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Abstract Like the Lovelock Lagrangian which is a specific homogeneous polyno-
mial in Riemann curvature, for an alternative derivation of the gravitational equation
of motion, it is possible to define a specific homogeneous polynomial analogue of
the Riemann curvature, and then the trace of its Bianchi derivative yields the cor-
responding polynomial analogue of the divergence free Einstein tensor defining the
differential operator for the equation of motion.We propose that the general equation
of motion is G(n)

ab = −Λgab + κnTab for d = 2n + 1, 2n + 2 dimensions with the
single coupling constant κn , and n = 1 is the usual Einstein equation. It turns out that
gravitational behavior is essentially similar in the critical dimensions for all n. All
static vacuum solutions asymptotically go over to the Einstein limit, Schwarzschild-
dS/AdS. The thermodynamical parameters bear the same relation to horizon radius,
for example entropy always goes as rd−2n

h and so for the critical dimensions it always
goes as rh, r2h . In terms of the area, it would go as A1/n . The generalized analogues of
the Nariai and Bertotti–Robinson solutions arising from the product of two constant
curvature spaces, also bear the same relations between the curvatures k1 = k2 and
k1 = −k2 respectively.

1 Introduction

What stands gravity apart from rest of the physics is its universal character that it
links to everything includingmassless particles and hence it can only be described by
the spacetime curvature, and its dynamics has therefore to follow from the geometric
properties of the Riemann curvature tensor [1]. The Einstein gravitational equation
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could be deduced from the geometric property of Riemann curvature, known as
the Bianchi identity, implying vanishing of its Bianchi derivative identically. Its
trace yields the divergence-free second rank symmetric Einstein tensor. It defines
the differential operator on the left hand side of the equation while the gravitational
source – energymomentumdistribution described by a second rank symmetric tensor
with the condition of vanishing divergence—appears on the right hand side. This is
the case for Einstein gravity which is linear in Riemann curvature, and its vacuum is
trivially flat in 3 dimensions and it becomes dynamically non-trivial in 4 dimensions.

The question is, could this be generalized to a polynomial analogue of theRiemann
tensor?Consider a tensorwith the same symmetry properties as theRiemannwhich is
a homogeneous polynomial of degree n in Riemann, and then demand that the trace
of its Bianchi derivative vanishes. This will fix the coefficients in the polynomial
and will give the divergence free second rank symmetric tensor G(n)

ab , the nth order
analogue of the Einstein tensor, which is the same as what one would get from the
variation of the nth order Lovelock Lagrangian [2]. Thus we have the generalized
polynomial Riemann curvature, R(n)

abcd , whichwould describe gravitational dynamics
in d = 2n + 1, 2n + 2 in the same manner as Riemann does for d = 3, 4. We can
define corresponding vacuum as R(n)

ab = 0, would it also be trivial in d = 2n + 1

dimension? The answer is indeed, yes [3]. It would be R(n)
abcd flat but not Riemann

flat, and for that it would describe a global monopole [4].
What should be the gravitational equation in dimension >4? Should it continue

to be the Einstein equation which is linear in Riemann or should it include the
one following from the higher order Riemann, R(n)

abcd yet giving the second order
quasi-linear equation? A general abiding principle is that the equation be second
order quasi-linear so that the initial value problem is well formulated giving unique
evolution. This uniquely identifies the Lovelock polynomial Lagrangian or equiv-
alently the above discussed polynomial Riemann curvature [2]. Should all orders
that are non-trivial in the equation be included like the linear Einstein, quadratic
Gauss-Bonnet, and so on, or the only highest one? Should it be

∑
G(n)

ab or G(n)
ab ?

In the former, each order will have its own coupling and so there would be n of
them, and there is no obvious way to fix them. Since there is only one force which
allows determination of only one coupling parameter by experimentally measuring
its strength, gravity should therefore have only one dimensional coupling parameter
and its dimension would however depend upon the spacetime dimension. Thus we
propose the gravitational equation should in general be written as

G(n)
ab = −Λgab + κnTab (1)

for d = 2n + 1, 2n + 2 dimensions. Note that Λ, which characterizes dynamics free
spacetime, is part of the structure of spacetime on the same footing as the velocity
of light [5]. In what follows we wish to demonstrate that this equation imbibes beau-
tifully the general vacuum character [3] while the static vacuum solutions asymp-
totically go over to the right Einstein limit, even though the linear Einstein term is
not included. This means higher order terms in curvature are only pertinent to the
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high energy end near the black hole horizon while their effect weans out asymp-
totically at the low energy end approximating to the linear order Einstein solution,
Schwarzschild-dS/AdS in d dimension [6, 7]. It is remarkable that the thermody-
namical parameters, temperature and entropy bear universal relation to the horizon
radius for static black holes in d = 2n + 1, 2n + 2, and interestingly this property
also marks the characterization of this class of black holes [7, 8].

