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Abstract. Our research is motivated by the ubiquitous availability of
multiprocessor computers and the observation that available Web Ontol-
ogy Language (OWL) reasoners only make use of a single processor. This
becomes rather frustrating for users working in ontology development,
especially if their ontologies are complex and require long processing
times using these OWL reasoners. We present a novel algorithm that uses
a divide and conquer strategy for parallelizing OWL TBox classification,
a key task in description logic reasoning. We discuss some interesting
properties of our algorithm, e.g., its suitability for distributed reason-
ing, and present an empirical study using a set of benchmark ontologies,
where a speedup of up to a factor of 4 has been observed when using 8
workers in parallel.

1 Introduction

Due to the semantic web, a multitude of ontologies are emerging. Quite a few
ontologies are huge and contain hundreds of thousands of concepts. Although some
of these huge ontologies fit into one of OWL’s three tractable profiles, e.g., the
well known Snomed ontology is in the EL profile, there still exist a variety of other
OWL ontologies that make full use of OWL DL and require long processing times,
even when highly optimized OWL reasoners are employed. Moreover, although
most of the huge ontologies are currently restricted to one of the tractable profiles
in order to ensure fast processing, it is foreseeable that some of them will require
an expressivity that is outside of the tractable OWL profiles.

The research presented in this paper is targeted to provide better OWL rea-
soning scalability by making efficient use of modern hardware architectures such
as multi-processor/core computers. This becomes more important in the case of
ontologies that require long processing times although highly optimized OWL
reasoners are already used. We consider our research an important basis for the
design of next-generation OWL reasoners that can efficiently work in a paral-
lel/concurrent or distributed context using modern hardware. One of the major
obstacles that need to be addressed in the design of corresponding algorithms
and architectures is the overhead introduced by concurrent computing and its
impact on scalability.

Traditional divide and conquer algorithms split problems into independent
sub-problems before solving them under the premise that not much
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communication among the divisions is needed when independently solving the
sub-problems, so shared data is excluded to a great extent. Therefore, divide and
conquer algorithms are in principle suitable for concurrent computing, including
shared-memory parallelization and distributed systems.

Furthermore, recently research on ontology partitioning has been proposed
and investigated for dealing with monolithic ontologies. Some research results,
e.g. ontology modularization [10], can be used for decreasing the scale of an
ontology-reasoning problem. The reasoning over a set of sub-ontologies can be
executed in parallel. However, there is still a solution needed to reassemble sub-
ontologies together. The algorithms presented in this paper can also serve as a
solution for this problem.

In the remaining sections, we present our merge-classification algorithm which
uses a divide and conquer strategy and a heuristic partitioning scheme. We report
on our conducted experiments and their evaluation, and discuss related research.

2 A Parallelized Merge Classification Algorithm

In this section, we present an algorithm for classifying Description Logic (DL)
ontologies. Due to lack of space we refer for preliminaries about DLs, DL rea-
soning, and semantic web to [3,13].

We present the merge-classification algorithm in pseudo code. Part of the
algorithm is based on standard top- and bottom-search techniques to incremen-
tally construct the classification hierarchy (e.g., see [2]). Due to the symmetry
between top-down (� search) and bottom-up (⊥ search) search, we only present
the first one. In the pseudo code, we use the following notational conventions:
Δi, Δα, and Δβ designate sub-domains that are divided from Δ; we consider a
subsumption hierarchy as a partially order over Δ, denoted as ≤, a subsumption
relationship where C is subsumed by D (C � D) is expressed by C ≤ D or by
〈C,D〉 ∈ ≤, and ≤i, ≤α, and ≤β are subsumption hierarchies over Δi, Δα, and
Δβ , respectively; in a subsumption hierarchy over Δ, C ≺ D designates C � D
and there does not exist a named concept E such that C ≤ E and E ≤ D; ≺i,
≺α and ≺β are similar notations defined over Δi, Δα, and Δβ , respectively.

