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Abstract TheWick rotation is commonly considered only as a useful computational
trick. However, as suggested by Hartle and Hawking already in early eighties, Wick
rotation may gain physical meaning at the Planck epoch. While such possibility is
conceptually interesting, leading to no-boundary proposal, mechanism behind the
signature change remains mysterious. We show that the signature change anticipated
by Hartle and Hawking naturally appears in loop quantum cosmology. Theory of
cosmological perturbations with the effects of quantum holonomies is discussed. It
was shown by Cailleteau et al. [3] that this theory can be uniquely formulated in an
anomaly-free manner. The obtained algebra of effective constraints turns out to be
modified so that the metric signature is changing from Lorentzian in low curvature
regime to Euclidean in high curvature regime. Implications of this phenomenon on
propagation of cosmological perturbations are discussed and corrections to inflation-
ary power spectra of scalar and tensor perturbations are derived. Possible relations
with other approaches to quantum gravity are outlined. We also propose an intu-
itive explanation of the observed signature change using analogy with spontaneous
symmetry breaking in “wired” metamaterials.

1 Introduction

Themetric signature change fromLorentzian toEuclidean is usually performedby the
so-calledWick rotation (t → −iτ ), under which the line element ds2 = −dt2+dx2

transforms to ds2 = dτ 2 + dx2. The Wick rotation becomes especially important
in the path integral formulation of quantum mechanics. It allows to calculate non-
perturbative effects by considering instantons. Another advantage coming from the
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Wick rotation is improvement of a convergence property of some path integrals. But
these are just useful computational tricks.

However, in 1983Hartle andHawking proposed thatWick rotationmay gain phys-
ical meaning at the Planck epoch [1]. This assumption was crucial for construction
of the so-called no-boundary proposal, which was a way to cope with the problem
of initial conditions for the Universe. While such possibility is conceptually inter-
esting, mechanism behind the signature change in the very early Universe remains
enigmatic.

If such transition from the Lorentzian to Euclidean space has occurred in the
early Universe, what could be the origin of this? Can the signature change be due to
some quantum gravity effects? So far, there have been no indications supporting such
possibility. However, recent results coming from symmetry reduced models of Loop
QuantumGravity (LQG) [2] suggest that indeed the signature change may occur due
to the discrete nature of space at the Planck scale [3, 4].

2 Loops

In LQG, granularity of space at the Planck scale is manifested by discrete spec-
tra of geometric operators such as area and volume. The starting point for con-
structing LQG is the Hamiltonian formulation of General Relativity in language

of Ashtekar variables fulfilling
{

Ea
j (x), Ai

b(y)
}

= 8πGγ δa
bδi

jδ
(3)(x − y), where γ

is a free parameter of the theory called Barbero-Immirzi parameter. In this frame-
work, Hamiltonian of gravity sector can be written as a sum of three constraints:
HG[N , N a, N i ] = S[N ] + D[N a] + G[N i ] ≈ 0. Here S is the scalar constraint, D
is the diffeomorphism constraint and G is the Gauss constraint. The constraints (S →
C1, D → C2, G → C3) fulfill the closed algebra {CI ,CJ } = f K

IJ(A j
b, Ea

i )CK ,

where f K
IJ(A j

b, Ea
i ) are some structure functions.

Based on the Ashtekar variables, nonlocal variables called holonomies and fluxes
are constructed. These new variables are the subject of quantization in LQG. For
our purposes, it is sufficient to note that holonomy is defined as parallel transport of
Aa = Ai

aτi along some curve e on a spatial hypersurface: he := P exp
∫

e Aadxa ,
where σ j = 2iτ j are Pauli matrices. The holonomies are elements of SU (2) group.

In LQG, a state of gravity is described by superposition of graphs called spin
networks. The links of the graphs are labelled by half integers ( j = 1/2, 1, 3/2, . . . )
corresponding to irreducible representations of the SU (2) group. An exemplary spin
network is shown in Fig. 1.

