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Multivariate Networks in the Life Sciences

Oliver Kohlbacher, Falk Schreiber, and Matthew O. Ward

Data in the life sciences is being obtained at a steadily increasing speed. Mod-
ern technology enables observing many of the fundamental building blocks
of a cell such as genes and their activity or metabolites and their concentra-
tion, as well as many phenotypical parameters on a macroscopic level, such
as shape, volume or tissue composition. The sequencing of a large number of
genomes—the blueprints of life—enabled so-called post-genomics methods.
The suffix ’-omics’ indicates the generation of data on a large, comprehen-
sive scale. Genomics thus studies all genes and proteomics all proteins in a
cell or a tissue. Recent developments have led to a staggering list of these
omics technologies. Some of the more popular omics technologies and the
data associated with them include:

• Genomics: DNA sequence and genes
• Transcriptomics: mRNA sequence and expression levels
• Proteomics: protein sequence and expression levels
• Metabolomics: metabolite concentrations
• Interactomics: protein-protein interactions

Each of these data types requires different technologies for its generation.
In genomics, DNA is extracted and fragmented into a library of small seg-
ments that are each sequenced in parallel. These sequence reads are then
reassembled and annotated to derive genes. In transcriptomics, sample RNA
is extracted and amplified. The expression level of each mRNA can then be
estimated by next-generation sequencing (RNA-Seq) or by hybridization to
oligonucleotide probes (microarrays). The key technology in proteomics and
metabolomics is currently mass spectrometry, where peptides (derived from
proteins by enzymatic digestion) or metabolites are separated by chromato-
graphic techniques and then detected in a high-resolution mass spectrometer.
The resulting datasets of most of these technologies are huge (up to terabytes
per sample) and often extremely complex.
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Fig. 4.1. Major data types in the life sciences and some bioinformatics tools that
integrate more than one data type into the analysis process, see [17] for details

Several other types of data and information can also be integrated into the
analysis process, including images, volumes, and text documents. Figure 4.1
shows a sampling of bioinformatics tools that integrate multiple forms of
data.

4.1 Characteristics of Data and Tasks

Depending on the application, the data sources, and the questions under
investigation, the resulting multivariate graphs can be very different. They
will differ both in the semantics of the nodes and edges1 (the type of the
network) as well as in the data attached to nodes and edges.

4.1.1 Types of Biological Networks

Omics data is characterized as high-throughput and high-dimensional, as
many parameters are measured at once. It is often of limited accuracy, as
much noise exists in the process of extracting the data. Finally, the analy-
sis can be quite complex, drawing from techniques found in statistics, data
mining, machine learning, pattern recognition, as well as visualization.

While networks have been used for biological visualization for a long time
(e. g., phylogenetic trees have been used since the early 1800s), the availability

1 Nodes are also called vertices and edges are called links, respectively.
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of high-throughput data resulted in network data on an unprecedented scale.
This gave rise to the idea of ’network biology’, understanding biology in terms
of networks [3].

Omics data in the life sciences either represents a network (e. g., interac-
tomics or regulomics) or can be interpreted in the context of a network (e. g.,
proteomics, transcriptomics, and metabolomics). Analysts may study these
networks in many ways. They may focus just on a single network or part
of a network, they may be interested in the interconnection between differ-
ent networks, or they may want to compare multiple networks at once. In
addition, they may wish to project a wide range of different data onto the
networks, either on the nodes or the links, which is why the development of
visualization techniques for multivariate networks is so important.

Biological networks can be organized into a hierarchy based on the entities
represented by nodes and edges (see Fig. 4.2). From metabolic processes
happening on an atomic scale to ecological and evolutionary networks taking
place on planet-wide scales these networks cover a wide range of scales with
respect to time and space. The networks differ mainly in the type of biological
entities or processes represented by their nodes and edges:

• Molecular graphs: nodes are atoms, links are bonds.
• Metabolic networks: nodes are metabolites, links are reactions.
• Interaction networks: nodes are proteins, links are interactions.
• Regulatory networks: nodes are proteins, links are actions (activation, re-

pression etc.).
• Ecological networks: nodes are species, links are interactions.
• Evolutionary networks: nodes are species, links indicate evolution.

This list is neither complete nor uniquely defined. Multiple representations
are possible for many of these networks. The entities present in one network
type (or layer) often have equivalents in other network types. A reaction node
in a metabolic network represents an enzyme, which can interact with other
proteins and is thus also represented by a node in an interaction network, or
can be regulated by other genes or gene products (see Fig. 4.3).

