11] proposes ConDec as a declarative language for
modeling business process. Unlike imperative languages, declarative languages specify
what not to do instead of specifying how to work. This leaves a lot of room for the
maneuver of users who can make decisions and work in various ways with the same
ConDec model. But this method strongly depends on the description of constraint. The
flexibility is very weak when the description is insufficient [15]. And it cannot access
the runtime state of the process [2].

There already exist many researches on the adaptability of business process in the
field of business process management [4,12,17]. Bucchiarone et al. [3] defines abstract
activities of process model according to business goals at design stage. The proposed
method is fragment-based, and it gradually refines the implementation of abstract
activities by a series of adaptation mechanisms at runtime. However, the adaptation
mechanisms are relatively complex, and it cannot support manual intervention and
adjustment for the generated business process. Moreover, this method does not support
to user preferences. Yu et al. [20] uses the technology of aspect-oriented. And the
proposed method can realize different user's preferences which are weaved in processes
in the form of aspect. But the process logic of process model is fixed, and its variability
only reflects in the replacement of a specific service according to different user at

494 G. Hu, B. Wu, and J. Chen

runtime. Mejia et al. [9] maps the business processes to a series of ECA rules. And the
proposed method can realize process reengineering according to business require-
ments. However, this method is more dependent on the business experts. Due to ser-
vices and process logic are bound in ECA rules, it has a lower flexibility to cope with
the changes in the changeable environment.

Our research is based on the previously developed information service platform of
heating system. The platform is an IoT application project about urban central heating
and room temperature monitoring system. The architecture of this platform is shown as
Figure 1. This paper is research on the adaptive module (the dashed rectangle of Fig.1)
for BPM. We encountered a dynamic assembly problem between main process and
sub-process at runtime, when we developed the application of the Maintenance Process
with this platform. Based on this problem, we propose a rule-oriented dynamic plan-
ning approach (called RoDP) which can quickly respond to the changes at runtime. The
RoDP approach can realize dynamic assembly and adaptive adjustment of the inter-
rupted business process at runtime.

Fig. 1. Architecture of information service platform

3 Scenario and Problem Description

The following scenario is about heating maintenance process of the Maintenance Ser-
vice. There are three ways to submit a maintenance request. When a request is
submitted, duty manager assigns repairman to repair and confirms the result of the
maintenance. The maintenance process is shown as Figure 2.

 Dynamic Adaptation of Business Process Based on Context Changes 495

Fig. 2. Heating maintenance process of Maintenance Service

The changes of context information may interrupt an ongoing maintenance process
instance. For example, if there is a lack of some materials during the maintenance
period, the process instance will be unable to continue until the materials are supple-
mented. So, the main process instances need to dynamically assemble and execute the
sub-process of procurement, and return to the process instances to continue until the
total business goals are achieved. In addition, the heating maintenance process
may not be suitable for some new requirements. For example, heating equipments or
temperature sensors need to be replaced uniformly. So, a new process needs to be
dynamically generated to achieve this new goal.

Therefore, one of the problems is how to dynamically assemble the relevant
sub-processes and return to the main process when the execution of process instance
is interrupted by some events. Another problem is how to dynamically generate the
relevant processes to meet the new goals according to the current state, when new
business requirements appear. Figure 3 shows the procurement sub-process about the
event of lack of material. Figure 4 shows the new process about the new requirement
of the replacement of heating equipments or temperature sensors. In conclusion, the
general problem is how to rapidly organize business process to meet business goals at
runtime according to the current context and the existing service, when the changes of
contextual information or the emergence of new requirements affect the execution of
process instances in the dynamic environment. The key to solve the general problem
is to generate a related activity sequence to meet the business goals.

Assign
Repairman

Upload
Repair Results

Lack of
Material

Procurement
Process

Procurement
Completion

Event

Event

Lack of Material

Purchase
Approval

Update
Inventory

Purchase
Request

Fig. 3. Process of the procurement sub-process

496 G. Hu, B. Wu, and J. Chen

Unified
Purchase

Assign
Repairman

Upload
Repair Results

Collective
Testing

Fault

Success
Unfinished

Finished

Fig. 4. Process of the replacement of heating equipments or temperature sensors

4 The RoDP Approach

In this section we propose our RoDP approach and discuss several key principles used
in the design of this approach. First, we describe the adaptation architecture and the
function of each component. Second, we introduce formal definitions of the elements
of our adaptation architecture. Finally, we propose two algorithms to generate the
activity sequence at runtime, and we conduct experiments and comparative analysis. In
addition, we describe the mapping mechanism and assessment strategy in detail.

4.1 The RoDP Architecture

The adaptation architecture is shown as Figure 5. The predefined business processes
are stored in the Process Model which is a part of the Process Creation Environment.
Process instances are executed in the Process Execution Engine and receive the events
from the Unified Messaging Space. In response to these events and new requirements,
Rule Engine generates the corresponding activity sequence according to various rules
which describe the relationships between states of resources and activities. Rules are
stored in the Rule Base, and activities are stored in the Service Base. The relationship
between services and rules is realized by the Mapping module in the User Interface.
Different user preferences are realized by the module of Process Assessment.

a:1

c:3 j:2

Fig. 5. The architecture of adaptive process

 Dynamic Adaptation of Business Process Based on Context Changes 497

When the process instances are interrupted by events or new requirements, Execu-
tion Engine extracts the current states of the related resources and the objective states
of the remaining activities. According to the current states, the objective states and the
relevant rules, Rule Engine generates a weighted directed graph (called WDG), and
then outputs the corresponding activity sequence according to assessment strategy. In
addition, for the interruption caused by events, Execution Engine just return to
process breakpoint or anywhere of the remaining activities in process model.

4.2 Definition

In this section we introduce formal definitions of the elements of our adaptation
architecture.

1) Context: Context describes the current states of the resources. Many things can
be seen as resources especially in IoT, such as sensor, material, person and other
physical resources. Virtual resource can also be seen as an operable resource, such as
data, Web service. Each resource has two or more states to mark the current feature of
the resource. For example, the state of the material I is none (or yes), and the state of
the Web service J is unavailable (or available).

Definition 1: (Context) So =< id(i)∣ id(i).State, i∈N>, where: So represents the current
states of related resources of the interrupted instances; id(i) is the serial number of
resource i; id(i).State is the current state of the id(i) resource and State(a) represents
the resource state, and 0≤a≤ε; ε is the quantity of the states of a specific resource.

2) Activity: Activity (or service) describes the input, output, a set of operations and
the corresponding weight. In addition, the data which transmit between activities can
be defined and accessed in the form of Artifact [16].

Definition 3: (Activity) A=< id, id, Input, Output, Weight>, where: id is the activity
identity, and id(x) is the serial number of activity x (0≤x≤μ), μ is the total number of
activities; Input represents the triggered state of activity or input parameter of Web
service, and Output represents the changed state or output parameter; Weight
represents the cost, response time, user expectation or other QoS parameters of the
activity; the id and id of virtual resource is the same, and the id and id of physical
resource is different.

3) Business Goal: Business goal describes the states, which the remaining activities
of process model should achieve. Business goal is generated by extracting all the
outputs of unfinished activities when the process instance is interrupted by events.
And business goal is G` which represents the final states when a new business
requirement G` appears.

Definition 2: (Business Goal) G=<Sx, Sx+1,…, Sn>, where: 0<x<n; and Sx represents
the objective state which the first unfinished activity x should achieve, and Sx:=

id(x).State(b); Sx+1 represents the objective state which the next activity x+1 should
achieve in the process model; Sn represents the final state which the last activity
should achieve.

498 G. Hu, B. Wu, and J. Chen

4) Rule: Rule is an abstract description of the activity, which describes the precon-
dition, result and operation for performing an activity.

Definition 4: (Rule) R=<ℝid, id, precondition, result>, where: ℝid is the rule identity,
and ℝid(α) is the serial number of rule α (0≤α≤m), m is the total number of rules ;
precondition is the condition that an activity is triggered; result is the result of im-
plementation of the activity;

5) Activity Sequence: Activity sequence describes the ordinal relation of activities.
According to the Process Assessment strategy, the activity sequence is generated by
the RoDP algorithm and returned by the Rule Engine.

Definition 5: (Activity Sequence) P=< id(x), id(y),…, id(z)>.

4.3 The Rule Mapping Mechanism

Rule is an abstract description about the activities of the corresponding physical re-
source and services of the corresponding virtual resource. The state of a physical
resource can usually be changed by an atomic activity which has the same input and
output. For example, the procurement activity changes the state of material I from
none to yes, and the input and output parameters are all about the change of material
quantity. So, the precondition and result of the rule respectively are the states (before
and after the change) of the resource. The state of a virtual resource represents that the
corresponding service is available or not. And the precondition and result of the rule
respectively are the input and output parameter of the service. If an activity or
a service realizes the transition from one state to another, it can be expressed as
follows:

Physical resource
id
(x)::

id
(i).State(a)→

id
(i).State(b) ℝ

id
(α)::

id
(x) ℝ

id
(α).precondition:=

id
(x).State(a) ℝ

id
(α).result:=

id
(x).State(b)

<ℝ
id
(α),

id
(x),

id
(x).State(a),

id
(x).State(b)>

Virtual resource

id
(y)::

id
(y).State(a)→

id
(y).State(b) ℝ

id
(β)::

id
(y) ℝ

id
(β).precondition:=

id
(y).Input ℝ

id
(β).result:=

id
(y).Output

<ℝ
id
(β),

id
(y),

id
(y).Input,

id
(y).Output>

Annotation: ‘::’ represents associated relationship, ‘:=’ represents the assignment operator.

The rule mapping mechanism is shown as Figure 6. In addition, in order to make

full use of the existing process fragments (otherwise known as composite services),
each fragment can be mapped to one rule. Developers or users can manage the entire
Rule Base by the component of Rule Management in the User Interface. The changes
of business policy could be achieved by modifying the relevant rules. When the
current Rule Base is unable to generate solution, we can solve it by adding rules and
injecting related services [6].

 Dynamic Adaptation of Business Process Based on Context Changes 499

(a) Map physical resource to rule

(b) Map virtual resource to rule

Fig. 6. The rule mapping mechanism

4.4 The RoDP Algorithm

The key problem of the RoDP is to generate the activity sequence to meet the busi-
ness goals by matching the rules. The required activity sequence can be considered as
the edge of the feasible path from current states to objective states in WDG. We pro-
pose two algorithms for generating activity sequence according to the number of the
rules. One is a global approach that the Rule Engine creates WDG by matching all the
rules and finds the optimal path from the current states to the objective states. The
generated activity sequence is the optimal sequence in the optimal path. Another is
a local approach that the Rule Engine matches the rule with the minimum weight
from the current states to the objective states by greedy algorithm step by step. This
approach is to solve the suboptimal path, when the number of the rules is very large,
and the generated activity sequence is the suboptimal sequence.

The step to create the WDG is as follow: I. For the first rule, create the node S11
(S11:=ℝid(1).precondition) and the node S12 (S12:=ℝid(1).result) in WDG, then create the
directed edge from S11 to S12, and mark the edge with the weight id(x).Weight of re-
lated activity x; II. For the rule α (α>1), create the node Sα1 (Sα1:=ℝid(α). precondition)
and the node Sα2 (Sα2:=ℝid(α).result) in WDG, merge the same nodes, then create the
directed edge from Sα1 to Sα2, and mark the edge with activity weight id(y).Weight; III.
Continue to II until α>m (m is the number of the rules).

1) Algorithm of optimal activity sequence (called RoDP-opt)
The key issue for generating the optimal sequence is to solve the optimal path from
the current states to the objective states in the WDG. In our RoDP-opt algorithm, we
use the Dijkstra algorithm to solve the optimal path.

The step to generate the optimal activity sequence is as follow: I. Extract the cur-
rent states So (So:: id(i).State) and the objective states G (id(x).State(b),

id(x+1).State(b), …); II. Create the G(V,E) (namely WDG) according to all the rules;
III. Label the nodes So and the nodes G in WDG; IV. Find the shortest path from So to
Sn, and Sn is one of the elements of the set G; V. Output the optimal sequence based
on the assessment strategy.

Algorithm 1. The RoDP-opt algorithm
capture the current context So and business goal G
receive user-preference
for rule R(α) (1≤α≤m)
 create V(G) and E(G), Edge[S 1][S 2]:=

id
.Weight

500 G. Hu, B. Wu, and J. Chen

for Si ∈V(G) (1≤i≤∣V(G)∣)
 if So= Si, then change the label Si to So
 else if Sn= Si, then change the label Si to Sn
 P`:= activity of (path of (Dijkstra(So,Sn)))
 P:=Min (P`)
 return P

2) Algorithm of suboptimal activity sequence (called RoDP-subopt)
It is very difficult to create and manage the WDG when the number of the rules is
larger. The RoDP-subopt algorithm generates a suboptimal activity sequence by a
local optimum manner. The key issue is to support backtracking in the solving
process for generating the suboptimal sequence. In the RoDP-subopt algorithm, it is
realized by emptying the related rules of the unreachable path temporarily and select-
ing the remaining rules which can be matched iteratively.

The step to generate the suboptimal activity sequence is as follow: I. For the cur-
rent states So, match the precondition of all the rules with So, then select the activity x
with minimum weight from all the matching rules, put activity x into activity
sequence P and assign the result of the related rule to So; II. If there is not any match-
ing rules with So, then backtracking (flag=0); III. Continue to I until So⊆G or P=∅.

Algorithm 2. The RoDP-subopt algorithm
capture the current context So and business goal G
receive user-preference
do
{ for rule R(α) (1≤α≤m)

if ℝ
id
(α). precondition= So, then add id

(x) in P`

id
(y):=Min(P`)

add
id
(y) in P, P`:=∅, So:= ℝ

id
(β). result, flag:=0

for rule R(α) (1≤α≤m)
if ℝ

id
(α). precondition= So, then flag:=1

if (flag=0)&(So⊈G), then
delete

id
(y) in P, delete ℝ

id
(β), So= ℝ

id
(β). precondition

} while ((So⊈G)&(P≠∅))
recover ℝ

id
(β)

return P

4.5 The Process Assessment Strategy

Because of the different user preference, the generated activity sequence is different. This
paper assesses the generated activity sequence with service cost, respond time, user
experience or other QoS parameters. Users set the Process Assessment strategy by the
Preference Selection in the User Interface, and the RoDP algorithm receives these para-
meters and generates corresponding activity sequence. The activity sequence can be di-
rectly executed by the Execution Engine, or it can be modified by developer in the Process
Creation Environment.

 Dynamic Adaptation of Business Process Based on Context Changes 501

Optimal P Min δ λ Δ τ s. t.
δ C
τ U j 3 j n,

 . 1

Formula 1 is the mathematical expression for calculating optimal sequence or sub-
optimal sequence. δ, σ, and τ respectively represent the cost, response time, and user
experience; θ is the number of activities in each group; Δ is the full mark of user
experience (0≤τ≤Δ); j (j:: id) is the serial number of the activity (j≠3 represents that
no expect to use the activity which serial number is 3). Constrains (s.t.) provide more
advanced assessment strategy for users. For example, if the preference is that users
expect to choose activity sequence with minimum response time in the constraint that
the total cost is not more than C, it can be expressed as formula 2.

Optimal P Min σ s. t. δ C . 2

4.6 Experiment and Analysis

In this paper, we validate our RoDP approach by Matlab simulation experiment. We
use service cost as the assessment strategy. To simplify the problem, we suppose that
current state is So and objective state is Sn. The experimental data is shown as Figure
7, and the experimental result is shown as Figure 8.

Fig. 7. The experimental data of RoDP

502 G. Hu, B. Wu, and J. Chen

So

S1 S4

S6S3

S8S5S2

S7
a:1

c:3

b:2

f:2

d:4

e:5

g:1

h:2

j:2

i:5

k:5

l:3

RoDP-opt algorithm

RoDP-subopt algorithm

P ={b, g, j, l}

P ={a, d, i}

Sn

Fig. 8. The experimental result of RoDP

The computer configuration is that the CPU is dual-core 2.40GHZ and the memory
is 4.00GB. We simulate the time consumption and space consumption while the rule
number is 15, 50, 150, 450, 1350, and 4050, as shown in Figure 9. Abscissa indicates
the number of rules. Experiments show that the time consumption is 7.162s for gene-
rating optimal activity sequence and the time consumption is 74.329ms for generating
suboptimal activity sequence, when the number of rules is 1000. Through the experi-
mental results, we conclude that we should use the RoDP-subopt algorithm to gener-
ate suboptimal activity sequence when the number of rules reaches 103 orders of
magnitude. To avoid circular wait or infinite wait, we specify to execute the
RoDP-subopt algorithm when execution time of the RoDP-opt algorithm exceeds 10s.

Fig. 9. The algorithm comparison under different number of rules

Table 1. The comparison of various methods

Method Automatic
Adjustment

Consistency
Detection

Context
Aware

New Re-
quirement

User
Preference

Manual
Intervention

ADEPT √ √ √

ConDec √ √ √ √

Fragment-based √ √

Aspect-oriented √ √

ECA-based √ √ √ √

RoDP √ √ √ √ √

 Dynamic Adaptation of Business Process Based on Context Changes 503

Table 1 shows the comparison of various methods which were mentioned in the
section of the Related Work. The major elements of comparison are as follows:
whether to support the Automatic Adjustment at runtime; whether to support the Con-
sistency Detection of the generated process; whether to respond to the changes of the
Context and new requirement; whether to support the User Preference and Manual
Intervention during the process of dynamic adaptation.

5 Conclusion

In the dynamic environment, it is an effective way to respond to the changes of envi-
ronment information and application requirements by the dynamic planning approach.
And the generated activity sequence of business process satisfies the business goals.
This paper focuses on the dynamic assembly problem while we develop heating
maintenance process based on the previously developed information service platform
of heating industry. We propose the RoDP approach to adapt to the changes. The ap-
proach can realize adaptive adjustment of business process at runtime. The RoDP has
high flexibility, because it is based on the rules. And we can also adjust the rules to
respond to the changes. In addition, our approach supports user preference and ma-
nual intervention for the generated process. However, this paper does not focus on the
data flow and the consistency detection which may lead to the problem of process
inconsistency. So, we need to do further research on them. This approach not only
solves the dynamic assembly problem between processes, but also proposes a general
solution for the adaptation problem of business process in the changeable environ-
ment. The next step is to develop the corresponding components or tools.

Acknowledgments. This research is supported by the National Natural Science
Foundation of China (Grant No. 61003067), National 973 Programs (Grant No.
2013CB329102, No.2012CB315802), and Key Project of National Natural Science
Foundation of China (Grant No. 61132001), Program for New Century Excellent
Talents in University (Grant No. NCET-11-0592), The technology development and
experiment of innovative network architecture (CNGI-12-03-007).

References

1. Aalst, W.M.P., Weske, M., Grunbauer, D.: Case handling: a new paradigm for business
process support. Data & Knowledge Engineering 53(2), 129–162 (2005)

2. Adams, M., ter Hofstede, A.H.M., van der Aalst, W.M.P., Edmond, D.: Dynamic, extensible
and context-aware exception handling for workflows. In: Meersman, R., Tari, Z., et al. (eds.)
OTM 2007, Part I. LNCS, vol. 4803, pp. 95–112. Springer, Heidelberg (2007)

3. Bucchiarone, A., Marconi, A., Pistore, M., et al.: Dynamic adaptation of fragment-based and
context aware business processes. In: 2012 IEEE 19th International Conference on Web
Services (ICWS), pp. 33–41. IEEE (2012)

4. Bucchiarone, A., Pistore, M., Raik, H., et al.: Adaptation of service-based business
processes by context-aware replanning. In: 2011 IEEE International Conference on Service
Oriented Computing and Applications (SOCA), pp. 1–8. IEEE (2011)

504 G. Hu, B. Wu, and J. Chen

5. De, L.M.: Adaptive process management in highly dynamic and pervasive scenarios. arXiv
preprint arXiv: 0906.4149 (2009)

6. Guinard, D., Trifa, M., Karnouskos, S., Spiess, P., Savio, D.: Interacting with the
SOA-Based Internet of Things: Discovery, Query, Selection, and On-Demand Provisioning
of Web Services. IEEE Transactions on Services Computing 3, 223–235 (2010)

7. Heinl, P., Horn, S., Jablonski, S., et al.: A comprehensive approach to flexibility in
workflow management systems. In: ACM SIGSOFT Software Engineering Notes,
vol. 24(2), pp. 79–88. ACM (1999)

8. Kammer, P.J., Bolcer, G.A., Taylor, R.N., et al.: Techniques for supporting dynamic and
adaptive workflow. Computer Supported Cooperative Work 9(3-4), 269–292 (2000)

9. Mejia Bernal, J.F., Falcarin, P., Morisio, M., et al.: Dynamic context-aware business
process: a rule-based approach supported by pattern identification. In: Proceedings of the
2010 ACM Symposium on Applied Computing, pp. 470–474. ACM (2010)

10. Papazoglou, M.P., Traverso, P., Dustdar, S., et al.: Service-oriented computing: State of the
art and research challenges. Computer 40(11), 38–45 (2007)

11. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes
management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103,
pp. 169–180. Springer, Heidelberg (2006)

12. Pfeffer, H., Linner, D., Steglich, S.: Dynamic adaptation of workflow based service com-
positions. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008.
LNCS, vol. 5226, pp. 763–774. Springer, Heidelberg (2008)

13. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)
14. Ruy, S.H., Casati, F., et al.: Supporting the dynamic evolution of Web service protocols in

service-oriented architectures. ACM Transactions on the Web 2(2), 1–45 (2008)
15. Schonenberg, H., Mans, R., Russell, N., et al.: Process flexibility: A survey of contemporary

approaches. In: Dietz, J.L.G., Albani, A., Barjis, J. (eds.) Advances in Enterprise Engi-
neering I. LNBIP, vol. 10, pp. 16–30. Springer, Heidelberg (2008)

16. Vaculin, R., Heath, T., Hull, R.: Data-centric Web Services Based on Business Artifacts. In:
IEEE 19th International Conference on Web Services, pp. 42–49. IEEE (2012)

17. Verma, K., Gomadam, K., Sheth, A.P., et al.: The Meteor-S approach for configuring and
executing dynamic web processes. Lsdis Meteors project. Technical report (2005)

18. Wanf, Y., Yang, J., Zhao, W.: Change impact analysis for service based business processes.
In: 2010 IEEE International Conference on Service-Oriented Computing and Applications
(SOCA), pp. 1–8. IEEE (2010)

19. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a workflow
management system. In: Proceedings of the 34th Annual Hawaii International Conference
on System Sciences, pp. 1–10. IEEE (2001)

20. Yu, J., Han, J., Sheng, Q.Z., Gunarso, S.O.: PerCAS: An approach to enabling dynamic and
personalized adaptation for context-aware services. In: Liu, C., Ludwig, H., Toumani, F.,
Yu, Q. (eds.) Service Oriented Computing. LNCS, vol. 7636, pp. 173–190. Springer,
Heidelberg (2012)

Flexible Component Migration in an OSGi

Based Pervasive Cloud Infrastructure

Weishan Zhang1, Licheng Chen1, Qinghua Lu1, Peiying Zhang1, and Su Yang2

1 Department of Software Engineering, China University of Petroleum,
No. 66, Changjiang West Road, Qingdao, China, 266580

2 College of Computer, Fudan University, Shanghai 201203, China
zhangws@upc.edu.cn, lcchen.upc@gmail.com

Abstract. Task and service migration is an important feature for mobile
cloud computing in order to improve capabilities of small devices. How-
ever, the flexible management of components migration between small
devices themselves and powerful nodes in between is remaining a critical
challenge for enabling mobile clouds. In this paper, we present a solu-
tion using OSGi component model based on the OSGi pervasive cloud
(OSGi-PC) infrastructure we have developed. We have evaluated the
component migration in different scenarios in terms of performance and
power consumption to show the usability of our approach.

1 Introduction

The convergence of different computing paradigms, such as cloud computing,
pervasive and mobile computing, makes the arising of a new computing paradigm
called mobile cloud computing (MCC) [3]. The key idea of mobile cloud comput-
ing is to use backend powerful computing nodes from traditional cloud services
to enhance capabilities of small devices. In order to realize this idea, comput-
ing tasks or services need to be shifted to and from different computing nodes,
not only from small devices to the heavy weight computing nodes, but also in
between different small devices, and from the heavy computing node to the light
weight nodes. Therefore, how to effectively manage and conduct the migrations
of software components in MCC is a critical problem.

So far, there are a number of MCC proposals, such as CloneCloud [2], Misco
[4] and Hyrax [9]. CloneCloud [2] needs a modified Java Virtual Machine to
work, which makes it unrealistic in practice [21]. Misco and Hyrax focus on
making MapReduce [1] working on small devices, which did not address com-
ponent migration among computing nodes. eXcloud [7][8] is a MCC middleware
that supports fine granularity tasks migration from code snippets to a whole
virtual machine from small device to the backend. From our experiences and un-
derstanding, the migration of tasks should not be done only from small devices to
backend heavy weight nodes, but can be migrated in between all different kinds
cloud nodes. Also, based on the context-awareness requirements[15][16] [19], the
migration of too fine granularity tasks as code snippets may not be beneficial if
the cost of migration needs to be taken into consideration.

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 505–514, 2014.
c© Springer International Publishing Switzerland 2014

506 W. Zhang et al.

Considering all these challenges and existing solutions, we are developing an
OSGi based pervasive cloud (OSGi-PC) [18] that is based on the idea of flexible
management of software components among cloud nodes for facilitating task mi-
grations. The components can be migrated between OSGi frameworks on remote
powerful nodes, but also between OSGi frameworks on small device nodes and
remote powerful nodes. In other words, components can be migrated smoothly
between any two frameworks of the OSGi-PC. We have done some prelimi-
nary evaluations of the OSGi-PC in terms of performance, power consumption,
latency and usability.

The rest of the paper is structured as follows: we present an overview of the
components migration in Section 2, we then discuss the implementation of it
in details in Section 3. An evaluation of the components migration is shown in
Section 4. After that we compare our work with the related work in Section 5.
At last, conclusions and future work end the paper.

2 Overview of Component Migration

2.1 Simple Introduction to OSGi and R-OSGi

OSGi (Open Service Gateway Initiative)1 is a module system and service plat-
form for the Java programming language, which implements a complete and
dynamic component model and has become a de facto industry component stan-
dard for Java platforms. The applications or components of OSGi (coming in
the form of bundles for deployment) can be remotely installed, started, stopped
updated, and uninstalled without requiring a reboot.

R-OSGi (Remote Services for OSGi)2 was proposed to access services remotely
from another OSGi service registry. It runs as an OSGi bundle and facilitates
distribution for arbitrary OSGi framework implementations. All that a service
provider framework has to do is registering a service for remote access with some
specific properties. Subsequently, other peers can connect to the service provider
peer and get access to the service. Remote services are accessed in an entirely
transparent way. For every remote service, a local proxy bundle is generated
that registers the same service. Local service clients can hence access the remote
service in the same way and without regarding distribution.

2.2 Component Migration of OSGi-PC

As components are standard OSGi bundles, so they can be dynamically installed
and uninstalled. Ideally, components should be easilymigrated to any nodes inside
OSGi-PC, as depicted in Fig. 1. An OSGi framework (deployed on different nodes,
for example powerful PC nodes, or Android phones) can run any number of OSGi
components. The components can smoothly be migrated from one framework to
another without concerning about whether frameworks are deployed on remote

1 http://en.wikipedia.org/wiki/OSGi
2 http://r-osgi.sourceforge.net/index.html

http://en.wikipedia.org/wiki/OSGi
http://r-osgi.sourceforge.net/index.html

Flexible Component Migration in an OSGi 507

Fig. 1. Component migration model of OSGi-PC

powerful nodes or some small devices. We can see that component migrations can
be classified into three different types: component migration between frameworks
on remote power nodes, between frameworks on small devices and between the
two kinds of frameworks above.

