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Abstract I reconsider Einstein’s 1912 “Prague-Theory” of static gravity based on a
scalar field obeying a non-linear field equation. I point out that this equation follows
from the self-consistent implementation of the principle that all forms of energy
are the source of the gravitational field according to E = mc2. This makes it an
interesting toy-model for the “flat-space approach” to General Relativity (GR), as
pioneered by Kraichnan and later Feynman. Solutions modelling stars show features
familiar from GR, e.g., Buchdahl-like inequalities. The relation to full GR is also
discussed. This lends this toy theory also some pedagogical significance.

1 Introduction

Ever since he wrote his large 1907 review of Special Relativity [1] for the Jahrbuch
der Radioaktivität und Elektronik, Einstein reflected on how to extend the principle
of relativity to non-inertial motions. His key insight was that such an extension is
indeed possible, provided gravitational fields are included in the description. In fact,
the last chapter (V) of [1], which comprises four (17-20) out of twenty sections, is
devoted to this intimate relation between acceleration and gravitation. The heuristic
principle Einstein used was his “Äquivalenzhypothese” (hypothesis of equivalence)
or “Äquivalenzprinzip” (principle of equivalence),1 which says this: Changing the
description of a system from an inertial to a non-inertial reference frame is equivalent

1 In his Prague papers Einstein gradually changed from the first to the second expression.
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to not changing the frame at all but adding a special gravitational field. This principle
is heuristic in the sense that it allows to deduce the extension of physical laws, the
forms of which are assumed to be known in the absence of gravitational fields, to the
presence of at least those special gravitational fields that can be “created” by mere
changes of reference frames. The idea behind this was, of course, to postulate that the
general features found in this fashion remain valid in all gravitational fields. In the
1907 review Einstein used this strategy to find out about the influence gravitational
fields have on clocks and general electromagnetic processes.What he did not attempt
back in 1907 was to find an appropriate law for the gravitational field that could
replace the Poisson equation of Newtonian gravity. This he first attempted in his two
“Prague papers” from 1912 [2, 3] for static fields. The purpose of my contribution
here is to point out that the field equation Einstein arrived at in the second of these
papers is not merely of historical interest.

After 1907 Einstein turned away from gravity research for a while, which
he resumed in 1911 with a paper [4], also from Prague, in which he used the
“Äquivalenzhypothese” to deduce the equality between gravitational and inertial
mass, the gravitational redshift, and the deflection of light by the gravitational field
of massive bodies. As is well known, the latter resulted in half the amount that was
later correctly predicted by GR.

In the next gravity paper [2], the first in 1912, entitled “Lichtgeschwindigkeit
und Statik des Gravitationsfeldes”, Einstein pushed further the consequences of his
heuristics and began his search for a sufficiently simple differential equation for static
gravitational fields. The strategy was to, first, guess the equation from the form of
the special fields “created” by non inertial reference frames and, second, generalise
it to those gravitational fields generated by real matter. Note that the gravitational
accelerationwas to be assumed to be a gradient field (curl free) so that the sought-after
field equation was for a scalar field, the gravitational potential.

The essential idea in the first 1912 paper is to identify the gravitational poten-
tial with c, the local velocity of light.2 Einstein’s heuristics indicated clearly that
Special Relativity had to be abandoned, in contrast to the attempts by Max Abraham
(1875–1922), who published a rival theory [5, 6] that was superficially based on
Poincaré invariant equations (but violated Special Relativity in abandoning the con-
dition that the four-velocities of particles had constantMinkowski square). In passing
I remark that Einstein’s reply [7] to Abraham, which is his last paper from Prague
before his return to Zürich, contains in addition to his anticipation of the essential
physical hypotheses on which a future theory of gravity could be based (here I refer
to Jiří Bičák’s contribution), also a concise and very illuminating account of the
physical meaning and limitation of the special principle of relativity, the essence of
which was totally missed by Abraham.

