
Autonomous Mapping and Navigation Through
Utilization of Edge-Based Optical Flow
and Time-to-Collision

Madhu Krishnan, Mike Wu, Young H. Kang, and Sarah Lee

Abstract

This paper proposes a cost-effective approach to map and navigate an area with only the

means of a single, low-resolution camera on a “smart robot,” avoiding the cost and

unreliability of radar/sonar systems. Implementation is divided into three main parts: object

detection, autonomous movement, and mapping by spiraling inwards and using A*

Pathfinding algorithm. Object detection is obtained by editing Horn–Schunck’s optical

flow algorithm to track pixel brightness factors to subsequent frames, producing outward

vectors. These vectors are then focused on the objects using Sobel edge detection. Autono-

mous movement is achieved by finding the focus of expansion from those vectors and

calculating time to collisions, which are then used to maneuver. Algorithms are

programmed in MATLAB and JAVA, and implemented with LEGO Mindstorm NXT

2.0 robot for real-time testing with a low-resolution video camera. Through numerous trials

and diversity of the situations, validity of results is ensured to autonomously navigate and

map a room using solely optical inputs.

Keywords

Autonomous Mapping and Navigation � Smart Robot � Horn–Schunck’s optical flow

algorithm � Sobel edge detection � A* Pathfinding algorithm

Introduction

Unmanned robotics optimizes human time and effort

tremendously and effectively has become the epitome of

efficient robotics systems. One of the numerous problems

autonomous robotics focus on solving is mapping and navi-

gation. People have been trying to utilize the accuracy of

robotics to complete such tasks mainly with radar transmis-

sion. Efforts with this type of detection have led to success-

ful results advanced as unmanned vehicles that can drive

without collision (Guizzo 1). However, many of these

methods are unreliable or expensive—unappealing to the

general public as well as less developed areas in the world.

Specifically, radar-based applications rely solely on emitting

waves rendering them susceptible to interference. Radar also

cannot take advantage of other multiple data inputs such as

color and texture.

Other solutions for the mapping problem such as using

the Sharp IR Range finder or Roomba also prove ineffective.

The Rangefinder cannot be used by itself with the objective

of mapping a room especially due to its thin beam width. The

Roomba’s method for touching objects to maneuver and

store data is even slower and more inefficient for the

mapping problem. As the field of automated robotics

endeavors to create advanced solutions to more complicated

M. Krishnan

University of California, San Diego, CA 92093, USA

e-mail: mvkrishnan@ucsd.edu

M. Wu

Yale University, New Haven, CT 06520, USA

e-mail: mike.wu@yale.edu

Y.H. Kang (*) � S. Lee
Torrey Pines High School, San Diego, CA 92093, USA

e-mail: hoonkang95@gmail.com; hye.in.sarah.lee@gmail.com

T. Sobh and K. Elleithy (eds.), Innovations and Advances in Computing, Informatics,
Systems Sciences, Networking and Engineering, Lecture Notes in Electrical Engineering 313,

DOI 10.1007/978-3-319-06773-5_21, # Springer International Publishing Switzerland 2015

149

mailto:mvkrishnan@ucsd.edu
mailto:mike.wu@yale.edu
mailto:hoonkang95@gmail.com
mailto:hye.in.sarah.lee@gmail.com


issues, equipment that can obtain more information from the

external environment becomes more desired.

Thus, this paper proposes an alternative approach to the

mapping problem, one that is cost-effective and available to

those in less developed countries if needed. Instead of shoul-

dering the heavy cost of radar/sonar systems and equipment, it

uses a robot attached to a single, low-resolution camera to

obtain more accurate data from the environment and autono-

mously navigate and map the terrain. Processing vector

images, it carries out calculations for object detection through

Horn–Schunck optical flow algorithm and responds to those

detected objects through time-to-collision induced reactions.

