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Abstract We derive source integrals for multipole moments that describe the
behaviour of static and axially symmetric spacetimes close to spatial infinity. We
assume isolated non-singular sources but will not restrict the matter content other-
wise. Some future applications of these source integrals of the asymptotic multipole
moments are outlined as well.

1 Introduction

In experiments that measure general relativistic effects, some parameters character-
izing the spacetime have to be determined. The multipole moments are one set of
such parameters. They are measured in the exterior region of astrophysical objects
like neutron stars or galaxies but also planets and describe the gravitational field
near spatial infinity. They will be called here asymptotic multipole moments (AMM).
The bending of light and the gravitational lensing proved particularly useful for their
measurement, see, e.g., [1–3] and references therein. But what information can be
gathered about the matter distribution and the metric in its interior by their measure-
ment? What does it mean to measure a certain value of the quadrupole moment? In
Newtonian theory, the answers are provided by the source integrals of the AMM.
These integrals determine the asymptotic multipole moments by an integration over
the mass density. In general relativity, similar expressions for the AMM are only
known in approximations to general relativity, see e.g. [4]. Here we will present
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source integrals of the AMM for static and axially symmetric spacetimes in full
general relativity. At the same time these provide quasi-local definitions of all asymp-
totic multipole moments.

2 Preliminaries

In this section, we shortly review several concepts necessary in the derivation of the
source integrals. We use throughout this article geometric units G = c = 1 and the
signature of the metric is (−,+,+,+).

2.1 The Line Element and the Field Equations

We concentrate on axially symmetric and static spacetimes of the Weyl form, i.e.,

ds2 = e2k−2U
(

dρ2 + dζ 2
)

+ W 2e−2U dϕ2 − e2U dt2. (1)

We do not restrict the type of matter except in that the line element (1) can be
introduced, see [5]. Themetric functions e2U and W can be expressed by the timelike
Killing vector ξα = (∂t )

α and the Killing vector of the axial symmetry ηα = (∂ϕ)α

e2U = −ξαξα, W 2 = −ηαηαξβξβ. (2)

Let us choose a sphere S0 of finite radius r = R0 (ρ = r sin θ, ζ = r cos θ )
that covers the entire matter distribution, cf. Fig. 1. Outside of S0, canonical Weyl
coordinates (W = ρ) are introduced by virtue of one of the vacuum field equations.
This allows still a shift in the ζ−coordinate, which enables us later to move the
origin with respect to which the AMM are measured. The vacuum field equations in
canonical Weyl coordinates read

ΔU = 0, k,ζ = 2ρU,ρU,ζ , k,ρ = ρ
(
(U,ρ)2 − (U,ζ )

2
)

, (3)

whereΔ =
(

∂2

∂ρ2 + 1
ρ

∂
∂ρ

+ ∂2

∂ζ 2

)
. The function k is determined via a line integration,

cf. the last two equations of (3), once U is known. Hence, only a Laplace equation
for U remains to be solved in practice.
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Fig. 1 An example of the
physical situations discussed
here: The surfaces of the
individual matter components
are denoted by S

(2)
i = ∂V

(2)
i

with i ≥ 1 and their respective
volumes by V

(2)
i . The surface

S
(2)
0 describes a circle with

sufficiently large but finite
radius enclosing all matter
components, cf. Sect. 2.1
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2.2 The Physical Setting

We depict in Fig. 1 an example of a physical situation that will be covered by the
subsequent considerations. The relevant surfaces and volumes are defined there as
well. For simplicity, we allow only non-singular sources. However, such can be
incorporated into the formalism as we showed in [6]. The 3-dimensional projection
of the matter region into an hypersurface of constant Killing-time t is obtained by a
rotation around the ζ−axis in Fig. 1. In this way, the quantitiesA (3)

± ,S (3)
i and V (3)

i

are defined starting from A(2)
± ,S (2)

i and V (2)
i , respectively.

2.3 The Multipole Moments

For asymptotically flat and static spacetimes a geometric definition of AMM was
given by Geroch in [7]. This definition was generalized and applied bymany authors,
see the reviews [4, 8] and references therein. In the axially symmetric case with the
line element (1), Geroch’s multipole moments Mr can be obtained by an expansion
of U along the symmetry axis in |ζ |−1:

U (ρ = 0, ζ ) =
∞∑

r=0

U (r)|ζ |−r−1. (4)

The Mr follow uniquely fromWeyl’s multipole moments U (r) and vice versa as was
shown in [9]. Therefore, we consider only the U (r) here.
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2.4 The Inverse Scattering Technique

Lastly, we shortly review the inverse scattering technique (IST), see e.g. [10] for a
recent account. Even though the Laplace equation is linear and the use of the IST
seems artificial, the IST proves nonetheless beneficial, because it is easily generaliz-
able to the non-linear case of the Ernst equation. This equation is of special interest in
relativistic astrophysics, since it describes the exterior of rotating stars. The starting
point of the IST in the present setting, i.e. the linear problem of the Laplace equation,
is given by