2 The Lovelock Curvature Polynomial and the Equation
of Motion

Following Ref. [2], we define the Lovelock curvature polynomial

R(n)
abcd = F (n)

abcd − n − 1

n(d − 1)(d − 2)
F (n)(gacgbd − gad gbc),

F (n)
abcd = Qab

mn Rcdmn, (2)

where

Qab
cd = δ

aba1b1...anbn
cdc1d1...cndn

Ra1b1
c1d1 , . . . , Ran−1bn−1

cn−1dn−1 ,

Qabcd ;d = 0. (3)

It follows that the trace of the Bianchi derivative yields the divergence-free G(n)
ab ; i.e.

gacgbd R(n)
abcd;e = G(n)b

e;b = 0, (4)

where the analogue of nth order Einstein tensor is given by

G(n)
ab = n(R(n)

ab − 1

2
R(n)gab). (5)

Note that

R(n) = d − 2n

n(d − 2)
F (n), (6)

which vanishes for D = 2n while F (n), the Lovelock action polynomial, is non-zero
but its variation, G(n)

ab vanishes identically. Since R(n) = gab R(n)
ab = 0 for d = 2n

for arbitrary gab, it implies R(n)
ab = 0 identically as it involves apart from the metric

its first and second derivatives which are arbitrary.
Since G(n)

ab is divergence free, we could write

G(n)
ab = κnTab − Λgab, T ab

;b = 0. (7)
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This is the gravitational equation for d = 2n + 1, 2n + 2 dimensions with κn as the
gravitational constant, and n = 1 is the Einstein equation for 3 and 4 dimensions.
What degree of polynomial in Riemann should the equation have is thus determined
by the spacetime dimension. It is linear for 3, 4, quadratic for 5, 6, and so on.

3 Universal Features

The first universal feature studied was that of gravitational field inside a uniform
density sphere and itwas shown that itwas always given by the Schwarzschild interior
solution in Einstein aswell as in Einstein–Gauss–Bonnet/Lovelock theories [9]. Here
we shall consider the cases of static black holes, and product spaces describing the
Nariai and Bertotti–Robinson spacetimes.

3.1 Static Black Holes

The static spherically symmetric solution of the vacuum (1) is given by

gtt = −1/grr = V = 1− r2(Λ + M/rd−1)1/n, (8)

which asymptotically takes the form of the Schwarzschild-dS/AdS solution in d
dimensions showing the correct Einstein limit. The solution for the general case of
the Einstein–Lovelock equation can also bewritten in terms of the nth order algebraic
polynomial equation which cannot be solved in general for n > 4. It is therefore
clear that we cannot carry on with arbitrarily large number of coupling parameters.
For the case of dimensionally continued black holes [10], it was proposed that all
the couplings are determined in terms of the unique ground state Λ, and the solution
is then given by V = 1 − r2Λ − M/rd−1/2 which clearly does not go over to the
Einstein solution for large r . This corresponded to the algebraic polynomial being
degenerate. It turns out that the proper Einstein limit could be brought in simply by
considering the polynomial to be derivative degenerate [7]. Then the solution agrees
near the horizon with the dimensionally continued black hole and asymptotically
with the proper Einstein limit, and it is the solution of equation (1).

Further, the thermodynamical parameters, temperature and entropy bear the uni-
versal relation to the horizon radius for the critical d = 2n + 1, 2n + 2 dimensions
[8]. For instance, the entropy always goes as rd−2n

h which for the critical dimen-
sions would always go as rh, r2h . In terms of the area, it would however go as A1/n ,
and hence the entropy is proportional to area only for the n = 1 Einstein theory.
Interestingly, this universality is also the characterizing property of this class of pure
Lovelock black holes [7, 8].
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We would like to conjecture that the above universality property would also be
true for the rotating black hole solution as and when it is found.

