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Multivariate Social Network Visual Analytics

Chris Muelder, Liang Gou, Kwan-Liu Ma, and Michelle X. Zhou

One of the key research topics in Social Science and Sociology is to understand
and analyze various social networks. Like any other types of networks, a social
network consists of a set of nodes and links. Here, each node often represents
a social entity, such as an individual or a group, and each link represents a
particular relationship between two social entities. In a multivariate social
network, each node/link can be associated with a set of properties, or there
can even be multiple sets of heterogenous nodes or edges.

3.1 Data Characteristics

In addition to understanding the behavior of individual social entities, Soci-
ology is also concerned with the behavior of groups, in particular, how these
groups interact with each other [49]. In this context, a multivariate social net-
work is composed of the entities of groups. The connections between them
depend on the task being pursued and the information that is available, but
are generally a set (or multiple sets) of relationships between the entities.
These relationships can be directed or undirected, weighted or unweighted.
Additionally, the nodes can carry any additional properties.

In particular, social networks are imbued with a number of properties.
The size and complexity of the topology itself can be overwhelming for many
traditional approaches. Additionally, both the nodes and links can carry any
number of properties, including nominal, ordinal, and continuous measures:
for instance, nodes can often be broken down into classes both ordered (age,
grade, etc.) and unordered (gender, race, etc.), or there can be multiple classes
of edges on the same set of nodes (e.g., both friendship and aggression ties be-
tween the same group of actors), or the nodes or edges could contain weights,
or even multiple weight metrics, and the edges could be directional if the
network is not symmetric. Also, many social networks evolve over time, so
while static analysis can reveal some insights, in many cases the evolution of
dynamic social networks could be of importance.
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To make things more complicated, a multivariate social network may not be
homogeneous as it may contain multiple types of nodes, which represent both
individuals and groups. For example, an enterprise social network may include
nodes representing individual employees as well as those representing compa-
nies or organizations that are customers, suppliers, or partners of the enterprise.

All of the mentioned properties are often compounded by a difficulty in
acquiring the network data. Next, we briefly describe different approaches to
acquire social network data.

3.1.1 Traditional Data Collection

Traditionally, social network data are acquired by polling small groups of
people, where people report on their social ties via questionnaires. This in-
troduces numerous points for the introduction of uncertainty. Not only do the
subjects’ responses depend on the questions asked, but even on how they are
worded. The accuracy of the data also relies on the honesty of the subjects.
In addition, temporal resolution of such networks is extremely low, since it
is very difficult to get a large number of subjects to willingly and dutifully
fill out one questionnaire, let alone repeated (e.g., weekly, monthly, or even
annual) questionnaires. To address these challenges, alternative data acquisi-
tion approaches have been considered, particularly in social network analysis
of non-human actors such as herds of animals. In these cases, the actors are
tagged and tracked, but such tracking obfuscates most details of the network,
as the animals are unable to communicate the specifics of their relationships,
e.g., a proximity test could determine two animals met, but not inherently
determine if the meeting was amicable or hostile. In either case, most tra-
ditional social network data collection methods result in data sets that are
small, incomplete, noisy, vague, or even unreliable.

3.1.2 Data Collection from Online Social Media Networks

Conversely, the advent of online social media, such as Facebook and Twit-
ter, has created the ultimate data source for social network analysis, as an
incredible number of users are readily willing to divulge both explicit and
implicit social connectivity information in order to benefit from the service
that social media provides. This has resulted in an explosion of social network
data in recent years. The result of this is that sociologists now often have to
deal with massive data challenges, such as handling extremely large networks
or real-time trend detection and analysis. But the emergence of social media
has also introduced privacy issues that often limit the third party access to
these networks and also limit what can be done with them.

In parallel to collecting social network data frompublic socialmedia sites, an
alternative approach is to build social networks from people’s communication
data, including emails, online chats, phone calls, andmeeting invites, especially
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within the context of enterprise [59]. Not only can such data connect one social
entity to another, but they can also be used to characterize the relationships
between any two connected entities, including their tie strength, topic of inter-
est, and style or type of communications. Furthermore, such information can
the be used to better understand the characteristics of an individual’s as well
as an organization’s social network [59].

3.2 Task Characteristics

Given a multivariate social network, the typical tasks of understanding such
a network are to analyze its different social entities, and the properties of the
entities or the network as a whole.