The paper endeavors to create a “smart robot” thatwill respond
to any given situation and decide by itself accordingly, creat-

ing a much simpler solution to the problem at hand. Through

algorithms and video processing (ideally in real-time), the

robot travels given the initial direction of the object solely

from optical input while avoiding all objects until the arrived

goal is reached and a complete map is obtained. The imple-

mentation can be split into two main steps: navigation and

mapping.We first explain the navigation algorithms for object

detection and autonomous movement in section “Navigation
Algorithms” and then, a map-building method in section

“MAP-building Method”. Experimental results are given in

section “Experimental Results”. Finally, concluding remarks

are given in section “Conclusion”.

Navigation Algorithms

Object Detection

A cheap video camera is used to provide optical input,

keeping the end product convenient and more importantly,

cost-effective. Then taking black and white converted image

frames from the camera, Horn–Schunck optical flow is

modified and applied to subsequent frames. The following

optical flow equation is used:

E ¼ Ixuþ Iyυþ It
� �2 þ a

����∇u
����2 þ ����∇υ

����2� �h i
dxdy ð1Þ

where α is the constant that controls the smoothness of the

pixel movement, Iz is image derivative with respect to z, u

and υ stand for the flow vectors. The modified version traces

each pixel’s specific luminance factor onto the next image

frame at time (T + 1) based on image intensity derivatives.

The 2D optical flow vectors, u and υ, are then used to

calculate pixel motion and generate a gradient of motion

vectors between subsequent frames—the vector length

representing the distance traveled by the pixel. Figure 1

illustrates the edited Horn–Schunck optical flow. As the

object is approached and “grows” bigger, the product of

optical flow is a picture with groups of pixels that represent

the outward movement of vectors. The high density of flow

vectors compensates for missing vectors in homogenous

objects since they are made up for by their surrounding

pixels. Though Horn–Schunck optical flow does optimize

accuracy, however, it becomes difficult to distinguish any-

thing in the field due to the dense optical field in which all

the vectors surround both actual objects and the background.

Thus edge detection is needed to separate the noise from the

objects by distinctly tracing the edges of the objects and

ignoring the unimportant details.

Given the plot of optical flow vectors, edge detection

altered with the Sobel operator is then applied to the image

frame, which outlines objects and simplifies the images.

Sobel focuses specifically on the center of the image frame

effectively focusing more on immediate objects present in

the image frame rather than the background. This function

caters to the needs of the robot to quickly and accurately

Fig. 1 The edited Horn–Schunck optical flow

150 M. Krishnan et al.



identify objects to avoid. The actual edges are then widened

by 10 pixels, functioning as a “bolding” action (see Fig. 2).

The purpose of these procedures is not only to make the

objects more noticeable with wider edges, but also to lay

down the foundations for the next progression of noise

minimization: vector clusters.

After bolding object edges, a vector-edge tracing algo-

rithm overlaid the optical flow vectors onto the edge-

detected frames. As a result, only the vectors lying inside

the 10 pixel width outlines were shown (see Fig. 3a). The

fusion creates distinct blobs of vectors most likely to be

associated with objects as the Sobel and tracing algorithm

ignores the background. Because the clumps of flow are

certain pixels away from each other, it becomes possible to

define distinct blobs in comparison to one conjoined cluster.

A blob-boxing algorithm is then used to separate the vector

clusters with boxes based on an 80 % overlap threshold (see

Fig. 3b). With this algorithm, the number and relative col-

umn locations of the objects in the image frame can then be

extracted. Thus, this code effectively minimizes the

processing of distracting details while the general image of

the object stays intact. Overall this method increases produc-

tivity of optical flow since the motion vectors now focus

only on the objects in an organized fashion.

