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Abstract We give a brief description of some compelling connections between
general relativity and thermodynamics through (i) the semi-classical tunnelling
method(s) and (ii) the field-theoretical modelling of Unruh-DeWitt detectors. In both
approaches it is possible to interpret some quantities in a thermodynamical frame.

1 Introduction

The idea of treating the emission of radiation from black holes as a tunelling process
across the horizon traces back to the first path-integral derivation by Hartle and
Hawking [1]. As a matter of fact, the null-geodesic method introduced by Kraus,
Parikh and Wilczek [2, 3] and the Hamilton-Jacobi method proposed more recently
by Padmanabhan and collaborators [4] can be considered as semi-classical versions
of the original derivation. On the other hand, the Unruh-DeWitt detector [5, 6] con-
stitutes a field-theoretical approach to the problem, providing a more exact answer
to questions regarding the particle content of the field and its thermal features for
different observers.

2 The Tunnelling Method(s)

The null-geodesic and the Hamilton-Jacobi methods mentioned above both rely on
the calculation of the classical action S of a particle along a trajectory crossing the
horizon. Since such a trajectory is classically forbidden, the action itself developes
an imaginary contribution which, in theWKB approximation, allows to calculate the
tunnelling probability rate
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Γem � exp (−2 �S) , (1)

where � stands for imaginary part. The use of Kodama-Hayward theoretical results
[7, 8], which allow to express observables of interest in terms of invariant quantities,
has been a main ingredient.

In [9] this methods has been analysed in detail and the following results have been
proven:

• a solid basis for the covariance of the method has been given;
• formal equivalence of the two aforementioned approaches holds at least in station-
ary cases;

• the method provides an invariant and consistent answer in a variety of situations
(higher-dimensional solutions, Taub and Taub-NUT solutions, decay of unstable
particles, emission from cosmological horizons and naked singularities).

The calculation can be summarized in the following steps regarding theHamilton–
Jacobi approach:

1. assume that the tunnelling particle’s action S satisfies the relativistic Hamilton–
Jacobi equation

gμν∂μS∂ν S + m2 = 0; (2)

2. reconstruct the whole action, starting from the symmetries of the problem; the
integration is carried along an oriented, null curve γ with at least one point on
the horizon

S =
∫

γ

dxμ ∂μS; (3)

3. perform a near-horizon approximation and regularize the divergence in the in-
tegral according to Feynman’s prescription: the solution of the integral has in
general a non-vanishing imaginary part.

The result can be given in the general form

Γem = Γabs exp

(
−2π ωH

κH

)
, (4)

where ωH and κH are respectively the invariant energy of the tunnelling particle
and the invariant surface gravity in Hayward’s theory. Through comparison of the
transition rate with the Boltzmann factor, we can identify an invariant temperature

TH = κH

2π
. (5)
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3 Unruh-DeWitt Detectors

We consider a conformally flat 4-dimensional metric, a massless scalar field confor-
mally coupled to the metric and a two-level quantum system coupled to the scalar
field. The idea is to calculate the probability for the absorption of a scalar quantum
and the consequent excitation of the two-level system through the transition rate

d F

dτ
= 1

2π2

∫ ∞

0
cos (E s)

(
1

σ 2(τ, s)
+ 1

s2

)
ds − 1

2π2

∫ ∞

�τ

cos (E s)

σ 2(τ, s)
, (6)

where E is the energy gap of the detector and s is the duration of the detection (see
[10] for details on the construction of equation (6)). The second integral is the finite-
time contribution, generally an oscillating tail exponentially damped. The bulk of the
information about the transition rate comes from the geodesic distance between the
“switching on” and “switching off” events, evaluated along a fixed trajectory x(τ )

σ 2(τ, s) = a(τ )a(τ − s) [x(τ ) − x(τ − s)]2 , (7)

whose inverse is proportional to the positive frequencyWightman function. The a(t)
is the conformal factor.

