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Preface

A few days before leaving Prague, after 15 months spent at the German part of
Charles-Ferdinand University, Albert Einstein submitted a paper titled Relativity
and Gravitation. Reply to a Comment by M. Abraham. It was received by Annalen
der Physik on July 4, 1912. Stimulated by Abraham’s criticism, Einstein sum-
marized the contemporary state of his relativistic theory of gravitation and,
remarkably, anticipated what a future theory of gravity should look like.

The organizers of the conference ‘‘Relativity and Gravitation: 100 Years After
Einstein in Prague,’’ held in Prague on June 25–29, 2012, were inspired by the
title, date, and significance of this last of Einstein’s Prague papers. The aim of the
conference was to review the present status of the general theory of relativity (both
classical and quantum) and its applications in cosmology and astrophysics from a
broad perspective. The articles based on the plenary lectures are published in a
separate volume General Relativity, Cosmology and Astrophysics: Perspectives
100 Years After Einstein’s stay in Prague (Springer 2014). The titles and the
abstracts of these review talks are included in these Proceedings in the first
chapter. The second aim of the conference was to present the newest results in
each of the fields mentioned above. These were presented in afternoon sessions
consisting of contributed talks and posters. This Proceedings Volume contains
such contributions. For a better overview, they are divided into three parts:

• Classical General Relativity
• Quantum Fields and Quantum Gravity
• Cosmology and Relativistic Astrophysics

Within each of these parts, first articles based on the contributed talks are
presented in alphabetical order, then follow articles based on the poster
presentations.

Over 200 relativists and astrophysicists from 31 countries appeared in Prague.
The abstracts of their talks and posters, and video recordings of all invited lectures
are available on the conference website http://www.ae100prg.mff.
cuni.cz.

The conference was organized under the auspices of the Rector of Charles
University, the oldest university north of the Alps (founded in 1348). The lectures
took place in the Blue Lecture Hall in the historical complex of the University in
the heart of Prague’s Old Town.
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The Scientific Organizing Committee included Marek Abramowicz, Lars
Andersson, Abhay Ashtekar, Julian Barbour, Jiří Bičák, Roger Blandford, Bernd
Brügmann, Piotr Chruściel, Thibault Damour, Karsten Danzmann, Fernando de
Felice, George Ellis, John Friedman, Helmut Friedrich, Valeri Frolov, Gary
Gibbons, Gary Horowitz, Joseph Katz, Karel Kuchař, Jerzy Lewandowski, Gernot
Neugebauer, Hermann Nicolai, Igor Novikov, Martin Rees, Oscar Reula, Luciano
Rezzolla, Misao Sasaki, Gerhard Schäfer, Bernd Schmidt, Alexei Starobinsky,
Paul Tod, Robert Wald, and Clifford Will.

The local organizing committee involved Jiří Bičák, Michal Bursa, Petr
Hadrava, David Heyrovský, Vladimír Karas, David Kofroň, Pavel Krtouš, Jiří
Langer, Tomáš Ledvinka, Jiří Podolský, Vojtěch Pravda, Oldřich Semerák,
Zdeněk Stuchlík, Otakar Svítek, Václav Špička, and Martin Žofka, all of them
either researchers from the Institute of Theoretical Physics of the Faculty of
Mathematics and Physics of Charles University or former students of the Faculty.

The program of the conference included a ceremony in the Great Auditorium of
the historical Carolinum building, during which the honorary degree of Doctor of
Physical and Mathematical Sciences, doctor honoris causa, was awarded to
Prof. D. Lynden-Bell, FRS from the University of Cambridge and to Prof. Dr.
W. Domcke from Technical University Munich. A reception for all participants
and accompanying persons was hosted by the Dean of the Faculty of Mathematics
and Physics of Charles University in the foyer next to Aula Magna. The reception
was followed by an impressive concert by Škampa Quartett performing pieces by
Haydn, Dvořák, Suk, and Janáček in Aula Magna.

During the conference week, the participants could visit an adjacent exhibition
‘‘Einstein, Prague and Gravitation’’ prepared by Czech physicists and historians
and significantly enriched by the ‘‘Einstein-Wellen Mobil,’’ a mobile exhibition
about gravitational waves brought from Tübingen by Dr. Hans-Peter Nollert. The
exhibition was opened 10 days before the beginning of the conference and was
visited by a great number of people, in particular by secondary school pupils.

On Wednesday, June 26, a public evening talk ‘‘Was Einstein right?—How
cosmic time-keepers in space probe Einstein’s strange world’’ by Prof. Michael
Kramer from the Max-Planck Institute for Radioastronomy, Bonn, attracted more
than 500 people into the Great Lecture Hall of the Faculty of Arts of Charles
University despite a EURO 2012 semifinals match taking place at the same time.
This presentation on the rich aspects of pulsar physics and astrophysics can be
watched at: http://www.edumeta.com/channels/MFFUK/38889120.

On Thursday, a late-afternoon guided tour of the Old Town, taking participants
to places related to great physicists and astronomers, was followed by a conference
banquet in the foundry of Emperor Rudolph II at Prague Castle, decorated by
various items related to Tycho Brahe, Johannes Kepler, goldsmiths, alchemists,
artists, and others drawn to Rudolph’s court. As a special ‘‘aperitif,’’ an organ
concert was served in St. Vitus Cathedral with the last evening rays penetrating
through the cathedral’s windows.

Music, in fact, framed the conference: as the participants were entering the Blue
Lecture Hall for the first time on Monday morning, they were accompanied by
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Madrigal stanzas by Bohuslav Martinů, a Czech composer who became a professor
at Princeton and dedicated the stanzas to Albert Einstein in 1943. The same music
played again on late Friday afternoon as the participants were leaving the Blue
Hall at the end of the conference.

The conference was sponsored by the Faculty of Mathematics and Physics of
Charles University, by the Wikow Company, and, above all, by the Karel Jane-
ček’s Foundation. Support was much appreciated by both the organizers and
participants. We would also like to acknowledge the ongoing support from the
Czech Science Foundation, at present realized by grant GAČR No. 14-37086G
awarded to the Albert Einstein Center for Gravitation and Astrophysics.

All the contributions were refereed by the editors and by a number of col-
leagues at the Albert-Einstein Institute in Golm/Potsdam. In particular, we would
like to thank Piotr Bizoń, Hermann Hamber, Daniele Oriti, and members of his
group for their help with the refereeing process.

Finally, we would like to express our gratitude to Frank Schulz and Vera
Osswald from Living Reviews in Relativity based at the Albert Einstein Institute
for their great help with these volumes.

Prague, January 2014 Jiří Bičák
Tomáš Ledvinka
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Gravitational Waveforms for Black Hole Binaries
with Unequal Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Márton Tápai, Zoltán Keresztes and László Árpád Gergely

Part III Quantum Fields and Quantum Gravity

Phenomenology of Quantum Gravity and its Possible Role
in Neutrino Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
Mario A. Acero and Yuri Bonder

Loop Quantum Cosmology: Anisotropy and Singularity Resolution. . . 469
Alejandro Corichi, Asieh Karami and Edison Montoya

Tensor Operators in Loop Quantum Gravity . . . . . . . . . . . . . . . . . . . 479
Maïté Dupuis and Florian Girelli

Probability Distributions for Quantum Stress Tensors
in Two and Four Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Christopher J. Fewster, L. H. Ford and Thomas A. Roman

Spontaneous Breaking of Lorentz Symmetry
for Canonical Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Steffen Gielen

xiv Contents

http://dx.doi.org/10.1007/978-3-319-06761-2_60
http://dx.doi.org/10.1007/978-3-319-06761-2_61
http://dx.doi.org/10.1007/978-3-319-06761-2_61
http://dx.doi.org/10.1007/978-3-319-06761-2_62
http://dx.doi.org/10.1007/978-3-319-06761-2_62
http://dx.doi.org/10.1007/978-3-319-06761-2_63
http://dx.doi.org/10.1007/978-3-319-06761-2_63
http://dx.doi.org/10.1007/978-3-319-06761-2_64
http://dx.doi.org/10.1007/978-3-319-06761-2_65
http://dx.doi.org/10.1007/978-3-319-06761-2_65
http://dx.doi.org/10.1007/978-3-319-06761-2_66
http://dx.doi.org/10.1007/978-3-319-06761-2_66
http://dx.doi.org/10.1007/978-3-319-06761-2_67
http://dx.doi.org/10.1007/978-3-319-06761-2_68
http://dx.doi.org/10.1007/978-3-319-06761-2_69
http://dx.doi.org/10.1007/978-3-319-06761-2_69
http://dx.doi.org/10.1007/978-3-319-06761-2_70
http://dx.doi.org/10.1007/978-3-319-06761-2_70


The Transfer Matrix in Four-Dimensional Causal
Dynamical Triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Andrzej Görlich

Plane Gravitational Waves and Flat Space in Loop
Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Franz Hinterleitner and Seth Major

Unruh-DeWitt Detector on the BTZ Black Hole . . . . . . . . . . . . . . . . . 523
Lee Hodgkinson and Jorma Louko

On the Observability of Quantum-Gravitational Effects
in the Cosmic Microwave Background . . . . . . . . . . . . . . . . . . . . . . . . 531
Claus Kiefer and Manuel Krämer

Quantum Singularities in Conformally Static Spacetimes . . . . . . . . . . 539
Deborah A. Konkowski and Thomas M. Helliwell

Granularity in Angle: Observability in Scattering Experiments. . . . . . 547
Seth A. Major and Jake C. Zappala

Signature Change in Loop Quantum Cosmology. . . . . . . . . . . . . . . . . 555
Jakub Mielczarek

Quantum Fields in Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
Giovanni Acquaviva

Classical and Quantum Scattering in Impulsive Backgrounds . . . . . . . 567
Peter Aichelburg and Herbert Balasin

Effective Vacuum Bianchi IX in Loop Quantum Cosmology . . . . . . . . 573
Alejandro Corichi, Asieh Karami and Edison Montoya

Coupling Dimers to CDT to Obtain Higher Order
Multicritical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Lisa Glaser

A Sheet of Graphene: Quantum Field in a Discrete Curved Space . . . 583
Nikodem Szpak

Contents xv

http://dx.doi.org/10.1007/978-3-319-06761-2_71
http://dx.doi.org/10.1007/978-3-319-06761-2_71
http://dx.doi.org/10.1007/978-3-319-06761-2_72
http://dx.doi.org/10.1007/978-3-319-06761-2_72
http://dx.doi.org/10.1007/978-3-319-06761-2_73
http://dx.doi.org/10.1007/978-3-319-06761-2_74
http://dx.doi.org/10.1007/978-3-319-06761-2_74
http://dx.doi.org/10.1007/978-3-319-06761-2_75
http://dx.doi.org/10.1007/978-3-319-06761-2_76
http://dx.doi.org/10.1007/978-3-319-06761-2_77
http://dx.doi.org/10.1007/978-3-319-06761-2_78
http://dx.doi.org/10.1007/978-3-319-06761-2_79
http://dx.doi.org/10.1007/978-3-319-06761-2_80
http://dx.doi.org/10.1007/978-3-319-06761-2_81
http://dx.doi.org/10.1007/978-3-319-06761-2_81
http://dx.doi.org/10.1007/978-3-319-06761-2_82


Abstracts of Plenary Talks

Introduction The texts based on 25 plenary talks from 32 given are included in the
Volume ‘‘General, Relativity, Cosmology and Astrophysics: 100 Years After
Einstein in Prague’’ (editors J. B. and T. L.), Springer Verlag 2013. In order to give
a more complete picture of the whole conference, the abstracts of the 25 plenary
talks are included in the first chapter of these Proceedings.

Part I Gravity and Prague

Kepler and Mach’s Principle

Julian Barbour

The definitive ideas that led to the creation of general relativity crystallized in
Einstein’s thinking during 1912 while he was in Prague. At the centenary meeting
held there to mark the breakthrough, I was asked to talk about earlier great work of
relevance to dynamics done at Prague, above all by Kepler and Mach. The main
topics covered in this paper are: some little known but basic facts about the
planetary motions; the conceptual framework and most important discoveries of
Ptolemy and Copernicus; the complete change of concepts that Kepler introduced
and their role in his discoveries; the significance of them in Newton’s work;
Mach’s realization that Kepler’s conceptual revolution needed further develop-
ment to free Newton’s conceptual world of the last vestiges of the purely
geometrical Ptolemaic world view; and the precise formulation of Mach’s
principle required to place GR correctly in the line of conceptual and technical
evolution that began with the ancient Greek astronomers.

Einstein in Prague: Relativity Then and Now

Jiří Bičák

It was during his stay in Prague that Einstein started in earnest to develop his ideas
about general relativity. I will recall those days in 1911 and 1912, discuss
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Einstein’s papers on gravitation from that period, and emphasize which new
concepts and ideas he introduced. I also want to indicate how the main themes that
preoccupied him then, the principle of equivalence, bending of light, gravitational
redshift, and frame dragging effects, are alive in contemporary relativity.

Part II Classical General Relativity

Observers, Observables and Measurements in General Relativity

Donato Bini

To perform any physical measurement it is necessary to identify in a nonambig-
uous way both the observer and the observable. A given observable can be then the
target of different observers: a suitable algorithm to compare among their
measurements should necessarily be developed, either formally or operationally.
This is the task of what we call ‘‘theory of measurement,’’ which we discuss here
in the framework of general relativity.

Some Links Between General Relativity and Other Parts of Physics

Gary W. Gibbons

Now that General Relativity has become such a central part of modern physics, its
geometrical formalism being taught as part of almost all undergraduate physics
courses, it is natural to ask: how can its basic concepts and techniques be used to
illuminate areas of physics which have no connection with gravity? Another way
of asking this question is: are the situations analogous to those occurring in
General Relativity? The search for such analogs is of course an old one, but
recently, because of advances in technology, these questions have become more
topical. In this talk I will illustrate this theme by examples drawn from optics,
acoustics, liquid crystals, graphene, and the currently popular topic of cloaking.

The General Relativistic Two Body Problem and the Effective
One Body Formalism

Thibault Damour

A new analytical approach to the motion and radiation of (comparable mass)
binary systems was introduced in 1999 under the name of Effective One-Body
(EOB) formalism. We review the basic elements of this formalism, and discuss
some of its recent developments. Several recent comparisons between EOB
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predictions and Numerical Relativity (NR) simulations have shown the aptitude of
the EOB formalism to provide accurate descriptions of the dynamics and radiation
of various binary systems (comprising black holes or neutron stars) in regimes that
are inaccessible to other analytical approaches (such as the last orbits and the
merger of comparable mass black holes). In synergy with NR simulations, post-
Newtonian (PN) theory and Gravitational Self-Force (GSF) computations, the
EOB formalism is likely to provide an efficient way of computing the very many
accurate template waveforms that are needed for Gravitational Wave (GW) data
analysis purposes.

Gravitational Self-Force: Orbital Mechanics Beyond Geodesic Motion

Leor Barack

The question of motion in a gravitationally bound two-body system is a long-
standing open problem of General Relativity. When the mass ratio g is small, the
problem lends itself to a perturbative treatment, wherein corrections to the
geodesic motion of the smaller object (due to radiation reaction, internal structure,
etc.) are accounted for order by order in g, using the language of an effective
gravitational self-force. The prospect for observing gravitational waves from
compact objects inspiralling into massive black holes in the foreseeable future has
in the past 15 years motivated a program to obtain a rigorous formulation of the
self-force and compute it for astrophysically interesting systems. I will give a brief
survey of this activity and its achievements so far, and will identify the challenges
that lie ahead. As concrete examples, I will discuss recent calculations of certain
conservative post-geodesic effects of the self-force, including the OðgÞ to the
precession rate of the periastron. I will highlight the way in which such
calculations allow us to make fruitful contact with other approaches to the two-
body problem.

Hamiltonian Formalism for Spinning Black Holes in General Relativity

Gerhard Schäfer

A Hamiltonian treatment of gravitationally interacting spinning black holes is
presented based on a tetrad generalization of the Arnowitt-Deser-Misner (ADM)
canonical formalism of general relativity. The formalism is valid through linear
order in single spins. For binary systems, higher order post-Newtonian Hamilto-
nians are given in explicit analytic forms. A next-to-leading order in spin
generalization is presented, others are mentioned. Comparisons between the
Hamiltonian formalisms by ADM, Dirac, and Schwinger are made.
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Stability of Marginally Outer Trapped Surfaces and Geometric Inequalities

Marc Mars

Marginally outer trapped surfaces (MOTS) admit a notion of stability that in many
respects generalizes a similar notion for minimal hypersurfaces. Stable MOTS play
an interesting role in a number of geometric inequalities involving physical
parameters such as area, mass, charge or, in the axially symmetric case, angular
momentum. Some of those inequalities are global in nature while others are local,
with interesting relationships between them. In this lecture the notion of stable
MOTS will be reviewed and some of the geometric inequalities involving stable
MOTS will be described.

Stationary Black-Hole Binaries: A Non-existence Proof

Gernot Neugebauer and Jörg Hennig

We resume former discussions of the question of whether the spin–spin repulsion
and the gravitational attraction of two aligned black holes can balance each other.
Based on the solution of a boundary problem for disconnected (Killing) horizons
and the resulting violation of characteristic black hole properties, we present a
nonexistence proof for the equilibrium configuration in question. From a
mathematical point of view, this result is a further example of the efficiency of
the inverse (‘‘scattering’’) method in nonlinear theories.

Dynamic and Thermodynamic Stability of Black Holes and Black Branes

Robert M. Wald

I describe recent work with Stefan Hollands that establishes a new criterion for the
dynamical stability of black holes in D� 4 spacetime dimensions in general
relativity with respect to axisymmetric perturbations: Dynamical stability is
equivalent to the positivity of the canonical energy, E, on a subspace of linearized
solutions that have vanishing linearized ADM mass, momentum, and angular
momentum at infinity and satisfy certain gauge conditions at the horizon. We
further show that E is related to the second order variations of mass, angular
momentum, and horizon area by E ¼ d2M �

P
i Xid

2Ji � ðj=8pÞd2A, thereby
establishing a close connection between dynamical stability and thermodynamic
stability. Thermodynamic instability of a family of black holes need not imply
dynamical instability because the perturbations towards other members of the
family will not, in general, have vanishing linearized ADM mass and/or angular
momentum. However, we prove that all black branes corresponding to thermo-
dynmically unstable black holes are dynamically unstable, as conjectured by
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Gubser and Mitra. We also prove that positivity of E is equivalent to the
satisfaction of a ‘‘local Penrose inequality,’’ thus showing that satisfaction of this
local Penrose inequality is necessary and sufficient for dynamical stability.

Instability of Anti-de Sitter Spacetime

Piotr Bizoń and Andrzej Rostworowski

In this talk we summarize our recent numerical and perturbative calculations
which indicate that AdS spacetime is unstable. Namely, we study spherically
symmetric Einstein-massless-scalar field equations with negative cosmological
constant and show that this system is unstable against black hole formation for a
large class of initial data arbitrarily close to the AdS solution. We conjecture that
this instability is triggered by a resonant mode mixing which gives rise to diffusion
of energy from low to high frequencies.

Higher-Dimensional Black Holes

Harvey S. Reall

This article reviews black hole solutions of higher dimensional General Relativity.
The focus is on stationary vacuum solutions and recent work on instabilities of
such solutions.

Black Holes, Hidden Symmetry and Complete Integrability: Brief Review

Valeri P. Frolov

This paper contains a brief review of the remarkable properties of higher
dimensional rotating black holes with the spherical topology of the horizon. We
demonstrate that these properties are connected with and generated by a special
geometrical object, the Principal Conformal Killing-Yano tensor (PCKYT). The
most general solution, describing such black holes, Kerr-NUT-ADS metric, admits
this structure. Moreover, a solution of the Einstein Equations with (or without) a
cosmological constant which possesses PCKYT is the Kerr-NUT-ADS metric.
This object (PCKYT) is responsible for such remarkable properties of higher
dimensional rotating black holes as: (i) complete integrability of geodesic
equations and (ii) complete separation of variables of the important field equations.
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Part III Cosmology and Quantum Gravity

Cosmological Models and Stability

Lars Andersson

Principles in the form of heuristic guidelines or generally accepted dogma play an
important role in the development of physical theories. In particular, philosophical
considerations and principles figure prominently in the work of Albert Einstein. As
mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the
equivalence principle, an essential step on the road to general relativity, during his
time in Prague 1911–1912. In this talk, I would like to discuss some aspects of
cosmological models. As cosmology is an area of physics where ‘‘principles’’ such
as the ‘‘cosmological principle’’ or the ‘‘Copernican principle’’ play a prominent
role in motivating the class of models which form part of the current standard
model, I will start by comparing the role of the equivalence principle to that of the
principles used in cosmology. I will then briefly describe the standard model of
cosmology to give a perspective on some mathematical problems and conjectures
on cosmological models, which are discussed in the later part of this paper.

Inflation and Birth of Cosmological Perturbations

Misao Sasaki

We review recent developments in the theory of inflation and cosmological
perturbations produced from inflation. After a brief introduction of the standard,
single-field slow-roll inflation, and the curvature and tensor perturbations produced
from it, we discuss possible sources of nonlinear, non-Gaussian perturbations in
other models of inflation. Then we describe the so-called dN formalism, which is a
powerful tool for evaluating nonlinear curvature perturbations on super Hubble
scales.

Loop Quantum Gravity and The Planck Regime of Cosmology

Abhay Ashtekar

The very early universe provides the best arena we currently have to test quantum
gravity theories. The success of the inflationary paradigm in accounting for the
observed inhomogeneities in the cosmic microwave background already illustrates
this point to a certain extent because the paradigm is based on quantum field theory
on the curved cosmological space-times. However, this analysis excludes the
Planck era because the background space-time satisfies Einstein’s equations all the
way back to the big bang singularity. Using techniques from loop quantum gravity,
the paradigm has now been extended to a self-consistent theory from the Planck
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regime to the onset of inflation, covering some 11 orders of magnitude in
curvature. In addition, for a narrow window of initial conditions, there are
departures from the standard paradigm, with novel effects, such as a modification
of the consistency relation involving the scalar and tensor power spectra and a new
source for non-Gaussianities. The genesis of the large-scale structure of the
universe can be traced back to quantum gravity fluctuations in the Planck regime.
This report provides a bird’s eye view of these developments for the general
relativity community.

The Inflationary Origin of the Seeds of Cosmic Structure: Quantum
Theory and the Need for Novel Physics

Daniel Sudarsky

The Inflationary account for the emerging of the seeds of cosmic structure from
quantum fluctuations is a central part of our current views of cosmology. It is, on
the one hand, extremely successful at the phenomenological level, and yet it
retains an aspect that is generally regarded as controversial: The exact mechanism
by which quantum fluctuations transmute into actual inhomogeneities. We will
review the considerations that lead us to conclude that the fully satisfactory
resolution of the issue requires novel physics and we will discuss an option we
have been considering in this regard.

Quantum Gravity: The View From Particle Physics

Hermann Nicolai

This lecture reviews aspects of and prospects for progress towards a theory of
quantum gravity from a particle physics perspective, also paying attention to
recent findings of the LHC experiments at CERN.

Part IV Numerical Relativity and Relativistic Astrophysics

Three Little Pieces for Computer and Relativity

Luciano Rezzolla

Numerical relativity has made big strides over the last decade. A number of problems
that have plagued the field for years have now been mostly solved. This progress has
transformed numerical relativity into a powerful tool to explore fundamental
problems in physics and astrophysics, and I present here three representative
examples. These ‘‘three little pieces’’ reflect a personal choice and describe work that
I am particularly familiar with. However, many more examples could be made.
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Instabilities of Relativistic Stars

John L. Friedman and Nikolaos Stergioulas

Stable relativistic stars in uniform rotation forma two-parameter family, param-
etrized by mass and angular velocity. Limits on each of these quantities are
associated with relativistic instabilities. A radial instability to gravitational
collapse or explosion sets upper and lower limits on their mass, and an instability
driven by gravitational waves may set an upper limit on their spin. Our summary
of relativistic stability theory given here is based on and includes excerpts from the
book Rotating Relativistic Stars, by the present authors.

Gravity Talks: Observing the Universe with Gravitational Waves

Bernard F Schutz

When the current upgrade of the large ground-based gravitational wave detectors
LIGO and VIRGO is completed, the new science of gravitational wave astronomy
will begin. In this overview I review the current status of the detector projects on
the ground and in space (LISA), the kinds of signals and sources they expect to
observe, and the science returns that are anticipated.

LISA in 2012 and Beyond: 20 Years After the First Proposal

Gerhard Heinzel and Karsten Danzmann

After 20 years of study as a joint ESA-NASA mission, LISA had to be redesigned
as an ESA-only mission in 2011/2012 to meet programmatic and budgetary
constraints of the space agencies. The result is a mission concept called ‘‘eLISA’’
or ‘‘NGO’’ with two arms instead of three and 1 million km armlengths instead of
5, which results in smaller launch mass but still provides revolutionary science.
Nevertheless, even the reduced science is expected to be revolutionary for the
study of black holes and other astrophysical and cosmological questions.
‘‘eLISA’’/‘‘NGO’’ was not selected in ESA’s call for the first (‘‘L1’’) large
mission in the Cosmic Vision program, but is a strong candidate for the L2 call,
with possible international contributions from the US and/or China.

Einstein’s Gravity as Seen by a Cosmic Lighthouse Keeper

Michael Kramer

The last years have seen continuing activities in the exploration of our
understanding of gravity, motivated by results from precision cosmology and
new precision astrophysical experiments. At the center of attention lies the
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question as to whether general relativity is the correct theory of gravity. In
answering this question, we work not only towards correctly interpreting the
phenomenon of ‘‘dark energy’’ but also towards the goal of achieving a quantum
theory of gravity. In these efforts, the observations of pulsars, especially those in
binary systems, play an important role. Pulsars do not only provide the only
evidence for the existence of gravitational waves so far, but they also provide
precision tests of general relativity and alternative theories of gravity. This talk
summarizes the current state of art in these experiments and looks into the future.

The Astrophysical Signatures of Black Holes: The Horizon,
The ISCO, The Ergosphere and The Light Circle

Marek A. Abramowicz

Three advanced instruments planned for a near future (LOFT, GRAVITY, THE
EVENT HORIZON TELESCOPE) provide unprecedented angular and time
resolutions, which allow to probe regions in the immediate vicinity of black
holes. We may soon be able to search for the signatures of the superstrong gravity
that is characteristic of black holes: the event horizon, the ergosphere, the
innermost stable circular orbit (ISCO), and the photon circle. This review
discusses a few fundamental problems concerning these theoretical concepts.

Energy Extraction from Spinning Black Holes Via Relativistic Jets

Ramesh Narayan, Jeffrey E. McClintock and Alexander Tchekhovskoy

It has for long been an article of faith among astrophysicists that black hole spin
energy is responsible for powering the relativistic jets seen in accreting black
holes. Two recent advances have strengthened the case. First, numerical general
relativistic magnetohydrodynamic simulations of accreting spinning black holes
show that relativistic jets form spontaneously. In at least some cases, there is
unambiguous evidence that much of the jet energy comes from the black hole, not
the disk. Second, spin parameters of a number of accreting stellar-mass black holes
have been measured. For ballistic jets from these systems, it is found that the radio
luminosity of the jet correlates with the spin of the black hole. This suggests a
causal relationship between black hole spin and jet power, presumably due to a
generalized Penrose process.
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Part I
Classical General Relativity



Exact Hairy Black Holes

Andrés Anabalón

Abstract This contribution reviews the recent discovery of a certain class
of—regular on and outside the horizon—exact hairy black hole solutions in four
dimensional general relativity. Their construction follows from the integrability of a
cohomogeneity two Weyl rescaling of the Carter–Debever ansatz in the presence of
an arbitrary number of scalar fields with an arbitrary self interaction and an arbitrary
non-minimal coupling to the scalar curvature. Two field equations, independent of
the specific form of the energy momentum tensor, are used to integrate the metric.
The remaining ones fix the form of the scalar field self interaction. The cohomogene-
ity one black holes are described and are shown to encompass all the exact—regular
in the domain of outer communications—uncharged, black holes with a minimally
coupled scalar hair, available in the literature.

1 Introduction and Discussion

The field of exact solutions in gravity, as well as their interpretation, is as old as
general relativity and the research group at Charles university, and their collaborators,
are well known for their contributions to this subject. Many of them can be found
in the review [1] or the book [2]. From the black hole uniqueness theorems it is
already well known that at least in four dimensions, the asymptotically flat, stationary
and regular black holes in the electrovacuum case are exhausted, for references see
[3]. Therefore, it is natural to attempt to extend these studies when other matter

A. Anabalón (B)
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4 A. Anabalón

fields are included. Indeed, the studies of the minimally coupled scalar field have a
prominent role in the construction of black holes. In the static, asymptotically flat
case, the minimally coupled no-hair conjecture was shown to be true for convex
potentials [4], and, more generally, for potentials satisfying the strong [5] and weak
energy condition [6] . These studies have their counterpart in Brans–Dicke [7] and
more generally in scalar-tensor theories [8], showing that whenever the scalar field
potential satisfies the weak energy condition in the Einstein frame and the black hole
spacetime is stationary and asymptotically flat it must be Kerr. When the scalar field
satisfies the null energy condition an exact family of spherically symmetric black
hole solutions has been recently constructed [9].

When the cosmological constant is negative exact uncharged Ad S4 hairy black
hole solutions have been extensively studied [10–14]. There is a precise conjecture
on the non-existence of spherically symmetric black holes in AdS for scalar field
potentials that comes from “the right” superpotential [15]. These solutions are inter-
esting in the light of the AdS/CFT conjecture. In particular, in four dimensions, and
when the scalar field is charged, they define the setting for the AdS/Condensed mat-
ter correspondence [16]. When the cosmological constant is positive the black holes
have also attracted some attention of the community [17].

This paper intends to shortly summarize my recent contributions to the subject.
I have followed the idea that stationary and axisymmetric spacetimes that have a
hidden symmetry, in the form of a conformal Killing tensor, should allow for a
complete integrability of some form of a non-trivial self interaction of the scalar
field. Therefore, in [14] I explicitly showed that, starting with the ansatz that contains
all the vacuum Petrov type D solutions, it is possible to integrate the system in the
presence of a non-minimally coupled scalar field or a non-linear sigma model. It
is very interesting to note that the self interaction of the scalar field is completely
fixed by the form of the metric ansatz and, therefore, the scalar field potential is
an output of the analysis. While these results are presented in the Einstein frame,
their extension to a Scalar-Tensor theories in some Jordan frame or F(R) theory is
straightforward.

The scalar field potential turns out to be contained as special case of all the
exact hairy (A)dS black holes available in the literature. The static solutions are
black holes continuously connected with the Schwarzschild (A)dS solution, and
can be generalized to include non-minimally coupled gauge fields [18]. For the
asymptotically AdS black holes, with cosmological constant Λ = −3/ l2, the scalar
field mass is m2 = −2/ l2, which is above the Breitenlohner–Freedman bound,
m2 = −9/4l2, ensuring the perturbative stability of Ad S4. This mass is the one of
the scalar fields of the U (1)4 truncation of gauged N = 8 supergravity [19] and a
sub class of the solutions can be embedded in this supergravity theory.

The content of the paper is as follows. In Sect. 2 the general integrability of the
ansatz with two Killing vectors is reviewed and in Sect. 3 the static case and its
special limits are presented.
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2 The Integrable System with Two Killing Vectors

The conventions are given by the action principle

S(g, φ) =
∫

d4x
√−g

[
R

2κ
− 1

2
gμν∂μφ∂νφ − ξ

12
φ2 R − V (φ)

]
, (1)

where κ = 8πG. We are interested in studying a cohomogeneity two Weyl rescaling
of the Carter–Debever [20, 21], also studied by Plebański [22]:

ds2 = S(q, p)
(1 + p2q2

Y (q)
dq2 + 1 + p2q2

X (p)
dp2 − Y (q)

1 + p2q2

(
p2dτ + dσ

)2

+ X (p)

1 + p2q2

(
dτ − q2dσ

)2)
. (2)

When S(q, p) = p−2, this metric contains the Kerr–Newman hole with a cosmo-
logical constant. Letting S(q, p) free, this metric can be integrated in vacuum, and
with the same Maxwell field as in the Kerr–Newman case; the Plebański–Demiański
spacetime arises [23].

The observation made in [14] is that for stationary and axisymmetric scalar fields,
φ = φ(q, p), the energy momentum tensor of a minimally coupled scalar field

Tμν = ∂μφ∂νφ − 1

2
gμν (∂φ)2 − gμνV (φ) , (3)

is such that components T τ
σ = 0 = T σ

τ and, therefore, the Einstein equations,
Rμ

ν − 1
2δ

μ
ν R = κT μ

ν , imply Rτ
σ = 0 = Rσ

τ . These two equations are enough to
completely determine the metric functions; the solution is

X (p) = C0 + C2 p2 + C4 p4 + C1 p−ν+2 + C3 B3 pν+2, (4)

Y (q) = C4 − C2q2 + C0q4 + C3C1q−ν+2 + B3qν+2, (5)

S(q, p) = C
pν−1qν−1

(C3 pν + qν)2 . (6)

This solution reduces to the Plebański–Demiański spacetime when ν = ±1. The
remaining Einstein equations fix the scalar field and the scalar field potential to a very
precise form. The same process can be done when the scalar field is non-minimally
coupled to gravity and, more generally, when a non-linear sigma model is the source
of the Einstein equations.

To extract more physical information let us study the cohomogeneity one black
holes.
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3 The Static Black Holes

The static limit of the previous configuration is

ds2 = Ω(r)

(
−F(r)dt2 + dr2

F(r)
+ dΣ2

k

)
, (7)

Ω(r) = ν2ην−1rν−1

(rν − ην)2 , φ = l−1
ν ln(rη−1), (8)

F(r) = r2−νη−ν (rν − ην)2 k

ν2

+
(

1

ν2 − 4
−

(
1 + ηνr−ν

ν − 2
− η−νrν

ν + 2

)
r2

η2ν2

)
α − Λ

3
, (9)

where lν =
(

2κ
ν2−1

) 1
2

and dΣ2
k is the line element of a surface of constant curvature

k = ±1 or 0. η is the only integration constant of the black hole. The solution and
theory are invariant under the transformation ν → −ν.

The scalar field potential is

V (φ) = Λ
(
ν2 − 4

)
6κν2

(
ν − 1

ν + 2
e−(ν+1)φlν + ν + 1

ν − 2
e(ν−1)φlν + 4

ν2 − 1

ν2 − 4
e−φlν

)

+ α

ν2κ

(
ν − 1

ν + 2
sinh((1 + ν) φlν) + ν + 1

ν − 2
sinh((1 − ν) φlν)

+ 4
ν2 − 1

ν2 − 4
sinh (φlν)

)
. (10)

It has two coupling constants, namely α and Λ, and the parameter ν. Indeed, V (φ =
0) = Λ/κ which allows to identify it as a cosmological constant.

It is easy to see from the form of the metric, and without any reference to the
details of the solution itself, that it is possible to introduce Eddington–Finkelstein
coordinates u∓ = t ± ∫ dr

F(r)
, which allow to cover either the black hole (u−) or the

white hole (u+). The asymptotically flat solution has a single horizon from which it
follows that the Penrose diagram is the same as for the Schwarzschild black hole.

The energy momentum of the scalar field, in a static tetrad, has the form T ab =
diag(ρ, p1, p2, p2) and, in the static regions of the spacetime, defined by F(r) > 0,
satisfies the null energy condition

ρ + p2 = 0, ρ + p1 =
(
ν2 − 1

)
(rν − ην)2 F(r)

2rν2ην−1rν
> 0. (11)
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In the hairless limit, ν = 1, the change of coordinates r = η − 1/y brings the
hairy solution (7–9) to the familiar Schwarzschild–de Sitter black hole (in this case
p1 = Λ)

ds2 = −
(

k − 2M

y
− Λ

3
y2

)
dt2 + dy2

k − 2M
y − Λ

3 y2
+ y2dΣ2

k , (12)

where M = 3η2k+α

6η3 .
The parameterization of the black holes has been chosen such that the leading

order at r = η is either Minkowski, anti-de Sitter or de Sitter in the following form

ds2
r=η = 1

(r − η)2

(
−

(
k(r − η)2 + Λ

3

)
dt2 + dr2

(k(r − η)2 + Λ
3 )

+ dΣ2

)
.

(13)
The easiest way to see that there is always α such that F(r) has a simple zero is to
see that the equation F(r+) = 0 is linear in α

0 = r2−ν+ η−ν
(
rν+ − ην

)2
k

ν2

+
(

1

ν2 − 4
−

(
1 + ηνr−ν+

ν − 2
− η−νrν+

ν + 2

)
r2+

η2ν2

)
α − Λ

3
; (14)

therefore it is possible to solve this equation for α for any value of the other parame-
ters.

As a final remark it is instructive to compare the behaviour of these solutions in
Ad S, with the asymptotic form given in [24] . When the backreaction is ignored, a
scalar field with mass m minimally coupled to an Ad S background has the well known
fall-off φ ∼ a

ρΔ− + b
ρΔ+ where Δ± are the roots of Δ(3 − Δ) + m2l2 = 0. When

− 9
4l2 ≤ m2 < − 5

4l2 , both branches are normalizable but the a-branch contributes
to the surface charges of the system. The form of the potential makes it possible to
see that the mass is m2 = − 2

l2 . When the mass is exactly Δ+
Δ− = 2 then the scalar

field develops a logarithmic branch that, again, has a non-trivial contribution to the
charges at infinity. However this logarithmic branch only appears if the expansion
of the potential contains a cubic term. Indeed, it is possible to verify that with the
change of coordinates, r = η exp( 1

ηρ
− 1

2ρ2η2 − ν2−9
24η3ρ3 ), the scalar field takes the

form

φ = l−1
ν

(
1

ηρ
− 1

2ρ2η2 − ν2 − 9

24η3ρ3

)
, (15)

and the departure from the AdS metric, defined by
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ds2 = −(k + ρ2

l2 )dt2 +
(

k + ρ2

l2

)−1

dρ2 + ρ2dΣ2
k , (16)

is

hmn = ν2 − 4

6η3ρ
gmn + O(ρ−2), (17)

htt = Λ(ν2 − 4)

18η3ρ
+ k (ν − 1) + 6Mν2ην

3ηρ
+ O(ρ−2), (18)

hρρ = 3
(
ν2 − 1

)
4η2Λρ4 + O(ρ−5), (19)

where gmn are the components along dΣ2
k . This coincides exactly with (6.2) of [24]

with Δ− = Δ = 1, a = 1
ηlν

and b = − 1
2η2lν

. The case ν2 = 4 is peculiar in the
sense that the deformation of the metric at infinity is subleading as for generic ν.

The cases with ν = 2 and ν = ∞ are special, and can be treated by a simple
limiting procedure.

3.1 The Case ν = 2

Indeed, the potential (10) has a smooth limit when ν = 2, which is given by

V (φ) = α

16κ
(sinh(3φl2) + 9 sinh(φl2) − 12φl2 cosh (φl2))

+ Λ

2κν2

(
eφl2 + e−φl2

)
, (20)

where l2 =
√

2κ
3 . The metric functions also have a smooth limit

Ω(r) = 4ηr(
r2 − η2

)2 , (21)

F(r) = η−2
(
r2 − η2

)2

4
k +

(
3

16
+

(
r

2η

)4

−
(

r

2η

)2

+ 1

4
ln

r

η

)
α − Λ

3
. (22)

The potential (10) has been considered in the context of the existence of topological
AdS black holes in [11]. When α = 0 and k = −1 this is the MTZ black hole [10].
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3.2 The Case ν = ∞

The ν = ∞ case is a bit more subtle. First, it is necessary to rescale the area of the
unit sphere as dΣ −→ ν−2dΣ which implies that the metric function F rescales
accordingly,

F(r) = r2−νη−ν
(
rν − ην

)2
k

+
(

1

ν2 − 4
−

(
1 + ηνr−ν

ν − 2
− η−νrν

ν + 2

)
r2

η2ν2

)
α, (23)

and the solution is now

ds2 = Ω(r)

(
−F(r)dt2 + dr2

F(r)
+ ν−2dΣ2

k

)
, (24)

Ω(r) = ν2ην−1rν−1

(rν − ην)2 , φ = l−1
ν ln(rη−1). (25)

Let us introduce the changes of coordinates r = ρ
1
ν , t = τ

ν
, and the reparameter-

ization η → η
1
ν , α −→ ν3α. The ν = ∞ limit is then easily seen to give

ds2 = Ω∞(ρ)

(
−F∞(ρ)dτ 2 + dρ2

F∞(ρ)
+ dΣ2

)
, (26)

Ω∞(ρ) = ηρ

(ρ − η)2 , φ = 1√
2κ

ln(ρη−1), (27)

F∞(ρ) = ρ−1η−1 (ρ − η)2 k +
(

2 ln

(
η

ρ

)
+ ρ

η
− η

ρ

)
α − Λ

3
, (28)

V∞(φ) = 2α

κ
(2φlP + φlP cosh (φlP ) − 3 sinh (φlP )) + Λ

3
(4 + 2 cosh(lPφ)) ,

(29)

where lP = √
2κ is proportional to the Planck length. The potential (29) plus the

corresponding limit of the part proportional to Λ of (10) was considered in the context
of de Sitter hairy black holes compatible with inflation in [17].
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Black Hole Formation from a Complete Past
for the Einstein–Vlasov System

Håkan Andréasson

Abstract A natural question in general relativity is to find initial data for the Einstein
equations whose past evolution is regular and whose future evolution contains a
black hole. In [1] initial data of this kind is constructed for the spherically symmetric
Einstein–Vlasov system. One consequence of the result is that there exists a class of
initial data for which the ratio of the Hawking mass m̊ = m̊(r) and the area radius
r is arbitrarily small everywhere, such that a black hole forms in the evolution. This
result is analogous to the result [2] for a scalar field. Another consequence is that
there exist black hole initial data such that the solutions exist for all Schwarzschild
time t √ (−→,→). In the present article we review the results in [1].

