
Andreas Kerren
Helen C. Purchase
Matthew O. Ward (Eds.)

Multivariate
Network Visualization

St
at

e-
of

-th
e-

Ar
t

Su
rv

ey
LN

CS
 8

38
0

 123

Dagstuhl Seminar #13201
Dagstuhl Castle, Germany, May 12–17, 2013
Revised Discussions

Lecture Notes in Computer Science 8380
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Andreas Kerren Helen C. Purchase
Matthew O. Ward (Eds.)

Multivariate
NetworkVisualization

Dagstuhl Seminar #13201
Dagstuhl Castle, Germany, May 12-17, 2013
Revised Discussions

13

Volume Editors

Andreas Kerren
Linnaeus University, Faculty of Technology (FTK)
Department of Computer Science
Vejdes Plats 7, 351 95 Växjö, Sweden
E-mail: kerren@acm.org

Helen C. Purchase
University of Glasgow, School of Computing Science
18 Lilybank Gardens, Glasgow G12 1RZ, UK
E-mail: hcp@dcs.gla.ac.uk

Matthew O. Ward
Worcester Polytechnic Institute, Department of Computer Science
100 Institute Road, Worcester, MA 01609-2280, USA
E-mail: matt@cs.wpi.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-06792-6 e-ISBN 978-3-319-06793-3
DOI 10.1007/978-3-319-06793-3
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014937318

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

During May 12–17, 2013, a seminar on “Information Visualization – Towards
Multivariate Network Visualization” (no. 13201) took place at the Interna-
tional Conference and Research Center for Computer Science, Dagstuhl Cas-
tle, Germany. The center was initiated by the German government to promote
computer science research at the international level. It seeks to foster dialog
among the research community, advance academic education and professional
development, and transfer knowledge between academia and industry.

Information visualization (InfoVis) is a research area that focuses on the
use of visualization techniques to help people understand and analyze data
as well as relations between data. While related fields such as scientific vi-
sualization involve the presentation of data that have some physical or geo-
metric correspondence (for example, climate patterns, molecular formations,
transport networks), InfoVis centers on abstract information without such
correspondences, i.e., it is not possible to map this information into the phys-
ical world in most cases. Examples of such abstract data are symbolic, tab-
ular, networked, hierarchical, or textual information sources—for example,
genealogies, demographic data of a population, or financial trends.

The goal of this third Dagstuhl Seminar on Information Visualization was
to bring together theoreticians and practitioners from InfoVis, HCI, and graph
drawing with a special focus on multivariate network visualization, i.e., on
graphs where the nodes and/or edges have additional (multidimensional) at-
tributes. The integration of multivariate data into complex networks and their
visual analysis is one of the big challenges not only in visualization, but also
in many application areas. Thus, in order to support discussions related to
the visualization of real-world data, we also invited researchers from selected
application areas, especially bioinformatics, social sciences, and software engi-
neering. The unique “Dagstuhl climate” ensured an open and undisturbed at-
mosphere to discuss the state-of-the-art, new directions, and open challenges
of multivariate network visualization.

This book is the outcome of Dagstuhl Seminar no. 13201. It documents and
extends the findings and discussions of the various sessions in detail. During

VI Preface

the last day of the seminar, the most important topics for publication were
identified and assigned to interested participants. The resulting author groups
worked together to write book chapters on the chosen topics.

We would like to thank all participants of the seminar for the lively discus-
sions and contributions during the seminar as well as the scientific directorate
of Dagstuhl Castle for giving us the possibility to organize this event. The
abstracts and presentation slides can be found on the Dagstuhl website for
this seminar1. There is an online document that reports on all activities dur-
ing the seminar2. We are also grateful to all the authors for their valuable
time and contributions to the book. Last but not least, the seminar and
thereby this book would not have been possible without the great help of the
staff of Dagstuhl Castle. We would like to acknowledge all of them for their
assistance.

January 2014 Andreas Kerren
Helen C. Purchase
Matthew O. Ward

1 http://www.dagstuhl.de/13201
2 http://dx.doi.org/10.4230/DagRep.3.5.19

http://www.dagstuhl.de/13201
http://dx.doi.org/10.4230/DagRep.3.5.19

List of Contributors

James Abello
Rutgers University, DIMACS Center for Discrete Mathematics
and Theoretical Computer Science, USA
abello@dimacs.rutgers.edu

Daniel Archambault
Swansea University, Department of Computer Science, UK
d.w.archambault@swansea.ac.uk

Katy Börner
Indiana University Bloomington, Department of Library
and Information Science, USA
katy@indiana.edu

Stephan Diehl
University of Trier, Department of Computer Science, Germany
diehl@uni-trier.de

Tim Dwyer
Monash University Clayton, Caulfield School of Information Technology,
Australia
tim.dwyer@monash.edu

Niklas Elmqvist
Purdue University, School of Electrical & Computer Engineering, USA
elm@purdue.edu

Jean-Daniel Fekete
INRIA, France
Jean-Daniel.Fekete@inria.fr

VIII List of Contributors

Liang Gou
IBM Research Almaden, USA
lgou@us.ibm.com

Hans Hagen
University of Kaiserslautern, Department of Computer Science, Germany
hagen@cs.uni-kl.de

Danny Holten
SynerScope, Eindhoven, The Netherlands
danny.holten@synerscope.com

Christophe Hurter
École Nationale de l’Aviation Civile, Interactive Computing Laboratory,
France
christophe.hurter@enac.fr

T.J. Jankun-Kelly
Mississippi State University, Department of Computer Science
and Engineering, USA
tjk@acm.org

Jessie Kennedy
Edinburgh Napier University, School of Computing, UK
j.kennedy@napier.ac.uk

Andreas Kerren
Linnaeus University Växjö, Department of Computer Science, Sweden
kerren@acm.org

Stephen Kobourov
University of Arizona, Department of Computer Science, USA
kobourov@cs.arizona.edu

Oliver Kohlbacher
University of Tübingen, Center for Bioinformatics,
Quantitative Biology Center, Department of Computer Science,
and Faculty of Medicine, Germany
oliver.kohlbacher@uni-tuebingen.de

Kwan-Liu Ma
University of California at Davis, Department of Computer Science, USA
ma@cs.ucdavis.edu

List of Contributors IX

Silvia Miksch
Vienna University of Technology, Institute of Software Technology
and Interactive Systems, Austria
miksch@ifs.tuwien.ac.at

Chris Muelder
University of California at Davis, Department of Computer Science, USA
cwmuelder@ucdavis.edu

Martin Nöllenburg
Karlsruhe Institute of Technology, Institute of Theoretical Informatics,
Germany
noellenburg@kit.edu

A. Johannes Pretorius
University of Leeds, School of Computing, UK
a.j.pretorius@leeds.ac.uk

Helen C. Purchase
University of Glasgow, School of Computing Science, UK
hcp@dcs.gla.ac.uk

Jonathan C. Roberts
Bangor University, School of Computer Science, UK
j.c.roberts@bangor.ac.uk

Falk Schreiber
Martin Luther University Halle-Wittenberg, Institute of Computer
Science, Germany; Leibniz Institute of Plant Genetics and Crop Plant
Research (IPK), Germany; and Monash University Melbourne,
Clayton School of Information Technology, Australia
schreibe@ipk-gatersleben.de

John T. Stasko
Georgia Institute of Technology, School of Interactive Computing, USA
stasko@cc.gatech.edu

Alexandru C. Telea
University of Groningen, Institute Johann Bernoulli, The Netherlands
a.c.telea@rug.nl

X List of Contributors

Jarke J. van Wijk
Eindhoven University of Technology, Department of Mathematics
and Computer Science, The Netherlands
vanwijk@win.tue.nl

Tatiana von Landesberger
Technische Universität Darmstadt, Department of Computer Science,
Germany
tatiana.von-landesberger@gris.tu-darmstadt.de

Matthew O. Ward
Worcester Polytechnic Institute, Department of Computer Science, USA
matt@cs.wpi.edu

Chris Weaver
University of Oklahoma, School of Computer Science, USA
weaver@cs.ou.edu

Michael Wybrow
Caulfield School of Information Technology, Monash University Caulfield,
Australia
Michael.Wybrow@monash.edu

Kai Xu
Middlesex University London, School of Science and Technology, UK
k.xu@mdx.ac.uk

Jing Yang
University of North Carolina at Charlotte, Computer Science
Department, USA
Jing.Yang@uncc.edu

Dirk Zeckzer
Leipzig University, Institute of Computer Science, Germany
zeckzer@informatik.uni-leipzig.de

Michelle X. Zhou
IBM Research Almaden, USA
mzhou@us.ibm.com

Björn Zimmer
Linnaeus University Växjö, Department of Computer Science, Sweden
bjorn.zimmer@lnu.se

Contents

Preface . V

List of Contributors . VII

1 Introduction to Multivariate Network Visualization 1
Andreas Kerren, Helen C. Purchase, Matthew O. Ward
1.1 Multivariate Networks: Definitions and

Terminology . 2
1.2 Existing Visualizations . 3
1.3 Outline of This Book . 6
References . 7

Part I: Application Domains – Characteristics and Challenges

2 Multivariate Networks in Software Engineering 13
Stephan Diehl, Alexandru C. Telea
2.1 Aims and Scope . 13

2.1.1 History and Definitions . 14
2.1.2 Importance . 14

2.2 Data Characteristics . 15
2.2.1 Entities . 15
2.2.2 Relations . 15
2.2.3 Attributes . 16
2.2.4 Software as Multivariate Time-Dependent Graphs . . . 17
2.2.5 Reference Implementation . 17
2.2.6 Software Data vs. other InfoVis Domains 19

2.3 Applications . 21
2.3.1 Structure Visualization . 21
2.3.2 Behavior Visualization . 26
2.3.3 Evolution Visualization . 28

2.4 Challenges and Future Directions . 32
References . 34

XII Contents

3 Multivariate Social Network Visual Analytics. 37
Chris Muelder, Liang Gou, Kwan-Liu Ma, Michelle X. Zhou
3.1 Data Characteristics . 37

3.1.1 Traditional Data Collection . 38
3.1.2 Data Collection from Online Social Media Networks . . . 38

3.2 Task Characteristics . 39
3.2.1 Understanding Social Network Nodes 39
3.2.2 Understanding Social Network Links 39
3.2.3 Understanding Social Networks 39

3.3 Examples of Technologies . 40
3.3.1 Clustering . 40
3.3.2 Network Centralities . 41
3.3.3 Centrality Derivatives . 41
3.3.4 Traditional Network Layouts . 42
3.3.5 Improved Network Layouts . 43
3.3.6 Multivariate Social Networks . 44
3.3.7 Dynamic Social Networks . 46
3.3.8 Egocentric Approaches . 47
3.3.9 TreeNetViz: Revealing Patterns of Networks with

Hierarchical Attributes . 47
3.3.10 SocialNetSense: Making Sense of Multivariate

Social Networks . 50
3.3.11 Summary. 54

3.4 Challenges and Future Directions . 55
References . 56

4 Multivariate Networks in the Life Sciences 61
Oliver Kohlbacher, Falk Schreiber, Matthew O. Ward
4.1 Characteristics of Data and Tasks . 62

4.1.1 Types of Biological Networks . 62
4.1.2 Data Mapping and Multivariate Networks 63

4.2 Use Cases . 66
4.2.1 Signaling . 66
4.2.2 Genetic Linkage . 66
4.2.3 Relationship Discovery Based on Document

Analysis . 67
4.2.4 Gene Regulation and Transcriptome Data 68

4.3 Challenges . 69
4.3.1 Scale . 70
4.3.2 Uncertainty/Ambiguity . 70
4.3.3 Heterogeneity . 71
4.3.4 Interactivity . 71
4.3.5 Standardization . 71

4.4 Summary and Conclusions . 72
References . 72

Contents XIII

Part II: Topics in Multivariate Network Research

5 Tasks for Multivariate Network Analysis 77
A. Johannes Pretorius, Helen C. Purchase, John T. Stasko
5.1 Entities and Properties . 78
5.2 Tasks . 79

5.2.1 General Task Taxonomy. 80
5.2.2 Tasks for Multivariate Network Analysis 83

5.3 Discussion . 92
5.4 Conclusion . 94
References . 95

6 Interaction in the Visualization
of Multivariate Networks . 97
Michael Wybrow, Niklas Elmqvist, Jean-Daniel Fekete,
Tatiana von Landesberger, Jarke J. van Wijk, Björn Zimmer
6.1 Background . 98
6.2 Classification of Interactions . 101

6.2.1 View-Level Interactions . 102
6.2.2 Visual Structure-Level Interactions 104
6.2.3 Data-Level Interactions . 106

6.3 Exemplars . 109
6.3.1 GraphDice . 110
6.3.2 GraphTrail . 111
6.3.3 State Transition Networks . 112
6.3.4 Parallel Node-Link Bands . 113

6.4 Recommendations and Guidelines . 115
6.4.1 Learnability . 115
6.4.2 Flexibility . 116
6.4.3 Robustness . 117

6.5 Challenges and Vision . 118
References . 121

7 Novel Visual Metaphors for Multivariate Networks 127
Jonathan C. Roberts, Jing Yang, Oliver Kohlbacher,
Matthew O. Ward, Michelle X. Zhou
7.1 Background . 128

7.1.1 Semantically Rich Data . 128
7.1.2 Where Ideas Come From? . 129
7.1.3 The Ideation Process . 131
7.1.4 The Visual Mapping Process . 132

7.2 Classes of Metaphors . 135
7.2.1 Nature-Inspired . 135
7.2.2 Non-physical . 140

XIV Contents

7.3 Man-Made . 141
7.4 Visualization-Inspired . 142
7.5 Proposed New Ideas . 144

7.5.1 Graphs/Networks . 145
7.5.2 Hierarchies . 145

7.6 Summary and Conclusions . 147
References . 147

8 Temporal Multivariate Networks . 151
Daniel Archambault, James Abello, Jessie Kennedy,
Stephen Kobourov, Kwan-Liu Ma, Silvia Miksch,
Chris Muelder, Alexandru C. Telea
8.1 Definitions . 151

8.1.1 Structure, Behavior, and Evolution 152
8.1.2 Formal Definitions of Temporal Multivariate

Networks . 153
8.2 Refining Our Models and Definitions for Time 154
8.3 Survey of Representations and Algorithms 156

8.3.1 Static Graph Layouts . 157
8.3.2 Dynamic Graph Layouts . 158
8.3.3 Animation versus Small Multiples 161
8.3.4 Mental Map Preservation . 162
8.3.5 Alternative Representations . 162
8.3.6 Static Temporal Plots . 163
8.3.7 Dynamic Graph Analytics . 164

8.4 Applications to Software Engineering . 165
8.5 Open Problems . 167

8.5.1 Attribute Dimensionality . 167
8.5.2 Capturing Patterns . 168
8.5.3 Data Size . 168

8.6 Summary and Conclusions . 169
References . 169

9 Heterogeneous Networks on Multiple Levels 175
Falk Schreiber, Andreas Kerren, Katy Börner,
Hans Hagen, Dirk Zeckzer
9.1 Formal Description of Used Data Structures 177
9.2 Application Domains . 179

9.2.1 Life Sciences / Biology . 179
9.2.2 Social Science . 185
9.2.3 Software Engineering . 190

9.3 Visualization . 196
9.3.1 Approaches for Networks at Multiple Levels 197
9.3.2 Challenges and Future Directions 200

References . 201

Contents XV

10 Scalability Considerations for Multivariate Graph
Visualization . 207
T.J. Jankun-Kelly, Tim Dwyer, Danny Holten,
Christophe Hurter, Martin Nöllenburg, Chris Weaver, Kai Xu
10.1 Limits of Visualization . 208

10.1.1 Limits of Visual Acuity . 208
10.1.2 Cognitive Limits . 210
10.1.3 Leveraging the Graphics Card (GPU) 211

10.2 Design Strategies for Scalable Multivariate Graph
Visualization . 215
10.2.1 Data Transformation and Reduction 217
10.2.2 Visual Mapping . 222
10.2.3 View Transformation . 223

10.3 Studies on Scalability in Graph Visualization 224
10.3.1 Data Transformation and Reduction 224
10.3.2 Visual Mapping . 225
10.3.3 Navigation and Interaction . 227

10.4 Challenges and Future Directions . 229
References . 229

Author Index . 237

1

Introduction to Multivariate Network

Visualization

Andreas Kerren, Helen C. Purchase, and Matthew O. Ward

Information Visualization (InfoVis) research focuses on the use of techniques
to help people understand and analyze data. In particular, it considers how
abstract data (i.e., without correspondence to the physical world) can best be
visually represented. A variety of different abstract data types are addressed
in InfoVis research (e.g., numerical, ordinal, categorical [29]), all of which
can be arranged in different ways: for example, in linear, tabular, or network
form. Common representations of statistical data (e.g., pie charts, bar charts,
or scatter plots) are all visualizations of abstract numerical data.

A “multivariate network” (MVN) is an abstract data type that provides
particular challenges for the information visualization research community.
It permits the representation of complex relational data (stored in the form
of a network) as well as the association of attributes with that data. The
attributes themselves may use a range of different abstract data types.

A MVN therefore consists of a set of objects, each of which has information
associated with it. In addition, the objects are connected to each other in a
network that represents the relationship between the objects. Further com-
plexity is added when information is also associated with the inter-object
relationships themselves. For example, a social network representation may
consist of people (the objects), each of which has information associated
with them (their age and post code). Friendship relationships between the
people form the network, with additional information about each friendship
between two people being stored (e.g., the last time they communicated with
each other or how long they have known each other).

In InfoVis terms, the objects in the network are called nodes or vertices,
the relationships between the objects are called links or edges, the network is
mostly called a graph, and the information associated with the objects and
relationships are called attributes, features, dimensions, or properties.

MVNs prove particularly challenging for InfoVis researchers because of
the wealth, richness and variety of the information that can be stored in
them. Any number of attributes can be associated with nodes and edges,
and nodes can be associated with any number of other nodes. Depicting all

A. Kerren et al. (Eds.): Multivariate Network Visualization, LNCS 8380, pp. 1–9, 2014.

c© Springer International Publishing Switzerland 2014

2 1 Introduction to Multivariate Network Visualization

this information in visual form so as to help people understand it is a clear
challenge. In many cases, given the limits of human perceptual and cognitive
abilities, it is impossible to clearly show all the information at once in a useful
form. Such problems may be addressed by prior knowledge of the user tasks
to be performed, by providing facilities for interacting with the data, or by
a clever choice of representation. These problems are of course made even
more complex if the information changes over time, if there is more than one
network, or if the network is particularly large.

Despite the challenges of depicting MVNs, their existence is common, and
they are (and have been) used to represent abstract domain knowledge for
many years (for example in software engineering, biology, evolution, environ-
mental sciences, meteorology, and sociology). The popular educational tool
of “concept mapping” demonstrates the wide range of applications to which
MVNs can be applied [23]. Studying ways in which computational techniques
may be used to help with the effective visualization of MVNs is therefore an
area of study with wide applicability as well as the potential to be highly
useful in other research areas.

In this chapter, we define MVNs formally, introduce and classify existing
related InfoVis research, and provide a brief summary of the rest of the book.

1.1 Multivariate Networks: Definitions and
Terminology

A (simple) graph G = (V,E) consists of a finite set of vertices (or nodes) V
and a set of edges E ⊆ {(u, v)|u, v ∈ V, u �= v}. Based on this, a variety of
general graph properties and characteristics can be found in the literature;
the most important ones are introduced in the following list (cf. also the book
chapter [18] or the books [7, 14]).

• An edge e = (u, v) with u = v is called a self-loop.
• If an edge e exists several times in E then it is called a multiple edge.
• A simple graph has no self-loops and no multiple edges.
• The neighbors of a node v are its adjacent nodes.
• The degree of a node v is the number of its neighbors.
• A directed graph (or digraph) is a graph with directed edges, i.e., (u, v)

are ordered pairs of nodes.
• A directed graph is called acyclic if it has no directed cycles, i.e., there is

no directed path where the same node is visited twice.
• A graph is connected if there is a path between u and v for each pair

(u, v) of nodes.
• A graph is planar if it can be drawn in the 2D plane without intersections

of edges (edge crossings).

In contrast to the above definition of a simple graph, a multivariate net-
work N consists of an underlying graph G plus n additional attributes

1.2 Existing Visualizations 3

A = {A1, . . . , An} that are attached to the nodes (and/or edges). For node
attributes, Ai represents a column in a table of attributes A = (aji) (j =
1 . . . |V | ; i = 1 . . . n) and contains one attribute value per node (similar defi-
nition for edges). Thus, au = (au1, . . . , aun) describes all attribute values for
node u given that there is no missing data.

Also in network theory, researchers have developed a set of useful mea-
surements and metrics that can be used to get an impression about the most
important characteristics of the graph topology such as central actors in a
social network [22]. Those measures can also be applied to multivariate net-
works. Community analysis based on specific clustering techniques is one
such approach. Another example are so-called network centralities, i.e., mea-
sures that quantify how important a node or edge in the network is. More
formal, a network centrality C is a function that assigns a value C(u) to a
node u ∈ V of a given graph G = (V,E). This function supports centrality
comparisons according to their importance, i.e., u is more important than
v iff C(u) > C(v) [8, 20]. A simple example of a network centrality is the
degree of a node in an undirected graph.

1.2 Existing Visualizations

In the following, we briefly highlight the most important visualization tech-
niques for arbitrary multivariate graphs/networks, i.e., we do not consider
special cases such as the visualization of hierarchies (trees) or directed acyclic
graphs (DAGs). The interested reader is referred to the vast amount of liter-
ature on these topics as for instance [11, 30].

Before we continue our discussion on multivariate network visualizations,
we turn the reader’s attention to standard techniques for the visualiza-
tion of multivariate data itself. Multivariate (or multidimensional) data sets
can mostly be described as data tables with n data objects and m at-
tributes/features, i.e., for each object exists an attribute vector with m di-
mensions. The attribute values can be classified—for instance—into nominal,
ordinal, or quantitative. In practice, we often have a large amount of data
objects and many attributes with different types. Finding a suitable visual
representation is thus challenging, and the right choice might depend on
further parameters like application domain, integration into a larger visu-
alization environment, or support of specific interaction techniques. In gen-
eral, visual mappings for multivariate data can roughly be categorized into
point-based approaches (e.g., scatterplot matrices [6], projection methods like
MDS [21, 34], etc.), axis-based approaches (parallel coordinate plots [10],
Kiviat diagrams [3], etc.), icon-based approaches (Chernoff faces [5], stick fig-
ures [24], etc.), and pixel-based approaches (e.g., recursive patters [15], pixel
bar charts [16], etc.). There are many good textbooks that provide a good
overview of those methods; we recommend the books of Spence [29], Kerren
et al. [19], and Ward et al. [31].

4 1 Introduction to Multivariate Network Visualization

A View on Graph Drawing

Traditional graph drawing (GD) methods compute a 2D/3D layout of the
nodes and the edges, mainly based on node-link diagrams [32]. They play a
fundamental role in network visualization. Particular graph layout algorithms
can give an insight into the topological structure of a network if properly cho-
sen and implemented. The graph readability is affected by quantitative mea-
surements called aesthetic criteria [7]. Thus, graph drawing generally deals
with the ways of drawing graphs according to the set of predefined aesthetic
criteria [4]. These criteria are often contradictory, and problems which aim
to optimize the criteria are often NP-hard. Therefore, many GD algorithms
are heuristics. For the sake of completeness, we want to note that there are
also so-called space-filling methods that try to solve some conceptual prob-
lems of node-link diagrams, such as the high space consumption or edge
crossings. Matrix displays fall into this category (like the approach proposed
in [1]). These visualizations represent a graph directly via its adjacency ma-
trix, where a matrix element (i, j) represents the existence of an edge between
the two nodes i and j. A disadvantage of matrices is that the perception of
the graph topology is depending of the node order in the matrix.

In both visual representations (i.e., node-link and matrix displays), mul-
tivariate data can be integrated in various ways. For instance in node-link
diagrams, multivariate glyphs that replace the node representations (usu-
ally a dot or circle) can be used to show data attached to nodes; edge at-
tributes can be represented by different link colors, thicknesses, labels, or edge
shapes. In matrix representations, the cells can be color-coded or be replaced
by small icons to show edge attributes; node attributes might be shown as
colored node labels, for instance. Usually, all mentioned efforts to integrate
multivariate attributes into network representations do not scale well and get
easily cluttered. The next subsection provides a more detailed classification
of techniques which go beyond the traditional graph drawing approaches.

Classification of Approaches

Good drawing algorithms as previously described cannot solely solve the
problem of MVNs. There are several reasons for this statement. First, the
most traditional graph drawings do not scale well, i.e., they are not able
to represent huge data sets with many thousands of nodes and/or edges.
Second, additional multivariate data cannot be intuitively embedded into a
standard drawing. The InfoVis community has tried to address those issues
by visualization approaches that provide filtering and interaction possibilities
in order to reduce the number of graph elements under consideration as well
as by methods to visually analyze attributes in context of the underlying
graph topology. According to Jusufi [12], several approaches can be found
in the literature that offer solutions for the problem of visualizing multivari-
ate networks: multiple and coordinated views, integrated approaches, semantic
substrates, attribute-driven layouts, and hybrid approaches.

1.2 Existing Visualizations 5

Multiple and coordinated views : Solutions in this category combine several
views and present them together. This strategy allows the user to choose
the most powerful visualization techniques for each specific view and
data set [9, 25]. As an application example, we highlight the work of
Shannon et al. [27]. Their approach consists of two distinct views: one
view shows a parallel coordinate approach for the visual representation of
the network attributes, and the other view displays a traditional node-link
drawing of a graph. The tool is equipped with a variety of visualization
and interaction techniques; both views are coordinated by linking and
brushing [29] techniques. The drawback of multiple views is that they
split the displayed data because of the spatial separation of the visual
elements.

Integrated approaches : To provide a combined picture, attributes and the un-
derlying graph can be displayed in one single view. “Integrated views can
save space on a display and may decrease the time a user needs to find
out relations; all data is displayed in one place.” [9]. In Borisjuk et al. [2],
small diagrams (e.g., bar charts) are employed instead of representing the
nodes as simple circles, dots, or rectangles. Each diagram shows experi-
mental data that is related to the regarded node. This approach provides
a view of all available information, but the embedding of the visualiza-
tions into the nodes consumes a lot of space. This issue may affect the
readability of the network due to the visual clutter that may appear when
the number of nodes and the attributes is high [17]. However, the prob-
lem of space usage and additional clutter can be alleviated by interaction
techniques.

Semantic substrates : In order to further avoid clutter in multivariate network
visualizations, some researchers realized the idea of so-called semantic
substrates that “are non-overlapping regions in which node placement is
based on node attributes”: Shneiderman and Aris [28] introduced this
idea and combined it with sliders to control the edge visibility and thus
to ensure comprehensibility of the edges’ end nodes. Their tool efficiently
improves the situation of visual clutter that happens with large MVNs.
However, one conceptual drawback of such approaches is that the under-
lying graph topology is not (completely) visible.

Attribute-driven layouts : Those layouts use the display of the network ele-
ments to present insight about the attached multivariate data instead of
visualizing the graph topology itself. In contrast to semantic substrates,
this technique does not necessarily place the nodes into specific regions.
Instead, it controls the placement of a node in the graph layout by consid-
ering the node’s attributes. An example is PivotGraph [33] which shows
the relationships between (node) attributes and links within a 2D grid-
layout. This concrete approach scales well for some situations because of
the inherent node aggregation (nodes on the same grid position share the
same attribute values) but is restricted to discrete attribute values and
only two attribute dimensions.

6 1 Introduction to Multivariate Network Visualization

Hybrid approaches : They combine at least two of the previously discussed
techniques. The most common combinations are multiple coordinated
views with any of the integrated approaches. For instance, Rohrschneider
et al. [26] integrate additional attributes of a biological network inside the
nodes and edges. The authors also use other visual metaphors for creating
multiple coordinated views to show time-related data of the network.
Another hybrid approach is the JauntyNets tool [13] which combines
multiple coordinated views with an attribute-driven layout.

1.3 Outline of This Book

The book is divided into two parts. The first three chapters (Chaps. 2-4)
present three application domains in which multivariate networks are com-
monly used: software engineering, social networks and the life sciences. Writ-
ten by experts in the three respective fields, these chapters describe how
multivariate networks play a crucial role in the study of the comprehension
of programs for the purposes of maintenance and evolution (Chap. 2), the
analysis of personal and social networks defined by a wide variety of rela-
tionships (Chap. 3), and the exploration and analysis of biological data at
several levels of detail (Chap. 4). Not only do these chapters describe the
use of multivariate networks in these domains, they also consider how these
networks can be effectively and appropriately visualized so as to support
domain-specific tasks, and discuss the challenges facing these three rapidly
evolving fields.

The second part of the book covers a range of topics associated with the vi-
sualization and use of multivariate networks, focussing first on fundamental
visualization aspects (tasks, interaction, and representation), and then ad-
dressing broader issues (time, multiple networks, and large networks). Chap-
ter 5 presents a new framework of tasks specifically associated with multivari-
ate networks, based on existing taxonomies of general visualization tasks and
simple graph-reading tasks. These multivariate network tasks are shown to
be composed of lower-level visualization tasks, and are then illustrated with
domain-specific examples. Chapter 6 highlights the fact that effective com-
pletion of user tasks when using a visual representation requires interaction,
allowing the information landscape to be navigated, and more of the infor-
mation to be perceived. It describes the range of different methods of inter-
acting with multivariate networks, as well as guidelines for novel interaction
techniques. Chapter 7 focuses on the means by which multivariate networks
can be visually represented—beyond the traditional node-link method—by
proposing and discussing a range of alternative (and novel) visual metaphors
inspired by nature, geography or manufactured objects. It concludes with a
gallery of potential new metaphors.

The important issue of time is covered in Chap. 8. This chapter provides
essential definitions for temporal multivariate networks, and shows how two

References 7

applications (biology and social networks) relate to a structure-behaviour-
evolution model originally proposed for characterizing temporal networks in
software engineering. A survey of existing visualization methods for temporal
networks is presented. The heterogeneous networks chapter (Chap. 9) is pri-
marily concerned with multivariate networks that are associated with each
other at different levels and at different scales, and demonstrates the concepts
with examples from the three application domains of biology, social sciences,
and software engineering. The challenges of visualizing such linked networks
are discussed. The final chapter (Chap. 10) considers the ever-present visu-
alization challenge of scalability—what to do when the networks are so large
that they cannot be displayed effectively. Based on considerations of cogni-
tive and architectural limitations, suitable visualization approaches for large
networked data sets are explored, and their effectiveness discussed.

References

1. Abello, J., van Ham, F.: Matrix zoom: A visual interface to semi-external
graphs. In: Proceedings of the IEEE Symposium on Information Visualization,
pp. 183–190. IEEE Computer Society, Los Alamitos (2004)

2. Borisjuk, L., Hajirezaei, M.R., Klukas, C., Rolletschek, H., Schreiber, F.: Inte-
grating data from biological experiments into metabolic networks with the dbe
information system. In Silico Biol. 5(2), 93–102 (2005)

3. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods
for Data Analysis. Wadsworth, Belmont (1983)

4. Chaomei, C.: Information Visualization. Beyond the Horizon, 2nd edn.
Springer, Heidelberg (2004)

5. Chernoff, H.: The use of faces to represent points in k-dimensional space graph-
ically. Journal of the American Statistical Association 68, 361–368 (1973)

6. Cleveland, W.C., McGill, M.E.: Dynamic Graphics for Statistics. CRC Press,
Inc., Boca Raton (1988)

7. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algo-
rithms for the Visualization of Graphs. Prentice Hall (1999)

8. Dwyer, T., Hong, S.H., Koschützki, D., Schreiber, F., Xu, K.: Visual anal-
ysis of network centralities. In: Misue, K., Sugiyama, K., Tanaka, J. (eds.)
Proceedings of the 2006 Asia-Pacific Symposium on Information Visualisation
(APVis 2006). ACM International Conference Proceeding Series, pp. 189–198.
Australian Computer Society, Darlinghurst (2006)

9. Görg, C., Pohl, M., Qeli, E., Xu, K.: Visual Representations. In: Kerren et al.
[17], pp. 163–230

10. Inselberg, A., Dimsdale, B.: Parallel coordinates: A tool for visualizing multi-
dimensional geometry. In: IEEE Visualization, pp. 361–378 (1990)

11. Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the vi-
sualization of hierarchical information structures. In: Proceedings of the 2nd
Conference on Visualization 1991, VIS 1991, pp. 284–291. IEEE Computer So-
ciety Press, Los Alamitos (1991)

12. Jusufi, I.: Multivariate Networks: Visualization and Interaction Techniques.
Ph.D. Thesis, Linnaeus University, Växjö, Sweden (2013)

8 1 Introduction to Multivariate Network Visualization

13. Jusufi, I., Kerren, A., Zimmer, B.: Multivariate Network Exploration with Jaun-
tyNets. In: Proceedings of the 17th International Conference on Information Vi-
sualisation (IV 2013), pp. 19–27. IEEE Computer Society Press, Los Alamitos
(2013)

14. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer,
Heidelberg (2001)

15. Keim, D.A.: Information visualization and visual data mining. IEEE Transac-
tions on Visualization and Computer Graphics 7(1), 1–8 (2002)

16. Keim, D.A., Hao, M.C., Dayal, U., Hsu, M.: Pixel bar charts: A visualiza-
tion technique for very large multi-attribute data sets? Information Visualiza-
tion 1(1), 20–34 (2002)

17. Kerren, A., Ebert, A., Meyer, J. (eds.): Human-Centered Visualization Envi-
ronments. LNCS, vol. 4417. Springer, Heidelberg (2007)

18. Kerren, A., Schreiber, F.: Network visualization for integrative bioinformatics.
In: Chen, M., Hofestädt, R. (eds.) Approaches in Integrative Bioinformatics,
pp. 173–202. Springer, Heidelberg (2014)

19. Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.): Information Visual-
ization. LNCS, vol. 4950. Springer, Heidelberg (2008)

20. Koschützki, D., Schreiber, F.: Comparison of centralities for biological net-
works. In: R. Giegerich, J.S. (ed.) Proc. German Conf. Bioinformatics (GCB
2004). pp. 199–206 (2004)

21. Mardia, K.V.: Multivariate Analysis. Academic Press (1979)
22. Newman, M.E.J.: Networks: An Introduction. Oxford University Press (2010)
23. Novak, J.D.: Learning, Creating, and Using Knowledge: Concept Maps as Fa-

cilitative Tools in Schools and Corporations, 2nd edn. Routledge (2010)
24. Pickett, R.M., Grinstein, G.G.: Iconographic displays for visualizing multidi-

mensional data. In: Proceedings of the 1988 IEEE International Conference on
Systems, Man, and Cybernetics, vol. 1, pp. 514–519 (1988)

25. Roberts, J.C.: Exploratory visualization with multiple linked views. In:
MacEachren, A., Kraak, M.-J., Dykes, J. (eds.) Exploring Geovisualization,
ch. 8, pp. 159–180. Elseviers (2004)

26. Rohrschneider, M., Ullrich, A., Kerren, A., Stadler, P.F., Scheuermann, G.:
Visual network analysis of dynamic metabolic pathways. In: Bebis, G., et al.
(eds.) ISVC 2010, Part I. LNCS, vol. 6453, pp. 316–327. Springer, Heidelberg
(2010)

27. Shannon, R., Holland, T., Quigley, A.: Multivariate graph drawing using par-
allel coordinate visualisations. Tech. Rep. 2008-6, University College Dublin,
School of Computer Science and Informatics (2008),
http://www.csi.ucd.ie/files/ucd-csi-2008-6.pdf

28. Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE
Transactions on Visualization and Computer Graphics 12, 733–740 (2006)

29. Spence, R.: Information Visualization: Design for Interaction, 2nd edn. Prentice
Hall (2007)

30. Stasko, J.T., Catrambone, R., Guzdial, M., Mcdonald, K.: An evaluation of
space-filling information visualizations for depicting hierarchical structures. In-
ternational Journal of Human-Computer Studies 53, 663–694 (2000)

31. Ward, M., Grinstein, G., Keim, D.A.: Interactive Data Visualization: Founda-
tions, Techniques, and Application. A.K. Peters, Ltd. (2010)

32. Ware, C.: Information Visualization: Perception for Design, 2nd edn. Morgan
Kaufmann (2004)

http://www.csi.ucd.ie/files/ucd-csi-2008-6.pdf

References 9

33. Wattenberg, M.: Visual exploration of multivariate graphs. In: CHI 2006: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 811–819. ACM, New York (2006)

34. Williams, M., Munzner, T.: Steerable, progressive multidimensional scaling.
In: Proceedings of the IEEE Symposium on Information Visualization (InfoVis
2004), pp. 57–64. IEEE Computer Society Press (2004)

Part I

Application Domains – Characteristics
and Challenges

2

Multivariate Networks in Software Engineering

Stephan Diehl and Alexandru C. Telea

Multivariate networks, or graphs, occur in many application domains. In
this chapter, we focus on software engineering. We present the specific na-
ture of the data, challenges, and visual exploration solutions for multivariate
graphs stemming from software engineering applications. Our goal is twofold.
First, we draw attention to specific software engineering aspects, and the en-
suing multivariate graphs, which make their (visual) understanding hard.
This should help researchers to better understand the software engineering
challenges related to multivariate graphs, and thus contribute to solutions.
Secondly, we present existing approaches for the visual exploration of mul-
tivariate software graphs. This should help disseminating such solutions to
areas beyond software engineering.

The structure of this chapter is as follows. In Sect. 2.1, we outline the im-
portance and scope of software visualization. Section 2.2 details the character-
istics of the data involved in such visualizations and the scope of multivariate
graphs herein. Section 2.3 presents a selection of relevant tasks addressed by
software visualization which involves multivariate graphs, and also presents
visualizations that address such tasks. Section 2.4 discusses the current state-
of-the-art in multivariate visualization of software networks, and outlines the
main challenges that this application domain currently faces.

2.1 Aims and Scope

To understand the specific challenges (and existing solutions) to the visual-
ization of multivariate software graphs, we first need to understand the main
aims and scope of software visualization (SoftVis). In this section, we pro-
vide an overview answer to this question. Given the huge scope of software
engineering and, implicitly, SoftVis techniques and tools, we cannot aim at
a complete review. Rather, the aim is to outline the key value drivers that
make SoftVis relevant to software engineering, and also to highlight how soft-
ware visualization (with a focus on multivariate graphs) differs from other

A. Kerren et al. (Eds.): Multivariate Network Visualization, LNCS 8380, pp. 13–36, 2014.

c© Springer International Publishing Switzerland 2014

14 2 Multivariate Networks in Software Engineering

multivariate graph visualizations. For a comprehensive survey of software
visualization, we refer to [12].

2.1.1 History and Definitions

Early examples of software visualizations include the visual depiction of pro-
gram control flow charts [16, 36], sorting algorithms [2], and software source
code [13]. In the 1990s, software visualization was being recognized as a sep-
arate research field. One of its first definitions is as follows: “Software visual-
ization is a representation of computer programs, associated documentation
and data, that enhances, simplifies and clarifies the mental representation the
software engineer has of the operation of a computer system” [39]. We see
that SoftVis covers the full range of data artifacts produced by the software
lifecycle. Equally importantly, we see that the key aim of SoftVis is to help
software engineers to understand the operation of software systems. These
aspects have stayed relevant throughout the history of software visualization,
as further discussed.

A decade later (2007), a comprehensive survey of software visualization [12]
proposed the following definition: “Software visualization targets the visual
depiction of the structure, behavior, and evolution of software”. The defini-
tions of these three key data ingredients of software are as follows:

1. Structure: describes all entities involved in the studied software, includ-
ing their properties and relations between them;

2. Behavior: describes how entities dynamically interact with each other,
and also process data, during program execution;

3. Evolution: describes how software is changed during the software life-
cycle.

The reach of software visualization to software evolution parallels the grow-
ing interest in developing models, techniques, and tools for the data mining
and analysis of software evolution processes [26]. In parallel, the audience of
SoftVis is also enlarged, to include almost all stakeholders of the software life-
cycle: product and process managers, architects, designers, developers, and
testers [23].

2.1.2 Importance

To better advocate the necessity and added value of SoftVis, we consider the
question: Is software visualization really needed? Answering this question has
two parts. First, its application domain, the software industry, is large and
growing: $457 billion for 2013, 50% larger than in 2008 [21]. For comparison,
the total US healthcare spending in 2009 was $2.5 trillion [47]. Studies over
two decades show that 80% of software development costs are spent on main-
tenance [10, 26, 38]. Secondly, over the same period of time, several studies

2.2 Data Characteristics 15

have shown that over 50% of the effort spent by software engineers is dedi-
cated to understanding the software [12, 23, 26]. As modern software systems
become even larger, this understanding effort becomes a key component of
the software lifecycle [5].

2.2 Data Characteristics

Data involved in program comprehension is large, complex, and changes in
time. As such, software visualization has a good potential to be an effective
part of comprehension solutions. In a survey of over 100 practitioners in-
volved in software maintenance and re-engineering, 42% of the participants
stated that SoftVis is an important, but not critical, aid to comprehension;
42% other participants found SoftVis absolutely necessary for their work [23].
A survey on SoftVis tools highlighted as added value points the increase of
productivity and quality of produced software, better management of com-
plexity in large software systems, all leading to saving time and money in
development and maintenance [3].

Software can be modeled by three orthogonal data aspects: entities, rela-
tions, and attributes. These are detailed in the following sections.

2.2.1 Entities

Software entities correspond to the nouns in the software description, i.e.,
describe the items which interact to form the structure, behavior, and evo-
lution of a software system. Structural entities typically describe the static
organization of a software corpus. Examples are folders, files, packages, com-
ponents, classes, methods, and individual lines of source code. Behavioral
entities describe the execution of a software system. Examples are program
traces, profiling logs, method invocations, test results, and bug reports. Evo-
lutionary entities are, largely speaking, related to the process of software
maintenance. Examples are change requests, product documentation and re-
quirement documents, development tasks, and actors with different roles in
the development process (contributors to software repositories, testers, qual-
ity engineers, and release managers).

2.2.2 Relations

Relations correspond to the verbs in the software decription, i.e., describe how
various software entities are connected and interact to form the structure,
behavior, and evolution of a software system. Structural relations can be
further organized into hierarchical and association relations.

Hierarchical relations describe the static structure of a software system.
They form a part-whole hierarchy that captures the aggregation of smaller-
scale software entities into larger units. Examples of containment relations are

16 2 Multivariate Networks in Software Engineering

1. physical relations (files in folders in higher-level folders);
2. logical relations (methods in classes in libraries in systems).

Several such hierarchies may be needed to describe a given system. For in-
stance, C++ programs admit both a physical file-folder hierarchy and a
logical namespace-class-method hierarchy, and the two hierarchies are not
identical.

Association relations cover all relations which do not describe (hierarchi-
cal) part-whole relationships. Examples are

• calls: function A calls function B;
• inheritance: class A inherits from class B;
• co-change: file f1 changed at the same time as file f2;
• duplication: files f1 and f2 share similar (cloned) source code;
• change impact: when changing file f1, we next need to change file f2;
• ownership: developer D performed task T ; class X owns an object Y ;
• data flow: component C reads data from component Y .

Clearly, several types of relations are needed to describe the structure, be-
havior, and evolution of a software system. Association relations can form
both acyclic graphs (e.g., inheritance) but also cyclic graphs (e.g., a call
stack containing recursive or re-entrant functions). Associations can be ei-
ther undirected (e.g., clone or co-change relations) or directed (e.g., inheri-
tance or call). Software associations are typically one-to-many relations (e.g.,
a function calls several other functions; a data object owns a collection of
subordinate objects).

2.2.3 Attributes

Attributes model structural, behavioral, and evolutionary properties of both
entities and relations. Examples are

• syntax: name, signature, and location in the source code for classes,
functions, or individual symbols;

• execution: call duration, call stack depth, processor allocation, and re-
source usage of a function call in a program trace;

• person: name, role, and e-mail of a person involved in a software main-
tenance process;

• testing: time stamp, number of failed and passed tests, and amount of
lines of code covered by tests for a code unit.

Typically, attributes are modeled as key-value pairs for an entity or relation,
e.g., a class C has an attribute name with value C. An entity or relation can
have several such attributes. Also, entities (or relations) of the same kind, or
type, do not necessarily need to have the same number of attributes. This is,
among others, due to incomplete data delivered by the various data mining
tools used.

2.2 Data Characteristics 17

2.2.4 Software as Multivariate Time-Dependent Graphs

Entities, relations, and attributes can change during the lifetime of a software
product. Two causes drive this process:

1. behavior: running the same software system several times can yield dif-
ferent execution paths and data values. Thus, both relations (calls) and
attributes (call durations) for the same entity (caller function) will differ;

2. evolution: software continuously changes as it is maintained. Hence, an
entity (e.g., file) can have different contents, relations (to other files), and
developers owning it over time.

Putting it all together, we can describe software as a multivariate time-
dependent graph G = (V,E = V × V). Nodes V model software entities.
Edges E model structure and association relations. Each node n ∈ V and
edge e ∈ E has a set of attributes {ani } and {aei} respectively. Each attribute
a = (key, val) is a key-value pair. Keys key are typically textual or categor-
ical identifiers. Attribute values val belong to various domains, depending
on the attribute type, e.g. N for code size, R+ for execution duration, B for
test outcomes (passed, failed), or Σ∗ for developer names (where Σ is the
used alphabet). All elements of G, i.e., V , E, ani , and aei are time-dependent,
i.e., functions of t ∈ T . Since both software execution and software evolution
are discrete processes, and also since data is mined from software systems
typically at discrete points in time, T is usually a finite set of ordered points
in time T = {ti ∈ R

+|ti < tj , ∀i < j}.

2.2.5 Reference Implementation

Hierarchy-and-association graphs G are also often called compound graphs
in the literature [41]. Creating, storing, manipulating, and ultimately under-
standing the information captured by such graphs is clearly very challenging,
even for moderately-sized systems. Important questions in this respect are

1. schema: How to best model (capture) a given aspect of a software system
in terms of entities, relations, and attributes?

2. selection: How to select data relevant for a given task from an entire G?
3. implementation: How to store G in a way that is efficient for quickly

reading and writing large amounts of data?

Several so-called data schemes or data models for G have been proposed,
e.g., [14, 25, 28, 31, 44]. This wealth of models can be puzzling for the prac-
titioner interested in using existing SoftVis tools and techniques on given
software datasets. More importantly, not all challenges of modeling multi-
variate software data become evident from studying such data schemes.

To outline such challenges, we present next a data model for G. This
model is based on a SQL relational database, so it is simple to understand,
scalable, computationally efficient, and can generically capture most degrees

18 2 Multivariate Networks in Software Engineering

of freedom of G. First, we define the concept of a selection. Selections S ⊂ G
are subsets of nodes and/or relations that specify the part of G that we
want to study. They are a necessary abstraction when using a single graph
G to store all available data, or facts, mined from a software project. For
example, if we are interested in studying the call graph of a system, we
need a selection containing only software-structure nodes and call relations
between them. If we want to study the contribution of a given developer,
we need a selection containing only entities and relations that the respective
developer has worked on.

The proposed SQL schema contains the following elements (see also
Fig. 2.1 top):

1. Keys: each node, hierarchical and association edge, and selection, has a
unique ID (further used as primary key);

2. Hierarchy table: one hierarchical edge, listed as (parent, child) node
IDs, per row;

3. Association table: an association edge, listed as (from, to) node IDs,
per row;

4. Node attribute table: each row stores all attributes (metrics) an1 , . . . , a
n
k

of a given node n as k columns;
5. Association attribute table: each row stores all attributes (metrics)

ae1, . . . , a
e
k of a given association edge e as k columns; different edge types,

e.g. calls, uses, includes, are modeled by adding an edge-type attribute;
6. Two selection tables per selection s ∈ S, for the node IDs and edge IDs

of the items in s, respectively.

Figure 2.1 (bottom) illustrates this schema this for a simple program. Hierar-
chy consists of a file main.cc containing two functions main() and run(Foo),
and a class Foo with a method load(). Associations are call, define, and ‘uses
type’ relations, modeled as edge ‘type’ attributes. Nodes have two attributes:
name and lines-of-code size (LOC). Two selections exist: the call graph of
main() (red), and the ‘uses’ graph of run(Foo) (green).

This schema can store any compound (hierarchy-and-association) at-
tributed graph, e.g., annotated syntax graphs, call graphs, developer net-
works, or code duplication relations. New association types can be added to
a database without changing its schema, since types are stored as attributes.
This allows incrementally refining an existing fact database, e.g., by adding
new results obtained from additional data mining processes. Adding node or
relation attributes amounts to adding new columns for the node and edge
attribute tables respectively. Attribute types can be any of the supported
data types of the underlying SQL database (e.g., numeric, text, date-time,
image, or binary blob). Multiple association types can be stored in a single
pair of association and association-attribute tables. Hierarchy data is stored
separately in a hierarchy table. This follows the observation that, in software
databases, hierarchy data is much smaller in size (and typically changes less
frequently) than association data. As such, this schema is more efficient for

2.2 Data Characteristics 19

hierarchy
table

edge
ID

parent
node ID

child
node ID

0
1
2
3

node
attribute table

node
ID

attribute 1
(name)
main.cc
main()
run(Foo)
Foo

file
function
function
class

attribute 2
(type)

association
table

edge
ID

from
node ID

to
node ID

association
attribute table

edge
ID

attribute 1
(type)
defines
calls
uses type
calls

0
1
2
3

4
5
6
7

4
5
6
7

ID: 0
name: main.cc
LOC: 200

ID: 1 ID: 2 ID: 3name: main()
LOC: 50

name: run(Foo)
LOC: 20

name: Foo
LOC: 100

ID: 4 name: load()
LOC: 80

ID: 0 ID: 1 ID: 2

ID: 3

ID: 4

ID: 5 ID: 6

ID: 7

0
0
0
3

1
2
3
4

0
1
2
1

1
2
3
4

4 load() method

attribute 3
(LOC)
200
50
20
100
80

contains
calls
defines
uses type

Legend

selection 1 tables
node ID

1
2
4

selection 1 (call graph of main())
selection 2 (requires graph of run(Foo))

edge ID

5
7

selection 2 tables
node ID

2
3

edge ID

6

abc attributes

Fig. 2.1. Database schema (top) for a compound attributed graph (bottom) and
two selections: The call graph of main() and the ‘uses’ graph of run(Foo)

fast querying and updating. If desired, several hierarchy tables can be used
to model multiple software hierarchies (Sect. 2.2.2).

Multiple selections can be stored in separate selection tables. This fully de-
couples data storage (node, association, and hierarchy tables) from data us-
age (e.g., visualization). Users can create and iteratively refine selections by
executing SQL queries on already existing selections. This supports the visual
information-seekingmantra “overview,filter, thendetails ondemand” [37].The
above schema scales well to databases of millions of entities and relations [34].

However, the above schema for G does not capture time-dependency.
Schemas that model time-dependent graphs have been proposed, e.g., [31, 49].
However, to be scalable to large software projects, such schemas are geared
towards capturing specific types of relations, rather than the generic model
of the graph G outlined above. A fully general solution to efficiently and ef-
fectively modeling G is not yet known, and this is a topic for future research.

2.2.6 Software Data vs. other InfoVis Domains

Large multivariate time-dependent graphs having the model outlined in
Sect. 2.2.5 are not unique to software engineering. They arise also in other
application areas, most notably biology, chemistry, and bioinformatics. As
such, relevant questions are: What is specific to the software understanding
domain, which underlies the evolution of software visualization as a discipline
separated from biological visualization (BioVis) or, more generally, informa-
tion visualization (InfoVis)?

20 2 Multivariate Networks in Software Engineering

BioVis: Comparing our software graphs to networks in the BioVis domain,
we notice several similarities: In both domains, large graphs (hundreds of
thousands of entities, relations, and attributes or more) are common in real-
world use-cases. As such, scalability and efficiency are common concerns.
Moreover, both domains feature problems involving multivariate and time-
dependent graphs. However, several differences exist. First, SoftVis artifacts,
and thus graphs extracted from them, are man made. In contrast, BioVis
graphs capture (the measurement of) natural processes. In other words, Soft-
Vis graphs are constructive, whereas BioVis graphs are observational. This
deserves additional explanations. We could, on the one hand, say that SoftVis
graphs are also observational, if we consider a software process as a “black
box” which is monitored from the outside, e.g., to reverse-engineer its be-
havior. On the other hand, software is constructed by humans. As such, the
underlying software understanding process takes the form of recovering (pos-
sibly lost) semantics. In contrast, understanding biological processes often
aims at discovering yet-unknown natural laws and designs.

A second difference relates to uncertainty. Software processes are defined by
an underlying exact computational model given by the processor and seman-
tics of used programming languages. For example, there is no uncertainty as
to which is the type-usage or inheritance graph of a given code base. In con-
trast, BioVis data typically contains more uncertainty, due to measurements
and the natural variability of experiments. If, however, we add human aspects
to SoftVis data, e.g., we want to reason about developer properties, then data
uncertainty becomes more important, and this distinction gets blurred.

Last but not least, a major distinction is induced by the user group. In
BioVis, users are typically not computer scientists themselves. As such, they
are likely less familiar with various algorithmic, implementation-level, and
data modeling aspects involved in the construction and usage of visualiza-
tion tools. In contrast, developers and users of SoftVis tools largely overlap
– they are all computer science professionals. On the one hand, this makes
the task of SoftVis developers easier, as they understand both the end goals
and mechanisms their tools should support and respectively provide. In con-
trast, developing effective BioVis tools is a much harder proposition, as their
developers have to become, at some point, experts in both information visu-
alization and biology.

InfoVis: Software visualization can be seen as a specialized sub-branch of in-
formation visualization (InfoVis). However, if we compare the focus of many
InfoVis research projects with their SoftVis counterparts, several differences
emerge. First and foremost, SoftVis ‘solutions’ (techniques, tools, and ap-
plications) show a strong coupling of data mining and visualization compo-
nents, covering the entire pipeline from getting the raw data, filtering and
analyzing this data to extract relevant information, and next exploring this
information visually to (in)validate a hypothesis related to a software pro-
cess or product. As such, SoftVis is closer to what is currently called visual

2.3 Applications 21

analytics. In contrast, a significant part of InfoVis research focuses on more
generic problems, such as the visualization of large generic graphs, tables, or
hierarchies. Typical program understanding challenges involve correlating a
multitude of different aspects, such as source code, execution traces, docu-
mentation, and developer activities. As such, SoftVis datasets are by nature
high-variate graphs which contain attributes of a multitude of different types.
The challenge of visually understanding multivariate data is thus fundamen-
tal to SoftVis. In contrast, multivariate data is not, by definition, a key aspect
to all InfoVis applications and solutions.

2.3 Applications

In the previous section, we have shown that SoftVis datasets consist naturally
of large multivariate time-dependent attributed graphs. In this section, we
overview a number of techniques and tools that have been developed in the
SoftVis domain for visualizing such data. We organize the presentation along
the structure, behavior, and evolution aspects introduced earlier. For each
aspect and solution, we also outline the tasks that the respective solution
aims to support (Fig. 2.2), and also emphasize the multivariate nature of the
visualized data.

tasks

tools

to
ol

s

to
ol

s

tasks tasks

Fig. 2.2. Data sources, tools, and tasks in software visualization

2.3.1 Structure Visualization

Software has a hierarchical structure (Sect. 2.2.2). At the lowest level, we
can visualize individual lines of code. Figure 2.3 shows two examples. Both
examples share the same core idea, introduced by the SeeSoft tool [13]: show

22 2 Multivariate Networks in Software Engineering

each code line as a horizontal pixel line, scaled by the line’s length (in charac-
ters), and colored by a data attribute computed for that line. Similar to the
table lens [32], line-level visualizations scale well up to tens of thousands of
code lines on a single screen. Image (a) shows the Tarantula tool [22]. Here,
lines are colored by a data value indicating testing outcomes. Red lines show
many failures, green lines show passed tests, and gray lines show code not
covered by tests. Image (b) shows a similar design in the CSV tool [24]. Here,
colors are added to syntax blocks in source code, rather than individual lines.
Users can pick specific language constructs, such as functions, class declara-
tions, iterative statements, conditional statements, variables, or comments,
using a classical tree browser for the language’s syntax, and assign them
specific colors. Matching code blocks are displayed using these colors by the
shaded cushion technique introduced by van Wijk and van de Wetering for
treemaps [48]. The spatial cushion nesting conveys the code’s nesting depth.
The color distribution conveys the overall code structure. For instance, in
Fig. 2.3b, green shows comments. We can thus see that the visualized code
(around 10K lines) is densely and uniformly commented.

ba

Fig. 2.3. Line-level (a) and syntax-level (b) visualization of program structure

Line-based visualizations have a natural multiscale aspect. Zooming out,
we can continuously transition from the simplified images in Fig. 2.3 to classi-
cal text views where individual code lines are readable [24]. Several software
aspects can be viewed simultaneously: structure-and-evolution (Fig. 2.3a),
and structure-and-behavior (Fig. 2.3b). However, we also see several limita-
tions. First, in the continuous transition described above, continuous attribute
interpolation is hard to do for non-numerical attribute types. Secondly, given
the limited display space, it is hard to show several attributes per item (line
of code).

Structure at higher levels than code lines involves folders, files, classes,
and methods (Sect. 2.2.2), and also their relations. Figure 2.4 shows several
such visualizations. Image (a) shows a classical UML diagram (nodes=classes,

2.3 Applications 23

a b

c d

e

Fig. 2.4. Code structure and multiple code metrics shown on UML and treemap
diagrams

edges=interitance, ‘has’ and ‘uses’ relations). Nodes are laid out using graph
drawing algorithms such as Sugiyama-style methods or spring embedders [15].
Multiple attributes, e.g., code quality metrics, are shown atop of each class
using glyphs (bar and pie charts) sized and colored by the metric values.
Glyphs are laid out in the same (grid) order in each class. This helps corre-
lating the same attribute across different classes. As typical UML diagrams
contain only tens of nodes (classes), nodes offer enough space to show several
per-class metrics. Image (b) shows how the third dimension brings an ad-
ditional degree of freedom—here, glyph heights attract attention to extreme
attribute values. This 3D technique is generalized in CodeCity [50], where the
UML ‘base’ layout is replaced by a treemap to increase information density
(Fig. 2.4e).

Additional structure can be added by considering so-called areas of interest
(AOIs). AOIs are sets of nodes which share a common property, e.g., all

24 2 Multivariate Networks in Software Engineering

thread-safe or all platform-dependent classes in a system [8]. Such sets can be
nested, overlap, or be disjoint. AOIs can be shown with Venn-Euler diagrams,
by surrounding all elements in a set by a smooth shape (Fig. 2.4c). Adding
shaded cushions [48] helps seeing how AOIs overlap or nest. Nodes can also
have per-AOI metrics. These are multiple attribute values that a node has,
one for each AOI it belongs to—for example, the amount of thread-safe,
respectively platform-dependent code lines that a class has. To visualize these
attributes, space is used outside the node icons (which are reserved to show
the AOI-independent node attributes)—specifically, per-AOI attributes are
drawn on the AOI cushions using texture and color interpolation. Texturing
creates a weaving pattern which helps mapping the identity of an attribute
to its corresponding AOI.

Detail information can be added by a table lens [32] atop each class icon
(Fig. 2.4d). Rows are class methods, and columns show 1..3 metrics for each
method. All class tables can be sorted synchronously, which allows easily
comparing the metrics’ distributions across an entire diagram.

Despite considerable work in the graph drawing community, classical
node-link diagrams are effective only for graphs up to a few hundred nodes.
Beyond this, clutter created by node-node, edge-edge, and node-edge over-
laps makes reading such images hard. Also, for large graphs, the white
space left between nodes by such algorithms makes their use less scalable.
A different approach is taken by hierarchical edge bundling (HEB) methods.
Pioneered by Holten [18], HEB assumes its input is a compound (hierarchy-
and-association) graph. Starting with a given node layout, HEB groups, or
bundles, straight-line association edges between these nodes using the hier-
archy relations. If the given node layout is compact (space-filling), then HEB
can scale easily to thousands of nodes and edges on a single screen. Addi-
tional automatic level-of-detail and interaction options make HEB scale to
hundreds of thousands of nodes and edges [20].

Figure 2.5 shows the SolidSX Software eXplorer tool [34]. The input com-
pound graph captures the syntactic structure of a C# program (50K lines of
code). Image (a) shows the program hierarchy (assemblies, classes, methods,
and files) using a classical tree browser. In image (b), a table lens [32] shows
several method-level attributes (name, size, complexity, number of callers,
and number of callees). Sorting this table allows finding, e.g., the most com-
plex and/or largest methods. In image (c), these methods are highlighted
atop of the software structure-and-association graph shown with HEB. Re-
lations (calls, inheritance, and type usage) between elements are shown by
bundles, colored by relation type. Finally, a fourth view, image (d), uses a
treemap to show two different node attributes encoded in the treemap-cell
colors and sorting order.

Several aspects are relevant here. Visual scalability is achieved by using
different types of space-filling techniques: table lenses, treemaps, and HEB
plots. Understanding aspects which are encoded in the correlation of multiple
attributes is done by using multiple views linked by selection and brushing.

2.3 Applications 25

a

b c

d

tree view treemap view

table lens HEB view

Fig. 2.5. Syntactic structure and attributes visualized with multiple space-filling
views

This implicitly makes the entire solution scalable to multivariate data—the
four-view display in Fig. 2.5 can show, in practice, ten such attributes per data
element. However, this puts an extra burden on users in terms of performing
the interactive view linking. Separately, bundling creates (by construction)
many edge overlaps. Although this reduces visual clutter as compared to
classical node-link displays, it also makes it hard to use color-mapping to
show individual attributes at edge level. Also, even for limited amounts of
edge overlaps, showing multiple attributes per edge in the same time is not
possible.

Figure 2.6 shows a different use-case—the comparison of two hierarchies
of a software system [4]. The choice of structures used supports different
use-cases, e.g., the comparison of the logical and physical views (Sect. 2.2.2)
of a system, or the comparison of two related systems such as two versions
of a software code base. The horizontal and vertical icicle plots show the
two considered structures. The shaded cells in the central adjacency matrix
indicate how entities match between the two structures. In the shown figure,
these cells are quite close to the diagonal, indicating a strong similarity of the
two structures. Adjacency matrix plots are a good space-filling alternative to
HEB views for showing compound graphs, and have been used to visualize
very large call graphs [1, 17].

