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Abstract In the Ashtekar-Barbero formulation of canonical general relativity based
on an SU(2) connection, Lorentz covariance is a subtle issuewhich has been the focus
of some debate. Here we present a Lorentz covariant formulation generalising the
notion of a foliation of spacetime to a field of local observers which specify a time
direction only locally. This field spontaneously breaks the local SO(3,1) symmetry
down to a subgroup SO(3); we show that the apparent symmetry breaking to SO(3) is
not in conflict with Lorentz covariance. We give a geometric picture of our construc-
tion as Cartan geometrodynamics and outline further applications of the formalism
of local observers, motivating the idea that observer space, instead of spacetime,
should serve as the fundamental arena for gravitational physics.

1 Introduction

In first order formulations of general relativity one has a notion of local Lorentz invari-
ance,which can be thought of as oneway of implementing the equivalence principle.1

It is crucial to understand the fate of this gauge symmetry in attempts to quantise
gravity, both theoretically and with regard to a possible phenomenology of quantum
gravity (including matter). There are strong experimental constraints on many pos-
sible types of violation of Lorentz covariance and any proposed theory of quantum
gravity must prove itself consistent with such constraints.

In Hamiltonian formulations, in particular the Ashtekar-Barbero connection for-
mulation [1, 2], the issue of Lorentz covariance has been the focus of some debate,
since the Ashtekar-Barbero formulation naturally uses the gauge group SU(2) or
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SO(3),2 instead of the full Lorentz group. The use of this smaller gauge group is
connected to the appearance of second-class constraints in previous attempts tomain-
tain full Lorentz covariance. Here we show how to avoid second class constraints and
stay Lorentz covariant by introducing a field of local observers. Details are given in
the paper [3].

2 Canonical First Order General Relativity

Starting from the Lorentz covariant Palatini-Holst action for vacuum general rela-
tivity without cosmological constant

S[e, ω] = 1

8πG

∫
κabcd ea ∧ eb ∧ Rcd [ω] , (1)

where κabcd is an SO(3, 1)-invariant bilinear form on so(3, 1),

κabcd = 1

2
εabcd + 1

2γ
(ηacηbd − ηadηbc) , (2)

one can perform the usual canonical analysis and find that the 18 momenta π i
ab

conjugate to the spatial components of the connectionωab
i are expressible in terms of

only 12 tetrad components ea
i . This leads to second class constraints, which provide

an obstacle to quantisation and usually require introducing new variables which are
harder to interpret in terms of spacetime geometry.

InHolst’s analysis [4] leading to thewell-knownAshtekar-Barbero formulation of
canonical gravity, one deals with this issue by explicit symmetry breaking to SO(3):
Imposing ‘time gauge’ e0i = 0 and defining

Aab = ωab + γ

2
εab

cdωcd , (3)

only the so(3) part of A (the Ashtekar-Barbero connection) has nonvanishing con-
jugate momentum, and one avoids second class constraints. However, this comes at
the price of losing Lorentz symmetry which is broken explicitly by the gauge choice.

In our formalismwe replace time gauge by a condition involving a field of internal
observers y which specifies a time direction locally, and leads to a spontaneous
breaking of symmetry from SO(3, 1) to a subgroup SO(3)y depending on y(x) at
each spacetime point x .

2 The covering group SU(2) is required if one wants to include spinors. We consider pure gravity;
the symmetry groups we discuss arise as the isometry groups of real manifolds or the stabilisers of
points in them, and can be taken to be real-valued matrix groups. By expressions such as SO(3, 1),
we mean the connected component preserving orientation and time orientation.
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3 General Relativity with Local Observers

For a given spacetime manifold with metric g or frame field e, we define a field
of observers as a unit future-directed timelike vector field u. Using the frame field
we can map it to a spacetime scalar y = e(u) valued in the velocity hyperboloid
H3 = SO(3, 1)/SO(3). But such a field of internal observers can be defined without
specifying the metric, and is hence suitable for a framework in which the metric
arises dynamically as a solution to the equations of motion.

Our formalism forgeneralised canonical gravitybuilds on the following variables:

• a field of internal observers y, valued in H3 ⊆ R
3,1, thought of as giving a local

notion of time direction,
• a nowhere-vanishing 1-form û, thought of as non-dynamical and generalising the
normal to a foliation (if û ∧ dû = 0, û is of the form û = N dt)—one can always
reduce to the case of a foliation by choosing an appropriate û,

• an R
3
y-valued ‘triad’ 1-form E , where R3

y is the subspace of R3,1 orthogonal to y
(this generalises time gauge).