2 Since here we will be more concerned with the mathematical form and not so much the actual
derivation byEinstein, wewill ignore the obvious objection that c has thewrong physical dimension,
namely that of a velocity, whereas the proper gravitational potential should have the dimension of
a velocity-squared.
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Back to Einstein’s first 1912 paper, the equation he came up with was

Δc = kcρ , (1)

where k is the “universal gravitational constant” and ρ is the mass density. The
mathematical difference between (1) and the Poisson equation in Newtonian gravity
is that (1) is homogeneous (even linear) in the potential. This means that the source
strength of a mass density is weighted by the gravitational potential at its location.
This implies a kind of “red-shift” for the active gravitational mass which in turn
results in the existence of geometric upper bounds for the latter, as we will discuss
in detail below. Homogeneity was Einstein’s central requirement, which he justified
from the interpretation of the gravitational potential as the local velocity of light,
which is only determined up to constant rescalings induced from rescalings of the
timescale.

Already in a footnote referring to (1) Einstein points out that it cannot be quite
correct, as he is to explain in detail in a follow-up paper [3]. This second paper of
1912 is the one I actually wish to focus on in my contribution here. It appeared in
the same issue of the Annalen der Physik as the previous one, under the title “Zur
Theorie des statischen Gravitationsfeldes” (on the theory of the static gravitational
field). In it Einstein once more investigates how the gravitational field influences
electromagnetic and thermodynamic processes according to what he now contin-
ues to call the “Aquivalenzprinzip”, and derives from it the equality of inertial and
gravitational mass.3

After that he returns to the equation for the static gravitational field and considers
the gravitational force-density f , acting on ponderable matter of mass density ρ,
which is given by (Einstein writes σ instead of our ρ)

f = −ρ∇c . (2)

Einstein observes that the space integral of f does not necessarily vanish on account
of (1), in violation of the principle that actio equals reactio. Terrible consequences,

3 Einstein considers radiation enclosed in a container whose walls are “massless” (meaning van-
ishing rest-mass) but can support stresses, so as to be able to counteract radiation pressure. Einstein
keeps repeating that equality of both mass types can only be proven if the gravitational field does
not act on the stressed walls. That remark is hard to understand in view of the fact that unbalanced
stresses add to inertia, as hewell knew fromhis own earlier investigations [8]. However, as explained
by Max Laue a year earlier [9], the gravitational action on the stressed walls is just cancelled by
that on the stresses of the electromagnetic field, for both systems together form a “complete sta-
tic system”, as Laue calls it. A year later, in the 1913 “Entwurf” paper with Marcel Grossmann
[10], Einstein again used a similar Gedankenexperiment with a massless box containing radiation
immersed in a gravitational field, by means of which he allegedly shows that any Poincaré invariant
scalar theory of gravity must violate energy conservation. A modern reader must ask how this can
possibly be, in view of Noether’s theorem applied to time-translation invariance. A detailed analysis
[11] shows that this energy contains indeed the expected contribution from the tension of the walls,
which may not be neglected.
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like self-acceleration, have to be envisaged.4 He then comes up with the following
non-linear but still homogeneous modification of (1):

Δc = k

{
cρ + 1

2k

∇c · ∇c

c

}
. (3)

In the rest of this paper wewill show how to arrive at this equation from a different
direction and discuss some of its interesting properties as well as its relation to the
description of static gravitational fields in GR.