26 2 Multivariate Networks in Software Engineering

hierarchy 1

hi
er

ar
ch

y
2

Fig. 2.6. Adjacency matrix visualization for comparing two software hierarchies

2.3.2 Behavior Visualization

Apart from program structure, behavior is an essential part of program com-
prehension. Captured by execution traces, behavior can be visualized using
activity charts. Figure 2.7a shows a typical chart, produced by the Shark
profiling tool on Mac OS X. Table rows correspond to function calls, sorted
on calling order, call duration, or other user-specified criteria. The right ta-
ble part shows per-CPU-core occupancy, color-coded by CPU code ID. This
gives insight in how well a parallel program is designed to take advantage of
a multi-threaded architecture. Similar techniques are used to visualize soft-
ware behavior on superscalar-processors (Rivet tool [40]) and Java program
executions (Jinsight tool [30]). Apart from the per-function-call view, the call
stack metaphor is also used to visualize execution traces (Fig. 2.7b). Here,
an icicle plot shows function call nesting and call duration. In this view, the
call stack depth, as well as time spent in a function call itself vs. time spent
in deeper-called functions, are easily visible.

Program structure can be added to execution trace data. The Extravis
tool [11] does this by showing execution traces with a sequence view, where
each call is drawn as a horizontal line (Fig. 2.7c, right). Line endpoints are
aligned to match the layout of an icicle plot that shows the program static
structure (Fig. 2.7c, top-right). This shows when, and how often, a given
function declaration (in the static structure) was called during the execution.
Separately, a HEB view shows the static structure and calls within a user-
selected time range.

An alternative structure-and-behavior combination is proposed by the
ViewFusion tool [46]. An icicle plot (Fig. 2.7d, top) shows the call stack,
similar to Fig. 2.7b. This plot is overlaid atop of a treemap showing the

2.3 Applications 27

d

ba

execution time

ca
ll s

tac
k d

ep
thfunction calls CPU occupancy

c

HEB view sequence view

tool settings

call stack

static structure

Fig. 2.7. Visualizations of execution traces (a-b) combined with program structure
(c-d)

static system structure, and can be interactively panned and zoomed to se-
lect interesting execution time ranges. Function calls (from the call stack)
are correlated with function declarations (from the treemap) using interac-
tion and color mapping. Just as in Extravis, interaction and multiple views
help cope with the multivariate data implied by program structure and exe-
cution information.

TraceDiff [45] extends the ViewFusion idea to compare two execution
traces T1 and T2. (Fig. 2.8). The traces are shown at the top and bottom
of the view, using the same icicle plot design as in Fig. 2.7d. HEB-like bun-
dles are computed between function call sequences in T1 and T2 that match
a user-supplied similarity criterion. To simplify the view, matching calls that
are close to each other in both time and caller space are aggregated and
rendered as thick shaded tubes, following a visual simplification technique
originally proposed for HEB views [43]. Tubes are colored to encode the call
similarity. Zooming the view in and out allows users to find matching call
sequences at different levels of detail.

Multiple behaviors can also be visualized against software structure. The
Gammatella tool [29] collects deployment data of multiple instances of a
given software system, and shows a distribution of this data at detailed code-
line level (Fig. 2.9, code view), SeeSoft-like level (file view), and package
level (treemap structure view). On each shown element, the computed metric
distribution is visualized using a color gradient ranging from red (failed) to
green (successful).

28 2 Multivariate Networks in Software Engineering

Fig. 2.8. Multiscale visual comparison of two execution traces

file view structure view

metric view

code view

Fig. 2.9. Multiple deployment results vs system structure at different levels of
detail

2.3.3 Evolution Visualization

Software evolution generates time-dependent data in terms of different ver-
sions, or revisions, of a software system. These can be mined from source
control management (SCM) systems, or repositories, such as CVS, SVN, Git,
or TFS. Each revision yields a multivariate compound attributed graph that
can be visualized using the techniques described in Sects. 2.3.1 and 2.3.2.
However, the sheer amount of data a typical repository stores is huge: thou-
sands of files having tens of thousands of revisions spread over years. Repos-
itories store additional data besides software structure and behavior, such
as commit logs, change requests, time stamps, and the identity of develop-
ers who changed the software. This only increases the number of attributes

2.3 Applications 29

available per data item. One approach is to reduce the amount of information
by using rule or pattern mining techniques first. It turns out that the number
of mined rules or patterns is still very large and that standard visualization
techniques can be applied to interactively explore these rules [7]. Analyzing
the data without the information loss induced by rule or pattern mining asks
for different, more scalable, visualization techniques.

Figure 2.10a shows a first solution for evolution visualization [49], applied
to a SVN repository. The x axis maps time. Each file is drawn as a horizontal
line starting when the file was first committed in the repository. Lines are
cut into chunks, one per interval between consecutive revisions. Chunk col-
ors show an attribute, e.g., revision author, testing results, or code quality
metrics. Files can be sorted along the y axis to support several analyses. In
Fig. 2.10a, files are sorted by decreasing activity (revision density per unit
time). This allows finding the most active files (placed at the top), and cor-
relating these with other attributes, such as age, developer identity, or code
metrics. In Fig. 2.10a, revisions are colored by developer ID. We see a large
purple spot over the first evolution half for the top files, and a large green
spot over the second evolution half. This shows that, halfway the project,
the main development switched between two different persons (‘purple’ and
‘green’ developers).

a b

method average complexity

average code size (LOC)

complexity
distribution

code size
distribution

metric
navigator

selected
code files

evolution time

so
rt

ed
 fi

le
s

(d
ec

re
as

in
g

ac
ti

vi
ty

)

metric
icons

Fig. 2.10. Visualization of software activity and code quality trends in a repository

Figure 2.10b shows a detailed view from a TFS repository. Only C# source
code files were selected for analysis. The top widgets show the distribution of
two code metrics (complexity and size) color-coded from blue to red. These
views allow easily spotting the dominant values of these metrics across a
desired time or file range, which helps assessing the average code quality.
The metric navigator view allows smoothly changing the color encoding used
in the main file view between several metrics of interest, by dragging the
red ‘observer’ icon between the respective metric icons, following the preset
controller technique [51]. Below the file view, two graphs show the evolution
in time of the selected metrics. We see, for example, that the average code

30 2 Multivariate Networks in Software Engineering

size (number of lines of code per file) slightly increases, but the method
average complexity first sharply decreases, then stays constant. The sharp
complexity decrease is a good indicator of the presence of a refactoring event.
The stability of the code quality metrics is, in turn, a good indicator that the
software is well maintained.

a b

code version 1

code version 2

code version 1 code version 6....

Fig. 2.11. Structural visualization of source code evolution

The aggregated views in Fig. 2.10 scale well to show the evolution of
industry-size software at coarse file or folder levels. However, they cannot
show relations. Figure 2.11 shows two techniques that address this challenge.
In image (a), the hierarchical structures of two different versions of a soft-
ware system are shown using the icicle plot technique explained earlier for
trace comparison (Fig. 2.8). In contrast to traces, where x position encodes
call time, the hierarchies are now permuted to place similar subtrees close to
each other along the x axis [19]. Next, these subtrees are visually connected
by HEB bundles. Asymmetries in the bundle structure indicate differences
between the two hierarchies. The hierarchy sorting removes unnecessary bun-
dle twists and thus increases readability. This idea is further extended by the
CodeFlows tool (Fig. 2.11b). Each vertical icicle plot shows the syntactic
structure of a version of a code file with the file start at top and the file end
at the bottom. Similar code elements in consecutive versions, found using a
syntax-aware clone detector, are connected by shaded tubes, akin to the ones
used for trace comparison (Fig. 2.8). The ‘flows’ along the tubes indicate code
refactoring events—parallel tubes show stable code, diverging ones show code
insertions or deletions, and crossings show code permutations. Tube colors
indicate attributes of interest, such as code element types (function, class,
statement, symbol) for changed code, while gray indicates unchanged code.

Although effective to show structure change, the above techniques cannot
show association changes. This is next achieved by extending edge-bundling
to cope with dynamic graphs (Fig. 2.12). The input consists of n compound
graphs mined using static analysis from n revisions in a software repository.

2.3 Applications 31

bundle
A-B

Fig. 2.12. Visualization of call graph change across multiple software versions

Here, associations are function calls. For each revision, a HEB layout is built
using the associations in that revision and, as structure, the union of all en-
tities from the n revisions. This guarantees that the radial icicle plot stays
fixed for all views. Next, a continuous animation is created by smoothly inter-
polating corresponding edges in consecutive revisions. In parallel, appearing
edges are interpolated towards their bundle, and faded in using blending,
while disappearing edges are interpolated away (unbundled) and faded out.
Color coding reinforces this effect: stable edges are blue; appearing edges are
red, and disappearing ones are green. The images in Fig. 2.12 show eight
frames from this animation between two consecutive revisions. We first see
a red bundle appearing between components A and B. During the last four
frames, a green bundle connecting A and B fades out. This indicates an im-
portant refactoring event between the considered revisions, when many calls
connecting A and B were changed.

Visualizing changing associations in compound graphs in a single, static,
image without animation is proposed by the TimeRadarTrees tool [6] (see
Fig. 2.13). The top-left image shows three frames G1..G3, or snapshots, from
a time-dependent compound directed graph. Hierarchy edges are orange, and
associations are black. The top-right image shows the proposed visual encod-
ing: Each node A..E is represented as both a small thumbnail icon, and the
correspondingly aligned sector in the large central disk. Disks are sliced in
concentric rings, each one encoding a snapshot. Ring sectors in thumbnails
encode the presence of an outgoing edge from the respective node ‘revision’

32 2 Multivariate Networks in Software Engineering

towards the node given by the sector’s orientation. Similarly, ring sectors in
the central disk encode incoming edges for all nodes, all revisions. Figure 2.13
(bottom) shows an application. The data is the folder-file hierarchy in the
JEdit code base. Associations between two files f1..f2 indicate that f1 was
changed together (in the same revision) with f2. Ring sectors are colored to
indicate association weights, measured as number of lines co-changed between
two files. Blue shows large co-changes, while gray shows no co-change. The
dark-blue ‘wedges’ visible in the lower-right part of both the central disk and
thumbnails for files TODO.txt and CHANGE.txt indicate that these two
files co-changed over nearly the entire evolution period.

Fig. 2.13. Visualization of file co-change across multiple software versions

In contrast to the animation shown in Fig. 2.12, TimeRadarTrees unfolds
time across the space (radial) dimension. As such, observing detailed evolu-
tion events is arguably easier, as all data is captured in one image. On the
other hand, this method is less scalable in terms of number of nodes and
relations.

2.4 Challenges and Future Directions

Summarizing our overview on multivariate graphs in software visualization,
the following observations can be made.

2.4 Challenges and Future Directions 33

Importance: Software structure, behavior, and evolution maps naturally to
multivariate compound attributed time-dependent graphs. Such graphs have
many attributes per node and edge, and attributes can have many different
types. The type data is crucial to program understanding—for instance, we
need to know whether a node is a function, class, or folder, and whether an
edge is a call, clone, or inheritance relation, to be able to address our analysis
goals.

Scalability: Being able to display large graphs with many attributes per
node and/or edge is crucial to software understanding. Scalability in terms
of item counts can be achieved by space-filling and dense-pixel techniques—
treemaps, table lenses, timelines, SeeSoft-like views, and edge bundles. How-
ever, scalability in terms of number of attributes shown per item is quite
low—most existing methods cannot show more than 2 or 3 such attributes.
Linked views partially address this, but require additional user effort. Po-
tential directions for scalability improvements are subsampling (drawing less
items) and dimensionality reduction (drawing less attributes per item). How-
ever, both are challenging: For subsampling, we still do not know how to
generically aggregate non-numerical attributes [11, 27]. Dimensionality re-
duction is a quite complex process, and can produce images which are too
abstract for typical users. These issues are not unique to graphs emerging
from the software engineering application domain, but important at large for
any multivariate temporal graph, as discussed in more detail in Chap. 10.

Patterns: A grand open challenge in SoftVis is how to show structural, be-
havioral, and evolutionary patterns. Patterns are essential to capture (and
reason about) non-trivial events in the software, such as design decisions,
execution bottlenecks, and refactoring and re-architecting. However, current
visualization techniques show such patterns only implicitly, putting the bur-
den of detection on the user’s vision. Explicitly showing such patterns would
significantly guide the user towards a faster, and more profound, understand-
ing of the studied software.

Standardization: Software visualization does not exist in a void. Many
researchers have stressed that the current lack of toolchain integration (design
tools, compilers, profilers, debuggers, SCM systems, and visualization tools)
is a key adoption blocker of SoftVis tools in the IT industry [5, 9, 23, 33–35].
Tool communication via shared data formats [44] is helpful but not sufficient.
A certain progress is visible in the last years in terms of SoftVis tools available
as plug-ins to mainstream development environments such as Eclipse and
Visual Studio. However, the largest majority of SoftVis tools does not follow
this pattern. Separately, standardization of visual encodings used in SoftVis
solutions, e.g., types of (2D vs. 3D) layouts, diagrams, glyphs, and color maps,
is an important, but not yet covered, requirement.

In this chapter, we have presented the role of multivariate graphs in the
representation and visualization of the structure, behavior, and evolution

34 2 Multivariate Networks in Software Engineering

of software systems. The presented application and tool examples show that
such graphs play a key role in many program understanding scenarios. Recent
research in software visualization has pushed the scalability limits in terms
of number of items and attributes that can be visualized. However, in the
same time, we see that more challenging analysis scenarios require even more
powerful tools able to display larger and more complex software patterns.

As such, developing efficient and effective techniques and tools for visu-
alizing large, complex, multivariate, and time-dependent graphs extracted
from software systems remains one of the key open challenges to software
visualization. As the size and importance of the software industry grows, the
creation of such tools and techniques becomes ever more necessary. In the
same time, the development of such solutions for software visualization has
a great potential to benefit other information visualization domains where
such graphs also become pervasive.

References

1. Abello, J., van Ham, F.: Matrix zoom: A visual interface to semi-external
graphs. In: Proc. InfoVis 2004, pp. 183–190. IEEE (2004)

2. Baecker, R.: Sorting out sorting (1981), 30 minute color film (developed with
assistance of Dave Sherman, distributed by Morgan Kaufmann, University of
Toronto)

3. Bassil, S., Keller, R.: Software visualization tools: Survey and analysis. In: Proc.
IWPC, pp. 7–17 (2001)

4. Beck, F., Diehl, S.: Visual comparison of software architectures. In: Proc. ACM
SOFTVIS, pp. 136–143 (2010)

5. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Gros, C.H.,
Camsky, A., McPeak, S., Engler, D.: A few billion of lones of code later: Using
static analysis to find bugs in the real world. Comm. of the ACM 53(2), 66–75
(2010)

6. Burch, M., Diehl, S.: TimeRadarTrees: Visualizing dynamic compound di-
graphs. Comp. Graph. Forum 27(3), 823–830 (2008)

7. Burch, M., Diehl, S., Weissgerber, P.: Visual data mining in software archives.
In: Proc. ACM SOFTVIS, pp. 37–46 (2005)

8. Byelas, H., Telea, A.: Visualization of areas of interest in software architecture
diagrams. In: Proc. ACM SOFTVIS, pp. 105–114 (2006)

9. Charters, S., Thomas, N., Munro, M.: The end of the line for software visuali-
sation? In: Proc. IEEE VISSOFT, pp. 27–35 (2003)

10. Corbi, T.: Program understanding: Challenge for the 1990s. IBM Systems Jour-
nal 28(2), 294–306 (1999)

11. Cornelissen, B., Zaidman, A., Holten, D., Moonen, L., van Deursen, A., van
Wijk, J.J.: Execution trace analysis through massive sequence and circular
bundle views. J. Sys. & Software 81(12), 2252–2268 (2008)

12. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software. Springer, Berlin (2010)

13. Eick, S.G., Steffen, J.L., Sumner, E.E.: Seesoft—a tool for visualizing line ori-
ented software statistics. IEEE TSE 18(11), 957–968 (1992)

References 35

14. Ferenc, R., Beszédes, A., Tarkiainen, M., Gyimóthy, T.: Columbus reverse en-
gineering tool and schema for C++. In: Proc. ICSM, pp. 172–181 (2002)

15. Gansner, E.R., North, S.: An open graph visualization system and its applica-
tions to software engineering. Software - Practice & Experience 30, 1203–1233
(2000)

16. Goldstine, H.H., von Neumann, J.: Planning and coding of problems for an
electronic computing instrument (1947), part II, volume I of a report prepared
for the U.S. Army Ord. Dept., reprinted in [42]

17. Ham, F.v.: Using multilevel call matrices in large software projects. In: Proc.
InfoVis., pp. 227–232 (2003)

18. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE TVCG 12(5), 741–748 (2006)

19. Holten, D., van Wijk, J.J.: Visual comparison of hierarchically organized data.
Comp. Graph. Forum 27(3), 759–766 (2008)

20. Hoogendorp, H., Ersoy, O., Reniers, D., Telea, A.: Extraction and visualization
of call dependencies for large C/C++ code bases: A comparative study. In:
Proc. ACM VISSOFT, pp. 137–145 (2009)

21. InfoEdge: Global software industry forecast (2013), http://www.infoedge.com
22. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist

fault localization. In: Proc. ICSE, pp. 467–477 (2002)
23. Koschke, R.: Software visualization in software maintenance, reverse engineer-

ing, and re-engineering: a research survey. J. Soft. Maint. and E 15(2), 87–109
(2003)

24. Lommerse, G., Nossin, F., Voinea, L., Telea, A.: The Visual Code Navigator:
An interactive toolset for source code investigation. In: Proc. IEEE InfoVis.,
pp. 4–12 (2005)

25. Maletic, J., Collard, M., Marcus, A.: Source code files as structured documents.
In: Proc. IWPC, pp. 87–91 (2002)

26. Mens, T., Demeyer, S.: Software Evolution. Springer (2008)
27. Moreta, S., Telea, A.: Multiscale visualization of dynamic software logs. In:

Proc. of EuroVis 2007, pp. 11–18 (2007)
28. Nierstrasz, O., Ducasse, S., Ĝırba, T.: The story of Moose: an agile reengineer-

ing environment. In: Proc. ACM ESEC/FSE, pp. 1–10 (2005)
29. Orso, A., Jones, J., Harrold, M.J.: Visualization of program-execution data for

deployed software. In: Proc. ACM SOFTVIS, pp. 67–75 (2003)
30. Pauw, W.D., Jensen, E., Mitchell, N., Sevitsky, G., Vlissides, J., Yang, J.:

Visualizing the execution of Java programs. In: Proc. Inl. Sem. Revised Lectures
on Software Visualization, pp. 151–162. Springer LNCS (2001)

31. Quinlan, D.: ROSE: Compiler support for object-oriented frameworks. In: Proc.
CPC. pp. 81–90 (2000), see also http://www.rosecompiler.org

32. Rao, R., Card, S.K.: The table lens: Merging graphical and symbolic represen-
tations in an interactive focus+context visualization for tabular information.
In: Proc. ACM Conference on Human Factors in Computing Systems (CHI),
pp. 318–322. ACM Press, New York (1994)

33. Reiss, S.P.: The paradox of software visualizaton. In: Proc. IEEE VISSOFT,
pp. 59–63 (2005)

34. Reniers, D., Voinea, L., Ersoy, O., Telea, A.: The Solid* toolset for software vi-
sual analytics of program structure and metrics comprehension: From research
prototype to product. Science of Computer Programming 79(1), 224–240 (2014)

http://www.infoedge.com
http://www.rosecompiler.org

36 2 Multivariate Networks in Software Engineering

35. Schafer, T., Menzini, M.: Towards more flexibility in software visualization
tools. In: Proc. VISSOFT, pp. 20–26 (2005)

36. Scott, A.E.: Automatic preparation of flow chart listings. Journal of the
ACM 5(1), 57–66 (1958)

37. Shneiderman, B.: The eyes have it: A task by data type taxonomy for infor-
mation visualizations. In: Proc. IEEE Symposium on Visual Languages, pp.
336–343 (1996)

38. Standish, T.A.: An essay on software reuse. IEEE TSE 10(5), 494–497 (1984)
39. Stasko, J., Brown, M., Price, B.: Software Visualization. MIT Press (1997)
40. Stolte, C., Tang, D., Gerth, J., Rosenblum, M., Hanrahan, P.: Rivet: a flexi-

ble environment for computer systems visualization. ACM TOG 34(1), 68–73
(2000)

41. Sugiyama, K., Misue, K.: Visualization of structural information: Automatic
drawing of compound digraphs. IEEE Transactions on Systems, Man and Cy-
bernetics 21(4), 876–892 (1991)

42. Taub, A.H.: John von Neumann: Collected Works. Pergamon Press (1965)
43. Telea, A., Ersoy, O.: Image-based edge bundles: Simplified visualization of large

graphs. Computer Graphics Forum 29(3), 543–551 (2010)
44. Tichelaar, S., Ducasse, S., Demeyer, S.: FAMIX and XMI. In: Proc. WCRE,

pp. 296–300 (2000)
45. Trümper, J., Döllner, J., Telea, A.: Multiscale visual comparison of execution

traces. In: Proc. ICPC 2013, pp. 262–270 (2013)
46. Trümper, J., Telea, A., Döllner, J.: ViewFusion: correlating structure and ac-

tivity views for execution traces. In: Proc. TPCG, pp. 45–52. Eurographics
(2012)

47. USA Today: US healthcare spending (2009), www.usatoday.com/news/health
48. van Wijk, J.J., van de Wetering, H.: Cushion treemaps: Visualization of hier-

archical information. In: Proc. IEEE InfoVis 1999, pp. 73–78. IEEE Press, Los
Alamitos (1999)

49. Voinea, L., Telea, A.: Visual querying and analysis of large software repositories.
Empirical Software Engineering 14(3), 316–340 (2009)

50. Wettel, R., Lanza, M.: Visualizing software systems as cities. In: Proc. IEEE
VISSOFT 2007, pp. 92–99 (2007)

51. van Wijk, J.J., van Overveld, C.W.A.M.: Preset based interaction with high
dimensional parameter spaces. In: Post, F., Nielsen, G., Bonneau, G. (eds.)
Data visualization – State of the art, pp. 391–406. Kluwer (2003)

www.usatoday.com/news/health

3

Multivariate Social Network Visual Analytics

Chris Muelder, Liang Gou, Kwan-Liu Ma, and Michelle X. Zhou

One of the key research topics in Social Science and Sociology is to understand
and analyze various social networks. Like any other types of networks, a social
network consists of a set of nodes and links. Here, each node often represents
a social entity, such as an individual or a group, and each link represents a
particular relationship between two social entities. In a multivariate social
network, each node/link can be associated with a set of properties, or there
can even be multiple sets of heterogenous nodes or edges.

3.1 Data Characteristics

In addition to understanding the behavior of individual social entities, Soci-
ology is also concerned with the behavior of groups, in particular, how these
groups interact with each other [49]. In this context, a multivariate social net-
work is composed of the entities of groups. The connections between them
depend on the task being pursued and the information that is available, but
are generally a set (or multiple sets) of relationships between the entities.
These relationships can be directed or undirected, weighted or unweighted.
Additionally, the nodes can carry any additional properties.

In particular, social networks are imbued with a number of properties.
The size and complexity of the topology itself can be overwhelming for many
traditional approaches. Additionally, both the nodes and links can carry any
number of properties, including nominal, ordinal, and continuous measures:
for instance, nodes can often be broken down into classes both ordered (age,
grade, etc.) and unordered (gender, race, etc.), or there can be multiple classes
of edges on the same set of nodes (e.g., both friendship and aggression ties be-
tween the same group of actors), or the nodes or edges could contain weights,
or even multiple weight metrics, and the edges could be directional if the
network is not symmetric. Also, many social networks evolve over time, so
while static analysis can reveal some insights, in many cases the evolution of
dynamic social networks could be of importance.

A. Kerren et al. (Eds.): Multivariate Network Visualization, LNCS 8380, pp. 37–59, 2014.

c© Springer International Publishing Switzerland 2014

38 3 Multivariate Social Network Visual Analytics

To make things more complicated, a multivariate social network may not be
homogeneous as it may contain multiple types of nodes, which represent both
individuals and groups. For example, an enterprise social network may include
nodes representing individual employees as well as those representing compa-
nies or organizations that are customers, suppliers, or partners of the enterprise.

All of the mentioned properties are often compounded by a difficulty in
acquiring the network data. Next, we briefly describe different approaches to
acquire social network data.

3.1.1 Traditional Data Collection

Traditionally, social network data are acquired by polling small groups of
people, where people report on their social ties via questionnaires. This in-
troduces numerous points for the introduction of uncertainty. Not only do the
subjects’ responses depend on the questions asked, but even on how they are
worded. The accuracy of the data also relies on the honesty of the subjects.
In addition, temporal resolution of such networks is extremely low, since it
is very difficult to get a large number of subjects to willingly and dutifully
fill out one questionnaire, let alone repeated (e.g., weekly, monthly, or even
annual) questionnaires. To address these challenges, alternative data acquisi-
tion approaches have been considered, particularly in social network analysis
of non-human actors such as herds of animals. In these cases, the actors are
tagged and tracked, but such tracking obfuscates most details of the network,
as the animals are unable to communicate the specifics of their relationships,
e.g., a proximity test could determine two animals met, but not inherently
determine if the meeting was amicable or hostile. In either case, most tra-
ditional social network data collection methods result in data sets that are
small, incomplete, noisy, vague, or even unreliable.

3.1.2 Data Collection from Online Social Media Networks

Conversely, the advent of online social media, such as Facebook and Twit-
ter, has created the ultimate data source for social network analysis, as an
incredible number of users are readily willing to divulge both explicit and
implicit social connectivity information in order to benefit from the service
that social media provides. This has resulted in an explosion of social network
data in recent years. The result of this is that sociologists now often have to
deal with massive data challenges, such as handling extremely large networks
or real-time trend detection and analysis. But the emergence of social media
has also introduced privacy issues that often limit the third party access to
these networks and also limit what can be done with them.

In parallel to collecting social network data frompublic socialmedia sites, an
alternative approach is to build social networks from people’s communication
data, including emails, online chats, phone calls, andmeeting invites, especially

3.2 Task Characteristics 39

within the context of enterprise [59]. Not only can such data connect one social
entity to another, but they can also be used to characterize the relationships
between any two connected entities, including their tie strength, topic of inter-
est, and style or type of communications. Furthermore, such information can
the be used to better understand the characteristics of an individual’s as well
as an organization’s social network [59].

3.2 Task Characteristics

Given a multivariate social network, the typical tasks of understanding such
a network are to analyze its different social entities, and the properties of the
entities or the network as a whole.

3.2.1 Understanding Social Network Nodes

As mentioned in the previous section, a node of a multivariate social network
represents an individual or a group, which is often associated with a set of
traits describing the individual or group. With the emergence of social media
and advances in data analytics, much information can be inferred from one’s
social media footprints to describe various traits of the individual or group.
In particular, there is much research on understanding various traits of an
individual, from demographics to political orientation to personality traits
[21, 39, 47]. Similarly, there is also much work on extracting the properties
of a group, including aggregated properties of a group such as the level of
expertise [46] or the discovery of latent communities/groups along with their
properties [48, 58].

3.2.2 Understanding Social Network Links

Since a link represents the relationship between two social entities, under-
standing a link is often to characterize such a relationship (e.g., type and
strength) and predict its properties (e.g., likelihood to last). The relation-
ship between two social entities can be characterized in many different ways.
For example, between two individuals, such a relationship can be used to
describe what, how, and when such a relationship is established [59]. Besides
understanding the characteristics of a relationship, there is also research on
predicting the properties in particular the existence of a particular relation-
ship between two entites [26].

3.2.3 Understanding Social Networks

Understanding a network as a whole is a complex task as it depends on
the purposes of the analysis as well as the analytic technologies. Because of
the challenges, visualization is often developed to accompany the analytics
technologies to help users better understand various properties of a network.

40 3 Multivariate Social Network Visual Analytics

Graph-Based Analysis

Many sociological research works draw on graph analytic algorithms and
statistics. These analyses can range in scale from looking at small scale
patterns such as dyads (pairs of entities) [49] or triads (groups of 3) [17],
to centrality metrics that measure nodes’ importance to the network as a
whole [18], and up to large scale analysis of the high-level relationships that
find and compare large groups of entities and how they interact.

Sociograms Analysis

One key element of social network research has been visualization of node-link
diagrams, which sociologists often refer to as “sociograms” [19]. While statis-
tical metrics can be quite succinct, it can be difficult to know a priori what
metric will produce the right result, and it can be difficult to directly verify
that the results are correct. Pictorial representations of social networks can
help to both directly communicate the content of the network such as struc-
tural patterns, as well as to guide and confirm the choices of statistical met-
rics. Nevertheless, traditional visual diagrams of social networks often suffer
from a range of problems, the most common of which being the high density
of edges and complex structures in large networks, yielding sociograms that
often appear as indecipherable clouds of nodes and edges.

3.3 Examples of Technologies

3.3.1 Clustering

Another way to simplify large, complex networks is to cluster tightly con-
nected groups of nodes together and consider the resulting abstracted super-
network. Many current clustering algorithms are based on the modularity
metric, such as the Louvain clustering method [3] or the “Fast Community”
clustering algorithm of Clauset, Newman, and Moore [8]. These clustering
algorithms have been shown to be effective on real-world networks, as the
modularity metric is demonstrably comparable to force directed energy func-
tions [45]. Modularity is a metric that evaluates a specific proposed clustering
of a network by measuring the density of cluster interiors and the sparsity
of inter-cluster connections. Specifically, given a network with a proposed
clustering, the modularity Q is defined as:

Q =
1

2|E|
∑

i,j

[
Ai,j − kikj

2|E|
]
δi,j (3.1)

where |E| is the number of edges in the network, ki, kj are the degrees of nodes
i and j, Ai,j is 1 if there is an edge between nodes i and j and 0 otherwise,
and δi,j is 1 if nodes i and j are in the same cluster and 0 otherwise. Recent

3.3 Examples of Technologies 41

efforts have also been shown to make such approaches produce more balanced
hierarchies [31] or to parallelize the clustering calculation [36].

3.3.2 Network Centralities

Centrality metrics are commonly applied to the analysis of social networks,
such as Eigenvector [6, 35], Markov [57], Betweenness [18, 38], and Close-
ness [32, 44] centrality. Each of these measure vertices’ overall importance
with respect to the whole network. Rather than basing the importance of a
node solely on how many connections it has, eigenvector centrality also takes
into account the weights of connections to other nodes; a single connection
to a highly important node can carry more weight than many connections
to nodes of low importance. Eigenvector centrality sensitivity extends this
notion to derive the importance of nodes relative to each other.

3.3.3 Centrality Derivatives

While centrality gives one value per node, centrality sensitivity analysis mea-
sures a vertex’s importance to the structure of the network relative to other
vertices in the graph [9]. These metrics are essentially derivatives of centrality,
and as such can be calculated similarly for any type of centrality. To calcu-
late a reference node’s sensitivity to a target node, the reference node’s initial
centrality is calculated, each edge of the target node is removed one at a time,
and the centrality of the reference node is recalculated after each removal.
The negative changes in centrality of the reference node give a measure of
how important the target node is to the reference node—in other words, how
sensitive the reference node’s centrality is to the target node. For instance,
if removing a target node’s edges results in large decreases in the reference
node’s centrality, then the reference node is said to be highly sensitive to
the target node—that is, the target node has high importance relative to the
reference node. This can be summarized in the following equation [9]:

∂x

∂ti
= −Q+∂Q

∂ti
x (3.2)

where x is the centrality, ti is the degree of vertex i, Q is the subtraction of
the identity matrix from the adjacency matrix of the network (Q = A − I)
(A is the adjacency matrix, and I is the identity matrix), and Q+ is the
pseudoinverse of Q.

One application of these sensitivities is to evaluate the roles of edges in the
graph. If two nodes impact each other negatively, then they have a competi-
tive relationship, whereas other nodes have mutually beneficial relationships.
This can be shown as simply as using color, as in Fig. 3.1. Alternately, since
every node has a centrality derivative with respect to every other node, cen-
trality sensitivity can be thought of as a complete, weighted network. From

42 3 Multivariate Social Network Visual Analytics

(a) Freindster network (b) Coauthorship

Fig. 3.1. Centrality sensitivity analysis can indicate how collaborative (blue) or
competitive (red) relationships are along edges in the network

this network, it is possible to derive a skeleton network based on edge exis-
tence, high centrality derivatives, and overall connectivity (e.g., using a span-
ning tree). This skeleton network can then be thresholded to be as sparse or
as dense as needed, and can be used for a wide variety of purposes, such as
simplifying/clarifying layouts (as in Fig. 3.2), visualizing only the most im-
portant connections, or finding important relationships between nodes with
no direct connections.

3.3.4 Traditional Network Layouts

One key task in creating visual images of networks is to determine the ap-
propriate geometrical layout of the nodes and edges. There are several well-
defined criteria for assessing the accuracy and validity of a particular graph
layout [13]. Some common criteria [2, 4] include, but are not limited to:

1. edges of the same approximate length;
2. vertices distributed over the area;
3. reduction of the number of edge crossings.

Nevertheless, optimization of such criteria can be intractable and often con-
tradictory [4]. For surveys of many modern graph layout algorithms see Bat-
tista, Eades, Tamassia, and Tollis [55] or Hachul and Jünger [24].

The most traditional and commonly used layout algorithm for social net-
work analysis are force-directed layouts [33], often referred to as “spring
embedders” [15]. In this well-known procedure, nodes in a network graph
are positioned iteratively, where the edges connecting them are treated like
springs that push and pull on them until the system converges to an equi-
librium. However, spring embedder techniques do not always scale nicely to
large graphs [5]. Thus, a common problem that faces many existing visual-
izations of large social networks (most of which use force-directed layouts)

3.3 Examples of Technologies 43

is that they often result in a tangled mess of incomprehensible lines; this is
often referred to as the “hair-ball” problem (Fig. 3.2(a) shows an example).

Other approaches have been developed with the goal to improve network
layout in terms of quality and algorithmic efficiency, especially for large
graphs. One such technique [4] is based on a variant of dimension-reduction
methods, referred to as multidimensional scaling [10], in which the goal is
to minimize stress. In this approach, the purpose of stress minimization is
to determine positions for every node such that the Euclidean distances in
the n-dimensional space resemble the given distances between the nodes, as
determined by graph-theoretic measures, such as the shortest paths (i.e.,
geodesics). However, such geodesic based layouts tend to fail on networks
with small diameter, as is common among social networks.

(a) All edges (b) Filtered (c) Further filtered

Fig. 3.2. MIT reality data set. Trying to lay out the whole network can yield an
unintelligible hairball (a), but filtering out the less important edges via sensitivity
analysis reveals two clusters (b), and further filtering starts to dissolve one of them
while the other remains strong (c).

3.3.5 Improved Network Layouts

One method for improving the layout of dense social networks is to trim
the network of its less essential connections to reduce it to a core network
consisting of just the most important connections. A näıve way to do this
would be to simply take a spanning tree of the network itself, but this is not
always ideal for preserving the centralities of the nodes, which sociologists are
often concerned with. Instead, the edge filtering can be weighted according
to the centrality derivatives, so that the edges that are removed are the
ones that affect the centralities the least. This produces a core network that
preserves as much of the critical structure of the network, which can then be
used to create an improved layout of the graph that reveals more detailed
structures, as in Figs. 3.2(b) and 3.2(c). Once this reduced network is laid
out, the original edges can optionally be reintroduced.

44 3 Multivariate Social Network Visual Analytics

As social networks tend to exhibit strong community structures, cluster-
based layouts based on hierarchical structures have proven useful, such as
the treemap layout [41] or space-filling curve based layouts [42], as shown
in Fig. 3.3. A treemap defines a hierarchical decomposition of screen space,
where the whole screen is recursively subdivided according to the tree, i.e.,
the root of the tree takes up the whole screen, each branch subdivides the
screen at each level of the tree, and finally each leaf of the tree is allotted
its own region of the screen. When applied to a graph’s clustering hierarchy,
each node in the graph is a leaf in the hierarchy, and can thus be placed
in the corresponding region to define the layout. In the space-filling curve
layout, the nodes are ordered in 1 dimension, and then mapped to the screen
using a recursively defined fractal curve, such as the well known Hilbert or
Gosper curves. Any such clustering-based layout can provide clear bound-
aries between communities—particularly when combined with edge bundling
techniques. And since a clustering is already computed, hierarchical edge
bundling is a good fit [28].

(a) Treemap-based layout (b) Space filling curve-based layout

Fig. 3.3. Clustering-based graph layouts using trees (a) or space filling curves (b)
can be used to show explicit separation between communities

3.3.6 Multivariate Social Networks

Sometimes, merely improving the layout algorithm is insufficient for showing
particular aspects of a network. Specifically, social networks can often be
divided into groups according to discrete properties besides connectivity, such
as gender, race, school grade, or others. However, the density of ties in most
traditional node-link diagrams make it difficult to distinguish in inter-group
patterns from intra-group patterns, as in Fig. 3.4(a). One approach to address
this is a modified radial representation that arranges nodes according to

3.3 Examples of Technologies 45

(a) Traditional layout (b) Radial layout, divided
by node category (grade)

(c) Parallel layout, with
multiple edge sets (aggres-
sion vs. friendship)

Fig. 3.4. Some networks can be divided up categorically, with multiple node cat-
egories or edge sets. Here we show a social network of students colored by grade.
Traditional node-link diagrams (a) can be too cluttered to read, but explicitly di-
viding nodes by category (b) or showing multiple edge sets in parallel (c) can better
show how these categories or edge sets interact. (Images from [12] with permission.)

categorical properties in addition to connectivity, as shown in Fig. 3.4(b).
Nodes are placed around a circle, grouped into discrete arcs based on the
selected data attribute, and ordered within each group by connectivity with
the use of modularity clustering. This new representation also delegates the
two kinds of connections to separate regions of space: intra-group edges are
displayed outside the circle while inter-group edges are drawn in the middle.
The label on each group shows the number of inter-group and intra-group
connections, respectively.

In addition to node categories, social networks can also contain more than
one kind of edge, defining two or more unique networks on the same set of
nodes. In such cases, a layout that is good for one set of edges might not be
good for another. Alternately, with one unified layout, sparser networks may
get lost inside denser ones. One approach to address this is a representation
based on n-partite network layouts, where layers of nodes are laid out paral-
lel to each other, similar to the dynamic graph approach of Burch et al. [7].
This concept has been applied to multiple edge sets on the same set of nodes
by replicating the nodes in each layer, and considering each edge set as a
bipartite graph from the full set of nodes to a duplicate set of nodes, which
creates an n-partite network where n is one more than the number of edge
sets. This n-partite network is then laid out in a series of columns by evenly
spacing the nodes in each column. Edge directionality is also shown in this
representation, since all edges proceed from left to right. While hierarchical
layouts such as Sugiyama [53] or Dig-Cola [14] could be used, here each layer
of nodes is identical, and thus it is more natural for each column to have the
same ordering. Thus, the afore calculated categorical modularity clustering

46 3 Multivariate Social Network Visual Analytics

is applied to cluster the nodes, and the resulting clustering is traversed to
define a universal ordering. An example of this parallel layout is shown in
Fig. 3.4(c).

3.3.7 Dynamic Social Networks

In real world applications, social networks are often intrinsically time-varying:
New friendships can be made, or old friendships lost. While the problem
of visualizing static networks has been studied quite extensively, work on
dynamic network visualization is less mature.

A common method for visualizing dynamic graphs is to animate the tran-
sitions between time steps. This approach yields dynamic visualization with
nodes appearing, disappearing and moving to produce a readable layout for
each time step. Alternatively, multiple time steps can be statically placed
next to each other using “Small Multiples” [56]. This eases the comparison
of distant time steps but limits the area devoted for each time step which
reduces the legibility of each graph. Archambault et al. [1] have done an em-
pirical study to compare the advantages and drawbacks of these approaches
(i.e., “Animation” vs. “Small Multiples”). In either case, when creating a
node-link diagram for a dynamic graph, not only does the layout need to
consider graph topology, but also the stability between time steps. Hu et
al. [30] proposed a method based on a geographical metaphor to visualize a
summary of clustered dynamic graphs. An alternate visualization approach
for dealing with dynamic large directed graphs is to directly represent time as
an axis. In the work of Burch et al. [7], vertices are ordered and positioned on
several vertical parallel lines, and directed edges connect these vertices from
left to right. Each time-step’s graph is thus displayed between two consecutive
vertical axes.

Storyline visualizations have become popular in recent years for showing
evolution of interactions such as clusterings or networks [54]. Sallaberry et
al. [51] use a globally optimized dynamic graph clustering approach to both
extend the SFC layout method [42] and create a storyline-like timeline repre-
sentation of the network. An example of such a timeline is shown in Fig. 3.5.

Fig. 3.5. Evolution of a small social network collected off the Rimzu social media
site

3.3 Examples of Technologies 47

3.3.8 Egocentric Approaches

Due to screen and retinal resolution limits, and a psychological limit on at-
tentiveness, there is a finite maximum amount of information that can be
conveyed by any one view. Thus, as datasets get even bigger, an overview
of the dataset will show proportionally less and less of the underlying data.
As a means to address this, researchers have introduced several bottom-up
techniques, which bypass or supplement the overview with a detailed view
that starts at the lowest level of the data (i.e., a single selected node and its
immediate context). Additional relevant nodes and connections are revealed
only on demand, based on graph structure or specialized degree-of-interest
(DOI) functions.

“Link Sliding” and “Bring & Go” are two such DOI functions for nav-
igating large networks [40]. Heer and Boyd [27] presented a visualization
method which only shows a focus node’s neighboring nodes up to a certain
level. Similarly, Elmqvist and Fekete [16] described a bottom-up system based
on hierarchy traversal methods. These methods are useful when the inherent
graph structure is more important than other properties for the task at hand.
For other applications, where node/edge attributes are the focus of analysis,
researchers create specialized DOI functions. Furnas [20] introduced a DOI
function to evaluate the importance of a selected node based on distance and
a priori interest. Van Ham and Perer [25] extended this function to oper-
ate on embedded attributes and graph topology, as well as user-generated
search actions. Crnovrsanin et al. [11] combine this concept with an interac-
tion history based importance similar to Amazon’s item-to-item collaborative
filtering [37]. The result of this is a visual recommendation system that takes
into account not only the underlying topology, but also the users’ interaction
histories. An example of a path in a user’s exploration is shown in Fig. 3.6(a).

In dynamic networks, not only will importance depend on the interactive
selection of focal points, but also on the temporal history of the network.
Muelder et al. [43] have extended the DOI functions for dynamic networks
by using computing a DOI that takes into account not only static topology,
but also temporal topological history and interaction history. This is then
used along with dynamic clustering to create focused, egocentric storylines,
as shown in Fig. 3.6(b).

3.3.9 TreeNetViz: Revealing Patterns of Networks with
Hierarchical Attributes

This sample technology demonstrates a new visualization technique, TreeNet-
Viz [22], to help users understand a network with hierarchical attribute infor-
mation. This technology is built up on a TreeNet graph, a type of multivariate
network in which node attribute has hierarchical structure. For example, as
shown in Fig. 3.7, a subgraph of a scientific co-author network in Fig. 3.7a
has node attribute of affiliation, such as country, university and department,

48 3 Multivariate Social Network Visual Analytics

(a) Interactive visual recommendation (b) Storyline recommendation

Fig. 3.6. Using a recommendation system to focus on the neighborhood around a
single focal node over time can show dynamic context of changes in that individual’s
relation to the network. In static networks, this change can be from interactive focal
point changes as the user explores (a). In dynamic networks, this change can also
be due to the evolution of the network itself over time (b).

Fig. 3.7. An example of a TreeNet graph. It includes (a) a scientific co-author
network, and (b) node affiliation attribute with a hierarchical structure.

and the affiliation attribute has a hierarchical structure shown in Fig. 3.7b.
This type of graph, a special type of multivariate network, is called TreeNet
graph.

Analysis of this type of network is not a trivial task. It is important to
analyze the connectivity, centrality and path patterns at different levels ag-
gregation on the node attribute. For instance, to fully understand the sci-
entific co-author network shown in Fig. 3.7, the collaboration activities can
be analyzed through different entities, from individual authors to multiple
universities to international collaborations. Th analysis is achieved by ag-
gregating network connections at different levels of node attribute hierarchy.
This type of analysis enables us to understand an individual’s social activities
at different affiliation levels [34].

TreeNetViz Design. TreeNetViz is designed to support various multivariate
networks analysis at different levels of node hierarchy for a TreeNet graph.

3.3 Examples of Technologies 49

TreeNetViz uses a Radial, Space-Filling (RSF) [52] technique to show a tree
structure of the node attribute in the TreeNet graph (Fig. 3.8a). It then
uses a circular layout for an aggregated network and places the aggregated
network over the RSF tree (Fig. 3.8b and c). To reduce visual cluttering, it
adopts an edge bundling technique based on [29](Fig. 3.8d). It also includes
an algorithm to improve circular node placement to reduce the edge crossings
with the consideration of various constraints.

Fig. 3.8. TreeNetViz Visualization Design: (a) a Radial, Space-Filling (RSF) layout
of the node attribute structure; (b) the optimized circular layout of the network
overlaid on RSF tree; (c) a RSF circular layout of an aggregated network; (d) the
view after edge bundling

Treenetviz also includes rich interactions to support network analysis tasks
at different levels of aggregation. It enables users to observe network patterns
(connectivity, centrality, and reach) among entities of the same type (e.g.
the collaboration patterns among all universities or countries in previous
example) by controlling the view level. It supports arbitrary aggregation of
network by expanding and folding node sector in the visualization. It also
enables users find the short paths among nodes of interest in aggregated
networks.

An example application of TreeNetViz. A TreeNetViz example is presented
to help people understand collaboration patterns among researchers in a co-
author network. The collaboration network was extracted from MedLINE
research articles published from 2006 to 2010 in the area of diabetes at Uni-
versity of Michigan. The data set includes 614 articles, 847 authors and 2,498
co-author relationships. 10 college-level nodes and 90 department-level nodes
are identified.

Fig. 3.9 shows the visualization results of collaboration patterns at three
different levels of colleges (Fig. 3.9a), departments (Fig. 3.9b), and individuals
(Fig. 3.9c). With this visualization, people can understand network patterns
at different scales from the perspectives of the power and status of collabora-
tion resources, and the access control to social groups and individual authors.

TreeNetViz also presents patterns how social actors collaborate with each
other from different scales. As shown in Fig. 3.10a, the collaboration pat-
terns of researchers in the “Biochemistry Dept” with other departments in

50 3 Multivariate Social Network Visual Analytics

Fig. 3.9. TreeNetViz visualizes collaboration patterns at three different levels:
collaborations among colleges(a), departments(b), and individuals(c)

Fig. 3.10. (a) Collaboration patterns across different levels of entities of colleges,
departments and individuals; (b) A critical path connecting two colleges by the
researcher “Auth525”

“LSA”, and other colleges are presented. It is also helpful to identify im-
portant people connecting different organizations. Figure 3.10b shows the
researcher “Auth525” connects two organizations: “School of Kinesiology”
and “Medical School”.

3.3.10 SocialNetSense: Making Sense of Multivariate Social
Networks

While TreeNetViz is a specific visualization technique to represent and help
people to explore a specific type of multivariate network, SocialNetSense [23],
on the other hand, is a visual analytics tool to support different analysis tasks
on social networks with rich node attributes. SocialNetSense integrates differ-
ent visualizations of multivariate social networks and supports the analysis
process with a sensemaking approach. Here, the social network with rich

3.3 Examples of Technologies 51

node attribute information, such as TreeNet graph, is a type of multivariate
network of interest.

Sensemaking approach for visual analytics. SocialNetSense adopts a sense-
making approach to support the visual analytics of multivariate social net-
work. Sensemaking is a process to iteratively construct and refine a repre-
sentation or understanding of data and fit data with the representation to
meet the requirements of a task [50]. There are several important sensemak-
ing tasks on social networks with rich node attribute information including
understanding network features, the social attribute features and the hybrid
features of network and attribute.

Figure 3.11 shows the sensemaking framework for multivariate social net-
work visual analytics. The framework consists of a network exploring loop
and a representation building loop. In the network exploring loop, users can
explore social attribute features, network features, and hybrid features to col-
lect information based on their tasks and existing knowledge. Various metrics
(such as degree, betweenness and closeness), plots (such as degree distribu-
tion) and visualization tools are implemented to help users to explore these
features. On the other hand, in the representation building loop, users process
and comprehend the information collected, build and revise their representa-
tion of the data.

The two loops interact with each other with bottom-up and top-down
processes. In the top-down process, representations are used to guide users’
exploration to look for new evidences. In the bottom-up process, information
of interest are collected as evidences to confirm or dis-confirm the represen-
tation. As more evidence are collected, representations can be revised and
even re-constructed.

Fig. 3.11. A sensemaking framework for multivariate social network visual ana-
lytics in SocialNetSense

52 3 Multivariate Social Network Visual Analytics

SocialNetSense User Interface. Guided by the sensemaking framework, the
SocialNetSense user interface includes three main components: a Network Ex-
ploring Space (NES), a Representation Building Space (RBS), and a process
view.

The interface of NES is shown in Fig. 3.12, including two main panels:
a visualization view (Panel 1) showing social networks along with hierarchi-
cal social structures, and a control panel (Panel 2) offering a set of analytical
tools, such as different aggregationmetrics of connectivity and centrality, ana-
lytic plots and searching function. View manipulation tools, such as zooming,
panning and layouting, are provided in the tool bar above Panel 1. It uses
multiple visual representations of networks to facilitate the exploration of so-
cial, network and hybrid features. Node-link diagrams (Panel 1 in Fig. 3.12)
are used to show social features and network features, and TreeNetViz is used
to show hybrid features of aggregated networks over node attributes.

Fig. 3.12. Network Exploring Space (NES) in SocialNetSense: (a) Coordinated
node-link views, including a network visualization (Panel 1-1), a tree visualization
(Panel 1-2) for social hierarchy, a network overview panel (Panel 1-3), and a control
panel (Panel 2) with analytical tools

In RBS, users can organize the evidence collected from the NES to create
their representations using editing functions. Figure 3.13 shows the user inter-
face of RBS. The interface consists of a editing space (Panel 1), a process view
(Panel 2) and an element list view (Panel 3). The editing space enables users
to collect visualization elements from the node-link view and the TreeNetViz
view, network metrics of size, centrality, betweenness and closeness, and also
plots from the NES. It also provides functions such as grouping/ungrouping,
note-taking, and element-linking to build representation.

3.3 Examples of Technologies 53

Fig. 3.13. Representation Building Space (RBS): Panel 1 is the main working
space; Panel 2 is the process view; Panel 3 lists the elements in the working space;
Panel 4 shows tools of representation building, such as add note, group/ungroup
elements and link element

Sample analysis with SocialNetSense. The same data set of a diabetes
researcher collaboration network is used to demonstrate how SocialNetSense
supports the visual analytics of multivariate social networks.

With SocialNetSense, users can build their understanding of the collabora-
tion patterns, such as the power and status of social actors and collaborations,
at three different levels (colleges, departments, and individuals). In Fig. 3.14,
an example representation is shown for the main network patterns at the
level of colleges composed by a user. The strong collaboration among “Med-
ical School”, “LSA” (Literature, Science and the Arts) and “Public Health”
is captured with detailed notation of network metrics, plots, and co-authored
articles. Similarly, it can also help users understand cross-scale patterns such
as collaboration among the departments in “LSA” with other colleges.

With SocialNetSense, users can have comprehensive understanding of the
analytics process. Figure 3.15 shows how a user makes sense of the network
to identify an important actor (Author 525) acting as a “boundary spanner”
to connect “Medical School (MS)” and “School of Public Health (SPH)”.
Compared with the visualization result shown in Fig. 3.10b, SocialNetSense
shows the intermediate results and reasoning process.

54 3 Multivariate Social Network Visual Analytics

Fig. 3.14. A sample representation of the main network patterns at the level of
college

Fig. 3.15. A representation of a boundary spanner connecting “Medical School
(MS)” and “School of Public Health (SPH)”

3.3.11 Summary

Many works have proposed methods to accomplish these tasks. Dyadic and
triadic analyses often rely on basic statistics, but other metrics require more
complex algorithms. There are a number of centrality metrics, each with their
own strengths and weaknesses, and a number of additional metrics derived
from centrality metrics. Community-scale analyses depend on clusters, so
there are also a substantial number of clustering algorithms.

3.4 Challenges and Future Directions 55

As node-link diagrams are traditional for visually inspecting social net-
works, node-link diagram layout algorithms are intrinsically applicable. But
social networks exhibit certain properties that make many layout algorithms
less useful. So, there are additional approaches to improve layout algorithms
for social networks, based on relevant statistical analyses such as centralities
or clusterings. Some visual approaches even incorporate semantic informa-
tion, such as node categories [22] or multiple edge sets. There has also been
recent work in extending visual analyses to dynamic social networks. And
finally, as the size of social networks available to researchers has grown in-
credibly in recent years, bottom-up visual analytic approaches, such as rec-
ommendation and sensemaking-based systems [23], are becoming increasingly
popular.

3.4 Challenges and Future Directions

While much work has been done on the visualization and analysis of social
networks, many of the key challenges are only getting more important. The
size of social network data available has exploded in recent years due to social
media, and continues to grow every year. Many of these networks generate
complex data in real-time, and real-time analysis offers many unique oppor-
tunities and challenges. The kind of information in social networks can also be
quite varied, such as social network messages from different devices, different
locations, and different social media sites, and may contain various meta-data
that could potentially improve analytic results. The validity of the informa-
tion must also be considered, as most social networks rely on the honesty of
the users, and are potentially vulnerable to wildly inaccurate input, missing
data, or even spam. And lastly, there is much that can be done to improve
the analytic insights to be gained from previous data that has already been
collected.

As such, there are numerous opportunities for future work in this area.
As there are many social media sites, finding new ways of combining and
analyzing networks from various sources would be beneficial to creating a
more complete picture of the underlying social trends. Producing useful an-
alytic results while preserving the privacy of the subjects is also important,
as many users would be more willing to provide accurate information if they
trust the privacy policies. But the resulting networks will still have uncer-
tainty, whether due to the data being sanitized to protect privacy or the users
omitting data to protect their own privacy. So incorporating further uncer-
tainty metrics to either measure the validity of the input data or conjecture
missing information would aid in improving the analytic results. And lastly,
even when a visual analytic process produces an insight, it is important for
the analyst to convey the underlying derivation, as tracking and analyzing
the provenance of insights is critical for improving the analytic process.

56 3 Multivariate Social Network Visual Analytics

References

1. Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and
the effect of mental map preservation in dynamic graphs. IEEE Transactions
on Visualization and Computer Graphics 17(4), 539–552 (2011)

2. Bertin, J.: Semiology of graphics. University of Wisconsin Press (1983)
3. Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-

munities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment 2008(10), P10008 (2008)

4. Brandes, U., Indlekofer, N., Mader, M.: Visualization methods for longitudinal
social networks and stochastic actor-oriented modeling. Social Networks 34(3),
291–308 (2011)

5. Brandes, U., Pich, C.: An experimental study on distance-based graph drawing.
In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229.
Springer, Heidelberg (2009)

6. Brin, S., Page, L.: The anatomy of a large-scale hypertextualWeb search engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998),
http://linkinghub.elsevier.com/retrieve/pii/S016975529800110X

7. Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel edge splatting
for scalable dynamic graph visualization. IEEE Transactions on Visualization
and Computer Graphics 17(12), 2344–2353 (2011)

8. Clauset, A., Newman, M.E.J., , Moore, C.: Finding community structure in
very large networks. Physical Review E, 1–6 (2004),
http://www.ece.unm.edu/ifis/papers/community-moore.pdf

9. Correa, C.D., Crnovrsanin, T., Ma, K.L.: Visual reasoning about social net-
works using centrality sensitivity. IEEE Transactions on Visualization & Com-
puter Graphics 18(1), 106–120 (2012)

10. Cox, T., Cox, M.: Multidimensional Scaling. Chapman & Hall, London (2001)
11. Crnovrsanin, T., Liao, I., Wuy, Y., Ma, K.L.: Visual recommendations for net-

work navigation. In: Proceedings of the 13th Eurographics / IEEE – VGTC
conference on Visualization, EuroVis 2011, pp. 1081–1090. Eurographics Asso-
ciation, Aire-la-Ville (2011),
http://dx.doi.org/10.1111/j.1467-8659.2011.01957.x

12. Crnovrsanin, T., Muelder, C.W., Faris, R., Felmle, D., Ma, K.L.: Visualization
of friendship and aggression networks (2012),
http://vidi.cs.ucdavis.edu/projects/AggressionNetworks/,
CNN’s AC360 study: Schoolyard bullies not just preying on the weak

13. Demoll, B.S., Mcfarland, D.: The Art and Science of Dynamic Network Visu-
alization. JoSS: Journal of Social Structure 7 (2005),
http://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/

14. Dwyer, T., Koren, Y.: Dig-cola: Directed graph layout through constrained
energy minimization. In: IEEE Symposium on Information Visualization,
pp. 65–72 (2005)

15. Eades, P.: A Heuristic for Graph Drawing. Congressus Numerantium 42,
149–160 (1984)

16. Elmqvist, N., Fekete, J.D.: Hierarchical Aggregation for Information Visual-
ization: Overview, Techniques, and Design Guidelines. IEEE TVCG 16(3),
439–454 (2009)

17. Faust, K.: Triadic configurations in limited choice sociometric networks:
Empirical and theoretical results. Social Networks 30, 273–282 (2008)

http://linkinghub.elsevier.com/retrieve/pii/S016975529800110X
http://www.ece.unm.edu/ifis/papers/community-moore.pdf
http://dx.doi.org/10.1111/j.1467-8659.2011.01957.x
http://vidi.cs.ucdavis.edu/projects/AggressionNetworks/
http://www.cmu.edu/joss/content/articles/volume7/deMollMcFarland/

References 57

18. Freeman, L.: Centrality in social networks conceptual clarification. Social Net-
works 1(3), 215–239 (1979)

19. Freeman, L.C.: The Development of Social Network Analysis: A Study in the
Sociology of Science. Booksurge (2004)

20. Furnas, G.W.: Generalized fisheye views. In: Human Factors in Computing
Systems CHI, pp. 16–23 (1986)

21. Golbeck, J., Robles, C., Edmondson, M., Turner, K.: Predicting personality
from twitter. In: Proc. SocialCom 2011, pp. 149–156 (2011)

22. Gou, L., Zhang, X.: TreeNetViz: revealing patterns of networks over tree struc-
tures. IEEE Transactions on Visualization and Computer Graphics 17(12),
2449–2458 (2011)

23. Gou, L., Zhang, X., Luo, A., Anderson, P.: SocialNetSense: supporting sense-
making of social and structural features in networks with interactive visualiza-
tion. In: 2012 IEEE Conference on Visual Analytics Science and Technology
(VAST 2012), pp. 133–142 (2012)

24. Hachul, S., Jünger, M.: An experimental comparison of fast algorithms for draw-
ing general large graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS,
vol. 3843, pp. 235–250. Springer, Heidelberg (2006)

25. van Ham, F., Perer, A.: Search, Show Context, Expand on Demand: Supporting
Large Graph Exploration with Degree-of-Interest. IEEE TVCG 15(6), 953–960
(2009)

26. Hasan, M.A., Zaki, M.J.: A survey of link prediction in social networks. In:
Aggarwal, C.C. (ed.) Social Network Data Analytics, pp. 243–275. Springer US
(2011)

27. Heer, J., Boyd, D.: Vizster: visualizing online social networks. In: IEEE Sym-
posium on Information Visualization, pp. 32–39 (2005)

28. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Transactions on Visualization and Computer Graph-
ics 12(5), 741–748 (2006)

29. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006)

30. Hu, Y., Kobourov, S.G., Veeramoni, S.: Embedding, clustering and coloring for
dynamic maps. In: Proceedings of the 5th IEEE Pacific Visualization Sympo-
sium, pp. 33–40 (2012)

31. Huang, M.L., Nguyen, Q.V.: A fast algorithm for balanced graph clustering.
In: Proceedings of the 2007 IEEE Symposium on Information Visualization
(InfoVis), pp. 46–52 (2007)

32. Jacob, R., Koschützki, D., Lehmann, K., Peeters, L., Tenfelde-Podehl, D.: Al-
gorithms for centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network
Analysis. LNCS, vol. 3418, pp. 62–82. Springer, Heidelberg (2005)

33. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs.
Inf. Process. Lett. 31(1), 7–15 (1989)

34. Kilduff, M., Tsai, W.: Social Networks and Organizations. SAGE (September
2003)

35. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal
of the ACM 46(5), 604–632 (1999),
http://portal.acm.org/citation.cfm?doid=324133.324140

36. Langevin, D.G.S., Schretlen, P., Jonker, D., Bozowsky, N., Wright, W.: Louvain
clustering for big data graph visual analytics (2013), poster at VIS 2013

http://portal.acm.org/citation.cfm?doid=324133.324140

58 3 Multivariate Social Network Visual Analytics

37. Linden, G., Smith, B., York, J.: Amazon.com Recommendations: Item-to-Item
Collaborative Filtering. IEEE Internet Computing 7, 76–80 (2003)

38. Lister, R.: After the gold rush: toward sustainable scholarship in computing.
In: Simon, M., Hamilton (eds.) Tenth Australasian Computing Education Con-
ference (ACE 2008). CRPIT, vol. 78, pp. 3–18. ACS, Wollongong (2008)

39. Mahmud, J., Zhou, M., Megiddo, N., Nichols, J., Drews, C.: Recommending
targeted strangers from whom to solicit information on social media. In: Proc.
IUI 2013, pp. 37–48 (2013)

40. Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.-D.: Topology-
Aware Navigation in Large Networks. In: SIGCHI Conference on Human Fac-
tors in Computing Systems, pp. 2319–2328 (2009),
http://hal.inria.fr/inria-00373679

41. Muelder, C., Ma, K.L.: A treemap based method for rapid layout of large
graphs. In: Proceedings of the IEEE Pacific Visualization Symposium (Paci-
ficVis 2008), pp. 231–238 (2008)

42. Muelder, C., Ma, K.L.: Rapid graph layout using space filling curves. IEEE
Transactions on Visualization and Computer Graphics 14(6), 1301–1308 (2008)

43. Muelder, C.W., Crnovrsanin, T., Ma, K.L.: Egocentric storylines for visual
analysis of large dynamic graphs. In: Proceedings of 1st IEEE Workshop on
Big Data Visualization (BigDataVis 2013), pp. 56–62 (October 2013)

44. Newman, M.E.J.: The Structure and Function of Complex Networks. SIAM
Review 45(2), 167–256 (2003)

45. Noack, A.: Modularity clustering is force-directed layout. CoRR abs/0807.4052
(2008)

46. Pal, A., Wang, F., Zhou, M., Nichols, J., Smith, B.: Question routing to user
communities. In: CIKM 2013 (to appear, 2013)

47. Pennacchiotti, M., Popescu, A.M.: A machine learning approach to twitter user
classification. In: ICWSM (2011)

48. Qian, T., Li, Q., Liu, B., Xiong, H., Srivastava, J., Sheu, P.: Topic formation
and development: a core-group evolving process. In: WWW 2013, pp. 1–31
(2013)

49. Rivera, M.T., Soderstrom, S.B., Uzzi, B.: Dynamics of dyads in social net-
works: Assortative, relational, and proximity mechanisms. Annual Review of
Sociology 36, 91–115 (2010)

50. Russell, D.M., Stefik, M.J., Pirolli, P., Card, S.K.: The cost structure of sense-
making. In: Proceedings of the INTERACT 1993 and CHI 1993 Conference on
Human Factors in Computing Systems, CHI 1993, pp. 269–276. ACM, New
York (1993), http://doi.acm.org/10.1145/169059.169209

51. Sallaberry, A., Muelder, C., Ma, K.-L.: Clustering, visualizing, and navigating
for large dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012.
LNCS, vol. 7704, pp. 487–498. Springer, Heidelberg (2013)

52. Stasko, J., Zhang, E.: Focus+context display and navigation techniques for
enhancing radial, space-filling hierarchy visualizations. In: IEEE Symposium
on Information Visualization, InfoVis 2000. pp. 57–65 (2000)

53. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hi-
erarchical systems. IEEE Trans. Systems, Man, and Cybernetics 11, 109–125
(1981)

54. Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visu-
alizations. IEEE TVCG 18(12), 2679–2688 (2012)

http://hal.inria.fr/inria-00373679
http://doi.acm.org/10.1145/169059.169209

References 59

55. Tollis, I.G., Di Battista, G., Eades, P., Tamassia, R.: Graph Drawing: Algo-
rithms for the Visualization of Graphs. Prentice Hall (July 1999)

56. Tufte, E.R.: Envisionning Information. Graphics Press (1990)
57. White, S., Smyth, P.: Algorithms for estimating relative importance in net-

works. In: Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD, pp. 266–275 (2003)

58. Zhao, S., Zhou, M., Zhang, X., Yuan, Q., Zheng, W., Fu, R.: Who is doing
what and when: Social map-based recommendation for content-centric social
web sites. ACM TIST 3(1), 5–25 (2011)

59. Zhou, M., Zhang, W., Smith, B., Varga, E., Farias, M., Badenes, H.: Finding
someone in my social directory whom i do not fully remember or barely know.
In: Proc. ACM IUI 2012, pp. 203–206 (2012)

4

Multivariate Networks in the Life Sciences

Oliver Kohlbacher, Falk Schreiber, and Matthew O. Ward

Data in the life sciences is being obtained at a steadily increasing speed. Mod-
ern technology enables observing many of the fundamental building blocks
of a cell such as genes and their activity or metabolites and their concentra-
tion, as well as many phenotypical parameters on a macroscopic level, such
as shape, volume or tissue composition. The sequencing of a large number of
genomes—the blueprints of life—enabled so-called post-genomics methods.
The suffix ’-omics’ indicates the generation of data on a large, comprehen-
sive scale. Genomics thus studies all genes and proteomics all proteins in a
cell or a tissue. Recent developments have led to a staggering list of these
omics technologies. Some of the more popular omics technologies and the
data associated with them include:

• Genomics: DNA sequence and genes
• Transcriptomics: mRNA sequence and expression levels
• Proteomics: protein sequence and expression levels
• Metabolomics: metabolite concentrations
• Interactomics: protein-protein interactions

Each of these data types requires different technologies for its generation.
In genomics, DNA is extracted and fragmented into a library of small seg-
ments that are each sequenced in parallel. These sequence reads are then
reassembled and annotated to derive genes. In transcriptomics, sample RNA
is extracted and amplified. The expression level of each mRNA can then be
estimated by next-generation sequencing (RNA-Seq) or by hybridization to
oligonucleotide probes (microarrays). The key technology in proteomics and
metabolomics is currently mass spectrometry, where peptides (derived from
proteins by enzymatic digestion) or metabolites are separated by chromato-
graphic techniques and then detected in a high-resolution mass spectrometer.
The resulting datasets of most of these technologies are huge (up to terabytes
per sample) and often extremely complex.