3.2.1 Understanding Social Network Nodes

As mentioned in the previous section, a node of a multivariate social network
represents an individual or a group, which is often associated with a set of
traits describing the individual or group. With the emergence of social media
and advances in data analytics, much information can be inferred from one’s
social media footprints to describe various traits of the individual or group.
In particular, there is much research on understanding various traits of an
individual, from demographics to political orientation to personality traits
[21, 39, 47]. Similarly, there is also much work on extracting the properties
of a group, including aggregated properties of a group such as the level of
expertise [46] or the discovery of latent communities/groups along with their
properties [48, 58].

3.2.2 Understanding Social Network Links

Since a link represents the relationship between two social entities, under-
standing a link is often to characterize such a relationship (e.g., type and
strength) and predict its properties (e.g., likelihood to last). The relation-
ship between two social entities can be characterized in many different ways.
For example, between two individuals, such a relationship can be used to
describe what, how, and when such a relationship is established [59]. Besides
understanding the characteristics of a relationship, there is also research on
predicting the properties in particular the existence of a particular relation-
ship between two entites [26].

3.2.3 Understanding Social Networks

Understanding a network as a whole is a complex task as it depends on
the purposes of the analysis as well as the analytic technologies. Because of
the challenges, visualization is often developed to accompany the analytics
technologies to help users better understand various properties of a network.



40 3 Multivariate Social Network Visual Analytics

Graph-Based Analysis

Many sociological research works draw on graph analytic algorithms and
statistics. These analyses can range in scale from looking at small scale
patterns such as dyads (pairs of entities) [49] or triads (groups of 3) [17],
to centrality metrics that measure nodes’ importance to the network as a
whole [18], and up to large scale analysis of the high-level relationships that
find and compare large groups of entities and how they interact.

Sociograms Analysis

One key element of social network research has been visualization of node-link
diagrams, which sociologists often refer to as “sociograms” [19]. While statis-
tical metrics can be quite succinct, it can be difficult to know a priori what
metric will produce the right result, and it can be difficult to directly verify
that the results are correct. Pictorial representations of social networks can
help to both directly communicate the content of the network such as struc-
tural patterns, as well as to guide and confirm the choices of statistical met-
rics. Nevertheless, traditional visual diagrams of social networks often suffer
from a range of problems, the most common of which being the high density
of edges and complex structures in large networks, yielding sociograms that
often appear as indecipherable clouds of nodes and edges.

3.3 Examples of Technologies

3.3.1 Clustering

Another way to simplify large, complex networks is to cluster tightly con-
nected groups of nodes together and consider the resulting abstracted super-
network. Many current clustering algorithms are based on the modularity
metric, such as the Louvain clustering method [3] or the “Fast Community”
clustering algorithm of Clauset, Newman, and Moore [8]. These clustering
algorithms have been shown to be effective on real-world networks, as the
modularity metric is demonstrably comparable to force directed energy func-
tions [45]. Modularity is a metric that evaluates a specific proposed clustering
of a network by measuring the density of cluster interiors and the sparsity
of inter-cluster connections. Specifically, given a network with a proposed
clustering, the modularity Q is defined as:

Q =
1

2|E|
∑

i,j

[
Ai,j − kikj

2|E|
]
δi,j (3.1)

where |E| is the number of edges in the network, ki, kj are the degrees of nodes
i and j, Ai,j is 1 if there is an edge between nodes i and j and 0 otherwise,
and δi,j is 1 if nodes i and j are in the same cluster and 0 otherwise. Recent
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efforts have also been shown to make such approaches produce more balanced
hierarchies [31] or to parallelize the clustering calculation [36].

3.3.2 Network Centralities

Centrality metrics are commonly applied to the analysis of social networks,
such as Eigenvector [6, 35], Markov [57], Betweenness [18, 38], and Close-
ness [32, 44] centrality. Each of these measure vertices’ overall importance
with respect to the whole network. Rather than basing the importance of a
node solely on how many connections it has, eigenvector centrality also takes
into account the weights of connections to other nodes; a single connection
to a highly important node can carry more weight than many connections
to nodes of low importance. Eigenvector centrality sensitivity extends this
notion to derive the importance of nodes relative to each other.

