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Abstract We discuss how the quantization of the spinorial formalism for Loop
Quantum Gravity naturally leads to the notion of tensor operators. These objects
encode the natural structure to discuss observables associated to the intertwiner
space. They allow in particular to deal with any type of gauge group, classical or
quantum. After reviewing the standard case of SU(2), we focus on the specific
example ofUq(su(2)) and illustrate how dealing with a quantum group leads to the
notion of quantum curved geometry.

1 Introduction

The current Loop Quantum Gravity (LQG) theory describes the quantum gravity
regime with zero cosmological constant. The kinematical Hilbert space of the theory
is spanned by quantum states for spatial geometries, the so-called spin networks [1].
Recently, it has been realized that spin network states are the quantization of some
classical spinor states [2]. This spinorial formalism is reviewed in the next section,
where we recall how it is linked to a discrete version of General Relativity, the twisted
geometries. Then, focusing on a given vertex, we show how the spinorial structure
associated to this vertex can be quantized in terms of tensor operators for the gauge
group SU(2). This allows us to embed the U(N ) framework in a new mathematical
formalism generalizable to the quantum group case [3].

In the second part, we show how the use of tensor operators in LQG can be
generalized to the quantum groupUq(su(2)). The use of a quantum group as gauge
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group instead of the Lie group SU(2) is motivated by the idea that this could be a way
to introduce a non-vanishing cosmological constant Λ in the LQG framework [4].
From tensor operators, we build observables for Uq(su(2))-intertwiner that allow
us to identify geometric observables for curved geometries such as the angle and
length/area operators.

2 The Spinorial Formalism for LQG

The startingpoint ofLQGis a smeared algebra, the holonomy-fluxalgebra, associated
to graphs embedded into the spatial manifold. The continuum Ashtekar-Barbero
variables are replaced by a pair (ge, Xe) ∈ SU(2) × su(2) associated to the edge e
of a given graph Γ .

At the quantum level, the kinematical Hilbert space of LQG is spanned by the spin
network states, |Γ, { je}, {ιv}〉 where je ∈ N/2 is a representation of SU(2) and is as-
sociated to each edge e ofΓ . ιv is a SU(2)-intertwiner associated to the vertex v ofΓ .
The geometrical interpretation of spin network states is provided by the properties of
the angle, area and volume operators which are diagonalized by these quantum states.
All geometric information is then encoded in the combinatorial aspects of the graphs.
Let us now focus on a given graph Γ and consider a truncature of the full continuum
theory to a finite Hilbert space HΓ = L2(SU(2)E , d E g) with E the number of
edges of Γ and dg the Haar measure on SU(2). To understand what the classical
degrees of freedom represented by the spin network states inHΓ are, let us introduce
classical spinor networks.

2.1 Classical Spinor Networks

We focus on a given edge e of the graph Γ . This oriented edge is decorated by two

spinors |ze〉 =
(

z(0)
e

z(1)
e

)
∈ C

2 and |z̃e〉 ∈ C
2 respectively associated to the source

vertex s(e) of e, and to the target vertex t (e) of e. The phase space is defined by
assuming that |ze〉 is dual to its conjugate |z̄e〉: {z(a)

e , z̄(b)
e } = −iδab where a, b ∈

{0, 1}. The spaceC2×C
2, equipped with its canonical Poisson brackets, allows us to

obtain the structure of the phase space of LQG on a given edge e, SU(2) × su(2) �
T ∗SU(2). Indeed, the holonomy-flux algebra can be expressed in terms of the spinor
variables1:

Xe := 〈ze|σ |ze〉, ge := |ze〉[z̃e| − |ze]〈z̃e|√〈ze|ze〉〈z̃e|z̃e〉
, (1)

1 We do not consider here the degenerate configuration 〈z|z〉 = 0 which is equivalent to |X| = 0.
See [5] to see how this degenerate case can be treated.
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with the additional area matching constraint on the spinors, Me := 〈ze|ze〉 −
〈z̃e|z̃e〉 = 0, where σ i are the Pauli matrices and |ze] :=

(
−z̄(1)

e

z̄(0)
e

)
. Imposing

this constraint Me ensures that the two 3-vectors Xe and X̃e have the same norm
and that ge is unitary. The 6-dimensional space T ∗SU(2) and its symplectic struc-
ture are recovered by symplectic reduction of C

2 × C
2 by the constraint Me,

T ∗SU(2) � (C2 × C
2)//M .

