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Abstract Barbour’s formulation of Mach’s principle requires a theory of gravity to
implement local relativity of clocks, local relativity of rods and spatial covariance. It
turns out that relativity of clocks and rods are mutually exclusive. General Relativity
implements local relativity of clocks and spatial covariance, but not local relativity
of rods. It is the purpose of this contribution to show how Shape Dynamics, a theory
that is locally equivalent to General Relativity, implements local relativity of rods
and spatial covariance and how a BRST formulation, which I call Doubly General
Relativity, implements all of Barbour’s principles.

1 Introduction

Areflection onMach’s principle leadBarbour to postulate that rods and spatial frames
of reference should be locally determined by a procedure that he calls “best match-
ing,” while clocks should be locally determined by what he calls “objective change”.
(Formore, see [1].)More concretely, Barbour’s principles postulate local time repara-
metrization invariance, local spatial conformal invariance and spatial covariance. The
best matching algorithm for spatial covariance and local spatial conformal invariance
turns out to be equivalent to the imposition of linear diffeomorphism and conformal
constraints

H(ξ) =
∫

Σ

d3x πab(Lξ g)ab, C(ρ) =
∫

Σ

d3x ρ π, (1)
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where we use a compact Cauchy surface Σ without boundary with Riemannian
metric gab and metric momentum density πab with trace π . The vector field ξ and
the scalar field ρ are Lagrange multipliers. A more involved procedure, which I
will not explain here, leads to the implementation of local time reparametrization
invariance through quadratic Hamilton constraints

Ŝ(N ) =
∫

Σ

d3x N
(
πab Fabcdπcd − V

)
, (2)

where Fabcd(x) and V (x) are constructed from gab(x) and its derivatives at x and N
denotes a Lagrange multiplier. There is no reason for Ŝ to have homogeneous con-
formal weight, so a system containing the constraints Ŝ(N ) and C(ρ)will not be first
class except for very special choices of Fabcd , V . Thismeans that time reparametriza-
tion symmetry and spatial conformal symmetry generically exclude one another. An
interesting situation occurs when we choose the Fabcd , V to reproduce the Hamilton
constraints of General Relativity

S(N ) =
∫

Σ

d3x N

(
πab(gacgbd − 1

2gabgcd)πcd

√|g| − (R − 2Λ)
√|g|

)
, (3)

where the constraint system S(N ), Q(ρ) is completely second class, while the
constraint system S(N ), H(ξ) is first class as is the constraint system Q(ρ), H(ξ).
Wewill shortly see that this is the reason,why a ShapeDynamics andDoublyGeneral
Relativity can be constructed [2].

2 Symmetry Trading

Gauge theories describe a physical system using redundant degrees of freedom. The
physical degrees of freedom are identified with orbits of the action of the gauge
group. This redundant description is very useful in field theory, because it is often
the only local description of a given system. The canonical description of gauge
theories (see e.g. [3]) is provided by a regular irreducible set of first class con-
straints {χα}α∈A , whose elements χα are smooth functions on a phase space Γ with
Poisson bracket {., .}. First class means that the constraint surface C = {x ∈ Γ :
χα(x) = 0, ∀α ∈ A } is foliated into gauge orbits, whose infinitesimal generators
are the Hamilton vector fields vα : f �→ {χα, f }. For simplicity we will assume that
the system is generally covariant, so it has vanishing on-shell Hamiltonian. Observ-
ables [O] of the system are equivalence classes of smooth gauge-invariant functions
O on Γ , where two functions are equivalent if they coincide on C and where gauge
invariance means that O is constant along gauge orbits. This means that an observ-
able is completely determined by determining its dependence on a reduced phase
space Γred , which contains one and only one point out of each gauge orbit. There is
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Fig. 1 Construction of equivalent gauge theories from a linking theory

no unique choice of Γred and the simplest description is through a regular irreducible
set of gauge fixing conditions {σα}α∈A , such that a proper reduced phase is defined
through Γred = {x ∈ Γ : χα(x) = 0 = σα(x), ∀α ∈ A }. The observable algebra
can then be identified with the Dirac algebra on reduced phase space, where the Dirac
bracket takes the form