3.3.3 Centrality Derivatives

While centrality gives one value per node, centrality sensitivity analysis mea-
sures a vertex’s importance to the structure of the network relative to other
vertices in the graph [9]. These metrics are essentially derivatives of centrality,
and as such can be calculated similarly for any type of centrality. To calcu-
late a reference node’s sensitivity to a target node, the reference node’s initial
centrality is calculated, each edge of the target node is removed one at a time,
and the centrality of the reference node is recalculated after each removal.
The negative changes in centrality of the reference node give a measure of
how important the target node is to the reference node—in other words, how
sensitive the reference node’s centrality is to the target node. For instance,
if removing a target node’s edges results in large decreases in the reference
node’s centrality, then the reference node is said to be highly sensitive to
the target node—that is, the target node has high importance relative to the
reference node. This can be summarized in the following equation [9]:

∂x

∂ti
= −Q+∂Q

∂ti
x (3.2)

where x is the centrality, ti is the degree of vertex i, Q is the subtraction of
the identity matrix from the adjacency matrix of the network (Q = A − I)
(A is the adjacency matrix, and I is the identity matrix), and Q+ is the
pseudoinverse of Q.

One application of these sensitivities is to evaluate the roles of edges in the
graph. If two nodes impact each other negatively, then they have a competi-
tive relationship, whereas other nodes have mutually beneficial relationships.
This can be shown as simply as using color, as in Fig. 3.1. Alternately, since
every node has a centrality derivative with respect to every other node, cen-
trality sensitivity can be thought of as a complete, weighted network. From
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(a) Freindster network (b) Coauthorship

Fig. 3.1. Centrality sensitivity analysis can indicate how collaborative (blue) or
competitive (red) relationships are along edges in the network

this network, it is possible to derive a skeleton network based on edge exis-
tence, high centrality derivatives, and overall connectivity (e.g., using a span-
ning tree). This skeleton network can then be thresholded to be as sparse or
as dense as needed, and can be used for a wide variety of purposes, such as
simplifying/clarifying layouts (as in Fig. 3.2), visualizing only the most im-
portant connections, or finding important relationships between nodes with
no direct connections.

3.3.4 Traditional Network Layouts

One key task in creating visual images of networks is to determine the ap-
propriate geometrical layout of the nodes and edges. There are several well-
defined criteria for assessing the accuracy and validity of a particular graph
layout [13]. Some common criteria [2, 4] include, but are not limited to:

1. edges of the same approximate length;
2. vertices distributed over the area;
3. reduction of the number of edge crossings.

Nevertheless, optimization of such criteria can be intractable and often con-
tradictory [4]. For surveys of many modern graph layout algorithms see Bat-
tista, Eades, Tamassia, and Tollis [55] or Hachul and Jünger [24].

The most traditional and commonly used layout algorithm for social net-
work analysis are force-directed layouts [33], often referred to as “spring
embedders” [15]. In this well-known procedure, nodes in a network graph
are positioned iteratively, where the edges connecting them are treated like
springs that push and pull on them until the system converges to an equi-
librium. However, spring embedder techniques do not always scale nicely to
large graphs [5]. Thus, a common problem that faces many existing visual-
izations of large social networks (most of which use force-directed layouts)
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is that they often result in a tangled mess of incomprehensible lines; this is
often referred to as the “hair-ball” problem (Fig. 3.2(a) shows an example).

Other approaches have been developed with the goal to improve network
layout in terms of quality and algorithmic efficiency, especially for large
graphs. One such technique [4] is based on a variant of dimension-reduction
methods, referred to as multidimensional scaling [10], in which the goal is
to minimize stress. In this approach, the purpose of stress minimization is
to determine positions for every node such that the Euclidean distances in
the n-dimensional space resemble the given distances between the nodes, as
determined by graph-theoretic measures, such as the shortest paths (i.e.,
geodesics). However, such geodesic based layouts tend to fail on networks
with small diameter, as is common among social networks.

(a) All edges (b) Filtered (c) Further filtered

Fig. 3.2. MIT reality data set. Trying to lay out the whole network can yield an
unintelligible hairball (a), but filtering out the less important edges via sensitivity
analysis reveals two clusters (b), and further filtering starts to dissolve one of them
while the other remains strong (c).