Layouts can be either overlapping or non-overlapping. Nesting of nodes
is possible to show hierarchical relationships. Additional marks and symbols
can be incorporated to convey direction of relationships, locations within a
cell or organism, and other types of meta-data.

4.1.2 Data Mapping and Multivariate Networks

The choice of networks underlying the data depends on the application and
on the available data. In most cases, the structure of the networks is more
or less fixed and the network data is taken from curated databases (such
as KEGG [7], Reactome [13], BIND [2], and DIP [18]). This reflects the
fact that within a given species, the structure of most networks shows little
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Fig. 4.2. A hierarchy of biological networks

Fig. 4.3. Different levels of networks are connected through shared entities

variation2. What changes, though, is the state of the network, such as the
concentrations of metabolites as a function of time or the expression level of
genes as a function of the tissue.

The purpose of network visualization is thus, more often than not, to show
the omics data in the context of these networks. Due to the size of the under-
lying networks, it is usually not meaningful to visualize the whole network.
In most cases, only parts of the whole network are relevant and these can
be identified by statistical means. For example, so-called enrichment analyses

2 Although it should be noted that the network data itself is often incomplete, and
therefore, the networks change over time due to increasing knowledge.
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Fig. 4.4. Examples of multivariate data in biological networks, (a) flux data in
metabolic networks [15], (b) spatial resolution of gene expression in a gene regu-
latory networks of Arabidopsis [6], (c) expression data mapped on a KEGG path-
way [7], and (d) metabolite concentrations under three different conditions

can identify subnetworks that show statistically significant changes in expres-
sion levels [19]. The visualization can thus be focused onto the relevant parts
of the network only, omitting the unchanged parts. In Fig. 4.4, as well as in
Sect. 4.2, we give some examples of how these network and omics datasets
can be represented. Typical graphical attributes used on nodes and edges to
convey information are:

• Nodes: text labels, shape, size, color, diagrams, etc.
• Edges: text labels, line style, thickness, color, etc.



66 4 Multivariate Networks in the Life Sciences

4.2 Use Cases

Here we discusses some use cases that show a variety of networks and ways
in which multivariate biological network data has been visualized in the past.

4.2.1 Signaling

Signaling in cells can be conveyed via different mechanisms. One of the best-
studied of these mechanisms is the chemical modification (phosphorylation)
of certain amino acids of a protein (serine, threonine, tyrosin). This modi-
fication is reversible and is usually catalyzed by specific enzymes (kinases,
phosphatases). By modifying amino acid sites in a protein very specifically,
the activity of these proteins can be modulated – they can be activated or de-
activated. If kinases or phosphatases themselves are activated or deactivated,
they can in turn change the phosphorylation of other enzymes/proteins. In
this way, a signal can be transmitted from one protein to another. This in-
formation flow follows well-defined signaling pathways and these pathways
are part of large signaling networks. Signaling itself plays a key role in many
biological processes and proteomics provides a time-resolved view of these
signaling events. In order to unravel these networks, i. e., to figure out which
protein activates which other protein at what timepoint, the visualization
of these datasets in a larger context is quite helpful. In the example above,
we visualized the phosphorylation patterns as a function of time (Fig. 4.5)
for those nodes of the network for which (phospho-)proteomics could deter-
mine the phosphorylation patterns. Analysis of these patterns can be used to
understand the dynamic behavior of signaling networks.

4.2.2 Genetic Linkage

Genetic linkage analysis is focused on the tendencies of genes that are close
to each other on a chromosome to be inherited together during meiosis (cell
division necessary for sexual reproduction in eukaryotes). A set of genes or
gene markers undergo pairwise comparison to ascertain how frequently they
undergo recombination during crossover of homologous chromosomes. This
linkage score reflects the frequency of recombination between two markers
or genes, which is an indication of their genetic distance (as well as physical
distance). CheckMatrix (http://cgpdb.ucdavis.edu/XLinkage) is a visual-
ization tool for analyzing and validating genetic maps. It uses a set of genetic
markers (x and y axes in matrix) and recombination/linkage data for all pos-
sible pairs of markers computed via a variety of algorithms to create a matrix,
where the color of each cell is based on the linkage score (see Fig. 4.6). Along
the right border are the names for the markers and their positions in the
sequence. Allele composition is shown along the bottom.

http://cgpdb.ucdavis.edu/XLinkage
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Fig. 4.5. Visualization of a signaling network showing timeseries data of the phos-
phorylation patterns of selected proteins. The different curves in each box represent
different phosphorylation sites in the same protein.