Our merge-classification algorithm classifies a taxonomy by calculating its
divided sub-domains and then by merging the classified sub-taxonomies together.
The algorithm makes use of two facts: (i) If it holds that B ≤ A, then the sub-
sumption relationships between B’s descendants and A’s ancestors are deter-
mined; (ii) if it is known that B 
≤ A, the subsumption relationships between
B’s descendants and A’s ancestors are undetermined. The canonical DL clas-
sification algorithms, top-search and bottom-search, have been modified and
integrated into the merge-classification. The algorithm consists of two stages:
divide and conquering, and combining. Algorithm 1 shows the main part of our
parallelized DL classification procedure. The keyword spawn indicates that its
following calculation must be executed in parallel, either creating a new thread
in a shared-memory context or generating a new process or session in a non-
shared-memory context. The keyword sync always follows spawn and suspends
the current calculation procedure until all calculations invoked by spawn return.
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Algorithm 1. κ(Δi)
input : The sub-domain Δi

output: The subsumption hierarchy classified over Δi

1 begin
2 if divided enough?(Δi) then
3 return classify(Δi);
4 else
5 〈Δα, Δβ〉 ← divide(Δi);
6 ≤α← spawn κ(Δα);
7 ≤β← κ(Δβ);
8 sync;
9 return μ(≤α, ≤β);

10 end if

11 end

Algorithm 2. μ(<α, <β)
input : The master subsumption hierarchy ≤α

The subsumption hierarchy ≤β to be merged into ≤α

output: The subsumption hierarchy resulting from merging ≤α over ≤β

1 begin
2 �α ← select-top(≤α);
3 �β ← select-top(≤β);
4 ⊥α ← select-bottom(≤α);
5 ⊥β ← select-bottom(≤β);
6 ≤α← � merge(�α, �β);
7 ≤i← ⊥ merge(⊥α, ⊥β);
8 return ≤i;

9 end

The domain Δ is divided into smaller partitions in the first stage. Then,
classification computations are executed over each sub-domain Δi. A classified
sub-terminology ≤i is inferred over Δi. This divide and conquering operations
can progress in parallel.

Classified sub-terminologies are to be merged in the combining stage. The
told subsumption relationships are utilized in the merging process. Algorithm 2
outlines the master procedure, and the slave procedure is addressed by Algo-
rithms 3, 4, 5, and 6.

2.1 Divide and Conquer Phase

The first task is to divide the universe, Δ, into sub-domains. Without loss of
generality, Δ only focuses on significant concepts, i.e., concept names or atomic
concepts, that are normally declared explicitly in some ontology O, and inter-
mediate concepts, i.e., non-significant ones, only play a role in subsumption
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Algorithm 3. � search(C,D,≤i)
input : C: the new concept to be classified

D: the current concept with 〈D, �〉 ∈ ≤i

≤i: the subsumption hierarchy

output: The set of parents of C: {p | 〈C, p〉 ∈ ≤i}.
1 begin

2 mark visited(D);

3 green ← φ;

4 forall the d ∈ {d | 〈d, D〉 ∈≺i} do /* collect all children of D that subsume C */

5 if ≤?(C, d) then

6 green ← green ∪ {d};
7 end if

8 end forall

9 box ← φ;

10 if green = φ then

11 box ← {D};
12 else

13 forall the g ∈ green do

14 if ¬marked visited?(g) then

15 box ← box ∪ � search(C, g, ≤i) ; /* recursively test whether C is

subsumed by the descendants of g */

16 end if

17 end forall

18 end if

19 return box; /* return the parents of C */

20 end

tests. Each sub-domain is classified independently. The divide operation can be
naively implemented as an even partitioning over Δ, or by more sophisticated
clustering techniques such as heuristic partitioning that may result in a better
performance, as presented in Sect. 3. The conquering operation can be any stan-
dard DL classification method. We first present the most popular classification
methods, top-search (Algorithm 3) and bottom-search (omitted here).

The DL classification procedure determines the most specific super- and the
most general sub-concepts of each significant concept in Δ. The classified con-
cept hierarchy is a partial order, ≤, over Δ. � search recursively calculates a
concept’s intermediate predecessors, i.e., intermediate immediate ancestors, as
a relation ≺i over ≤i.

2.2 Combining Phase

The independently classified sub-terminologies must be merged together in the
combining phase. The original top-search (Algorithm 3) (and bottom-search)
have been modified to merge two sub-terminologies ≤α and ≤β . The basic idea
is to iterate over Δβ and to use top-search (and bottom-search) to insert each
element of Δβ into ≤α, as shown in Algorithm 4.
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Algorithm 4. � merge−(A,B,≤α,≤β)
input : A: the current concept of the master subsumption hierarchy, i.e. 〈A, �〉 ∈≤α

B: the new concept from the merged subsumption hierarchy, i.e. 〈B, �〉 ∈≤β

≤α: the master subsumption hierarchy

≤β : the subsumption hierarchy to be merged into ≤α

output: The merged subsumption hierarchy ≤α over ≤β .