{ f, g}D := { f, g} −
(
{ f, χα}Mα

β {σβ, g} − { f, σ β}Mα
β {χα, g}

)
, (4)

where M denotes the inverse of the linear operator {χ, σ }.
The condition that Γred contains one and only one point out of each gauge orbit

poses important restrictions on the gauge fixing conditions, but the set of gauge fixing
conditions is not required to be first class. A very interesting situation arises when the
set of gauge fixing condition is itself first class: In this case one can switch the role
of gauge fixing conditions and constraints and describe the same observable algebra,
and thus the same physical system, with the gauge theory A = (Γ, {., .}, {χα}α∈A )

or with the gauge theory B = (Γ, {., .}, {σα}α∈A ). The manifest equivalence of
the two theories is established by gauge fixing theory A with the gauge fixing set
{σα}α∈A and gauge theory B with the gauge fixing set {χα}α∈A . One thus trades
one gauge symmetry for another.

A very useful tool for the construction of equivalent gauge theories is a linking
theory, see [4] and Fig. 1. Let us start with a phase space extension and denote
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the configuration variables of the extension by φα and their canonically conjugate
momenta by πβ and local Darboux coordinates on the original phase space Γ by
(qi , p j ). A linking theory on extended phase space is a set of regular irreducible first
class constraints that can be split into three subsets: The set {χ1

α}α∈A can be weakly1

solved for φα , the set {χα
2 }α∈A can be weakly solved for πα and the set {χ3

μ}μ∈M is
weakly independent of the phase space extension. In this case, we can simplify the
discussion by noticing that the three constraint sets are equivalent to the sets

{φα − φα
o (q, p)}α∈A , {πα − πo

α(q, p)}α∈A and {χ̃3
μ(q, p)}μ∈M . (5)

There are two sets of natural gauge fixing conditions {φα}α∈A and {πα}α∈A . Impos-
ing φα = 0 gauge fixes the constraints πα − πo

α(q, p) and leads to the phase space
reduction (φα, πβ) → (0, πo

β(q, p)), so the reduced phase space is Γ . Moreover,
the Dirac bracket associated with this phase space reduction coincides with the
Poisson bracket on Γ . The result of the phase space reduction is the gauge theory
B = (Γ, {., .}, {πo

α}α∈A ∪ {χ̃3
μ}μ∈M ).

Similarly, imposing πα = 0 yields a phase space reduction (φα, πβ) →
(φα

o (q, p), 0) and the resulting gauge theory is A = (Γ, {., .}, {φo
α}α∈A ∪{χ̃3

μ}μ∈M ).
The gauge theories A and B describe obviously the same physical system. It turns
out that we would have obtained the same result even if had we not solved the first
two subsets of constraints for the phase space extension.

3 Shape Dynamics

Let us now extend the phase space of General Relativity by a conformal factor φ and
its conjugate momentum density πφ . The linking theory between General Relativity
on a compact manifold Σ without boundary and Shape Dynamics can be obtained
by canonical best matching General Relativity in the ADM formulation with respect
to conformal transformations that do not change the total spatial volume. This yields
the following set of constraints

T S(N ) =
∫
Σ

d3x N

(
σ a

b σ b
a√|g| e−6φ̂ + (2Λ − 1

6
〈π〉2)√|g|e6φ̂ − R(e6φ̂g)

√|g|e2φ̂ + a

)
,

(6a)

Q(ρ) =
∫
Σ

d3x ρ
(
πφ − 4π + 4〈π〉√|g|

)
, (6b)

H(ξ) =
∫
Σ

d3x
(
πab(Lξ g)ab + πφLξ φ

)
, (6c)

where φ̂ := φ− 1
6 ln〈e6φ〉, σ a

b = πacgcb − 1
3πδa

b and where triangle brackets denote
the mean w.r.t.

