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Abstract Classically a system of arbitrary plane gravitational waves propagating
in the same or opposite directions can be restricted by first-class constraints to
unidirectional waves, which travel without dispersion on a flat background. The
unidirectionality constraints are formulated as well-defined Loop Quantum Gravity
operators, together with criteria for an anomaly-free implantation, which is crucial
for the occurrence or non-occurrence of dispersion, and more generally, of local
Lorentz invariance violations due to (loop) quantum effects. By a set of further first-
class constraints of the same kind we construct a quantum model of a no-wave state,
i.e. of empty space.

1 Introduction

The motivation behind this contribution is the search for quantum effects of gravity
in the form of dispersion of pure, unidirectional gravitational waves. The existence
or non-existence of gravitational wave dispersion, derived for a solvable system from
first loop quantum gravity (LQG) principles is an important criterion in the issue of
Lorentz invariance at the Planck scale in quantum gravity.

Our approach consists in a symmetry reduction to 1+1 dimensions on the
classical level, taken over from [1, 2], vacuum solutions in this model represent
plane gravitational waves moving back and forth in one direction. Further reduction
to unidirectional waves is achieved by a set of first-class constraints, derived from
the Killing equations that describe the special symmetry of space-time with unidi-
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rectional waves [3]. These constraints are to be imposed on the quantum states of
one-dimensional, but possibly colliding and interacting waves, and the question is
whether or not these constraints can single out waves propagating uniformly at the
speed of light.

As a by-product, by imposing one more set of Killing constraints, one can model
flat space. A successful quantum solution will show how LQG can predict gravita-
tional fluctuations of Minkowski geometry.

2 Classical Polarized Two-Way Waves in Ashtekar Variables

Weare considering plane gravitationalwaves propagating in the positive and negative
z direction, the system is homogeneous in the x and the y directions, all metric
components depend only on z and t .

2.1 Variables

The metric is formulated in terms of adapted densitized triad variables with the
nonzero components

E = Ez
3 (1)

along the inhomogeneous direction, orthogonal to the components in the (x, y) plane

E x
1 = E x cos η, E x

2 = E x sin η,

E y
1 = −E y sin η, E y

2 = E y cos η.
(2)

The mutual orthogonality of these two triad vectors means that we are dealing with
polarized waves. In terms of these variables the spatial metric reads

dσ 2 = E
E y

E x
dx2 + E

E x

E y
dy2 + E x E y

E
dz2. (3)

The canonically conjugate variables are the connection components A , Kx , Ky ,
and P with the equal-time Poisson brackets

{Ka(z), Eb(z′)} = κ δb
a δ(z − z′), a, b = x, y,

{A (z),E (z′)} = {P(z), η(z′)} = κ δ(z − z′). (4)

κ is the gravitational constant. The symmetry-reduced model has four phase-space
degrees of freedom.
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2.2 The Constraints

The standard constraints of canonical general relativity, adapted to the above model,
are the Gauß constraint

G = 1

κγ
(E ′ + P), (5)

which generates rotations in the (x, y) plane, the diffeomorphism constraint

C = 1

κ

[
K ′

x E x + K ′
y E y − E ′A + η′

γ
P

]
, (6)

and the Hamiltonian constraint

H = − 1

κ
√
E E x E y

[
E x Kx E y Ky + (E x Kx + E y Ky)E

(
A + η′

γ

)
− 1

4
E ′2

(7)

−E E ′′ − 1

4
E 2

[(
ln

E y

E x

)′]2]
− κ

4
√
E E x E y

G2 − γ

(√
E

E x E y
G

)′
.

A prime denotes the derivative with respect to z, γ is the Barbero-Immirzi parameter.
H is partially expressed by theGauß constraintG. These first-class constraints reduce
the number of degrees of freedom to one, the correct number for polarized plane
waves.

3 Reduction to Unidirectional Waves

Unidirectional waves are characterized by the existence of a null Killing vector field
in the direction of propagation. This corresponds to a dependence of the metric
functions either on t − z or on t + z. To formulate such fields, we add an orthogonal
timelike direction and construct a space-time metric with lapse function N (t, z).

On a manifold with this metric we assume a null Killing vector field kμ with
∇(μkν) = 0. Two of the Killing equations give rise to nontrivial conditions on the
phase space variables, for propagation in the positive z direction they are

Ux := E x Kx − 1

2
E ′ − 1

2
E

(
E y ′

E y
− E x ′

E x

)
= 0, (8)

Uy := E y Ky − 1

2
E ′ + 1

2
E

(
E y ′

E y
− E x ′

E x

)
= 0. (9)
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In addition to the standard constraints there can be at most one more first-class
constraint which, of course, cannot be a gauge generator, because an associated gauge
condition would reduce the number of degrees of freedom to zero.