A. Kerren et al. (Eds.): Multivariate Network Visualization, LNCS 8380, pp. 61–73, 2014.

c© Springer International Publishing Switzerland 2014

62 4 Multivariate Networks in the Life Sciences

Fig. 4.1. Major data types in the life sciences and some bioinformatics tools that
integrate more than one data type into the analysis process, see [17] for details

Several other types of data and information can also be integrated into the
analysis process, including images, volumes, and text documents. Figure 4.1
shows a sampling of bioinformatics tools that integrate multiple forms of
data.

4.1 Characteristics of Data and Tasks

Depending on the application, the data sources, and the questions under
investigation, the resulting multivariate graphs can be very different. They
will differ both in the semantics of the nodes and edges1 (the type of the
network) as well as in the data attached to nodes and edges.

4.1.1 Types of Biological Networks

Omics data is characterized as high-throughput and high-dimensional, as
many parameters are measured at once. It is often of limited accuracy, as
much noise exists in the process of extracting the data. Finally, the analy-
sis can be quite complex, drawing from techniques found in statistics, data
mining, machine learning, pattern recognition, as well as visualization.

While networks have been used for biological visualization for a long time
(e. g., phylogenetic trees have been used since the early 1800s), the availability

1 Nodes are also called vertices and edges are called links, respectively.

4.1 Characteristics of Data and Tasks 63

of high-throughput data resulted in network data on an unprecedented scale.
This gave rise to the idea of ’network biology’, understanding biology in terms
of networks [3].

Omics data in the life sciences either represents a network (e. g., interac-
tomics or regulomics) or can be interpreted in the context of a network (e. g.,
proteomics, transcriptomics, and metabolomics). Analysts may study these
networks in many ways. They may focus just on a single network or part
of a network, they may be interested in the interconnection between differ-
ent networks, or they may want to compare multiple networks at once. In
addition, they may wish to project a wide range of different data onto the
networks, either on the nodes or the links, which is why the development of
visualization techniques for multivariate networks is so important.

Biological networks can be organized into a hierarchy based on the entities
represented by nodes and edges (see Fig. 4.2). From metabolic processes
happening on an atomic scale to ecological and evolutionary networks taking
place on planet-wide scales these networks cover a wide range of scales with
respect to time and space. The networks differ mainly in the type of biological
entities or processes represented by their nodes and edges:

• Molecular graphs: nodes are atoms, links are bonds.
• Metabolic networks: nodes are metabolites, links are reactions.
• Interaction networks: nodes are proteins, links are interactions.
• Regulatory networks: nodes are proteins, links are actions (activation, re-

pression etc.).
• Ecological networks: nodes are species, links are interactions.
• Evolutionary networks: nodes are species, links indicate evolution.

This list is neither complete nor uniquely defined. Multiple representations
are possible for many of these networks. The entities present in one network
type (or layer) often have equivalents in other network types. A reaction node
in a metabolic network represents an enzyme, which can interact with other
proteins and is thus also represented by a node in an interaction network, or
can be regulated by other genes or gene products (see Fig. 4.3).

Layouts can be either overlapping or non-overlapping. Nesting of nodes
is possible to show hierarchical relationships. Additional marks and symbols
can be incorporated to convey direction of relationships, locations within a
cell or organism, and other types of meta-data.

4.1.2 Data Mapping and Multivariate Networks

The choice of networks underlying the data depends on the application and
on the available data. In most cases, the structure of the networks is more
or less fixed and the network data is taken from curated databases (such
as KEGG [7], Reactome [13], BIND [2], and DIP [18]). This reflects the
fact that within a given species, the structure of most networks shows little

64 4 Multivariate Networks in the Life Sciences

Fig. 4.2. A hierarchy of biological networks

Fig. 4.3. Different levels of networks are connected through shared entities

variation2. What changes, though, is the state of the network, such as the
concentrations of metabolites as a function of time or the expression level of
genes as a function of the tissue.

The purpose of network visualization is thus, more often than not, to show
the omics data in the context of these networks. Due to the size of the under-
lying networks, it is usually not meaningful to visualize the whole network.
In most cases, only parts of the whole network are relevant and these can
be identified by statistical means. For example, so-called enrichment analyses

2 Although it should be noted that the network data itself is often incomplete, and
therefore, the networks change over time due to increasing knowledge.

4.1 Characteristics of Data and Tasks 65

Fig. 4.4. Examples of multivariate data in biological networks, (a) flux data in
metabolic networks [15], (b) spatial resolution of gene expression in a gene regu-
latory networks of Arabidopsis [6], (c) expression data mapped on a KEGG path-
way [7], and (d) metabolite concentrations under three different conditions

can identify subnetworks that show statistically significant changes in expres-
sion levels [19]. The visualization can thus be focused onto the relevant parts
of the network only, omitting the unchanged parts. In Fig. 4.4, as well as in
Sect. 4.2, we give some examples of how these network and omics datasets
can be represented. Typical graphical attributes used on nodes and edges to
convey information are:

• Nodes: text labels, shape, size, color, diagrams, etc.
• Edges: text labels, line style, thickness, color, etc.

66 4 Multivariate Networks in the Life Sciences

4.2 Use Cases

Here we discusses some use cases that show a variety of networks and ways
in which multivariate biological network data has been visualized in the past.

4.2.1 Signaling

Signaling in cells can be conveyed via different mechanisms. One of the best-
studied of these mechanisms is the chemical modification (phosphorylation)
of certain amino acids of a protein (serine, threonine, tyrosin). This modi-
fication is reversible and is usually catalyzed by specific enzymes (kinases,
phosphatases). By modifying amino acid sites in a protein very specifically,
the activity of these proteins can be modulated – they can be activated or de-
activated. If kinases or phosphatases themselves are activated or deactivated,
they can in turn change the phosphorylation of other enzymes/proteins. In
this way, a signal can be transmitted from one protein to another. This in-
formation flow follows well-defined signaling pathways and these pathways
are part of large signaling networks. Signaling itself plays a key role in many
biological processes and proteomics provides a time-resolved view of these
signaling events. In order to unravel these networks, i. e., to figure out which
protein activates which other protein at what timepoint, the visualization
of these datasets in a larger context is quite helpful. In the example above,
we visualized the phosphorylation patterns as a function of time (Fig. 4.5)
for those nodes of the network for which (phospho-)proteomics could deter-
mine the phosphorylation patterns. Analysis of these patterns can be used to
understand the dynamic behavior of signaling networks.

4.2.2 Genetic Linkage

Genetic linkage analysis is focused on the tendencies of genes that are close
to each other on a chromosome to be inherited together during meiosis (cell
division necessary for sexual reproduction in eukaryotes). A set of genes or
gene markers undergo pairwise comparison to ascertain how frequently they
undergo recombination during crossover of homologous chromosomes. This
linkage score reflects the frequency of recombination between two markers
or genes, which is an indication of their genetic distance (as well as physical
distance). CheckMatrix (http://cgpdb.ucdavis.edu/XLinkage) is a visual-
ization tool for analyzing and validating genetic maps. It uses a set of genetic
markers (x and y axes in matrix) and recombination/linkage data for all pos-
sible pairs of markers computed via a variety of algorithms to create a matrix,
where the color of each cell is based on the linkage score (see Fig. 4.6). Along
the right border are the names for the markers and their positions in the
sequence. Allele composition is shown along the bottom.

http://cgpdb.ucdavis.edu/XLinkage

4.2 Use Cases 67

Fig. 4.5. Visualization of a signaling network showing timeseries data of the phos-
phorylation patterns of selected proteins. The different curves in each box represent
different phosphorylation sites in the same protein.

4.2.3 Relationship Discovery Based on Document Analysis

While much biological data visualization is focused on the analysis of data
sets containing sequences, numbers, and images, there is a growing in-
terest in harvesting information from large document repositories such as
PubMed (http://www.ncbi.nlm.nih.gov/pubmed). Chilibot (CHIp LItera-
ture roBOT) is a tool that accepts a user’s set of input keywords and gene
symbols and mines PubMed abstracts for relations between the supplied
terms [4]. It first augments the list with synonyms compiled from several
databases (users can add to this table) and then does sophisticated natural
language processing on each sentence of a collection of retrieved abstracts
to find not only co-occurrences, but also types of relationships (stimulatory,
inhibitory, neutral, parallel, and simple co-occurrence). The visualization rep-
resents query terms as boxes and relations as lines. Box colors are set based
on degree of up/down regulation from experimental data, while line color is
based on whether the relationship is stimulatory (green), inhibitory (red),
or both. Grey lines are neutral. Each edge also can have a circled number
indicating how many abstracts contained information about the relationship.
Mousing over an edge or node provides a text annotation of the relationship or
term extracted from the abstracts. Finally, arrows are added if the abstract

http://www.ncbi.nlm.nih.gov/pubmed

68 4 Multivariate Networks in the Life Sciences

Fig. 4.6. A transcript-based genetic map generated by CheckMatrix, showing link-
age information for a set of genetic markers from chromosome 4 from the plant
Arabidopsis. Python MadMapper BIT scores are mapped to color [20].

indicated directionality of the relationship. Grey diamonds indicate only a
co-occurrence relationship exists. See Fig. 4.7 for an example application.

4.2.4 Gene Regulation and Transcriptome Data

Gene regulation is a complex process commonly represented by gene reg-
ulatory networks. Both the static structure of the network as well as the
dynamics of regulatory events are important to understand gene regulation.
The static structure of a gene regulatory network is often used to investigate
functional building blocks derived from network motifs [14] or central reg-
ulatory nodes based on network centrality analysis [11]. Dynamic changes,
such as organ development and morphological characteristics of higher or-
ganisms, can be traced back to gene regulatory events, which are shown by
changes in the expression level of genes. The steadily increasing temporal
and spatial resolution of transcriptome datasets (measuring the expression
levels of genes) requires a set of analysis methods including exploration and
visualization to provide insights into developmental processes.

An example is shown in Fig. 4.4(b), where we consider the visualization
and exploration of tissue-specific gene expression data for master regulators of

4.3 Challenges 69

Fig. 4.7. Using Chilibot to study the relationships between genes reported to be
regulated by cocaine. The network is formed automatically based on discovered
relations [4].

Arabidopsis thaliana flower development in the context of the corresponding
gene regulatorynetwork [6]. In the network in Fig. 4.4(b), nodes represent genes
and different types of links (represented by different arrow heads) are used to
represent information about activation and inhibition.The nodes contain color-
coded images which show the expression levels of the genes represented by the
network node in different floral organs of the plant Arabidopsis.

The combination of network, omics data, and spatial information provides
a fast visual exploration not only of regulatory events, but also of similar
and different expression of a specific gene in the context of different tissues
or organs (spatial context). Such representations can support the compar-
ative analysis of genes with specific transcript patterns, thereby helping in
extracting functional relationships.

4.3 Challenges

High-throughput data is rapidly growing in popularity in all areas of research
in the life sciences. This implies that more and more non-experts get in

70 4 Multivariate Networks in the Life Sciences

contact with this type of data and are forced to tackle the complexity of
analyzing complex multi-omics data sets. Further background information
concerning the interactive visual analysis of biological networks (in particular
information visualization, visual analytics, and automatic layout of networks)
is given in [9]. Although there are many tools available for biological network
visualization (for overviews and comparisons see, for example, [5, 10, 16]),
there are still many challenges to be met [1]. The challenges arise partially
from the growing amount of available high-throughput data, partially from
novel applications, partially from the integration of different networks, and
partially from the increasing need of more user-friendly visual analytics tools.

Currently, the key challenges concern scale, uncertainty/ambiguity, het-
erogeneity, interactivity and standardization. We will discuss each of these
challenges separately in the following.

4.3.1 Scale

For some biological processes the complete networks have to be taken into
consideration and thus need to be visualized. Currently networks range from
a few dozens to a few thousand nodes and up to several thousand edges
(for example, protein interaction or whole-genome metabolic networks), and
networks with hundreds of nodes and thousands of links are in common use.
This likely will expand by at least one order of magnitude in the near future.
So far, tools commonly lack good methods to navigate through such large
networks.

In addition, the amount and complexity of multivariate date (especially
omics data, but also images, volumes, texts and so on) is steadily increasing.
To make sense out of the data their integration into cellular processes and
biological networks is often required. This also has implications for interactiv-
ity, exploration, and visualization. See Chap. 10 for scalability considerations
for multivariate graph visualization.

4.3.2 Uncertainty/Ambiguity

Unlike in some domains, relations and values in bioinformatics are never one
hundred percent certain. Concerning the structure of the networks, generally
there is evidence to support a relationship, but it could be a very weak
correlation that may, as more evidence is analyzed, prove to be incorrect. Also
the data mapped onto the networks is often uncertain. Both the uncertainty
of the network structure (and thereby the reliability of the underlying network
data) as well as the uncertainty of the different related data has to be shown
to a user.

Typical examples are measurement errors, missing data, multiple solutions
produced by algorithms (such as in the process of finding mappings from one

4.3 Challenges 71

sequence to another, most search algorithms will report only the best match
found, but in reality there may be multiple matches for the same subsequence
of comparable quality), and ambiguous mappings between elements of differ-
ent domains.

4.3.3 Heterogeneity

While most multivariate network visualizations incorporate a single data
type, it is increasingly important to tie different data types within the analy-
sis process. The result are heterogeneous networks with a complex structure:
different types of nodes, edges, hyper edges, and hierarchical relationships
(see Fig. 4.2).

Two major challenges are: (1) the compilation of heterogeneous networks
which requires the identification of the biological entities and the interconnec-
tion between networks. The interconnection is especially difficult to obtain
as identifiers for biological entities are often only unique in the context of one
data source, for example, a database or an ontology, and identifier mapping
mechanisms have to be established. (2) the visualization and interactive ex-
ploration of heterogeneous networks, which so far has not been sufficiently
solved. See Chap. 9 for discussions of heterogeneous networks at multiple
levels.

4.3.4 Interactivity

The scale and complexity of the data implies that discovery of new biological
insights requires large-scale data exploration. Network visualization is thus
more and more tied into visual analytics workflows [8]. In order to make such
tools usable, interactive response times, mental map preserving animations,
and easy to use interfaces are required to achieve acceptance in the user base.
See Chap. 6 for discussion of interaction in the visualization of multivariate
networks.

4.3.5 Standardization

Standardized glyphs for different node and link types are common in other
areas of science, such as electrical engineering. Such uniform systems of
nomenclature that describe the components of networks and are based on
a well-defined set of symbols greatly facilitates communication efficiency and
clarity. Although many visualizations in biology still do not follow uniform
rules, graphical standards such as the Systems Biology Graphical Nota-
tion [12] have been established and should be obeyed to foster better un-
derstanding of network visualizations in biology.

72 4 Multivariate Networks in the Life Sciences

4.4 Summary and Conclusions

In this chapter, we have described the broad range of biological data that
is being routinely collected and analyzed, ranging from the atomic to the
planetary scale. Data is not only available in the form of genetic sequences
and numeric tables, but also in the form of images, volumes, text, and rela-
tional information. This relational information, whether explicit in the data
or implicitly derived, is then the focus of multivariate network visualization.
We then briefly described the typical mappings of such data to networks and
presented a number of case studies showing their use in performing a variety
of bioinformatics tasks. Finally, we concluded with our views on some of the
key challenges facing the field of network visualization in bioinformatics.

In the future, we expect that visualization and interactive exploration will
play an increasingly important role in the study of biological data and pro-
cesses. This will lead to not only increased understanding of how living organ-
isms develop, but also their relationships to other organisms. It will also be a
key factor in expanding our understanding of diseases and lead to improved
methods for their treatment. As mentioned in Sect. 4.3, there are many chal-
lenges that will need to be overcome in order to achieve these goals. We
expect that new biological data types, as well as increased needs to integrate
these types into the analytics process, will provide a wealth of opportunities
for visualization researchers for many years to come.

References

1. Albrecht, M., Kerren, A., Klein, K., Kohlbacher, O., Mutzel, P., Paul, W.,
Schreiber, F., Wybrow, M.: On open problems in biological network visual-
ization. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849,
pp. 256–267. Springer, Heidelberg (2010)

2. Bader, G.D., Betel, D., Hogue, C.W.: BIND: the biomolecular interaction net-
work database. Nucleic Acids Research 31(1), 248–250 (2003)

3. Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s func-
tional organization. Nature Reviews Genetics 5(2), 101–113 (2004)

4. Chen, H., Sharp, B.M.: Content-rich biological network constructed by mining
PubMed abstracts. BMC Bioinformatics 5(1), 147 (2004)

5. Gehlenborg, N., O’Donoghue, S.I., Baliga, N.S., Goesmann, A., Hibbs, M.A.,
Kitano, H., Kohlbacher, O., Neuweger, H., Schneider, R., Tenenbaum, D.,
Gavin, A.C.: Visualization of omics data for systems biology. Nature Meth-
ods 7, S56–S68 (2010)

6. Junker, A., Rohn, H., Schreiber, F.: Visual analysis of transcriptome data in
the context of anatomical structures and biological networks. Frontiers in Plant
Science 3, 252 (2012)

7. Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M.,
Kawashima, S., Katayama, T., Araki, M., Hirakawa, M.: From genomics to
chemical genomics: new developments in KEGG. Nucleic Acids Research 34,
D354–D357 (2006)

References 73

8. Kerren, A., Schreiber, F.: Toward the role of interaction in visual analytics.
In: Rose, O., Uhrmacher, A.M. (eds.) Proceedings of the Winter Simulation
Conference (WSC 2012). pp. 420:1–420:13 (2012)

9. Kerren, A., Schreiber, F.: Network visualization for integrative bioinformat-
ics. In: Approaches in Integrative Bioinformatics: Towards the Virtual Cell,
pp. 173–202. Springer (2014)

10. Kono, N., Arakawa, K., Ogawa, R., Kido, N., Oshita, K., Ikegami, K., Tamaki,
S., Tomita, M.: Pathway projector: Web-based zoomable pathway browser using
KEGG atlas and Google maps API. PLoS One 4(11), e7710 (2009)

11. Koschützki, D.: Network centralities. In: Junker, B.H., Schreiber, F. (eds.)
Analysis of Biological Networks. Wiley Series on Bioinformatics, Computa-
tional Techniques and Engineering, pp. 65–84. Wiley (2008)

12. Le Novère, N., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., Demir,
E., Wegner, K., Aladjem, M., Wimalaratne, S.M., Bergman, F.T., Gauges, R.,
Ghazal, P., Kawaji, H., Li, L., Matsuoka, Y., Villéger, A., Boyd, S.E., Calzone,
L., Courtot, M., Dogrusoz, U., Freeman, T., Funahashi, A., Ghosh, S., Jouraku,
A., Kim, S., Kolpakov, F., Luna, A., Sahle, S., Schmidt, E., Watterson, S., Wu,
G., Goryanin, I., Kell, D.B., Sander, C., Sauro, H., Snoep, J.L., Kohn, K.,
Kitano, H.: The systems biology graphical notation. Nature Biotechnology 27,
735–741 (2009)

13. Matthews, L., Gopinath, G., Gillespie, M., Caudy, M., Croft, D., de Bono, B.,
Garapati, P., Hemish, J., Hermjakob, H., Jassal, B., Kanapin, A., Lewis, S.,
Mahajan, S., May, B., Schmidt, E., Vastrik, I., Wu, G., Birney, E., Stein, L.,
D’Eustachio, P.: Reactome knowledgebase of human biological pathways and
processes. Nucleic Acids Research 37(1), D619–D622 (2009)

14. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.:
Network motifs: Simple building blocks of complex networks. Science 298(5594),
824–827 (2002)

15. Rohn, H., Hartmann, A., Junker, A., Junker, B.H., Schreiber, F.: FluxMap:
a Vanted add-on for the visual exploration of flux distributions in biological
networks. BMC Systems Biology 6, 33 (2012)

16. Rohn, H., Junker, A., Hartmann, A., Grafahrend-Belau, E., Treutler, H.,
Klapperstck, M., Czauderna, T., Klukas, C., Schreiber, F.: VANTED v2: a
framework for systems biology applications. BMC Systems Biology 6(139)
(2012)

17. Rohn, H., Klukas, C., Schreiber, F.: Creating views on integrated multidomain
data. Bioinformatics 27(13), 1839–1845 (2011)

18. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg,
D.: The database of interacting proteins: 2004 update. Nucleic Acids Re-
search 32(1), 449–451 (2004)

19. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,
Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S.,
Mesirov, J.P.: Gene set enrichment analysis: A knowledge-based approach
for interpreting genome-wide expression profiles. Proceedings of the National
Academy of Sciences of the United States of America 102(43), 15545–15550
(2005)

20. Truco, M.J., Ashrafi, H., Kozik, A., van Leeuwen, H., Bowers, J., Wo, S.R.C.,
Stoffel, K., Xu, H., Hill, T., Van Deynze, A., et al.: An ultra-high-density,
transcript-based, genetic map of lettuce. G3: Genes— Genomes— Genet-
ics 3(4), 617–631 (2013)

Part II

Topics in Multivariate Network Research

5

Tasks for Multivariate Network Analysis

A. Johannes Pretorius, Helen C. Purchase, and John T. Stasko

In Chap. 1, a multivariate network was defined as having two important
characteristics. First, nodes are connected to each other via links; there is
topological structure. Second, being multivariate, nodes and links have at-
tributes associated with them, with these attributes having a value.

In this chapter, we describe tasks associated with multivariate networks.
We consider a task to be an activity that a user wishes to accomplish by
interacting with a visual representation of a multivariate network. This im-
plies that there is user intent [13], and that the network has been presented
visually. At the highest level, this intent is usually described as the goal of
obtaining insight about the data being studied [6].

Pragmatically, the notion of gaining insight from visualizations can be
described as one or more very high-level tasks. As Amar and Stasko put it,
tasks that “real people want to accomplish” [3]. These include:

• Make complex decisions, especially under uncertainty;
• Learn a domain;
• Identify the nature of trends;
• Predict the future;
• Identify the domain parameters;
• Discover correlative models;
• Formulate and verify hypotheses;
• Identify the effect of data uncertainties; and
• Identify sources of causation.

In the spirit of Amar and Stasko’s work, we note that this is a sample of high-
level tasks and not a complete list. These tasks are not specific to multivariate
networks and are biased towards exploration and confirmation. We recognize
that someusersmayhaveadditional objectives, suchas thepresentationofdata,
which fall outside the scope of this chapter. However, in a context where achiev-
ing insight is the main driver and where multivariate networks are of interest,
performing a task such as those listed above involves one ormore of the following
activities [8]: gain an understanding of the structural properties of the network;

A. Kerren et al. (Eds.): Multivariate Network Visualization, LNCS 8380, pp. 77–95, 2014.

c© Springer International Publishing Switzerland 2014

78 5 Tasks for Multivariate Network Analysis

find patterns, clusters, and correlations between several attributes of the nodes
and links; and relate understanding about attributes and structure.

In this chapter, we describe in more detail how this is accomplished by
presenting a framework of tasks for multivariate networks. Our objective is
to present, to a general audience, a frame-of-reference that encapsulates the
types of tasks typically encountered when analyzing multivariate network
data. As a result, the work presented here is deliberately not overly theo-
retical or abstract. We first recap the entities and properties of multivariate
networks. We then describe a general taxonomy for visualization tasks. Next,
we introduce a framework for multivariate network tasks and show how these
are composed of lower-level tasks of the general taxonomy. We follow with a
short discussion before concluding.

5.1 Entities and Properties

In the abstract, a task involves performing an analytic activity on a com-
bination of an entity (the “thing” that is being studied), and a property of
that entity [1]. We note that different terminology is sometimes used; for
example, some authors refer to entities as data cases, and to properties as
attributes [2]. Notwithstanding, a task can be represented as a process [1]:

Select entity → Select property → Perform analytic activity.

There is typically a high degree of iteration; based on the outcome of the
analytic activity, the user may wish to select another entity and/or property
to analyze. When considering multivariate networks, the entities that users
study are [5]:

• Nodes;
• Links;
• Paths, or sequences of nodes and links; and
• Networks, since usersmaywant to include several networks in their analysis.

Multivariate networks also have two types of associated properties [1]:

• Structural properties, sometimes referred to as topology; and
• Attributes, associated with nodes and links.

To make the above more concrete, we briefly revisit examples of multivariate
networks from the three application areas discussed in Chaps. 2, 3, and 4.
In software engineering, analysts study entities including software packages,
classes, and methods. Tasks include studying the links, such as method calls,
between entities. Properties of nodes and links model features that are fun-
damental to understanding software including package, class, and method
names, and method call durations. Multivariate networks in biomedicine in-
clude metabolic networks (nodes represent atoms, links represent bonds), in-
teraction networks (nodes represent metabolites, links represent interactions),
and regulatory networks (nodes represent proteins, links represent actions).

5.2 Tasks 79

Again, properties are important to facilitate insight, for example, whether
actions in regulatory networks activate or repress protein production.

Social networks are perhaps more familiar to many readers (see Chap. 3).
In such a network, nodes represent people and links represent the relation-
ships between people. By analysing paths between nodes, it is possible to
derive knowledge. For example, even if two people have no direct relation-
ship, if they both have a relationship with a third person, there exists an
indirect relationship between them that may (or may not) be of interest.
For social network analysis, there are scenarios where it is useful to compare
networks themselves. For example, behavioral biologists may be interested in
comparing social networks of humans with those of other primates to identify
similarities and differences.

A lot can be learned from studying the properties of social networks. For
example, it is possible to derive which of two people is likely to have the
greater influence on others by considering, respectively, the number of rela-
tionships they have with other people. Properties provide important infor-
mation, such as the type of relationships (friendship versus professional, for
example) and demographics (first name, last name, occupation, and so forth).

Combinations of network entities and properties give rise to more complex
concepts. For example, basic networks with structural properties only are less
complex than networks with single node and link attributes (often referred
to as labels) which, in turn, are less complex than multivariate networks
where nodes and links can have multiple attributes. Increased complexity of
networks results in increasingly complex analyses [9], and this impacts the
complexity of tasks that are performed. In cases where users want to compare
two or more networks, there is an additional level of complexity.

It is also possible to calculate derived entities and properties, that is, en-
tities and properties that do not explicitly exist in the underlying data. Two
common derived entities are clusters and groups. Clusters are regions of net-
works that are structurally highly connected (these are sometimes referred
to as cliques, particularly in social network analysis). Groups are subsets of
nodes and links that share similar attribute properties. Examples of derived
properties include statistical measures computed for a particular attribute
(mean, median, and so forth).

Derived entities and properties are often involved in multivariate network
tasks. As suggested, in social network analysis, clusters indicate cliques, or
collections of people who have a high degree of interaction. Grouping could
be used, for example, to identify and compare sets of people with similar
demographics.

5.2 Tasks

As highlighted above, tasks involve entities (nodes, links, paths, networks) and
properties of those entities (structural and attributes). The third component

80 5 Tasks for Multivariate Network Analysis

that makes up a task is the analytic activity, or the analysis. Below, we de-
construct tasks by focusing on different levels of analytic activity. Throughout
this, we also refer to the entities and properties that are involved in tasks in a
multivariate network context.

We first outline a general taxonomy for interactive visualization and then
describe how some of these tasks are combined to form more complex tasks
specific to multivariate networks.

5.2.1 General Task Taxonomy

Many authors have proposed general task taxonomies for information vi-
sualization. In seminal work, Wehrend and Lewis propose a classification of
visualization methods by considering the entities being studied and tasks per-
formed on the entities [12]. Specifically, they list 11 tasks that are frequently
encountered:

• Identify;
• Locate;
• Distinguish;
• Categorize;
• Cluster;
• (Analyze) distribution;
• Rank;
• Compare;
• (Analyze) within and between relations;
• Associate; and
• Correlate.

By synthesizing questions that users typically have about their data, Amar
et al. propose a different list of information visualization tasks [2]:

• Retrieve value;
• Filter;
• Compute derived value;
• Find extremum;
• Sort;
• Determine range;
• Characterize distribution;
• Find anomalies;
• Cluster; and
• Correlate.

In other related work on general information visualization taxonomies, Schulz
et al. recently proposed a classification of the “design space” of visualization
tasks based on five dimensions (goal; means; characteristics, or level of analy-
sis; target, the parts of the data to be considered; and cardinality, the number
of data instances to be considered) [7]. This allows a formal faceted speci-
fication of tasks by five-dimensional tuples. Brehmer and Munzner propose

5.2 Tasks 81

descriptions of visualization tasks by considering three aspects [4]: Why is
the data being analyzed?; How is it being analyzed?; and What are the task
inputs and outputs? In particular, they stress the difference between how
(the means) and why (the goal) a task is performed. There are clear parallels
between these approaches: why relates to goal; how relates to means; and
what encapsulates characteristics, target, and cardinality.

These approaches are very general and abstract (Shulz et al. write that
theirs is “applicable by a limited number of visualization experts only”) and
do not easily support the definition of a detailed taxonomy; we return to
them in the conclusion. More pragmatically, it is worth noting the similarities
between the sets of tasks proposed by Wehrend and Lewis [12] and Amar
and Stasko [3], for example, both make provision for studying distributions.
However, a like-for-like comparison is not immediately obvious. Further, it
could also be argued that both Wehrend and Lewis’s and Amar and Stasko’s
list of tasks operate at varying levels, for example, a task such as “filter” is
more of an operational task while “correlate” is more of an analytical one.

The work by Valiati et al. addresses such difficulties by distinguishing three
broad classes of tasks [11]: operational (relating to the means by which the
network is presented and explored), analytical (the means by which informa-
tion is extracted from the network), and cognitive (facilitating understanding
of the whole network). Each category comprises one or more tasks. Accord-
ingly, the taxonomy put forward in this chapter is based on the categories
and constituent tasks defined by Valiati et al., classified as follows:

• Operational: visualize, configure;
• Analytical: identify, determine, relocate, compare; and
• Cognitive: infer.

While we acknowledge the fundamental facilitating role that operational tasks
play in making the relevant information visible, most of our emphasis will be
on the analytical category. Cognitive tasks are also considered, keeping in
mind that the purpose of the whole exercise is, of course, to support the
cognitive task of obtaining insight (as described by the high-level tasks of
Amar and Stasko [3] and listed in the introduction). To avoid additional
complexity, we reuse the terminology proposed by Valiati et al., which in
turn, is based on the work by Wehrend and Lewis, although some terms
could arguably be substituted with other descriptive verbs.

Operational Tasks

Operational tasks are concerned with the means of presenting the network to
the user, and the facilities provided for the user to explore the data. These
tasks are therefore more associated with the nature of the information visu-
alization tool than with the user’s tasks per se.

• Visualize. Invoke a particular graphical representation or a combination
of graphical representations to visualize the entities and properties of a

82 5 Tasks for Multivariate Network Analysis

multivariate network. The visualize task does not necessarily imply that
all entities and all properties in the data are shown. In fact, it is almost al-
ways performed in combination with the configure task (described below)
to selectively show or hide certain entities and/or properties.

• Configure. Interactively set up or change the visual representation in sup-
port of the analytical tasks. Typical visual configuration tasks include
zoom, filter, and showing details on demand [8]. Much of the power of
visualization, in general, is attributed to the combination of interactive
configuration and corresponding real-time updates of the graphical rep-
resentation [10].

Analytical Tasks

Analytical tasks are the primary building blocks for achieving a user’s goal;
they are the means by which specific information is obtained from the net-
work. Analytical tasks are necessarily low-level, and applied to either indi-
vidual entities or a small subset.

• Identify.Find entities and/or properties in the data.At an elementary level,
the identify task involves discovery of entities based on their spatial location,
or based on the values of associated properties as graphically encoded in one
ormore visual representations. In particular, the identify task often involves
finding entities in networks that are adjacent with respect to the structure
of the network. The identify task can also be more involved, however, and
includes the visual identification of similarities, differences, patterns, out-
liers, variations, relationships (proximity, dependency, independency), and
uncertainty.

• Determine. Calculate derived properties not originally present in the data.
This often involves deriving statistical measures of the properties associ-
ated with nodes and links. Examples include: sum, difference, ratio, per-
centile, mean,median, variance, standard deviation, correlation coefficient,
and probability. In addition, the determine task includes algorithmic calcu-
lation of derived entities, for example, clustering algorithms. As the result
of invoking the determine task, the visualization is typically changed and,
consequently, there is some overlapwith the configure task, described above.

• Relocate.Revisit entities and/or properties already identifiedordetermined.
This implies that the user is already aware of the existence of these entities
and/or properties, but has to exert effort to find them again. In some cases
thismaybe trivial, but in others this may require asmuch effort as the initial
identification task.

• Compare.Examine data entities and/or properties that have been identified
and/or determined in contrast to each other. This often implicitly involves
the relocate task. Comparisons are usually made to find similarities or dif-
ferences between the properties of nodes and links. Because these properties
are visually encoded, the compare task involves contrasting spatial location
and/or graphical characteristics of the visual representation of the data.

5.2 Tasks 83

Cognitive Tasks

• Infer.Derive insight or knowledge from the data as an outcome of perform-
ing a sequence of operational and analytical tasks. The range of outcomes
of an infer task is broad: it may involve forming a hypothesis, or testing a
hypothesis; it may be the result of explorative analysis or serendipitous dis-
covery; itmay lead to confirmation of an expectation, to insight that contra-
dicts expectations, or to completely new knowledge. Such knowledge may
take the form of cause-and-effect relationships, trends, or probabilities.

Cognitive tasks are high-level, relate specifically to “obtaining insight” [6], and
are often iteratively developed by building on prior operational, analytical,
and/or cognitive tasks. The Amar and Stasko tasks, which support users in
achieving high-level objectives (as outlined in the introduction), are encom-
passed by this category [3]. Unlike analytical tasks, cognitive tasks are often
associatedwith uncertainty and estimation. It is possible to determine whether
the result of performing an analytical task has resulted in the “correct” answer.
However, cognitive tasks are more complex and tend to require significant ex-
ternal resources (for example, memory storage, algorithms, or computational
processing time) and the notion of “accuracy” does not exist for these tasks un-
less such support is provided. For this reason, the unsupported execution of a
cognitive task may result in an uncertain or estimated answer.

5.2.2 Tasks for Multivariate Network Analysis

The task taxonomy introduced above is very general and can be applied to
any data type. To meet the objective of this chapter (to describe tasks for
multivariate networks), we now narrow the scope by introducing the network
task taxonomy proposed by Lee et al. [5]. For network analysis, they pro-
pose four categories of tasks: topology-based, attribute-based, browsing, and
overview. Lee et al.’s framework was devised by considering existing task
taxonomies, by considering examples of tasks encountered in applications of
network visualization to domain problems, and by reviewing tasks involved
in user studies of network visualization methods.

Lee et al.’s framework is comprehensive in that it describes tasks commonly
encountered when analyzing networks. To achieve this, they propose a number
of tasks for eachof the categories outlinedabove.However, these tasks are rather
node-centric in the sense that nodes are generally assumed to be the entities of
interest. Consequently, although we mirror quite closely the tasks proposed by
Lee et al., we have generalized these to cater also for cases where other enti-
ties, such as links, or derived entities, such as clusters, are of interest to users.
We also use slightly different terminology to that originally proposed. To avoid
confusion with the more restrictive meaning of “topology” in a mathematical
context, we refer to the first category of tasks as “structure-based”. Also, we
use the term “estimation tasks” as opposed to “overview tasks” as we find that
the impliedmeaningmore closely resembles the act of imprecisely or informally
gauging general network characteristics.

84 5 Tasks for Multivariate Network Analysis

The premise of Lee at al.’s work is that all tasks in the categories introduced
above can be considered as conjunctions of general lower-level tasks. For this,
they originally used the elementary tasks proposed by Amar et al. [2]. However,
we employ the tasks described in the previous section, as proposed by Valiati
et al. [11], because they address some of the shortcomings of other general task
taxonomies (as highlighted in the previous section). We make one exception to
the approach of composing network tasks frommore general tasks, however. For
estimation tasks, if a precise decomposition was possible, a “correct” answer
would be guaranteed, which we will argue is not the case.

Structure-Based Tasks

Adjacency tasks combine analytical tasks (identify, determine, locate, and
compare) to infer knowledge about the adjacency of entities. Two entities
are adjacent if there exists a path of length at most one that connects them.
In most situations, once an adjacent entity has been found, the user will
proceed to study a property of that entity.

Task Adjacency (entities)

Description Find the set of entities adjacent to an entity.

Examples Find the first names of the persons directly adjacent to a person
with the first name “Adam” and last name “Smith”.
Find the types of relationships directly adjacent to a person
with the first name “Adam” and last name “Smith”.

Decomposition Identify/relocate entity with property +
identify/relocate adjacent entity (repeated) +
identify/relocate property of entity (optional).

Task Adjacency (derived property)

Description Find a derived property of the entities adjacent to an entity.

Examples Find the number of persons adjacent to a person with the first
name “Adam” and last name “Smith”.
Find the number of relationships of type “professional” to a per-
son with the first name “Adam” and last name “Smith”.

Decomposition Identify/relocate entity with property +
identify/relocate adjacent entity (repeated) +
determine derived property of entity.

Task Adjacency (extreme properties)

Description Find the entity with the maximum/minimum number of adjacent
entities.

Example Find the first name and last name of the person with the most
relationships of type “friendship”.

Decomposition Identify/relocate entity with properties +
identify/relocate adjacent entity +
determine derived property of entity +
compare property of entity.

5.2 Tasks 85

Accessibility tasks combine analytical tasks (identify, determine, locate, and
compare) to infer knowledge about the accessibility of entities. An entity
is accessible from another entity if there exists a path of any length that
connects them. In most situations, once an accessible entity has been found,
the user will proceed to study a property of that entity.

Task Accessibility (entities)

Description Find the set of entities accessible from an entity.

Example Find the first names and last names of the friends of friends of a
person with the first name “Adam” and last name “Smith”.
Find the types of relationships of the friends of friends of a per-
son with the first name “Adam” and last name “Smith”.

Decomposition Identify/relocate entity with property +
identify/relocate adjacent entity (repeated) +
identify/relocate property of entity (optional).

Task Accessibility (derived properties)

Description Find a derived property of entities accessible from an entity.

Example Find the number of persons with direct or indirect relationships
of type “managed by” to a person with the first name “Adam”
and last name “Smith”.

Decomposition Identify/relocate entity with property +
identify/relocate adjacent entity (repeated) +
determine derived property of entity.

Task Accessibility (entities, constrained)

Description Find the set of entities accessible from an entity where the distance
is less than n.

Example Find the first names and last names of persons with no more
than three degrees of separation from a person with the first name
“Adam” and last name “Smith”.

Decomposition Identify/relocate entity with property +
identify/relocate adjacent entity (repeated at most n times) +
identify/relocate property of entity (optional).

Task Accessibility (properties, constrained)

Description Find a derived property of entities accessible from an entity where
the distance is less than n.

Example Find the number of persons with no more than three degrees of
separation from a person with the first name “Adam” and last
name “Smith”.

Decomposition Identify/relocate entity with property +
identify/relocate adjacent entity (repeated at most n times) +
determine derived property of entity.

86 5 Tasks for Multivariate Network Analysis

Common connection tasks combine analytical tasks (identify, determine, and
relocate) to identify entities that share connections with two or more other
entities. In most situations, once connected entities have been found, the user
will proceed to study a property of those entities.

Task Common connection

Description Given a set of entities, find a set of entities that are connected to
all of them.

Examples Find the first names of persons that have direct or indirect rela-
tionships of type “managed by” to a person with the first name
“Adam” and a person with the first name “Barbara”.
Find the types of direct or indirect relationships between a per-
son with the first name “Adam” and a person with the first name
“Barbara”.

Decomposition Identify/relocate entity with property (repeated) +
identify/relocate adjacent entity (repeated) +
determine intersection +
identify/relocate property of entity (optional).

Connectivity tasks combine analytical tasks (identify, determine, and relocate)
to infer knowledge about the connectivity of sub-networks. If N’ is a sub-
network of a network N, then every node and every link in N’ is also in N.

Task Connectivity (shortest path)

Description Determine if two nodes are connected and find the shortest path
between them.

Example Are the persons with first name “Adam” and first name “Bar-
bara” connected?
Find the smallest degree of separation between a person with first
name “Adam” and a person with first name “Barbara”.

Decomposition Identify/relocate entity with property (repeated) +
identify/relocate adjacent entity (repeated) +
determine derived property.

Task Connectivity (clusters)

Description Find clusters.

Example Identify and find the number of cliques in a social network.

Decomposition Identify/relocate derived entity (repeated) +
determine derived property.

Task Connectivity (connected components)

Description Find connected components.

Example Identify the number of disconnected sub-networks in a social
network.

Decomposition Identify/relocate derived entity (repeated) +
determine derived property.

5.2 Tasks 87

Task Connectivity (bridges)

Description Find bridges/articulation points.

Example Find the first name and last name of the person whose removal
will result in a disconnected sub-network.

Decomposition Identify/relocate derived entity (repeated) +
identify/relocate entity +
identify/relocate property of entity.

Attribute-Based Tasks

Nodes tasks combine analytical tasks (identify, determine, and relocate) to
infer knowledge about nodes and their attributes.

Task Nodes (properties)

Description Find the nodes with specific attribute values.

Example Find all persons with an occupation of “manager” and age greater
than “30”.

Decomposition Identify/relocate entity with property (repeated).

Task Nodes (derived property)

Description Find a derived property of a set of nodes with specific attribute
values.

Example Find the number of persons with an occupation of “manager” and
an age greater than “30”.

Decomposition Identify/relocate entity with property (repeated) +
determine derived property.

Links tasks combine analytical tasks (identify, determine, and relocate) to
infer knowledge about links and their attributes.

Task Links (connected nodes)

Description Given a node, find the nodes connected by links with specific at-
tribute values.

Example Find all persons with relationships of type “friend” to a person
with the first name “Adam” and last name “Smith”.
Suppose that links are directional and that they encode managerial
relationships; find all persons who are managed by a person with
first name “Adam” and last name “Smith”.

Decomposition Identify/relocate entity with property +
identify/relocate adjacent entity with property (repeated).

88 5 Tasks for Multivariate Network Analysis

Task Links (extreme values)

Description Find the node that is connected by a link with the mini-
mum/maximum value for a link attribute of interest.

Example Suppose links encode strength of friendship; find the person with
the strongest friendship relationship with a person with the first
name “Adam” and last name “Smith”.

Decomposition Identify/relocate entity with property +
identify/relocate adjacent entity (repeated) +
determine derived property.

Browsing Tasks

Follow path tasks combine analytical tasks (identify and relocate) to infer
knowledge about paths in multivariate networks.

Task Follow path

Description Follow a given path.

Example Find the person with first name “Barbara” with a relationship
of type “friendship” to a person with the first name of “Adam”;
now find the person with the first name “Charles” with a rela-
tionship of type “friendship” to her.

Decomposition Identify/relocate entity with property +
identify/relocate adjacent entity with property (repeated).

Revisit tasks primarily employ the analytical task relocate to revisit
previously visited entities. Typically this is followed with any of the other
analytical tasks to infer more knowledge. Although essentially a low-level
task, we include revisit here because it is part of Lee et al.’s framework
and because we want to emphasize its importance in facilitating explorative
analysis [5].

Task Revisit (entity)

Description Revisit an entity and infer further knowledge.

Example After completing the previous task (follow path), go back and find
the person with the first name of “Barbara” and find her other
friends.

Decomposition Relocate entity +
identify/determine/relocate/compare.

5.2 Tasks 89

Estimation Tasks

Lee et al. propose a single “overview” task to allow estimation of general
network characteristics [5]. This includes estimating the size of the network,
the distribution of property values over entities, or getting a rough idea of
the clusters in the network. They do not further sub-divide this category.
While they state that this is a “compound exploratory task to get estimated
values quickly” it is not clear how this task could be precisely decomposed
into several component low-level tasks, as doing so would suggest that an ex-
act value for the desired network characteristic could be determined (rather
than an estimate, which may, of course, be inaccurate). It also suggests the
use of external support in the form of memory, algorithms or computational
processing time, since tasks that derive accurate characteristics of entire net-
works through the use of component low-level tasks can only do so if such
external support is used.

Our taxonomy therefore includes “estimation” tasks. We use the term “es-
timation” (rather than “overview”) to emphasize that these tasks are not
easily definable in terms of lower-level tasks (as per the Lee et al. defini-
tion [5]), but are high-level, with the objective of gaining a rough estimation
rather than precise answers. In this sense, there is also a clear link with
the “cognitive” (“infer”) task category of Valiati et al. [11], although Valiati
et al., like Lee et al., suggest that these tasks can be systematically decom-
posed into sequences of sub-tasks.

The definition of our estimation tasks is based on the premise that external
support is not available during task execution, and that precise answers are
therefore not possible. The alternative would be to define overview/inference
tasks algorithmically in terms of the use of low-level tasks, memory stor-
age and computations so as to ensure accuracy; this systematic approach
would add little to what is already known about task decomposition. Since
neither Lee et al. nor Valiati et al. have provided sub-categories for their
overview/inference tasks, we introduce categories for estimation tasks below.
The sample of general information visualization tasks defined by Amar and
Stasko describe the types of high-level objectives a user may have [3] (also
see the introduction), and these are used in distinguishing two types of esti-
mation tasks: understanding and comparison.

Understanding task have the aim of gaining more complete understanding of
the information; they relate to the Amar and Stasko tasks of decision making,
learning and identifying domain parameters [3].

90 5 Tasks for Multivariate Network Analysis

Task Clusters

Description Characterize sets of nodes as (potentially) belonging to highly-
connected groups (clusters).

Example In a social network, identify all those people who are likely to attend
parties held by Adam, Barbara, and Charles.

This task requires identifying a cluster of nodes for each of Adam,
Barbara, and Charles. These clusters may overlap, and some nodes
in the network may not belong to any of these three clusters.

Explanation This task identifies groups of nodes that are structurally highly
connected; no use is made of attribute information. The estimation
is based on scanning the network structure, identifying sets of nodes
that are closely linked.

The definitions of the clusters may be inaccurate unless the entire
network is systematically and algorithmically analyzed to identify
which sets of nodes form tight clusters, while keeping a record of all
the connections.

An estimated cluster may therefore include nodes that are only re-
lated to some (but not many) members of the cluster; or may omit
some nodes that ought to be members.

Task Common attributes (nodes)

Description Characterize sets of nodes as belonging to different groups, based on
node attributes.

Example In a social network, identify all the girls who live in Glasgow, who
have blue eyes, who are over 17, and who play tennis.

This task is concerned with the values of five different attributes; the
result is the set of nodes for which these values match the specifica-
tion.

Explanation This task identifies groups of nodes that share similar characteristics,
based on several given attribute/value pairs; no use is made of
structural information. The estimation is based on scanning the
nodes and their attributes, identifying groups of nodes with the same
attribute values.

The definitions of the groups may be inaccurate unless all the nodes
are systematically and algorithmically inspected to determine the
values of their attributes, keeping a record of the nodes and their
values.

An estimated group may therefore include nodes that have only some
of the correct attribute/value pairs, or may omit nodes with all the
specified characteristics.

5.2 Tasks 91

Task Common attributes (links)

Description Characterize sets of nodes as belonging to different groups, based on
link attributes.

Example In a network representing people and the email communications sent
between them over the course of a week, identify all the people who
sent humorous emails on Monday morning.

This task is concerned with the values of the attributes associated
with the links: the email content and its date.

Explanation This task identifies groups of nodes that share similar relationships
to any other nodes, based on given attribute/value pairs of their
associated links. The estimation is based on scanning the nodes
and their relationships (and the attributes associated with their
relationships), identifying those entities associated with the correct
type of relationship.

The definitions of the groups may be inaccurate unless all the
links are systematically and algorithmically inspected to determine
the values of their attributes, keeping a record of the associated nodes.

An estimated group may therefore include nodes that are not associ-
ated with the correct type of relationships, or may omit nodes that
do.

Task Domain (nodes)

Description Determine the attributes and values associated with nodes.

Example Identify all the attributes used for nodes, and all their possible values.

Explanation This may be inaccurate unless all nodes are visited systematically or
algorithmically to extract and record their attributes and values.

Task Domain (links)

Description Determine the attributes and values associated with links.

Example Identify all the attributes used for links, and all their possible values.

Explanation This may be inaccurate unless all links are visited systematically or
algorithmically to extract and record their attributes and values.

Comparison tasks are concerned with understanding changes in a network,
and relate to the Amar and Stasko tasks of identifying trends and causation,
prediction, hypothesis verification, discovering correlative models, and seeing
the effect of uncertainty [3]. These tasks assume the existence of more than
one instance of a network, each representing a different point in time. For
completeness, we include comparison tasks here, but a more detailed discus-
sion of temporal networks is deferred to Chap. 8.

92 5 Tasks for Multivariate Network Analysis

Task Trends

Description Compare information at different stages in a changing network.

Example In a social network, characterize how the group of friends centered
around Adam changes over the course of a year.

Explanation A changing network is described as a series of time-slices, where each
time-slice is an instance of the network.

This result of this task is a description of how the network has
changed between two (or more) of its time-slices. Typically, it would
be overview information (as described in the five “understanding”
tasks above) that is compared, rather than specific node/link
information.

This comparison will result in uncertain information unless external
algorithms are used to explicitly compare the details of the informa-
tion in the series of networks.

Task Causation

Description Formulate an explanation why two time-slices in a changing network
are different.

Example Explain why some students were friends with John (the smartest
student in the class) the week before an assignment was due, but not
the week after.

Explanation This task is different from the others listed above, as it requires ex-
ternal knowledge, that is, information that is not represented directly
in the network itself.

5.3 Discussion

The approach that we have taken in this chapter is to review the relevant
literature to come up with a pragmatic synthesis of other frameworks, with
particular reference to multivariate networks. In doing so, we have considered
ideas from general information visualization methods [12], general informa-
tion visualization tasks [3], specific information visualization questions [2],
multi-dimensional visualizations [11], and visualization tasks for univariate
graphs [5].

It is worth reflecting on how the framework presented here corresponds
to other recent work on information visualization tasks. As noted before,
Schulz et al. describe the visualization task design space along five dimensions
(goal, means, characteristics, target, and cardinality) [7], while Brehmer and
Munzner consider three questions (why?, how?, and what?) [4]. Although
these frameworks are much more general than multivariate networks and
somewhat abstract for a general audience, they provide a very useful approach
to reflect on some of the key points discussed in this chapter.

5.3 Discussion 93

Goal, or why?, corresponds with the notion of user intent. Users study
multivariate networks to gain insight about the phenomena, such as social
networks, that they describe. Brehmer and Munzner emphasize that, depend-
ing on the context, there will be different levels of specificity of tasks. For
example, they distinguish between high-level (consume), intermediary-level
(search), and low-level (query) objectives. Schulz et al. point out that visu-
alization supports exploration, confirmation of hypotheses, and presentation
of findings. In the light of supporting interactive analysis, our emphasis has
been on the former two (exploration and confirmation). However, we note
that other objectives such as presentation, communication, or even interac-
tion with a visual representation of a data set as a form of entertainment are
all valid.

Means, or how?, describes how a task is carried out and relates to the op-
erational and analytical tasks described in this chapter. Most of our attention
has gone into describing these tasks for a multivariate network context.

Characteristics, target, and cardinality, or what?, are concerned with how
the data relates to the task. The notion of characteristics distinguishes be-
tween low-level and high-level aspects of the data. This corresponds closely
to the difference between tasks where knowledge is directly derived from the
data (for example, structure- and attribute-based tasks) and ones that require
more nuanced deduction and uncertainty, as highlighted by our estimation
tasks. Target highlights the parts of the data on which analysis focuses. This
chapter picks up on this by emphasizing the entities of multivariate networks
(nodes, links, paths, and networks) as well as associated properties (struc-
tural properties and attributes) and how tasks relate to these. In the context
of this chapter, cardinality emphasizes that tasks may include the analysis
of single or multiple networks. Although Brehmer and Munzner leave the
question of what rather open-ended, they do emphasize the importance of
defining the inputs and outputs associated with a task, especially when sev-
eral tasks are combined sequentially. We do not treat this issue explicitly, but
our examples imply that for our purposes the inputs are multivariate graphs
and the outputs are subsets of entities (nodes, links, paths, and networks)
and/or properties (structural and attributes).

Finally, it should be noted that all considered tasks necessarily involve a
visual representation of one or more multivariate networks, and interaction
with this visual representation. This chapter has not tried to describe interac-
tion methods, such as filtering and zooming, which have been bundled under
the configure task. We note, however, that the distinction between task and
interaction method is not always clear-cut and many authors have chosen
to combine examples of both (for example, [8]). Chapter 6 provides a more
in-depth analysis of interaction methods for multivariate graphs.

94 5 Tasks for Multivariate Network Analysis

5.4 Conclusion

In this chapter we have described tasks for multivariate networks. We have
summarized the entities and properties of multivariate networks and pre-
sented a general taxonomy for visualization tasks. We then described a task
framework specifically for multivariate networks and showed how the pro-
posed tasks can be composed of lower-level tasks of the general taxonomy.
We also discussed some of the implications of this framework in the light of
related work on information visualization tasks.

Many of these tasks (in particular the estimation tasks) have been defined
without consideration of any context or users’ prior knowledge. In future
work, a more semantic and situational analysis of tasks relating to multivari-
ate networks might take into account how such knowledge might affect the
way in which tasks are executed and their results interpreted. Examples of
such contextual knowledge could include related node attributes (redheads
tend to have blue eyes), assumed edge attributes (people tend to like their
children), or broader population attributes (most computing science gradu-
ates are male).

Almost invariably, research on visualization tasks is motivated in two ways.
First, an understanding of a domain problem should be translated into user
tasks to support. The user tasks, in turn, should have a direct bearing on the
design of a visualization system to address the original domain problem. Sec-
ond, an understanding of user tasks enable visualization designers to evaluate
the suitability of their designs and systems in addressing a domain problem.
Our aim in this chapter has been to provide an introduction and overview
of tasks for multivariate network analysis to a general audience and, hence,
we have not evaluated the suitability of our framework to support these ob-
jectives. We suspect that it may be useful to this end, but further work is
required to make this claim.

Acknowledgements

The authors wish to thank Peter Eades (University of Sydney, Australia), He-
len Gibson (Northumbria University, United Kingdom), Daniel Keim (Univer-
sity of Konstanz, Germany), and Robert Kosara (Tableau Software, United
States) for fruitful discussions and constrictive input at the Dagstuhl Semi-
nar Information Visualization – Towards Multivariate Network Visualization
held at Schloss Dagstuhl, Germany, from 12 May–17 May, 2013. A.J. Pre-
torius was supported by a Leverhulme Early Career Fellowship under award
number ECF2012-071.

References 95

References

1. Ahn, J., Plaisant, C., Shneiderman, B.: A task taxonomy of network evolution
analysis. Tech. Rep. HCIL-2012-13, Human-Computer Interaction Lab, Univer-
sity of Maryland (2012)

2. Amar, R.A., Eagan, J., Stasko, J.T.: Low level components of analytic activ-
ity in information visualization. In: Proceedings of the IEEE Conference on
Information Visualization, pp. 111–117 (2005)

3. Amar, R.A., Stasko, J.T.: Knowledge precepts for design and evaluation of
information visualizations. IEEE Transactions on Visualization and Computer
Graphics 11(4), 432–442 (2005)

4. Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization
tasks. IEEE Transactions on Visualization and Computer Graphics 19(12),
2376–2385 (2013)

5. Lee, B., Plaisant, C., Sims Parr, C., Fekete, J.D., Henry, N.: Task taxonomy
for graph visualization. In: Proceedings of the AVI Workshop on Beyond Time
and Errors: Novel Evaluation Methods for Information Visualization, pp. 1–5
(2006)

6. North, C.: Toward measuring visualization insight. IEEE Computer Graphics
and Applications 26(4), 6–9 (2006)

7. Schulz, H.J., Nocke, T., Heitzler, M., Schumann, H.: A design space of visualiza-
tion tasks. IEEE Transactions on Visualization and Computer Graphics 19(12),
2366–2375 (2013)

8. Shneiderman, B.: The eyes have it: a task by data type taxonomy for infor-
mation visualizations. In: Proceedings of IEEE Visual Languages, pp. 336–343
(1996)

9. Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE
Transactions on Visualization and Computer Graphics 12(5), 733–740 (2006)

10. Spence, R.: Information Visualization: Design for Interaction, 2nd edn. Prentice
Hall (2007)

11. Valiati, E.R.A., Pimenta, M.S., Freitas, C.M.D.S.: A taxonomy of tasks for
guiding the evaluation of multidimensional visualizations. In: Proceedings of the
2006 AVI Workshop on Beyond Time and Errors: Novel Evaluation Methods
for Information Visualization, pp. 1–6 (2006)

12. Wehrend, S., Lewis, C.: A problem-oriented classification of visualization tech-
niques. In: Proceedings of the IEEE Conference on Visualization, pp. 139–143
(1990)

13. Yi, J.S., Kang, Y., Stasko, J.T., Jacko, J.A.: Toward a deeper understanding
of the role of interaction in information visualization. IEEE Transactions on
Visualization and Computer Graphics 13(6), 1224–1231 (2007)

6

Interaction in the Visualization

of Multivariate Networks

Michael Wybrow, Niklas Elmqvist, Jean-Daniel Fekete, Tatiana von Landesberger,

Jarke J. van Wijk, and Björn Zimmer

The overall aim of visualization is to obtain insight into large amounts of data.
Detection of patterns as well as outliers are typical examples. For networks,
such patterns can be number and position of cliques; for multivariate data this
can be the correlation between attributes. The major challenge of multivariate
network visualization is to understand the interplay between properties of the
network and its associated data, for instance to see if the formation of cliques
can be understood from attributes of nodes.

Producing useful and informative visualizations for multivariate networks
is a complex and challenging task. Complexity and scalability (see Chap. 10)
are significant issues, both with respect to the graph size as well as to the
number and variety of variables. It is very difficult to statically display large,
complicated data sets in general, including multivariate data and networks.
Occasionally it is possible to nicely encode small multivariate data sets
completely in custom static visualizations, such as with Minard’s seminal
“Napoleon’s March to Moscow” visualization [53], but this is rare.

In practice, even moderate-sized networks can be difficult to visualize with-
out overlaps and loss of information, let alone when augmented with additional
variables. Moreover, people working with visualizations can usually only com-
prehend a small subset of the information space at a time. It is therefore impor-
tant to reduce the relevant information displayed at any point to a manageable
amount in order to facilitate understanding of the main data characteristics.
Thus, as the data size and complexity (i.e., the combination of dimensions and
network complexity) increases, there is a need to efficiently navigate through
the data and to enable discovery and communication of the data.

