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Abstract The study of scalar fields coupled to gravity when there is a negative
cosmological constant gives important insight on the possible instability of anti-de
Sitter spacetime. In this short paper we consider the question how different the scalar
field evolution is when the background is a fixed AdS metric. It is known that self-
interacting massive real scalar fields on flat Minkowski background can form long
living oscillating localized objects, named oscillons. In the flat background case these
objects radiate energy extremely slowly, in a rate which is exponentially suppressed
in terms of the central amplitude. However, on AdS background there are localized
exactly time-periodic non-radiating solutions.

1 Introduction

In a recent influential paper Bizoń and Rostworowski [1] studied a real scalar field
coupled to gravity when there is a negative cosmological constant. In this case the
geometry approaches asymptotically the anti-de Sitter spacetime. They considered
the time evolution of a spherically symmetric massless scalar field, and observed that
the energy is continuously shifted to small wavelength high frequency modes. This
phenomenon is generally called weak turbulence in the literature. The shift of energy
to high frequency modes continues until a black hole forms at the symmetry center.
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In this short paper we consider the questionwhat changes when the background is not
dynamical but a fixedAdS spacetime. For aKlein-Gordon field on a fixed background
the field equations are linear and consequently there is no weak turbulence. For this
reason we consider self-interacting scalar fields.

Weconsider 3+1dimensional anti-deSitter spacetime in the conformal coordinate
system

ds2 = 1

k2 cos2 x

(
−dτ 2 + dx2 + sin2 x dΩ2

)
, (1)

where dΩ is the metric of a unit two-sphere. In these coordinates x = 0 corresponds
to the center of symmetry, and x = π/2 to infinity. All timelike geodesics emanating
from a point meet again at another point. A light ray can travel to infinity and back
in finite coordinate time, if we assume that infinity acts as a mirror for null rays. The
behavior of geodesics indicates that the AdS background corresponds to an effective
attractive force.

2 Evolution of a Scalar Field on AdS Background

A spherically symmetric self-interacting scalar field on 3 + 1 dimensional AdS
background evolves according to the field equation

− φ,ττ + φ,xx + 4

sin(2x)
φ,x = U ′(φ)

k2 cos2 x
, (2)

where k is related to the cosmological constant by Λ = −3k2, and U (φ) is the
potential describing the self-interaction of the scalar field. In order to show that weak
turbulence is likely to occur even in this simpler system, let us consider a specific
example. We choose k = 1 and the scalar potential as U (φ) = 1

2φ
2 − 1

4φ
4 + 1

6φ
6.

For initial data we take a finite width spherically symmetric shell, for which

φ = c exp
b2d

(x − a)2 − b2
(3)

for |x − a| < b and φ = 0 otherwise. For the concrete example that we present
here we have chosen the constants as a = 0.4, b = 0.2, c = 100 and d = 4. At
the beginning the shell separates into ingoing and outgoing shells. The ingoing shell
approaches the center and then becomes outgoing. Later both shells get reflected
back from infinity in a finite time. It takes approximately π/2 time interval in the
coordinate time τ for a shell to go from the center to infinity, or to come back, quite
similarly to how null geodesics behave. On the top panel of Fig. 1 we show the time
evolution of the scalar field φ at the center for the first few reflections. The bottom
panel shows the evolution of the central value of the energy density,
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Fig. 1 Time dependence of
the scalar field and its energy
density at the center
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. (4)

On the energy density plot there are peaks when the shells come to the center.
Looking at a much longer time interval, it can be seen that the amplitude of the peaks
increases very quickly. On Fig. 2 we show the central energy density for a longer time
interval, on a logarithmic plot. The energy density increases about five magnitudes
by the time the shells are reflected about one hundred times. It seems very likely
that there is week turbulence in this system. It would take further numerical work to
study how the energy density increases for other types of initial data and for different
choices of the scalar potential. For massless self-interacting fields, such as that with
a potential U (φ) = φ4, we could not observe a significant increase in the central
energy density. For themassive case there is density increase, butwe could not see any
simple scale invariance property of the time evolution depending on the amplitude of
the initial data, which has been, however, observed for the self-gravitating massless
Klein-Gordon case in [1].

3 Periodic Solutions

In a recent paper of Dias et al. [2], vacuum spacetimes have been considered when
there is a negative cosmological constant. Using perturbation theory the existence
of resonant modes has been shown, which indicates weak turbulence. It has been
also claimed that the nonlinear generalization of a single perturbative mode is a
localized periodic vacuum solution, which is generally called geon in the literature
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Fig. 2 Time dependence of
the energy density at the center
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[3, 4]. Geons are not spherically symmetric, but if one includes a scalar field in
the system, then spherically symmetric localized periodic solutions are expected to
exist, which are called oscillatons in the asymptotically flat case [5, 6]. Oscillatons
are similar to boson stars [7], but for boson stars the scalar field is complex, and the
metric is static. Similar periodic localized solutions already exist for scalar fields on
a fixed AdS background. On flat Minkowski background those objects are known as
breathers or oscillons [8].