3.3.5 Improved Network Layouts

One method for improving the layout of dense social networks is to trim
the network of its less essential connections to reduce it to a core network
consisting of just the most important connections. A näıve way to do this
would be to simply take a spanning tree of the network itself, but this is not
always ideal for preserving the centralities of the nodes, which sociologists are
often concerned with. Instead, the edge filtering can be weighted according
to the centrality derivatives, so that the edges that are removed are the
ones that affect the centralities the least. This produces a core network that
preserves as much of the critical structure of the network, which can then be
used to create an improved layout of the graph that reveals more detailed
structures, as in Figs. 3.2(b) and 3.2(c). Once this reduced network is laid
out, the original edges can optionally be reintroduced.
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As social networks tend to exhibit strong community structures, cluster-
based layouts based on hierarchical structures have proven useful, such as
the treemap layout [41] or space-filling curve based layouts [42], as shown
in Fig. 3.3. A treemap defines a hierarchical decomposition of screen space,
where the whole screen is recursively subdivided according to the tree, i.e.,
the root of the tree takes up the whole screen, each branch subdivides the
screen at each level of the tree, and finally each leaf of the tree is allotted
its own region of the screen. When applied to a graph’s clustering hierarchy,
each node in the graph is a leaf in the hierarchy, and can thus be placed
in the corresponding region to define the layout. In the space-filling curve
layout, the nodes are ordered in 1 dimension, and then mapped to the screen
using a recursively defined fractal curve, such as the well known Hilbert or
Gosper curves. Any such clustering-based layout can provide clear bound-
aries between communities—particularly when combined with edge bundling
techniques. And since a clustering is already computed, hierarchical edge
bundling is a good fit [28].

(a) Treemap-based layout (b) Space filling curve-based layout

Fig. 3.3. Clustering-based graph layouts using trees (a) or space filling curves (b)
can be used to show explicit separation between communities

3.3.6 Multivariate Social Networks

Sometimes, merely improving the layout algorithm is insufficient for showing
particular aspects of a network. Specifically, social networks can often be
divided into groups according to discrete properties besides connectivity, such
as gender, race, school grade, or others. However, the density of ties in most
traditional node-link diagrams make it difficult to distinguish in inter-group
patterns from intra-group patterns, as in Fig. 3.4(a). One approach to address
this is a modified radial representation that arranges nodes according to
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(a) Traditional layout (b) Radial layout, divided
by node category (grade)

(c) Parallel layout, with
multiple edge sets (aggres-
sion vs. friendship)

Fig. 3.4. Some networks can be divided up categorically, with multiple node cat-
egories or edge sets. Here we show a social network of students colored by grade.
Traditional node-link diagrams (a) can be too cluttered to read, but explicitly di-
viding nodes by category (b) or showing multiple edge sets in parallel (c) can better
show how these categories or edge sets interact. (Images from [12] with permission.)

categorical properties in addition to connectivity, as shown in Fig. 3.4(b).
Nodes are placed around a circle, grouped into discrete arcs based on the
selected data attribute, and ordered within each group by connectivity with
the use of modularity clustering. This new representation also delegates the
two kinds of connections to separate regions of space: intra-group edges are
displayed outside the circle while inter-group edges are drawn in the middle.
The label on each group shows the number of inter-group and intra-group
connections, respectively.

In addition to node categories, social networks can also contain more than
one kind of edge, defining two or more unique networks on the same set of
nodes. In such cases, a layout that is good for one set of edges might not be
good for another. Alternately, with one unified layout, sparser networks may
get lost inside denser ones. One approach to address this is a representation
based on n-partite network layouts, where layers of nodes are laid out paral-
lel to each other, similar to the dynamic graph approach of Burch et al. [7].
This concept has been applied to multiple edge sets on the same set of nodes
by replicating the nodes in each layer, and considering each edge set as a
bipartite graph from the full set of nodes to a duplicate set of nodes, which
creates an n-partite network where n is one more than the number of edge
sets. This n-partite network is then laid out in a series of columns by evenly
spacing the nodes in each column. Edge directionality is also shown in this
representation, since all edges proceed from left to right. While hierarchical
layouts such as Sugiyama [53] or Dig-Cola [14] could be used, here each layer
of nodes is identical, and thus it is more natural for each column to have the
same ordering. Thus, the afore calculated categorical modularity clustering
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is applied to cluster the nodes, and the resulting clustering is traversed to
define a universal ordering. An example of this parallel layout is shown in
Fig. 3.4(c).