1 begin

2 parents ← � search(B, A, ≤α);
3 forall the a ∈ parents do

4 ≤α←≤α ∪〈B, a〉; /* insert B into ≤α */
5 forall the b ∈ {b | 〈b, B〉 ∈≺β} do /* insert children of B (in ≤β) below parents

of B (in ≤α) */
6 ≤α← � merge−(a, b, ≤α, ≤β);
7 end forall

8 end forall
9 return ≤α;

10 end

Algorithm 5. � merge(A,B,≤α,≤β)
input : A: the current concept of the master subsumption hierarchy, i.e. 〈A, �〉 ∈≤α

B: the new concept of the merged subsumption hierarchy, i.e. 〈B, �〉 ∈≤β

≤α: the master subsumption hierarchy
≤β : the subsumption hierarchy to be merged into ≤α

output: the merged subsumption hierarchy ≤α over ≤β

1 begin

2 parents ← � search∗(B, A, ≤β , ≤α);
3 forall the a ∈ parents do

4 ≤α←≤α ∪〈B, a〉;
5 forall the b ∈ {b | 〈b, B〉 ∈≺β} do

6 ≤α← � merge(a, b, ≤α, ≤β);
7 end forall

8 end forall

9 return ≤α;

10 end

However, this method does not make use of so-called told subsumption (and
non-subsumption) information contained in the merged sub-terminology ≤β . For
example, it is unnecessary to test ≤?(B2, A1) when we know B1 ≤ A1 and
B2 ≤ B1, given that A1, A2 occur in Δα and B1, B2 occur in Δβ .

Therefore, we designed a novel algorithm in order to utilize the properties
addressed by Proposition 1 to 6. The calculation starts top-merge (Algorithm
5), which uses a modified top-search algorithm (Algorithm 6). This pair of pro-
cedures find the most specific subsumers in the master sub-terminology ≤α for
every concept from the sub-terminology ≤β that is being merged into ≤α.

Proposition 1. When merging sub-terminology ≤β into ≤α, if 〈B,A〉 ∈ ≺i is
found in top-search, 〈A,�〉 ∈ ≤α and 〈B,�〉 ∈ ≤β, then for ∀b ∈ {b | 〈b,B〉 ∈ ≤β}
and ∀a ∈ {a | 〈A, a〉 ∈ ≤α} ∪ {A} it is unnecessary to calculate whether b ≤ a.



216 K. Wu and V. Haarslev

Algorithm 6. � search∗(C,D,≤β ,≤α)
input : C: the new concept to be inserted into ≤α, and 〈C, �〉 ∈ ≤β

D: the current concept, and 〈D, �〉 ∈ ≤α

≤β : the subsumption hierarchy to be merged into ≤α

≤α: the master subsumption hierarchy

output: The set of parents of C: {p | 〈C, p〉 ∈≤α}
1 begin

2 mark visited(D);

3 green ← φ; /* subsumers of C that are from ≤α */

4 red ← φ; /* non-subsumers of C that are children of D */

5 forall the d ∈ {d | 〈d, D〉 ∈≺α ∧〈d, �〉 �∈≤β} do

6 if ≤?(C, d) then

7 green ← green ∪ {d};
8 else

9 red ← red ∪ {d};
10 end if

11 end forall

12 box ← φ;

13 if green = φ then

14 if ≤?(C, D) then

15 box ← {D};
16 else

17 r ← {D};
18 end if

19 else

20 forall the g ∈ green do

21 if ¬marked visited?(g) then

22 box ← box ∪ � search∗(C, g, ≤β , ≤α);

23 end if

24 end forall

25 end if

26 forall the r ∈ red do

27 forall the c ∈ {c | 〈c, C〉 ∈≺i} do

28 ≤α← � merge(r, c, ≤α, ≤β);

29 end forall

30 end forall

31 return box;

32 end

Proposition 2. When merging sub-terminology ≤β into ≤α, if 〈B,A〉 ∈ ≺i is
found in top-search, 〈A,�〉 ∈ ≤α and 〈B,�〉 ∈ ≤β, then for ∀b ∈ {b | 〈b,B〉 ∈ ≺β

∧b 
= B} and ∀a ∈ {a | 〈a,A〉 ∈ ≺α ∧a 
= A} it is necessary to calculate whether
b ≤ a.

