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Abstract For an investigation of the physical properties of gravitational fields the
observation of massive test particles and light is very useful. The characteristic fea-
tures of a given space-time may be decoded by studying the complete set of all
possible geodesic motions. Such a thorough analysis can be accomplished most
effectively by using analytical methods to solve the geodesic equation. In this contri-
bution, the use of elliptic functions and their generalizations for solving the geodesic
equation in a wide range of well known space-times, which are part of the general
Plebański-Demiański family of solutions, will be presented. In addition, the defini-
tion and calculation of observable effects like the perihelion shift will be presented
and further applications of the presented methods will be outlined.

1 Introduction

The observation of massive particles and light is a very important tool for exploring
the features of gravitational fields and also for tests of general relativity. The motion
of massive and massless test particles is described by the geodesic equation, which
is a coupled system of ordinary differential equations dependent on the metric of the
considered gravitational field. A wide range of exactly known solutions of Einstein’s
field equations possesses certain symmetries, which allow to decouple the geodesic
equations. Here we discuss metrics within the Plebański-Demiański family of solu-
tions (see [1]), which is a seven parameter solution with mass, rotation, cosmologi-
cal constant, electric and magnetic charge, NUT charge, and acceleration and which
comprises the Schwarzschild and the Kerr metric as special cases. In this family of
solutions the equations of motion considerably simplify due to the separability of the
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Hamilton-Jacobi equation (for lightlike geodesics and, if the acceleration vanishes,
also for timelike geodesics).

Due to this simplification, the analytic solutions for the complete set of geodesics
in Schwarzschild space-time was already found in 1931 by Hagihara [2] in terms
of elliptic functions. With essentially the same methods also the geodesic equations
in Kerr-Newman-Taub-NUT space-times and subcases can be handled (and also an
additional acceleration formassless particles). For the case of theKerrmetric, thiswas
first done in the equatorial plane (see [3] for a review) and later, after the introduction
of Mino time [4] which allows to fully decouple the equations of motion, by Fujita
and Hikida for bound orbital motion [5]. For a nonvanishing cosmological constant,
the structure of the equations of motions is more complex but can still be solved
analytically by using hyperelliptic functions as demonstrated for the Schwarzschild-
de Sitter metric [6] and for general axially symmetric space-times [7]. Here, we will
explain these general methods to analytically solve the geodesic equations in Kerr-
Newman-Taub-NUT-de Sitter space-times (and the C-metric for lightlike geodesics).

For observational purposes also explicit expressions for the deviations of relativis-
tic orbits from theKepler orbits are of interest.Hereweconcentrate on the observables
for bound orbital motion, namely the periastron shift and the Lense-Thirring effect.
However, in a strong gravitational field concepts like the orbital plane and the orbital
ellipse are no longer valid. A fully relativistic treatment of these effects in the Kerr
gravitational field was given by Schmidt [8] and combined with the Mino time by
Drasco and Hughes [9] as well as Fujita and Hikida [5]. In this article, we will show
how these concepts can be generalized to the above mentioned space-times.

2 Equations of Motion

The motion of test particles is described by the geodesic equation

d2xμ

ds2
+ Γ μ

ρσ

dxρ

ds

dxσ

ds
= 0 (1)

where Γ
μ
ρσ = 1

2gμα(∂ρgσα + ∂σgρα − ∂αgρσ) is the Christoffel symbol and μ =
0, 1, 2, 3. This system of coupled ODE’s can be simplified if the underlying space-
time has certain symmetries. In particular, for the Plebański-Demiański solutions
(with vanishing acceleration for massive test-particles), there exist four constants of
motionwhich can be used for decoupling: the normalization constant ε = gμν

dxμ

ds
dxν

ds
with ε = 0 for light and ε = 1 for massive test-particles, the energy E , the angular
momentum L in direction of the symmetry axis, and the Carter constant K .

For the considered family of solutions in standard Boyer-Lindquist coordinates
the radial and latitudinal equations of motion can be reduced to the form [7]
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(
xi dx

dλ

)2

= P(x; p), (2)

where x is the radius or the (squared) cosine of the latitude, λ is an affine parameter,
the Mino time [4], P is a polynomial in x of degree 2g + 1 or 2g + 2, 0 ≤ i < g
is an integer, and p = {p1, . . . , pn} is a set of parameters of the space-time and the
test-particle. For example, in Kerr space-time we get in geometrized units (G = 1,
c = 1) [3, 4]

(
dr

dλ

)2

=
(
(r2 + a2)E − aL

)2 − (r2 + a2 − 2r)(εr2 + K ) =: R(r), (3)

(
dξ

dλ

)2

= 4ξ
[
(1 − ξ)(K − εa2ξ) + (aE(1 − ξ) − L)2

]
, (4)

where ξ = cos2 θ and all quantities are normalized such that they are dimensionless.