1 Introduction

In the study of gravitational collapse it is important to identify physically admissible
initial data, and it is natural to require that the past evolution of the data is regular.
However, in numerical relativity it is often the case that the given initial data, which
form black holes to the future, also result in a singular past due to topological reasons.
Moreover, most of the existing mathematical results which ensure a regular past also
ensure a regular future which rules out the study of the formation of black holes.
The exceptions being the classical result for dust [3], and the recent result [4] for a
scalar field. In the latter work, which in part rests on the studies [2, 5], initial data
whose past evolution is regular and whose future evolution forms a black hole is
constructed. Neither dust nor a scalar field are realistic matter models in the sense
that they are used by astrophysicists. Dust is a perfect fluid where the pressure is
assumed to be zero, and a scalar field is merely a toy model. Thus, there is so far
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no example of a solution to the Einstein-matter system for a realistic matter model
possessing a regular past and a singular future.

Here we consider Vlasov matter, or collisionless matter, governed by the Vlasov
equation, cf. [6] for an introduction. Although this is a simple matter model, it has
rich dynamics and many features that are desirable of a realistic matter model. For
instance, there is a large number of stable and unstable spherically symmetric and
axially symmetric stationary solutions, there is numerical support that time periodic
solutions exist, it behaves as Type I matter in critical collapse, and it is used by
astrophysicists, cf. [7]. The following theorem is the main result in [1].

Theorem 1 There exists a class of initial data J for the spherically symmetric
Einstein–Vlasov system with the property that black holes form in the future time
direction and in the past time direction spacetime is causally geodesically complete.

The following corollary is analogous to a result in [2] for a scalar field. Let m̊ be the
initial Hawking mass. We then have

Corollary 1 Given Λ > 0, there exists a class Jr of initial data for the spherically
symmetric Einstein–Vlasov system which satisfy

sup
r

m̊ (r)

r
∓ Λ,

for which black holes form in the evolution.

Another consequence of our result is that there exists a class of black hole initial data
such that the corresponding solutions exist for all Schwarzschild time t √ (−→,→),
cf. Corollary 2 in [1].

Theorem 1 relies in part on the previous studies [8–10]. In [9] global existence in a
maximal time gauge is shown for a particular class of initial data where the particles
are moving rapidly outwards. One of the restrictions imposed on the initial data is
that

sup
r

2m̊(r)

r
< k0, (1)

where the constant k0 is roughly 1/10. The situation considered in [10] is in a sense
the reverse since the initial data is such that the particles move rapidly inwards
and the quantity supr 2m̊/r is required to be close to one. The main result of [10]
is that data of this kind guarantee the formation of black holes in the evolution.
Particles that move inward in the future time direction move outward in the past
time direction. It is thus natural to try to combine these two results with the goal
of constructing solutions with a regular past and a singular future. The conditions
on the ratio 2m̊/r are clearly very different in [9] compared to [10], and moreover,
the Cauchy hypersurfaces are different since a maximal time gauge and a polar time
gauge are imposed in the respective cases. The reason a maximal time gauge is used
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in [9] is due to the difficulties related to the so called pointwise terms which appear
in the characteristic equations in a polar time gauge. In [8] the problem of global
existence for general initial data is investigated under conditional assumptions on
the solutions. The analysis along characteristics is applied to a modified quantity for
which the problem with the pointwise terms do not appear.

The proof of Theorem 1 is obtained by combining the strategies in [8] and [9],
and a sketch of proof is given in Sect. 3. The spherically symmetric Einstein–Vlasov
system is introduced in Sect. 2.

2 The Einstein–Vlasov System

For an introduction to the Einstein–Vlasov system and kinetic theory we refer to [6,
11]. In Schwarzschild coordinates the spherically symmetric metric takes the form

ds2 = −e2μ(t,r)dt2 + e2φ(t,r)dr2 + r2(dκ2 + sin2 κdν2). (2)

The Einstein equations read

e−2φ(2rφr − 1) + 1 = 8∂r2ξ, (3)

e−2φ(2rμr + 1) − 1 = 8∂r2 p, (4)

φt = −4∂reφ+μ j, (5)

e−2φ(μrr + (μr − φr )(μr + 1

r
)) − e−2μ(φt t + φt (φt − μt )) = 8∂pT . (6)

The indices t and r denote partial derivatives. The Vlasov equation for the density
function f = f (t, r, w, L) is given by

πt f + eμ−φ w

E
πr f − (φt w + eμ−φμr E − eμ−φ L

r3 E
)πw f = 0, (7)

where

E = E(r, w, L) =
√

1 + w2 + L/r2. (8)

Here w √ (−→,→) can be thought of as the radial component of the momentum
variables, and L √ [0,→) is the square of the angular momentum. The matter
quantities are defined by

ξ(t, r) = ∂

r2

∫ →

−→

∫ →

0
E f (t, r, w, L) dwd L , (9)
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p(t, r) = ∂

r2

∫ →

−→

∫ →

0

w2

E
f (t, r, w, L) dwd L , (10)

j (t, r) = ∂

r2

∫ →

−→

∫ →

0
w f (t, r, w, L) dwd L , (11)

pT (t, r) = ∂

2r4

∫ →

−→

∫ →

0

L

E
f (t, r, w, L) dwd L . (12)

Here ξ, p, j and pT are the energy density, the radial pressure, the current and the
tangential pressure respectively. The following boundary conditions are imposed to
ensure asymptotic flatness

lim
r∼→ φ(t, r) = lim

r∼→ μ(t, r) = 0, (13)

and if a regular centre is required we set

φ(t, 0) = 0. (14)

As initial data it is sufficient to prescribe a density function f̊ = f̊ (r, w, L) ≤ 0
such that

∫ r

0
4∂τ2ξ̊ (τ) dτ <

r

2
. (15)

Here we denote by ξ̊ the energy density induced by the initial distribution function
f̊ . This condition ensures that no trapped surfaces are present initially. We now
introduce a couple of notations. From (4) and (13) we have

μ(t, r) = −
∫ →

r

m(t, τ)

τ2 e2φ −
∫ →

r
4∂τpe2φ dτ =: μ̂ + μ̌. (16)

Moreover, the Hawking mass m = m(t, r) is given by

m(t, r) = 4∂

∫ r

0
τ2ξ(t, τ)dτ. (17)

Finally, we note that in [6, 12] local existence theorems are proved for compact and
non-compact initial data respectively and it will be used below that solutions exist
on some time interval [0, T [, which is assumed to be maximal.
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3 Global Existence for Outgoing Matter

The aim in this section is to consider initial data of the type constructed in [10], which
guarantee the formation of black holes to the future, and show that global existence
holds to the past for such data. We remark that the time direction is reversed in this
section so that the particles move outwards initially and the global existence to the
past refers to the time interval [0,→[. Furthermore, in [1] two different classes of
initial data are given adapted to the two corollaries of Theorem 1 mentioned above.
Here we only consider one of these classes of data.

Let 0 < r ∞
0 < r0 < r1 be given and put M = r1/2. Let f̊s be data of a steady state

supported in [r ∞
0, r0] and let

Min :=
∫ r0

r ∞
0

4∂r2ξ̊(r)dr. (18)

The results in [13, 14] guarantee that there are such steady states and moreover that

sup
0∓r∓r0

2m̊(r)

r
<

8

9
,

and in particular 2Min/r0 < 8/9 so that M > Min. Let Mout := M − Min. Let
R1 > r1 be such that

R1 − r1 <
r1 − r0

6
, (19)

and define

R0 := 1

2
(r1 + R1).

Let L+ > 0 and let W∗ > 0 be such that

|W∗| ≤ 1 +
√

L+
R0

. (20)

Let W− > 0 satisfy

|W−| e

−5M
2R0(1− 2M

R0
)
(1 − 2M

R0
)3/2 ≤ 3|W∗|. (21)

We can now specify the initial data. Let f̊ = f̊s + f̊m be initial data of ADM mass
M , and such that

supp f̊m ⊂ [R0, R1] × [W−,→[ × [0, L+],
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and

∫ →

r0

4∂r2ξ̊(r)dr =
∫ R1

R0

4∂r2ξ̊m(r)dr = Mout. (22)

In view of [10] the initial data f̊ guarantee the formation of black holes. Hence,
Theorem 1 follows from the following global existence theorem.

Theorem 2 Assume that r ∞
0, r0, Min, M, L+, R0, R1, W∗, W− and f̊ are given as

above, and consider a solution f of the system (3)-(6), launched by f̊ , on its maximal
existence interval [0, T [. Then T = →, and there is a σ∗ > 0 such that

supp fm(t) ⊂ [R0 + |t σ∗|,→[×[W∗,→[×[0, L+], (23)

and the resulting spacetime is future causally geodesically complete.

Sketch of proof : We focus here on the main idea of the proof and refer to [1] for the
complete argument. It is shown in [1] that f, φ and μr remain time independent for
r ∓ r0 and therefore the present arguments only concern the outer matter given by
fm . The steady state is needed to guarantee the formation of black holes.

Let [0, t1[ be the maximal time interval such that for t √ [0, t1[ and (r, w, L) √
supp fm(t), w > W∗. By continuity t1 > 0. Suppose that t1 √]0, T [, then we must
have w = W∗ for some w √ supp fm(t1), but we will show that w > W∗ for all
w √ supp fm(t1). Thus t1 = T and since the matter stays strictly away from r = 0
it follows that T = → in view of [8].

Consider a characteristic (R(s), W (s), L) with R(0) √ [R0, R1] and define

G(s) := E(R(s), W (s), L) + W (s).

Below we suppress the arguments but it should be clear that R = R(s),
μr = μr (s, R(s)) etc. The main idea of the proof is to consider the evolution of
the quantity

G(t)eμ̂(t,R(t))(1 − 2M/R(t))

along the characteristic (R(s), W (s), L). The following inequality is then obtained
in [1]:

d

ds

(
Geμ̂(1 − 2M

R
)
)

≤ −
[
φt

W

E
+ μr eμ−φ − μ̂t

]
Geμ̂

(
1 − 2M

R

)
. (24)

This implies that

G(t1)e
μ̂(t1,R(t1))

(
1 − 2M

R(t1)

)
≤ e

− ∫ t1
0

[
φt (s,R(s)) W

E +μ̌r (s,R(s))e(μ−φ)(s,R(s))−μ̂t (s,R(s))
]
ds

× G(0)eμ̂(0,R(0))(1 − 2M

R(0)
). (25)
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Let δ be the curve
δ := {(t, r) : 0 ∓ t ∓ t1, r = R(t)}.

The time integral in (25) can be written as

∫
δ

e(−μ+φ)(t,r)φt (t, r) dr +
(

e(μ−φ)(t,r)μ̌r (t, r) − μ̂t (t, r)
)

dt. (26)

An application of Green’s formula in the plane to this curve integral, making crucial
use of the second order Einstein equation (6) and the Vlasov equation, leads in [1]
to the inequality

∫
δ

e−μ+φφt dr + (eμ−φμ̌r − μ̂t ) ds ∓ 5M

2R0

(
1 − 2M

R0

) .

Inserting this into the main inequality (25) we get

G(t1)e
μ̂(t1,R(t1))

(
1 − 2M

R(t1)

)
≤ e

−5M
2R0(1− 2M

R0
)
G(0)eμ̂(0,R(0))

(
1 − 2M

R(0)

)
.

Noticing that μ̂ is monotone in r and nonpositive, and that R(0) ≤ R0, we find that

G(t1) ≤ e

−5M
2R0(1− 2M

R0
)
G(0)eμ̂(0,R0)(1 − 2M

R0
)

≤ e

−5M
2R0(1− 2M

R0
)
G(0)

√
R0 − 2M

R0
(1 − 2M

R0
). (27)

Here we made use of the estimate

μ̂(t, R0) ≤ −
∫ →

R0

M dτ

τ2(1 − 2M
τ

)
= 1

2
log

(
1 − 2M

R0

)
. (28)

We have that G(0) > W (0) ≤ W−, and in view of (20) we also have 3W (t) ≤ G(t)
on [0, t1]. We now use the condition (21) and obtain

3W (t1) ≤ G(t1) > 3W∗.

Thus W (t1) > W∗, and necessarily we have t1 = T . As was pointed out in the
beginning of the proof, since matter stays strictly away from the centre of symmetry,
it follows that T = →, cf. [8]. For the remaining statements in the theorem we refer
to [1]. �
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How to Measure Deviation from the Kerr
Initial Data: Recent Progress

Thomas Bäckdahl and Juan A. Valiente Kroon

Abstract In these proceedings we will present recent progress concerning a
construction of a geometric invariant for initial data sets for the Einstein vacuum
field equations. This geometric invariant vanishes if and only if the initial data set
corresponds to data for the Kerr spacetime, and thus, it characterizes this type of
data. The construction was initially based on Killing spinors, but here we trans-
late the results to tensor language. We can now handle both compact domains and
domains reaching the asymptotically flat ends.

1 Introduction

Given a solution (S , hab, Kab) to the Einstein vacuum constraint equations, how do
we know if it is a slice of the Kerr spacetime? If not, can we measure how much it
differs? These are the questions we will consider here. We will introduce a geometric
invariant on the slice, which will measure this deviation from Kerr data. The invariant
is constructed as an L2-norm constructed from global information on the slice, but
it only depends on information from one slice, and is therefore local in time.

It is expected that a dynamical vacuum black hole will always settle down to a
Kerr black hole. To make a proper mathematical formulation of this statement, one
will need a good way to measure how close data on a slice is to Kerr data. This
gives a clear motivation for our work. Our invariant is coordinate independent and
straightforward to compute. It is therefore well suited for studying how the non-
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Kerrness evolves for numerically computed spacetimes. It can also be used as a tool
for more theoretical work, for instance when one studies non-linear stability of the
Kerr solution. For this purpose a coordinate independent integral over a slice as we
have is well suited.

We have developed the theory in four papers [1–4]. Here we only make a summary
and concentrate on some aspects of the problem. In the first paper [1] we present the
general ideas and the invariant for general non-boosted slices with two asymptotic
ends. The second paper [2] contains all technical details and generalizations so even
boosted slices can be handled. The third paper [3] deals with the same problem, but
only using data exterior to a surface. In the fourth paper [4] we also introduce an outer
boundary so our domain becomes compact. This requires some extra conditions that
we in the previous papers got from the asymptotic behaviour.

2 Characterization of the Kerr Spacetime

To construct the non-Kerrness invariant of initial data on a slice, we begin with a
spacetime characterization of the Kerr solution. We then make a 3+1 splitting of the
equations involved. This is done in such a way that one can reconstruct the spacetime
objects that we used for the spacetime characterization. Therefore, we get an initial
data characterization of Kerr initial data. The initial data equations one obtains are
then used to construct the non-Kerrness invariant that measures the deviation from
Kerr data.

In our papers we used a spacetime characterization based on Killing spinors, but
for ease of presentation we will here translate this to Killing-Yano tensors.

2.1 Killing-Yano Tensors

Throughout, we will assume that (M , gμν) is an orientable and time orientable glob-
ally hyperbolic vacuum spacetime, and we let ∇μ denote the Levi-Civita connection
of gμν . Here we will use the (− + ++) sign convention to obtain a positive definite
spatial metric. Observe that this differs from the one used in the references [1–4].

Definition 1 A conformal Killing-Yano tensor is an antisymmetric tensor Yμν =
Y[μν] that satisfies

∇(μYν)λ = 1
3 gλ(μ∇σ Yν)σ − 1

3 gμν∇σ Yλσ . (1)

It is called a Killing-Yano tensor if it satisfies

∇(μYν)λ = 0. (2)
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Given a (conformal) Killing-Yano tensor, one automatically gets a Killing vector
ξμ = εμ

νγλ∇νYγ λ of the spacetime. We also get an integrability condition that will
strongly restrict the Weyl tensor. In the tensorial picture, this condition is given by

0 = − C[μν]δ [λYρ]δ − C[λρ]δ [μYν]δ + Cδ [μν][λYρ]δ + Cδ [λρ][μYν]δ. (3)

The spinorial version of the above condition is simpler. From it, it is easy to conclude
that the spacetime has to be of Petrov type D, N or O .

2.2 Spacetime Characterization

We have the following theorem which is a translation of Theorem B.3 in [3]

Theorem 1 A smooth spacetime (M , gμν) is locally isometric to the Kerr spacetime
if and only if the following conditions are satisfied:

(i) there exists a Killing-Yano tensor Yμν , with associated Killing vector ξμ;
(ii) the spacetime (M , gμν) has a stationary asymptotically flat 4-end with non-

vanishing mass in which ξμ tends to a time translation.

2.3 Initial Data Characterization

To get an initial data characterization, we make a 3 + 1 splitting of the conformal
Killing-Yano equation and the integrability condition to obtain the (4a)–(4b) below.
After some work we see that one can propagate solutions to this system to obtain a
conformal Killing-Yano tensor of the spacetime. See [2] and [4] for details.

Theorem 2 Let (S , hab, Kab) be a vacuum initial data set, where S is a Cauchy
hyper-surface. The development of the initial data set will have a conformal Killing-
Yano tensor in the domain of dependence of S if and only if

ζab ≡ D(aκb) − 1
3 hab Ddκd − iε(a

dl Kb)dκl = 0, (4a)

Fab ≡ − C(a
cεb)c

dκd = 0, (4b)

are satisfied on S . Here, Cab ≡ Eab + i Bab, where Eab and Bab are the electric
and magnetic parts of the Weyl tensor. Furthermore, these conditions give a complex
spacetime Killing vector. Reality of this Killing vector gives a Killing-Yano tensor.

Remark The 1-form κa is the pull-back of − i
2 tνYμν + 1

4εμνλδtνY λδ , where tμ is
the normal to S with normalization tμtμ = −1. Observe that we use a different
normalization in references [1–4]. The lapse and shift of the Killing vector initial
data is constructed from κa via
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ζ = Daκa, ζa = − 3i
2 εa

bc Dcκb + 3
2 Kabκ

b − 3
2 K b

bκa . (5)

The vacuum constraint equations are

R = Kab K ab − (K a
a)2, Da Kab = Db K a

a . (6)

The electric and magnetic parts of the Weyl tensor can be written entirely in terms
of initial data via

Eab = −Ka
c Kbc + Kab K c

c − Rab, Bab = −ε(a
cd D|c|Kb)d . (7)

3 Non-Kerrness Invariant

The idea behind our non-Kerrness invariant is to measure the L2-norms of the left
hand sides of (4a) and (4b) for a clever choice of κa . We have to choose κa in a
unique coordinate independent way, and we need it to coincide with the solution to
the system (4a) and (4b) if such a solution exists. It turns out that minimizing the
L2-norm of left hand side of (4a) while specifying the asymptotic behaviour, gives
rise to a good choice.

3.1 Approximate Killing-Yano Tensors

Let J denote the L2-norm of the left hand side of (4a), that is

J =
∫
S

ζab ζ̄
abdμ. (8)

To minimize this we need to solve the corresponding Euler–Lagrange equation, which
reads

L(κa) ≡ Dbζa
b + iεac f K bcζb

f = 0. (9)

The operator L is a linear second order self adjoint elliptic operator. A solution,
κa , to the elliptic equation (9) is called an approximate spatial Killing-Yano tensor.
Clearly, any solution to ζab = 0 is also a solution to (9).

Definition 2 An initial data set (S , hab, Kab)will be called asymptotically Schwarz-
schildean at an end if there is a Schwarzschild initial data set with the same asymptotic
expansion up to and including the mass order term.
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For non-boosted data and asymptotically Cartesian coordinates this condition
reads

hi j =
(

1 + 2mr−1
)

δi j + o∞(r−3/2), (10a)

Ki j = o∞(r−5/2), (10b)

where o∞(r δ) denotes functions in a weighted Sobolev space, and m denotes the
ADM-mass of the asymptotic end. See [2] for definitions of the Sobolev spaces and
asymptotics for boosted data.

Theorem 3 Given an initial data set (S , hab, Kab) with two asymptotically
Schwarzschildean ends, there exists a smooth unique solution to (9) with the same
asymptotic behaviour as the solution for Kerr from Theorem 1.

This result was proven in [2]. In [3] we replaced one asymptotic end with an inner
boundary. Appropriate data for the boundary was then constructed from the Weyl
tensor. Finally in [4] we replaced all asymptotic ends with boundaries so the result
extends to compact domains. In the latter case however, we needed to add extra
conditions on one point to replace the asymptotic conditions in Theorem 1.

Now we can define the geometric invariant. Let κa be a solution to (9) as given
by Theorem 3. With

J =
∫

S

ζab ζ̄
abdμ, (11a)

I1 ≡
∫

S

Fab F̄abdμ, (11b)

the geometric invariant is defined by

I ≡ J + I1. (12)

By construction I is coordinate independent and non-negative. It can furthermore be
verified that it is finite. More importantly we have

Theorem 4 Let (S , hab, Kab) be a vacuum initial data set with two asymptotically
Schwarzschildean ends. Let I be the invariant defined above, where κa is the only
solution to (9) with the same asymptotic behaviour as the solution for Kerr from
Theorem 1. The invariant I vanishes if and only if the development of (S , hab, Kab)

is locally isometric to the Kerr spacetime.

For the proof, see Theorem 28 in [2] and Theorem B.3 in [3] together with Theorem
4 in [4]. In [3] this was extended to the case with one asymptotic end and an inner
boundary, and in [4] this was worked through for compact domains.
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Hidden Symmetries of the Dirac Equation
in Curved Space-Time

Marco Cariglia

Abstract These are introductory notes on the study of the Dirac equation in curved
spacetime and its relation to hidden symmetries of the dynamics. We present general
results on the relation between special spacetime tensors and hidden symmetries,
both for the full Dirac equation and for its semi-classical limit, the spinning particle.
A concrete application of the general results is provided by the case of rotating higher
dimensional black holes with cosmological constant, which we discuss. For these
metrics the Dirac equation is separable and the relation between this and hidden
symmetries is explained.

1 Introduction

The Dirac equation, since its derivation in 1928, has successfully described the
relativistic hydrogen atom and phenomena such as the existence of anti-particles.
A natural evolution of the theory, stimulated by the progress in General Relativity,
is that of studying relativistic spin 1

2 particles on a curved background, such as for
example the Schwarzschild and Kerr spacetimes. Further development in unification
theories such as String/M-Theory and in cosmological models lead to the additional
ingredient of considering extensions of General Relativity and quantum field theories
to higher dimensions than four.

Parallel to this, the natural interest of physicists in solutions of the Dirac equation
that can be obtained by separation of variables leads to the mathematical problem of
finding a theory of separation of variables for this system of first order equations. In
the case of the classical Hamilton–Jacobi equations, the Schrödinger equation and the
Klein Gordon equation, there exists a well understood theory of separation of vari-
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ables [1–5]. In this theory the main objects playing a role are special tensors, namely
Killing vectors and rank 2 Killing–Stäckel tensors. With these one can build either
conserved quantities in the classical theory, or symmetry operators in the quantum
mechanical one. In the case of the Dirac equation instead a complete theory of sepa-
ration of variables is still lacking. Several known cases of separation of variables for
the Dirac equation involve only symmetry operators of first order in the derivatives,
such as the Dirac equation in the Kerr metric or the higher dimensional Kerr-NUT-
(A)dS metrics that we will discuss in this review. First order symmetry operators have
been built in 4 dimensions first and successively in arbitrary dimensions and signature
[6–10]. However, Fels and Kamran have shown that there exist cases where the Dirac
equation is separable but the separability is underlain by the existence of symmetry
operators of order higher than one. In some cases second order symmetry operators
have been built, see [11] and references therein, but neither the general construction
is known for an arbitrary dimension, nor there is control on necessary and sufficient
conditions for separability.

In this review we present the current knowledge on the first order symmetry
operators of the Dirac equation. We show how these are in exact correspondence
with special Conformal Killing–Yano tensors, and the relation between spacetime
differential forms and Clifford algebra valued operators. We discuss one important
application, the separability of the Dirac equation in Kerr-NUT-(A)dS metrics, which
is fully accounted for by a complete set of linear symmetry operators that are mutually
commuting and admit common separable spinorial eigenfunctions. We also briefly
discuss the semi-classical limit of the Dirac equation, the theory of the supersym-
metric spinning particle. In this theory the analogue of linear symmetry operators
is given by phase space functions that are linear in the momenta and correspond
to generators of extra supersymmetries. For Kerr-NUT-(A)dS metrics it is possible
to show that the bosonic sector of the theory is integrable, and its integrability is
related to the presence of Killing vectors and of a set of new conserved quantities
that are quadratic in the momenta and generalise the quadratic conserved quantities
of a scalar particle to the case with spin.

2 Gamma Matrices and Differential Forms

In this section we discuss the one-to-one map between differential forms on a spin
manifold and sections of its Clifford bundle. The application of interest for this
review is the fact that the properties of Conformal Killing–Yano tensors, which are
differential forms, automatically lift to those of appropriate differential operators
defined on the Clifford bundle.

We model spacetime as a (pseudo-)Riemannian spin manifold M of dimension n
with metric gμΛ and local coordinates {xμ}. We use lowercase Greek indices to denote
‘curvy’ components of spacetime tensors, associated with general diffeomorphism
transformations, and lowercase Latin indices to denote ‘flat’ components, associated
with SO(n) or SO(1, n − 1) transformations. Each fiber of the Clifford bundle has



Hidden Symmetries of the Dirac Equation in Curved Space-Time 27

the structure of the Clifford algebra generated by the gamma matrices φ μ, which
connect the Clifford bundle with the tangent space. The gamma matrices satisfy

φ μ φ Λ + φ Λ φ μ = 2gμΛ, (1)

which allows to reduce any element /κ of the Clifford algebra to a sum of antisym-
metric products φ μ1...μp := φ [μ1 . . . φ μp] with appropriate coefficients:

/κ =
∑

p

1

p! κ(p)
μ1...μp

φ μ1...μp . (2)

This representation is unique and the coefficients are given by anti-symmetric forms
κ

(p)
μ1...μp √ ν(p)(M), thus providing an isomorphism φ→ of the Clifford bundle

with the exterior algebra ν(M) = ⊕n
p=0 ν p(M) of inhomogeneous antisymmetric

forms: /κ = φ→κ, where κ = ∑
p κ(p) is an inhomogeneous form. In the rest of the

review, whenever the context makes it clear we will write κ instead of /κ to describe
an element of the Clifford algebra, with the action of the isomorphism implied.

The metric allows to raise and lower indices (musical isomorphism): if κ is a
1-form and v a vector, we denote the corresponding vector and 1-form as κ∂ and
vξ, respectively. This generalises to higher rank tensors. We define two operations
on ν(M). The ‘hook’ operation (inner derivative) is an action of a vector v on any
antisymmetric form κ. In components:

(v�κ)a1...ap−1 = vbκba1...ap−1 . (3)

For a scalar π, we set v�π = 0. The second operation is the wedge product.
When it acts on a p-form κ and a q-form τ it is defined so that in components
(κ ∓ τ)a...b... = (p+q)!

p! q! κ[a... τb... ].
The Clifford algebra relation (1) means that a product of any two rank p and q

gamma matrices φ μ1...μp and matrices φ Λ1...Λq can be decomposed in terms of other
gamma matrices. In particular it can be shown that for κ √ ν p(M), τ √ νq(M)

Clifford bundle forms, with p ∼ q, the Clifford product expands as

κτ =
p∑

m=0

(−1)m(p−m)+[m/2]

m! κ ∓
m

τ, (4)

where the ∓
m

contraction operator is defined recursively as

κ ∓
0

τ = κ ∓ τ,

κ ∓
k

τ = (Xa�κ) ∓
k−1

(Xa�τ) (k ≤ 1),

κ ∓
k

τ = 0 (k < 0). (5)



28 M. Cariglia

Given a set of n-beins
{
ea
μ

}
, we can build n 1-forms ea = ea

μdxμ, with Xa = (ea)∂

a dual vector basis. The ea are mapped under φ→ to ‘flat’ gamma matrices that satisfy
(1) with the flat metric σab instead of g. Flat and curvy indices can be transformed
one into the other using either ea

μ or its inverse Eμ
a , such that ea

μEμ
b = δa

b and
ea
μEΛ

a = δΛ
μ. We can also group the ea together and consider a single object φ→(ea)

which transforms as an SO(n) tensor. We lift the covariant derivative given on ν(M)

to one on φ→ (ν(M)) by asking that for any κ in the Clifford bundle

∞aκ = Ωaκ − Σa ∓
1

κ, (6)

where Ωaκ = Xa[κ] = Eμ
a Ωμκ, and Σa is the connection 2-form Σa = 1

2Σabceb ∓ ec

and Σabc are the components of the spin connection. For a form which is also an
SO(n) tensor such as ea the covariant derivative becomes

∞aeb = Ωaeb + Σa
b

c ec − Σa ∓
1

eb. (7)

In particular, for the n-bein tensor itself, ∞aeb = 0.
Lastly we introduce the degree operator η that acts on an inhomogeneous form

κ = ∑
p κ(p) as ηκ = ∑

p=0 p κ(p).
In this formalism the Dirac operator is written as D ∗ ea∞a = ∞aea , the exte-

rior derivative acting on forms as d = ea ∓ ∞a = ∞a ea∓, and the co-differential
δ = −Xa�∞a = −∞a Xa�. All these expressions are to be understood as operators
acting on the right.

3 Special Killing–Yano Tensors

Conformal Killing–Yano tensors (CKY) are forms fμ1...μp = f[μ1...μp] such that

∞α fμ1...μp = ∞[α fμ1...μp] + p

D − p + 1
gα[μ1∞ρ f|ρ|μ2...μp], (8)

or equivalently, without using components,

∞X f = 1

η + 1
X�d f − 1

n − η + 1
X ξ ∓ δ f, (9)

for any vector X . When p = 1 this reduces to the Killing equation.
The formula above generalises automatically to the case of inhomogeneous forms.

When f is co-closed, δ f = 0, f is called a Killing–Yano form (KY), and when it
is closed, d f = 0, it is called a closed conformal Killing–Yano form (CCKY).
Equation (9) is invariant under Hodge duality, interchanging KY and CCKY tensors.
A symmetry operator for the Dirac equation is an operator S that R-commutes with
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D, or in other words such that DS = RD for some operator R. It maps solutions
of the massless Dirac equation into solutions. Benn, Charlton, and Kress [9, 10]
have shown the important result that, in all dimensions n and arbitrary signature, R-
symmetry operators of the massless Dirac operator that are first-order in derivatives
are in one to one correspondence with CKY forms. Any such operator S can be
written as

S = S f + κD, (10)

where κ is an arbitrary inhomogeneous form, and S f is given in terms of an inho-
mogeneous CKY form f obeying (9) according to

S f = Xa� f ∞a + η − 1

2η
d f − n − η − 1

2(n − η)
δ f. (11)

The freedom of adding an arbitrary form κ is unavoidable. In [12] it was shown that,
as a special case, the most general first-order operator S that strictly commutes with
D splits into the Clifford even and Clifford odd parts

S = Se + So, (12)

where

Se = KΣo ∗ Xa�Σo∞a + η − 1

2η
dΣo, (13)

So = MΣe ∗ ea ∓ Σe∞a − n − η − 1

2(n − η)
δΣe, (14)

where Σo is an odd KY form and Σe is an even CCKY form.
Given a KY p-form f it is possible to see that the tensor

K μΛ = f μ
α1...αp−1 f Λα1...αp−1 , (15)

is Killing–Stäckel tensor. Such a tensor satisfies ∞(αK μ1...μp) = 0 and is associated
with conserved quantities of higher order in the momenta for the theory of the classical
particle.

In [13] it was shown that CCKY tensors form an algebra under the wedge prod-
uct. In particular, closed conformal Killing–Yano tensors of rank 2 that are non-
degenerate are called Principal Conformal Killing–Yano (PCKY) tensors. They are
crucial for the integrability of various systems in four and higher dimensional black
hole spacetimes.

Generalisations of these concepts to the case of metrics with torsion and fluxes
have been treated in [14, 15].
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4 Kerr-NUT-(A)dS Black Holes

While a classification of Lorentzian metrics with a PCKY tensor is not available,
the analogue problem in Riemannian signature has been solved [16, 17]. The most
general canonical metric admitting a PCKY tensor in n = 2N + Δ dimensions,
Δ = 0, 1, is given by

ds2 =
N∑

μ=1

[
dx 2

μ

Qμ

+ Qμ

( N−1∑
j=0

A( j)
μ dψ j

)2
]

+ ΔS
( N∑

j=0

A( j)dψ j

)2
. (16)

Here, coordinates xμ (μ = 1, . . . , N ) stand for the (Wick rotated) radial coordinate
and longitudinal angles, and Killing coordinates ψk (k = 0, . . . , N − 1 + Δ) denote
time and azimuthal angles associated with Killing vectors ξ (k) = Ωψk . We have
further defined the functions

Qμ = Xμ

Uμ

, Uμ =
∏
Λ 	=μ

(x2
Λ − x2

μ), S = −c

A(N )
, (17)

A(k)
μ =

∑
Λ1,...,Λk

Λ1<···<Λk , Λi 	=μ

x2
Λ1

· · · x2
Λk

, A(k) =
∑

Λ1,...,Λk
Λ1<···<Λk

x2
Λ1

· · · x2
Λk

. (18)

The quantities Xμ are functions of a single variable xμ, and c is an arbitrary constant.
The vacuum (with a cosmological constant) black hole geometry is recovered by
setting

Xμ =
N∑

k=Δ

ck x2k
μ − 2bμ x1−Δ

μ + Δc

x2
μ

. (19)

This choice of Xμ describes the most general known Kerr-NUT-(A)dS spacetimes in
all dimensions [18]. The constant cN is proportional to the cosmological constant and
the remaining constants are related to angular momenta, mass and NUT parameters.

The PCKY tensor reads [19]

h = db, b = 1

2

N−1∑
j=0

A( j+1)dψ j . (20)

The 2 j-forms h( j), which are the j th wedge power of the PCKY tensor h, h( j) =
h ∓ · · · ∓ h, form the tower of associated closed conformal Killing–Yano tensors.
Their Hodge duals are KY forms and can be ‘squared’ to rank 2 Killing–Stäckel
tensors.
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5 Separability of the Dirac Equation in the Kerr-NUT-(A)dS
Metric

According to the results of Sect. 3, for the N + Δ Killing vectors ξ (0), . . . , ξ (N−1+Δ)

there are associated the operators Kξ (0) , . . . , Kξ (N−1+Δ) , which commute with the
Dirac operator D. And for the N CCKY forms h( j) there are associated operators
Mh(1) , . . . , Mh(N−1) , which also commute with D. In [12] it has been shown that all
these operators are in fact mutually commuting. Thus it is possible to diagonalise
them simultaneously and to look for common spinorial eigenfunctions.

The Dirac equation in this metric had been shown to be separable by a direct
calculation in [20]. A geometrical understanding of the result has been given in [21],
where it has been shown that the solution to the eigenvalue problem

Kξ (k)χ = i Ψkχ, M jχ = m jχ, (21)

can be found in the tensorial R-separated form

χ = R exp
(
i
∑

k Ψkψk
) ⊗

Λ

χΛ, (22)

where {χΛ} is an N -tuple of 2-dimensional spinors and R is an appropriate Clifford
bundle-valued prefactor. χΛ depends only on the variable xΛ , χΛ = χΛ(xΛ), and
satisfies the equation

[( d

dxΛ

+ X ⊂
Λ

4XΛ

+ Ψ̃Λ

XΛ

ι∃Λ∩ + Δ

2xΛ

)
σ∃Λ∩

−
(−ι∃Λ∩

)N−Λ

√|XΛ |
(
Δ

i
√−c

2x2
Λ

+ mΛ

)]
χΛ = 0 , (23)

where
Ψ̃μ =

∑
k

Ψk(−x2
μ)N−1−k , (24)

and
mΛ =

∑
j

(−i) j m j
(−ι∃Λ∩xΛ

)N−1− j
. (25)

The operator ι∃Λ∩ acts as a σ3 Pauli matrix on the 2-spinor χΛ while leaving the other
spinors χμ, μ 	= Λ, invariant, and similarly σ∃Λ∩ acts as σ1.

The solution (22) is the same as that given in [20]. The arbitrary integration
constants found there are related to the eigenvalues Ψk and m j .
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6 The Spinning Particle

The spinning particle theory can be thought of as a semi-classical description of
a Dirac fermion. The degrees of freedom are coordinates xμ and Grassmannian
variables θa related to the spin. The Hamiltonian is given by

H = 1

2
ΠμΠΛgμΛ, Πμ = pμ − i

2
θaθbΣμab = gμΛ ẋΛ, (26)

where pμ is the momentum canonically conjugate to xμ and Πμ is the covariant
momentum. Poisson brackets are defined as

{F, G} = Ω F

Ωxμ

ΩG

Ωpμ

− Ω F

Ωpμ

ΩG

Ωxμ
+ i(−1)aF

Ω F

Ωθa

ΩG

Ωθa
, (27)

where aF is the Grassmann parity of F .
The theory is worldsheet supersymmetric and the generator of supersymmetry is

given by
Q = θaea

κΠκ, (28)

which obeys
{H, Q} = 0 , {Q, Q} = −2i H. (29)

Equations of motion are accompanied by two physical (gauge) conditions

2H = −1 , Q = 0, (30)

In the Kerr-NUT-(A)dS spacetimes there are (N + Δ) Killing vectors ξ(k). It is
possible to show that with these one can construct bosonic super invariants linear in
velocities, given by

Qξ(k)
= ξκ

(k)Πκ − i

4
θaθb(dξ(k))ab. (31)

These can be used to express some components of the velocities Π in terms of the
conserved quantities and of the θ variables. In [22] it was shown that it is possible to
find N further bosonic supersymmetric conserved quantitiesK( j), this time quadratic
in the velocities. These new quantities will be neither conserved nor supersymmetric
in a general metric, but they are for Kerr-NUT-(A)dS. The (N +Δ)+N = n quantities
are all independent and using them it is possible to express all the components of Π ,
thus showing that the bosonic sector of the theory is integrable.

The quantities K( j) are written as

K( j) = K μΛ

( j)ΠμΠΛ + Lμ

( j)Πμ + M( j),

Lμ

( j) = θaθb L( j)ab
μ , M( j) = θaθbθcθd M( j)abcd . (32)
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The tensors K , L and M are given by

K μΛ = f μκ1...κp−1 f Λ
κ1...κp−1 ,

LμΛ
ρ = − 2i

p + 1
f[μ|κ1...κp−1|(d f )Λ]ρκ1...κp−1

− 2i

p + 1
(d f )μΛκ1...κp−1 f ρκ1...κp−1 , (33)

MμΛρσ = − i

4
∞[μLΛρσ ].