Loop QuantumCosmology (LQC) [5] is a regular lattice model of LQG. In partic-
ular, symmetries of isotropy and homogeneity are imposed on the spin networkwithin
LQC. In what follows, we will consider an isotropic model with small perturbative
inhomogeneities around a flat Friedmann-Robertson-Walker (FRW) background.

In LQC, physical area of the elementary lattice cell Ar� = p̄μ̄2, where p̄ = a2

and a is a scale factor. In general μ̄ ∝ p̄β , where −1/2 ≤ β ≤ 0. For the so-called
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Fig. 1 In LQG, state of geometry is described by the spin network (left). In LQC, the spin net-
work takes the form of regular lattice (right). The (red) loop represents holonomy h� around the
elementary cell

μ̄−scheme (“new quantization scheme”): μ̄ =
√

Δ
p̄ , where usually Δ is assumed to

be area gap derived from LQG: Δ = 2
√
3πγ l2Pl . The μ̄−scheme, in which physical

area of the elementary lattice cell is constant during the cosmological evolution, was
shown to be physically favoured.

At the effective level, effects of discreteness can be studied by introducing the so-
called holonomy corrections. They are obtained by replacing curvature of Ashtekar
connection by holonomy around elementary loop (see Fig. 1). This procedure is
called polymerization.

3 Cosmological Perturbations

In most cosmological applications, Ashtekar variables can be decomposed into the
background (here flat FRW) and perturbation parts: Ea

i = Ēa
i + δEa

i and Ai
a =

Āi
a + δAi

a , where Ēa
i = p̄δa

i and Āi
a = γ k̄δi

a . The perturbations of the Ashtekar
variables can be related with the standard metric perturbations: scalar modes (Φ,
Ψ , E, B), vector modes (Sa , Fa) and tensor modes (hab). In total, there are 10
perturbative degrees of freedom. Furthermore, matter degrees of freedom are also
subject of perturbative decomposition. In what follows we consider a model with
a scalar field, so ϕ and its canonically conjugated momenta π can be written as:
ϕ = ϕ̄ + δϕ and π = π̄ + δπ . Applying the above decompositions, total constraints
Ctot = CG + CM , which take into account contributions from gravity and matter,
can be expanded. Our analysis is performed up to the second order in perturbative
development: Ctot = C (0) + C (1) + C (2) + ..., so the corresponding equations of
motion stay linear.
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4 Anomaly Freedom and Algebra of Constraints

The effects of discreteness of space are introduced by employing the holonomy cor-
rections. Such corrections modify the classical constraintsCtot to some new effective
quantum constraints C Q

tot . The modification follows the correspondence principle,
such that in the limit μ̄ → 0, the modified constraints C Q

tot → Ctot . The procedure
of introducing quantum corrections suffers from various ambiguities. Moreover, the
resulting algebra of modified constraints is in general not closed:

{C Q
I ,C Q

J } = gK
IJ(A j

b, Ea
i )C Q

K + AIJ , (1)

whereAIJ are some anomaly terms. Closure of algebra is required by mathematical
consistency of the theory. So, the question is: Can we introduce quantum holonomy
corrections in the anomaly-free manner (i.e. such that AIJ = 0)? The answer turns
out to be “yes”. Moreover, there is a unique way of modifying constraints such
that the algebra is closed [3]. Additionally, the conditions of anomaly-freedom are
fulfilled if and only if β = −1/2, which corresponds to the μ̄-scheme. Therefore,
the only remaining free parameter is the area of elementary lattice cell Δ, which is
however expected to be of the order of the Planck area l2Pl .