3 Algebro-Geometric Methods

The equation of motion (2) should be solved for x(λ), i.e. we consider the inversion
problem

∫ x

x0

xi dx√
P(x; p)

= λ − λ0 , (5)

where x(λ0) = x0 are initial values. The solution of this problem should be in-
dependent from the chosen integration path. This implies that for a closed path

γ with ω := ∮
γ

xi dx√
P(x;p)

�= 0 the solution x(λ) has to have the period ω,∫ x
x0

xi dx√
P(x;p)

= λ − λ0 − ω. This can be taken into account automatically if (2)
is considered as an algebraic curve

w2 = P(x; p), (6)

where w = xi dx
dλ . For the considered space-times one of the following two situations

occurs

• P is of order 3 or 4: then (6) is an elliptic curve of genus 1,
• P is of order 5 or 6: then (6) is an hyperelliptic curve of genus 2.

Topologically, (hyper-) elliptic curves can be considered as Riemann surfaces. The
genus g corresponds to the number of ‘holes’ in the Riemann surface, see Fig. 1. If
there are g holes this implies that there are 2g independent closed integration paths
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Fig. 1 Riemann surface of a
genus one curve (left) and a
genus two curve (right) with
two or four independent paths

whose integrals do not vanish and, therefore, the solution x(λ) needs to have 2g
independent periods [10].

In the case of an elliptic curve, (6) can be reduced to the Weierstrass form by a
rational substitution,

w̃2 = 4x̃3 − g2 x̃ − g3 . (7)

In this standard form, w̃ and x̃ are parametrized by the Weierstrass elliptic function
and its derivative, w̃ = ℘′(z) and x̃ = ℘(z). In the above example of Kerr space-
time, the substitution for the radial equation of motion for a timelike geodesic is

r = a3
4x− a2

3
+ rK , where R(rK ) = 0 and a j = 1

(4− j)!
d(4− j) R
dr (4− j) (rK ). The resulting

equation is given by (7) with

g2 = 1

4

(
1

3
a2
2 − a1a2

)
, g3 = 1

16

(
1

3
a1a2a3 − 2

27
a3
2 − a0a2

3

)
. (8)

The analytical solution for the timelike radial equation in Kerr space-time is then
given by

r(λ) = a3
4℘(λ − c) − a2

3

+ rK , (9)

where c = c(r0,λ0) is a constant which depends only on the initial conditions.
With a completely analogous procedure all equations of motion which reduce to

elliptic curves may be solved. This includes geodesics in Schwarzschild, Reissner-
Nordström, Kerr-Newman, and Taub-NUT space-times as well as the C-metric (see
e.g. [11]) for massless particles.

The situation gets more complicated if the equation of motion is described by
a hyperelliptic curve of genus two. This is due to the fact that the solution has to
have four independent periods, which is impossible for functions in a single complex
variable. Therefore, it is necessary to consider a function in g = 2 complex variables.
However, as we have only one degree of freedom, we need to restrict the space of
variables again to a one-dimensional submanifold. This is done by considering the
equation of motion as part of the Jacobi inversion problem for g = 2, which is to
solve the system of equations
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w1 =
∫ x1

∞
dx√
P(x)

+
∫ x2

∞
dx√
P(x)

,

w2 =
∫ x1

∞
xdx√
P(x)

+
∫ x2

∞
xdx√
P(x)

,

(10)

for x1, x2 as functions of w1, w2. If P is transformed to a standard form P(x) =
4x5 + ∑4

i=0 ai xi , the solution to this problem is known in terms of generalized ℘-
functions, x1x2 = ℘12(w1, w2), x1 + x2 = ℘22(w1, w2) [10]. Here ℘i j (w1, w2) =
− ∂

∂wi

∂
∂w j

logσ(w1, w2) with the generalized σ function. By letting x2 go to infinity,
we can get rid of the second integral on the right hand side and simultaneously
restrict (w1, w2) to the one-dimensional sigma divisor, i.e. the set of zeros of the
two-dimensional σ-function. The solution for x = x1 is then given by

x = −σ1

σ2
(w1, w2) , with σ(w1, w2) = 0 , (11)

where σi denotes derivative of σ w.r.t. the i-th variable. For example, in the case of
Schwarzschild-de Sitter space-time, the solution for the radius r in terms of the angle
ϕ is given by [6]

r(ϕ) = −M
σ2

σ1
( f (ϕ),ϕ) , with σ( f (ϕ),ϕ) = 0 . (12)

This solution method can be applied to all geodesic equations which reduce to hy-
perelliptic curves. This comprises the radial and latitudinal equations of motion in
Kerr-de Sitter space-time as well as all the de Sitter-versions of Kerr-Newman-Taub-
NUT space-times and subcases [7]. For lightlike geodesics also the C-metric with
an additional cosmological constant can be treated this way.