2 A self-consistent modification of Newtonian Gravity

The following considerations are based on [12]. We start from ordinary Newtonian
gravity, where the gravitational field is described by a scalar function φ whose phys-
ical dimension is that of a velocity-squared. It obeys

Δϕ = 4πG ρ . (4)

The force per unit volume that the gravitational field exerts upon a distribution of
matter with density ρ is

f = −ρ∇ϕ . (5)

This we apply to the force that the gravitational field exerts upon its own source
during a real-time process of redistribution. This we envisage as actively transporting
each mass element along the flow line of a vector field ξ . To first order, the change
δρ that ρ suffers in time δt is given by

δρ = −Lδξ

(
ρd3x

)
d3x

= −∇ · (δξ ρ) , (6)

where δξ = δt ξ and Lδξ is the Lie derivative with respect to δξ . We assume the
support supp(ρ) =: B ⊂ R

3 to be compact. In general, this redistribution costs
energy. The work we have to invest for redistribution is, to first order, just given by

δA = −
∫
R3

δξ · f = −
∫

B
ϕ∇ · (δξ ρ) =

∫
B

ϕ δρ , (7)

where we used (6) in the last step and where we did not write out the Lebesgue
measure d3x to which all integrals refer. Note that in order to obtain (7) we did

4 “Anderenfalls würde sich die Gesamtheit der in dem betrachteten Raume befindlichen Massen,
die wir auf einem starren, masselosen Gerüste uns befestigt denken wollen, sich in Bewegung zu
setzen streben” ([3], p. 452).
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not make use of the field equation. Equation (7) is generally valid whenever the
force-density relates to the potential and the mass density as in (5).

Now we make use of the field Eq. (4). We assume the redistribution-process to be
adiabatic, that is, we assume the instantaneous validity of the field equation at each
point in time throughout the process. This implies

Δδϕ = 4πG δρ . (8)

Hence, using (7), the work invested in the process of redistribution is (to first order)

δA =
∫

B
ϕ δρ = δ

{
− 1

8πG

∫
R3

(∇ϕ)2
}

. (9)

If the infinitely dispersed state of matter is assigned the energy-value zero, then
the expression in curly brackets is the total work invested in bringing the infinitely
dispersed state to that described by the distribution ρ. This work must be stored
somewhere as energy. Like in electro-statics and -dynamics, we take a further logical
step and assume this energy to be spatially distributed in the field according to the
integrand. This leads to the following expression for the energy density of the static
gravitational field

ε = − 1

8πG
(∇ϕ)2 . (10)

All this is familiar fromNewtonian gravity. But nowwego beyondNewtonian gravity
and require the validity of the following

Principle All forms of energy, including that of the gravitational field itself, shall
gravitate according to E = mc2. This principle implies that if we invest an amount
of work δA in a system its (active) gravitational mass will increase by δA/c2.

Now, the (active) gravitational mass Mg is defined by the flux of the gravitational
field to spatial infinity (i.e. through spatial spheres as their radii tend to infinity):

Mg = 1

4πG

∫
S2∞

n · ∇ϕ = 1

4πG

∫
R3

Δϕ . (11)

Hence, making use of the generally valid Eq. (7), the principle that δA = Mgc2 takes
the form ∫

B
ϕ δρ = c2

4πG

∫
R3

Δδϕ . (12)

This functional equation relates ϕ and ρ, over and above the restriction imposed on
their relation by the field equation. However, the latter may—and generally will—be
inconsistent with this additional equation. For example, the Newtonian field Eq. (4)
is easily seen to manifestly violate (12), for the right-hand side then becomes just the
integral over c2δρ, which always vanishes on account of (6) (or the obvious remark
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that the redistribution clearly does not change the total mass), whereas the left hand
side will generally be non-zero. The task must therefore be to find field equation(s)
consistent with (12). Ourmain result in that direction is that the unique generalisation
of (4) which satisfies (12) is just (3), i.e. the field equation from Einstein’s second
1912 paper.

