
179

Chapter 18
Traits

J. Hunt, A Beginner’s Guide to Scala, Object Orientation and Functional Programming,
DOI 10.1007/978-3-319-06776-6_18, © Springer International Publishing Switzerland 2014

18.1 � Introduction

In the previous chapters there have already been several references to these things
called Traits. For example, we have encountered the App trait numerous times.
However we have avoided the question “What are traits?”.

In this chapter we will look at the core concepts behind traits and attempt to ex-
plain how and why you might want to use them. The next chapter will then explore
some more advanced uses and concepts within the area of Traits.

18.2 � What are Traits?

Let us start of with what Traits are not:

•	 They are not Classes or Objects.
•	 They are not Abstract Classes.
•	 They are not (Java and C#) Interfaces.
•	 They cannot be instantiated directly.

However, Traits are part of the type system in Scala. That is a Trait defines a type
just as a class defines a type. Thus vals and vars, properties parameters, return types
etc. can all be of a type defined by a Trait and can reference instances (or indeed
objects) that mix in a Trait.

They are also a fundamental unit of reuse within the Scala language. If you use
Traits appropriately you will find that they allow you to reuse code very elegantly
and in a much cleaner way than is possible with Java (or C#) interfaces and abstract
classes.

Traits allow you to define methods, functions and properties. They also allow
you to define abstract methods, functions and properties. They allow type declara-
tions and can use a self-reference to indicate the types that they expect to be used
with. When you define a method, a function or a property they can be made avail-
able to the type (Class or Object) that the Trait is used with.

180 18  Traits

Adding a Trait to a class or object is referred to as mixing in a Trait to that type.
In fact a class or object can mix in any number of traits allowing for a great deal of
flexibility and reuse of Traits. This idea is illustrated in Fig. 18.1. In this diagram
the class WeatherDataGenerator extends the class AnyRef (the default super class)
and mixes in the Trait Service. Thus the WeatherDataGenerator is a reference type
and a Service.

You will find many texts refer to a class or object as inheriting form a Trait
(partly due to the syntax used with Traits) however I will restrict this terminology to
the relationship between one Trait and a sub Trait that directly inherits the features
of that Trait. Thus inheritance is possible between Traits and we can use terms such
as Super Trait, Trait and Sub Trait to refer to the inheritance relationships between
traits. This idea is illustrated in Fig. 18.2.

Note that in Fig. 18.2 the root of the Trait hierarchy is shown as extending Any-
Ref. Prior to Scala 2.10 this was the only option—all traits extended AnyRef how-
ever, since Scala 2.10 you can also make a Trait extend AnyVal that is used for
Universal Traits that are discussed later in the chapter.

Also note that a trait can extend one Trait but can mix in any additional traits
required using with. This Traits support multiple inheritance rather than single in-
heritance. It is thus legal to write:

trait MyReader extends Immutable with
 ...

In summary, a Trait is a reuseable type that can be combined with Classes and Ob-
jects to provide a very significant form of code reuse in Scala.

18.3 � Defining a Trait

A trait is defined by the keyword trait, this if followed by the name of the Trait with
the body of the trait defined between curly brackets ‘{.}’.

Fig. 18.1   Mixing a Trait into
a class

18118.3 � Defining a Trait�

Trait definitions can have any number or combination of concrete methods, func-
tions, properties, field, type definitions. It can also have any number or combina-
tion of abstract methods, functions and properties. However, Traits do not have
constructors (either primary or auxiliary) and may or may not have the extends
keyword to indicate inheritance.

A simple example of a trait definition is presented below.

trait Model {
var value: Any

def printValue() {
println(value)

 }

def printer(): Unit

This trait, called Model, defines

•	 a method printValue() that returns Unit,
•	 an abstract property value which can hold Any type of element but currently is

not initialized (and is thus abstract),
•	 an abstract method printer() which returns Unit.

Fig. 18.2   Trait inheritance
hierarchy

182 18  Traits

Note that this is not an abstract class (a concept which Scala also supports); it is a
Trait that can optionally have concrete (fully defined) methods, functions and prop-
erties or abstract methods functions and properties. Any abstract member of the trait
will have to be defined either in a sub Trait of this trait, or in a class or object with
which this trait is mixed.

Note that in this example all the members (that is the property value and the
two methods) are public as this is the default in Scala. However, any member can
have either of the encapsulation modifiers applied to them. Thus the methods or the
property could be private or protected (and may be qualified).

18.4 � Using a Trait

How do you use the trait presented in the last section? You cannot instantiate it di-
rectly, you cannot invoke the behaviour defined in it directly; you must mix it into
a class or an object.

That is, classes and objects mix in traits such as Model. Any class or object that
does this obtains the method printValue and must implement the abstract members
value and printer. The key word used to do this differs depending on whether the
class or object being used currently extends a named class or not.

If the class or object does not extend a named class then the keyword extends is
used to indicate the first trait to mix in. If extends is already being used to extend a
named class then the keyword with is used to indicate the first trait to mix in. Any
subsequent traits are always indicated via the keyword with.