Interaction is a vital component in the visualization of multivariate net-
works. By allowing people to browse data sets with interactions like panning
and zooming, we can enable much more information to be seen and explored
than would otherwise be possible with static visualization. Overview-based in-
teractions afford the user the ability to understand a complete picture of the
data or information landscape and to decide where to direct her attention.
Through search and filtering, interaction can reduce cognitive effort on users

A. Kerren et al. (Eds.): Multivariate Network Visualization, LNCS 8380, pp. 97–125, 2014.

c© Springer International Publishing Switzerland 2014

98 6 Interaction in the Visualization of Multivariate Networks

by allowing them to locate, focus on and understand subsets of the data in iso-
lation. Pivoting and other navigational interactions at both the view and data
level allow people to identify and then to transition between areas of interest.

While there are methods for interacting with graphs and dimensions sep-
arately, the combination of both needs special attention. The challenge is
to clearly visualize multiple sets of individual dimensions as well as to of-
fer a useful visual overview of data, and allow transitions between these to
be easily understood. Moreover, we need to find ways to support users in
navigating through the complex data space (graphs × dimensions) without
“getting lost,” and without an overburden of interaction actions that may
frustrate the user.

In this chapter interaction for the visualization of multivariate networks
is considered. After a discussion of the design space for interaction, existing
approaches are examined, guidance for designing interactions is offered and
open problems in the area are described. It is aimed at readers who are
intending to visualize networks with multivariate data. They may be planning
to evaluate and select some existing approaches or systems and adapt these to
their needs, or they may be thinking about designing a custom visualization
tailored to the needs of their data and audience. Rather than just a survey of
the field, this chapter should be considered a guide to interaction for networks
with multivariate data; explaining what the problems are, what is possible,
what has been done before, what might be done in future.

The rest of the chapter is organized in five further sections. The next
section discusses the design space and requirements for working with large
multivariate data sets, including difficulties in navigating networks and di-
mensions. Section 6.2 classifies relevant interaction techniques on the basis
of the stages in the standard Information Visualization Reference Model.
Section 6.3 gives examples of the interactive aspects of multivariate graph
visualization systems. Section 6.4 presents recommendations and guidelines
for designing novel interaction approaches, including adaptation of existing
interaction design principles for use in this setting. Finally, Section 6.5 puts
forward a vision of the challenges and goals as we see them within the field
of multivariate graph visualization.

6.1 Background

Interaction is a vital ingredient of information visualization, and has been
heavily studied. In this section, we do not aim to explain in general how
interaction works in visualization, as this is very well addressed by excellent
books such as [58] and a large number of articles [30, 39, 72]. Also, we ac-
knowledge that data exploration encompasses much more than just direct
interaction with graphical representations, and includes aspects like naviga-
tion support, knowledge capture, and collaborative visualization. This area
is studied in visual analytics; for an overview see Pike et al. [51].

6.1 Background 99

Fig. 6.1. The information Visualization Reference Model

Furthermore, for this chapter, we mostly consider interaction for standard
point-and-click and keyboard interfaces on desktop computers. While multi-
touch tablets are commonplace and we are seeing increasing availability of
large touch-based tables and displays, there has been relatively little work de-
signing or evaluating interaction techniques for working with large networks
or multivariate data on these. This is also the case with other new technol-
ogy now becoming available to consumers such as 3D displays, contactless
input devices, and multi-monitor displays. We discuss this as a key ongoing
challenge in Sect. 6.5.

Data exploration often involves a top down approach, as strongly sum-
marized in the visual information seeking mantra of Ben Shneiderman [56]:
“overview first, zoom and filter, details on demand”. Both for network and
multivariate visualization, many systems and techniques aim to satisfy this
pattern. But in practice, a bottom up approach is used. For instance, in social
network visualization a certain person can be the starting point for further
exploration [27]; in multivariate visualization one can start from one partic-
ular item and explore items which are similar. Since these approaches are
valuable, an ideal system should support both.

To describe the multiple kinds of interactions used for the visualization of
multivariate networks in more detail, we use the Information Visualization
Reference Model [10] (see Fig. 6.1), which breaks down the visualization pro-
cess into four stages: raw data or source data, data tables, visual structures
or visual abstractions, and views. To display the raw data, several transfor-
mations have to be applied: the raw data is transformed into data tables
through data transformations, the data tables into visual structures through
visual mappings, and the final rendering transforms the visual structure into

100 6 Interaction in the Visualization of Multivariate Networks

an image on a view. All these transformations are performed using a multi-
tude of specific parameters, and interaction can then be defined at the system
level as the change of transformation parameters controlled by the user with
immediate feedback to the user.

This generic model applies both to network and multivariate visualiza-
tion, and many interaction techniques specifically tailored to the properties
of these data types have been developed. In the next section we enumerate the
most relevant of these, categorized along the stages of the reference model.
However, far less techniques have been developed that specifically aim at in-
teraction with combinations of network and multivariate data. The challenge
here is to offer a simple but powerful set of interaction techniques that allows
users to explore such combinations with minimal cognitive overload. On the
one hand, this should be achievable, since many tasks and operations are
similar at a high level; but on the other hand, standard representations of
networks and multivariate data do vary largely, and also the more powerful
and customized interaction methods for dealing with these data types differ
greatly.

These effects can be observed for all stages of the reference model. At first
sight, network data and multivariate data seem fundamentally different. How-
ever, topological aspects of network data can be nicely captured as multivari-
ate data, simply by calculating topological metrics of nodes and edges. Also,
multivariate data can be considered as networks, for instance by introducing
edges between nodes that are similar, as pursued by Liu et al. [42]. Having
said this, multivariate network visualization usually cannot be reduced to
purely multivariate or network visualization. In fact, the combination makes
analysis of multivariate networks a real challenge since discovery of an un-
derlying phenomenon in the data can require a detailed understanding of the
network topology together with the multivariate attributes, e.g., if variables
represent snapshots of a flow dictated by the topology. One consequence for
interaction is that users should be enabled to obtain such associated data on
request. Filtering of data is a standard operation. For multivariate data this
typically involves selection based on ranges of attributes, and for networks
the distance from a selected set of nodes can be used.

Concerning the visual representation, network data and multivariate data
can be shown separately or be combined. The use of multiple views on data
is standard in visualization, and by interacting through linking and brushing,
information from different views can be associated. Interaction is crucial here,
but also, as both types of data are shown separately, fusion of information is
often hard. One way to provide a combined view is to use a network-based
approach, where nodes and edges are embellished with iconic representations
of values or attributes. This limits the use of standard interaction methods for
multivariate data, for instance, to select two ranges for attributes by sweeping
out a rectangle in a scatterplot. Another way to combine data in one view is to
use a multivariate data-based approach, for instance, by superimposing edges
on top of a scatterplot. Now, standard interaction methods for multivariate

6.2 Classification of Interactions 101

data can be used, as positions of nodes encode attribute values, but also,
some network interaction techniques that imply changes in the layout cannot
be used anymore.

The standard approach in the view transformation stage is to provide op-
tions for zooming and panning. On the image level, this is straightforward,
however, when using multiple views where the spatial dimensions have dif-
ferent meanings, this can be hard to deal with in a natural way.

These examples show there are basically two approaches to interacting
with multivariate networks. One approach is to stick to conventional repre-
sentations and dedicated interaction methods, another, more challenging but
also potentially more rewarding approach is to aim for tight integration, both
with respect to representation and interaction, to facilitate the understanding
of the relation between network and multivariate. In the following sections
these approaches are explored in more detail.

6.2 Classification of Interactions

We use the Information Visualization Reference Model, originally presented
in [10], as the basis for our classification of interaction techniques (see
Fig. 6.1). We classify interaction techniques based on the level of this pipeline
they affect. Note, the match may not be always perfect, as some techniques
address multiple levels simultaneously. Where possible, we make use of stan-
dard terminology and jargon from the information visualization community
in order to simplify access to related work.

Notably, our classification presents the pipeline stages in the reverse order
to [10]: we describe interactions at the view-level first for pedagogical clarity,
since these are simpler, easier to understand, and are sometimes extended or
utilized by interactions in the remaining stages of the pipeline.

Many of the generic interaction techniques are applicable both to standard
networks as well as multivariate data, and basic examples are given. As dis-
cussed in Sect. 6.1, there are many possible graph representations, the choice
of which can limit the applicability of interaction techniques since these may
be dependent on specific aspects of the chosen graph representation. Exam-
ples of complete systems utilizing a mix of interaction techniques to deal
simultaneously with a combination of multivariate data and networks are
described in Sect. 6.3.

This classification is a revised and expanded version of a similar classifi-
cation of interaction techniques for network visualization appearing in [68].
Note, this is certainly not the only way to define and categorize interaction.
For instance, Yi et al. advocate for a taxonomy based on user intent, and
they distinguish Select, Explore, Reconfigure, Encode, Abstract/Elaborate,
Filter, and Connect as main categories [72]. Similar classification has been
recently also presented for cartography [54].

102 6 Interaction in the Visualization of Multivariate Networks

6.2.1 View-Level Interactions

The view-level interactions are mostly related to visual emphasis of inter-
esting objects, navigation through the data set, and using Magic Lenses to
augment the visualized information.

Highlighting

Highlighting transiently changes the visible rendition of items at the view-
level, not at the visual encoding level. Although it can be practically imple-
mented with support at the visual structures level, this is not required so we
conceptually consider it a view level interaction.

Interactions such as search or mouse hovering may lead to highlighting of
objects such as search results or linked content.

Hovering

Hovering is used in multivariate visualizations such as InfoZoom [61] that dis-
play large data tables with a smart aggregation mechanism. Rows are items,
columns are attributes, and values are in cells. When the mouse passes over
a value in a cell, all the cells with the same value for that attribute are high-
lighted, showing the frequency and distribution of this value. Hovering is even
more useful with multiple views to highlight parts linked by some relation.
MatrixExplorer [31] uses two linked visual representations for networks, one
being a node-link diagram and the other an adjacency matrix. When the
mouse hovers over an entity in one visual representation, the same entity is
highlighted in the other.

Brushing and linking

This technique involves the user watching multiple views related to the same
dataset. When the pointer is moved over an item in one view, all the related
items are highlighted in all the views [4, 9].

For multivariate networks, these views can use the same visual representa-
tion or a different one; they can show the same information (e.g., the network
topology as a node-link diagram as well as an adjacency matrix [31]), comple-
mentary information (e.g., the network topology as a node-link diagram and
nominal attributes as lists [28]), or mixed aspects (e.g., the network topol-
ogy as a node-link diagram and attributes using parallel coordinates [3, 60]).
These can be used to more easily contrast and compare information or vari-
ables in distant places within the network or to see parts of the dataset from
different perspectives. The latter is often used when visual encoding does not
allow for viewing all the data in one visual representation. This is generally
caused by data size (too many data points to show) or data complexity (too
many data variables).

Further interaction techniques are often used to augment and enhance the
use of multiple views. Some of these will be described in the visual encodings
section.

6.2 Classification of Interactions 103

Magic lenses

Magic lenses [7] are “filters, that modify the presentation of application ob-
jects to reveal hidden information, to enhance data of interest, or to suppress
distracting information.” They have been used extensively in visualization of
networks and multivariate data.

Excentric Labeling [20] offers an approach similar to tooltips: labels are
interactively displayed over dense visualizations such as scatterplots or node-
link diagrams. When enabled, they show a focal region (rectangular or circu-
lar) that follows the mouse; all the items inside the region are labeled outside
of the region with a line connecting each item to its label. Bertini et al. [5] has
extended upon this to give better control of the focal region and visualization
of aggregated information on the focal region.

Jusufi et al. [36] describe lenses for multivariate network that display nodes
as small multidimensional visualizations when they are within the focal area.
They use several visualizations: parallel coordinates, bar charts, and star plots.

Navigation

Panning and zooming

Panning and zooming involve changing the visible viewport over the other-
wise unchanged visualized data. These actions are usually accomplished via
standard interactions with common controls like scroll bars and sliders, hard-
ware like mouse scroll-wheels and track-pads or using multi-touch at touch
tables or tables.

Several navigation techniques have been designed to improve panning and
zooming over large data sets, which are discussed in detail in Chapter 10.
Suffice it to say that these operations can be very cumbersome, requiring users
to drag the cursor for long distances across the screen. The simplest technique
to overcome that problem is to use an overview plus details representation,
such as a bird’s eye view of the visualization in a small window and detailed
view in a large one. The viewport of the detailed view is usually displayed as
a rectangle on the small window that can be manipulated for fast panning.

In graph visualization, topology-aware graph navigation allows automatic
panning and zooming in a graph. These actions can be performed directly on
the network structure, such as link sliding [46] or bring-and-go [63]. These
techniques allow the user to quickly find out-of-viewport nodes that are at-
tached to a particular node, relocate these to be temporarily positioned in
their current view and then allow further navigation from them. The bring-
and-go technique can also be considered as a magic lens for navigation.

View distortion (single/multiple)

View distortion allocates more space to items of the users’ interest. In par-
ticular, fisheye views generally allow people to see more information at a

104 6 Interaction in the Visualization of Multivariate Networks

point of interest. For example, this can reveal detailed information that was
initially smaller than one pixel in size.

For graphs, there are specific distortion techniques, such as Balloon Focus
in a treemap [64] and a guaranteed visibility technique in dendrograms [47]
that allocate more space to the nodes in focus for their detailed inspection.
These techniques allow for multiple foci at the same time.

Distortion can be applied also to edges, improving the visibility of items on
the screen. For example, Edge Lenses [71] interactively displace edges under
the pointer in order to avoid overplotting of edges over nodes or edges over each
other. Tominski et al. [63] have proposed two types of lenses to facilitate the ex-
ploration of networks: Local Edge Lens only show edges with vertices inside the
focal region to locally reduce clutter; Bring Neighbors Lens transiently moves
vertices that are connected to vertices in the focal area but not visible in the
viewport at the boundaries of the focal area. Their lenses can also be combined.
Note that the latter technique can be seen as an example of magic lenses.

The view distortion is not always geometric: Semantic zooming changes
the visual representation and level or details according to the zoom level. The
interaction technique remains the same as panning & zooming (e.g., using the
mouse wheel or a zoom slider) but the visual effect of zooming is changed.
Semantic zooming [50] involves changing the visual parameters by altering
the amount of detail shown at various levels of zoom. The simpler kind of
semantic zooming consists of showing more details when zooming in, and
less when zooming out, connecting the zoom level to the data aggregation
level [19]. This could involve showing more of a network at the greater zoom
depth such as changing graph aggregation level [17].

6.2.2 Visual Structure-Level Interactions

Selection

Selection interactions alter the visual parameters of the visualization. They
generally result in the most basic form of encoding change in order to high-
light or emphasize areas of the network. Often they modify visual attributes
of the graph entities (e.g., color, size, line width, etc). Selection differs from
the view-level highlighting in that it implies a state change at least at the
visual structure level, sometimes even at the data level. Also, highlighting
is transient and changes implicitly as the pointer moves or the search query
changes, whereas selection is explicitly set on or off.

There are various ways of selecting. For graphs one can select/brush nodes
directly by clicking on them, select nodes according to their network prop-
erties [6] or select items according to network attribute values. The latter
is specifically suitable when analyzing multivariate networks. Moreover, the
network structure can be used for an enhanced highlighting, i.e., not only
the selected nodes are highlighted but also their neighbors or parent/child
nodes. This can be extended with node or edge properties, where only those

6.2 Classification of Interactions 105

adjacent/connected nodes are highlighted that have certain node attribute
values. An example is highlighting of controlled companies in a shareholding
network [62].

McGuffin et al. [44] have described techniques to select subgraphs interac-
tively. In addition to traditional rectangle and lasso selection of nodes, they
introduce a special kind of radial menu to further control and extend the
selection of nodes (e.g., extending it by increasing a radius from the current
selection: add nodes at distance 2, 3, etc.) They also introduce a special kind
of menu box that appears transiently to operate on the current selection for
visual structure level or data level operations (e.g., align, change color, change
shape, etc.).

Changing mapping of attributes

Interactions that change the visual encoding can also be used to explore and
understand various dimensions of the data. An example of this is changing
the visual mapping of attributes, i.e., which attributes are assigned to which
visual attributes such as size and color. Such interaction should be typically
provided in interactive graph visualization systems.

Even considering just classic node-link representations for networks, visual
encodings and styles of these may still vary greatly. Different emphasis can
be given to visual objects, such as by drawing edges faintly using a high level
of transparency or displaying nodes as points without size. These choices
can in turn lead to vastly different visual results for the same data. Hence,
interactively varying such attributes of the visual encoding can be useful to
discover different properties of the data. See [41] for some of the more extreme
examples, as well as further discussion of similar techniques in Sect. 10.2.2.

Network layout

Layout-based interactions alter the position of nodes and edges based on
properties of the network. The intent is for the layout to reveal additional
information about the structure of the network.

Examples of layout-altering interactions include positioning nodes and
edges to emphasize similarity, such as using Multidimensional Scaling [40],
or by applying existing automated graph layout algorithms. Interactions to
apply layout changes are typically triggered by changing a layout setting,
however layout can sometimes be adjusted by interacting directly with the
network, i.e., dragging nodes or edges.

Network layout can be calculated solely in dependence of network struc-
ture [26], only in dependence on node properties [6] or a combination of both
network structure and network attributes [37, 57]. The type of layout depends
on the user task. If the user wishes to analyze the relationships between nodes
in the network, a topology-only layout is sufficient. However, if she wishes to
analyze the interconnection of network structure and network attributes (e.g.,

106 6 Interaction in the Visualization of Multivariate Networks

are people with similar characteristics friends?), a layout that takes both net-
work structure and network attributes into account is preferable.

Moreover, constraint-based network layout approaches can allow interac-
tive control and fine-tuning of the layout [16], and may be used in conjunction
with multiple views and semantic zooming to allow interactive browsing and
exploration of large multivariate networks [15].

Multiple differing network layouts can be coupled with multiple views and
augmented with brushing and other highlighting techniques to understand
the relations between them [11]. This allows the user to compare and analyze
the network from different perspectives, and detect information which might
have been hidden while using a single layout.

Representation

Graphs and multivariate data can be represented visually in various ways
(e.g., node-link diagrams vs. adjacency matrices for graphs; scatterplot ma-
trices vs. parallel coordinate plots for multivariate data, etc.). As one repre-
sentation may not reveal the intended information on the network, the user
may wish to change the representation in order to gain a better view of the
data. This is done using interactions altering visual encoding of parts of the
network or present alternative representations such as matrix views, tables,
or even a mixed representation such as in NodeTrix [32].

6.2.3 Data-Level Interactions

Data-based interactions involve selecting which data to show (showing more,
less or completely different data) or manipulating data values (deleting, in-
serting data).

Selecting Data for Visualization

Filtering

For large graphs, the whole graph may not be shown on the screen. The user
then can decide either to reduce the size of the displayed data set (filtering)
or to expand on demand the currently shown part of the data set (adding
undisplayed data). Then, data level filtering interaction enables display of
just interesting subsets of the data.

Such interaction can be performed directly in the network visualization
(by selecting nodes to hide) or using a query interface. The query interface
can range from a simple slider for attribute values, to a histogram-based
filter, right through to filtering via brushing in additional views on the data
(multiple views).

6.2 Classification of Interactions 107

Dynamic querying

Sometimes there can be one or more important variables to focus on within
the visualization. A prominent example is time. The user may wish to browse
through time in the visualization of dynamic graphs. For this it is useful to
provide controls allowing the user to directly move through the range of
possible values. This is analogous to using sliders and other common controls
to provide panning and zooming for the space dimension.

Adding undisplayed data

An alternative way of exploring large graphs is to show a small part of the
graph at the beginning of the analysis process (e.g., as a result of a search
for interesting nodes) and then expand this selection on demand [27]. The
expansion allows the user to add undisplayed data to the network. This can
be by navigating through the network topology, such as showing neighboring
nodes or connections between nodes on demand [28]. In hierarchic graphs
(trees), one can navigate along the hierarchy and show nodes on a lower level
of hierarchy, or show only nodes at a certain level [19].

The number of possible expansions of a graph might be very large, and the
user may not know which parts of the graph to expand. In such situations,
it is useful to show information on which elements to display when there are
more candidates than there is room to show. Such decisions are often based
on a degree of interest function. Such functions can be calculated in many
different ways (e.g., [23, 27, 29, 43]).

Search

Search-based interactions at the data level are most useful when not all of
the multivariate network data can be shown at once. They allow particular
entities of interest to be extracted and displayed or highlighted from the
entire data set. Specific examples are to:

• search for nodes/edges with certain attribute values;
• search for nodes/edges with certain topological properties;
• search for subgraphs with specific structural properties (motifs) [67]; and
• search for graphs—interactive user interfaces for defining query graphs

and searching for them [66].

Search actions may be performed in various ways. They may involve construc-
tion of textual or graphic queries, may be performed by example, or achieved
by finding similar items to those in a selection drawn or otherwise specified
by the user. Search interactions may result in other data level changes such
as filtering and adding undisplayed data.

108 6 Interaction in the Visualization of Multivariate Networks

Pivoting

In the case that different variables are represented by different edge and node
types in a heterogeneous network, pivoting is an interaction approach where
the user can visualize a couple of variables at once and switch between looking
at various slices of the data. Usually this involves keeping some common part
of the network visible and as stable as possible during pivot actions, such as
in PivotGraph [69] or PivotPaths [13].

Changing Data

In some cases, the user may wish to change the input data such as data
attributes or graph structure. This can be done by direct data editing in the
user interface or by aggregation.

Editing

Multiple different ways to edit graphs exist:

• Graph structure: the user may wish to edit the graph structure: delete or
add nodes or edges. This is usually done directly in the visual interface
by selecting nodes/edges to delete or by drawing new nodes or edges.
The system can then either show these changes directly or can show the
impact of these changes on the network structure [67].

• Attributes: in multivariate networks, the user may additionally change
attribute values for certain nodes. Moreover, the user can run a specific
algorithm which creates new attribute values that can be explored or
used for navigation in the graph. This includes creating new attributes
by combining existing attributes (such as sum of two attributes) or by
creating attributes describing node or edge topological information (e.g.,
betweenness centrality).

Aggregation

Large graphs are often simplified by aggregation. Aggregation merges several
nodes and/or edges to so-called supernodes or superedges, where a supernode
represents several nodes and a superedge represents several edges. The user
may choose to see one of the predefined graph levels (pre-defined aggregation)
or define the aggregation interactively. Such aggregation can merge user-
selected nodes into one node [2] or can automatically merge nodes based
on user-defined node attributes [69] or on topologic network properties [67].
The aggregation based on selected network attributes is specially useful for
multivariate networks. This allows for variable views on the graph and its
structure (also cf. Sect. 10.2.1).

6.3 Exemplars 109

Annotation

Annotation is an interaction where the user can add additional information
to objects in the visualization in order to augment their understanding of the
data and indicate or signpost points of interest. This is analogous to using
notes in order to make sense of complexity, although this is arguably more
valuable when it is done in-place by annotating the network directly. In this
way the annotations cause changes to the data which subsequently allows the
user to search, filter or otherwise interact with the annotations directly.

History and provenance

Interactive exploration and analysis of large graphs includes many steps—
interaction actions—and feedback loops. The performed interactions are then
difficult to remember and reproduce. This is facilitated by tracking of user
actions. GraphDice [6] records view changes and selection changes and shows
them as a set of miniatures. Hovering over a miniature transiently changes
the selection to use the one recorded in the history. Clicking on the miniature
sets the view and selection to the recorded one. The RelaNet System tracks
and automatically aggregates all user actions [65]. It then shows them to the
user using a graphical representation: a tree whose nodes are visualization
states and edges are actions. The user can click on a node in the tree in order
to resume that previous visualization state. The user can then either replay
the actions or start a new exploration path (creating a new branch in the
tree). All actions can be stored, shared, and reviewed.

Recorded actions can be analyzed algorithmically or shown to the user for
their visual inspection. The CZSaw system [38] keeps track of all interactions
and allows the user to explore and share them.

The tracking, reproducibility and analysis of user actions is still a large
challenge in visual analytics. This problem belongs to the more general issue
of analytical provenance1 addressed by systems such as VisTrails [59].

6.3 Exemplars

To better illustrate effective interaction techniques and methodologies for
multivariate graphs, we here present four exemplars of existing InfoVis sys-
tems that include such techniques. These exemplars are the GraphDice sys-
tem by Bezerianos et al. [6], the GraphTrail system by Dunne et al. [14],
Parallel Node-Link Bands by Ghani et al. [22], and the state transition net-
works by Pretorius and van Wijk [52]. We used the following criteria when
selecting these exemplars for inclusion in the chapter:

1 See http://www.vacommunity.org/AnalyticProvenanceWorkshop for the first
workshop on this issue.

http://www.vacommunity.org/AnalyticProvenanceWorkshop

110 6 Interaction in the Visualization of Multivariate Networks

Fig. 6.2. The GraphDice [6] multivariate visualization tool shown visualizing an
IEEE InfoVis co-authorship network consisting of both intrinsic and derived at-
tributes. The analyst is in the process of transitioning between two different node
attributes; the transition is shown as a smooth animation.

• Representative: Our objective was to select exemplars that capture a
wide range of representative interaction techniques.

• Significant: The included examples all provide interaction techniques
that are among the first of their kind.

• Best practices: All exemplars demonstrate best practices in interaction
for multivariate graphs.

• Familiar: Our selection is by necessity limited by our knowledge, ex-
perience, and preconceptions of the general field of multivariate graph
interactions.

In no way do we claim that this set of exemplars is exhaustive or optimal.
There may exist several other InfoVis tools that we could have selected in-
stead of these four. We only claim that our selection is representative and
illustrative.

We use the term “analyst” to refer to a domain specialist performing anal-
ysis tasks with the system, rather than a “data analyst”.

6.3.1 GraphDice

GraphDice [6] is a multivariate graph visualization tool that supports nav-
igation in data space similar to the scatterplot matrix navigation proposed
in the ScatterDice [18] tool. The key contribution of GraphDice is the in-
tegration of attribute-based layout with interactive data space navigation,
where both intrinsic (such as the age, gender, and annual income) as well
as derived (layout position, degrees, and centrality) attributes of actors in a
social network form the data space. This supports a smooth and fluid visual
exploration process where users can seamlessly sculpt their queries across all
attributes (see Fig. 6.2).

6.3 Exemplars 111

In terms of specific interaction techniques for multivariate graphs, Graph-
Dice supports the following:

• Smoothly changing visual mapping: The key feature of data space
navigation [18] is to smoothly change the mapping of attribute dimen-
sions to positional (X and Y) visual variables using an animated transi-
tion. GraphDice does not discriminate between intrinsic and computed
attributes, thereby allowing the analyst to transition from a geographic
or computed graph layout to other attributes such as degree, centrality,
age, gender, income, etc.

• Pivoting: Data space navigation in GraphDice also allows for pivoting
a multivariate graph to study different slices, or facets, of the data. This
interaction is inspired by PivotGraphs [69], and also incorporates node
and link aggregation to minimize overplotting and to summarize a large
number of data points. Similarly, GraphDice also summarizes multiple
time points into intervals that are visible during pivoting.

• Query sculpting: Query sculpting is a faceted filtering technique that is
closely integrated with the data space navigation and pivoting function-
ality in GraphDice. The analyst can use lasso, bounding box, or interval
selection on the main node-link display to create queries in the dataset.
These queries are maintained in a query control box, which also summa-
rizes the size, distribution, and name of each query. Analysts can then
use data space navigation to pivot the query, allowing them to sculpt it
by adding additional constraints on other attribute dimensions.

6.3.2 GraphTrail

The GraphTrail [14] visual analytics tool by Dunne et al. supports exploration
of graph data where the nodes and links are both multivariate—containing
multiple attributes, as already prominently discussed in this chapter—as well
as multimodal (called heterogeneous in the paper)—where the nodes or links
are of different types, or modes. The work presents two case studies: (1) pub-
lication data for the ACM CHI conference (Fig. 6.3), where nodes contain
attributes such as year, title, name, locations, and date, and the modes are
authors, papers, and proceedings; and (2) a large-scale archeological graph of
artifacts consisting of 24 different node modes and 35 link modes. The Graph-
Trail tool supports the following specific interaction techniques for multivari-
ate graphs:

• Aggregation: The tool presents aggregated views of graphs in self-
contained charts such as bar charts, tag clouds, and tables instead of
the raw graph data as a traditional node-link diagram. The purpose is to
use familiar and readable visual summaries as opposed to the full graph
dataset.

112 6 Interaction in the Visualization of Multivariate Networks

Fig. 6.3. GraphTrail [14] overview of a multivariate co-authorship dataset for the
ACM CHI conference. The screenshot shows examples of the tag cloud, hybrid bar
chart, and matrix chart supported by the tool.

• Visual history: While not strictly a multivariate graph interaction tech-
nique, GraphTrail provides an innate visual interaction history by main-
taining each exploration branch as a chain, or trail, of connected charts.
This allows the analyst to refer back to the exploration path, which may
potentially be branching, at any time.

• Exploratory interactions: The tool supports three specific interaction
techniques for multivariate graph exploration:
Filtering and merging: Selecting subsets of a dataset for drill-down and

merging disparate subsets into a single chart using direct manipulation.
Pivoting: Transitioning between different edge and node types (i.e.,

modes) to explore multimodal relationship in the graph.
Cloning: Duplicating subsets and charts with dependencies to avoid

having to propagate upstream changes to connected child charts.

6.3.3 State Transition Networks

Pretorius and van Wijk [52] present a multivariate graph visualization tech-
nique for visual inspection of state transition graphs (Fig. 6.4). Such graphs
are common for complex systems and are often used for design, debugging,
and evaluation. The visual representation is based on separating the different
modes in these state transition graphs and showing two modes at a time,
essentially as a bipartite graph layout with nodes on each side of the dis-
play and the links (and edge labels) connecting the modes in-between. The
implementation allows the user to navigate between which two modes they

6.3 Exemplars 113

Fig. 6.4. A multivariate graph visualization designed by Pretorius and Van
Wijk [52] of a state transition graph created by a system analyst

wish to drill down into. In addition, the system supports several dedicated
multivariate graph interaction techniques:

• Selection and highlighting: A simple but key interaction technique is
the ability to select a node (or a cluster of nodes) in the visual representa-
tion, causing all contained or connected nodes and edges to be highlighted
in red. This interaction is coupled with appropriate visual representations
that also highlight multivariate attributes in the connecting edges.

• Filtering: In conjunction with the selection technique, the multivariate
graph implementation also supports adding to or subtracting from the
selection to further refine the analyst’s exploration.

• Clustering: To cope with the large scale of the state transition graphs,
the prototype implementation supports clustering and aggregating nodes
and edges based on attributes and labels.

6.3.4 Parallel Node-Link Bands

Similar to GraphTrail, the parallel node-link bands (PNLBs) [22] method
is a graph visualization technique for multimodal and multivariate graphs,
i.e., graphs where nodes and links not only have multiple attributes, but
also belong to two or more different modes, or types. However, instead of
focusing on aggregated charts summarizing the network, PNLBs draw on the
work by Pretorius and van Wijk [52] (discussed above) to retain the node-link

114 6 Interaction in the Visualization of Multivariate Networks

Fig. 6.5. The parallel node-link bands (PNLBs) [22] technique visualizing a mul-
timodal NSF funding graph. The parallel coordinate inset is a specific interaction
technique called “open sesame” for drilling down into one or several scalar at-
tributes of a set of nodes; in this case, it is visualizing the year and amount for
funded projects.

visual metaphor but separates the nodes by their respective mode into specific
bands organized by slicing the viewport vertically (Fig. 6.5). Unlike Pretorius
and van Wijk, PNLBs generalize to any number of bands, although they only
show links between adjacent bands, suppressing all other link modes to min-
imize visual clutter. For this reason, the technique also borrows many ideas
from semantic substrates [57], where node modes are organized into spatially
disjoint substrates. However, PNLBs were designed specifically for multivari-
ate graph exploration, and provide the following interaction techniques to
support this goal:

• View distortion: PNLB bands can be zoomed and panned indepen-
dently of each other; furthermore, they can also be designed to support
semantic zooming. One particular use of this is to enable view distortion
where a fisheye function around a selection or the user’s mouse cursor can
smoothly expand and compress the visual marks representing the nodes
in the graph.

• Multivariate drill-down: The tool allows the analyst to drill down into
entire bands or individual nodes to uncover the multivariate attributes
“hidden” in the data. For example, tag cloud and details-on-demand pop-
ups can show summaries or the full details of a node. Furthermore, a
specific interaction technique dubbed “open sesame” (visible in Fig. 6.5)
integrates a parallel coordinate inset within an expanded node band to
show quantitative data for those nodes; parallel coordinates were chosen
because they closely mimic the overall visual design of PNLBs, but other
chart types can be integrated as well.

• Multimodal drill-down:Another drill-down option focuses on the topo-
logical nature of the graph by exposing the within-network relations

6.4 Recommendations and Guidelines 115

within the dataset, i.e., the links that connected nodes of the same mode.
This is a necessary mechanism since the PNLBs technique is designed to
primarily show between-mode links for adjacent mode bands.

6.4 Recommendations and Guidelines

When designing or evaluating interactive visualizations for multivariate net-
work data, it is useful to consider potential interaction techniques with regard
to their usability. Indeed, this is even more important when testing novel un-
proven interaction techniques. There exists a large body of experience in the
Human-Computer Interaction community regarding the usability of inter-
action techniques. In this section, we describe some well accepted usability
principles and interaction design guidelines and discuss them within the con-
text of multivariate network visualization. The information in this section
should provide a useful lens through which to assess the appropriateness of
particular interaction techniques.

We group these guidelines into three broad categories—Learnability, Flex-
ibility and Robustness—as suggested by Dix et al. [12]. We also draw from
other sources, including Cognitive Dimensions of Notations [8, 25], which of-
fers some useful vocabulary for discussing design and choice of interactions
as well as evaluating the impact a design will have on users.

6.4.1 Learnability

Learnability describes a set of principles that can be used to determine the
ease with which a new user can begin productive work with the system [12].
This is especially important when designing interactions for multivariate net-
work visualization since these will often present a large amount of data, and
complex interfaces for exploring the dimensions of the data. Hence, anything
that can be done to help users quickly learn the system and accompanying
interactions is crucial.

One important aspect of Learnability is Predictability, which simply
states that a given interaction should always behave predictably, i.e., exhibit
deterministic behavior. Also, it should exhibit Consistency in that an inter-
action that can be performed on one element of the visualization should be
able to be applied to other objects and produce similar results. This means
sticking with established conventions for network and multivariate visualiza-
tion, such as those described earlier in this chapter.

Other aspects of Learnability are Familiarity and Generalizability
which deal with creating interfaces and interactions that map as closely as
possible to the real world or similar interfaces the user will already be familiar
with. Ideally, this is done to maximize utilization of users’ past experience.
This includes making use of familiar metaphors where applicable, as discussed
at length in Chap. 7.

116 6 Interaction in the Visualization of Multivariate Networks

Affordance [48] describes the ability of physical or digital objects to sug-
gest how they may be interacted with through their appearance. For example,
the handles on a drawer afford the user the ability to pull out the drawer.
Similarly, the appearance of standard GUI controls like sliders and buttons
suggest how users may interact with them.

When designing novel interfaces for working with multivariate network
visualizations it might not always be possible to give interactive controls or
elements these obvious affordances due to the complexity of the interface,
but the appearance of controls can still sometimes be enhanced in subtle
ways to hint at their intended use, or at least at the possibly for interaction.
For example, with colored hyperlinks in web documents, it is not always
obvious what effect clicking a link with have, but the user knows it will
do something and can make an educated guess based on the link text and
surrounding context. Affordance is related to the discoverability of interactive
capabilities in the interface; with the profusion of graphical entities shown
by visualization, it is always tempting to provide interactions contextual to
specific entities, but without affordance, the chance that a novice user will
discover it by chance is very low. When designing user interface components
or assigning contextual interactions to graphical entities, ask yourself if they
adequately express their role to the user?

Avoiding Hidden Dependencies [8, 25] means that the link between
connected items should be visible and obvious to the user. This can be a
problem in any system with filtering and search where the visualization may
just show a subset of the results. Ideally, if the information linking matching
elements is significant the visualization can show the smallest subset of the
network that connects these nodes and edges in the search results. This be-
comes a greater problem when an interaction leads to a surprising result due
to such a hidden dependency.

Supporting Progressive Evaluation [8, 25] means allowing users to be
able to take a break at any time and take stock of their progress so far. This
is especially important for exploratory tasks involving novice users.

6.4.2 Flexibility

Flexibility groups a set of principles that deal with best practices for the
avenues for information exchange between the user and visualization system.

Cognitive load [45] is based on the fact that humans can hold relatively
little information in short term memory—famously, seven plus/minus two
pieces of information. As a result, we must consider the amount of information
that needs to be retained in working memory in order to effectively work
with a system or interface. As much as possible there is a need to alleviate
the user having to commit unnecessary information to memory. In terms of
visualizations of multivariate networks, this means relevant data should be
highly visible and the interface should make clear what data and attributes
the users are looking at, how they reached this point, as well as how they can

6.4 Recommendations and Guidelines 117

return to earlier points of exploration. It should be possible to delegate the
task of remembering information for complex processing tasks to the system
where these details should be presented in a fashion that is easy for the users
to understand.

Cognitive load and other limits of visualization are discussed in more detail
in the chapter on scalability considerations (Sect. 10.1).

Fitts’s law [21] is a model that describes the act of pointing. It says
that the time taken to rapidly move a pointing device to a target object is
proportional to the size of the target and the distance to it. The implication
of this for interaction and interface design is that the most frequently used
controls should be the closest and largest. In the case of visualizations for
multivariate networks, a prerequisite for answering the question of where
to put the controls would be understanding the kinds of tasks that users
were going to perform most commonly with the visualization, since context
matters [1].

Visualizations should have lowViscosity [8, 25], i.e., common tasks should
be able to be accomplished with a minimal number of actions or effort on the
part of the users.

Abstraction [8, 25] involves providing shortcuts to the user in order to
facilitate them working efficiently with logical sets of the data at once. This
is often vital in multivariate network data, since the aim is to allow the user
to manipulate the visualization at the level of a particular attribute or di-
mensions of the data rather than forcing them to interrogate the properties
associated with individual nodes and edges themselves. Abstractions should
be used where possible, since these simplify many tasks and help with un-
derstanding the network and associated variables.

Terseness and Diffuseness [8, 25] state that it is important to dedicate
appropriate amounts of display space to the various elements of the visual-
ization, rather than devoting too much or too little space to them. This may
seem obvious, but you should think about and question the space that is
being used to show various elements of the data set.

An important general quality to strive for in designing interactive visual-
izations of multivariate networks is providing good Guidance, both in terms
of dimensions and graph structure. That is, when the user can not currently
see some particular dimension of the data or a section of network, we would
like to let them know this information exists and also give them some esti-
mation of the importance of the non-visible information.

6.4.3 Robustness

Robustness principles relate to how the system supports the user in accom-
plishing their goals.

Direct Manipulation [55] describes interaction that is performed directly
on objects and provides continuous, fast feedback in response to change. An-
other way of thinking about this is providing continuity and thus avoiding

118 6 Interaction in the Visualization of Multivariate Networks

abrupt changes that could potentially confuse the user. When an action is not
being performed by the user directly, it can sometimes be smoothly animated
to achieve a similar effect. Direct manipulation interactions map more closely
to object behavior in the real world and thus has a few important benefits; it
allows users to quickly determine or predict the final outcome of their action, it
allows them to more easily realize when performing an action would lead to un-
intended consequences, and to more easily reverse an action. It can also allows
users to reach a desired state in a single action that would otherwise require
several actions when only seeing incremental effects of the system after each
individual action.

Recoverability [12] is an important robustness principle for most user
interaction. It suggests that our visualization systems should easily allow the
user to undo any action they have made in error. As we mentioned before,
responsive interactions such as direct manipulation approaches also help
in this regard.

Premature Commitment [8, 25] means users should not have to make
any decision before they have adequate information to base it upon. This
can often be solved by providing a flexibility to the system where the user
can reach a particular result or view of the data via multiple paths, rather
than just a single specific sequence of actions. Also, the user should have the
ability to try things out without committing to them (Provisionality).

Error-Proneness [8, 25] describes the ability of the system to induce
errors from the user and not protect them from these mistakes. When eval-
uating an interface to a complicated multivariate network visualization we
must consider what is being shown to the user. Could they easily mistake or
confuse some aspect of the visualization and reach an incorrect inference or
conclusion? We want to avoid this.

Finally, it should be noted that creating effective interactive visualizations for
multivariate network data is a difficult task that combines the inherent com-
plexity of navigating large graphs with understanding and exploring multiple
dimensions. As noted by Pike et al. [51], it is important to remember that
the purpose of interaction is to enable an analytic discourse during which
users build, test and refine knowledge. Hence, the design of new interaction
approaches should carefully focus on the likely aims, intentions and actions
of the user. Designs should also be formally evaluated through user studies
and have their effectiveness tested with real users.

6.5 Challenges and Vision

This chapter has discussed and classified various interactive techniques for
multivariate and network visualization. It has explored their use in several
effective multivariate network visualization systems, and has described guide-
lines for designing successful interaction approaches. Here we conclude the
chapter by outlining what we see as the major unsolved challenges in this

6.5 Challenges and Vision 119

space, and offering our thoughts on where research in this field might head
in coming years.

We describe several challenges, which we broadly group into data type,
data exploration, user interfaces and evaluation categories.

Data Characteristics

Scalability: Dealing with scalability is obviously a major challenge. While
interaction can help with some of the issues, it is often complicated by scale.
For example, can we fully show both dimensions and network data, or must
we reduce the complexity of the data and its presentation? Is interaction
in real time still possible on large data sets? Scalability considerations for
multivariate network visualization are be discussed in detail in Chap. 10.

Temporal Data: Another challenge is in dealing with multivariate net-
works with a temporal dimension. Given that humans have a particular un-
derstanding of time, it can be useful to leverage this familiarity and treat it
specially when designing interactive visualizations. This is explored in detail
in Chap. 8.

Data Exploration and Comprehension

Understanding the Information Landscape: The first big challenge we
see is that visualization research and systems often give good individual de-
tailed views of particular facets of the data, but don’t necessarily offer a visual
interface that allows understanding of the entire information landscape at a
high level. The difficulty is in giving enough of a sense of what the data is,
conveying its meaning, as well as hinting at the dimensions or facets of the
data that could be worth exploring in greater depth.

In connection to this, there needs to be more work on automatic and semi-
automatic identification of important nodes and dimensions for directing the
user during analysis tasks, as well as subsequent evaluation of such approaches.

Provenance of Exploration Process: We think a significant unad-
dressed challenge is supporting provenance in multivariate network visual-
izations. This involves assisting the user in tracking the exploration process,
and the history of their interactions with the system. This is important since
these actions form a critical part of the analysis process. While the infor-
mation visualization community is aware of the importance of recording and
showing which interactions were performed and when [24, 49, 51, 65], these
methods either do not support multivariate networks or only to a small extent
(e.g., selecting variables for visual mapping and search).

Building Interactive User Interfaces

Ad-hoc Design of User Interfaces: Currently, many multivariate network
visualizations are built by extending upon existing systems using traditional
interfaces. This is generally not desirable when the interfaces are required

120 6 Interaction in the Visualization of Multivariate Networks

to encapsulate so much complexity. Ideally, we would like to see more ap-
proaches utilising principled design from the beginning. That is, designing
interfaces and interactions specifically to support required application rather
than just bolting additional controls and complexity onto existing interfaces.
Specifically, this means techniques should be designed based on principles
and guidelines like those presented in Sect. 6.4, but also be given formal user
testing to prove their effectiveness.

In the case where multivariate network visualizations make use of multi-
ple views there is a challenge in providing elegant and simple mechanisms
to manage them. This is important since a single view will never be ade-
quate to explore large multivariate networks. Users will always spend signifi-
cant time controlling, comparing and navigating between views. Additionally,
particular application domains often require their own unique multiple view
configurations that are still a challenge to build interactively [70].

This is not to say that we can’t have a set of general purpose visualization
components and reuse them, but in order for such objects to be useful they
will require standardized, consistent interaction. We need not just a common
vocabulary and behavior, but also an understanding of their specificity and
efficiency for particular uses.

Emerging Hardware: Multivariate network visualization could poten-
tially make use of emerging hardware such as multi-touch tables and tablets,
contact-less input devices (Microsoft Kinect, Leap Motion Controller), wall-
sized displays, and even 3D stereoscopic displays or immersive cave envi-
ronments. Additionally, there is the possibility of building novel gadgets or
devices specifically for interacting with this sort of data and visualization.

Of course, these technologies are exciting to use or witness for the first time
but there are a lot of unknowns surrounding their use. Do more pixels help
solve the problems we have discussed? Can we benefit from extra dimension
in 3D without the typical downsides, such as users becoming disoriented or
lost? Can we utilize navigational multi-touch gestures? Can multimodal input
provide extra benefits specifically for navigating multidimensional graphs?
How can we support collaborative data exploration of multivariate networks
between multiple simultaneous local or remote users? Should we build one
visualization application for a specific piece of hardware (e.g., a multi-touch
tablet) or can we design interactions that will adapt to a range of input
devices and output capabilities?

The description of the input side of interactive applications is still at its
infancy in HCI, and the management of powerful interaction approaches is
relatively new in the visualization field. Adapting visualization interactions
to the new setups is therefore a huge challenge [33–35]. This issue is beginning
to get research attention. New ideas such as proximity-based interaction on
high-walls [34] and new models for interactions across devices [35] are emerg-
ing. Research in this area will likely begin by exploring specific hardware
configurations and progressively evolve towards some unification for classes
of technologies over time.

References 121

Evaluation

There is a real need for formal evaluation of interaction approaches used
for visualization of multivariate networks. There are a range of issues and
concerns here. Firstly, there needs to be more consideration of the tasks
for which the visualizations are to be used. Do we know what users really
need when dealing with multivariate networks? How does this change when
they are exploring vs. checking a hypothesis vs. using the visualization to
convince another person of some fact? Chapter 5 provides an overview of
tasks connected to analysis of multivariate networks, in particular.

Specifically for interaction, we need to evaluate additional factors. For
example, when is interaction supportive and when can it become a burden?
We need more evaluation of techniques supporting exploration and offering
guidance so that the users do not get “lost” in the data space.

Evaluation results and experience partly exist for networks. However, the
approaches and studies do not explicitly include and deal with multivariate
networks. We need to enhance our understanding around faceted exploration
along both multivariate and network data at the same time, since much of
what we know applies only to exploration within a single dimension.

Acknowledgements

The genesis and planning of this chapter took place at the Dagstuhl Seminar #13201

“Information Visualization – Towards Multivariate Network Visualization” held in

May 2013. We wish to thank Guy Melançon (Université Bordeaux 1, Bordeaux,

France) and Robert Kosara (Tableau Software, United States) for their useful con-

tributions during these discussions. Michael Wybrow was supported by the Aus-

tralian Research Council (ARC) Discovery Project grant DP110101390.

References

1. Appert, C., Beaudouin-Lafon, M., Mackay, W.E.: Context matters: Evaluating
interaction techniques with the CIS model. In: Fincher, S., Markopoulos, P.,
Moore, D., Ruddle, R. (eds.) People and Computers XVIII Design for Life, pp.
279–295. Springer, London (2005)

2. Archambault, D., Munzner, T., Auber, D.: GrouseFlocks: Steerable exploration
of graph hierarchy space. IEEE Transactions on Visualization and Computer
Graphics 14(4), 900–913 (2008)

3. Auber, D., Archambault, D., Bourqui, R., Lambert, A., Mathiaut, M., Mary,
P., Delest, M., Dubois, J.: Melançon, G.: The Tulip 3 Framework: A scalable
software library for information visualization applications based on relational
data. Technical Report RR-7860, INRIA (January 2012)

4. Becker, R.A., Cleveland, W.S.: Brushing scatterplots. Technometrics 29(2),
127–142 (1987)

5. Bertini, E., Rigamonti, M., Lalanne, D.: Extended excentric labeling. In: Pro-
ceedings of the 11th Eurographics / IEEE – VGTC Conference on Visualization,
EuroVis 2009, pp. 927–934. Eurographics Association, Aire-la-Ville (2009)

122 6 Interaction in the Visualization of Multivariate Networks

6. Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., Fekete, J.D.:
GraphDice: A system for exploring multivariate social networks. Computer
Graphics Forum 29(3), 863–872 (2010)

7. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and
magic lenses: the see-through interface. In: Proceedings of the 20th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
1993, pp. 73–80. ACM, New York (1993)

8. Blackwell, A.F., Britton, C., Cox, A.L., Green, T.R.G., Gurr, C.A., Kadoda,
G.F., Kutar, M., Loomes, M., Nehaniv, C.L., Petre, M., Roast, C., Roe, C.,
Wong, A., Young, R.M.: Cognitive dimensions of notations: Design tools for
cognitive technology. In: Beynon, M., Nehaniv, C.L., Dautenhahn, K. (eds.)
CT 2001. LNCS (LNAI), vol. 2117, pp. 325–341. Springer, Heidelberg (2001)

9. Buja, A., McDonald, J.A., Michalak, J., Stuetzle, W.: Interactive data visu-
alization using focusing and linking. In: Proceedings of the 2nd Conference
on Visualization, VIS 1991, pp. 156–163. IEEE Computer Society Press, Los
Alamitos (1991)

10. Card, S., Mackinlay, J., Shneiderman, B.: Readings in Information Visualiza-
tion: Using Vision to Think. Morgan Kaufmann Publishers (1999)

11. Collins, C., Carpendale, S.: VisLink: Revealing relationships amongst visual-
izations. IEEE Transactions on Visualization and Computer Graphics 13(6),
1192–1199 (2007)

12. Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Human-Computer Interaction, 3rd
edn. Prentice-Hall, Inc. (2003)

13. Dörk, M., Riche, N.H., Ramos, G., Dumais, S.: PivotPaths: Strolling through
faceted information spaces. IEEE Transactions on Visualization and Computer
Graphics 18(12), 2709–2718 (2012)

14. Dunne, C., Riche, N.H., Lee, B., Metoyer, R., Robertson, G.: GraphTrail: Ana-
lyzing large multivariate, heterogeneous networks while supporting exploration
history. In: Proceedings of the ACM Conference on Human Factors in Com-
puter Systems, pp. 1663–1672 (2012)

15. Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P., Woodward, M., Wybrow,
M.: Exploration of networks using overview+detail with constraint-based co-
operative layout. IEEE Transactions on Visualization and Computer Graph-
ics 14(6), 1293–1300 (2008)

16. Dwyer, T., Marriott, K., Wybrow, M.: Dunnart: A constraint-based network
diagram authoring tool. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS,
vol. 5417, pp. 420–431. Springer, Heidelberg (2009)

17. Elmqvist, N., Do, T.N., Goodell, H., Henry, N., Fekete, J.D.: ZAME: Interactive
large-scale graph visualization. In: Proceedings of the IEEE Pacific Symposium
on Visualization, pp. 215–222 (2008)

18. Elmqvist, N., Dragicevic, P., Fekete, J.D.: Rolling the dice: Multidimensional
visual exploration using scatterplot matrix navigation. IEEE Transactions on
Visualization and Computer Graphics 14(6), 1141–1148 (2008)

19. Elmqvist, N., Fekete, J.D.: Hierarchical aggregation for information visualiza-
tion: Overview, techniques, and design guidelines. IEEE Transactions on Visu-
alization and Computer Graphics 16(3), 439–454 (2010)

20. Fekete, J.D., Plaisant, C.: Excentric labeling: dynamic neighborhood labeling
for data visualization. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 1999, pp. 512–519. ACM, New York (1999)

21. Fitts, P.M., Peterson, J.R.: Information capacity of discrete motor responses.
Journal of Experimental Psychology 67, 103–112 (1964)

References 123

22. Ghani, S., Kwon, B.C., Lee, S., Yi, J.S., Elmqvist, N.: Visual analytics for
multimodal social network analysis: A design study with social scientists.
IEEE Transactions on Visualization and Computer Graphics 19(12), 2032–2041
(2013)

23. Gladisch, S., Schumann, H., Tominski, C.: Navigation recommendations for ex-
ploring hierarchical graphs. In: 9th International Symposium on Visual Com-
puting (ISVC 2013). Advances in Visual Computing, pp. 36–47. Springer (2013)

24. Gotz, D., Zhou, M.X.: Characterizing users’ visual analytic activity for insight
provenance. Information Visualization 8(1), 42–55 (2009)

25. Green, T.R.G.: Cognitive dimensions of notations. In: Sutcliffe, A., Macaulay,
L. (eds.) Proceedings of the 5th Conference of the British Computer Society,
Human-Computer Interaction Specialist Group - People and Computers V, pp.
443–460. Cambridge University Press, New York (1989)

26. Hachul, S., Jünger, M.: Large-graph layout algorithms at work: An experimen-
tal study. Journal of Graph Algorithms and Applications 11(2), 345–369 (2007)

27. van Ham, F., Perer, A.: Search, Show Context, Expand on Demand: Supporting
large graph exploration with degree-of-interest. IEEE Transactions on Visual-
ization and Computer Graphics 15(6), 953–960 (2009)

28. Heer, J., Boyd, D.: Vizster: Visualizing online social networks. In: IEEE Sym-
posium on Information Visualization, pp. 32–39 (2005)

29. Heer, J., Card, S.K.: DOITrees revisited: scalable, space-constrained visualiza-
tion of hierarchical data. In: Proceedings of the ACM Conference on Advanced
Visual Interfaces, pp. 421–424 (2004)

30. Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Commun.
ACM 55(4), 45–54 (2012)

31. Henry, N., Fekete, J.D.: MatrixExplorer: a dual-representation system to ex-
plore social networks. IEEE Transactions on Visualization and Computer
Graphics 12(5), 677–684 (2006)

32. Henry, N., Fekete, J.D., McGuffin, M.J.: NodeTrix: a hybrid visualization of
social networks. IEEE Transactions on Visualization and Computer Graph-
ics 13(6), 1302–1309 (2007)

33. Isenberg, P., Carpendale, S., Bezerianos, A., Henry, N., Fekete, J.D.: CoCoNut-
Trix: collaborative retrofitting for information visualization. IEEE Comput.
Graph. Appl. 29(5), 44–57 (2009)

34. Jakobsen, M.R., Sahlemariam Haile, Y., Knudsen, S., Hornbaek, K.: Informa-
tion visualization and proxemics: Design opportunities and empirical findings.
IEEE Transactions on Visualization and Computer Graphics 19(12), 2386–2395
(2013)

35. Jansen, Y., Dragicevic, P.: An interaction model for visualizations beyond the
desktop. IEEE Transactions on Visualization and Computer Graphics 19(12),
2396–2405 (2013)

36. Jusufi, I., Dingjie, Y., Kerren, A.: The Network Lens: Interactive exploration of
multivariate networks using visual filtering. In: Proceedings of the 14th Inter-
national Conference on Information Visualisation (IV 2010). pp. 35–42. IEEE
Computer Society (2010)

37. Jusufi, I., Kerren, A., Zimmer, B.: Multivariate network exploration with Jaun-
tyNets. In: Proceedings of the 17th International Conference on Information
Visualisation (IV 2013), pp. 19–27. IEEE Computer Society Press (2013)

124 6 Interaction in the Visualization of Multivariate Networks

38. Kadivar, N., Chen, V., Dunsmuir, D., Lee, E., Qian, C., Dill, J., Shaw, C.,
Woodbury, R.: Capturing and supporting the analysis process. In: IEEE Sym-
posium on Visual Analytics Science and Technology, VAST 2009, pp. 131–138
(2009)

39. Kerren, A., Schreiber, F.: Toward the role of interaction in visual analytics.
In: Proceedings of the 2012 Winter Simulation Conference (WSC 2012), pp.
420:1–420:13. IEEE Computer Society Press (2012)

40. Kruskal, J., Wish, M.: Multidimensional Scaling, Sage University papers,
vol. 11(07). SAGE Publications (1978)

41. Lima, M.: Visual Complexity: Mapping Patterns of Information. Princeton Ar-
chitectural Press (2011)

42. Liu, Z., Navathe, S.B., Stasko, J.T.: Network-based visual analysis of tabular
data. In: IEEE VAST, pp. 41–50 (2011)

43. May, T., Steiger, M., Davey, J., Kohlhammer, J.: Using signposts for navigation
in large graphs. Computer Graphics Forum 31(3), 985–994 (2012)

44. McGuffin, M.J., Jurisica, I.: Interaction techniques for selecting and manipu-
lating subgraphs in network visualizations. IEEE Transactions on Visualization
and Computer Graphics 15(6), 937–944 (2009)

45. Miller, G.A.: The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological Review 63, 81–97 (1956)

46. Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.D.: Topology-
aware navigation in large networks. In: Proceedings of the ACM Conference on
Human Factors in Computing Systems, pp. 2319–2328 (2009)

47. Munzner, T., Guimbretière, F., Tasiran, S., Zhang, L., Zhou, Y.: TreeJuxta-
poser: scalable tree comparison using focus+context with guaranteed visibil-
ity. In: ACM SIGGRAPH 2003 Papers, SIGGRAPH 2003, pp. 453–462. ACM
(2003)

48. Norman, D.A.: The design of everyday things. Basic Books (2002)
49. North, C., Chang, R., Endert, A., Dou, W., May, R., Pike, B., Fink, G.: Analytic

provenance: process+interaction+insight. In: Extended Abstracts of the ACM
Conference on Human Factors in Computing Systems, pp. 33–36 (2011)

50. Perlin, K., Fox, D.: Pad: an alternative approach to the computer interface.
In: Proceedings of the 20th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 1993, pp. 57–64. ACM, New York (1993)

51. Pike, W.A., Stasko, J., Chang, R., O’Connell, T.A.: The science of interaction.
Information Visualization 8(4), 263–274 (2009)

52. Pretorius, A.J., van Wijk, J.J.: Visual inspection of multivariate graphs. In:
Proceedings of the Eurographics / IEEE – VGTC Conference on Visualization,
pp. 967–974 (2008)

53. Robinson, A.H.: The thematic maps of Charles Joseph Minard. Imago
Mundi 21, 95–108 (1967)

54. Roth, R.E.: An empirically-derived taxonomy of interaction primitives for in-
teractive cartography and geovisualization. IEEE Transactions on Visualization
and Computer Graphics 19(12), 2356–2365 (2013)

55. Shneiderman, B.: Direct manipulation: A step beyond programming languages.
IEEE Computer 16(8), 57–69 (1983)

56. Shneiderman, B.: The eyes have it: a task by data type taxonomy for infor-
mation visualizations. In: Proc. Int. Symp. on Visual Languages, pp. 336–343
(1996)

57. Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE
Transactions on Visualization and Computer Graphics 12(5), 733–740 (2006)

References 125

58. Shneiderman, B., Plaisant, C.: Designing the User Interface – Strategies for
Effective Human-Computer Interaction, 5th edn. Addison-Wesley (2010)

59. Silva, C., Freire, J., Callahan, S.: Provenance for visualizations: Reproducibility
and beyond. Computing in Science Engineering 9(5), 82–89 (2007)

60. Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape 2.8:
new features for data integration and network visualization. Bioinformatics
27(3), 431–432 (2011)

61. Spenke, M., Beilken, C., Berlage, T.: FOCUS: the interactive table for product
comparison and selection. In: Proceedings of the 9th Annual ACM Symposium
on User Interface Software and Technology, UIST 1996, pp. 41–50. ACM, New
York (1996)

62. Tekušová, T., Kohlhammer, J.: Visual analysis and exploration of complex
corporate shareholder networks. In: Proceedings of the SPIE Conference on
Visualization and Data Analysis (VDA 2008), p. 68090F. International Society
for Optics and Photonics (2008)

63. Tominski, C., Abello, J., van Ham, F., Schumann, H.: Fisheye tree views and
lenses for graph visualization. In: Proceedings of the Internationl Conference
on Information Visualization, pp. 17–24 (2006)

64. Tu, Y., Shen, H.W.: Balloon focus: a seamless multi-focus+ context method for
treemaps. IEEE Transactions on Visualization and Computer Graphics 14(6),
1157–1164 (2008)

65. von Landesberger, T., Fiebig, S., Bremm, S., Kuijper, A., Fellner, D.: Inter-
action taxonomy for tracking of user actions in visual analytics applications.
In: Huang, W. (ed.) Handbook of Human-Centric Visualization, pp. 653–670.
Springer (2014)

66. von Landesberger, T., Bremm, S., Bernard, J., Schreck, T.: Smart query def-
inition for content-based search in large sets of graphs. In: Proceedings of
EuroVAST, pp. 7–12. European Association for Computer Graphics (Euro-
graphics), Eurographics Association, Goslar (2010)

67. von Landesberger, T., Görner, M., Rehner, R., Schreck, T.: A system for
interactive visual analysis of large graphs using motifs in graph editing and
aggregation. In: Proceedings of the Vision Modeling Visualization Workshop,
pp. 331–339 (2009)

68. von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.,
Fekete, J.D., Fellner, D.W.: Visual analysis of large graphs: State-of-the-art and
future research challenges. Computer Graphics Forum 30(6), 1719–1749 (2011)

69. Wattenberg, M.: Visual exploration of multivariate graphs. In: Proceedings of
the ACM Conference on Human Factors in Computing Systems, pp. 811–819
(2006)

70. Weaver, C.: Building highly-coordinated visualizations in Improvise. In: IEEE
Symposium on Information Visualization, pp. 159–166 (2004)

71. Wong, N., Carpendale, S., Greenberg, S.: Edgelens: An interactive method for
managing edge congestion in graphs. In: Proceedings of the IEEE Symposium
on Information Visualization (InfoVis 2003), pp. 51–58. IEEE (2003)

72. Yi, J.S., Kang, Y.A., Stasko, J.T., Jacko, J.A.: Toward a deeper understanding
of the role of interaction in information visualization. IEEE Transactions on
Visualization and Computer Graphics 13(6), 1224–1231 (2006)

7

Novel Visual Metaphors
for Multivariate Networks

Jonathan C. Roberts, Jing Yang, Oliver Kohlbacher, Matthew O. Ward,

and Michelle X. Zhou

As visualization researchers we are often in search of new designs. In partic-
ular, when the data is huge, and there are many variables, it is challenging
for the developer to imagine new designs that would be effective. As well as
imagining a new visual projection methodology, developers need to create de-
signs that enable users to explore, interact and perceive the data. While this
design challenge is a broad issue in the subject of data visualization, multi-
variate network data offers specific challenges to the developer and designer.
Users wish to understand network data that contains many nodes and edges,
with many variables at each node and on each edge. In fact, the graph visu-
alizations that are often used with this type of data contain many thousands
of nodes and edges and are complex to understand.