Let us now go back to the full graph Γ . The spinors are now labelled by a ver-
tex v and one of the edges e which has v for vertex. Thus, Γ is decorated with
a set of spinors |ze,v〉. The components of the corresponding vectors Xe,v can be
seen as generating SU(2) transformation on the spinor |ze,v〉. The classical equiv-
alent of the closure constraint which imposes the global SU(2) invariance at each
node of the graph Γ of a spin network state is simply written in terms of the 3-
vectors as

∑
e⊃v Xe,v = 0. This translates into a matricial constraint on the spinor

variables, Cv ≡ ∑
e⊃v

(|ze,v〉〈ze,v| − 1
2 〈ze,v|ze,v〉I

)
. If E and v denote respectively

the number of edges of Γ and the number of vertex of Γ , the symplectic reduc-
tion of (C2 × C

2)//(Me)
E by (Cv)

V gives a symplectic space isomorphic to the
gauge invariant phase-space of LQG on a fixed graph. Moreover, Γ decorated by
{|ze,v〉/Me = 0 and Cv = 0, ∀ e, v ⊂ Γ } defines a spinor network.

2.2 Twisted Geometries

A nice geometrical interpretation of a spinor network comes from twisted geome-
tries [6]. Essentially, a spinor network can be interpreted as a collection of polyhedra
glued along their faces, where two shared faces have the same area but not neces-
sary the same shape. The twisted geometry formalism is based on a seminal work
by Minkowski which showed how given a vertex and a set of variables defining
the twisted geometries, one can reconstruct a unique polyhedron dual to the vertex
[7]. These variables and their relationship to the spinor variables are the following:
je ≡ 〈ze|ze〉

2 the area of the dual surface to the edge e; two unit vectors Ne,s(e), Ñe,t (e)

such as Xe,v(ze,v) = je Ne,v; an angle ξe ≡ −2(arg(z(1)
e ) − arg(z̃(1)

e )) the conjugate
variable of je. Ne,s(e), Ñe,t (e) are the two normals to the dual surface to the edge e
as seen from the two vertex frames sharing it. ξe is related to the extrinsic curvature
between the frames.

The name “twisted geometries” is motivated by this picture where geometries can
be discontinuous at the faces connecting the polyhedra. This is related to the fact that
the kinematical Hilbert space of LQG has room for torsion. In this sense, twisted
geometries are more general than Regge Calculus which is torsion-free. For a graph
with 4-valent vertices, Regge Calculus can be recovered by constraining the twisted
geometries with some “shape-matching conditions” [8].
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2.3 Tensor Operators

The quantization of a spinor |z〉 and of its dual |z] ormore precisely of their conjugate
variables give tensor operators of rank 1/2 for SU(2):

〈z| = (z̄(0), z̄(1)) → T 1/2 =
(

a†

b†

)
, [z| = (−z(1), z(0)) → −T̃ 1/2 =

(−b
a

)
,

(2)
where αi = a, b are harmonic oscillators, [αi , α

†
j ] = δi j , the other commutators be-

ing zero.Moregenerally, a tensor operator of rank j ∈ N/2, t j
m , is anobject transform-

ing as a vector | j, m〉 (m ∈ {− j, · · · ,+ j}) under the adjoint action, �, of su(2). We
have Jz�t j

m = [Jz, t j
m] = m t j

m, J±�t j
m = [J±, t j

m] = √
( j ∓ m)( j ± m + 1) t j

m±1,
where Jz, J± are the su(2)-generators.

