
How Cost Reduction in Recovery Improves

Performance in Program Design Tasks

Bastian Steinert and Robert Hirschfeld

Abstract Changing source code often leads to undesired implications, raising the

need for recovery actions. Programmers need to manually keep recovery costs low

by working in a structured and disciplined manner and regularly performing

practices such as testing and versioning. While additional tool support can alleviate

this constant need, the question is whether it affects programming performance? In

a controlled lab study, 22 participants improved the design of two different appli-

cations. Using a repeated measurement setup, we compared the effect of two sets of

tools on programming performance: a traditional setting and a setting with our

recovery tool called CoExist. CoExist makes it possible to easily revert to previous

development states even, if they are not committed explicitly. It also allows

forgoing test runs, while still being able to understand the impact of each change

later. The results suggest that additional recovery support such as provided with

CoExist positively affects programming performance in explorative programming

tasks.

1 Introduction

Changing source code easily leads to the need for recovery actions because the

changes reveal implications that are not only unexpected but also undesired. They

might suddenly turn out inappropriate, turn out more complex than expected, or

they might have introduced an error. Programmers then need to withdraw these

recent changes, recover knowledge from previous development versions, or locate

and fix the error.

B. Steinert (*) • R. Hirschfeld

Software Architecture Group, Hasso Plattner Institute, University of Potsdam, Potsdam,

Germany

e-mail: firstname.lastname@hpi.uni-potsdam.de

H. Plattner et al. (eds.), Design Thinking Research, Understanding Innovation,

DOI 10.1007/978-3-319-06823-7_13, © Springer International Publishing Switzerland 2015

241

mailto:firstname.lastname@hpi.uni-potsdam.de

To keep the costs for potential recovery needs low, programmers have to follow

a structured and disciplined approach. This involves the regular use of testing and

versioning tools, but also to perform baby steps and to work only on one thing at a

time (Beck and Andres 2004; Fowler 1999; Apache Software 2009). Regular

testing helps discover errors early and thus reduces fault localization costs, regular

commits help to return to a previous state, and working on one thing at a time makes

it easier to commit independent increments—to mention just a few examples. By

following these recommendations, programmers can avoid the need for expensive

recovery work that easily becomes frustrating.

However, while structure and discipline are certainly useful to get work done, it

hardly seems sufficient to be forced to rely on them constantly. On the one hand, it

is hard to exert the required discipline when being fascinated by an idea and having

the desire to explore it. On the other hand, it is easy to forget to perform

recommended practices and it requires much effort to avoid forgetting. This not

only takes time but also easily disrupts working on the main task.

The need for structure and discipline is also present when programmers decide to

first create a prototype on a separate branch, in order to evaluate a particularly risky

idea. One reason is that they might want to reuse the source code and avoid the need

to re-implement it. Another reason is that when working on a prototype, it is still

likely that changes reveal undesired implications independent of the aspects being

evaluated. So, the same rules apply: programmers will still need to recover, and

they also need to manually keep recovery cost low, for example, by testing

regularly, making meaningful commits, and making only small changes, one at

a time.

Additional tool support can help to avoid the constant need for structure and

discipline by keeping recovery costs low automatically. We previously presented

an IDE extension called CoExist (Steinert et al. 2012), which is implemented in

Squeak/Smalltalk. Figure 1 illustrates main concepts of the user interface. CoExist

continuously versions the program under development, runs tests in the back-

ground, and provides immediate access to intermediate development states. It

allows programmers to easily recover from undesired situations, also when they

forgot to make the appropriate commit or have failed to run the right set of tests

regularly. These features enable programmers to ignore recommended practices.

They can try out an idea when it comes to mind, make changes as they think of

them, and explore the implications, without having to worry about tedious recovery

scenarios and how to prevent them.

We hypothesized that such additional recovery support has an effect on program-

ming performance, in particular on tasks that involve a high degree of uncertainty.

We speculate that this is the case for two reasons: (1) making changes directly as

one thinks of them supports mental process and is thus more efficient; (2) The

constant need for structure and discipline is tiring and contradicts the need for

creative thinking.

242 B. Steinert and R. Hirschfeld

1.1 Why Thinking Is Supported by Doing

Programmers should be encouraged to make changes as they think of them, because

it will facilitate inference, understanding, and problem solving, as suggested by

research findings in design and cognition (Suwa et al. 1998; Suwa and Tversky

2002).

It avoids mental overload and keeps working memory free. Making the changes

instead of conducting what-if reasoning “frees working memory to perform mental

calculations on the elements rather than both keeping elements in mind and

operating on them” (Suwa and Tversky 2002). Freeing working memory is required

because the number of chunks of new information that a human being can keep in

mind and process is limited (three to four chunks). Given too many chunks at once,

a human being experiences cognitive overload, which impedes learning and prob-

lem solving (Bilda and Gero 2007; Farrington 2011).