To achieve this goal, at first we need two services: one service is to determine
which components need to be migrated to remote frameworks while the other
service is to provide these components to specific remote frameworks according
to the status of remote OSGi frameworks. At the same time, the framework
receiving components have to register a remote deployer service before migra-
tions (when OSGi framework starts), which makes it possible for the migration
initiating framework to migrate components to the receiving framework, and to
manage the migrated components after the migration. In the following, we will
discuss the implementation based on this.

3 Implementation of Component Migration

Figure 2 is the core class diagram to show the design of component migra-
tions between frameworks on OSGi-PC nodes. Class Redeployer is responsible
for determining what components should be migrated and then it shuts down
those components, and then it uses class ServiceProvisioner to deploy those
component remotely. The ServiceProvisioner class looks for proper frameworks
(in this first prototype, it will select one framework whose free memory is the
maximum) to deploy components by utilizing the service RemoteDeployer. The
RemoteDeployer has been registered as a basic service for all OSGi frameworks,
and this RemoteDeployer service can can store, install and start components

508 W. Zhang et al.

Fig. 2. Core classes of Component Migaration

migrated from other frameworks. According to different component migration
types, there are different implementations of the RemoteDeployer interface. In
our implementation, there are two kinds of implementation of this interface.

3.1 Component Migration between Frameworks on Remote
Powerful Nodes

For this type of component migrations, the OSGi-PC uses Apache Distributed
OSGi (DOSGi) where Zookeeper is used as as a discovery component. When a
new framework joins in the OSGi-PC, the new framework will register itself to
the discovery component with necessary information. Therefore, one framework
can obtain information of all frameworks in OSGi-PC from the discovery compo-
nent. Based on our former work [18], we can get one framework whose available
memory is maximum, after that we can redeploy components to this framework.

3.2 Component Migration between Frameworks on Different
Platforms

Because of the popularity of Android platform, we choose it as the front end of
OSGi-PC. We use Apache Felix framework as the container of OSGi components.
As Felix frameworks can only be used in one JVM, we need some communica-
tion frameworks to run across different JVMs. R-OSGi [11] is a lightweight and
efficient communication component between distributed OSGi frameworks that
can be tailored to run on Android [18]. Therefore we use R-OSGi for commu-
nication and component migrations between two frameworks within which one
framework needs to be deployed on a small device.

But when one component has been migrated to target Android framework, it
cannot be installed and started normally. This is because the Android platform
cannot run java Jar files directly. The Dalvik virtual machine of Android can
only read byte code compiled for it. Therefore when OSGi-PC needs to migrate
components to an Android framework, the RemoteDeployerImpl service of OSGi

Flexible Component Migration in an OSGi 509

framework running on power nodes will use a ”dexShell” shell to convert compo-
nents from java code to Dalvik code. Similarly, when components are migrated
to framework running on power nodes (normal JVMs), the RemoteDeployerImpl
service of it will use a shell named ”undexShell” to convert the components back
to normal Jar files. The shell uses dx.jar of google Android platform to complete
this conversion. We illustrate these processes in Figure 3 and Figure 4.

Fig. 3. Component migration from small device to powerful node

Fig. 4. Component migration from powerful node to small device

510 W. Zhang et al.

3.3 Component Migration between Frameworks on Small Devices

It seems to be simple to migrate components between frameworks running on
Android platform. Because components migrated between them are Dalvik code
which primarily converted from OSGi frameworks running on remote powerful
nodes, what we do is just receive the components, install and start them. There
are no differences between different Android devices.

4 Evaluation

To evaluate the performance of the component migration, we use FelixDroid3

as the application console which can provide a UI of felix console to show the
status of bundles at runtime. At the same time, we use PowerTutor4 to evaluate
the power consumption of the FelixDroid application when in the process of
component migration. In this evaluation, we use two simple OSGi bundles as
the components to migration.

From Table 1, we can see that the migration process from an Android phone to
PC takes around 215ms to finish a whole migration process, which is quite good
and usable in a pervasive computing environment. For the power consumption
on Android phones, the CPU takes around 1.37 J during the process, which is
acceptable also.

Table 1. Phone to computer power consumption(J)

1 2 3 4 5 6 7 8 9 10 11 average

stop local bundles(ms) 5 6 8 7 7 5 7 7 6 6 7 6.45
uninstall local bundles(ms) 12 10 12 10 10 9 11 10 10 9 9 10.18

network transfer(ms) 148 89 126 80 95 122 98 112 92 94 106 105.64
install bundles remotely(ms) 25 25 28 22 30 25 23 58 30 27 23 28.73
start bundles remotely(ms) 89 64 67 89 66 68 70 30 61 69 33 64.18
CPU power consumption(J) 1.7 0.804 1.7 2 1.8 1.6 1.5 0.897 1.3 0.957 0.814 1.37
LCD power consumption(J) 11.2 9.6 10.1 8.5 8 8 8.5 9.1 7.5 9.1 8 8.87

From Table 2, we can see that the migration process from a PC to an Android
phone takes around 1.60s to finish a whole migration process, which is OK.
Another thing to note is that in a pervasive computing environment, this kind
of migration is rare.

From Table 3, we can see that the migration process from one Android phone
to another phone takes around 645ms to finish a whole migration process, which
is good and usable in a pervasive computing environment. For the power con-
sumption on Android phones, the CPU takes around 1.35 J during the process,
which is acceptable.

3 http://www-irisa.univ-ubs.fr/CASA/dev/felixdroid/
4 http://ziyang.eecs.umich.edu/projects/powertutor/

http://www-irisa.univ-ubs.fr/CASA/dev/felixdroid/
http://ziyang.eecs.umich.edu/projects/powertutor/

Flexible Component Migration in an OSGi 511

Table 2. Performance of computer to phone component migration

1 2 3 4 5 6 7 8 9 10 11 average

stop local bundles(ms) 3 3 2 3 3 3 3 3 4 2 3 2.91
uninstall local bundles(ms) 7 11 15 52 21 24 29 38 6 9 9 20.09

network transfer(ms) 1011 1030 1038 1180 1122 1373 1209 1206 1132 1167 1058 1138.73
install bundles remotely(ms) 38 38 39 44 41 40 37 39 40 37 43 39.64
start bundles remotely(ms) 323 185 591 784 177 752 216 593 182 371 175 395.36

Table 3. Phone to phone power consumption(J)

1 2 3 4 5 6 7 8 9 10 11 average

stop local bundles(ms) 8 5 6 6 6 5 7 6 7 5 6 6.09
uninstall local bundles(ms) 11 13 11 10 9 11 21 9 12 10 17 12.18
network transfer time(ms) 386 334 276 357 376 358 331 309 289 331 347 335.82

install bundles remotely(ms) 75 56 49 45 62 47 46 48 66 56 67 56.09
start bundles remotely(ms) 437 187 229 226 213 279 185 233 205 160 227 234.64
CPU power consumption(J) 1.7 0.843 1.7 1.3 1.5 1.9 0.809 0.885 2.3 0.925 1 1.35
LCD power consumption(J) 5.9 6.9 6.4 6.4 5.3 5.3 4.8 5.9 4.8 5.3 5.3 5.66

When comparing three tables above, we can see that time consumption of stop
and uninstall operation of OSGi frameworks on PCs needs less time than that of
phones. But the time consumption of a migration, installation and start process
of a phone is more less than that of PCs. This is because the migration from
PC to phones needs to dex the components for running on Android platform
before the migration to an Android phone, and this process is time-consuming.
The LCD and CPU power consumption is acceptable. The migrations between
phones are faster than that from computer to phone without dex process.

5 Related Work

There are quite a few work on mobile cloud computing [3] [5] targeting enhancing
capabilities of small devices. Some are focusing on creating MapReduce frame-
works for small devices, such as Misco [4] and Hyrax [9], in order to improve the
performance of handhold devices. The components migration aims at transfer-
ring services and tasks among component nodes in order to utilize resources not
available locally, which have higher flexibilities in terms of that this can be done
at different levels, such as a bunch of services or a single service.

The work of eXcloud [7][8] is a MCC middleware that supports fine granular-
ity tasks migration. As we have said, the migration should consider a number
context and quality of service factors, for example the cost of network usage, the
time taken for a migration, and so on. Therefore in our opinion, the migration
should be conducted at a proper level, a too fine level may incur too much over-
head comparing with the benefits it has. In OSGi-PC, we are working on task
migration at component and service level (a number of components fulfilling a
certain service).

512 W. Zhang et al.

CloneCloud [2] can clone the computation and data from mobile devices to
backend heavy weight cloud nodes, and then return the computation results to
the small devices which offload the tasks. The real problem with CloneCloud is
that it needs a modified Java Virtual Machine for offloading code to the cloud
nodes, which makes the approach unrealistic in practice [21].

CloudLet [12] makes use of virtual machine technology to instantiate ser-
vices instances in nearby CloudLet, which may alleviate the latency of wide area
networks, and limitations of network bandwidth. In our future work, we will
investigate how to use this virtual machine technology without actually mov-
ing components in some situations, as an alternative for component and task
migration.

The work on MCC-OSGi [6] uses OSGi Bundles as basic mobile Cloud service
components, which can execute services remotely and run on different platforms.
In our work on OSGi-PC, we have followed Remote Service specification for
achieving the registration of services across different cloud nodes. We have also
achieved components migration seamlessly on all different kinds of node in the
OSGi-PC. This feature is very important when no remote services are available
for the current request and there is a need to offload a task due to the nature of
the task that is computation heavy.

In [13], the authors presentedamiddleware calledOSGi4C(OSGi for theCloud),
which allows seamless deployment of locally non-existent OSGi bundles and
services on demandwithout requiring any changes to the OSGi platform. Based on
P2P platform JXTA, it realized remote bundles discovery service in a distributed
manner.We will investigate in the future to include the P2P feature for component
migrations based on our previous work [10].

6 Conclusion and Future Work

The convergence of cloud computing, pervasive and mobile computing can help
to enhance capabilities of small devices, as what is focused on by the research of
mobile cloud computing and pervasive cloud computing [19]. There are emerging
research prototypes on middleware and frameworks to realize the idea of mobile
cloud computing. But few of the existing ones are focusing on component based
cloud infrastructure in order to facilitate inter-operability and ease the man-
agement of services and component migrations, following certain well-accepted
standard. In this paper, we have proposed and developed a flexible component
migration approach for an OSGi based pervasive cloud infrastructure (OSGi-
PC). The advantages of this approach is that it can support flexible migration
between any kind of cloud nodes, instead of only migration from frond end to
backend as in other related work. We have shown the acceptable performance
and power consumption features with evaluations.

We will deploy more services on OSGi-PC to make our system full fledged, for
example context management [15], task migrations decisions support [3] based
on our previous work on goal management [17][14][20] to make it really useful
to develop applications in smart cities.

Flexible Component Migration in an OSGi 513

Acknowledgements. The research is supported by the National Natural Sci-
ence Foundation of China (Grant No. 61309024). Weishan Zhang has been
supported by “the Fundamental Research Funds for the Central Universities”
and also the start up funds for “Academic Top-Notch in China University of
Petroleum” professors.

References

1. Chu, C., Kim, S., Lin, Y., Yu, Y., Bradski, G., Ng, A., Olukotun, K.: Map-reduce
for machine learning on multicore. Advances in neural information processing sys-
tems 19(281) (2007)

2. Chun, B., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic execu-
tion between mobile device and cloud. In: Proceedings of the Sixth Conference on
Computer Systems, pp. 301–314. ACM (2011)

3. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless Communications and Mobile
Computing (2011)

4. Dou, A., Kalogeraki, V., Gunopulos, D., Mielikainen, T., Tuulos, V.: Misco: a
mapreduce framework for mobile systems. In: Proceedings of the 3rd International
Conference on PErvasive Technologies Related to Assistive Environments, p. 32.
ACM (2010)

5. Fernando, N., Loke, S., Rahayu, W.: Mobile cloud computing: A survey. Future
Generation Computer Systems (2012)

6. Houacine, F., Bouzefrane, S., Li, L., Huang, D.: Mcc-osgi: An osgi-based mobile
cloud service model. In: 2013 IEEE Eleventh International Symposium on Au-
tonomous Decentralized Systems (ISADS), pp. 1–8. IEEE (2013)

7. Ma, R.K.K., Lam, K.T., Wang, C.-L.: excloud: Transparent runtime support for
scaling mobile applications in cloud. In: 2011 International Conference on Cloud
and Service Computing (CSC), pp. 103–110. IEEE (2011)

8. Ma, R.K.K., Wang, C.-L.: Lightweight application-level task migration for mo-
bile cloud computing. In: 2012 IEEE 26th International Conference on Advanced
Information Networking and Applications (AINA), pp. 550–557. IEEE (2012)

9. Marinelli, E.E.: Hyrax: cloud computing on mobile devices using mapreduce. Tech-
nical report, DTIC Document (2009)

10. Milagro, F., Antolin, P., Fernandes, J., Zhang, W., Hansen, K., Kool, P.: Deploying
pervasive web services over a p2p overlay. In: 18th IEEE International Workshops
on Enabling Technologies: Infrastructures for Collaborative Enterprises, WETICE
2009, pp. 240–245. IEEE (2009)

11. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-oSGi: Distributed applications through
software modularization. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware
2007. LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

12. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based
cloudlets in mobile computing. IEEE Pervasive Computing 8(4), 14–23 (2009)

13. Schmidt, H., Elsholz, J., Nikolov, V., Hauck, F., Kapitza, R.: Osgi 4c: enabling
osgi for the cloud. In: Proceedings of the Fourth International ICST Conference on
Communication System software and middleware, p. 15. ACM (2009)

14. Zhang, W., Hansen, K.: An Evaluation of the NSGA-II and MOCell Genetic Al-
gorithms for Self-management Planning in a Pervasive Service Middleware. In:
14th IEEE International Conference on Engineering Complex Computer Systems
(ICECCS 2009), pp. 192–201. IEEE Computer Society, Washington, DC (2009)

514 W. Zhang et al.

15. Zhang, W., Hansen, K.M.: Using context awareness for self-management in per-
vasive service middleware. In: Handbook of Research on Ambient Intelligence and
Smart Environments: Trends and Perspectives, 1 vol., p. 248 (2011)

16. Zhang, W., Hansen, K.M., Fernandes, J., Schütte, J., Lardies, F.M.: Qos-aware
self-adaptation of communication protocols in a pervasive service middleware. In:
Green Computing and Communications (GreenCom), 2010 IEEE/ACM Int’l Con-
ference on & Int’l Conference on Cyber, Physical and Social Computing (CPSCom),
pp. 17–26. IEEE (2010)

17. Zhang, W., Hansen, K.M., Fernandes, J., Schutte, J., Lardies, F.M.: Qos-aware
self-adaptation of communication protocols in a pervasive service middleware. In:
Green Computing and Communications (GreenCom), 2010 IEEE/ACM Int’l Con-
ference on & Int’l Conference on Cyber, Physical and Social Computing (CPSCom),
pp. 17–26. IEEE (2010)

18. Zhang, W., Chen, L., Lu, Q., Rao, Y., Zhou, J.: Towards an osgi based pervasive
cloud infrastructure. In: 2013 IEEE International Conference on Internet of Things
(iThings2013), pp. 418–425. IEEE (2013)

19. Zhang, W., Hansen, K.M., Bellavista, P.: A research roadmap for context-
awareness-based self-managed systems. In: Ghose, A., Zhu, H., Yu, Q., Delis, A.,
Sheng, Q.Z., Perrin, O., Wang, J., Wang, Y. (eds.) ICSOC 2012. LNCS, vol. 7759,
pp. 275–283. Springer, Heidelberg (2013)

20. Zhang, W., Hansen, K.M., Kunz, T.: Enhancing intelligence and dependability of a
product line enabled pervasive middleware. Pervasive and Mobile Computing 6(2),
198–217 (2010)

21. Zhang, Y., Huang, G., Liu, X., Zhang, W., Mei, H., Yang, S.: Refactoring android
java code for on demand computation offloading. In: Proceedings of the ACM
International Conference on Object Oriented Programming Systems languages and
Applications, pp. 233–248. ACM (2012)

Hybrid Emotion Recognition Using Semantic Similarity

Zhanshan Zhang1, Xin Meng2, Peiying Zhang2, Weishan Zhang2, and Qinghua Lu2

1 International School, Tongji University, No. 67 Chifeng Road, Shanghai, China, 200092
2 Department of Software Engineering, China University of Petroleum, No. 66, Changjiang

West Road, Qingdao, China, 266580
zhanshan@tongji.edu.cn, mengxin605@163.com, zhangws@upc.edu.cn

Abstract. It is challenging to know emotion status of people at run time as emo-
tion can be influenced by many factors. Speech contents heart rates are used in
our former work on hybrid emotion recognition approach. However, fixed emo-
tional keywords is not enough as there may be unknown and new keywords arise.
Therefore we add semantic similarity to emotional keywords recognition. After
obtaining the content of the user, even if the emotional keywords are not in the
knowledge base, we calculate the similarity between the keywords in the talk of
the user and the words in the knowledge base. A hybrid similarity calculation
algorithm is proposed to alleviate the problems that some words do not exist in
HowNet knowledge base where we combine the similarity calculation method for
Tongyici Cilin. If the similarity is greater than a threshold, then a corresponding
emotion status will be recognized together with the heart rate of the user. The
advantage of using semantic similarity is that it is much more flexible than the
one with only fixed emotional keywords in the knowledge base, together with a
higher recognition accuracy than before.

1 Introduction

Emotion status is an important factor that affects the health status of people. Therefore,
recognizing emotion status is an important step towards the intervention of low emotion
status. Currently, there are quite some emotion recognition technologies, such as the
ones using physiological signals, or using facial expressions and voice contents. Due to
the complexity nature of mind state which can be influenced by the health status of a
person, external events, physiological changes, and many other factors, we proposed a
hybrid emotion recognition approach which combines physiological signal (heart beats)
and speech contents [18].

For speaking, different people may use different emotional keywords to express the
same kind of emotion. At the same time, it is not rare at all that these emotional key-
words may not be in the knowledge base designed for the emotion recognition, and new
emotional keywords may arise. Therefore, to make the emotion recognition really prac-
tical using speech contents, it is necessary to identify the semantic similarity of emotion
keywords spoken by different people or in different situations.

Therefore, in addition to the physiological signals for example heart rates, the seman-
tic similarity of the emotional keywords in a speech should be taken into consideration
during the process of emotion recognition. In our work, we first classify anger, joy, nor-
mal and sadness based on heart rates, then the emotion recognition is further improved

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 515–526, 2014.
c© Springer International Publishing Switzerland 2014

516 Z. Zhang et al.

by emotional key words: first, we segment the sentence of the talk of the user, then de-
pending on semantic similarity we will calculate the result of keywords recognition. We
have initially tested the proposed approach and found that our approach indeed works
well.

The rest of the paper is structured as follows: We show an overview of the proposed
emotion recognition approach in Section 2. Section 3 discusses the implementation of
our emotion recognition approach. We evaluated the proposed approach in Section 4.
Related work is described in 5. Conclusions and future work end the paper.

2 An Overview of Emotion Recognition Using Heart Rate
Monitoring and Emotional Key Words Identification

As we all know that the smart phones is increasingly popular, we adopt heart rate as
one method to identify the emotional status of the user. In order to get the heart rate,
we only need to use the built-in camera on the smart phones. The color for finger is
changing continuously with the heart beats. Therefore the user will only need to shoot
the finger to detect color changes, and henceforth to get the heart rates.

2.1 Heart Rate for Different Emotion Status

Usually people will have different heart rates when they are in different emotion status
[18], as shown in Figure 1 below.

Fig. 1. Relationships of Heart Rates with Emotion

Only heart rate itself can not accurately decide the emotion status as we can see from
Figure 1. It should be combined with other approaches, for example, identifying what a
person is talking may help to recognize the emotion of the speaker.

2.2 Emotional Key Words

As a common sense, people in different emotional status may say different emotional
words[4], which are called emotional key words. Based on the work done by Wu
[13][12], we build our own emotional key words knowledge base, partially shown in
Table 1.

Hybrid Emotion Recognition Using Semantic Similarity 517

Table 1. Some keywords of four categories of emotion

emotion keyword1 keyword2 kerword3 keyword4 keyword5

joy –

anger

– – –

normal

– – –

sadness

– – – –

2.3 Emotion Recognition Approach Overview

We show the proposed emotion recognition approach as shown in 2, similar as that in
[18]. It is a hybrid emotion recognition approach combining physiology signal, obtained
through the built-in camera and speech contents, obtained through the microphone on
the smart phones.

First the user needs to shoot his finger around 10 seconds with the built-in camera.
If the average heart beats is obtained successfully, then the preliminary emotion recog-
nition will be conducted. After this, as the talking content will be continuously moni-
tored, and then word segmentation is used to extract some keywords that can represent
the emotion status of the user. Then semantic similarity is calculated to identify emo-
tional keywords, which are reflecting the current emotion status of the user. Finally the
recognition results will be further improved by using semantic similarity in keywords
recognition process.

Fig. 2. Overview of the hybrid emotion recognition approach

518 Z. Zhang et al.

3 Implementation of the Hybrid Emotion Recognition Approach

The emotion recognition can be considered as a sort of context-aware computing [1],
where the contents of talks and heart rates are parts of contexts, and they are managed in
a context-awareness framework based on our previous work [15][17][16]. The overall
architecture of our hybrid emotion recognition application is shown in 3.

Fig. 3. Structure of the emotion recognition on Android smart phones

From 1, we can see that for heart rates, there are overlaps between different emotion
states. The four emotional states can be largely classified as low rates (sadness and
normal) and high rates (joy and anger). To show the decision making more clearly, a
decision tree is shown in 4. We can see that it is not possible to differentiate emotion
status at the third level in the tree. Here the emotional key words identification will help
to improve the recognition process.

The main work flow of the mood recognition is realized in class KeywordActivity as
shown in 5. During this process, the heart rate is used first to make decisions on which
branch the recognition process will transverse 4. With the underlying speech content
retrieved using a speech to text service from the context-awareness framework.

Then we make word segmentation, namely to segment contents of the sentence spo-
ken by a user. After this, we can get the components in the content. For examples, we
will know which are adjectives in the content, which are verbs in the content.

After the segmentation, we extract some specific components of the content that can
represent the emotion of the user. Then by using a word similarity algorithm proposed
in [11], we make comparison of the components and those emotional key words in the
knowledge base.

Hybrid Emotion Recognition Using Semantic Similarity 519

Fig. 4. Decision tree for heart rates based emotion recognition

3.1 Sememes Similarity

The calculation of word similarity based on sememes (smallest elements of HowNet
knowledge base) in HowNet is using three basic components:

1. the depth of the sememes: Depth(seme1), where the first sememe is defined as
seme1.

2. the overlaps of the sememes: Spd(seme1,seme2), where the first sememe is defined
as seme2.

3. the dissimilarity of sememes(can be equals to the semantic distance): Dsd(seme1,
seme2).
The formula about the similarity of sememes is generally defined as follows:
Sim(seme1, seme2) = 2∗Spd(seme1,seme2)

Dsd(seme1,seme2)+2∗Spd(seme1,seme2)

Or can be calculated using the following formula:
Sim(seme1, seme2) = 2∗Spd(seme1,seme2)

Depth(seme1)+Depth(seme2)

3.2 Similarity of Words in HowNet

In HowNet, words can be classified as notional words and functional words. For us,
the notional words are meaningful for knowing the emotion status. As in the HowNet,
the words are described by ”{thesememesofsyntax}”and”{thesememesof
relationship}”, when we want to calculate the content words, we need to calculate
the similarity of the two parts, when we calculate the function words, we only need
to calculate the similarity of the two parts that without the braces. The algorithm is
described in [11].

3.3 Similarity of Words Not in HowNet

When we calculate the similarity of the words that have not been concluded in the
HowNet, we usually do as follows: as the concepts of the words can be segmented, just
as O1, O2, ...On, include n concepts. We can calculate the similarity of the n concepts.

520 Z. Zhang et al.

Fig. 5. Work flow of the emotion recognition on Android smart phones

We must be sure that all the n concepts are in the HowNet, then we can calculate the
similarity as the calculation of the words that have been included in the HowNet, if any
concepts in the n concepts that are not included in the HowNet, we must further make
segmentation of the concepts, until every concept is in the HowNet. As we can see, the
words similarity calculation depends on that all concepts are in HowNet. But this is not
true from our experience, therefore, we need to handle the case where some concepts
are missing in HowNet. In this case, we propose to use Tongyici Cilin to alleviate this
problem.

3.4 Words Similarity Combining Tongyici Cilin

Tongyici Cilin1 is another famous thesaurus taxonomy which organized by total differ-
ent manner from the HowNet, but also in a tree way like how WordNet does. Therefore,
We can utilize the tree structure of Cilin to measure the similarity among words as in
[10]. Based on the HowNet-based Chinese word similarity algorithm, and Cilin-based

1 http://download.csdn.net/detail/joy516688/4674656

http://download.csdn.net/detail/joy516688/4674656

Hybrid Emotion Recognition Using Semantic Similarity 521

Chinese word similarity algorithm, we propose a hybrid algorithm combined HowNet
and Cilin, the formula is:

Sim(w1, w2) = βSim(w1, w2)HowNet + (1− β)Sim(w1, w2)Cilin

Where Sim(w1, w2)HowNet is the semantic similarity based on HowNet,
Sim(w1, w2)Cilin is the semantic distance based on Cilin, and β is a restrain factor
to adjust the weight of the two parts.

4 Evaluation of the Hybrid Emotion Recognition Approach

We have made experiments to evaluate the proposed hybrid emotion recognition ap-
proach as presented above. During the tests, we are using a Sony Ericsson LT 18i, with
Android 4.1.22. First we need to measure the heart rate of the user, the detail process of
how to get the heart rate is defined in [18]. The speech of the user is recognized(include
record the talk of the user, make word segmentation, use semantic similarity to judge
the emotional status that the special words express)at the same time so that the hybrid
recognition can work. In the following tables showing the measurements, we list the
emotional key words first, following by the figure for a heart rate during the first test,
and then by a ’Y’ or ’N’ to say whether the recognition of a corresponding emotion
status is successful or not.

4.1 Accuracy

We have asked two people to test our system, we call them A, B. The tests for A are
shown in Table 2 3 4 5. From these data, we can see that the total accuracy of emotion
recognition can reach 71%, we can also see that there are some emotion key words
could not be correctly recognized, which lower the accuracy of recognition.

The tests for B are shown in Tables 6 8 9 7. The tests for sadness is shown in the 7.
The accuracy for the sadness is around 72%. The total accuracy of the test for B is only
around 42%. It is much lower than the tests for A. One reason is that we do not make
experiments for all the keywords in the knowledge base for B. So the result of the test
for B can not represent all the conditions accurately. As in the test for A, B, the reason
that some emotional keywords can not be recognized correctly is that we use the tool
of speech to text of Google, so sometimes the unstable of the tool of Google results in
that our keywords can not be recognized correctly. We regard this condition as an error,
if this condition happens, we also regard it as the error of our work in the test. If we
make experiments for B by using all the words in the knowledge base. The accuracy
will be around the accuracy of the test for A, namely around 71%. If we do not regard
the unstable of Google as an error, the accuracy of the test for A can be better than 71%,
the accuracy of the test for B can also be improved.