Proposition 3. When merging sub-terminology ≤β into ≤α, if B 
≤ A is
found in top-search, 〈A,�〉 ∈ ≤α and 〈B,�〉 ∈ ≤β, then for ∀b ∈ {b | 〈b,B〉 ∈ ≤β

∧b 
= B} and ∀a ∈ {a | 〈a,A〉 ∈ ≤α} ∪ {A} it is necessary to calculate whether
b ≤ a.

Proposition 4. When merging sub-terminology ≤β into ≤α, if 〈A,B〉 ∈ ≺i

is found in bottom-search, 〈⊥, A〉 ∈ ≤α and 〈⊥, B〉 ∈ ≤β, then for ∀b ∈ {b |
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〈B, b〉 ∈ ≤β} and ∀a ∈ {a | 〈a,A〉 ∈ ≤α} ∪ {A} it is unnecessary to calculate
whether a ≤ b.

Proposition 5. When merging sub-terminology ≤β into ≤α, if 〈A,B〉 ∈ ≺i is
found in bottom-search, 〈⊥, A〉 ∈ ≤α and 〈⊥, B〉 ∈ ≤β, then for ∀b ∈ {b | 〈B, b〉 ∈
≺β ∧b 
= B} and ∀a ∈ {a | 〈A, a〉 ∈ ≺α ∧a 
= A} it is necessary to calculate
whether a ≤ b.

Proposition 6. When merging sub-terminology ≤β into ≤α, if A 
≤ B is found
in bottom-search, 〈⊥, A〉 ∈ ≤α and 〈⊥, B〉 ∈ ≤β, then for ∀b ∈ {b | 〈B, b〉 ∈ ≤β

∧b 
= B} and ∀a ∈ {a | 〈A, a〉 ∈ ≤α} ∪ {A} it is necessary to calculate whether
a ≤ b.

When merging a concept B, 〈B,�〉 ∈ ≤β , the top-merge algorithm first finds
for B the most specific position in the master sub-terminology ≤α by means of
top-down search. When such a most specific super-concept is found, this concept
and all its super-concepts are naturally super-concepts of every sub-concept of
B in the sub-terminology ≤β , as is stated by Proposition 1. However, this newly
found predecessor of B may not be necessarily a predecessor of some descendant
of B in ≤β . Therefore, the algorithm continues to find the most specific positions
for all sub-concepts of B in ≤β according to Proposition 2. Algorithm 5 addresses
this procedure.

Non-subsumption information can be told in the top-merge phase. Top-
down search employed by top-merge must do subsumption tests somehow. In a
canonical top-search procedure, as indicated by Algorithm 3, the branch search
is stopped at this point. However, the conclusion that a merged concept B,
〈B,�〉 ∈ ≤β , is not subsumed by a concept A, 〈A,�〉 ∈ ≤α, does not rule out
the possibility of b ≤ A, b ∈ {b | 〈b,B〉 ∈ ≺β}, which is not required in tradi-
tional top-search and may be abound in the top-merge procedure, and therefore
must be followed by determining whether b ≤ A. Otherwise, the algorithm is
incomplete. Proposition 3 presents this observation. For this reason, the original
top-search algorithm must be adapted to the new situation. Algorithm 6 is the
updated version of the top-search procedure.

Algorithm 6 not only maintains told subsumption information by the set
green, but also propagates told non-subsumption information by the set red for
further inference. As addressed by Proposition 3, when the position of a merged
concept is determined, the subsumption relations between its successors and the
red set are calculated. Furthermore, the subsumption relation for the concept C
and D in Algorithm 6 must be explicitly calculated even when the set green is
empty. In the original top-search procedure (Algorithm 3), C ≺i D is implicitly
derivable if the set green is empty, which does not hold in the modified top-
search procedure (Algorithm 6) since it does not always start from � any more
when searching for the most specific position of a concept.
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Fig. 1. An example ontology.

�α
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(a) The subsumption hierarchy≤α.

�β

A6

A1 A8

A4

⊥β

(b) The subsumption hierarchy ≤β .

Fig. 2. The subsumption hierarchy over divisions.

2.3 Example

We use an example to illustrate the algorithm further. Given an ontology with
a TBox defined by Fig. 1(a), which only contains simple concept subsumption
axioms, Fig. 1(b) shows the subsumption hierarchy.