Making the changes allows for re-interpretation and unexpected discovery. Even

if they turn out inappropriate, the changes can trigger new associations. Previously

abstract concepts and thoughts will be associated with specific source code ele-

ments. When programmers revisit these specific elements, they can see them as

something else. They associate abstract concepts with these elements that are

different than the original ones. Making the changes brings to mind information

from long-term memory that might otherwise not be retrieved (Suwa and Tversky

2002; Kirsh 2010). The particular arrangement can also lead to the discovery of

unexpected relations and features (Kirsh 2010; Schon and Wiggins 1992).

55 passes

3 failures

2 errors

Fig. 1 The CoExist IDE extension featuring continuous versioning, running tests and recording

test results in the background, side by side exploring and editing multiple versions

How Cost Reduction in Recovery Improves Performance in Program Design Tasks 243

1.2 Why the Need for Structure and Discipline Is Tiring
and in Contradiction with the Need for Creativity

Psychology distinguishes two modes of thinking: fast thinking and slow thinking,

often labeled as System 1 and System 2 (Kahneman 2011). While creativity along

with intuition is attributed to System 1 (fast thinking mode), while the analytic

approach along with suspicion is attributed to System 2 (slow thinking mode). This

implies that creative thinking and analytical reasoning don’t go well together.

Working on a creative programming task is impeded by the need to reflect about

current and planned changes and the need to structure the work ahead. If pro-

grammers constantly need to be analytical and careful, it will be difficult for them to

be creative at the same time.

Furthermore, the need for a structured and disciplined approach to programming

requires self-control, which is a form of exhaustive mental work, as the following

quotes from [(Kahneman 2011), chapter “Developing Novel Methods to Assess

Long-Term Sustainability of Creative Capacity Building and Applied Creativity”]

should illustrate:

• “. . . controlling thoughts and behaviors is one of the tasks of System 2.”

• “Too much concern about how well one is doing in a task sometimes disrupts perfor-

mance by loading short-term memory with pointless anxious thoughts. . . . self-control
requires attention and effort.”

• “an effort of will or self-control is tiring; if you have to force yourself to do something,

you are less willing or less able to exert self-control when the next challenge comes

around.”

These findings give reason to believe that additional recovery support such as

CoExist is preferable over a manual method-based approach. We hypothesize that

CoExist improves the performance of programmers in explorative tasks. In the

remainder of this article, after first describing CoExist, we report on an experiment

conducted to empirically examine our hypothesis.

2 Background: The Coexist IDE Extensions

The basis of CoExist takes care of preserving potentially valuable information. It

continuously performs commits in the background. Every change to the code base

leads to a new version one can go back to. It thus gives users an impression of

development versions to co-exist. To make the user aware of this background

versioning and to allow for selecting previous versions, we have added a version

bar (timeline) to the user interface of the programming environment (Fig. 1).

By continuously preserving intermediate development states, CoExist enables

programmers to go back to a previous development state and to start over as shown

in Fig. 2. Starting over from a former development state will implicitly create a new

244 B. Steinert and R. Hirschfeld

branch of versions. This preserves the changes that are withdrawn, as they might be

of use later on.

CoExist provides two mechanisms to support programmers in identifying a

previous version of interest. First, it provides the version bar, which will highlight

version items that match the currently selected source code element. Hovering the

items will display additional information, such as the kind of modification, the

affected elements, or the actual change performed (Fig. 3).

Second, programmers can use the version browser to explore information of

multiple versions at a glance. The version browser displays basic version informa-

tion in a table view (Fig. 4), which allows to scan the history fast.

CoExist is meant to close the gap between the undo/redo feature and Version

Control Systems such as Git. It is not intended to replace either of them. Further-

more, we acknowledge that conscious and named commits can be useful, but we

omitted the possibility of naming or flagging intermediate versions to avoid induc-

ing users to think about it. We also want to explore how far one can go with our

approach.

Fig. 2 The (blue) triangle marks the current position in the history—the version that is currently

active. When a programmer goes back to a previous version (left), and then continues working, the
new changes will appear on a new branch that is implicitly created (right)

Created class: SemanticLense

Object subclass: SemanticLense
instanceVariables: 'x y ...',
classVariables: ''
category: 'Visualization'

QEllipse subclass: SemanticLense
instanceVariables: '...',
classVariables: ''
category: 'Visualization'

Fig. 3 Hovering shows which source code element has been changed (left). In addition, holding

shift shows the total difference to the previous version (right)

How Cost Reduction in Recovery Improves Performance in Program Design Tasks 245

CoExist also allows continuously running analysis programs for newly created

versions. As a default, it runs test cases to automatically assess the quality of the

change made. The test result for a version is presented in the corresponding item of

the version bar (left of Fig. 5). This makes the effect of each change regarding test

quality visible. The user can also run other analyses such as performance measure-

ments. CoExist provides full access to version objects and offers a programming

interface to run code in the context of a particular version. So, whenever pro-

grammers become interested in the impact of their changes, they can easily analyze

it in various respects. This allows programmers to ignore these aspects of program-

ming at other times.