To extract from Ux and Uy a relation that can be added as a set of first-class
constraints to the standard constraints, we take the linear combinations

U+ := Ux + Uy and U− := Ux − Uy, (10)

explicitly

U+ = E x Kx + E y Ky − E ′, (11)

U− = E x Kx − E y Ky − E

(
ln

E y

E x

)′
. (12)

The Poisson brackets of these expressions, smeared out by test functions,

Ua[ f ] :=
∫

dz f (z)Ua(z), (13)

are
{U+[ f ], U+[g]} = {U+[ f ], U−[g]} = 0 (14)

and

{U−[ f ], U−[g]} = 2
∫

dz( f ′g − f g′)E . (15)

The function U+ weakly Poisson-commutes also with G, C , and H :

{U+[ f ], G[g]} = 0, {U+[ f ], C[g]} = − 1

κ
U+[ f ′g] ≈ 0, (16)

{U+[ f ], H [g]} = 1

κ
U+

[√
E

E x E y
f ′g

]
− H [ f g] ≈ 0. (17)

This qualifies U+(z) as a set of first-class constraints that have to be added to G, C ,
and H , when we want to restrict counter-current waves to unidirectional ones at the
classical level.

Not being a gauge generator, but a restriction of the number of the physical degrees
of freedom, the new constraint reduces their number to one half, i.e. to one phase
space function. This corresponds to the original formulation [4], which contains two
functions, the so-called “wave factor” and the “background factor”, connected by
one non-trivial Einstein equation.
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4 Preparation for Quantization

After the formulation of unidirectional waves as a classical system with first-class
constraints we start the Dirac quantization programme, which distinguishes physical
states as those that are annihilated by the constraint operators.

This gives rise to two kinds of problems: The formulation of the constraints as
well-defined operators on a suitable Hilbert space of unconstrained states, and the
problem of non-trivial structure functions in the constraint algebra. For the standard
constraints these problems are solved in general LQG [5], for U+ they will be dealt
with in the following.

Both parts of U+, E x Kx + E y Ky as well as E ′ are scalar densities, which can be
naturally integrated along z in order to construct an operator. The integral over some
interval I is

U+[I ] =
∫
I

dz (E x Kx + E y Ky) − E+ + E−, (18)

whereE± are the values at the endpoints ofI .E has ameaningful operator equivalent
in the adapted LQG framework [2]. In analogy to full LQG the integral can be
obtained as the Poisson bracket

∫
I

dz(E x Kx + E y Ky) = 2

{∫
I

dz
E x Kx E y Ky√

E E x E y
,

∫
I

dz′ √E E x E y

}
. (19)

The first expression is part of the kinetic Hamiltonian constraint, denoted by H1 in
the following, the second part is the volume of a slice of space, constructed from a
fiducial area in the (x, y) plane and the interval I in the z direction. Both have an
operator interpretation on one-dimensional spin network functions [2].

According to its factor-ordering, the operator formulation of the structure function
in (17) raises potentially an anomaly problem. When the factor ordering is chosen
analogous to that of the Hamilton constraint operator—connection components to
the left of triad components (see [5]1), then the operator constructed from

U+
√

E

E x E y
= (Kx E x + Ky E y − E ′)E√

E E x E y
(20)

does not obviously annihilate solutions of the gauge constraints andU+ and its action
on them must be examined.

As in the case of U+, the first step is a consistent operator formulation: The
first part of (20) can be written as a Poisson bracket of the second part H2 of the
Hamiltonian constraint (7) with test function 1 and E (z),

− 1

κ

(
Kx E x + Ky E y

√
E E x E y

E

)
= {H2[1],E (z)}, (21)

1 A different factor ordering is presented in [6].
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so we can write

U+
√

E

E x E y
= κ{E (z), H2[1]} − E E ′

√
E E x E y

. (22)

Both expressions have operator equivalents, the second term is part of H .

5 Quantum States and the Action of Operators

In LQG a suitable basis of kinematical quantum states is provided by spin network
functions, based on three-dimensional graphs. In the present case we have one-
dimensional graphs with U (1)-holonomies h(k)

e (A ) = exp
(
i k
2

∫
e A

)
, k ∈ Z asso-

ciated to its edges. Holonomies along curves in the (x, y) plane are shrunk to “point
holonomies” at the vertices v: h(μ)

v (X) = exp
(
i μ
2 X (v)

)
, h(ρ)

v (Y ) = exp
(
i ρ
2 Y (v)

)
,

and h(λ)
v (η) = exp(iλη(v)). X = γ Kx , Y = γ Ky . η is an angular variable, its

holonomy has values in U (1), μ, ρ ∈ R, their holonomies lie in the Bohr compacti-
fication of the reals, see [5].