Note that Jz, J± can also be seen as the components of a tensor operator of rank 1
for su(2). And just as |1, l〉 = ∑

m C1/2 1/2 1
m l−m l |1/2, m〉⊗|1/2, m − l〉 (l ∈ {−1, 0, 1})

where C1/2 1/2 1
m m−l l are Clebsh-Gordan (CG) coefficients, the tensor operator of rank 1

(−J+/
√
2, Jz, J−/

√
2) can be expressed in terms of tensor operators of ranks 1/2

defined in (2) and we recover the Jordan-Schwinger representation of SU(2). The
U(N ) formalism developed for SU (2) intertwiners in terms of harmonic oscillators
can also be rewritten in terms of tensor operators of rank 1/2, (i)T 1/2, (i)T̃ 1/2,
where i denotes the i th leg of a given vertex v. The observables Ei j = a†

i a j + b†i b j ,

Fi j = ai b j − a j bi and F†
i j (i, j ∈ {1, . . . , N }) for the space of N valent SU(2)-

intertwiners are simply rank 0 tensor operators built from these tensor operators
of rank 1/2 using CG coefficients to combine them into a scalar operator. These
operators can be used to generate all observables for the intertwiner [9].

3 Generalization to Uq(su(2)) as Gauge Group: Towards
Curved Discrete Geometries?

3.1 Tensor Operators

We focus on Uq(su(2)) with q real, which representation theory is similar to the
one of su(2). We refer to the Appendix for the definition and properties regarding
Uq(su(2)) [10]. As for the q = 1 case, a tensor operator is an operator t j

m which
transforms at the same time under the adjoint action, �, of Uq(su(2)) and as the
vector | jm〉,

K � t j
m = K t j

m K −1 = qmt j
m, (3)

J± � t j
m = J± t j

m K −1 − q± 1
2 K −1 t j

m J± = √[ j ∓ m][ j ± m + 1] t j
m±1,
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The decomposition of a tensor operator into a product of tensor operators mentioned
in the previous section remains valid. However, the tensor product of tensor operators
becomes complicated to construct in the q �= 1 case. Indeed, if t is a tensor operator
then (1)t = t ⊗ 1 is a tensor operator, but 1 ⊗ t is in general not a tensor operator (it
is however a tensor operator if q = 1, i.e. for su(2)). We need to use the R-matrix
to construct an intertwining map from the permutation. We say that the permutation
composed with the R-matrix is a q-deformed permutation. Starting from a given t
of rank j , we can build N tensor operators of rank j using consecutive deformed
permutations. For all i ∈ {1, . . . , N },

(i)t = (Ri i−1..Ri1(1 ⊗ ... ⊗ t)R−1
i1 ..R−1

i i−1) ⊗ 1 ⊗ ..1 (4)

is a tensor operator of same rank as t. The fundamental tensor operators are the
tensor operators of rank 1/2, the spinor operators. Similarly to the q = 1 case, a
pair of q-harmonic oscillators provides a convenient set of variables to realize these
operators [11]. The annihilation and creation operators αi = ai , bi , α

†
i = a†

i , b†i , and
the number operator Nαi satisfy now the following conditions

[αi , α j ] = [α†
i , α

†
j ] = 0, [αi , α

†
j ]q± 1

2
= δi j q

∓Nαi , (5)

q Nαi /2α
†
i = q1/2α

†
i q Nαi /2, q Nαi /2αi = q−1/2αi q

Nαi /2.

We can use this pair of harmonic oscillators to construct the Jordan-Schwinger real-
ization the Uq(su(2)) generators [11]

Jz = 1

2
(Na − Nb), J+ = a†b, J− = b†a, (6)

which are not the components of a tensor operator of rank 1, contrary to the q = 1
case. Using (5), we can recover the Uq(su(2)) commutation relations provided in
(10). We can also use the Fock space of this pair q-harmonic oscillators to generate
the representations of Uq(su(2)).

Thanks to this realization, we can find the two solutions of (3) for j = 1/2, which
transform therefore as spinors.

t
1
2 =

(
a†q Na/4

b†q(2Na+Nb)/4

)
q→1−→ T 1/2, t̃

1
2 =

(
q(2Na+Nb+1)/4b
−q(Na−1)/4a

)
q→1−→ −T̃ 1/2. (7)

Using the relevant CG coefficients, we construct the operators t1 which transform as

vectors, t1±1 = t
1
2±t̃

1
2±, t10 = 1√[2]

(
q− 1

4 t
1
2+ t̃

1
2− + q

1
4 t

1
2−t̃

1
2+
)

. Explicitly, we have,
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t1±1 = ∓ q− 1
2√[2]q

1
2 (Na+Nb)q

Jz
2 J±,

q→1−→ ∓ J±√
2

(8)

t10 = q− 1
2

[2] q
1
2 (Na+Nb)(q−1/2 J+ J− − q1/2 J− J+)

q→1−→ Jz .