4.2 Performance

To check the performance of our approach, we record the talk of the user and measure
how long it takes recognize speech contents, and how long it takes to calculate the

2 http://freexperiaproject.com

http://freexperiaproject.com

522 Z. Zhang et al.

Table 2. Test of Normal for A

Keyword first second third forth

51 Y 49 Y 53 Y 41 Y
65 Y 53 Y 51 Y 71 Y
57 Y 47 N 71 Y 59 Y
61 N 59 Y 65 Y 59 Y
71 Y 53 Y 65 Y 65 Y
59 N 65 Y 71 Y 47 Y
53 Y 59 Y 41 Y 59 Y
59 N 47 N 56 N 65 N
65 N 59 N 51 N 47 N
71 Y 71 Y 53 Y 69 Y
71 Y 56 Y 59 Y 65 Y
47 Y 41 Y 53 N 49 Y
65 Y 53 Y 65 Y 59 Y
59 N 65 N 65 N 65 N
47 N 53 N 65 N 53 N
47 Y 41 Y 53 N 49 Y
65 Y 53 Y 65 Y 59 Y
59 N 65 N 65 N 65 N
47 N 53 N 65 N 53 N

Table 3. Test of Sadness for A

Keyword first second third forth

65 Y 53 Y 65 Y 41 Y
59 Y 65 Y 41 Y 59 N
59 Y 59 Y 53 Y 65 Y
53 Y 53 N 59 Y 53 Y
65 N 47 N 59 N 48 N
59 Y 53 Y 41 Y 59 Y
47 N 65 N 53 N 41 N
65 Y 65 Y 59 Y 65 Y
53 N 59 Y 47 Y 59 N
47 Y 59 Y 41 Y 47 Y

Table 4. Test of Anger for A

Keyword first second third forth

107 N 83 N 89 N 87 N
83 Y 95 Y 83 Y 89 Y

107 N 90 N 94 N 107 N
107 Y 83 Y 113 Y 107 Y
95 Y 107 Y 107 Y 83 Y
90 Y 113 Y 119 Y 95 Y
83 Y 94 Y 90 N 107 Y
95 Y 107 Y 107 Y 113 Y

107 Y 119 N 113 Y 107 Y
113 N 107 N 95 N 119 N

Table 5. Test of Joy for A

Keyword first second third forth

77 N 77 N 95 N 77 N
83 N 83 N 77 N 89 N
84 Y 90 Y 83 Y 77 Y
90 Y 83 Y 77 N 95 Y
77 Y 83 Y 77 Y 89 Y
89 Y 83 Y 77 Y 95 N
84 Y 83 Y 89 N 83 Y

Table 6. Test of Normal for B

Keyword first second third forth

69 Y 71 Y 53 N 53 Y
49 N 49 N 61 N 55 N
55 N 71 N 69 N 57 N
61 Y 65 Y 61 Y 59 Y
57 Y 47 Y 51 Y 53 Y
73 Y 71 Y 71 N 65 Y

Table 7. Test of Sadness for B

Keyword first second third forth

41 Y 51 N 55 Y 59 Y
55 Y 55 Y 59 Y 57 Y
47 Y 43 Y 47 N 57 Y
65 Y 55 Y 51 Y 45 Y
43 N 51 N 61 N 63 N

Table 8. Test of Anger for B

Keyword first second third forth

97 N 77 N 85 N 83 N
77 Y 105 Y 103 Y 97 Y
97 N 89 N 103 N 119 N
87 Y 77 Y 107 N 107 Y

Table 9. Test of Joy for B

Keyword first second third forth

87 N 77 N 94 N 85 N
94 Y 85 Y 83 Y 77 N
89 Y 77 Y 79 N 95 Y
85 Y 77 N 87 Y 95 Y

Hybrid Emotion Recognition Using Semantic Similarity 523

Table 10. Performance tests

T1(s) T2(s) T(total)(s)

4.8 2.25 8.03
4.58 2.06 7.61
5.43 2.21 7.25
5.05 2.25 7.91
5.05 2.16 7.85
5.03 1.91 7.69
5.25 2.09 8.05
4.91 2.01 7.63
5.03 2.03 7.89

Table 11. Power consumption

Recognition CA

LCD(J) CPU(J) LCD(J) CPU(J) Total(mw)
35.3 20.5 6.3 6.1 927

36 20.9 6.5 6.3 934
35.9 20.3 6.4 6.1 927
35.6 20.9 6.3 6.4 940
35.3 19.8 6.3 6.2 925
36.3 20.5 6.7 6.3 934

36 21 6.2 6.1 936
35.9 20.9 6.3 6.3 925
35.6 21.2 6.5 6.2 927

36 20.8 6.7 6.1 930
34.9 20.6 6.2 6.1 925
34.8 20.4 6.6 6.4 927
35.6 20.5 6.4 6.2 936

semantic similarity, and how long for the whole mood recognition process takes. The
tests are shown in Table 10, where the measurements for the time taken is denoted as T1,
T2, and T3 respectively. We can see that it takes around 5s for speech recognition which
takes the majority of the total recognition time. The process of word segmentation and
semantic similarity calculation takes around 2s, which is reasonable for the current
knowledge base. The total cost of the whole process that from recording the talk of the
user to obtain the final result of emotion recognition is around 7s, which is OK for run
time recognition purpose.

4.3 Power Consumption of the Recognition Application

Table 11 shows the power consumption while conducting the mood recognition process
on a SE LT18i, the last column shows the power consumption of the context awarenss
framework plus the emotion recognition application, which is less than 1 Watt, a rea-
sonable power consumption for an application on Android. All the power consumptions
are measured using the Power Tutor software tool3.

5 Related Work

Using some wearable equipments in order to collect emotion-related physiological sig-
nals such as skin conductivity, heart rate and a skin temperature of the user [8]. There
exist some emotion recognition systems that They used a base unit and gloves with sen-
sor units in order to receive the data transmitted from sensor units. In our approach, we
just avoid using these complex sensors, we make our work more convenient for people,
not need to make the user to wear the equipments on their body, in our work we only
use the built-in camera and microphone on the smart phone, at the same time, as our
work use semantic similarity so we also need the help of the computer, in the future, we
will make our work all on the smart phones, to use our work, just a smart phone and a
computer are enough.

3 http://ziyang.eecs.umich.edu/projects/powertutor/

http://ziyang.eecs.umich.edu/projects/powertutor/

524 Z. Zhang et al.

There is an interesting work on collecting data only from key strokes which is pre-
sented in [5]. In their paper, they are also using the method of decision tree classifier for
15 emotional states, they classify six emotional states including hesitance, confidence,
relaxation, nervousness, tiredness and sadness with around the accuracy of 80% suc-
cessfully. For modern handhold devices, collecting key strokes are impractical where
the main interaction method is touching screen, our work is more practical, as we use
semantic similarity in our work, the accuracy of our work can be around 71%. We re-
gard the unstable of Google as one of the errors in our work, If we not regard this as an
error, the accuracy of our work can be better than 71%.

The recognition of speech emotion using Support Vector Machine is proposed in [3],
where the classifier of Support Vector Machine is used to classify different kinds of
emotional states such as sadness, anger, neutral, happiness, fear, from the Berlin emo-
tional database. In this paper, it is surprising that it gives 93.75% classification accuracy
for Gender independent case 100% for female speech and 94.7% for male. This high
accuracy of the emotion recognition is compared with the work which is introduced in
[7]. On the other hand, these research are exploring the emotion recognition off-line,
not as what we are doing to recognize emotion status online at run time, they use the
features of the voice, we now only use the key words by using semantic similarity. But
in the future, we will consider more voice features definitely like pitch, rhythm and so
on. In our work, we can recognize four kinds of emotional status, the gender has no
influence on the accuracy of our work. Meanwhile by using the semantic similarity, the
accuracy of our work can be 71%. It is reasonable.

The work proposed in [2] introduced automatic emotion recognition from speech
using temporal features and rhythm. They use two kinds of methods to classify the fea-
tures of voice, namely Support Vector Machine and Artificial Neural Network (ANN),
both of them can achieve high accuracy of emotion recognition, by comparing with [7]
and [3]. This emotion recognition is also off-line compared with our work. We now just
use the key words in the talk of the user by using semantic similarity, the accuracy of
our work is around 71%, to further improve the accuracy of our work. Fist we will try
our best to improve the accuracy of the semantic similarity in our work. Then we would
also make full use of the features of voice to improve the accuracy of recognition even
contents may mislead the recognition sometimes.

A similar work that have been done in the paper that is proposed in [6], in this work
where unobtrusiveness is emphasized as ours, as we use key words by using semantic
similarity to judge the emotional status. we just use the feature of the voice, not the
same as them. They collect and analyze user-generated data from different types of
sensors by using the smart phones inconspicuously. These data include typing speed,
frequency of pressing a specific key, maximum text length and so on; the features of
the current environmental conditions around the user: average brightness, discomfort
index, location, time zone and weather condition. Then they only choose ten features,
by using the bayesian network to classify the features. Finally the average accuracy of
seven kinds of emotion recognition is 67.52%. Meanwhile the accuracy of recognition
about happiness, surprise, anger, neutral is around 50%. Because we collect the data
from the smart phones. Then it is convenient for user to use. In this paper, both the
direct features and the indirect features that have influence on people are taken into

Hybrid Emotion Recognition Using Semantic Similarity 525

consideration. The disadvantage of the experiment is the collected data are not enough
which result in low accuracy of the recognition of sadness and fear, and the experiment
can not represent most people. We combined the physiology signal instead of only using
those data as in [6]. Although we only use the semantic similarity in the recognition.
We have tested that the accuracy of our work is better.

It is proposed that use a normal WebCam to measure physiological signals [9], where
color channels in facial image caught on a webcam is utilized.By using this approach,
it can obtain respiratory rate, heart rate and heart variability. This work does not need
the attention of the user. To some special situations, it also has good potentials. It makes
use of heart rate, just the same as us, in our work, we combine the heart rate and the key
words(use semantic similarity), now our work just need a smart phone and a computer,
in the future, we will move our work all on the smart phone and improve the accuracy
of the semantic similarity to further improve the recognition accuracy of our work. But
it needs the additional webcam.So our work is more convenient than it.

6 Conclusions and Future Work

It is very important for some people to understand the emotion status of a person. Es-
pecially those people that need health care service in order to keep them in good con-
ditions. It is a great challenge that to recognize emotion status at run time. The existing
approaches mostly work in an off-line way to identify emotional status[3][7], in our ap-
proach, we combine the voice recognition(first record the talk of the user, then segment
the content, finally extract the special components of the content that can represent the
emotional status of the user) and heart rate monitoring to recognize emotional states
at run time. The experiments show that our hybrid approach can get high accuracy of
emotion recognition with the feature of reasonable power consumption.

Our work that introduced in this paper is very simple for people to use. We have
tested our work, the test showed very promising results. As our work still has some
shortcomings. So we will extend our work in the future in a number of directions.
First the recognition of voice contents, we extract only emotional keywords, then make
segmentation, finally choose special components of the content that obtain special emo-
tional status. In the future , we will make full use of the features of the voice, such as
energy, pitch, rhythm and so on. Then use SVM, Bayesian and ANN to further classify
features of voice. As the contents of the user may have different meaning, or totally
different meaning in different situations, we will try our best to make our work more
practical and more reliable by using pervasive cloud infrastructure [14].

Acknowledgements. The research is supported by the National Natural Science Foun-
dation of China (Grant No. 61309024). Weishan Zhang has been supported by “the
Fundamental Research Funds for the Central Universities” and also the start up funds
for “Academic Top-Notch Professors in China University of Petroleum”.

References

1. Abowd, G.D., Ebling, M., Hung, G., Lei, H., Gellersen, H.-W.: Context-aware computing.
IEEE Pervasive Computing 1(3), 22–23 (2002)

2. Bhargava, M., Polzehl, T.: Improving automatic emotion recognition from speech using
rhythm and temporal feature. In: Proceedings of ICECIT-2012, 139–147 (2012)

526 Z. Zhang et al.

3. Chavhan, Y., Dhore, M.L., Yesaware, P.: Speech emotion recognition using support vector
machine. International Journal of Computer Applications 1(20), 6–9 (2010)

4. Clore, G.L., Ortony, A., Foss, M.A.: The psychological foundations of the affective lexicon.
Journal of Personality and Social Psychology 53(4), 751 (1987)

5. Epp, C., Lippold, M., Mandryk, R.L.: Identifying emotional states using keystroke dynamics.
In: Proceedings of the 2011 Annual Conference on Human factors in Computing Systems,
pp. 715–724. ACM (2011)

6. Lee, H., Choi, Y.S., Lee, S., Park, I.P.: Towards unobtrusive emotion recognition for affective
social communication. In: 2012 IEEE Consumer Communications and Networking Confer-
ence (CCNC), pp. 260–264. IEEE (2012)

7. Pan, Y., Shen, P., Shen, L.: Speech emotion recognition using support vector machine. Inter-
national Journal of Smart Home 6(2), 101–107 (2012)

8. Peter, C., Ebert, E., Beikirch, H.: A wearable multi-sensor system for mobile acquisition
of emotion-related physiological data. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005.
LNCS, vol. 3784, pp. 691–698. Springer, Heidelberg (2005)

9. Poh, M.-Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multiparameter
physiological measurements using a webcam. IEEE Transactions on Biomedical Engineer-
ing 58(1), 7–11 (2011)

10. Tian, J., Zhao, W.: Words similarity based on tongyici cilin. Journal of Jilin University 006,
602–608 (2010)

11. Tian, X.I.A.: Study on chinese words semantic similarity computation. Computer Engineer-
ing 33(6), 191–194 (2007)

12. Wu, Y., Kita, K., Ren, F., Matsumoto, K., Kang, X.: Exploring emotional words for chinese
document chief emotion analysis. In: Proc. of 25th PACLIC, pp. 597–606 (2011)

13. Wu, Y., Kita, K., Ren, F., Matsumoto, K., Kang, X.: Exploring the importance of modifica-
tion relation for emotional keywords annotation and emotion types recognition. International
Journal of Intelligent Engineering and Systems 4(4), 19–26 (2011)

14. Zhang, W., Chen, L., Lu, Q., Rao, Y., Zhou, J.: Towards an osgi based pervasive cloud in-
frastructure. In: 2013 IEEE International Conference on Internet of Things (iThings2013),
pp. 418–425. IEEE (2013)

15. Zhang, W., Hansen, K.M.: Using context awareness for self management in pervasive service
middleware. In: Mastrogiovanni, F., Chong, N.-Y. (eds.) Handbook of Research on Ambient
Intelligence and Smart Environments: Trends and Perspectives, pp. 248–271. IGI Global
(2011)

16. Zhang, W., Hansen, K.M., Bellavista, P.: A research roadmap for context-awareness-based
self-managed systems. In: Ghose, A., Zhu, H., Yu, Q., Delis, A., Sheng, Q.Z., Perrin, O.,
Wang, J., Wang, Y. (eds.) ICSOC 2012. LNCS, vol. 7759, pp. 275–283. Springer, Heidelberg
(2013)

17. Zhang, W., Hansen, K.M., Kunz, T.: Enhancing intelligence and dependability of a product
line enabled pervasive middleware. Pervasive and Mobile Computing 66(2), 198–217 (2010)

18. Zhang, W., Meng, X., Lu, Q., Rao, Y., Zhou, J.: A hybrid emotion recognition on android
smart phones. In: 2013 IEEE International Conference on Cyber, Physical and Social Com-
puting (CPSCom 2013), pp. 1313–1318. IEEE (2013)

ICSOC PhD Symposium 2013

The 9th edition of the ICSOC PhD Symposium was held on December 2, 2013,
in Berlin, as a satellite event of the 11th International Conference on Service
Oriented Computing (ICSOC 2013). The aim of the PhD Symposium series is
to bring together Ph.D. students and established researchers in the field of service
oriented computing, to give students the opportunity to present their research,
share ideas and experiences, and stimulate a constructive discussion involving
experienced researchers. The Symposium is intended for active students whose
research is still undergoing, where a problem has been clearly identified but
whose solution is not fully developed or needs still major improvements.

The eight contributions accepted for publication cover many aspects of SOC,
including Data Management, Big Data, Service Oriented Architectures, Service
Level Agreement, and Workflows.

In addition to the standard review process, the accepted papers underwent an
additional review round carried out by the students participating in the Sym-
posium. This increased the participation of the audience and facilitated the
exchange of ideas and suggestions among students, which resulted in interesting
and fruitful discussions about the works presented at the Symposium.

These proceedings include the papers accepted for publication, revised by the
authors based on the feedback received during the event.

February 2014 Fabio Patrizi
Boualem Benatallah

Ivona Brandic

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, p. 527, 2014.
c© Springer International Publishing Switzerland 2014

Towards the Automated Synthesis of Data

Dependent Service Controllers

Franziska Bathelt-Tok and Sabine Glesner

Technische Universität Berlin, Germany
Software Engineering for Embedded Systems

bathelt-tok@soamed.de

Abstract. The treatment of data is a crucial step in service compo-
sition but it is currently done manually and informally. This makes
the development process time-consuming, expensive, and error-prone,
which is serious in safety-critical domains like the medical area. To over-
come this problem, we present a novel approach for synthesizing data-
dependent service controllers automatically based on composition and
analysis methods for algebraic Petri nets. Consequently, our approach
allows the automated, fast, and cost-efficient synthesis of correct con-
trollers regarding data-dependent functional and safety-critical proper-
ties, which enables a reliable interoperability of medical devices.

1 Introduction

The idea of service-oriented architectures (SOAs) is to develop services with so-
phisticated functionality by composing simpler services appropriately. Services
that are independently developed by different providers often cannot commu-
nicate with each other directly and cannot be adapted internally. Thus, it is
necessary to develop another component, a controller, that routes and modifies
messages depending on the exchanged data. It can be developed by a synthe-
sis process that must ensure given data-dependent properties and, moreover, be
correct with respect to safety-critical and functional requirements. Current ap-
proaches abstract from data and, consequently, model data-dependent choices
as nondeterministic choices, which leads to invalid controllers. Thus, it is neces-
sary to manually refine these controllers afterwards. This makes the controller
development process expensive, time-consuming, and most of all error-prone.

To overcome this problem, we propose an approach to synthesize data-depen-
dent controllers automatically based on algebraic Petri nets and a specification
language that enables the presentation of causal dependencies of properties,
which have to be fulfilled. It is ongoing work to show that the resulting controller
is correct-by-construction and considers given data-dependent requirements. For
our approach, we assume that, firstly, a formal representation as algebraic Petri
nets of each service behavior is given. Secondly, we assume that the interface
matching, which describes the mapping between the interfaces, is given. Thirdly,
the set of data-dependent requirements to be fulfilled must be listed. Challenges
of our work are the formal definition of the symbolic data treatment and the

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 528–534, 2014.
c© Springer International Publishing Switzerland 2014

Towards the Automated Synthesis of Data Dependent Service Controllers 529

generic data-dependency detection. To realize this and automatize the controller
synthesis, we firstly translate the inputs into algebraic Petri nets as a uniform
representation. This enables an easy understanding of the single component’s
behavior and of the causal dependencies between the single properties. Based
on this, we compose the individual Petri nets to an over-all Petri net using the
analysis methods Petri nets offer. As result, we achieve a single Petri net that
fulfills all requested requirements, if it exists. Finally, we extract the required
controller from this net. We have already implemented the translation step, and
we are currently working on the implementation of the composition and the
extraction step. The resulting controller

1. is synthesized automatically using the inputs,
2. handles different data types and considers data-dependent behavior,
3. ensures that all data-dependent properties are fulfilled,
4. is able to deal with synchronous and asynchronous communication, and
5. should be correct by construction w.r.t. safety-critical and functional require-

ments.

If we are able to verify the correctness, then we can apply our approach to
safety-critical domains like the medical area, where different devices have to
communicate with each other. As the single devices offer different functionalities
that must be composed, we can shift the problem of enabling the interoperability
of the medical devices to the more general problem of service composition.

The rest of this paper is organized as follows. Based on a running example
we sketch the main formalisms on which our approach is based in Section 2. In
Section 3 we present our approach. We then discuss related work in Section 4.
Finally, in Section 5, we conclude and give an outline of future work.

2 Background

In this section, based on a running example we give an intuition of algebraic
Petri nets [Rei91] and a specification language, which we use in our approach.

2.1 Running Example

As running example, we focus on a medical scenario known as artificial pancreas.
The artificial pancreas comprises two components to be composed reliably, a
glucose sensor and an insulin pump that should react on the sensor but isn’t
able to do so at the moment. Figure 1 shows an excerpt of the behavior of the
sensor (Fig. 1a) and the pump (Fig. 1b). The chemical component of the sensor
reacts with the blood glucose and offers a current flow that is measured (x),
transformed in a digital signal (f(x)), and then stored internally (at p5) and
sent to the environment (y). The insulin pump compares the required amount of
insulin recieved by the environment (y′) with the amount of insulin that is still
available in the pump (y). If not enough insulin is available a warn signal is sent
to the environment, otherwise the requested amount is injected via a catheter.

530 F. Bathelt-Tok and S. Glesner

p1

p2

p3

p5

p4

t1

t2t3

P

DD

T

f(x)

x

f(x)

D
yy

y

·
(a) glucose sensor

T I

E

I

I

I-T

s1

s2

s3

s4

s5 s6

r1

r2r3

y
y’

Pair(y,y’)

z

x
[K1(x)≥ K2(x)][K1(x)< K2(x)]

K2(x)·
x

(b) insulin pump

Fig. 1. Running example

2.2 Algebraic Petri Nets

The behavior of the components in Figure 1 is visualized by algebraic Petri
nets. In this section, we give an intuition of their main elements using the rep-
resentation of the insulin pump’s behavior (see Figure 1b). Generally, Petri nets
consist of places (P = {s1, . . . , s6}), transitions (T = {r1, r2, r3}) and a flow
relation (F = {(s1, r1), (s2, r1), . . . }). Transitions can be restricted by guards
(G = {[K1(x) < K2(x)], . . . }) that define in which case a transition is active and
can fire. If the nets are inscribed by algebraic specifications, then they are called
algebraic Petri nets. An algebraic specification is a 4-tuple SP = (S,OP , X,EQ)
comprising a set of: sorts S , operations OP , variables X and equations EQ . In
our case, sorts (S = {I, I −T, T,E}) assigned to places represent the data types
of the signals abstractly. The used variables (X = {y, y′, x, z}) symbolically rep-
resent data values and operations (OP = {Pair : I × I → I − T, · :→ T . . . })
represent the modification of data. These elements are assigned to arcs. Apart
from this, the set of equations (EQ = {Pair(y, y′) = x, . . . }) defines the rela-
tionship between the arc inscriptions and, thus, restricts the possible domains of
the data types. Finally, places are marked with structured tokens, which are to-
kens with properties defined by the structure of the sorts. Thus, we can consider
primitives as well as complex data types.

2.3 Specification Language

The interface matching and the requirements describe different states of mark-
ings and causalities. Thus, we need a specification language that is able to cope
with state and run properties. For our approach, we use so called run prop-
erties [Rei13]. We just give an intuition based on the property ’(p1.XP) →
(p4.XT ∧ p3.XD)’ of our example (Figure 1a). This property states that the
interface and the final state is reached from the initial marking, i.e. the glu-
cose sensor is deadlock-free. Here, three elements are represented. Firstly, the
state property (p1.XP) says that the place p1 is marked with the data XP . State
properties can be combined using propositional operators (¬,∧,∨,→). This is
the case in the second part (p4.XT ∧p3.XD). This states that there is a marking
where XT lies on p4 and, at the same time XD lies on p3. Finally, we have the

Towards the Automated Synthesis of Data Dependent Service Controllers 531

leads-to operator → as temporal component. Thus, the whole expression states
that whenever p4 is marked by XP there exists a marking at the same time or
in the future where p4 is marked with XT and p3 with XD.

3 Synthesis of Data Dependent Service Controllers

Since the sensor must be replaced every 4-7 days, an automatic controller syn-
thesis is necessary to enable a reliable and cost-efficient interoperability of these
devices and, thus, enhance the quality of life of people with type-1-diabetes.

As shown in Figure 2, our approach starts from the formal representation
of the involved services given as algebraic Petri nets. We begin by extracting
the relevant service behavior using the initial representation. This behavioral
abstraction (Sec. 3.1) leads to a set of properties, expressed by the specification
language, which have to be fulfilled at least. The main challenge is to ensure that
all important properties are extracted and all information and dependencies
are retained. Thus, a formal model for storing data and data-dependencies is
needed. Our aim is to combine the resulting behavioral abstraction, the interface
matching and the requirements the controller must fulfill. For this reason, we
transform the properties into algebraic Petri nets (Sec. 3.2) using our generic
and data-related transformation algorithm. Finally, we apply the well-defined
composition and analysis methods of Petri nets for our composition algorithm
(Sec. 3.3). As a result, we obtain the requested controller if one exists.

Controller Synthesis
Services as

algebraic Petri
nets

Interface
Matching

Requirements

Controller

Behavioral
Abstraction

Property
Translation Compostion

Fig. 2. Basic Idea of the Controller Synthesis Approach

3.1 Behavioral Abstraction

The formal representations of the services include their entire behavior and, thus,
unused behavior as well, from which we abstract in this part. For our running
example (Figure 1a) the internal storage of the measured glucose concentration,
i.e., marking of p5, is not important for the communication with the pump.
To minimize the effort for the composition (Section 3.3), we just extract the
properties that have to be fulfilled at least, especially the deadlock-freedom of
the services, and define the set of equations w.r.t. the modifications of data. For
this we use analysis methods for Petri nets, based e.g. on reachability graphs.
This leads to a set of properties given in the specification language.

532 F. Bathelt-Tok and S. Glesner

3.2 Property Translation

To get a uniform representation, we transform the properties into algebraic Petri
nets. These properties are given by the result of the behavioral abstraction (e.g.
deadlock-freedom), the interface matching (e.g. port p3 is bound to s2 (Fig. 1))
and the data dependent requirements (e.g. pump must inject if glucose value
exceeds the limit Gmax), and expressed in the specification language. For the
translation, we already implemented a generic, data-related algorithm. Some of
our defined rules describing the structural translation can be seen in Figure 3.
These rules can be combined to form more complex rules. We have omitted
guards restricting data domains and the inscription of arcs for reasons of clarity.

(A ∧B) → (C) (A) → (¬A) (A) → (B∨C) (A ∧B) → (C∨D)

A

B

C A A

B

C

A

B

C

D

Fig. 3. Transformation rules

3.3 Composition

The basic idea of the composition algorithm (see Figure 4) is to compose the
properties that are given as different algebraic Petri nets to an overall Petri net.
Then, the controller can easily be extracted from this.