Here fμ1...μp is the appropriate rank-p Killing–Yano tensor present in the spacetime.
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Geometrostatics: The Geometry of Static
Space-Times

Carla Cederbaum

Abstract We present a new geometric approach to the study of static isolated general
relativistic systems for which we suggest the name geometrostatics. After describing
the setup, we introduce localized formulas for the ADM-mass and ADM/CMC-center
of mass of geometrostatic systems. We then explain the pseudo-Newtonian character
of these formulas and show that they converge to Newtonian mass and center of
mass in the Newtonian limit, respectively, using Ehlers’ frame theory. Moreover, we
present a novel physical interpretation of the level sets of the canonical lapse function
and apply it to prove uniqueness results. Finally, we suggest a notion of force on test
particles in geometrostatic space-times.

1 Introduction

Static isolated general relativistic systems have been studied from a number of per-
spectives including their regularity, compactification and asymptotic considerations,
symmetry classifications, construction of explicit solutions etc. They serve as models
of static stars and black holes. Also, they play an important role in R. Bartnik’s def-
inition of quasi-local mass and his associated conjecture on static metric extensions
[1].

Here, we present a new geometric approach to the study of static isolated sys-
tems and their physical properties for which we suggest the name geometrostatics.
We consider space-times that are static (possess a smooth global time-like Killing
vector field that is hypersurface-orthogonal) and isolated (see below). Static space-
times generically possess a 3 + 1-decomposition with vanishing shift vector. In
this canonical decomposition, the canonical lapse function is time-independent and
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Fig. 1 The time-slices of a
canonically decomposed static
space-time

t

t=1

t=0

coincides with the Lorentzian length of the time-like Killing vector field. The space-
like time-slices orthogonal to the time-like Killing vector field are all isometric and
have vanishing extrinsic curvature, see Fig. 1. Their induced Riemannian metric is
time-independent. We will subsequently identify all canonical time-slices.

For our purposes, static systems are called isolated if the Riemannian metric and
the lapse function on the time-slice decay suitably fast to the flat metric and the
constant 1, respectively, at spacelike infinity see [2] for a precise definition of our
asymptotic flatness condition in the language of weighted Sobolev spaces. Moreover,
we request that the space-time satisfies the vacuum Einstein equations outside some
spatially compact tube in the space-time (or, in other words, outside some compact
set in the time-slice). This can be interpreted as a (spatially) finite extension of the
sources, whether they are matter sources and/or black holes.

This article is structured as follows: In Sect. 2, we will introduce the central equa-
tions of geometrostatics and summarize a few of their central analytic properties.
In Sect. 3, we present a novel physical interpretation of the level sets of the lapse
function of a geometrostatic system and discuss some applications of this insight.
In Sect. 4, we will perform a conformal transformation into what we suggest to call
pseudo-Newtonian variables. Moreover, we will define and analyze localized sur-
face integral expressions for the mass and center of mass of geometrostatic systems.
Finally, in Sect. 5, we will discuss the Newtonian limit of geometrostatics.

Further details can be found in my thesis [2].
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2 Geometrostatics

The Lorentzian metric of a generic static space-time R × M3 can globally be de-
composed as

ds2 = −N 2c2dt2 + g, (1)

where N := √−ds2(Λt , Λt ) is the (canonical) lapse function arising as the Lorentzian
length of the time-like Killing vector field Λt , c is the speed of light, and g is the
Riemannian metric induced on the time-slice M3. Observe that N is non-negative
and vanishes only along Killing horizons.

In the vacuum region outside the matter, the (vacuum) Einstein equations imply
that these variables satisfy the so-called vacuum static metric equations

N Ric = √2 N , (2)

→N = 0, (3)

where Ric is the Ricci curvature tensor of g, √2 N denotes the covariant Hessian,
and →N denotes the covariant Laplacian of N with respect to g. It is well-known
that solutions to the vacuum static metric equations are real analytic in suitable
coordinates [3].

We define a geometrostatic system to be an asymptotically flat Riemannian 3-
manifold (M3, g) endowed with a smooth positive lapse function N so that the
vacuum static metric equations (2) and (3) are satisfied. Hence, geometrostatic sys-
tems model the vacuum region outside the support of the matter and the horizons of
all black holes within a slice of an asymptotically flat static space-time. The lapse
function N describes the lapse of time in the space-time.

3 The Level Sets of the Lapse

In Newtonian gravity, the relevant gravitational variable is the Newtonian potential.
The gradient of the potential defines the force on a unit mass test particle. This
has a well-known consequence for the equipotential surfaces (or level sets of the
Newtonian potential): if a test particle is constrained into one of these surfaces then
the gravitational force does not have a tangential component and hence the test
particle does not tangentially accelerate within the surface, see Fig. 2.

Surprisingly, the “same” is true for level sets of the lapse function in a geomet-
rostatic system. In order to make this rigorous, we make the following definitions:
Consider a closed smooth surface φ ∓ M3 in a geometrostatic system (M3, g, N )

arising as the n = n0 level set of a smooth function n : M3 ∼ R. A time-like1 curve

1 Here, time-like curves and the time functional are taken with respect to the static space-time metric
ds2 = −N 2c2dt2 + g induced by (M3, g, N ).



38 C. Cederbaum

Fig. 2 A test particle con-
strained to a surface φ

r

test body restricted to Σ

Σ

no acceleration

B

μ(κ) =
(

t (κ ), x(κ )
)

(4)

satisfying x(κ ) ≤ φ is called a test particle constrained to φ if it is a critical point
of the time functional

T (μ) :=
κ1∫

κ0

{
|μ̇(κ )| + ν(n ∞ x(κ ) − n0)

}
dκ, (5)

where ν ≤ R is a Lagrange multiplier ensuring that all comparison curves are also
constrained to φ . With this notion of constrained test particle, we say that a smooth
closed surface φ is an equipotential surface if every test particle constrained to
φ is a geodesic in φ with respect to the induced 2-metric, see Fig. 2. Analyzing
the geodesic equation, we find that a surface φ ∓ M3 is an equipotential surface
in (M3, g, N ) if and only if φ is a level set of N . Thus, the level sets of the lapse
function N in geometrostatics play precisely the same role as those of the Newtonian
potential in Newtonian gravity.

In a static vacuum space-time, the Einstein constraint equations reduce to Scal =
0. In particular, the lapse function does not appear in this constraint equation. As
a consequence, Choquet-Bruhat’s theorem (see e.g. [4]) on the local existence and
uniqueness of solutions to the Einstein equations implies that the space-time induced
by (M3, g, N ) is in fact independent2 of the lapse function N . Combining this view of
the lapse function with the physical interpretation of its level sets of the lapse as well
as with the vacuum static metric equations (2) and (3) and the assumed asymptotic
conditions for g and N , we obtain that the lapse function is indeed unique if it
exists. This is to say that if (M3, g, N ) and (M3, g, Ñ ) are geometrostatic systems,
then N = Ñ . We interpret this result as saying that “there is only one way of
synchronizing time at different locations in a geometrostatic space-time such that
one sees staticity” just as, for a geodesic, “there is only one way of walking along a

2 This assumes that the lapse function exists in the first place.
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geodesic such that one does not accelerate (up to affine transformations of the curve
parameter)”. The affine freedom of the parameter along the geodesic does not make
an appearance in the geometrostatic space-time picture because we fixed the lapse
function to asymptotically converge to 1 at spacelike infinity and therewith fixed the
time unit.

4 Pseudo-Newtonian Gravity

The geometrostatic variables g and N are ideal for investigating geometric and rel-
ativistic effects influencing test particle behavior and the behavior of light rays. In
order to better understand asymptotic and analytic properties of solutions, however,
it is more convenient to perform a conformal change and consider the new variables

∂ := N 2g, (6)

U := c2 ln N . (7)

These variables have been used by many authors3, see e.g. [5]. We suggest to call
them pseudo-Newtonian metric and potential, respectively. The vacuum static metric
(2), (3) translate into

Ric∂ = 2c−4 dU ∗ dU, (8)

→∂ U = 0, (9)

where Ric∂ denotes the Ricci curvature tensor of ∂ and →∂ denotes the ∂ -covariant
Laplacian on M3.

N was assumed to converge to 1 asymptotically at spacelike infinity, so U must
asymptotically tend to 0. Indeed, Kennefick and O’Murchadha [5] showed that the
asymptotic flatness assumptions incorporated into the above definition of a geomet-
rostatic system induce the decay conditions

∂i j = ξi j + O(r−2), (10)

U = −mG

r
+ O(r−2), (11)

as r ∼ ∞ in suitable coordinates. Here, m is the ADM-mass of the slice (M3, g),
see [6–8]. In [2], we prove asymptotic estimates in weighted Sobolev spaces that
improve this fall-off result. In particular, we find that

3 Albeit without explicit reference to the speed of light.
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∂i j =
(

1 − M2

r2

)
ξi j + 2M2xi x j

r4 + O(r−3), (12)

U = −mG

r
− mGzA · x

r3 + O(r−3), (13)

as r ∼ ∞, where M = mG/c2 and zA ≤ R
3 is a fixed vector. This decay occurs

in asymptotically flat ∂ -harmonic coordinates. As a matter of fact, these coordi-
nates coincide with the asymptotically flat (spatial) wave-harmonic coordinates on
(R× M3, ds2 = −N 2c2dt2 + g). The vector zA can be interpreted as the coordinate
vector of the asymptotic center of mass of the system, see below.

In terms of the pseudo-Newtonian variables ∂ and U and inspired by Newtonian
gravity, we suggest the following quasi-local definitions of pseudo-Newtonian mass
and center of mass4 of a geometrostatic system (M3, g, N ) with associated pseudo-
Newtonian variables (∂, U ):

m P N (φ) := 1

4πG

∫
φ

ΛU

Λτ
dν, (14)

zP N (φ) := 1

4πGm

∫
φ

(
ΛU

Λτ
x − U

Λx
Λτ

)
dν, (15)

where φ is any surface enclosing the support of the matter, τ and dν are the outer unit
normal to and area measure of φ with respect to ∂ , and x is the vector of ∂ -harmonic
coordinates.

Surprisingly, both of these expressions are independent of the particular choice
of surface φ (as long as the surface encloses the support of the matter, imagine
for example a large coordinate sphere). For the pseudo-Newtonian mass (14), this
independence of the surface can be seen by combining (9) with the divergence
theorem. For the center of mass (15), the independence of the surface follows from
(9) combined with Green’s formula and the fact that the coordinates are ∂ -harmonic
such that →∂ x = 0. We will thus drop the explicit reference to the surface when
referring to pseudo-Newtonian mass and center of mass.

Using the asymptotic decay (10), (11), we find that

m P N = m ADM . (16)

The total mass of a geometrostatic system is thus localized. It can be read off exactly
on any surface enclosing the matter. Applying formula (14) to any smooth surface
φ ∓ M3, we immediately obtain a notion of mass for an arbitrary part of the system
(namely the part bounded by the surface φ). By the divergence theorem and (9), the
masses of all components in a multi-component system add up to the total mass of
the system just as Newtonian masses do.

If we combine the asymptotic decay (12), (13) with formula (15) defining the
pseudo-Newtonian center of mass, we find that zP N = zA. We claim that this vector

4 We note that our discussion of center of mass only applies to systems with non-vanishing mass.
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Fig. 3 The universe of Ehlers’ frame theory and the Newtonian limit

can indeed be physically interpreted as the coordinate vector of the total center of mass
of the system. For this, we exploit Huang’s work [9] showing that the ADM-center
of mass [6] coincides5 with the CMC-center of mass constructed via a constant mean
curvature (CMC) foliation near infinity by Huisken and Yau [10] and generalized by
Metzger [11]. Using again (12) and (13), we obtain

zP N = zA = zADM = zC MC (17)

which justifies the name center of mass for the quantities zP N and zA. Moreover, this
shows that the center of mass of a geometrostatic system is also localized. As above,
we obtain a notion of center of mass for an arbitrary part of the system (namely the part
bounded by the surface φ). By Green’s formula, ∂ -harmonicity of the coordinates,
and (9), the centers of mass of all components in a multi-component system add up
to the total center of mass of the system just as Newtonian centers of mass do.

5 The Newtonian Limit of Geometrostatics

Intuitively, the mass and center of mass of a relativistic system should converge to
the Newtonian mass and center of mass of its Newtonian limit c ∼ ∞. To make this
precise, we use Ehlers’ frame theory [12] which unifies general relativity (GR) and
Newton-Cartan gravity (NC) into a common geometric framework with geometric
variables g, h, σ and matter tensor T .

In frame theory, taking the Newtonian limit corresponds to taking a parametric
curve of solutions of GR with parameter δ = c−2 to its limit δ ∼ 0, see Fig. 3.
Modeling Killing vector fields, staticity, and asymptotic flatness in frame theory,
we show that the pseudo-Newtonian potential converges to the Newtonian potential
and the metric ∂ converges to the flat metric along any family of geometrostatic
systems that possesses a static Newtonian limit. As the localized pseudo-Newtonian
formulas (14) and (15) are nearly identical with the Newtonian formulas, this proves
that indeed the relativistic mass and center of mass converge to their Newtonian
counterparts.

5 Under precise fall-off conditions at spacelike infinity that are satisfied here.



42 C. Cederbaum

6 Conclusion and Outlook

Geometrostatic systems share many features with Newtonian ones. First, the level
sets of the lapse function N (or, equivalently, those of the pseudo-Newtonian potential
U = c2 ln N ) have the same equipotential properties as the level sets of the Newtonian
potential. We thus define the force on a unit mass test particle as F := −√∂ U where
√∂ denotes the ∂ -covariant gradient. A second Newtonian type law holds for this
notion of force [2].

Secondly, the total mass and center of mass of a geometrostatic system are lo-
calized. We put forward explicit geometric formulas for them that also allow for the
computation of the notions of mass and center of mass of individual regions. We
applied these formulas to prove consistence of ADM-mass and ADM/CMC-center
of mass with the Newtonian limit.

This fact and the notion of force might turn out useful for the study of the well-
known static n-body problem and of Bartnik’s conjecture [1].
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The Gravitational Equation in Higher
Dimensions

Naresh Dadhich

Abstract Like the Lovelock Lagrangian which is a specific homogeneous polyno-
mial in Riemann curvature, for an alternative derivation of the gravitational equation
of motion, it is possible to define a specific homogeneous polynomial analogue of
the Riemann curvature, and then the trace of its Bianchi derivative yields the cor-
responding polynomial analogue of the divergence free Einstein tensor defining the
differential operator for the equation of motion. We propose that the general equation
of motion is G(n)

ab = −Λgab + φnTab for d = 2n + 1, 2n + 2 dimensions with the
single coupling constant φn , and n = 1 is the usual Einstein equation. It turns out that
gravitational behavior is essentially similar in the critical dimensions for all n. All
static vacuum solutions asymptotically go over to the Einstein limit, Schwarzschild-
dS/AdS. The thermodynamical parameters bear the same relation to horizon radius,
for example entropy always goes as rd−2n

h and so for the critical dimensions it always
goes as rh, r2

h . In terms of the area, it would go as A1/n . The generalized analogues of
the Nariai and Bertotti–Robinson solutions arising from the product of two constant
curvature spaces, also bear the same relations between the curvatures k1 = k2 and
k1 = −k2 respectively.

1 Introduction

What stands gravity apart from rest of the physics is its universal character that it
links to everything including massless particles and hence it can only be described by
the spacetime curvature, and its dynamics has therefore to follow from the geometric
properties of the Riemann curvature tensor [1]. The Einstein gravitational equation
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could be deduced from the geometric property of Riemann curvature, known as
the Bianchi identity, implying vanishing of its Bianchi derivative identically. Its
trace yields the divergence-free second rank symmetric Einstein tensor. It defines
the differential operator on the left hand side of the equation while the gravitational
source – energy momentum distribution described by a second rank symmetric tensor
with the condition of vanishing divergence—appears on the right hand side. This is
the case for Einstein gravity which is linear in Riemann curvature, and its vacuum is
trivially flat in 3 dimensions and it becomes dynamically non-trivial in 4 dimensions.

The question is, could this be generalized to a polynomial analogue of the Riemann
tensor? Consider a tensor with the same symmetry properties as the Riemann which is
a homogeneous polynomial of degree n in Riemann, and then demand that the trace
of its Bianchi derivative vanishes. This will fix the coefficients in the polynomial
and will give the divergence free second rank symmetric tensor G(n)

ab , the nth order
analogue of the Einstein tensor, which is the same as what one would get from the
variation of the nth order Lovelock Lagrangian [2]. Thus we have the generalized
polynomial Riemann curvature, R(n)

abcd , which would describe gravitational dynamics
in d = 2n + 1, 2n + 2 in the same manner as Riemann does for d = 3, 4. We can
define corresponding vacuum as R(n)

ab = 0, would it also be trivial in d = 2n + 1

dimension? The answer is indeed, yes [3]. It would be R(n)
abcd flat but not Riemann

flat, and for that it would describe a global monopole [4].
What should be the gravitational equation in dimension >4? Should it continue

to be the Einstein equation which is linear in Riemann or should it include the
one following from the higher order Riemann, R(n)

abcd yet giving the second order
quasi-linear equation? A general abiding principle is that the equation be second
order quasi-linear so that the initial value problem is well formulated giving unique
evolution. This uniquely identifies the Lovelock polynomial Lagrangian or equiv-
alently the above discussed polynomial Riemann curvature [2]. Should all orders
that are non-trivial in the equation be included like the linear Einstein, quadratic
Gauss-Bonnet, and so on, or the only highest one? Should it be

∑
G(n)

ab or G(n)
ab ?

In the former, each order will have its own coupling and so there would be n of
them, and there is no obvious way to fix them. Since there is only one force which
allows determination of only one coupling parameter by experimentally measuring
its strength, gravity should therefore have only one dimensional coupling parameter
and its dimension would however depend upon the spacetime dimension. Thus we
propose the gravitational equation should in general be written as

G(n)
ab = −Λgab + φnTab (1)

for d = 2n + 1, 2n + 2 dimensions. Note that Λ, which characterizes dynamics free
spacetime, is part of the structure of spacetime on the same footing as the velocity
of light [5]. In what follows we wish to demonstrate that this equation imbibes beau-
tifully the general vacuum character [3] while the static vacuum solutions asymp-
totically go over to the right Einstein limit, even though the linear Einstein term is
not included. This means higher order terms in curvature are only pertinent to the
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high energy end near the black hole horizon while their effect weans out asymp-
totically at the low energy end approximating to the linear order Einstein solution,
Schwarzschild-dS/AdS in d dimension [6, 7]. It is remarkable that the thermody-
namical parameters, temperature and entropy bear universal relation to the horizon
radius for static black holes in d = 2n + 1, 2n + 2, and interestingly this property
also marks the characterization of this class of black holes [7, 8].

2 The Lovelock Curvature Polynomial and the Equation
of Motion

Following Ref. [2], we define the Lovelock curvature polynomial

R(n)
abcd = F (n)

abcd − n − 1

n(d − 1)(d − 2)
F (n)(gacgbd − gad gbc),

F (n)
abcd = Qab

mn Rcdmn, (2)

where

Qab
cd = κ

aba1b1...anbn
cdc1d1...cndn

Ra1b1
c1d1 , . . . , Ran−1bn−1

cn−1dn−1 ,

Qabcd ;d = 0. (3)

It follows that the trace of the Bianchi derivative yields the divergence-free G(n)
ab ; i.e.

gacgbd R(n)
abcd;e = G(n)b

e;b = 0, (4)

where the analogue of nth order Einstein tensor is given by

G(n)
ab = n(R(n)

ab − 1

2
R(n)gab). (5)

Note that

R(n) = d − 2n

n(d − 2)
F (n), (6)

which vanishes for D = 2n while F (n), the Lovelock action polynomial, is non-zero
but its variation, G(n)

ab vanishes identically. Since R(n) = gab R(n)
ab = 0 for d = 2n

for arbitrary gab, it implies R(n)
ab = 0 identically as it involves apart from the metric

its first and second derivatives which are arbitrary.
Since G(n)

ab is divergence free, we could write

G(n)
ab = φnTab − Λgab, T ab

;b = 0. (7)
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This is the gravitational equation for d = 2n + 1, 2n + 2 dimensions with φn as the
gravitational constant, and n = 1 is the Einstein equation for 3 and 4 dimensions.
What degree of polynomial in Riemann should the equation have is thus determined
by the spacetime dimension. It is linear for 3, 4, quadratic for 5, 6, and so on.

3 Universal Features

The first universal feature studied was that of gravitational field inside a uniform
density sphere and it was shown that it was always given by the Schwarzschild interior
solution in Einstein as well as in Einstein–Gauss–Bonnet/Lovelock theories [9]. Here
we shall consider the cases of static black holes, and product spaces describing the
Nariai and Bertotti–Robinson spacetimes.

3.1 Static Black Holes

The static spherically symmetric solution of the vacuum (1) is given by

gtt = −1/grr = V = 1 − r2(Λ + M/rd−1)1/n, (8)

which asymptotically takes the form of the Schwarzschild-dS/AdS solution in d
dimensions showing the correct Einstein limit. The solution for the general case of
the Einstein–Lovelock equation can also be written in terms of the nth order algebraic
polynomial equation which cannot be solved in general for n > 4. It is therefore
clear that we cannot carry on with arbitrarily large number of coupling parameters.
For the case of dimensionally continued black holes [10], it was proposed that all
the couplings are determined in terms of the unique ground state Λ, and the solution
is then given by V = 1 − r2Λ − M/rd−1/2 which clearly does not go over to the
Einstein solution for large r . This corresponded to the algebraic polynomial being
degenerate. It turns out that the proper Einstein limit could be brought in simply by
considering the polynomial to be derivative degenerate [7]. Then the solution agrees
near the horizon with the dimensionally continued black hole and asymptotically
with the proper Einstein limit, and it is the solution of equation (1).

Further, the thermodynamical parameters, temperature and entropy bear the uni-
versal relation to the horizon radius for the critical d = 2n + 1, 2n + 2 dimensions
[8]. For instance, the entropy always goes as rd−2n

h which for the critical dimen-
sions would always go as rh, r2

h . In terms of the area, it would however go as A1/n ,
and hence the entropy is proportional to area only for the n = 1 Einstein theory.
Interestingly, this universality is also the characterizing property of this class of pure
Lovelock black holes [7, 8].
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We would like to conjecture that the above universality property would also be
true for the rotating black hole solution as and when it is found.

3.2 Product Spaces: Nariai and Bertotti–Robinson Solutions

The Nariai and Bertotti–Robinson solutions arise as product of two constant curvature
spaces. When the two curvatures are equal, k1 = k2, it is the Nariai solution of (1)
with Tab = 0 for n = 1, and when the curvatures are equal and opposite, k1 = −k2,
it is the Bertotti–Robinson solution describing the uniform electric field. The former
is the Λ vacuum spacetime but is not conformally flat while the latter is the Einstein–
Maxwell solution for uniform electric field which is conformally flat. It turns out
the generalized pure Lovelock solutions of (1) for any n bear out the same curvature
relations for the Nariai vacuum (k1 = k2) and Bertotti–Robinson uniform electric
field (k1 = −k2), and the condition for conformal flatness is also k1k2 = 0 [11].

In d = 2n + 2 dimensions, we have the following general relation connecting the
two curvatures, Λ and the electric field E ,

(k1 + k2)E2 = −4(k1 − k2)Λ. (9)

This clearly indicates k1 = k2 for E = 0, the Nariai vacuum spacetime and k1 = −k2
for Λ = 0, the Bertotti–Robinson uniform electric field spacetime. The metric is
given by

ds2 = (1 − k1r2)dt2 − dr2

1 − k1r2 − 1

k2
dν2

(d−2). (10)

4 Discussion

We have proposed that equation (1) is the proper equation for gravity in higher
dimensions. The correct equation should have the following properties: (a) it should
be second order quasi-linear, (b) for a given dimension, it should be of degree n =
[(d − 1)/2] in the Riemann curvature, (c) it should have only one coupling constant
which could be determined by experimentally measuring the strength of the force,
and (d) since higher order curvature contributions are the high energy corrections to
the linear order in Riemann Einstein gravity which should wean out asymptotically,
hence solutions should tend to the corresponding Einstein solution for large r . The
proposed equation satisfies all these properties. The latter feature of the asymptotic
Einstein limit is verified for the static black hole solutions which, however, is also
true for the Einstein–Gauss–Bonnet black hole. What is remarkable here is that
the equation is free of the Einstein term, yet asymptotically solutions go over to
the proper Einstein limit. This means high energy effects which come through the
higher order curvature terms are fully and properly taken care by the highest order
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n = [(d − 1)/2] term, and they could be realized only in higher dimensions [12].
It is interesting that gravity asks for higher dimensions for realization of its high
energy effects. This is because inclusion of higher orders in Riemann curvature and
the demand that the equation continues to be second order quasi-linear naturally
lead to higher dimensions. This does not happen for any other force that one has to
consider higher dimension for realization of its high energy corrections. It happens
for gravity because the spacetime curvature is the basic field variable, and hence
high energy effects involve higher orders in it and their contribution in the equation,
if it continues to retain its second order quasi-linear character, can be realized only
in higher dimensions [12]. We would like to emphasize that higher dimensions and
high energy effects seem to be intimately connected. Since high energy effects ask
for higher dimensions, quantum gravity should also involve higher dimensions. This
is because quantum gravity should approach the classical limit via the high energy
intermediate limit.

One of the problems with the Einstein–Lovelock solutions is number of coupling
constants and there is no way to fix them. For the dimensionally continued static
black holes, all the couplings were prescribed in terms of the unique ground state
Λ [10]. These solutions were, however, not asymptotically Einstein, Schwarzschild-
dS/AdS. Instead, the corresponding solutions of (1) have the right limits at both ends,
nearer to horizon agreeing with the dimensionally continued and asymptotically to
Schwarzschild-dS/AdS. This is indicative of the inherent correctness of the equation.
The universal character of gravity in the critical dimensions is another very attractive
feature of the equation. That the vacuum, G(n)

ab = 0, in the odd critical dimension

is always trivial, R(n)
abcd = 0 [3]. All this taken together points to the fact that (1) is

right equation for gravitation in higher dimensions.
For a given order n in the Riemann curvature, the critical dimensions are d =

2n + 1, 2n + 2 and it is trivial/kinematic in the former and it becomes dynamic in
the latter. This is a universal general feature. In the critical dimensions, gravity has
the similar behavior as indicated by universality of the thermodynamic parameters
in terms of the horizon radius and of the Nariai and Bertotti–Robinson solutions. It
is interesting to note that in terms of black hole area, entropy is always proportional
to A1/n and so it is proportional to area only for the n = 1 Einstein gravity. This is
an interesting general result that entropy always goes as the nth root of area of the
black hole. In an intuitive sense we can say that it is nth root of the Einstein gravity
for the critical d = 2n + 1, 2n + 2 dimensions.

All this we have established for the simple case of static black hole but we believe
that it is indeed a general feature and hence should be true for the stationary rotating
black hole as well. So far there exists no rotating pure Lovelock black hole solution,
and this conjecture would be verified as and when a solution is found.
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Geometric Inequalities for Black Holes

Sergio Dain

Abstract It is well known that the parameters that characterize the Kerr black hole
satisfy several important geometric inequalities. Remarkably enough, some of these
inequalities also hold for dynamical black holes. This kind of inequalities play an
important role in the characterization of the gravitational collapse, they are closely
related with the cosmic censorship conjecture. We briefly review recent results in
this subject.

The Kerr black hole is characterized by two parameters, the mass m and the
angular momentum J . These parameters satisfy the following inequality

m ≥ √|J |. (1)

It is important to emphasize that the Kerr metric is a solution of Einstein vacuum
equation for any choice of m and J , but it only describes a black hole if (1) holds.
From Newtonian considerations, we can interpret this inequality as follows (see [1]):
in a collapse the gravitational attraction (≈m2/r2) at the horizon (r ≈ m) dominates
over the centrifugal repulsive forces (≈J 2/mr3).

Black holes are very simple macroscopic objects. The black hole uniqueness
theorem ensures that Kerr is the only stationary black hole in vacuum, and hence
stationary black holes are characterized by the two parameters, m and J . However,
black holes are not stationary in general. Astrophysical phenomena like the forma-
tion of a black hole by gravitational collapse or a binary black hole collision are
highly dynamical. For such systems, the black hole cannot be characterized by few
parameters as in the stationary case.
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Remarkably, inequality (1) extends (under appropriate assumptions) to fully
dynamical axially symmetric black holes. Moreover, this inequality is deeply con-
nected with properties of the global evolution of Einstein equations, in particular
with the cosmic censorship conjecture.

Inequality (1) is a global inequality for two reasons. First, it involves the total
mass m of the spacetime. Second it assumes global restrictions on the initial data:
axial symmetry and vacuum.

The area A and the angular momentum J in axial symmetry are quasi-local quanti-
ties. Namely they carry information on a bounded region of the spacetime. In contrast
with a local quantity like a tensor field which depends on a point of the spacetime or a
global quantities (like the total mass) which depends on the whole initial conditions.
The area of the horizon of the Kerr black hole satisfies the following inequality

A ≥ 8π |J |. (2)

A natural question is whether dynamical black holes satisfy purely quasi-local
inequalities. The relevance of this kind of inequalities is that they provide a much
finer control on the dynamics of black holes than the global versions. It turns out that
inequality (2) also holds for dynamical, axially symmetric black holes.

The equality in (1) and (2) is achieved only for the extreme Kerr black hole.
In the dynamical regime, this rigidity also holds. Extreme black holes lie in the
boundary between black holes and naked singularities. They play an important role
as minimizer in the corresponding energy in the proof of these inequalities.

Both inequalities (1) and (2) can be extended to include an electric charge. The
quasi-local inequality (2) is also valid when generic matter sources are present at
the horizon of black holes. For more details see the recent review article [2] on the
whole subject.
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Scalar Fields on Anti-de Sitter Background

Gyula Fodor, Péter Forgács and Philippe Grandclément

Abstract The study of scalar fields coupled to gravity when there is a negative
cosmological constant gives important insight on the possible instability of anti-de
Sitter spacetime. In this short paper we consider the question how different the scalar
field evolution is when the background is a fixed AdS metric. It is known that self-
interacting massive real scalar fields on flat Minkowski background can form long
living oscillating localized objects, named oscillons. In the flat background case these
objects radiate energy extremely slowly, in a rate which is exponentially suppressed
in terms of the central amplitude. However, on AdS background there are localized
exactly time-periodic non-radiating solutions.

1 Introduction

In a recent influential paper Bizoń and Rostworowski [1] studied a real scalar field
coupled to gravity when there is a negative cosmological constant. In this case the
geometry approaches asymptotically the anti-de Sitter spacetime. They considered
the time evolution of a spherically symmetric massless scalar field, and observed that
the energy is continuously shifted to small wavelength high frequency modes. This
phenomenon is generally called weak turbulence in the literature. The shift of energy
to high frequency modes continues until a black hole forms at the symmetry center.
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In this short paper we consider the question what changes when the background is not
dynamical but a fixed AdS spacetime. For a Klein-Gordon field on a fixed background
the field equations are linear and consequently there is no weak turbulence. For this
reason we consider self-interacting scalar fields.

We consider 3 + 1 dimensional anti-de Sitter spacetime in the conformal coordinate
system

ds2 = 1

k2 cos2 x

(
−dτ 2 + dx2 + sin2 x dΩ2

)
, (1)

where dΩ is the metric of a unit two-sphere. In these coordinates x = 0 corresponds
to the center of symmetry, and x = π/2 to infinity. All timelike geodesics emanating
from a point meet again at another point. A light ray can travel to infinity and back
in finite coordinate time, if we assume that infinity acts as a mirror for null rays. The
behavior of geodesics indicates that the AdS background corresponds to an effective
attractive force.

2 Evolution of a Scalar Field on AdS Background

A spherically symmetric self-interacting scalar field on 3 + 1 dimensional AdS
background evolves according to the field equation

− φ,ττ + φ,xx + 4

sin(2x)
φ,x = U √(φ)

k2 cos2 x
, (2)

where k is related to the cosmological constant by Λ = −3k2, and U (φ) is the
potential describing the self-interaction of the scalar field. In order to show that weak
turbulence is likely to occur even in this simpler system, let us consider a specific
example. We choose k = 1 and the scalar potential as U (φ) = 1

2φ2 − 1
4φ4 + 1

6φ6.
For initial data we take a finite width spherically symmetric shell, for which

φ = c exp
b2d

(x − a)2 − b2 (3)

for |x − a| < b and φ = 0 otherwise. For the concrete example that we present
here we have chosen the constants as a = 0.4, b = 0.2, c = 100 and d = 4. At
the beginning the shell separates into ingoing and outgoing shells. The ingoing shell
approaches the center and then becomes outgoing. Later both shells get reflected
back from infinity in a finite time. It takes approximately π/2 time interval in the
coordinate time τ for a shell to go from the center to infinity, or to come back, quite
similarly to how null geodesics behave. On the top panel of Fig. 1 we show the time
evolution of the scalar field φ at the center for the first few reflections. The bottom
panel shows the evolution of the central value of the energy density,
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Fig. 1 Time dependence of
the scalar field and its energy
density at the center
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On the energy density plot there are peaks when the shells come to the center.
Looking at a much longer time interval, it can be seen that the amplitude of the peaks
increases very quickly. On Fig. 2 we show the central energy density for a longer time
interval, on a logarithmic plot. The energy density increases about five magnitudes
by the time the shells are reflected about one hundred times. It seems very likely
that there is week turbulence in this system. It would take further numerical work to
study how the energy density increases for other types of initial data and for different
choices of the scalar potential. For massless self-interacting fields, such as that with
a potential U (φ) = φ4, we could not observe a significant increase in the central
energy density. For the massive case there is density increase, but we could not see any
simple scale invariance property of the time evolution depending on the amplitude of
the initial data, which has been, however, observed for the self-gravitating massless
Klein-Gordon case in [1].

3 Periodic Solutions

In a recent paper of Dias et al. [2], vacuum spacetimes have been considered when
there is a negative cosmological constant. Using perturbation theory the existence
of resonant modes has been shown, which indicates weak turbulence. It has been
also claimed that the nonlinear generalization of a single perturbative mode is a
localized periodic vacuum solution, which is generally called geon in the literature
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Fig. 2 Time dependence of
the energy density at the center
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[3, 4]. Geons are not spherically symmetric, but if one includes a scalar field in
the system, then spherically symmetric localized periodic solutions are expected to
exist, which are called oscillatons in the asymptotically flat case [5, 6]. Oscillatons
are similar to boson stars [7], but for boson stars the scalar field is complex, and the
metric is static. Similar periodic localized solutions already exist for scalar fields on
a fixed AdS background. On flat Minkowski background those objects are known as
breathers or oscillons [8].

For the case of a massive or massless Klein-Gordon field on AdS background the
periodic solutions are explicitly known. In this case the scalar potential is U (φ) =
1
2 m2φ2, and there is a family of breather solutions [9] labeled by a non-negative
integer n, which gives the number of the nodes of the solution

φ(n) = cos[(μ + 2n)τ ] (cos x)μ P(1/2,μ−3/2)
n (cos(2x)) , (5)

where

μ = 3

2
+

√
9

4
+ m2

k2 , (6)

and P(a,b)
n (x) denotes the Jacobi polynomial. All finite energy solutions can be

expressed as sums of φ(n) with appropriate phases.
Self-interacting scalar fields with any potential U (φ) also admit periodic localized

solutions on AdS background. We can look for solutions oscillating with frequency
ω by Fourier decomposing the scalar field in the form

φ =
N∑

n=0

φn cos(n ω τ) , (7)
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Fig. 3 The first few Fourier
modes of a periodic localized
solution in case of a φ4
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where φn are functions of x and the system is truncated at order N . We have solved
the resulting system of ordinary differential equations using the spectral code Kadath
developed by Philippe Grandclément [10]. On Fig. 3 the Fourier modes of an example
configuration are given for the standard φ4 potential U (φ) = φ2(φ − 2)2/8, when
k = 1 and ω = 3.6. Unlike in the linear Klein-Gordon case, the frequency ω changes
when the oscillation amplitude grows. In the limit of small oscillations ω tends to
the Klein-Gordon value ω0 = μ = (3 + →

13)/2 ∓ 3.30278 given by (6).
A small-amplitude expansion procedure has been successfully applied in the past

for oscillons [8], asymptotically flat oscillatons [11], and also for oscillatons when
there is a small positive cosmological constant [12]. In this paper we present the
small-amplitude expansion of oscillons on a fixed AdS background when |Λ| is
small. We use Schwarzschild area coordinates,

ds2 = −(1 + k2r2)dt2 + dr2

1 + k2r2 + r2dΩ2 . (8)

Then the field equation takes the form

− 1

1 + k2r2 φ,t t + (1 + k2r2)φ,rr +
[

D − 1

r
+ (D + 1)k2r

]
φ,r = U √(φ) . (9)

We describe the scalar potential by its expansion coefficients gk ,

U (φ) = m2
(

1

2
φ2 + g2

3
φ3 + g3

4
φ4 + . . .

)
, (10)

where m is the mass of the scalar field. We expand the scalar field in powers of a
small parameter ε

φ = εφ1 + ε2φ2 + ε3φ3 + . . . . (11)
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Since on Minkowski background the size of small amplitude oscillons scales as 1/ε,
we use a rescaled radial coordinate ρ = εmr . This makes spatial derivatives one
order smaller. We also define a new time coordinate by τ = mωt . The ε dependence
of the oscillation frequency ω is represented by

ω2 = 1 + ω2ε
2 + ω4ε

4 + . . . , (12)

where ωk are constants. We also introduce a rescaled cosmological parameter κ

by k = ε2mκ . This ensures that the oscillon size remains small compared to the
curvature scale in the ε tends to zero limit. Substituting the expansion (11) into the
field equation (9), to leading ε order we obtain that φ1 = p1 cos τ , where p1 depends
only on ρ. The radial dependence of p1 will be determined by the absence of secular
terms in φ3, yielding

p1,ρρ + D − 1

ρ
p1,ρ +

(
ω2 − ρ2κ2

)
p1 + λp3

1 = 0 , (13)

where λ = 5
6 g2

2 − 3
4 g3. This gives the spatial profile of the oscillon to leading order.

For Minkowski background κ = 0, and localized solutions can exist only if λ is
positive. If λ > 0 we may consider the potential as an “attractive potential”. In
this case the potential is more flat near its minimum than the same mass harmonic
potential, and the oscillation period becomes longer. For anti de Sitter background
we can rescale ρ, and consequently ε in ρ = εmr , in order to set

κ = 1 , (14)

which we assume from now on.
If λ = 0, then (13) is linear, and there are localized solutions only if ω2 = 3+4n,

for n ∼ 0 integer. The solutions can be written in terms of generalized Laguerre
polynomials,

p(n)
1 = exp

(
−ρ2

2

)
L1/2

n (ρ2) . (15)

The integer n gives the number of nodes. These solutions correspond to the small k
limit of the Klein-Gordon breathers given earlier by (5).

If λ is nonzero, then defining S = p1/
→|λ| , (13) can be written as

S,ρρ + D − 1

ρ
S,ρ + (ω2 − ρ2)S ± S3 = 0 , (16)

where the positive sign is valid for λ > 0 and the negative for λ < 0. The solutions are
labeled by the single parameter ω2. If λ > 0, there are localized nodeless solutions
for any ω2 < 3. In this case high amplitude solutions are more localized than small
amplitude ones because of the attraction represented by the scalar potential. The
radial profiles of a few such solutions are shown on the upper panel of Fig. 4. For
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Fig. 4 Radial behavior of
solutions of (16) for λ > 0
attractive, and λ < 0 repulsive
potentials
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λ < 0 localized nodeless solutions exist for any ω2 > 3. Then higher amplitude
solutions have larger size, and it is natural to call potentials with λ < 0 “repulsive
potentials”. Corresponding solutions are shown on the lower panel of Fig. 4. Since by
the choice κ = 1 we have ε2 = k/m, using (11) and (12) the leading order behavior
of the scalar field can be written as

φ =
√

k|λ|
m

S cos

(
m

√
1 + k

m
ω2 t

)
, (17)

where S depends on ρ = r
→

km according to (16).
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Canonical Superenergy Tensors in General
Relativity: A Reappraisal

Janusz Garecki

Abstract We discuss the role of the canonical superenergy tensors.