For the case of a massive or massless Klein-Gordon field on AdS background the
periodic solutions are explicitly known. In this case the scalar potential is U (φ) =
1
2m2φ2, and there is a family of breather solutions [9] labeled by a non-negative
integer n, which gives the number of the nodes of the solution

φ(n) = cos[(μ + 2n)τ ] (cos x)μ P(1/2,μ−3/2)
n (cos(2x)) , (5)

where

μ = 3

2
+

√
9

4
+ m2

k2
, (6)

and P(a,b)
n (x) denotes the Jacobi polynomial. All finite energy solutions can be

expressed as sums of φ(n) with appropriate phases.
Self-interacting scalar fields with any potentialU (φ) also admit periodic localized

solutions on AdS background. We can look for solutions oscillating with frequency
ω by Fourier decomposing the scalar field in the form

φ =
N∑

n=0

φn cos(n ω τ) , (7)
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Fig. 3 The first few Fourier
modes of a periodic localized
solution in case of a φ4
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where φn are functions of x and the system is truncated at order N . We have solved
the resulting system of ordinary differential equations using the spectral code Kadath
developed by PhilippeGrandclément [10]. On Fig. 3 the Fouriermodes of an example
configuration are given for the standard φ4 potential U (φ) = φ2(φ − 2)2/8, when
k = 1 andω = 3.6. Unlike in the linear Klein-Gordon case, the frequencyω changes
when the oscillation amplitude grows. In the limit of small oscillations ω tends to
the Klein-Gordon value ω0 = μ = (3 + √

13)/2 ≈ 3.30278 given by (6).
A small-amplitude expansion procedure has been successfully applied in the past

for oscillons [8], asymptotically flat oscillatons [11], and also for oscillatons when
there is a small positive cosmological constant [12]. In this paper we present the
small-amplitude expansion of oscillons on a fixed AdS background when |Λ| is
small. We use Schwarzschild area coordinates,

ds2 = −(1 + k2r2)dt2 + dr2

1 + k2r2
+ r2dΩ2 . (8)

Then the field equation takes the form

− 1

1 + k2r2
φ,t t + (1 + k2r2)φ,rr +

[
D − 1

r
+ (D + 1)k2r

]
φ,r = U ′(φ) . (9)

We describe the scalar potential by its expansion coefficients gk ,

U (φ) = m2
(
1

2
φ2 + g2

3
φ3 + g3

4
φ4 + . . .

)
, (10)

where m is the mass of the scalar field. We expand the scalar field in powers of a
small parameter ε

φ = εφ1 + ε2φ2 + ε3φ3 + . . . . (11)



58 G. Fodor et al.

Since on Minkowski background the size of small amplitude oscillons scales as 1/ε,
we use a rescaled radial coordinate ρ = εmr . This makes spatial derivatives one
order smaller. We also define a new time coordinate by τ = mωt . The ε dependence
of the oscillation frequency ω is represented by

ω2 = 1 + ω2ε
2 + ω4ε

4 + . . . , (12)

where ωk are constants. We also introduce a rescaled cosmological parameter κ

by k = ε2mκ . This ensures that the oscillon size remains small compared to the
curvature scale in the ε tends to zero limit. Substituting the expansion (11) into the
field equation (9), to leading ε order we obtain that φ1 = p1 cos τ , where p1 depends
only on ρ. The radial dependence of p1 will be determined by the absence of secular
terms in φ3, yielding

p1,ρρ + D − 1

ρ
p1,ρ +

(
ω2 − ρ2κ2

)
p1 + λp31 = 0 , (13)

where λ = 5
6g2

2 − 3
4g3. This gives the spatial profile of the oscillon to leading order.

For Minkowski background κ = 0, and localized solutions can exist only if λ is
positive. If λ > 0 we may consider the potential as an “attractive potential”. In
this case the potential is more flat near its minimum than the same mass harmonic
potential, and the oscillation period becomes longer. For anti de Sitter background
we can rescale ρ, and consequently ε in ρ = εmr , in order to set

κ = 1 , (14)

which we assume from now on.
If λ = 0, then (13) is linear, and there are localized solutions only if ω2 = 3+4n,

for n ≥ 0 integer. The solutions can be written in terms of generalized Laguerre
polynomials,

p(n)
1 = exp

(
−ρ2

2

)
L1/2

n (ρ2) . (15)

The integer n gives the number of nodes. These solutions correspond to the small k
limit of the Klein-Gordon breathers given earlier by (5).

If λ is nonzero, then defining S = p1/
√|λ| , (13) can be written as

S,ρρ + D − 1

ρ
S,ρ + (ω2 − ρ2)S ± S3 = 0 , (16)

where the positive sign is valid forλ > 0 and the negative for λ < 0. The solutions are
labeled by the single parameter ω2. If λ > 0, there are localized nodeless solutions
for any ω2 < 3. In this case high amplitude solutions are more localized than small
amplitude ones because of the attraction represented by the scalar potential. The
radial profiles of a few such solutions are shown on the upper panel of Fig. 4. For
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Fig. 4 Radial behavior of
solutions of (16) for λ > 0
attractive, and λ < 0 repulsive
potentials
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λ < 0 localized nodeless solutions exist for any ω2 > 3. Then higher amplitude
solutions have larger size, and it is natural to call potentials with λ < 0 “repulsive
potentials”. Corresponding solutions are shown on the lower panel of Fig. 4. Since by
the choice κ = 1 we have ε2 = k/m, using (11) and (12) the leading order behavior
of the scalar field can be written as

φ =
√

k|λ|
m

S cos

(
m

√
1 + k

m
ω2 t

)
, (17)

where S depends on ρ = r
√

km according to (16).
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