Users of CoExist can explore the source code of a previous version and compare

it to the current one. They can open a previous version in a separate working

environment as shown on the right in Fig. 5, which is useful, when, for example, the

programmer suddenly become curious about how certain parts of the source code

looked previously or how certain effects were achieved. It is also possible to run

and debug programs in the additional working environment. In doing so, CoExist is

capable of efficiently recovering knowledge from previous versions, which avoids

the need for a precise understanding of every detail before making any changes.

With CoExist, programmers can change source code without worrying about the

possibility of making an error. This is because they can rely on tools that will help

with whatever their explorations turn up. They no longer have to follow certain best

practices in order to keep recovery costs low.

Object subclass: SemanticLense
instanceVariables: 'x y ...',
classVariables: ''
category: 'Visualization'

QEllipse subclass: SemanticLense
instanceVariables: '...',
classVariables: ''
category: 'Visualization'

Class Method

… … …

M Added FooManager

C Added SemanticLense

M Added SemanticLense makeFoo

M Removed FooManager manage

C Modified SemanticLense

M Modified SemanticLense makeFoo

M Modified SemanticLense manage

M Added FooManager makeFoo

… … …

M Added SemanticLense doBuzz

M Remove SemanticLense manage

Fig. 4 The version browser provides a tabular view on change history. Selecting a row shows

corresponding differences in the panes on the right

246 B. Steinert and R. Hirschfeld

3 Method

3.1 Study Design

Figure 6 illustrates the experimental setup. Participants have been assigned to either

of two groups, the control group or the experimental group. Members of the control

group used the regular development tools for both tasks. Members of the experi-

mental group used the regular tools only for task 1, and could additionally rely on

CoExist for task 2.

We kept participants unaware of what condition they had been assigned

to. However, on day 2, participants in the experimental group could guess that

they were receiving special treatment because they were introduced to a new tool

and could make use of it. At the same time, participants in the control group were

unaware about the experimental treatment. They did not know that the participants

in the experimental group were provided with CoExist.

The setup resulted in two scores for every participant, which allowed testing for

statistically significant differences between task 1 and task 2 as well as between the

control and the experimental group. It also allows to test for an interaction effect of

the two factors, which is the indicator of whether CoExist affects programming

performance.

3.2 Materials and Task

On both days the task has been to improve the source code of relatively small

computer games. More specifically, participants were requested to study the source

code, to detect design flaws in general and issues of unnecessary complexity in

particular, and to improve the source code as much as possible in the given time

Go Here

...

Merge

Tests (55 / 5) …

55 passes

3 failures

2 errors

Fig. 5 The items in the version bar are now a visualization of the results of the tests that have been

run in the background (left). A second inner environment allows the user to explore a previous

version next to the current one (right)

How Cost Reduction in Recovery Improves Performance in Program Design Tasks 247

frame of 2 h. The games needed to function properly at the end of the task. To help

participants better understand the task, we provided descriptions of possible

improvements such as the following:

• Extract methods to shorten and simplify overly long and complicated methods,

and to ensure statements have a similar level of abstraction

• Replace conditional branching by polymorphism

• Detect and remove unnecessary conditions or parameters

Participants should imagine that they co-authored the code and now have time to

improve it in order to make future development tasks easier. Also, participants were

asked to describe their improvements and to help the imaginary team members

better understand them. (Most participants followed this instruction by regularly

writing commit messages).

On day 1, participants worked on a game called LaserGame, and on day 2 they

worked on a gamed called MarbleMania. Screenshots of both games are shown in

Fig. 7. For the LaserGame (on the left), the user has to place mirrors in the field so

that the laser is redirected properly to destroy the wall that blocks the way to the

gate to the next level. For MarbleMania (on the right), the user has to switch

neighboring marbles to create one or more sequences of at least three equally

colored marbles, which will then be destroyed, and gravity will slide down marbles

from above.

Both games were developed by students in one of our undergraduate courses.

The two selected games function properly and provide a simple but nevertheless fun

game play. Accordingly, only a little time is required to get familiar with the

functionality. Furthermore, for each of the two games, there is significant room

for improvement concerning the source code (because they were created by young

undergrads who were about to learn what elegant source code is). Furthermore, both

games come with a set of tests cases, which also have been developed by the

respective students. However, while the offered test cases are useful, they were not

sufficient. Manual testing of the games was necessary.