Let us see how this comes about. A first guess for a consistent modification of (4)
is to simply add ε/c2 to the source ρ:

Δϕ = 4πG

(
ρ − 1

8πGc2
(∇ϕ

)2)
. (13)

But this cannot be the final answer because this change of the field equation also
brings about a change in the expression for the self-energy of the gravitational field.
That is, the term in the bracket on the right-hand side is not the total energy according
to this equation, but according to the original equation (4). In other words: equation
(13) still lacks self-consistency. This can be corrected for by iterating this procedure,
i.e., determining the field’s energy density according to (13) and correcting the right-
hand side of (13) accordingly. Again we have changed the equation, and this goes
on ad infinitum. But the procedure converges to a unique field equation, similarly to
the convergence of the “Noether-procedure” 5 that leads from the Poincaré invariant
Pauli-Fierz theory of spin-2 mass-0 fields in flat Minkowski space to GR [13–15].

In our toy model the convergence of this procedure is not difficult to see. We start
from the definition (11) and calculate its variation δMg assuming the validity of (13).
From what we said above we know already that this is not yet going to satisfy (12).
But we will see that from this calculation we can read off the right redefinitions.

We start by varying (11):

δMg = 1

4πG

∫
Δδϕ . (14)

We replace Δδϕ with the variation of the right-hand side of (13). Partial integration
of the non-linear part gives us a surface term whose integrand is ∝ ϕ∇δϕ = O(r−3)

and hence vanishes. The remaining equation is

δMg =
∫

B
δρ + 1

4πG

∫
R3

( ϕ

c2

)
Δδϕ . (15)

Playing the same trick (of replacing Δδϕ with the variation of the right-hand side of
(13) and partial integration, so as to collect all derivatives on δϕ) again and again,
we arrive after N steps at

5 Pioneered by Robert Kraichnan in his 1947 MIT Bachelor thesis “Quantum Theory of the Linear
Gravitational Field”.
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δMg =
∫

B

N−1∑
n=0

1

n!
( ϕ

c2

)n
δρ + 1

N !c2N

1

4πG

∫
R3

ϕN δ(Δϕ) . (16)

As ϕ is bounded for a regular matter distribution, and the spatial integral over δΔϕ

is just 4πGδMg , the last term tends to zero for N → ∞. Hence

δMg =
∫

B
δρ exp(ϕ/c2) . (17)

This is of the desired form (12) required by the principle, provided we redefine the
gravitational potential to be Φ rather than ϕ, where

Φ := c2 exp(ϕ/c2) . (18)

Saying that Φ rather than ϕ is the right gravitational potential means that the force
density is not given by (5), but rather by

f = −ρ∇Φ . (19)

As we have made use of Eq. (13) in order to derive (17), we must make sure to keep
that equation, just re-expressed in terms of Φ. This leads to

ΔΦ = 4πG

c2

[
ρΦ + c2

8πG

(∇Φ)2

Φ

]
, (20)

which is precisely Einstein’s improved “Prague equation” (3) with k = 4π G/c2.
Note from (18) that the asymptotic condition ϕ(r → ∞) → 0 translates to Φ(r →
∞) → c2. Note also that for r → ∞ the 1/r2-parts of ∇ϕ and ∇Φ coincide, so that
in the expressions (11) for Mg we may just replace ϕ with Φ:

Mg = 1

4πG

∫
S2∞

n · ∇Φ = 1

4πG

∫
R3

ΔΦ . (21)

The principle now takes the form (12) with ϕ replaced by Φ. It is straightforward to
show by direct calculation that (12) is indeed a consequence of (20), as it must be. It
also follows from (20) that the force density (19) is the divergence of a symmetric
tensor:

fa = −∇btab , (22a)

where

tab = 1

4πGc2

{
1

Φ

[
∇aΦ∇bΦ − 1

2δab(∇Φ)2
]}

. (22b)
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This implies the validity of the principle that actio equals reactio that Einstein
demanded. This was Einstein’s rationale for letting (3) replace (1).

Finally we mention that (20) may be linearised if written in terms of the square-
root of Φ:

Ψ :=
√

Φ

c2
. (23)

One gets

ΔΨ = 2πG

c2
ρ Ψ . (24)

This helps in finding explicit solutions to (20). Note that Ψ is dimensionless.

