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Abstract The probability distributions for individual measurements for the smeared
energy densities of quantum fields, in the two and four-dimensional Minkowski
vacuum are discussed. These distributions share the property that there is a lower
bound at a finite negative value, but no upper bound. Thus arbitrarily large positive
energy density fluctuations are possible. In two dimensions we are able to give an
exact unique analytic form for the distribution. However, in four dimensions, we are
not able to give closed form expressions for the probability distribution, but rather
use calculations of a finite number of moments to estimate the lower bound, and
the asymptotic form of the tail of the distribution. The first 65 moments are used
for these purposes. All of our four-dimensional results are subject to the caveat that
these distributions are not uniquely determined by the moments. One can apply the
asymptotic form of the electromagnetic energy density distribution to estimate the
nucleation rates of black holes and of Boltzmann brains.

1 Introduction

There has been extensive work in recent decades on the definition and use of the
expectation value of a quantum stress tensor operator. However, the semiclassical
theory does not describe the effects of quantum fluctuations of the stress tensor
around its expectation value.
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One way to examine these fluctuations is through the probability distribution for
individual measurements of a smeared stress tensor operator. This distribution was
given recently for Gaussian averaged stress tensors operators in two-dimensional
flat spacetime [1] using analytical methods, and more recently for averaged stress
tensors in four-dimensional spacetime from calculations of a finite set of moments.
(Throughout our discussion, all quadratic operators are understood to be normal-
ordered with respect to the Minkowski vacuum state.)

1.1 Quantum Inequalities

Quantum inequalities are lower bounds on the expectation values of the smeared
energy density operator in arbitrary quantum states [2–7]. If we sample in time along
the worldline of an inertial observer, the quantum inequality takes the form

∫ ∞

−∞
f (t) 〈Tμνuμuν〉 dt ≥ − C

τd
, (1)

where Tμνuμuν is the normal-ordered energy density operator, which is classically
non-negative, t is the observer’s proper time, and f (t) is a sampling function with
characteristic width τ . Here C is a numerical constant, typically small compared
to unity, d is the number of spacetime dimensions, and we work in units where
c = � = 1.

Although quantum field theory allows negative expectation values of the energy
density, quantum inequalities place strong constraints on the effects of this negative
energy for violating the second law of thermodynamics [2], maintaining traversable
wormholes [8] or warpdrive spacetimes [9]. The implication of (1) is that there is
an inverse power relation between the magnitude and duration of negative energy
density.

For a massless scalar field in two-dimensional spacetime, Flanagan [6] has found
a formula for the constant C for a given f (t) which makes (1) an optimal inequality.
This formula is

C = 1

6π

∫ ∞

−∞
du

(
d

du

√
g(u)

)2

, (2)

where f (t) = τ−1g(u) and u = t/τ . In four-dimensional spacetime, Fewster and
Eveson [7] have derived an analogous formula for C , but in this case the bound is
not necessarily optimal.
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2 Shifted Gamma Distributions: 2D Case

In two-dimensional Minkowski spacetime, we determined the probability distrib-
ution for individual measurements, in the vacuum state, of the Gaussian sampled
energy density

ρ = 1√
π τ

∫ ∞

−∞
Ttt e

−t2/τ2 dt. (3)

This was achieved by finding a closed form expression for the generating function
of the moments 〈ρn〉 of ρ, from which the probability distribution was obtained. The
definition of the n’th moment of the distribution of a variable x is given by

an =
∫

xn P(x) dx . (4)

The resulting distribution is conveniently expressed in terms of the dimensionless
variable x = ρ τ2 and is a shifted Gamma distribution:

P(x) = ϑ(x + x0)
βα(x + x0)α−1

Γ (α)
exp(−β(x + x0)), (5)

with parameters

x0 = 1

12π
, α = 1

12
, β = π. (6)

Here x = −x0 is the lower bound of the distribution (Fig. 1).
The lower bound, −x0, for the probability distribution for energy density fluctua-

tions in the vacuum is exactly Flanagan’s optimum lower bound, (2), on the Gaussian
sampled expectation value. As was argued in Ref. [1], this is a general feature, giving
a deep connection between quantum inequality bounds and stress tensor probability
distributions. The quantum inequality bound is the lowest eigenvalue of the sam-
pled operator, and is hence the lowest possible expectation value and the smallest
result which can be found in a measurement. That the probability distribution for
vacuum fluctuations actually extends down to this value is more subtle and depends
upon special properties of the vacuum state, and is implied by the Reeh-Schlieder
theorem.