Task 1 Tutorial Task 2Control Group

Experimental Group

Regular Tools Only

Regular + CoExist Tools

Fig. 6 Our experiment setup to compare performance in program design activities

248 B. Steinert and R. Hirschfeld

While the numbers shown in Fig. 8 indicate that both games are of similar size,

the code base of the LaserGame is easier to understand. The authors of

MarbleMania placed a great deal of emphasis on the observer pattern and built in

many indirections, which impedes understanding the control flow.

3.3 Participants

We recruited 24 participants, mainly through email lists of previous lectures and

projects. Of the 24 participants, 3 were bachelor students who had completed their

fourth semester, 6 were bachelor students who had completed their sixth semester

(nearly graduated), 13 were master student who had at least completed their eighth

semester, and 2 were Ph.D. students. The average age was 23 with a standard

deviation of 2. For approximately 5 h of work, each participant received a voucher

worth 60 euros for books on programming-related topics. Of the 24 participants, the

results of 2 were dropped which is discussed in the results Sect 4.

Prospective participants needed to have experience in using Squeak/Smalltalk

and must had passed their fourth semester. By this time students will have typically

attended two of our lectures, in which they use Squeak/Smalltalk for project work.

Also, these two lectures cover software design and software engineering topics.

Thus we could ensure that all participants had theoretical and practical lessons in

topics such as code smells, idioms, design patterns, refactoring, and other related

topics.

We have balanced the amount of previously gained experience with Squeak/

Smalltalk among both conditions (stratified random sampling). Most participants

have used Squeak/Smalltalk only during the project work in our lectures. But six

participants also have been using Squeak/Smalltalk in spare time projects and/or in

a mirror

destroyed wall

laser beam

gate to next level

Fig. 7 Screenshots of the games whose source code was improved in the experiment: LaserGame

(left) and MarbleMania (right)

How Cost Reduction in Recovery Improves Performance in Program Design Tasks 249

their student jobs, so that we could assume these participants had noticeably more

experience and were more fluent in using the tools.

3.4 Procedure

We always spread the experiment steps over 2 days, so that participants worked on

both tasks on two different but subsequent days. On both days, the procedure

comprised two major steps: an introduction to the game and a 2-h time period for

improving the respective codebase. On day two participants of the experimental

group received an additional introduction to the CoExist tools before working on

the actual tasks, during which they could rely on CoExist as an additional recovery

support.

Both tasks were always scheduled for the same time of the day in order to assure

similar working conditions (hours past after waking up, hours already spent for

work or studies, . . .). Typically, we scheduled the task assignments after lunch so

that for day 2, there was time left to run the CoExist tutorial session upfront before

lunchtime. (We had to make an exception for three participants, who only had time

during the morning or evening hours. As we could not arrange a similar schedule for

these participants concerning the CoExist tutorial followed by a large break, these

three participants were automatically assigned to the control group).

Figure 9 illustrates all steps of the experiment. On day 1, participants received a

brief recap of IDE shortcuts, which were also written on the whiteboard in the room.

The step of Introduction to< a game> started with a short explanation of the game

play, followed by some time to actually play the game, to understand details, and to

get comfortable with it.

3.5 Dependent Measure

To compare the performance of the individual programming sessions, we have

operationalized the notion that a programmer can achieve more or less improve-

ments in the given timeframe. We determined performance by identifying indepen-
dent increments among the overall set of made changes, and quantifying the effort
for these increments by defining sequences of IDE interactions required to

LaserGame MarbleMania

classes 42 26

methods 397 336

test cases 50 17

lines of code 1542 1300

Fig. 8 Size indicators for

the games used in the study

250 B. Steinert and R. Hirschfeld

Control
Group

Experimental
Group

1:00 pm

1:10 pm

1:25 pm

1:30 pm

3:30 pm

Recap IDE shortcuts
Download & Setup Task 1

Introduction to
LaserGame

Giving Instructions

Improving Source Code
of LaserGame

Lunch break

10:30 am

10:35 pm

10:50 pm

12:00 am

1:00 pm

1:10 pm

1:25 pm

1:30 pm

3:30 pm

Download & SetupTask 1

Introduction to
MarbleMania

Giving Instructions

Improving Source Code
of MarbleMania

Setup Tutorial

Introduction to
CoExist

Try out CoExist
(by working on a

Tutorial App)

day 1

day 2

Regular Tools Only

Regular +
CoExist Tools

Legend

Fig. 9 The experimental procedure for both the control and the experimental group

How Cost Reduction in Recovery Improves Performance in Program Design Tasks 251

reproduce them. This gives a measure of how much actual work was done within

the 2 h, excluding time that has been spent on activities such as staring into the air or

browsing the code base.