Let’s analyze two simple stationary cases: the Schwarzschild black hole and the de
Sitter cosmology. The detector will be placed on a Kodama trajectory, which means
that it will sit at a fixed distance from the horizon. Both cases can be treated in the
same way, because the function σ 2 can be written in general

σ 2(s) = −4V

κ2 sinh2
(

κ

2
√

V
s

)
, (8)

where κ is the surface gravity and
√

V = √−g00. A Wightman function which, as
in (8), is stationary and periodic in imaginary time is called “thermal” because when
Fourier-transformed, it gives a Planckian transition spectrum. In our case, calculating
both the stationary and the finite-time contributions,

d F

dτ
= 1

2π

E

exp
(
2π

√
V E

κ

)
− 1

+ E

2π2

∞∑
n=1

n e−nκ�τ/
√

V

n2 + V E2/κ2

(
κ√
V E

cos(E�τ) − sin(E�τ)

)
. (9)
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4 Conclusions

As regards the tunnelling method, it has been shown that the formalism gives an
invariant answer and allows extensions to more general black hole horizons in vari-
ous dimensions as well as cosmological horizons and naked singularities. Moreover,
the extension to dynamical space-times has been carried out: in this framework the
radiation seems to originate near the local trapping horizon, not the global event
horizon.
TheUnruh-DeWitt detector constitutes amore exact approach to theUnruh-Hawking
effect, relying on a quantum field-theoretical calculation. In stationary cases the re-
sponse function of the detector is shown to be thermal with temperature given by
the surface gravity, just as in the tunnelling approach. The generalization to non-
stationary situations gives rise to problems in the analytical resolution and in gen-
eral, when the background is time-dependent, it is not possible to clearly identify
a Boltzmann-like term in the response function and thus the thermal interpretation
seems lost.

References

1. Hartle, J., Hawking, S.: Path-integral derivation of black-hole radiance. Phys. Rev. D 13, 2188
(1976). doi:10.1103/PhysRevD.13.2188

2. Kraus, P., Wilczek, F.: Self-interaction correction to black hole radiance. Nucl. Phys. B 433,
403 (1995). doi:10.1016/0550-3213(94)00411-7

3. Parikh, M., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000).
doi:10.1103/PhysRevLett.85.5042

4. Srinivasan, K., Padmanabhan, T.: Particle production and complex path analysis. Phys. Rev. D
60, 24007 (1999). doi:10.1103/PhysRevD.60.024007

5. Unruh, W.: Notes on black-hole evaporation. Phys. Rev. D 14, 870 (1976). doi:10.1103/
PhysRevD.14.870

6. DeWitt, B.: Quantumgravity: The new synthesis. In: Hawking, S., Israel,W. (eds.) General Rel-
ativity: An Einstein Centenary Survey, pp. 680–745. Cambridge University Press, Cambridge,
New York (1979)

7. Kodama, H.: Conserved energy flux for the spherically symmetric system and the backreaction
problem in the black hole evaporation. Prog. Theor. Phys. 63, 1217 (1980). doi:10.1143/PTP.
63.1217

8. Hayward, S.: Unified first law of black-hole dynamics and relativistic thermodynamics. Class.
Quant. Grav. 15, 3147 (1998). doi:10.1088/0264-9381/15/10/017

9. Vanzo, L., Acquaviva, G., Di Criscienzo, R.: Tunnelling methods and Hawking’s radiation:
achievements and prospects. Class. Quant. Grav. 28, 183001 (2011). doi:10.1088/0264-9381/
28/18/183001

10. Acquaviva, G., Di Criscienzo, R., Tolotti, M., Vanzo, L., Zerbini, S.: Unruh-deWitt detectors
in spherically symmetric dynamical space-times. Int. J. Theor. Phys. 51, 1555 (2012). doi:10.
1007/s10773-011-1033-2

http://dx.doi.org/10.1103/PhysRevD.13.2188
http://dx.doi.org/10.1016/0550-3213(94)00411-7
http://dx.doi.org/10.1103/PhysRevLett.85.5042
http://dx.doi.org/10.1103/PhysRevD.60.024007
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1143/PTP.63.1217
http://dx.doi.org/10.1143/PTP.63.1217
http://dx.doi.org/10.1088/0264-9381/15/10/017
http://dx.doi.org/10.1088/0264-9381/28/18/183001
http://dx.doi.org/10.1088/0264-9381/28/18/183001
http://dx.doi.org/10.1007/s10773-011-1033-2
http://dx.doi.org/10.1007/s10773-011-1033-2

	78 Quantum Fields in Gravity
	1 Introduction
	2 The Tunnelling Method(s)
	3 Unruh-DeWitt Detectors
	4 Conclusions
	References