Thus the generic syntax is actually:
Class <class-name> extends <class or if no class a Trait> with <Trait> with

<Trait> …
Object <object-name> extends <class or if no class a Trait> with <Trait> with

<Trait> …
The following list illustrates several different combinations:

•	 —a class with an extends that indicates a trait
Model to mix in.

•	 —a class which explicitly extends
the default AnyRef class and mixes in the trait Model.

•	 —a class which extends Pro-
gramme and mixes in the trait Model. Note that without looking at Programme
we can not tell whether it is a class or a Trait.

•	 —this is a class with mul-
tiple traits. Both Model and AwardCeremony are traits but the first trait is pre-
ceeded by extends where as subsequent Traits are preceeded by with.

•	 . This
class extends Programme (a class) and mixes in multiple traits Model and
AwardCeremony.

18318.4 � Using a Trait�

Note that we have used classes above, but the same can be done with Objects. For
example:

•	 —an object that mixes in a single Trait Model.
•	 —an object that extends

Programme and mixes in Model.
•	 —an object mixing in

Model and AwardCeremony.
•	 —an

object that extends Programme and mixes in Model and AwardCeremony.

As a concrete example of this consider the following listing:

object Course extends Model {
var value: Any = "Hello World"
def printer(): Unit = {println("Hello"

This object mixes in the Model trait (even though it uses the extends keyword) and
implements the abstract value property and the abstract printer method. It therefore
meets the contract of the Model trait (which required the two abstract members to
be implemented by an concrete class or object).

It is now possible to treat the Course object as either a Course or as a Model, for
example:

object TraitTest extends
val c = Course;
c.printValue()
val m: Model = c
println(m.value)

This simple test application assigns the Course object to the val ‘c’ and then invokes
the printValue method on ‘c’ (of course we could also have invoked it directly on
the Course object). We then assign c to the val ‘m’ that is of type Model (we have
explicitly stated that in the declaration of m). This is perfectly legal because in terms
of the Scala type system, a Course is also a Model.

Of course we are not limited to do this with objects, we could also use a class
declaration, for example:

class Degree extends Model {
var value: Any = "B.Sc."
def printer(): Unit = {println("Degree Award"

This class mixes in the Model trait into the class Degree and as before this means
that it must implement the value property and the printer method (otherwise we
would be defining an abstract class which would require us to prefix the class key-
word with the keyword abstract and would mean that we could not instantiate the
class).

184 18  Traits

The following listing shows how you can instantiate the Degree class and treat it
as a Degree type or a Model type (or indeed an AnyRef or Any type):

object DegreeTest extends
val d = new Degree()
d.printer
val m: Model = d
m.printer

18.5 � Abstract Trait Members

The members of a trait (that is the properties, types, methods and functions defined
within a trait) can be abstract (as illustrated in the Model trait. The following Sam-
ple trait illustrates an abstract type T, an abstract method transform and two abstract
properties; a read only (val) initial and a read-write (var) current.

package com.jjh.scala.abs

trait Sample {
type T
def transform(x: T): T
val initial: T
var current: T

The implementing class (or object) must provide implementations for all the ab-
stract members:

class Car extends Sample {
type T = String
def transform(x: T) = x + x
val initial = "first"
var current = initial

This class defines a concrete type String for the type T (which can then be used
within the rest of the trait). It also provides an implementation for the transform
method that takes a parameter of type T (String) and concatenates it to itself. It also
sets initial to the string “first” and current to the value set in initial.

18.6 � Dynamic Binding of Traits

There is another way in which you can combine a trait with a class. It is possible to
mix in a trait at the point that an instance of a given class is created. For example,
given the class Person that contains a name property and an override of the toString
method defined as follows:

18518.6  Dynamic Binding of Traits�

class Person(val name: String) {
override def toString = "Person[" + name + "]"

We can also define a trait Logger that defines a single method log that prints out
a “Created” string and runs the Log method whenever anything it is mixed with is
instantiated (the invocation of the Log method):

trait Logger {
log
def log = println("Created"

The trait Logger can be mixed into an instance of the class Person dynamically
when that instance is created by combining the call to new with an additional refer-
ence to the trait via the with keyword. The syntax for this is:

For example:

object Test extends App {
val p = new Person("John") with Logger
println(p)

As you can see form this we are creating a new instance of Person and mixing in
Logger at the same time. Thus the instance referenced by the val ‘p’ is both a Person
type and a Logger type. It combines the behaviour and data in these types together.
The result of running this application is shown below:

From this you can see that when we created the new instance the log method was
run as part of the freestanding code executed when the instance was created. This
resulted in the String “Created” being printed out. When the method println was
invoked on the contents of ‘p’ the resulting version of toString (invoked by println)
was that define din the Person class and hence Person[John] was printed out. Thus
we have indeed combined to two together at the point of instantiation.