XD

p1

p4

XP

XT

p3 s2

XD g(XD)

[XD > GMax]

XD

[XD ≤ GMax]

neutD

s1 s4

s5

XIM

X ′
IM

X ′′
IM(XIM , X ′

IM)

(XIM , X ′
IM)

(XIM , X ′
IM)

XE

XE

Composition Extraction

p3

XD

p1

p4

XP

XT

Properties Overall-Net

s4

XE

s2p3

XD g(XD)

[XD > GMax]

XD

[XD ≤ GMax]

neutD

Controller

Fig. 4. Basic Idea of the Composition

In a first step, the algorithm chooses the smallest property (with the fewest
places) out of the set of properties Pr and composes it with the empty set N .
In each iteration, the smallest property prmin ∈ Pr that has at least one label
(identifier of the place) that is present in N is chosen and composed to the net
N . If there is exactly one label, the composition can be sequential or branching.
Otherwise, if there is more than one match, we have to use the reachability
analysis of Petri nets to decide if a composition is possible or not. Concerning
this, we have to check if the reachability graph of the property prmin is included
in the reachability graph of N . The algorithm terminates if all properties are
composed or if a property is found which cannot be composed. In the latter case,
there exists no controller fulfilling all properties. In the first case, we can extract
the controller from N by combining all elements between the interface places.

Towards the Automated Synthesis of Data Dependent Service Controllers 533

It is ongoing work to show that we get a reliable controller that fulfills all
given properties, if it exists. The synthesis is done in three steps. Firstly, we
derive necessary service properties using behavioral abstraction. The translation
to Petri nets, which is already implemented, provides the basis for the composi-
tion. Within the composition, we are able to use the analyzing and composition
methods Petri nets offer to decide if a property can be composed or not.

4 Related Work

There are several approaches dealing with service or component adaptation.
A controller synthesis process based on finite-state machines focusing on the

protocol level is given in [YS97]. They do not consider data-dependent behavior
and omit asynchronous communication. In [Bra05] a controller synthesis includ-
ing the behavior-level that is based on the π calculus is presented, while the
proposed approaches in [Aal09] and [Gie12] are based on Petri nets. However,
the authors abstract from data and data-dependent behavior. Another approach
[SG13] is based on model-checking and planning. It enables the time-related
composition of services. They are able to represent clock values from type real,
but this is not the kind of data we focus on. To the best of our knowledge, there
is no approach that fulfills our requirements. In particular, the formal definition
of data and data-dependencies are missing, so that an automated data dependent
controller synthesis process is not available by now.

5 Conclusion and Future Work

In this work, we have addressed the problem of automatized controller synthesis
based on data-dependent requirements. Our approach takes the formal represen-
tation as algebraic Petri nets of the involved services, the interface matching, and
data-dependent requirements as inputs. The behavior of the services is reduced
to the observable behavior, which is transformed to the specification language
that we have introduced. Moreover, we have defined a translation from the spec-
ification language into Petri nets and have presented an algorithm for composing
the abstracted behavior, the interface matching, and the requirements. We have
already implemented the translation step and we are confident that with our ap-
proach, reliable service controllers can be extracted fully automatically, if they
exist. Correctness-by-construction, which we still have to prove, makes our ap-
proach applicable in the medical domain.

In future work, we will formalize and implement our composition algorithm,
the behavioral abstraction, and the controller extraction. Additionally, we will
perform a case study, which is an extension of our running example.

References

[Aal09] van derAalst,W.M.P.,Mooij,A.J., Stahl,C.,Wolf,K.: Service Interaction:Pat-
terns, Formalization, and Analysis. In: Bernardo, M., Padovani, L., Zavattaro,
G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer, Heidelberg (2009)

534 F. Bathelt-Tok and S. Glesner

[Bra05] Bracciali, A., et al.: A formal approach to component adaptation. Journal of
Systems and Software 74, 45–54 (2005) ISSN 0164–1212

[Gie12] Gierds, C., et al.: Reducing Adapter Synthesis to Controller Synthesis. IEEE
T. Services Computing 5(1), 72–85 (2012)

[Rei91] Reisig, W.: Petri nets and algebraic specifications. Theoretical Computer Sci-
ence 80, 1–34 (1991)

[Rei13] Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis Meth-
ods, Case Studies, 230 p. Springer (2013) ISBN 978-3-642-33277-7

[SG13] Stöhr, D., Glesner, S.: Planning in Real-Time Domains with Timed CTL
Goals via Symbolic Model Checking. In: IEEE TASE 2013 (2013)

[YS97] Yellin, D., Strom, R.: Protocol specifications and component adaptors. In:
ACM Trans. Program. Lang. Syst. 19(2), 292–333 (1997)

Multi-agent Approach for Managing Workflows
in an Inter-Cloud Environment

Sofiane Bendoukha�

Theoretical Foundations of Computer Science (TGI)
Department of Informatics, University of Hamburg, Germany

sbendoukha@informatik.uni-hamburg.de

Abstract. Despite the several attractive features that offers the cloud
technology, managing, controlling processes and resources are among the
serious obstacles that cloud service providers need to overcome. These
issues increase when cloud providers intend to exploit services from sev-
eral distributed platforms to satisfy client’s requests and requirements.
At this moment, they need to deal with some critical problems like het-
erogeneity, collaboration, coordination and communication between dif-
ferent types of participants.

In another side, the most known properties of an agent are: autonomy,
pro-activity, cooperation and mobility. These features are attractive and
have a great importance to design and implement software systems that
operate in distributed and open environments such like cloud and grid.
Our main goal through this thesis is to propose an approach and archi-
tectures to permit the integration of cloud/grid and multi-agent systems
concepts and technologies for managing workflows in distributed service-
oriented environments. Explicitly, in an Inter-Cloud environment.

Keywords: Cloud Computing, Workflow Management Systems, Work-
flow Petri Nets, Reference Nets, Multi-Agent Systems.

1 Research Issues and Objectives

Service-Oriented Computing (SOC) is the field of computer science that revolves
around the concept of "service": Web services, grid services and recently cloud
services. It allows the composition of loosely coupled services with different Qual-
ity of Service (QoS) constraints to achieve complex distributed applications even
in heterogeneous environments [18]. Based on the Internet, cloud computing pro-
vides on-demand computing capacity to individuals and businesses in the form
of heterogeneous and autonomous services.

Furthermore, we observed the emergence of the Inter-Cloud notion [8,1,20,16],
which could be seen as a cloud of clouds [13]. The reason lies in the fact that
one cloud infrastructure does not have unlimited resources to satisfy client’s
requirements and the latter may receive requested services from different cloud
providers [8]. At this moment we need to deal with the problem of heterogeneity,
� Supervised by Dr. Daniel Moldt and Prof. Dr. Norbert Ritter.

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 535–542, 2014.
c© Springer International Publishing Switzerland 2014

sbendoukha@informatik.uni-hamburg.de

536 S. Bendoukha et al.

communication, coordination and collaboration between all participants. Hence,
the construction of complex systems remains a problem as soon as there are
several independent / autonomous partners involved in the design and execution
of these systems. Currently mainly data is stored in the cloud. (Web) services in
the cloud are designed to be realized in a static fashion. What is missing is the
support of processes in this environment. For complex systems with distributed
partners, expressive and powerful software systems have to be provided.

MAS (Multi-Agent Systems) and workflow concepts are strong candidates to
address this issue [23,17,7]. On the one hand, commonly accepted characteristics
of agents are social ability, autonomy, pro-activity, adaptability, mobility and
can be used as basic components for bringing intelligence in cloud systems to
make them more adaptive, flexible in both resource management, service discov-
ery/provisioning and in running complex applications. Also in this perspective,
mobile agents are used to construct a cloud computing federation mechanism to
permit portability and interoperability between different cloud platforms [3,24].
On the other hand, automation of processes and efficient coordination and col-
laboration between various entities are some advantages of workflow concepts.

However, WfMS (Workflow Management Systems) usually do not address the
special aspects of cloud-based systems. Current inter-organizational WfMS are
designed to control the autonomous entities (agents or web services) from an-
other location. So it is not embedded within the systems. This causes problems
with respect either to the autonomy of the participating partners or their effi-
cient coordination. New concepts and constructs to overcome this problem are
necessary.

In order to overcome the problems above cited, this thesis provides a concep-
tual and technical solution for the modeling and the design of complex systems in
cloud-like environments with a special emphasis on processes. I aim to provide
an agent-based WfMS, which supports definition, deployment and monitoring
of distributed inter-organizational workflows for independent complex partners
within cloud environments. The global objective is to investigate and propose
approaches, techniques and tools that facilitate the integration between cloud
environments and MAS for an efficient management and execution of workflows
in environments qualified to be distributed and scalable. That means concretely,
I strive to take advantage of concepts and technologies from agents and workflow
domain in order to provide a powerful environment for the deployment of user’s
applications, which are based on multiple cloud platforms.

2 Approach and Methodology

For this research, I intend to exploit some techniques, models and tools, which
are part of the Paose (Petri net-based, Agent-Oriented Software En-
gineering) approach (see www.paose.net). On the basis of high-level Petri nets
the above mentioned concepts like agents, workflows or services are integrated.
The Mulan/Capa (Multi-Agent Nets, see [21]; Concurrent Agent Platform Ar-
chitecture, see [10]) framework and the Renew (REference NEts Workshop)
(see www.renew.de) modeling tool provide the technical background for this.

www.paose.net
www.renew.de

Multi-agent Approach for Managing Workflows 537

The description and implementation of this research will be carried out in
several steps/phases, which are iteratively applied to have several prototypes.
As the first step, a state of the art is continuously elaborated, which evaluates
the existing theoretical basis of my work and technological solutions. The basic
research areas are: Service-oriented computing, (Inter-) cloud/grid computing,
workflow management systems, modeling techniques and tools, agent systems,
Petri nets etc. The next step is to define the new requirements for modeling
workflow execution in complex environments. I focus on the current issues in
Inter-Cloud environments such as heterogeneity, communication, coordination
and collaboration between the participants.

Taking into account the new defined requirements, I propose appropriate mod-
eling techniques and concepts that should constitute a conceptual basis for the
management of Inter-Cloud applications. UML (Unified Modeling Language)
and Petri nets are the major modeling approaches that will be investigated to
elaborate such techniques. This step also includes provisioning semantics based
constructs that allow for an efficient design of process management of Inter-Cloud
applications.

In order to evaluate and validate my results, I propose a direct modeling tool
support, which will be implemented on the basis of Renew for the elaborated
techniques. The first version is based just on Renew in terms of a drawing and
simulation tool for Petri nets and UML models (see [6]). In this version, many
refinements and extensions are proposed, in order to allow the future agent-based
WfMS to manage interactions with the cloud. One of the main refinements is
the introduction of a specialized Cloud Task Transition (CTT) (see Fig. 1).

Workflow modelers specify their requirements as parameters to the CTT in
form of tuples (S, Q, I), which correspond respectively to the cloud service (S)
to be used (it can be a storage or a compute service), the QoS constraints (Q)
consisting of deadlines or costs and input data (I) consisting either of required
files in case of a storage or scripts if modelers want to execute their codes on the
cloud. Synchronous channels are used to make the connection with the WfMS,
which controls the completion of the task. It either initiates the firing or cancels
it and all input parameters are put back onto the input places.

The second version is based on Mulan and Capa, which allow the simulation
and the execution of agent-based systems. Due to the FIPA compliance also
distributed execution is possible. An extension for workflows is provided by [12]
for Petri nets and by [19] for workflow and WfMS. The third version is based on
WfMS implemented on Grid/Cloud either using the Globus Toolkit1 or existing
cloud-based frameworks with a perspective to a future Inter-Cloud environments.

As a prove of concept for the conceptual solution proposed in the dissertation,
a prototype distributed over above mentioned prototypes will allow for the inves-
tigation of heterogeneous implementation of the approach for the management
of workflow in an Inter-Cloud environment. The solution is named Inter-Cloud
Agent-based WfMS (IC-AgWfMS). The architecture that we propose is depicted
in Fig. 2. It includes three basic layers from top to bottom:

1 http://www.globus.org/toolkit/

http://www.globus.org/toolkit/

538 S. Bendoukha et al.

Fig. 1. The Cloud Task Transition

– The User applications layer (Ul): permits both managing users (access to
the system) and monitoring deployed workflows,

– The Middleware layer (Ml): composed mainly of the workflow engine as well
as the task dispatcher module (see step 4).

– The Resource layer (Cloud infrastructure) (Rl): This layer represents the
resources used to excute the workflow tasks. They can be either compute or
storage services. This depends on the workflow requirements.

As shown in Fig. 2, managing workflows can be broken down into a series of
steps (indicated by numbered circles) and carried out by several components.
More details about these steps can be found in [5].

3 Related Work

Much interesting work has been devoted to investigate the possible integration of
agent paradigm, workflow concepts and cloud computing. For example, Pandey
et al. [17] present a high-level architecture of a workflow management system
for developing distributed applications on the cloud. Key components of the
presented architecture are: A Market-Maker broker and a workflow engine to

Multi-agent Approach for Managing Workflows 539

Fig. 2. Inter-Cloud Agent-based WfMS

schedule workflow tasks to the resources based on the QoS constraints. Liu et al.
[15] outline three key issues in the design of cloud workflow systems: system ar-
chitecture that decides how the system components are organized and how they
interface with each other, system functionality that realizes the basic workflow
system’s functionality and manages the cloud resources, and finally QoS man-
agement. In [14], SwinDeW-C : a peer-to-peer workflow management system for
cloud is proposed.

Concerning the Inter-Cloud, Buyya et al. [8] present the notion of feder-
ated cloud (Inter-Cloud) that facilitates scalable provisioning of services under
variable conditions. In [11], the authors provide a classification of Inter-Cloud
delivery models, which are federated cloud and multi-cloud. The EU-funded
RESERVOIR2 project [20] is the first initiative intending to provide open source
technology to enable deployment and management of complex services across
different administrative domains. The EU-funded mOSAIC3 project [16] pro-
poses a complementary solution based on software agents and semantic data
processing. The mOSAIC approach is based on a Cloud Agency gathering client
and provider agents in a brokerage process working with service level agree-
ments. It is used as a Multi-Cloud resource management middle-ware, it plays

2 http://www.reservoir-fp7.eu/
3 http://www.mosaic-fp7.eu/

http://www.reservoir-fp7.eu/
http://www.mosaic-fp7.eu/

540 S. Bendoukha et al.

the role of run-time environment in the model-driven engineering project named
MODAClouds [2].

In [24], the Mobile Agent Based Open Cloud Computing Federation (MAB-
OCCF) is presented, where data and code are transferred from one device to
another via mobile agents. Each mobile agent is executed in a virtual machine
called Mobile Agent Place (MAP), and the mobile agents are able to move
between MAPs, and also to communicate and negotiate with each other, realizing
portability among heterogeneous cloud computing service providers. In [22], the
concept of agent-based cloud computing is introduced. This concept is introduced
to aid the development of software tools for service operations in the cloud using
agent-based cooperative techniques. WADE (Workflow and Agent Development
Environment) [9] is a domain independent platform built on top of JADE4, it
allows to develop distributed and decentralized applications based on the agent
paradigm and the workflow metaphor.

4 Conclusion and Future Work

The first phase of the thesis is related to establish a study about the related
work and the concepts, techniques and tools that are utilized to achieve the
objectives. When some parts are well studied such as workflows and Petri nets,
other domains still in their infancy and there is a lack of literature and stan-
dardizations. Therefore, they need more investigation such as the Inter-Cloud
computing notion and agent-based workflow management in the cloud. Concern-
ing the state of the art, many domains related to this research are investigated.
This includes: Service Oriented Computing, web services, (Inter-) cloud/grid
computing, Workflows, agent and Multi-agent systems, Paose approach, Mu-
lan/Capa framework and Renew, A study about various modeling and
composition techniques such as Petri-Nets, BPEL (Business Process Execution
Language), Service-Oriented Architecture, WSCI (Web Service Choreography
Interface), BPML (Business Process Modeling Language), BPMN (Business Pro-
cess Model and Notation), WSCL (Web Service Choreography Language), etc.

The implementation of the several prototypes is in progress, this concerns at
the first level the ability to invoke cloud services from Petri net models. The
solution is based on the use of RESTful web services and cloud APIs. Many
refinements and extensions are proposed to achieve this objective [6], which will
allow the future agent-based WfMS to manage interactions with the cloud. An
approach named Inter-Cloud Workflow Petri Nets (IC-WPN) is proposed [4], for
enabling workflows in an (Inter-) Cloud environment. My future work includes
finishing the prototypes of the proposed approach along two directions. The first
direction is to provide the support modeling tool in Renew. This allows users
to specify their workflows and the related QoS constraints through Petri net
models. Second, I will use the latter results to implement the proposed models
(see [4] for the IC-WPN and [5] for IC-AgWfMS).

4 http://jade.tilab.com/

http://jade.tilab.com/

Multi-agent Approach for Managing Workflows 541

References

1. Aoyama, T., Sakai, H.: Inter-cloud computing. Business & Information Systems
Engineering 3(3), 173–177 (2011)

2. Ardagna, D., Nitto, E.D., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria,
F., Casale, G., Matthews, P., Nechifor, C.-S., Petcu, D., Gericke, A., Sheridan, C.:
Modaclouds: A model-driven approach for the design and execution of applications
on multiple clouds. In: 2012 ICSE Workshop on Modeling in Software Engineering
(MISE), pp. 50–56 (2012)

3. Aversa, R., Martino, B.D., Rak, M., Venticinque, S.: Cloud agency: A mobile agent
based cloud system. In: Barolli, L., et al. (eds.) CISIS 2010, Krakow, Poland,
February 15-18, pp. 132–137. IEEE Computer Society (2010)

4. Bendoukha, S., Cabac, L.: Cloud transition for qos modeling of inter-organizational
workflows. In: Moldt, D. (ed.) Proceedings of Modeling and Business Environment.
International Workshop, ModBE 2013, Milano, Italy. CEUR Workshop Proceed-
ings, vol. 989, pp. 355–356. CEUR-WS.org (2013)

5. Bendoukha, S., Moldt, D., Wagner, T.: Enabling cooperation in an inter-cloud
environment: An agent-based approach. In: 4th International Workshop on Cloud
Computing, Models and Services (CMS 2013) (2013)

6. Bendoukha, S., Wagner, T.: Cloud transition: Integrating cloud calls into workflow
Petri nets. In: Cabac, L., Duvigneau, M., Moldt, D. (eds.) Proceedings of Interna-
tional Workshop PNSE 2012, Hamburg, Germany. CEUR Workshop Proceedings,
vol. 851, pp. 215–216 (June 2012)

7. Bergenti, F., Caire, G., Gotta, D.: Interactive workflows with wade. In: Reddy, S.,
Drira, K. (eds.) WETICE, pp. 10–15. IEEE Computer Society (2012)

8. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081,
pp. 13–31. Springer, Heidelberg (2010)

9. Caire, G., Gotta, D., Banzi, M.: Wade: a software platform to develop mission
critical applications exploiting agents and workflows. In: Proceedings of the 7th
International Joint Conference on AAMS, pp. 29–36. International Foundation for
Autonomous Agents and Multiagent Systems (2008)

10. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent architecture for a multi-agent
platform. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002. LNCS,
vol. 2585, pp. 59–72. Springer, Heidelberg (2003)

11. Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: taxon-
omy and survey. Software: Practice and Experience (2012)

12. Jacob, T., Kummer, O., Moldt, D., Ultes-Nitsche, U.: Implementation of workflow
systems using reference nets – security and operability aspects. In: Jensen, K. (ed.)
Fourth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools, vol. 560, Aarhus, Danemark (August 2002)

13. K. Kelly.: A cloudbook for the cloud (2007),
http://www.kk.org/thetechnium/archives/2007/11/a_cloudbook_for

14. Liu, X., Yuan, D., Zhang, G., Chen, J., Yang, Y.: Swindew-c: a peer-to-peer based
cloud workflow system. Handbook of Cloud Computing, 309–332 (2010)

15. Liu, X., Yuan, D., Zhang, G., Li, W., Cao, D., He, Q., Chen, J., Yang, Y.: Workflow
systems in the cloud. In: The Design of Cloud Workflow Systems. SpringerBriefs
in Computer Science, pp. 1–11. Springer-Verlag New York Inc. (2012)

http://www.kk.org/thetechnium/archives/2007/11/a_cloudbook_for

542 S. Bendoukha et al.

16. Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Build-
ing a mosaic of clouds. In: Guarracino, M.R., et al. (eds.) Euro-Par-Workshop 2010.
LNCS, vol. 6586, pp. 571–578. Springer, Heidelberg (2011)

17. Pandey, S., Karunamoorthy, D., Buyya, R.: Workflow Engine for Clouds,
pp. 321–344. John Wiley & Sons, Inc. (2011)

18. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: Service-
oriented computing: A research roadmap. In: Cubera, F., Krämer, B.J., Papa-
zoglou, M.P. (eds.) SOC, Dagstuhl, Germany. Dagstuhl Seminar Proceedings,
vol. 05462. IBFI (2006)

19. Reese, C.: Prozess-Infrastruktur für Agentenanwendungen. Dissertation, Univer-
sität Hamburg, Fachbereich Informatik, Vogt-Kölln Str. 30, D-22527 Hamburg
(2009), http://www.sub.uni-hamburg.de/opus/volltexte/2010/4497/

20. Rochwerger, B., et al.: The reservoir model and architecture for open federated
cloud computing. IBM Journal of Research and Development 53(4), 4:1–4:11 (2009)

21. Rölke, H.: Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen. Agent Technology – Theory and Applications, vol. 2. Logos
Verlag, Berlin (2004)

22. Sim, K.M.: Agent-based cloud computing. IEEE Transactions on Services Com-
puting 5(4), 564–577 (2012)

23. Talia, D.: Clouds meet agents: Toward intelligent cloud services. IEEE Internet
Computing 16(2), 78–81 (2012)

24. Zhang, Z., Zhang, X.: Realization of open cloud computing federation based on mo-
bile agent. In: Intelligent Computing and Intelligent Systems, vol. 3, pp. 642–646
(2009)

http://www.sub.uni-hamburg.de/opus/volltexte/2010/4497/

An Information-Centric System for Building

the Web of Things

Stefano Turchi�

Department of Information Engineering, University of Florence, Italy
{stefano.turchi,federica.paganelli}@unifi.it

http://www.dinfo.unifi.it

Abstract. In recent years, common-use devices has seen a leap transi-
tion in terms of equipped technology, introducing the so called “smart
things” to the consumer market. This technological and societal revolu-
tion has underpinned the realization of the Internet of Things. To take
full advantage of the opportunities arising from connectivity capabilities,
smart things approached the application realm bringing the novel Web
of Things vision to life. The Web, as a collaborative global space of infor-
mation, is a critical asset to create value-added services. However, such a
promising potential entails a number of challenges including data inter-
operability, data integration, information reuse and collaboration. This
Ph.D. work focuses on a novel approach to take a smart thing to the Web,
by representing it as graph of granular and individually addressable in-
formation called IDN-Document. IDN-Documents are simply structured
web resources which can be aggregated, linked, reused and combined to
build collaboration oriented, value-added services. IDN-Documents are
managed by the InterDataNet middleware leveraging Linked Data and
REST.

Keywords: Internet of Things, Web of Things, Information Modeling,
Representational State Transfer, Linked Data, Information Reuse.

1 Introduction

The advances in electronics, informatics and communication sciences have paved
the way for the widespread distribution of devices with considerable technological
potential. Due to their capabilities, these objects are usually called “smart”. This
scenario motivates the Internet of Things (IoT) concept which is a transforma-
tion of the Internet from a network of computers to a network of heterogeneous
devices [1].

Leveraging the existing Web technologies and standards including HTTP [2],
URIs [3], etc., smart things can also enter the application realm, giving rise to
the Web of Things (WoT) vision. To take full advantage of the WoT opportu-
nities is essential to address issues including interoperability, data integration,

� This Ph.D. work is supervised by Dr. Federica Paganelli

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 543–550, 2014.
c© Springer International Publishing Switzerland 2014

http://www.dinfo.unifi.it

544 S. Turchi et al.

information reuse and collaboration. These topics are definitely challenging be-
cause of the heterogeneity of smart things in a number of aspects such as device
and application requirements, connection strategies, data representation, data
management and many others.

This Ph.D. work proposes an approach to enable interoperability and data
reuse between objects in the WoT. To this intent, I follow a two-steps method-
ology: first, a connection with the smart object is established via a dedicated
adapter, and second the object is represented as a graph of granular, individually
addressable data units called IDN-Document, leveraging an information model.
Consequently, the object is put on the Web as an aggregation of information
whose pieces can be dereferenced, consumed, reused, and managed with neg-
ligible effort. The smart object representation relies on the expressiveness and
flexibility of the graph structure adopted by Linked Data [4], which has been
chosen as the inspiring paradigm. In this work I refer to a more general inter-
pretation of Linked Data, as the one provided by Wilde et al. [5], who define
Linked Data as “the general concept of publishing interlinked data representa-
tions, without referring to the one specific way of implementing it that is often
associated with that term as well”.

The implementation of the IDN-Document is delegated to a middleware called
InterDataNet (IDN) [6–9] which exposes RESTful [10] HTTP APIs for its man-
agement. This Ph.D. work covered the study and design of the information
model, the study, design and implementation of the whole IDN core architec-
ture, and the study, design and implementation of several applications on top of
IDN, for validation purposes.

2 Motivation of the Work

Although the WoT is very promising, many problems remain to be solved [1].
Data should be produced and consumed easily, without worrying about formats
and custom representations. Moreover, security concerns must be addressed to
support collaboration around data. To fully benefit from the WoT concept, the
author argues that the Web of Data [11] vision would contribute to effectively
put a “thing” on the Web. Indeed, not only data produced by a smart object,
but also the object itself can be represented as a graph of structured informa-
tion to be exposed in the global space, where applications can use it and other
objects can connect to, building a richer and more informative object. Zeng et
al. [1] made a survey on the WoT and their analysis highlights several points of
interest, which validate the approach proposed in this paper. First, they make
a comparison of the WS-* and REST architectural styles and conclude that
REST is the best choice because of its low complexity and loose-coupling state-
less interactions. These features are particularly desirable because they take into
account resource constrained devices. Also Wilde in [12] states that REST has
substantial advantages over applications, having better performances in terms
of testing, scalability, and integration with other applications with respect to
state-based paradigms. Second, search and discovery capabilities are critical for

An Information-Centric System for Building the Web of Things 545

WoT, spanning from regular search to advanced search managing very transient
data. In this paper, is presented a methodology for bringing an object of the real
world to the Web as a graph of interlinked information pieces. Such information
should be made available taking into account all the aforementioned issues. To
fulfill these requirements I propose the InterDataNet middleware which lever-
ages an adapter towards physical objects and supports a Linked Data oriented
resources representation. Therefore, resources are exposed via RESTful APIs
for their management. InterDataNet is also provided with transversal services
such as a data-centric [13] security framework and a search service supporting
semantics.

3 InterDataNet

InterDataNet (IDN) [6–9] is a middleware offering capabilities for representing
and managing information units and their structural relations on the Web, in a
RESTful way. For the sake of conciseness, in this paragraph a brief introduction
of the IDN middleware is provided. Further details can be found in [6–9].

The main goal of IDN is to enable the easy reuse of globally web-addressable
information units to support collaboration around data. To this end, IDN con-
siders documents as first class entities. In the following, I refer to a document in
IDN as an IDN-Document.

3.1 IDN Information Model (IDN-IM)

The IDN-Information Model (IDN-IM) defines the rules for organizing data in
an IDN-Document.

Definition 1. An IDN-Document is a directed graph G = (V,E) where V is
the set of vertices and E is the set of edges. The elements of V and E are
the nodes containing the granular information (IDN-Nodes) and the rela-
tions between IDN-Nodes, respectively. IDN supports two types of relations
between IDN-Nodes: aggregation (i.e., containment) and reference.

Definition 2. An IDN-Node is a set S = C,P , where C is the set of content
elements (i.e., data) and P is the set of properties (i.e., metadata) that
characterize C.