3 Spherically symmetric solutions

In this section we discuss some properties of spherically symmetric solutions to (24)
for spherically symmetric mass distributions ρ of compact support. In the following
we will simply refer to the object described by such a mass distribution as “star”.

In terms of χ(r) := rΨ (r) Eq. (24) is equivalent to

χ ′′ = 2πG

c2
ρ χ . (25)

The support of ρ is a closed ball of radius R, called the star’s radius. For r < R we
shall assume ρ(r) ≥ 0 (weak energy condition).We seek solutionswhich correspond
to everywhere positive and regular Ψ and hence everywhere positive and regular Φ.
In particular Φ(r = 0) and Ψ (r = 0) must be finite. For r > R Eq. (25) implies
χ ′′ = 0, the solution to which is

χ+(r) = rΨ+(r) = r − Rg , for r > R , (26)

where Rg denotes the gravitational radius

Rg := G Mg

2c2
. (27)

Rg comes in because of (21), which fixes one of the two integration constants, the
other being fixed by Ψ (∞) = 1.

Let χ− denote the solution in the interior of the star. Continuity and differentiabil-
ity at r = R gives χ−(R) = R − Rg and χ ′−(R) = 1. We observe that χ−(R) ≥ 0.
For suppose χ−(R) < 0, then (25) and the weak energy condition imply χ ′′(R) ≤ 0.
But this implies that for r ∈ [0, R] the curve r �→ χ−(r) lies below the straight line
r �→ r − Rg and assumes a value less than −Rg at r = 0, in contradiction to the
finiteness of Ψ (r = 0) which implies χ−(r = 0) = 0. Hence we have
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Theorem 1 The gravitational radius of a spherically symmetric star is universally
bound by its (geometric) radius, Rg ≤ R. Equivalently expressed in terms of Mg we
may say that the gravitational mass is universally bound above by

Mg <
2c2R

G
. (28)

This may be seen in analogy to Buchdahl’s inequality in GR [16], which, using the
isotropic (rather than Schwarzschild) radial coordinate, would differ from (28) only
by an additional factor of 8/9 on the right-hand side. The Buchdahl bound is optimal,
being saturated by the interior Schwarzschild solution for a homogeneous star.

So let us here, too, specialise to a homogeneous star,

ρ(r) =
{

3Mb
4π R3 for r ≤ R

0 for r > R ,
(29)

where Mb is called the bare mass (integral over ρ). It is convenient to introduce the
radii corresponding to bare and gravitational masses, as well as their ratio to the star’s
radius R:

Rb := G Mb

2c2
, x := Rb

R
, (30a)

Rg := G Mg

2c2
, y := Rg

R
. (30b)

We also introduce the inverse length

ω := 1

R
·
√
3Rb

R
, (31)

so that (25) just reads χ ′′ = ω2χ . From this the interior solution is easily obtained.
If written in terms of Ψ it reads

Ψ−(r) = 1

cosh(ωR)

sinh(ωr)

ωr
, for r < R . (32)

As a result of the matching to the exterior solution given in (26), Rg is determined
by R and ω, i.e. R and Rb. In terms of x and y this relation takes the simple form

y = 1 − tanh
(√

3x
)

√
3x

, (33)

which convex-monotonically maps [0,∞) onto [0, 1). The fact that y < 1 for all x
is just the statement of the Theorem applied to the homogeneous case.
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If x = Rb/R  1 we have y = x − 6
5 x2 + · · · , which for Etotal := Mgc2 reads

Etotal = Mbc2
(
1 − 3

5 x + O(x2)
)

. (34)

We note that −3Mbc2x/5 = − 3
5G M2

b /R is just the Newtonian binding energy of a
homogeneous star. In view of our Principle it makes good sense that to first order just
this amount is subtracted from the baremass in order to obtain the active gravitational
mass. In Newtonian gravity this negative amount is just identified with the field’s
self-energy, but here the interpretation is different: The two terms that act as source
for the gravitational field in (20) are the matter part, which is proportional to ρ but
diminished by Φ, and the field’s own part, which is proportional to (∇Φ)2/Φ and
positive definite! Their contributions are, respectively,