3.2 Product Spaces: Nariai and Bertotti–Robinson Solutions

TheNariai andBertotti–Robinson solutions arise as product of two constant curvature
spaces. When the two curvatures are equal, k1 = k2, it is the Nariai solution of (1)
with Tab = 0 for n = 1, and when the curvatures are equal and opposite, k1 = −k2,
it is the Bertotti–Robinson solution describing the uniform electric field. The former
is theΛ vacuum spacetime but is not conformally flat while the latter is the Einstein–
Maxwell solution for uniform electric field which is conformally flat. It turns out
the generalized pure Lovelock solutions of (1) for any n bear out the same curvature
relations for the Nariai vacuum (k1 = k2) and Bertotti–Robinson uniform electric
field (k1 = −k2), and the condition for conformal flatness is also k1k2 = 0 [11].

In d = 2n + 2 dimensions, we have the following general relation connecting the
two curvatures, Λ and the electric field E ,

(k1 + k2)E2 = −4(k1 − k2)Λ. (9)

This clearly indicates k1 = k2 for E = 0, theNariai vacuum spacetime and k1 = −k2
for Λ = 0, the Bertotti–Robinson uniform electric field spacetime. The metric is
given by

ds2 = (1− k1r2)dt2 − dr2

1− k1r2
− 1

k2
d�2

(d−2). (10)

4 Discussion

We have proposed that equation (1) is the proper equation for gravity in higher
dimensions. The correct equation should have the following properties: (a) it should
be second order quasi-linear, (b) for a given dimension, it should be of degree n =
[(d − 1)/2] in the Riemann curvature, (c) it should have only one coupling constant
which could be determined by experimentally measuring the strength of the force,
and (d) since higher order curvature contributions are the high energy corrections to
the linear order in Riemann Einstein gravity which should wean out asymptotically,
hence solutions should tend to the corresponding Einstein solution for large r . The
proposed equation satisfies all these properties. The latter feature of the asymptotic
Einstein limit is verified for the static black hole solutions which, however, is also
true for the Einstein–Gauss–Bonnet black hole. What is remarkable here is that
the equation is free of the Einstein term, yet asymptotically solutions go over to
the proper Einstein limit. This means high energy effects which come through the
higher order curvature terms are fully and properly taken care by the highest order
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n = [(d − 1)/2] term, and they could be realized only in higher dimensions [12].
It is interesting that gravity asks for higher dimensions for realization of its high
energy effects. This is because inclusion of higher orders in Riemann curvature and
the demand that the equation continues to be second order quasi-linear naturally
lead to higher dimensions. This does not happen for any other force that one has to
consider higher dimension for realization of its high energy corrections. It happens
for gravity because the spacetime curvature is the basic field variable, and hence
high energy effects involve higher orders in it and their contribution in the equation,
if it continues to retain its second order quasi-linear character, can be realized only
in higher dimensions [12]. We would like to emphasize that higher dimensions and
high energy effects seem to be intimately connected. Since high energy effects ask
for higher dimensions, quantum gravity should also involve higher dimensions. This
is because quantum gravity should approach the classical limit via the high energy
intermediate limit.

One of the problems with the Einstein–Lovelock solutions is number of coupling
constants and there is no way to fix them. For the dimensionally continued static
black holes, all the couplings were prescribed in terms of the unique ground state
Λ [10]. These solutions were, however, not asymptotically Einstein, Schwarzschild-
dS/AdS. Instead, the corresponding solutions of (1) have the right limits at both ends,
nearer to horizon agreeing with the dimensionally continued and asymptotically to
Schwarzschild-dS/AdS. This is indicative of the inherent correctness of the equation.
The universal character of gravity in the critical dimensions is another very attractive
feature of the equation. That the vacuum, G(n)

ab = 0, in the odd critical dimension

is always trivial, R(n)
abcd = 0 [3]. All this taken together points to the fact that (1) is

right equation for gravitation in higher dimensions.
For a given order n in the Riemann curvature, the critical dimensions are d =

2n + 1, 2n + 2 and it is trivial/kinematic in the former and it becomes dynamic in
the latter. This is a universal general feature. In the critical dimensions, gravity has
the similar behavior as indicated by universality of the thermodynamic parameters
in terms of the horizon radius and of the Nariai and Bertotti–Robinson solutions. It
is interesting to note that in terms of black hole area, entropy is always proportional
to A1/n and so it is proportional to area only for the n = 1 Einstein gravity. This is
an interesting general result that entropy always goes as the nth root of area of the
black hole. In an intuitive sense we can say that it is nth root of the Einstein gravity
for the critical d = 2n + 1, 2n + 2 dimensions.

All this we have established for the simple case of static black hole but we believe
that it is indeed a general feature and hence should be true for the stationary rotating
black hole as well. So far there exists no rotating pure Lovelock black hole solution,
and this conjecture would be verified as and when a solution is found.
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