σ,z = (1 + λ)U,zσ, σ,z̄ =
(
1 + 1

λ

)
U,z̄σ, (5)

where z = ρ + iζ , the spectral parameter λ =
√

K−iz̄
K+iz , K ∈ C and a bar denotes

complex conjugation. The complex valued function σ depends on z, z̄ and λ. The
integrability condition of (5) is the Laplace equation for U . Therefore, having a
solution σ of (5) yields also a solutionU of the Laplace equation and vice versa. The
main technical steps of the IST as described in [10] are to integrate (5) along A (2)

± ,
along a circle with sufficiently large radius and along a compact curve connecting
A (2)

+ with A (2)
− . This scheme can be carried out partially and we quote only the

results (simplified to the static case), which are relevant for us, from [10]:

(0, ζ ) ∈ A + : σ (λ = +1, ρ = 0, ζ ) = F(K )e2U (ρ=0,ζ ),

σ (λ = −1, ρ = 0, ζ ) = 1, (6a)

(0, ζ ) ∈ A − : σ (λ = +1, ρ = 0, ζ ) = e2U (ρ=0,ζ ),

σ (λ = −1, ρ = 0, ζ ) = F(K ).

The function F : C → C is given for K ∈ R with (ρ = 0, ζ = K ) ∈ A ± by

F(K ) =
{
e−2U (ρ=0,ζ=K ) (0, K ) ∈ A +

e2U (ρ=0,ζ=K ) (0, K ) ∈ A − .
(6b)

The integration along S (2)
0 does not enter the derivation of these formulas and it

forms the crucial part of our considerations in the next section.

3 Source Integrals of Weyl’s Multipole Moments

The derivation of the source integrals consists of several steps. First, the AMM are
expressed as line integrals along S (2)

0 . This is the most important step, because it
makes it possible to determine the AMM quasi-locally. Then these integrals will be
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rewritten in a coordinate independent form as surface integrals over S (3)
0 by virtue

of the axial symmetry. Subsequently, Stokes’ theorem is used to rewrite these as
volume integrals over V (0). In the final step, it is shown that the contributions in
the vacuum regions vanish. Thus, the steps from before can be retraced to obtain
the contributions in source integral form of each individual matter component. We
suppress the details of these derivations and show only the crucial steps.

The linear problem (5) is well-defined along S (2)
0 and reads:

σ,s =
[

U,s + 1

2

((
1

λ
+ λ

)
U,s + i

(
1

λ
− λ

)
U,n

)]
σ, (7)

where U,s and U,n are the tangential and the (outward pointing) normal derivative
of U alongS (2)

0 with respect to a parametrisation [sN , sS] → S (2)
0 . The indices N

and S refer to the values of a parameter or function at the “north” and “south” pole
ofS (2)

0 , i.e., to the intersection points (ρ = 0, ζ = ζN/S) ofS (2)
0 and the symmetry

axis. Equation (7) is easily integrated using the boundary values from (6):

U (0, K ) =UN − US

2
+ 1

4

sS∫

sN

((
λ−1 + λ

)
U,s + i

(
λ−1 − λ

)
U,n

)
ds. (8)

If we expand this equation in |K |−1, we obtain expression for Weyl’s multipole
moments in terms of a line integration. Let us introduce the abbreviations N (r)

+ and

N (r)
− for the expansion coefficients (λ−1 + λ)(r) and i(λ−1 − λ)(r) to order r + 1,

respectively. After a lengthy but straightforward calculation they evaluate to

N (r)
− =

� r
2�∑

k=0

2(−1)k+1r !ρ2k+1ζ r−2k

4k (k!)2(r−2k)! ,

N (r)
+ =

⌊
r−1
2

⌋
∑
k=0

2(−1)k+1r !ρ2k+2ζ r−2k−1

4k (k!)2(r−2k−1)!(2k+2)
.

(9)

The r = −1 order in |K |−1 of (8) is satisfied trivially and will not be considered
subsequently. The orders r ≥ 0 of (8) yield the desired quasi-local definitions of
Weyl’s multipole moments:

U (r) = 1

4

∫

S (2)
0

(
N (r)

+ U,ŝ + N (r)
− U,n̂

)
dS (2)

0 , (10)

whereU,ŝ andU,n̂ are the tangential andnormal derivatives alongS (2)
0 with respect to

the unit tangent vector and the unit normal vector, which are defined with the induced
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metric on S (2)
0 ; dS (2)

0 denotes the proper distance along S (2)
0 . The functions N (r)

±
and U are to be read as functions along S (2)