The spacetime coframe field is then simply given by

e = E + û y, (4)

analogous to how one reconstructs the spacetime metric in the ADM formulation
using lapse and shift. As is usual in first order gravity, we must require e to be
nondegenerate. The field of internal observers y defines a field of spacetime observers
by y = e(u), and one finds that E(u) = 0 so that E is actually spatial.

Similarly, we define spatial and temporal parts of the spin connection,

ω = Ω + û Ξ, (5)

Substituting (4) and (5) into the Palatini-Holst action (1) gives us a generalised
Hamiltonian formulation of vacuumgeneral relativity in terms of an action depending
on y, E,Ω andΞ that we give in [3]. Up to this stage everything is Lorentz covariant
– we have just changed variables in the action.

The rôle of the field of internal observers y is to give us a local embedding of
SO(3) into SO(3, 1). The embedding can be freely changed by applying a Lorentz
transformation y �→ y′ = Λ y; allowing those Lorentz transformations instead of
thinking of y as fixed restores Lorentz covariance.

The spatial connection Ω can be projected to its so(3)y part Ω . Then under a
local Lorentz transformation

Ω �→ Ω ′ = Λ−1 Ω Λ + πy′(Λ−1 d⊥Λ) , (6)

where πy′ is a projector onto so(3)y′ and d⊥ = d − û ∧£u is a spatial exterior deriva-
tive. Therefore, if one only applies SO(3)y transformations which leave y invariant,
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Ω transforms as an SO(3)y connection, while if one allows for transformations that
rotate the local internal observer y to y′, the transformed connectionΩ ′ is in so(3)y′ .
This is as it should be.

To understand the dynamical structure of this formalism, we focus on the term in
the action that determines the symplectic structure in Hamiltonian general relativity,

S = 1

8πG

∫
κabcd û ∧ Ea ∧ Eb ∧ £uΩcd + · · · , (7)

Since E ∧ E is valued only in so(3)y , only half of the components of Ω have
nonvanishing conjugate momentum. The number of independent components of E
matches the number of conjugate momenta, and no second-class constraints arise—
but we did not find it necessary to impose any gauge fixing such as the time gauge
employed in Holst’s analysis.

One can make the splitting of so(3, 1) into a rotational subalgebra so(3)y and a
complement py explicit by choosing local bases J ab

I and Bab
I (depending on y). Then

AI := Ω I + γ K I , (8)

is conjugate to (E∧E)I ,whereΩ and K are the so(3)y andpy parts ofΩ . Equation (8)
is the Ashtekar-Barbero connection, and our formalism is dynamically equivalent to
the Ashtekar-Barbero formulation: It has the same phase space variables, subject
to the same constraints that define the dynamics. In the form (8) manifest Lorentz
covariance is lost; it can be recovered by viewing so(3)y and py not as fixed (isomor-
phic) representations of SO(3), but as subspaces of so(3, 1) specified by the field y.

4 Cartan Geometrodynamics

Situations of spontaneous symmetry breaking in gravitational theories are geomet-
rically best understood in terms of Cartan geometry [5]. A well-known example is
theMacDowell-Mansouri formulation [6] of gravity with cosmological constant (we
take Λ > 0 but Λ < 0 is analogous) in terms of the SO(4, 1) invariant action

SMM = − 3

32πGΛ

∫
εabcde

(
Fab ∧ Fcd

)
ye , (9)

where F is the curvature of an SO(4, 1) connection A. The field y takes values in de
Sitter spacetime SO(4, 1)/SO(3, 1) ⊆ R

4,1; it breaks the symmetry at each point in
spacetime to the subgroup SO(3, 1)y leaving y invariant. Fixing y = (0, 0, 0, 0, 1)
in the action breaks the symmetry explicitly.

The Lie algebra so(4, 1) splits into a subalgebra so(3, 1)y and a complement ty ;
identifying the so(3, 1)y part of A with the spin connection ω and the ty part with a
coframe e,
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A =
⎛
⎝ ω

√
Λ
3 e

−
√

Λ
3 e 0

⎞
⎠ , (10)

the action (9) reduces to the Einstein-Hilbert-Palatini action with a cosmological
term.