4.2.3 Relationship Discovery Based on Document Analysis

While much biological data visualization is focused on the analysis of data
sets containing sequences, numbers, and images, there is a growing in-
terest in harvesting information from large document repositories such as
PubMed (http://www.ncbi.nlm.nih.gov/pubmed). Chilibot (CHIp LItera-
ture roBOT) is a tool that accepts a user’s set of input keywords and gene
symbols and mines PubMed abstracts for relations between the supplied
terms [4]. It first augments the list with synonyms compiled from several
databases (users can add to this table) and then does sophisticated natural
language processing on each sentence of a collection of retrieved abstracts
to find not only co-occurrences, but also types of relationships (stimulatory,
inhibitory, neutral, parallel, and simple co-occurrence). The visualization rep-
resents query terms as boxes and relations as lines. Box colors are set based
on degree of up/down regulation from experimental data, while line color is
based on whether the relationship is stimulatory (green), inhibitory (red),
or both. Grey lines are neutral. Each edge also can have a circled number
indicating how many abstracts contained information about the relationship.
Mousing over an edge or node provides a text annotation of the relationship or
term extracted from the abstracts. Finally, arrows are added if the abstract

http://www.ncbi.nlm.nih.gov/pubmed
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Fig. 4.6. A transcript-based genetic map generated by CheckMatrix, showing link-
age information for a set of genetic markers from chromosome 4 from the plant
Arabidopsis. Python MadMapper BIT scores are mapped to color [20].

indicated directionality of the relationship. Grey diamonds indicate only a
co-occurrence relationship exists. See Fig. 4.7 for an example application.

4.2.4 Gene Regulation and Transcriptome Data

Gene regulation is a complex process commonly represented by gene reg-
ulatory networks. Both the static structure of the network as well as the
dynamics of regulatory events are important to understand gene regulation.
The static structure of a gene regulatory network is often used to investigate
functional building blocks derived from network motifs [14] or central reg-
ulatory nodes based on network centrality analysis [11]. Dynamic changes,
such as organ development and morphological characteristics of higher or-
ganisms, can be traced back to gene regulatory events, which are shown by
changes in the expression level of genes. The steadily increasing temporal
and spatial resolution of transcriptome datasets (measuring the expression
levels of genes) requires a set of analysis methods including exploration and
visualization to provide insights into developmental processes.

An example is shown in Fig. 4.4(b), where we consider the visualization
and exploration of tissue-specific gene expression data for master regulators of
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Fig. 4.7. Using Chilibot to study the relationships between genes reported to be
regulated by cocaine. The network is formed automatically based on discovered
relations [4].

Arabidopsis thaliana flower development in the context of the corresponding
gene regulatorynetwork [6]. In the network in Fig. 4.4(b), nodes represent genes
and different types of links (represented by different arrow heads) are used to
represent information about activation and inhibition.The nodes contain color-
coded images which show the expression levels of the genes represented by the
network node in different floral organs of the plant Arabidopsis.

The combination of network, omics data, and spatial information provides
a fast visual exploration not only of regulatory events, but also of similar
and different expression of a specific gene in the context of different tissues
or organs (spatial context). Such representations can support the compar-
ative analysis of genes with specific transcript patterns, thereby helping in
extracting functional relationships.

4.3 Challenges

High-throughput data is rapidly growing in popularity in all areas of research
in the life sciences. This implies that more and more non-experts get in
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contact with this type of data and are forced to tackle the complexity of
analyzing complex multi-omics data sets. Further background information
concerning the interactive visual analysis of biological networks (in particular
information visualization, visual analytics, and automatic layout of networks)
is given in [9]. Although there are many tools available for biological network
visualization (for overviews and comparisons see, for example, [5, 10, 16]),
there are still many challenges to be met [1]. The challenges arise partially
from the growing amount of available high-throughput data, partially from
novel applications, partially from the integration of different networks, and
partially from the increasing need of more user-friendly visual analytics tools.

Currently, the key challenges concern scale, uncertainty/ambiguity, het-
erogeneity, interactivity and standardization. We will discuss each of these
challenges separately in the following.