√|g| and where the term a vanishes when π = 〈π〉√|g|. Imposing
the gauge fixing condition φ = 0 results in a phase space reduction (φ, πφ) →

1 “Weakly” means on the constraint surface.
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(0, 4(π − 〈π〉)) and reduces the system back to the ADM formulation of General
Relativity. Imposing the gauge fixing condition πφ = 0 gauge fixes all T S(N ),
except for one. The simplest way to see this is to observe that T S = 0 is equivalent
to imposing that φ solves the Lichnerowicz-York equation

8ΔgΩ =
(
1

6
〈π〉2 − 2Λ

)
Ω5 + R Ω − σ a

b σ b
a

|g| Ω−7 (7)

for Ω = eφ , but with the reducibility condition that the conformal factor is volume
preserving

∫
Σ

d3x
√|g| (1 − e6φ

) = 0. The left-over constraint is thus equivalent to
the constraint ∫

Σ

d3x
√|g|

(
1 − e6φo[g,π ]) = 0, (8)

where φo[g, p; x) denotes the positive solution to the Lichnerowicz-York equation,
which is known to uniquely exist on physical phase space [5]. The phase space
reduction thus yields the constraint system

HSD =
∫

Σ

d3x
√|g|

(
1 − e6φo[g,π ]) , (9a)

Ĉ(ρ) =
∫

Σ

d3x ρ
(
π − 〈π〉√|g|

)
, (9b)

H(ξ) =
∫

Σ

d3xπab(Lξ g)ab. (9c)

This is not exactly Shape Dynamics, because the total conformal transformations
generated by Ĉ(ρ) preserve the total spatial volume. One can however obtain a true
theory of Shape Dynamics by observing that the only nonlinear constraint HSD has
the form of a reparametrization constraint pt − H(t) ≈ 0 of parametrized dynamics.
Thus, after identifying the total volume V with the momentum conjugate to York
time τ = 3

2 〈π〉 and deparametrizing the theory one obtains the physical Hamiltonian

Hphys =
∫

Σ

√|g|e6φ[g,π ]. (10)

The π(x) is constrained to 〈π〉√|g|(x) and the conformal factor of the metric is pure
gauge, except for the total volume. The physical phase space is thus coordinatized
by the conformal metric ρab = |g|−1/3gab and σ a

b and V, 〈π〉. The only physical
phase space coordinate that is affected differently by volume preserving conformal
transformations as opposed to unrestricted conformal transformations is V . But after
reinterpreting 3

2 〈π〉, V as time and its momentum there is no difference on the phys-
ical phase space volume preserving and unrestricted conformal transformations. The
Shape Dynamics Hamiltonian Hphys comes with the constraints
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C(ρ) =
∫

Σ

d3x π, H(ξ) =
∫

Σ

d3x πab(Lξ g)ab. (11)

The dictionary between Shape Dynamics and General Relativity is established as
follows: Given a solution ρab(τ ), σ a

b (τ ) to the Shape Dynamics equations of motion,
one finds that this is also a solution to the equations of motion of General Relativity
in constant mean curvature (CMC) gauge.

4 Doubly General Relativity

An important difficulty of Shape Dynamics is that the physical Hamiltonian is
non-local. One can improve this by working with the BRST formalism. One obtains
the BRST formalism by adjoining to each of the regular irreducible first class con-
straints χα a ghost ηα and canonically conjugate ghost momentum Pα with opposite
statistics. A result from cohomological perturbation theory then shows that the first
class property of the constraints allows one to construct a nilpotent ghost number one
BRST generator Ω = ηαχα +O(η2), which provides a resolution of the observable
algebra. This means that {Ω, .} is a differential, whose cohomology at ghost number
zero is precisely the classical observable algebra.