Autonomous Movement

The blob-boxing algorithm essentially provides information

to calculate Focus of Expansion (FOE), a crucial input

needed to ultimately find time-to-collision. FOE is the

source of vector expansion as the video camera moves closer

to an object (Fig. 3). As mentioned previously during optical

flow, as the object grows, the optical flow motion vectors

Fig. 2 Sobel edge detection and enhancement for the visibility

Fig. 3 Edge detection algorithms: Illustration (a) The vector-tracing algorithm (b) The box-blobbing algorithm

Autonomous Mapping and Navigation Through Utilization of Edge-Based Optical Flow and Time-to-Collision 151



expand outwards. FOE is the origin of those vectors. How-

ever, because of the possibility of multiple objects in one

image frame, the boxes created in the blob-boxing algorithm

become separate images frames from which FOE can be

calculated individually. So with multiple objects, the vectors

specific to each individual object in its own respective “box
frame” are averaged to calculate numerous focuses of expan-

sion (Fig. 4). These values are crucial as variable y and dy in

time-to-collision calculations as dy is the change in distance

from FOE per frame change and y is the vertical distance

from FOE.

The time-to-collision (TTC) code is the core algorithm

that allows the robot to move autonomously using only

optical inputs. It calculates the distance in frames until

collision with a stationary/moving object at a specific time

without knowing the robot’s speed; it does not calculate real
measurements but enough for relative comparison. Referring

to Fig. 5, the equation for time-to-collision is a comparison

of equilateral triangles: y/z ¼ Y/Z. Though z actually

depends on camera specifications, it is assumed as 1. The

origin lies on the z-axis, and x and y are based on pixel “p”. P
(X, Y, Z) is the coordinate of Focus of Expansion (FOE), the

origin of the vectors, but it remains unknown since it is the

coordinates of the actual image.

Since z ¼ 1, the equation turns into y ¼ Y/Z. Taking a

derivative with respect to time yields the following equation:

dy

dt
¼ 1

Z
� dY
dt

� Y

Z2
� dZ
dt

ð2Þ

Assuming that P(X, Y, Z) is stationary, dY/dt in (2) can equal

0, allowing for Y to be substituted by yZ. Then, the result is
as follows:

dy

dt
¼ � y

Z
� dZ
dt

ð3Þ

The last step involves dividing both sides in (3) by y and

taking the reciprocal, which finally leads to the following

equation for time-to-collision:

y � 1
dy
dt

¼ �Z � 1
dZ
dt

ð4Þ

Since dy (change in distance from FOE per frame change) is

known, dy/dt in (4) can be found by comparing the pixel

vertical movement of two frames, resulting in a ratio that

should equal the negative of the actual movement on the Z-
axis. So finally accumulating all the information from the

previous codes, the focus of expansion (FOE) can find the

time-to-collision—more importantly, without any distance

or speed information. Rather, for the whole process, only

two points are needed, making this algorithm remarkably

efficient especially when installed in a reaction system. All

these calculations are verified and simulated with

MATLAB.

Cumulating all the above source codes, specific hardware

for robot real-time testing was created. The robot was made

from LEGO Mindstorm NXT 2.0 robot with a low-

resolution video camera. Because the robot was

programmed with Lejos in Java, a portal was needed to

pass MATLAB time-to-collision calculations to Java.

Thus, the time-to-collision information was transformed

into a bar graph; essentially the image frame was split into

5 bars (vertical regions), each containing object(s). Then the

height of the bars represents the time-to-collision (lowest) of

objects in that bar space (Fig. 11). Each column would have

time-to-collision calculated which then influences the head-

ing angle to react to the certain time-to-collision.

First, a threshold was made: time-to-collision values

greater than 300 frames were taken away because there

was no need to sacrifice TTC running time on non-

immediate situations. Next different types of reaction

situations were analyzed. For example, there could be 5

bars meaning is an object with a valid time-to-collision in

each of the bars. However, there also could be different

Fig. 4 Box frames to calculate the multiple FOE’s

Actual Object
Position

P(X, Y, Z)

FOE

Delta y {

Image frame
at T + 1

Image frame
at T

(0, 0, 0)
At time = T

(0, 0, 0)
At time = T + 1

P(x, y, z)

P(x', y', z')

Fig. 5 Time-to-collision’s use of comparing equilateral triangles

152 M. Krishnan et al.



combinations of 4, 3, 2, and 1 bar(s) that could be passed to

the Java compiler. Thus three types were generalized.