1 Introduction

In the framework of general relativity (GR), as a consequence of the Einstein Equiv-
alence Principle (EEP), the gravitational field has non-tensorial strengths Γ i

kl = {i
kl}

and admits no energy-momentum tensor. One can only attribute to this field gravi-
tational energy-momentum pseudotensors. The leading object of such a kind is the
canonical gravitational energy-momentum pseudotensor E t k

i proposed already in
past by Einstein. This pseudotensor is a part of the canonical energy-momentum
complex E K k

i in GR.
The canonical complex E K k

i can easily be obtained by rewriting Einstein equa-
tions to the superpotential form

E K k
i := √|g|(T k

i + E t k
i

) = FU [kl]
i ,l , (1)

where T ik = T ki is the symmetric energy-momentum tensor for matter, g =
det[gik], and
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E t k
i = c4

16πG

{
δk

i gms(Γ l
mrΓ

r
sl − Γ r

msΓ
l

rl

)

+ gms
,i

[
Γ k

ms − 1

2

(
Γ k

tpgtp − Γ l
tl g

kt)gms

− 1

2

(
δk

s Γ l
ml + δk

mΓ l
sl

)]};

FU [kl]
i = c4

16πG

gia√|g|
[(−g

)(
gkaglb − glagkb)]

,b. (2)

E t k
i are components of the canonical energy-momentum pseudotensor for gravita-

tional field, and FU [kl]
i is von Freud superpotential.

E K k
i = √|g|(T k

i +E t k
i

)
(3)

are components of the Einstein canonical energy-momentum complex for matter and
gravity.

In consequence of (1) the complex E K k
i satisfies local conservation laws

E K k
i ,k ≡ 0. (4)

In very special cases one can obtain reasonable integral conservation laws from
these local conservation laws. Additionally, one can also introduce the canonical
superenergy tensors. This was done in past in a series of our articles (see, e.g.,
[1–11] and references therein).

It appears that the idea of the superenergy tensors is universal: to any physical
field having an energy-momentum tensor or pseudotensor one can attribute a corre-
sponding superenergy tensor.

2 The Canonical Superenergy Tensors

Here we give a short description of the general, constructive definition of the superen-
ergy tensor S b

a applicable to gravitational field and to any matter field. The definition
uses locally Minkowskian structure of the spacetime and, therefore, it fails in a space-
time with torsion, e.g., in a Riemann-Cartan spacetime.

In the normal Riemann coordinates NRC(P) we define (pointwise)

S(b)
(a)(P) = S b

a := (−) lim
Ω→P

∫
Ω

[
T (b)

(a) (y) − T (b)
(a) (P)

]
dΩ

1/2
∫
Ω

σ(P; y)dΩ
, (5)
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where

T (b)
(a) (y) := T k

i (y)ei
(a)(y)e(b)

k (y),

T (b)
(a) (P) := T k

i (P)ei
(a)(P)e (b)

k (P) = T b
a (P)

are physical or tetrad components of the pseudotensor or tensor field which describes
an energy-momentum distribution, and

{
yi

}
are normal coordinates. ei

(a)(y), e (b)
k (y)

denote an orthonormal tetrad ei
(a)(P) = δi

a and its dual e (a)
k (P) = δa

k , parallelly
propagated along geodesics through P (P is the origin of the NRC(P)).

We have
ei

(a)(y)e (b)
i (y) = δb

a . (6)

For a sufficiently small 4-dimensional domain Ω which surrounds P we require

∫

Ω

yi dΩ = 0,

∫

Ω

yi ykdΩ = δik M, (7)

where

M =
∫

Ω

(y0)2dΩ =
∫

Ω

(y1)2dΩ =
∫

Ω

(y2)2dΩ =
∫

Ω

(y3)2dΩ (8)

is a common value of the moments of inertia of the domain Ω with respect to the
subspaces yi = 0, (i = 0, 1, 2, 3).

As Ω we can take, e.g., a sufficiently small ball centered at P:

(y0)2 + (y1)2 + (y2)2 + (y3)2 ≤ R2, (9)

which for an auxiliary positive-definite metric

hik := 2vi vk − gik, (10)

can be written in the form
hik yi yk ≤ R2. (11)

A fiducial observer O is at rest at the origin P of the Riemann normal coordinates
NRC(P) and its four- velocity is vi = ∗ δi

o, where ∗ means that equation is valid
only in special coordinates. In [3] σ(P; y) denotes the two-point world function
introduced by J.L. Synge [12]:

σ(P; y) = ∗1

2

(
yo2 − y12 − y22 − y32)

. (12)
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The world function σ(P; y) can be defined covariantly by the eikonal-like expres-
sion [12]

gikσ,iσ,k = 2σ, σ,i := ∂iσ, (13)

together with requirements

σ(P; P) = 0, ∂iσ(P; P) = 0. (14)

The ball Ω can also be given by the inequality

hikσ,iσ,k ≤ R2. (15)

Tetrad components and normal components are equal at P, so, we will write the
components of any quantity attached to P without tetrad brackets, e.g., we will write
S b

a (P) instead of S(b)
(a)(P) and so on.

If T k
i (y) are the components of an energy-momentum tensor of matter, then we

get from (5)

m S b
a (P; vl) = (

2v̂l v̂m − ĝlm)∇l∇m T̂ b
a = ĥlm∇l∇m T̂ b

a . (16)

Hat over a quantity denotes its value at P, and ∇ means covariant derivative.
Tensor m S b

a (P; vl) is called the canonical superenergy tensor for matter.
For the gravitational field, substitution of the canonical Einstein energy-momen-

tum pseudotensor as T k
i in (5) gives

g S b
a (P; vl) = ĥlm Ŵ b

a lm, (17)

where

W b
a lm = 2α

9

[
Bb

alm + Pb
alm

− 1

2
δb

a Ri jk
m
(
Ri jkl + Rik jl

) + 2δb
aβ2 E(l|g Eg

|m)

− 3β2 Ea(l|Eb
|m) + 2β Rb

(a|g|l)Eg
m
]
.

Here α = c4

16πG = 1
2β

, and

E k
i := T k

i − 1

2
δk

i T (18)

is the modified energy-momentum tensor of matter.1

1 In terms of E k
i Einstein equations read R k

i = βE k
i .
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On the other hand

Bb
alm := 2Rbik

(l| Raik|m) − 1

2
δb

a Ri jk
l Ri jkm (19)

are the components of the Bel-Robinson tensor (BRT), while

Pb
alm := 2Rbik

(l| Raki |m) − 1

2
δb

a R jik
l R jkim (20)

is the Bel-Robinson tensor with “transposed” indices (ik).
In vacuum g S b

a (P; vl) takes the simpler form

g S b
a (P; vl) = 8α

9
ĥlm(

Ĉbik
(l|Ĉaik|m) − 1

2
δb

aĈi(kp)

(l|Ĉikp|m)

)
. (21)

Here Ca
blm denotes components of the Weyl tensor.

Some remarks:

1. In vacuum the quadratic form g S b
a vavb, where vava = 1, is positive-definite. This

form gives the gravitational superenergy density εg for a fiducial observer O.
2. In general, the canonical superenergy tensors are uniquely determined only along

the world line of an observer O. But in special cases, e.g., in Schwarzschild
spacetime or in Friedmann universes, when there exists a physically and geomet-
rically distinguished four-velocity field vi (x), one can introduce, in a unique way,
unambiguous fields g S k

i (x; vl) and m S k
i (x; vl).

3. It can be shown that the superenergy densities εg, εm , which have dimension
Joule

(meter)5 , exactly correspond to the Appel’s energy of acceleration 1
2 aa. The

Appel’s energy of acceleration plays the fundamental role in Appel’s approach
to classical mechanics [13–15].

4. We have proposed, in our previous papers, to use the tensor g S k
i (P; vl) as grav-

itational energy-momentum tensor.
5. We have used the canonical superenergy tensors g S k

i and m S k
i to local (and also

to global) analysis of some well-known solutions to the Einstein equations like
Schwarzschild, Kerr, Friedmann, Gödel, Kasner, Bianchi I, de Sitter and anti-de
Sitter solutions. The obtained results were interesting (see [1–5, 7, 8, 11]), e.g.,
in Gödel universes the sign of the superenergy density εs := εg + εm depends on
causality (εs < 0) and non-causality (εs > 0), and, in Schwarzschild spacetime
the integral exterior superenergy S is connected with Hawking temperature T of
the Schwarzschild black hole: S = 8πkc3

9�G T . We have also studied the transforma-
tion rules for the canonical superenergy tensors under conformal rescaling of the
metric gik(x) [8, 16].

6. The idea of the superenergy tensors can be extended to angular momentum (see,
[3, 10]). The angular supermomentum tensors do not depend on a radius vector
and, in gravitational case, they depend only on “spinorial part” of the suitable
gravitational angular momentum pseudotensor.
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7. As a result of averaging, the tensors g S b
a (P; vl) and m S b

a (P; vl), in general, do
not satisfy any local conservation laws. Only in a symmetric spacetime or in a
spacetime which has constant curvature one can get

[
g S b

a (P; vl)
]
,b = 0. (22)

8. There exists an exchange of the canonical superenergy between gravity and matter
in the following sense. Let us consider the consequence of (4)

(
Δ

(4)
E K k

i

)
,k = [(

Δ(4)(
√|g|E t k

i

) + Δ(4)
(√|g|T k

i

)]
,k = 0, (23)

where Δ(4) := (∂0)
2 + (∂1)

2 + (∂2)
2 + (∂3)

2.
The quantities (with total balance equal to zero)

Δ(4)
(√|g|et k

i

)
, Δ(4)

(√|g|T k
i

)
(24)

have dimensions of the canonical superenergy and, when taken at the origin P
of the NRC(P) and written covariantly, then they coincide with the canonical
superenergy tensors g S k

i (P; vl), m S k
i (P; vl) respectively.

9. Recently we have noticed that the total superenergy density is positive-definite
or null for known stable solutions to the Einstein equations and negative-definite
for unstable solutions. The physical meaning of this fact is under study.

Changing the constructive definition (5) to the form

< T b
a (P) >:= lim

ε→0

∫
Ω

[
T (b)

(a) (y) − T (b)
(a) (P)

]
dΩ

ε2/2
∫
Ω

dΩ
, (25)

where ε := R
L > 0 (equivalently R = εL) is a real parameter and L is a dimensional

constant:[L] = m, one obtains the averaged relative energy-momentum tensors.
Namely, from (25) one obtains:

<m T b
a (P; vl) >=m S b

a (P; vl)
L2

6
(26)

for matter and

<g t b
a (P; vl) >=g S b

a (P; vl)
L2

6
(27)

for gravity.
The components of the averaged relative energy-momentum tensors have correct

dimensions but they depend on a dimensional parameter L . How to choose the
dimensional parameter L?
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In [7] we have proposed a universal choice of the parameter L . Namely, we have

proposed L = 100L P ≈ 10−33 m. Here L P :=
√

�G
c3 ≈ 10−35 m is the Planck

length.
Such choice of L gives the averaged gravitational relative energy-momentum ten-

sors components which are negligible in comparison with the components of the
energy-momentum tensor for matter. Consequently, with such choice of the parame-
ter L , these tensors play no role in evolution of the material objects and in evolution
of the Universe. On the other hand, the choices can be made such that L = 2G M

c2 for
a closed system with mass M , L = λ for a gravitational wave of wave length λ, and
L = 2G MU

c2 = c
H0

= ct0 in cosmology, which lead us to the averaged relative energy
densities of the same order as ordinary energy density of matter. Here MU , H0, t0
mean mass of the observed part of the Universe, actual value of the Hubble constant
and an approximate age of the Universe respectively.

Of course, there exist other possibilities of choosing the length parameter L .

3 Conclusion

On the superenergy level, or on the averaged relative energy-momentum level, there
seems to be no problem with a suitable expression for energy. However, canonical
superenergy tensors seem more fundamental than the corresponding averaged relative
energy-momentum tensors because they do not depend on the choice of L .
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Einstein’s “Prague Field Equation” of 1912:
Another Perspective

Domenico Giulini

Abstract I reconsider Einstein’s 1912 “Prague-Theory” of static gravity based on a
scalar field obeying a non-linear field equation. I point out that this equation follows
from the self-consistent implementation of the principle that all forms of energy
are the source of the gravitational field according to E = mc2. This makes it an
interesting toy-model for the “flat-space approach” to General Relativity (GR), as
pioneered by Kraichnan and later Feynman. Solutions modelling stars show features
familiar from GR, e.g., Buchdahl-like inequalities. The relation to full GR is also
discussed. This lends this toy theory also some pedagogical significance.

1 Introduction

Ever since he wrote his large 1907 review of Special Relativity [1] for the Jahrbuch
der Radioaktivität und Elektronik, Einstein reflected on how to extend the principle
of relativity to non-inertial motions. His key insight was that such an extension is
indeed possible, provided gravitational fields are included in the description. In fact,
the last chapter (V) of [1], which comprises four (17-20) out of twenty sections, is
devoted to this intimate relation between acceleration and gravitation. The heuristic
principle Einstein used was his “Äquivalenzhypothese” (hypothesis of equivalence)
or “Äquivalenzprinzip” (principle of equivalence),1 which says this: Changing the
description of a system from an inertial to a non-inertial reference frame is equivalent

1 In his Prague papers Einstein gradually changed from the first to the second expression.

D. Giulini (B)

Institute for Theoretical Physics, Riemann Center for Geometry and Physics,
Leibniz University of Hannover, Hannover, Germany
e-mail: giulini@itp-uni-hannover.de

D. Giulini
Center of Applied Space Technology and Microgravity, University of Bremen,
Bremen, Germany
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to not changing the frame at all but adding a special gravitational field. This principle
is heuristic in the sense that it allows to deduce the extension of physical laws, the
forms of which are assumed to be known in the absence of gravitational fields, to the
presence of at least those special gravitational fields that can be “created” by mere
changes of reference frames. The idea behind this was, of course, to postulate that the
general features found in this fashion remain valid in all gravitational fields. In the
1907 review Einstein used this strategy to find out about the influence gravitational
fields have on clocks and general electromagnetic processes. What he did not attempt
back in 1907 was to find an appropriate law for the gravitational field that could
replace the Poisson equation of Newtonian gravity. This he first attempted in his two
“Prague papers” from 1912 [2, 3] for static fields. The purpose of my contribution
here is to point out that the field equation Einstein arrived at in the second of these
papers is not merely of historical interest.

After 1907 Einstein turned away from gravity research for a while, which
he resumed in 1911 with a paper [4], also from Prague, in which he used the
“Äquivalenzhypothese” to deduce the equality between gravitational and inertial
mass, the gravitational redshift, and the deflection of light by the gravitational field
of massive bodies. As is well known, the latter resulted in half the amount that was
later correctly predicted by GR.

In the next gravity paper [2], the first in 1912, entitled “Lichtgeschwindigkeit
und Statik des Gravitationsfeldes”, Einstein pushed further the consequences of his
heuristics and began his search for a sufficiently simple differential equation for static
gravitational fields. The strategy was to, first, guess the equation from the form of
the special fields “created” by non inertial reference frames and, second, generalise
it to those gravitational fields generated by real matter. Note that the gravitational
acceleration was to be assumed to be a gradient field (curl free) so that the sought-after
field equation was for a scalar field, the gravitational potential.

The essential idea in the first 1912 paper is to identify the gravitational poten-
tial with c, the local velocity of light.2 Einstein’s heuristics indicated clearly that
Special Relativity had to be abandoned, in contrast to the attempts by Max Abraham
(1875–1922), who published a rival theory [5, 6] that was superficially based on
Poincaré invariant equations (but violated Special Relativity in abandoning the con-
dition that the four-velocities of particles had constant Minkowski square). In passing
I remark that Einstein’s reply [7] to Abraham, which is his last paper from Prague
before his return to Zürich, contains in addition to his anticipation of the essential
physical hypotheses on which a future theory of gravity could be based (here I refer
to Jiří Bičák’s contribution), also a concise and very illuminating account of the
physical meaning and limitation of the special principle of relativity, the essence of
which was totally missed by Abraham.

2 Since here we will be more concerned with the mathematical form and not so much the actual
derivation by Einstein, we will ignore the obvious objection that c has the wrong physical dimension,
namely that of a velocity, whereas the proper gravitational potential should have the dimension of
a velocity-squared.
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Back to Einstein’s first 1912 paper, the equation he came up with was

Λc = kcφ , (1)

where k is the “universal gravitational constant” and φ is the mass density. The
mathematical difference between (1) and the Poisson equation in Newtonian gravity
is that (1) is homogeneous (even linear) in the potential. This means that the source
strength of a mass density is weighted by the gravitational potential at its location.
This implies a kind of “red-shift” for the active gravitational mass which in turn
results in the existence of geometric upper bounds for the latter, as we will discuss
in detail below. Homogeneity was Einstein’s central requirement, which he justified
from the interpretation of the gravitational potential as the local velocity of light,
which is only determined up to constant rescalings induced from rescalings of the
timescale.

Already in a footnote referring to (1) Einstein points out that it cannot be quite
correct, as he is to explain in detail in a follow-up paper [3]. This second paper of
1912 is the one I actually wish to focus on in my contribution here. It appeared in
the same issue of the Annalen der Physik as the previous one, under the title “Zur
Theorie des statischen Gravitationsfeldes” (on the theory of the static gravitational
field). In it Einstein once more investigates how the gravitational field influences
electromagnetic and thermodynamic processes according to what he now contin-
ues to call the “Aquivalenzprinzip”, and derives from it the equality of inertial and
gravitational mass.3

After that he returns to the equation for the static gravitational field and considers
the gravitational force-density f , acting on ponderable matter of mass density φ,
which is given by (Einstein writes κ instead of our φ)

f = −φ√c . (2)

Einstein observes that the space integral of f does not necessarily vanish on account
of (1), in violation of the principle that actio equals reactio. Terrible consequences,

3 Einstein considers radiation enclosed in a container whose walls are “massless” (meaning van-
ishing rest-mass) but can support stresses, so as to be able to counteract radiation pressure. Einstein
keeps repeating that equality of both mass types can only be proven if the gravitational field does
not act on the stressed walls. That remark is hard to understand in view of the fact that unbalanced
stresses add to inertia, as he well knew from his own earlier investigations [8]. However, as explained
by Max Laue a year earlier [9], the gravitational action on the stressed walls is just cancelled by
that on the stresses of the electromagnetic field, for both systems together form a “complete sta-
tic system”, as Laue calls it. A year later, in the 1913 “Entwurf” paper with Marcel Grossmann
[10], Einstein again used a similar Gedankenexperiment with a massless box containing radiation
immersed in a gravitational field, by means of which he allegedly shows that any Poincaré invariant
scalar theory of gravity must violate energy conservation. A modern reader must ask how this can
possibly be, in view of Noether’s theorem applied to time-translation invariance. A detailed analysis
[11] shows that this energy contains indeed the expected contribution from the tension of the walls,
which may not be neglected.
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like self-acceleration, have to be envisaged.4 He then comes up with the following
non-linear but still homogeneous modification of (1):

Λc = k

{
cφ + 1

2k

√c · √c

c

}
. (3)

In the rest of this paper we will show how to arrive at this equation from a different
direction and discuss some of its interesting properties as well as its relation to the
description of static gravitational fields in GR.

2 A self-consistent modification of Newtonian Gravity

The following considerations are based on [12]. We start from ordinary Newtonian
gravity, where the gravitational field is described by a scalar function ν whose phys-
ical dimension is that of a velocity-squared. It obeys

Λ∂ = 4ξG φ . (4)

The force per unit volume that the gravitational field exerts upon a distribution of
matter with density φ is

f = −φ√∂ . (5)

This we apply to the force that the gravitational field exerts upon its own source
during a real-time process of redistribution. This we envisage as actively transporting
each mass element along the flow line of a vector field ξ . To first order, the change
πφ that φ suffers in time πt is given by

πφ = −Lπξ

(
φd3x

)
d3x

= −√ · (πξ φ) , (6)

where πξ = πt ξ and Lπξ is the Lie derivative with respect to πξ . We assume the
support supp(φ) =: B → R

3 to be compact. In general, this redistribution costs
energy. The work we have to invest for redistribution is, to first order, just given by

πA = −
∫
R3

πξ · f = −
∫

B
∂√ · (πξ φ) =

∫
B

∂ πφ , (7)

where we used (6) in the last step and where we did not write out the Lebesgue
measure d3x to which all integrals refer. Note that in order to obtain (7) we did

4 “Anderenfalls würde sich die Gesamtheit der in dem betrachteten Raume befindlichen Massen,
die wir auf einem starren, masselosen Gerüste uns befestigt denken wollen, sich in Bewegung zu
setzen streben” ([3], p. 452).
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not make use of the field equation. Equation (7) is generally valid whenever the
force-density relates to the potential and the mass density as in (5).

Now we make use of the field Eq. (4). We assume the redistribution-process to be
adiabatic, that is, we assume the instantaneous validity of the field equation at each
point in time throughout the process. This implies

Λπ∂ = 4ξG πφ . (8)

Hence, using (7), the work invested in the process of redistribution is (to first order)

πA =
∫

B
∂ πφ = π

{
− 1

8ξG

∫
R3

(√∂)2
}

. (9)

If the infinitely dispersed state of matter is assigned the energy-value zero, then
the expression in curly brackets is the total work invested in bringing the infinitely
dispersed state to that described by the distribution φ. This work must be stored
somewhere as energy. Like in electro-statics and -dynamics, we take a further logical
step and assume this energy to be spatially distributed in the field according to the
integrand. This leads to the following expression for the energy density of the static
gravitational field

τ = − 1

8ξG
(√∂)2 . (10)

All this is familiar from Newtonian gravity. But now we go beyond Newtonian gravity
and require the validity of the following

Principle All forms of energy, including that of the gravitational field itself, shall
gravitate according to E = mc2. This principle implies that if we invest an amount
of work πA in a system its (active) gravitational mass will increase by πA/c2.

Now, the (active) gravitational mass Mg is defined by the flux of the gravitational
field to spatial infinity (i.e. through spatial spheres as their radii tend to infinity):

Mg = 1

4ξG

∫
S2∓

n · √∂ = 1

4ξG

∫
R3

Λ∂ . (11)

Hence, making use of the generally valid Eq. (7), the principle that πA = Mgc2 takes
the form ∫

B
∂ πφ = c2

4ξG

∫
R3

Λπ∂ . (12)

This functional equation relates ∂ and φ, over and above the restriction imposed on
their relation by the field equation. However, the latter may—and generally will—be
inconsistent with this additional equation. For example, the Newtonian field Eq. (4)
is easily seen to manifestly violate (12), for the right-hand side then becomes just the
integral over c2πφ, which always vanishes on account of (6) (or the obvious remark
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that the redistribution clearly does not change the total mass), whereas the left hand
side will generally be non-zero. The task must therefore be to find field equation(s)
consistent with (12). Our main result in that direction is that the unique generalisation
of (4) which satisfies (12) is just (3), i.e. the field equation from Einstein’s second
1912 paper.

Let us see how this comes about. A first guess for a consistent modification of (4)
is to simply add τ/c2 to the source φ:

Λ∂ = 4ξG

(
φ − 1

8ξGc2

(√∂
)2

⎪
. (13)

But this cannot be the final answer because this change of the field equation also
brings about a change in the expression for the self-energy of the gravitational field.
That is, the term in the bracket on the right-hand side is not the total energy according
to this equation, but according to the original equation (4). In other words: equation
(13) still lacks self-consistency. This can be corrected for by iterating this procedure,
i.e., determining the field’s energy density according to (13) and correcting the right-
hand side of (13) accordingly. Again we have changed the equation, and this goes
on ad infinitum. But the procedure converges to a unique field equation, similarly to
the convergence of the “Noether-procedure” 5 that leads from the Poincaré invariant
Pauli-Fierz theory of spin-2 mass-0 fields in flat Minkowski space to GR [13–15].

In our toy model the convergence of this procedure is not difficult to see. We start
from the definition (11) and calculate its variation πMg assuming the validity of (13).
From what we said above we know already that this is not yet going to satisfy (12).
But we will see that from this calculation we can read off the right redefinitions.

We start by varying (11):

πMg = 1

4ξG

∫
Λπ∂ . (14)

We replace Λπ∂ with the variation of the right-hand side of (13). Partial integration
of the non-linear part gives us a surface term whose integrand is ∼ ∂√π∂ = O(r−3)

and hence vanishes. The remaining equation is

πMg =
∫

B
πφ + 1

4ξG

∫
R3

( ∂

c2

)
Λπ∂ . (15)

Playing the same trick (of replacing Λπ∂ with the variation of the right-hand side of
(13) and partial integration, so as to collect all derivatives on π∂) again and again,
we arrive after N steps at

5 Pioneered by Robert Kraichnan in his 1947 MIT Bachelor thesis “Quantum Theory of the Linear
Gravitational Field”.
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πMg =
∫

B

N−1∑
n=0

1

n!
( ∂

c2

)n
πφ + 1

N !c2N

1

4ξG

∫
R3

∂N π(Λ∂) . (16)

As ∂ is bounded for a regular matter distribution, and the spatial integral over πΛ∂

is just 4ξGπMg , the last term tends to zero for N ≤ ∓. Hence

πMg =
∫

B
πφ exp(∂/c2) . (17)

This is of the desired form (12) required by the principle, provided we redefine the
gravitational potential to be σ rather than ∂, where

σ := c2 exp(∂/c2) . (18)

Saying that σ rather than ∂ is the right gravitational potential means that the force
density is not given by (5), but rather by

f = −φ√σ . (19)

As we have made use of Eq. (13) in order to derive (17), we must make sure to keep
that equation, just re-expressed in terms of σ. This leads to

Λσ = 4ξG

c2

[
φσ + c2

8ξG

(√σ)2

σ

⎜
, (20)

which is precisely Einstein’s improved “Prague equation” (3) with k = 4ξ G/c2.
Note from (18) that the asymptotic condition ∂(r ≤ ∓) ≤ 0 translates to σ(r ≤
∓) ≤ c2. Note also that for r ≤ ∓ the 1/r2-parts of √∂ and √σ coincide, so that
in the expressions (11) for Mg we may just replace ∂ with σ:

Mg = 1

4ξG

∫
S2∓

n · √σ = 1

4ξG

∫
R3

Λσ . (21)

The principle now takes the form (12) with ∂ replaced by σ. It is straightforward to
show by direct calculation that (12) is indeed a consequence of (20), as it must be. It
also follows from (20) that the force density (19) is the divergence of a symmetric
tensor:

fa = −√btab , (22a)

where

tab = 1

4ξGc2

{
1

σ

[
√aσ√bσ − 1

2πab(√σ)2
]}

. (22b)
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This implies the validity of the principle that actio equals reactio that Einstein
demanded. This was Einstein’s rationale for letting (3) replace (1).

Finally we mention that (20) may be linearised if written in terms of the square-
root of σ:

δ :=
⎡

σ

c2 . (23)

One gets

Λδ = 2ξG

c2 φ δ . (24)

This helps in finding explicit solutions to (20). Note that δ is dimensionless.

3 Spherically symmetric solutions

In this section we discuss some properties of spherically symmetric solutions to (24)
for spherically symmetric mass distributions φ of compact support. In the following
we will simply refer to the object described by such a mass distribution as “star”.

In terms of Ω(r) := rδ (r) Eq. (24) is equivalent to

Ω ∞∞ = 2ξG

c2 φ Ω . (25)

The support of φ is a closed ball of radius R, called the star’s radius. For r < R we
shall assume φ(r) ∗ 0 (weak energy condition). We seek solutions which correspond
to everywhere positive and regular δ and hence everywhere positive and regular σ.
In particular σ(r = 0) and δ (r = 0) must be finite. For r > R Eq. (25) implies
Ω ∞∞ = 0, the solution to which is

Ω+(r) = rδ+(r) = r − Rg , for r > R , (26)

where Rg denotes the gravitational radius

Rg := G Mg

2c2 . (27)

Rg comes in because of (21), which fixes one of the two integration constants, the
other being fixed by δ (∓) = 1.

Let Ω− denote the solution in the interior of the star. Continuity and differentiabil-
ity at r = R gives Ω−(R) = R − Rg and Ω ∞−(R) = 1. We observe that Ω−(R) ∗ 0.
For suppose Ω−(R) < 0, then (25) and the weak energy condition imply Ω ∞∞(R) ≤ 0.
But this implies that for r ⊂ [0, R] the curve r ∃≤ Ω−(r) lies below the straight line
r ∃≤ r − Rg and assumes a value less than −Rg at r = 0, in contradiction to the
finiteness of δ (r = 0) which implies Ω−(r = 0) = 0. Hence we have
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Theorem 1 The gravitational radius of a spherically symmetric star is universally
bound by its (geometric) radius, Rg ≤ R. Equivalently expressed in terms of Mg we
may say that the gravitational mass is universally bound above by

Mg <
2c2 R

G
. (28)

This may be seen in analogy to Buchdahl’s inequality in GR [16], which, using the
isotropic (rather than Schwarzschild) radial coordinate, would differ from (28) only
by an additional factor of 8/9 on the right-hand side. The Buchdahl bound is optimal,
being saturated by the interior Schwarzschild solution for a homogeneous star.

So let us here, too, specialise to a homogeneous star,

φ(r) =
⎣

3Mb
4ξ R3 for r ≤ R

0 for r > R ,
(29)

where Mb is called the bare mass (integral over φ). It is convenient to introduce the
radii corresponding to bare and gravitational masses, as well as their ratio to the star’s
radius R:

Rb := G Mb

2c2 , x := Rb

R
, (30a)

Rg := G Mg

2c2 , y := Rg

R
. (30b)

We also introduce the inverse length

Σ := 1

R
·
⎡

3Rb

R
, (31)

so that (25) just reads Ω ∞∞ = Σ2Ω . From this the interior solution is easily obtained.
If written in terms of δ it reads

δ−(r) = 1

cosh(ΣR)

sinh(Σr)

Σr
, for r < R . (32)

As a result of the matching to the exterior solution given in (26), Rg is determined
by R and Σ, i.e. R and Rb. In terms of x and y this relation takes the simple form

y = 1 − tanh
(∩

3x
)

∩
3x

, (33)

which convex-monotonically maps [0,∓) onto [0, 1). The fact that y < 1 for all x
is just the statement of the Theorem applied to the homogeneous case.
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If x = Rb/R  1 we have y = x − 6
5 x2 + · · · , which for Etotal := Mgc2 reads

Etotal = Mbc2
(

1 − 3
5 x + O(x2)

)
. (34)

We note that −3Mbc2x/5 = − 3
5 G M2

b /R is just the Newtonian binding energy of a
homogeneous star. In view of our Principle it makes good sense that to first order just
this amount is subtracted from the bare mass in order to obtain the active gravitational
mass. In Newtonian gravity this negative amount is just identified with the field’s
self-energy, but here the interpretation is different: The two terms that act as source
for the gravitational field in (20) are the matter part, which is proportional to φ but
diminished by σ, and the field’s own part, which is proportional to (√σ)2/σ and
positive definite! Their contributions are, respectively,

Ematter =
∫

B
φσ = Mbc2

(
1 − 6

5 x + O(x2)
)

, (35)

Efield = c2

8ξG

∫
R3

(√σ)2

σ
= Mbc2

(
3
5 x + O(x2)

)
. (36)

Hence even though the total energy is decreased due to binding, the gravitational
field’s self energy increases by the same amount. Twice that amount is gained from
the fact that the matter-energy is “red-shifted” by being multiplied with σ, so energy
is conserved (of course).

Two more consequences, which are related, are noteworthy:

• Unlike in Newtonian theory, objects with non-zero gravitational mass cannot be
modelled by point sources. In the spherically symmetric case this is an immediate
consequence of (28), which implies Mg ≤ 0 for R ≤ 0. Hence there are no
π-like masses.

• Unlike in Newtonian gravity, unlimited compression of matter does not lead
to unlimited energy release. Consider a sequence of homogeneous (just for
simplicity) stars of fixed bare mass Mb and variable radius R, then the gravi-
tational mass Mg as function of x = Rb/R is given by

Mg(x) = Mb ·
⎧⎨
⎩

1

x
·
⎛
⎝1 −

tanh
(∩

3x
)

∩
3x

⎞
⎠

⎫⎬
⎭ . (37)

The function in curly brackets6 is a strictly monotonically decreasing function
[0,∓] ∃≤ [1, 0]. This shows that for infinitely dispersed matter, where R ≤ ∓
and hence x ≤ 0, we have Mg(x = 0) = Mb, as expected, and that for infinite
compression Mg(x ≤ ∓) = 0. As the gained energy at stage x is (Mb−Mg(x))c2,
we can at most gain Mbc2.

6 Its Taylor expansion at x = 0 is 1 − 6x/5 + 51x2/35 + · · · .
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4 Relation to General Relativity

Finally I wish to briefly comment on the relation of Eq. (3) or (20) to GR. Since
Einstein’s 1912 theory was only meant to be valid for static situations, I will restrict
attention to static spacetimes (M, g). Hence I assume the existence of a timelike and
hypersurface orthogonal Killing field K . My signature convention shall be “mostly
plus”, i.e. (−,+,+,+).

We choose adapted coordinates (t, xa), a = 1, 2, 3, where the level sets of t are
the integral manifolds of the foliation defined by K and K = η/η(ct). We can then
write the metric in a form in which the coefficients do not depend on t (called “time”),

g = −δ 2(x) c2 dt ∅ dt + ĝab(x) dxa ∅ dxb . (38)

Clearly c2δ 2 = −g(K , K ). From now on, all symbols with hats refer to the spatial
geometry, like the spatial metric ĝ.

The t-component of the geodesic equation is equivalent to δ 2 ṫ = const, where
an overdot refers to the derivative with respect to an affine parameter. This equation
allows us to eliminate the affine parameter in favour of t in the spatial components
of the geodesic equation. If we set7

δ =
⎡

2σ

c2 , (39)

they read

d2xa

dt2 + α̂ a
bc

dxb

dt

dxc

dt
= −σ,bĝab + σ,b

[
1

σ

dxa

dt

dxb

dt

⎜
, (40)

where the α̂ a
bc are the Christoffel coefficients for ĝ, and σ,a = ηaσ. This should

be compared with (19) together with Newton’s second law, which give d2x/dt2 =
−√σ. As we did not attempt to include special relativistic effects in connection with
high velocities, we should consistently neglect terms v2/c2 in (40). This results in
dropping the rightmost term. The rest has the pseudo-Newtonian form in arbitrary
(not just inertial) spatial coordinates. A non-zero spatial curvature would, of course,
be a new feature not yet considered.

The curvature and Ricci tensors for the metric (38) are readily computed, most
easily by using Cartan’s structure equations:

Ric(n, n) = δ −1 Λ̂δ , Rab = R̂ab − δ −1 √̂a√̂bδ . (41)

7 This differs by a factor of 2 from (23) which we need and to which we return below.
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Here n = δ −1η/cηt is the unit timelike vector characterising the static reference
frame, √̂ is the Levi-Civita covariant derivative with respect to ĝ, and Λ̂ is the
corresponding Laplacian.

Using this in Einstein’s equations

Rμρ = 8ξG

c4

(
Tμρ − 1

2 gμρT Δ
Δ

)
(42)

for pressureless (we neglect the pressure since it enters multiplied with c−2) dust at
rest and of mass-density φ in the static frame, i.e.

Tμρ = φc2nμnρ , (43)

we get

Λ̂δ = 4ξG

c2 φδ time component , (44a)

√̂a√̂bδ = R̂abδ space components . (44b)

We note that, apart from the space curvature, (44a) is almost—but not quite—
identical to (24). They differ by a factor of 2! Rewriting (44a) in terms of σ according
to (39), we get

Λ̂σ = 8ξG

c2

[
φσ + c2

16ξG

ĝab√̂aσ√̂bσ

σ

]
. (45)

This differs from (20) by the same factor of 2 (i.e., G ≤ 2G). Note that we cannot
simply remove this factor by rescaling δ and σ, as the equations are homogeneous
in these fields. Note also that the overall scale of σ is fixed by (40): It is the gradient
of σ, and not a multiple thereof, which gives the acceleration. But then there is
another factor of 2 in difference to our earlier discussion: If the metric (38) is to
approach the Minkowski metric far away from the source, then δ should tend to
one and hence σ should asymptotically approach c2/2 according to (39). In (20),
however, σ should asymptotically approach c2, i.e. twice that value. This additional
factor of 2 ensures that both theories have the same Newtonian limit. Indeed, if we
expand the gravitational potential σ of an isolated object in a power series in G, this
implies that the linear terms of both theories coincide. However, the quadratic terms
in GR are twice as large as in our previous theory based on (19) and (20). This is not
quite unexpected if we take into account that in GR we also have the space curvature
that will modify the fields and geodesics in post Newtonian approximations. We note
that the spatial Einstein equations (44b) prevent space from being flat. For example,
taking their trace and using (44a) shows that the scalar curvature of space is, in fact,
proportional to the mass density.

Finally we show that the total gravitational mass in GR is just given by the same
formula (21), where σ is now that used here in the GR context. To see this we
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recall that for spatially asymptotically flat spacetimes the overall mass (measured at
spatial infinity) is given by the ADM-mass. Moreover, for spatially asymptotically
flat spacetimes which are stationary and satisfy Einstein’s equations with sources of
spatially compact support, the ADM mass is given by the Komar integral (this is,
e.g., proven in Theorem 4.13 of [17]). Hence we have

MADM = c2

8ξG

∫
S2∓

ψd K � . (46)

Here K = η/η(ct), and K � := g(K , ·) = −δ 2cdt is the corresponding 1-form.
The star, ψ, denotes the Hodge-duality map. Using (39) and asymptotic flatness it is
now straightforward to show that the right hand side of (46) can indeed be written
in the form of the middle term in (21). This term only depends on σ at infinity,
i.e. on the Newtonian limit, and hence it gives a value independent of the factor-2
discrepancy discussed above. In that sense the active gravitational mass Mg defined
earlier corresponds to MADM in the GR context.

This ends our discussion of Einstein’s 1912 scalar field equation, which is thus
seen to contain many interesting features we know from GR, albeit in a pseudo-
Newtonian setting.

Acknowledgments I sincerely thank the organisers and in particular Jiří Bičák for inviting me to
the most stimulating and beautiful conference Relativity and Gravitation—100 years after Einstein
in Prague.
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Source Integrals of Asymptotic Multipole
Moments

Norman Gürlebeck

Abstract We derive source integrals for multipole moments that describe the
behaviour of static and axially symmetric spacetimes close to spatial infinity. We
assume isolated non-singular sources but will not restrict the matter content other-
wise. Some future applications of these source integrals of the asymptotic multipole
moments are outlined as well.

1 Introduction

In experiments that measure general relativistic effects, some parameters character-
izing the spacetime have to be determined. The multipole moments are one set of
such parameters. They are measured in the exterior region of astrophysical objects
like neutron stars or galaxies but also planets and describe the gravitational field
near spatial infinity. They will be called here asymptotic multipole moments (AMM).
The bending of light and the gravitational lensing proved particularly useful for their
measurement, see, e.g., [1–3] and references therein. But what information can be
gathered about the matter distribution and the metric in its interior by their measure-
ment? What does it mean to measure a certain value of the quadrupole moment? In
Newtonian theory, the answers are provided by the source integrals of the AMM.
These integrals determine the asymptotic multipole moments by an integration over
the mass density. In general relativity, similar expressions for the AMM are only
known in approximations to general relativity, see e.g. [4]. Here we will present
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source integrals of the AMM for static and axially symmetric spacetimes in full
general relativity. At the same time these provide quasi-local definitions of all asymp-
totic multipole moments.

2 Preliminaries

In this section, we shortly review several concepts necessary in the derivation of the
source integrals. We use throughout this article geometric units G = c = 1 and the
signature of the metric is (−,+,+,+).