3.3.7 Dynamic Social Networks

In real world applications, social networks are often intrinsically time-varying:
New friendships can be made, or old friendships lost. While the problem
of visualizing static networks has been studied quite extensively, work on
dynamic network visualization is less mature.

A common method for visualizing dynamic graphs is to animate the tran-
sitions between time steps. This approach yields dynamic visualization with
nodes appearing, disappearing and moving to produce a readable layout for
each time step. Alternatively, multiple time steps can be statically placed
next to each other using “Small Multiples” [56]. This eases the comparison
of distant time steps but limits the area devoted for each time step which
reduces the legibility of each graph. Archambault et al. [1] have done an em-
pirical study to compare the advantages and drawbacks of these approaches
(i.e., “Animation” vs. “Small Multiples”). In either case, when creating a
node-link diagram for a dynamic graph, not only does the layout need to
consider graph topology, but also the stability between time steps. Hu et
al. [30] proposed a method based on a geographical metaphor to visualize a
summary of clustered dynamic graphs. An alternate visualization approach
for dealing with dynamic large directed graphs is to directly represent time as
an axis. In the work of Burch et al. [7], vertices are ordered and positioned on
several vertical parallel lines, and directed edges connect these vertices from
left to right. Each time-step’s graph is thus displayed between two consecutive
vertical axes.

Storyline visualizations have become popular in recent years for showing
evolution of interactions such as clusterings or networks [54]. Sallaberry et
al. [51] use a globally optimized dynamic graph clustering approach to both
extend the SFC layout method [42] and create a storyline-like timeline repre-
sentation of the network. An example of such a timeline is shown in Fig. 3.5.

Fig. 3.5. Evolution of a small social network collected off the Rimzu social media
site
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3.3.8 Egocentric Approaches

Due to screen and retinal resolution limits, and a psychological limit on at-
tentiveness, there is a finite maximum amount of information that can be
conveyed by any one view. Thus, as datasets get even bigger, an overview
of the dataset will show proportionally less and less of the underlying data.
As a means to address this, researchers have introduced several bottom-up
techniques, which bypass or supplement the overview with a detailed view
that starts at the lowest level of the data (i.e., a single selected node and its
immediate context). Additional relevant nodes and connections are revealed
only on demand, based on graph structure or specialized degree-of-interest
(DOI) functions.

“Link Sliding” and “Bring & Go” are two such DOI functions for nav-
igating large networks [40]. Heer and Boyd [27] presented a visualization
method which only shows a focus node’s neighboring nodes up to a certain
level. Similarly, Elmqvist and Fekete [16] described a bottom-up system based
on hierarchy traversal methods. These methods are useful when the inherent
graph structure is more important than other properties for the task at hand.
For other applications, where node/edge attributes are the focus of analysis,
researchers create specialized DOI functions. Furnas [20] introduced a DOI
function to evaluate the importance of a selected node based on distance and
a priori interest. Van Ham and Perer [25] extended this function to oper-
ate on embedded attributes and graph topology, as well as user-generated
search actions. Crnovrsanin et al. [11] combine this concept with an interac-
tion history based importance similar to Amazon’s item-to-item collaborative
filtering [37]. The result of this is a visual recommendation system that takes
into account not only the underlying topology, but also the users’ interaction
histories. An example of a path in a user’s exploration is shown in Fig. 3.6(a).

In dynamic networks, not only will importance depend on the interactive
selection of focal points, but also on the temporal history of the network.
Muelder et al. [43] have extended the DOI functions for dynamic networks
by using computing a DOI that takes into account not only static topology,
but also temporal topological history and interaction history. This is then
used along with dynamic clustering to create focused, egocentric storylines,
as shown in Fig. 3.6(b).

3.3.9 TreeNetViz: Revealing Patterns of Networks with
Hierarchical Attributes

This sample technology demonstrates a new visualization technique, TreeNet-
Viz [22], to help users understand a network with hierarchical attribute infor-
mation. This technology is built up on a TreeNet graph, a type of multivariate
network in which node attribute has hierarchical structure. For example, as
shown in Fig. 3.7, a subgraph of a scientific co-author network in Fig. 3.7a
has node attribute of affiliation, such as country, university and department,
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(a) Interactive visual recommendation (b) Storyline recommendation

Fig. 3.6. Using a recommendation system to focus on the neighborhood around a
single focal node over time can show dynamic context of changes in that individual’s
relation to the network. In static networks, this change can be from interactive focal
point changes as the user explores (a). In dynamic networks, this change can also
be due to the evolution of the network itself over time (b).

