
Requirement and Interaction Analysis Using
Aspect-Oriented Modeling

Sagar Mohite, Rashmi Phalnikar, and S.D. Joshi

Abstract

Aspect-oriented modeling (AOM) has been developed to modularize crosscutting concerns

appropriately in UMLmodels. In software engineering, aspects are concerns that cut across

multiple modules. In requirements modeling, we analyze interactions and potential

inconsistencies. We use UML to model requirements in a use case driven approach. During

requirements specification a structural model of the problem domain is captured with a

class diagram. Use cases refined by activities are the join points to compose crosscutting

concerns. Graph transformation systems provide analysis support for detecting potential

conflicts and dependencies between rule-based transformations.

Keywords

Aspect-oriented modeling � Rule-based graph transformations � Aspect � Point-

cuts � Crosscutting concerns

Introduction

Aspect-oriented represents aspects during requirements

engineering. One of the advantages of aspect-oriented

approaches is that they allow software developers to react

easily to unanticipated changes in existing software

systems, while promoting reusability of already tested and

designed software components. Nevertheless, people are

reluctant to apply AOP in serious and large projects, not

because of a lack of good aspect-oriented programming

languages and tools, but because they do not have aspect-

oriented modeling and design techniques at their disposal.

Aspect-orientation should take into account in all the stages

of the software lifecycle, in particular, the design level.

Aspect -orientation clearly separate crosscutting concerns

from non-crosscutting ones which provide modularization.

Separation of concerns will reduce complexity of software

design [1]. Aspect-orientation originally has applied at

programming level; it now applied over other development

phases. Aspect is quite important in software development.

Aspects are identifying by analyzing a complex system

from multiple viewpoints [2]. Aspect-oriented modeling

covers many activities at early stages of the software

development.

Related work

When designing software, it is desirable to explore several

different designs, i.e. consider several feasible solutions to

implement a specific requirement or functionality and com-

pare the advantages and disadvantages of each solution.

Unfortunately, software modeling tools are often tedious to

use when making significant changes within the design of a

large software model.

Aspect-oriented modeling (AOM) is a new modeling

technique that allows developers to describe the design of

their software using many aspect models. In AOM, each

individual aspect model is small in size. To build larger

systems, structure and behavior defined in one aspect

S. Mohite (*) � R. Phalnikar � S.D. Joshi
Bharati Vidyapeeth Deemed University College

of Engineering, Pune, India

e-mail: Sagarmohite44@gmail.com; rashmiphalnikar@yahoo.co.in;

sdj@live.in

K. Elleithy and T. Sobh (eds.), New Trends in Networking, Computing, E-learning,
Systems Sciences, and Engineering, Lecture Notes in Electrical Engineering 312,

DOI 10.1007/978-3-319-06764-3_54, # Springer International Publishing Switzerland 2015

431

mailto:Sagarmohite44@gmail.com
mailto:rashmiphalnikar@yahoo.co.in
mailto:sdj@live.in

model can be reused within other aspect models. This reuse

is achieved by establishing a mapping between the model

elements in the two aspect models. OOP already allows for

modularizing concerns into distinct methods, classes and

packages. However, some concerns are difficult to place as

they cross the boundaries of classes and even packages.

Security and logging, response time are examples for

cross-cutting concern.

Disadvantage on Object Oriented Programming:-

UML, in its current state, allows us to capture the

structure and interactions of our aspect-oriented program.

However, the resulting model presents some major

drawbacks:

• There is no difference between modularization by class

and by aspect. The basic concepts of AspectJ, such as

point-cuts, introduction and advice, are not explicitly

modeled.

• The model does not show that the aspect is a “pluggable”

entity. The diagrams give the impression that aspects

are static entities, although, in reality, aspects are

configured at weave-time, and triggering them can

be based on various kinds of execution flows or

conditions.

• The model does not provide way to find and remove

conflict and dependency in system.