2.1 The Line Element and the Field Equations

We concentrate on axially symmetric and static spacetimes of the Weyl form, i.e.,

ds2 = e2k−2U
(

dρ2 + dζ 2
)

+ W 2e−2U dϕ2 − e2U dt2. (1)

We do not restrict the type of matter except in that the line element (1) can be
introduced, see [5]. The metric functions e2U and W can be expressed by the timelike
Killing vector ξα = (∂t )

α and the Killing vector of the axial symmetry ηα = (∂ϕ)α

e2U = −ξαξα, W 2 = −ηαηαξβξβ. (2)

Let us choose a sphere S0 of finite radius r = R0 (ρ = r sin θ, ζ = r cos θ )
that covers the entire matter distribution, cf. Fig. 1. Outside of S0, canonical Weyl
coordinates (W = ρ) are introduced by virtue of one of the vacuum field equations.
This allows still a shift in the ζ−coordinate, which enables us later to move the
origin with respect to which the AMM are measured. The vacuum field equations in
canonical Weyl coordinates read

ΔU = 0, k,ζ = 2ρU,ρU,ζ , k,ρ = ρ
(
(U,ρ)2 − (U,ζ )

2
)

, (3)

where Δ =
(

∂2

∂ρ2 + 1
ρ

∂
∂ρ

+ ∂2

∂ζ 2

)
. The function k is determined via a line integration,

cf. the last two equations of (3), once U is known. Hence, only a Laplace equation
for U remains to be solved in practice.
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Fig. 1 An example of the
physical situations discussed
here: The surfaces of the
individual matter components
are denoted by S

(2)
i = ∂V

(2)
i

with i √ 1 and their respective
volumes by V

(2)
i . The surface

S
(2)
0 describes a circle with

sufficiently large but finite
radius enclosing all matter
components, cf. Sect. 2.1

A (2)
+

A (2)
−

ζ

ρ

S (2)
0

S (2)
1

S (2)
2

V (2)
0

V (2)
2V (2)

1

2.2 The Physical Setting

We depict in Fig. 1 an example of a physical situation that will be covered by the
subsequent considerations. The relevant surfaces and volumes are defined there as
well. For simplicity, we allow only non-singular sources. However, such can be
incorporated into the formalism as we showed in [6]. The 3-dimensional projection
of the matter region into an hypersurface of constant Killing-time t is obtained by a
rotation around the ζ−axis in Fig. 1. In this way, the quantities A (3)

± , S (3)
i and V (3)

i

are defined starting from A(2)
± , S (2)

i and V (2)
i , respectively.

2.3 The Multipole Moments

For asymptotically flat and static spacetimes a geometric definition of AMM was
given by Geroch in [7]. This definition was generalized and applied by many authors,
see the reviews [4, 8] and references therein. In the axially symmetric case with the
line element (1), Geroch’s multipole moments Mr can be obtained by an expansion
of U along the symmetry axis in |ζ |−1:

U (ρ = 0, ζ ) =
→∑

r=0

U (r)|ζ |−r−1. (4)

The Mr follow uniquely from Weyl’s multipole moments U (r) and vice versa as was
shown in [9]. Therefore, we consider only the U (r) here.
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2.4 The Inverse Scattering Technique

Lastly, we shortly review the inverse scattering technique (IST), see e.g. [10] for a
recent account. Even though the Laplace equation is linear and the use of the IST
seems artificial, the IST proves nonetheless beneficial, because it is easily generaliz-
able to the non-linear case of the Ernst equation. This equation is of special interest in
relativistic astrophysics, since it describes the exterior of rotating stars. The starting
point of the IST in the present setting, i.e. the linear problem of the Laplace equation,
is given by

σ,z = (1 + λ)U,zσ, σ,z̄ =
(

1 + 1

λ

)
U,z̄σ, (5)

where z = ρ + iζ , the spectral parameter λ =
√

K−iz̄
K+iz , K ∓ C and a bar denotes

complex conjugation. The complex valued function σ depends on z, z̄ and λ. The
integrability condition of (5) is the Laplace equation for U . Therefore, having a
solution σ of (5) yields also a solution U of the Laplace equation and vice versa. The
main technical steps of the IST as described in [10] are to integrate (5) along A (2)

± ,
along a circle with sufficiently large radius and along a compact curve connecting
A (2)

+ with A (2)
− . This scheme can be carried out partially and we quote only the

results (simplified to the static case), which are relevant for us, from [10]:

(0, ζ ) ∓ A + : σ (λ = +1, ρ = 0, ζ ) = F(K )e2U (ρ=0,ζ ),

σ (λ = −1, ρ = 0, ζ ) = 1, (6a)

(0, ζ ) ∓ A − : σ (λ = +1, ρ = 0, ζ ) = e2U (ρ=0,ζ ),

σ (λ = −1, ρ = 0, ζ ) = F(K ).

The function F : C ∼ C is given for K ∓ R with (ρ = 0, ζ = K ) ∓ A ± by

F(K ) =
{

e−2U (ρ=0,ζ=K ) (0, K ) ∓ A +

e2U (ρ=0,ζ=K ) (0, K ) ∓ A − .
(6b)

The integration along S (2)
0 does not enter the derivation of these formulas and it

forms the crucial part of our considerations in the next section.

3 Source Integrals of Weyl’s Multipole Moments

The derivation of the source integrals consists of several steps. First, the AMM are
expressed as line integrals along S (2)

0 . This is the most important step, because it
makes it possible to determine the AMM quasi-locally. Then these integrals will be



Source Integrals of Asymptotic Multipole Moments 87

rewritten in a coordinate independent form as surface integrals over S (3)
0 by virtue

of the axial symmetry. Subsequently, Stokes’ theorem is used to rewrite these as
volume integrals over V (0). In the final step, it is shown that the contributions in
the vacuum regions vanish. Thus, the steps from before can be retraced to obtain
the contributions in source integral form of each individual matter component. We
suppress the details of these derivations and show only the crucial steps.

The linear problem (5) is well-defined along S (2)
0 and reads:

σ,s =
[

U,s + 1

2

((
1

λ
+ λ

)
U,s + i

(
1

λ
− λ

)
U,n

)]
σ, (7)

where U,s and U,n are the tangential and the (outward pointing) normal derivative
of U along S (2)

0 with respect to a parametrisation [sN , sS] ∼ S (2)
0 . The indices N

and S refer to the values of a parameter or function at the “north” and “south” pole
of S (2)

0 , i.e., to the intersection points (ρ = 0, ζ = ζN/S) of S (2)
0 and the symmetry

axis. Equation (7) is easily integrated using the boundary values from (6):

U (0, K ) =UN − US

2
+ 1

4

sS∫

sN

((
λ−1 + λ

)
U,s + i

(
λ−1 − λ

)
U,n

)
ds. (8)

If we expand this equation in |K |−1, we obtain expression for Weyl’s multipole
moments in terms of a line integration. Let us introduce the abbreviations N (r)

+ and

N (r)
− for the expansion coefficients (λ−1 + λ)(r) and i(λ−1 − λ)(r) to order r + 1,

respectively. After a lengthy but straightforward calculation they evaluate to

N (r)
− =

≤ r
2 ∞∑

k=0

2(−1)k+1r !ρ2k+1ζ r−2k

4k (k!)2(r−2k)! ,

N (r)
+ =

⌊
r−1

2

⌋
∑
k=0

2(−1)k+1r !ρ2k+2ζ r−2k−1

4k (k!)2(r−2k−1)!(2k+2)
.

(9)

The r = −1 order in |K |−1 of (8) is satisfied trivially and will not be considered
subsequently. The orders r √ 0 of (8) yield the desired quasi-local definitions of
Weyl’s multipole moments:

U (r) = 1

4

∫

S (2)
0

(
N (r)

+ U,ŝ + N (r)
− U,n̂

)
dS (2)

0 , (10)

whereU,ŝ andU,n̂ are the tangential and normal derivatives alongS (2)
0 with respect to

the unit tangent vector and the unit normal vector, which are defined with the induced
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metric on S (2)
0 ; dS (2)

0 denotes the proper distance along S (2)
0 . The functions N (r)

±
and U are to be read as functions along S (2)

0 , i.e. as functions of (ρ(s), ζ(s)).
To make the coordinate independence apparent, we express ρ and ζ by scalars

built from the Killing vectors. Firstly, observe that (2) holds everywhere and that in
vacuum we have W = ρ. Additionally, the 1-form

Zα = εαβγ δW ,β W −1ηγ ξδ (11)

is well-defined and hypersurface orthogonal everywhere as well as exact in the vac-
uum region. Hence, there exist a potential Z and an integrating factor X such that
Z,α = X Zα , where X = 1 in the exterior of S (3)

0 . In the vacuum region and in
canonical Weyl coordinates, we find Z = ζ + const. Since we can shift the ζ -
coordinate freely, we can drop the constant of integration, which specifies the origin
with respect to which the AMM are measured. Thus, W and Z coincide with ρ and
ζ in the vacuum region and can be used as their continuation into the interior of the
matter. This choice is not unique and other continuations are possible, although they
do not alter the values of the source integrals, which we present below.

Using W and Z along S (2)
0 instead of ρ and ζ , respectively, we can rewrite (10)

as surface integrals:

U (r) = 1

8π

∫

S (3)
0

eU

W

(
N (r)

− U,n̂ − N (r)
+,W Z,n̂U + N (r)

+,Z W,n̂U
)

dS (3)
0 . (12)

An integration by parts, the axial symmetry and the vacuum field equations are
necessary for this step.

Using Stokes’ theorem and the field equations we obtain

U (r) = 1

8π

∫

V (3)
0

eU

[
− N (r)

−
W

Rαβ

ξαξβ

ξγ ξγ

+ N (r)
+,Z U

(
W ,α

W

)
;α

− N (r)
+,W U

(
Z ,α

W

)
;α

+ N (r)
+,W Z

U

W

(
W ,αW,α − Z ,α Z,α

)]
dV (3)

0

= 1

8π

∑
i

∫

V (3)
i

eU

[
8π

N (r)
−

W
(T gαβ − Tαβ)

ξαξβ

ξγ ξγ

+ N (r)
+,Z U

(
W ,α

W

)
;α

(13)

− N (r)
+,W U

(
Z ,α

W

)
;α

+ N (r)
+,W Z

U

W

(
W ,αW,α − Z ,α Z,α

)]
dV (3)

i .

The dV (3)
i are the proper volume elements of V (3)

i and a semicolon denotes the
covariant derivative with respect to the line element (1). The last equality is due
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to Einstein’s equations, which imply that the integrand vanishes in vacuum. The
integrals (13) are the desired source integrals. They determine the AMM from the
geometry inside the matter regions alone. Of course, Stokes’ theorem can again be
used to rewrite the source integrals as surface integrals over S (3)

i of the respective
matter component. In turn, these can be reformulated as line integrals, cf. Sect. 4.
The fact that the contributions of the individual matter components, V (3)

i , to the
asymptotic multipole moments superpose linearly is due to the choice of Weyl’s
multipole moments. If we employ the method from [9] to calculate Geroch’s multi-
pole moments Mr from Weyl’s multipole moments U (r), we obtain a mixing of the
contributions U (k)

i of the individual matter components with k < r in the Mr . This
is already apparent for the quadrupole moment M2, which depends non-linearly on
U (0):

M2 = U (2) − 1

3
U (0)3

. (14)

The Geroch mass M0 equals U (0) and is given by the (negative) Komar integral.
This follows also from (12) with r = 0.

4 Applications

We conclude the paper by discussing one possible application of the source integrals
(12). Assume a matter distribution is given, where the metric is known in the interior
or the Dirichlet and the Neumann data for U are known at the surface. Even then
it is far from trivial (at least in the stationary case, see [11]) to obtain a global
asymptotically flat solution, if it exists. The source integrals for the AMM provide a
tool to solve this task. As a simple example serves here the case of static dust without
any surface distributions. In Weyl coordinates (not necessarily canonical) the energy
momentum tensor is given by

Tαβ = μe2U δt
αδt

β. (15)

The contracted Bianchi identities imply U = const. in the interior and, thus, the
gradient of U vanishes at S (3)

i in all coordinates. Using the line integrals for Weyl’s
AMM, which follow from (13), we get:

U (r) = 1

4

∑
i

∫

S (2)
i

(
N (r)

− U,n̂ + N (r)
+ U,ŝ

)
dS (2)

i = 0. (16)

Thus, all AMM vanish and the spacetime is flat in the exterior. This contradicts the
presence of a dust distribution with positive mass density. Of course, this result is
already known and more general non-existence results for dust including the rotating
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case can be found in [12, 13] and references therein. Although the non-existence is
proved here, this example shows in a concise way how the source integrals can
be applied in more difficult physical situations like rotating stars. This and other
applications, e.g. to tidal distortions of black holes, will be investigated in future
work.
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Geodesic Equations and Algebro-Geometric
Methods

Eva Hackmann

Abstract For an investigation of the physical properties of gravitational fields the
observation of massive test particles and light is very useful. The characteristic fea-
tures of a given space-time may be decoded by studying the complete set of all
possible geodesic motions. Such a thorough analysis can be accomplished most
effectively by using analytical methods to solve the geodesic equation. In this contri-
bution, the use of elliptic functions and their generalizations for solving the geodesic
equation in a wide range of well known space-times, which are part of the general
Plebański-Demiański family of solutions, will be presented. In addition, the defini-
tion and calculation of observable effects like the perihelion shift will be presented
and further applications of the presented methods will be outlined.

1 Introduction

The observation of massive particles and light is a very important tool for exploring
the features of gravitational fields and also for tests of general relativity. The motion
of massive and massless test particles is described by the geodesic equation, which
is a coupled system of ordinary differential equations dependent on the metric of the
considered gravitational field. A wide range of exactly known solutions of Einstein’s
field equations possesses certain symmetries, which allow to decouple the geodesic
equations. Here we discuss metrics within the Plebański-Demiański family of solu-
tions (see [1]), which is a seven parameter solution with mass, rotation, cosmologi-
cal constant, electric and magnetic charge, NUT charge, and acceleration and which
comprises the Schwarzschild and the Kerr metric as special cases. In this family of
solutions the equations of motion considerably simplify due to the separability of the
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J. Bičák and T. Ledvinka (eds.), Relativity and Gravitation, 91
Springer Proceedings in Physics 157, DOI: 10.1007/978-3-319-06761-2_12,
© Springer International Publishing Switzerland 2014



92 E. Hackmann

Hamilton-Jacobi equation (for lightlike geodesics and, if the acceleration vanishes,
also for timelike geodesics).

Due to this simplification, the analytic solutions for the complete set of geodesics
in Schwarzschild space-time was already found in 1931 by Hagihara [2] in terms
of elliptic functions. With essentially the same methods also the geodesic equations
in Kerr-Newman-Taub-NUT space-times and subcases can be handled (and also an
additional acceleration for massless particles). For the case of the Kerr metric, this was
first done in the equatorial plane (see [3] for a review) and later, after the introduction
of Mino time [4] which allows to fully decouple the equations of motion, by Fujita
and Hikida for bound orbital motion [5]. For a nonvanishing cosmological constant,
the structure of the equations of motions is more complex but can still be solved
analytically by using hyperelliptic functions as demonstrated for the Schwarzschild-
de Sitter metric [6] and for general axially symmetric space-times [7]. Here, we will
explain these general methods to analytically solve the geodesic equations in Kerr-
Newman-Taub-NUT-de Sitter space-times (and the C-metric for lightlike geodesics).

For observational purposes also explicit expressions for the deviations of relativis-
tic orbits from the Kepler orbits are of interest. Here we concentrate on the observables
for bound orbital motion, namely the periastron shift and the Lense-Thirring effect.
However, in a strong gravitational field concepts like the orbital plane and the orbital
ellipse are no longer valid. A fully relativistic treatment of these effects in the Kerr
gravitational field was given by Schmidt [8] and combined with the Mino time by
Drasco and Hughes [9] as well as Fujita and Hikida [5]. In this article, we will show
how these concepts can be generalized to the above mentioned space-times.

2 Equations of Motion

The motion of test particles is described by the geodesic equation

d2xμ

ds2 + Λ μ
ρσ

dxρ

ds

dxσ

ds
= 0 (1)

where Λ
μ
ρσ = 1

2 gμα(∂ρgσα + ∂σgρα − ∂αgρσ) is the Christoffel symbol and μ =
0, 1, 2, 3. This system of coupled ODE’s can be simplified if the underlying space-
time has certain symmetries. In particular, for the Plebański-Demiański solutions
(with vanishing acceleration for massive test-particles), there exist four constants of
motion which can be used for decoupling: the normalization constant ε = gμν

dxμ

ds
dxν

ds
with ε = 0 for light and ε = 1 for massive test-particles, the energy E , the angular
momentum L in direction of the symmetry axis, and the Carter constant K .

For the considered family of solutions in standard Boyer-Lindquist coordinates
the radial and latitudinal equations of motion can be reduced to the form [7]
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(
xi dx

dλ

)2

= P(x; p), (2)

where x is the radius or the (squared) cosine of the latitude, λ is an affine parameter,
the Mino time [4], P is a polynomial in x of degree 2g + 1 or 2g + 2, 0 √ i < g
is an integer, and p = {p1, . . . , pn} is a set of parameters of the space-time and the
test-particle. For example, in Kerr space-time we get in geometrized units (G = 1,
c = 1) [3, 4]

(
dr

dλ

)2

=
(
(r2 + a2)E − aL

)2 − (r2 + a2 − 2r)(εr2 + K ) =: R(r), (3)

(
dξ

dλ

)2

= 4ξ
[
(1 − ξ)(K − εa2ξ) + (aE(1 − ξ) − L)2

]
, (4)

where ξ = cos2 θ and all quantities are normalized such that they are dimensionless.

3 Algebro-Geometric Methods

The equation of motion (2) should be solved for x(λ), i.e. we consider the inversion
problem

∫ x

x0

xi dx→
P(x; p)

= λ − λ0 , (5)

where x(λ0) = x0 are initial values. The solution of this problem should be in-
dependent from the chosen integration path. This implies that for a closed path

γ with ω := ∮
γ

xi dx→
P(x;p)

∓= 0 the solution x(λ) has to have the period ω,∫ x
x0

xi dx→
P(x;p)

= λ − λ0 − ω. This can be taken into account automatically if (2)
is considered as an algebraic curve

w2 = P(x; p), (6)

where w = xi dx
dλ . For the considered space-times one of the following two situations

occurs

• P is of order 3 or 4: then (6) is an elliptic curve of genus 1,
• P is of order 5 or 6: then (6) is an hyperelliptic curve of genus 2.

Topologically, (hyper-) elliptic curves can be considered as Riemann surfaces. The
genus g corresponds to the number of ‘holes’ in the Riemann surface, see Fig. 1. If
there are g holes this implies that there are 2g independent closed integration paths
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Fig. 1 Riemann surface of a
genus one curve (left) and a
genus two curve (right) with
two or four independent paths

whose integrals do not vanish and, therefore, the solution x(λ) needs to have 2g
independent periods [10].

In the case of an elliptic curve, (6) can be reduced to the Weierstrass form by a
rational substitution,

w̃2 = 4x̃3 − g2 x̃ − g3 . (7)

In this standard form, w̃ and x̃ are parametrized by the Weierstrass elliptic function
and its derivative, w̃ = φ∼(z) and x̃ = φ(z). In the above example of Kerr space-
time, the substitution for the radial equation of motion for a timelike geodesic is

r = a3
4x− a2

3
+ rK , where R(rK ) = 0 and a j = 1

(4− j)!
d(4− j) R
dr (4− j) (rK ). The resulting

equation is given by (7) with

g2 = 1

4

(
1

3
a2

2 − a1a2

)
, g3 = 1

16

(
1

3
a1a2a3 − 2

27
a3

2 − a0a2
3

)
. (8)

The analytical solution for the timelike radial equation in Kerr space-time is then
given by

r(λ) = a3

4φ(λ − c) − a2
3

+ rK , (9)

where c = c(r0,λ0) is a constant which depends only on the initial conditions.
With a completely analogous procedure all equations of motion which reduce to

elliptic curves may be solved. This includes geodesics in Schwarzschild, Reissner-
Nordström, Kerr-Newman, and Taub-NUT space-times as well as the C-metric (see
e.g. [11]) for massless particles.

The situation gets more complicated if the equation of motion is described by
a hyperelliptic curve of genus two. This is due to the fact that the solution has to
have four independent periods, which is impossible for functions in a single complex
variable. Therefore, it is necessary to consider a function in g = 2 complex variables.
However, as we have only one degree of freedom, we need to restrict the space of
variables again to a one-dimensional submanifold. This is done by considering the
equation of motion as part of the Jacobi inversion problem for g = 2, which is to
solve the system of equations
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w1 =
∫ x1

≤
dx→
P(x)

+
∫ x2

≤
dx→
P(x)

,

w2 =
∫ x1

≤
xdx→
P(x)

+
∫ x2

≤
xdx→
P(x)

,

(10)

for x1, x2 as functions of w1, w2. If P is transformed to a standard form P(x) =
4x5 + ∑4

i=0 ai xi , the solution to this problem is known in terms of generalized φ-
functions, x1x2 = φ12(w1, w2), x1 + x2 = φ22(w1, w2) [10]. Here φi j (w1, w2) =
− ∂

∂wi

∂
∂w j

log σ(w1, w2) with the generalized σ function. By letting x2 go to infinity,
we can get rid of the second integral on the right hand side and simultaneously
restrict (w1, w2) to the one-dimensional sigma divisor, i.e. the set of zeros of the
two-dimensional σ-function. The solution for x = x1 is then given by

x = −σ1

σ2
(w1, w2) , with σ(w1, w2) = 0 , (11)

where σi denotes derivative of σ w.r.t. the i-th variable. For example, in the case of
Schwarzschild-de Sitter space-time, the solution for the radius r in terms of the angle
ϕ is given by [6]

r(ϕ) = −M
σ2

σ1
( f (ϕ),ϕ) , with σ( f (ϕ),ϕ) = 0 . (12)

This solution method can be applied to all geodesic equations which reduce to hy-
perelliptic curves. This comprises the radial and latitudinal equations of motion in
Kerr-de Sitter space-time as well as all the de Sitter-versions of Kerr-Newman-Taub-
NUT space-times and subcases [7]. For lightlike geodesics also the C-metric with
an additional cosmological constant can be treated this way.

4 Observables

For the bound orbital motion of massive test-particles there are two main gravita-
tional effects: the periastron shift κP and the Lense-Thirring effect κLT. The first is
a precession of the orbital ellipse within its orbital plane and the latter a precession
of the orbital plane itself.1 In this picture, the periastron shift is defined as the angle
between two consecutive periastrons and the Lense-Thirring effect as the angle be-
tween two consecutive minimal latitudes. Mathematically this means that they are
given by the difference between the period of r(ϕ) or θ(ϕ), respectively, and 2π. If
2ωr denotes the period of r(ϕ) and 2ωθ the period of θ(ϕ) then

1 In the original paper [12] a combined effect was computed: the timely variation of the ascending
node and the argument of periapsis. With ‘Lense-Thirring effect’ we refer only to the first correction.
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κP = 2ωr − 2 sign(L)π, κLT = 2ωθ − 2 sign(L)π, (13)

where the sign of L is included to distinguish between prograde and retrograde
motion.

In Schwarzschild space-time, where r(ϕ) is directly known, the exact analytical
expression for the periastron shift is given by

κP = 4L K (k)√
(E2 − 1)rp(ra − r1)

− 2π, (14)

where K (k) is the complete elliptic integral of the first kind,

K (k) =
∫ 1

0

dx√
(1 − x2)(1 − k2x2)

, (15)

which is implemented in standard mathematical software. Here k2 = r1(ra−rp)

rp(ra−r1)
with

the zeros 0 < r1 < rp < ra of R(r) =
(

dr
dϕ

)2
.

The expression for the perihelion shift can be generalized to axially symmetric
space-times, where only r(λ) and ϕ(λ) is known. Writing ϕ(λ) as a part linear in λ,
given in the form of an infinite Mino time average νϕ, plus oscillatory deviations [5,
8], we may use λ(ϕ) = ν −1

ϕ ϕ. Then the period of r(ϕ) is given by

r(λ(ϕ + 2∂rνϕ)) = r(ν −1
ϕ ϕ + 2∂r ) = r(ν −1

ϕ ϕ) = r(λ(ϕ)) , (16)

where 2∂r is the period of r(λ). Accordingly, 2ωr = 2∂rνϕ and the perihelion shift
can be written as

κP = 2∂rνϕ − 2 sign(L)π. (17)

In a totally analogous way the Lense-Thirring effect can be found. If 2∂θ denotes
the period of θ(λ), we may write again θ(λ(ϕ+ 2∂θνϕ)) = θ(λ(ϕ)) and, therefore,

κLT = 2∂θνϕ − 2 sign(L)π. (18)

In the case of Kerr-Newman-Taub-NUT-de Sitter space-times, ∂r,θ and νϕ are
given in terms of (hyper-)elliptic integrals. For the elliptic case, they can be rewritten
in terms of the three standard Jacobian elliptic integrals K (k), E(k), and ξ(n, k).
For the case of genus two or higher, to our knowledge such a standard form does not
exist. A possible generalization of the first Jacobian elliptic integral would be
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KA(k) =
∫ 1

0

∑g
i=1 Ai t i−1dt√

t (1 − t)
∏2g−1

i=1 (1 − k2
i t)

, (19)

where A is a vector of length g, which reflects the fact that there are g independent
differentials of the first kind, and k is of length 2g − 1.

For example, in terms of these integrals the perihelion shift for Schwarzschild-de
Sitter space-time is given by

κP =
r4 K(

1
r4

,
(r4−r3)

r3r4

)(k1, k2, k3)

√
L2πr3(r4 − r0)(r4 − r2)(r5 − r4)

− 2π , (20)

where r0 < 0 < r1 < r2 < r3 < r4 < r5 are the zeros of the defining polynomial
with r3 = rmin and r4 = rmax for small positive π and

k2
1 = r0(r4 − r3)

r3(r4 − r0)
, k2

2 = r2(r4 − r3)

r3(r4 − r2)
, k2

3 = −r5(r4 − r3)

r3(r5 − r4)
. (21)

5 Outlook

The methods presented here are powerful tools for the analytic integration of the
geodesic equation in a wide range of space-times. Beside the space-times we focused
on here, geodesics in higher-dimensional spherically symmetric space-times [13,
14] and the Myers-Perry space-time [15] can be treated. It may also be possible to
extend these methods to the equations of motion in space-times with given multipole
moments like the Erez-Rosen space-time.

The hyperelliptic curves which we used here to represent the equations of motions
are a special case of Abelian curves, which allow for higher orders of w in (6) and
mixed terms. These more general curves appear for example in Hořava-Lifshitz
and Gauss-Bonnet gravity, which may be represented by quartic curves of the form
(w − P(x))2 = Q(x). A generalization of the presented methods to these cases is in
preparation.

Analogously to the analytic expressions presented here for observables of bound
orbital motion also the bending of light and the gravitational time delay may be
considered. Linked to that, we plan the development of an analytical timing formula
for pulsars orbiting a black hole.

Concerning the numerical calculation of the analytical expressions, the complete
elliptic integrals can be computed very efficiently by using the arithmetic geometric
mean. This can be generalized to genus two hyperelliptic integrals, see [16, 17].
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Illusory Horizons, Thermodynamics,
and Holography Inside Black Holes

Andrew J. S. Hamilton

Abstract There is persistent and endemic confusion between the true (future)
horizon and the illusory (past) horizon of a black hole. The illusory horizon is the
redshifting surface of matter that fell into the black hole long ago. A person who
free-falls through the horizon of a black hole falls through the true horizon, not the
illusory horizon. The infaller continues to see the illusory horizon ahead of them,
all the way down to the classical singularity. The illusory horizon is the source of
Hawking radiation, for both outsiders and infallers.The entropy of a black hole is 1/4
of the area of the illusory horizon, for both outsiders and infallers. The illusory hori-
zon holographically encodes states hidden behind it, for both outsiders and infallers.
The endpoint of an infaller approaching the classical singularity is to merge their
states with the illusory horizon. The holographic boundary of the black hole is then
the union of the illusory horizon and the classical spacelike singularity. When an
infaller reaches the classical singularity, any entanglement of the infaller with out-
siders or other infallers is transferred to entanglement with the states of the black hole,
encoded on the illusory horizon. Locality holds between an infaller and a spacelike-
separated outsider or other infaller as long as their future lightcones intersect before
the singularity, but breaks down when the future lightcones no longer intersect.

1 Introduction

There is persistent and endemic confusion in the literature between the true (future)
horizon and the illusory (past) horizon of a black hole. The confusion has led to
the misconception that Hawking radiation is emitted from the true horizon, and that
the states of a black hole are encoded on the true horizon.
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The presence of a black hole introduces a bifurcation boundary to spacetime,
separating the spacetime into a region that an observer can see, and a region that is
invisible to the observer. This bifurcation horizon is the illusory horizon, and it is
observer-dependent. The illusory horizon is the boundary of the past lightcone of an
observer watching the black hole.

When an observer measures thermodynamic variables such as temperature or
entropy, they must measure degrees of freedom that are actually available to them,
which is to say, degrees of freedom along their past lightcone. Thus a consistent
description of generalized thermodynamics by an actual observer must involve the
observer’s illusory horizon, not the true horizon.

The purpose of this paper is to set forward a number of proposals regarding
generalized thermodynamics from the perspective of observers who fall through the
true horizon.1 The proposals are motivated by the classical appearance of the illusory
horizon seen by an infaller. The classical appearance suggests that the principles of
generalized thermodynamics and holography extend to infallers in the simplest and
most obvious way.

For simplicity, this paper considers only a spherically symmetric, uncharged
(Schwarzschild) black hole.

2 The Illusory Horizon

Figure 1 shows the familiar Penrose diagram of a Schwarzschild black hole, with
the illusory (past) and true (future) horizons labelled. In the analytically extended
Schwarzschild geometry, the illusory horizon is a true horizon, the horizon of a
white hole and parallel universe. In a real black hole however, the Schwarzschild
past horizon is replaced by the exponentially dimming and redshifting image of the
star that collapsed to the black hole long ago.

As the Penrose diagram of the Schwarzschild black hole shows, when an observer
outside the black hole looks at the black hole, they are looking at the illusory horizon.
When an observer free-falls through the horizon of the black hole, they fall through
the true horizon, not the illusory horizon. The true horizon becomes visible to the
observer only after the observer has passed through it. The illusory horizon continues
to appear ahead of the observer even after they have passed through the true horizon.

Figure 2 illustrates three frames from a visualization of the scene seen by an
observer who free-falls into a Schwarzschild black hole [1, 5]. These scenes are gen-
eral relativistically ray-traced, not artist’s impressions. The illusory and true horizons
of the black hole are painted with grids of latitude and longitude, so that they can
be seen. The illusory horizon is of course infinitely redshifted in the Schwarzschild

1 Editors’ footnote: The author did not follow the requests of referees to distinguish clearly between
the established results and vague conjectures/proposals. The editors decided to include the paper in
its original form because of its possible inspiring role.
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Fig. 1 Penrose diagram of a Schwarzschild black hole. The arrowed line represents the trajectory
of an observer, while the wiggly lines represent light rays perceived by the observer from the illusory
(red) and true (blue) horizons

geometry, but it is nevertheless possible to ray-trace light rays from an infinitesimal
distance off the illusory horizon.

The visualization confirms the expectation from the Penrose diagram. When the
observer falls through the horizon, they do not fall through the illusory horizon, which
continues to appear a finite distance ahead of the observer. Instead, the observer falls
through a new entity, the true horizon, which was invisible until the observer passed
through it. At the moment the observer passes through the true horizon, it forms a
line extending down to the illusory horizon. As the observer falls inward, the true
horizon expands into a bubble over the observer’s head. The circle where the illusory
and true horizons intersect expands.

Are visualizations of the Schwarzschild geometry a reliable guide to visualizations
of real spherical black holes? Yes. Figure 3 shows three frames from the collapse
of a spherical, uniform density, pressureless star that starts from zero velocity at
infinity, a problem first solved by Oppenheimer and Snyder [3]. The frames are as
seen by an observer at radius 20 geometric units. Again, these frames are general
relativistically ray-traced, not artist’s impressions. The frames take into account the
differential light travel time from different parts of the star’s surface to the observer.
As the star approaches its horizon, the star freezes, and takes on the appearance of a
Schwarzschild black hole.

3 The Illusory Horizon is the Source of Hawking Radiation,
for Outsiders and Insiders

At its most fundamental level, Hawking [6] or Unruh [7, 8] radiation arises when
an observer watches an emitter that is accelerating relative to the observer. When
waves that are pure negative frequency (positive energy) in the emitter’s frame are
propagated to the observer, the acceleration causes the waves to appear to be a mix of
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Fig. 2 Visualization of the scene seen by an observer falling into a Schwarzschild black hole on a
geodesic with specific energy and angular momentum E = 1 and L = 3.92 geometric units, from
[1]. In the upper panel, the observer is at a radius of 3.000, outside the true horizon; in the middle
panel the observer is at a radius of 1.613, inside the true horizon; in the bottom panel the observer is
at a radius of 0.045, near the central singularity. The illusory horizon is painted with a dark red grid,
as befits its infinitely redshifted appearance, while the true horizon is painted with an appropriately
red- or blue-shifted blackbody color. Further frames and details of this visualization are at [1]. The
background is Axel Mellinger’s Milky Way [2] (with permission)
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Fig. 3 Three frames in the Oppenheimer-Snyder collapse of [3]. a star, as seen by an outside
observer at rest at a radius of 20 geometric units. As time goes by, from left to right, the collapsing
star appears to freeze at its horizon, and take on the appearance of a Schwarzschild black hole. An
animated version of this visualization is at [4]

negative and positive frequencies in the observer’s frame. In particular, the emitter’s
vacuum (“in” vacuum) is not the same as the observer’s vacuum (“out” vacuum).
A classic calculation (e.g. [9, 10]) shows that if the acceleration is approximately
constant over several acceleration timescales, then the observer will see the emitter’s
vacuum as a thermal state with temperature proportional to the acceleration.

An observer watching a black hole sees Hawking radiation because matter that
collapsed to the black hole long ago appears classically frozen at the illusory horizon,
apparently accelerating away from the observer, redshifting and dimming into the
indefinite future. When an infaller free-falls through the true horizon, they do not
encounter the redshifting surface at the true horizon. Rather, the infaller sees the
redshifting surface of the collapsed matter continue to remain on the illusory horizon
ahead of them, as illustrated by Fig. 2.

An exact calculation of the Hawking emission seen by an infaller is difficult,
as illustrated by the efforts of [11] reported at this conference. The reason for the
difficulty is that, whereas for a distant observer only the monopole mode of emission
is important, for an infaller all angular modes contribute. However, it is possible to
predict the qualitative character of the Hawking radiation from a classical calculation
of the acceleration at the illusory horizon, as witnessed by an infaller.

The acceleration, hence the Hawking or Unruh radiation, that an infaller sees
depends on the state of motion of the infaller. The simplest case is that of an observer
who free-falls radially from zero velocity at infinity, and who fixes their gaze in a
particular direction (that is, the infaller’s detector is non-rotating). Figure 4 shows
the acceleration on the illusory horizon seen by such an infaller well inside the true
horizon, at a radial position r = 0.01 geometric units. Note that the observer here
is staring at a fixed angular direction relative to their own locally inertial frame, not
at a fixed angular position on the black hole. Figure 4 shows that the acceleration is
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Fig. 4 Acceleration κ on the illusory horizon seen by a radially free-falling non-rotating infaller,
relative to the acceleration κ0 directly below (towards the black hole), as a function of the viewing
angle relative to directly below. The example curve shown is as seen by an infaller well inside the
horizon, at radius 0.01 geometric units. The acceleration is constant out to near the perceived edge
of the black hole, where the acceleration diverges. Curves at other radii are similar

approximately constant out to near the perceived edge of the black hole, indicating
that the acceleration directly below is representative of the black hole as a whole.

Figure 5 shows the acceleration on the illusory horizon directly below, as seen by
the radially free-falling infaller as a function of their radial position r . The accel-
eration is approximately constant (1/4 geometric units) far from the black hole,
but increases inward, diverging as the infaller approaches the classical singularity,
r → 0. The figure shows that the acceleration changes on a timescale comparable
to the proper time left for the infaller to hit the singularity. Thus the usual con-
nection between acceleration and temperature (which requires the acceleration to
remain approximately constant over several acceleration times) fails. Nevertheless,
the calculation does suggest that the Hawking radiation witnessed by an infaller
might diverge as the infaller approaches the singularity. The calculation suggests of
order one Hawking quantum per time remaining, or a logarithmically diverging total
number of quanta. Rigorous calculation will be required to test this proposal.

Figure 5 also shows the acceleration on the distant sky directly above, as seen by
the radially free-falling infaller. The acceleration is negligible when the infaller is
far from the black hole, but increases inward. Interestingly, the acceleration on the
sky above approaches the same diverging value as that on the illusory horizon below
as the infaller approaches the singularity. This suggests that the infaller approach-
ing the singularity might see logarithmically diverging Hawking radiation from all
directions.
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Fig. 5 Acceleration at the illusory horizon directly below, and at infinity directly above, seen by
a radially free-falling infaller at radius r . The dashed line shows the reciprocal of the proper time
left until the infaller hits the singularity. The acceleration diverges towards the singularity r → 0,
suggesting a logarithmic divergence in the total number of Hawking quanta observed by an infaller
reaching the singularity

4 The Entropy of a Black Hole is 1/4 the Area of the Illusory
Horizon, for Outsiders and Insiders

Generalized thermodynamics (e.g. [12]) postulates that from the perspective of an
observer outside the true horizon, a black hole that has reached near stationarity
should be treated as an object in near thermodynamic equilibrium, with an entropy
equal to 1/4 of its horizon area in Planck units, and a temperature equal to 1/(2π)

times the acceleration at the illusory horizon.
Generalized thermodynamics may reasonably be expected to hold also for infall-

ers. For example, it would be quite extraordinary if an infaller witnessed a violation
of the second law of thermodyamics. As remarked in the Introduction, an observer
must count entropy that is visible to them, that is, entropy along their past lightcone.
The boundary of the observer’s past lightcone towards the black hole is the illusory
horizon. Generalized thermodynamics teaches that entropy must be associated with
the boundary, the illusory horizon.

Figure 2 shows that the appearance of the illusory horizon is seamless for infallers
who free-fall through the true horizon. It is natural therefore to propose that the
entropy of the black hole is 1/4 the area of the illusory horizon not only for outsiders,
but also for infallers. Indeed, if an infaller saw the horizon entropy decrease when
they fell inside, then that would violate the second law. Conversely if the infaller
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saw the horizon entropy increase, then the black hole would appear to the infaller to
contain more entropy than a quarter its horizon area, contradicting the notion that a
stationary black hole is in a thermal condition of maximum entropy.

The idea that the illusory horizon, not the true horizon, is the carrier of the hidden
states of the black hole is consistent with the fact that Hawking radiation originates
from the illusory horizon, not the true horizon.

5 The Illusory Horizon is a Holographic Screen, for Outsiders
and Insiders

The information paradox originated in a seminal paper by Hawking [13]. The paradox
is that one of two revered principles of quantum field theory must break down in the
presence of black hole horizons: either locality must fail, or else unitarity must fail.
Locality is the proposition that spacelike-separated field operators must commute.
Locality ensures that no information can be transmitted between spacelike-separated
points, enforcing causality at the quantum level. Unitarity is the proposition that
dynamics is reversible at the quantum level. Hawking tacitly assumed that locality
holds, and showed that the Hilbert space of states inside a black hole is then disjoint
from those of an observer to the future of when the black hole has evaporated.
Consequently information is destroyed, violating unitarity.

The most widely accepted resolution of the information paradox is holography,
an idea originally proposed by t’Hooft [16] and Susskind [17]. Holography asserts
that the quantum states seen by an insider are seen by an outsider as residing on the
horizon of the black hole. Holography violates locality because the Hilbert spaces of
spacelike-separated regions, far from being disjoint, are identified with each other.
Information about what happens inside the black hole is encoded on its horizon,
and eventually radiated to the outside as Hawking radiation, preserving unitarity.
Holography has received impetus from gauge/gravity dualities that arise in string
theory, whereby a strongly gravitating system is dual to a conformal gauge theory
residing on the boundary of the system.

Arguments favouring a breakdown of locality become stark when one considers
not just one insider, but a succession of infallers. As shown by [14], if a black
hole accretes gas, increasing its Bekenstein-Hawking entropy by some amount, then
processes of dissipation inside the black hole can potentially increase the entropy of
the gas not merely by the increase in the Bekenstein-Hawking entropy, but rather by
some fraction of the total Bekenstein-Hawking entropy of the entire black hole. If
locality held, then it would be legitimate to accumulate the entropy from multiple
parcels of infalling gas, leading to a total entropy inside the black hole many orders
of magnitude greater than its Bekenstein-Hawking entropy. This would imply a
gross violation of the second law when the black hole subsequently evaporated,
as illustrated by Fig. 6. To save the second law of thermodynamics from the [14]
argument, locality must be abandoned not only across the horizon, but between a
multiple succession of infallers.
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Fig. 6 Near its singularity, a black hole contains numerous regions whose future lightcones do
not intersect. If locality held inside a black hole, then it would be legimitate to accumulate entropy
along a spacelike surface slicing through these causally disconnected regions. Dissipative processes
inside a black hole can potentially cause the entropy accumulated along the spacelike surface to
exceed greatly the Bekenstein-Hawking entropy of the black hole [14], leading to a violation of the
second law when the black hole evaporates. This argument strongly supports the idea that locality
must break down inside black holes. Whereas entropy passing through a spacelike surface inside
the black hole may exceed the Bekenstein-Hawking entropy, the entropy passing through any null
surface inside the black hole is always less than the Bekenstein-Hawking entropy, consistent with
Bousso’s [15] covariant entropy bound

Holography produces just the kind of breakdown of locality that is needed to save
the second law of thermodynamics inside black holes. Just as an outsider must count
states hidden behind their illusory horizon as being holographically encoded on their
illusory horizon, so also an infaller must count states hidden behind their illusory
horizon as being holographically encoded on their illusory horizon. In this view, an
infaller should not count the entropy production witnessed by earlier infallers if that
entropy production occurred behind the later infaller’s illusory horizon.