3.5.1 Identifying Independent Increments

An independent increment is a set of interconnected changes to the code base that

represents a meaningful, coherent improvement such as an ExtractMethod
refactoring, which is comprised of the changes: (a) adding a new method and

(b) replacing statements with a call to the newly created method. Another example

for an independent increment is the replacement of code that caches state in an

instance variable with code that re-computes the result on every request, or vice

versa. Other generic improvements are for example:

• Renaming of an instance variable

• Replace a parameter with a method

• Make use of cascades

• Inline temporary expression

• Replace magic string/number with method

Besides such generic and well-document improvements, an increment can also

be specific to a certain application. The following examples are game specific

improvements that were identified for the MarbleMania game:

• Replace dictionary that holds information about exchange marbles with instance

variables

• Replace “is nil” checks in the Destroyer with null objects (the Destroyer class

has the responsibility to “destroy” marbles when, after an exchange, a sequence

of three or more marble exists)

• Remove button clicked event handling indirections

For each participant and task, we recorded a fine-grained change history using

CoExist’s continuous versioning feature. However, the CoExist tools were neither

visible nor accessible to the users, except for the experimental group on day 2. We

then analyzed these recorded change histories manually to identify the list of

independent increments. For each programming session (per programmer and

task), the analysis consisted of two steps to gain a corresponding spreadsheet as

illustrated in Fig. 10.

First, we extracted the timestamps of all versions and listed them in a column of

a spreadsheet. We then grouped these timestamps according to the commits that

subjects made during the task, and put the corresponding commit messages in a

second column (illustrated in Fig. 10). The commit messages provide context that

helps getting an initial understanding of the changes’ intent.

Second, we hovered over all version items step by step (compare with Fig. 3) to

refine our understanding of the made changes, and put names for identified incre-

ments in a third column. Such a coded increment can involve only one actual

252 B. Steinert and R. Hirschfeld

F
ig
.
1
0

E
x
ce
rp
t
o
f
a
sp
re
ad
sh
ee
t
w
it
h
co
d
ed

v
er
si
o
n
d
at
a

How Cost Reduction in Recovery Improves Performance in Program Design Tasks 253

change or consist of many. Sometimes, all the changes made for one commit

contribute to one coded improvement. Note that we only coded increments for

changes that last until the end of the session. This excludes change sets that were

withdrawn later, for example.

3.5.2 Quantifying the Effort for Identified Improvements

We measure the effort for every increment by determining the list of IDE interac-

tions that are required to (re-) produce it. Such interactions are, for example:

navigating to a method, selecting code and copying it to clipboard, selecting code

and replacing it with the content from the clipboard, inserting symbols. Figure 11

shows two lists of IDE interactions, written down in an executable form (regular

Smalltalk code). Executing a script computes a number that represents the effort

required to reproduce the described increment.

We determined these scripts by re-implementing every identified increment

based on a fresh clean code base, which participants started with.

Re-implementing the increments ensured that we had gotten a correct understand-

ing. We always used the direct path to achieve an increment, which might be

different than the path made by participants. Thus, we only measured the essential

effort and excluded any detours that participants might have made until they

eventually knew what they wanted.

For generic increments such as ExtractMethod or InlineMethod, the required

effort can vary: extracting a method with five parameters requires more symbols to

be inserted than an extracting a method without any parameters. We accounted for

such differences by listing the interactions required for an average case. However,

for extreme variations (easy or hard), we used special codes such as

ExtractMethodForMagicNumber.

The messages used in these scripts call utility methods that are typically com-

posed of more fine-grained interactions. At the end, all descriptions rely on four

elementary interactions, which are: #positionMouse, #pressKey,
#brieflyCheckCode, and #insertSymbols: aNumber. The methods

for these elementary interactions increment a counter variable when they are

executed. While the former three increment the counter by one, the latter incre-

ments the counter by three for every symbol inserted. So we assume that writing a

symbol of an average length is three times the effort of pressing a single key. (While

this ratio seemed particularly meaningful to us, we also computed the final numbers

with a ratio of two and four. The alternative outcomes, however, show a similar

result. In particular, a statistical analysis using ANOVA also reveals a significant

interaction effect.)

254 B. Steinert and R. Hirschfeld

4 Results and Discussion

Figure 12 shows the result scores for each participant and task, the accumulated

points for the identified increment. Note that while we recruited 24 participants, we

only present and further analyze the scores of 22 participants. One of the two

participants had to be dropped because after the session we surprisingly found out

that he had already been familiar with the MarbleMania game. He had used the

source code of this game for his own research. The other result was dropped

because the participant delivered a version for task 2 that did not function properly.

Further analysis revealed that this problem could not be easily fixed and that the

code already stopped working with a change made after half an hour of work. So we

decided to drop this data set.