4 Observables

For the bound orbital motion of massive test-particles there are two main gravita-
tional effects: the periastron shift ΔP and the Lense-Thirring effect ΔLT. The first is
a precession of the orbital ellipse within its orbital plane and the latter a precession
of the orbital plane itself.1 In this picture, the periastron shift is defined as the angle
between two consecutive periastrons and the Lense-Thirring effect as the angle be-
tween two consecutive minimal latitudes. Mathematically this means that they are
given by the difference between the period of r(ϕ) or θ(ϕ), respectively, and 2π. If
2ωr denotes the period of r(ϕ) and 2ωθ the period of θ(ϕ) then

1 In the original paper [12] a combined effect was computed: the timely variation of the ascending
node and the argument of periapsis.With ‘Lense-Thirring effect’ we refer only to the first correction.
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ΔP = 2ωr − 2 sign(L)π, ΔLT = 2ωθ − 2 sign(L)π, (13)

where the sign of L is included to distinguish between prograde and retrograde
motion.

In Schwarzschild space-time, where r(ϕ) is directly known, the exact analytical
expression for the periastron shift is given by

ΔP = 4L K (k)√
(E2 − 1)rp(ra − r1)

− 2π, (14)

where K (k) is the complete elliptic integral of the first kind,

K (k) =
∫ 1

0

dx√
(1 − x2)(1 − k2x2)

, (15)

which is implemented in standard mathematical software. Here k2 = r1(ra−rp)
rp(ra−r1)

with

the zeros 0 < r1 < rp < ra of R(r) =
(

dr
dϕ

)2
.

The expression for the perihelion shift can be generalized to axially symmetric
space-times, where only r(λ) and ϕ(λ) is known. Writing ϕ(λ) as a part linear in λ,
given in the form of an infinite Mino time average Υϕ, plus oscillatory deviations [5,
8], we may use λ(ϕ) = Υ −1

ϕ ϕ. Then the period of r(ϕ) is given by

r(λ(ϕ + 2�rΥϕ)) = r(Υ −1
ϕ ϕ + 2�r ) = r(Υ −1

ϕ ϕ) = r(λ(ϕ)) , (16)

where 2�r is the period of r(λ). Accordingly, 2ωr = 2�rΥϕ and the perihelion shift
can be written as

ΔP = 2�rΥϕ − 2 sign(L)π. (17)

In a totally analogous way the Lense-Thirring effect can be found. If 2�θ denotes
the period of θ(λ), we may write again θ(λ(ϕ+ 2�θΥϕ)) = θ(λ(ϕ)) and, therefore,

ΔLT = 2�θΥϕ − 2 sign(L)π. (18)

In the case of Kerr-Newman-Taub-NUT-de Sitter space-times, �r,θ and Υϕ are
given in terms of (hyper-)elliptic integrals. For the elliptic case, they can be rewritten
in terms of the three standard Jacobian elliptic integrals K (k), E(k), and Π(n, k).
For the case of genus two or higher, to our knowledge such a standard form does not
exist. A possible generalization of the first Jacobian elliptic integral would be
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KA(k) =
∫ 1

0

∑g
i=1 Ai t i−1dt√

t (1 − t)
∏2g−1

i=1 (1 − k2i t)
, (19)

where A is a vector of length g, which reflects the fact that there are g independent
differentials of the first kind, and k is of length 2g − 1.

For example, in terms of these integrals the perihelion shift for Schwarzschild-de
Sitter space-time is given by

ΔP =
r4K(

1
r4

,
(r4−r3)

r3r4

)(k1, k2, k3)

√
L2Λr3(r4 − r0)(r4 − r2)(r5 − r4)

− 2π , (20)

where r0 < 0 < r1 < r2 < r3 < r4 < r5 are the zeros of the defining polynomial
with r3 = rmin and r4 = rmax for small positive Λ and

k21 = r0(r4 − r3)

r3(r4 − r0)
, k22 = r2(r4 − r3)

r3(r4 − r2)
, k23 = −r5(r4 − r3)

r3(r5 − r4)
. (21)

5 Outlook

The methods presented here are powerful tools for the analytic integration of the
geodesic equation in a wide range of space-times. Beside the space-times we focused
on here, geodesics in higher-dimensional spherically symmetric space-times [13,
14] and the Myers-Perry space-time [15] can be treated. It may also be possible to
extend these methods to the equations of motion in space-times with given multipole
moments like the Erez-Rosen space-time.

The hyperelliptic curves which we used here to represent the equations of motions
are a special case of Abelian curves, which allow for higher orders of w in (6) and
mixed terms. These more general curves appear for example in Hořava-Lifshitz
and Gauss-Bonnet gravity, which may be represented by quartic curves of the form
(w − P(x))2 = Q(x). A generalization of the presented methods to these cases is in
preparation.

Analogously to the analytic expressions presented here for observables of bound
orbital motion also the bending of light and the gravitational time delay may be
considered. Linked to that, we plan the development of an analytical timing formula
for pulsars orbiting a black hole.

Concerning the numerical calculation of the analytical expressions, the complete
elliptic integrals can be computed very efficiently by using the arithmetic geometric
mean. This can be generalized to genus two hyperelliptic integrals, see [16, 17].
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