Cartan geometry is about infinitesimally approximating the geometry of a curved
manifold by a homogeneous spacetime G/H (in this case de Sitter spacetime) which
generalises the tangent spaceRp,q used in (pseudo-)Riemannian geometry. The Car-
tan connection A relates the model spacetimes tangent to different points of the
manifold – for a model spacetime of non-zero curvature, A is flat if the manifold is
(locally) isomorphic to the model spacetime. This naturally introduces a cosmolog-
ical constant into gravity, given by the curvature scale of the model spacetime.

Our reformulation of the Ashtekar-Barbero formalism for canonical gravity is
best interpreted as describing the geometry of space as Cartan geometrodynamics:
The so(3)y connection Ω (or, alternatively, the Ashtekar-Barbero connection) and
the triad E can be assembled into a Cartan connection

A =
(

Ω 1
l E

0 0

)
, (11)

taking values in the Lie algebra of the Euclidean group iso(3) if we consider a vanish-
ing cosmological constant (l is an (unspecified) length scale put in for dimensional
reasons). The appearance of the group ISO(3) is understood as follows: Spacetime is
infinitesimally modelled on Minkowski spacetime, with isometry group ISO(3, 1).
At a given point in spacetime, picking an observer in the model Minkowski space-
time gives a notion of ‘space’ in the model spacetime as the maximal totally geodesic
hypersurface orthogonal to this observer – in the construction above, we referred to
this as the subspace R

3
y orthogonal to an observer y. This breaks the symmetry to

ISO(3), the isometry group of R3
y . Picking a point in R

3
y tangent to the spacetime

point then breaks the symmetry further to SO(3), giving the splitting (11). For a more
detailed discussion of the geometry behind Cartan geometrodynamics we refer to [7].

5 Summary and Outlook

Wehave given a reformulation of canonical general relativity in first order formwhich
uses local observers that define a local notion of time. These give an embedding of the
rotational subgroup SO(3) into the Lorentz group that allows to reconstruct Lorentz
covariance from the SO(3) Ashtekar-Barbero formulation of canonical gravity. The
geometry behind our constructions is best understood in terms of Cartan geometro-
dynamics. Since this formulation requires only a local choice of time direction not
necessarily related to a foliation of spacetime, it links the canonical and covariant
formulations of general relativity [8].
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It would be important to understand the coupling of matter—which would be
necessary to investigate the possibility of physically observable Lorentz violation—
and the role of the field of internal observers there. So far they have been treated
like lapse and shift, as Lagrange multipliers. Making the observer field dynamical
could relate our framework to models with dynamical reference frames, such as
Brown-Kuchař dust [9].

Similar constructions could also be useful in approaches to quantumgravitywhere
local Lorentz covariance is not manifest, such as Hořava-Lifshitz gravity, shape
dynamics or causal dynamical triangulations.

Taking the idea of local observers one step further, it is natural to consider the
space of all possible choices of local observer—observer space. In general relativity,
this is the direct product of spacetime with the local velocity space H3 of normalised
future-directed timelike vectors, but we consider it as a seven-dimensional manifold
in its own right and study its geometry, both in general relativity and in more gen-
eral settings. This is the viewpoint adopted in the work [7], where we show how
the Cartan connection A specified by a frame field e and a spin connection ω as in
(10) gives a Cartan geometry on observer space, with model space SO(4, 1)/SO(3),
the space of all observers in de Sitter spacetime. Conversely, we investigate inte-
grability conditions that allow the reconstruction of an invariant spacetime starting
from an observer space Cartan geometry (i.e. a general Cartan geometry modelled
on SO(4, 1)/SO(3)); intuitively, such a reconstruction is possible if the connection
is flat in the ‘velocity’ directions of observer space.

Different approaches to quantum gravity and quantum-gravity phenomenol-
ogy incorporate the idea that spacetime geometry is an observer-dependent (or
‘momentum-dependent’), relative concept. From the perspective of observer space,
such ideas correspond to observer space Cartan connections that are not flat in veloc-
ity directions, so that no invariant spacetime can be reconstructed.

One example is the proposal of relative locality [10] which suggests that ‘space-
time’ and hence the notion of locality are observer-dependent, but there is an invariant
momentum space shared by all observers. In [7] we find that the framework of rela-
tive locality corresponds to an observer space connection that is flat in ‘spacetime’,
not ‘velocity’ directions. For a general observer space geometry, both ‘spacetime’
and ‘velocity space’ are only defined relative to an observer.

It will be interesting to seewhether other ideas, such as that of an ‘effectivemetric’
〈gμν〉k (depending on a momentum scale k) that appears in the asymptotic safety
scenario for quantum gravity [11], can be discussed in the framework of observer
space geometry.
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