Fig. 3.7. An example of a TreeNet graph. It includes (a) a scientific co-author
network, and (b) node affiliation attribute with a hierarchical structure.

and the affiliation attribute has a hierarchical structure shown in Fig. 3.7b.
This type of graph, a special type of multivariate network, is called TreeNet
graph.

Analysis of this type of network is not a trivial task. It is important to
analyze the connectivity, centrality and path patterns at different levels ag-
gregation on the node attribute. For instance, to fully understand the sci-
entific co-author network shown in Fig. 3.7, the collaboration activities can
be analyzed through different entities, from individual authors to multiple
universities to international collaborations. Th analysis is achieved by ag-
gregating network connections at different levels of node attribute hierarchy.
This type of analysis enables us to understand an individual’s social activities
at different affiliation levels [34].

TreeNetViz Design. TreeNetViz is designed to support various multivariate
networks analysis at different levels of node hierarchy for a TreeNet graph.
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TreeNetViz uses a Radial, Space-Filling (RSF) [52] technique to show a tree
structure of the node attribute in the TreeNet graph (Fig. 3.8a). It then
uses a circular layout for an aggregated network and places the aggregated
network over the RSF tree (Fig. 3.8b and c). To reduce visual cluttering, it
adopts an edge bundling technique based on [29](Fig. 3.8d). It also includes
an algorithm to improve circular node placement to reduce the edge crossings
with the consideration of various constraints.

Fig. 3.8. TreeNetViz Visualization Design: (a) a Radial, Space-Filling (RSF) layout
of the node attribute structure; (b) the optimized circular layout of the network
overlaid on RSF tree; (c) a RSF circular layout of an aggregated network; (d) the
view after edge bundling

Treenetviz also includes rich interactions to support network analysis tasks
at different levels of aggregation. It enables users to observe network patterns
(connectivity, centrality, and reach) among entities of the same type (e.g.
the collaboration patterns among all universities or countries in previous
example) by controlling the view level. It supports arbitrary aggregation of
network by expanding and folding node sector in the visualization. It also
enables users find the short paths among nodes of interest in aggregated
networks.

An example application of TreeNetViz. A TreeNetViz example is presented
to help people understand collaboration patterns among researchers in a co-
author network. The collaboration network was extracted from MedLINE
research articles published from 2006 to 2010 in the area of diabetes at Uni-
versity of Michigan. The data set includes 614 articles, 847 authors and 2,498
co-author relationships. 10 college-level nodes and 90 department-level nodes
are identified.

Fig. 3.9 shows the visualization results of collaboration patterns at three
different levels of colleges (Fig. 3.9a), departments (Fig. 3.9b), and individuals
(Fig. 3.9c). With this visualization, people can understand network patterns
at different scales from the perspectives of the power and status of collabora-
tion resources, and the access control to social groups and individual authors.

TreeNetViz also presents patterns how social actors collaborate with each
other from different scales. As shown in Fig. 3.10a, the collaboration pat-
terns of researchers in the “Biochemistry Dept” with other departments in
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Fig. 3.9. TreeNetViz visualizes collaboration patterns at three different levels:
collaborations among colleges(a), departments(b), and individuals(c)

Fig. 3.10. (a) Collaboration patterns across different levels of entities of colleges,
departments and individuals; (b) A critical path connecting two colleges by the
researcher “Auth525”

“LSA”, and other colleges are presented. It is also helpful to identify im-
portant people connecting different organizations. Figure 3.10b shows the
researcher “Auth525” connects two organizations: “School of Kinesiology”
and “Medical School”.

3.3.10 SocialNetSense: Making Sense of Multivariate Social
Networks

While TreeNetViz is a specific visualization technique to represent and help
people to explore a specific type of multivariate network, SocialNetSense [23],
on the other hand, is a visual analytics tool to support different analysis tasks
on social networks with rich node attributes. SocialNetSense integrates differ-
ent visualizations of multivariate social networks and supports the analysis
process with a sensemaking approach. Here, the social network with rich



3.3 Examples of Technologies 51

node attribute information, such as TreeNet graph, is a type of multivariate
network of interest.