Ematter =
∫

B
ρΦ = Mbc2

(
1 − 6

5 x + O(x2)
)

, (35)

Efield = c2

8πG

∫
R3

(∇Φ)2

Φ
= Mbc2

(
3
5 x + O(x2)

)
. (36)

Hence even though the total energy is decreased due to binding, the gravitational
field’s self energy increases by the same amount. Twice that amount is gained from
the fact that the matter-energy is “red-shifted” by being multiplied withΦ, so energy
is conserved (of course).

Two more consequences, which are related, are noteworthy:

• Unlike in Newtonian theory, objects with non-zero gravitational mass cannot be
modelled by point sources. In the spherically symmetric case this is an immediate
consequence of (28), which implies Mg → 0 for R → 0. Hence there are no
δ-like masses.

• Unlike in Newtonian gravity, unlimited compression of matter does not lead
to unlimited energy release. Consider a sequence of homogeneous (just for
simplicity) stars of fixed bare mass Mb and variable radius R, then the gravi-
tational mass Mg as function of x = Rb/R is given by

Mg(x) = Mb ·
⎧⎨
⎩
1

x
·
⎛
⎝1 −

tanh
(√

3x
)

√
3x

⎞
⎠

⎫⎬
⎭ . (37)

The function in curly brackets6 is a strictly monotonically decreasing function
[0,∞] �→ [1, 0]. This shows that for infinitely dispersed matter, where R → ∞
and hence x → 0, we have Mg(x = 0) = Mb, as expected, and that for infinite
compression Mg(x → ∞) = 0.As the gained energy at stage x is (Mb−Mg(x))c2,
we can at most gain Mbc2.

6 Its Taylor expansion at x = 0 is 1 − 6x/5 + 51x2/35 + · · · .
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4 Relation to General Relativity

Finally I wish to briefly comment on the relation of Eq. (3) or (20) to GR. Since
Einstein’s 1912 theory was only meant to be valid for static situations, I will restrict
attention to static spacetimes (M, g). Hence I assume the existence of a timelike and
hypersurface orthogonal Killing field K . My signature convention shall be “mostly
plus”, i.e. (−,+,+,+).

We choose adapted coordinates (t, xa), a = 1, 2, 3, where the level sets of t are
the integral manifolds of the foliation defined by K and K = ∂/∂(ct). We can then
write themetric in a form inwhich the coefficients do not depend on t (called “time”),

g = −Ψ 2(x) c2 dt ⊗ dt + ĝab(x) dxa ⊗ dxb . (38)

Clearly c2Ψ 2 = −g(K , K ). From now on, all symbols with hats refer to the spatial
geometry, like the spatial metric ĝ.

The t-component of the geodesic equation is equivalent to Ψ 2 ṫ = const, where
an overdot refers to the derivative with respect to an affine parameter. This equation
allows us to eliminate the affine parameter in favour of t in the spatial components
of the geodesic equation. If we set7

Ψ =
√
2Φ

c2
, (39)

they read

d2xa

dt2
+ Γ̂ a

bc
dxb

dt

dxc

dt
= −Φ,bĝab + Φ,b

[
1

Φ

dxa

dt

dxb

dt

]
, (40)

where the Γ̂ a
bc are the Christoffel coefficients for ĝ, and Φ,a = ∂aΦ. This should

be compared with (19) together with Newton’s second law, which give d2x/dt2 =
−∇Φ. As we did not attempt to include special relativistic effects in connection with
high velocities, we should consistently neglect terms v2/c2 in (40). This results in
dropping the rightmost term. The rest has the pseudo-Newtonian form in arbitrary
(not just inertial) spatial coordinates. A non-zero spatial curvature would, of course,
be a new feature not yet considered.