0 , i.e. as functions of (ρ(s), ζ(s)).
To make the coordinate independence apparent, we express ρ and ζ by scalars

built from the Killing vectors. Firstly, observe that (2) holds everywhere and that in
vacuum we have W = ρ. Additionally, the 1-form

Zα = εαβγ δW ,β W −1ηγ ξδ (11)

is well-defined and hypersurface orthogonal everywhere as well as exact in the vac-
uum region. Hence, there exist a potential Z and an integrating factor X such that
Z,α = X Zα , where X = 1 in the exterior of S (3)

0 . In the vacuum region and in
canonical Weyl coordinates, we find Z = ζ + const. Since we can shift the ζ -
coordinate freely, we can drop the constant of integration, which specifies the origin
with respect to which the AMM are measured. Thus, W and Z coincide with ρ and
ζ in the vacuum region and can be used as their continuation into the interior of the
matter. This choice is not unique and other continuations are possible, although they
do not alter the values of the source integrals, which we present below.

Using W and Z alongS (2)
0 instead of ρ and ζ , respectively, we can rewrite (10)

as surface integrals:

U (r) = 1

8π

∫

S (3)
0

eU

W

(
N (r)

− U,n̂ − N (r)
+,W Z,n̂U + N (r)

+,Z W,n̂U
)
dS (3)

0 . (12)

An integration by parts, the axial symmetry and the vacuum field equations are
necessary for this step.

Using Stokes’ theorem and the field equations we obtain

U (r) = 1

8π

∫

V (3)
0

eU

[
− N (r)

−
W

Rαβ

ξαξβ

ξγ ξγ

+ N (r)
+,Z U

(
W ,α

W

)

;α

− N (r)
+,W U

(
Z ,α

W

)

;α
+ N (r)

+,W Z
U

W

(
W ,αW,α − Z ,α Z,α

)]
dV (3)

0

= 1

8π

∑
i

∫

V (3)
i

eU

[
8π

N (r)
−

W
(T gαβ − Tαβ)

ξαξβ

ξγ ξγ

+ N (r)
+,Z U

(
W ,α

W

)

;α
(13)

− N (r)
+,W U

(
Z ,α

W

)

;α
+ N (r)

+,W Z
U

W

(
W ,αW,α − Z ,α Z,α

)]
dV (3)

i .

The dV (3)
i are the proper volume elements of V (3)

i and a semicolon denotes the
covariant derivative with respect to the line element (1). The last equality is due
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to Einstein’s equations, which imply that the integrand vanishes in vacuum. The
integrals (13) are the desired source integrals. They determine the AMM from the
geometry inside the matter regions alone. Of course, Stokes’ theorem can again be
used to rewrite the source integrals as surface integrals over S (3)

i of the respective
matter component. In turn, these can be reformulated as line integrals, cf. Sect. 4.
The fact that the contributions of the individual matter components, V (3)

i , to the
asymptotic multipole moments superpose linearly is due to the choice of Weyl’s
multipole moments. If we employ the method from [9] to calculate Geroch’s multi-
pole moments Mr from Weyl’s multipole moments U (r), we obtain a mixing of the
contributions U (k)

i of the individual matter components with k < r in the Mr . This
is already apparent for the quadrupole moment M2, which depends non-linearly on
U (0):

M2 = U (2) − 1

3
U (0)3. (14)

The Geroch mass M0 equals U (0) and is given by the (negative) Komar integral.
This follows also from (12) with r = 0.

4 Applications

We conclude the paper by discussing one possible application of the source integrals
(12). Assume a matter distribution is given, where the metric is known in the interior
or the Dirichlet and the Neumann data for U are known at the surface. Even then
it is far from trivial (at least in the stationary case, see [11]) to obtain a global
asymptotically flat solution, if it exists. The source integrals for the AMM provide a
tool to solve this task. As a simple example serves here the case of static dust without
any surface distributions. In Weyl coordinates (not necessarily canonical) the energy
momentum tensor is given by

Tαβ = μe2U δt
αδt

β. (15)

The contracted Bianchi identities imply U = const. in the interior and, thus, the
gradient of U vanishes atS (3)

i in all coordinates. Using the line integrals for Weyl’s
AMM, which follow from (13), we get:

U (r) = 1

4

∑
i

∫

S (2)
i

(
N (r)

− U,n̂ + N (r)
+ U,ŝ

)
dS (2)

i = 0. (16)

Thus, all AMM vanish and the spacetime is flat in the exterior. This contradicts the
presence of a dust distribution with positive mass density. Of course, this result is
already known and more general non-existence results for dust including the rotating
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case can be found in [12, 13] and references therein. Although the non-existence is
proved here, this example shows in a concise way how the source integrals can
be applied in more difficult physical situations like rotating stars. This and other
applications, e.g. to tidal distortions of black holes, will be investigated in future
work.
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