The obtained algebra of the effective quantum constraint is [3]:

{
Dtot [N a

1 ], Dtot [N a
2 ]} = 0, (2){

Stot [N ], Dtot [N a]} = −Stot [δN a∂aδN ], (3)

{Stot [N1], Stot [N2]} = Ω Dtot

[
N̄

p̄
∂a(δN2 − δN1)

]
. (4)

The algebra is closed but deformed with respect to the classical case due to the
presence of Ω in (4). Therefore, general covariance is modified. The new factor Ω

can be expressed as follows: Ω = cos(2μ̄γ k̄) = 1 − 2ρ/ρc ∈ [−1, 1], where ρ is
energy density of the scalar matter and the critical energy density ρc := 3

8πGΔ
∼

ρPl := m4
Pl . What is the interpretation of the above deformation of the algebra of

constraints? In order to answer this question let us recall the classical equivalent of
the modified bracket (4) for a space with signature σ [2]:

{Stot [N1], Stot [N2]} = σ D

[
N̄

p̄
∂a(δN2 − δN1)

]
.

Here, σ = 1 corresponds to the Lorentzian signature and σ = −1 to the Euclidean
one. Therefore, we conclude that modification of the effective algebra of constraints
(4) means that the space becomes Euclidean for ρ > ρc/2, while Lorentzian geome-
try emerges for ρ < ρc/2. In the regime of high curvatures and high energy densities
(ρ > ρc/2), spacetime becomes 4-dimensional Euclidean space. There is no distin-
guished time direction in this phase. It is interesting to notice that this model exhibits
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properties of the Hartle-Hawking no-boundary proposal. However here signature
change occurs smoothly with an increase of energy density.

The same effect of signature change was observed also for inhomogeneous spher-
ically symmetric models with holonomy corrections [4]. Therefore, we have a good
reason to believe that this phenomenon is a general consequence of quantum poly-
merization of space.Moreover, we can speculate that the off-shell algebra of quantum
constraints in LQG should also exhibit such property, i.e. [Ŝ, Ŝ] = iΩ D̂.

Among many other comments, the fact that ultralocal gravity [6], where {S, S} =
0, is recovered at the transition point ρ = ρc/2 is worth stressing.

5 Equations of Motion

The obtained anomaly-free formulation can be now used to derive equations of
motion for both background variables and perturbations. The background dynamics
is governed by the modified Friedmann equation H2 = 8πG

3 ρ (1 − ρ/ρc), where H
is the Hubble factor. Clearly, only ρ ≤ ρc are physically allowed, which was used to
determine the range of Ω .

For the scalar perturbations one can define a gauge-invariant variable v and the
corresponding modified Mukhanov equation [3]:

d2

dτ 2
v − Ω∇2v − z

′′

z
v = 0, (5)

where z := √
p̄ ϕ̇

H . Here, τ = ∫
dt/a is a conformal time. For the considered model

with a scalar field, vector modes are pure gauge, and therefore do not contribute [7].
Equation for tensor modes takes the form [8]

d2

dτ 2
hab + 2

(
aH − 1

2Ω

dΩ

dτ

)
d

dτ
hab − Ω∇2hab = 0.

The obtained equations are modified by the presence of Ω in front of the Laplace
operator. Therefore, transition to the Euclidean domain leads to a change of equation
type from hyperbolic to elliptic, as expected. Furthermore, we see that the speed of
propagation is varying, since c2s = Ω .

6 Holonomy Corrections to Inflationary Power Spectra

As an application of the obtained equations of motion we will derive holonomy
corrections to the inflationary scalar and tensor power spectra. We will focus on the
slow-roll inflationary model driven by a single scalar field ϕ with potential V (ϕ)
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occurring in the Lorentzian domain. The slow-roll parameters with the holonomy
corrections are:

ε := m2
Pl

16π

(
V,ϕ

V

)2 1

(1 − V/ρc)
and η := m2

Pl

8π

(
V,ϕϕ

V

)
1

(1 − V/ρc)
.

Derivation of the scalar and tensor power spectra is based on application of the
standard techniques of the quantum field theory in curved spaces. Moreover, normal-
ization is such that in the UV limit the Minkowski vacuum is recovered. Obtained
spectra of scalar and tensor (gravitational waves) perturbations are

PS(k) = AS

(
k

aH

)nS−1

and PT (k) = AT

(
k

aH

)nT

,

where amplitudes and spectral indices are given as follows:

AS = 1

πε

(
H

m Pl

)2 (
1 + 2

V

ρc

)
and nS = 1 + 2η − 6ε

(
1 − V

ρc

)
,

AT = 16

π

(
H

m Pl

)2 (
1 + 3

V

ρc

)
and nT = −2ε

(
1 − 3

V

ρc

)
.