Any other tensor operator of rank j can be built in a similar way by combining spinor
operators and CG coefficients. Then, the construction of tensor operators of rank j
from tensor products of a given tensor operator can be done using (4). Note that in
general (n)t j1 and (m)t̃ j2 will not commute in the quantum group case, contrary to
the q = 1 case.

3.2 Observables for the q-Deformed Intertwiner Space

In LQG, the intertwiner |ι j1.. jN 〉 is understood as the fundamental chunk of quantum
space. We have seen in the previous section that the use of tensor operators allows
to construct operators invariant under the adjoint action of su(2) and to recover the
complete algebra of observables defined in the U(N ) framework. The tensor operator
formalism allows us to extend this framework to the quantum group case in a direct
manner.

As in the su(2) case, each leg k of the intertwiner corresponds to a representation

V jk . We can associate with each leg a tensor operator (k)t
1
2 . Using Uq(su(2)) re-

coupling theory, it is possible to build from these tensor operators a tensor operator
of rank 0, i.e. an observable. Let us denote |ιqj1.. jN

〉 the intertwiner defined from
representations ofUq(su(2)). Using spinor operators, as in the q = 1 case, there are
only three types of observables that can be constructed2:

Ei j =−√[2]
∑
mi

qC
1
2

1
2 0

m1m20
(i)t

1
2
m1

( j)t̃
1
2
m2

q→1−→a†
i a j + b†i b j = Ei j

G †
i j =−√[2]

∑
mi

qC
1
2

1
2 0

m1m20
(i)t

1
2
m1

( j)t
1
2
m2

q→−→ a†
i b†j − b†i a†

j = F†
i j

Fi j =−√[2]
∑
mi

qC
1
2

1
2 0

m1m20
(i) t̃

1
2
m1

( j)t̃
1
2
m2

q→1−→ ai b j − bi a j = Fi j ,

where the operators Ei j , F†
i j , Fi j of the U (N ) formalism are recovered. Prelimi-

nary results indicate that the Ei j can be expressed as functions of the generators of
Uq(u(N )) [3]. This means that the Uq(su(2)) intertwiner can be seen as a repre-

2 The other ordering choice for (i)t
1
2
m1 and

( j) t̃
1
2
m2 is equivalent to our choice modulo a rescaling of

the operators.
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Fig. 1 Hyperbolic and flat triangles represented in the Poincaré disk and the plane respectively

sentation of Uq(u(N )), a natural generalization of the classical case, where the E’s
form a u(N ) algebra.

Using vector operators we can construct different interesting observables. Con-
sidering (i)t1 and ( j)t1, we construct the following scalar operator, (i)t1 · ( j)t1 ≡
qC

1 1 0
m1m20

(i)t1m1
( j)t1m2

. Using recoupling theory, we calculate the action of this op-

erator on a three legs intertwiner |ιqjb jc ja
〉. For simplicity, we assume now a 2d space,

i.e. LQG for a 2+1 spacetime. We can then interpret this intertwiner as the quantum
state of a triangle. In the limit q → 1, we know that (b)t1 · (c)t1 ∝ (b)J · (c)J
is interpreted as the quantization of the cosine of the angle θa between the tangent
vectors ûc, ûb (cf Fig. 1).

The action of (b)J · (c)J on |ιq=1
jb jc ja

〉 leads to a quantized version of the flat cosine
law [12]. When performing the calculation with q �= 1, we obtain that the action of
(b)t1 · (c)t1, for an appropriate choice of normalization, is diagonal on |ιqjb jc ja

〉 with
eigenvalue,

cosh λ
2 cosh(( ja + 1

2 )λ) − cosh(( jb + 1
2 )λ) cosh(( jc + 1

2 )λ))

sinh(( jb + 1
2 )λ) sinh(( jc + 1

2 )λ)
, (9)

where λ = l p
R with l p the Planck length, R the cosmological radius, R = 1√

Λ
and

Λ the positive cosmological constant. This suggests now that we are dealing with a
quantization of the hyperbolic cosine law,

−n̂b · n̂c = ûb · ûc = cos θa = − cosh la
R + cosh lb

R cosh lc
R

sinh lb
R sinh lc

R

.