Sensemaking approach for visual analytics. SocialNetSense adopts a sense-
making approach to support the visual analytics of multivariate social net-
work. Sensemaking is a process to iteratively construct and refine a repre-
sentation or understanding of data and fit data with the representation to
meet the requirements of a task [50]. There are several important sensemak-
ing tasks on social networks with rich node attribute information including
understanding network features, the social attribute features and the hybrid
features of network and attribute.

Figure 3.11 shows the sensemaking framework for multivariate social net-
work visual analytics. The framework consists of a network exploring loop
and a representation building loop. In the network exploring loop, users can
explore social attribute features, network features, and hybrid features to col-
lect information based on their tasks and existing knowledge. Various metrics
(such as degree, betweenness and closeness), plots (such as degree distribu-
tion) and visualization tools are implemented to help users to explore these
features. On the other hand, in the representation building loop, users process
and comprehend the information collected, build and revise their representa-
tion of the data.

The two loops interact with each other with bottom-up and top-down
processes. In the top-down process, representations are used to guide users’
exploration to look for new evidences. In the bottom-up process, information
of interest are collected as evidences to confirm or dis-confirm the represen-
tation. As more evidence are collected, representations can be revised and
even re-constructed.

Fig. 3.11. A sensemaking framework for multivariate social network visual ana-
lytics in SocialNetSense
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SocialNetSense User Interface. Guided by the sensemaking framework, the
SocialNetSense user interface includes three main components: a Network Ex-
ploring Space (NES), a Representation Building Space (RBS), and a process
view.

The interface of NES is shown in Fig. 3.12, including two main panels:
a visualization view (Panel 1) showing social networks along with hierarchi-
cal social structures, and a control panel (Panel 2) offering a set of analytical
tools, such as different aggregationmetrics of connectivity and centrality, ana-
lytic plots and searching function. View manipulation tools, such as zooming,
panning and layouting, are provided in the tool bar above Panel 1. It uses
multiple visual representations of networks to facilitate the exploration of so-
cial, network and hybrid features. Node-link diagrams (Panel 1 in Fig. 3.12)
are used to show social features and network features, and TreeNetViz is used
to show hybrid features of aggregated networks over node attributes.

Fig. 3.12. Network Exploring Space (NES) in SocialNetSense: (a) Coordinated
node-link views, including a network visualization (Panel 1-1), a tree visualization
(Panel 1-2) for social hierarchy, a network overview panel (Panel 1-3), and a control
panel (Panel 2) with analytical tools

In RBS, users can organize the evidence collected from the NES to create
their representations using editing functions. Figure 3.13 shows the user inter-
face of RBS. The interface consists of a editing space (Panel 1), a process view
(Panel 2) and an element list view (Panel 3). The editing space enables users
to collect visualization elements from the node-link view and the TreeNetViz
view, network metrics of size, centrality, betweenness and closeness, and also
plots from the NES. It also provides functions such as grouping/ungrouping,
note-taking, and element-linking to build representation.
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Fig. 3.13. Representation Building Space (RBS): Panel 1 is the main working
space; Panel 2 is the process view; Panel 3 lists the elements in the working space;
Panel 4 shows tools of representation building, such as add note, group/ungroup
elements and link element

Sample analysis with SocialNetSense. The same data set of a diabetes
researcher collaboration network is used to demonstrate how SocialNetSense
supports the visual analytics of multivariate social networks.

With SocialNetSense, users can build their understanding of the collabora-
tion patterns, such as the power and status of social actors and collaborations,
at three different levels (colleges, departments, and individuals). In Fig. 3.14,
an example representation is shown for the main network patterns at the
level of colleges composed by a user. The strong collaboration among “Med-
ical School”, “LSA” (Literature, Science and the Arts) and “Public Health”
is captured with detailed notation of network metrics, plots, and co-authored
articles. Similarly, it can also help users understand cross-scale patterns such
as collaboration among the departments in “LSA” with other colleges.