Consequently, traditional visualization methods soon breakdown. One so-
lution is to represent the data as a three-dimensional network. For instance,
colored spheres are located in a three-dimensional space, that are connected
to each other by straight lines. However these types of visualizations are inef-
fective, because they contain much occlusion. So it is therefore difficult for a
user to visually understand routes or connections that are located within the
networks. Certainly many clever clustering algorithms have been created, but
it is still demanding for users to perceive clusters in these huge and complex
networks.

Because of these challenges, users of these graphs often name them ‘birds
nest’, ‘hairballs’, ‘cat hairs’, or ‘balls of yarn’. They are a tangled and com-
plicated mess of lines and nodes. Labels form another challenge. Label every-
thing, and the screen becomes a mess of overlapping text, while label nothing
and the data could be meaningless.

All these issues provide a huge challenge for visualization designers. They
also offer a massive opportunity for designers to think differently. This leads
us to ponder many questions. How can developers create novel depictions
of multivariate network data? What design processes can be used to guide
the development of new visualization solutions? Where can inspiration come
from?

A. Kerren et al. (Eds.): Multivariate Network Visualization, LNCS 8380, pp. 127–150, 2014.

c© Springer International Publishing Switzerland 2014

128 7 Novel Visual Metaphors for Multivariate Networks

In particular, inspiration for novel design ideas can come from a variety
of sources. Psychologists and designers have had many discussions over the
ideation1 process. Their goals are to make the process more prescriptive and
predictable. Indeed, while these processes do provide a general framework,
there is no straightforward solution that will guarantee success. In addition,
their processes are universal: they are general processes that can be used to
help develop new design ideas on a range of topics.

Our goal, however, is to help develop new ideas for data visualization,
specifically for multivariate network data. Our ideas were initiated during
discussions that were held in the Dagstuhl Seminar #13201 [22] that re-
sulted in this book. Through sharing our experiences over the creation of
novel designs for multivariate network visualization, and from our knowledge
of visualizing multivariate network data, we realized that there are several
principles and concepts that can help designers. In fact, we noticed that there
were several inspirational designs that were metaphorical. We therefore gath-
ered and collated these concepts from our own experience of crafting solutions
for multivariate network visualization and also from the literature.

Consequently our hypothesis is that new ideas can be inspired by trans-
ferring ideas that occur in one domain to another, i.e., they can be formed
by looking at other ‘things’. These design ideas are metaphors. Often these
inspirational concepts are constructs; they are structures that we can ‘hook’
our visualization ideology onto.

In this chapter we focus on metaphors for the visualization of multivariate
network data. These are ‘ideas’, where aspects of the concepts are character-
istics of something else. They may be derivatives and therefore abstract, but
they are derived from something. Indeed they may appear to be extremely
‘far from the original’, or removed from their original inspiration, or may be
adaptations and therefore are not identical in every aspect to the object that
brought about the inspiration.

7.1 Background

7.1.1 Semantically Rich Data

Multivariate network data is semantically rich. It not only forms a connected
structure where nodes are linked to each other, but the nodes have several
attributes. This means that the network can be displayed in different config-
urations, i.e., there are several valid arrangements of the data. This not only
brings forth an opportunity for creativity, but also creates a design challenge
(i.e., how to display different configurations). We encourage the reader to
view the tasks chapter (5) for more information on tasks with multivariate
network data.

1 Ideation is the process of ‘idea generation’.

7.1 Background 129

There is an interesting phenomenon that is highlighted through prior work.
Most of the novel metaphors are designed for specific applications. For ex-
ample, PeopleGarden [48] and Chat Circles [44] target on-line interaction
environments such as web-based message boards and chat rooms; Thread
Arcs [21] was developed for email visualization; NetLens [19] and CiteVis [39]
aim to visualize content-actor networks such as citation networks. This phe-
nomenon suggests that the ideation of novel metaphors is often task-driven.

The different views certainly enable several tasks to be completed by the
user. Chapter 5 on tasks for multivariate network visualization expands these
features. In that chapter, Pretorius, Purchase and Stasko highlight that users
can locate, distinguish, categorize, cluster, (analyze) distributions, rank val-
ues, compare different parts of the network, associate and correlate. Inves-
tigating what tasks the user needs to perform is important. Indeed, it is
clear that specific visualizations enable the user to investigate different tasks.
Subsequently it may be that different metaphors enable various tasks to be
performed better.

Multivariate data is found in several fields. While in this chapter we do not
focus on specific data types, rather look across the subject domains, at mul-
tivariate network visualization solutions that utilize a metaphoric approach,
we refer the reader specifically to related chapters that do investigate specific
domains: Chap. 2 where solutions to visualize multivariate network data in
software engineering are discussed, and Chap. 4 where multivariate bioinfor-
matics network data is explored, and Chap. 3 that focuses on social media
data.

7.1.2 Where Ideas Come From?

Inspiration for a particular design can come from many sources. For instance,
Johnson [17] mentions that ideas develop by looking at lots of other ideas. It
is through looking at many different concepts that better ideas are formed.
In fact, inspiration can come from nature; consequently, bio-inspiration, or
bio-mimicry is a popular topic. Taking ideas from nature is commonly used
by designers.

Let’s work through an example. Consider a tree. A tree has a trunk and
off this main upright big branches are formed. These in turn generate smaller
branches then smaller branches still, and finally leaves. This gives inspira-
tion to many ideas in computing. It is a hierarchy. It is a natural structure.
It has many facets. Subsequently, there are many tree-like objects in com-
puting in general, and visualization specifically. For example, binary trees as
data-structures [34], quad-trees in computer graphics [34], Card’s cone-tree
hierarchical visualization technique [32], or the treemaps [37] visualization
method. Whether the visualization designer explicitly thought of trees when
they were designing their visualization is a matter for discussion. However
trees are ubiquitous, and would have been in the subconscious mind, whether
or not they provided a direct inspiration.

130 7 Novel Visual Metaphors for Multivariate Networks

Let us take the ‘tree’ metaphor further. Trees are not just structural phe-
nomena, there are many other aspects of trees as a metaphor that could
provide inspiration. For instance, trees are large and long-lived plants that
compete for light, they drop seeds that then can grow into other trees, and
many trees often grow together into a forest. The forest has an ecosystem
and therefore other ‘life’ depends on the trees. On the ground, fallen leaves
and decaying branches provide habitat, while trees give protection for ani-
mals and wind protection for humans and buildings. Fungi and bacteria also
rely upon trees. They provide food for animals, their sap can be tapped for
food and made into products, and the trees have many different parts: roots,
branches, bark, leaves, and so on. Trees don’t grow constantly throughout the
year. They often drop their leaves in the fall and grow new buds in spring;
the speed of growth depends on the growing conditions of that year (hence
dendrochronology is possible).

So thinking deep and thinking comprehensively about a topic can engender
different and more ideas. For instance, we may think further about depen-
dency, where perhaps aspects of a visualization may depend on others. In
fact, this happens in a parallel coordinate plot, where the perception of the
data from one axis depends on it’s neighbors. Perhaps we may then think how
we can design a parallel coordinate plot that does not have this dependency.
Take another tree-like facet: the parts of a tree. Roots and branches are sim-
ilar, yet opposites. The root structure is a hierarchy that goes downwards in
search of water, while the leaves are on the stems that grow upwards in search
of light. A designer could consider a tree-like visualization in two parts. Per-
haps statistical information of a population could be displayed in a tree, with
female participants displayed upwards, and male downwards. This would al-
low comparison of male and females, and many subjects could be represented
by a forest. Finally, tree rings could be used as a direct metaphor, with time
progressing outward from the centre, and the width of the rings dependent
on another variable.

There is a clear link between metaphors and visualization. Not only do the
metaphors drive inspiration, but they are used in comprehension. Ziemkiewicz
and Kosara [54] suggested that the “process of understanding a visualization
therefore involves an interaction between these external visual metaphors
and the user’s internal knowledge representations”. Their work proposes that
metaphors work both ways: they both inspire, and are needed for interpreta-
tion. Their work also used trees as an exemplar metaphor.

Just by thinking about a tree in more depth, we can start to imagine
how metaphors can help. In fact, this is lateral thinking [9]; it is not only a
matter of considering the principle concept (a tree, in this case), but delv-
ing deeper into the concepts, and considering processes, connections, colors,
environment, and so on, as well as the structures of these concepts. As we
shall see, ideas are formed through a long study, careful consideration, join-
ing concepts together, looking at opposites, and so on, and rarely form as a
eureka moment.

7.1 Background 131

Metaphoric concepts are not the only method of ideation. Sketching and
doodling are also important techniques that are used to create and craft new
visualization designs [31]. Ideas can be easily explored through sketching. In
fact, merely the act of putting the ideas on paper can help the designer to
hone his ideas. Sketching acts as a refinement methodology. Users can share
thoughts and can easily adapt these ideas.

Even discovering solutions that don’t work can help inspire solutions that
do work. These unworkable ‘solutions’ often act as a catalyst that inspire a
better result. This is similar to another concept generation method: provoca-
tion. Johnson [17] suggests finding dissimilar ideas and joining them together;
through this joining up of different thoughts new ideas can be formed. de
Bono, in his book “Six Thinking Hats” [8], under ‘green-hat thinking’, sug-
gests choosing a random number for a page in a dictionary, and selecting
a random word on that page. That random word can be used to provoke
different solutions and novel ideas.

Ideas and solutions are sometimes formed from disasters, or mishaps, or
errors. For example, Wiseman [47] tells the story of PostIt-noteTM glue being
an accident, or commonly referenced as a ‘solution without a problem’, and
the discovery of penicillin, by Alexander Fleming in 1928, was serendipitous.
Each of these ideas were originally accidents that became answers to specific
problems over time.

7.1.3 The Ideation Process

In one respect, design-work is a journey. Ideas come and go, some ideas stick,
are more memorable, others are easy to understand and maybe easier to
communicate. Ideas become refined by cognition and discussion with other
researchers; they are honed by mulling them over and are extended through
interaction with people, or through different personal experiences.

Good ideas occur by slow and careful thought over a long period of time.
Johnson, in his book “Where Good Ideas Come From” [17] talks about ‘slow
hunches’. Often people cite a ‘eureka’ moment as the derivation of their idea,
however, while a single instance can bring a specific idea to the fore, in
reality the idea is usually something that has been considered for a while by
the designer, and draws on their previous experiences and knowledge.

While each of these methods offers a solution to the thinker when he or she
is stuck, we need a process to follow to create new ideas in a systematic way.
Young [52] in his seminal book explains a succinct process of producing ideas:
first gather materials both specific and general. Second, think, make connec-
tions and write down every idea. Third, relax. Go do something else and let
your subconscious work on the problem. As soon as the idea appears, write
it down. Fourth, rework the idea. Refine the concept and make it appropriate
for the purpose. Expand and contract the idea to make it robust.

De Bono’s [9] ‘Lateral thinking’ method includes many of these techniques.
It consists of seven techniques: consider alternatives and look beyond the

132 7 Novel Visual Metaphors for Multivariate Networks

ideas. Focus on your problem and discipline your thoughts. Challenge your-
self, and try to break away from traditional thinking. Use un-connected ideas,
to provide a random entry to new ones. Use provocation statements to
engender and develop new ideas. Note-take, record and journal all your ideas
so as to harvest the ideas. Know how to treat your ideas and fit them into
the place where they are required.

In visualization specifically a few models have been presented, including
Munzner’s [28] Nested Model for Visualization Design and Validation, and
Roberts’ Five Design Sheet (FdS) method [31]. Whatever the process that is
followed, it is clear that lateral thinking and inspiration from metaphors are
beneficial to the design process.

7.1.4 The Visual Mapping Process

The ideation process goes hand-in-hand with the any software development
process. As ideas change and develop through reflection and contemplation, so
does the software develop through many iterations. The metaphors and orig-
inal ideas change as they are implemented into a software solution. Indeed,
software is often developed through an iterative strategy. In Agile software
development methodologies, mixed teams of software developers, clients and
end-users, create solutions in an iterative and incremental way. This is a sen-
sible development strategy. Not only are ideas refined when they are sketched,
and written down, or through consideration, but the ideas are refined when
they get developed and used by a user [31].

Particularly, the effectiveness of the metaphor may be understood when
the user actually uses the tool to perform a task. By changing the metaphor
in small or even major ways, it may become more effective. Consequently,
it is a good strategy to get end-users involved from the very start of the
process [28]. Then the created software will be better suited to the needs of
the users. Users can test the solution to see if they understand the metaphor,
and whether they can perceive the data correctly.

Through this iterative ideation and development process, there are many
practical design choices that the developer (or team) need to make. For ex-
ample, developers need to ascertain which structures and components of the
metaphor to use? What is the task the user is to perform? How to interpret
the metaphor into a visualization tool that would perform a given task? What
parameters to include? What sub-structures of the metaphor to use? What
retinal variables to use to depict the data? etc.

Consequently, developers need to interpret the metaphor to fit their needs.
They have to translate the concepts of the metaphor into a fully functional
and working visualization tool. It may be that the developer chooses a certain
aspect of the metaphor for their purpose, or adapts it for their need. They
also need to ascertain how different components, structures or sub-elements
of the metaphor represent the data, and how it is mapped to the retinal
variables. The data is then encoded by adapting the properties of the retinal

7.1 Background 133

variables. For instance, a person could be represented by a branch of a tree,
the length of their life is encoded as the length of that branch. Children are
represented by other sub branches.

As developers, we need to think about the data, how the metaphor is
understood by a user, and finally how the user interacts and changes the vi-
sualization. Therefore there are several concepts: data transformation, visual
transformation, and visual mapping that developers need to consider.

Data Transformation

There are many different types and configurations of datasets. Some are struc-
tured and dense, while other data could be sparse or unstructured. Add in
free text fields or formatted text and it is clear that users’ information varies
a lot among different applications. Being aware of this variation and under-
standing the tasks of the user for a particular application is important. These
aspects change the requirements on the data transformation.

Some tasks require summaries to be generated, where lots of data can be
summarized into a few values. In this case, non-node link diagram metaphors
become a natural choice for non-node-link essential information units. It is
possible also to imagine that these aggregated values could be mapped to
aspects of objects that take up more real-estate (for instance). Indeed, such
data aggregations often occur over time, and consequently the summed-data
could be visualized as rings of a tree; where there is a linear progression from
the early rings (the center ones) to the external rings.

Other tasks require that individual items in the data remain intact in
the visualization depiction. The data transformation therefore is 1:1. In this
situation, the identity of the individual entities need to be directly passed
through to the mapping process, where individual items can be mapped to
individual entities of the visualization. In other data, sub-structures or sub-
graphs may exist in the data. Consequently, metaphors that reflect these
constructs should be designed.

For example, PeopleGarden [48] aims to help new users find appropriate on-
line interaction groups to participate in and people to interact with. To achieve
this goal, data portraits, namely the abstract representations of interaction his-
tories of individual users, are identified as essential information units. Novel
visual metaphors are then inspired by the data model. In particular, a flower
metaphor is used to represent the data portraits, and a gardenmetaphor is used
to combine the portraits to represent an on-line environment.

Visualization Transformation

When we select visual metaphors for representing the information units iden-
tified in the previous step, many issues need to be considered, such as: Are
the metaphors familiar to the target users? If unfamiliar metaphors are used,
how significant is the learning curve? Is the mapping from the information

134 7 Novel Visual Metaphors for Multivariate Networks

units to the metaphors consistent with common knowledge of the users? If
it is inconsistent with common knowledge, to what extent will it hinder the
users from effectively conducting the tasks?

For instance, Chat Circles [44] considers the social presence and activities
of individuals as essential information for conveying the dynamics of on-
line synchronous conversation. It therefore maps individuals to circles whose
visual attributes represent their identities and activities. Moreover, a hearing
range is defined for a user and only conversations of people within the hearing
range are visible in the visualization. These metaphors mimic a cocktail party,
which is familiar, and the mapping is consistent with common knowledge of
on-line conversation users. Therefore, the resulting visualization is intuitive
to the users.

Visual Mapping Transformation

Most visualizations are interactive, which means that users can interact with
the visual metaphors to conduct tasks. The ideation of novel metaphors can
happen when answering the following questions: How can the users manipu-
late the visual objects? How will the visual objects react to user input?

Wise [46] explicitly describes this method as an “ecological” approach.
There is an intimate relationship between the human being and their envi-
ronment; all our senses work together to gain a holistic perception of what is
being viewed. This approach is inspired by Gibson’s view of perception [14],
where there is an intimate relationship between a human being and their
environment. Some concepts afford certain uses. For instance, a bowl is con-
cave and therefore it can hold water and be used to drink from. Likewise, the
positions of the leaves on a tree depend on the structure of the branches, and
other branches are subordinate to the trunk. So, if this structure is used for
the visualization, a user may assume a similar relationship to the data. A fun
example is the Collapsible Cylindrical Trees (CCT) [7]. CCT uses a telescope
metaphor to produce a compact hierarchy visualization for fast navigation of
web page hierarchies. The descendants of a node are represented by a cylin-
der. Users can pull out/collapse a cylinder into its parent cylinder to roll
up/drill down the hierarchy. They can also rotate a cylinder to browse the
siblings.

Indeed, the tree metaphor is a powerful design structure, and provides
many levels of detail. For instance, as a user moves away from a tree, on the
one hand, individual leaves are difficult to observe, but on the other hand, the
overall shape of the tree can be better seen. Perception changes as the user
moves towards or away from an object. This concept is neatly explained by
Gibson, who writes “From an ecological point of view, the color of a surface is
relative to the colors of adjacent surfaces; it is not an absolute color . . . For the
natural environment is an aggregate of substances . . . the colors are not seen
separately, as stimuli, but together as an arrangement” [14]. It is clear that
human beings have developed a succinct model of the world, from thousands

7.2 Classes of Metaphors 135

Man-made

Natural
(nature inspired)

Visualization
inspired

Non-physical

Sculptures Maps Buildings

Scatter plot

Matrix
representations

Graphical user
interfaces

Parallel coord.
plots

Workflow or
process

Events Stories

Word clouds

Sounds/
music

Flow of people
moving

Trees

Fog

Eco-systems

Rivers

Animals

Galaxies

Fig. 7.1. We classify the metaphors into four types: Natural, non-physical, man-
made and visualization inspired

of years of existence, and by being nurtured on Earth. This model can help
visualization scientists develop succinct and effective visualizations. We can
assume that a user will know the concepts (and indeed the model) of the
natural world (say) and utilize this knowledge to immediately understand how
we have transformed the data from an unseen version, into an appropriate
visual mapping.

7.2 Classes of Metaphors

We group the metaphors into four categories: natural, non-physical, man-
made and visualization inspired (see Fig. 7.1). While, these classifications
provide a useful structure for this chapter, they can also be a mechanism for
ideas. They can permit designers to ‘think laterally’ about different designs.
For instance, a developer could ideate a visualization design ‘inspired by a
galaxy’ and then provoke a different design by considering how the data could
be displayed by a building.

7.2.1 Nature-Inspired

Many researchers have used objects from nature as inspiration for multivari-
ate data and networks. The natural world contains very many concepts that
could be used to ideate; these ideas range over massive scales from (say) the

136 7 Novel Visual Metaphors for Multivariate Networks

formation of galaxies and movement of tectonic plates to the growth of mold
or the veins of a leaf. We use the term natural to represent things of the phys-
ical universe. For instance, we include geology and the Earth itself, wildlife
that lives on our planet, and also some processes (such as weather) that affects
the environments in which we live. Thus we include physical objects such as
oil, sand, water, rocks, animals or rain, and also inanimate objects, such as
wind, thunder, magnetism (as the Earth’s magnetic field), gravity or weather.
We exclude objects that have been substantially adapted by humans, such as
plastics or glass, which we classify and include in the “man-made” category
(Sect. 7.3), and also exclude non-physical processes that are not attributed
to nature. For instance, the movement of humans through a building would
be included in the “non-physical” category.

Natural metaphors offer convenient features that are often desirable to pro-
duce effective network visualizations. Nature is efficient. It utilizes the space
economically. For instance, in a forest new trees spring up when old trees fall.
They appear because light floods in from the canopy onto the forest floor, en-
couraging seeds that have fallen to sprout. Nature is also competitive. These
new trees need to reach to the canopy roof as fast as they can. Nature is thus
‘greedy’. The fittest and the fastest, or the strongest survive. In visualization
we could imagine that the strongest cues or most representative data (to some
metric) are pushed to the top of the visualization display, making them more
noticeable. Nature is efficient. For instance, animals forage for food, they move
in an efficient manner and cover the least amount of distance so to conserve en-
ergy. Nature utilizes the space efficiently. For instance, grasses grow to fill the
space. Likewise, we can imagine that these positive effects can be used to make
efficient desired space-filling techniques in visualization. Nature has therefore
inspired several network visualizations, as discussed below.

Flowers provide a good source of inspiration for network visualization. Not
only are they hierarchical, but also they are beautiful. For example, Chau [5]
developed a flower metaphor for displaying web search results. The petals
correspond to the number of key words, the leaves convey the number of
outgoing links, the stem represents the length of the document, and the sup-
porting ground indicates the number of incoming links. User studies showed
that for complex data, the glyph outperformed a numeric based display. In
fact, many other researchers have used the flower metaphor. Xiong and Do-
nath [48] showed user interactions over time on a web messaging board, with
time conveyed by the angle of the flower petal and color conveying the type
of message. The stem length indicates how long a user has been at the mes-
sage board. Zhu [53] used flower metaphors for both the people involved in
communications as well as the discussion threads, while Van Loocke [43] used
fractals to generate flowers and trees for multivariate binary data.

Grasses have also given inspiration. Although the examples of the Drift-
Weed metaphor [33] were not on network data, this work provides a good
example of using nature to inspire a visual metaphor for interactive analy-
sis of multivariate data. The work enables different variables to be displayed

7.2 Classes of Metaphors 137

along a line, with piecewise segments. The data is allocated onto the angles
and lengths of the segments. Although individual grasses are difficult to un-
derstand, the overall effect appears as a single structure: a conglomeration of
individual elements making one textured object. The overall texture object
provides the user with an understanding of how the data trends.

As mentioned earlier, trees and plants have been used as inspiration for
data visualization for many years. In 1991, Robertson, Mackinlay and Card
presented ‘Cone trees’ [32]. Their seminal work visualized 10,000 files in the
Unix file system using a vertical set of labels connected like an idealized three-
dimensional tree. Their description of the system also included appropriate
metaphoric language, writing “we provide operations for pruning and growing
the view of a tree, collectively called gardening operations”. In 2004, Shen
and Eades [36] use a direct tree metaphor, in their MoneyTree system, where
the trunk of the tree displaying trade volume and the leaves showing trade
value, as shown in Fig. 7.2. Theron [42] used the rings of a tree to convey a
hierarchical temporal data set. Data points are placed in rings based on their
time stamp, and lines connect points that are part of the same branch of the
hierarchy. While, recently Ma [25] used a tree as an egocentric depiction of a
social network, where a 2D tree is divided left and right by the gender of the
tree/person’s contacts. The height of branches correspond to the age of the
contact. Each leaf is a contact, and its position along the smallest branches
indicates the date of the contact. Color and size of leaves can communicate
additional information, as well as circular fruit along the small branches (see
Fig. 7.3).

One of the more interesting dynamic behaviors one sees in nature is the
flocking of birds, shoaling of fish, swarming of insects and herding with ani-
mals. Several researchers have used this notion to convey multivariate data
and its relations. It is possible to utilize simple rules, such as separation, co-
hesion and alignment to create these behaviors. Vande Moere [27] used stan-
dard rules for flocking (collision avoidance, velocity matching, flock centering)
and data relations (data similarity and dissimilarity) to render animations
of stock market data over a period of time. Surfaces were wrapped around
obvious clusters to both separate groups with different behavior and to ex-
pose outliers. Similarly, Yang et al. [51] use a flocking algorithm to examine
networks of computers to help detect intrusions and other unusual behaviors.
One view shows the topology of the network, and a second view flocks the
network nodes based on a set of attributes associated with behavior and per-
formance. Tekusova et al. [41] also focused on dynamics of stock market data.
They combined flocking rules with data relations, much like Vande Moere.
People flock as well, though in addition to the normal flocking rules, each
individual may have a specific goal. Braun et al. [3] created a simulation of
crowd motion that captures these two distinct types of goals (group, individ-
ual). They show how a crowd of virtual people can eventually exit a room
with a single door. While these examples are not strictly used to inspire novel

138 7 Novel Visual Metaphors for Multivariate Networks

Fig. 7.2. An example of MoneyTree, from Shen and Eades [36]. Top figure showing
data from the 38th August 2003 at 10.50am, while the lower figure shows the stock
market situation one hour later.

visualization designs, they do show that more elaborate rules can be used to
drive the dynamics of the visualization.

Natural landscapes have inspired many visualization designs. Fabrikand,
Montello and Mark [11] provide a useful critical analysis of different land-
scapes of the geographic domain, and we refer the reader to this work for a
wider look at the use of landscape metaphors for information visualization in
general. Designs that are positioned over a landscape provide an approach-
able metaphor for the user. Novice (and expert) users instantly understand

7.2 Classes of Metaphors 139

Fig. 7.3. An example of a ContactTree, showing the contacts of a single individual
[25]

the metaphor and intuitively know how the information is presented in the
space. They can start to make judgements over the position of data elements
because position and nearness criteria are encoded in the information. In
fact, many of the data presentations are naturally non-spatial. Developers
are merely using this metaphor as a convenient way to display the data [38].

Wise [46], when referring to text visualization, names this an “ecological
approach”. There is a natural relationship between different parts (or organ-
isms) to each other, and in the environment. In his work, the landscapes
emerge because of the data, not because a designer has stipulated that the
landscape will be of a particular form, but that the designer has encoded rules
that determines the type of the visual depiction. For instance, the clusters
with his Galaxies view, or the mountains of the ThemeScapeTM visualiza-
tion [46] are created using self-organizing maps, which were trained on a sam-
ple set of documents. For network data specifically, Gansner et al. [12] display
author collaboration data on a map layout. Xu et al. [49] present GraphScape,
which they used to visualize multivariate network data of protein-protein in-
teractions. Finally, the data from the development of large software systems
has been displayed using the landscape metaphor. Balzer et al. say that “The
familiar landscape metaphor facilitates intuitive navigation and comprehen-
sion [and their hierarchical approach enables] a clear representation of the
relationships between the subsystems” [1].

It is clear that ‘landscape’ is a useful metaphor. In fact, secondary con-
cepts such as water flow, or the natural flow and movement of something, has
inspired developers. ThemeRiver represents an obvious example that follows
a river metaphor. In their paper, Havre et al. [15] present a visualization

140 7 Novel Visual Metaphors for Multivariate Networks

technique that displays changes overtime, where larger effects are displayed
in a wider bar. Symmetry is used to make the visualization more attractive.
In their seminal paper, they use metaphoric language, describing the visu-
alization as “directed flow from left to right”, and “[the] width, of the river
indicates a collective strength of the selected themes”.

7.2.2 Non-physical

The idea of using rivers and flowing water leads us naturally to “non-physical”
metaphors. We interpret the meaning of non-physical as something that does
not contain physical matter; something that lacks substance and cannot be
touched. In fact, many of the metaphors that we have already discussed,
and the concepts that we are about to discuss in following chapters, have
a physical space and are tangible in some way. They may be geographical
(such as the nature inspired metaphors in Sect. 7.2.1), or created from man-
made structures (in the next Sect. 7.3) or even visually tangible from the
visualization-inspired section (Sect. 7.4). However there are many concepts
that do not have a physical presence, which we consider in this section.

Let us consider our senses. The classic categorization is to describe five
basic senses: vision, touch (including kinaesthetic and tactile), smell, taste,
and sound. Obviously ‘touch’ is something physical, however let’s also include
vision as an artifact that is tangible (albeit on a computer screen). This
leaves us with smell, taste and sound. Each of these senses encourage us to
think emotionally. We could imagine therefore using these senses to inspire
designs. For instance, consider being immersed in a soundscape of high quality
audio sounds. The sounds could move around from the left to the right. This
swaying could inspire a fluid visualization style where fluid is shown to flow
around a network. We could imagine also ideas that were inspired from eating
different foods. Carrots are crunchy, while mashed potatoes are smooth. We
could imagine a visualization type that has smooth lines to represent one
variable with angular parts mapped to another parameter. Before the reader
concludes that the authors have lost sight of their objectives, we remind
the reader of Eduard de Bono’s [9] ‘Lateral thinking’, especially regarding
provocation.

Other non-physical concepts that may be useful include: abstract processes,
events, storytelling, motion of objects, and magnetism. In fact, storytelling is
a good example of a useful non-physical metaphor. Stories are succinct forms
of communication that are often interesting to hear, and therefore can be more
memorable and easier to assimilate than other forms of communication. Ger-
shon discusses what storytelling can do for visualization [13], suggesting that
visualization is about finding effective visual metaphors; especially when pre-
senting visualization results, stories can enable the developer to build the pic-
ture through a series of visualizations. Some visualizations are better to set the
mood, place and time, while others build the story from disparate pieces of in-
formation to a final conclusion [13]. This style of visualization has been used to

7.3 Man-Made 141

display different types of data. For instance,Walker et al. [45] use a comic-style
storyboard to layout visualizations of microblog data. Segel and Heer [35] pro-
vide a systematic review of narrative visualization characterizing the designs
with the narrative flow determined by the graphical interface and story discov-
ery. Different stories appear from different users. In Chat Circles, Viegas and
Donath [44] utilize simple metaphors or chatrooms to convey different social
interactions from the online data.

7.3 Man-Made

It is easy to imagine that many man-made objects can be inspirational for
network visualizations. Man-made objects contain many convenient and use-
ful properties that can provide inspiration for visualization designs.

Let’s start by looking at man-made structures and buildings. Designs for
these objects benefit from properties of symmetry, regularity, repetition and
recursion (self similarity). For instance, consider the design and construc-
tion of a modern house. These type of dwelling places are often built on a
rectangular plan, with windows placed symmetrically: with windows on the
ground-floor spaced directly below the windows on the first-floor. The brick-
work is organized in regular and consistent patterns, and town housing or
estates are constructed by a single contractor using only a few designs: the
designs are used over and over again. Rooms within the buildings provide sep-
aration of content and often have specific roles (kitchen to cook, living area to
relax, bedroom to sleep). 3D/Rooms by Card, Mackinlay and Robertson puts
this idea into practice [4]. Each room holds different types of data. Users see
an overview of all the rooms and choose where to go; they can locate objects
of interest and walk through the rooms to another room.

Put many buildings and houses together and they form cities with many
different types of buildings, some low and others very high. Earlier, in
Sect. 7.2.1, we reflected on natural landscapes, but likewise man-made city
landscapes and urban metaphors provide a useful structure to inspire net-
work visualization designs. Such cityscapes have inspired several visualiza-
tion designers. For example, Eick et al. [10] used the city metaphor to dis-
play software visualization of the quantity of changes indexed by developer
in columns and module in rows, with a result that looks like a 3D bar-chart
arrangement, while Keskin and Vogelmann use the cityscape metaphor to
visualize hierarchical network data [23]. Finally the visualizations in the ‘Se-
lective Dynamic Manipulation of Visualizations’ work by Chuah et al. [6] are
shown as skyscrapers on a landscape.

Other man-made objects have caught the imagination of the visualization
designer. Threads in fibers have inspired email visualization methods [21],
and telescopes have inspired cylindrical visualization of hierarchical data [7].

Many of these visualizations are artistic. In fact, art, in general, and specif-
ically artistic media such as oil paints and their brush strokes, have inspired

142 7 Novel Visual Metaphors for Multivariate Networks

many fluid flow visualization methods [24]. In addition to fluid flow visual-
ization, various researchers have discussed the use of textures to represent
multivariate data. For instance Interrante [16] discusses how different tex-
tures from paints can be used to depict multivariate data on a map. Different
styles of illustration and drawings have been used in visualization, especially
scientific visualization. For instance, Joshi et al. [18] use illustrative tech-
niques inspired from art to display hurricane data, or caricaturistic-inspired
visualization [30].

It is not only man-made physical objects, but also man-made non-physical
processes can be inspirational. Pang uses a spray-can metaphor (spray, cut
etc.) to interact with the visualization [29] while annealing in metallurgy (the
process of heating and controlled cooling of the material to reduce artifacts)
has inspired graph drawing algorithms to layout multivariate network data.

7.4 Visualization-Inspired

Finally, it is possible to conceive that visualization designs can be inspired by
other visual designs. In sv3D [26], the authors write: “The sv3D Framework is
a software visualization framework that builds on the SeeSoft metaphor”. In
this section we focus on three specific examples: glyphs, lists, and coordinated
tag clouds and pixel oriented displays.

Brandes and Nick [2] work on exploring the evolution of dyadic (i.e.,
pairwise) relations in longitudinal social networks capturing asymmetric
relations. Since dyadic evolution is the focus of the study, they propose
gestaltlines, an intuitive visual metaphor to convey an entire dyadic evolution.
The gestaltlines are gestalt-based use of glyphs in sparklines for multivariate
sequences. They form a character-like visualization for each dyad and thus
can be integrated into a matrix representation of all dyads in the network.
The introduction of the glyph metaphor in this example allows depicting a
longitudinal social network using a single, static image.

Jigsaw [40] is a visual analytics system aiming at helping analysts inves-
tigate the connections between entities across a report collection. The se-
mantics of the entities are considered important, and an effective strategy
toward the goal is to identify entities of interest and then conduct progres-
sive exploration starting from them. A connected list metaphor is employed
to achieve these requirements. In the List View of Jigsaw (see Fig. 7.4 for an
example), the entities are organized into orderable lists by type. The links are
displayed upon requests: after a user selects entities from the lists, all entities
connected to them are highlighted and links are drawn between connected
entities in adjacent lists. This intuitive view provides several functions that
are critical for the goal: users can browse entities of a desired type, sorted
either alphabetically or by frequency of appearance in different reports, to
find interesting entities; they can investigate the immediate context of the
interesting entities through interactive selections on the lists. It is difficult to

7.4 Visualization-Inspired 143

Fig. 7.4. An example of the List View of Jigsaw [40], showing the keywords,
authors, and years relevant to Matthew Ward in a collection of InfoVis and VAST
papers

conduct those tasks, especially the browsing task, on a node-link diagram,
since the semantic contents will quickly clutter the display when the number
of entities grows large.

Using tag clouds and pixel-oriented techniques, PIWI [50] helps analysts
conduct Community-Related Tasks (CRT) for graphs with text labels. Exam-
ples of CRT include browsing the text labels of member nodes of many com-
munities, exploring the relationships among multiple communities, analyzing
the relationships between node attributes and the community structure, and
selecting nodes according to attributes and the community structure. Since
PIWI has a clear focus on community-related tasks, it picks communities
as its information units. Two familiar visualization metaphors, namely tag
clouds and pixel-oriented techniques [20], are then assembled to convey the
semantics, structural, and attribute information of a graph (see Fig. 7.5 for
an example). In particular, a community is represented by a tag cloud of text
labels of its member nodes and a set of pixel-oriented node plots revealing the
neighborhood information of the community. Thus, a graph is untangled into
a set of communities that can be displayed row by row in a scrollable window.

144 7 Novel Visual Metaphors for Multivariate Networks

Fig. 7.5. An example of PIWI [50]. The members and direct neighbors of a research
community in a co-author network are highlighted in colorful tags. The tag cloud
in a row displays the names of researchers in a community. The node plots besides
the tag cloud depict the neighborhood information of the community and can be
used for scalable selection.

In this way, a graph with thousands of labeled nodes becomes readable. The
node attributes are also displayed using pixel-oriented node plots. By allow-
ing users to conduct selections based on the node plots and integrate multiple
selection results through Boolean operations, the users can conduct selection
based on complex structural and attribute criteria. Since the users can inter-
actively construct new communities and explore their contexts, progressive
exploration is then supported. The novel metaphor of PIWI is inspired by
the identification of communities as the essential information units according
to the target tasks.

7.5 Proposed New Ideas

An effective metaphor is one in which a viewer can grasp instinctively how
the information is being conveyed. Thus in considering new metaphors for
multivariate graphs and trees we need to examine the human experience
to find instances where the embedding of node and link/relation attributes
requires little training. Below we outline a number of possibilities that, to the
best of our knowledge, have not been used for this purpose. Clearly, many
others exist; this is just a sampling based on the brainstorming of the authors.

7.5 Proposed New Ideas 145

7.5.1 Graphs/Networks

Many scenes we observe on a daily basis or have an intuitive feel for can be
used to convey attributes of a multivariate network:

Students walking to class: For those of us in academia, a common scene is
that of students moving along paths as they move from class to class.
Each student can represent a node, and those nodes can have numerous
attributes, such as gender, race, size, clothing color/style, hair color/style,
and so on. They can move along paths (one link in, one link out) or stand
at junctions (directional or non-directional links). The links themselves
can convey relation attributes, using color, width, material type, and
others to represent attribute values.

Cars on streets: Similar to students on paths, cars on streets is a regular phe-
nomena that can be used for multivariate network visualization. Clearly
the cars are nodes and the roads are links, with numerous attributes
onto which data and relations can be mapped. To better convey the
street metaphor, the dominant layout should be a grid, though as can
be found in most cities, there are often roads that run diagonal to a
grid or even form an overlay to the grid. Nodes and links that change
their attributes are easily accommodated, though the addition/removal
of nodes may result in a change in topology that might not be easy to
incorporate. Removal of links would be comparable to closing a road due
to construction.

Caves: While a cave requires the user to incrementally build an understand-
ing of the entire graph/network, many games are based on the notion
of exploring cave-like environments to discover connectivity and identify
features of both nodes (rooms in the cave) and links (features of the tun-
nel). Node features could include the area or shape of a room, the height
of the ceiling, or markings on the walls or floor. Link attributes could
be the width or height of the tunnel, the texture of the floor or walls,
the existence/frequency of lights, and so on. An interesting experiment
would be to ascertain whether a graph learned via cave exploration is
easier to remember than one shown as a traditional node-link diagram,
given comparable time to explore it.

7.5.2 Hierarchies

Hierarchies/trees are also a common phenomena in what we see on a regular
basis, and thus could be a vehicle for conveying a multivariate hierarchy.
Some examples include:

Towns and buildings: Most cities and towns are laid out in hierarchies; a
city contains neighborhoods or zip code areas, and these in turn con-
sist of blocks bounded by streets. Buildings on these blocks can also be
seen as hierarchies, as each building can have multiple floors, and each

146 7 Novel Visual Metaphors for Multivariate Networks

Fig. 7.6. Some images of real scenes that might be usable to convey multivariate
networks. All images courtesy of Wikimedia Commons.

floor can have multiple rooms. Rooms can contain many objects (e.g.,
furniture) that can be used to convey node information at the terminus
of the hierarchy. Data for intermediate nodes and the links can be em-
bedded in the hierarchy, using color, size, shape, and textures, for exam-
ple. For deeper hierarchies, you can envision states containing multiple
cities/towns, countries containing many states (different sizes, shapes,
and positions), and countries forming nodes of a hierarchy rooted at the
continent level. Clearly a single visualization could not adequately convey
all these levels, but it would be relatively simple to provide navigation
that would allow users to drill-down and roll-up for different levels of
detail. Aggregation or summarization methods could be used to indicate
the amount of information contained in the lower levels.

Clouds: Many types of cloud configuration can be viewed as a hierarchy,
with smaller, nearer clouds being contained within larger, more distant
clouds. While generally there is a fair amount of overlap between clouds
at a comparable level (and of the same type), it would not be unheard of
to have clouds at a given distance to be disjoint. Again, shape, color, size,
texture, and opacity could all be used to embed information about nodes
and relations. The resulting images may not look like real clouds, but
would likely have sufficient similarity to reality to make viewing intuitive
and interesting (we’d imagine that most people at some point in their lives
have stared at clouds and wondered about their causes and relations).

References 147

7.6 Summary and Conclusions

In this chapter we described the use of metaphors as a mechanism to design
and develop novel (non-node-link diagrams) methods for the visualization of
multivariate networks. After defining what metaphors are and why they help
us in developing new and often intuitive approaches to solving problems, we
attempt to categorize different classes of metaphors that have been used to
date to visualize graphs and hierarchies. We don’t claim that this categoriza-
tion is complete, but provides a good starting point for researchers in this
area. We also suggest some ideas for metaphors that we don’t believe have
been used to date, yet are sufficiently familiar to people that we expect there
would be only a modest learning curve for users to grasp the contents and
relationships in visualizations generated via the metaphors.

The possibilities for new and intriguing metaphor-inspired interactive vi-
sualization system for network data is only limited by the imagination of the
designer. The wealth of experiences we have been exposed to enables us to
quickly draw analogies between our abstract data and phenomena we are ex-
posed to on a regular basis, whether it be objects in our natural world, manu-
factured entities such as buildings and highway systems, non-physical objects
and processes such as stories and magnetic forces, or even visualization meth-
ods not originally intended for network data. As multivariate networks are an
abstraction on data values and relations, there are no preconceived notions
of the best or most intuitive ways of projecting that information into a visual
form. All that is needed is a creative mind and a willingness to think outside
the box.

References

1. Balzer, M., Noack, A., Deussen, O., Lewerentz, C.: Software landscapes: vi-
sualizing the structure of large software systems. In: Proceedings of the Sixth
Joint Eurographics/IEEE TCVG Conference on Visualization, VISSYM 2004,
pp. 261–266. Eurographics Association, Aire-la-Ville (2004),
http://dx.doi.org/10.2312/VisSym/VisSym04/261-266

2. Brandes, U., Nick, B.: Asymmetric relations in longitudinal social networks.
IEEE Transactions on Visualization and Computer Graphics 17(12), 2283–2290
(2011)

3. Braun, A., Musse, S.R., de Oliveira, L.P.L., Bodmann, B.E.: Modeling indi-
vidual behaviors in crowd simulation. In: 16th International Conference on
Computer Animation and Social Agents, pp. 143–148. IEEE (2003)

4. Card, S.K., Robertson, G.G., Mackinlay, J.D.: The information visualizer, an
information workspace. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 181–186. ACM (1991)

5. Chau, M.: Visualizing web search results using glyphs: Design and evaluation
of a flower metaphor. ACM Transactions on Management Information Systems
(TMIS) 2(1), 2 (2011)

http://dx.doi.org/10.2312/VisSym/VisSym04/261-266

148 7 Novel Visual Metaphors for Multivariate Networks

6. Chuah, M.C., Roth, S.F., Mattis, J., Kolojejchick, J.: Sdm: Selective dynamic
manipulation of visualizations. In: Proceedings of the 8th Annual ACM Sympo-
sium on User Interface and Software Technology, UIST 1995, pp. 61–70. ACM,
New York (1995),
http://0-doi.acm.org.unicat.bangor.ac.uk/10.1145/215585.215654

7. Dachselt, R., Ebert, J.: Collapsible cylindrical trees: A fast hierarchical naviga-
tion technique. In: IEEE Symposium on Information Visualization, INFOVIS
2001, pp. 79–86 (2001)

8. De Bono, E.: Six Thinking Hats. Penguin, UK (2009)
9. De Bono, E.: Lateral Thinking: Creativity Step by Step. HarperCollins (2010)

10. Eick, S.G., Graves, T.L., Karr, A.F., Mockus, A., Schuster, P.: Visualizing
software changes. IEEE Transactions on Software Engineering 28(4), 396–412
(2002)

11. Fabrikant, S.I., Montello, D.R., Mark, D.M.: The natural landscape metaphor
in information visualization: The role of commonsense geomorphology. J. Am.
Soc. Inf. Sci. Technol. 61(2), 253–270 (2010),
http://dx.doi.org/10.1002/asi.v61:2

12. Gansner, E.R., Hu, Y., Kobourov, S.G.: GMap: Drawing graphs as maps. In:
Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 405–407.
Springer, Heidelberg (2010)

13. Gershon, N., Page, W.: What storytelling can do for information visualization.
Commun. ACM 44(8), 31–37 (2001),
http://doi.acm.org/10.1145/381641.381653

14. Gibson, J.J.: The Ecological approach to visual perception. Lawrence Erlbaum
Associates (1979)

15. Havre, S., Hetzler, E., Whitney, P., Nowell, L.: Themeriver: visualizing thematic
changes in large document collections. IEEE Transactions on Visualization and
Computer Graphics 8(1), 9–20 (2002)

16. Interrante, V.: Harnessing natural textures for multivariate visualization. IEEE
Comput. Graph. Appl. 20(6), 6–11 (2000),
http://dx.doi.org/10.1109/MCG.2000.888001

17. Johnson, S.: Where good ideas come from: The natural history of innovation.
Penguin, UK (2010)

18. Joshi, A., Caban, J., Rheingans, P., Sparling, L.: Case study on visualizing
hurricanes using illustration-inspired techniques. IEEE Transactions on Visu-
alization and Computer Graphics 15(5), 709–718 (2009),
http://dx.doi.org/10.1109/TVCG.2008.105

19. Kang, H., Plaisant, C., Lee, B., Bederson, B.B.: Netlens: iterative exploration
of content-actor network data. Information Visualization 6(1), 18–31 (2007)

20. Keim, D.A., Kriegel, H.P.: Visdb: A system for visualizing large databases. SIG-
MOD Rec. 24(2), 482 (1995), http://doi.acm.org/10.1145/568271.223895

21. Kerr, B.: Thread arcs: An email thread visualization. In: Proceedings of the
Ninth Annual IEEE Conference on Information Visualization, INFOVIS 2003,
pp. 211–218. IEEE Computer Society, Washington, DC (2003),
http://dl.acm.org/citation.cfm?id=1947368.1947407

22. Kerren, A., Purchase, H.C., Ward, M.O.: Information Visualization – Towards
Multivariate Network Visualization (Dagstuhl Seminar 13201). Dagstuhl Re-
ports 3(5), 19–42 (2013), http://dblp.uni-trier.de/db/journals/
dagstuhl-reports/dagstuhl-reports3.html#KerrenPW13

http://0-doi.acm.org.unicat.bangor.ac.uk/10.1145/215585.215654
http://dx.doi.org/10.1002/asi.v61:2
http://doi.acm.org/10.1145/381641.381653
http://dx.doi.org/10.1109/MCG.2000.888001
http://dx.doi.org/10.1109/TVCG.2008.105
http://doi.acm.org/10.1145/568271.223895
http://dl.acm.org/citation.cfm?id=1947368.1947407
http://dblp.uni-trier.de/db/journals/dagstuhl-reports/dagstuhl-reports3.html#KerrenPW13
http://dblp.uni-trier.de/db/journals/dagstuhl-reports/dagstuhl-reports3.html#KerrenPW13

References 149

23. Keskin, C., Vogelmann, V.: Effective visualization of hierarchical graphs with
the cityscape metaphor. In: Proceedings of the 1997 Workshop on New
Paradigms in Information Visualization and Manipulation, NPIV 1997, pp. 52–
57. ACM, New York (1997), http://0-doi.acm.org.unicat.bangor.ac.uk/
10.1145/275519.275531

24. Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.:
The state of the art in flow visualization: Dense and texture-based techniques.
Computer Graphics Forum 23(2), 203–221 (2004),
http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x

25. Ma, K.L.: Visualization for studying social networks. In: Dagstuhl Seminar on
Multivariate Network Visualization (2013)

26. Maletic, J.I., Marcus, A., Feng, L.: Source viewer 3d (sv3d): A framework for
software visualization. In: Proceedings of the 25th International Conference on
Software Engineering, ICSE 2003, pp. 812–813. IEEE Computer Society, Wash-
ington, DC (2003), http://dl.acm.org/citation.cfm?id=776816.776964

27. Moere, A.V.: Time-varying data visualization using information flocking boids.
In: IEEE Symposium on Information Visualization, INFOVIS 2004, pp. 97–104.
IEEE (2004)

28. Munzner, T.: A nested model for visualization design and validation. IEEE
Transactions on Visualization and Computer Graphics 15(6), 921–928 (2009),
http://dx.doi.org/10.1109/TVCG.2009.111

29. Pang, A., Clifton, M.: Metaphors for visualization. In: Sixth Eurographics
Workshop on Visualization in Scientific Computing 1995, pp. 1–9. Springer
(1995)

30. Rautek, P., Viola, I., Gröller, M.E.: Caricaturistic visualization. IEEE Trans-
actions on Visualization and Computer Graphics 12(5), 1085–1092 (2006),
http://dx.doi.org/10.1109/TVCG.2006.123

31. Roberts, J.C.: The Five Design-Sheet (FdS) approach for Sketching Information
Visualization Designs. In: Maddock, S., Jorge, J. (eds.) Proc. Eurographics
Education Papers, pp. 27–41. Eurographics Association (2011),
http://diglib.eg.org/EG/DL/conf/EG2011/education/027-041.pdf

32. Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone trees: animated 3d visual-
izations of hierarchical information. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI 1991, pp. 189–194. ACM, New
York (1991), http://doi.acm.org/10.1145/108844.108883

33. Rose, S.J., Wong, P.C.: Driftweed: a visual metaphor for interactive analysis of
multivariate data. In: Electronic Imaging, pp. 114–121. International Society
for Optics and Photonics (2000)

34. Samet, H.: The design and analysis of spatial data structures, vol. 199. Addison-
Wesley, Reading (1990)

35. Segel, E., Heer, J.: Narrative visualization: Telling stories with data. IEEE
Transactions on Visualization and Computer Graphics 16(6), 1139–1148 (2010),
http://dx.doi.org/10.1109/TVCG.2010.179

36. Shen, X., Eades, P.: Using moneytree to represent financial data. In: Proceed-
ings of the Eighth International Conference on Information Visualisation (IV
2004), pp. 285–289 (2004)

37. Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach.
ACM Trans. Graph. 11(1), 92–99 (1992),
http://doi.acm.org/10.1145/102377.115768

http://0-doi.acm.org.unicat.bangor.ac.uk/10.1145/275519.275531
http://0-doi.acm.org.unicat.bangor.ac.uk/10.1145/275519.275531
http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x
http://dl.acm.org/citation.cfm?id=776816.776964
http://dx.doi.org/10.1109/TVCG.2009.111
http://dx.doi.org/10.1109/TVCG.2006.123
http://diglib.eg.org/EG/DL/conf/EG2011/education/027-041.pdf
http://doi.acm.org/10.1145/108844.108883
http://dx.doi.org/10.1109/TVCG.2010.179
http://doi.acm.org/10.1145/102377.115768

150 7 Novel Visual Metaphors for Multivariate Networks

38. Skupin, A., Fabrikant, S.I.: Spatialization methods: a cartographic research
agenda for non-geographic information visualization. Cartography and Geo-
graphic Information Science 30(2), 95–119 (2003)

39. Stasko, J., Choo, J., Han, Y., Hu, M., Pileggi, H., Sadana, R., Stolper, C.D.:
Citevis: Exploring conference paper citation data visually. In: Proceedings of
the IEEE Conference on Information Visualization, Poster (2013)

40. Stasko, J., Görg, C., Liu, Z.: Jigsaw: supporting investigative analysis through
interactive visualization. Information Visualization 7(2), 118–132 (2008)

41. Tekusova, T., Kohlhammer, J.: Applying animation to the visual analysis of fi-
nancial time-dependent data. In: 11th International Conference on Information
Visualization, IV 2007, pp. 101–108. IEEE (2007)

42. Therón, R.: Hierarchical-temporal data visualization using a tree-ring
metaphor. In: Butz, A., Fisher, B., Krüger, A., Olivier, P. (eds.) SG 2006.
LNCS, vol. 4073, pp. 70–81. Springer, Heidelberg (2006)

43. Van Loocke, P.R.: Generative flowers as a language of forms for the visualization
of binary information. Leonardo 39(1), 9 (2006)

44. Viégas, F.B., Donath, J.S.: Chat circles. In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 9–16. ACM (1999)

45. Walker, R., ap Cenydd, L., Pop, S., Miles, H.C., Hughes, C.J., Teahan, W.J.,
Roberts, J.C.: Storyboarding for visual analytics. Information Visualization
(2013), http://ivi.sagepub.com/content/early/2013/05/27/
1473871613487089.abstract

46. Wise, J.A.: The ecological approach to text visualization. J. Am. Soc. Inf. Sci.
50(13), 1224–1233 (1999), http://dx.doi.org/10.1002/
(SICI)1097-4571(1999)50:13<1224::AID-ASI8>3.0.CO;2-4

47. Wiseman, R.: 59 seconds: think a little, change a lot. Random House Digital,
Inc. (2010)

48. Xiong, R., Donath, J.: Peoplegarden: creating data portraits for users. In: Pro-
ceedings of the 12th Annual ACM Symposium on User Interface Software and
Technology, pp. 37–44. ACM (1999)

49. Xu, K., Cunningham, A., Hong, S.H., Thomas, B.H.: Graphscape: integrated
multivariate network visualization. In: 2007 6th International Asia-Pacific Sym-
posium on Visualization, APVIS 2007, pp. 33–40. IEEE (2007)

50. Yang, J., Liu, Y., Zhang, X., Yuan, X., Zhao, Y., Barlowe, S., Liu, S.: Piwi:
Visually exploring graphs based on their community structure. IEEE Trans.
Vis. Comput. Graph. 19(6), 1034–1047 (2013)

51. Yang, L., Gasior, W., Katipally, R., Cui, X.: Alerts analysis and visualization in
network-based intrusion detection systems. In: 2010 IEEE Second International
Conference on Social Computing (SocialCom), pp. 785–790. IEEE (2010)

52. Young, J.W.: A Technique for Producing Ideas. Thinking Ink Media (2011)
53. Zhu, B., Chen, H.: Communication-garden system: Visualizing a computer-

mediated communication process. Decision Support Systems 45(4), 778–794
(2008), http://www.sciencedirect.com/science/article/pii/
S0167923608000195

54. Ziemkiewicz, C., Kosara, R.: The shaping of information by visual metaphors.
IEEE Transactions on Visualization and Computer Graphics 14(6), 1269–1276
(2008)

http://ivi.sagepub.com/content/early/2013/05/27/1473871613487089.abstract
http://ivi.sagepub.com/content/early/2013/05/27/1473871613487089.abstract
http://dx.doi.org/10.1002/(SICI)1097-4571(1999)50:13<1224::AID-ASI8>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1097-4571(1999)50:13<1224::AID-ASI8>3.0.CO;2-4
http://www.sciencedirect.com/science/article/pii/S0167923608000195
http://www.sciencedirect.com/science/article/pii/S0167923608000195

8

Temporal Multivariate Networks

Daniel Archambault, James Abello, Jessie Kennedy, Stephen Kobourov,

Kwan-Liu Ma, Silvia Miksch, Chris Muelder, and Alexandru C. Telea

In previous chapters, this book has primarily concerned itself with visualiza-
tion methods for static, multivariate graphs. In a static scenario, the network
has a number of attributes associated with its elements. These attribute val-
ues remain fixed and the challenge is to visualize the interactions between the
network(s) and these attributes. Static multivariate graphs could be viewed
as graphs with an associated high dimensional data set linked to its elements.

Time is simply another dimension in this multivariate data set that can in-
teract with the vertices, edges, and attribute values of the network. However,
humans perceive time differently as we know from our everyday interactions
with the physical world. Thus, intuitively, this dimension is often handled dif-
ferently when supporting the presentation of data that changes over time. Vi-
sualization applications and techniques have, and probably should, continue
to exploit this fact, allowing for effective visualization methods of temporal
multivariate graphs.

In this chapter, we define, characterize, and summarize the data and visu-
alization techniques relating to temporal multivariate networks. Section 2.1.1
provides definitions and examples that characterize the networks we address
in this chapter. We further refine our definitions of time in Sect. 8.2. In
Sect. 8.3, we survey representations for dynamic multivariate networks and
provide a survey of visualization techniques. We describe the visualization
of temporal multivariate networks in the domain of software engineering in
Sect. 8.4. Finally, Sect. 8.5 describes open problems in this area.

8.1 Definitions

In a variety of applications, time varying multivariate data can be viewed as
evolving information networks whose structure is derived from data attributes
(i.e., via similarity measures), is a specified a priory (i.e., the flow of infor-
mation over an underlying network), or is the result of tracking behavioral
statistics (i.e., network traces). The network and attributes can be:

A. Kerren et al. (Eds.): Multivariate Network Visualization, LNCS 8380, pp. 151–174, 2014.

c© Springer International Publishing Switzerland 2014

152 8 Temporal Multivariate Networks

• inherent to the fundamental data elements that are taken to be the net-
work vertices (name, age, gender, income, profession, interests, . . .)

• indicators of the type of relation between the network vertices (professor
of, father of, boss of, colleague of, . . .)

• attribute derived data (time varying computational mappings from vertex
attributes to edge attributes such as “pairs of stocks in markets whose
performance has been above a given threshold during a time period”)

• structural derived statistics (vertex ranks, network centrality, clustering
measures, . . .)

• specified contexts in which the data occurs (Tweets related to a given set
of key words for a specified time period)

In the next subsection, we adapt a model used in software engineering for
the purposes of characterizing the types of dynamic, multivariate networks
that can be visualized. Then, we propose mathematical formalizations of time
varying multivariate networks.

8.1.1 Structure, Behavior, and Evolution

In a static multivariate network analysis scenario, we have a network struc-
ture, consisting of vertices and edges, as well as attributes associated with
these vertices and edges. In a time varying scenario, both the graph structure
and attribute values can evolve over time. In most cases, we can assume that
the network structure at a given moment in time can influence how the at-
tribute values evolve and vice versa. These interactions are in some respects
very similar to those considered in some software engineering contexts [28].
Thus, we examine time varying multivariate networks appearing in biology
and social networks under the lenses of structure, behavior and evolution.

• Structure: Pairings between elements of a complex system. Structure
mostly relates to the topology of the underlying network at a given time t.

• Behavior: Observable activity. Action or reaction of system elements
under a given set of stimuli. Behavior mostly refers to the attributes as-
sociated with the underlying network elements and how they change over
time.

• Evolution: Gradual development of a configuration or pattern over time.
Evolution mostly relates to the structural changes of the overall underlying
network over time.

To illustrate these concepts, we provide examples in Table 8.1 drawn from the
application areas considered in this book: biology, software engineering, and
social networks. As an analogy to understand the overarching idea, consider
a physical space, such as a building. The structure of the building is the
construction at a given time. Its behavior is how people use the building and
its rooms or interact with the physical structure. Its evolution may involve
bringing in a construction crew to knock down walls and build new ones,

8.1 Definitions 153

Table 8.1. Examples of structure, behavior and evolution in the domains of biology,
software engineering, and social networks

Biology Software Engineering Social Networks

Structure Biological entities, Modules and A Twitter
genes and interactions couplings community network

Behavior Gene expression Program trace Retweet, mention
levels on the graph and follower activity

Evolution Organism develop- Changes to the code Changes to
ment; experimental community structure
conditions

modifying the structure of the building as a result of observable decay in
the physical infrastructure or as a response to ergonomical complaints of its
occupants.

Note that in a time varying multivariate network scenario, both behavior
and evolution can operate on each other. This generalization of the dynamics
differs from the original software engineering definition where evolution could
only influence behavior. An example of evolution influencing behavior in a
biology scenario is when an experimental condition causes network structure
to change or evolve, affecting in turn gene expression levels (i.e., behavior).
An example of behavior influencing evolution in a social network scenario is
when the interaction between actors in a social network (i.e., their behavior)
causes ties to break or form, thus, evolving the network.

8.1.2 Formal Definitions of Temporal Multivariate Networks

To incorporate some of the main characteristics of time varying multivariate
data we propose the following mathematical formalization of a time varying
information data set [1].

The implicit assumption is that “time” is a universal reference “axis” with
respect to which the data is being tracked. For now, we assume that “time”
is a totally ordered set, but as we will discuss later, it can also be taken to
be a partially ordered set. A time varying information data set GV,t on a set
of vertices V consists of a sequence {F (Gt)}t>=0 where F is a multivariate
function F : Rh×Rh×R → Rk and at each time t, Gt denotes the following
collection of 4-tuples:

Gt = {< V(x,y), Vx, Vy, t >: V(x,y) = F (Vx, Vy, t)} (8.1)

Vx , Vy , and V(x,y) are vectors in Rh and Rk respectively and (x, y) is a pair
of vertices in V . The underlying information network structure is determined
by those pairs of vertices (x, y) in V × V for which there exists a four tuple
< V(x,y), Vx, Vy , t > in some Gt.

154 8 Temporal Multivariate Networks

The F cumulative behavior of GV,t up to and including t is the entry wise
sum:

F<=t(GV) =<

t∑

j=0

(V(x,y)),

t∑

j=0

(Vx),

t∑

j=0

(Vy) > (8.2)

where the sum is taken over all the quadruples < V(x,y), Vx, Vy, j > in Gj for
j <= t.

A time varying information data set GV,t evolves towards a network G, if
there exists a time t > 0 such that the underlying network of the union of Gj

for j >= t is isomorphic to G.

8.2 Refining Our Models and Definitions for Time

Time itself is an inherent data dimension that is central to the tasks of re-
vealing trends and identifying patterns and relationships in the data. Time
and time-oriented data have distinct characteristics that make it worthwhile
to treat such data as a separate data type [2, 3]. Due to the importance
of time-oriented data, its structure has been studied in numerous scientific
publications (e.g., [2, 11, 41]). As proposed by Aigner et al. [3], we divide
the aspects of time-oriented data into general aspects required to adequately
model the time domain as well as hierarchical organization of time and defi-
nition of concrete time elements, also called human-made abstractions.

The general aspects are scale, scope, arrangement, and viewpoints.
1. Scale: ordinal vs. discrete vs. continuous. As a first perspective, we look

at time from the scale along which elements of the model are given. In an ordi-
nal time domain, only relative order relations are present (e.g., before, after).
In discrete domains temporal distances can also be considered. Time values
can be mapped to a set of integers which enables quantitative modelling of
time values (e.g., quantifiable temporal distances). Discrete time domains are
based on a smallest possible unit and they are the most commonly used time
model in information systems. Continuous time models are characterized by
a possible mapping to real numbers, i.e., between any two points in time,
another point in time exists (also known as dense time).

2. Scope: point-based vs. interval-based. Secondly, we consider the scope of
the basic elements that constitute the structure of the time domain. Point-
based time domains can be seen in analogy to discrete Euclidean points in
space, i.e., having a temporal extent equal to zero. Thus, no information
is given about the region between two points in time. In contrast to that,
interval-based time domains relate to subsections of time having a temporal
extent greater than zero. This aspect is also closely related to the notion of
granularity, which will be discussed later.

3. Arrangement: linear vs. cyclic. As the third design aspect, we look at the
arrangement of the time domain. Corresponding to our natural perception
of time, we mostly consider time as proceeding linearly from the past to the

8.2 Refining Our Models and Definitions for Time 155

future, i.e., each time value has a unique predecessor and successor. In a
cyclic organization of time, the domain is composed of a set of recurring time
values (e.g., the seasons of the year). Hence, any time value A is preceded and
succeeded at the same time by any other time value B (e.g., winter comes
before summer, but winter also succeeds summer).

