
Electric and Magnetic Weyl Tensors
in Higher Dimensions

S. Hervik, M. Ortaggio and L. Wylleman

Abstract Recent results on purely electric (PE) or magnetic (PM) spacetimes in n
dimensions are summarized.These include:Weyl types; diagonalizability; conditions
under which direct (or warped) products are PE/PM.

1 Definition and General Properties

The standard decomposition of theMaxwell tensor Fab into its electric and magnetic
parts E and B with respect to (wrt) an observer (i.e., a unit time-like vector u) can
be extended to any tensor in an n-dimensional spacetime [1–3]. Here we summarize
the results of [3] about the Weyl tensor, and the connection with the null alignment
classification [4, 5].

Consider the u-orthogonal projector hab = gab +uaub. The “electric” and “mag-
netic” parts of Cabcd can be defined, respectively, as [3]

(C+)ab
cd = haehbf hc

ghd
hCef gh + 4u[au[cCb]e

d] f ueu f , (1)

(C−)ab
cd = 2haehbf Cef k[cud]uk + 2uku[aCb]ke f hcehd f . (2)
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These extend thewell-known 4Ddefinitions [6, 7]. In any orthonormal frame adapted
to u the electric [magnetic] part accounts for theWeyl components with an even [odd]
number of indices u. At a spacetime point (or region) the Weyl tensor is called purely
electric [magnetic] (from now on, PE [PM]) wrt u if C− = 0 [C+ = 0]. The
corresponding spacetime is also called PE [PM]. Several conditions on PE/PMWeyl
tensors follow.

Proposition 1 (Bel-Debever-like criteria [3]). A Weyl tensor Cabcd is:
(i) PE wrt u iff uagabCbc[deu f ] = 0; (ii) PM wrt u iff u[aCbc][deu f ] = 0.

Proposition 2 (Eigenvalues [3]). A PE [PM] Weyl operator1 is diagonalizable, and
possesses only real [purely imaginary] eigenvalues. Moreover, a PM Weyl operator
has at least (n−1)(n−4)

2 zero eigenvalues.

Proposition 3 (Algebraic type [3]). A Weyl tensor which is PE/PM wrt a certain u
can only be of type G, Ii , D or O. In the type Ii and D cases, the second null direction
of the timelike plane spanned by u and any WAND is also a WAND (with the same
multiplicity). Furthermore, a type D Weyl tensor is PE iff it is type D(d), and PM iff
it is type D(abc).

Proposition 4 (Uniqueness of u [3]). A PE [PM] Weyl tensor is PE [PM] wrt: (i) a
unique u (up to sign) in the type Ii and G cases; (ii) any u belonging to the space
spanned by all double WANDs (and only wrt such us) in the type D case (noting
also that if there are more than two double WANDs the Weyl tensor is necessarily
PE (type D(d)) [10]).

2 PE Spacetimes

Proposition 5 ([3]). All spacetimes admitting a shearfree, twistfree, unit timelike
vector field u are PE wrt u. In coordinates such that u = V −1∂t , the line-element
reads

ds2 = −V (t, x)2dt2 + P(t, x)2ξαβ(x)dxαdxβ. (3)

The above metrics include, in particular, direct, warped and doubly warped prod-
ucts with a one-dimensional timelike factor, and thus all static spacetimes (see
also [11]). For a warped spacetime (M,g) with M = M (n1) × M (n2), one has
g = e2( f1+ f2)

(
g(n1) ⊕ g(n2)

)
, where g(ni ) is a metric on the factor space M (ni )

(i = 1, 2) and fi are functions on M (ni ) (M (ni ) has dimension ni , n = n1 + n2, and
M (n1) is Lorentzian).

Proposition 6 (Warps with n1 = 2 [3, 11]). A (doubly) warped spacetime with
n1 = 2 is either type O, or type D(d) and PE wrt any u living in M (n1); the uplifts
of the null directions of the tangent space to (M (n1),g(n1)) are double WANDs of

1 In the sense of the Weyl operator approach of [8] (see also [9]).
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(M,g). If (M (n2),g(n2)) is Einstein the type specializes to D(bd), and if it is of constant
curvature to D(bcd).

In particular, all spherically, hyperbolically or plane symmetric spacetimes belong
to the latter special case.

Proposition 7 (Warps with n1 = 3 [3, 11]). A (doubly) warped spacetime with
(M (n1),g(n1)) Einstein and n1 = 3 is of type D(d) or O. The uplift of any null
direction of the tangent space to (M (n1),g(n1)) is a double WAND of (M,g), which
is PE wrt any u living in M (n1).

Proposition 8 (Warps with n1 > 3 [3, 11]). In a (doubly) warped spacetime

(i) if (M (n1),g(n1)) is an Einstein spacetime of type D, (M,g) can be only of type D
(or O) and the uplift of a double WAND of (M (n1),g(n1)) is a double WAND of
(M,g)

(ii) if (M (n1),g(n1)) is of constant curvature, (M,g) is of type D(d) (or O) and the
uplifts of any null direction of the tangent space to (M (n1),g(n1)) is a double
WAND of (M,g); (M,g) is PE wrt any u living in M (n1).

Proposition 9 (PE direct products [3]). A direct product spacetime M (n) = M (n1)×
M (n2) is PE wrt a u that lives in M (n1) iff u is an eigenvector of R(n1)

ab , and M (n1) is PE
wrt u. (u is then also an eigenvector of the Ricci tensor Rab of M (n), i.e., Rui = 0.)

A conformal transformation (e.g., to a (doubly) warped space) will not, of course,
affect the above conclusions about the Weyl tensor. There exist also direct products
which are PE wrt a vector u not living in M (n1) [3].

Also the presence of certain (Weyl) isotropies (e.g., SO(n −2) for n > 4) implies
that the spacetime is PE, see [3, 8] for details and examples.

3 PM Spacetimes

Proposition 10 (PM direct products [3]). A direct product spacetime M (n) =
M (n1) × M (n2) is PM wrt a u that lives in M (n1) iff all the following conditions
hold (where R(ni ) is the Ricci scalar of M (ni )):

(i) M (n1) is PM wrt u and has a Ricci tensor of the form R(n1)
ab = R(n1)

n1
g(n1)

ab +u(aqb)

(with uaqa = 0).
(ii) M (n2) is of constant curvature and n2(n2 − 1)R(n1) + n1(n1 − 1)R(n2) = 0.

Further, M (n) is PM Einstein iff M (n1) is PM Ricci-flat and M (n2) is flat.

See [3] for explicit (non-Einstein) examples. However, in general PM spacetimes
are most elusive. For example,
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Proposition 11 ([3]). PM Einstein spacetimes of type D do not exist.

In [3] also several results for PE/PMRicci and Riemann tensors have beenworked
out, along with corresponding examples. In general, we observe that PE/PM tensors
provide examples of minimal tensors [12]. Thanks to the alignment theorem [13],
the latter are of special interest since they are precisely the tensors characterized by
their invariants [13] (cf. also [3]). This in turn sheds new light on the classification of
the Weyl tensor [5], providing a further invariant characterization that distinguishes
the (minimal) types G/I/D from the (non-minimal) types II/III/N.
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