Definition 3. The Aggregation Link represents a container-content relation.
The node where the edge starts from aggregates and therefore contains the
node the edge points to.

Definition 4. The Reference Link represents a pointer towards the referred
resource. To better understand the Reference Link role, it could be somehow
compared with the HTML href attribute.

Through the IDN-Information Model (Fig. 1) is possible to define an IDN-
Document as an aggregation of data provided by different information sources.
Indeed, an IDN-Node can be referred to by more than one IDN-Document, thus

546 S. Turchi et al.

favoring the reuse of information across different applications. This is possible
since each IDN-Node is associated with an information provider which is au-
thoritative for the information the IDN-Node refers to. It is worth to mention
that many efforts have been made to keep the IDN-IM as simple as possible,
to lower the entry barriers for WoT developers. It is possible to see the IDN-
IM as a projection of a RDF graph in an extremely reduced dimensional space
(containment and reference dimensions). The definition of the container-content
relation (Aggregation Link) serves well for the scopes of document composition,
still not burdening the formalism. Consequently, data can be managed without
requiring a query language such as SPARQL for RDF. Of course, when such sim-
plification is not sufficient, it is possible to lift an IDN-Document to the RDF
representation. That’s why IDN-Documents support semantic annotations.

In addition, IDN-IM can be extended with metadata enforcing privacy, li-
censing, security, provenance, consistency, versioning and availability properties
attached to IDN-Nodes and affecting IDN-Documents. Such features are crucial
to support effective and trusted collaboration on real world scenarios.

Fig. 1. The InterDataNet Information Model

3.2 IDN Service Architecture (IDN-SA)

IDN-Documents are exposed as resources through the IDN-Service Architecture
(IDN-SA) API. The IDN-SA API is a set of generic REST interfaces for ad-
dressing, resolving and handling IDN-Documents. IDN-SA is the architecture
that implements services needed to enforce the IDN-Documents properties and
capabilities. IDN-SA has been designed with the separation of concern principle
in mind and is organized according to a modular architectural pattern. IDN-
SA has three main modules: Virtual Resource (VR), which provides RESTful
APIs for accessing, creating, and modifying IDN-Documents; Information His-
tory (IH), which implements information versioning capabilities; Storage Inter-
face (SI), which offers persistence capabilities. In addition, a set of horizontal
services, including search and security management are defined.

An Information-Centric System for Building the Web of Things 547

A key role is played by the IDN-Adapter (ADPT), which is implemented
as an independent module, detached from the core architecture. Its main task
is to connect to external data sources and prepare the information with cus-
tom format to be used by the IDN-SA. As a consequence of the IDN-Adapter
mediation, the IDN-SA can treat outer data as its own, and enable all the prop-
erties characterizing IDN-Documents, acting as a decorator. The IDN-Adapter
is also designed with a modular approach, and includes three components: 1)
a Transformer module that refines data served by the outer source (e.g., de-
multiplexing the information to achieve a more granular representation); 2) a
Document Manager that assembles the outer information in a specific structure
(associating it with a specific IDN-Document); 3) a Command Manager that
translates commands coming from the IDN-SA interface in commands appropri-
ate for the original data-source interface (e.g., a PUT request to IDN-SA could
map to a POST request to the data-source).

From a system point of view, IDN is organized as a network of peers. Indeed,
the top layer of the architecture, the Virtual Resource, is able to contact different
instances of the same module to realize the distributed graph of information. In
such way, IDN-Documents spanning through various domains can be interlinked
and managed from a single access point. Fig. 2 shows a comprehensive picture
of the InterDataNet system.

Fig. 2. An overall view of the InterDataNet system and the document resource

548 S. Turchi et al.

The system representation depicted in Fig. 2 includes outer data sources,
components of a single InterDataNet instance, the network of peers, the infor-
mation model and a representation of a document resource. The dashed clouds
at the bottom represent outer data sources which provide information to the
architecture in their own custom format. The adaptation layer (ADPT) inter-
faces with these data sources and performs a transformation of the information
to comply with the InterDataNet formalism. Such information proceeds through
the architecture up to the Virtual Resource (VR) layer, which implements the
document abstraction. At this level, data are exposed as documents which can
be composed to build new richer graphs (i.e., other documents).

InterDataNet is not limited to management of data coming from external
sources. In fact, is possible to create InterDataNet native data using the RESTful
interface. Analogously to the case of information coming from outer providers,
these data will be exposed by the architecture in document form. The IDN-
Document is depicted as a graph with four vertexes coming from different Virtual
Resources to emphasize the distributed nature of the model. Finally, on top of
the model, there is a representation of the document in one of the three data
formats currently supported by the implementation: HTML, XML and Json.

4 SmartSantander: Enabling a Web of Sensors

This use-case is part of experimentation within the SmartSantader European
project [14], where a number of different sensing devices were installed in the
urban territory of Santander, Spain. The goal of the experimentation is to take a
sensor and put it on the Web as a graph of resources manageable in an easy way,
to support novel applications development such as the Virtual Sensor explained
in the following.

The IDN-Document depicted in Fig. 3 represents a general sensor as an aggre-
gation of structured information (web sensor). Leveraging this model, is possible
to easily reach all the useful resources related to a particular sensor, e.g., mea-
sured data, accuracy, sensor location, and much more.

Since the chosen architectural style is REST, interacting with resources is
straightforward: to get the representation of a particular sensor is sufficient to
invoke an HTTP GET on the sensors name (i.e., the URI). The output of a
particular sensor can be retrieved analogously. For example, the sensors output
data could be retrieved issuing the following GET request:

http://.../sensor/{id}/data production/data

while the location could be retrieved with an HTTP GET invoked on the URI:

http://.../sensor/{id}/location.

By leveraging the IDN-Document sensor representations I designed a new
IDN-Document consuming sensors data. It is a Virtual Sensor, i.e. a sensor

An Information-Centric System for Building the Web of Things 549

whose IDN-IM comprehends web sensors data and an analytical model which
can be combined to produce new information. For instance, IDN-Documents
representing temperature and humidity sensors can be combined to create a
new heat-index virtual sensor IDN-Document.

Fig. 3. IDN Information Model of a web sensor

5 Conclusions

In this paper, I propose an approach for enabling data interoperability and reuse
in the Web of Things. To accomplish this task, I adopt a two-step methodology:
1) provide a connection with smart objects via a dedicated adapter, and 2) repre-
sent objects as graphs of granular, individually addressable data units. Expected
benefits include easy sharing of objects related data and models across the Web,
and support for the development of scalable applications. These principles have
been put in practice by the InterDataNet RESTful middleware which leverages
1) an adapter for the connection to smart objects and 2) the IDN-Document
formalism to turn objects into graphs of information.

Future works will include the integration of semantics into the IDN-IM and
subsequent development of the IDN middleware to support semantic exploration
of IDN-Documents as long as a security framework to secure information grains.

References

1. Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer
Networks 54(15), 2787–2805 (2010)

2. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol HTTP/1.1 (1999)

3. Masinter, L., Berners-Lee, T., Fielding, R.T.: Uniform resource identifier (URI):
Generic syntax (2005)

4. Guinard, D., Trifa, V.: Towards the web of things: Web mashups for embedded
devices. In: Workshop on Mashups, Enterprise Mashups and Lightweight Compo-
sition on the Web (MEM 2009). In: Proceedings of WWW (International World
Wide Web Conferences), Madrid, Spain (April 2009)

550 S. Turchi et al.

5. Wilde, E., Kansa, E. C., Yee, R.: Web Services for Recovery. gov (2009)
6. Pettenati, M.C., Ciofi, L., Pirri, F., Giuli, D.: Towards a RESTful architecture

for managing a global distributed interlinked data-content-information space. In:
Domingue, J., et al. (eds.) The Future Internet. LNCS, vol. 6656, pp. 81–90.
Springer, Heidelberg (2011)

7. Turchi, S., Ciofi, L., Paganelli, F., Pirri, F., Giuli, D.: Designing EPCIS through
linked data and REST principles. In: 2012 20th International Conference on Soft-
ware, Telecommunications and Computer Networks (SoftCOM), pp. 1–6. IEEE
(September 2012)

8. Paganelli, F., Turchi, S., Bianchi, L., Ciofi, L., Pettenati, M.C., Pirri, F., Giuli, D.:
An information-centric and REST-based approach for EPC Information Services.
Journal of Communications Software & Systems 9(1) (2013)

9. Turchi, S., Bianchi, L., Paganelli, F., Pirri, F., Giuli, D.: Towards a Web of Sen-
sors built with Linked Data and REST. In: 2013 IEEE 14th International Sym-
posium and Workshops on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), pp. 1–6. IEEE (June 2013)

10. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures (Doctoral Dissertation, University of California) (2000)

11. Page, K.R., De Roure, D.C., Martinez, K.: REST and Linked Data: a match made
for domain driven development? In: Proceedings of the Second International Work-
shop on RESTful Design, pp. 22–25. ACM (March 2011)

12. Zeng, D., Guo, S., Cheng, Z.: The web of things: A survey. Journal of Communi-
cations 6(6), 424–438 (2011)

13. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity manage-
ment. In: Proceedings of the Second ACM Workshop on Digital Identity Manage-
ment, pp. 11–16. ACM (November 2006)

14. Sanchez, L., Galache, J.A., Gutierrez, V., Hernandez, J.M., Bernat, J., Gluhak, A.,
Garcia, T.: SmartSantander: The meeting point between Future Internet research
and experimentation and the smart cities. In: Future Network & Mobile Summit
(FutureNetw.), pp. 1–8. IEEE (June 2011)

Testing of Distributed Service-Oriented Systems

Faris Nizamic

Distributed Systems Group, Johann Bernoulli Institute,
University of Groningen, Nijenborgh 9, 9747 AG Groningen, NL

F.Nizamic@rug.nl

1 Introduction

We are experiencing an exponential growth of devices connected to the Internet
and services offered through the web. Today, we are just a few mobile-clicks
away using services which enormously simplify our life. Just think of how we are
paying our bills, recharging our mobile pre-paid account, or how we buy tickets
for the events we want to attend. It is all being done through web services. This
increasing reliance on distributed service-oriented systems provided through the
web places a high expectation on their reliability. To keep up with this growing
trend that is embracing changes on a daily basis, the software development of
the services has to be rapid and at the same time leaving not much space for
software errors or failures.

In contrast with that, testing of distributed service-oriented systems is still
a relatively unexplored area. In fully distributed environments, the costs of in-
tegration and testing are extremely high. The situation is even worse in large
scale infrastructures where there is no single owner of the system and the var-
ious elements are highly decoupled. Sometimes even observing and monitoring
the whole system is difficult.

In this research, we propose a framework where simulation environments are
automatically built and maintained starting from existing process specifications
of individual services, as well as available choreography and service behaviour
knowledge. The proposed techniques, which are integral part of the software
engineering process of building large scale, loosely coupled service-oriented sys-
tems, simplify the development by automating complex testing, verification and
validation, thus resulting in more cost-effective reliable software-as-a-service so-
lutions.

This paper is structured in the following way. In Section 2, we state the prob-
lem. Then, in Section 3 we define the research questions and research method-
ologies. Subsequently, in Section 4 we explain initial ideas and list the published
work. In Section 5, we propose solution and then in Section 6 we discuss ex-
pected impact. In Section 7, we present preliminary results and the research
plan. Finally, in Section 8 we list the envisioned research outcomes.

2 Problem Statement

Today, society’s increasing reliance on services provided by web applications
places a high demand on their reliability. Yet, significant amount of failures is

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 551–556, 2014.
c© Springer International Publishing Switzerland 2014

552 F. Nizamic

still being found [1]. That is due to poor engineering processes, unstandardised
knowledge, and poor practices in software development and software testing
processes. It is evident that the complexity of the software has drastically in-
creased since the service-oriented architecture introduced. That was because the
software became distributed across the network, which made many initial as-
sumptions obsolete (shared memory and CPU, one owner of the system, etc.).
Therefore, the new rules of the game are:

1. Software is distributed. Software systems are now distributed across differ-
ent physical and/or logical locations. By means of network communication
between system components (web services), certain functionality is being
provided to end-users of a distributed service-oriented system. Yet, the test-
ing of software still implicitly assumed full control over a system, which is
not case in the reality.

2. System components are owned by different entities. To make the situation
even more complicated, each service owner, be it individual, organization or
company, uses its own development and testing standards, preferred tech-
nologies and methodologies, and has its own development schedules and poli-
cies towards their service consumers. Yet, from the end-user’s perspective a
final bill for eventual poor quality of provided service goes to overall service
integrator (entity which provides a service by composing other services).

3. Testing tools and methodologies supporting automation of the software de-
velopment life cycle are insufficient. Looking at software modelling tools
going all the way to software testing tools, appropriate methodologies and
tools supporting the automation of complete process of software delivery
are rare or non-existing. That made communication and execution of tasks
very difficult and imposed many issues for which the software engineering
community did not find appropriate solutions yet.

3 Research Questions and Methodology

The main research question we therefore state is: How can we simplify and au-
tomate testing of complex highly distributed and loosely coupled service-oriented
systems to make them more reliable, robust and error-free?

To answer this research question, a number of challenges needs to be addressed:

– RQ1: How to identify the constraints that limit the output of development,
testing and integration processes for distributed service-oriented systems?

– RQ2: Which approach and techniques to use in order to tackle the identified
constraints?

– RQ3: How to automate the creation and management of a testing environ-
ment?

In order to answer to RQ1, we plan to observe testing process of the newly
developed distributed service-oriented system and that way to identify the con-
straints that industry encounters (high dependencies on external testing envi-
ronment, not available test data, etc.) that slow the development process. To get

Testing of Distributed Service-Oriented Systems 553

a realistic state from the software engineering field, besides literature research a
survey may be conducted among the companies or organizations that are con-
cerned with development and testing process of such service-oriented software
systems.

In RQ2, we concentrate on the observed constraints from RQ1 that may be
solved or whose effects can be minimized using our proposed approach and tech-
niques. Namely, using service virtualization (web service simulation) to mimic
system components are not owned or under control of test performing body.
Thus, within RQ2 we construct models formally describing simulated services,
define approaches for their automated creation and maintenance, and their val-
idation and verification against service description or against real services. Ad-
ditionally, we plan develop new testing techniques which can result in more
cost-effective reliable service-oriented systems. Energy and Banking sectors are
the main application fields for the project.

In RQ3, we focus on the automation process of fully integrated environment
for simulation and testing of service-oriented systems. To achieve full automa-
tion, we combine and/or customize existing tools and techniques. Once automa-
tion is achieved, we evaluate the proposed solution by comparing expected and
observed improvements, that may be reflected in energy savings (Energy sector),
time or money savings (Banking sector).

4 Related Work

In the paper Testing for Highly Distributed Service-oriented Systems using Vir-
tual Environments [2], we show the risks of performing tests in production en-
vironment and propose how testing can be enabled using simulated services
(virtual environment). To illustrate how this process, we use an example of a
real system - WMO, based on the Dutch law for supporting people that have a
chronic disease or disability.

Subsequently, in the paper Policy-Based Scheduling of Cloud Services [3], we
address the questions of optimal scheduling for different partners competing for
the available computing resources.

Finally, we propose a service-oriented system for making buildings more
energy-efficient (BernoulliBorg - The building of sustainability [4]). The pro-
posed project was awarded with a grant by the University of Groningen (Green
Mind Award) and currently being implemented. This project being a source of
valuable experience and inspiration, through which we have an opportunity to
observe more constraints that encounter during development and testing of a
service-oriented system and to experiment with possible solutions.

5 Proposed Solution

Taking into consideration diversity of work done until now, the integration of
the previous work with current work will be done with the following approach.
Firstly, we will finalize the implementation of the mentioned service-oriented

554 F. Nizamic

system in order to gain the valuable knowledge from practice and to prepare
the environment for experimentations to follow. Besides our own system, we will
analyse other existing systems, not only to understand issues in external systems
(i.e. banking applications), but also to understand differences and similarities
among them. Furthermore, we will describe in detail how, by using the logic of
theory of constraints [5], we can identify and remove the observed constraints.
The evaluation will be done on our developed system [4], and potentially on one
external system from industry. That way, we will gain the necessary insight and
knowledge by going through the software development life cycle (SDLC) from
the inside (by developing a service-oriented system), and from the outside (by
observing a system developed by other company or organization).

Using gathered data, we propose a solution to solve some of the identified
constraints in service design-time. To solve the identified constraints, we use
use an approach of modelling and simulation techniques [6], [7] to substitute
non-owned, non-developed or simply blocking parts of the system. That way,
service under test can be properly tested before being deployed to production
environment.

In our work, we first define the terminology of simulated services, explain
the concepts and the processes around it. Subsequently, we propose the ways to
create and model the simulated services and then we propose how to validate
modelled services against the real services or against service description (in-
terfaces and behaviour). Once modelled and validated, we show how executable
simulated service should be modelled, maintained and deployed to both a design-
time environment (for internal service consumers) and a run-time environment
(for external service consumers). Further, we define a simulated service life cycle
(SSLC), make a parallel with the SDLC, and propose how development cycles
can be reduced and speed-to-market increased using service simulation. Finally,
we introduce the a new testing technique, namely Environment-based testing,
and present how it can make services under development to be more robust and
error-free.

Finally, our proposed solution will be a process or technique for decoupling de-
pendent services by providing simulated environment that supports automated
changes. As a side effect, automated scripts or combined software solution sup-
porting the process will be developed.

6 Expected Impact

This research will have impact on several different fields, namely: global service-
oriented research community, software engineering industry, as well as local com-
munity in the North of The Netherlands.

The impact on the global service-oriented research community will be reflected
through the fusion of simulation, system modelling and production management
knowledge with the software engineering knowledge. The expected results of this
fusion are that techniques, methodologies and approaches of service development
will be proposed to reduce very high the complexity of service composition and
integration.

Testing of Distributed Service-Oriented Systems 555

Meanwhile, the impact on the global software engineering industry will be rep-
resented in decrease of time-to-market of service-oriented software products. This
will be done by inclusion of simulated test environments auto-deployment within
the overall test automation process. That way, there will be no constraints to
use all currently unused time for automated testing in highly decoupled service-
oriented systems.

Other side effects are expected as well. One of the side effects is that knowl-
edge on automated simulation environments will suggest software engineers that
concept like this can serve as a tangible communication mean to model ser-
vices under development, but also to make an executable artefact which can be
used for multiple purposes (e.g. documentation, traceability, environment state
tracking, etc.).

Last but not least, the implementation of our energy-saving service-oriented
system will definitely have a significant local impact on the University of Gronin-
gen. We expect that in case our developed system proves to fulfil the goals of
energy saving, it will be deployed to more buildings of the North of The Nether-
lands.

7 Preliminary Results and Research Plan

The preliminary results are showed in a proof of concept Sustainable Buildings
service-oriented system that is, at the moment of writing of this document, being
deployed at the Faculty of Mathematics and Natural Sciences building where
the Distributed Systems research group is located. The pilot project includes
15 office spaces, of which there are nine private working rooms, one meeting
room, one social corner, two hallways, and two restrooms. There are 15 people
working at the area. Consumption measuring wireless devices are used for 42
appliances, providing the ability to measure the electricity consumption and to
control the appliances. At the moment, we have available preliminary results
of the experiments showing if system like this makes a building more energy
efficient, and what the actual savings are.

Current focus is on completion of the implementation of the afore-mentioned
proof-of-concept system. Undoubtedly, once the system is in place, our proposed
approach and techniques will be tested on the developed system through a num-
ber of experiments. That will subsequently lead to data analysis and publishing
of observations and findings. Final part of the project will be devoted to pub-
lishing of final results and writing the thesis.

8 Envisioned Research Outcomes

The main envisioned outcomes of the research project are:

– Out1 An observation report of the constraints in software engineering pro-
cess of service-oriented systems based on industrial experiences

556 F. Nizamic

– Out2 Techniques, methods and theoretical foundations for an automated
testing using simulated services

– Out3 A pilot prototype of automated service-oriented system deployment
and testing

– Out4 An evaluation report of the proposed techniques and methodologies
for testing service-oriented systems in different areas

– Out5 A PhD thesis that consolidates all above-mentioned outcomes

As this work can be considered to be applied research, the experience gained
may also be considered as the potential basis for setting up a commercial enter-
prise exploiting such unique knowledge on energy-efficient buildings. Additional
exploitation may be seen in the software testing consulting with the special focus
on web service providers.

Acknowledgement. The author would like to thank to Prof. Marco Aiello,
Dr. Alexander Lazovik and Dr. Rix Groenboom for their invaluable support in
this research project. Faris Nizamic is supported by the JoinEU-SEE grant and
Green Mind Award project.

References

1. Offutt, J., Papadimitriou, V., Praphamontripong, U.: A case study on bypass testing
of web applications. In: Empirical Software Engineering 2012, pp. 1–36. Springer US
(2012)

2. Nizamic, F., Groenboom, R., Lazovik, A.: Testing for Highly Distributed Service-
oriented Systems using Virtual Environments. Postproceedings of 17th Dutch Test-
ing Day 2011, EEMCS, 23–25 (2012)

3. Nizamic, F., Degeler, V., Groenboom, R., Lazovik, A.: Policy-Based Scheduling of
Cloud Services. Journal on Scalable Computing: Practice and Experience 13(3),
187–199 (2012)

4. Nizamic, F., Nguyen, T.A.: BernoulliBorg - The building of sustainability (2012)
5. Cox, J., Goldratt, E.M.: The goal: a process of ongoing improvement. North River

Press (1986)
6. Sargent, R.G.: Verification and validation of simulation models. J. Simulation 7(1)

(2013)
7. Briand, L., Labiche, Y., Wang, Y.: Using Simulation to Empirically Investigate

Test Coverage Criteria Based on Statecharts. In: ACM International Conference on
Software Engineering, ICSE 2004, pp. 86–95 (2004)

Automation of the SLA Life Cycle

in Cloud Computing�

Waheed Aslam Ghumman

Department of Computer Science,
University of Applied Sciences Zittau/Görlitz

{wghumman,jlaessig}@hszg.de

Abstract. Cloud computing has emerged as a popular paradigm for
scalable infrastructure solutions and services. The requirement of au-
tomated management of Service Level Agreements (SLAs) between the
cloud service provider and the cloud user has increased to minimize user
interaction with the computing environment. Thus, effective SLA negoti-
ation, monitoring and timely detection of possible SLA violations repre-
sent challenging research issues. A big gap exists between a manual/
semi-automated and a fully automated SLA life cycle. This gap can
be bridged with formalization of generally existing natural language
SLAs. Algorithms and strategies for SLA monitoring, management
and SLA violation are directly dependent on a complete formalization
of SLAs. The goal of the thesis is to analyze currently existing SLA de-
scription languages, to find their shortcomings and to develop a complete
SLA description language. As next step, we plan to develop distributed
algorithms for automated SLA negotiation, monitoring, integration and
timely SLA violations detection for cloud computing.

Keywords: Cloud computing, service level agreement, automated SLA
management.

1 Introduction and Problem Statement

The current trend in application service delivery is to move away from centrally
located services towards structures of distributed services, dynamically bound to
establish complex systems. With the emergence of cloud computing, businesses
are focussing more to buy cloud services (on pay-as-you-go basis) rather than
making one-time heavy investments on infrastructures and software licenses.
Such an environment is governed by dynamically negotiated electronic contracts
between the service providers and the service customers. A service level agree-
ment (SLA) is a part of a service contract where different properties of the service
are formally defined. It is very vital for users to obtain guarantees from providers
on service delivery [1]. Typically, these are provided through SLAs, negotiated

� Advisor: Jörg Lässig
Department of Computer Science,
University of Applied Sciences Zittau/Görlitz

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 557–562, 2014.
c© Springer International Publishing Switzerland 2014

558 W.A. Ghumman

between the providers and end users. Generally, the SLAs are the only source
of formal description of service contracts between the two parties. In e-business
platforms, SLAs are essentially important for the service consumer as it com-
pensates the consumer’s high dependency on the service provider [2]. Consider
a bigger company which purchases many different cloud services from multiple
vendors and sells these services as composed products. Huge efforts in terms
of human resources and computer systems (including softwares) are required
to properly manage, negotiate and monitor this large set of SLAs. An automa-
tion of SLA management tasks (i. e., negotiation, monitoring, integration and
enforcement) strongly depends on the complete formalization of human readable
SLAs. The definition of SLA specifications is needed in such a way that it has an
appropriate level of granularity, namely a good tradeoff between expressiveness
and complexity, so that they can cover most of the consumer expectations and are
relatively easy to manipulate, verify and evaluate, and that they can be enforced
by a resource allocation mechanism on the cloud. The described goals might be
easy to achieve for simple web service using SLA templates as e. g. presented in
[3], however, this problem turns into a bottleneck with the growth in number
and sophistication of cloud services. With our research, we aim to develop a
state-of-the-art SLA based framework which can express regular SLAs in a ma-
chine readable format, can automate the negotiation process and is helpful for
an automated SLA management, i. e., enforcement, monitoring and integration.
The ultimate goal would be a framework which not only is useful to define, nego-
tiate, integrate, enforce and monitor cloud services but also helps in system cost
estimation and performance evaluation. In Section 2, we describe related work,
state-of the-art techniques and shortcomings of existing approaches for different
stages of the SLA life cycle. In Section 3, we describe methods and techniques
towards a possible solution which we plan to develop during this research work.
In Section 4, we give some concluding remarks about this work.

2 Research Challenges, Gaps and Related Work

In cloud computing environments, a service integrator provides a platform that
allows to orchestrate independent service providers and services and coopera-
tively provide additional services that meet e. g. certain security requirements.
The Web Service Level Agreement (WSLA) framework [4] is targeted at defining
and monitoring SLAs for web services. The WSLA framework consists of a flexi-
ble and extensible language based on an XML schema and a runtime architecture
comprising several SLA monitoring services, which may be outsourced to third
parties to ensure a maximum of objectivity. But, this framework does not support
a cost model for SLAs. WS-Agreement [5] is a language for advertising the capa-
bilities of a service provider. WS-agreement does not define specific service level
objective terms, nor does it possess a condition expression language to be used in
specifying guarantee terms and negotiability constraints. Both of these languages
(WSLA and WS-Agreement) do not specify the terms of the quality of services
(QoS) and their attributes. Barros and Oberle [6] present the design of a Unified

Automation of the SLA Life Cycle in Cloud Computing 559

Service Description Language (USDL), aimed at describing services across the
human-to-automation continuum. A comprehensive USDL tool chain, including
editors, stores and marketplaces, has been developed by SAP Research and part-
ners and allows flexible deployment scenarios. Yet, more methods are required to
fully exploit USDL, such as the integration with service engineering approaches.
One possible solution to these problems is to create a formal declarative language
to describe features and constraints of service providers [7]. It is in the interest of
both parties (service user and service provider) to create and operate SLAs with
a minimum of human interaction. Hasselmeyer et al. [8] describe a generic frame-
work for negotiating SLAs. The components of the framework automate large
parts of the negotiation process while at the same time letting the user retain
control. Their framework however is not capable to implement scenarios which
include different pricing models. Another negotiation mechanism [9] is designed
for the dynamic resource allocation problem where multiple buyers and sellers
are allowed to negotiate with each other concurrently and an agent is allowed
to de-commit from an agreement at the cost of paying penalty. However, it fails
to realize equilibrium strategies in dynamic resource allocation scenarios. Redl
et al. [10] presented a method for finding semantically equal SLA elements from
different SLAs by utilizing several machine learning algorithms. They assess the
cost of SLA matching and provider selection with an SLA mapping technique
and discuss methods for reducing this cost in Grid and Cloud marketplaces.
They use the developed approach for automatic discovery of semantically equal
SLA elements and the creation of SLA mappings that compensate differences
in their syntax specification. Furthermore, using automatic SLA matching algo-
rithms, it allows for autonomic provider selection in grid and cloud computing
marketplaces. This approach, however, does not consider QoS metrics and also
fails to automatically determine the influence of each individual parameter to
the overall matching result. There is a large body of work considering the devel-
opment of flexible and self-manageable cloud computing infrastructures. Most of
the available monitoring systems rely either on Grid [11] or service-oriented in-
frastructures [12], which are not directly compatible to clouds due to differences
in the usage models, or due to heavily network-oriented monitoring infrastruc-
tures. Comuzzi et al. [13] define a process for SLA establishment adopted within
the SLA@SOI framework. The authors propose an architecture for monitoring
SLAs considering two requirements introduced by SLA establishment: the avail-
ability of historical data for evaluating SLA offers and the assessment of the
capability to monitor the terms in an SLA offer. But, they do not consider mon-
itoring of low-level metrics and mapping them to high-level SLA parameters for
ensuring the SLA objectives. Emeakaroha et al. [14] present the Detecting SLA
Violation infrastructure (DeSVi) which senses SLA violations through resource
monitoring. The detection of possible SLA violations relies on the predefined
service level objectives and the utilization of knowledge databases to manage
and prevent such violations. Their approach is, however, centralized and not
capable to monitor a cloud environment with multiple data centers which is a
major drawback of their approach.