4. Viewpoint: ordered vs. branching vs. multiple perspectives. The fourth
subdivision is concerned with the views of time that are modelled. Ordered
time domains consider things that happen one after the other. On a more
detailed level, we might also distinguish between totally ordered and partially
ordered domains. In a totally ordered domain only one thing can happen at
a time. In contrast to this, simultaneous or overlapping events are allowed
in partially ordered domains, i.e., multiple time primitives at a single point
or overlapping in time. A more complex form of time domain organization
is the so-called branching time. Here, multiple strands of time branch out
and allow the description and comparison of alternative scenarios (e.g., in
project planning). In contrast to branching time where only one path through
time will actually happen, multiple perspectives facilitate simultaneous (even
contrary) views of time.

The human-made abstractions are granularities, time primitives, and
determinacy.

1. Granularity and calendars: none vs. single vs. multiple. To tackle the
complexity of time and to provide different levels of granularity, useful ab-
stractions can be employed. Basically, granularities can be thought of as
(human-made) abstractions of time in order to make it easier to deal with
time in every-day life (like minutes, hours, days, weeks, months). More gen-
erally, granularities describe mappings from time values to larger or smaller
conceptual units. If a granularity and calendar system is supported by the
time model, we characterize it as multiple granularities. Besides this complex
variant, there might be a single granularity only (e.g., every time value is
given in terms of milliseconds) or none of these abstractions are supported
(e.g., abstract ticks).

2. Time primitives: instant vs. interval vs. span. These time primitives
can be seen as an intermediary layer between data elements and the time
domain. Basically, time primitives can be divided into anchored (absolute)
and unanchored (relative) primitives. Instant and interval are primitives that
belong to the first group, i.e., they are located on a fixed position along the
time domain. In contrast to that, a span is a relative primitive, i.e., it has
no absolute position in time. Instants are a model for single points in time,
intervals for ranges between two points in time, and spans a duration (of
intervals) without a fixed position.

3. Determinacy: determinate vs. indeterminate. Uncertainty is another im-
portant aspect when considering time-oriented data. If there is no complete
or exact information about time specifications or if time primitives are con-
verted from one granularity to another, uncertainties are introduced and have
to be dealt with. Therefore, the determinacy of the given time specification

156 8 Temporal Multivariate Networks

needs to be considered. A determinate specification is present when there is
complete knowledge of all temporal aspects.

8.3 Survey of Representations and Algorithms

While static graphs arise in many applications, dynamic processes naturally
give rise to graphs that evolve through time. Such dynamic processes can be
found in software engineering, telecommunications traffic, computational bi-
ology, and social networks, among others. Dynamic graph drawing addresses
the problem of effectively presenting such relationships as they change over
time.

Static graph visualization has a long and venerable history, while dynamic
graph visualization is a relatively newer field. But even though temporal
graph representations are more recent, the variety of representations is still
large, and there are a number of studies concerning the drawing of dynamic
graphs [5, 16, 20]. As a dynamic graph can be thought of as a sequence of
edge sets on the same set of vertices, it can be treated similarly to visual-
izing multiple relationships on the same data set. There are nearly as many
ways to represent dynamic or multivariate networks as there are graph rep-
resentations: simple node-link diagrams, directed graphs, clustered graphs,
hierarchical and multi-level representations, matrix representations, spatial-
ized (map-like) representations, etc. Dynamic graphs can be visualized with
global views, where all the graphs are displayed at once, merged views, where
all the graphs are agglomerated together, and with sequenced views, where
timesteps are plotted individually, and either small multiples or animated
morphing (fading in/out vertices and edges that appear/disappear) are used
to compare timesteps.

It is worth noting here that it makes a difference whether the temporal
visualization aims to show individual timesteps (e.g., collaboration between
researchers in each individual year) or cumulative (e.g., new collaborations
from current year are added to the already accumulated collaboration graph).
Similarly, there is a difference between offline and online temporal visualiza-
tion. In the offline setting, we are given all data in advance, whereas in the
online setting the changes are happening on the fly. Most existing algorithms
address the problem of offline dynamic graph drawing, where the entire se-
quence of graphs to be drawn is known in advance. This gives the layout
algorithm information about future changes in the graph, which makes it
possible to optimize the layouts generated across the entire sequence (e.g.,
the algorithm can leave enough space in anticipation of placing vertices that
appear later in the sequence). Less work has been done in the online setting,
where the graph sequence to be laid out is not known in advance.

By far the most common method for visualizing dynamic graphs is to view
the graph as a series of node-link diagrams whether as a sequence or all at
once; see Fig. 8.1 and Fig. 8.2. Thus many dynamic graph layouts are based

8.3 Survey of Representations and Algorithms 157

Fig. 8.1. A dynamic graph can be interpreted as a larger graph made of connecting
graphs in adjacent timesteps [35]

on static graph layout algorithms, which are used to lay out each timestep.
Efforts to improve the quality and stability of the layouts lead to the devel-
opment of full-fledged dynamic graph layout algorithms. Some visualization
approaches eschew the node-link representation to better show temporal evo-
lution, as in streamline representations and dynamic maps. There has also
been work in summarizing the temporal evolution of dynamic graphs in more
static representations. And finally, there are a number of analytic algorithms
and approaches that have been extended to dynamic network visualization.

8.3.1 Static Graph Layouts

Force-directed layouts (e.g., Fruchterman-Reingold [44], LinLog [78], Kamada-
Kawai [63]) arrange graphs by iteratively refining the positions of vertices to
incrementally reduce an energy function. This function varies between algo-
rithms, but generally has the property that it is a function of the distances
between vertices and the weights of the edges between them. These layouts
are simple, and generally considered aesthetic, but they do not generally scale
well to large or dense graphs.

More efficient layout algorithms use a multi-scale approach, such as the
work of Cohen [23], the Fast Multipole Multilevel Method (FM3) [52], and
the Graph dRawing with Intelligent Placement (GRIP) algorithm [46]. These
algorithms start by laying out a small approximation of a graph, then progres-
sively laying out finer approximations of the graph, until the entire original
graph is laid out. These algorithms generally use far fewer iterations, and

158 8 Temporal Multivariate Networks

Fig. 8.2. Snapshots of the call-graph of a program as it evolves through time, ex-
tracted from CVS logs. Vertices start out red. As time passes and a vertex does not
change it turns purple and finally blue. When another change is affected, the vertex
again becomes red. Note the number of changes between the two large clusters and
the break in the build on the last image [24].

thus perform far better than traditional force-directed approaches, while still
producing similar results.

Even faster graph layout algorithms are available in the form of algebraic
layouts, such as Algebraic Multigrid Computation of Eigenvectors (ACE) [65],
High Dimensional Embedding (HDE) [54], the work of Brandes and Pich [18],
or the Maxent method [48]. These calculate layouts directly using linear alge-
bra techniques rather than using iterative force calculations. This generally
makes them very fast. Clustering-based layouts have also been shown to be
fast, as in the case of the treemap layout [75] or space-filling curve layout [74].
These methods work by clustering the graph in a preprocessing step and then
mapping the clustering to the screen to define the layout itself.

8.3.2 Dynamic Graph Layouts

In dynamic graph drawing the goal is to maintain a nice layout of a graph
that is modified via operations such as inserting/deleting edges and insert-
ing/deleting vertices. A key property of in many real-world applications,
where dynamic graphs naturally arise, is that the difference between any
two timesteps is generally assumed to be incremental: that is, a small change
relative to the size of the graph. If the change between timesteps is too large,
then it is often more effective to treat them as separate, static networks.
When visualizing evolving and dynamic graphs, two of the most important
criteria to consider are:

1. readability, or quality of the individual layouts, which depends on aes-
thetic criteria such as display of symmetries, uniform edge lengths, and
minimal number of crossings; and

2. mental map preservation, or stability in the series of layouts, which can be
achieved by ensuring that vertices and edges that appear in consecutive
graphs in the series, remain in the same location.

There is an inherent trade-off between the stability and quality of any dy-
namic graph layout, as restricting the movement of vertices could make it

8.3 Survey of Representations and Algorithms 159

Fig. 8.3. Mental map preservation has been a forefront topic in dynamic graph
layout. The level of layout stability can vary between approaches. Incremental ap-
proaches can range from having no correlation between timesteps to using the pre-
vious timestep as initialization to anchoring or tethering some vertices to previous
positions. The most stable layouts agglomerate all timesteps together, but these
could result in poor layouts at each timestep.

impossible to achieve high quality layout of the individual timesteps. In fact,
these two criteria are often contradictory and many dynamic graph layout ap-
proaches explore different ways of balancing stability and quality; see Fig. 8.3.
At one end are quality optimizing layouts with little to no correlation between
timesteps, and at the other are fixed layouts where the vertices never move,
even if the layout is not ideal for any given timestep. Anchored layouts lie
somewhere between the two extremes, where some vertices are fixed while
others are allowed to move; see survey of Brandes et al. [16].

The input to this problem is a series of graphs defined on the same un-
derlying set of vertices. As a consequence, nearly all existing approaches
to visualization of evolving and dynamic graphs are based on extensions of
static graph layouts, usually based on a force-directed method. The simplest
methods just initialize a force directed layout with the previous layout of the
timestep, as in [10, 37], but this offers little guarantees for stability as nothing
actually constrains the motion of vertices. Early examples of this can be dated
back to North’s DynaDAG [79], where the graph is not given all at once, but
incrementally. Most of these early approaches, however, are limited to spe-
cial classes of graphs and usually do not scale to graphs over a few hundred
vertices. TGRIP could handle the larger graphs that appear in the real-world.
It was developed as part of a system that keeps track of the evolution of
software by extracting information about the program stored within a CVS
version control system [24]. Such tools allow programmers to understand the
evolution of a legacy program: Why is the program structured the way it is?

160 8 Temporal Multivariate Networks

Which programmers were responsible for which parts of the program during
which time periods? Which parts of the program appear unstable over long
periods of time? TGRIP was used to visualize inheritance graphs, program
call-graphs, and control-flow graphs, as they evolve over time; see Fig. 8.2.

Aggregate layouts such as in [71], are among the approaches that guar-
antee good stability by computing one layout for an aggregate graph made
up of the union of all timesteps. Brandes and Corman [14] describe a sys-
tem for visualizing network evolution in which both fixes vertices in constant
locations, and uses a 3D super-graph, by showing each modification in a
separate layer of a 3D representation with vertices common to two layers
represented as columns connecting the layers. Thus, mental map preserva-
tion is achieved by pre-computing good locations for the vertices and fixing
the position throughout the layers. An explicit tradeoff between quality and
stability can also be provided as in the GraphAEL system [36]. There a super-
graph of all timesteps is created and links between occurrences of the vertices
in neighboring timesteps are added; see Fig. 8.1. By changing the weights of
these inter-timestep edges one can emphasize stability (make inter-timestep
edges very strong) or readability (make inter-timestep edges very weak). Such
approaches [31, 34, 36, 39] generally use modified versions of traditional static
layout algorithms directly, but often induce high memory usage and complex-
ity because all timesteps are loaded at once. They are also only applicable to
offline graph drawing, as the entire data range is needed at the beginning.

However, the most popular approach in recent years is to compute time
varying network layouts by adding additional constraints that anchor ver-
tices to their positions in the previous timestep [42, 43, 68]. These techniques
work by adding some additional forces to the force direction calculation,
but provide a good balance of cost, layout quality, and stability, and can be
tuned by adjusting the anchor weights. These algorithms can also address
the online dynamic graph drawing problem, as it is not necessary that the
graph sequence is not known in advance. Brandes and Wagner adapt the
force-directed model to dynamic graphs using a Bayesian framework [19]. An
algorithm for visualizing dynamic social networks is discussed in [71]. Frish-
man and Tal consider dynamic drawing of clustered graphs [43] and of general
graphs [42]. Brandes et al. have also performed a quantitative evaluation of
the tradeoffs between layout quality and stability for these different classes
of layouts [17].

There are also dynamic graph visualization approaches based on clustering.
Kumar and Garland describe a method of animating clusters through time
[66]. In this approach, a stratified, abstracted version of the graph is used,
where the vertices are topologically sorted into a treelike structure (before
layout) in order to expose interesting features.

Sallaberry et al. [95] cluster every timestep individually, associate the clus-
ters across time, and use the space-filling curve approach to render each
timestep; see Fig. 8.4. Pre-computing the clusters is computationally expen-
sive. Hu et al. [59] propose a method based on a geographical metaphor to

8.3 Survey of Representations and Algorithms 161

(a) 2002-10-27 (b) 2005-09-18 (c) 2009-08-02

Fig. 8.4. Large networks add additional challenges in computational cost and
perceptual limits (images from [95])

visualize a summary of clustered dynamic graphs. It also relies on clustering
and aims to keep clusters stable over time.

8.3.3 Animation versus Small Multiples

Often, dynamic graph visualizations animate the transitions between node-
link diagrams of timesteps [13, 29, 36, 42, 49, 79]. In these animations, vertices
dynamically appear, disappear and move to produce readable layouts at each
timestep. Diehl and Görg [29] and Görg et al. [49] consider graphs in a se-
quence to create smoother transitions. Animations as a means to convey an
evolving underlying graph have also been used in the context of software evo-
lution [24] and scientific literature visualization [36]. Creating smooth anima-
tion between changing sequences of graphs is addressed using spectral graph
visualization in [15]. When using the animation/morphing approach, it is
possible to change the balance between readability of individual graphs and
the overall mental map preservation, as in the system for Graph Animations
with Evolving Layouts, GraphAEL [36, 40]. Applications of this framework
include visualizing software evolution [24], social networks analysis [9], and
the behavior of dynamically modifiable code [30].

Robertson et al. [90] evaluate the effectiveness of three trend visualization
techniques. The results indicate that animation, often enjoyable and exciting,
is not always well suited to data analysis. The other common alternative for
visualizing multiple timesteps is to statically place them next to each other as
small multiples [102]. This eases the comparison of distant timesteps but only
a small area can be devoted to each timestep, which reduces the readability
of each graph. Cerebral [8] is a system that uses a biologically guided graph
layout and incorporates experimental data directly into the graph display.
Small multiple views of different experimental conditions and a data-driven
parallel coordinates view enable correlations between experimental conditions
to be analyzed at the same time that the data is viewed in the graph context.

162 8 Temporal Multivariate Networks

This combination of coordinated views allows the biologist to view the data
from many different perspectives simultaneously.

Empirical studies to compare the advantages and drawbacks of these ap-
proaches (“Animation” vs. “Small Multiples”) have been performed by Ar-
chambault et al. [7] as well as Farrugia and Quigley [38]. And even more
recently, Rufiange et al. have developed a hybrid approach that lets the user
interactively combine or switch between animations, small multiples, and
plots that explicitly indicate what has changed [91].

8.3.4 Mental Map Preservation

Preserving the mental map, or layout stability, is a major focus in many dy-
namic node-link representations approaches [17, 42, 59, 66, 93]. Even though
several experiments have been performed to examine the effect of preserving
the mental map in dynamic graphs visualization the results are mixed. The
results of [88] were quite surprising. The experiment found that the most
effective visualizations were the extreme ones, i.e., the ones with very low
or high mental map preservation, while visualizations with medium preser-
vation were less effective [88]. With large networks, stability becomes even
more important, but so does “motion coherency”. Even small motions on
each vertex are too much to perceive if they are chaotic, but if vertices move
coherently, they can be perceived as a single group [95]. In a series of papers,
Archambault and Purchase evaluate various approaches for dynamic graph
visualization and consider how they affect mental map preservation [4, 6, 7],
also summarized in a recent survey [5].

8.3.5 Alternative Representations

Using maps to visualize non-cartographic data has been considered in the
context of spatialization [98]. Map-like visualization using layers and terrains
to represent text document corpora dates back to 1995 [103]. The problem
of effectively conveying change over time using a map-based visualization
was studied by Harrower [55]. More recently, Mashima et al. [69] use the
GMap framework [58] to visualize dynamic graphs with the geographic map
metaphor; see Fig. 8.5.

Also related is work on visualizing subsets of a set of items. Areas of interest
in a UML diagram can be highlighted using a deformed convex hull [22].
Isocontours-based bubblesets can be used to depict multiple relations defined
on a set of items [25]. Automatic Euler diagrams, which show the grouping of
subsets of items by drawing contiguous regions around them have also been
considered [97]. Apart from differences in the algorithms used to generate
regions, all of these approaches create regions that overlap with each other
(unlike the strict map metaphor where regions do not overlap).

Bezerianos et al. [12] describe a multivariate network visualization system,
GraphDice, which uses a plot matrix to navigate multivariate graphs.

8.3 Survey of Representations and Algorithms 163

(a) (b) (c)

Fig. 8.5. Evolution in the top 250 most popular bands on Last.fm:
showing three consecutive snapshots from an animation, focusing on area
that corresponds to Rock. An animated version is also available online at
http://www2.research.att.com/~yifanhu/TrendMap/. (a) Highlighting in blue ar-
eas where artists are about to disappear: Bon Jovi, Deep Purple, Elvis, Simon &
Garfunkel, CCR, and Eric Clapton. (b) Highlighting in yellow the areas where new
artists are about to appear. (c) An image after new artists appear, showing the
newcomers: Bruce Springsteen, Neil Young, The Kinks, and The Beach Boys.

8.3.6 Static Temporal Plots

One visualization approach for summarizing dynamic large graphs is to di-
rectly represent time as an axis. The most direct way to do this is to take
2D node-link diagrams and extend them to 3D with time as the third di-
mension; see Fig. 8.1). However, 3D can be cluttered, and has occlusion and
other perceptual limitations. An interesting 2D approach based on parallel
coordinates was proposed by Burch et al. [21], where vertices are ordered
and positioned on several vertical parallel lines, and directed edges connect
these vertices from left to right. The graph of each timestep is thus displayed
between two consecutive vertical axes.

Such representations can get quite cluttered for larger graphs. Rather than
depicting the entire network over time, another approach is to abstract the
network into clusters and to show how they evolve. WilmaScope [32] does this
in 3D by representing the clusters as tubes. An increasingly popular way to

http://www2.research.att.com/~yifanhu/TrendMap/

164 8 Temporal Multivariate Networks

Fig. 8.6. Storylines can succinctly summarize the evolution of a dynamic graph
(from [99])

visualize the evolution dynamic clusters is the use of storylines [27, 64, 77, 80,
89, 99]. Most of these works reference hand-drawn diagrams such as XKCD’s
movie narrative charts [77] as inspiration, in which entities are represented as
lines which move together when in the same group and separate when they are
not. Plotweaver [81] is a tool to aid in semi-automatic generation of storyline
plots, but it still requires significant user interaction. The works of Ogawa et
al. [80] and Tanahashi et al. [99] aim to automate the process; see Fig. 8.6.
However, producing good results with these algorithms is computationally
expensive, as they do not scale well to large data sets. To apply storyline
techniques to dynamic graphs, an intermediary step of dynamic clustering
must be derived [89, 95].

8.3.7 Dynamic Graph Analytics

Another relevant avenue of research has been the extension of analytic al-
gorithms to dynamic graphs. Finding a partition of the vertices of a static
graph according to its structure is a well studied problem; see survey by
Schaeffer [96]. But clustering a dynamic graph is a less studied problem. One
possibility is to use a global clustering, which is computed by applying a static
clustering to an aggregate combination of all the timesteps in the dynamic
graph. This creates a clustering which is on average good, but which can not
capture the evolution of the network. Others have developed dynamic graph
clustering algorithms in the context of visualization applications that track
clusters across timesteps, allowing their memberships to evolve over time.
Several approaches try to modify the clustering incrementally as the network
changes [50, 51, 94]. Hu et al. [59] use a similar approach, but apply a heuris-
tic to accelerate this process. Sallaberry et al. [95], on the other hand, cluster
each timestep separately and then use Jaccard index to track the clusters
across time.

Different from top-down methods above, there are also several bottom-
up approaches that start with a single vertex and its immediate context.
Additional relevant vertices and connections are revealed only on demand,
based on graph structure or specialized degree-of-interest functions that can
incorporate semantic importance or users’ interaction histories [26, 33, 45,
53, 56, 73]. Recently, such approaches have been extended to dynamic graphs
by incorporating temporal histories, and applying relevancy filtering to a
storyline-based representation [76].

8.4 Applications to Software Engineering 165

8.4 Applications to Software Engineering

Temporal multivariate networks play a key role in many aspects of software
engineering (SE). To understand the related challenges, we need to under-
stand

1. the tasks that they support in software engineering;
2. the characteristics of SE data leading to such graphs.

This section covers the above two points. For a full overview of applications
of multivariate dynamic graphs in SE, we refer to Chap. 2. Our focus here
is more technical. Specifically, we aim to characterize SE graphs from the
perspective of time modeling (Sect. 8.2), and the variability axes (of types)
(Sect. 8.3). This in turn better explains the rationale behind the visual de-
signs presented in Chap. 2, and also why it is challenging to use visualization
techniques developed for other types of temporal multivariate graphs to han-
dle SE graphs.

Tasks

Software engineering activities cover the entire software product lifetime,
starting with requirement gathering, followed by architecting, design, imple-
mentation (coding), testing, release, and ending with maintenance. Graphs
are created and used in all these stages, as shown in Table 8.2. As software
systems change during their lifecycle, all above graphs are by nature time-
dependent. Moreover, SE graphs involve elements and relations spanning sev-
eral of the above activities. For example, in reverse engineering, we encounter
graphs that link software test results with source code (and developers), class
diagrams, and requirements.

Table 8.2. Examples of multivariate temporal graphs in SE

Actions Examples of graphs

Requirements Requirements vs. tasks vs. stakeholders [61]
UML use-case diagrams [92]

Architecting System structure (layering, dataflows,
component interactions) [101]
UML component and package diagrams [92]

Design UML class, activity diagrams [92]
Coding Call, inheritance, type-use, and include graphs [28]
Testing Type-instance graphs, control flow graphs [86]

Resource allocation graphs [72].
Release Deployment graphs [82], UML deployment diagrams [92]
Maintenance Developer networks, code duplication graphs [70]

166 8 Temporal Multivariate Networks

Data Characteristics

Temporal multivariate SE graphs have several characteristics which make
their computation, efficient manipulation, and above all understanding very
challenging. Below we outline the main such aspects.

Size: Depending on their type, SE graphs range from a few tens of ele-
ments (UML diagrams and developer networks) to hundreds of thousands
(call graphs) or even millions of elements (control-flow graphs of large pro-
grams). The static call graph of the Mozilla Firefox browser (a medium-sized
system as compared to large telecom or banking software) has, for example,
over 500K edges [57]. Certain topology constraints exist for some graphs, e.g.
class hierarchies are, usually, trees, and architecture dependencies form a di-
rected acyclic graph. However, in the general case, little can be said about
the global properties of SE graphs. For instance, a call graph can be cyclic
(or not), and can have a widely varying distribution of number of edges per
vertex depending on application type.

Attributes: Each vertex and edge in a SE graph typically has several at-
tributes. These describe both static and dynamic properties of the entity
encoded by that vertex or edge. For instance, annotated semantic graphs
(ASGs) for C++ programs have tens of such attributes [100]. Computing
software quality metrics easily adds tens of other metrics [67]. Attribute
types span a wide spectrum: numerical, categorical, text, and binary. At-
tribute types are key to effective program understanding. For instance, the
C++ ASG in [100] contains around two hundred different vertex-attribute
types that encode the different properties of the annotated C++ grammar.
Being able to visually distinguish between different types is essential, e.g.,
for detecting the presence of specific design or execution patterns. Missing
values are possible, e.g., due to limitations of program analysis tools or due
to incomplete program coverage for execution monitoring tools.

Dynamics: Graphs describing human aspects, such as developer activity,
change slowly, given the continuous nature of software evolution [70]. How-
ever, other SE graphs exhibit different dynamics. For instance, in program
execution graphs, large changes can occur in short time periods and few
changes in other longer time periods. Dynamics is present both at the struc-
ture level (e.g., changes of a call graph topology as the program is run for
different inputs or as code changes during maintenance), and also at the at-
tribute level (e.g., different runtime metrics measured at static component
level for different program executions).

Time Modeling: Time is, formally, modeled as a discrete quantity, since
both execution and changes of software code occur at discrete, moments.
Time has a linear nature, describing the order of execution of program in-
structions or the order of changes in a repository. However, time can be seen
as fully ordered or branching (Sect. 8.1). The branching case occurs, e.g.,

8.5 Open Problems 167

when considering execution of multi-threaded programs or analyzing devel-
opment activity of a repository with multiple branches. Both point-based and
interval-based models are used, often interchangeaby, for the same analysis.
For instance, a version in a software repository can refer to the moment when
it was committed, but also to the time interval between this commit time and
the next change of the same artifact.

Scale: Software understanding occurs on multiple levels of detail and fol-
lowing both a top-down and bottom-up process [86]. Hence, one needs to
(visually) analyze software at several levels of detail or scales. SE graphs
offer several natural scales, given their hierarchical, or compound, nature
(Chap. 2), e.g., function-class-file-folder or the structure given by a func-
tion call stack. Yet, several aspects make constructing efficient and effective
multiscale SE-graph visualizations hard. Firstly, SE graphs are huge. The
few above-mentioned levels of detail do not offer enough granularity to au-
tomatically simplify large graphs to levels where they can be displayed in
an understandable manner. Automatically computing additional levels of de-
tail is hard – for instance, what should be the meaning of an artifact larger
than a file, but smaller than a folder? Secondly, many program understand-
ing tasks require showing both fine-grained detail and coarse-scale structure
in the same view. For instance, to debug a crash, we need to see the entire
call stack, from the finest-grained instruction which caused the fault up to
the coarse-level components which scope the fault. Finally, software is by na-
ture abstract. As such, finding effective visual metaphors (for both the spatial
graph embedding and attribute mapping) is challenging.

8.5 Open Problems

Although significant progress has been achieved in the design of visualization
methods and tools for exploring multivariate temporal networks, several im-
portant open challenges remain. This section outlines a selection of challenges
which are relevant to a broad subset of applications involving such graphs.
Throughout the discussion, we use the notation introduced in Sect. 8.1.2.

8.5.1 Attribute Dimensionality

As outlined in Sect. 8.4, SE graphs are high-variate, i.e., have many attributes
for each vertex or edge. Existing visualization techniques can simultaneously
show a few (up to three) attributes per graph element, by mapping these to
shape, size, texture, color, and shading. However, this solution scales poorly
for graphs of hundreds of thousands of elements. Separately, even for small
graphs (hundreds of elements), showing tens of attributes per element is an
open challenge. Parallel coordinate plots partially address this quest [60]. An
interesting adaption hereof clusters graph vertices based on attribute values,
and links the resulting icicle plots to a table-lens-like visualization of the edge

168 8 Temporal Multivariate Networks

attributes, to highlight attribute correlations [87]. Dimensionality reduction
projects a set of high-dimensional attributes into R

2 or R
3 so that simi-

larities between the original attributes are reflected in the low-dimensional
distance [62, 83, 84]. Although such approaches scale well computationally
for large sample counts [85], it is hard to visualize both attribute similarity
and graph structure in the same embedding. Other approaches use inter-
active brushing, attribute selection, and linked views. However, none of the
above methods fully enables users to correlate structure with attributes, and
attributes among themselves, for highly-variate graphs.

8.5.2 Capturing Patterns

In many use-cases, showing a picture of the (changing) graph is not sufficient,
even when this picture is clutter and overlap-free. For instance, consider the
task of locating patterns in the graph. Patterns are specific configurations
of vertices and edges (topology) and attribute values which capture events
of interest. Patterns are typically problem-dependent, and have a certain
variability in both structure and attribute values. Consider finding a ‘mul-
tithreading refactoring event’ in a software code base: This would involve
finding similar code fragments in a graph Gt, which describe serial code, and
finding that they have been replaced by functionally-identical multithreaded
code in the following revision Gt+1 of the code base. Even the simpler ‘de-
sign patterns’ [47], well known and used in object-oriented software design,
are hard to detect and visualize. The underlying reasons are twofold. First,
patterns involve, by definition, several vertices, edges, and attribute values,
so they correspond to portions of a graph visualizations. However, existing
graph visualization techniques have difficulties in showing such data sub-
sets in canonical ways, i.e., in ways that make their visual detection easy.
Secondly, patterns have a certain variability. Besides making automatic de-
tection hard, this also implies that their graph visualizations will exhibit a
necessary variability, which makes their visual detection hard. Finally, vi-
sually detecting dynamic patterns is very challenging—if animation is used,
this poses high demands on the user’s visual memory; if static visualizations
are used, inherently dynamic patterns may be hard to grasp.

8.5.3 Data Size

Large dynamic graphs involve large sets of vertices and edges and/or many
sampling moments when the graph is captured. This implies many sample
points taken over the domain of function F (Eq. 8.1). Large graphs are hard
to embed in a low-dimensional space (R2 or R3) so that the graph structure is
easy to discern. This basic graph-drawing problem becomes one or two orders
of magnitude larger for dynamic graphs. The data size problem becomes even
larger for high-variate graphs.

References 169

It is insightful to consider how data size relates to the other challenges.
Formally, we could argue that dynamic multivariate graphs (and their pat-
terns) can be efficiently and effectively depicted using existing visualization
methods, for small graphs. Hence, we could use subsampling, like in scientific
data visualization, to reduce the graph size prior to visual exploration. To
preserve features or patterns of interest, data-adaptive subsampling could be
used. The main obstacle here is that we still lack a comprehensive theory for
subsampling graphs and categorical attributes. As such, existing solutions
addressing data size currently have to rely on aggregation and simplification
algorithms and heuristics that are problem, scale, and even dataset-specific.

8.6 Summary and Conclusions

In this chapter, we characterized temporal multivariate graphs in terms of
structure and time. We presented common terminology for discussing tempo-
ral multivariate graphs, a survey of existing techniques, focusing on software
engineering applications, and a collection of open problems. We hope that
this common terminology, data characterization, and organization of exist-
ing and future work will help foster further research in the emerging area of
dynamic multivariate graph visualization.

References

1. Abello, J., Hadlak, S., Schumann, H., Schulz, H.: A modular degree-of-interest
specification for the visual analysis of large dynamic networks. IEEE Trans-
actions on Visualization and Computer Graphics (in press, 2014)

2. Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-
Oriented Data. Springer, London (2011)

3. Andrienko, N., Andrienko, G.: Exploratory Analysis of Spatial and Temporal
Data: A Systematic Approach. Springer, Berlin (2006)

4. Archambault, D., Purchase, H.C.: The mental map and memorability in dy-
namic graphs. In: Hauser, H., Kobourov, S.G., Qu, H. (eds.) Proc. of the IEEE
Pacific Visualization Symposium, pp. 89–96. IEEE (2012)

5. Archambault, D., Purchase, H.C.: The “map” in the mental map: Experi-
mental results in dynamic graph drawing. International Journal of Human-
Computer Studies 71(11), 1044–1055 (2013)

6. Archambault, D., Purchase, H.C.: Mental map preservation helps user orien-
tation in dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012.
LNCS, vol. 7704, pp. 475–486. Springer, Heidelberg (2013)

7. Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and
the effect of mental map preservation in dynamic graphs. IEEE Transactions
on Visualization and Computer Graphics 17(4), 539–552 (2011)

8. Barsky, A., Munzner, T., Gardy, J., Kincaid, R.: Cerebral: Visualizing multiple
experimental conditions on a graph with biological context. IEEE Transactions
on Visualization and Computer Graphics 14(6), 1253–1260 (2008)

170 8 Temporal Multivariate Networks

9. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for
exploring and manipulating networks. In: International AAAI Conference on
Weblogs and Social Media, pp. 361–362 (2009)

10. Bender-deMoll, S., McFarland, D.A.: The art and science of dynamic network
visualization. Journal of Social Structure 7(2) (2006)

11. Bettini, C., Jajodia, S., Wang, S.X.: Time Granularities in Databases, Data
Mining, and Temporal Reasoning. Springer, Berlin (2000)

12. Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., Fekete, J.D.:
Graphdice: A system for exploring multivariate social networks. Computer
Graphics Forum 29(3), 863–872 (2010)

13. Boitmanis, K., Brandes, U., Pich, C.: Visualizing internet evolution on the
autonomous systems level. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD
2007. LNCS, vol. 4875, pp. 365–376. Springer, Heidelberg (2008)

14. Brandes, U., Corman, S.R.: Visual unrolling of network evolution and the anal-
ysis of dynamic discourse. In: Proc. of the IEEE Symposium on Information
Visualization, pp. 145–151 (2002)

15. Brandes, U., Fleischer, D., Puppe, T.: Dynamic spectral layout with an appli-
cation to small worlds. Journal of Graph Algorithms and Applications 11(2),
325–343 (2007)

16. Brandes, U., Indlekofer, N., Mader, M.: Visualization methods for longitudi-
nal social networks and stochastic actor-oriented modeling. Social Networks,
291–308 (June 2011)

17. Brandes, U., Mader, M.: A quantitative comparison of stress-minimization
approaches for offline dynamic graph drawing. In: Speckmann, B. (ed.) GD
2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2011)

18. Brandes, U., Pich, C.: An experimental study on distance-based graph
drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417,
pp. 218–229. Springer, Heidelberg (2009)

19. Brandes, U., Wagner, D.: A Bayesian paradigm for dynamic graph layout.
In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 236–247. Springer,
Heidelberg (1997)

20. Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.)
Drawing Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001)

21. Burch, M., Vehlow, C., Beck, F., Diehl, S., Weiskopf, D.: Parallel edge splatting
for scalable dynamic graph visualization. IEEE Transactions on Visualization
and Computer Graphics 17(12), 2344–2353 (2011)

22. Byelas, H., Telea, A.: Visualization of areas of interest in software architecture
diagrams. In: ACM SoftVis 2006, pp. 105–114 (2006)

23. Cohen, J.D.: Drawing graphs to convey proximity: An incremental arrange-
ment method. ACM Transactions on Computer-Human Interaction 4(3),
197–229 (1997)

24. Collberg, C., Kobourov, S.G., Nagra, J., Pitts, J., Wampler, K.: A system for
graph-based visualization of the evolution of software. In: ACM SoftVis 2003,
pp. 77–86 (2003)

25. Collins, C., Penn, G., Carpendale, S.: Bubble sets: Revealing set relations with
isocontours over existing visualizations. IEEE Transactions on Visualization
and Computer Graphics 15(6), 1009–1016 (2009)

26. Crnovrsanin, T., Liao, I., Wuy, Y., Ma, K.L.: Visual recommendations
for network navigation. In: Proc. of the 13th Eurographics/IEEE - VGTC
Conference on Visualization, EuroVis 2011, pp. 1081–1090. Eurographics As-
sociation, Aire-la-Ville (2011)

References 171

27. Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z., Qu, H., Tong, X.: Textflow:
Towards better understanding of evolving topics in text. IEEE Transactions
on Visualization and Computer Graphics 17(12), 2412–2421 (2011)

28. Diehl, S.: Software Visualization: Visualizing the Structure, Behaviour, and
Evolution of Software. Springer, Berlin (2010)

29. Diehl, S., Görg, C.: Graphs, they are changing. In: Goodrich, M.T., Kobourov,
S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–30. Springer, Heidelberg (2002)

30. Dux, B., Iyer, A., Debray, S.K., Forrester, D., Kobourov, S.G.: Visualizing the
behavior of dynamically modifiable code. In: IWPC, pp. 337–340 (2005)

31. Dwyer, T., Gallagher, D.R.: Visualising changes in fund manager holdings in
two and a half-dimensions. Information Visualization 3, 227–244 (2004)

32. Dwyer, T.: Extending the WilmaScope 3D Graph Visualisation System – Soft-
ware Demonstration. In: Hong, S.H. (ed.) APVIS. CRPIT, vol. 45, pp. 39–45.
Australian Computer Society (2005)

33. Elmqvist, N., Fekete, J.D.: Hierarchical Aggregation for Information Visual-
ization: Overview, Techniques, and Design Guidelines. IEEE Transactions on
Visualization and Computer Graphics 16(3), 439–454 (2009)

34. Erten, C., Kobourov, S., Le, V., Navabi, A.: Simultaneous graph drawing:
layout algorithms and visualization schemes. Journal of Graph Algorithms
and Applications 9(1), 165–182 (2005)

35. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: Exploring
the computing literature using temporal graph visualization. In: Electronic
Imaging 2004, pp. 45–56 (2004)

36. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: GraphAEL:
Graph animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS,
vol. 2912, pp. 98–110. Springer, Heidelberg (2004)

37. Farrugia, M., Quigley, A.: Cell phone mini challenge: Node-link animation
award animating multivariate dynamic social networks. In: IEEE Visual An-
alytics Science and Technology, pp. 215–216 (October 2008)

38. Farrugia, M., Quigley, A.: Effective temporal graph layout: A comparative
study of animation versus static display methods. Journal of Information Vi-
sualization 10(1), 47–64 (2011)

39. Feng, K.C., Wang, C., Shen, H.W., Lee, T.Y.: Coherent time-varying graph
drawing with multi-focus+context interaction. IEEE Transactions on Visual-
ization and Computer Graphics (2011)

40. Forrester, D., Kobourov, S.G., Navabi, A., Wampler, K., Yee, G.V.: Graphael:
A system for generalized force-directed layouts. In: Pach, J. (ed.) GD 2004.
LNCS, vol. 3383, pp. 454–464. Springer, Heidelberg (2005)

41. Frank, A.U.: Different Types of “Times” in GIS. In: Egenhofer, M.J., Golledge,
R.G. (eds.) Spatial and Temporal Reasoning in Geographic Information Sys-
tems, pp. 40–62. Oxford University Press, New York (1998)

42. Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Transactions on
Visualization and Computer Graphics 14, 727–740 (2008)

43. Frishman, Y., Tal, A.: Dynamic drawing of clustered graphs. In: Proc. of the
IEEE Symposium on Information Visualization, pp. 191–198. IEEE Computer
Society, Washington, DC (2004)

44. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Software - Practice and Experience 21(11), 1129–1164 (1991)

45. Furnas, G.W.: Generalized fisheye views. In: Human Factors in Computing
Systems CHI, pp. 16–23 (1986)

172 8 Temporal Multivariate Networks

46. Gajer, P., Kobourov, S.G.: GRIP: Graph drawing with intelligent placement.
In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 222–228. Springer, Heidel-
berg (2001)

47. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley (1994)

48. Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout.
In: Proc. of the IEEE Pacific Visualization Symposium, pp. 73–80 (2012)

49. Görg, C., Birke, P., Pohl, M., Diehl, S.: Dynamic graph drawing of sequences
of orthogonal and hierarchical graphs. In: Pach, J. (ed.) GD 2004. LNCS,
vol. 3383, pp. 228–238. Springer, Heidelberg (2005)

50. Görke, R., Hartmann, T., Wagner, D.: Dynamic graph clustering using
minimum-cut trees. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D.
(eds.) WADS 2009. LNCS, vol. 5664, pp. 339–350. Springer, Heidelberg (2009)

51. Görke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-driven clustering
of dynamic graphs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 436–448.
Springer, Heidelberg (2010)

52. Hachul, S.: A Potential-Field-Based Multilevel Algorithm for Drawing Large
Graphs. Ph.D. thesis, Universität zu Köln (2002)

53. van Ham, F., Perer, A.: Search, Show Context, Expand on Demand: Support-
ing Large Graph Exploration with Degree-of-Interest. IEEE Transactions on
Visualization and Computer Graphics 15(6), 953–960 (2009)

54. Harel, D., Koren, Y.: Graph drawing by high-dimensional embedding.
In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528,
pp. 207–219. Springer, Heidelberg (2002)

55. Harrower, M.: Tips for designing effective animated maps. Cartographic Per-
spectives 44, 63–65 (2003)

56. Heer, J., Boyd, D.: Vizster: visualizing online social networks. In: Proc. of the
IEEE Symposium on Information Visualization, pp. 32–39 (2005)

57. Hoogendorp, H., Ersoy, O., Reniers, D., Telea, A.: Extraction and visualization
of call dependencies for large C/C++ code bases: A comparative study. In:
Proc. ACM VISSOFT, pp. 137–145 (2009)

58. Hu, Y., Gansner, E.R., Kobourov, S.G.: Visualizing graphs and clusters as
maps. IEEE Computer Graphics and Applications 30(6), 54–66 (2010)

59. Hu, Y., Kobourov, S.G., Veeramoni, S.: Embedding, clustering and coloring
for dynamic maps. In: Proc. of the IEEE Pacific Visualization Symposium,
pp. 33–40 (2012)

60. Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and
Its Applications. Springer (2009)

61. Jaramillo, C.M.Z., Gelbukh, A., Isaza, F.A.: Pre-conceptual schema: A
conceptual-graph-like knowledge representation for requirements elicitation.
In: Gelbukh, A., Reyes-Garcia, C.A. (eds.) MICAI 2006. LNCS (LNAI),
vol. 4293, pp. 27–37. Springer, Heidelberg (2006)

62. Joia, P., Paulovich, F.V., Coimbra, D., Cuminato, J.A., Nonato, L.G.: Local
affine multidimensional projection. IEEE Transactions on Visualization and
Computer Graphics 17, 2563–2571 (2011)

63. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs.
Inf. Process. Lett. 31(1), 7–15 (1989)

64. Kim, N.W., Card, S.K., Heer, J.: Tracing genealogical data with timenets.
In: Proc. of the International Conference on Advanced Visual Interfaces, AVI
2010, pp. 241–248. ACM, New York (2010)

References 173

65. Koren, Y., Carmel, L., Harel, D.: ACE: A fast multiscale eigenvectors compu-
tation for drawing huge graphs. In: Proc. of the IEEE Symposium on Infor-
mation Visualization, pp. 137–145 (2002)

66. Kumar, G., Garland, M.: Visual exploration of complex time-varying graphs.
IEEE Transactions on Visualization and Computer Graphics 12(5), 805–812
(2006)

67. Lanza, M., Marinescu, R.: Object-Oriented Metrics in Practice - Using Soft-
ware Metrics to Characterize, Evaluate, and Improve the Design of Object-
Oriented Systems. Springer (2006)

68. Lyons, K.A.: Cluster busting in anchored graph drawing. In: CASCON,
pp. 7–17 (1992)

69. Mashima, D., Kobourov, S.G., Hu, Y.: Visualizing dynamic data with maps.
IEEE Transactions on Visualization and Computer Graphics 18(9), 1424–1437
(2012)

70. Mens, T., Demeyer, S.: Software Evolution. Springer (2008)
71. Moody, J., McFarland, D., Bender-DeMoll, S.: Dynamic network visualization.

American Journal of Sociology 110(4), 1206–1241 (2005)
72. Moreta, S., Telea, A.: Multiscale visualization of dynamic software logs. In:

Proc. Eurovis, pp. 11–18 (2007)
73. Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.D.: Topology-

Aware Navigation in Large Networks. In: SIGCHI Conference on Human Fac-
tors in Computing Systems, pp. 2319–2328 (2009)

74. Muelder, C., Ma, K.L.: Rapid graph layout using space filling curves. IEEE
Transactions on Visualization and Computer Graphics 14(6), 1301–1308
(2008)

75. Muelder, C., Ma, K.L.: A treemap based method for rapid layout of large
graphs. In: Proc. of the IEEE Pacific Visualization Symposium, pp. 231–238
(2008)

76. Muelder, C.W., Crnovrsanin, T., Ma, K.L.: Egocentric storylines for visual
analysis of large dynamic graphs. In: Proc. of 1st IEEE Workshop on Big
Data Visualization (BigDataVis), pp. 56–62 (October 2013)

77. Xkcd #657: Movie narrative charts (December 2009), http://xkcd.com/657
78. Noack, A.: An energy model for visual graph clustering. In: Liotta, G. (ed.)

GD 2003. LNCS, vol. 2912, pp. 425–436. Springer, Heidelberg (2004)
79. North, S.C.: Incremental layout in DynaDAG. In: Brandenburg, F.J. (ed.) GD

1995. LNCS, vol. 1027, pp. 409–418. Springer, Heidelberg (1996)
80. Ogawa, M., Ma, K.L.: Software evolution storylines. In: Proc. of the Interna-

tional Symposium on Software Visualization (SoftVis 2010), pp. 35–42. ACM,
New York (2010)

81. Ogievetsky, V.: Plotweaver xkcd/657 creation tool (March 2009),
https://graphics.stanford.edu/wikis/

cs448b-09-fall/FPOgievetskyVadim

82. Orso, A., Jones, J., Harrold, M.J.: Visualization of program-execution data
for deployed software. In: Proc. ACM SOFTVIS, pp. 67–75 (2003)

83. Paulovich, F., Eler, D., Poco, J., Botha, C., Minghim, R., Nonato, L.G.: Piece
wise Laplacian-based projection for interactive data exploration and organi-
zation. Computer Graphics Forum 30(3), 1091–1100 (2011)

84. Paulovich, F.V., Nonato, L.G., Minghim, R., Levkowitz, H.: Least square pro-
jection: A fast high-precision multidimensional projection technique and its
application to document mapping. IEEE Transactions on Visualization and
Computer Graphics 14(3), 564–575 (2008)

http://xkcd.com/657
https://graphics.stanford.edu/wikis/cs448b-09-fall/FPOgievetskyVadim
https://graphics.stanford.edu/wikis/cs448b-09-fall/FPOgievetskyVadim

174 8 Temporal Multivariate Networks

85. Paulovich, F.V., Silva, C., Nonato, L.G.: Two-phase mapping for projecting
massive data sets. IEEE Transactions on Visualization and Computer Graph-
ics 16, 1281–1290 (2010)

86. Pfleeger, S.L., Atlee, J.M.: Software Engineering: Theory and Practice, 4th
edn. Prentice Hall (2009)

87. Pretorius, A., van Wijk, J.: Visual inspection of multivariate graphs. Com-
puter Graphics Forum 27(3), 967–974 (2008)

88. Purchase, H., Samra, A.: Extremes are better: Investigating mental map
preservation in dynamic graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.)
Diagrams 2008. LNCS (LNAI), vol. 5223, pp. 60–73. Springer, Heidelberg
(2008)

89. Reda, K., Tantipathananandh, C., Johnson, A., Leigh, J., Berger-Wolf, T.:
Visualizing the evolution of community structures in dynamic social networks.
Computer Graphics Forum 30(3), 1061–1070 (2011)

90. Robertson, G., Fernandez, R., Fisher, D., Lee, B., Stasko, J.: Effectiveness
of animation in trend visualization. IEEE Transactions on Visualization and
Computer Graphics 14, 1325–1332 (2008)

91. Rufiange, S., McGuffin, M.J.: DiffAni: Visualizing dynamic graphs with a
hybrid of difference maps and animation. IEEE Transactions on Visualization
and Computer Graphics 19(12), 2556–2565 (2013)

92. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Ref-
erence Manual, 2nd edn. Addison-Wesley (2004)

93. Saffrey, P., Purchase, H.: The “mental map” versus “static aesthetic” compro-
mise in dynamic graphs: A user study. In: Proc. of the 9th Australasian User
Interface Conference (AUIC2008), pp. 85–93 (2008)

94. Saha, B., Mitra, P.: Dynamic algorithm for graph clustering using minimum
cut tree. In: SDM, pp. 581–586. SIAM (2007)

95. Sallaberry, A., Muelder, C., Ma, K.-L.: Clustering, visualizing, and navigating
for large dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012.
LNCS, vol. 7704, pp. 487–498. Springer, Heidelberg (2013)

96. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
97. Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of

overlapping sets. Computer Graphics Forum 28(3), 967–974 (2009)
98. Skupin, A., Fabrikant, S.I.: Spatialization methods: a cartographic research

agenda for non-geographic information visualization. Cartography and Geo-
graphic Information Science 30, 95–119 (2003)

99. Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visual-
izations. IEEE Transactions on Visualization and Computer Graphics 18(12),
2679–2688 (2012)

100. Telea, A., Voinea, L.: An interactive reverse engineering environment for large-
scale C++ code. In: Proc. ACM SOFTVIS, pp. 67–76 (2008)

101. Telea, A., Voinea, L., Sassenburg, H.: Visual tools for software architecture
understanding: A stakeholder perspective. IEEE Software 27(6), 46–53 (2010)

102. Tufte, E.R.: Envisionning Information. Graphics Press (1990)
103. Wise, J.A., Thomas, J.J., Pennock, K., Lantrip, D., Pottier, M., Schur, A.,

Crow, V.: Visualizing the non-visual: spatial analysis and interaction with
information from text documents. In: Proc. of the IEEE Symposium on Infor-
mation Visualization, pp. 51–58 (1995)

9

Heterogeneous Networks on Multiple Levels

Falk Schreiber, Andreas Kerren, Katy Börner, Hans Hagen, and Dirk Zeckzer

At any moment in time, we are driven by and are an integral part of many
interconnected, dynamically changing networks. Our species has evolved as
part of diverse ecological, biological, social, and other networks over thou-
sands of years. As part of a complex food web, we learned how to find prey
and to avoid predators. We have created advanced socio-technical environ-
ments in the shape of cities, water and power networks, streets, and airline
systems. In 1969, people started to interlink computers leading to the largest
and most widely used networked communication infrastructure in existence
today: the Internet.

Often, the complex structure of networks is influenced by system-dependent
local constraints on the node interconnectivity. Node characteristics may vary
over time and there might be many different types of nodes. The links1 be-
tween nodes might be directed or undirected, and might have weights and/or
additional properties that might change over time. Many natural systems
never reach a steady state and non-equilibrium models need to be applied to
characterize their behavior.

As a result of this usually domain-specific complexity, analysts are not
only confronted with large multivariate networks. In practice, those networks
can be assigned to different levels (or scales), and it is absolutely possible
that several different networks share the same level. In case a set of networks
share the same level, several notions of those networks can be found in the
literature: they reach from multimodal networks, network of networks to het-
erogeneous networks. For simplicity, we use the latter term for the remainder
of this chapter.

Complex structures of heterogeneous networks distributed over various lev-
els lead to considerable visualization and analysis problems. First, the possi-
bly tremendous size and complexity (in terms of higher dimensionality of the
node/edge attributes) of those networks form a challenge of itself that is also

1 We use the terms link and edge interchangeably.

A. Kerren et al. (Eds.): Multivariate Network Visualization, LNCS 8380, pp. 175–206, 2014.

c© Springer International Publishing Switzerland 2014

176 9 Heterogeneous Networks on Multiple Levels

discussed by other chapters of this book. Second and more important for this
chapter, there are versatile relationships between the networks and/or between
network elements across the different levels. In many application fields, it is es-
sential to get a detailed understanding of such structures. In systems biology,
for instance, networks are the key concept to structure and combine data that
was generated by so-called high-throughput analysis methods. They can be
arranged within a hierarchy of levels, from molecular-biological networks to
evolutionary networks. The molecular-biological level, for example, contains
a set of heterogeneous networks such as metabolic and gene regulatory net-
works. For a biologist, it is interesting to see how the different elements in those
networks are connected with each other. Here, also multivariate data plays an
important role as the network elements carry additional multidimensional in-
formation, such as experimental data that changes over time.

Fig. 9.1. An overview of the various topics of this chapter. Colors in the top right
part are used to separate different graphs (e. g., within one level); colors in the
bottom part separate different levels. Note that some nodes in the upper part have
attached additional attributes symbolized by the small grey data matrix on the
right hand side.

9.1 Formal Description of Used Data Structures 177

In terms of visualization, we want to navigate and explore through this
world of networks, and a visualization tool should also provide techniques for
the visual analysis of the multivariate data sets together with the underlying
network topology. The upper part of Fig. 9.1 provides an overview of these
concepts.

Many interactive visualization approaches and tools have been developed
for the visual analysis of graphs/networks; the same is true for the visual-
ization of multivariate data sets. We do not give a comprehensive overview
of the literature here. Instead, we refer to textbooks, such as [38, 69, 70],
surveys [24, 37, 46] and the introduction chapter of this book (Chapter 1).
Note that the given literature references only point to selected example works
and make no claim to be complete. However, a number of visualizations were
especially developed for the analysis of multivariate networks [31]. Some of
them are based on coordinated views, such as Jigsaw [67] or enRoute [56],
others provide integrated solutions, for instance MobiVis [62], GEOMI [17],
Vanted [60], or ViNCent [35, 72], and there are also approaches which realize
so-called attribute-driven topologies like JauntyNets [32] and GraphDice [6].
We refer the reader back to Chapter 1 for a more detailed discussion of ex-
isting directions in multivariate network visualization. To the best of our
knowledge there are no efficient visualization approaches for heterogeneous
networks distributed over various levels. The aim of this chapter is to formal-
ize and highlight the underlying problems and challenges by means of three
application domains as well as to propose different solutions.

The remainder of this chapter is organized as follows: Sect. 9.1 provides a
more formal specification of the data structures used in the chapter. Then,
Sect. 9.2 exemplifies the visualization and analysis challenges by means of
three important application fields: biology, social sciences, and software en-
gineering. As there are almost no efficient visualization tools for multiple
networks over levels available, we provide some ideas and visualization chal-
lenges in Sect. 9.3 (cf. the lower part of Fig. 9.1).

9.1 Formal Description of Used Data Structures

In order to facilitate the understanding and description of the following sec-
tions, we introduce a formal specification of the data structures used (a com-
plete data structure sample is shown in Fig. 9.2). For this, let G = (V,E, L)
be a labeled graph with a finite set of nodes2 V = {v1, . . . , vn}, a finite set
of edges E = {(vi, vj)|vi, vj ∈ V }, and a finite set of node and edge labels
L = {l1, . . . , lp}. Each node or edge of the graph is required to have a not
necessarily unique label, and l : V,E → L gives the label for each node or
edge. The label is used to encode a vector of additional node-/edge-specific
data (i. e., the multivariate attributes).

2 Often called vertices; therefore, the variable name v has been established to
describe a node.

178 9 Heterogeneous Networks on Multiple Levels

Fig. 9.2. The data structure described in Sect. 9.1. It shows three levels with two
heterogeneous networks G1, G2 in level 1, three heterogeneous networks G3, G4, G5

in level 2, and two heterogeneous networks G6, G7 in level 3.

Let G1, . . . , Gm be a set of labeled graphs with Gi = (Vi, Ei, Li). Each
graph may be directed, undirected, or mixed, and represents a specific
network of the application domain (note that a graph might also be un-
connected). For example, in the biological domain (see Sect. 9.2.1) a gene
regulatory network may be represented by a directed graph, a protein inter-
action network by an undirected graph, and a metabolic network by a directed
bipartite graph, respectively (cf. the green colored graphs in Fig. 9.2).

As mentioned in the introduction, we allow networks arranged at various
levels. For modeling this property, let S = {s1, . . . , sk} be a set of consec-
utive levels. Each level can contain several graphs of G1, . . . , Gm, but each
graph belongs to only one level. A level therefore groups graphs. The function
s : G, V,E → S gives the level for each graph, node, or edge.

To connect graphs with each other, we introduce mappings between nodes
of different graphs. Let M = {(vi, vj)|vi ∈ Vi, vj ∈ Vj} be a mapping which
connects a node from graph Gi with one node from a different graph Gj . Note
that mappings within a graph are not allowed (those “intragraph mappings”
are represented by the normal edges). Furthermore, the resulting structure

9.2 Application Domains 179

could be seen as a new (global or union) graph GG which merges all nodes
and edges from G1, . . . , Gm and the mappings (edges) M .

For simplicity, the mapping M will be restricted in the following way.
For m = (vi, vj) with vi ∈ Vi and vj ∈ Vj : if both nodes belong to the
same level—s(vi) = s(vj); see the red links in the figure—there will be no
restriction. However, if both nodes belong to different levels (yellow edges),
a mapping is only allowed if the following two conditions hold:

1. both levels are consecutive (neighboring) levels, i. e., s(vi) = s(vj)− 1 or
s(vj) = s(vi)− 1, and

2. there is a 1 : n mapping from the higher to the lower level—i. e., if s(vi)
is the higher level (s(vi) = s(vj) + 1) then there is no other node vk in
level s(vi) with (vk, vj) ∈ M .

9.2 Application Domains

This section provides an overview of the most important visualization and
analysis challenges by means of three application fields: life sciences / biology,
social sciences, and software engineering.

9.2.1 Life Sciences / Biology

Biological processes are commonly represented as networks. Examples of bio-
logical networks are molecular biological networks such as protein interaction
networks (showing the interaction possibilities of proteins) and metabolic
pathways (representing the transformation of metabolites into other metabo-
lites), food webs and ecological networks (showing the dependencies between
prey and predators), and phylogenetic networks (representing the evolution-
ary relationships between species).

In the remaining of this section we first present a domain overview in-
troducing relevant terminology along the way. The next subsection discusses
major data sources and formats. Then we illuminate diverse network types
and interlinkages together with examples. The next subsection presents con-
crete use cases that benefit from the formalization presented in the previous
section and the visualization solutions discussed later. We conclude with a
discussion of challenges for multi-level network analysis and visualization in
the life / biological sciences.

Overview

A better understanding of biological networks helps in making sense of much
of the complex data which is nowadays available in biology, biochemistry,
medicine, and related areas of the life sciences. Visualization is a key method
to foster exploration and understanding, and, therefore, biological network

180 9 Heterogeneous Networks on Multiple Levels

visualizations have existed for a long time. The importance of visualization
and visual analysis of these networks is also evidenced by the large number of
books, tools and databases that either contain manually produced drawings
of biological processes and networks, or provide algorithms for their auto-
matic layout. Many tools are available, some comparisons of tools have been
presented (for example, in [22, 43, 60]), and a number of well known tools
supporting network visualization and analysis are:3

• BiNa [45] (http://bit.ly/y6ix9i)
• BioUML [42] (http://bit.ly/yIETIt)
• CellDesigner [20] (http://bit.ly/A0FQiF)
• CellMicrocosmos [66] (http://bit.ly/WJ8cnE)
• Cytoscape [65] (http://bit.ly/wY2sbG)
• Ondex [41, Chapt. 5] (http://bit.ly/AetZjz)
• Pathway Projector [43] (http://bit.ly/zo5x2M)
• PathVisio [27] (http://bit.ly/zunwxW)
• SBGN-ED [13] (http://bit.ly/17m7KfW)
• Vanted [30] (http://bit.ly/Aigr0T)
• VisAnt [25] (http://bit.ly/agZBni)

Data Sources

Biological networks may be directly derived from experimental data (such
as protein interaction networks) or are built based on knowledge (such as
metabolic networks). There are many data sources for biological networks:
from databases covering a specific domain for a specific species (such as Ara-
Cyc [54] for metabolism in Arabidopsis) to a specific domain for a set of
species (such as MetaCrop [61] for metabolism in crop plants) to several do-
mains for several species (such as KEGG [34] for metabolic and signalling
processes in a wide range of species). Another important criterion is the
quality of the data which can range from completely manually curated, high-
quality data to computationally derived, uncurated data. For overviews of
databases for a range of data domains, see [4, 18], for instance.

To support exchange between tools and databases, a few standard rep-
resentations are widely used such as SBML [26] and BioPAX [14]. Also the
graphical representation of cellular processes and biological networks has been
standardized with SBGN [48] which helps in understanding the complex pro-
cesses due to the unambiguous use of glyphs. For details, see the specifications
of the SBGN languages [51, 53, 55].

3 Note that there are more than 170 tools available for network visualization and
analysis, and a complete listing and comparison is beyond the scope of this
article. We list some tools here which exists since several years and often allow
easy extensions via plugin mechanisms.

http://bit.ly/y6ix9i
http://bit.ly/yIETIt
http://bit.ly/A0FQiF
http://bit.ly/WJ8cnE
http://bit.ly/wY2sbG
http://bit.ly/AetZjz
http://bit.ly/zo5x2M
http://bit.ly/zunwxW
http://bit.ly/17m7KfW
http://bit.ly/Aigr0T
http://bit.ly/agZBni

9.2 Application Domains 181

Fig. 9.3. A hierarchy of biological networks

Network Types and Examples

Several types of graphs are used to represent biological networks and some
typical examples are presented in the following. Directed graphs : gene reg-
ulatory and signaling networks which describe how genes can be activated
or repressed and therefore which proteins are produced in a cell at a par-
ticular time; food webs which model the relationships between species in
an ecological system. Undirected or mixed graphs : protein interaction net-
works which represent the interaction between proteins such as the build-
ing of protein complexes and the activation of one protein by another pro-
tein. Hypergraphs or bipartite graphs : metabolic networks which show how
metabolites are transformed—for example, to produce energy or synthesize
substances. Trees: phylogenetic trees which are commonly built on informa-
tion from molecular biology such as DNA or protein sequences and which
represent the ancestral relationships between different species. There exists
a hierarchy of biological networks (see Fig. 9.3 and also Chap. 4).

An example of the data structure described in Sect. 9.1 is given in Fig. 9.4.
Here, three molecular-biological networks (gene-regulatory network, protein
interaction network, and metabolic network) are presented on level 1. Genes
in the gene regulatory network may activate or inactivate the transcription
of other genes. Genes are transcribed into proteins, therefore the protein

182 9 Heterogeneous Networks on Multiple Levels

interaction network does not only contain edges between nodes of the pro-
tein interaction network (for representing interaction), but also (red) edges
between genes (gene regulatory network) and proteins (protein interaction
network). Finally the metabolic network is a bipartite graph consisting of
metabolites (circles) and enzymes (rectangles). Enzymes are proteins; there-
fore, there are (red) edges connecting the protein interaction graph with the
metabolism graph. On the next level, two networks are represented: an asso-
ciation of all genes to their chromosomes and a clustering of all proteins into
disjunct clusters. The yellow edges represent which gene of the gene regula-
tory network belongs to which chromosome, and which protein of the protein
interaction network belongs to which protein cluster, respectively.

Fig. 9.4. An example instantiation of the data structure described in Sect. 9.1

Typically multivariate data is connected to nodes and/or edges of the
networks. Figure 9.5 gives some examples of such data. Here we will focus
on the network structure, but it should be kept in mind that not only the
visualization of the networks, but also of the additional multivariate data is
often a challenge.

Use Cases

Here we discuss use cases that involve the multi-level heterogeneous network
shown in Fig. 9.4. Genes encode proteins, and proteins have many functions
including catalyzing metabolic reactions in the form of enzymes. This ma-
jor flow of information motivates the use of the three networks on level 1 in
Fig. 9.4: gene regulatory, protein interaction, and metabolic network. These
networks focus on different aspects of the same underlying biological system.
In addition, level 2 gives further information which is either experimentally
obtained (such as the location of genes on the chromosomes) or computed

9.2 Application Domains 183

Fig. 9.5. Examples of multivariate data in biological networks, (a) time-series of
relative metabolite levels in a metabolic network (for two different conditions: day
and night; from [7]); (b) up- (red) and down-regulated (blue) genes in a signalling
pathway (from [39]), (c) spatial resolution of gene expression in the gene regulatory
networks of Arabidopsis (from [29]).