• The requirement, it can be functional or non functional

are not properly analyze and manage.

Approach

Requirement Specification

In an object-oriented requirements specification the main

usage scenarios are captured with use cases. Each such use

case has to be described in more detail, either textually or by

means of activity diagrams. Also, during requirements spec-

ification a structural model of the problem domain is captured

with a class diagram. A use case diagram provides a system

overview. Each use case is described by trigger, its actors,

pre- and post-conditions and its key scenarios. Scenarios are

specified using activity diagrams and use cases are the

starting point for the aspect-oriented modeling. We model

the so-called base of the system with use cases and an

integrated behavior model. An aspect is modeled as a use

case. The join point for an aspect is an activity of the base.

The point cut of an aspect is specified in terms of the activities

of the base. While up to now proposed for modeling

techniques like UML, an integrated behavior model is also

suitable and beneficial for aspect- oriented modeling:

It can naturally capture the functional and structural

description of each aspect. An aspect may share the base

domain model or add its own concepts. Each aspect can be

analyzed for consistency, and the consistency of the entire

system consisting of the base and aspects can be analyzed as

well. Analysis is even more crucial for aspect-oriented

models:

As an aspect is specified once but can be used in many

different places of the system.

As an example, consider a simple Heath care air ambu-

lance system. Patient can cancel booking of air ambulance.

Patient can registered in the system and can be unregistered

as well. Both are conducted by admin on behalf of patient.

Also, air ambulance and flight segments are administered by

staff members. When patient books air ambulance and if he

wants to cancel the booking, then the booking are cancel.

But after some time, he wanted to again book for the same

air ambulance, then it is not possible because entire data has

been deleted during cancellation process. Here the conflict

will be created.

The domain classes are given in Fig. 1. A patient can

book a book air ambulance.

When doctor and specialist generate the report of patient

using machine or other test, in earlier Stage, they find the

causes of some particular dieses and generate report for that,

but later stage by using test report and medicine report, they

find other dieses than earlier one. This could be one type of

conflict

Fig. 1 Type graph for health care air ambulance system

432 S. Mohite et al.

Interaction Analysis Using Aspect Oriented
Model

An overview of typical use cases is presented in Fig. 2.

It comprises use cases for administration of passenger

data of patient, air ambulance and segment data. For the

main usage scenarios it has use cases for booking and can-

celing air ambulance. In the following, we will focus on the

use cases book air ambulance.

The steps, pre- and post- conditions of use case book air

ambulance are described in Table 1.

The steps are also presented in the activity diagram in

Fig. 3. Our approach uses integrated behavior models and

extends them by aspect-oriented features. An integrated

behavior model consists of a domain model and a set of

activity models. The domain model provides the types of

the domain objects.

Each activity is refined by pre- and post-conditions

describing the effect of the activity in terms of

domain objects. Typically, an initial configuration of the

system is provided in terms of domain objects and their

relations. The benefit of an integrated behavior model is

an early and better integration of the structural domain

model with the functional activity model. Pre- and post-

conditions are formalized by the theory of graph transforma-

tion systems (Fig. 4).

It is conceivable, that the use case Finding Report is

expressed as rules such as in Table 2, and Test crisis Man-

agement is express as rule in Table 3 (Figs. 5, 6, 7, 8, and 9).

Implementation

We are using AGG tool for implementing Heath care air

ambulance system. With this tool we can perform conflict

analysis and graph transformation. For graph transformation

AGG tool is used which is a rule based visual language.

A graph grammar contain in AGG program attributed by

Java objects. Graph grammars contain a start graph and a set

of rules which may have negative application conditions.

A graph consists of two disjoint sets containing the nodes

and the arcs of the graph. As a whole, the nodes and arcs are

called the objects of the graph. Every arc represents a
Fig. 2 Class diagram for health care air ambulance system

Requirement and Interaction Analysis Using Aspect-Oriented Modeling 433

directed connection between two nodes, which are called the

source and target nodes of the arc.