A 2� 2 mixed factorial ANOVA was conducted with the task (LaserGame,

MarbleMania) as within-groups variable and recovery support (with and without

CoExist as additional support) as between-groups variable. Both the Shaphiro-Wilk

normality test and Levene’s test for homogeneity of variance were not significant

(p> 0.05), complying with the assumption of the ANOVA test.

The bar plot in Fig. 13 illustrate that the control group scored on average less for

the MarbleMania task than for the LaserGame task, while there is a slight increase

in the performance of the experimental group. This indicates that improving

MarbleMania was the more difficult task, and that the provision of CoExist helped

to compensate for the additional difficulty.

Statistical significance tests were conducted from the perspective of null hypoth-

esis significant testing with alpha¼ 0.05, and effect sizes were estimated using

partial eta-squared, ηp
2. The results show a significant interaction effect between the

CvEval >> #renameClass

self
navigateTo: #class;
requestRefactoringDialog;
insertSymbols: 1;
checkSuggestionsAndAccept

CvEval >> #lgReplaceCollectionWithMatrix

self
navigateTo: #formWidth... in: #Grid;
selectAndInsert: 5;
navigateTo: #at: in: #Grid;
selectAndInsert: 1;
navigateTo: #at:put in: #Grid;
selectAndInsert: 1

Fig. 11 The first example represents the list of interactions required for the generic RenameClass

refactoring, while the second represents an increment that is specific to the LaserGame

How Cost Reduction in Recovery Improves Performance in Program Design Tasks 255

Fig. 12 Final scores for

participants per task

Control Experimental

LaserGame
MarbleMania

Condition

A
ch

ie
ve

m
en

t P
oi

nt
s

0
20

0
40

0
60

0
80

0Fig. 13 A bar plot of the

study results. Error bars

represent the standard error

of the mean

256 B. Steinert and R. Hirschfeld

effects of task and recovery support on the amount of achievement, F(1, 20)¼ 5.49,

p¼ 0.03, ηp
2¼ 0.22.

Simple main effects analysis revealed that participants in the control condition

(with traditional tool support for both tasks) achieved significantly more for the

LaserGame task than for the MarbleMania task, F(1, 10)¼ 9.81, p¼ 0.01,

ηp
2¼ 0.5, but there were no significant differences for participants in the treatment

condition (with CoExist tools), F(1, 10)¼ 0.2, p¼ 0.66, ηp
2¼ 0.02.

We performed correlation analyses to illuminate whether the amount of pro-

gramming experience has an influence on the observed effects. However, there was

no correlation between achievements and years of professional education & expe-

rience (starting with college education), Pearson’s r(20)¼ 0.1, p¼ 0.66. Further-

more, there was no correlation between gains in achievements (difference between

points for MarbleMania and points for LaserGame) and years of professional

education & experience, Pearson’s r(20)¼ 0.05, p¼ 0.83.

The results suggest that the provision of additional recovery support such as

CoExist has a positive effect on programming performance in explorative tasks.

5 Limitations

5.1 Order Effects/Counterbalancing

A possible objection to our study design is the lack of counterbalancing the

treatment order, as there might be fatigue or learning effects. However, we think

that there are complex dependencies between the order of the treatment and the

dependent variable. If some participants had received the introduction and the

tutorial to CoExist for task 1, which necessarily includes a description of its

potential benefits, this would have likely changed how they approach the second

task. In particular, they would have been more risk-taking than usual when not

having such additional recovery support. So in order to reduce effects of fatigue, we

split the study over 2 days. Also, the two tasks were significantly different,

rendering each of them interesting and challenging in its own way.

5.2 Construct Validity

Care must be taken not to generalize from our treatment and measure. While we

were motivated in this work by discussing recovery support in general, we com-

pared only two levels in our study. Because of this, our results provide only little

support that more recovery support is generally better with respect to all these other

levels. Additional studies are required to better examine and support the general

construct.

How Cost Reduction in Recovery Improves Performance in Program Design Tasks 257

Also, the control and experimental group did not only differ in the fact, that one

group could rely on CoExist in addition to standard tools for task 2. The members of

the experimental group also ran through a tutorial that explains and motivates the

CoExist tools. The tutorial or the fact of using a new tool might have contributed to

the observed effect.

In addition, there are various social threats to construct validity such as hypoth-

esis guessing or evaluation apprehension that need to be taken into account

(Shadish et al. 2002).

5.3 Reliability

We acknowledge the need for further reliability analyses on our measure. Addi-

tional studies are required to validate that our construct (the amount of required

interactions to reproduce the achieved independent increments) is actually a mea-

sure for the amount of work that got done.