560 W.A. Ghumman

3 Methods and Approaches towards Possible Solutions

In the previous sections, we have described the background, state-of-the-art
techniques and existing shortcomings for SLAs description, negotiation, man-
agement, monitoring and enforcement. Now we move towards possible improve-
ments and solutions in these directions. Starting with description languages, for
instance, we have highlighted different problems like the inclusion of cost models
and business process flows in SLAs. One possible idea might be to develop object
oriented service level agreements in which SLAs are divided in different classes
of objects based on their service type, usage, duration or any other property. We
can then design an entity-relation or class-relation structure to define the rela-
tionships, business process rules/flow, price models and service requirements, etc.
The SLAs, which are described using such ontological/object-based description
languages for SLAs, can help in reasoning and automation processes. A similar
approach is adopted by Ivanović et al. [15], in which a runtime based method
to predict possible situations of SLA conformance and violation is presented for
service orchestrations. The method is based on modeling QoS metrics of a ser-
vice orchestration using constraints, based on assumptions on the behavior of
the orchestration components. A violation of these constraints means that the
corresponding scenario is infeasible, while satisfaction makes the scenario pos-
sible. The major challenge in this direction is to combine all important/critical
language requirements (for cloud based SLAs) in one single language. Services
are usually built by combining different smaller components or modules. An-
other approach might be to define a hierarchical structure for SLAs, where each
smaller service component/object (leaf module) is bound with an SLA. The leaf
SLA may include different service properties for the service object, e. g., service
requirements, offering, computation cost, price model. We can then utilize these
SLAs of smaller objects to build-up SLAs for the main service. There can be
different approaches to utilize SLAs depending on the business flow and design
model. For instance:

– Bottom-Up SLA: Attributes/properties in such SLAs are transferred from
bottom to top, i. e., from child services to parent service. Such SLAs can be
useful when integrating multiple services of different hierarchy.

– Top-down SLA: Attributes/properties in such SLAs are transferred from
top to bottom, i .e., from parent services to child services. Such SLAs can
be useful in different scenarios, e. g., to enforce a certain policy to all child
services.

– Parallel SLA: Attributes/properties in such SLAs are transferred from left
to right or right to left among SLAs of the same hierarchy. Such SLAs can
be useful in situations where similar attributes are required in SLAs of the
same hierarchy.

We aim to provide such a machine readable SLA description language which
is capable to describe SLAs of major cloud service providers. We start by ana-
lyzing the textual SLAs of all major cloud service providers and define combined

Automation of the SLA Life Cycle in Cloud Computing 561

Automatic SLA negotiation

Output
Negotiation input

SLAs

Final SLA Final SLA

Cloud user

SLA QoS
monitoring

SLA enforcement

SLA management

Fig. 1. The SLA automation process starts with a standardized SLA description. After
that, an automated SLA negotiation between/among cloud service user(s) and cloud
service provider(s) take place and successfully negotiated SLAs are communicated. Dif-
ferent distributed algorithms manage, monitor, enforce and integrate SLAs for reliable
and error-free delivery of cloud services.

common and distinctive SLA attributes based on their static or dynamic behav-
ior. In a next step, we plan to develop an SLA negotiation framework which
can dynamically automate the negotiation process and generates an machine
readable output of the negotiation process to be integrated with external infor-
mation systems. A representation of this abstract idea is depicted in Figure 1.
As next step, we plan to define scalable, accurate, and non-intrusive distributed
algorithms for cloud monitoring based on SLAs. This step includes automatic
SLA enforcement and management.

4 Conclusions

We have presented a research problem related to SLAs in cloud computing that
emphasizes that the automation of SLA negotiation, management, monitoring
and integration are a natural next step in service oriented computing. In general
all steps in the SLA life cycle (from design to establishment of actual SLAs) are
dependent on the capabilities of an SLA description language. We have discussed
deficiencies in existing SLA description languages and methods with reference to
SLA life cycle automation. We presented a brief overview of existing approaches,
their drawbacks, research challenges and existing gaps. Also it has been discussed
that SLA negotiation, management, monitoring and integration can be achieved
to a certain extent after formalizing a description language for SLAs. Increasing
requirements of smooth, flawless and reliable delivery of cloud computing services
with little or no human-computer interaction is of much interest. In the planned
thesis we give a possible solution to develop an SLA description language and
to automate the SLA life cycle based on that description language.

562 W.A. Ghumman

References

1. Gong, Y., Ying, Z., Lin, M.: A survey of cloud computing. In: Yang, Y., Ma, M.
(eds.) Proceedings of the 2nd International Conference on Green Communications
and Networks (GCN): Volume 3. LNEE, vol. 225, pp. 79–84. Springer, Heidelberg
(2012)

2. Ul Haq, I., Brandic, I., Schikuta, E.: SLA validation in layered cloud infrastructures.
In: Altmann, J., Rana, O.F. (eds.) GECON 2010. LNCS, vol. 6296, pp. 153–164.
Springer, Heidelberg (2010)

3. Rodosek, G.D., Lewis, L.: Dynamic service provisioning: A user-centric approach.
In: Proceedings of the 12th Annual IFIP/IEEE International Workshop on Dis-
tributed Systems: Operations & Management (DSOM), pp. 37–48 (2001)

4. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring ser-
vice level agreements for web services. Journal of Network and Systems Manage-
ment 11(1), 57–81 (2003)

5. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T.,
Pruyne, J., Rofrano, J., Tuecke, S., Xu, M.: Web services agreement specification
(WS-Agreement). In: Global Grid Forum, vol. 2 (2004)

6. Barros, A., Oberle, D.: Handbook of Service Description: USDL and Its Methods.
Springer Publishing Company, Incorporated (2012)

7. Ortiz, J., de Almeida, V.T., Balazinska, M.: A vision for personalized service level
agreements in the cloud. In: Workshop on Data Analytics in the Cloud (2013)

8. Hasselmeyer, P., Mersch, H., Koller, B., Quyen, H.N., Schubert, L., Wieder, P.:
Implementing an SLA negotiation framework. In: Proceedings of the eChallenges
Conference on Exploiting the Knowledge Economy - Issues, Applications, Case
Studies (2007)

9. An, B., Lesser, V., Irwin, D., Zink, M.: Automated negotiation with decommitment
for dynamic resource allocation in cloud computing. In: Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems: Volume
1, pp. 981–988. International Foundation for Autonomous Agents and Multiagent
Systems (2010)

10. Redl, C., Breskovic, I., Brandic, I., Dustdar, S.: Automatic SLA matching and
provider selection in grid and cloud computing markets. In: Proceedings of the 2012
ACM/IEEE 13th International Conference on Grid Computing. IEEE Computer
Society (2012)

11. Reyes, S., Muñoz-Caro, C., Niño, A., Sirvent, R., Badia, R.: Monitoring and steer-
ing grid applications with grid superscalar. Future Generation Computer Sys-
tems 26(4), 645–653 (2010)

12. D’Ambrogio, A., Bocciarelli, P.: A model-driven approach to describe and predict
the performance of composite services. In: Proceedings of the 6th International
Workshop on Software and Performance, pp. 78–89. ACM (2007)

13. Comuzzi, M., et al.: Establishing and monitoring SLAs in complex service based
systems. In: IEEE International Conference on Web Services, 783–790. IEEE (2009)

14. Emeakaroha, V.C., Netto, M.A., Calheiros, R.N., Brandic, I., Buyya, R., De Rose,
C.A.: Towards autonomic detection of sla violations in cloud infrastructures. Future
Generation Computer Systems 28(7), 1017–1029 (2012)

15. Ivanović, D., Carro, M., Hermenegildo, M.: Constraint-based runtime prediction
of SLA violations in service orchestrations. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) Service Oriented Computing. LNCS, vol. 7084, pp. 62–76.
Springer, Heidelberg (2011)

A.R. Lomuscio et al (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 563–568, 2014.
© Springer International Publishing Switzerland 2014

Towards a Dynamic Declarative Service Workflow
Reference Model*

Damian Clarke

Department of Computer Science, University of Miami, Miami, USA
d.clarke6@umiami.edu

Abstract. Functional, nonfunctional, just-in-time approaches to composing web
services span the sub-disciplines of software engineering, data management,
and artificial intelligence. Our research addresses the process that must occur
once the composition has completed and stakeholders must investigate
historical and online operations/data flow to reengineer the process either off-
line or in real-time. This research introduces an effective reference model to as-
sess the message flow of long-running service workflows. We examine Dynamic
Bayesian Networks (dDBNs), a data-driven modeling technique employed in
machine learning, to create service workflow reference models. Unlike other
reference models, this method is not limited by static assumptions. We achieve
this by including the trend and time varying variables in the model. We demon-
strate this method using a flight dataset collected from various airlines.

1 Introduction

In response to today’s increasingly volatile business environment, web service
workflows need to be agile and dynamic. The main cause of volatility is trend and
time dependent, which are secondary but influential variables implicitly within the
service workflow that affect the relationship between dependent variables and other
independent variables of primary interest. Therefore, reference models [1] for service
workflows must consist of trend and time varying constructs that efficiently and ef-
fectively capture dynamically identifiable changes in the information-processing
functionalities. One method to dynamically identify changes is to infer meaning from
data the service workflow consumes and produces and then be able to recommend
action based on that meaning. With the inclusion of on-demand data intensive disco-
veries the model can now accommodate constructive feedback and forward interven-
tions resulting in an agile representation that can more accurately reflect trend and
time varying variables.

As a motivating scenario consider an Airline Ticket Pricing Workflow. Such a
workflow consists of a Select Airlines service that takes origin and destination cities
from the user and devises a list of air carriers who fly between the two cities. Subse-
quently, a Collect Prices service contacts the list of airlines and develops the best
ticket price. The Collect Prices service may have many attributes that are not used in

* Supervised by Prof. M. Brain Blake.

564 D. Clarke

every instance of the workflow such as number of connections, time of day of depar-
ture, and time of day of arrival. In this service workflow and in others like it, the user
may be able to leverage unused message types to find the most optimal price. For this
scenario, the date and time of purchase and the time-of-day for the flight also may
affect the optimal price. A more sophisticated example of this workflow is used in
our evaluation section later in this paper.

In our work, our research contributes to the next step after a set of functionally-
adequate workflows are created, on-demand, by a third party and in use. Given his-
torical data and the ability to strategically poll these longer-standing workflows, we
believe that, by using the real operational message data generated by the workflow
logic which we call constructive feedback, a reference model of the workflows can be
dynamically created. A contribution of our work is the introduction of a model that
can encapsulate declarative and predictive features that can deal with uncertainty
thereby facilitating forward intervention.

2 Related Work

Research projects related to the optimizations of web service workflows [2][3] can be
classified into three areas, service engineering and modeling projects that focus on the
web service specifications, similar service engineering projects that alternatively con-
centrates on the operational web services and their data, also the general body of work
in workflow optimization and workflow decentralization. Largely, the state-of-the-art
in web service discovery, composition, and mashup operates with the specifications
and not the running operational systems [4][5]. As such, these projects are not related
to our approach as we look at the real data content of messages as a method to re-
engineer operational web service workflow systems.

There are other service engineering projects that investigate the real data content.
One such work is in the area of automated or semi-automated web service testing. To
automate testing of web services, related projects must evaluate if web service outputs
meet tests plans and, in other cases, predict the specific data content that requires
testing. These approaches must develop models to understand the data. The most
relevant approaches develop models of data that extend SOAP [6] and UDDI data
models [7]. These approaches try to perturb data from specifications and then execute
them in operational mode. Unlike these approaches that tend to work on just one web
service, models in our work leverages models across multiple services in a web ser-
vice workflow.

3 Technical Approach

We introduce a reference model for service workflows created from the underlying
messages collected during the actual service workflow operation. Our approach in-
cludes the implicit secondary trend and time varying variables to more accurately
reflect a volatile business environment. This section describes how we formalize the
model by proposing the use of non-homogeneous semi-flexible dynamic Bayesian
networks [8].

 Towards a Dynamic Declarative Service Workflow Reference Model 565

3.1 Bayesian Networks

Static Bayesian Networks usually referred to as simply Bayesian Networks (BN) are a
class of graphical models [9]. They allow a concise representation of the probabilistic
dependencies between a given set of random variables X = {X1,X2,…,Xp} as a directed
acyclic graph (DAG) G = (V,E) where each node vi є V corresponds to a random
variable Xi and E is the set of edges between connecting nodes. A random variable
denotes an attribute, feature, or hypothesis about which we may be uncertain.

An important feature of Bayesian networks is that by instantiating vertices in the
directed structure independences may change to dependences, i.e. stochastic indepen-
dence has specific dynamic properties. This produces the concept known as “explain-
ing away” [10] where the confirmation of one cause of an observed or believed event
reduces the need to invoke alternative causes and/or confirmation of one cause in-
creases belief in another.

Whereas static Bayesian Networks model multiple independent “snapshots” of the
process, intuitively Dynamic Bayesian Networks (dBN) extend the fundamentals of
Bayesian networks by modeling associations from the temporal dynamics between
entities of interest. We refer the reader to [11] for a comprehensive review. Each vari-
able in a dBN is represented by several nodes across time points. In addition, tempor-
al signatures are useful in capturing possible feedback loops that are disregarded by
static Bayesian Networks. A set of sufficient conditions for a model to be represented
as a dynamic network are detailed in the following works [12] [13] [8].

By combining qualitative and quantitative event data (e.g. intra-service-workflow
step messages) in a coherent way, a Bayesian statistical approach allows the represen-
tation of each event with its set of mutually exclusive and collectively exhaustive
values as a random variable. Each node (perhaps defining a data point from a service
messages) has assigned a function that describes how the state of a node depends on
the parents of the node. The topology of the graph that relates the nodes defines the
probabilistic dependencies between the node variables, by means of a set of condi-
tional distributions. In addition, we can integrate different sources of information, for
example domain expert knowledge, historical and polled event data, to give a unified
knowledge that allows us to manage internal and external “causal” factors such as
bottlenecks. In this context, a Bayesian network is augmented with two other types of
nodes, then it is possible for actions to be decided based on given evidence. These two
types of nodes are utility nodes and decision nodes. Utility nodes represent the value
of a particular event, while decision nodes represent the choices that might be made.

3.2 Proof of Concept and Discussion

The intent of our experimentation is to demonstrate that the behavior in web service
workflow operations vary in the nuanced ways that enable our approach to predict the
content-based outcomes and perform forward interventions. When using a web ser-
vice workflow to manage the airline ticket purchase workflow, we believe that the
businesses have encoded their purchase operations and these operations might vary
from airline to airline. This variation is the basis for why our data model would be
important for optimizing workflow paths. Consider the workflow path in Fig. 1. We
introduce a reference model that can:

566 D. Clarke

1. Predict when it is not necessary to check the availability of an airline ticket on a
particular airliner, thus the overall BPEL workflow can be truncated

2. Predict when the purchase date for a ticket is too close to the departure date to get
an optimal price

3. Predict that when a passenger is restricted for a particular time-of-day certain air-
lines will not have optimal pricing.

In Fig.1, we see an exemplar model for the airline ticket shopping workflow. When a
service provider receives a request through a Web Service Interface Service, then this
would trigger the concurrent availability (Airline N: Check Availability Service) and
price checks (Airline N: Check Prices Service) from the web services of the various
airlines. The final step is a decision to buy a ticket from a particular airline (Airline
N. Purchase). The shaded web services represent a truncated workflow determined
using our data model.

Fig. 1. An Example Airline Purchase Workflow

As a first part of our evaluation, we used 41 days of airline data from [14] where
we anticipate that each airline is running a business specific workflow similar to that
illustrated in Fig. 1. Consequently, when we analyze their data we saw different beha-
viors in how their airline prices are generated. It is evident that airlines modify their
prices for the same ticket as the time to departure reduces. As we anticipated, these
modifications fluctuate as the business operations for each airline differs.

Figure 2 shows a representation of a BN for the real airline pricing data for AA.
Our model accurately predicts lower prices for polling dates further away from the
actual flight time on 1/1/2003 and higher prices as the polling date gets closer to the
flight time.

Figure 3 shows data collected from 10/12/2002 through 02/01/2003 for a United
Airline’s flight leaving on 02/02/2003. We demonstrate how our model behaves twen-
ty-five time points in the future in the shaded region. The dotted lines show a gentle
upward tick in the price. Figure 4, plots the data collected from 10/12/2002 to
17/12/2002. Our model accurately predicts a downward trend in the price and then a
leveling off.

Airline 1:
Check

Availability

Airline 1:
Check
Prices

Current Date/Time

Origin/
Destination Departure/Arrival City

Departure Date/Time Price

Current Date/Time

Web
Interface
Service

Airline 2:
Check

Availability

Airline 2:
Check
Prices

Price

Airline 3:
Check

Availability

Airline 3:
Check
Prices

Price

Current Date/Time

Airline 1:
Purchase

Ticket

Airline 2:
Purchase

Ticket

Airline 3:
Purchase

Ticket

Current Date/Time
Decision

Departure Date/Time

Departure/Arrival City

Departure Date/Time

Departure/Arrival City

Concurrency

 Towards a Dynamic Declarative Service Workflow Reference Model 567

Fig. 2. An Instantiation of the BN for AA prices

Fig. 3. UA prices (10/12/2003 to flight date on 02/01/2003) with 25 time point projection

Fig. 4. UA prices taken from 10/12/2003 to 17/12/2003 with 25 time point projection

4 Conclusion and Future Work

The service workflow assessment vision that we explore in this paper is to completely
automate the data centric service workflow model and to perform such assessments in

568 D. Clarke

a reliable, reproducible and efficient manner. The intention is that service workflow
assessment can be deployed frequently and on demand. We have seen that this vision
is promising with the inclusion of trend and time-varying features of a business envi-
ronment. Unanswered questions such as polling rate still need to be explored.

References

[1] OASIS SOA Reference Model (SOA-RM) TC, https://www.oasis-open.org/
committees/soa-rm/faq.php

[2] Blake, M.B., Huhns, M.N.: Web-Scale Workflow: Integrating Distributed Services. IEEE
Internet Computing 12(1), 55–59 (2008)

[3] Blake, M.B., Gomaa, H.: Agent-oriented compositional approaches to services-based
cross-organizational workflow. Decis. Support Syst. 40(1), 31–50 (2005)

[4] Liu, X., Hui, Y., Sun, W., Liang, H.: Towards Service Composition Based on Mashup.
In: 2007 IEEE Congress on Services, pp. 332–339 (2007)

[5] Srivastava, B., Koehler, J.: Web Service Composition - Current Solutions and Open Prob-
lems. In: ICAPS 2003 Workshop on Planning for Web Services, pp. 28–35 (2003)

[6] Offutt, J., Xu, W.: Generating test cases for web services using data perturbation.
SIGSOFT Softw. Eng. Notes 29(5), 1–10 (2004)

[7] Bai, X., Dong, W., Tsai, W.-T., Chen, Y.: WSDL-based automatic test case generation
for Web services testing. In: IEEE International Workshop on Service-Oriented System
Engineering, SOSE 2005, pp. 207–212 (2005)

[8] Dondelinger, F., Lèbre, S., Husmeier, D.: Non-homogeneous dynamic Bayesian net-
works with Bayesian regularization for inferring gene regulatory networks with gradually
time-varying structure. Mach. Learn. 90(2), 191–230 (2013)

[9] Dawid, P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Networks and Expert Sys-
tems: Exact Computational Methods for Bayesian Networks. Springer (2007)

[10] Wellman, P.P., Henrion, M.: Explaining ‘explaining away’. IEEE Trans. Pattern Anal.
Mach. Intell. 15(3), 287–292 (1993)

[11] Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray
data using dynamic Bayesian networks. Brief. Bioinform. 4(3), 228–235 (2003)

[12] Lèbre, S.: Inferring Dynamic Genetic Networks with Low Order Independencies. Stat.
Appl. Genet. Mol. Biol. 8(1), 1–38 (2009)

[13] Lèbre, S., Becq, J., Devaux, F., Stumpf, M.P., Lelandais, G.: Statistical inference of the
time-varying structure of gene-regulation networks. BMC Syst. Biol. 4(1), 130 (2010)

[14] Etzioni, O., Tuchinda, R., Knoblock, C.A., Yates, A.: To buy or not to buy: mining air-
fare data to minimize ticket purchase price. In: Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, New York, NY,
USA, pp. 119–128 (2003)

A Context-Aware Access Control Framework

for Software Services

A.S.M. Kayes, Jun Han, and Alan Colman

Faculty of Science, Engineering and Technology
Swinburne University of Technology, VIC 3122, Australia

{akayes,jhan,acolman}@swin.edu.au

Abstract. In the present age, context-awareness is an important aspect
of the dynamic environments and the different types of dynamic context
information bring new challenges to access control systems. Therefore,
the need for the new access control frameworks to link their decision
making abilities with the context-awareness capabilities have become
increasingly significant. The main goal of this research is to develop a
new access control framework that is capable of providing secure access
to information resources or software services in a context-aware manner.
Towards this goal, we propose a new semantic policy framework that
extends the basic role-based access control (RBAC) approach with both
dynamic associations of user-role and role-service capabilities. We also
introduce a context model in modelling the basic and high-level context
information relevant to access control. In addition, a situation can be
determined on the fly so as to combine the relevant states of the entities
and the purpose or user’s intention in accessing the services. For this
purpose, we can propose a situation model in modelling the purpose-
oriented situations. Finally we need a policy model that will let the
users to access resources or services when certain dynamically changing
conditions (using context and situation information) are satisfied.

Keywords: Context-awareness, context, context-aware access control,
situation, situation-aware access control, access control policy.

1 Introduction

In recent years, the rapid advancement of computing technologies has led to the
world to a new paradigm of access control, shifted from fixed desktop to dynamic
context-aware environments [15]. Such a shift brings with it opportunities and
challenges. On the one hand, users demand access to resources or services in an
anywhere, anytime fashion. On the other hand, such access has to be carefully
controlled due to the additional challenges coming for the dynamically changing
context information. For example, a doctor’s request to obtain some patient in-
formation from a service through a desktop computer in his surgery may be very
appropriate, but may not be so from his tablet on a public bus. Therefore, the
information about the changing environment, called context information, needs
to be taken into account when making access control decisions [7].

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 569–577, 2014.
c© Springer International Publishing Switzerland 2014

570 A.S.M. Kayes, J. Han, and A. Colman

A security policy normally states that the particular information resources
or software services can be invoked only for the specific purpose; and it de-
scribes the reason for which organizational resources are used [2]. For example,
in the medical domain the American Health Information Management Associa-
tion (AHIMA) identifies 18 health care scenarios across 11 purposes (treatment,
payment, research, etc.) for health information exchange [4]. In the context-
awareness literature (e.g., [1]), existing situation definitions typically describe
the states of the specific kind of entities, such as user’s state (e.g.,[16]). How-
ever, these works need to be taken into account the focus of access control-specific
considerations in dynamic environments, where a user wants to access specific
resources from a particular environment (e.g., a patient is in a critical health
condition) for a certain purpose (e.g., emergency treatment purpose). Therefore,
in order to specify situations, other than the states of the specific kinds of en-
tities, it is required to capture the states of the relevant relationships between
entities. Moreover, it is required to identify the purpose or user’s intention in
accessing the software services, when making access control decisions.

To point out some unique challenges in access control for dynamic environ-
ments, we start by considering an application scenario in the domain of electronic
health records management system, requiring context-aware access control [9].
The scenario illustrates many of the key ideas of our research. As different types
of dynamic information are involved in the scenario, some important issues arise.
These issues and their related requirements are discussed in [8][9].

2 Research Challenges

In general, to achieve context-/situation-awareness and integrate the dynamic
context/situation information into the access control processes, the following
research challenges have to be addressed.

(1) Understanding and identifying the context information and associated con-
text entities relevant to access control, thereby formulating an appropriate
context model for capturing the dynamic context information.

(2) Developing a suitable reasoning technique to infer richer and more complex
context information according to user-defined rules.

(3) Capturing the states of the context entities relevant to access control and
the states of the relevant relationships between different entities, and iden-
tifying the user’s intention in accessing the services, thereby formulating an
appropriate situation model to determine the relevant situations.

(4) Developing a suitable reasoning technique to recognize a more complex or
composite situation from the atomic situations using logic-based approach.

(5) Specifying and enforcing access control policies that use the dynamic infor-
mation (context and situation) as the contextual conditions and make access
control decisions based on the relevant dynamic information.

(6) Monitoring context/situation changes at runtime and managing reauthoriza-
tion of access as changes of this dynamic information.

A Context-Aware Access Control Framework for Software Services 571

To address and tackle the identified research issues and challenges, the over-
all goal of this research is to develop a new access control framework, named
Context-Aware Access Control (CAAC), that can capable of providing secure
access to information resources or software services according to the dynamic
information in a context-aware manner; and can enable software engineers to
improve privacy and security when building CAAC applications.

3 Related Work

A recent study [11] shows that the Role-based Access Control (RBAC) [12]
approach has become the most widely used access control framework. It typically
evaluates access permission through roles assigned to users and each role assigns
a collection of permissions to users who are requesting access to the software
services. On the other hand, the Attribute-based Access Control (ABAC) [14]
approach grants accesses to services based on the attributes (e.g., user’s identity
- the attribute possessed by the user/requester) rather than direct role-based
support. It is not applicable in large-scale domains because the identity-based
approaches do not scale well in large open systems [10]. Towards this goal, in this
research we propose a new Context-Aware Access Control (CAAC) framework
that adopts and extends the traditional RBAC framework by incorporating the
dynamically changing context/situation information.

Research continues to the present age to extend the basic RBAC framework in
support of new policies to integrate dynamically changing contextual information
(context/situation) into the RBAC policies. During the past decades, several
research efforts (e.g., [3]) incorporate specific types of contexts as constraints
in the access control policies, such as time and location. Recently, He et al
[5] and Huang et al [6] have adopted and extended the basic RBAC solution,
which provide useful insight to present user-role and role-permission assignment
concepts. We compare our approach with them in [8][9].