Connection components act in the form of holonomy operators, which add one of
the above holonomies to a given state. States, denoted by |s〉, depend on the graph
G and the labels k, μ, ρ, and λ. Triad components and the conjugate variable to η

act as flux operators in the following way

Ê (z) |s〉 = γ 
2P

2

k+(z) + k−(z)

2
|s〉,

∫
I

P̂ |s〉 = γ 
2P

∑
v

λv |s〉
∫
I

Ê x |s〉 = γ 
2P

2

∑
v

μv |s〉,
∫
I

Ê y |s〉 = γ 
2P

2

∑
v

νv |s〉. (23)

E is a scalar quantity, the other ones are scalar densities and have to be integrated
over an interval I to give raise to an operator, k±(z) are the representation labels
of the edge holonomies left and right to z, 
P is the Planck length, the sum is taken
over all vertices of G in the interval I .

The Gauß constraint relates the labels k and λ,

λv = −(k+(v) − k−(v))/2, (24)

so gauge-invariant states are of the form

|s〉 =
∏

e

exp

[
ike

2

∫
e
(A (z) − η′(z))

] ∏
v

(
exp

[
iμv

2
X (v)

]
exp

[
iρv

2
Y (ρ)

])
.
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In this formula
∫

e η′ = η+(e) − η−(e) was used, where η± are the values of η at the
endpoints of the edge e.

6 Flat Space

In the case of unidirectional plane waves a null Killing vector field prevents waves
in the opposite direction. A second null Killing field in the opposite direction char-
acterizes a no-wave state, namely Minkowski space. The corresponding constraint
is

Ū+ = Kx E x + Ky E y + E ′ = 0. (25)

Classically this one additional first-class constraint reduces the number of degrees
of freedom to zero, i.e. to one state. From U+ and Ū+ together follow the constraints

E ′ = 0 and Kx E x + Ky E y = 0. (26)

The operator version of the latter expression is given by (19), the former one is just
the derivative of a flux operator.

In the following we consider these constraints separately, which is easier than in
the combination U+. To qualify as a model for flat space, a solution to them must
also be a solution to the Hamiltonian constraint and to the Poisson brackets with the
Hamiltonian constraint.

{E ′[ f ], H [g]} =
∫

dz f ′(z)g(z)

(
(Kx E x + Ky E y)E

κ
√
E E x E y

)
(z), (27)

{(Kx E x + Ky E y)[ f ], H [g]} = H [ f g]. (28)

From (27) a quantum anomaly may arise. An operator version is already given in
(21).

The first one of the constraints (26) is solved by states with the same label k for
all edges.

The second one is formulated by replacing the right-hand side of (19) by the
commutator of Ĥ1 with the volume operator. The action of Ĥ1 on a state |s〉 of the
form (5) with k+ = k− = k is given by

Ĥ1|s〉 = 
Pγ
− 3

2

2μ0ρ0

∑
v

√|μv||ρv|
(√|2k + 1| − √|2k − 1|

)

× sin(μ0X) sin(ρ0Y )|s〉, (29)

where μ0 and ρ0 are arbitrarily chosen, fixed values. The action of the volume
operator is
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V̂ |s〉 = γ
3
3 
3Pl

2

∑
v

(|μv||ρv||k|) 1
2 . (30)

Now assume the state function at a certain vertex to be given by the superposition

|s〉v =
∑
m,n

amn|k, m, n〉, (31)

wherem = μv

μ0
and n = ρv

ρ0
. The action of the commutator [V̂ , Ĥ1] on such a function

set equal to zero yields the following difference equation for the coefficients amn ,

√|m − 2||n − 2|
(√|m||n| − √|m − 2||n − 2|

)
am−2,n−2−√|m + 2||n − 2|

(√|m||n| − √|m + 2||n − 2|
)

am+2,n−2− (32)
√|m − 2||n + 2|

(√|m||n| − √|m − 2||n + 2|
)

am−2,n+2+√|m + 2||n + 2|
(√|m||n| − √|m + 2||n + 2|

)
am+2,n+2 = 0,

where the k-dependence has dropped out.
The equation resulting from the structure function (27) contains H2, whose oper-

ator version is more ambiguous, compare [1] and [2]. Anyway, after deciding for one
version, the action of the structure function operator on solutions of (26) may already
lead to an ambiguity, before the Hamiltonian constraint has to be solved. This would
indicate gravitational fluctuations of the Minkowski vacuum. Work is ongoing.
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