In AGG attribute declaration is same as other

programming language. An action can be viewed as a

state transition, and obviously, a transition of states can be

specified by giving descriptions of the states before an

after the action in question. Since states are modeled

as graphs in AGG, it follows that basically an action can

be described as a pair of two graphs modeling the “before”

and “after” states. In the “before” state of an operation,

we collect all the preconditions that have to be met for the

operation to take place. The left-hand side of a graph

rule states the necessary conditions for the specified

operation to take place: A rule can only be applied if its

conditions are fulfilled by the current concrete state graph.

The effect of a rule application at a given match is a state

graph transformation, also called derivation or graph trans-

formation step.

Conclusion

In aspect oriented modeling, the program with the main busi-

ness logic and the cross cutting concerns are represented by

models. There are many cross cutting concerns that are not

part of the problem, such as security, logging, persistency, etc.

Differently from traditional aspect oriented programming, in

aspect oriented modeling there is no preferential entity. This

means the weaving can be done in any model (e.g., weavings

in the business models or in the cross cutting concerns).

Our approach is towards detecting conflicts and

dependencies. The tool was used for specifying the behavior

of aspects and objects in terms of pre- and post-conditions

and for analyzing conflicts and dependencies between them.

The tool computed the necessary input in form of conflicts

and dependencies which were then compared with the

specified composition.

Register

Book
Ambulance

Book
Ambulance

Update
System

Pay Booking
Amount

Give patient
history

patient

Admin

Staff

Check

Check up

Machine
Test

Other Test

Medicine

View Report

Pay Bill

Fill Report

Fig. 3 Use case diagram for health care air ambulance system

Table 1 Description of use case book air ambulance

Use case Book air ambulance

Actor role Admin

Trigger [condition] Patient orders booking

Rule of precondition Air ambulance exits

Rule of post condition Each segment of the flight is booked

Use-case scenario 1. Select air ambulance

2. Select patient

3. Reserve segments

4. Book segments

5. Pay

434 S. Mohite et al.

Register

Request
Ambulance

Check Patient
Details

Check Patient

Requile
Immediate
Treatment

no

y

Medicine Other TestMachine
Test

Patient feel
uncomfotable

Check BP

no

yes

Check ECG

Fill Report

View Report

Pay Bill

Allocate
Ambulance

Pay booking
amount

Cash Credit Card Online

Fig. 4 Activity diagram for

health care air ambulance system

Table 2 Finding report store given as rules

Finding report store scheme ()

1) Only authorized staff i.e. doctor, nurse, staff etc can access the report of patient

2) Doctor checks the patient, if patient condition normal or abnormal

3) If patient condition is abnormal then store a patient report with time and report—name with a different server database on internet

4) If patient condition is normal then store a patient report to a local server on a system

Requirement and Interaction Analysis Using Aspect-Oriented Modeling 435

Table 3 Test crisis management given as rules

Apply test crisis management ()

Only doctor suggest medical test or other test to a patient

Doctor analyzes the heath condition of patient during test conduction

Patient feel normal or abnormal find in primary analysis

If patient feel abnormal, then conduct medical test with crises management system to a test

If patient feel normal, then conduct medical test without crises management system to a test

Fig. 5 Rule for report store

Fig. 6 Rule for crises

management for test

436 S. Mohite et al.

Found conflicts and dependencies are potential conflicts

(since they can be interactions) and not every possible con-

flict since it depends on the accurateness of the pre- and post-

conditions. Graph transformation also allow to reason uni-

formly about object and aspect models [3]. Besides an editor

for specifying the rules, the tool also provides all analysis

functions as an API. Rules can be read from an XML file.

Therefore, AGG is ideal to be used with existing UML

CASE Tools [3].