Some situation-aware access control frameworks have been proposed in the
access control literature (e.g., [16], [17]), each of them having different origins,
pursuing different goals and often, by nature, being highly domain-specific. They
consider the specific types of context information (e.g., the user’s state) as policy
constraints to control access to software services or resources. However, the basic
elements of the situation-awareness in access control systems (i.e., the combina-
tion of the relevant entity states and the relationship states, and the purpose or
user’s intention in accessing the services) were not the focus to date.

4 The Approach: Context-Aware Access Control

Our work in this research is concerned with how to support and manage a fine-
grained access control to software services in a context-aware manner. We show
how the context-/situation-awareness capabilities and role-based access control
(RBAC) decision making abilities can be integrated, allowing us to control the
access to resources or services, while retaining the benefits of RBAC, such as

572 A.S.M. Kayes, J. Han, and A. Colman

Context-Aware Access Control Approach

Phase 1
Capture
Basic

Context

Phase 2
Infer

High-level
Context

Phase 3
Capture

States and
Purpose

Phase 4
Identify

New
Situation

Phase 5
Make

Access
Decision

User

Interaction
Environment

Action Service

Fig. 1. The Proposed Context-Aware Access Control Approach

role hierarchy, role inheritance, etc. Towards this goal, in this section we present
a high-level approach to context-aware access control for software services.

We propose a 5-phase Context-Aware Access control (CAAC) approach for
providing context-specific access to software services (see Figure 1).

– Capture basic context: it is the process of capturing the basic context infor-
mation (low-level information) from the interaction environment.

– Infer high-level context: it is the process of inferring high-level context infor-
mation that are not explicitly specified, using phase 1 information.

– Capture relevant states and purpose: it is the process of capturing elementary
information from the phases 1 and 2, both “states” of relevant entities and
“purpose” of accessing services, brought together into an integrated whole
to form the basic atomic situations.

– Identify new situation: it is the process of identifying new complex (or com-
posite) situations from the basic atomic situations, using phase 3 knowledge.

– Make access decision: it is the process of making access control decisions
based on the context/situation information captured in the previous phases
and consequently take necessary action in a timely and effective manner.

5 Current Status of the Research

5.1 A Semantic Policy Framework for CAAC

Access control is a mechanism to determine whether a request to access the infor-
mation resources or software services provided by a system should be permitted
or denied. In this research, we adopt and extend the basic Role-based Access
Control (RBAC) framework [12], and propose a new access control framework
[9]. Figure 2 shows our CAAC framework and the relationships between its el-
ements. The CAAC framework enables dynamic privileges assignment at two

A Context-Aware Access Control Framework for Software Services 573

Fig. 2. Our Proposed CAAC Policy Framework

steps, letting users to access resources or services when a set of contextual con-
ditions are satisfied. At the first step, the users are dynamically assigned to the
roles when a set of contextual conditions are satisfied. At the next step, when
a role is activated, then the service access permissions are dynamically assigned
to that role when a set of contextual conditions are satisfied. Towards this end,
we introduce two main concepts: context-aware user-role assignments (CAURA)
and context-aware role-permission assignments (CARPA).

Based on the formalization of the traditional Role-Based Access Control
(RBAC) model [12], we present a formal definition of the CAAC model.

M = (MS ,MR)

MS = (U,R,Res,Op, P,Exp, Pol)

MR = (RH,CAURA,ResH,OpA,CARPA)

(1)

First of all, we define the following seven elements of our CAAC model:

– Users (U): A set of users U = {u1, ..., um}. The users are human-beings
(who are service requesters) interacting with a computing system, whose
access requests are being controlled.

– Roles (R): A set of roles R = {r1, ..., rn}. A role reflects user’s job function
or job title within the organization (e.g., healthcare domain).

– Resources (Res): A set of different parts of a resource Res = {res1, ...,
reso}. Resources are the objects protected by access control. A resource
represents the data/information container (the different parts of a patient’s
medical records).

574 A.S.M. Kayes, J. Han, and A. Colman

– Operations (Op): A set of operations on the resources Op = {op1, ..., opp}.
An operation is an action that can be executed on the resources, for instance,
read and write.

– Permission (P): A set of permissions P = {p1, ..., pq} = {(resi, opj)
|resi ∈ Res, opj ∈ Op}, where i = {1, 2, ..., o}, j = {1, 2, ..., p}, Res is
a set of different parts of a resource, and Op is a set of operations on the
resource parts. Permission is an approval to perform certain operations on
resource parts, by the users who initiate access requests.

– Expressions (Exp): A set of expressions Exp = {exp1, ..., expr}. An
expression is used to express the contextual conditions (using relevant con-
text/situation information) in order to describe the user-role and role-perm-
ission assignment policies.

– Policies (Pol): A set of policies Pol = PolCAURA ∪ PolCARPA, the
context-aware user-role assignment policies and context-aware role-
permission assignment policies.

Originating from the above elements, the CAAC model has five other elements
(using the relationships between the different sets of the above elements) of our
model which are defined formally as follows:

– Role Hierarchy (RH): RH ⊆ R × R is a partial order on R to serve as
the role hierarchy, which supports the concept of role inheritance. The role
is considered in a hierarchical manner in that if a permission assigned to a
junior role, then it is also assigned to all the senior roles of that role.

– Context-Aware User-Role Assignment (CAURA): It is a context-
aware user-role assignment relation, which is a many-to-many mapping be-
tween a set of users and roles, when a set of dynamic contextual conditions
are satisfied.

CAURA = {(u1, r1, exp1), (u2, r2, exp2), ..., (um, rn, expr)} ⊆ U ×R× Exp
(2)

– Resource Hierarchy (ResH): ResH ⊆ Res × Res is a partial order on
Res to serve as the resource hierarchy, which supports a user to access the
different granularity levels of resources. The resource is considered in a hi-
erarchical manner in that if a user has the right to access a resource with
the highest granularity level, then he also has the right to access the lower
granularity levels of that resource.

– Operation Assignment (OpA): OpA ⊆ Res × Op is a many-to-many
operation-to-resource mapping. Each operation could be associated with
many resource parts, and for each resource could be granted to many op-
erations. A set of operation assignment relations, OpA = {(res, op)|res ∈
Res, op ∈ Op}.

– Context-Aware Role-Permission Assignment (CARPA): It is a con-
text-aware role-permission assignment relation, which is a many-to-many

A Context-Aware Access Control Framework for Software Services 575

mapping between a set of roles and permissions, when a set of dynamic
contextual conditions are satisfied.

CARPA = {(r1, p1, exp1), (r2, p2, exp2), ..., (rn, pq, expr)} ⊆ R× P × Exp
(3)

5.2 Context Model

We introduce an ontology-based approach to context-aware access control
(CAAC) for software services [8]. It includes an extensible context model specific
to access control for capturing the basic contexts information, and a reasoning
model for inferring high-level implicit context information based on user-defined
rules, and an access control policy model incorporating context information from
the context model. We also develop a CAAC application in the healthcare do-
main and present a case study, which shows the effectiveness of our CAAC
approach. Using our approach, different users can access different services (by
dynamically invoking different operations on resources at different granularity
levels) depending upon the relevant context information.

6 Future Directions

6.1 Relationship Model

Due to the rapid advancement of social computing technologies [13], there is
an urgency for different types of relationships. The relevant relationships with
different granularity levels and strengths need to be captured for the purpose
of access control decision making. For example, a doctor’s request to obtain a
patient’s some health records may be possible, but by obtaining the relevant
relationship between them (e.g., treating doctor-patient). Such new challenges
require a new relationship-aware access control model.

6.2 Situation Model

In open and dynamic environments, access control applications need to capture
and manipulate context information to identify relevant situations and need to
adapt their behaviors according to the situation changes. In the literature, many
researchers have attempted to define the concept of “situation” and “situation-
awareness” (e.g., [16], [17]). In [16], Yau et al have defined the situation as a set
of context attributes of users, systems and environments over a period of time af-
fecting future system behavior. However, in addition to the states of the entities,
there exists the states of the relationships between entities and a goal or purpose
(i.e., user intention in accessing the services) in every situation. Therefore, it is
necessary to represent and capture the purpose-oriented situations to provide
purpose-specific access to software services. The situation model also needs the
reasoning capability to infer a new complex situation based on the basic atomic
situations. How to determine the purpose information based on the captured
data is also an important concept to be considered.

576 A.S.M. Kayes, J. Han, and A. Colman

6.3 Prototype and Evaluation

A comprehensive prototype framework for CAAC with a user-friendly front-
end will be developed so that it can be used by developers to build the CAAC
applications. We also plan to investigate experimental evaluation that can be
used to check the feasibility of our framework.

7 Conclusion

In this work, we have presented the research agendas for developing a new
context-aware access control (CAAC) framework for software services. By lever-
aging the dynamically changing context information, the context-specific control
over access to services can be achieved. We have introduced with the basic RBAC
approach a new access control policy framework that will be applicable in today’s
dynamic environments. Furthermore, we have presented a comprehensive con-
text model specific to access control, in order to represent and capture dynamic
context information. As a next step, we intend to further develop the relation-
ship model and situation model. Subsequently, we will examine how to integrate
these concepts into the access control policies and evaluate our framework.

References

1. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan,
A., Riboni, D.: A survey of context modelling and reasoning techniques. Pervasive
and Mobile Computing 6, 161–180 (2010)

2. Byun, J.W., Li, N.: Purpose based access control for privacy protection in relational
database systems. The VLDB Journal 17(4), 603–619 (2008)

3. Chandran, S.M., Joshi, J.B.D.: LoT-RBAC: A location and time-based rbac model.
In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.)
WISE 2005. LNCS, vol. 3806, pp. 361–375. Springer, Heidelberg (2005)

4. Dimitropoulos, L.L.: Privacy and security solutions for interoperable health infor-
mation exchange: nationwide summary. AHRQ Publication (2007)

5. He, Z., Wu, L., Li, H., Lai, H., Hong, Z.: Semantics-based access control approach
for web service. JCP 6, 1152–1161 (2011)

6. Huang, J., Nicol, D.M., Bobba, R., Huh, J.H.: A framework integrating attribute-
based policies into role-based access control. In: SACMAT, pp. 187–196 (2012)

7. Kayes, A.S.M., Han, J., Colman, A.: ICAF: A context-aware framework for access
control. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372,
pp. 442–449. Springer, Heidelberg (2012)

8. Kayes, A.S.M., Han, J., Colman, A.: An ontology-based approach to context-aware
access control for software services. In: Lin, X., Manolopoulos, Y., Srivastava, D.,
Huang, G. (eds.) WISE 2013, Part I. LNCS, vol. 8180, pp. 410–420. Springer,
Heidelberg (2013)

9. Kayes, A.S.M., Han, J., Colman, A.: A semantic policy framework for context-
aware access control applications. In: TrustCom, pp. 753–762 (2013)

10. Lee, A.J., Winslett, M., Basney, J., Welch, V.: The traust authorization service.
ACM Trans. Inf. Syst. Secur. 11(1), 2:1–2:33 (2008)

11. O’Connor, A.C., Loomis, R.J.: 2010 economic analysis of role-based access control.
NIST report (2010)

A Context-Aware Access Control Framework for Software Services 577

12. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29, 38–47 (1996)

13. Squicciarini, A., Paci, F., Sundareswaran, S.: Prima: an effective privacy protection
mechanism for social networks. In: ASIACCS, pp. 320–323 (2010)

14. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: FMSE, pp. 45–55 (2004)

15. Weiser, M.: Some computer science issues in ubiquitous computing. Commun.
ACM 36(7), 75–84 (1993)

16. Yau, S.S., Huang, D.: Development of situation-aware applications in services and
cloud computing environments. IJSI 7(1), 21–39 (2013)

17. Yau, S.S., Liu, J.: A situation-aware access control based privacy-preserving service
matchmaking approach for service-oriented architecture. In: ICWS, pp. 1056–1063
(2007)

A.R. Lomuscio et al. (Eds.): ICSOC 2013 Workshops, LNCS 8377, pp. 578–584, 2014.
© Springer International Publishing Switzerland 2014

Description and Composition of Services
towards the Web-Telecom Convergence

Terence Ambra*

Department of Information Engineering, University of Florence, Italy
{terence.ambra,federica.paganelli}@unifi.it

Abstract. Current research trends within a Next Generation Networks (NGN)
are investigating the benefits and feasibility of developing integrated services in
order to converge the Telco and Web worlds. These trends responds to the need
to integrate features offered by heterogeneous subjects to provide new innova-
tive value added services to end users on any device equipped with a web
browser. This PhD work focuses on the study of service description models and
mechanisms that facilitate and automate the interoperation and composition of
heterogeneous services (Web and Telecom) within a NGN. The objectives of
this research work are: first, creating a model for abstract and concrete service
interface specifications for each service type and interaction model, second, de-
fining a service creation environment (SCE) using a orchestration language to
compose heterogeneous services, and third, developing a convergent platform
for the orchestration and composition of heterogeneous services from different
domains environments.

Keywords: Next Generation Network, Web-Telecom Convergence, Service
Composition, BPMN, JSLEE.

1 Introduction

The providers of Telecom services are researching the development of value-added
services leveraging on internet and telephony networks, i.e. the integration and com-
position of services offered by IT providers with Telecom operators towards the Web-
Telecom convergence.

The major technical difficulty to achieve the convergence is that each service envi-
ronment relies on specific protocols and architectures that are not natively interoper-
able. The web services are typically exposed with a synchronous interaction model
(request-reply) and use Hyper Text Transfer Protocol (HTTP) [1] and Web Service
Description Language (WSDL) [2], respectively, for message exchange between
client and provider, and service description. The Telecom services, instead, are typi-
cally asynchronous and event-driven. In this case, international level specifications
have been defined, e.g., applications based on the Session Initiation Protocol (SIP) [3]
(e.g., call forwarding service) in IP Multimedia Subsystem (IMS) [4] and Java
API for Integrated Networks Service Logic Execution Environment (JSLEE) [5], and

* This PhD work is supervised by Dr. Federica Paganelli.

 Description and Composition of Services towards the Web-Telecom Convergence 579

Parlay X specifications [6], which define a set of Web service interfaces for the invo-
cation of communication functionality.

This work aims at investigating the study of service description models and me-
chanisms that facilitate and automate the interoperation and composition of heteroge-
neous services towards the Web-Telecom convergence. The objectives of this
research work are: i) to create a model for abstract and concrete service interface spe-
cifications for different service types, such as Simple Object Access Protocol, (SOAP)
[7], Representational state transfer (REST) [8], and SIP services, and interaction
models (i.e., input and output parameters, events and action related to an event), ii) to
define a service creation environment that uses a orchestration language to compose
Web and Telecom services, and iii) to develop a service orchestration platform based
on the adoption of a standalone workflow engine to orchestrate heterogeneous servic-
es from different domain environments (e.g., SOAP and REST services, IMS-based
and JSLEE-based SIP services).

I chose to adopt Business Process Model and Notation (BPMN) 2.0 [9] as orches-
tration language because it allows non-expert users to describe in intuitive and easy
way any service type (Web or Telecom) by graphical notation.

Finally, to validate the proposed approach, my work includes also the implementa-
tion of a proof-of-concept of the above-mentioned Service Orchestration Platform.
This prototype composes heterogeneous services provided by JAIN SLEE-compliant
platform and simple IT web services developed by SOAP. This prototype leverages
the Java Business Process Management (JBPM) [10] as workflow engine and Mobi-
cents [19] as open source platform certified for JSLEE compliance.

2 Related Work

In literature there are different approaches for the realization of a convergent platform
that provides an orchestration of heterogeneous services within the NGN.

TeamCom [11] project permits to define a service creation environment (SCE) in
which each service is composed from one or more reusable service components. This
approach employs BPEL to specify the composition and control flow of these service
components. The BPEL scripts are analyzed and translated by a code generator into
java code modules that can be deployed on a JSLEE execution environment. This
approach permits to abstract the communication services, but is limited to compose
and integrate only Telecom services on a JSLEE environment. Analogously, SewNet
[12] platform proposes a solution that permits to abstract the communication services
defining, in this case, an abstraction model for the Telecom functionalities.

Femminella et al. [13] propose to integrate a JBPM workflow engine inside the de-
velopment environment of the JSLEE platform. This approach permits that service
business logic can be separated by implementation issues and designed by non JSLEE
experts. This solution is thus bounded to the JSLEE environment and supports the
orchestration of services invoked through a variety of JSLEE Resource Adaptors.
Analogously, Bessler et al. [14] integrate a BPEL orchestration engine into a JSLEE
environment. This approach permits to create a service orchestration environment that
uses deployable BPEL scripts to control and invoke service building blocks (SBB)

580 T. Ambra

or external entities via different protocols as SIP , Intelligent Network Application
Protocol (INAP) [15] or SOAP.

OPUCE [16] implements a solution that uses a standalone BPEL orchestration en-
gine. This approach permits to define, for the communication services, base services
identified by three sets of elements: properties, actions and events. With respect to
previous approaches, this solution allows developers to choose their preferred envi-
ronment to develop and deploy the base services. However, base service exposure
should adopt the Web service stack specification and a WS-proxy is needed for inter-
facing components that offers different APIs.

Among the above mentioned works, this PhD work shows some similarities with
OPUCE, since I chose to adopt a standalone workflow engine. Therefore, I do not
specify any constraint on the implementation and execution environment of the base
services. In addition my original contribution permits that base services APIs shall not
be necessarily exposed as SOAP web services. Services can be invoked through dif-
ferent protocols (e.g., SIP, HTTP) and message formats.

3 Service Orchestration Platform

In this section, first I describe the objectives of this research work, and second, I
present the proposed solution for the orchestration of heterogeneous services.

The first aim is to create a model for abstract and concrete service interface speci-
fications for different service types (e.g., SOAP, REST and SIP services) and interac-
tion models [17] (i.e., input and output parameters, events and action related to an
event).

The second aim is to define a service creation environment (SCE) that uses a busi-
ness process orchestration language to orchestrate heterogeneous Web and Telecom
services. In the most widely used current approaches [16], [14] and [11], BPEL is
been used as orchestration language, although it is conceived to orchestrate only web
services. In our solution, I chose to adopt Business Process Model and Notation
(BPMN) 2.0 [9] because it allows non-expert users to describe any service type (Web
and Telecom) in very intuitive and easy way by a graphical notation.

The third aim is to design and develop a service orchestration platform that is able
to invoke heterogeneous services from different domain environments (e.g., IMS-
based and Mobicents JSLEE-based SIP services, SOAP and REST services).

To this end, the proposed solution is based on the adoption of workflow engine that
can be deployed as a standalone solution. The workflow engine interacts with hetero-
geneous services provisioned by different external service provider platforms, accord-
ing to the interaction paradigm (synchronous/asynchronous), protocol (e.g., SOAP,
HTTP, SIP) and message format, such as Extensible Markup Language (XML) [18]
and Session Description Protocol (SDP) [3], specified in the service interface descrip-
tion. Fig. 1 shows the functional architecture of the service orchestration platform
proposed in this PhD work. This platform provides three components:

• The Service Creation Environment (SCE) includes BPMN 2.0 as orchestration
language to compose base services for offering composite services.

 Description and Composition of Services towards the Web-Telecom Convergence 581

• The Service Execution Engine (SEE) includes a workflow engine that invokes the
heterogeneous services provisioned by different external service provider plat-
forms, and a component to select the provider services that optimize the overall
Quality of Service (QoS) [19] [20], according to network requirements.

• The Service Repository holds the information about each the service instance in-
cluding the service URI and capabilities description.

Fig. 1. Functional architecture of a Service Orchestration Platform

3.1 Proof of Concept

To validate the proposed approach, this PhD work includes the implementation of a
proof-of-concept of the above-mentioned Service Orchestration Platform. Fig. 2
shows the prototype of this platform at the current state of development.

As orchestration engine I chose to adopt JBPM because it is open source, offers a
strong interaction in Java environments and has a very simple graphical design tool.
Moreover, JBPM allows to extend a default process constructs with domain-specific
extensions that simplify development in a particular application domain. This permits
also non-expert users to define domain-specific work items [10] for each type of ser-
vice (also called service nodes), which represent atomic units of work that need to be
executed. I embedded the JBPM workflow engine in a servlet container (Apache
Tomcat [21]). In this way, an end user accessing a web application can trigger a com-
posite service execution through a HTTP request.

As an example, I show the implementation of an “Expert on Call” service. In this
scenario, a user having noticed a malfunction or failure of the business device, can
contact a technician for assistance. The invocation flow is structured as follows:

582 T. Ambra

first the user’s personal data and location are retrieved, respectively by invoking a
GetMember and GetLocation services. Then a GetCredit service is invoked to per-
form a check on the available user’s credit. If the user’s credit is enough to call, a
GetLocation service is invoked to search the expert nearby and are retrieved the ex-
pert’s personal data by invoking a GetMember service. Finally, a third party call ser-
vice is invoked to establish a call between the user and the expert. Otherwise, if the
user’s credit is not enough to call, a message service is invoked to inform the user that
the call can be not established. These service nodes can be combined as shown in Fig.
2. The base services have been implemented in two different environments. The third
party call service is implemented as a JSLEE service that sends appropriate SIP sig-
naling messages for the call setup between the two peers.

As JSLEE platform we chose to adopt Mobicents [22]. The Mobicents platform is
built on top of the open source JBoss Application Server. The other services have
been implemented as JAVA web services hosted on a JBoss Application Server.

Fig. 2. Prototype of a Service Orchestration Platform

 Description and Composition of Services towards the Web-Telecom Convergence 583

4 Conclusions

This PhD work focuses on the study of service description models and mechanisms
that facilitate and automate the interoperation and composition of heterogeneous ser-
vices (Web and Telecom) within a NGN. The objectives of this work are: i) to create
a model for abstract and concrete service interface specifications for each service type
and interaction model, ii) to define a service creation environment that uses BPMN
2.0 as orchestration language to compose Web and Telecom services, and iii) to
develop a service orchestration platform based on the adoption of a standalone work-
flow engine to orchestrate heterogeneous services from different domain environ-
ments (e.g., SOAP and REST services, IMS-based and JSLEE-based SIP services).

At the current state of development, I implemented a prototype of Service Orches-
tration Platform which is able to compose heterogeneous services provided by JAIN
SLEE-compliant platform and simple IT web services developed by SOAP. This pro-
totype employs JBPM as workflow engine that permits to implement custom work
items to define abstract service interfaces, and Mobicents as open source platform for
the JSLEE services. I took into account a scenario for a “Expert on Call” service be-
tween a user and a expert, and I embedded JBPM in a servlet container (Apache
Tomcat) so that an end user accessing a web application can trigger a composite ser-
vice execution through a HTTP request.

Future work includes the study and development of a orchestration environment
implementing dynamic binding techniques that comply with the binding information
contained in the base service description, and the creation of a component to select the
provider services that optimize the overall QoS, according to network requirements.

References

1. W3C, Hypertext Transfer Protocol – HTTP/1.1, W3C Note (June 1999),
http://www.w3.org/Protocols/rfc2616/rfc2616.html

2. W3C, The Web Service description Language (WSDL) 1.1, W3C Note (March 15, 2001),
http://www.w3.org/TR/wsdl

3. Rosenberg, J., et al.: RFC3261-SIP: Session Initiation Protocol. (June 2002),
http://www.ietf.org/rfc/rfc3261.txt

4. Blum, N., Magedanz, T.: Requirements and components of a SOA-based NGN service ar-
chitecture. Elek. und Inf. 125(7), 263–267 (2008)

5. Sun Microsystems, Open Cloud, JSR-000240 Specification, Final Release, JAIN SLEE
(JSLEE) 1.1, SUN (2008)

6. The 3rd Generation Partnership Project (3GPP), Open service access (OSA) Parlay X web ser-
vices (2008), http://www.3gpp.org/ftp/Specs/html-info/29-series.htm

7. W3C, Simple Object Access Protocol (SOAP) 1.1, W3C Recommendation, 2nd edn.
(April 27, 2007), http://www.w3.org/TR/soap/

8. Belqasmi, F., et al.: RESTful web services for service provisioning in next-generation
networks: A survey. IEEE Communications Magazine 49(12), 66–73 (2011)

9. OMG, Business Process Model and Notation (BPMN), http://www.bpmn.org/
10. JBPM User guide,

http://docs.jboss.com/jbpm/v4/userguide/html_single/

584 T. Ambra

11. Lehmann, A., et al.: TeamCom: a service creation platform for next generation networks.
In: Proc. of 4 Int. Conf. on Internet and Web App. and Services, Venice/Mestre (2009)

12. Mittal, S., Chakraborty, D., Goyal, S., Mukherjea, S.: SewNet - A framework for creating
services utilizing telecom functionality. In: Proc. of WWW Conf., pp. 875–884 (2008)

13. Femminella, M., Maccherani, E., Reali, G.: Workflow Engine Integration in JSLEE AS.
IEEE Communications Letters 15(12), 1405–1407 (2011)

14. Bessler, S., Zeiss, J., Gabner, R., Gross, J.: An orchestrated execution environment for hy-
brid services. Fachtagung Kommunikation in Verteilten Systemen, 77–88 (2007)

15. ETSI, Intelligent network application protocol (INAP), ETS 300 374-1 (September 1994)
16. Yelmo, J.C., et al.: A User-Centric service creation approach for Next Generation Net-

works. In: ITU-T. Innovations in NGN - Future Network and Services, Geneva (May
2008)

17. Ambra, T., Paganelli, F., Fantechi, A., Giuli, D., Mazzi, L.: Resource-oriented design to-
wards the convergence of Web-centric and Telecom-centric services. In: Second Interna-
tional Conference on Future Generation Communication Technologies (FGCT 2013),
December 12-14, British Computer Society, London (2013)

18. W3C, Extensible Markup Language (XML), http://www.w3.org/XML/
19. Paganelli, F., Parlanti, D.: A Dynamic Composition and Stubless Invocation Approach for

Information-Providing Services. IEEE Transactions on Network and Service Manage-
ment 10(2), 218–230 (2013), doi:10.1109/TNSM.2013.022213.120229

20. Paganelli, F., Ambra, T., Parlanti, D.: A QoS-aware Service Composition Approach based
on Semantic Annotations and Integer Programming. International Journal of Web Informa-
tion Systems 8(3), 296–321 (2012)

21. Apache Software Foundation, Apache Tomcat (January 2008),
http://tomcat.apache.org/

22. Mobicents Project, Mobicents: The open source VoIP middleware platform,
https://mobicents.dev.java.net/

Author Index

Aced López, Sebastián 271
Albayrak, Sahin 240
Ambra, Terence 578
Amme, Wolfram 40
Andrikopoulos, Vasilios 69
Arzhaeva, Yulia 339

Backmann, Michael 406
Baryannis, George 256
Bathelt-Tok, Franziska 528
Bauer, Bernhard 225
Baumgrass, Anne 111, 406, 419
Becker, Valeria 28
Bednarz, Tomasz 339
Belala, Faiza 381
Benatallah, Boualem 527
Bendoukha, Sofiane 535
Benzadri, Zakaria 381
Bona, Luis Carlos Erpen De 294
Bonino, Dario 271
Bouanaka, Chafia 381
Bouvry, Pascal 366
Brandic, Ivona 527
Bratanis, Konstantinos 150, 177
Bucchiarone, Antonio 69
Burdett, Neil 339

Cappi, Juan 28
Cardellini, Valeria 432
Castro, Harold 366
Chen, Junliang 492
Chen, Licheng 505
Chen, Shiping 339
Chituc, C.M. 379
Clarke, Damian 563
Colman, Alan 569
Corno, Fulvio 271