186 18  Traits

18.7 � Sealed Traits

A sealed trait is a trait that can only be used within the file that it is defined within.
That is only the classes and objects within the same file as the sealed trait can mix
in that trait. It can also only be extended by traits in the same file. For example:

package com.jjh.scala.qanda

sealed trait Answer
object Yes extends Answer

Note that the trait Answer can be used as the type of a variable or a value within
other packages—but it cannot be extended or mixed in elsewhere. Therefore in a
package com.jjh.scala.test you can reference the type and use it as the type for vars
or vals to hold the singleton instances of Yes and No. For example:

package com.jjh.scala.test

import com.jjh.scala.qanda.Answer
import com.jjh.scala.qanda.Yes
import com.jjh.scala.qanda.No

object AnswerTest extends App {
var a: Answer = Yes
println(a)
a = No
println(a)

18.8 � Marker Traits

A marker trait is a trait that declare no methods, functions, types or properties.
Instead it is used to indicate additional semantics of a type (class, object or fur-
ther traits). For example see the scala.Mutable and scala.Immutable traits; these are
marker traits indicating the semantics of mutability and immutability.

Marker traits can be used where:

•	 it is useful to semantically indicate a role or concept that other entities may
play with the application. However, these entities may be of varying types (from
classes, to objects to further traits) and may inherit behaviour from various dif-
ferent places in the type hierarchy.

•	 semantically there is a common concept, but there is little or no common behav-
iour or data representation between the concrete implementations of the generic
domain concept.

•	 client classes may need to know something about the type of an object without
actually needing to know the specific type (at least at the interface level).

18718.9 � Trait Dependencies�

Using a trait, as the basis of a marker, is particularly convenient in Scala as a type
may mix in any number of traits. For example, the following code defines two
marker traits, one called Decorator and one called Service.

package com.jjh.scala.marker

trait Decorator

Any type can implement one or more traits, thus any type can implement a marker
trait and any other traits as required. For example:

trait MyReader extends Immutable with
def read: Int

Semantically this tells us that MyReader is a type of Decorator and that it is Im-
mutable.

18.9 � Trait Dependencies

When you mix a trait into another type you may want to be able to invoke func-
tionality form the host type. This can be done by defining a self reference. A self
reference ties one type to another type which will be provided at a future point in
time. This means that the this value can be used to access another types behaviour
and data. That is the type it will be mixed into must be of a particular kind and thus
the trait you are defining can rely on certain data or behaviour being provided by
the host type in the trait.

For example, let us assume that we have defined a class Service:

class Service {
def printer: Unit = println("Service Hello"

We will then define a class Client that takes an Adaptor type. The method doWork
invokes the method invoke on the adapter.

class Client(adapter: Adaptor) {
def doWork = adapter.invoke

Let us assume that we have initially written the Adaptor type as follows:

trait Adaptor {
def invoke: Unit

188 18  Traits

However, we would like to use an instance of Service with the Client class. But cur-
rently the Service type does not implement an invoke method and the Adapter trait
defines an abstract invoke method.

Ideally we want to link the Adaptor to the Service types. There are various ways
in which we could do this but the core issue is that currently there is no link between
the Service type and the Client type. To solve this problem we will use a self refer-
ence in the Adapter type. This allows us to define a trait that can only be used with
Service types (and subtypes)

This trait defines a method invoke to use the method printer (provided by the
Service type). Thus we can guarantee that the trait Adapter will be used with a
Service or a subtype of Service (whether that is a class or an object). Therefore the
method printer will be available to wherever the Adapter trait is used.

trait Adaptor {
self: Service =>
def invoke = printer

We can then mix this trait into a Service either dynamically at the point of use or
statically with the Service in a new type. For example, the following example dy-
namically binds Adaptor into Service when an instance of the Service class is cre-
ated. It then passes this to the Client class as a (compatible) parameter. We can then
invoke the doWork method.

object Test extends App {
val adpator = new Service() with Adaptor
val client = new Client(adpator)
client.doWork

Alternatively we could have defined a new sub type (AdaptedService) of the class
Service that also mixes in the Adapter trait.

We can now use instances of this type with the client—the only difference to the
previous example is that we have statically defined a new type that combines the
Service class with the Adaptor trait that can be reused in multiple situations.

object Test2 extends App {
val adpator = new
val client = new Client(adpator)
client.doWork

189

18.10 � To Trait or not to Trait

It is worth considering when you should define a trait and when you might define
a class. The general set of guidelines on when something should be a trait include:

•	 If behaviour or data will not be reused—then implement that behaviour or data
as a concrete class.

•	 If behaviour or data might be reused in multiple, unrelated classes, then make it
a trait.

•	 If efficiency is of ultimate importance lean towards a class.
•	 If it is a reusable concept for a root of a class hierarchy use an abstract class.
•	 If you want to use it in Java code use an abstract class.
•	 If you want to model domain concepts to be implemented by different classes in

different ways then use Traits.

18.10 � To Trait or not to Trait�

	Chapter-18
	Traits
	18.1 Introduction
	18.2 What are Traits?
	18.3 Defining a Trait
	18.4 Using a Trait
	18.5 Abstract Trait Members
	18.6 Dynamic Binding of Traits
	18.7 Sealed Traits
	18.8 Marker Traits
	18.9 Trait Dependencies
	18.10 To Trait or not to Trait