The curvature and Ricci tensors for the metric (38) are readily computed, most
easily by using Cartan’s structure equations:

Ric(n, n) = Ψ −1 Δ̂Ψ , Rab = R̂ab − Ψ −1 ∇̂a∇̂bΨ . (41)

7 This differs by a factor of 2 from (23) which we need and to which we return below.
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Here n = Ψ −1∂/c∂t is the unit timelike vector characterising the static reference
frame, ∇̂ is the Levi-Civita covariant derivative with respect to ĝ, and Δ̂ is the
corresponding Laplacian.

Using this in Einstein’s equations

Rμν = 8πG

c4

(
Tμν − 1

2gμνT λ
λ

)
(42)

for pressureless (we neglect the pressure since it enters multiplied with c−2) dust at
rest and of mass-density ρ in the static frame, i.e.

Tμν = ρc2nμnν , (43)

we get

Δ̂Ψ = 4πG

c2
ρΨ time component , (44a)

∇̂a∇̂bΨ = R̂abΨ space components . (44b)

We note that, apart from the space curvature, (44a) is almost—but not quite—
identical to (24). They differ by a factor of 2! Rewriting (44a) in terms ofΦ according
to (39), we get

Δ̂Φ = 8πG

c2

[
ρΦ + c2

16πG

ĝab∇̂aΦ∇̂bΦ

Φ

]
. (45)

This differs from (20) by the same factor of 2 (i.e., G → 2G). Note that we cannot
simply remove this factor by rescaling Ψ and Φ, as the equations are homogeneous
in these fields. Note also that the overall scale of Φ is fixed by (40): It is the gradient
of Φ, and not a multiple thereof, which gives the acceleration. But then there is
another factor of 2 in difference to our earlier discussion: If the metric (38) is to
approach the Minkowski metric far away from the source, then Ψ should tend to
one and hence Φ should asymptotically approach c2/2 according to (39). In (20),
however, Φ should asymptotically approach c2, i.e. twice that value. This additional
factor of 2 ensures that both theories have the same Newtonian limit. Indeed, if we
expand the gravitational potential Φ of an isolated object in a power series in G, this
implies that the linear terms of both theories coincide. However, the quadratic terms
in GR are twice as large as in our previous theory based on (19) and (20). This is not
quite unexpected if we take into account that in GR we also have the space curvature
that will modify the fields and geodesics in post Newtonian approximations. We note
that the spatial Einstein equations (44b) prevent space from being flat. For example,
taking their trace and using (44a) shows that the scalar curvature of space is, in fact,
proportional to the mass density.

Finally we show that the total gravitational mass in GR is just given by the same
formula (21), where Φ is now that used here in the GR context. To see this we
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recall that for spatially asymptotically flat spacetimes the overall mass (measured at
spatial infinity) is given by the ADM-mass. Moreover, for spatially asymptotically
flat spacetimes which are stationary and satisfy Einstein’s equations with sources of
spatially compact support, the ADM mass is given by the Komar integral (this is,
e.g., proven in Theorem 4.13 of [17]). Hence we have

MADM = c2

8πG

∫
S2∞

�d K � . (46)

Here K = ∂/∂(ct), and K � := g(K , ·) = −Ψ 2cdt is the corresponding 1-form.
The star, �, denotes the Hodge-duality map. Using (39) and asymptotic flatness it is
now straightforward to show that the right hand side of (46) can indeed be written
in the form of the middle term in (21). This term only depends on Φ at infinity,
i.e. on the Newtonian limit, and hence it gives a value independent of the factor-2
discrepancy discussed above. In that sense the active gravitational mass Mg defined
earlier corresponds to MADM in the GR context.

This ends our discussion of Einstein’s 1912 scalar field equation, which is thus
seen to contain many interesting features we know from GR, albeit in a pseudo-
Newtonian setting.
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