Dam, Hoa Khanh 95
Diaz, Cesar O. 366
Driessen, Thomas 225
Du, Wencai 163, 209
Duan, Kewei 308
Duan, Yucong 163, 209
Dustdar, Schahram 95

Eid-Sabbagh, Rami-Habib 4
Engels, Gregor 16
Escoffier, Clément 457
Esteves, Sérgio 324

Fahland, Dirk 123
Fähndrich, Johannes 240
Faulkner, Stéphane 82
Fenoglio, Mauricio 480
Feuerlicht, George 1
Fowley, Frank 137
Friesen, Andreas 150, 192

Galante, Guilherme 294
Galnares, Mat́ıas 480
Gerth, Christian 16
Ghose, Aditya 95
Ghumman, Waheed Aslam 557
Gierds, Christian 123
Glesner, Sabine 528
Gómez Sáez, Santiago 69
González, Laura 445, 480
Gonzalez, Pavel 54
Gouvas, Panagiotis 150
Griesmayer, Andreas 54
Gröner, Gerd 223
Grossmann, Georg 248
Günalp, Ozan 457
Gurevey, Tim 339

Han, Jun 569
Hansen, Klaus Marius 469
Herzberg, Nico 111, 406
Hu, Guangchang 492
Huang, Keman 163

Ismail, Azlan 432

Jordan, Andreas 248
Jureta, Ivan J. 82

Karastoyanova, Dimka 69
Kattepur, Ajay 163, 209
Kayes, A.S.M. 569
Kefu, Xu 394
Kendall, Elisa F. 223

586 Author Index

Khassapov, Alex 339
Khovalko, Oleh 111
Kim, H. Alicia 308
Kiran, Mariam 192
Kourtesis, Dimitrios 150, 177

Laborde, Jorge Luis 480
Lalanda, Philippe 457
Lamersdorf, Winfried 1
Langermeier, Melanie 225
Li, Guo 394
Llamb́ıas, Guzmán 445
Lomuscio, Alessio 54
Lu, Qinghua 505, 515
Ludwig, Heiko 28

Masuch, Nils 240
Mateo, Jordi 281
Mattoso, Marta 352
Mayer, Wolfgang 248
Meade, Susan 28
Mendling, Jan 419
Meng, Xin 515
Mentzas, Gregoris 135
Metzke, Tobias 419
Meyer, Andreas 406
Mezzina, Claudio Antares 69
Mury, Antonio Roberto 294

Nagel, Benjamin 16
Nepal, Surya 279, 339
Nizamic, Faris 551
Norta, A. 379

Oberkampf, Heiner 225
Ocaña, Kary A.C.S. 352
Ogasawara, Eduardo 352
de Oliveira, Daniel 352
Ortiz, Guadalupe 1

Padget, Julian 308
Pahl, Claus 137
Pan, Jeff Z. 223
Pandey, Suraj 279
Paraskakis, Iraklis 135
Patrizi, Fabio 527
Pecero, Johnatan E. 366
Peng, Zhang 394
Pintas, Julliano Trindade 352

Plexousakis, Dimitris 256
Prinz, Thomas M. 40

Rogge-Solti, Andreas 419
Rosina, Peter 225
Rossini, Alessandro 150
Ruggia, Raúl 445, 480

Schulze, Bruno 294
Schwach, Wolfgang K.R. 192
Schwichtenberg, Antonia 150
Selway, Matt 248
Simons, Anthony J.H. 135, 150, 192
Solsona, Francesc 281
Sotelo, Germán 366
Stewart, Bairbre 28
Stojanovic, Ljiljana 223
Stumptner, Markus 248
Szul, Piotr 339

Taylor, John 339
Teixido, Ivan 281
Truong, Hong-Linh 95
Turchi, Stefano 543

Vaculin, R. 379
Veiga, Lúıs 324
Verginadis, Yiannis 150
Verlaine, Bertrand 82
Vilaplana, Jordi 281
Villamizar, Mario 366

Wang, Dadong 339
Wang, Yongzhi 209
Wei, Jinpeng 209
Weske, Mathias 4, 111, 406, 419
Wu, Budan 492

Yan, Li 394
Yang, Su 505
Yildirim, Hilmi 240

Zhang, Li 137
Zhang, Peiying 505, 515
Zhang, Weishan 379, 469, 505, 515
Zhang, Zhanshan 515
Zhao, Yuting 223
Zic, John 339
Zirpins, Christian 1

	Preface
	Organization
	Table of Contents
	Engineering Service-Oriented Applications WESOA 2013
	Introduction to the 9th International Workshop on Engineering Service-Oriented Applications (WESOA’13)
	Workshop Organizers
	Program Committee

	From Process Models to Business ProcessArchitectures: Connecting the Layers
	1 Introduction
	2 Foundations
	3 Process Model Elements and Process Structures Involved in Process Interdependencies
	3.1 Basic Process Elements
	3.2 Process Interaction Structures

	4 Extraction of BPAs
	5 Related Work
	6 Conclusion
	References

	Goal-Driven Compositionof Business Process Models
	1 Introduction
	2 Foundations
	2.1 Goal Models
	2.2 Business Process Modeling

	3 Approach
	3.1 Clustering of Business Process Fragments
	3.2 Calculation of Temporal Dependencies between Fragments
	3.3 Composition of Business Process Model

	4 Related Work
	5 Conclusion and Future Work
	References

	Integrating Service Release Managementwith Service Solution Design
	1 Introduction
	2 Issues Integrating Service Solution Design with Release Management
	2.1 Complex Solution Design in a Context of Fast-Evolving Services
	2.2 Release Management with Roadmaps

	3 Approach to Manage Solution and Feature Interdependencies
	3.1 Model of Dependencies
	3.2 Managing Interdependencies

	4 Implementation
	5 Related Work and Discussion
	6 Summary and Conclusion
	References

	Practical Compiler-Based User Support duringthe Development of Business Processes
	1 Introduction
	2 Preliminaries
	3 Informal Description
	4 Properties of Structural Errors
	5 Determination of Structural Errors
	5.1 Determination of Potential Deadlocks
	5.2 Determination of Potential Lack of Synchronization

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Model Checking GSM-Based Multi-AgentSystems
	1 Introduction
	2 The Guard-Stage-Milestone Artifact Model
	3 Agent-BasedGSM
	3.1 Agent Description

	4 Artifact-Centric Multi-Agent Systems
	4.1 Formal Model
	4.2 The Logic IQ-CTLK
	4.3 Mapping to Agent-Based GSM to AC-MAS

	5 Implementation
	5.1 Limitations

	6 Experimental Results
	7 Conclusions
	References

	Towards Modeling and Execution of Collective Adaptive Systems
	1 Introduction
	2 Motivating Scenario
	3 Overall Framework for CAS
	3.1 ConceptualModel
	3.2 Lifecycle

	4 Realization
	4.1 Architecture
	4.2 Implementation

	5 Related Work
	6 Conclusion and Future Work
	References

	A Requirements-Based Model for Effort Estimation in Service-Oriented Systems
	1 Introduction
	2 Related Work
	2.1 Software Development Costs Estimation in Service-Oriented Computing

	3 Methodology Followed
	4 A Model for Effort Estimation in SoS Development
	4.1 Software-Intrinsic Complexity Estimation in Service-Oriented Systems
	4.2 Estimation of the Total Intrinsic Size of the System-to-be
	4.3 Estimation of the Total DevelopmentWork Needed

	5 Example Case of the Proposed Effort Estimation Model
	6 Conclusions and Future Work
	References

	Augmenting Complex Problem Solving with Hybrid Compute Units
	1 Introduction
	2 Background and RelatedWork
	3 Fundamental Elements for Hybrid Compute Units
	3.1 Service-Based Compute Units
	3.2 Relationships between Service Units
	3.3 Quality, Cost, and Benefits

	4 High-Level Constructs for Hybrid Compute Units
	5 Illustrating Examples and Comparison
	5.1 Towards the Prototype Implementation
	5.2 Illustrative Application
	5.3 Comparison of Programming Models for Cloud Applications

	6 Conclusions and Future Work
	References

	Towards Automating the Detection of Event Sources
	1 Introduction
	2 Preliminaries
	3 Use Case
	4 Approach to Detect Bindings between EOTs and Event Sources
	4.1 Step 1: Determine the Similarity between Event Sources and EOTs
	4.2 Step 2: Rank and Determine Suitable Event Sources for an EOT
	4.3 Step 3: Derive the Binding between an EOT and an Event Source

	5 Evaluation Using Schema Matching
	5.1 Evaluation Setup
	5.2 Evaluation Results
	5.3 Evaluation Discussion

	6 Related Work
	7 Conclusion
	References

	Discovering Pattern-Based Mediator Services from Communication Logs
	1 Introduction
	2 Extracting Models from Event Logs
	2.1 Classical Process Mining
	2.2 The Problem of Discovering Mediator Services
	2.3 Coloured Petri Nets

	3 Pattern-Based Mediator Discovery
	3.1 Patterns as Building Blocks
	3.2 Building Candidates
	3.3 Replaying Logs

	4 Evaluation
	4.1 Results
	4.2 Heuristics for Runtime Improvement

	5 Related Techniques
	6 Conclusion and Outlook
	References

	Cloud Service Brokerage CSB 2013
	Cloud Service Brokerage - 2013: Methods and Mechanisms
	Preface

	A Comparison Framework and Review of ServiceBrokerage Solutions for Cloud Architectures
	1 Introduction
	2 Cloud Service Brokerage
	3 Cloud Service Broker Architectures
	3.1 Open-Source Solutions

	4 Service Management and Brokerage Comparison
	5 Challenges – Brokers, Markets and Federated Clouds
	6 Conclusions
	References

	Brokerage for Quality Assurance and Optimisation of Cloud Services: An Analysis of Key Requirements
	1 Introduction
	2 The Need for Cloud Service Brokers with Continuous Quality Assurance and Optimisation Capabilities
	3 The Requirements Derivation Process
	3.1 Service Lifecycle Model
	3.2 The Design Thinking Process for Deriving Requirements
	3.3 Requirements Specification Methodology

	4 Key Requirements for a Software Framework Enabling Continuous Quality Assurance and Optimisation
	4.1 Themes and Epics
	4.2 Capabilities

	5 Conclusions
	References

	Towards Value-Driven Business Modelling Basedon Service Brokerage
	1 Introduction
	2 Related Work
	3 Modeling the Foundation of SVB
	3.1 Value
	3.2 Exchange
	3.3 Brokerage
	3.4 Composition of SVB and DSVB

	4 Service Value Broker Patterns: Scenarios and Brokers in Cloud Architecture
	4.1 Brokers at the SaaS Layer
	4.2 Brokers at the PaaS Layer
	4.3 Brokers at the IaaS Layer
	4.4 The Brokerage Crossing Three Layers
	4.5 Value Broker

	5 Two-Level E-contract Based Implementation Framework
	6 The Case for the Service Contract Broker
	6.1 Service Contract Broker for Service Selection
	6.2 Service Contract Broker for Service Emerging

	7 Simulating
	8 Conclusion and Future Work
	References

	Introducing Policy-Driven Governance and Service Level Failure Mitigation in Cloud Service Brokers: Challenges Ahead
	1 Introduction
	2 Cloud Service Brokerage
	3 Continuous Quality Assurance Intermediation Example
	4 Challenges for Continuous Quality Assurance Intermediation
	4.1 Challenges of Policy-Driven Governance for Cloud Services
	4.2 Challenges of Service Level Failure Mitigation for Cloud Services

	5 Related Work
	5.1 Related Work on Policy-Driven Cloud Service Governance
	5.2 Related Work on Service Level Failure Mitigation for Cloud Services

	6 Conclusion and Future Work
	References

	Model-Based Testing in Cloud Brokerage Scenarios
	1 Introduction
	2 Functional Testing in Cloud Brokerage Scenarios
	2.1 Cloud Brokerage and the Service Lifecycle Model
	2.2 Model-Based Testing as an Enabling Technology

	3 Testing Methodology in Cloud Brokerage
	3.1 Design of the XML Specification Model
	3.2 Procedure for Generating Complete Functional Tests

	4 Analysis and Evaluation via Case Studies
	4.1 Case Study: A Shopping Cart Web Service
	4.2 Case Study: A SAP HANA Cloud Application

	5 Conclusions
	References

	Value-Added Modelling and Analysisin Service Value Brokerage
	1 Introduction
	2 The Background and Scenario
	2.1 Demonstration of SVB
	2.2 The General Business Scenario
	2.3 Domain Knowledge Based Classification of SVB

	3 The Analysis on Value Added
	3.1 Sources of Value Added
	3.2 Tradeoff on Long Run vs. Short Run

	4 Experiment
	5 Related Work
	6 Conclusion and Future Work
	References

	Semantic Web Enabled Software Engineering SWESE 2013
	Introduction to the Proceedings of the 9th International Workshop on Semantic Web Enabled Software Engineering (SWESE) 2013
	Preface

	Management of Variability in Modular Ontology Development
	1 Introduction
	2 State of the Art
	2.1 Modular Ontology Development
	2.2 VariabilityManagement

	3 Related Work
	4 Method
	4.1 Define Ontological VariabilityModelVMO
	4.2 Define Integrated VariabilityModel VMI
	4.3 Configuration of a Specific KnowledgeModel

	5 Technical Realization
	5.1 VariabilityModel Ontology
	5.2 Creation ofVMO with Mapping Semantic
	5.3 Creation ofVMI
	5.4 Instantiation ofVMI

	6 Evaluation
	7 Conclusion
	References

	Towards Automated Service Matchmaking and Planning for Multi-Agent Systems with OWL-S – Approach and Challenges
	1 Introduction
	2 Automated Service Matchmaking - The SeMa2 Approach
	2.1 Scoring and Aggregation of Different Matching Techniques

	3 Automated Service Composition
	3.1 Challenges

	4 Related Work
	5 Conclusion
	References

	Re-engineering the ISO 15926 Data Model:A Multi-level Metamodel Perspective
	1 Introduction
	2 Related Work
	3 Discussion on ISO 15926-2 Concepts
	3.1 Modelling in 3D vs 4D
	3.2 Representation of Concepts in the Real World
	3.3 Mereology - Part/Whole Relations
	3.4 Roles

	4 Multilevel Modelling
	5 Conclusion and Future Work
	References

	Fluent Calculus-Based Semantic Web ServiceComposition and Verification Using WSSL
	1 Introduction
	2 Motivating Scenario
	3 Web Service Specification Language
	3.1 Fluent Calculus Basics
	3.2 Defining WSSL Specifications

	4 Composition and Verification of WSSL Services
	4.1 WSSL for Composition
	4.2 Service Composition Planning
	4.3 Verification
	4.4 Complexity, Decidability and Planning Efficiency
	4.5 Other Features

	5 Experimental Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Template-Based Ontology Population for SmartEnvironments Configuration
	1 Introduction
	2 Related Works
	3 Background
	4 Problem Statement
	5 ProposedSolution
	5.1 Template Generation
	5.2 User Input Information
	5.3 Ontology Consolidation

	6 Experimental Results
	7 Conclusions
	References

	Cloud Computing and Scientific Applications CCSA 2013
	Introduction to the 3rd International Workshop on Cloud Computing and Scientific Applications (CCSA’13)
	Summary of Papers Presented in the Workshop

	SLA-Aware Load Balancing in a Web-BasedCloud System over OpenStack
	1 Introduction
	2 Architecture and Implementation
	3 SLA-Aware Scheduling
	4 Experimental Results
	4.1 Response Time
	4.2 Additional Performance Measurements

	5 Conclusions and Future Work
	References

	Are Public Clouds Elastic Enoughfor Scientific Computing?
	1 Introduction
	1.1 Public Cloud Elasticity Mechanisms

	2 Challenges and Open Issues
	2.1 Inappropriate Elasticity Mechanisms
	2.2 Resources Availability
	2.3 Limited Resources Granularity
	2.4 Spin-Up and Spin-Down Time

	3 Towards Scientific Elastic Applications
	4 FinalRemarks
	References

	A Light-Weight Framework for Bridge-Building from Desktop to Cloud
	1 Introduction
	2 Related Work
	3 A Cloud-Based Framework for Scientific Applications
	3.1 Service Deployment
	3.2 Service Invocation and Execution
	3.3 The Data Staging Mechanism

	4 Evaluation
	4.1 Experiment on Usefulness and Usability
	4.2 Case Studies
	4.3 Comparison of Data Staging Performance

	5 Conclusion and Future Work
	References

	Planning and SchedulingData Processing Workflows in the Cloudwith Quality-of-Data Constraints
	1 Introduction
	2 Scheduling Planner
	2.1 Workflow Model with Quality-of-Data
	2.2 Abstract Scheduling Planner

	3 WaaS Design and Implementation
	3.1 Workflow Description and WMS Integration
	3.2 Cost Model
	3.3 Resource Allocation and Isolation

	4 Experimental Evaluation
	5 Related Work
	6 Conclusion
	References

	Galaxy + Hadoop: Toward a Collaborative and Scalable Image Processing Toolbox in Cloud
	1 Introduction
	2 System Design and Implementation
	2.1 Key Requirements
	2.2 System Architecture
	2.3 Image Processing Tools as Services
	2.4 Tools Integration
	2.5 Compose Functionalities to Form a Workflow

	3 Scale Out Galaxy Using Hadoop
	3.1 Requirements for Scalability
	3.2 Using Hadoop for Data-Intensive Image Process
	3.3 Feed Hadoop with a Large Amount of Images
	3.4 Integrate Hadoop with Non-Java Software

	4 Performance Evaluation
	4.1 Performance Testing Environment
	4.2 Performance of Uploading Images to Cloud
	4.3 Performance of Packing Images for Hadoop
	4.4 Performance of Processing Images with Hadoop

	5 Related Work
	6 Conclusion
	References

	SciLightning: A Cloud Provenance-Based Event Notification for Parallel Workflows
	1 Introduction
	2 Monitoring in Scientific Workflows
	3 The SciLightning Event Notification Mechanism
	4 Experimental Evaluation
	5 Related Work
	6 Final Remarks
	References

	Energy Savings on a Cloud-Based OpportunisticInfrastructure
	1 Introduction
	2 Related Work
	3 Energy in an Opportunistic Cloud Environment
	3.1 Parameter Tunning
	3.2 Energy Model

	4 Evaluated Consolidation Strategies for UnaCloud
	5 Experimental Results
	5.1 Workload
	5.2 Experimental Scenarios
	5.3 Algorithms Comparison

	6 Conclusions and Future Work
	References

	Pervasive Analytical Service Clouds for the Enterprise and Beyond PACEB 2013
	Introduction to the Proceedings of the Workshop on Pervasive Analytical Service Clouds for the Enterprise and Beyond (PASCEB) 2013
	1 Introduction

	Towards a Formal Model for Cloud Computing
	1 Introduction
	2 Related Work
	3 Bigraphical Reactive Systems
	3.1 Concrete Place Graph
	3.2 Concrete Link Gra aph
	3.3 Concrete Bigraph
	3.4 Bigraphical Reactive Systems

	4 A Model for Cloud Computing
	4.1 Cloud Customers Bigraph
	4.2 Cloud Services Bigraph
	4.3 Cloud General Bigraph
	4.4 Cloud Deployment Models
	4.5 Cloud Reaction Rules

	5 Case Study
	6 Conclusion
	References

	An Optimized Strategy for Data Service Response with Template-Based Caching and Compression
	1 Introduction
	2 Related Works
	3 Template-Based Caching and Compression
	3.1 Template-Based Extraction
	3.2 Proxy-Based Caching
	3.3 Data Handling at Service and Client Side
	3.4 Benchmarking
	3.5 Experimental Setup
	3.6 Performance Analysis

	4 Conclusion
	References

	Model-Driven Event Query Generation for Business Process Monitoring
	1 Introduction
	2 Preliminaries
	3 Scenario
	4 Query Generation
	4.1 Creation of the RPST
	4.2 Transformation of a RPST to a Component Tree
	4.3 Query Generation from the Component Tree
	4.4 Implementation

	5 Application
	6 Related Work
	7 Conclusion
	References

	Enabling Semantic Complex Event Processingin the Domain of Logistics
	1 Introduction
	2 Usage of SCEP in Logistics
	3 Querying Semantic Events
	3.1 Semantic Event Model
	3.2 Semantic Event Queries
	3.3 Semantic CEP Querying

	4 Identifying Transportation-Related Events via SCEP
	5 Implementation/Architecture
	6 Experiment
	7 Related Work
	8 Conclusion
	References

	Towards Self-adaptation Planningfor Complex Service-Based Systems
	1 Introduction
	2 Self-adaptation Framework for CSBS
	2.1 Adaptation Managers
	2.2 Adaptation Interaction Process

	3 Adaptation Planning
	3.1 Overview of the Methodology
	3.2 Single Planning
	3.3 Multiple Planning

	4 Example and Discussion
	5 Related Work
	6 Conclusions and Future Work
	References

	Towards an Integration Platform for Bioinformatics Services
	1 Introduction
	2 Background
	2.1 Cloud Computing and PaaS
	2.2 Taverna and myGrid Project
	2.3 Enterprise Service Bus (ESB)

	3 Towards a Bioinformatics Integration Platform
	3.1 Integration Requirements
	3.2 Laboratory Scenarios
	3.3 Overall Architecture

	4 An ESB-Based Bioinformatics Integration Platform
	4.1 Asynchronous Communications
	4.2 Events and Notifications
	4.3 Transformation Service
	4.4 Implementation Details

	5 Related Work
	6 Conclusions and Future Work
	References

	Requirements to Pervasive System ContinuousDeployment
	1 Introduction
	2 The Pervasive Environment
	3 Continuous Deployment of Pervasive Systems
	4 Platform Requirements
	4.1 Requirement PF.1 – Modular Dynamic Deployment Platform
	4.2 Requirement PF.2 – Configurability
	4.3 Requirement PF.3 – Introspection
	4.4 Requirement PF.4 – Architectural Reconfiguration Support
	4.5 Requirement PF.5 – Context access
	4.6 Related Work on Deployment Platforms

	5 Deployment Process Requirements
	5.1 Requirement P.1 – Pull and Push
	5.2 Requirement P.2 – Determinism and Idempotence
	5.3 Requirement P.3 – Transactional
	5.4 Requirement P.4 – Adaptability and Customizability
	5.5 Requirement P.5 – Continuous Adaptation
	5.6 Related Work on Deployment Process

	6 Conclusion
	References

	Towards Structure-Based Quality Awarenessin Software Ecosystem Use
	1 Introduction
	2 Background and Related Work
	2.1 Software Ecosystems
	2.2 Eclipse
	2.3 Network Analysis

	3 Method
	3.1 Dynamic Analysis
	3.2 Static Analysis

	4 Results
	5 Discussion and Future Work
	References

	An Adaptive Enterprise Service Bus Infrastructure for Service Based Systems
	1 Introduction
	2 The Adaptive ESB Infrastructure
	2.1 Overall Approach
	2.2 Logical Architecture
	2.3 Implementing Specific Adaptation Strategies

	3 A JBossESB-Based Implementation
	3.1 Internal ESB Components
	3.2 AM Engine and Administrative Console
	3.3 Demonstration of the Main Functionalities

	4 Evaluation of the JBoss-ESB Based Implementation
	4.1 Overhead Introduced by the Infrastructure
	4.2 Resource Usage

	5 Related Work
	6 Conclusions and Future Work
	References

	Dynamic Adaptation of Business Process Based on Context Changes: A Rule-Oriented Approach
	1 Introduction
	2 Related Work
	3 Scenario and Problem Description
	4 The RoDP Approach
	4.1 The RoDP Architecture
	4.2 Definition
	4.3 The Rule Mapping Mechanism
	4.4 The RoDP Algorithm
	4.5 The Process Assessment Strategy
	4.6 Experiment and Analysis

	5 Conclusion
	References

	Flexible Component Migration in an OSGiBased Pervasive Cloud Infrastructure
	1 Introduction
	2 Overview of Component Migration
	2.1 Simple Introduction to OSGi and R-OSGi
	2.2 Component Migration of OSGi-PC

	3 Implementation of Component Migration
	3.1 Component Migration between Frameworks on RemotePowerful Nodes
	3.2 Component Migration between Frameworks on Different Platforms
	3.3 Component Migration between Frameworks on Small Devices

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Hybrid Emotion Recognition Using Semantic Similarity
	1 Introduction
	2 An Overview of Emotion Recognition Using Heart Rate Monitoring and Emotional KeyWords Identification
	2.1 Heart Rate for Different Emotion Status
	2.2 Emotional KeyWords
	2.3 Emotion Recognition Approach Overview

	3 Implementation of the Hybrid Emotion Recognition Approach
	3.1 Sememes Similarity
	3.2 Similarity ofWords in HowNet
	3.3 Similarity ofWords Not in HowNet
	3.4 Words Similarity Combining Tongyici Cilin

	4 Evaluation of the Hybrid Emotion Recognition Approach
	4.1 Accuracy
	4.2 Performance
	4.3 Power Consumption of the Recognition Application

	5 Related Work
	6 Conclusions and Future Work
	References

	PhD Symposium
	ICSOC PhD Symposium 2013
	Towards the Automated Synthesis of DataDependent Service Controllers
	1 Introduction
	2 Background
	2.1 Running Example
	2.2 Algebraic Petri Nets
	2.3 Specification Language

	3 Synthesis of Data Dependent Service Controllers
	3.1 Behavioral Abstraction
	3.2 Property Translation
	3.3 Composition

	4 Related Work
	5 Conclusion and Future Work
	References

	Multi-agent Approach for Managing Workflowsin an Inter-Cloud Environment
	1 Research Issues and Objectives
	2 Approach and Methodology
	3 Related Work
	4 Conclusion and Future Work
	References

	An Information-Centric System for Buildingthe Web of Things
	1 Introduction
	2 Motivation of the Work
	3 InterDataNet
	3.1 IDN Information Model (IDN-IM)
	3.2 IDN Service Architecture (IDN-SA)

	4 SmartSantander: Enabling a Web of Sensors
	5 Conclusions
	References

	Testing of Distributed Service-Oriented Systems
	1 Introduction
	2 Problem Statement
	3 Research Questions and Methodology
	4 Related Work
	5 ProposedSolution
	6 ExpectedImpact
	7 Preliminary Results and Research Plan
	8 Envisioned Research Outcomes
	References

	Automation of the SLA Life Cyclein Cloud Computing
	1 Introduction and Problem Statement
	2 Research Challenges, Gaps and Related Work
	3 Methods and Approaches towards Possible Solutions
	4 Conclusions
	References

	Towards a Dynamic Declarative Service Workflow Reference Model*
	1 Introduction
	2 Related Work
	3 Technical Approach
	3.1 Bayesian Networks
	3.2 Proof of Concept and Discussion

	4 Conclusion and Future Work
	References

	A Context-Aware Access Control Frameworkfor Software Services
	1 Introduction
	2 Research Challenges
	3 Related Work
	4 The Approach: Context-Aware Access Control
	5 Current Status of the Research
	5.1 A Semantic Policy Framework for CAAC
	5.2 Context Model

	6 Future Directions
	6.1 Relationship Model
	6.2 Situation Model
	6.3 Prototype and Evaluation

	7 Conclusion
	References

	Description and Composition of Services towards the Web-Telecom Convergence
	1 Introduction
	2 Related Work
	3 Service Orchestration Platform
	3.1 Proof of Concept

	4 Conclusions
	References

	Author Index