We also acknowledge the need for replicating both the coding of change

histories, which is the identification of the independent increments, and determining

the IDE interactions required for reproduction. Both steps were conducted by only

one person, the first author of this article. As the analysis required approximately

2–3 full working weeks, we did not succeed in convincing another researcher to

repeat the analysis.

5.4 Internal Validity

While we can observe a correlation between the treatment and the outcome, there

might be factors other than the treatment causing or contributing to this effect. As

we used a repeated measurement setup, we ruled out single group threats, but need

to consider multiple group threats and social threats.

To the best of our knowledge, participants of the control and experimental group

are comparable in so far as they experienced the time between both tasks similarly

(selection-history threat), that they matured similarly (selection-maturation threat),

and learned similarly from Task 1 (selection-testing threat).

However, there is a selection-mortality threat to the validity of our study,

because we needed to drop the results of two participants who were both in the

control group. But, on the other hand, we had no need to drop any results from the

experimental group.

We also need to consider the selection-regression threat, because the average

score of both groups is different. So it might be that one of the two groups scored

particularly low or high, so that they can only get better or worse respectively.

However, the lines in the interaction plot cross. This is an indicator that, besides

other possible factors, the treatment is responsible for the observed differences in

258 B. Steinert and R. Hirschfeld

task 2. The results of the experimental group got better on average, while the results

of the control group got worse on average. So, even if one group had a particularly

high performance on task 1, the observed differences can hardly just be an artifact

of selection-regression.

We dealt with social threats to internal validity, such as compensatory rivalry or

resentful demoralization, by blinding participants to the treatment as much as

possible.

5.5 External Validity

As we only recruited students for the study, the results are not necessarily repre-

sentative for the entire population of programmers. However, we conducted corre-

lation analyses to better understand the effect of experience on task performance

and gained differences between tasks. The results show that there is no such

correlation in the data of our study.

Our study was artificial in the sense that programmers may rarely spend 2 h on

improving source code only. It might be more typical that refactoring activities go

hand in hand with other coding activities such as implementing new features or

fixing bugs.

Furthermore, one might argue that refactoring a previously unknown codebase is

also quite untypical. It might be more typical that programmers know a code base

and also know their problems that need to get fixed. However, our study design

focuses on objectively measuring and comparing programmers’ performance.

6 Related Work

We previously presented CoExist and introduced the notion of preserving imme-

diate access to intermediate development states (Steinert et al. 2012). Informal user

studies indicated that programmers can identify a previous version of interest

within a few seconds and that they appreciate the tools. Continuous versioning, as

the basis of CoExist, closes a gap between the undo/redo feature of editors, which

works on a more fine-grained level and handles files independently, and Version

Control Systems such as Git, which require manual and explicit control. CoExist

further builds on early work such as Orwell (Thomas and Johnson 1988) and more

recent work such as Delta Debugging (Zeller 1999), Continuous Testing (Saff and

Ernst 2003), Changeboxes (Denker et al. 2007), SpyWare (Robbes and Lanza

2007), Replay (Hattori et al. 2011), and Juxtapose (Hartmann et al. 2008).

Continuous testing has been evaluated in a controlled experiment on student

developers, showing that this approach helped participants to complete the assign-

ment correctly (Saff and Ernst 2004). CoExist improves on this approach by

recording the test results and linking them to the corresponding changes, which

How Cost Reduction in Recovery Improves Performance in Program Design Tasks 259

allows for analyzing test results only when it is convenient. An empirical evaluation

of Replay shows that a fine-grained version history and the possibility to replay

changes reduce the time required to complete software evolution analysis tasks

(Hattori et al. 2011). In particular, the possibility to replay changes can be consid-

ered a meaningful complement to our approach.

Delta Debugging automates the process of testing and refining hypotheses about

why a program fails by re-running an automated test and thereby narrowing down

the delta that makes the test fail or pass. The dimension on which to narrow down

the delta can be the input set provide to the program (Zeller 2002), but also a set of

changes between two versions (Zeller 1999). CoExist supports the Delta Debugging

approach along the change history well, because it preserves intermediate devel-

opment states and provides an API to run code on these versions. Also, CoExist

records tests results along the history.

Further discussions of related work concerning the technical concepts can be

found in our original presentation of the CoExist approach (Steinert et al. 2012).

7 Summary

We have presented an empirical evaluation of the benefits of CoExist over a

traditional tool setting on programming performance in explorative tasks. CoExist

represents additional recovery support that avoids the need for manually keeping

recovery costs low. CoExist continuously versions the source code under develop-

ment and provides immediate access to intermediate development states and infor-

mation thereof.