Suppose that the ontology is clustered into two groups in the divide phase:
Δα = {A2, A3, A5, A7} and Δβ = {A1, A4, A6, A8}. They can be classified inde-
pendently, and the corresponding subsumption hierarchies are shown in Fig. 2.
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� merge(�α, �β, ≤α, ≤β)

� search∗(�β, �α, ≤β, ≤α)

� merge(A5, A6, ≤α, ≤β)

� search∗(A6, A5, ≤β, ≤α)

� merge(A5, A1, ≤α, ≤β)

� search∗(A1, A5, ≤β, ≤α)

� merge(A5, A4, ≤α, ≤β)

� search∗(A4, A5, ≤β, ≤α)

� merge(A2, ⊥β, ≤α, ≤β)

� search∗(⊥β, A2, ≤β, ≤α)

...

{A2}

≤α←≤α ∪{⊥β ≤ A2}

{A5}

≤α←≤α ∪{A4 ≤ A5}

φ

≤α←≤α ∪ φ

φ

≤α←≤α ∪ φ

{�α}

Fig. 3. The computation path of determining A4 ≤i A5.

�αβ

A7 A5 A6

A3 A2 A1

A4

A8

⊥α ⊥β

Fig. 4. The subsumption hierarchy after A4 ≤ A5 has been determined.
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Algorithm 7. cluster(G)
input : G: the subsumption graph
output: R: the concept names partitions

1 begin
2 R ← φ;
3 visited ← φ;
4 N ← get children(�, G);
5 foreach n ∈ N do
6 P ← {n};
7 visited ← visited ∪ {n};
8 R ← R ∪ {build partition(n, visited ,G,P)};

9 end foreach
10 return R;

11 end

In the merge phase, the concepts from ≤β are merged into ≤α. For example,
Fig. 3 shows a possible computation path where A4 ≤ A5 is being determined.1

If we assume a subsumption relationship between two concepts is proven when
the parent is added to the set box (see Line 15, Algorithm 6), Fig. 4 shows the
subsumption hierarchy after A4 ≤ A5 has been determined.

3 Partitioning

Partitioning is an important part of this algorithm. It is the main task in the
dividing phase. In contrast to simple problem domains such as sorting integers,
where the merge phase of a standard merge-sort does not require another sorting,
DL ontologies might entail numerous subsumption relationships among concepts.
Building a terminology with respect to the entailed subsumption hierarchy is the
primary function of DL classification. We therefore assumed that some heuristic
partitioning schemes that make use of known subsumption relationships may
improve reasoning efficiency by requiring a smaller number of subsumption tests,
and this assumption has been proved by our experiments, which are described
in Sect. 4.

So far, we have presented an ontology partitioning algorithm by using only
told subsumption relationships that are directly derived from concept definitions
and axiom declarations. Any concept that has at least one told super- and one
sub-concept, can be used to construct a told subsumption hierarchy. Although
such a hierarchy is usually incomplete and has many entailed subsumptions miss-
ing, it contains already known subsumptions indicating the closeness between
concepts w.r.t. subsumption. Such a raw subsumption hierarchy can be repre-
sented as a directed graph with only one root, the � concept. A heuristic par-
titioning method can be defined by traversing the graph in a breadth-first way,
1 This process does not show a full calling order of computing A4 ≤ A5 for sake of

brevity. For instance, � merge(A7, A6, ≤α, ≤β) is not shown.
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Algorithm 8. build partition(n, visited ,G ,P)
input : n: an concept name

visited : a list recording visited concept names
G: the syntax-based subsumption graph
P : a concept names partition

output: R: a concept names partition
1 begin
2 R ← φ;
3 N ← get children(n, visited ,G,P);
4 foreach n′ ∈ N do
5 if n′ �∈ visited then
6 P ← P ∪ {n′};
7 visited ← visited ∪ {n′};
8 build partition(n ′, visited ,G,P);

9 end if

10 end foreach
11 R ← P ;
12 return R;

13 end

starting from �, and collecting traversed concepts into partitions. Algorithms 7
and 8 address this procedure.

4 Evaluation

Our experimental results clearly show the potential of merge-classification. We
could achieve speedups up to a factor of 4 by using a maximum of 8 parallel
workers, depending on the particular benchmark ontology. This speedup is in the
range of what we expected and comparable to other reported approaches, e.g.,
the experiments reported for the ELK reasoner [16,17] also show speedups up to
a factor of 4 when using 8 workers, although a specialized polynomial procedure is
used for EL+ reasoning that seems to be more amenable to concurrent processing
than standard tableau methods.