(such as the clustering of proteins based on connectivity information).4 Typ-
ical tasks involving these networks are:

Structural properties of the networks

Which elements of the networks are important nodes (such as regulatory
genes), functional building blocks (such as feed-forward motifs [52]), or rel-
evant paths through the network (such as the shortest path between two
metabolites)? Such questions are usually answered using methods from net-
work analysis: centrality analysis to evaluate the importance of nodes or edges
in the network [44], network clustering which may structure the network into
functional modules [5], shortest paths between nodes representing potentially
preferred routes, and so on. The results of such analysis have to be visualized
in the network context and may give new insights into how important a spe-
cific gene is for an organism or which metabolic pathway may be preferred
by an organism.

Networks and spatial information

Are genes with close proximity on the chromosome involved in the same bio-
logical processes? For example, if genes in close proximity on the chromosome

4 Note spatial location and aggregation or grouping of elements can also occur in
other application domains; for example, see Fig. 9.6.

184 9 Heterogeneous Networks on Multiple Levels

are regulated by the same regulators in the gene regulatory network or if they
fall in the same cluster in the protein clustering, then they are likely to belong
to the same biological process.

Networks and multivariate data

Is experimental data in agreement with knowledge represented by the net-
works or not? Lots of experimental data can be attached to nodes and edges:
data obtained under different experimental conditions such as treatments or
temperature, time-series measurements, and so on. For example, the following
attributes can be used: edge weights (e. g., to represent fluxes), node weights
(e. g., to show concentrations), node presence/absence (e. g., to model knock-
outs), and node shape (e. g., to show different types of biological objects).
Multivariate data has first to be integrated into the biological network. Data
mapping deals with this integration of additional data into networks. An
example is the integration of metabolomics, transcriptomics, and fluxomics
measurement data into the metabolic network. This data can be mapped
on different network elements (such as metabolites, enzymes, and reaction
edges). The mapped data should behave in a way which could be explained
by the underlying networks. If, for example, in the gene regulatory network,
only some of the dependent genes get activated if a regulatory gene is active,
this could be an indication for a yet undiscovered regulatory process.

Challenges

The compilation of heterogeneous networks requires the identification of the
biological entities such as genes, proteins, metabolites, species and so on, and
the interconnection between the networks with (different types of) edges.
The biological entities are only partly known; therefore, the networks are
not complete but change with increasing knowledge. Also, the interconnec-
tion between the heterogeneous networks is often difficult to obtain: identi-
fiers for biological entities are often only unique in the context of one data
source—for exmple, a database or an ontology. There are initiatives aim-
ing towards the creation of globally unique and persistent URIs (e. g., the
MIRIAM registry [47] and identifiers.org [33]), but they are still only used in
some databases. A commonly used approach is identifier mapping (see [50]
for an overview of tools capable of mapping biological database identifiers).

Tools for the visualization of analysis results often provide standard
interaction techniques such as zooming (sometimes also semantic zooming),
filtering, collapsing and expanding of structures, and highlighting. There are
many tools available, but choosing the right tool is often difficult (for links
to some more widely used tools, see the introduction of this section). Stan-
dard visualization tasks are often sufficiently solved, but more elaborated
visualization, interaction, analytics, and layout methods are an open issue.

9.2 Application Domains 185

An overview concerning open problems in biological network visualization
can be found in [3].

9.2.2 Social Science

This section reviews heterogeneous, multi-level networks in the social sci-
ences, drawing on research in sociology, information science, statistics, graph
theory, and network science [9]. A special focus will be scholarly networks such
as citation networks of papers or journals, and collaboration networks of au-
thors, their institutions, and countries. We first present a domain overview
introducing relevant terminology along the way. The next subsection discusses
major data sources and formats. Then we illuminate diverse network types
and interlinkages together with examples. In the next subsection we present
concrete use cases that benefit from the formalization presented in Sect. 9.1
and the visualization solutions discussed in Sect. 9.3. We conclude with a
discussion of challenges for multi-level network analysis and visualization in
the social sciences.

Overview

Social networks exist from the individual (micro) to population (macro) lev-
els. Examples are networks of friendship and hate, collaboration and com-
petition, and trade and blockage between entity nodes such as individuals,
organizations, cities, countries, geospatial regions, or areas of science. Typ-
ically, an entity node is part of multiple types of networks—for example, a
person is part of friendship, collaboration, and family relationship networks.
Nodes might contribute to information diffusion networks by receiving and
sending emails, tweets, or commenting on digital objects. Nodes from differ-
ent levels interact and influence each other—for example, individual authors
of papers might be aggregated at the institution or even country level, see
Fig. 9.6. Journal publications can be aggregated into journals. Undirected
collaboration and directed citation edges are aggregated as well. Network
edges can be mapped geospatially, supporting geospatial grouping by region,
county, country, or continent (see lowest level in Fig. 9.6).

The movement of a highly cited author from one department or country to
another will impact both the expertise profiles (entity properties) and collab-
oration patterns (entity linkages) of associated entity nodes. In other cases,
networks from different levels are nested—for example, a person is part of
local social networks that can be further aggregated to global, population
level networks. Last but not least, the structure of multi-level networks im-
pacts the utility of the network for, for example, information diffusion. The
stronger the edge between two nodes is, the more information can flow; the
more often two nodes share information, the stronger their edge grows over
time.

186 9 Heterogeneous Networks on Multiple Levels

Fig. 9.6. Three-level network of different collaboration and citation networks

Understanding the evolution of network structure and dynamics has far-
ranging applications. Among them are the prevention of disease spreading, for
example, identifying highly connected individuals that should be vaccinated
first when trying to fight a pandemic or using social networks to reducing
the social diffusion of smoking or bad eating behaviors (see subsection “Use
cases”); to increase the spreading of information—for example, in educa-
tion or when designing effective (viral) marketing strategies; to help manage
the extremely complex decision making space of professional career choices
(see subsection “Use cases”); or to form and sustain productive research and
development teams.

Data Sources

Social network data might be qualitative or quantitative. Qualitative data is
commonly acquired via surveys, interviews, direct observation, or by reviewing
writtendocuments.Quantitativedatamightbederived fromexistingdatabases
(e. g., phone-address-data-revealing social networks; publication data for ex-
tracting co-author networks) or acquired via measurement. Common data
sources are social media data (phone, email, blogs, Twitter, Facebook), schol-
arly data (scientific publications, patents, funding awards), or custom data col-
lected in research studies. Commonly studied networks are social networks,
friendship networks, collaboration networks, political networks, trading net-
works, and citation and other knowledge diffusion networks.

9.2 Application Domains 187

Nodes and their linkages can be represented as an adjacency matrix, an
edge list, or lists of nodes and edges. Consequently, most network science
tools5 support Pajek .net or edge list formats as well as Graph/ML, XGMML
formats. Many tools support the extraction of networks from common file
formats—for example, publication data formats from the Web of Science,
Scopus or personal bibliography tools such as EndNote or Latex’s bibtex, or
from generic tabular formats (e. g., .csv files).

Network Types and Examples

This subsection discusses different network types using examples from schol-
arly network analysis—the study of authors and their papers as we assume
all readers are familiar with this data.

Networks might be directed or undirected, weighted or unweighted, valued
or not. Linkages might be among units of the same type, such as friendship
or co-authorship linkages, or between units of different types, such as authors
and the papers they produce. In general, three types of linkages are distin-
guished: direct linkages such as paper citation linkages; co-occurrence linkages
of words or references; and co-citation linkages (e. g., of authors or papers).
Plus, units of the same type can be interlinked via different link types: for
instance, teenagers might be linked via love and hate relationships; papers
can be linked according to co-word, co-citation, or bibliographic coupling
analysis. Linkages might be directed and/or weighted. Each non-symmetrical
occurrence matrix has two associated (symmetrical) co-occurrence matrices;
for instance, for each paper citation matrix exists a bibliographic coupling
and a co-citation matrix.

An example of direct linkages are paper-paper (citation) linkages: Papers
cite other papers via references, forming a non-weighted, directed paper cita-
tion graph. It is beneficial to indicate the direction of information flow from
older to younger papers via arrows. References enable readers to search the
citation graph backward in time. Citations to a paper support the forward
traversal of the graph. Citing and being cited can be seen as two vital roles
of a paper.

Co-occurrence linkages interconnect co-author networks. Having the names
of two authors (or their institutions and countries) jointly listed on one pa-
per, patent, or grant is an empirical manifestation of scholarly collaboration.
The more often two authors collaborate, the greater the weight of their joint
coauthor link. Weighted, undirected co-authorship networks appear to have
a high correlation with social networks that are themselves shaped by geo-
graphic proximity.

Word co-occurrence linkages are used to calculate the topic similarity of
basic and aggregate units of science. Units that share more words are assumed

5 http://sci2.wiki.cns.iu.edu/display/SCI2TUTORIAL/

8.2+Network+Analysis+and+Other+Tools

http://sci2.wiki.cns.iu.edu/display/SCI2TUTORIAL/8.2+Network+Analysis+and+Other+Tools
http://sci2.wiki.cns.iu.edu/display/SCI2TUTORIAL/8.2+Network+Analysis+and+Other+Tools

188 9 Heterogeneous Networks on Multiple Levels

to have higher topic overlap and are connected via linkages and/or placed in
closer proximity on a topic map. Co-occurrence networks are weighted and
undirected.

Co-citation linkages is as follows: Two basic or aggregate units of science
are said to be co-cited if papers associated with them jointly appear in the
list of references of a third paper. The more often two units are co-cited,
the more they are expected to have something in common. Examples are
document co-citation and author co-citation networks.

Given a data file with publication records retrieved from the Web of Science
or Scopus database, more than 30 different networks can be extracted. Some
of these networks—for example, co-author or paper-citation networks—have
been studied extensively and their structure, distribution, and evolution are
known. Other network types—particularly heterogeneous networks interlink-
ing different levels—have not yet been studied in detail.

Use Cases

This subsection exemplarily discusses two use cases that involve multi-level
heterogeneous social networks. For each, we identify user needs/tasks, work-
flows, and insights gained.

Reducing social contagion of smoking behavior

Social peer pressure is powerful. The desire of an individual to be an ac-
cepted member of a group frequently leads to behavior that the individual
would not show without the group. For example, it is well known that—
all other things being equal—joining a well-organized team of experts will
lead to higher professional performance than joining a team of less skilled,
less organized individuals. Studies by Christakis and Fowler have evaluated
a densely interconnected social network of 12,067 people assessed repeatedly
from 1971 to 2003 as part of the Framingham Heart Study to show the rele-
vance of social networks in the diffusion of not only smoking and obesity [10],
but also loneliness. Relevant news stories were entitled: “Are Your Friends
Making You Fat?”6 While it is difficult and in some cases impossible to distin-
guish correlation vs. causation [11]—for example, some of the shown effects
could be due to the “birds of a feather flock together” factor also known as
homophily—networks seem to impact outcomes. A scientific approach that
considers homophily, environment, and induction (e. g., by using multi-level
heterogeneous networks) seems promising.

For example, it appears beneficial to study individuals in the context of
multiple, interconnected networks. Level 1 might comprise the different social
networks of a teenager node A. Among them are family, school, and out-of-
school friendship networks. Level 2 aggregates these networks to families and

6 http://www.nytimes.com/2009/09/13/magazine/

13contagion-t.html?pagewanted=all& r=0

http://www.nytimes.com/2009/09/13/magazine/13contagion-t.html?pagewanted=all&_r=0
http://www.nytimes.com/2009/09/13/magazine/13contagion-t.html?pagewanted=all&_r=0

9.2 Application Domains 189

clans (groups of teenagers) that have diverse profiles and interlinkages. Ge-
ography matters: the ease by which A can come into contact with teenagers
and other individuals that have different demographic profiles is important—
just like in Fig. 9.6 a spatialization level can be used to represent geospatial
factors. Using this representation, the number of linkages to positive and neg-
ative influences can be calculated—for example, the strength of network ties
to peers and family members, the rate of contact, and geospatial proximity
can be determined for any individual node. Using computational models, it
might be possible to predict the general impact of network changes on indi-
vidual behavior. The big, open question is: How to change social networks
and/or environments to cause positive change?

Designing successful career trajectories

Pathways that individuals choose from taking their very first job and thenmov-
ing on to the next during their working years are called career trajectories.They
might be plotted over time, geospatial space, or topic space. Individuals might
change locations and jobs because of warfare, political problems, ethnic purg-
ing, or because of voluntary or volitional migration where individuals choose
to relocate to new places because of opportunities offered in the new place. In
the latter case, social factors (e. g., closeness to family and friends, standard
of living), colored by cultural, historical, linguistic, or weather considerations,
but also active encouragement by visa and immigration controls are key criteria.
Education is anothermajor factor—low education typically equates low paying
jobs and little resources to pay for education or tomove to a different place.High
education commonly leads to better paying jobs and the generation of financial
wealth that pays for personal education or the education of family members.
Highly specialized expertise profiles might also mean that only a few jobs exist
that match this expertise profile and international migration is required to find
an appropriate job.

Coming back to the study of scholarly networks, much data exists to track
career trajectories of scholars over time. The U.S. National Science Founda-
tion has been conducting the Survey of Doctorate Recipients (SDR) bien-
nially since 1973. The SDR follows a sample of U.S.-trained doctorates in
science, engineering, and health fields throughout their careers from shortly
after degree award by a U.S. institution through age 75. Multivariate data
such as detailed information on professional position, salary, number of kids,
etc. is available for each respondent in a longitudinal fashion. In addition,
there exist extensive publication and funding databases that record fund-
ing intake (number of awards and funding amounts) and publication output
(number of papers and their citations) over time together with information
on not only co-investigators and coauthors, but also institutional affiliations,
and acknowledged grant funding that interlinks funding and publications.

In general, career trajectories are best viewed as decisions over time.
As it is much easier to change institutions than to change a topical area

190 9 Heterogeneous Networks on Multiple Levels

of expertise; researchers change geolocations frequently (particularly in the
beginning of their career). However, they are less likely to change their topic
area and, if they do, decide to venture into topically similar areas of science
that benefit from the same skill set/expertise. Multi-level networks can be
used to represent the impact of geospatial features—for example, car routes
and air traffic networks as a proxy for reachability (spatialization level). Level
1 might show scholar node B and associated family links, mostly local friend-
ship networks, (international) co-author relations, and collegial networks at
the same institution. Level 2 might be used to represent the reputation and
interlinkages of institutions and scientific disciplines. Family and friendship
links, the reputation of another institution, and also attributes of the new
geolocation (living costs, weather, etc.) have the power to make a person
look for or accept another job—if a job offer is made. The new institutional
environment together with new friendship and collaboration opportunities
will change funding and publication patterns of an individual scholar and
ultimately the conditions for the next career step. Note that not only indi-
viduals and families but also companies and organizations migrate in response
to market changes, to maximize economic utility, or to be close to customers.

Challenges

The extraction of heterogeneous networks requires the identification of unique
entities—for example, people, institutions, scientific areas, and their inter-
linkage via (different types of) edges. While publications, patents, and other
digital documents have unique digital object identifiers, the development of
digital object identifiers for authors, institutions, and scientific areas is still
under active development. Similarly, the interlinkage of (heterogeneous) net-
works across levels poses serious unification and data mapping challenges.
Many problems require n : m mappings not only within one level but also
between consecutive levels—implications for restricting the mapping to 1 : m
are unknown. For example, Fig. 9.6 assumes that each author has exactly one
affiliation and each institution is mapped to one country—this is not true for
all authors nor institutions.

Few algorithms exist to analyze and visualize heterogeneous networks—
most algorithms assume there is one node type and one edge type. Visual-
izations are important to communicate complex heterogeneous, multi-level
networks. However, most readers hardly ever learned how to read and inter-
pret a network and seeing multiple interlinked networks with different node
and edge types is often overwhelming.

9.2.3 Software Engineering

A plethora of tasks in software engineering involves analyzing software
artifacts that are best represented using networks, see also Chap. 2. We
will focus on object-oriented programming languages like Java or C++ for

9.2 Application Domains 191

implementation. Other languages will lead to similar structures. The differ-
ent networks can be categorized into static software structure (e. g., classes in
Java or C++ and their connections) and dynamic software structures (e. g.,
which classes are instantiated and when and how these instances are con-
nected to each other). Furthermore, different structural connections between
the same nodes (classes) are possible—for example, call graph, inheritance
(both directed) or code clones (undirected). This forms a within-level set
of graphs. Another within-level set of graphs is given by the change of the
graphs over time. During the evolution of the software system (seen as snap-
shots in repositories like svn, cvs, or git), the graph changes: nodes (classes)
are added, deleted, or changed, and also links are added or deleted, or they
change their properties (e. g., the number of methods of one class called by
another one). Finally, software entities are structured: methods belong to
classes belong to modules. These modules can be represented by, e. g., pack-
ages in Java or namespaces in C++. This package or namespace tree can be
directly mapped to the levels of Fig. 9.2.

In the following of this section we first present a domain overview introduc-
ing relevant terminology along the way. The next subsection discusses major
data sources and formats. Then we present diverse network types and inter-
linkages together with examples. The following subsection presents concrete
use cases. We conclude with a discussion of challenges for multi-level network
analysis and visualization in software engineering.

Overview

The data produced and used in software engineering is manifold. First of
all, software development processes can be mapped to directed graphs with
loops, where each development step is mapped onto a node, and an edge des-
ignates the sequence of these steps. Further, software development artifacts
like system designs, detailed designs, and the static and dynamic structure
of programs can be mapped onto directed and undirected graphs. Finally,
algorithms can be visualized. In this latter case, graphs are more rarely used,
except that the algorithm requires the handling of graphs.

The networks can be time-dependent (n : m mapping within a level)—for
example, data from cvs, svn, or other repositories—and multi-level (1 : n
mapping between levels)—for example, package structure in Java. Further,
they have different node and edge types, and to each of these nodes and
edges additional information (multivariate data) can be associated. Thus,
the networks have all properties described in Sect. 9.1 and shown in Fig. 9.2.

An exemplary instantiation of Fig. 9.2 is shown in Fig. 9.7. All nodes in
the lowest-level—level 1—represent classes. These classes are related by edges
(green) representing, for example, method calls. They are grouped according
to their revision (release); three releases are shown. Classes (nodes) that
are present in subsequent revisions are connected by red edges. Aggregating
classes into packages (yellow edges) results in the graphs on level 2. Here, the

192 9 Heterogeneous Networks on Multiple Levels

Fig. 9.7. An example instantiation of the data structure described in Section 9.1

nodes represent both nodes and packages. Packages are those nodes which
are connected by yellow edges to level 1. The same holds for level 3.

Understanding software processes is important for assigning and managing
resources during the software development process, while understanding the
structure and the behavior of software products (software comprehension) is
important for bug fixing and extending existing software systems (software
maintenance).

Data Sources

Networks in software engineering are either created manually or automat-
ically. Manual creation occurs normally for describing software engineering
processes and during software development in the design phase. However,
the latter networks are only reliable in the case of automatic code genera-
tion. Whenever code is generated manually, the design is usually changed
either intentionally or unintentionally. Therefore, software systems are com-
monly analyzed based on graphs extracted directly from the source code. The
source code itself comes from software repositories like svn, cvs, or git. During
the extraction, the graphs are generated. Some systems additionally extract
so-called software metrics. In the latter case, these software metrics are used
as attributes of the classes (nodes). The attributes for the edges can also be
inferred from these metrics. On the other hand, the number of edges of the

9.2 Application Domains 193

same type can be counted and used as an additional measurement (e. g., how
many different method calls occur from class A to class B).

The granularity of the analysis influences which are the lowest-level entities
(nodes). Most often, either classes, methods or member variables of classes are
chosen as atomic entities. Methods and member variables of classes are a part
of classes, which in turn are a part of packages. Packages themselves form a
tree with one root package or a forest with several root packages. Edges might
represent directed relations like method calls, inheritance, instantiation, or
aggregation, or undirected relations like code clones or common fate.

Finally, execution logs (traces) of program runs are mined to create dy-
namic call graphs. In this case, nodes are mostly the instantiated classes, while
edges are mostly the dynamic call relations between the class instances. How-
ever, static relations like aggregation or inheritance can help to understand
the behavior of the programs. More data sources and how these sources are
mined to obtain information are described in Sect. 2.3.3 of this book.

Network Types and Examples

Software processes are mapped onto networks similarly to other processes
(e. g., business processes, schedules, or production processes). Each devel-
opment step is mapped onto a node and can have additional information
assigned (e. g., number of developers, time allocated for this step, a list of
tasks, inputs, and deliverables). Each step is connected to the following step
by an edge. This edge normally is guarded in the sense that it can be only fol-
lowed if the deliverables of the previous step are ready (to a certain amount).
As the processes can branch and can have loops, the graphs cannot be re-
duced to trees or DAGs (directed acyclic graphs). Mostly, the process comes
in an abstract form that is instantiated for a specific project. Therefore, sev-
eral similar networks exist that can be compared to each other (e. g., the
instantiations among each other). Further, the process can be in the form of
a hierarchy. Then, each node of the high-level process is refined into a number
of steps that can be refined themselves.

The static structure of software artifacts can also be mapped to typically
directed graphs. Taking Java source code, these networks have the following
properties. The hierarchy of Java packages can be mapped to different levels.
The lowest-level nodes can be either classes or methods, members, and sub-
classes of classes. The snapshots in time (typically saved in revision-control
systems) form a sequence of hierarchical networks. Many revision-control sys-
tems allow branches and merges, such that the sequence becomes a directed
acyclic graph. Possible links (edges) on class level are inheritance, method
call, aggregation, implements relation, and usage relation (similar to aggre-
gation, where the class is used as type of another class’ member, it can also
be used as type of return values, parameters, or exceptions). Besides these
directed links (edges), also undirected links (edges) might also exist like code
clones, common fate (evolution, classes that are often changed together), or

194 9 Heterogeneous Networks on Multiple Levels

semantic similarity. Aggregating the classes and sub-packages in packages di-
rectly implies the aggregation of the edges; thus, a hierarchy is built for one
time-step.

The dynamic structure of a software system also leads to a sequence of
networks. However, these networks typically have a 1 : n mapping as the
underlying static structure does not change. Instead, individual edges are ac-
tivated and deactivated according to the dynamic evolution of the networks.
Indeed, the nodes of the dynamic networks are instances of the nodes of the
static network, where each static node can lead to an arbitrary number of
dynamic nodes. The same holds for the edges: call graph edges get instanti-
ated during the evolution of the run. Of course, the granularity can be again
on class or on any of the package levels.

Use Cases

Use cases are typically directly derived from software engineering tasks (see
also Sect. 2.3 in this book). Tasks that benefit from visualizations include

Software understanding

Understanding the functionality and the interplay of components necessitates
the understanding of the static and dynamic structure. Further, it is the basis
for the maintenance task.

Maintenance

To maintain a system, a thorough understanding of the individual compo-
nents as well as their dependencies is needed. The dependencies are best
analyzed based on visualizations of the static structure and dynamic runs.

Re-engineering

Re-engineering is needed for legacy systems or whenever the new developer
can not directly access the knowledge of the original developers. Like Software
understanding, the interplay of the different components plays an important
role, which is best understood using static and dynamic networks.

Testing and bug fixing

For bug fixing, the interplay of components is very important, because side
effects on other components should be minimized when changing an individ-
ual component. The same holds for adding new functionality. The current
behavior should not change by adding additional functionality.

9.2 Application Domains 195

Product lines

Product lines incorporate basic functionality in a core of components, adding
functionality by additional or changed components. For product lines, it is
mandatory to understand the relationship between the different products.
The goal is to maximize the amount of common components, minimizing the
effort for creating additional functionality using additional components.

Challenges

There exist a lot of software visualizations, but only a few of them are scalable
and comprehensive. Most of the existing solutions either focus on specific
properties of software artifacts, like metrics, static structure (UML diagrams)
at one time step with several types of edges, or static structure over time with
one edge type.

Highly necessary for effective program comprehension are integrated views
like the AreaView tool developed by Byelas at al. [8]. While this tool inte-
grates UML diagrams with metrics and several areas of interests, it displays
neither hierarchies nor several time steps. We need an integrated set of visu-
alizations and interactions that allows us to look at static software artifacts
from several points of view, showing or filtering information on demand to
allow a focused analysis of the software artifacts. Such approaches should
visualize networks with the following properties:

1. time-dependent static structures: e. g., svn or cvs snapshots;
2. structure hierarchies: e. g., packages and classes in Java;
3. distinct node types: e. g., classes and interfaces in Java;
4. distinct edge types: e. g., inheritance, aggregation, method calls (directed)

and code clones, semantic similarity (undirected);
5. software metrics as additional node information: e. g., lines of code, num-

ber of methods, depth of inheritance;
6. metrics associated with edges: e. g., number of method call relations, sim-

ilarity.

While all of these properties mainly map to visual structures, interaction has
always to be considered as part of the solution—that is, at least the use of
standard interaction techniques is mandatory. Only if users are allowed to
interactively explore selected parts of the software artifacts, they will be able
to gain new insights and find the information needed for solving specific tasks.
Thus, interactive visualizations must be seamlessly embedded in the software
analyst’s work flow. Only then can analysts discover complex patterns in
software. Specific challenges derived from this general challenge are:

Scalability: How to depict several levels of several revisions over time? Usu-
ally, the graphs are so large that a cut through the level hierarchy is
needed showing the focused information in detail (lowest-level) and the
context information reduced (on a higher level). Showing a series of cuts is

196 9 Heterogeneous Networks on Multiple Levels

then asked for to analyze the evolution of the software system for finding
patterns or unusual changes, see also Chap. 10.

Comprehension: What is the best visualization-interaction combination
for showing all relevant information?
• Metrics: On the one hand, metrics (i. e., attributes on the nodes and

edges) have to be included in a non-obstructive way with respect to
the structure.

• Multiple Edge Types: On the other hand—besides the hierarchy—
each level might also represent different edge types. Then the yellow
edges in Fig. 9.7 represent again the same node, while the levels in
this case represent different structural information like call graphs,
inheritance, or code clones. Possible solutions for this problem have
already been proposed by Abuthawabeh et al. [1, 2] based on a matrix
visualization. A similar approach using node-link diagrams has been
proposed by Knodel et al. [40]. However, these two approaches need
further improvements to become valuable in software comprehension
tasks.

9.3 Visualization

The visualization of heterogeneous networks onmultiple levels is still relatively
unexplored in the literature. However, there are a number of visualization ap-
proaches that focus on solving specific analysis tasks or operate on a subset of
the data structure introduced in Sect. 9.1, for instance on heterogeneous mul-
tivariate networks: some approaches abstain from explicit encoding of the net-
work topology and visualize aggregated information only. This idea supports
the analysis of very large data sets in terms of many heterogeneous networks
and large multivariate attributes. ManyNets [19] represents networks as rows
in a table together with their multivariate data (primary as well as secondary
data [37]) similar to the well-known TableLens [58]. Several interaction pos-
sibilities support the visual analysis of the networks which might also be dis-
played as node-link diagram on demand. GraphTrail [16] has similar aims, but
in contrast to showing the networks in a table, the developers have chosen to
represent the network elements in an aggregated form. For doing this, stan-
dard charts like bar charts or tag clouds are employed that can be interactively
arranged on a canvas. GraphTrail also supports the analysis process by pro-
viding a history functionality (Sect. 6.3.2 in Chap. 6 discusses GraphTrail in
more detail). Other approaches abstract directly in the node-link representa-
tions, such as OntoVis [63]: an ontology graph, which describes the node cat-
egories/clusters and their relationships and serves as a vehicle to control the
abstraction and navigation processes. In addition, layout methods have been
proposedwhich try to preserve similar parts in the heterogenous networks such
as the visualization of two or three heterogenous networks in parallel planes in
three dimensions is discussed in [21]. All these tools and approaches have in

9.3 Visualization 197

common that they provide solutions for analyzing a set of heterogeneous mul-
tivariate networks, but not at multiple levels.

In the following, we provide a short overview of techniques and ideas that
might partly solve the problem of representing a set of heterogeneous net-
works distributed in several levels. All figures refer back to the sample three-
level networks in Fig. 9.2, with green indicating the lowest level, red indicating
the middle level, and blue indicating the upper level.

9.3.1 Approaches for Networks at Multiple Levels

Stacking

The most obvious visualization metaphor for networks on different levels is
stacking. All networks on the same level are laid out (by using any more or
less smart graph drawing algorithm) on a 2D plane, and then these planes
are stacked in 3D (cf. Fig. 9.8). Multivariate data attached to the nodes or
edges might be displayed within the planes themselves, as additional layers be-
low or above the individual 2D planes, or separated into multiple coordinated
views [59]. One of the existing example tools is VisLink [12], which is a general
approach to show relationships between visualizations. In our special case, net-
works on levels are displayed onmultiple 2D planes that can be arranged in the
third dimension in various ways (in parallel, book-like, etc.). Relationships are
represented as links—that is, as inter-plane edges. Here also, multivariate data
can be represented inside of the planes or on additional individual planes. In the
latter case, inter-plane edges might be used to point to the attached multivari-
ate data. Note that—according to our definitions—heterogeneous networks are
usually placed by VisLink to different planes and not on one plane. The most
obvious drawback of such 3D techniques is their low level of scalability aswell as
clutter and perspective distortions especially when showing multivariate data
in combination with the networks themselves.

Nesting

Another thinkable visualization approach is to use nesting for the explicit
encoding of inter-level edges. This requires that mappings across consecu-
tive levels are of 1 : n type. Figure 9.9 shows an example of how such an
approach might look. Multivariate data could be represented as additional
graphical features of the nested boxes/circles or within separated, coordi-
nated views. Advantages are the “flat” layout which might support finding
answers for specific tasks, such as the analysis of the aggregation results be-
tween co-author networks and institute collaboration networks (cf. Fig. 9.6).
Another benefit is the integration of various interaction techniques similar
to Treemaps [28]. Disadvantages are the visual complexity of the approach—
induced by the mixture of link and box elements—as well as the possibly high
space consumption. Although this approach can be used for the hierarchical

198 9 Heterogeneous Networks on Multiple Levels

Fig. 9.8. Stacked 2D planes of network drawings which show the same networks
as given in Fig. 9.2

Fig. 9.9. Sketch of a nesting approach which shows the same networks as given in
Fig. 9.2. Closed contours (incl. circles for nodes in level i that have no links to level
i− 1) are used to represent the 1 : n mapping between levels.

9.3 Visualization 199

presentation of one single network (e. g., clustering) [15], we are not aware
of related works in the visualization literature for heterogeneous networks at
multiple levels.

Alignment

The next approach uses one view per level which are all aligned to each other
(cf. Fig 9.10). If a user brings a network part at one specific level into his
view by zooming and panning, the related nodes in the other networks are
shown simultaneously within the remaining coordinated views. Brushing can
be used to selected individual nodes together with their neighbors at other
levels as exemplified in the figure. Advantages of this idea are the simple
metaphor which can be implemented easily as well as the rich interaction
possibilities. Negative aspects might be the large space consumption of the
many views and the missing inter-level edges. However, so-called context-
preserving visual links [68] could solve this issue. Multivariate data could be
displayed within the views (e. g., by glyphs or similar) or within additional
coordinated views. The Entourage tool [49] realizes a similar approach with
a special focus on contextual subsets, but without explicit encoding of the
different levels. Here, contextually relevant pathways are displayed side-by-
side together with a focus pathway, and only important parts of those context
pathways are visible depending on the current selection in the focus pathway.

Fig. 9.10. Sketch of the alignment approach which shows the same networks as
given in Fig. 9.2. Here, one node in the middle level was selected (orange halo); its
neighbors in the lower level were highlighted accordingly (dashed orange halo).

200 9 Heterogeneous Networks on Multiple Levels

9.3.2 Challenges and Future Directions

Heterogeneous networks on multiple levels are not easy to visualize even with-
out attached multivariate data. One reason is the sheer size of the involved
networks. Most graph drawing methods do not scale well. Another reason
is the specific structure that is inherently given by the set of heterogeneous
networks and the levels themselves: it is not efficiently reflected by most vi-
sualization approaches. Clever interaction techniques might help here, but
in contrast to the visual analysis of single networks (or perhaps also hetero-
geneous networks within one level) we do not have a good understanding
which interaction techniques and analytical methods work best in this con-
text. More work has to be done to develop new visual representations and
interaction metaphors to solve the specific problems and tasks described in
the previous sections. This process has to be accompanied by user studies.
Performing good and reliable evaluations is a challenge on its own, and we
refer to the book [57] for further reading.

In this chapter, we restricted ourselves to 1 : n mappings across consec-
utive levels which can be sufficiently motivated by many concrete data sets
and analysis tasks in our applications fields. However, there are—of course—
situations in practice that demand universal n : m relationships between net-
work elements in different levels that must not be consecutive. Section 9.2.2
briefly exemplifies this issue. Because of the structural flexibility which comes
with such general approaches, visualization experts have difficulties with the
development of novel methods and tools that are able to handle those cases.
From the perspective of visual analytics, more research has to be done in
order to improve/facilitate the analysis processes. The analysis of hetero-
geneous networks on multiple levels is usually not done by just one analyst.
Usually, several people work together—whether it be at one place (co-located)
or several places (distributed), or whether it be at one specific period in time
or at several different times. Our visualization and analysis tools should be
able to support such collaborative work, record analysis sessions, support an-
notations by the users, and provide some guidance during the analysis pro-
cess [37]—that is, a visualization should support “guided analytics to lead
analysts through workflows for common tasks” [23].

For the integration of multivariate data into heterogeneous networks on
multiple levels initial ideas have been proposed, but so far we have not really
solved this problem. Both the network topologies and the attached multi-
variate data together are of great importance to the analysts, and in many
tasks both is needed to solve specific questions and gain insights into the
data. All ideas presented in Sect. 9.3.1 have the tendency to pay more regard
to the network topology and not so much on the multivariate data. Such
data can be added via glyphs or coordinated views, but this is not enough to
discover patterns between the data and the network structure. Vice versa, if
we focus on the multivariate data such as done by attribute-based network
layouts [64, 71] and similar approaches [32], we run into the same problems.

References 201

Thus, finding an appropriate bunch of techniques for the common analysis of
multivariate data within networks of networks is still an unsolved challenge.

Acknowledgments

We would like to thank all participants of the Dagstuhl Seminar �13201 [36]
for the fruitful discussions and Todd Theriault for carefully proof-reading our
chapter. This research is supported in part by the U.S. National Institutes
of Health under Grant No. U01 GM098959, the German Ministry of Edu-
cation and Research under Grant 0101-31P7126, and the German Academic
Exchange Service (DAAD) under Grand 54391720.

References

1. Abuthawabeh, A., Beck, F., Zeckzer, D., Diehl, S.: Finding Structures in Multi-
Type Code Couplings with Node-Link and Matrix Visualizations. In: Proceed-
ings of the First IEEE Working Conference on Software Visualization, VIS-
SOFT 2013 (2013)

2. Abuthawabeh, A., Zeckzer, D.: IMMV: An Interactive Multi-Matrix Visualiza-
tion for Program Comprehension. In: Proceedings of the First IEEE Working
Conference on Software Visualization, VISSOFT 2013 (2013)

3. Albrecht, M., Kerren, A., Klein, K., Kohlbacher, O., Mutzel, P., Paul, W.,
Schreiber, F., Wybrow, M.: On open problems in biological network visual-
ization. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849,
pp. 256–267. Springer, Heidelberg (2010)

4. Bader, G.D., Cary, M.P., Sander, C.: Pathguide: a pathway resource list.
Nucleic Acids Research 34, D504–D506 (2006)

5. Balasundaram, B., Butenko, S.: Network clustering. In: Junker, B.H., Schreiber,
F. (eds.) Analysis of Biological Networks. Wiley Series on Bioinformatics, Com-
putational Techniques and Engineering, pp. 113–138. Wiley (2008)

6. Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., Fekete, J.D.:
Graphdice: A system for exploring multivariate social networks. Computer
Graphics Forum (Proc. EuroVis 2010) 29(3), 863–872 (2010)

7. Borisjuk, L., Hajirezaei, M., Klukas, C., Rolletschek, H., Schreiber, F.: Integrat-
ing data from biological experiments into metabolic networks with the DBE
information system. In Silico Biology 5, e11 (2004)

8. Byelas, H., Bondarev, E., Telea, A.: Visualization of areas of interest in
component-based system architectures. In: Proceedings of the 32nd Euromicro
Conference on Software Engineering and Advanced Applications, pp. 160–169.
IEEE Computer Society Press (2006)

9. Börner, K., Sanyal, S., Vespignani, A.: Network science. In: Cronin, B. (ed.) An-
nual Review of Information Science and Technology, pp. 537–607. Information
Today, Inc./American Society for Information Science and Technology (2007)

10. Christakis, N.A., Fowler, J.H.: The spread of obesity in a large social network
over 32 years. New England Journal of Medicine 357, 370–379 (2007)

11. Cohen-Cole, E., Fletcher, J.M.: Detecting implausible social network effects in
acne, height, and headaches: longitudinal analysis. BMJ, 337 (2008)

202 9 Heterogeneous Networks on Multiple Levels

12. Collins, C., Carpendale, S.: Vislink: Revealing relationships amongst visual-
izations. IEEE Transactions on Visualization and Computer Graphics 13(6),
1192–1199 (2007)

13. Czauderna, T., Klukas, C., Schreiber, F.: Editing, validating and translating of
SBGN maps. Bioinformatics 26(18), 2340–2341 (2010)

14. Demir, E., Cary, M.P., Paley, S., Fukuda, K., Lemer, C., Vastrik, I., Wu, G.,
D’Eustachio, P., Schaefer, C., Luciano, J., Schacherer, F., Martinez-Flores, I.,
Hu, Z., Jimenez-Jacinto, V., Joshi-Tope, G., Kandasamy, K., Lopez-Fuentes,
A.C., Mi, H., Pichler, E., Rodchenkov, I., Splendiani, A., Tkachev, S., Zucker,
J., Gopinath, G., Rajasimha, H., Ramakrishnan, R., Shah, I., Syed, M., Anwar,
N., Babur, O., Blinov, M., Brauner, E., Corwin, D., Donaldson, S., Gibbons, F.,
Goldberg, R., Hornbeck, P., Luna, A., Murray-Rust, P., Neumann, E., Ruebe-
nacker, O., Reubenacker, O., Samwald, M., van Iersel, M., Wimalaratne, S.,
Allen, K., Braun, B., Whirl-Carrillo, M., Cheung, K.H., Dahlquist, K., Finney,
A., Gillespie, M., Glass, E., Gong, L., Haw, R., Honig, M., Hubaut, O., Kane,
D., Krupa, S., Kutmon, M., Leonard, J., Marks, D., Merberg, D., Petri, V.,
Pico, A., Ravenscroft, D., Ren, L., Shah, N., Sunshine, M., Tang, R., Whaley,
R., Letovksy, S., Buetow, K.H., Rzhetsky, A., Schachter, V., Sobral, B.S., Do-
grusoz, U., McWeeney, S., Aladjem, M., Birney, E., Collado-Vides, J., Goto,
S., Hucka, M., Novere, N.L., Maltsev, N., Pandey, A., Thomas, P., Wingender,
E., Karp, P.D., Sander, C., Bader, G.D.: The BioPAX community standard for
pathway data sharing. Nature Biotechnology 28(9), 935–942 (2010)

15. Dogrusoz, U., Giral, E., Cetintas, A., Civril, A., Demir, E.: A compound graph
layout algorithm for biological pathways. In: Pach, J. (ed.) GD 2004. LNCS,
vol. 3383, pp. 442–447. Springer, Heidelberg (2005)

16. Dunne, C., Henry-Riche, N., Lee, B., Metoyer, R., Robertson, G.: Graphtrail:
analyzing large multivariate, heterogeneous networks while supporting explo-
ration history. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI 2012, pp. 1663–1672. ACM, New York (2012),
http://doi.acm.org/10.1145/2207676.2208293

17. Dwyer, T., Hong, S.H., Koschützki, D., Schreiber, F., Xu, K.: Visual analysis
of network centralities. In: Misue, K., Sugiyama, K., Tanaka, J. (eds.) Proc.
Asia-Pacific Symposium on Information Visualization (APVis 2006). CRPIT,
vol. 60, pp. 189–198. ACS (2006)

18. Fernández-Suárez, X.M., Galperin, M.Y.: The 2013 Nucleic Acids Research
database issue and the online molecular biology database collection. Nucleic
Acids Research 41, D1–D7 (2013)

19. Freire, M., Plaisant, C., Shneiderman, B., Golbeck, J.: Manynets: an interface
for multiple network analysis and visualization. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI 2010, pp. 213–222.
ACM, New York (2010), http://doi.acm.org/10.1145/1753326.1753358

20. Funahashi, A., Matsuoka, Y., Jouraku, A., Kitano, H., Kikuchi, N.: CellDe-
signer: a modeling tool for biochemical networks. In: Proceedings of the 38th
Conference on Winter Simulation, pp. 1707–1712. Winter Simulation Confer-
ence (2006)

21. Fung, D.C.Y., Hong, S.H., Koschützki, D., Schreiber, F., Xu, K.: Visual analy-
sis of overlapping biological networks. In: Proceedings of the 13th International
Conference on Information Visualisation, IV 2009, pp. 337–342. IEEE Com-
puter Society Press (2009)

http://doi.acm.org/10.1145/2207676.2208293
http://doi.acm.org/10.1145/1753326.1753358

References 203

22. Gehlenborg, N., O’Donoghue, S.I., Baliga, N.S., Goesmann, A., Hibbs, M.A.,
Kitano, H., Kohlbacher, O., Neuweger, H., Schneider, R., Tenenbaum, D.,
Gavin, A.C.: Visualization of omics data for systems biology. Nature Meth-
ods 7, S56–S68 (2010)

23. Heer, J., Shneiderman, B.: Interactive dynamics for visual analysis. Communi-
cation of the ACM 55(4), 45–54 (2012),
http://doi.acm.org/10.1145/2133806.2133821

24. Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation
in information visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics 6(1), 24–43 (2000)

25. Hu, Z., Hung, J.H., Wang, Y., Chang, Y.C., Huang, C.L., Huyck, M., DeLisi, C.:
VisANT 3.5: Multi-scale network visualization, analysis and inference based on
the gene ontology. Nucleic Acids Research 37(Web Server issue), W115–W121
(2009)

26. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin,
A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov,
S., Gilles, E.D., Ginkel, M., Gor, V., Goryanin, I., Hedley, W.J., Hodgman,
T.C., Hofmeyr, J.H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A.,
Kummer, U., Novere, N.L., Loew, L.M., Lucio, D., Mendes, P., Minch, E.,
Mjolsness, E.D., Nakayama, Y., Nelson, M.R., Nielsen, P.F., Sakurada, T.,
Schaff, J.C., Shapiro, B.E., Shimizu, T.S., Spence, H.D., Stelling, J., Takahashi,
K., Tomita, M., Wagner, J., Wang, J.: The systems biology markup language
(SBML): a medium for representation and exchange of biochemical network
models. Bioinformatics 19, 524–531 (2003)

27. van Iersel, M.P., Kelder, T., Pico, A.R., Hanspers, K., Coort, S., Conklin, B.R.,
Evelo, C.: Presenting and exploring biological pathways with PathVisio. BMC
Bioinformatics 9, 399.1–399.9 (2008)

28. Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the vi-
sualization of hierarchical information structures. In: Proceedings of the 2nd
Conference on Visualization (Vis 1991), pp. 284–291. IEEE Computer Society
Press, Los Alamitos (1991),
http://portal.acm.org/citation.cfm?id=949607.949654

29. Junker, A., Rohn, H., Schreiber, F.: Visual analysis of transcriptome data in
the context of anatomical structures and biological networks. Frontiers in Plant
Science 3, 252 (2012)

30. Junker, B.H., Klukas, C., Schreiber, F.: VANTED: A system for advanced data
analysis and visualization in the context of biological networks. BMC Bioinfor-
matics 7, 109 (2006)

31. Jusufi, I.: Multivariate Networks: Visualization and Interaction Techniques.
Ph.D. Thesis, Linnaeus University, Växjö, Sweden (2013)

32. Jusufi, I., Kerren, A., Zimmer, B.: Multivariate network exploration with Jaun-
tyNets. In: Proceedings of the 17th International Conference on Information
Visualisation (IV 2013), pp. 19–27. IEEE Computer Society Press (2013)

33. Juty, N., Le Novère, N., Laibe, C.: Identifiers.org and MIRIAM registry:
community resources to provide persistent identification. Nucleic Acids Re-
search 40(1), D580–D5869 (2012)

34. Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes.
Nucleic Acids Research 28(1), 27–30 (2000)

http://doi.acm.org/10.1145/2133806.2133821
http://portal.acm.org/citation.cfm?id=949607.949654

204 9 Heterogeneous Networks on Multiple Levels

35. Kerren, A., Köstinger, H., Zimmer, B.: Vincent – visualisation of network cen-
tralities. In: Proceedings of the International Conference on Information Vi-
sualization Theory and Applications (IVAPP 2012), pp. 703–712. INSTICC
(2012)

36. Kerren, A., Purchase, H., Ward, M.O.: Information Visualization – Towards
Multivariate Network Visualization (Dagstuhl Seminar 13201). Dagstuhl Re-
ports 3(5), 19–42 (2013),
http://drops.dagstuhl.de/opus/volltexte/2013/4177

37. Kerren, A., Schreiber, F.: Toward the role of interaction in visual ana-
lytics. In: Proceedings of the Winter Simulation Conference, WSC 2012,
pp. 420:1–420:13. Winter Simulation Conference (2012),
http://dl.acm.org/citation.cfm?id=2429759.2430303

38. Kerren, A., Stasko, J.T., Fekete, J.-D., North, C. (eds.): Information Visual-
ization. LNCS, vol. 4950, pp. 65–91. Springer, Heidelberg (2008)

39. Klukas, C., Schreiber, F.: Integration of -omics data and networks for biomedi-
cal research with Vanted. Journal of Integrative Bioinformatics 7(2), 112 (2010)

40. Knodel, J., Muthig, D., Naab, M.: Understanding software architectures by
visualization–an experiment with graphical elements. In: Working Conference
on Reverse Engineering, pp. 39–50 (2006)

41. Köhler, J., Baumbach, J., Taubert, J., Specht, M., Skusa, A., Rüegg, A., Rawl-
ings, C., Verrier, P., Philippi, S.: Graph-based analysis and visualization of
experimental results with ONDEX. Bioinformatics 22(11), 1383–1390 (2006)

42. Kolpakov, F.A.: BioUML – framework for visual modeling and simulation of
biological systems. In: Proceedings of the International Conference on Bioin-
formatics of Genome Regulation and Structure, pp. 130–133. Springer (2002)

43. Kono, N., Arakawa, K., Ogawa, R., Kido, N., Oshita, K., Ikegami, K., Tamaki,
S., Tomit, M.: Pathway Projector: Web-based zoomable pathway browser using
KEGG atlas and Google maps API. PLoS ONE 4(11), e7710 (2009)

44. Koschützki, D.: Network centralities. In: Junker, B.H., Schreiber, F. (eds.)
Analysis of Biological Networks. Wiley Series on Bioinformatics, Computa-
tional Techniques and Engineering, pp. 65–84. Wiley (2008)

45. Küntzer, J., Backes, C., Blum, T., Gerasch, A., Kaufmann, M., Kohlbacher, O.,
Lenhof, H.P.: Bndb - the biochemical network database. BMC Bioinformatics 8,
367 (2007)

46. von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J.,
Fekete, J.D., Fellner, D.: Visual analysis of large graphs: State-of-the-art and
future research challenges. Computer Graphics Forum 30(6), 1719–1749 (2011),
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x

47. Le Novère, N., Finney, A., Hucka, M., Bhalla, U.S., Campagne, F., Collado-
Vides, J., Crampin, E.J., Halstead, M., Klipp, E., Mendes, P., Nielsen, P.,
Sauro, H., Shapiro, B., Snoep, J.L., Spence, H.D., Wanner, B.L.: Minimum
information requested in the annotation of biochemical models (MIRIAM).
Nature Biotechnology 23(12), 1509–1515 (2005)

48. Le Novère, N., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A.,
Demir, E., Wegner, K., Aladjem, M.I., Wimalaratne, S.M., Bergman, F.T.,
Gauges, R., Ghazal, P., Kawaji, H., Li, L., Matsuoka, Y., Villéger, A., Boyd,
S.E., Calzone, L., Courtot, M., Dogrusoz, U., Freeman, T.C., Funahashi, A.,
Ghosh, S., Jouraku, A., Kim, S., Kolpakov, F., Luna, A., Sahle, S., Schmidt, E.,
Watterson, S., Wu, G., Goryanin, I., Kell, D.B., Sander, C., Sauro, H., Snoep,
J.L., Kohn, K., Kitano, H.: The Systems Biology Graphical Notation. Nature
Biotechnology 27(8), 735–741 (2009)

http://drops.dagstuhl.de/opus/volltexte/2013/4177
http://dl.acm.org/citation.cfm?id=2429759.2430303
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x

References 205

49. Lex, A., Partl, C., Kalkofen, D., Streit, M., Wasserman, A.M., Gratzl, S.,
Schmalstieg, D., Pfister, H.: Entourage: Visualizing relationships between bio-
logical pathways using contextual subsets. IEEE Transactions on Visualization
and Computer Graphics (InfoVis 2013) 19(12), 2536–2545 (2013)

50. Mehlhorn, H., Schreiber, F.: TransID – the flexible identifier mapping service.
In: Proc. International Symposium on Integrative Bioinformatics, pp. 112–121
(2012)

51. Mi, H., Schreiber, F., Novère, N.L., Moodie, S., Sorokin, A.: Systems biology
graphical notation: Activity flow language level1. In: Nature Precedings (2009)

52. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.:
Network motifs: Simple building blocks of complex networks. Science 298(5594),
824–827 (2002)

53. Moodie, S., Novère, N.L., Sorokin, A., Mi, H., Schreiber, F.: Systems biology
graphical notation: Process description language level 1. In: Nature Precedings
(2009)

54. Mueller, L.A., Zhang, P., Rhee, S.Y.: AraCyc: a biochemical pathway database
for Arabidopsis. Plant Physiology 132(2), 453–460 (2003)

55. Novère, N.L., Moodie, S., Sorokin, A., Schreiber, F., Mi, H.: Systems biology
graphical notation: Entity relationship language level 1. In: Nature Precedings
(2009)

56. Partl, C., Kalkofen, D., Lex, A., Kashofer, K., Streit, M., Schmalstieg, D.:
enroute: Dynamic path extraction from biological pathway maps for in-depth
experimental data analysis. In: Proceedings of the 2012 IEEE Symposium on
Biological Data Visualization (BioVis) BIOVIS 2012, pp. 107–114. IEEE Com-
puter Society, Washington, DC (2012),
http://dx.doi.org/10.1109/BioVis.2012.6378600

57. Purchase, H.: Experimental Human-Computer Interaction: A Practical Guide
With Visual Examples. Cambridge University Press, New York (2012),
http://eprints.gla.ac.uk/78680/

58. Rao, R., Card, S.K.: The table lens: merging graphical and symbolic representa-
tions in an interactive focus+context visualization for tabular information. In:
CHI 1994: Conference Companion on Human Factors in Computing Systems,
p. 222. ACM (1994)

59. Roberts, J.C.: Exploratory visualization with multiple linked views. In:
MacEachren, A., Kraak, M.J., Dykes, J. (eds.) Exploring Geovisualization. El-
seviers (2004),
http://www.cs.kent.ac.uk/pubs/2004/1822

60. Rohn, H., Junker, A., Hartmann, A., Grafahrend-Belau, E., Treutler, H., Klap-
perstück, M., Czauderna, T., Klukas, C., Schreiber, F.: VANTED v2: a frame-
work for systems biology applications. BMC Systems Biology 6(139) (2012)

61. Schreiber, F., Colmsee, C., Czauderna, T., Grafahrend-Belau, E., Hartmann,
A., Junker, A., Junker, B.H., Klapperstück, M., Scholz, U., Weise, S.: MetaCrop
2.0: managing and exploring information about crop plant metabolism. Nucleic
Acids Research 40(1), D1173–D1177 (2012)

62. Shen, Z., Ma, K.L.: Mobivis: A visualization system for exploring mobile data.
In: Proceedings of IEEE Pacific Visualization Symposium, pp. 175–182. IEEE
VGTC (2008)

63. Shen, Z., Ma, K.L., Eliassi-Rad, T.: Visual analysis of large heterogeneous
social networks by semantic and structural abstraction. IEEE Transactions on
Visualization and Computer Graphics 12(6), 1427–1439 (2006),
http://dx.doi.org/10.1109/TVCG.2006.107

http://dx.doi.org/10.1109/BioVis.2012.6378600
http://eprints.gla.ac.uk/78680/
http://www.cs.kent.ac.uk/pubs/2004/1822
http://dx.doi.org/10.1109/TVCG.2006.107

206 9 Heterogeneous Networks on Multiple Levels

64. Shneiderman, B., Aris, A.: Network visualization by semantic substrates. IEEE
Transaction on Visualization and Computer Graphics 12(5) (2006)

65. Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., Ideker, T.: Cytoscape
2.8: new features for data integration and network visualization. Bioinformat-
ics 27(3), 431–432 (2011)

66. Sommer, B., Künsemöller, J., Sand, N., Husemann, A., Rumming, M.,
Kormeier, B.: Cellmicrocosmos 4.1 - an interactive approach to integrating
spatially localized metabolic networks into a virtual 3d cell environment. In:
Fred, A.L.N., Filipe, J., Gamboa, H. (eds.) Proc. International Conference on
Bioinformatics, pp. 90–95 (2010)

67. Stasko, J., Görg, C., Liu, Z.: Jigsaw: supporting investigative analysis through
interactive visualization. Information Visualization 7(2), 118–132 (2008),
http://dx.doi.org/10.1145/1466620.1466622

68. Steinberger, M., Waldner, M., Streit, M., Lex, A., Schmalstieg, D.: Context-
preserving visual links. IEEE Transactions on Visualization and Computer
Graphics (InfoVis 2011) 17(12), 2249–2258 (2011)

69. Ward, M., Grinstein, G., Keim, D.A.: Interactive Data Visualization: Founda-
tions, Techniques, and Application. A.K. Peters, Ltd. (2010)

70. Ware, C.: Information Visualization: Perception for Design, 2nd edn. Morgan
Kaufmann (2004)

71. Wattenberg, M.: Visual exploration of multivariate graphs. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (CHI 2006),
pp. 811–819. ACM, New York (2006)

72. Zimmer, B., Jusufi, I., Kerren, A.: Analyzing multiple network centralities with
ViNCent. In: Proceedings of SIGRAD 2012: Interactive Visual Analysis of Data,
Växjö, Sweden, November 29-30. Linköping Electronic Conference Proceedings,
vol. 81, pp. 87–90. Linköping University Electronic Press (2012)

http://dx.doi.org/10.1145/1466620.1466622

10

Scalability Considerations
for Multivariate Graph Visualization

T.J. Jankun-Kelly, Tim Dwyer, Danny Holten, Christophe Hurter,

Martin Nöllenburg, Chris Weaver, and Kai Xu

Scalability in visualization is a challenge: How do we choose to show more
items than can be easily rendered upon a screen or understood by a human
effectively? Multivariate graph visualization adds additional wrinkles in that
nodes and edges are no longer atomic entities. Rather, they are repositories
for further rich information. In information seeking, the mantra attributed to
Ben Shneiderman succinctly outlines a path to visual scalability: “Overview
first, zoom, then details-on-demand” [69]. While this is good guidance, naively
presenting the whole universe of data as an initial “overview”, leads to dense,
unreadable displays (Fig. 10.1). To provide insightful visualizations at large
scale for multivariate graphs, we must understand what our visual, cogni-
tive, and architectural limits are, then explore approaches to mitigate these
limitations. Detailed views must offer useful affordances for navigation to
other views. The goals of this chapter are to identify the challenges and the
state-of-the-art in these areas.

At large scale, dense multivariate graphs devolve into hairballs (dense
collections of nodes with heavily over plotted edges) or snowy wastes (highly
populated matrix diagrams with visually random structure) if the entire
structure is shown (Fig. 10.1). Perceptual and cognitive psychology outline
what human visual and mental limitations interfere with understanding such
dense views; additionally, there are hardware factors which band the amount
of graph data that can be rendered in a timely matter. By understanding
these limitations, outlined in Sect. 10.1, designers can utilize the strategies
explored in Sect. 10.2 to show only what is needed when it is needed. Use
of these strategies, and further studies on the limits of scalability, are also
presented in Sect. 10.3 as a means to guide further research. We conclude
with a summary of challenges in scalable, multivariate graph visualization.

A. Kerren et al. (Eds.): Multivariate Network Visualization, LNCS 8380, pp. 207–235, 2014.

c© Springer International Publishing Switzerland 2014

208 10 Scalability Considerations for Multivariate Graph Visualization

Fig. 10.1. Large (especially scale-free) graphs turn in to hairballs which make
understanding structure difficult (left). Matrix views can help, but have limited
ability to convey transitive structure at multiple levels and devolve into snowy
wastes (right).

10.1 Limits of Visualization

When attempting to display and understand data, there are limits to what
the can be humanly perceived and understood and what can be computed and
displayed. To work around these limitations, they must be first understood.
In this section, we examine both perceptual and computational/hardware
based limitations to set the stage for the larger discussion of scalability in
the next sections.

10.1.1 Limits of Visual Acuity

As a sensor, the eye has several different resolving powers or acuities. These
acuities are measured based upon visual angle, the angle the viewed ob-
ject(s) subtends with respect to the eye. Ophthalmologists recognize four
main acuities: detection acuity (the smallest size an object can be before
it cannot be seen), recognition acuity (smallest size at which an object can
be identified), resolution acuity (smallest distance between two objects be-
fore they seem to merge), and localization acuity (smallest amount of visual
change that can be measured between two visible objects) [87]. Perception
literature in visualization has focused on the latter two, especially on point
acuity (resolvability of two adjacent points), stereo acuity (the ability to re-
solve objects at depth), and vernier acuity (the ability to determine if two
line segments are collinear) [76] (Fig. 10.2); point acuity is a form of reso-
lution (or ordinary) acuity and stereo and vernier are localization acuities
(hyperacuities). Resolution/point acuity are the primary acuities from the

10.1 Limits of Visualization 209

Fig. 10.2. Important acuities in visualization (after Ware [76])

standpoint of graph visualization design—it is important that two separate
edges, nodes, or matrix elements be resolvable.

Assuming perfect vision, standard point acuity is one arc minute per
cycle—i.e., two lines are perceived as distinct when one arc minute sepa-
rates them.1 Thus, roughly two pixels per arc minute would generate a max-
imally point resolvable display.2 Though this pixel density will not be able
to perfectly resolve hyperacuities, which are resolvable to 10 arc seconds,
antialiasing can be used to effectively resolve hyperacuities to sub-pixel res-
olution [76]. At a viewing distance of 57 cm, this pixel density corresponds
to 121 ppcm (pixels per centimeter); at reading distance, the density is 229
ppcm. If we relax this constraint to allow point acuity sufficient for legal
driving in most countries, about half that of perfect acuity [55, 74], the pixel
density would need to be one pixel per arc minute, or about 60 ppcm and
118 ppcm at viewing and reading distances respectively. For comparison, the
Retina displays from Apple vary from 128 ppcm on the iPhone 5 (generally
used closer to reading distance) to 87 for the Retina display laptops [88].

Given these minimum requirements for perceptual resolvability, node den-
sity (the number of nodes on the screen per area) cannot exceed roughly
1 per 2 pixels if 1 pixel representations are to be used for maximum dis-
crimination; note, this limits our ability to indicate multivariate nodes/edges
to using only the visual variables of hue and luminance. Thus, to use the
MacBook Retina display as an exemplar, graphs exceeding roughly 2 million
nodes would strain resolvability assuming the entire display was used and no
connectivity information was displayed. If a node-like representation is used,
however, this number drops to 1 million as edges must connect elements
already on display. For matrix diagrams, the maximum limit is about 0.5

1 “Perfect acuity” here is taken as an accepted average; this acuity will vary over
a population.

2 Two pixels per minute are needed to satisfy sampling theory—if we want to
visually detect one pixel per arc minute, we need twice that many to satisfy the
Nyquist criterion [24].

210 10 Scalability Considerations for Multivariate Graph Visualization

million nodes so neighboring connections are resolvable; if this is not desired,
a packed representation still only represents about 1.4 million nodes as the
matrix diagram’s symmetric display scales quadratically with nodes. These
patterns are summarized in Fig. 10.3. Exceeding these numbers means that
the individual elements of the graph cannot be separated. However, staying
below these numbers is not sufficient for comprehension of the graph—though
elements may be perceivable, they may still exhaust cognitive resources as
discussed next.

N N
N

N
N

N
N

N
EN

E
EN

E
EN

E

EN
E

N

N N

N

Fig. 10.3. Maximum descriminability for unconnected graphs (left), node-link di-
agrams (middle), and matrix diagrams (right). Each box is a pixel.

10.1.2 Cognitive Limits

Perception can be thought of grossly as a two stage process where elements are
first imaged by the eye-sensor and then understood by the brain. This latter,
cognitive step of perception has limitations not tied to the processing power
of the eye discussed previously. Instead of focusing on raw node/element
density as previously discussed, this section focuses more upon what limits of
combined elements such as hue and luminance can be used, especially when
used conjunctively as is often the case in multivariate visualization.

The cognitive stage of perception can be modeled as a hybrid bottom-
up/top-down approach [75, 89, 90]. In the bottom-up stage, early vision sep-
arates perceived elements into feature maps (e.g., hue, orientation, length)
with varying level of granularity. Elements in these maps are then compared
to neighbors to measure differences. The user-driven top-down stage then
searches these maps using the differences to find features of interest. As an
example, if node luminance in a graph matrix display encodes weight, dif-
ferences in luminance would be used as the perceptual search criteria. Thus,
the levels of difference that can be encoded in the feature maps limit these
lower level cognitive comparisons.

Ward et al. [75] summarize the absolute discriminability of perceptual fea-
tures relevant to visualization, based upon work by Miller [54]. For item size,
four to five different levels are accurately gauged; 10 levels for hue and 5 for
luminance; and roughly 7 levels for line length and 8 for orientation. These

10.1 Limits of Visualization 211

levels are not independent when combined for multi-feature encoding (a pop-
ular approach in multivariate graph visualization)—only about 12 different
combinations of hue/luminance can be separated (as opposed to 40–50 if they
were independent) and roughly 17 levels for combinations of hue, luminance,
and size. Thus, the number of perceptual values that can be used for absolute
judgements is very limited—hairballs and snowy wastes will quickly exceed
these capacities.