Twenty-two participants ran through a lab study. Using a repeated measurement

study, they were requested to improve the design of two games on two consecutive

days. The experimental group could additionally rely on CoExist for the second

task. Fine-grained change histories were recorded in the background, accumulating

approximately 88 h of recorded programming activities. We analyzed the change

histories to identify independent increments and determined the required effort for

reproducing them. This leads to scores that represent the amount of work achieved

within the given time frame. Running an ANOVA test shows a significant interac-

tion effect, F(1, 20)¼ 5.49, p¼ 0.03, ηp
2¼ 0.22, which suggests that additional

recovery support such as provided with CoExist positively affects the programming

performance in explorative tasks.

References

Apache Software Foundation (2009) Subversion best practices. Available http://svn.apache.org/

repos/asf/subversion/trunk/doc/user/svn-best-practices.html

Beck K, Andres C (2004) Extreme programming explained: embrace change. Addison-Wesley

Longman, Amsterdam

260 B. Steinert and R. Hirschfeld

http://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html
http://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html

Bilda Z, Gero JS (2007) The impact of working memory limitations on the design process during

conceptualization. Des Stud 28(4):343–367

Denker M, Gı̂rba T, Lienhard A, Nierstrasz O, Renggli L, Zumkehr P (2007) Encapsulating and

exploiting change with changeboxes. In: Proceedings of the 2007 international conference on

dynamic languages: in conjunction with the 15th international Smalltalk Joint conference

2007, ACM, pp 25–49

Farrington J (2011) Seven plus or minus two. Perform Improv Q 23(4):113–116

Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley Profes-

sional, Boston, MA

Hartmann B, Yu L, Allison A, Yang Y, Klemmer SR (2008) Design as exploration: creating

interface alternatives through parallel authoring and runtime tuning. In: Proceedings of the 21st

annual ACM symposium on user interface software and technology, ACM, pp 91–100

Hattori L, D’Ambros M, Lanza M, Lungu M (2011) Software evolution comprehension: replay to

the rescue. In: Proceedings of ICPC 2011 I.E. 19th international conference on program

comprehension, IEEE, pp 161–170

Kahneman D (2011) Thinking, fast and slow. Farrar, Straus and Giroux, NY

Kirsh D (2010) Thinking with external representations. AI Soc 25(4):441–454

Robbes R, Lanza M (2007) A change-based approach to software evolution. Electron Notes Theor

Comput Sci 166:93–109

Saff D, Ernst MD (2003) Reducing wasted development time via continuous testing. In: ISSRE

’03: International symposium on software reliability engineering

Saff D, Ernst MD (2004) An experimental evaluation of continuous testing during development.

ACM SIGSOFT Softw Eng Notes 29(4):76–85

Schon DA, Wiggins G (1992) Kinds of seeing and their functions in designing. Des Stud 13

(2):135–156

Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for

generalized causal inference. Houghton Mifflin, Boston, MA

Steinert B, Cassou D, Hirschfeld R (2012) Coexist: overcoming aversion to change. In: Pro-

ceedings of the 8th symposium on dynamic languages, DLS ’12, ACM, New York, pp 107–118

Suwa M, Tversky B (2002) External representations contribute to the dynamic construction of

ideas. In: Diagrammatic representation and inference, vol 2317. Springer, Berlin

Suwa M, Purcell T, Gero J (1998) Macroscopic analysis of design processes based on a scheme for

coding designers’ cognitive actions. Des Stud 19(4):455–483

Thomas D, Johnson K (1988) Orwell—a configuration management system for team program-

ming. In: ACM SIGPLAN notices, vol 23. No. 11, ACM, pp 135–141

Zeller A (1999) Yesterday, my program worked. today, it does not. why? In: Nierstrasz O,

Lemoine M (eds) Software engineering—ESEC/FSE ’99. Lecture notes in computer science,

vol 1687. Springer, Berlin, pp 253–267

Zeller A (2002) Isolating cause-effect chains from computer programs. In: Proceedings of the 10th

ACM SIGSOFT symposium on Foundations of software engineering, ACM, pp 1–10

How Cost Reduction in Recovery Improves Performance in Program Design Tasks 261

	How Cost Reduction in Recovery Improves Performance in Program Design Tasks
	1 Introduction
	1.1 Why Thinking Is Supported by Doing
	1.2 Why the Need for Structure and Discipline Is Tiring and in Contradiction with the Need for Creativity

	2 Background: The Coexist IDE Extensions
	3 Method
	3.1 Study Design
	3.2 Materials and Task
	3.3 Participants
	3.4 Procedure
	3.5 Dependent Measure
	3.5.1 Identifying Independent Increments
	3.5.2 Quantifying the Effort for Identified Improvements

	4 Results and Discussion
	5 Limitations
	5.1 Order Effects/Counterbalancing
	5.2 Construct Validity
	5.3 Reliability
	5.4 Internal Validity
	5.5 External Validity

	6 Related Work
	7 Summary
	References