We have designed and implemented a concurrent version of the algorithm
so far. Our program2 is implemented on the basis of the well-known reasoner
JFact,3 which is open-source and implemented in Java. We modified JFact such
that we can execute a set of JFact reasoning kernels in parallel in order to perform
the merge-classification computation. We try to examine the effectiveness of the
merge-classification algorithm by adapting such a mature DL reasoner.

4.1 Experiment

A multi-processor computer, which has 4 octa-core processors and 128G memory
installed, was employed to test the program. The Linux OS and 64-bit OpenJDK
2 http://github.com/kejia/mc
3 http://jfact.sourceforge.net

http://github.com/kejia/mc
http://jfact.sourceforge.net
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Table 1. Metrics of the test cases.

Ontology Expressivity Concept count Axiom count

adult mouse anatomy ALE+ 2753 9372
amphibian gross anatomy ALE+ 701 2626
c elegans phenotype ALEH+ 1935 6170
cereal plant trait ALEH 1051 3349
emap ALE 13731 27462
environmental entity logical definitions SH 1779 5803
envo ALEH+ 1231 2660
fly anatomy ALEI+ 6222 33162
human developmental anatomy ALEH 8341 33345
medaka anatomy development ALE 4361 9081
mpath ALEH+ 718 4315
nif-cell S 376 3492
sequence types and features SH 1952 6620
teleost anatomy ALER+ 3036 11827
zfa ALEH+ 2755 33024
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zebrafish anatomyand development
humandevelopmentalanatomy

Fig. 5. The performance of parallelized merge-classification—I.

6 was employed in the tests. The JVM was allocated at least 16G memory
initially, given that at most 64G physical memory was accessible. Most of the
test cases were chosen from OWL Reasoner Evaluation Workshop 2012 (ORE
2012) data sets. Table 1 shows the test cases’ metrics.

Each test case ontology was classified with the same setting except for an
increased number of workers. Each worker is mapped to an OS thread, as indi-
cated by the Java specification. Figure 5 and 6 show the test results.

In our initial implementation, we used an even-partitioning scheme. That
is to say concept names are randomly assigned to a set of partitions. For the
majority of the above-mentioned test cases we observed a small performance
improvement below a speedup factor of 1.4, for a few an improvement of up to
4, and for others only a decrease in performance. Only overhead was shown in
these test cases.
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As mentioned in Sect. 3, we assumed that a heuristic partitioning might pro-
mote a better reasoning performance, e.g., a partitioning scheme considering
subsumption axioms. This idea is addressed by Algorithms 7 and 8.

We implemented Algorithms 7 and 8 and tested the program. Our assump-
tion has been proved by the test: Heuristic partitioning may improve reasoning
performance where blind partitioning can not.

4.2 Discussion

Our experiment shows that with a heuristic divide scheme the merge-classification
algorithm can increase reasoning performance. However, such performance pro-
motion is not always tangible. In a few cases, the parallelized merge-classification
merely degrades reasoning performance. The actual divide phase of our algorithm
can influence the performance by creating better or worse partitions.

A heuristic divide scheme may result in a better performance than a blind
one. According to our experience, when the division of the concepts from the
domain is basically random, sometimes divisions contribute to promoting rea-
soning performance, while sometimes they do not. A promising heuristic divide
scheme seems to be in grouping a family of concepts, which have potential sub-
sumption relationships, into the same partition. Evidently, due to the presence
of non-obvious subsumptions, it is hard to guess how to achieve such a good
partitioning. We tried to make use of obvious subsumptions in axioms to parti-
tion closely related concepts into the same group. The tests demonstrate a clear
performance improvement in a number of cases.

While in many cases merge-classification can improve reasoning performance,
for some test cases its practical effectiveness is not yet convincing. We are still
investigating the factors that influence the reasoning performance for these cases
but cannot give a clear answer yet. The cause may be the large number of gen-
eral concept inclusion (GCI) axioms of ontologies. Even with some more refined
divide scheme, those GCI axioms can cause inter-dependencies between parti-
tions, and may cause in the merge phase an increased number of subsumption
tests. Also, the indeterminism of the merging schedule, i.e., the unpredictable
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Fig. 6. The performance of parallelized merge-classification—II.
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order of merging divides, needs to be effectively solved in the implementation,
and racing conditions between merging workers as well as the introduced over-
head may decrease the performance. In addition, the limited performance is
caused by the experimental environment: Compared with a single chip architec-
ture, the 4-chip-distribution of the 32 processors requires extra computational
overhead, and the memory and thread management of JVM may decrease the
performance of our program.