Furthermore, the consistency relation is

r := AT

AS
� 16ε

(
1 + V

ρc

)
. (6)

The corrections are introduced by the factors V/ρc, which are of the order of 10−12

for typical values of parameters. Confrontation of the obtained spectra with the
available CMB data will be studied elsewhere [9]. In a more detailed analysis, initial
conditions should be established at the transition point ρ = ρc/2, which can lead to
some additional modification of the power spectra. This issue will be investigated in
our further research.

7 Towards Understanding the Signature Change

It is tempting to understand the origin of the signature change at a microscopic level.
Is this a kind of phase transition occurring at the level of the spin network or, more
generally, at the level of some four dimensional spin foam model? One possibility is
that some sort of spontaneous symmetry breaking takes place, leading to distinction
of the time dimension in low curvature regime.
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Fig. 2 At high temperatures orientation of nanowires is random (left). At low temperatures, some
direction is distinguished due to the spontaneous symmetry breaking (right). In the distinguished
direction, dielectric permittivity is negative, leading to emergence of a time variable

A relevant example of spontaneous symmetry breaking is given by ferromagnets.
At high temperatures, ferromagnets are loosing their magnetic properties. The spins
(magnetic moments) are randomly orientated, and no direction is distinguished. The
system satisfies the SO(3) rotational symmetry, which is also a symmetry of the
corresponding Hamiltonian. However, while temperature is decreased, spins start to
orientate in some direction and magnetic domains are formed. This process begins
when temperature is lowered below the so-called Curie temperature.

One can speculate that an analogous phase transition occurs in case of gravity.
Namely, at high energies, the symmetry is, say, SO(4). There is no distinction of any
time coordinate. However, while lowering the energy density, which is an analogue
of temperature, the symmetry will be broken to SO(3). The energy density ρc/2
is an analogue of the Curie temperature. It is possible that SO(3) symmetry of the
triad rotations in Ashtekar formalism (doubly covered by SU (2) group in LQG) is
in fact a residual symmetry of some wider symmetry before spontaneous symmetry
breaking.

The phase transition, similar to the one discussed in case of ferromagnets, may
occur for the so-called “wired” metamaterials composed of nanowires. It was shown
that for such materials, an effective emergence of time variable may occur because of
negative dielectric permittivity [10]. At high temperatures, dielectric permittivities in
all directions are positive. However in a low temperature state, nanowires may align
in some direction as spins do. In this distinguished direction, dielectric permittivity
becomes negative leading to emergence of “time” direction at the level of equations
of motion for electromagnetic field (see Fig. 2). We speculate that the same kind of
process occurs in case of gravity, leading to emergence of a time variable. Structure
of four dimensional Euclidean space undergoes phase transition, such that some
particular direction is picked (presumably domains with different time directions
can form). Equations of motion for the fields living on such frame change from
elliptic to hyperbolic, which is interpreted as emergence of the time direction. We
will explore this interpretation in more details in our further studies.
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8 Summary and Outlook

We have shown that metric signature change may occur due to polymerization of
space at the Planck scale. Preliminary analysis of this new phenomenon was carried
out. Many questions remain open and are awaiting detailed analysis. In particular: Is
there signature change in full LQG too?What are the initial conditions at ρ = ρc/2?
What is happening at the microscopic scale? How is the propagation of high energy
photons affected? And many, many others.

Summarizing, the paradigm shift seems to be observed in LQC. There is no longer
deterministic bouncing phase as was thought for many years. The Big Bounce model
in LQC seems to be an artifact of the strong assumption of homogeneity. Due to
the Euclidean stage there is no access to the information contained in contacting
Universe, which gives answer to the long standing debate on cosmic forgetfulness.
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