The first type, given 5 or any combination of 4 or 3 bars,

moved the robot from that object at relatively large header

angle fluctuations. The header angle changes 10� every time

for 5 bars, 8� for 4 bars and 6�–7� for 3 bars. The direction of
change was set to clockwise unless otherwise specified. This

given statement is overridden by the actual place of the bars.

For example, if there were 3 bars located at the left 3 bars of

the 5, then it is more logical to move to the right. Such

adjustments were made. The second type, given 1 or 2 bars

that are close to each other, moved the robot away from

those bars (again clockwise or counterclockwise based on

location of the bar) at 5� of header angle change per analysis.
The third situation was when the bars are split. If 4 bars were

split into 2 and 2 it was not enough room for the robot to go

in between, so it defaulted to the first situation. However, if

there existed 2 bars split into1 and 1, then the robot was

allowed to try and maneuver around it first.

In each trial, the bounding box and time-to-collision

algorithms were checked if they were operating in real life.

The robot was first set to stand still as time-to-collision

calculations were made, allowing for the bounding box to

separate objects from the background while the TTC number

remained around 400. This served as a control. From there,

the algorithm was testing in three different ways. In the first

situation, the robot was allowed to roam randomly with

stationary boxes/objects. The second situation had the

robot turn away from objects in order to follow a path

towards a set destination. The third way ensured that the

program was not case-specific or “pre-programmed” and

consisted of placing boxes in front of the robot and observ-

ing its reactions.

MAP-Building Method

At this point, only a random and vague reaction system is

developed. So after establishing autonomous movement

from the time-to-collision algorithm, a systematic method

of movement is needed to achieve the ultimate goal of

mapping a blueprint. The mapping algorithms first creates

a pseudo-infinite grid, a 999 � 999 matrix of zeros since the

room size would be unknown (each unit length representing

the robot’s length). Then it positions the robot virtually in

the center of the grid at (500,500), so that it can proceed to

any direction of the grid regardless of which corner the robot

began from physically in the room. From there, the robot is

programmed to turn 90� counterclockwise, moving a set

value x to be used for time-to-collision. If the time-to-colli-

sion becomes less than alpha 100 frames, then an object are

assumed to be on the next point, triggering the robot to move

back by the set value x to the center of the original point.

This process run in a loop until the robot finally saw an

empty spot allowing it to proceed to the next grid square.

However, note that this procedure to move is only observed

in the first part of mapping: detecting walls (as described

next). To keep track of the robot’s position virtually in a

grid-representing matrix, numbers are used to represent the

status of each coordinate: 0 is an unknown spot, 1 is a visited

spot, 2 is an object, 3 is part of a wall, and 5 is an inaccessi-

ble coordinate.

With this, first the robot is programmed to go around the

room once using the moving procedure described above. It

will stay on the periphery to detect the positions of the walls.

The number 4 is used virtually to mark the initial position of

the round, to notify the robot when it made a complete round

in the actual room. After all the walls are detected, a

resizeGrid function then fits the grid into a more appropriate

matrix by finding the smallest and greatest row and column

values in which 3’s are present. This cut down inefficiencies
since it is unnecessary for the robot to consider the entire

pseudo-infinite matrix for every situation as most of the

indices will be 0.

After the grid is resized and the initial 4 reached, the robot

is then prompted to find a virtual ideal path around the room

using the knowledge it has of the room so far: the walls. The

purpose of the ideal path is only to guide the robot in a much

more efficient manner as it would then be able to reference

the ideal path as an original path while compensating for

objects in the real environment. This is done in a separate

virtual grid to not affect the grid the robot would actually

map; the real grid is kept the same as before the ideal path

process begins. The ideal path is made in a spiraling fashion

as there will be almost no overlaps of 1’s (visited spots) in an
ideal setting. To do this, the virtual robot is programmed to

continuously “hug the wall” using a virtual wall as reference.
So, much like the code that finds walls, the ideal path

algorithm also marks the beginning position of the round

as a 4. It then marks the visited spots as 1’s as the virtual

robot makes its first round in the grid. Once the initial 4 is

reached again, the ideal path algorithm then changes all the

1’s and 4’s recorded to 3’s, thus creating a virtual wall within
the separate virtual grid. With the virtual wall established,

the virtual robot can then repeat the process using it as

reference again to make another round until the whole

room is covered. These points are stored in order in a list

to be used when the physical robot begins to make rounds.