As cognition happens at multiple levels, studies have also investigated how
graph features such as paths are comprehended at latter stages in cognition.
These studies provide guidance on what approaches are suitable for multi-
variate graph visualization. A common theme of these is the limitation of
what is displayed simultaneously. A variety of studies have investigate vi-
sual search of graphs, either of specific properties such as shortest paths
or for more general search. In node-link representations, path comprehension
suffers when edge crossings occur [60, 61], especially when dealing with cross-
ings over shortest paths [79]. Limiting such crossing require reducing edges or
novel layouts, both approaches discussed later. Using 2.5D displays can also
help graph structure comprehension when used appropriately in node-link
diagrams [12, 78]; here, occlusion helps limits what is displayed. Increasing
visual separation in combination with limited motion cues can also help vi-
sual search in graphs [77]. Structure can be perceived with matrix diagrams
by removing edges, with more accurate reading at larger graph sizes [30].

10.1.3 Leveraging the Graphics Card (GPU)

In visualization, the human is only part of the process—computation is also
required to generate the visualization. Just as there are limitations on the
human, there are limitations on the computation. These can be limitations on
the display technology, the graph data store, or on the means of computation
on the graph. In this work, we focus on how graphics processors can enable
scalable graph visualization and their limitations; for discussion on the limits
and capabilities of displays and graph storage, we refer the reader to the
relevant literature [2, 22].

This section describes how graphics cards can be used to address scalability
issues in general and with respect to multivariate graph visualization (MGV)
in particular. Sections 10.1.3 and 10.1.3 serve as an intro to and history of
fixed-functionality and programmable graphics hardware as well as available
programming APIs, respectively. This is followed by Sect. 10.1.3 describing
typical tasks and/or application areas within graphics and (information) visu-
alization related to MGV scalability issues. This section also gives real-world
examples of GPU-based solutions designed to tackle MGV scalability issues
from the perspective of rendering, interaction, and calculation.

212 10 Scalability Considerations for Multivariate Graph Visualization

GPU Pipeline—Fixed vs. Programmable

The rise of special-purpose graphics hardware for the accelerated monochrome
and color display of 2D/3D raster and vector graphics began during the mid
to late 1970s and widespread consumer adoption—especially of hardware 3D-
acceleration solutions—was obtained during the late 1990s. Such hardware
was originally built around “fixed functionality pipelines” (FFPs), i.e., special
purpose hardware that supports a limited and fixed set of instructions (draw-
ing commands) to display various types of graphics primitives. Typical FFPs
support operations such as geometric transformation, lighting, and rasteriza-
tion, all of which are necessary for displaying (“projecting”) 3D graphics on
2D raster displays.

An example of early 2D/3D-accelerated FFPs are the processing pipelines
on special-purpose hardware built by Silicon Graphics International (SGI) for
use in their high-end graphics workstations during the early to mid 1990s.
The late 1990s to early 2000s saw the widespread consumer adoption of more
affordable mainstream 2D/3D-accelerated graphics FFPs (often used in game
consoles) such as the Voodoo, early GeForce, and early Radeon graphics
hardware by 3Dfx, NVIDIA, and ATI, respectively.

From the mid 2000s onwards, graphics hardware manufacturers as well
as graphics API developers (see Section 10.1.3) gradually shifted their focus
to programmable pipelines instead of FFPs. Programmable pipelines allow
the graphics processing unit (GPU) to run proprietary code [58]. Such code
can be used to implement new types of drawing commands and can even be
used—although initially indirectly—to perform (non-graphics-related) com-
putational tasks on a GPU, i.e., “general purpose computation on the GPU”
or GPGPU [72]. The latter is useful because of the massive parallelism offered
by GPUs as well as the ease with which GPUs generally handle vector and
matrix operations; a direct result of the fact that 2D/3D transformations and
projections within FFPs rely heavily on vector/matrix math.

GPU Programming—APIs and Pitfalls

Programming each level of the graphics card pipeline can be performed
through different languages, such as NVidia’s Cg, Microsoft’s High-Level
Shading Language (HLSL), and the OpenGL shading language (GLSL).
Other specialized languages exist to do specific data processing: CUDA,
OpenCL. If we exclude specific data processing languages (CUDA and
OpenCL) which use specific data structures, output data must be stored in
image textures. Graphics cards propose massive parallel computing but some
pitfalls must be avoided in order to take advantage of this worthy power:

• Graphics card are optimized to compute data in parallel and therefore se-
quential algorithms cannot be paralyzed without insuring data integrity
(memory protection). Reading and writing graphicsmemory is not possible

10.1 Limits of Visualization 213

at the same time; this avoidsmemory corruption (one process reading at the
same time another is updating the information). Synchronization features
such as mutex or memory protection (atomic functions) much be avoided
as much as possible. Specific computation technics can be applied such as
MapReduce, a programmingmodel for processing large data sets with a par-
allel, distributed algorithm on a cluster [35].

• Bottlenecks exist within the GPU processing, especially when transferring
data between the CPU and the GPU. When this occurs, the graphics card
needs to wait until every process has ended, and then start the memory
transfer—a dramatically slower process. Memory transfer between the
GPU and the CPU must be limited as much as possible.

• Many other pitfalls must be taken into account regarding every language,
such as texture coordinates that differ between OpenGL and DirectX,
debugging issues, and graphics card crashes that hinder the development
process.

Multivariate Graph Visualisation (MGV) Scalability Issues

When dealing with large MGV, we identified three types of scalability limi-
tations which are related to the InfoVis pipeline stages [6]: rendering, com-
putation and interaction.

MGV can embed numerous items which need to be displayed. On the
rendering stage, specific rendering techniques can be used to emphasize the
rendering process and thus to improve data perception (an example is given
in Fig. 10.4).

MGV can contain complex data structures. Layout algorithms, graph sim-
plifications, data aggregations can be computed. Processing such information
at the geometry level can be an issue when dealing with large MGV.

Finally, MGV can face scalability issues with interactive tools. Large
dataset can hinder the data exploration process with system slowing down.

Instances of GPU Usages for MGV

Given the above, we identified the following GPU usages to address scalabil-
ity issues with large MGV. The key to these techniques is how they overcome
the limitations of the GPUmentioned previous to facilitate multivariate graph
exploration—they use multi pass read-write cycles, minimize CPU-GPUmem-
ory transfer, and accommodate variation in graphical hardware:

Rendering:Graphics cards can render numerous items on the screen and thus
can display large datasets. In the following examples, GPUs are used to dis-
play data and to perform image based rendering techniques. Auber developed
Tulip [3], an information visualization framework dedicated to the analysis and
visualization of relational data. This software uses GP-GPU techniques to ren-
der large multivariate graphs. McDonnel et al. [53] developed a framework and

214 10 Scalability Considerations for Multivariate Graph Visualization

an application using shaders to displaymultivariate data based on the dataflow
model with a final image based stage. In this final step, the multivariate data of
the visualization are sampled in the resolution of the current view. A more spe-
cific rendering technique is used byHolten [39] to improve edge visualization by
an interesting variation on standard alpha blending, i.e. how color transparency
is combined. Sheepens et al. [67] used the GPU to compute density maps and
then apply shading techniques to emphasize multivariate data on the density
map of moving vessels.

Computation:Graphics cards can perform fast and parallel data processing,
and be used to process information at the data level. Hurter et al. [46] use
the GPU for interactive exploration of multivariate relational data. Given
a spatial embedding of the data, in terms of a scatter plot or graph lay-
out, the moleview uses a semantic lens which selects a specific spatial and
attribute-related data range. The lens keeps the selected data in focus un-
changed and continuously deforms the data out of the selection range in
order to maintain the context around the focus. Animation is also performed
between the bundled and the unbundled layout of a graph. Kernel Density
Edge Bundling (KDEB) [44] computes bundled layouts of general graphs. For
this, KDEB first transforms a given graph drawing into a density map using
kernel density estimation. Next, it applies an image sharpening technique
which progressively merges local height maxima by moving the convolved
graph edges into the height gradient flow. This technique is also applied on
dynamic graphs [45]. Graph bundling and the computation of its density has
been investigated [51], and the GPU has been used directly for graph layout
as well [26].

Interaction: Interaction is an important manipulation paradigm to perform
data exploration. Graphics cards can be used to provide tools to help user
to interact with large datasets. ScatterDice [17] helps the user to define the
appropriated displayed variables with a smooth animation when changing
visual configuration; GraphDice [5] uses the same paradigms but with graph.
FromDaDy [47] uses related animation with GP-GPU techniques. In order
to address dataset size issue, FromDaDy loads the whole dataset within the
graphics card, so that when changing visual configuration, no memory trans-
fer is needed. This helps to improve interaction with a fast and continuous
animations. Furthermore, a GP-GPU technique is implemented to support
brushing and data manipulation across multiple views. One can then brush
trajectories, and with a pick and drop operation he or she can spread the
brushed information across views. This interaction can be repeated to extract
a set of relevant data, thus formulating complex queries. Each trajectory has a
unique identifier. A texture (stored in the graphics card) contains the Boolean
selection value of each trajectory. When the trajectory is brushed its value is
set to true. The graphics card uses parallel rendering which prevents reading
and writing in the same texture in a single pass. Therefore FromDaDy used

10.2 Design Strategies for Scalable Multivariate Graph Visualization 215

Fig. 10.4. County-to-county migration flow, (1091764 nodes, the Census 2000):
people who moved between counties within 5 years. Original data only shows the
outline of the USA (bottom), bundled [44] and shaded path (top) shows multiple
information like East-West and north-South paths, shading shows data density.

a two-step rendering process: firstly it tests the intersection of the brushing
shape and the point to be rendered to update the selected identifier tex-
ture, and, secondly, it draws all the points with their corresponding selected
attribute (gray color if selected, visual configuration color otherwise).

10.2 Design Strategies for Scalable Multivariate Graph
Visualization

The perceptual, cognitive, and technical factors presented in Sect. 10.1 limit
the scalability of network visualization in general. In particular, we described
the limitations of:

• visual acuity (10.1.1);
• human cognition (10.1.2);
• computer hardware (10.1.3); and
• computability of aesthetic and clear layout (10.1.2 and 10.1.3).

When faced with the increased amount and complexity of information that
one typically encounters in multivariate networks, it is necessary to address
scalability of visualization by additional means. For example, there may be
rich tabular data associated with graph elements; graph elements may have
myriad types; and graphs may be derived from underlying data in many
different ways. In this section, we review various design strategies to support
scalable interactive visualization of multivariate graphs, including very large
ones. These strategies go beyond simply getting as much information onto the

216 10 Scalability Considerations for Multivariate Graph Visualization

screen as possible. They also aim to make good use of available display real
estate by transforming and reducing that information to facilitate exploration
and analysis.

Chapter 6 describes interactive operations in terms of the information
visualization reference model of Card et al. [7]. In the model, three trans-
formation steps connect a progression of four modes of data representation
from raw data (at one end) to displayed visuals (at the other end) (Fig. 6.1).
In keeping with the reference model, we organize multivariate graph design
strategies into the three following categories of transformations of information
representations.

Data transformation and reduction strategies provide alternative net-
work compositions by being selective about the type of structure and
amount of information to show. These strategies use combinations of
aggregation, projection, and filtering techniques to convert multivariate
graph data sets into other data sets, particularly into alternative multi-
variate graphs having topologies and attributes that can be more readily
and usefully displayed.

Visual mapping strategies provide alternative network presentations by
mapping data dimensions and values into visual elements that efficiently
communicate graph structure and multivariate attributes. The definition
of efficient here depends on the application and the type of analysis be-
ing sought. These strategies often complement data transformation and
reduction strategies by choosing mappings to suit the aggregated, pro-
jected, and filtered information of specific network perspectives.

View transformation strategies provide alternative network perspectives
by providing a feedback loop for the analyst to interact with visual el-
ements and the space in which they are shown. Visualizing multivari-
ate networks in any real analysis application is not a static “batch”
or “pipeline” process. View transformation strategies often complement
other strategies by supporting not only navigation in view space and
selection of data items, but also interactive changes to the functions
and parameters used in data transformation and reduction and in visual
mapping.

Weaver breaks down this progression of transformations into a more detailed
model that specifically targets interactive visualization of complex multivari-
ate data as networks. The model is implemented in Improvise [82] and has
been used in a variety of graph visualization applications including to meta-
visualizemultiple view coordination structure [83, 84] and to analyze individual
differences in user categorizationof starplot shapes [49] and geospatial relation-
ships [50]. Figure 10.5 depicts the data transformation pipelines in this graph
reference model, as customized for use in the Attribute Relationship Graph
technique [86]. In this model, the three transformation steps in Card’s model
are expanded into three interdependent phases of transformation.

10.2 Design Strategies for Scalable Multivariate Graph Visualization 217

Fig. 10.5. The data transformation pipeline of Weaver [86] showing transformation
of raw multivariate data into tractable graph views

Card’s Data Transformation step expands into the first two phases: data
projection and graph definition. The data projection phase (Fig. 10.5, left)
aggregates occurrences (Grouping) and co-occurrences (Cliquing) of the
data values in each dimension, then determines which occurrences and co-
occurrence to show as a function of chosen dimensions (Drilling) and data
values (Slicing). Graph definition consists of transformations (Fig. 10.5, cen-
ter) that gather the aggregates into tables (Collecting) that are then mapped
into a graph representation (Forming) consisting of primitive elements iden-
tified as nodes, edges and “packs”. (Packs can be thought of as hyperedges
that connect multiple nodes into semantically grouped aggregates, and are
often shown as convex hulls around the connected nodes, as in Vizster [36]).

Card’s Visual Mapping and View Transformation steps expand into a sin-
gle graph visualization phase (Fig. 10.5, right). Parallel pipelines that take
the sets of graph primitives generated in graph definition as input. The sub-
sequent Encoding, Filtering, Layout, and Brushing transformations populate
and support interaction with graph primitives in network, matrix, and other
data views. Transformations are interdependent to capture the ways that
one can expect graph elements to be coordinated in appearance and behav-
ior, such as filtering of edges on whether their nodes are visible (as well as as
a function of their co-occurrence data attributes), or reencoding edges when
a node moves during automatic or interactive layout.

Together, the three strategies can be seen as axes in a rich design space.
We use the graph reference model here as a frame of reference to discuss
the work that has been done in this space. Below we explore each of the
strategies in more detail, looking at how they are employed individually and
in combination in various exemplar systems.

10.2.1 Data Transformation and Reduction

Visual bandwidth is finite, both on the production side (the graphics and
display hardware), and on the consumption side (the perceptual and cognitive
capabilities of the person trying to analyze the data); these are alluded to

218 10 Scalability Considerations for Multivariate Graph Visualization

in the previous section. Data transformation and reduction techniques aim
to use the available visual bandwidth to support foraging, sense-making, and
insight by showing only parts of the data and from particular viewpoints.
A variety of data transformation and reduction strategies are routinely and
usefully employed for increasingly sophisticated visually querying of network
structure in data sets, in systems such as Jigsaw [70], Coordinate Graph
Visualization (CGV) [73], Ploceus [52], Orion [37], and Candid [68].

Whatever the data-size limitation in a certain setting is, as soon as the
graph exceeds it, we can no longer show all information in a single static view.
Instead, data reduction techniques must be applied to extract a task-specific
neighbourhood of the larger graph for display. This extraction can be fully
automatic, or semi-automatic according to the constraints of the user. As in
Chapter 6, we are interested in data reduction operations necessary for pro-
ducing limited views of very large graphs. In this chapter, however—with our
focus on scalability—we review recent work that deals more specifically with
the problem of extracting small tractable graph views from big tabular data.
We distinguish three different data transformation and reduction approaches:
aggregation, projection, filtering.

Aggregation Techniques

Graph aggregation techniques transform and reduce data sets by collecting
data records into buckets in terms of commonalities shared by the raw or
derived attributes of those records. The underlying principle of graph ag-
gregation is, for a given graph G = (V,E), to derive an aggregate graph

G̃ = (Ṽ , Ẽ) with fewer vertices and edges. The goal is to compute G̃ in such
a way that it is a good coarse representation of G for the user’s data analysis
purposes. This data reduction process is also known as granulation [71].

In the graph reference model, graph aggregation happens in the grouping
(for vertices) and cliquing (for edges) stage. These transformations perform
unary and binary calculations to determine raw or derived attributes oc-
currences and co-occurrences, respectively. Using raw attribute values them-
selves is a basic approach but still highly useful for analysis; Jigsaw [70],
Cross-Filtered Views [85], and Attribute Relationship Graphs [86] all sup-
port multivariate association an comparison tasks in this way.

Many systems provide several types of graph aggregation that entail more
complex calculations of derived graph elements (i.e., with a one-to-many
mapping from graph node or link to data). PivotGraph [81] uses roll-up for
multivariate graphs to group nodes into equivalence classes based on their
attribute values and create weighted edges as induced by the members of the
different equivalence classes. Selection by restricting certain attribute val-
ues can be used to obtain the induced subgraphs. This technique originally
does not focus on large graphs and depending on the attribute types and
values, the number of equivalence classes may be too high. Orion [37] sup-
ports similar attribute-based aggregation of vertices for networks that are

10.2 Design Strategies for Scalable Multivariate Graph Visualization 219

obtained in a previous step from relational database tables. In the Ploceus
system [52], three types of aggregation-by-attribute are identified: pivoting is
equivalent to PivotGraph’s roll-up but specifically for categorical attributes;
binning is used to describe grouping nodes by quantitative attributes divided
into distinct ranges; proximity grouping is used to refer to more sophisticated
clustering techniques involving distance functions of quantitative attributes.

More generally, one can perform arbitrary many-to-many calculations to
generate derived data dimensions for grouping and cliquing. Clustering is a
common approach, although one that requires great care to maintain respon-
siveness of the overall graph transformation pipeline. Graph clustering tech-
niques partition the vertex set V into mutually disjoint clusters C1, . . . , Ck

with the objective that two vertices in the same vertex cluster Ci are suffi-
ciently similar and two vertices from different clusters are sufficiently dissim-
ilar. As we deal with multivariate graphs, there is a wide range of clustering
methods that can be applied.

Graph-based clustering methods consider edges (possibly with weights) as
an indicator for similarity and hence aim at finding a clustering with high
intra-cluster edge density and low inter-cluster edge density. Fortunato’s re-
cent survey on community detection in graphs covers the state of the art
in clustering algorithms [25]. On the other hand, attribute-based clustering
methods are data mining techniques that consider each vertex as a point in a
multi-dimensional space spanned by the multivariate vertex attributes. Using
a (dis-)similarity measure defined in this space, clusters are derived based on
this measure. Again, vertices in the same cluster should have high similarity,
and vertices in different clusters should be dissimilar. Berkhin gives a recent
review of the most common clustering methods in data mining [4]. Cluster-
ing of multivariate graphs ideally uses methods that combine connectivity
information and attribute information in a configurable way, especially if at-
tributes and edges are not highly correlated. Only few methods exist that
take into account both types of information. Zhou et al. [94, 95] present a
method to transform the attribute data of large graphs into additional graph
edges and then apply a graph clustering algorithm to the augmented graph.
Another combined method is DB-CSC by Günnemann et al. [31], which al-
lows more flexible cluster shapes. Hadlak [33] describes clustering on time
series behavior of time-varying attributes.

Of particular interest are hierarchical graph clustering methods [25, Chap.
IV.B], where different clustering granularities can be represented between a
single cluster containing everything at the top and singleton clusters at the
bottom. In the graph reference model, hierarchies can be treated as multiple
aggregations that are coincidentally related in terms of data type semantics.
(In the graph visualization phase of the model, representation and interaction
should reinforce these relationships.) Depending on the navigation strategy,
different types of cuts or frontiers in the clustering tree can be applied. Thus
it is possible to obtain rather uniform granularities for an aggregated overview
graph or non-uniform granularities giving more details in a focus region and

220 10 Scalability Considerations for Multivariate Graph Visualization

(a) An example of hierar-
chical edge bundling [39].

(b) A straight-line drawing (left) and a strict confluent
drawing (right) of the same graph [20].

Fig. 10.6. Radial graph layouts using edge aggregation

less details in the further context. ASK-GraphView [1] is a system that applies
hierarchical clustering for visualizing large graphs.

While the above methods are mostly concerned with aggregating vertices
to reduce the graph size, there are also several techniques to aggregate edges.
Since a graph of |V | vertices can have O(|V |2) edges, graphs with relatively
few vertices can already be too edge dense to be readable. Edge bundling
methods [21, 27, 39, 40, 44, 45] aim to reduce visual clutter by visually group-
ing together edges between similar parts of the graph thus using fewer pixels
to show the original set of edges. Visualizations using edge bundling are well
suited to depict global connectivity patterns with reduced visual complexity.
See Fig. 10.6(a) for an example. The topological information produced in the
graph specification phase of the graph reference model can be used to aggre-
gate edges, although having two or more (potentially interdependent) stages
of aggregation complicates matters substantially; such complex interdepen-
dencies between the node and edge pipelines that define a graph visualization
are beyond the scope of the graph reference model.

The concept of confluent graph drawing [10, 18–20, 43, 63], where two ver-
tices are connected if and only if there is a smooth path between them, sim-
ilarly merges and splits the curves representing edges in a visualization. But
unlike edge bundling methods, confluent drawings are unambiguous or infor-
mation faithful [57] since no false adjacencies are created. Confluent drawings
can be used to display certain non-planar graphs without edge crossings. Fig-
ure 10.6(b) shows a straight-line and a confluent drawing of the same graph.
Confluent drawing algorithms are not yet implemented in practical systems
and some related decision problems are known to be NP-complete. Edge com-
pression through Power Graph Analysis [13, 66] (see Fig. 10.7) is another tech-
nique for aggregating edges by replacing the edges of bipartite clique sub-graphs
with single edges connecting the two sets of nodes in the bipartite clique. Power
Graph compression is related to confluent drawing in that it also offers anunam-
biguous, information faithful representationof the original dense graphhowever
practical techniques exist for their generation [16].

10.2 Design Strategies for Scalable Multivariate Graph Visualization 221

(a) (b)

Fig. 10.7. Illustration of edge compression to simplify dense graphs. 10.7(a) the
top-level component graph produced by the Visual Studio code-dependency anal-
ysis tool for the IronPython code base with 39 edges. 10.7(b) a power-graph de-
composition of the same graph leaves only six aggregate links without any loss of
connectivity information for an 85% compression rate.

Projection Techniques

The Ploceus system [52] is concerned with allowing users a multitude of ways
to extract graph views of tabular data. A key part of their system is a network
schema view of the rich heterogenous graphs that can easily be obtained from
such data. The network schema shows a graph of the types of nodes in the
network and the types of links that are allowed between pairs of such nodes.
The network schema view thus provides a powerful affordance for restricting
the set of nodes and edges shown in the actual network visualization. That
is, the user can select a subset of the available node and edge types that
will appear in the network visualization. An important concept in realizing
these final network views is projection. That is, for the final subset view to
be usefully representative of the original graph, nodes that are to be omitted
from the final view must be spliced out of the network, rather than simply
removed, potentially leaving the graph disconnected even though a transitive
relationship exists.

Filtering Techniques

In contrast to aggregation techniques, graph filtering selects an appropri-
ately sized subgraph of the input graph, either by stochastic sampling or by
deterministic processes. Typically, an importance function measures the rel-
evance of vertices and edges in the graph and only the most relevant objects
are kept. Selections can be done by computing additional vertex and edge
attributes, e.g., centrality measures, that indicate how important these fea-
tures are in the graph [48]. Van Ham and Perer [34] use a degree-of-interest
function to determine the relevant subgraph for one or more focus points in
the graph. This function evaluates both the graph topology and the multi-
variate graph attributes based on the selected focal vertex. Subsequently, a

222 10 Scalability Considerations for Multivariate Graph Visualization

maximal interest subgraph of specified size is extracted. By interacting with
the visualization, users can expand additional parts of the graph that they
are interested in.

10.2.2 Visual Mapping

Once a sub-graph is chosen for actual visualization by application of the data
reduction techniques above, there are further scalability considerations in the
Visual Mapping stage. By “Visual Mapping” we mean the visual represen-
tations of data sets as views and/or visual encodings of data items in views.
Multiple views can help with orienting the user of the visualization system
when the displayed visuals represent only a very small fraction of the total
data space. For example, the display may be configured to show an abstract
over-view of a large portion of the full graph while a detailed view shows a
much more restricted neighborhood but with many more attributes shown
on each of the visible nodes and edges [14]. In general, this mapping happens
in the encoding and filtering stages of the pipeline. For multiple views, mul-
tiple encoding operations coexist, e.g., Ploceus and Attribute Relationship
Graphs both have a central graph view that feeds off of all three encoding
operations (for nodes, edges and packs) and peripheral views (fed by node or
edge encoding operations).

As already discussed in this chapter, various paradigms exist for visual
mappings for graphs, the two most widely known being node-link diagrams
and matrix views. The limits of scalability for each of these were discussed
in Sect. 10.1 while more exotic representations are discussed in Chap. 7.
The appeal of node-link diagrams is that it is fairly natural for most people
to illustrate related concepts by connecting labels with lines, and—at least
while the diagram is simple enough to be unambiguous—for readers of such
diagrams to follow transitive paths. By contrast, matrices offer unambiguous
representations of very dense graphs (i.e., graphs with a high proportion of
edges to nodes). Henry et al. [38] have elegantly demonstrated that hybrid
visual mapping may offer the best of both representations. In their NodeTrix
system, they use matrices to display dense parts of a large graph, while these
matrices are themselves treated as nodes situated within a larger node-link
diagram.

Encodings include input on graph element position from the layout feed-
back loop of the pipeline. Layout operates on the filtered graph subset and
changes the position encoding of elements. Complex encoding operations sup-
port rich visual mappings, for example: edge centric schemes such as those
suggested by Riche et al. [64] control edge curvature based on edge attributes.

In general, there is a trade-off between scalability of layout techniques and
the quality of the resultant drawing. For node-link diagrams, algorithms exist
that can obtain layouts that may be useful to show the gross structure of an
overall graph for thousands (even hundreds of thousands of nodes) in rea-
sonable time [26, 32, 41]. However, for small diagrams—especially when the

10.2 Design Strategies for Scalable Multivariate Graph Visualization 223

nodes are not just points but also need to display multiple attributes—there
are additional and computationally expensive considerations for layout, for
example: avoiding overlaps between node boundaries [15, 28] and minimizing
edge-edge and node-edge crossings [59].

10.2.3 View Transformation

The use of data reduction to limit the view to only a small sub-graph—
perhaps a sub-graph that is specifically chosen for a particular line of
enquiry—necessitates flexible navigation affordances, to allow analysts to
easily refocus on different aspects or parts of the graph. We call this type
of navigation view transformation. For example, Huang et al. [42] developed
an early system for exploring an infinite graph by browsing just a small neigh-
bourhood at a time. A simple animated spring algorithm enabled incremental
layout as nodes are added to or removed from the neighbourhood, and gave
the graph smooth transitions. Fisher coined the term “ego-centric views” [23]
to describe views of the graph from one particular node’s point of view, or
from a small neighborhood.

In the pipeline of Fig. 10.5, this is the chief concern of the brushing stage,
where encoding can depend on brushing to highlight (un)selected graph el-
ements, while filtering can depend on brushing to elide (un)selected graph
elements. The brushing stage also covers view-specific interaction capabili-
ties, such as panning and zooming to navigate a graph coordinate space. In
the full pipeline model (and implementation in the Improvise system [82]),
operations at all stages can depend on navigation and selection visualization
parameters controlled throughout a coordinated multiple view visualization.

Overview+detail can be thought of as branching late in the pipeline with
different levels of filtering controlling the portions of graph visible in each
view, and more encoding to show increased detail (e.g., attributes) of re-
maining elements. Robert’s Multiform Visualization [65] idea boils down to
multiple pipelines with varying encoding and filtering.

Focus+context techniques also show the most detail around only a small
neighborhood, but they endeavor to show this neighborhood in the context of
the larger graph. Focus+context graph techniques can be thought of combina-
tions of visual mapping transformations with multiple views that are nested.
A compelling and scalable example of this design concept is the Topological
Fisheye technique of Gansner et al. [29] and another that takes advantage
of graphics hardware is proposed by Zinsmaier et al. [96]. In the topological
fisheye system a layout is computed for the entire graph, then a combination
of spatial and structural clustering techniques are used to show an abridged
view of the graph with only gross detail visible. The authors describe navi-
gation in which the user is able to zoom in to show full detail in a small focal
region with the abridged contextual structure still visible.

224 10 Scalability Considerations for Multivariate Graph Visualization

10.3 Studies on Scalability in Graph Visualization

This section provides a summary of the evaluations related to multivariate
graph scalability. Some of them are part of work that has been discussed
so far. Use Cases are the most popular form of study, but in many works,
these cases were designed to demonstrate the proposed technique rather than
being a formal evaluation. This section covers some of the case studies, but
the focus is on the formal studies, both qualitative (such as interviews) and
quantitative (such as controlled experiments).

10.3.1 Data Transformation and Reduction

Wattenberg [81] described the “pilot usage” of “PivotGraph” (please see
Sect. 10.2.1 for details) in his paper. These are essentially observations fol-
lowed by semi-structured interviews after participants have been using the
tool for a considerable period. The results are from five analysts who looked
for new patterns in their own data using PivotGraph. They are very familiar
with the data, which have been analyzed with other tools.

Three multivariate graphs were used in the study: the first one is a transi-
tion matrix consisting of 521 states (nodes) and 2,671 transition probabilities
(weighted edges). Besides the edge weighting attribute, each node (state) had
four associated categorical attributes. The second dataset is the social net-
work among a community of 146 people within a large company. Each person
(node) in the community was classified on five dimensions. The last dataset is
similar to the second one: it is the communication patterns among employees
of a company, with each employee classified according to five different dimen-
sions. The graphs used in the study is not small. For instance the transition
matrix graph had 521 nodes and 2,671 edges. However, due to the aggrega-
tion technique deployed in PivotGraph, the number of nodes shown in the
examples were less than 100 nodes. In that sense, visual complexity is well
under control.

The paper provided detailed description of how PivotGraph was used to
analyze these datasets, especially what the new findings were and how they
were discovered. This provides support for the claim that PivotGraph can
help identify new patterns in multivariate graph data. All the participants
are very positive about their experience of using the PivotGraph, and they
especially liked the feature that allows quick visual comparison between dif-
ferent pair of dimensions (attributes). All the participants wanted to continue
using the tool, together with what they were using already. This shows that
PivotGraph can be an useful addition to the multivariate graph analysis tool
collection.

The Orion system paper [37] includes three use cases: online medical fo-
rum discussions, academic collaborations, and software developments. The
first use case involves 3 million discussion posts from MedHelp.org. The an-
alyst was able to construct network based on edge weight to answer relevant

MedHelp.org

10.3 Studies on Scalability in Graph Visualization 225

questions. The resulting visualization led to discovery of errors in the dataset
and interesting co-occurrence of forum participants on different medical top-
ics. The second use case used the publication information from the ACM
Digital Library to visualize the career development of academics. The last
use case is based on the Github data and the visualization showed the differ-
ence between the followers to the cities where open-source development are
most active.

10.3.2 Visual Mapping

Wu and Takatsuka conducted an user study [91] to evaluate the effectiveness
of their multivariate networks visualization method that uses Self-Organizing
Map (SOM) to improve its layout. Their method tries to find optimal node
distance based on not only graph distance but also graph attribute similarity.
The evaluation consisted two parts: two use cases and a controlled experi-
ment. The first use case is a student friendship network, with node attribute
being the result of two courses. There are 43 nodes and 55 directed edges in
total. The results showed that it was possible to achieve good balance be-
tween node attribute clustering (measured by “data distortion”) and graph
drawing aesthetics (measured by “edge crossings”) by adjusting their weighs
in the SOM function.

The second use case is based on the Krackhardt’s high-tech manager
advice network [80]. Again, this is a relative small social network with 21
nodes (the managers) but dense connections (190 edges). Each manager has
four attributes: Age, Tenure, Position Level, and Department. The results
again showed it is possible to achieve a good balance between the attribute
clustering and layout aesthetics. The user study compared their method
(Fig. 10.8(b)) with a glphy-base one (Fig. 10.8(a)), in which a star glyph is
used to show node attributes. It involved 33 participants performing tasks on
7 synthesis multivariate networks. These networks had between 30-50 nodes,
40-70 edges, and 4 or 10 attributes. The tasks included comparing the set of
neighbors of two given nodes in terms of their attribute similarity and com-
paring relationships within the same set of entities. The results showed that
the participants spent more time using the glyph-based visualization, which
also had lower accuracy.

A study by Cunningham et al. [9] evaluated their method of visualizing
multivariate network using 2.5D surfaces, each of which represents a node
attribute. They compared their method, GraphScape [92] (Fig. 10.9(a)), to
the approach of using node size to show the attribute value (Fig. 10.9(b)).
In the first experiment, the participants were asked to select the 20% nodes
with the largest attribute value from the visualization of graphs with up to
100 nodes (Fig. 10.9(b)). The results showed that there was no significant dif-
ference in accuracy between the two methods, but it took longer to complete
the task with the GraphScape. In the second experiment, the participants
were asked to determine the average value of a variable for a cluster of nodes

226 10 Scalability Considerations for Multivariate Graph Visualization

(a) Star Glyph: each node is
a star glyph to show its at-
tributes.

(b) Self-Organizing Map-based Hybird Layout:
nodes are placed not only to reduce edge crossings
but also to show their attribute similarity.

Fig. 10.8. The two multivariate network visualizations used in the user study by
Wu and Takatsuka [91] in their paper on hybrid layout method

(a) GraphScape: node attributes
are shown as 2.5D surfaces. Two
attributes are shown as red and
blue surface in this example.

(b) The other visualization used in the
study: using node size to show attribute
value. The task is to select the top 20%
nodes with the largest value.

Fig. 10.9. The visualizations used in the evaluation of the GraphScape [92] method

using both visualizations, with similar-sized graphs. The accuracy of Graph-
Scape was found to be significantly greater than that of using node size.
However, participants answered significantly faster with node-size visualiza-
tion, comparing to GraphScape.

There is an increasing usage of curved edges in graph visualization tech-
niques designed to address scalability issues, such as the edge boundling
methods discussed in Sect. 10.2.1. There were two user studies [62, 93] on
the impact on readability when using curved edges in graph visualization.
Edge curvature can be used to encode edge attribute, and it is commonly
used in the edge bundling and confluent drawing methods discussed earlier.

10.3 Studies on Scalability in Graph Visualization 227

The first study consisted of two experiments. The first experiment examine
the impact of three different curvature levels on graph readability, with the
straight edges (zero curvature) included as the baseline. Participants com-
pleted path-finding tasks in a controlled experiment setup, and the graphs
used have 20, 50, or 100 nodes. The results showed that using either straight
edges or slightly curved edges are more accurate and faster than using heav-
ily curved edges. There was no significant difference in accuracy between the
straight edge and the slightly curved edge, but the former is significantly
faster. The graph size had a significant impact on speed (each size increase
incurred a significant time penalty), but less so on the accuracy. The second
experiment included force-directed Lombardi layout [8], which uses circular
edges to maximize angular resolution (the minimal angle between edges ad-
jacent to a node). Four tasks were tested in the experiment and the largest
graphs have 200 nodes. There was no significant accuracy difference but both
straight edge and Lombardi layout were faster than the slightly curved edge.
The study by Purchase et al. compared the two variations of the Lombardi
layout with straight-edge graphs produced by force-directed method. The
size of the graphs used was smaller (20 or 40 nodes) but each size had two
edge density level. The three tasks were similar to the second experiment in
the study by Xu et al. discussed above. The results were quite different from
the previous study: straight edges were found to be faster and more accurate
than the two variations of the Lombardi layout. The user preference was also
different: Lombardi layout was the choice for aesthetics in this study whereas
straight edge was the preferred option in the study by Xu et al.

10.3.3 Navigation and Interaction

Dörk et al. designed a visualization method, PivotPaths [11] (Fig. 10.10), to
allow browsing of large data collections through their multiple facets and en-
courages exploration and serendipitous discoveries. While the method is not
designed with multivariate network in mind, it provides a novel way to inter-
actively visualize the relationships between data records through the similar-
ity among their attributes. Because of the design goal, Dörk et al. decided to
use a longitudinal study together with observation and semi-structured inter-
views. The data set used is a collection of academic publications with 160,000
articles, 180,000 authors, and 20,000 keywords. The study was conducted in
a research institute with more than 200 recorded user sessions, which were
followed by interviews with four participants. The data from the recorded
sessions and comments from the interviews confirmed that the PivotPaths
provided an integrated view of the three facets in the data (publications,
authors, and keywords) and the relationships among them. The participants
found the “pivoting” animation is easy to follow and it encouraged them
to explore more about the dataset. However, there was someone confusion
about pivoting and filtering: some participants expected filtering when they
“pivoted” from one facet to another.

228 10 Scalability Considerations for Multivariate Graph Visualization

Fig. 10.10. PivotPaths showing the links between the three facets of research
publications: author (top), paper (middle), and topic (bottom)

The work by Tomer et al. [56] introduced two navigation techniques, Link
Sliding (Fig. 10.11(a)) and Bring & Go (Fig. 10.11(b)), for large networks.
Both adopted the focus+context approach and were evaluated in a controlled
experiment. The experiment used two randomly generated scale-free graphs,
one sparse (1,000 nodes; 1,485 edges), and one dense (1,000 nodes; 2,488
edges). There were 12 participants and the tasks include identifying all nodes
connected to a given node, following a link, and returning to a previously vis-
ited link (revisit task). Besides the two new techniques, “Pan and Zoom” and
“Bird’s Eye View” were also included. The Bring & Go technique is signifi-
cantly faster than Pan-and-Zoom and Bird’s-Eye-View in all tasks, but Link
Sliding was not significantly faster than Bird’s-Eye-View in two out of the
three tasks. There was no significant difference in accuracy for the “follow-
ing” and “revisit” task because there were very few errors. The participants
unanimously agreed that Bring & Go was quick, and made the tasks easy.
They also found it the least tiring, and most pleasant to use. Link Sliding
and Bird’s Eye View both received mixed comments regarding the ease and
speed at accomplishing tasks. Pan & Zoom was generally rated as slow and
difficult to use for the given tasks. Because the two networks used in the
experiment shared the same number of nodes, it is not possible to observe
how the techniques scale with graph node number. However, edge density did
show negative performance impact for some of the tasks. The two techniques
were not designed for multivariate networks and may require extra work to
provide such support.

References 229

(a) Link Sliding allows the sliding
along a (long) edge when the cursor
is within the selection radius.

(b) Bring & Go makes all the neigh-
bors, some of which normally would
be outside the frame, visible within
the display.

Fig. 10.11. The Link Sliding and Bring & Go method designed for navigating
large graphs

10.4 Challenges and Future Directions

We have attempted to review the state-of-the-art from research and indus-
try in addressing the problem of scalability for multivariate graph visualiza-
tion; limitations from the hardware and cognitive side were also overviewed.
Hopefully, the principles and design guidelines discussed will be useful to
implementers of new systems. It should be noted that the systems reviewed
here tend to be either research prototypes or visualization platforms specifi-
cally designed for a particular type of graph or application. The “holy-grail”
of a visualization system that can be easily applied to any type or amount
of multivariate graph data remains very much an open challenge. However,
the so-called “big-data” problem is ever growing with the steady march of
Moores’ law and the growth of the internet. Similarly, there is a growing pop-
ularity of a network view of data, evidenced by the rise of technologies such
as social networking, so-called “graph search”, and a move away from tabular
data paradigms for storage, such as graph databases. For these reasons we
think that more and more researchers and practitioners will begin to explore
the use of visualization for very large multivariate graph data and we expect
to see rapid developments in this area in the future.

References

1. Abello, J., van Ham, F., Krishnan, N.: ASK-GraphView: A large scale graph vi-
sualization system. IEEE Transactions on Visualization and Computer Graph-
ics 12(5), 669–676 (2006)

2. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput.
Surv. 40(1) (2008)

3. Auber, D.: Tulip: A huge graph visualisation framework(2003); Mutzel, P.,
Junger, M. (eds.), http://hal.archives-ouvertes.fr/hal-00307626

http://hal.archives-ouvertes.fr/hal-00307626

230 10 Scalability Considerations for Multivariate Graph Visualization

4. Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J.,
Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71.
Springer, Heidelberg (2006), http://dx.doi.org/10.1007/3-540-28349-8_2

5. Bezerianos, A., Chevalier, F., Dragicevic, P., Elmqvist, N., Fekete, J.D.:
Graphdice: A system for exploring multivariate social networks. Comput.
Graph. Forum 29(3), 863–872 (2010)

6. Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in information visual-
ization: Using vision to think. Morgan Kaufmann Publishers Inc. (1999)

7. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information
Visualization: Using Vision to Think. Morgan Kaufmann (January 1999)

8. Chernobelskiy, R., Cunningham, K.I., Goodrich, M.T., Kobourov, S.G., Trott,
L.: Force-directed lombardi-style graph drawing. In: Speckmann, B. (ed.) GD
2011. LNCS, vol. 7034, pp. 320–331. Springer, Heidelberg (2011)

9. Cunningham, A., Xu, K., Thomas, B.H.: Seeing more than the graph – evalua-
tion of multivariate graph visualization methods. In: Proceedings of the Work-
shop on Interactive Data Exploration and Knowledge Discovery (Part of In-
ternational Working Conference on Advanced Visual Interfaces 2010), Rome,
Italy, pp. 429–429 (2010)

10. Dickerson, M., Eppstein, D., Goodrich, M., Meng, J.: Confluent drawings: Vi-
sualizing non-planar diagrams in a planar way. Journal of Graph Algorithms
and Applications 9(1), 31–52 (2005)

11. Dörk, M., Riche, N., Ramos, G., Dumais, S.: PivotPaths: strolling through
faceted information spaces. IEEE Transactions on Visualization and Computer
Graphics 18(12), 2709–2718 (2012)

12. Dwyer, T.: Two-and-a-half-dimensional Visualisation of Relational Networks.
Ph.D. thesis, School of Information Technologies, Faculty of Science, University
of Sydney (2005)

13. Dwyer, T., Henry Riche, N., Marriott, K., Mears, C.: Edge compression tech-
niques for visualization of dense directed graphs. IEEE Transactions on Visu-
alization and Computer Graphics 19(12), 2596–2605 (2013)

14. Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P., Woodward, M., Wybrow,
M.: Exploration of networks using overview+ detail with constraint-based co-
operative layout. IEEE Transactions on Visualization and Computer Graph-
ics 14(6), 1293–1300 (2008)

15. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy,
P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer,
Heidelberg (2006)

16. Dwyer, T., Mears, C., Morgan, K., Niven, T., Marriott, K., Wallace, M.: Im-
proved optimal and approximate power graph compression for clearer visuali-
sation of dense graphs. In: PacificVis 2014, pp. 105–112. IEEE (2014)

17. Elmqvist, N., Dragicevic, P., Fekete, J.D.: Rolling the dice: Multidimensional
visual exploration using scatterplot matrix navigation. IEEE Trans. Vis. Com-
put. Graph. 14(6), 1148–1539 (2008)

18. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Delta-confluent drawings. In: Healy,
P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 165–176. Springer,
Heidelberg (2006)

19. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. Algo-
rithmica 47(4), 439–452 (2007)

20. Eppstein, D., Holten, D., Löffler, M., Nöllenburg, M., Speckmann, B., Verbeek,
K.: Strict confluent drawing. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 352–363. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/3-540-28349-8_2

References 231

21. Ersoy, O., Hurter, C., Paulovich, F., Cantareiro, G., Telea, A.: Skeleton-based
edge bundling for graph visualization. IEEE Transactions on Visualization and
Computer Graphics 17(12), 2364–2373 (2011)

22. Fikkert, W., D’Ambros, M., Bierz, T., Jankun-Kelly, T.J.: Interacting with vi-
sualizations. In: Kerren, A., Ebert, A., Meyer, J. (eds.) Human-Centered Visu-
alization Environments 2006. LNCS, vol. 4417, pp. 77–162. Springer, Heidelberg
(2007)

23. Fisher, D.: Using egocentric networks to understand communication. IEEE In-
ternet Computing 9(5), 20–28 (2005)

24. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Prin-
ciples and Practice in C, 2nd edn. Addison-Wesley (1996)

25. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–
174 (2010),
http://www.sciencedirect.com/science/article/pii/S0370157309002841

26. Frishman, Y., Tal, A.: Multi-level graph layout on the gpu. IEEE Transactions
on Visualization and Computer Graphics 13(6), 1310–1319 (2007)

27. Gansner, E., Hu, Y., North, S., Scheidegger, C.: Multilevel agglomerative edge
bundling for visualizing large graphs. In: Proc. PacificVis, pp. 187–194 (2011)

28. Gansner, E.R., Hu, Y.: Efficient node overlap removal using a proximity stress
model. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp.
206–217. Springer, Heidelberg (2009)

29. Gansner, E.R., Koren, Y., North, S.C.: Topological fisheye views for visualiz-
ing large graphs. IEEE Transactions on Visualization and Computer Graph-
ics 11(4), 457–468 (2005)

30. Ghoniem, M., Fekete, J.D., Castagliola, P.: On the readability of graphs us-
ing node-link and matrix-based representations: a controlled experiment and
statistical analysis. Information Visualization 4(2), 114–135 (2005)

31. Günnemann, S., Boden, B., Seidl, T.: DB-CSC: A density-based approach for
subspace clustering in graphs with feature vectors. In: Gunopulos, D., Hofmann,
T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part I. LNCS
(LNAI), vol. 6911, pp. 565–580. Springer, Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-23780-5_46

32. Hachul, S., Jünger, M.: An experimental comparison of fast algorithms for draw-
ing general large graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS,
vol. 3843, pp. 235–250. Springer, Heidelberg (2006)

33. Hadlak, S., Schumann, H., Cap, C.H., Wollenberg, T.: Supporting the visual
analysis of dynamic networks by clustering associated temporal attributes.
IEEE Transactions on Visualization and Computer Graphics 19(12), 2267–2276
(2013)

34. van Ham, F., Perer, A.: Search, show context, expand on demand: Supporting
large graph exploration with degree-of-interest. IEEE Transactions on Visual-
ization and Computer Graphics 15(6), 953–960 (2009)

35. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a mapreduce
framework on graphics processors. In: Proceedings of the 17th international
conference on Parallel architectures and compilation techniques, PACT 2008,
pp. 260–269. ACM Press, New York (2008),
http://doi.acm.org/10.1145/1454115.1454152

36. Heer, J., Boyd, D.: Vizster: Visualizing online social networks. In: Proceedings
of the IEEE Symposium on Information Visualization (InfoVis), pp. 33–40.
IEEE, Minneapolis (October 2005)

http://www.sciencedirect.com/science/article/pii/S0370157309002841
http://dx.doi.org/10.1007/978-3-642-23780-5_46
http://doi.acm.org/10.1145/1454115.1454152

232 10 Scalability Considerations for Multivariate Graph Visualization

37. Heer, J., Perer, A.: Orion: A system for modeling, transformation and visual-
ization of multidimensional heterogeneous networks. In: 2011 IEEE Conference
on Visual Analytics Science and Technology (VAST), pp. 51–60. IEEE (2011)

38. Henry, N., Fekete, J.D., McGuffin, M.J.: NodeTrix: A hybrid visualization of
social networks. IEEE Transactions on Visualization and Computer Graph-
ics 13(6), 1302–1309 (2007)

39. Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE TVCG 12(5), 741–748 (2006)

40. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization.
Comp. Graph. Forum 28(3), 670–677 (2009)

41. Hu, Y.: Efficient, high-quality force-directed graph drawing. Mathematica Jour-
nal 10(1), 37–71 (2005)

42. Huang, M.L., Eades, P., Wang, J.: On-line animated visualization of huge
graphs using a modified spring algorithm. Journal of Visual Languages & Com-
puting 9(6), 623–645 (1998)

43. Hui, P., Pelsmajer, M.J., Schaefer, M., Stefankovic, D.: Train tracks and con-
fluent drawings. Algorithmica 47(4), 465–479 (2007)

44. Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation.
Comp. Graph. Forum 31(3 pt. 1), 865–874 (2012),
http://dx.doi.org/10.1111/j.1467-8659.2012.03079.x

45. Hurter, C., Ersoy, O., Telea, A.: Smooth bundling of large streaming and se-
quence graphs. In: Proceedings of the PacificVis 2013 (2013)

46. Hurter, C., Telea, A., Ersoy, O.: Moleview: An attribute and structure-based
semantic lens for large element-based plots. IEEE Transactions on Visualization
and Computer Graphics 17(12), 2600–2609 (2011),
http://dx.doi.org/10.1109/TVCG.2011.223

47. Hurter, C., Tissoires, B., Conversy, S.: Fromdady: Spreading aircraft trajecto-
ries across views to support iterative queries. IEEE Transactions on Visualiza-
tion and Computer Graphics 15(6), 1017–1024 (2009),
http://dx.doi.org/10.1109/TVCG.2009.145

48. Jia, Y., Hoberock, J., Garland, M., Hart, J.: On the visualization of social and
other scale-free networks. IEEE Transactions on Visualization and Computer
Graphics 14(6), 1285–1292 (2008)

49. Klippel, A., Hardisty, F., Li, R., Weaver, C.: Colour enhanced star plot glyphs
– can salient shape characteristics be overcome? Cartographica 44(3), 217–231
(2009)

50. Klippel, A., Weaver, C., Robinson, A.C.: Analyzing cognitive conceptualiza-
tions using interactive visual environments. Cartography and Geographic In-
formation Science 38(1), 52–68 (2011)

51. Lambert, A., Bourqui, R., Auber, D.: Winding roads: Routing edges into bun-
dles. Comp. Graph. Forum 29(3), 432–439 (2010)

52. Liu, Z., Navathe, S.B., Stasko, J.T.: Network-based visual analysis of tabular
data. In: Proceedings of the IEEE Conference on Visual Analytics Science and
Technology (VAST 2011), pp. 41–50. IEEE (2011)

53. McDonnel, B., Elmqvist, N.: Towards utilizing gpus in information visualiza-
tion: A model and implementation of image-space operations. IEEE Trans-
actions on Visualization and Computer Graphics 15(6), 1105–1112 (2009),
http://dx.doi.org/10.1109/TVCG.2009.191

54. Miller, G.A.: The magical number seven, plus or minus two: Some limits on
our capacity for processing information. The Psychological Review 63(2), 81–
97 (1956)

http://dx.doi.org/10.1111/j.1467-8659.2012.03079.x
http://dx.doi.org/10.1109/TVCG.2011.223
http://dx.doi.org/10.1109/TVCG.2009.145
http://dx.doi.org/10.1109/TVCG.2009.191

References 233

55. Millodot, M.: Dictionary of Optometry and Visual Science. Butterworth-
Heinemann (1997)

56. Moscovich, T., Chevalier, F., Henry, N., Pietriga, E., Fekete, J.D.: Topology-
aware navigation in large networks. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 2319–2328. ACM (2009)

57. Nguyen, Q., Eades, P., Hong, S.-H.: On the faithfulness of graph visualizations.
In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 566–568.
Springer, Heidelberg (2013)

58. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.,
Purcell, T.J.: A survey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1), 80–113 (2007), http://www.blackwell-
synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x

59. Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge routing with
ordered bundles. In: Speckmann, B., van Kreveld, M. (eds.) GD 2011. LNCS,
vol. 7034, pp. 136–147. Springer, Heidelberg (2011)

60. Purchase, H.C.: Which aesthetic has the greatest effect on human understand-
ing? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer,
Heidelberg (1997)

61. Purchase, H.C., Carrington, D., Allder, J.-A.: Experimenting with aesthetics-
based graph layout. In: Anderson, M., Cheng, P.C.H., Haarslev, V. (eds.) Dia-
grams 2000. LNCS (LNAI), vol. 1889, pp. 498–501. Springer, Heidelberg (2000)

62. Purchase, H.C., Hamer, J., Nöllenburg, M., Kobourov, S.G.: On the usability
of lombardi graph drawings. In: Didimo, W., Patrignani, M. (eds.) GD 2012.
LNCS, vol. 7704, pp. 451–462. Springer, Heidelberg (2013)

63. Quercini, G., Ancona, M.: Confluent drawing algorithms using rectangular du-
alization. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp.
341–352. Springer, Heidelberg (2011)

64. Riche, N.H., Dwyer, T., Lee, B., Carpendale, S.: Exploring the design space of
interactive link curvature in network diagrams. In: Proceedings of the Interna-
tional Working Conference on Advanced Visual Interfaces, pp. 506–513. ACM
(2012)

65. Roberts, J.C.: Multiple-View and Multiform Visualization. In: Erbacher, R.,
Pang, A., Wittenbrink, C., Roberts, J. (eds.) Proceedings of SPIE Visual Data
Exploration and Analysis VII, vol. 3960, pp. 176–185 (January 2000)

66. Royer, L., Reimann, M., Andreopoulos, B., Schroeder, M.: Unraveling pro-
tein networks with power graph analysis. PLoS computational biology 4(7),
e1000108 (2008)

67. Scheepens, R., Willems, N., van de Wetering, H., Andrienko, G., Andrienko,
N., van Wijk, J.J.: Composite density maps for multivariate trajectories.
IEEE Transactions on Visualization and Computer Graphics 17(12), 2518–2527
(2011), http://dx.doi.org/10.1109/TVCG.2011.181

68. Shadoan, R., Weaver, C.: Visual analysis of higher-order conjunctive relation-
ships in multidimensional data using a hypergraph query system. IEEE Trans-
actions on Visualization and Computer Graphics 19(12), 2070–2079 (2013)

69. Shneiderman, B.: The eyes have it: A task by data type taxonomy for in-
formation visualizations. In: Proceedings of the IEEE Symposium on Visual
Languages, pp. 336–343. IEEE (1996)

70. Stasko, J., Görg, C., Liu, Z.: Jigsaw: Supporting investigative analysis through
interactive visualization. Information Visualization 7(2), 118–132 (2008)

71. Stell, A.J.: Granulation for graphs. In: Freksa, C., Mark, D.M. (eds.) COSIT
1999. LNCS, vol. 1661, pp. 417–432. Springer, Heidelberg (1999)

http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/10.1109/TVCG.2011.181

234 10 Scalability Considerations for Multivariate Graph Visualization

72. Thompson, C.J., Hahn, S., Oskin, M.: Using modern graphics architectures
for general-purpose computing: a framework and analysis. In: Proceedings of
the 35th Annual ACM/IEEE International Symposium on Microarchitecture,
MICRO, vol. 35, pp. 306–317. IEEE Computer Society Press, Los Alamitos
(2002), http://dl.acm.org/citation.cfm?id=774861.774894

73. Tominski, C., Abello, J., Schumann, H.: CGV–an interactive graph visualiza-
tion system. Computers & Graphics 33(6), 660–678 (2009)

74. Vogel, D., Balakrishnan, R.: Distant freehand pointing and clicking on very
large, high resolution displays. In: Proceedings of the 18th Annual ACM Sym-
posium on User Interface Software and Technology (UIST 2005), pp. 33–42.
ACM Press, New York (2005)

75. Ward, M.O., Grinstein, G.G., Keim, D.A.: Interactive Data Visualization-
Foundations, Techniques, and Applications. A K Peters (2010)

76. Ware, C: Information Visualization: Perception for Design, 2nd edn. Morgan
Kaufmann (2004)

77. Ware, C., Bobrow, R.: Supporting visual queries on medium-sized node-link
diagrams. Information Visualization 4(1), 49–58 (2005)

78. Ware, C., Mitchell, P.: Visualizing graphs in three dimensions. ACM Trans.
Appl. Percept. 5(1), 2:1–2:15 (2008)

79. Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of
graph aesthetics. Information Visualization 1(2), 103–110 (2002)

80. Wasserman, S., Faust, K.: Social network analysis: methods and applications.
Cambridge University Press, Cambridge (1994)

81. Wattenberg, M.: Visual exploration of multivariate graphs. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp. 811–
819. ACM (2006)

82. Weaver, C.: Building highly-coordinated visualizations in Improvise. In: Pro-
ceedings of the IEEE Symposium on Information Visualization (InfoVis 2004),
pp. 159–166. IEEE Computer Society, Austin (October 2004)

83. Weaver, C.: Visualizing coordination in situ. In: Proceedings of the IEEE Sym-
posium on Information Visualization (InfoVis 2005), pp. 165–172. IEEE Com-
puter Society, Minneapolis (October 2005)

84. Weaver, C.: Metavisual exploration and analysis of DEVise coordination in
Improvise. In: Proceedings of the International Conference on Coordinated &
Multiple Views in Exploratory Visualization (CMV), pp. 79–90. IEEE Com-
puter Society, London (July 2006)

85. Weaver, C.: Cross-filtered views for multidimensional visual analysis. IEEE
Transactions on Visualization and Computer Graphics 16(2), 192–204 (2010)

86. Weaver, C.: Multidimensional data dissection using attribute relationship
graphs. In: Proceedings of the IEEE Symposium on Visual Analytics Science
and Technology (VAST), pp. 75–82. IEEE, Salt Lake City (October 2010)

87. Westheimer, G.: Visual acuity. In: Kaufman, P.L., Alm, A. (eds.) Adler’s Phys-
iology of the Eye: Clinical Applications, 10th edn., ch. 17, pp. 453–469. Elsevier
(1987)

88. Wikipedia: List of display by pixel density: Apple, http://
en.wikipedia.org/wiki/List of displays by pixel density#Apple

(last accessed November, 2013)
89. Wolfe, J.M.: Guided search 2.0: A revised model of visual search. Psy-

chonomonic Bulletin & Review 1(2), 202–238 (1994)
90. Wolfe, J.M., Cave, K.R., Franzel, S.L.: Guided search: An alternative to the

feature integration model for visual search. Journal of Experimental Psychol-
ogy 15(3), 419–433 (1989)

http://dl.acm.org/citation.cfm?id=774861.774894
http://en.wikipedia.org/wiki/List_of_displays_by_pixel_density#Apple
http://en.wikipedia.org/wiki/List_of_displays_by_pixel_density#Apple

References 235

91. Wu, Y., Takatsuka, M.: Visualizing multivariate networks: A hybrid approach.
In: Proceedings of the IEEE Pacific Visualization Symposium (PacificVis 2008),
pp. 223–230 (2008)

92. Xu, K., Cunningham, A., Hong, S.H., Thomas, B.H.: GraphScape: integrated
multivariate network visualization. In: Proceedings of the 6th International
Asia-Pacific Symposium on Visualization, Sydney, Australia, Febraury 2007,
pp. 33–40 (2007)

93. Xu, K., Rooney, C., Passmore, P., Ham, D.H., Nguyen, P.: A user study on
curved edges in graph visualization. IEEE Transactions on Visualization and
Computer Graphics 18(12), 2449–2456 (2012)

94. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute
similarities. Proc. VLDB Endow. 2(1), 718–729 (2009),
http://dl.acm.org/citation.cfm?id=1687627.1687709

95. Zhou, Y., Cheng, H., Yu, J.: Clustering large attributed graphs: An efficient
incremental approach. In: 2010 IEEE 10th International Conference on Data
Mining (ICDM), pp. 689–698 (2010)

96. Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail
rendering of large graphs. IEEE Transactions on Visualization and Computer
Graphics 18(12), 2486–2495 (2012)

http://dl.acm.org/citation.cfm?id=1687627.1687709

Author Index

Abello, James 151
Archambault, Daniel 151

Börner, Katy 175

Diehl, Stephan 13
Dwyer, Tim 207

Elmqvist, Niklas 97

Fekete, Jean-Daniel 97

Gou, Liang 37

Hagen, Hans 175
Holten, Danny 207
Hurter, Christophe 207

Jankun-Kelly, T.J. 207

Kennedy, Jessie 151
Kerren, Andreas 1, 175
Kobourov, Stephen 151
Kohlbacher, Oliver 61, 127

Ma, Kwan-Liu 37, 151
Miksch, Silvia 151
Muelder, Chris 37, 151

Nöllenburg, Martin 207

Pretorius, A. Johannes 77
Purchase, Helen C. 1, 77

Roberts, Jonathan C. 127

Schreiber, Falk 61, 175
Stasko, John T. 77

Telea, Alexandru C. 13, 151

van Wijk, Jarke J. 97
von Landesberger, Tatiana 97

Ward, Matthew O. 1, 61, 127
Weaver, Chris 207
Wybrow, Michael 97

Xu, Kai 207

Yang, Jing 127

Zeckzer, Dirk 175
Zhou, Michelle X. 37, 127
Zimmer, Björn 97

	Preface
	List of Contributors
	Contents
	Introduction to Multivariate NetworkVisualization
	1.1 Multivariate Networks: Definitions and Terminology
	1.2 Existing Visualizations
	1.3 Outline of This Book
	References

	Part I: Application Domains – Characteristicsand Challenges
	Multivariate Networks in Software Engineering
	2.1 Aims and Scope
	2.2 Data Characteristics
	2.3 Applications
	2.4 Challenges and Future Directions
	References

	Multivariate Social Network Visual Analytics
	3.1 Data Characteristics
	3.2 Task Characteristics
	3.3 Examples of Technologies
	3.4 Challenges and Future Directions
	References

	Multivariate Networks in the Life Sciences
	4.1 Characteristics of Data and Tasks
	4.2 Use Cases
	4.3 Challenges
	4.4 Summary and Conclusions
	References

	Part II: Topics in Multivariate Network Research
	Tasks for Multivariate Network Analysis
	5.1 Entities and Properties
	5.2 Tasks
	5.3 Discussion
	5.4 Conclusion
	Acknowledgements
	References

	Interaction in the Visualizationof Multivariate Networks
	6.1 Background
	6.2 Classification of Interactions
	6.3 Exemplars
	6.4 Recommendations and Guidelines
	6.5 Challenges and Vision
	Acknowledgements
	References

	Novel Visual Metaphorsfor Multivariate Networks
	7.1 Background
	7.2 Classes of Metaphors
	7.3 Man-Made
	7.4 Visualization-Inspired
	7.5 Proposed New Ideas
	7.6 Summary and Conclusions
	References

	Temporal Multivariate Networks
	8.1 Definitions
	8.2 Refining Our Models and Definitions for Time
	8.3 Survey of Representations and Algorithms
	8.4 Applications to Software Engineering
	8.5 Open Problems
	8.6 Summary and Conclusions
	References

	Heterogeneous Networks on Multiple Levels
	9.1 Formal Description of Used Data Structures
	9.2 Application Domains
	9.3 Visualization
	Acknowledgments
	References

	Scalability Considerationsfor Multivariate Graph Visualization
	10.1 Limits of Visualization
	10.2 Design Strategies for Scalable Multivariate Graph Visualization
	10.3 Studies on Scalability in Graph Visualization
	10.4 Challenges and Future Directions
	References

	Author Index