When R goes to infinity, we recover the standard flat cosine law. This strongly
suggests that dealing with Uq(su(2)) 3-legs intertwiner encodes a quantization of
the curved hyperbolic triangle (cf Fig. 1), where the quantized length is l̂i = ji + 1

2 .
Morevoer, if we consider the case where ja = 0 and jb, jc �= 0, unlike the classical
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case, we do not get θa = 0. This means that the introduction of curvature induced a
minimum angle as already guessed in [13].

A similar argument can be made when dealing with 3d spatial geometries. In

this case, λ = l2p
R2 . The vectors operators encode the quantization of the normals to

surfaces. The area operator is then quantized with eigenvalues j + 1
2 , and not as the

Uq(su(2)) Casimir as usually proposed in the quantum group case [4].
To recover a quantization of the hyperbolic cosine law shows that we are on

the right track to determine the variables encoding a curved twisted geometry. The
natural candidates are the complex variables zi variables which are the “classical”
analogues of the q-harmonic oscillators (5), equipped with a q-calculus. In this case,

the relevant differential is given by Dq f (z) ≡ ( f (zq
1
2 )− f (zq− 1

2 ))/(z(q
1
2 −q− 1

2 )).
We leave this for further investigations.

4 Outlook

Twisted geometries and the LQG spinorial reformulation provide an interesting
framework to get a better understanding of the classical degrees of freedom car-
ried by a spin network, a quantum state of space. When quantizing this spinorial
formalism of LQG, tensor operators arise naturally. These objects are easy to gener-
alize to the quantum group case. Whereas at this stage, we do not know clearly how
to introduce the cosmological constant in the LQG framework, we have showed how
using the quantum group does encode the presence of a cosmological constant in the
geometry dual to an intertwiner. In particular we have obtained a quantization of the
hyperbolic cosine law.

Morevoer, identifying these tensor operators as the right building blocks provides
new techniques to eventually solve the issue of the quantum groups appearance in
the LQG context as well as new directions to explore.

For example, it is now possible using the E ’s and F ’s observables to generalize
the Hamiltonian constraint for 3d gravity proposed in [14] in order to get an invariant
Hamiltonian operator underUq(su(2)). This would allow to connect for the first time
an LQG Hamiltonian constraint and the 6 j-symbols for Uq(su(2)) which appears
in the Turaev-Viro model. This would allow to probe how the use of quantum group
is a good approximation for encoding the cosmological constant.

Appendix: Uq(su(2))

The quasi-triangular Hopf algebra Uq(su(2)) is generated by the elements J±,

K = q
Jz
2 which satisfy
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K J±K −1 = q± 1
2 J±, [J+, J−] = K 2 − K −2

q1/2 − q−1/2 . (10)

The coproduct Δ : Uq(su(2)) → Uq(su(2)) ⊗ Uq(su(2)) and antipode S :
Uq(su(2)) → Uq(su(2)) are given by

ΔK = K ⊗ K , ΔJ± = J± ⊗ K + K −1 ⊗ J±, SK = K −1, S J± = −q±1/2 J±.

The R-matrix R ∈ Uq(su(2)) ⊗ Uq(su(2)) encodes the quasi-triangular struc-
ture, which tells us how much the coproduct is non-commutative. If we note
ψ : Uq(su(2)) ⊗ Uq(su(2)) → Uq(su(2)) ⊗ Uq(su(2)) the permutation, then
we have ψ ◦ ΔX = R(ΔX)R−1, ∀X ∈ Uq(su(2)). Standard notations are
R12 = ∑

R1 ⊗ R2, R21 = ∑
R2 ⊗ R1, . . . When q is real, the representation

theory of Uq(su(2)) is essentially the same as that of su(2) [10]. A representation
V j is hence generated by the vectors | j, m〉 with j ∈ N/2 and m ∈ {− j, .., j}. The
key-difference is that we use q-numbers [x] ≡ qx/2−q−x/2

q1/2−q−1/2 .

K | j, m〉 = qm | j, m〉, J± | j, m〉 = √[ j ∓ m][ j ± m + 1] | j, m ± 1〉.

The adjoint action of Uq(su(2)) on some operator O is

J± � O = J±OK −1 − q±1/2K −1O J±, K � O = KOK −1.
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