To avoid the virtual robot trapping itself in the starting

corner when it comes back to the initial 4 position, a calcu-

lation is set to move the virtual robot to the nearest zero. It

calculates the Euclidean distances to the closest zeros

(unvisited spots), moves the virtual robot to the smallest

distance, and continues to find ideal path. Though moved,

the virtual robot’s direction is kept same since it defaults to

the original one to continue the process. The ideal path is

Autonomous Mapping and Navigation Through Utilization of Edge-Based Optical Flow and Time-to-Collision 153



finished when the virtual robot is fully trapped in the middle

and the closest zero is at a distance significantly far away,

indicating that the zero is inaccessible and outside of the

room. It also shows that the virtual robot has been on every

single possible position in the separate virtual grid.

Once the ideal path is found, the physical robot could now

make its rounds following the original ideal path. In this

portion, the robot does not move as described when it finds

the walls originally. Instead, it adheres to the ideal path, only

to deviate when an object is detected through time-to-colli-

sion. Only positions that have value 0 are visited to make the

mapping efficient as possible. As obstacles are detected

along the way, the robot uses A* Pathfinding algorithm to

give the shortest path between two points avoiding objects.

However, because not all objects are known, the algorithm is

used continuously as the robot moves and continues to

encounter objects much like the functions of a GPS.

Experimental Results

The current experiments itself are the building and design of

an autonomous robot, so the results naturally are measured

through the accuracy of the robot’s codes and instructions.

Thus, the analysis of the algorithms is observed by the

robot’s ability to avoid objects; if it is successful in this

endeavor, then this related that the time-to-collision

calculations are working and in cascade, the object detection

codes as well. TTC values are also printed for a more precise

understanding of what happened in the trials.

The nature of the results were recorded and observed in 9

trials, 3 trials for each of the 3 situations described in the

Methods section. First, the control was established to make

sure that the time-to-collision was accurate and consistent.

While the robot was held by the wheels (so no movement)

the time-to-collision kept at a consistent range from 380 to

490. The values were mainly about 440, 443, 450, 451, 446

etc. This proved that the little fluctuations were due to light

and that the relative time-to-collision seems to be working

properly. When the robot was let go after the control results,

the time-to-collision dropped considerably to 70 as there was

a washing machine in front of it. Testing the following trials

was done in a garage.

In the first type of situation, the robot was left to roam the

room for itself with a random pathway. The time-to-collision

values printed were all over the place since there were

multiple objects in the image frame that the robot had to

detect and turn away from. Refer to the measurement results

in Fig. 6 in which the elapsed time is the time taken to

calculate/process the time-to-collision value, the TTC

value is the number of frames before the robot will hit the

object, the column number refers to the location of that

object, and the heading angle change relates to its specific

TTC value. Since the elapsed time is below 1 s, it indicates

that the TTC calculations are pretty much in real time. They

jumped from low to high values unexpectedly, as the robot

would turn into empty spaces, these fluctuations occurring in

a random cycle. Consequently, the time-to-collision values

reflected the random nature of these trials. However, though

“random”, the trials proved the algorithms to be quite robust

in its ability to avoid objects. Surprisingly, there were no

crashes until the very end of trial 3. In the first two trials, the

robot successfully started, stopped, and turned with respec-

tive header angles. In the trial 3 crash, however, the robot

turned and hit an object that was not in its image frame, but

rather in the swing of its header angle. Though it indicated

partial failure in these trials, in the context of mapping, these

random movements would not exist but rather be replaced

with systematic movement across the grid. Thus, this crash is

not deemed significant given the overall context.