5 Related Work

A key functionality of a DL reasoning system is classification, computing all
entailed subsumption relationships among named concepts. The generic top-
search and bottom-search algorithms were introduced by [19] and extended by
[2]. The algorithm is used as the standard technique for incrementally creating
subsumption hierarchies of DL ontologies. Reference [2] also presented some basic
traversal optimizations. After that, a number of optimization techniques have
been explored [8,9,26]. Most of the optimizations are based on making use of the
partial transitivity information in searching. However, research on how to use
concurrent computing for optimizing DL reasoning has started only recently.

The merge-classification algorithm is suitable for concurrent computation
implementation, including both shared-memory parallelization and (shared-
memory or non-shared-memory) distributed systems. Several concurrency-
oriented DL reasoning schemes have been researched recently. Reference [18]
reported on experiments with a parallel SHN reasoner. This reasoner could
process disjunction and at-most cardinality restriction rules in parallel, as well
as some primary DL tableau optimization techniques. Reference [1] presented
the first algorithms on parallelizing TBox classification using a shared global
subsumption hierarchy, and the experimental results promise the feasibility of
parallelized DL reasoning. References [16,17] reported on the ELK reasoner,
which can classify EL ontologies concurrently, and its speed in reasoning about
EL+ ontologies is impressive. References [28,29] studied a parallel DL reasoning
system. References [20,21] proposed the idea of applying a constraint program-
ming solver. Besides the shared-memory concurrent reasoning research men-
tioned above, non-shared-memory distributed concurrent reasoning has been
investigated recently by [22,25].

Merge-classification needs to divide ontologies. Ontology partitioning can be
considered as a sort of clustering problem. These problems have been extensively
investigated in networks research, such as [6,7,30]. Algorithms adopting more
complicated heuristics in the area of ontology partitioning, have been presented
in [5,10–12,14].

Our merge-classification approach employs the well-known divide and con-
quer strategy. There is sufficient evidence that these types of algorithms are
well suited to be processed in parallel [4,15,27]. Some experimental works about
parallelized merge sort are reported in [23,24].



Parallel OWL Reasoning: Merge Classification 225

6 Conclusion

The approach presented in this paper has been motivated by the observation
that (i) multi-processor/core hardware is becoming ubiquitously available but
standard OWL reasoners do not yet make use of these available resources; (ii)
Although most OWL reasoners have been highly optimized and impressive speed
improvements have been reported for reasoning in the three tractable OWL pro-
files, there exist a multitude of OWL ontologies that are outside of the three
tractable profiles and require long processing times even for highly optimized
OWL reasoners. Recently, concurrent computing has emerged as a possible solu-
tion for achieving a better scalability in general and especially for such difficult
ontologies, and we consider the research presented in this paper as an impor-
tant step in designing adequate OWL reasoning architectures that are based on
concurrent computing.

One of the most important obstacles in successfully applying concurrent com-
puting is the management of overhead caused by concurrency. An important fac-
tor is that the load introduced by using concurrent computing in DL reasoning
is usually remarkable. Concurrent algorithms that cause only a small overhead
seem to be the key to successfully apply concurrent computing to DL reasoning.

Our merge-classification algorithm uses a divide and conquer scheme, which
is potentially suitable for low overhead concurrent computing since it rarely
requires communication among divisions. Although the empirical tests show
that the merge-classification algorithm does not always improve reasoning per-
formance to a great extent, they let us be confident that further research is
promising. For example, investigating what factors impact the effectiveness and
efficiency of the merge-classification may help us improve the performance of the
algorithm further.

At present our work adopts a heuristic partitioning scheme at the divide
phase. Different divide schemes may produce different reasoning performances.
We are planning to investigate better divide methods. Furthermore, our work
has only researched the performance of the concurrent merge-classification so
far. How the number of division impacts the reasoning performance in a single
thread and a multiple threads setting needs be investigated in more detail.

Acknowledgements. We are grateful for Ralf Möller at Hamburg University of Tech-
nology in giving us access to their equipment that was used to conduct the presented
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