We have proposed to integrate rule specifications with

object oriented models in an aspect-oriented way. Graph

transformation systems provide means to specify rule-

based aspects directly as rules. We have tried to detect

conflicts and dependencies. The approach uses formal

Fig. 7 Rule for patient login

Fig. 8 Rule for siren alarm

Fig. 9 Rule for alarm reason

store in severs

Requirement and Interaction Analysis Using Aspect-Oriented Modeling 437

aid to analyze systematically semi-formal specifications.

We use graph transformation to detect conflicts.

In the future, we want to investigate the relationship

between graph transformation and aspect-oriented languages

further. We feel that pre- and post-conditions are an essential

counterpart for an informal language like the UML, making

modeling more rigorous. Pre- and post-conditions are ana-

lyze for activity diagrams. The approach is not restricted to

functional aspects, as presented here. We consider both

functional and nonfunctional aspect. Thereby, also

interactions between functional and non-functional aspects

are automatically covered.

References

1. D. Parnas. On the Criteria To Be Used in Decomposing Systems into

Modules. Comm.

2. I. Jacobson and P.-W. Ng. Aspect-Oriented Software Development

with Use Cases. Addison Wesley, 2005.

3. Katharina Mehner, Mattia Monga, and Gabriele Taentzer:”

Interaction

Further Reading

T. Elrad, M. Aksits, G. Kiczales, K. Lieberherr, and H. Ossher:

“Discussing Aspects of AOP”. Communications of the ACM 44

(10), pp. 33–38, October

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr.: “N Degrees of

Separation: Multi-Dimensional Separation of Concerns”. In

Proceedings of the 1999 International Conference on Software

Engineering.

H. Poor, an Introduction to Signal Detection and Estimation. New J.

Rumbaugh, I. Jacobson, and G. Booch.

Robert France, Indrakshi Ray, Geri Georg, and Sudipto Ghosh. Aspect-

oriented Approach to Early Design Modelling. IEEE Proceedings

Software, 151(4):173– 185, August 2004.

E. Baniassad and S. Clarke. Theme: An Approach for Aspect-Oriented

Analysis and Design.

Jon Whittle & Praveen K. Jayaraman (2007): MATA: A Tool for

Aspect-Oriented Modeling Based on Graph Transformation. In:

Holger Giese, editor: MoDELS Workshops, Lecture Notes in Com-

puter Science 5002. Springer, pp. 16–27. Available at http://dblp.

unitrier.de/db/conf/models/models2007w.html WhittleJ07

S. Katz. Aspect Categories and Classes of Temporal Properties.

Transactions on Aspect-Oriented Software Development. LNCS
3880, Springer, pp. 106-134, 2006.

Analysis in Aspect-Oriented Models”

G. Kiczales, E. Hisdale, J. Hugunin, M. Kersten, and J. Palm.

An overview of AspectJ.

B. Nuseibeh, J. Kramer, and A. Finkelstein. AFramework for

Expressing the Relationships betweenMultipleviews in

Requirements Specifications.

J. Aráujo and P. Coutinho. Identifying aspectual use cases using a

viewpoint-oriented requirements method. In Early Aspects 2003:

Aspect-Oriented Requirements Engineering and Architecture

Design, Boston, MA, USA, March 2003.

A. Rashid, P. Sawyer, A. Moreira, and J. Araujo. Early aspects:

A model for aspect-oriented requirements engineering. In Proc.

AGG tool avialble at: http://user.cs.tu-berlin.de/~gragra/agg/index.

html

438 S. Mohite et al.

http://dblp.unitrier.de/db/conf/models/models2007w.html%20WhittleJ07
http://dblp.unitrier.de/db/conf/models/models2007w.html%20WhittleJ07
http://user.cs.tu-berlin.de/~gragra/agg/index.html
http://user.cs.tu-berlin.de/~gragra/agg/index.html

	Requirement and Interaction Analysis Using Aspect-Oriented Modeling
	Introduction
	Related work
	Approach
	Requirement Specification
	Interaction Analysis Using Aspect Oriented Model

	Implementation
	Conclusion
	References
	Further Reading