In the second type of situation, the TTC values were in a

more consistent pattern since the robot was bounded by

boxes to direct the robot towards a specific destination on a

path. The robot successfully passed all trials without hitting

any of the boxes and was able to “bounce off” of all the

obstacles to finally make it to the end of the garage. The

process, however, was painfully slow and inefficient,

because at that stage the robot had only a random/vague

reaction system (not systematic like in mapping). But it is

important to note that these trials were mainly to test the

TTC accuracy and if application was even possible.

Elapsed time is 0.972144 seconds.
TTC: 70.1227
Column Number: 2
Heading Angle Change: 10

Elapsed time is 0.374341 seconds.
TTC: 17.1003
Column Number: 2
Heading Angle Change: 40

Elapsed time is 0.878175 seconds.
TTC: 10.5562
Column Number: 2
Heading Angle Change: 40

Elapsed time is 0.469931 seconds.
TTC: 102.0256
Column Number: 2

Elapsed time is 0.387387 seconds.
TTC: 32.0021
Column Number: 2
Heading Angle Change: 30

Fig. 6 Illustrative measurement

154 M. Krishnan et al.



The third situation was probably the most exciting since it

involved sporadically placing objects in front of the robot

and observing its reactions. In all three trials under this

condition, the robot successfully avoided all obstacles even

if objects were immediately placed in front of it again after

turning. This proved that the program was not

preprogrammed, but rather could respond to various

situations. The significance of this flexibility is immense

since the whole point was to build a code and robot that

could “think” for itself as a smart robot. Noting that in all

situations, time-to-collision was accurate enough for the

robot to avoid objects, it proves the TTC and all the object

detection algorithms to be robust and able to be used in a

broad spectrum of applications.

The mapping portion was also found to be successful in

finding a systematic way to map a room with most effi-

ciency. A virtual space was used to test our algorithms

with many trials. Results were printed out on a grid using

different colored circles to mark walls or objects and lines to

show ideal and robot paths (see Fig. 7). For Figs. 7, 8, and 9,

in part (a), the wall finding algorithm is finished and in part

(b), the grid is resized to the size of that room. The ideal path

is drawn as shown and then in part (c), the virtual robot

successfully detected objects and avoided them, ending in

the middle of the room.

First, the wall-mapping algorithm that finds walls and

boundaries of the room ran smoothly with no kinks after

debugging. The moving method used to initially find walls

worked well in the virtual setting (though in real life, that is

still to be tested for certainty). The advantage to virtual

testing was that many trials could be run in relatively short

time. With this, complete accuracy and full execution of the

wall finding code was confirmed with 20–25 successful trials

of this individual code (Fig. 8a). The cutting grid algorithm

worked flawlessly as well for its numerous trials. Regardless

of size, big (50 � 50) or small (11 � 15), or random shape

the room was made into, the algorithm was able to success-

fully cut the excess units in the grid and fill in gaps on the

outside with extra number threes to indicate those units are

part of a wall and not inaccessible zeros (Fig. 8b). The

product of the resizeGrid algorithm can be seen with the

ideal path pictures in Figs. 7b, 8b, and 9b.

The ideal path algorithm also proved to be robust to all

different types of grids: square, rectangle, big, small, some

Fig. 7 Virtual progression of the mapping procedures in a relatively large grid

Fig. 8 Virtual progression of the mapping procedures at a more realistic size of 15 � 15 (units are in the robot’s length)

Autonomous Mapping and Navigation Through Utilization of Edge-Based Optical Flow and Time-to-Collision 155



with irregular walls. Though, at first, the code broke when

the robot was trapped at the end of each spiral around the

room, this was later fixed as stated in Methods by calculating

the closest zero and moving to it. After this alteration, the

entire code ran smoothly for all time. However, though these

algorithms ran flawlessly, once the virtual robot began to

actually map, complications rose up. First, sometimes the

A* Pathfinder gave longer paths, reducing the optimal effi-

ciency of the mapping process expected. It was also found

that for some odd reason, the entire code just broke and

produced unreadable grids with awry paths. However, with

careful analysis, it was found that it was not our codes

specifically that caused this, but the addition of the A*

Pathfinding code. Our analysis stopped here as we did not

understand the A* code, preventing fixes, but for many cases

the virtual mapping did in fact work (Fig. 9c).