With SocialNetSense, users can have comprehensive understanding of the
analytics process. Figure 3.15 shows how a user makes sense of the network
to identify an important actor (Author 525) acting as a “boundary spanner”
to connect “Medical School (MS)” and “School of Public Health (SPH)”.
Compared with the visualization result shown in Fig. 3.10b, SocialNetSense
shows the intermediate results and reasoning process.
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Fig. 3.14. A sample representation of the main network patterns at the level of
college

Fig. 3.15. A representation of a boundary spanner connecting “Medical School
(MS)” and “School of Public Health (SPH)”

3.3.11 Summary

Many works have proposed methods to accomplish these tasks. Dyadic and
triadic analyses often rely on basic statistics, but other metrics require more
complex algorithms. There are a number of centrality metrics, each with their
own strengths and weaknesses, and a number of additional metrics derived
from centrality metrics. Community-scale analyses depend on clusters, so
there are also a substantial number of clustering algorithms.
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As node-link diagrams are traditional for visually inspecting social net-
works, node-link diagram layout algorithms are intrinsically applicable. But
social networks exhibit certain properties that make many layout algorithms
less useful. So, there are additional approaches to improve layout algorithms
for social networks, based on relevant statistical analyses such as centralities
or clusterings. Some visual approaches even incorporate semantic informa-
tion, such as node categories [22] or multiple edge sets. There has also been
recent work in extending visual analyses to dynamic social networks. And
finally, as the size of social networks available to researchers has grown in-
credibly in recent years, bottom-up visual analytic approaches, such as rec-
ommendation and sensemaking-based systems [23], are becoming increasingly
popular.

3.4 Challenges and Future Directions

While much work has been done on the visualization and analysis of social
networks, many of the key challenges are only getting more important. The
size of social network data available has exploded in recent years due to social
media, and continues to grow every year. Many of these networks generate
complex data in real-time, and real-time analysis offers many unique oppor-
tunities and challenges. The kind of information in social networks can also be
quite varied, such as social network messages from different devices, different
locations, and different social media sites, and may contain various meta-data
that could potentially improve analytic results. The validity of the informa-
tion must also be considered, as most social networks rely on the honesty of
the users, and are potentially vulnerable to wildly inaccurate input, missing
data, or even spam. And lastly, there is much that can be done to improve
the analytic insights to be gained from previous data that has already been
collected.

As such, there are numerous opportunities for future work in this area.
As there are many social media sites, finding new ways of combining and
analyzing networks from various sources would be beneficial to creating a
more complete picture of the underlying social trends. Producing useful an-
alytic results while preserving the privacy of the subjects is also important,
as many users would be more willing to provide accurate information if they
trust the privacy policies. But the resulting networks will still have uncer-
tainty, whether due to the data being sanitized to protect privacy or the users
omitting data to protect their own privacy. So incorporating further uncer-
tainty metrics to either measure the validity of the input data or conjecture
missing information would aid in improving the analytic results. And lastly,
even when a visual analytic process produces an insight, it is important for
the analyst to convey the underlying derivation, as tracking and analyzing
the provenance of insights is critical for improving the analytic process.
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24. Hachul, S., Jünger, M.: An experimental comparison of fast algorithms for draw-
ing general large graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS,
vol. 3843, pp. 235–250. Springer, Heidelberg (2006)

25. van Ham, F., Perer, A.: Search, Show Context, Expand on Demand: Supporting
Large Graph Exploration with Degree-of-Interest. IEEE TVCG 15(6), 953–960
(2009)

26. Hasan, M.A., Zaki, M.J.: A survey of link prediction in social networks. In:
Aggarwal, C.C. (ed.) Social Network Data Analytics, pp. 243–275. Springer US
(2011)

27. Heer, J., Boyd, D.: Vizster: visualizing online social networks. In: IEEE Sym-
posium on Information Visualization, pp. 32–39 (2005)

28. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Transactions on Visualization and Computer Graph-
ics 12(5), 741–748 (2006)

29. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)

30. Hu, Y., Kobourov, S.G., Veeramoni, S.: Embedding, clustering and coloring for
dynamic maps. In: Proceedings of the 5th IEEE Pacific Visualization Sympo-
sium, pp. 33–40 (2012)

31. Huang, M.L., Nguyen, Q.V.: A fast algorithm for balanced graph clustering.
In: Proceedings of the 2007 IEEE Symposium on Information Visualization
(InfoVis), pp. 46–52 (2007)
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