There is no upper bound on P(x), as arbitrarily large values of the energy density
can arise in vacuum fluctuations. Nonetheless, for the massless scalar field, negative
values are much more likely; 84% of the time, a measurement of the Gaussian
averaged energy density will produce a negative value. However, the positive values
found the remaining 16% of the time will typically be much larger, and the average
first moment of P(x) will be zero.

Furthermore, the probability distribution for the two-dimensional stress tensor is
uniquely determined by its moments, as a consequence of the Hamburger moment
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Fig. 1 The graph of P(x) versus x of the probability distribution function for the energy density, ρ,
of amassless scalar field sampled in timewith aGaussian ofwidth τ . Here x = ρτ 2. The distribution
has an integrable singularity at the optimal quantum inequality bound x = −x0 = −1/12π

theorem [10]. This condition is a sufficient, although not necessary, condition for
uniqueness, and is fulfilled by the moments of the shifted Gamma distribution.

3 The 4D Case

In four dimensions, the operators ρS , and ρEM all have dimensions of length−4. Their
probability distributions P(x) are taken to be functions of the dimensionless variable

x = (4π τ2)2 A, (7)

where A is the Lorentzian time average of ρS , and ρEM, where ρS and ρEM are the
smeared energy density operators for the massless scalar field, and electromagnetic
fields, respectively.

The distributions were calculated numerically from 65 moments [11]. The sit-
uation here is less straightforward. In this case, the moments grow too rapidly to
satisfy the Hamburger moment criterion. Unfortunately, this means that we cannot
be guaranteed of finding a unique probability distribution P(x) from these mo-
ments. These probability distributions share some of the main characteristics of their
two-dimensional counterparts. They have a lower bound but no upper bound. Our
techniques allow us to give approximate lower bounds and the asymptotic forms of
the tails of the distributions.
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Our estimates for the lower bounds are

− x0(ρEM) ≈ −0.0472, −x0(ρS) ≈ −0.0236. (8)

These are also estimates of the optimal quantum inequality bounds for each field.
In contrast, the non-optimal bound for ρS , given by the method of Fewster and
Eveson [7], is −x0(FE) = −27/128 ≈ −0.21, which is an order of magnitude
larger.

It is of interest to note that the magnitudes of the dimensionless lower bounds,
given in (8) are small compared to unity. The fact that the probability distribution
has a long positive tail, and must have a unit zeroth moment and a vanishing first
moment, implies that the total probability of a negative value to be substantial. The
small magnitudes of x0(ρS) and x0(ρEM) imply strong constraints on the magnitude
of negative energy which can arise either as an expectation value in an arbitrary state,
or as a fluctuation in the vacuum. They also imply that an individual measurement
of the sampled energy density in the vacuum state is very likely to yield a negative
value.

One can show that the asymptotic behavior of the tail of the probability distribu-
tion is determined by the moments, even if the exact probability distribution is not
uniquely determined. Our fitted tail decreases asymptotically as

Pfit ∼ x−2 e−ax1/3 , (9)

where a is a constant. We are also able to show that no distribution with the same
moments can have a tail which decreases at a faster rate than ours.

By contrast, the tail of a Boltzmann distribution for thermal fluctuations falls off
as

PBoltzmann ∼ e−βx , (10)

where β is a constant. Therefore vacuum fluctuations outweigh thermal fluctuations
at high energies (Fig. 2).