The prerequisite for symmetry doubling to work was that there were two first
class surfaces that gauge fixed one another. One can thus construct two nilpotent
BRST generators: A ghost number +1 generator Ω form the first set of first class
constraints and a ghost number −1 generator Ψ from the second set of first class
constraints. For generally covariant theories, i.e. theories with vanishing on-shell
Hamiltonian, one finds that the BRST-gauge fixed Hamiltonian can be written as
HB RST = {Ω,Ψ }. The Jacobi identity and nilpotency of the generators then implies
that HB RST is annihilated by two BRST transformations: the ones generated by Ω

and the ones generated by Ψ . One can thus not only relate the observables of the
two theories with one another (Ω provides a resolution for the first and Ψ for the
second), but one sees that the BRST gauge-fixed actions of the two theories can be
chosen to coincide.

It goes beyond the scope of this contribution to discuss a detailed application of
this construction for the duality betweenGeneral Relativity and ShapeDynamics (for
details see [6]), so I will only illustrate what the two BRST charges can be chosen
to be:

Ω =
∫

Σ

d3x
(

S(η) + Ha(ηa) + O(η2)
)
, (12a)

Ψ =
∫

Σ

d3x

(
P

π√|g| + Ha(gab Pb)√|g| + O(P2)

)
, (12b)

where the higher orders in ghosts are chosen such that the two generators are nilpo-
tent. It is evident that the construction will lead to a canonical action that is left
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invariant invariant by ADM- and Shape Dynamics BRST transformations, hence the
name Doubly General Relativity. I conclude this short description with the warning
that the ghost-number zero term of this Hamiltonian is not the CMC gauge-fixing
of ADM.

5 Interpretation

Although local relativity of clocks and local relativity of rods seem to be incompatible
as gauge symmetries, they are reconcilable. This reconciliation can be seen in the
canonical formalism, where it appears that gravitational dynamics is equivalently
described either by the ADM system or by the Shape Dynamics system. This means
that both theories have the same solutions and make the same predictions for all
observables. It can also be seen in theBRST formalism,where not only the predictions
for observables coincide, but where it turns out that the gauge fixed gravity action has
two BRST invariances, one corresponding to the on-shell spacetime symmetries of
theADMdescription of gravity, the other corresponding to the conformal symmetries
of the Shape Dynamics description of gravity.

I want to conclude with considering the ideas behind the construction of Shape
Dynamics. The construction of Shape Dynamics requires two steps: symmetry trad-
ing and the identification of a parametrized dynamical system. There is a lot of
literature on the second step (e.g. Kuchař’s perennials), but the idea behind symme-
try trading seems to have avoided extensive discussion, although the idea itself is
obvious.

Gauge theories are formulated with redundant degrees of freedom and gauge
invariance, to have a local2 (and thus comprehensible) field theory. This is a spe-
cial instance of the more general fact that a comprehensible description of the real
world often requires auxiliary concepts, which are not really part of reality. Which
auxiliary concept is chosen is not unique; in general there is an infinite number of
internally consistent descriptions. But although all descriptions are required to accu-
rately describe the real world and be internally consistent, it can happen that two
descriptions are mutually exclusive because the auxiliary concepts are incompatible.
We see this in the duality between General Relativity and Shape Dynamics: General
Relativity teaches that gravity is spacetime geometry and not a conformal theory,
while Shape Dynamics teaches that gravity is a conformal theory without spacetime.

This can be very disturbing and leads to the question: “How can we discriminate
better from worse descriptions?” I can only think of one criterion, provided two
descriptions are accurate and internally consistent. The criterion is: Which descrip-
tion has more explanatory power? However, this may be the wrong question. I think
one should rather embrace the fact there are many possibly equally good consistent
but mutually exclusive descriptions of the real world and one should use whichever

2 Note that the Shape Dynamics Hamiltonian, although nonlocal, can be described locally through
the linking theory.
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is most adapted to answer a particular problem. For example, a question regarding
spacetime has most likely a simple answer in a covariant description, while a ques-
tion regarding the observable algebra has most likely a simple answer in the Shape
Dynamics description.
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