6 An Infaller Merges States with the Illusory Horizon
at the Classical Singularity

The bottom panel of Fig. 2 shows that, as an infaller approaches the classical sin-
gularity, they have the impression of reaching the illusory horizon, which gives the
appearance of a flat plane. Any quantitative measure of distance to the illusory hori-
zon, such as the affine distance (the affine parameter normalized to measure proper
distance in the observer’s frame), or the angular diameter distance (the distance
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Fig. 7 The illusory horizon and the singularity constitute the holographic boundary of an evapo-
rating black hole. The diagram illustrates the delocalization of an entangled pair created at the star
point. Locality holds between an inside observer I and an outside observer as long as their future
lightcones intersect, so that they can communicate before I hits the singularity. Thus locality holds
between I and A, is at the brink of failure between I and B, and fails between I and C

inferred from the apparent angular separation of objects a known distance apart,
such as lines of constant latitude and longitude), indeed goes to zero as the observer
approaches the singularity.

In the light of the classical appearance, it is natural to propose that an infaller
who reaches the singularity merges their states with the illusory horizon. It has been
argued in this paper that prior to the singularity, the experience of an infaller can
be described by general relativity coupled with a natural extension of generalized
thermodynamics. Such a description must fail at the singularity, where the tidal
force diverges, and, as argued in Sect. 3, the Hawking radiation may also diverge.
The proposal is that the description of physics at the singularity should be replaced by
a holographic dual description. In this picture, as illustrated in the Penrose diagram
in Fig. 7, the complete holographic boundary of the black hole consists of the union
of the illusory horizon and the singularity.

7 Where Locality Breaks Down Inside Black Holes

The simplest possibility is that the transition from a classical to a dual holographic
description at the singularity is so rapid as to be effectively instantaneous. If so, then
any quantum entanglement between an infaller and an outsider or other infallers will
be replaced “instantly” by entanglement with the holographic image of the black
hole when the infaller hits the singularity.
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Figure 7 illustrates how locality between a pair of particles created in an entangled
state (e.g. a spin-zero singlet of spin-up and spin-down particles) breaks down as one
of the pair falls inside the black hole towards the singularity. Locality holds between
an insider who observes the inside particle at I , and an outsider who observes the
outside particle at A, because their future lightcones intersect, so they can compare
their measurements of spin. But locality fails between I and an outsider who observes
the outside particle at C , because their future lightcones do not intersect, so it is too
late to compare measurements. The transition between locality and non-locality takes
place at B, where the future lightcones just intersect at the singularity.

8 Summary

In this paper I have presented several arguments and proposals about generalized ther-
modynamics and holography from the point of view of observers who fall through
the true horizon of a black hole. The proposals are motivated by the classical appear-
ance of a black hole as seen by an infaller. The proposals are consistent with, and
extend, prevailing popular ideas about generalized thermodynamics and holography
from the point of view of observers who remain outside the horizon.

An important point is that observers see Hawking radiation not from the true
(future) horizon, but from the illusory (past) horizon, which is the redshifting surface
of matter that fell into the black hole long ago. The illusory horizon is the boundary
of the past lightcone of an observer, and is observer-dependent. The illusory horizon
is the holographic screen of the black hole for both outsiders and insiders, encoding
for each observer the states hidden behind their illusory horizon.

An infaller who nears the singularity has the impression that they actually reach
the illusory horizon. This motivates the most speculative proposal in this paper, that
an infaller who hits the singularity merges their states with the illusory horizon, the
holographic image of the black hole. In this picture, the holographic boundary of the
black hole is the union of the illusory horizon with the spacelike singularity.

Acknowledgments I thank Gavin Polhemus for numerous helpful conversations.
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Shape Dynamics

Tim A. Koslowski

Abstract Barbour’s formulation of Mach’s principle requires a theory of gravity to
implement local relativity of clocks, local relativity of rods and spatial covariance. It
turns out that relativity of clocks and rods are mutually exclusive. General Relativity
implements local relativity of clocks and spatial covariance, but not local relativity
of rods. It is the purpose of this contribution to show how Shape Dynamics, a theory
that is locally equivalent to General Relativity, implements local relativity of rods
and spatial covariance and how a BRST formulation, which I call Doubly General
Relativity, implements all of Barbour’s principles.

1 Introduction

A reflection on Mach’s principle lead Barbour to postulate that rods and spatial frames
of reference should be locally determined by a procedure that he calls “best match-
ing,” while clocks should be locally determined by what he calls “objective change”.
(For more, see [1].) More concretely, Barbour’s principles postulate local time repara-
metrization invariance, local spatial conformal invariance and spatial covariance. The
best matching algorithm for spatial covariance and local spatial conformal invariance
turns out to be equivalent to the imposition of linear diffeomorphism and conformal
constraints

H(ξ) =
∫

Σ

d3x πab(Lξ g)ab, C(ρ) =
∫

Σ

d3x ρ π, (1)
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where we use a compact Cauchy surface Σ without boundary with Riemannian
metric gab and metric momentum density πab with trace π . The vector field ξ and
the scalar field ρ are Lagrange multipliers. A more involved procedure, which I
will not explain here, leads to the implementation of local time reparametrization
invariance through quadratic Hamilton constraints

Ŝ(N ) =
∫

Σ

d3x N
(
πab Fabcdπcd − V

)
, (2)

where Fabcd(x) and V (x) are constructed from gab(x) and its derivatives at x and N
denotes a Lagrange multiplier. There is no reason for Ŝ to have homogeneous con-
formal weight, so a system containing the constraints Ŝ(N ) and C(ρ) will not be first
class except for very special choices of Fabcd , V . This means that time reparametriza-
tion symmetry and spatial conformal symmetry generically exclude one another. An
interesting situation occurs when we choose the Fabcd , V to reproduce the Hamilton
constraints of General Relativity

S(N ) =
∫

Σ

d3x N

(
πab(gacgbd − 1

2 gabgcd)πcd

√|g| − (R − 2Λ)
√|g|

)
, (3)

where the constraint system S(N ), Q(ρ) is completely second class, while the
constraint system S(N ), H(ξ) is first class as is the constraint system Q(ρ), H(ξ).
We will shortly see that this is the reason, why a Shape Dynamics and Doubly General
Relativity can be constructed [2].

2 Symmetry Trading

Gauge theories describe a physical system using redundant degrees of freedom. The
physical degrees of freedom are identified with orbits of the action of the gauge
group. This redundant description is very useful in field theory, because it is often
the only local description of a given system. The canonical description of gauge
theories (see e.g. [3]) is provided by a regular irreducible set of first class con-
straints {χα}α→A , whose elements χα are smooth functions on a phase space Γ with
Poisson bracket {., .}. First class means that the constraint surface C = {x → Γ :
χα(x) = 0, ∓α → A } is foliated into gauge orbits, whose infinitesimal generators
are the Hamilton vector fields vα : f ∼≤ {χα, f }. For simplicity we will assume that
the system is generally covariant, so it has vanishing on-shell Hamiltonian. Observ-
ables [O] of the system are equivalence classes of smooth gauge-invariant functions
O on Γ , where two functions are equivalent if they coincide on C and where gauge
invariance means that O is constant along gauge orbits. This means that an observ-
able is completely determined by determining its dependence on a reduced phase
space Γred , which contains one and only one point out of each gauge orbit. There is
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Fig. 1 Construction of equivalent gauge theories from a linking theory

no unique choice of Γred and the simplest description is through a regular irreducible
set of gauge fixing conditions {σα}α→A , such that a proper reduced phase is defined
through Γred = {x → Γ : χα(x) = 0 = σα(x), ∓α → A }. The observable algebra
can then be identified with the Dirac algebra on reduced phase space, where the Dirac
bracket takes the form

{ f, g}D := { f, g} −
(
{ f, χα}Mα

β {σβ, g} − { f, σ β}Mα
β {χα, g}

)
, (4)

where M denotes the inverse of the linear operator {χ, σ }.
The condition that Γred contains one and only one point out of each gauge orbit

poses important restrictions on the gauge fixing conditions, but the set of gauge fixing
conditions is not required to be first class. A very interesting situation arises when the
set of gauge fixing condition is itself first class: In this case one can switch the role
of gauge fixing conditions and constraints and describe the same observable algebra,
and thus the same physical system, with the gauge theory A = (Γ, {., .}, {χα}α→A )

or with the gauge theory B = (Γ, {., .}, {σα}α→A ). The manifest equivalence of
the two theories is established by gauge fixing theory A with the gauge fixing set
{σα}α→A and gauge theory B with the gauge fixing set {χα}α→A . One thus trades
one gauge symmetry for another.

A very useful tool for the construction of equivalent gauge theories is a linking
theory, see [4] and Fig. 1. Let us start with a phase space extension and denote
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the configuration variables of the extension by φα and their canonically conjugate
momenta by πβ and local Darboux coordinates on the original phase space Γ by
(qi , p j ). A linking theory on extended phase space is a set of regular irreducible first
class constraints that can be split into three subsets: The set {χ1

α}α→A can be weakly1

solved for φα , the set {χα
2 }α→A can be weakly solved for πα and the set {χ3

μ}μ→M is
weakly independent of the phase space extension. In this case, we can simplify the
discussion by noticing that the three constraint sets are equivalent to the sets

{φα − φα
o (q, p)}α→A , {πα − πo

α(q, p)}α→A and {χ̃3
μ(q, p)}μ→M . (5)

There are two sets of natural gauge fixing conditions {φα}α→A and {πα}α→A . Impos-
ing φα = 0 gauge fixes the constraints πα − πo

α(q, p) and leads to the phase space
reduction (φα, πβ) ≤ (0, πo

β(q, p)), so the reduced phase space is Γ . Moreover,
the Dirac bracket associated with this phase space reduction coincides with the
Poisson bracket on Γ . The result of the phase space reduction is the gauge theory
B = (Γ, {., .}, {πo

α}α→A ∞ {χ̃3
μ}μ→M ).

Similarly, imposing πα = 0 yields a phase space reduction (φα, πβ) ≤
(φα

o (q, p), 0) and the resulting gauge theory is A = (Γ, {., .}, {φo
α}α→A ∞{χ̃3

μ}μ→M ).
The gauge theories A and B describe obviously the same physical system. It turns
out that we would have obtained the same result even if had we not solved the first
two subsets of constraints for the phase space extension.

3 Shape Dynamics

Let us now extend the phase space of General Relativity by a conformal factor φ and
its conjugate momentum density πφ . The linking theory between General Relativity
on a compact manifold Σ without boundary and Shape Dynamics can be obtained
by canonical best matching General Relativity in the ADM formulation with respect
to conformal transformations that do not change the total spatial volume. This yields
the following set of constraints

T S(N ) =
∫
Σ

d3x N

(
σ a

b σ b
a√|g| e−6φ̂ + (2Λ − 1

6
∗π〉2)

√|g|e6φ̂ − R(e6φ̂g)
√|g|e2φ̂ + a

)
,

(6a)

Q(ρ) =
∫
Σ

d3x ρ
(
πφ − 4π + 4∗π〉√|g|

)
, (6b)

H(ξ) =
∫
Σ

d3x
(
πab(Lξ g)ab + πφLξ φ

)
, (6c)

where φ̂ := φ− 1
6 ln∗e6φ〉, σ a

b = πacgcb − 1
3πδa

b and where triangle brackets denote
the mean w.r.t.

√|g| and where the term a vanishes when π = ∗π〉√|g|. Imposing
the gauge fixing condition φ = 0 results in a phase space reduction (φ, πφ) ≤

1 “Weakly” means on the constraint surface.
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(0, 4(π − ∗π〉)) and reduces the system back to the ADM formulation of General
Relativity. Imposing the gauge fixing condition πφ = 0 gauge fixes all T S(N ),
except for one. The simplest way to see this is to observe that T S = 0 is equivalent
to imposing that φ solves the Lichnerowicz-York equation

8ΔgΩ =
(

1

6
∗π〉2 − 2Λ

)
Ω5 + R Ω − σ a

b σ b
a

|g| Ω−7 (7)

for Ω = eφ , but with the reducibility condition that the conformal factor is volume
preserving

∫
Σ

d3x
√|g| (1 − e6φ

) = 0. The left-over constraint is thus equivalent to
the constraint ∫

Σ

d3x
√|g|

(
1 − e6φo[g,π ]) = 0, (8)

where φo[g, p; x) denotes the positive solution to the Lichnerowicz-York equation,
which is known to uniquely exist on physical phase space [5]. The phase space
reduction thus yields the constraint system

HSD =
∫

Σ

d3x
√|g|

(
1 − e6φo[g,π ]) , (9a)

Ĉ(ρ) =
∫

Σ

d3x ρ
(
π − ∗π〉√|g|

)
, (9b)

H(ξ) =
∫

Σ

d3xπab(Lξ g)ab. (9c)

This is not exactly Shape Dynamics, because the total conformal transformations
generated by Ĉ(ρ) preserve the total spatial volume. One can however obtain a true
theory of Shape Dynamics by observing that the only nonlinear constraint HSD has
the form of a reparametrization constraint pt − H(t) ⊂ 0 of parametrized dynamics.
Thus, after identifying the total volume V with the momentum conjugate to York
time τ = 3

2 ∗π〉 and deparametrizing the theory one obtains the physical Hamiltonian

Hphys =
∫

Σ

√|g|e6φ[g,π ]. (10)

The π(x) is constrained to ∗π〉√|g|(x) and the conformal factor of the metric is pure
gauge, except for the total volume. The physical phase space is thus coordinatized
by the conformal metric ρab = |g|−1/3gab and σ a

b and V, ∗π〉. The only physical
phase space coordinate that is affected differently by volume preserving conformal
transformations as opposed to unrestricted conformal transformations is V . But after
reinterpreting 3

2 ∗π〉, V as time and its momentum there is no difference on the phys-
ical phase space volume preserving and unrestricted conformal transformations. The
Shape Dynamics Hamiltonian Hphys comes with the constraints
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C(ρ) =
∫

Σ

d3x π, H(ξ) =
∫

Σ

d3x πab(Lξ g)ab. (11)

The dictionary between Shape Dynamics and General Relativity is established as
follows: Given a solution ρab(τ ), σ a

b (τ ) to the Shape Dynamics equations of motion,
one finds that this is also a solution to the equations of motion of General Relativity
in constant mean curvature (CMC) gauge.

4 Doubly General Relativity

An important difficulty of Shape Dynamics is that the physical Hamiltonian is
non-local. One can improve this by working with the BRST formalism. One obtains
the BRST formalism by adjoining to each of the regular irreducible first class con-
straints χα a ghost ηα and canonically conjugate ghost momentum Pα with opposite
statistics. A result from cohomological perturbation theory then shows that the first
class property of the constraints allows one to construct a nilpotent ghost number one
BRST generator Ω = ηαχα +O(η2), which provides a resolution of the observable
algebra. This means that {Ω, .} is a differential, whose cohomology at ghost number
zero is precisely the classical observable algebra.

The prerequisite for symmetry doubling to work was that there were two first
class surfaces that gauge fixed one another. One can thus construct two nilpotent
BRST generators: A ghost number +1 generator Ω form the first set of first class
constraints and a ghost number −1 generator Ψ from the second set of first class
constraints. For generally covariant theories, i.e. theories with vanishing on-shell
Hamiltonian, one finds that the BRST-gauge fixed Hamiltonian can be written as
HB RST = {Ω,Ψ }. The Jacobi identity and nilpotency of the generators then implies
that HB RST is annihilated by two BRST transformations: the ones generated by Ω

and the ones generated by Ψ . One can thus not only relate the observables of the
two theories with one another (Ω provides a resolution for the first and Ψ for the
second), but one sees that the BRST gauge-fixed actions of the two theories can be
chosen to coincide.

It goes beyond the scope of this contribution to discuss a detailed application of
this construction for the duality between General Relativity and Shape Dynamics (for
details see [6]), so I will only illustrate what the two BRST charges can be chosen
to be:

Ω =
∫

Σ

d3x
(

S(η) + Ha(ηa) + O(η2)
)
, (12a)

Ψ =
∫

Σ

d3x

(
P

π√|g| + Ha(gab Pb)√|g| + O(P2)

)
, (12b)

where the higher orders in ghosts are chosen such that the two generators are nilpo-
tent. It is evident that the construction will lead to a canonical action that is left
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invariant invariant by ADM- and Shape Dynamics BRST transformations, hence the
name Doubly General Relativity. I conclude this short description with the warning
that the ghost-number zero term of this Hamiltonian is not the CMC gauge-fixing
of ADM.

5 Interpretation

Although local relativity of clocks and local relativity of rods seem to be incompatible
as gauge symmetries, they are reconcilable. This reconciliation can be seen in the
canonical formalism, where it appears that gravitational dynamics is equivalently
described either by the ADM system or by the Shape Dynamics system. This means
that both theories have the same solutions and make the same predictions for all
observables. It can also be seen in the BRST formalism, where not only the predictions
for observables coincide, but where it turns out that the gauge fixed gravity action has
two BRST invariances, one corresponding to the on-shell spacetime symmetries of
the ADM description of gravity, the other corresponding to the conformal symmetries
of the Shape Dynamics description of gravity.

I want to conclude with considering the ideas behind the construction of Shape
Dynamics. The construction of Shape Dynamics requires two steps: symmetry trad-
ing and the identification of a parametrized dynamical system. There is a lot of
literature on the second step (e.g. Kuchař’s perennials), but the idea behind symme-
try trading seems to have avoided extensive discussion, although the idea itself is
obvious.

Gauge theories are formulated with redundant degrees of freedom and gauge
invariance, to have a local2 (and thus comprehensible) field theory. This is a spe-
cial instance of the more general fact that a comprehensible description of the real
world often requires auxiliary concepts, which are not really part of reality. Which
auxiliary concept is chosen is not unique; in general there is an infinite number of
internally consistent descriptions. But although all descriptions are required to accu-
rately describe the real world and be internally consistent, it can happen that two
descriptions are mutually exclusive because the auxiliary concepts are incompatible.
We see this in the duality between General Relativity and Shape Dynamics: General
Relativity teaches that gravity is spacetime geometry and not a conformal theory,
while Shape Dynamics teaches that gravity is a conformal theory without spacetime.

This can be very disturbing and leads to the question: “How can we discriminate
better from worse descriptions?” I can only think of one criterion, provided two
descriptions are accurate and internally consistent. The criterion is: Which descrip-
tion has more explanatory power? However, this may be the wrong question. I think
one should rather embrace the fact there are many possibly equally good consistent
but mutually exclusive descriptions of the real world and one should use whichever

2 Note that the Shape Dynamics Hamiltonian, although nonlocal, can be described locally through
the linking theory.
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is most adapted to answer a particular problem. For example, a question regarding
spacetime has most likely a simple answer in a covariant description, while a ques-
tion regarding the observable algebra has most likely a simple answer in the Shape
Dynamics description.

Acknowledgments Research at the Perimeter Institute is supported in part by the Government of
Canada through NSERC and by the Province of Ontario through MEDT.
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Superradiance or Total Reflection?

András László and István Rácz

Abstract Numerical evolution of massless scalar fields on Kerr background is
studied. The initial data is chosen to have compact support separated from the ergore-
gion and to yield nearly monochromatic incident wave packets. The initial data is
also tuned to maximize the effect of superradiance. We give evidence indicating that
instead of the anticipated energy extraction from the black hole the incident radiation
fails to reach the ergoregion and instead it suffers a nearly perfect reflection.

1 Introduction

To motivate our investigations let us mention first that the stability of the Kerr family
of black hole solutions within the space of the vacuum solutions to the Einstein
equations is one of the most important unresolved issues in general relativity. The
ultimate goal is to provide boundedness and decay statements for solutions of the
vacuum Einstein equations around the members of the Kerr family.

It may be a surprise that—even nowadays when numerical simulations of binary
black hole systems become a daily routine—essentially all work concerning the
aforementioned black hole stability problem has been confined to the linearized
setting. Indeed, considerations are restricted to study of the solutions to the Klein-
Gordon equation

�K Λ = 0 (1)
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on Kerr background. This is done with the hope that the understanding of these
simplified scalar perturbations is a good preparation to the study of the more com-
plicated problem of complete, but yet linear, gravitational perturbations.

It should also be mentioned that all the available analytic proofs justifying the
linear stability, with respect to scalar perturbations subject to (1), are known to be
restricted to the case of slowly rotating subextremal Kerr black holes [1, 2].

2 Superradiance

Recall first that superradiance, as a new phenomenon, was discovered in the early
1970s and it may be associated with the names of Misner, Zel’dovich and Starobinskii
[3–5]. It is also considered to be the wave analog of the Penrose process and it is
supposed to allow energy to be extracted from black holes.

The common belief related to the interaction of black holes with incident radiation
is summarized as “...if scalar, electromagnetic or gravitational wave is incident upon
a black hole, part of the wave (the “transmitted wave”) will be absorbed by the
black hole and part of the wave ( the “reflected wave”) will escape to infinity” [6].
Recall that by using Teukolsky’s equation [7] the evolution of scalar, electromagnetic
and gravitational perturbations can be investigated within the same setting. It is
also important to be mentioned that all the conventional arguments ending up with
superradiance, including the ones based on Teukolsky’s equation, refer to properties
of individual modes [8].

Interestingly, as first pointed out by Bekenstein [9], whenever superradiance
occurs it can be seen to be completely consistent with the laws of black hole ther-
modynamics. It is also worth to mention some of the expectations concerning scalar
perturbations. As claimed in [10]: “Starobinskii made an asymptotic expansion for
the reflection coefficient and found a relative gain of energy of about 5 % for m = 1
and less than 1 % for m √ 2”.

3 Superradiance in Mode Analysis

It was realized first by Carter [11] that the temporal Fourier transform, FΛ =
1→
2φ

∫ +∓
−∓ Λ eiκt dt , of a solution to (1) may be decomposed as

FΛ(κ, r∼, ν, ∂) = 1→
r2 + a2

∓∑
ξ=0

ξ∑
m=−ξ

Rm
ξ,κ(r∼)Sm

ξ,aκ(ν, ∂), (2)

where t, r∼, ν, ∂ are local coordinates, while κ is the frequency in the time translation
direction. In (2) Sm

ξ,aκ denotes the oblate spheroidal harmonic functions, with
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oblateness parameter aκ, and with angular momentum quantum numbers ξ, m. The
functions Sm

ξ,aκ are eigenfunctions of a self-adjoint operator.
For the radial functions Rm

ξ,κ in (2) a one-dimensional Schrödinger equation of
the form

d2 Rm
ξ,κ

dr2∼
+

[(
κ − ma

r2 + a2

)2

+ (r − rH ) · V m
ξ,κ(r∼)

]
Rm

ξ,κ = 0 , (3)

can be derived from (1), with suitable real potentials V m
ξ,κ(r∼).

The “physical solutions” to (3) are supposed to possess the asymptotic behavior

Rm
ξ,κ ≤

⎪
e−iκr∼ + R e+iκr∼ as r ∞ ∓
T e−i(κ−mπH )r∼ as r ∞ rH ,

(4)

where πH stands for the angular velocity of the black hole with respect to the
asymptotically stationary observers, while R and T denote the reflection and trans-
mission coefficients. Notice that these boundary conditions presume the existence of
a transmitted wave submerging into the ergoregion.

By evaluating the Wronskian of the associated fundamental solutions, “close” to
infinity and “close” to the horizon, the relation

(κ − mπH ) |T |2 = (1 − |R|2) κ (5)

can be seen to hold. In virtue of this relation it follows then that whenever |R| > 1—
or equivalently whenever |T | does not vanish and the inequality

0 < κ < mπH (6)

is satisfied—energy is supposed to be acquired by the backscattered scalar mode due
to its interaction with the Kerr black hole.

4 Numerical Studies of Superradiance

So far our considerations have been restricted to the study of individual modes.
However the investigation of the linear stability problem [1, 2, 12, 13] taught us the
lesson that statements which are valid at the level of individual modes typically do
not imply statements for finite energy solutions composed of infinitely many modes.

This section is to reveal some of our pertinent numerical results. Before proceeding
let us mention that the first time domain studies of superradiance were carried out
long time ago in [14, 15]. The scale of energy extraction was found to be smaller
than the estimates recalled above. The numerical results reported below were derived
by making use of our code called GridRipper which is fully spectral in the angular
directions while the dynamics in the complementary 1 + 1 Lorentzian spacetime is
followed by making use of a fourth order finite differencing scheme [16–18].
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4.1 The Initial Data

To have an incident scalar wave—to study the way in which a possible superradiant
solution acquires extra energy by submerging into the ergoregion—in a sufficiently
small neighborhood of the initial data surface in the asymptotic region, the solution
was assumed to possess the form

Λ(t, r∼, ν, ∂̃) ∗ e−i κ0 (r∼−r∼0+t) f (r∼ − r∼0 + t) Y m
ξ (ν, ∂̃), (7)

where f : R ∞ C is a smooth function of compact support and κ0, r∼0 are real
parameters. This suggests the use of initial data

τ(r∼, ν, ∂̃) = e−i κ0 (r∼−r∼0) f (r∼ − r∼0) Y m
ξ (ν, ∂̃) ,

τt (r∼, ν, ∂̃) = −i κ0 τ(r∼, ν, ∂̃) + e−i κ0 (r∼−r∼0) f ′(r∼ − r∼0) Y m
ξ (ν, ∂̃),

where f ′ denotes the first derivative of f : R ∞ C. The Fourier transform, FΛ, of
the approximate solution (7) reads

FΛ(κ, r∼, ν, ∂̃) ∗ e−i κ (r∼−r∼0)Ff (κ − κ0) Y m
ξ (ν, ∂̃), (8)

where κ is the temporal frequency and Ff stands for the Fourier-transform of f .
Notice that Ff plays the role of a frequency profile, which guarantees that whenever
Ff is chosen to be sufficiently narrow the approximate solution (7) has to be close to
a monochromatic wave packet, which for suitable value of κ0 becomes superradiant
(for more details see [17]).

4.2 Numerical Results

The plots shown below refer to the evolution of pure quadrupole type initial data
with a radial profile function f : R ∞ C

fw(x) =

 e

[
−

⎜⎜⎜⎜ w
x+ w

2

⎜⎜⎜⎜−
⎜⎜⎜⎜ w

x− w
2

⎜⎜⎜⎜+4

]
, if x ⊂ [−w

2 , w
2 ]

0, otherwise ,

(9)

which is a smooth function of the real variable x with compact support [−w
2 , w

2 ], and
with initial parameters M = 1, a = 0.99, ξ = m = 2, κ0 = 1

2 mπH , r∼0 = 31.823.
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Fig. 1 The power spectrum of the to be superradiant solution at r∼ = 14, located between the
compact support and the black hole

It is important to be sure (see Fig. 1) that the above choice yields a solution with
the expected frequency profile.

The time dependence of the radial energy and angular momentum distributions,
along with the complete power spectrum, are shown1 in Figs. 2 and 3 below. These
figures indicate that the reported nearly perfect reflection really does happen for the
considered solution.

It is also informative to have a look at the corresponding figures (see Figs. 4 and 5)
for an “almost superradiant” solution yielded by shifting the compact support towards
the black hole—decreasing thereby slightly the ratio of the angular momentum of
the radiation to its energy—while all the other parameters were kept intact.

Notice that, in virtue of Fig. 5, the frequency content of the part of the incident
wave packet, submerging into the ergoregion, gets completely evacuated from the
superradiant domain.

It is also important to be mentioned that to the accuracy of our code, no energy
extraction—or, at least, not more than 10−3 times the initial energy—happened in
either of these (or analogous) simulations.

1 Note that on all the included 2-dimensional plots the indicated quantities are integrated with
respect to the radial degrees of freedom.



124 A. László and I. Rácz

Fig. 2 The radial energy and angular momentum distributions

Fig. 3 The radial distribution of the power spectrum

5 Summary

The numerical evolution of massless Klein-Gordon field on Kerr background, arising
from initial data with compact support in the asymptotic region, was considered. The
incident wave packet was tuned to maximize the effect of superradiance.
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Fig. 4 The frequency κ0 of this nearly superradiant solution is the same as before. Only the support
is shifted to get a submerging part

Fig. 5 The untuned solution has a submerging part but its power spectrum jumps out of the super-
radiant domain on reaching the ergoregion

For perfectly tuned initial data no energy extraction could be observed. Significant
part of the incident radiation fails to reach the ergoregion and the time evolution
mimics the phenomenon of a total reflection.
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Fig. 6 The energy and angular momentum content of the initial data are compared. The to be
superradiant configurations cannot deliver their full energy and angular momentum to the black
hole without violating the second law of black hole thermodynamics

To get some insight about the physical mechanism beyond the reported nearly
total reflection it turned out to be useful to compare the energy and angular momen-
tum content of the initial data. Figure 6 is to demonstrate that far too much angular
momentum is stored by the to be superradiant wave packets, as d E < πH d L holds
for them, which—in virtue of the second law of black hole thermodynamics—does
not allow these packets to enter the black hole region. Accordingly, the observed
nearly total reflection may be considered as the field theoretical analog of the phe-
nomenon in Wald’s thought experiments [19] demonstrating, in the early 1970, that a
Kerr black hole does not capture a particle that would cause a violation of the relation
m2 √ a2 + e2.
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Non-Linear Effects in Non-Kerr Spacetimes

Georgios Lukes-Gerakopoulos, George Contopoulos
and Theocharis A. Apostolatos

Abstract There is a chance that the spacetime around massive compact objects
which are expected to be black holes is not described by the Kerr metric, but by a
metric which can be considered as a perturbation of the Kerr metric. These non-Kerr
spacetimes are also known as bumpy black hole spacetimes. We expect that, if some
kind of a bumpy black hole exists, the spacetime around it should possess some
features which will make the divergence from a Kerr spacetime detectable. One of
the differences is that these non-Kerr spacetimes do not posses all the symmetries
needed to make them integrable. We discuss how we can take advantage of this fact
by examining EMRIs into the Manko–Novikov spacetime.

1 Introduction

We expect that a star which at the end of its life becomes a compact object with
mass greater than three solar masses is a Kerr black hole. However, this anticipation
should be somehow tested by observations.

One way to test the Kerr hypothesis is to study the gravitational wave signal
produced by an inspiraling relatively light compact object (e.g., stellar) into the
spacetime background of a supermassive compact object. This kind of motion is
called Extreme Mass Ratio Inspiral (EMRI). Such binary systems should exist in
the center of galaxies which we believe are occupied by supermassive black holes
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(105–109 solar masses). In EMRIs the lighter object basically traces the background
spacetime by following approximately geodesic orbits. Ryan in [1, 2] showed that we
could extract the multipole moments of the background from the gravitational wave
signal, and Collins and Hughes [3] produced a perturbed Schwarzschild black hole
spacetime, which they called “bumpy” black hole spacetime, in order to perform the
first tests of the Kerr hypothesis. Since then several such tests have been proposed,
see e.g., [4–6] and references therein.

The bumpy black hole spacetimes are axisymmetric and stationary, but in general
lack a Carter-like constant [7]. It has been shown that even in an axisymmetric sta-
tionary Newtonian potential, a higher order Killing tensor connected to a Carter-like
constant cannot be found [8], contrary to conjectures that were initially postulated [9].
The lack of a Carter-like constant implies that the bumpy black hole systems are non-
integrable, which in turn suggests that non-linear effects like chaos should be present.
In a series of publications [10–12] we have studied what implications these non-linear
effects will bring to a gravitational wave signal coming from an EMRI into a non-Kerr
spacetime background. In the present article we present briefly these findings.

The article is organized as follows. Section 2 introduces some basic theoretical
elements about a bumpy black hole spacetime and the geodesic motion in such space-
time. Section 3 discusses the non-integrability imprints of the non-Kerr background
in gravitational wave signals. Our conclusions are given in Sect. 4.

2 Theoretical Elements

2.1 The Manko–Novikov Spacetime

The bumpy black hole spacetime we used in [10–12] is a spacetime which belongs
to the so-called Manko–Novikov (MN) metric family [13]. Manko and Novikov
found an exact vacuum solution of Einstein’s equations which describes a station-
ary, axisymmetric, and asymptotically flat spacetime with arbitrary mass-multipole
moments [13]. The MN metric subclass we used was introduced in [14] and deviates
from the Kerr at all moments higher or equal to the quadrupole one. The new space-
time is characterized by one more parameter q than the ones describing a Kerr metric.
Namely, the quantity q measures how much the MN quadrupole moment Q departs
from the Kerr quadrupole moment QK err = −S2/M (that is q = (QK err −Q)/M3),
where M and S are the mass and the spin of a Kerr black hole respectively. If q = 0
the MN solution becomes exactly a Kerr solution. The line element of the MN metric
in the Weyl-Papapetrou cylindrical coordinates (t, ρ, ϕ, z) is

ds2 = − f (dt − ωdϕ)2 + f −1
[
e2γ (dρ2 + dz2) + ρ2dϕ2

]
, (1)

where f, ω, γ are considered functions of the prolate spheroidal coordinates v, w,
while the coordinates ρ, z can be expressed as functions of v, w as well. Namely,
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ρ = k
√

(v2 − 1)(1 − w2), z = kvw, where k = M 1−α2

1+α2 , α = − 1 +
√

1−χ2

χ
, while χ

is the dimensionless spin parameter χ = S/M2. The exact formulae of f, ω, γ are
lengthy, and can be found in [11, 14].

2.2 Geodesic Motion in the Manko–Novikov Spacetime

The geodesic orbits of a test particle of mass μ are described as equations of motion
of the Lagrangian L = 1

2 μ gμν ẋμ ẋν , where the dots denote derivatives with respect
to the proper time. The MN metric has two integrals of motion, namely the energy
(per unit mass)

E = −∂L

∂ ṫ
/μ = f (ṫ − ω ϕ̇), (2)

and the z-component of the angular momentum (per unit mass)

Lz = ∂L

∂ϕ̇
/μ = f ω(ṫ − ω ϕ̇) + f −1ρ2ϕ̇, (3)

The Kerr metric has one more integral of motion, the so-called Carter constant [7],
thus it is an integrable system. However, the MN model lacks in general (as long as
q →= 0) such constant which means that MN is a non-integrable system, and therefore
chaos should appear.

We can reduce the four degrees of freedom of the MN system to two, by using
the two integrals of motion E , and Lz , and thus, restrict the motion to the meridian
plane (ρ, z). By rewriting the metric (1) we see that the motion in the meridian plane
satisfies the relation

1

2
(ρ̇2 + ż2) + Vef f (ρ, z) = 0, (4)

where the effective potential Vef f (ρ, z) depends on the parameters q, χ , E , and Lz .
Vef f ∓ 0 for all possible orbits. On the boundary Vef f = 0 the velocity vanishes:
ρ̇ = ż = 0; this is the so called curve of zero velocity (CZV). Inside the CZV lie the
non-escaping orbits.

In the Kerr spacetime case (q = 0) every non-plunging geodesic orbit confined by
the CZV lies on a two dimensional torus in the phase space. On such a torus each orbit
is described by two characteristic frequencies ω1, ω2. If the ratio of these frequencies
νθ is an irrational number, the motion is quasiperiodic, and the corresponding torus is
covered densely by the orbit. If the ratio is a rational number, the motion is periodic,
and the corresponding torus is called resonant. A resonant torus is covered by an
infinite number of periodic orbits, all having the same frequency ratio νθ .

By setting q →= 0 we perturb the integrable system (Kerr), and the transition to
the non-integrable system (MN) is described basically by two theorems: the KAM
theorem, and the Poincaré-Birkhoff theorem. The first theorem states that after the
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perturbation most of the non-resonant tori will survive deformed. These surviving
tori are called KAM tori. The second theorem implies that from a resonant torus only
a finite even number of periodic orbits will survive; half of them will be stable and
the other half unstable. Around the stable orbits small islands of stability are formed,
while the asymptotic manifolds emanating from the unstable periodic orbits fill a
region of chaotic orbits. The above formation is known as a Birkhoff chain.

One way to study the aforementioned different structures in a non-integrable
system of two degrees of freedom is to take a section through the foliation of the
tori. Such section is known as a surface of section, or as a Poincaré section. Another
way is provided by the frequency ratio νθ , by which we can detect the different types
of orbits and it is known as the rotation number (e.g., [15]). If νθ corresponds to an
irrational number, we have a KAM curve; if it corresponds to a rational number, we
are on a Birkhoff chain of islands of stability; if the value of νθ is indefinite, and does
not correspond to a particular number, then the orbit is chaotic.

3 Non-Integrability Imprints on the Gravitational Wave Signal

3.1 The Plateau Effect of the Resonances

One possible imprint of the non-integrability of a bumpy black hole spacetime on
the corresponding gravitational wave signal is the effect of the resonances. The left
panel of Fig. 1 shows a part of the surface of section z = 0 (z > 0) of a MN spacetime
for the parameter set E = 0.95, Lz = 3 M , χ = 0.9, q = 0.95. The first impression
one might get is that the surface of section indicates an integrable system, because
no straightforward signs of chaos are prominent. However, the islands of stability
(left panel of Fig. 1) imply the existence of Birkhoff chains, which in turn indicate
that chaos is also present.

If we take initial conditions along a straight line in the phase space, like the ρ̇ = 0
line starting from the center u0 of the main island of stability shown in the left panel
of Fig. 1, and evaluate the rotation number for each of these initial conditions, then
we get a rotation curve (right panel of Fig. 1). This curve seems to be smooth and
strictly monotonic (in a Kerr spacetime this is the case), however a more detailed
look reveals that this is not exactly true. At the resonances, plateaus appear. For
instance in the embedded plot of the right panel of Fig. 1, we can see a plateau at
the 2/3 resonance. This happens because all the orbits belonging to the same chain
of islands of stability share the same rotation number, i.e., the same frequency ratio.
Such plateaus do not appear in the case of a Kerr metric.

However, geodesic orbits are simply an approximation of real EMRI orbits. A
more realistic approximation demands the inclusion of the radiation reaction. Since
there are no reliable computations describing the radiation reaction in a bumpy black
hole spacetime, we used the same trick as the authors of [14]. Namely, we used the
hybrid approximative method [16] (Eqs. (44) and (45) in [16]), where we added by
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Fig. 1 The left panel shows a part of the surface of section in the plane (ρ, ρ̇) focusing on the
main island of stability, where u0 indicates the center of the main island. The right panel shows
the rotation number along the line ρ̇ = 0 (starting from u0 and moving leftwards) on the surface of
section shown in the left panel. Embedded in the right panel is a detail of the rotation curve around
the 2/3-resonance. The parameters used are E = 0.95, Lz = 3 M , χ = 0.9, q = 0.95
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Fig. 2 The left panel shows the evolution of the ratio νθ as a function of the coordinate time t for
a non-geodesic orbit. The vertical dashed lines demarcate the time intervals that the non-geodesic
orbit spends in the interior of the 2/3-resonance. The right panel shows the time Δtr needed by
non-geodesic orbits to cross the chain of islands belonging to the 2/3-resonance as a function of
their initial conditions ρ(0) along the line ρ̇ = 0, z = 0. The parameters used are μ/M = 8×10−5,
q = 0.95, χ = 0.9, E(0) = 0.95, Lz(0) = 3 M , where E(0), Lz(0) are the initial values of E
and Lz respectively

hand the anomalous quadrupole moment q to the χ2 terms. Furthermore, we assumed
a constant rate of energy and angular momentum loss due to gravitational radiation.

We applied the aforementioned scheme for a mass ratio μ/M = 8 × 10−5, to
evolve initial conditions near the 2/3 resonance, and found that the plateau also
appears when we calculate the rotation number as a function of the coordinate time
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Fig. 3 The left panel shows a detail of the surface of section near an island 2/7. The right panel
shows the rotation curve along the ρ̇ = 0 line of the surface of section presented in the left panel.
Embedded in the right panel is the irregular variation of the rotation number just outside the left side
of the 2/7-plateau. This irregular behavior is due to the chaotic layer surrounding the corresponding
island. The parameters used are E = 0.95, Lz = 2.995 M , χ = 0.9, q = 0.95

(left panel of Fig. 2). This phenomenon was tested for several initial conditions near
the 2/3 resonance and for each of them we estimated the time Δtr that the inspiraling
non-geodesic orbit stayed in the resonance (right panel of Fig. 2). The mean time of
these plateaus is approximately 5 × 104 M , which corresponds roughly to a week
for a supermassive compact object of the size of the one lying at the center of the
Milky Way.