Overall, the virtual trials for mapping confirmed that the

codes were robust and working well enough to be

implemented in real life in combination with object detec-

tion and TTC codes.

Conclusion

The current work has shown that it is indeed possible to

autonomously navigate and map a room using solely optical

inputs. The various elements for implementation, including

object detection, time-to-collision, and the mapping codes,

have been proved to be robust in their flexibility and accu-

racy passing numerous trials and various situations. This

opens the door to the idea that our codes and methods can

be used for a broad number of other applications beyond

mapping such as autonomous vehicles or exploration robots

while staying cost-effective and completely reliable.

The validity of the conclusions come from the sheer

number of trials ran and the diversity of the situations that

were tested, proving the continuity and thus, validity of the

results. The continuous success of the TTC trials reflect that

all codes leading up to object detection worked and the time-

to-collision calculations were accurate in avoiding crashes.

Likewise, the near total success of the many mapping trials

also show validity of the results produced.

To improve, future work towards the possibility of devel-

oping a unique path finding algorithm that optimizes for this

work’s blueprint robot. Furthermore, another type of robot

can be designed to systematically map and maneuver using

time-to-collision. However, because the time-to-collision

measurements are only estimates, it is predicted that the

actual robot movements will lack precision and not be con-

sistent since they are reliant on the TTC values. This would

lead to faulty communication between the positioning in the

grid and the real room.

Differentiation between walls and objects is also another

future experiment that must be looked into. In a standard

indoor setting, objects will most likely be placed on the walls

and to increase the usefulness and accuracy of mapping a

blueprint, a robot would need to detect the differences. This

can be achieved with the use of RGB gradients and compar-

ing sharp changes between color values combined with the

use of Sobel edge detection to perhaps detect texture as well.

Thresholds would be found during experimentation to fine

tune the color detection especially when both the wall and

object are similar colors. In the far future, object identifica-

tion can be added on to object recognition. This could be

achieved through perhaps a database of classifications made

experimentally that narrow down objects to their identifica-

tion. This would be the ultimate goal of the blueprint

problem.

Fig. 9 Virtual progression of the mapping procedures with a rectangular room of 11 � 10 deeming more realistic to real life situations

156 M. Krishnan et al.



References

1. Guido Zunino, Simultaneous Localization and Mapping for Naviga-
tion in Realistic Environments, Licentiate Thesis, Royal Institute of
Technology Numerical Analysis and Computer Science, 2002

2. Guido Zunino, Simultaneous Localization and Mapping for Naviga-
tion in Realistic Environments, Licentiate Thesis, Royal Institute of
Technology Numerical Analysis and Computer Science, 2002

3. Erico Guizzo, “How Google’s Self-Driving Car Works,” IEEE

Spectrum

4. Pawan Kumar, Len Bottaci, Quasim Mehdi, Norman Gough, and

Stephane Natkin, “EFFICIENT PATH FINDING FOR 2D

GAMES,” Proceedings of CGAIDE 2004, 2004

5. Horn, Berthold K.P., and Brian G. Schunck. "Determining Optical

Flow." Artificial Intelligence, MIT: 185-203. Web. 20 Jan. 2011

6. Amaury Negre, Christophe Braillon, James L. Crowley, and Chris-

tian Laugier, “Real time Time To Collision from variation of Intrin-

sic Scale,” INRIA, Grenoble, France

Autonomous Mapping and Navigation Through Utilization of Edge-Based Optical Flow and Time-to-Collision 157


	: Autonomous Mapping and Navigation Through Utilization of Edge-Based Optical Flow and Time-to-Collision
	Introduction
	Navigation Algorithms
	Object Detection
	Autonomous Movement

	MAP-Building Method
	Experimental Results
	Conclusion
	References