4.3.1 Scale

For some biological processes the complete networks have to be taken into
consideration and thus need to be visualized. Currently networks range from
a few dozens to a few thousand nodes and up to several thousand edges
(for example, protein interaction or whole-genome metabolic networks), and
networks with hundreds of nodes and thousands of links are in common use.
This likely will expand by at least one order of magnitude in the near future.
So far, tools commonly lack good methods to navigate through such large
networks.

In addition, the amount and complexity of multivariate date (especially
omics data, but also images, volumes, texts and so on) is steadily increasing.
To make sense out of the data their integration into cellular processes and
biological networks is often required. This also has implications for interactiv-
ity, exploration, and visualization. See Chap. 10 for scalability considerations
for multivariate graph visualization.

4.3.2 Uncertainty/Ambiguity

Unlike in some domains, relations and values in bioinformatics are never one
hundred percent certain. Concerning the structure of the networks, generally
there is evidence to support a relationship, but it could be a very weak
correlation that may, as more evidence is analyzed, prove to be incorrect. Also
the data mapped onto the networks is often uncertain. Both the uncertainty
of the network structure (and thereby the reliability of the underlying network
data) as well as the uncertainty of the different related data has to be shown
to a user.

Typical examples are measurement errors, missing data, multiple solutions
produced by algorithms (such as in the process of finding mappings from one
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sequence to another, most search algorithms will report only the best match
found, but in reality there may be multiple matches for the same subsequence
of comparable quality), and ambiguous mappings between elements of differ-
ent domains.

4.3.3 Heterogeneity

While most multivariate network visualizations incorporate a single data
type, it is increasingly important to tie different data types within the analy-
sis process. The result are heterogeneous networks with a complex structure:
different types of nodes, edges, hyper edges, and hierarchical relationships
(see Fig. 4.2).

Two major challenges are: (1) the compilation of heterogeneous networks
which requires the identification of the biological entities and the interconnec-
tion between networks. The interconnection is especially difficult to obtain
as identifiers for biological entities are often only unique in the context of one
data source, for example, a database or an ontology, and identifier mapping
mechanisms have to be established. (2) the visualization and interactive ex-
ploration of heterogeneous networks, which so far has not been sufficiently
solved. See Chap. 9 for discussions of heterogeneous networks at multiple
levels.

4.3.4 Interactivity

The scale and complexity of the data implies that discovery of new biological
insights requires large-scale data exploration. Network visualization is thus
more and more tied into visual analytics workflows [8]. In order to make such
tools usable, interactive response times, mental map preserving animations,
and easy to use interfaces are required to achieve acceptance in the user base.
See Chap. 6 for discussion of interaction in the visualization of multivariate
networks.

4.3.5 Standardization

Standardized glyphs for different node and link types are common in other
areas of science, such as electrical engineering. Such uniform systems of
nomenclature that describe the components of networks and are based on
a well-defined set of symbols greatly facilitates communication efficiency and
clarity. Although many visualizations in biology still do not follow uniform
rules, graphical standards such as the Systems Biology Graphical Nota-
tion [12] have been established and should be obeyed to foster better un-
derstanding of network visualizations in biology.
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4.4 Summary and Conclusions

In this chapter, we have described the broad range of biological data that
is being routinely collected and analyzed, ranging from the atomic to the
planetary scale. Data is not only available in the form of genetic sequences
and numeric tables, but also in the form of images, volumes, text, and rela-
tional information. This relational information, whether explicit in the data
or implicitly derived, is then the focus of multivariate network visualization.
We then briefly described the typical mappings of such data to networks and
presented a number of case studies showing their use in performing a variety
of bioinformatics tasks. Finally, we concluded with our views on some of the
key challenges facing the field of network visualization in bioinformatics.

In the future, we expect that visualization and interactive exploration will
play an increasingly important role in the study of biological data and pro-
cesses. This will lead to not only increased understanding of how living organ-
isms develop, but also their relationships to other organisms. It will also be a
key factor in expanding our understanding of diseases and lead to improved
methods for their treatment. As mentioned in Sect. 4.3, there are many chal-
lenges that will need to be overcome in order to achieve these goals. We
expect that new biological data types, as well as increased needs to integrate
these types into the analytics process, will provide a wealth of opportunities
for visualization researchers for many years to come.
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