3.2 The Beacon Effect of Stickiness

If we focus more on the chaotic aspect of the Birkhoff chains, another effect could
be detected in gravitational waves coming from an EMRI in a bumpy black hole
spacetime background. This effect is connected with the phenomenon of stickiness
[15]. The stickiness phenomenon concerns chaotic orbits which for various reasons
stick for a long time interval in a region close to regular orbits. Therefore, their
behavior in the frequency spectrum might resemble that of the regular orbits they are
close to, before they depart from that region.

In the left panel of Fig. 3 we see a detail of the surface of section near the resonance
2/7. The stickiness appears in the region where chaotic orbits (scattered points on
the surface of section) are confined by regular orbits. Even though their true charac-
ter is detected by the rotation number, since νθ varies widely in the corresponding
regions (right panel of Fig. 3), the phenomenology might be more complicated in
the frequency spectrum. Namely, while a chaotic orbit stays near a regular orbit we
might get a signal, i.e., distinct characteristic frequencies; when the orbit moves to a
more prominent chaotic layer the frequency peaks in the signal will dissolve leaving
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only noise instead of a signal; later on when the orbit returns near a regular orbit the
signal shall reappear, and so on. This effect resembles a beacon, where the signal
appears and disappears.

4 Conclusions

The resonance and the stickiness effect are generic characteristics of the geodesic
motion in any non-integrable Hamiltonian system describing a stationary and axisym-
metric spacetime background like that of an axially symmetric perturbation of the
Kerr spacetime. Therefore, they should be in principle detectable in the gravitational
wave signal coming from an EMRI into a non-Kerr metric.

Acknowledgments G. L-G is supported by the DFG grant SFB/Transregio 7.

References

1. Ryan, F.: Gravitational waves from the inspiral of a compact object into a massive, axisymmetric
body with arbitrary multipole moments. Phys. Rev. D 52, 5707 (1995). doi:10.1103/PhysRevD.
52.5707

2. Ryan, F.: Accuracy of estimating the multipole moments of a massive body from the gravita-
tional waves of a binary inspiral. Phys. Rev. D 56, 1845 (1997). doi:10.1103/PhysRevD.56.
1845

3. Collins, N., Hughes, S.: Towards a formalism for mapping the spacetimes of massive compact
objects: bumpy black holes and their orbits. Phys. Rev. D 69, 124022 (2004). doi:10.1103/
PhysRevD.69.124022

4. Amaro-Seoane, P., Aoudia, S., Babak, S., et al.: Low-frequency gravitational-wave science
with eLISA/NGO. Class. Quantum Grav. 29, 124016 (2012). doi:10.1088/0264-9381/29/12/
124016

5. Bambi, C.: Testing the Kerr black hole hypothesis. Mod. Phys. Lett. A 26, 2453 (2011). doi:10.
1142/S0217732311036929

6. Johannsen, T.: Testing the no-hair theorem with Sgr A*. Adv. Astron. 2012, 486750 (2012).
doi:10.1155/2012/486750

7. Carter, B.: Global Structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559
(1968). doi:10.1103/PhysRev.174.1559

8. Markakis, C.: Constants of motion in stationary axisymmetric gravitational fields. ArXiv e-
prints arXiv:1202.5228 [astro-ph.SR] (2012)

9. Brink, J.: Formal solution of the fourth order Killing equations for stationary axisymmetric
vacuum spacetimes. Phys. Rev. D 84, 104015 (2011). doi:10.1103/PhysRevD.84.104015

10. Apostolatos, T., Lukes-Gerakopoulos, G., Contopoulos, G.: How to observe a non-Kerr space-
time using gravitational waves. Phys. Rev. Lett. 103, 111101 (2009). doi:10.1103/PhysRevLett.
103.111101

11. Lukes-Gerakopoulos, G., Apostolatos, T., Contopoulos, G.: Observable signature of a back-
ground deviating from the Kerr metric. Phys. Rev. D 81, 124005 (2010). doi:10.1103/
PhysRevD.81.124005

http://dx.doi.org/10.1103/PhysRevD.52.5707
http://dx.doi.org/10.1103/PhysRevD.52.5707
http://dx.doi.org/10.1103/PhysRevD.56.1845
http://dx.doi.org/10.1103/PhysRevD.56.1845
http://dx.doi.org/10.1103/PhysRevD.69.124022
http://dx.doi.org/10.1103/PhysRevD.69.124022
http://dx.doi.org/10.1088/0264-9381/29/12/124016
http://dx.doi.org/10.1088/0264-9381/29/12/124016
http://dx.doi.org/10.1142/S0217732311036929
http://dx.doi.org/10.1142/S0217732311036929
http://dx.doi.org/10.1155/2012/486750
http://dx.doi.org/10.1103/PhysRev.174.1559
http://arxiv.org/abs/1202.5228
http://dx.doi.org/10.1103/PhysRevD.84.104015
http://dx.doi.org/10.1103/PhysRevLett.103.111101
http://dx.doi.org/10.1103/PhysRevLett.103.111101
http://dx.doi.org/10.1103/PhysRevD.81.124005
http://dx.doi.org/10.1103/PhysRevD.81.124005


136 G. Lukes-Gerakopoulos et al.

12. Contopoulos, G., Lukes-Gerakopoulos, G., Apostolatos, T.: Orbits in a non-Kerr dynamical
system. Int. J. Bifurcat. Chaos 21, 2261 (2011). doi:10.1142/S0218127411029768

13. Manko, V., Novikov, I.: Generalizations of the Kerr and Kerr-Newman metrics possessing an
arbitrary set of mass-multipole moments. Class. Quantum Grav. 9, 2477 (1992). doi:10.1088/
0264-9381/9/11/013

14. Gair, J., Li, C., Mandel, I.: Observable properties of orbits in exact bumpy spacetimes. Phys.
Rev. D 77, 024035 (2008). doi:10.1103/PhysRevD.77.024035

15. G. Contopoulos, Order and chaos in dynamical astronomy. Astronomy and astrophysics library
(Springer, 2002).

16. Gair, J.R., Glampedakis, K.: Improved approximate inspirals of test bodies into Kerr black
holes. Phys. Rev. D 73(6), 064037 (2006). doi:10.1103/PhysRevD.73.064037

http://dx.doi.org/10.1142/S0218127411029768
http://dx.doi.org/10.1088/0264-9381/9/11/013
http://dx.doi.org/10.1088/0264-9381/9/11/013
http://dx.doi.org/10.1103/PhysRevD.77.024035
http://dx.doi.org/10.1103/PhysRevD.73.064037


The Conformal Einstein Field Equations for
Trace-free Perfect Fluids

Christian Lübbe and Juan A. Valiente Kroon

Abstract A nonlinear stability analysis is carried out for the trace-free (radiation)
perfect fluid Friedmann-Lemaître-Robertson-Walker models with a de Sitter-like
cosmological constant. It is shown that the solutions close to the above FLRW space-
times exist globally towards the future and are future geodesically complete. For this
analysis we formulate the conformal Einstein field equations for a trace-free (radia-
tion) perfect fluid in terms of the Levi-Civita connection of a conformally rescaled
metric.

1 Introduction

During his time in Prague, 100 years ago, Einstein started his work on a general the-
ory of relativity [1]. Since then many exact solutions have been found and analysed
in detail—see e.g. [2, 3] for an overview. Typically these solutions lead to models
which approximate certain features of our universe by making assumptions on the
matter model or spacetime symmetries. As a result of this, a cosmological model
is a representation of the universe at a particular averaging scale. This leads to the
following important question: “How sensitive are the predictions derived from these
models to perturbations”. The answer is of interest for the following reasons. Firstly,
the universe does not match an idealised model on all scales. Secondly, any obser-
vation of the universe (or a subsystem of it) gives rise to data that includes a certain
margin of error. Thirdly, numerical calculations and simulations have made marked
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progress in recent years. However, any simulation is limited by the finite precision of
the individual computations and hence has to repeatedly deal with numerical errors.
In all three scenarios one hopes that the unavoidable deviation from reality has negli-
gible consequences for the predictions, as long as this deviation is sufficiently small.
However, the concern about stability is not at all limited to cosmological scales. It
equally applies to stars and other compact objects. One of the main open problems
concerns the behaviour of black holes under perturbations—see e.g. [4].

Due to the nonlinear nature of the Einstein field equations, the question of stability
is not straightforward. Seminal work by Friedrich [5, 6], using conformal methods,
and Christodoulos and Klainermann [7], using a detailed analysis of the structure
of the underlying evolution equations, have provided an essential starting point for
this problem. In recent years the topic has seen several papers addressing the sta-
bility problem for a range of matter models, dimensions and types of cosmological
constants.

The problem of nonlinear stability of the Euler-Einstein system for de Sitter-like
spacetimes has been analysed in [8, 9]. It was shown that the Friedmann-Lemaître-
Robertson-Walker (FLRW) solutions with a barotropic equation of state of the form
p̃ = (γ − 1)ρ̃, where 1 < γ < 4

3 , are future asymptotically stable under small
perturbations. The case of a pure radiation perfect fluid (γ = 4

3 ) was not covered
by this analysis. This motivated the authors to investigate this case using conformal
methods [10]. The details and the results are outlined in this article.

We address the question of nonlinear stability for small perturbations of the FLRW
solutions, which describe a trace-free perfect fluid with de Sitter-like cosmological
constant. The main result is given by the following theorem:

Theorem 1 Suppose one is given Cauchy initial data for the Einstein-Euler system
with a de Sitter-like cosmological constant and equation of state for pure radiation
p̃ = 1

3 ρ̃. If the initial data is sufficiently close to data for a FLRW cosmological
model with the same equation of state, value of the cosmological constant and spatial
curvature k = 1, then the development exists globally towards the future, is future
geodesically complete and remains close to the FLRW solution.

2 Methodology and Analysis

For a spacetime with a pure radiation perfect fluid the problem of nonlinear stability
is addressed using the conformal methods of [5, 11, 12]. In this approach, which
is summarised below, the physical spacetime (M̃ , g̃μν) is conformally embedded
into a manifold (M , gμν), referred to as the unphysical spacetime here, where the
metrics are related by

gμν = θ2 g̃μν. (1)
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The physical Einstein field equations

R̃μν − 1
2 R̃g̃μν + λg̃μν = T̃μν (2)

are reformulated in terms of the geometry of (M , gμν) and some rescaled matter
variables, leading to a new set of equations referred to as the conformal Einstein
field equations (CEFE). A key advantage of this approach is that one can study
global problems in (M̃ , g̃μν) in terms of a local analysis near conformal infinity in
(M , gμν). For this analysis one has to show that the CEFE associated to the chosen
matter model form a regular system of PDEs on (M , gμν). One then proceeds by
formualting an evolution problem in the form of a first order symmetric hyperbolic
(FOSH) system to deduce existence and uniqueness results. In order to derive the
desired stability results, one shows that a chosen reference spacetime is a regular
solution to the CEFE, respectively the associated FOSH system, and invokes Kato’s
stability theorem [13].

The CEFE have inherited degrees of freedom. One needs to fix a set of coordi-
nates xμ, a frame {ek} and the conformal factor θ . In the following, we use frame
components with respect to the chosen frame {ek}.

There are two main methods to fix these gauge freedoms. One method uses gauge
source functions [5, 6, 11, 14] to evolve the coordinates, the frame and the conformal
factor. In the other method, a congruence of conformal geodesics [15–17] or confor-
mal curves [10] is used to construct a conformal Gaussian coordinate system. The
congruence also induces a general Weyl connection, which is used to propagated the
frame {ek}, and a canonical choice of the conformal factor. Here we employ the first
method. In particular, we fix the conformal factor θ locally by setting the unphysical
Ricci scalar to R = − 1

6 and work in the Levi-Civita connection induced by gμν in
(1). Moreover, the frame {ek} will be g-orthonormal.

The general approach for trace-free matter models has been discussed in [6]. In
[10] it was shown how to address the case of a pure radiation perfect fluid (γ = 4

3 ).
The energy momentum tensor is given by

T̃ij = 4

3
ρ̃ũi ũ j − 1

3
ρ̃ g̃ij, (3)

where ũμ is the fluid flow velocity. As shown in [6], if one defines Tij = θ−2T̃ij, then

√ i T̃ij = 0 → √ i Tij = 0. (4)

We thus define new variables ρ = θ−4ρ̃ and ui = θ ũi so that

θ−2T̃ij = Tij = 4

3
ρui u j − 1

3
ρgij. (5)

It was shown in [18] how to obtain a FOSH system for (3) if ρ̃ ∓= 0 and ũ0 ∓= 0,
where e0 is timelike vector. The same method works for (5) using (4). Moreover the
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approach can be adapted to derive a FOSH system for ρi = √iρ and ui j = √i u j .
It is necessary to introduce these new variables in order to close the overall FOSH
system derived from the CEFE.

3 Existence and Uniqueness

Overall it can be shown that for ρ ∓= 0 and u0 ∓= 0 the CEFE for a radiation fluid form
a regular FOSH system. In particular this system is regular at conformal inifinity I ,
where θ = 0.

Given sufficiently smooth initial data, the CEFE have a unique solution (M , gμν),
which implies a solution (M̃ , g̃μν) to the Einstein field equations for a radiation fluid
by setting M̃ = M |{θ>0}, g̃μν = θ−2gμν . Thus, if the initial data is given at or near
conformal infinity, then one can construct a spacetime (M̃ , g̃μν) with a radiation
fluid for which a part reaches all the way to conformal infinity I .

4 The Reference Spacetimes

The family of FLRW metrics will be considered as the reference spacetime (some-
times also referred to as the background solution) against which the stability analysis
is carried out. The FLRW metric may be written in the form (see e.g. [3], page 471):

ds2
FLRW = dt2 − a(t)2

(1 + 1
4 kr2)2

(dr2 + r2(dθ2 + sin2 θdφ2)). (6)

As is well known, the FLRW spacetimes are conformally flat and they can be suitably
rescaled to conformally embed them into the Einstein cosmos, whose metric is given
by:

ds2
EC = dτ 2 − dσ 2

S3 = dτ 2 − (dψ2 + sin2 ψ(dθ2 + sin2 θdφ2)).

In this article we shall focus on FLRW cosmologies whose spatial sections have
positive curvature (k = 1). Changing coordinates we have

ds2
FLRW = a(t)2

[
dτ 2 − dσ 2

S3

]
= a(t)2ds2

EC . (7)

Thus, the conformal factor is given by θ = 1/a(t). Our analysis is restricted to
trace-free perfect fluids (γ = 4

3 ) with λ < 0 in (2). There exists a static solution
amongst the remaining FLRW solutions for which

a(t) = a0 = constant, λ = λ0 ∼ 3
2 a−2

0 .
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For the dynamical FLRW solutions in our family we can state the following:

Proposition 1 For a FLRW cosmology with k = 1, γ = 4
3 , ȧ(t0) > 0 and λ < 0,

λ ∓= λ0, the scale factor, a(t), is a smooth, non-vanishing and monotonically increas-
ing function for t ≤ [t0,∞), with t = t0 > 0 and a0 = a(t0) > 0. Furthermore,

τ∞ :=
∞∫

t0

ds

a(s)
< ∞,

and one has the limits

a ∗ ∞, ȧ/a ∗
√

− 1
3λ, ä/a ∗ − 1

3λ,

as t ∗ ∞. The density for these models is given by

ρ̃ = ρ̃0a4
0/a4,

where ρ̃0 = ρ̃(t0). In particular, one has that ρ̃ ∗ 0 as t ∗ ∞.

The proof of this proposition follows from direct inspection of the explicit
solutions—see e.g. [3, p. 78]. Moreover, the spacetime is de Sitter-like for late times,
that is conformal infinity is given by a spacelike hypersurface.

It is straightforward to check directly that the Einstein cosmos is a regular solu-
tion of the CEFE for a radiation fluid and satisfies our gauge choices (in particular
R[gEC ] = − 1

6 ).

5 Stability

Note that the spatial slices of the Einstein cosmos and our FLRW solutions are
3-spheres. Hence for the stability analysis we consider an initial surface S with the
topology of S3 and g̃-unit normal ñ.

In the sequel, it will be assumed that one has a solution (S , h̃αβ, K̃αβ, ρ̃, ũα) to
the (physical) λ < 0 Einstein-Euler perfect fluid constraint equations

r̃ + K̃ 2 − K̃αβ K̃ αβ = 2(λ − 1
3 ρ̃(4ũ‖ − 1)),

D̃α K̃αβ − D̃β K̃ = 4
3 ρ̃ũ‖ũβ,

where D̃β and r̃ denote the Levi-Civita covariant derivative and the Ricci scalar of the
intrinsic 3-metric h̃αβ ofS . K̃αβ is a symmetric 3-dimensional tensor corresponding
to the extrinsic curvature of S with respect to the g̃−unit normal ñμ. In addition,
ũ‖ ∼ ũμñμ. Thus, one has Cauchy initial data for the Einstein-Euler system with a
de Sitter-like cosmological constant and equation of state for pure radiation, p̃ = 1

3 ρ̃.
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From this data one can obtain a solution to the corresponding constraints induced by
the CEFE.

For the stability analysis we make use of the Hilbert space Hm(S3,RN ) with
m ⊂ 4—for more details see e.g. [5]. Using an extension of the general existence
and stability Theorem by Kato [13] provided in [12] we are then able to prove the
following more detailed version of Theorem 1.

Theorem 2 Let w0 be initial data on S
3 for CEFE for radiation fluids with λ < 0

such that w0 is sufficiently close to ẘ0 (FLRW data with λ < 0 and k = 1). Then

(i) a solution w to the CEFE exists on [0, T ] × S
3 with T > τ∞,

(ii) w implies a Cm−2 solution of the Einstein equations for a radiation fluid on
M̃ = {p ≤ [0, T ] × S

3 : θ(p) > 0},
(iii) the development exists globally towards the future,
(iv) M̃ is future geodesically complete and I + is a space-like hypersurface.
(v) w remains close to the FLRW solution, and hence, it is nonlinearly stable.

6 Discussion

As originally envisaged, the above theorem provides a proof for the case γ = 4
3

missing in [9] using the conformal method. It should be noted that in the mean
time the results in [9] have been extended to cover γ = 4

3 as well [19]. In a next
step one might consider spacetimes with null dust, such as the Robinson-Trautman
and the Vaidya spacetimes, which describe radiating black holes. It remains to be
seen whether the conformal method can in turn be generalised to cover more general
perfect fluids with γ ∓= 4

3 . This requires a formulation of the CEFE for matter models
that have non-vanishing trace, which is an open problem in itself.

It is of interest, whether the CEFE for radiation fluid can be formulated using
the alternative method with a congruence of conformal curves [10]. This method
has the advantage that some of the PDEs reduce to transport equations along the
congruence. Moreover, it allows one to prescribe/pretedict the location of conformal
infinity, since the conformal factor is known a priori in terms of the specified initial
data. This can simplify the explicit analysis of conformal infinity for the spacetime
one is dealing with.

The use of the CEFE for the stability analysis presented here is restricted to regions
near conformal infinity. The region near the initial singularity cannot be analysed
as the CEFE are not regular any longer in the form given here. For an analysis of
polytropic perfect fluid spacetimes near an initial singularity we refer the reader to
[20]. The approach in [20] is based on conformal methods as well. However instead
of the conformal factor vanishing, as it does at I , it diverges to ∞ at the initial
singularity. Nevertheless, the conformal geometry is perfectly regular in this region.
It would be interesting to know whether a variant of the CEFE exists which is regular
at the singularity and corresponds to the analysis in [20].
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Canonical Gravity, Non-Inertial Frames,
Relativistic Metrology and Dark Matter

Luca Lusanna

Abstract Clock synchronization leads to the definition of instantaneous 3-spaces
(to be used as Cauchy surfaces) in non-inertial frames, the only ones allowed by the
equivalence principle. ADM canonical tetrad gravity in asymptotically Minkowskian
space-times can be described in this framework. This allows to find the York canon-
ical basis in which the inertial (gauge) and tidal (physical) degrees of freedom of the
gravitational field can be identified. A Post-Minkowskian linearization with respect
to the asymptotic Minkowski metric (asymptotic background) allows to solve the
Dirac constraints in non-harmonic 3-orthogonal gauges and to find non-harmonic TT
gravitational waves. The inertial gauge variable York time (the trace of the extrinsic
curvature of the 3-space) describes the general relativistic freedom in clock syn-
chronization. After a digression on the gauge problem in general relativity and its
connection with relativistic metrology, it is shown that dark matter, whose experi-
mental signatures are the rotation curves and the mass of galaxies, may be described
(at least partially) as an inertial relativistic effect (absent in Newtonian gravity) con-
nected with the York time, namely with the non-Euclidean nature of 3-spaces as
3-sub-manifolds of space-time.

While in special relativity (SR) the use of non-inertial frames is optional, in gen-
eral relativity (GR) only these are allowed by the equivalence principle, forbidding
the existence of global inertial frames. In both cases the Lorentz signature of the
space-time implies that there is no notion of instantaneous 3-space: the only intrin-
sic structure is the conformal one, i.e. the light-cone as the locus of incoming and
outgoing radiation. A convention on the synchronization of clocks is needed to define
an instantaneous 3-space, where one has to give the Cauchy data for the relevant
wave equations. For instance the 1-way velocity of light from one observer A to
an observer B has a meaning only after choosing such a convention. In SR Einstein

L. Lusanna (B)

Sezione INFN di Firenze, Polo Scientifico, Via Sansone 1, 50019 Sesto Fiorentino, FI, Italy
e-mail: lusanna@fi.infn.it
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convention for the synchronization of clocks in Minkowski space-time uses the 2-way
(or round trip) velocity of light to identify the Euclidean 3-spaces of the inertial frames
centered on an inertial observer A by means of only one clock. It is this velocity
which is isotropic and constant in SR and replaces the standard of length in rela-
tivistic metrology [1]. Only in the inertial frames of SR the 1-way and the 2-way
velocities coincide.

Therefore in References [2–4] a general theory of global non-inertial frames in
Minkowski space-time was developed by using the 3 + 1 point of view in which,
besides the world-line of a time-like observer, one also gives a global, nice foliation
of the space-time with instantaneous 3-spaces. In this way one avoids the coordinate
singularities of the 1 + 3 description (both those of Fermi coordinates and of the rotat-
ing disk). The time-like observer carries a standard atomic clock and τ is an arbitrary
monotonically increasing function of the proper time of this clock. The space-like
instantaneous 3-spaces Στ are the mathematical idealization of a protocol for clock
synchronization: all the clocks in the points of Στ show the same time of the atomic
clock of the observer. On each 3-space Στ one chooses curvilinear 3-coordinates σ r

having the observer as origin. The Lorentz-scalar and observer-dependent coordi-
nates σ A = (τ, σ r ) are named radar 4-coordinates. The coordinate transformation
σ A √→ xμ = zμ(τ, σ r ) to the Cartesian coordinates xμ defines the embedding
zμ(τ, σ r ) of the 3-spaces Στ into Minkowski space-time. The induced 4-metric on
Στ is the following functional of the embedding 4gAB(τ, σ r ) = [zμ

A ημν zν
B](τ, σ r ),

where zμ
A = ∂ zμ/∂ σ A.

The 3 + 1 point of view has allowed to get the description of arbitrary isolated sys-
tems (particles, strings, fluids, fields) admitting a Lagrangian formulation in arbitrary
non-inertial frames by means of parametrized Minkowski theories [2–6]. In them the
Lagrangian is coupled to an external gravitational field and then the gravitational
4-metric is replaced with the 4-metric 3gAB(τ, σ r ) induced by an admissible 3+1
splitting of Minkowski space-time. The new Lagrangian, a function of the matter and
of the embedding, is invariant under frame-preserving diffeomorphisms and this type
of general covariance implies that the embeddings are gauge variables, so that the
transition among non-inertial frames is described as a gauge transformation: only
the appearances change, not the physics. The metric 3gAB(τ, σ r ) and the extrinsic
curvature tensor 3 Krs(τ, σ

u) play the role of inertial potentials.
This framework allows us to define the inertial and non-inertial rest frames of

the isolated systems, and to develop the rest-frame instant form of the dynamics and
to build the explicit form of the Lorentz boosts for interacting systems. While the
inertial rest frames have their Euclidean 3-spaces defined as space-like 3-manifolds
of Minkowski space-time orthogonal to the conserved 4-momentum of the isolated
system, the non-inertial rest frames are admissible non-inertial frames whose 3-
spaces tend to those of some inertial rest frame at spatial infinity, where the 3-space
becomes orthogonal to the conserved 4-momentum. This setting allows to study the
problem of the relativistic center of mass with the associated external and internal
(i.e. inside the 3-space) realizations of the Poincaré algebra in a way compatible
with relativistic bound states [7–11], and to get a new Wigner-covariant formulation
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of relativistic quantum mechanics [12], with a solution of all the known problems
introduced by SR.

This metrology-oriented solution of the problem of clock synchronization used
in SR can be extended to GR, if Einstein space-times are restricted to the class
of globally hyperbolic, topologically trivial, asymptotically Minkowskian space-
times without super-translations and without Killing symmetries, which include the
Christodoulou-Klainerman space-times [13, 14]. In these space-times one can define
global non-inertial frames by using the same admissible 3 + 1 splittings, centered
on a time-like observer, to define the 3-spaces Στ and the observer-dependent radar
4-coordinates σ A = (τ ; σ r ) employed in SR. This will allow to separate the inertial
(gauge) degrees of freedom of the gravitational field (playing the role of inertial
potentials) from the dynamical tidal ones at the Hamiltonian level.

In GR the gradients zμ
A(τ, σ r ) of the embeddings xμ = zμ(τ, σ r ), defining the

admissible 3 + 1 splittings of space-time, give the transition coefficients from radar
to world 4-coordinates.

The components 4gAB(τ, σ r ) = zμ
A(τ, σ r ) zν

B(τ, σ r ) 4gμν(z(τ, σ r )) of the 4-
metric will be the dynamical fields in the ADM action [15], written in the basis of
radar 4-coordinates. Like in SR the 4-vectors zμ

u (τ, σ r ), tangent to the 3-spaces Στ ,
are used to define the unit normal lμ(τ, σ r ) = zμ

A(τ, σ r ) l A(τ, σ r ) to Στ , while the
4-vector zμ

τ (τ, σ r ) has the lapse function as component along the unit normal and
the shift functions as components along the tangent vectors.

While in SR time and 3-space are absolute notions, in GR the space-time is a
dynamical object [16–18]. Each solution (i.e. an Einstein 4-geometry) of Einstein’s
equations (or of the associated ADM Hamilton equations) dynamically selects a
preferred 3+1 splitting of the space-time, namely in GR the instantaneous 3-spaces
are dynamically determined in the chosen world coordinate system, modulo the
choice of the 3-coordinates into the 3-space and modulo the trace of the extrinsic
curvature of the 3-space as a space-like sub-manifold of the space-time [19]. In
GR the gravitational field is described by ten dynamical fields 4gμν(x), which also
determine the chrono-geometrical structure of space-time through the line element
ds2 = 4gμν dxμ dxν . Therefore the 4-metric teaches relativistic causality to the other
fields: it says to massless particles like photons and gluons which are the allowed
world-lines at each point of space-time.

As shown in the first paper of References [20, 21], in the chosen class of space-
times the 4-metric 4gμν(x) tends, in a suitable way, to the flat Minkowski 4-metric
4ημν at spatial infinity (to be used as an asymptotic background at spatial infinity in
the linearization of the theory), where there are asymptotic inertial observers whose
spatial axes may be identified by means of the fixed stars of star catalogues (the
fixed stars can be considered as an empirical definition of spatial infinity of the
observable universe). In absence of super-translations the asymptotic symmetries
reduce to the asymptotic ADM Poincaré group. The ten strong asymptotic ADM
Poincaré generators P A

ADM , J AB
ADM (they are fluxes through a 2-surface at spatial

infinity) are well defined functionals of the 4-metric fixed by the boundary conditions
at spatial infinity. Moreover in that paper it is also shown that the boundary conditions
on the 4-metric required by the absence of super-translations imply that the only
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admissible 3 + 1 splittings of space-time (i.e. the allowed global non-inertial frames)
are the non-inertial rest frames: their 3-spaces are asymptotically orthogonal to the
weak ADM 4-momentum. Therefore one gets P̂r

ADM ∓ 0 as the rest-frame condition
of the 3-universe with a mass and a rest spin fixed by the boundary conditions.

Finally, in the limit of vanishing Newton’s constant (G = 0) the asymptotic ADM
Poincaré generators become the generators of the special relativistic Poincaré group
describing the matter present in the space-time, allowing the inclusion into GR of the
classical version of the standard model of particle physics, whose properties are all
connected with the representations of this group in the inertial frames of Minkowski
space-time.

To define the canonical formalism the Einstein-Hilbert action for metric gravity
(depending on the second derivative of the metric) must be replaced with the ADM
action (the two actions differ by a surface term at spatial infinity). As shown in the first
paper of References [20, 21], the Legendre transform and the definition of a consistent
canonical Hamiltonian require the introduction of the DeWitt surface term at spatial
infinity: the final canonical Hamiltonian turns out to be the strong ADM energy (a
flux through a 2-surface at spatial infinity), which is equal to the weak ADM energy
(expressed as a volume integral over the 3-space) plus constraints. Therefore there is
not a frozen picture like in the “spatially compact space-times without boundaries”
used in loop quantum gravity (where the canonical Hamiltonian vanishes), but an
evolution generated by a Dirac Hamiltonian equal to the weak ADM energy plus a
linear combination of the first class constraints. Also the other strong ADM Poincaré
generators are replaced by their weakly equivalent weak form P̂ A

ADM , Ĵ AB
ADM .

To take into account the fermion fields present in the standard particle model one
must extend ADM gravity to ADM tetrad gravity. Since our class of space-times
admits orthonormal tetrad and a spinor structure [22], the extension can be done
by simply replacing the 4-metric in the ADM action with its expression in terms of
cotetrad fields E (α)

A (τ, σ r ),

4gAB(τ, σ r ) = E (α)
A (τ, σ r ) 4η(α)(β) E (β)

B (τ, σ r ),

(α) are flat indices and 4η(α)(β) the flat metric; by convention a sum on repeated

indices is assumed. The cotetrad fields E (α)
A , considered as the basic 16 configura-

tional variables in the ADM action, are the inverse of the tetrad fields E A
(α), which

are connected to the world tetrad fields by Eμ

(α)(x) = zμ
A(τ, σ r ) E A

(α)(z(τ, σ
r )).

The cotetrads E (α)
A (τ, σ r ) are connected to cotetrads 4

∼
E

(α)

A (τ, σ r ) adapted to the
3 + 1 splitting of space-time, namely such that the inverse adapted time-like tetrad

4
∼
E

A

(o)(τ, σ
r ) is the unit normal to the 3-space Στ , by a standard Wigner boosts for

time-like Poincaré orbits with parameters ϕ(a)(τ, σ
r ), a = 1, 2, 3.

This leads to an interpretation of gravity based on a congruence of time-like
observers endowed with orthonormal tetrads: at each point of space-time the time-
like axis is the unit 4-velocity of the observer, while the spatial axes are a (gauge)
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convention for observer’s gyroscopes. This framework was developed in the second
and third paper of References [20, 21].

Even if the action of ADM tetrad gravity depends upon 16 fields, the counting of
the physical degrees of freedom of the gravitational field does not change, because
this action is invariant not only under the group of 4-diffeomorphisms but also under
the O(3,1) gauge group of the Newman-Penrose approach [23] (the extra gauge
freedom acting on the tetrads in the tangent space of each point of space-time).

After having introduced the kinematical framework for the description of non-
inertial frames in GR, we must study the dynamical aspects of the gravitational field
to understand which variables are dynamically determined and which are the inertial
effects hidden in the general covariance of the theory. Since at the Lagrangian level
it is not possible to identify which components of the 4-metric tensor are connected
with the gauge freedom in the choice of the 4-coordinates and which ones describe
the dynamical degrees of freedom of the gravitational field, one must restrict oneself
to the quoted class of globally hyperbolic, asymptotically Minkowskian space-times
allowing a Hamiltonian description of ADM gravity. In canonical ADM gravity one
can use Dirac theory of constraints to describe the Hamiltonian gauge group, whose
generators are the first-class constraints of the model. The basic tool of this approach
is the possibility to find so-called Shanmugadhasan canonical transformations [24,
25], which identify special canonical bases adapted to the first-class constraints (and
also to the second-class ones when present). In these special canonical bases the van-
ishing of certain momenta (or of certain configurational coordinates) corresponds to
the vanishing of well defined Abelianized combinations of the first-class constraints
(Abelianized because the new constraints have exactly zero Poisson brackets even
if the original constraints were not in strong involution). As a consequence, the
variables conjugate to these Abelianized constraints are inertial Hamiltonian gauge
variables describing the Hamiltonian gauge freedom.

Therefore, starting from the ADM action for tetrad gravity one defines the Hamil-
tonian formalism in a phase space containing 16 configurational field variables and
16 conjugate moments. One identifies the 14 first-class constraints of the system. The
existence of these 14 first-class constraints implies that 14 components of the tetrads
(or of the conjugate momenta) are Hamiltonian gauge variables describing the iner-
tial aspects of the gravitational field (6 of these inertial variables describe the extra
gauge freedom in the choice of the tetrads and in their transport along world-lines).
Therefore there are only 2 + 2 degrees of freedom for the description of the tidal
dynamical aspects of the gravitational field (the two polarizations of gravitational
waves in the linearized theory). The asymptotic ADM Poincaré generators can be
evaluated explicitly. Till now the type of matter studied in this framework [26–28]
consists of the electromagnetic field and of N charged scalar particles, whose signs
of the energy and electric charges are Grassmann-valued to regularize both the grav-
itational and electromagnetic self-energies (it is both a ultraviolet and an infrared
regularization).

If one would be able to include all the constraints in the Shanmugadhasan canoni-
cal basis, the 2 + 2 tidal variables would be the Dirac observables of the gravitational
field, invariant under the Hamiltonian gauge transformations. However such Dirac
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observables are not known: one only has statements about their existence. More-
over, in general they are not 4-scalar observables. The problem of the connection
between the 4-diffeomorphism group and the Hamiltonian gauge group was studied
in References [29, 30] by means of the inverse Legendre transformation and of the
notion of dynamical symmetry. The conclusion is that on the space of solutions of
Einstein equations there is an overlap of the two types of observables: there should
exist special Shanmugadhasan canonical bases in which the 2+2 Dirac observables
become 4-scalars when restricted to the space of solutions of the Einstein equations
(i.e. on-shell). In any case the identification of the inertial gauge components of
the 4-metric is what is needed to make a fixation of 4-coordinates as required by
relativistic metrology.

The best which can be done till now is the explicit identification of a Shanmu-
gadhasan canonical transformation [19] (implementing the so-called York map and
diagonalizing the York-Lichnerowicz approach) to a so-called York canonical basis
adapted to 10 of the 14 first-class constraints. Only the super-Hamiltonian and super-
momentum constraints, whose general solution is not known, are not included in the
basis, but it is clarified which variables are to be determined by their solution, namely
the 3-volume element (the determinant of the 3-metric) of the 3-space Στ and three
momenta conjugated to 3-coordinates on Στ . The 14 inertial gauge variables turn
out to be: (a) the six configurational variables ϕ(a) and α(a) of the tetrads describing
their O(3,1) gauge freedom; (b) the lapse and shift functions; (c) the 3-coordinates
on the 3-space (their fixation implies the determination of the shift functions); (d) the
York time 3 K , i.e. the trace of the extrinsic curvature of the 3-spaces as 3-manifolds
embedded into the space-time (its fixation implies the determination of the lapse
function). It is the only gauge variable which is a momentum in the York canonical
basis (instead in Yang-Mills theory all the gauge variables are configurational): this
is due to the Lorentz signature of space-time, because the York time and three other
inertial gauge variables can be used as 4-coordinates of the space-time. In this way an
identification of the inertial gauge variables to be fixed to get a 4-coordinate system
in relativistic metrology was found. While in SR all the components of the tetrads and
their conjugate momenta are inertial gauge variables, in GR the two eigenvalues of
the 3-metric with determinant one and their conjugate momenta describe the physical
tidal degrees of freedom of the gravitational field. In the first paper of References
[26–28] there is the expression of the Hamilton equations for all the variables of the
York canonical basis.

An important remark is that in the framework of the York canonical basis the
natural family of gauges is not the harmonic one, but the family of 3-orthogonal
Schwinger time gauges in which the 3-metric in the 3-spaces is diagonal [26–28].

In conclusion, while the gauge group of the Lagrangian formulation of Einstein
GR, the diffeomorphism group, implies that the 4-coordinates of the space-time are
gauge variables, the Hamiltonian gauge group replaces them with the inertial gauge
variables, York time and 3-coordinates on the instantaneous 3-space Στ . In both
cases one would like to re-express physical properties in terms either of 4-scalars or
of Dirac observables becoming 4-scalars on-shell. However, on one side it is not yet
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known how to implement this program and on the other side this is not the praxis of
experimental physics.

Inside the Solar System the experimental localization of macroscopic classical
objects is unavoidably done by choosing some convention for the local 4-coordinates
of space-time. Atomic physicists, NASA engineers and astronomers have chosen a
series of reference frames and standards of time and length suitable for the exist-
ing technology [1, 31–33]. These conventions determine certain Post-Minkowskian
(PM) 4-coordinate systems (in harmonic gauges) of an asymptotically Minkowskian
space-time, in which the instantaneous 3-spaces are not strictly Euclidean. Then
these reference frames are seen as a local approximation of a celestial refer-
ence frame (ICRS), where however the space-time has become a cosmological
Friedman-Robertson-Walker (FRW) one, which is only conformally asymptotically
Minkowskian at spatial infinity and therefore does not admit a Hamiltonian descrip-
tion. A search of a consistent patching of the 4-coordinates from inside the Solar
System to the rest of the universe will start when the data from the future GAIA
mission [34] for the cartography of the Milky Way will be available. This will allow
a PM definition of a Galactic Reference System containing at least our Galaxy. Let us
remark that notwithstanding the FRW instantaneous 3-spaces are not strictly Euclid-
ean, all the books on galactic dynamics describe the galaxies by means of the Kepler
theory in Galilei space-time.

Both in SR and GR an admissible 3+1 splitting of space-time has two associ-
ated congruences of time-like observers [2–4], geometrically defined and not to be
confused with the congruence of the world-lines of fluid elements, when relativistic
fluids are added as matter in GR [35]. One of the two congruences, with zero vorticity,
is the congruence of the Eulerian observers, whose 4-velocity field is the field of unit
normals to the 3-spaces. This congruence allows us to re-express the non-vanishing
momenta of the York canonical basis in terms of the expansion (θ = −3K ) and of the
shear of the Eulerian observers. This allows us to compare the Hamilton equations of
ADM canonical gravity with the usual first-order non-Hamiltonian ADM equations
deducible from Einstein equations given a 3+1 splitting of space-time but without
using the Hamiltonian formalism. As a consequence, one can extend our Hamil-
tonian identification of the inertial and tidal variables of the gravitational field to the
Lagrangian framework and use it in the cosmological (conformally asymptotically
flat) space-times: in them it is not possible to formulate the Hamiltonian formalism
but the standard ADM equations are well defined. The time inertial gauge variable
needed for relativistic metrology is now the expansion of the Eulerian observers of
the given 3+1 splitting of the globally hyperbolic cosmological space-time. It is this
inertial gauge variable which has to be fixed in this way to reproduce experimental
astronomical data and their astrophysical interpretation.