3.1 Application: Black Hole Nucleation

The fact that the energy density probability distribution has a long positive tail implies
a finite probability for the nucleation of black holes out of the Minkowski vacuum
via large, though infrequent positive fluctuations (see Ref. [11]). This probability
cannot be too large, of course, or it will conflict with observation. Our estimate of
the probability depends only on the asymptotic form of the tail. (One can use similar
arguments to estimate the probability of “Boltzmann brains” nucleating out of the
vacuum.)
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Fig. 2 The figure shows a comparison of the asymptotic form of the tails of both our fitted dis-
tribution for vacuum fluctuations and for the thermal fluctuations described by the Boltzmann
distribution. At high energies, vacuum fluctuations outweigh thermal fluctuations

4 Summary

We have found that the probability distribution for vacuum fluctuations of the
Gaussian-smeared energy density for a massless scalar field in two-dimensional
spacetime is uniquely defined by a shifted gamma distribution. The distribution has
a negative lower bound but no upper bound. It has an integrable singularity (i.e.,
a “spike”) at the lower bound. In addition, we find that there is a deep connection
between the lower bound of the distribution and the quantum inequalities. In fact the
lower bound of the distribution coincides exactlywith the optimal quantum inequality
bound for a Gaussian sampling function, derived earlier by Flanagan.

The lower bound is very small in magnitude, but the probability density is large
in the region between zero and the lower bound. As a result, rather surprisingly, the
probability of obtaining a negative result in an individual measurement is 84%! Al-
though the negative fluctuations are very frequent, they are small in magnitude. As a
result, one would not expect to see large effects of negative energy (e.g., violations of
the second law, wormholes, warpdrives, etc.) nucleating out of the vacuum. However,
the distribution has a long positive tail, which guarantees that the frequent but small
negative energy density fluctuations are balanced by the much rarer but larger posi-
tive energy fluctuations. Therefore, the expectation value of the energy density in the
Minkowski vacuum state is zero. It is quite remarkable that the quantum inequalities
which are bounds on the expectation value of the energy density in an arbitrary quan-
tum state, should be so intimately related to the probability distribution of individual
measurements of the energy density made in the vacuum state.
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In four dimensions, we find similarities with the two-dimensional case, in that
there is a lower bound but no upper bound. We are able to give numerical estimates
of the lower bounds, i.e., the optimal bounds, and the asymptotic form of the tails.
The lower bounds are negative with small magnitudes. However, our methods do
not allow us to determine whether there is a “spike” at the lower bound, as in two
dimensions. Nonetheless, the low magnitudes of the lower bounds indicate that a
significant fraction of the probability must lie in the negative region. Therefore, as
in the two-dimensional case, the probability of obtaining a negative value in an indi-
vidual measurement is quite high. The long positive tail drops off more slowly than
that of a Boltzmann distribution, which implies that vacuum fluctuations dominate
over thermal fluctuations at high energies.

Unfortunately, it seems likely that it is not possible to uniquely determine the
four-dimensional distributions from the moments alone, as the latter do not obey the
Hamburger moment condition. Nonetheless, we are able to glean some information
from the moments. For example, we can determine that no distribution with the same
moments as ours can have a tail which decreases faster than ours. The asymptotic
forms of the long positive tail allow us to estimate the probability of nucleation of
(small) black holes and “Boltzmann brains” out of the vacuum.

Clearly further work can be done on this subject. One topic would be to see what
additional information can be obtained from our calculated four-dimensional proba-
bility distributions, even if they cannot be uniquely determined from their moments.
For example, does the “spike” behavior persist in four dimensions as well as in two,
and what is its physical significance? Another would be to determine what the op-
timal quantum inequality bounds actually are. It would also be useful to try various
sampling functions. Can the probability distributions and optimal bounds can be ob-
tained by other methods which do not have the limitation of the ambiguities in the
momentmethods? There is more to do to explore the physical content of stress-tensor
fluctuations.
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