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Abstract We shall show that the self-interaction of a field can be geometrized
together with its perturbations in the sense that both dynamics are controlled by
the same metric.

1 Introduction

The main idea in the analogue models program is to simulate gravitational config-
urations in condense matter physics or using electromagnetic fields in non-linear
medium (see [1, 2]). Hence, to study some of the features of general relativity theory
by using controlled laboratory systems. The connection can be made once we notice
that the evolution of the perturbations of a given field can be described in a geomet-
rical language. Even though the majority of works in the literature concern only the
perturbative regime, it has been shown in Ref. [3] that one can also geometrize the
dynamics of the background field simultaneously with its perturbations.

The geometrization of the perturbation dynamics alone has only a kinematical
value. It is a change of description valid only for the perturbations. Thus, the effective
metric that defines the evolution of the perturbations cannot be interpreted as a real
geometry as it is done in general relativity.

For a scalar nonlinear theory with L(ϕ, w), where w ≡ γ μν∂μϕ ∂νϕ is the kinetic
term, the equation ofmotion is a quasi-linear secondorder partial differential equation
for ϕ. Its principal part that defines the effective metric

ĝμν ≡ Lwγ μν + 2Lww∂μϕ∂νϕ,
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determines the causal structure of the theory (see [4] for details). Furthermore, by
constructing a Riemannian affine structure such that ĝαβ||ν = 0, the rays describing
the perturbations of the scalar field follow null geodesics in the effective metric
ĝμν . Therefore, the effective metric determines the causal structure and controls the
propagation of the field’s excitations in the geometrical optics limit.

1.1 Geometrization of Field Dynamics

The general approach in analoguemodels deals simultaneouslywith twometrics, one
for the perturbations and another for the background. The geometrization scheme is
valid only for the perturbations while the background field works only as a medium
which defines the effective metric. This is probably the main difficulty in trying to
consider the effective metric as an emergent metric with the status of a Riemannian
metric as in general relativity.

A considerable improvement in this program is to include the background field in
the geometric description. Thus, we want to define an emergent metric that simulta-
neously encodes the dynamics of the background field and its perturbations.

It has been shown in Ref. [3] that any scalar non-linear theory described by
the Lagrangian L(w, ϕ) is equivalent to the field ϕ propagating in an emergent
spacetime with metric ĥμν(ϕ, ∂ϕ) and a suitable source j (ϕ, ∂ϕ). The emergent
metric ĥμν and the source field j are both constructed explicitly in terms of the field
and its derivatives. In addition, in the optical limit, the wave vectors associated with
perturbations follow null geodesics in the same ĥμν metric. Therefore, there is an
emergent spacetime “generated” by the non-linearity of the scalar field dynamics
which dictates the propagation of the scalar field.

The equation of motion for the scalar field can be written as

1√−γ
∂μ

(√−γ Lw, ∂νϕ γ μν
)

= 1

2
Lϕ. (1)

We shall define the emergent metric and its inverse as

ĥμν ≡ Lw√
1 + βw

(
γμν − β

1 + βw
ϕ,μϕ,ν

)
, with β ≡ 2Lww/Lw,

ĥμν ≡
√
1 + βw

Lw

(
γ μν + βϕ,μϕ,ν

)
.

To show that the above equation can be written as a Klein-Gordon in the ĥμν met-

ric, we need to calculate its determinant which amounts to
√

−ĥ = L2
w

(1+βw)3/2

√−γ .

Therefore, a straightforward calculation shows that



Probing the Spacetime Structure Through Dynamics 277

√
−ĥĥμν∂νϕ =

√
−γ̂ Lwγ μν∂νϕ. (2)

Comparing the above equation with (1), we see that

�ĥϕ = j (ϕ, ∂ϕ), with j (ϕ, ∂ϕ) ≡ Lϕ

2L2
w

(1 + βw)3/2. (3)

The last but very important point is to show that the effective metric associated
with the perturbations is the same as defined above. This is straightforward once we

realize that ĥμν and ĝμν are conformally related, i.e. ĥμν =
√
1+βw
L2

w
ĝμν . Thus, the

rays also propagate as null geodesics in ĥμν .
The emergent metric ĥμν encodes simultaneously the dynamics of the nonlinear

field and its perturbations. This result goes further in the analogue program inasmuch
it includes the dynamics of the background field. Note, however, that it is imperative
that the non-linearity should be in the kinetic term. Algebraic non-linearities such
as L(w, ϕ) = w + V (ϕ) with V (ϕ) any function of the scalar field, trivialize the
effective metric in the form of the Minkowski metric. Thus, it is the non-linearity in
w that is essential to generate the curved emergent spacetime. Additionally, in the
other sense, in the particular case of a theory where the Lagrangian does not depend
explicitly on ϕ, i.e. L(w), equation (3) reduces to a “free" wave propagating in a
curved spacetime generated by itself

�ĥϕ = 0. (4)

We have used the term “free” field above but one should keep in mind that the
emergent metric depends non-trivially on the scalar field ϕ. Thus, the above “free”
Klein-Gordon equation is actually a complicated non-linear equation for ϕ. Notwith-
standing, as we have discussed in Sect. 1, there is a similar situation in general rela-
tivity whenwe use the term free scalar field. There, themetric appearing in the Klein-
Gordon equation brings information fromEinstein’s equation that also depends on ϕ,
hencemaking the coupled system a very non-linear and involved system of equations
(see [3] for details).

2 General Remarks

The early proposal of general theory of relativity to encode gravitational interactions
within themetrical structure of the spacetime is strongly supported by the universality
of the interaction and the equality between inertial and gravitational masses. In this
manner, once this identification is done, the evolution of a particle in flat spacetime
subjugated to gravitational forces is equivalent to a Riemannian curved spacetime
free of any force. In this scenario there is a unique metric that works as a background
structure where the dynamics of all fields are defined.
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We have argued that the non-linearities in the kinetic term of the scalar field also
allow us to define a curved spacetime which incorporates its dynamics. The main
difference from general relativity is that the metric thus defined depends explicitly
on the scalar field while in GR the spacetime metric depends only implicitly through
Einstein’s equations. In addition, we do not have any guarantee that this metric
is universal in the sense that all fields would incorporate it in their dynamics. On
the contrary, this result seems to show that the geometrization of each non-linear
theory would define different metrics. Nevertheless, the possibility of defining a
single metric for interacting non-linear fields is not excluded. If we consider two
interacting non-linear fields it might be possible to define a single Riemannianmetric
that encodes both non-linearities. Notwithstanding, the inclusion of interaction is a
non-trivial step that deserves careful analysis in the future.
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