In conclusion we now have a framework for non-inertial frames in GR and an
identification of the inertial gauge variables in asymptotically Minkowskian and
also in cosmological space-times. See the third paper of References [26–28] for the
possibility that the three main signatures of dark matter (rotation curves of galaxies;
mass of galaxy clusters from the virial theorem and weak gravitational lensing; see
the review in References [36, 37]) can be explained as only a relativistic inertial
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effect induced by the inertial gauge variable 3K (the York time): a suitable choice of
the 3-space in the celestial reference frame could simulate the effects explained by
dark matter. Since in the PM Hamiltonian linearization of canonical tetrad gravity
[26–28] the lapse function is n = n1 +∂τ

3 K + . . . with n1 describing the Newtonian
potential in the non-relativistic limit, one can identify ∂τ

3 K with the Yukawa-like
potential used in f (R) gravity to simulate dark matter [38].

See Reference [39] for an extended and complete review of the approach. In this
paper it is also shown (at a preliminary level) that the York time is connected also
with dark energy in inhomogeneous cosmological space-times [40].
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Gravomagnetic Solenoids

Donald Lynden-Bell and Joseph Katz

Abstract We introduce strong field gravomagnetism and illustrate its use by
constructing exact rolling toroidal solutions of Einstein’s equations.

1 Introduction

The 1966 edition of the Classical theory of Fields by Landau and Lifshitz [1] gives
Einstein’s equations for general stationary metrics in a form that has strong analo-
gies with Maxwell’s electrodynamics. The technique identifies the points of space
that lie along the time-like Killing vector, so it does not extend continuously inside
ergospheres where the Killing vector becomes space-like. We write the metric in the
form

ds2 = Λ2(dt − Akdxk)2 − φkldxkdxl = gμκdxμdxκ . (1)

We work in the positive definite three dimensional metric of space, φkl , where k and l
run from 1 to 3. It is not a cross-section of the four metric by any surface, nevertheless
we may define its Christoffel symbols νm

kl and the corresponding three-dimensional
Ricci tensor of this gamma space, Pkl . We use commas to denote ordinary derivatives
and semicolons to denote covariant derivatives in gamma space. The Ricci tensor of
space-time will be denoted by Rμκ . The divergence and curl are defined in gamma-
space by
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div E = φ
− 1

2 ∂k(
√

φ Ek); (curl E)i = φ
− 1

2 ξi jk∂ j Ek . (2)

We define the gravomagnetic induction BBB by

BBB = curl AAA , (3)

where Ak is the vector potential defined in the metric (1). Clearly div BBB = 0 so BBB
carries the gravomagnetic flux. Landau and Lifshitz rewrite Einstein’s equations in
gamma space; rewriting their equations in our notation we have with π = 8τG/c4,

Λdiv grad Λ + 1

2
Λ4BBB2 = R00 = π(T00 − 1

2
g00T ). (4)

Henceforth we use units with c = 1 and G = 1. If we now define a field intensity
vector HHH = Λ3BBB then their second equation reads

(curl HHH )k = −2πΛT k
0 = −2π J k . (5)

Notice a strong resemblance of this strong field equation to Maxwell’s electrody-
namic equation curl H = 4τ j. In both cases the current has no divergence however
in general HHH has a divergence while BBB does not. Clearly HHH is the gradient of a
scalar whenever j is zero. The H k are the spatial components of the twist vector
σμκδΩ Λκ DΩ Λδ where D is the covariant derivative in the space-time gμκ . The last
Einstein equation is

Pkl + 1

2
Λ2(φ klB2 − BkBl) − Λ−1Λ ;k;l = Rkl = π(T kl − 1

2
gkl T ). (6)

To illustrate the power of the analogy between electromagnetism and gravomag-
netism we consider first a straight solenoid of length L with a wire wound n times
around it carrying a current I ; the magnetic flux inside is F = 4τnI . This flux
emerges from the pole at one end of the solenoid and spreads over an area of order
L2 before returning to the pole at the other end. Even if n increases linearly with the
the length L the equatorial field outside the solenoid F/L2 decreases like 1/L so, as
the length of the solenoid increases, the field outside tends to zero.

The analogous gravitational case is a rotating cylindrical shell and the case that is
solved in General Relativity is the infinitely long cylinder. In such a case the external
gravomagnetic field will be zero as the returning flux is sent to infinite distances.
Thus it is not surprising that the external metric is static rather than stationary.

Our second, less trivial problem is the toroidal solenoid for which the electrical
case is illustrated below. Here the magnetic field is confined within the solenoid and
there are no poles from which it emerges. Indeed even if the torus carries a charge
as well as a current the external field is purely electrical without any magnetism.
The analogous gravitational problem is a massive toroidal shell that rolls around
the circumference of its small cross-section so that the equator closest to the global
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Fig. 1 In electromagnetism
a wire carrying a current
I tightly wound n times
around a torus produces a
field confined within the torus.
In the mathematics the wire
is replaced by a continuum
whose total current is called I
(not nI )

axis moves up while the equator furthest from the axis moves down. We find exact
solutions to this problem in General Relativity in which the metric is static outside
the torus but stationary and non-static inside the torus (Fig. 1).

2 The General Static Weyl Metric in Toroidal Coordinates

Weyl takes the metric in the form

ds2 = e−2Σdt2 − e2Σ
[
e2k

(
dz2 + d R2

)
+ R2dη2

]
. (7)

Then, in empty axially symmetric spaces Einstein’s equations give ∇2Σ = 0, where
∇2 is the flat space operator. Also setting

D = ∂R − i∂z, (8)

we have the Weyl equations

Dk = 1
4Re4Σ De−2Σ De−2Σ. So Dk D ln R = (DΣ)2. (9)

The general symmetric solution to these equations in toroidal coordinates is given
by [2] whose solution does not include that for k given below,
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Σ = √
u − κ U, where U =

∞∑
l=0

al PL(u) cos(lσ). (10)

Here PL(u) is the Legendre function, L = l + 1
2 ; u = cosh α, κ = cos σ,

R = h sinh α, z = h sin σ, with h = a

cosh α − cos σ
. (11)

We then have
d R2 + dz2 = h2

(
dα 2 + dσ2

)
. (12)

Thus h and R are the scale factors in toroidal coordinates, a is the radius of the
central line torus. On each given torus α is constant. On the axis R = 0, α = 0 and
α is also zero at infinity. On z = 0, σ = τ when R < a and σ = 0 when R > a. The
function k is given by,

k = 1
8

∞∑
l=0

∞∑
m=0

alam

[
c(l + m + 1)k1

l,m + c(l + m)k0
l,m + c(l + m − 1)k−1

l,m

]

+ 1
8

∞∑
l=0

∞∑
m=0

alam

[
c(l − m + 1)k1

l,−m + c(l − m)k0
l,−m + c(l − m − 1)k−1

l,−m

]
,

(13)

where kn
l,m are known terms of Legendre functions themselves and their derivatives

and c(m) is short for cos(mσ).

3 A Toroidal Solenoid’s Metric and Junction Conditions

Inside our torus we need a solution with a toroidal gravomagnetic field. For this we
take Bonnor’s nice solution [3] for the metric external to a light beam characterised
as null dust. This clearly must have a toroidal gravomagnetic field. We generalise the
metric by incorporating a constant conicity k̄. Since the symmetry axis is no longer
included in the part of the solution used within our torus, this does not generate a
singularity and is necessary to accomplish the fitting to the external metric. Bonnor’s
metric is then

ds2 = F[dt − (1 − F−1)dz]2 − (e2kd R
2 + R

2
dη2 + F−1dz2), (14)

where F = 8I ln (R/a)+C, C is a constant and I the total current that generates the
gravomagnetic field; in Bonnor’s application it is the current caused by the light ray;
in our application it is the total current that runs around our torus by the short way.
Our task is now reduced to fitting this metric for the inside of our torus to our general
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Fig. 2 Equipotentials of the
Bach-Weyl static toroids
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Weyl metric for the outside. Before attempting this full problem we solved the easy
case of a static equipotential shell with a Bach-Weyl [4] exterior metric. The Riemann
tensor inside the equipotential toroid is zero but the metric there though locally flat
is actually “conical”, so it is not globally flat. k is a negative constant not zero. It was
solving this simpler problem that alerted us to the necessity of incorporating such a
conicity into Bonnor’s metric in the general problem. The shapes of the Bach-Weyl
equipotential surfaces are shown in Fig. 2. Inside the limiting one that intersects the
axis, the conicity, k, is zero so for it the internal space is globally flat. A massive
shell may be placed on any one of these equipotential surfaces leaving the shapes
of the external equipotentials unchanged but of course changing the values of their
potentials. Inside such a shell the potential is constant. We determined the limits to
these masses so that the pressure components in the shell do not exceed the limits
set by the energy conditions.

For our rolling toroid the complete set of Einstein’s equations are given in (4), (5)
and (6). None of these equations involveAAA itself as opposed toBBB = curlAAA , so the
boundary conditions for all such problems can be expressed in terms ofBBB rather than
AAA . Four of them are strikingly similar to the boundary conditions in electrodynamics.
These are: that the potential Σ is continuous, thatBBB.n is continuous, thatHHH ×nnn =
16τJ (the gravomagnetic field being zero outside) and that from integrating (1.4) the
discontinuity in the potential gradient along the normal is related to an appropriate
surface density. We also need the gamma metrics on the surfaces to be identical and
from integrating (6) across the surface we require the discontinuities of the external
curvatures of the gamma space 3-metrics to be related to the stresses in the toroid.
While this procedure is equivalent to Israel’s it is easier to carry out since it does
not involve AAA and fits the surfaces in space rather than space-time. We give below
an example of one of our strongly relativistic rolling toroids for which we carried
out this procedure to ensure that the surface stresses obeyed the dominant energy
conditions.

4 A Strongly Relativistic Example

The dominant energy condition limits how much mass our torus can withstand at a
given rolling rate. Our example is as follows:
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Equatorial radii ain/a = 0.826 : aout/a = 1.21. Axial ratio b/a = 0.297.

Total mass M/a = 0.659. Matter current I = 0.008
Rolling speeds across equators κin,out/c = 0.85, 0.09.

Equatorial pressures (pρ/δ)in,out = 0.28, 0.934; (pσ/δ )in,out = 0.1,−0.57.

We tested our calculations by showing that in the non-relativistic limit the stresses
calculated by the relativistic method balanced the gravity and the centrifugal force
due to rolling. More details of this work are given in [5].
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Exact Dynamical AdS Black Holes
and Wormholes with a Klein-Gordon Field

Hideki Maeda

Abstract We present an exact solution with spherical, plane, or hyperbolic
symmetry in the Einstein-Klein-Gordon system with negative Λ in arbitrary dimen-
sions. In the coordinate system we adopt, the scalar field is homogeneous and the
spacetime represents an asymptotically locally AdS dynamical black hole or worm-
hole. In three dimensions, the scalar field becomes trivial and the solution reduces
to the BTZ (Bañados-Teitelboim-Zanelli) black hole.

1 Motivation and Summary

The motivation of this study is twofold. Firstly to provide an exact AdS black hole
which can be applied to the study of AdS/CFT duality in the dynamical context [1].
And secondly to find a possible final state of the recently-found nonlinear instability
of the AdS vacuum [2].

The solution presented below may be a good model for further investigations
to shed light on dynamical properties of AdS black holes. Interesting subjects are
thermodynamical properties, dynamical stability, or Hawking radiation. This paper
is based on [3].

2 System

We consider the Einstein-Klein-Gordon-Λ system in arbitrary n(≥ 3) dimensions.
The field equations are Gμν + Λgμν = κ2

n Tμν and �φ = 0, where
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Tμν = (∇μφ)(∇νφ) −
(

1

2

)
gμν(∇φ)2. (1)

In the present paper, we consider n-dimensional warped product spacetimes
(gμν,M n) ≈ (gAB, M2) × (γij, K n−2) with the line element

ds2 = gμν dxμdxν

= gAB(y) dy AdyB + R(y)2γi j (z) dzi dz j , (2)

where gAB is a Lorentzian metric on M2 and R is a scalar on M2. K n−2 is an (n −2)-
dimensional unit space of constant curvature, where k denotes its curvature taking
the values 1, 0, and −1, and γij is the metric on K n−2.

The generalized Misner-Sharp quasi-local mass is a scalar on M2 defined by

m := (n − 2)V (k)
n−2

2κ2
n

Rn−3
(
−Λ̃R2 + k − (DR)2

)
, (3)

where Λ̃ := 2Λ/[(n − 1)(n − 2)], (DR)2 := g AB(DA R)(DB R), and DA is the
covariant derivative on M2 [4–7]. V (k)

n−2 denotes the volume of K n−2 if it is compact
and otherwise arbitrary. m has the monotonicity and positivity properties for arbitrary
(positive) V (k)

n−2 and is constant in vacuum [6, 7]. In the asymptotically flat or AdS
case, that coefficient is fixed in such a way that it converges to the global mass such
as the Arnowitt-Deser-Misner mass [8] or Abbott-Deser mass [9].

3 Exact Asymptotically Locally AdS Solutions

Here we particularly consider Λ < 0 and the metric in the following form:

ds2 = H(ρ)−2
(

−dt2 + dρ2 + S(t)γi j (z) dzi dz j
)

, (4)

H(ρ) :=
√

−Λ̃ sin ρ. (5)

The domain of ρ is given by Nπ < ρ < (N + 1)π, (N ∈ Z), since ρ = Nπ

corresponds to the AdS infinity, where

lim
ρ→Nπ

Rμν
ρσ = Λ̃(δμ

ρ δν
σ − δμ

σ δν
ρ) (6)

is satisfied. The function S(t) is obtained by solving Einstein equations and the
domain of t is determined by S(t) > 0. The areal radius is given by R = (εH)−1S1/2,
where ε = ±1 is chosen such that R is non-negative.
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The Einstein equations require that the Klein-Gordon field is homogeneous φ =
φ(t). Then, the energy-momentum tensor has the form of T μ

ν = diag(−μ,μ, . . . , μ),
where μ := (1/2)H2φ̇2 is the energy density of the scalar field. Finally, the system
reduces to the following master equation for X (t) := S(n−2)/2:

E = 1

2
Ẋ2 + V(k)(X), (7)

V(k)(X) := (n − 2)2

2

(
k X2(n−3)/(n−2) + X2

)
, (8)

where a dot denotes the derivative with respect to t and E is an integration constant.
This class of solutions has been investigated with a stiff fluid because it is equiv-

alent to a massless Klein-Gordon field if the gradient of the scalar field is timelike.
The first solutions were obtained by Lake [10] and independently obtained by other
authors [11–13] in the spherical case in four dimensions (k = 1 and n = 4). The
four-dimensional solutions with general k were obtained in [14, 15].

The master Eq. (7) is solved analytically in three and four dimensions for any k
but only for k = 0 in higher dimensions. In four dimensions, S is given by

S(t) = 1

2
(−k + 2C1 sin 2t), (9)

where C1 is a constant relating to E . The energy density of the scalar field μ and the
generalized Misner-Sharp mass m are given by

μ = (4C2
1 − k2)H2

4κ2
4 S2

, m = V (k)
2 (4C2

1 − k2)

4κ2
4 εH S1/2

. (10)

The scalar field with positive μ (namely 4C2
1 > k2) is given by

± (φ − φ0) =

⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪

√
1

2κ2
4

ln

∣∣∣∣
√

4C2
1 − k2 + (−k tan t + 2C1)√

4C2
1 − k2 − (−k tan t + 2C1)

∣∣∣∣ [k = 1,−1],
√

1

2κ2
4

ln

∣∣∣∣1 − cos 2t

sin 2t

∣∣∣∣ [k = 0],
(11)

while the scalar field with negative μ is

± (φ − φ0) = i

√
2

κ2
4

arctan

(−k tan t + 2C1√
k2 − 4C2

1

)
, (12)
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where i2 = −1 and φ0 is a constant. In arbitrary dimensions with k = 0, S and φ

are given by

S(t) = C1[sin(n − 2)t]2/(n−2), (13)

±(φ − φ0) =
√

n − 3

(n − 2)κ2
n

ln

∣∣∣∣1 − cos(n − 2)t

sin(n − 2)t

∣∣∣∣. (14)

Even in other cases, the qualitative property of the solution is easily understood
because the master equation represents a simple one-dimensional potential problem
for the variable X (t)(≥ 0). In general, φ, μ, and m are given by

φ = ±
√

2(n − 3)E

(n − 2)κ2
n

t⎜
dt̄

S(t̄)(n−2)/2
, (15)

μ = (n − 3)E H2

(n − 2)κ2
n Sn−2 , m = EV (k)

n−2

(n − 2)κ2
n (εH)n−3S(n−3)/2

, (16)

where S(t) is determined by the master Eq. (7). μ and m are positive (negative)
for E > (<)0 and then the scalar field is real (pure imaginary, namely ghost). In
three dimensions (n = 3), the scalar field becomes trivial and we have μ = 0 and
m =constant. The spacetime is then locally (A)dS and represents the BTZ (Bañados-
Teitelboim-Zanelli) black hole in the non-standard coordinates [16, 17].

Equation (16) shows that the spacetime is vacuum at AdS infinity (H = 0), but
m blows up there. This means that the fall-off rate to the AdS infinity is slower than
the Henneaux-Teitelboim condition and hence the spacetime is asymptotically AdS
only locally.

4 Physical Interpretations

We clarify the causal structure of the spacetime (4) and give its physical interpreta-
tions. For this purpose, the following three facts are important; (i) ρ = Nπ (N ∈ Z)

is AdS infinity, which is timelike, (ii) S(t) = 0 corresponds to curvature singularity,
which is spacelike, and (iii) a light ray runs along a 45◦ straight line in the (ρ, t)-plane
since the metric on M2 in the solution (4) is conformally flat.

The present coordinate system covers the maximally extended spacetime and
the Penrose diagrams for the spacetime (4) are presented in Fig. 1. (See Table 1.)
The spacetime represents a dynamical black hole or wormhole depending on the
parameters.
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(a)

(c)

(b)

(d)

Fig. 1 The Penrose diagrams for the solution. A zigzag and a thick line correspond to a curva-
ture singularity and AdS infinity, respectively. BHEH stands for the black-hole event horizon. a–c
represent a black hole, while d represents a wormhole

Table 1 The Penrose diagrams of the solution with positive energy density and n ≥ 4

n = 4 n ≥ 5

k = 0 Figure 1b Figure 1c
k = 1 Figure 1c Figure 1a, b, or c
k = −1 Figure 1a Figure 1a, b, or c

In the case of k = −1 with negative energy density, the Penrose diagram is Fig. 1d

4.1 Dynamical AdS Black Holes

If the scalar field is real (and equivalently the energy density is positive), there are
spacelike curvature singularities given by S(t) = 0 in the (ρ, t)-plane. As a result,
the solution represents a dynamical black hole. Since both H and S are periodic, the
(ρ, t) plane is divided by singularities and AdS infinities (ρ = Nπ ) into an infinite
number of portions. All the portions with positive S are equivalent.

First let us see the case with k = 0. Without loss of generality, we assume C1 > 0
in (13) and consider a physical portion defined by t = (0, π/(n−2)) and ρ = (0, π),
which covers the maximally extended spacetime. The event horizon in this portion
is given by t = ρ − (n − 3)/(n − 2)π and t = −ρ + π/(n − 2) and the Penrose
diagram is (b) in Fig. 1 for n = 4 and (c) for n ≥ 5.

On the other hand, in the case with k = 1,−1 in four dimensions, the period
of t in a physical portion is different. The period is shorter (longer) than π/2 for
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k = 1 (k = −1). Hence, the Penrose diagram is (c) in Fig. 1 for k = 1 and (a) for
k = −1.

In the case with k = ±1 and n ≥ 5, the solution is not obtained in a closed form,
but we can prove that it represents an AdS black hole if the energy density of the
scalar field is positive, namely E > 0. For k = 1, the potential (8) is monotonically
increasing for X ≥ 0 and hence the solution exists only for E > 0. Then, the domain
of t in the maximally extended spacetime of the solution is given by t0 < t < t0 + T ,
where X (t0) = X (t0 + T ) = 0. This is also the case for k = −1 with E ≥ 0. The
period T is defined by

T := 2

X=Xb(k)⎜

X=0

d X√
2(E − V(k)(X))

, (17)

where Xb(k) is defined by E = V(k)(Xb(k)). The spacetime admits a wormhole throat
if T ≥ π because the period of the coordinate ρ is π , however it is not allowed if the
scalar field has positive energy density. (See Appendix C in [3] for the proof.) Since
t = t0 and t = t0 + T are both spacelike curvature singularities, the corresponding
Penrose diagram is Fig. 1a, b, and c for π/2 < T < π , T = π/2, and 0 < T < π/2,
respectively. Although the diagrams are different depending on the value of T , the
solution represents a dynamical AdS black hole.

4.2 Dynamical AdS Wormholes

In the case of k = −1 in four dimensions, if 4C2
1 < k2, then the energy density is

negative and S is positive definite for −∞ < t < ∞. (There is no physical solution
for k = 1 because S is negative definite if 4C2

1 < k2.) The Klein-Gordon field then
becomes ghost and there is no curvature singularity in the spacetime. As a result, the
spacetime is a dynamical AdS wormhole described by the Penrose diagram (d) in
Fig. 1.

It is shown that an AdS wormhole is realized also for k = −1 and n ≥ 5 if E < 0;
namely the energy density is negative (and equivalently the scalar field is ghost). In
the case of k = −1, the potential (8) in the master equation has a negative minimum
V(−1) = Vex, where

Vex := −n − 2

2

(
n − 3

n − 2

)n−3

(<0). (18)

As a result, for the solution with E satisfying Vex < E < 0, the value of X (and
hence S) oscillates and never becomes 0. Hence, the corresponding Penrose diagram
is Fig. 1d and the spacetime describes a dynamical AdS wormhole.
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2.5PN Kick from Black-Hole Binaries
in Circular Orbit: Nonspinning Case

Chandra Kant Mishra, K. G. Arun and Bala R. Iyer

Abstract Using the Multipolar post-Minskowskian formalism, we compute the
linear momentum flux from black-hole binaries in circular orbits and having no spins.
The total linear momentum flux contains various types of instantaneous (which are
functions of the retarded time) and hereditary (which depend on the dynamics of the
binary in the past) terms both of which are analytically computed. In addition to the
inspiral contribution, we use a simple model of plunge to compute the kick or recoil
accumulated during this phase.

1 Introduction

In classical radiation theory, any form of radiation that has a preferred direction
(anisotropic emission) results in the recoil of the system in the opposite direction.
Such a recoil has important consequences in astrophysics like the pulsar accelera-
tion due to the radiation asymmetry [1]. This effect can be understood in terms of
multipole moments of the system, more specifically interference between different
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multipoles [2]. It was argued in Ref. [2], on general grounds, that the leading recoil
effect in the case of electromagnetic radiation could come from the interference
between electric dipole and electric quadrupole or magnetic dipole. (See Ref. [3] for
a more detailed discussion.) A similar effect can happen in the case of gravitational
radiation [2]. Since the leading emission in the case of Gravitational Waves (GWs) in
GR is quadrupolar, the lowest order recoil effect in GR arises from the interference
of mass quadrupole and mass octupole or current quadrupole.1 This GW recoil can
be seen as a consequence of linear momentum flux emission by the radiating system.

Let us now focus on a particular type of GW source known as coalescing compact
binaries (CCBs). As the name indicates, these are systems consisting of neutron stars
(NS) or black holes (BH) which go around each other in a bound orbit. The orbit
keeps on shrinking due to gravitational radiation reaction until the two objects merge
to form a compact object, most likely a BH. As is well known, the GW emission
is not isotropic (due to the quadrupolar nature) and thus the emission is beamed in
some direction. As the two bodies move in their respective orbits, this direction also
keeps changing. If the orbit is closed, then over an orbit, the binary’s centre of mass
would return to the same point where it started, making the net recoil zero. However,
if the orbit is not closed, as is the case for CCBs, there can be an accumulation of
recoil over these orbits until the two bodies coalesce into a single BH, eventually
manifesting as a kick to this newly formed BH. This is the GW recoil in the context
of CCBs.

Gravitational recoil has important implications for astrophysics, especially models
of black hole formation and growth (see e.g. [4]). If the recoil velocity of a merging
compact binary system is greater than the escape velocity of the galaxy, it can result
in the ejection of the newly formed black hole from the galaxy. Hence very accurate
estimation of the recoil velocity of the merging compact binaries is important to
understand the astrophysics of black hole formation and growth.

Evolution of CCBs can be divided into three phases: adiabatic inspiral, nonlin-
ear merger and perturbative ringdown. The inspiral part and ringdown phases can
be accurately modelled analytically using post-Newtonian (PN) approximation to
general relativity [5] and BH perturbation theory [6], respectively. Due to recent
successes in numerical relativity (see Refs. [7, 8] for reviews), the highly nonlinear
merger phase can be modelled quite accurately by numerically solving Einstein’s
equations.

In this work, we use the PN approximation to calculate the linear momentum loss
and resulting GW recoil from a black-hole binary2 moving in circular orbits up to
2.5PN order extending the earlier works of Fittchett (Newtonian order) [9], Wiseman
(1PN order [10]) and Blanchet et al. (through 2PN [11]). A more detailed account
of the contents of this paper can be found in Ref. [12].

1 Both mass octupole and current quadrupole have the same parity.
2 Note that the expressions for the linear momentum flux (2) and that for the recoil velocity (7)
are even applicable to compact binary systems involving NSs as components. However, the plunge
computations presented here assume that both the components of the binary are BHs.
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This article is organized in the following way. In Sect. 2, we write down the
multipolar expansion of the linear momentum flux and the final expression for the
flux in terms of source multipole moments. Section 3 derives the 2.5PN expression
for the recoil and Sect. 4 discusses the numerical estimates of recoil. Conclusions are
given in Sect. 5.

2 Multipole Expansion for Linear Momentum Flux

The general formula for linear momentum flux in the far-zone of the source in terms
of symmetric trace-free (STF) radiative multipole moments is given in [13] and at
relative 2.5PN order it takes the following form (see e.g. (4.20’) of Ref. [13]):

F i
P (U ) = G

c7

{[
2

63
U (1)

i jk U (1)
jk + 16

45
εi jkU (1)

ja V (1)
ka

]

+ 1

c2

[
1

1134
U (1)

i jkl U (1)
jkl + 1

126
εi jkU (1)

jab V (1)
kab + 4

63
V (1)

i jk V (1)
jk

]
(1)

+ 1

c4

[
1

59400
U (1)

i jklm U (1)
jklm + 2

14175
εi jkU (1)

jabc V (1)
kabc + 2

945
V (1)

i jkl V (1)
jkl

]
+ O

(
1

c6

)}
.

In the equation above UL and VL denote the mass and current type radiative
multipoles of the source (suffix L captures the multi-index structure of the U and V
moments) and U (n)

L and V (n)
L denote the nth time derivatives of the moments:O(1/c6)

denotes the omission of terms at 3PN and at higher PN orders w.r.t the leading term.
The moments which appear in the above formula are functions of retarded time
T − R

c , where R denotes the distance of the source relative to the observer and T
the time of observation, both in radiative coordinates. In the MPM formalism UL
and VL are related to canonical moments ML and SL ((5.4)–(5.8) of [14]) which
in turn are related to source moments {IL , JL , X L , WL , YL , ZL} [14, (5.9)–(5.11)].
Using these inputs, one can re-express the radiative multipole moments in terms of
source moments. Then one notices that the total linear momentum flux consists of
two parts: one type of terms are functions of the retarded time called instantaneous
terms and the other which are sensitive to the dynamics of the source in its entire
past are called hereditary terms. Explicit expressions for the two types of terms are
given in (2.3)–(2.5) of Ref. [12]. Further, the explicit expressions for various source
multipole moments are given in (3.1)–(3.4) of Ref. [12]. The only other input we
require is the 2.5PN accurate equations of motion which can be found in [14, 15].
Using these inputs, and working in harmonic coordinates, we obtain the total linear
momentum flux in terms of gauge independent variable x = (mω)2/3 as
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)}
. (2)

In the equation above n̂ and λ̂ are related to the phase angle ψ as

n̂ = cos ψ êx + sin ψ êy, (3)

λ̂ = −sin ψ êx + cos ψ êy . (4)

3 Computation of the Recoil

Having computed the linear momentum flux for compact binaries in circular orbits,
one can obtain the recoil velocity by integrating the momentum balance equation

d Pi

dt
= −F i

P , (5)

to get

ΔPi = −
t∫

−→
dt ∓ F i

P . (6)

Performing the integration we find,
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4 Numerical Estimates of the Recoil Velocity Including
Plunge Contribution

As is evident from (7), the recoil velocity depends on the (symmetric) mass ratio ν and
does not depend on the total mass. This is consistent with our understanding that the
origin of the recoil is in the mass asymmetry. We finally want to numerically estimate
the recoil velocities as a function of ν. Our calculation based on 2.5PN approximation
yields a maximum kick velocity of ∼4 km/s as opposed to ∼22 km/s of the 2PN
model given in Ref. [11]. Thus 2.5PN estimates predict a smaller kick velocity than
the 2PN model. This result is obtained by integrating the linear momentum flux
till the Innermost Stable Circular Orbit (ISCO), up till which PN approximation is
considered to be valid.

Since the dominant contribution to the recoil comes towards the late stages of
the binary evolution, we incorporate the contribution from the ‘plunge’ phase of the
evolution beyond the last stable orbit, following and extending a model proposed
in Ref. [11]. The method may be considered to be less sophisticated version of the
Effective One Body approach [16, 17]. In this model, the plunge can be viewed as
that of a test particle moving in the fixed Schwarzshild geometry of mass m. The
contribution from the plunge phase is estimated using the PN formulae assuming
they are valid even beyond ISCO. Since the PN representation is usually not reliable
beyond ISCO, this should be a source of error and in general this computation is
only a crude estimate. Further, the recoil velocity accumulated during the two phases
(inspiral and the plunge) can be obtained by taking a vector sum of the two estimates.
This is achieved by matching the circular orbit at the ISCO to a suitable plunge orbit.
The final results of the numerical estimates of the recoil velocity are presented in
Fig. 1. We compare the recoil velocity based on our 2.5PN inspiral+plunge model
with that of 2PN inspiral+plunge model of Ref. [11]. (Specifications are the same
as those of Fig. 1 of [11].) As is evident, our 2.5PN inspiral+plunge model predicts
smaller recoil velocity for almost all values of ν. The maximum of the curve drops
from ∼243 km/s of [11] to ∼180 km/s. This may be attributed to the oscillatory
convergence of the PN series observed in various contexts (see e.g. [18]). While our
estimates are within the error bars given by [11], one should keep in mind that there
are also error bars associated with our estimates due to systematic effects such as the
omission of higher order PN contributions.

5 Conclusion

Using the MPM formalism, we computed the linear momentum flux due to GW
emission from inspiralling compact binaries moving in circular orbit up to 2.5PN
order. This complements the computations of energy flux [19], waveform and
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Fig. 1 Kick velocity imparted
to the remnant of the compact
binary coalescence as a func-
tion of symmetric mass ratio.
This figure incorporates the
contribution from the plunge
phase of the binary evolution.
The results of 2.5PN+plunge
is compared against that of
Ref. [11] where the estimation
was done with a 2PN+plunge
model
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polarizations [20, 21] at 2.5PN order for circular orbits. Using the PN linear momen-
tum flux and an analytical model of plunge [11], we have estimated the contributions
to the recoil from the inspiral and plunge phase as a function of symmetric mass
ratio.
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A Reference for the Covariant Hamiltonian
Boundary Term

James M. Nester, Chiang-Mei Chen, Jian-Liang Liu and Gang Sun

Abstract The Hamiltonian for dynamic geometry generates the evolution of a
spatial region along a vector field. It includes a boundary term which determines
both the value of the Hamiltonian and the boundary conditions. The value gives the
quasi-local quantities: energy-momentum, angular-momentum/center-of-mass. The
boundary term depends not only on the dynamical variables but also on their ref-
erence values; the latter determine the ground state (having vanishing quasi-local
quantities). For our preferred boundary term for Einstein’s GR we propose 4D iso-
metric matching and extremizing the energy to determine the reference metric and
connection values.

1 Introduction

Energy-momentum is the source of gravity. Gravitating bodies can exchange energy-
momentum with gravity—locally—yet there is no well defined energy-momentum
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density for gravity itself. This inescapable conclusion can be understood as a conse-
quence of the equivalence principle (for a discussion see Misner et al. [1], Sect. 20.4).

2 Quasi-Local Energy-Momentum

The standard approaches aimed at identifying an energy-momentum density for
gravitating systems always led to various non-covariant, reference frame depen-
dent, energy-momentum complexes (such expressions are generally referred to
as pseudotensors). There are two types of ambiguity. First, there was no unique
expression, but rather many that were found by various investigators—including
Einstein [2], Papapetrou [3], Landau-Lifshitz [4], Bergmann-Thompson [5],break
Møller [6], Goldberg [7], and Weinberg [8]—so which expression should be used?
And second—in view of the fact all of these expressions are inherently reference
frame dependent—for a chosen expression which reference frame should be used to
give the proper physical energy-momentum localization?

The more modern idea is quasi-local, i.e., energy-momentum should be associated
not with a local density but rather with a closed 2-surface; for a comprehensive review,
see Szabados [9].

One approach to energy-momentum is via the Hamiltonian (the generator of time
evolution). It turns out that this actually includes all the classical pseudotensors as
special cases, while taming their ambiguities—providing clear physical/geometric
meaning [10, 11].

3 The Covariant Hamiltonian Formulation Results

We have developed a covariant Hamiltonian formalism that is applicable to a large
class of geometric gravity theories [10–16]. For such theories the Hamiltonian 3-form
H (N ) is both a conserved Noether current,

dH (N ) √ field eqns → 0, (1)

as well as the generator of the evolution of a spatial region along a space-time
displacement vector field. It has the general form

H (N ) = NμHμ + dB(N ), (2)

where NμHμ—which generates the evolution equations—is itself proportional to
certain field equations (initial value constraints) and thus vanishes “on shell”. Conse-
quently the value of the Hamiltonian is determined by the total differential (boundary)
term:
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E(N , Λ) :=
∫

Λ

H (N ) =
∮

φΛ

B(N ). (3)

Thus, the value is quasi-local. From this boundary term, with suitable choices of the
vector field on the boundary, one can determine the quasi-local energy-momentum
and angular momentum/center-of-mass.

It should be noted that the boundary 2-formB(N ) can be modified—by hand—in
any way without destroying the conservation property. (This is a particular case of
the usual Noether conserved current ambiguity.) With this freedom one can arrange
for almost any conserved quasi-local values. Fortunately the Hamiltonian’s role in
generating evolution equations tames that freedom.

4 Boundary Variation Principle, Reference Values

One must look to the boundary term in the variation of the Hamiltonian (see Lanczos
[17–19]). Requiring it to vanish yields the boundary conditions. The Hamiltonian
is functionally differentiable on the phase space of fields satisfying these boundary
conditions. Modifying the boundary term changes the boundary conditions. (The
different classical pseudotensors are each associated with a specific “superpoten-
tial” which can serve as the Hamiltonian boundary term, thus they correspond to
Hamiltonians with different boundary conditions [10].)

In order to accommodate suitable boundary conditions one must, in general, also
introduce certain reference values which represent the ground state of the field—
the “vacuum” (or background field) values. To this end for any quantity κ we let
νκ := κ − κ̄ where κ̄ is the reference value.

5 Preferred Boundary Term for GR

Some time ago we identified for GR two covariant-symplectic boundary terms [12];
one, which was also found1 at about the same time by Katz, Bičák and Lynden-
Bell [20, 21], has become our preferred choice2:

B(N ) = 1

2∂
(νξ κ

π ∓ iN τκ
π + D̄π Nκντκ

π) , (4)

This choice corresponds to fixing the orthonormal coframe σμ (equivalently the
metric) on the boundary:

1 Via a different route, using a Noether type argument with a global reference.
2 Here ξ κ

π is the connection one-form, τκπ... := ∼(σκ ∓ σπ ∓ · · · ) and iN denotes the interior
product (aka contraction) with the vector field N .
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δH (N ) ≤ diN (νξ κ
π ∓ δτκ

π). (5)

Like other choices, at spatial infinity it gives the ADM [22], MTW [1],
Regge-Teitelboim [18], Beig-Ó Murchadha [23], Szabados [24, 25] energy, mo-
mentum, angular-momentum, center-of-mass.

Its special virtues include (i) at null infinity it directly gives the Bondi-Trautman
energy and the Bondi energy flux [15], (ii) it is “covariant”, (iii) it has a positive energy
property, (iv) for small spheres it gives a positive multiple of the Bel-Robinson tensor,
(v) it yields the first law of thermodynamics for black holes [13], (vi) for spherically
symmetric solutions it has the hoop property [26].

6 The Reference and the Quasi-Local Quantities

For all other fields it is appropriate to choose vanishing reference values as the
reference ground state—the vacuum. But for geometric gravity the standard ground
state is the non-vanishing Minkowski metric. Thus a non-trivial reference is essential.

Using standard Minkowski coordinates yi , a Killing field of the reference has the
form N k = N k

0 + Ωk
0l yl , where the translation parameters N k

0 and the boost-rotation

parameters Ωkl
0 = Ω

[kl]
0 are constants. The 2-surface integral of the Hamiltonian

boundary term then gives a value of the form

∮
S
B(N ) = −N k

0 pk(S) + 1

2
Ωkl

0 Jkl(S), (6)

which yields not only a quasi-local energy-momentum but also a quasi-local angular
momentum/center-of-mass. The integrals pk(S), Jkl(S) in the spatial asymptotic
limit agree with accepted expressions for these quantities [1, 18, 23–25].

7 The Reference

For energy-momentum one takes N to be a translational Killing field of the Min-
kowski reference. Then the second term in our quasi-local boundary expression (4)
vanishes. Let us note in passing that holonomically (with vanishing reference con-
nection coefficients) the first term in (4) reduces to Freud’s 1939 superpotential [27].
Thus we are in effect here making a proposal for good coordinates for the Einstein
pseudotensor.

To construct a reference, choose, in a neighborhood of the desired spacelike bound-
ary 2-surface S, four smooth functions yi , i = 0, 1, 2, 3 with dy0∓dy1∓dy2∓dy3 ∞=
0; they define a Minkowski reference by ḡ = −(dy0)2 + (dy1)2 + (dy2)2 + (dy3)2.
This is equivalent to finding a diffeomorphism for a neighborhood of the 2-surface
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into Minkowski space. The reference connection can now be obtained from the
pullback of the flat Minkowski connection.

With constant N k our quasi-local expression now takes the form

B(N ) = N k xμ
k(ξ

κ
π − xκ

j dy j
π) ∓ τμκ

π , (7)

where dyk = yk
κdxκ has the inverse dxκ = xκ

kdyk .

8 Isometric Matching of the 2-Surface

The reference metric on the dynamical space has the components

ḡμΣ = ḡi j yi
μy j

Σ . (8)

Consider the usual embedding restriction: isometric matching of the 2-surface S.
This can be expressed quite simply in terms of quasi-spherical foliation adapted
coordinates t, r, η, α as

gAB=̇ḡAB = ḡi j yi
A y j

B = −y0
A y0

B + δi j yi
A y j

B , (9)

where S is given by constant values of t, r , and A, B range over η, α. We use =̇ to
indicate a relation which holds only on the 2-surface S.

From a classic closed 2-surface into R
3 embedding theorem—as long as one

restricts S and y0(xμ) so that on S

g∗
AB := gAB + y0

A y0
B (10)

is convex—one has a unique embedding. Wang and Yau have discussed in detail this
type of embedding of a 2-surface into Minkowski controlled by one function in their
recent quasi-local work [28, 29].

9 Complete 4D Isometric Matching

Our “new” proposal is: complete 4D isometric matching on S. (We remark that this
was already suggested by Szabados back in 2000,3 and he has since extensively
explored this idea [30] in unpublished work.)

Complete 4D isometric matching imposes 10 constraints,

gμΣ |S=̇ḡμΣ |S=̇ḡi j yi
μy j

Σ |S ,

3 At a workshop in Hsinchu, Taiwan.



182 J. M. Nester et al.

on the 16 yi
κ(t0, r0, η, α). On the 2-surface S these 16 quantities are actually

determined by 12 independent embedding functions: yi , yi
t , yi

r (since from yi on
S one can get yi

η , yi
α). There remain 2 = 12–10 degrees of freedom in choosing the

reference.
One could as an alternative use orthonormal frames. Then the 4D isometric

matching can be represented by σκ =̇ σ̄κ . But the reference coframe has the form
σ̄κ = dyκ . Thus one should Lorentz transform the coframe σκ to match dyκ on the
2-surface S. This leads to an integrability condition: the 2-forms dσκ should vanish
when restricted to the 2-surface:

dσκ|S =̇ 0. (11)

This is 4 conditions restricting the 6 parameter local Lorentz gauge freedom. Which
again reveals that after 4D isometric matching there remains 2 = 6–4◦ of freedom in
choosing our reference. By the way, this orthonormal frame formulation shows that
our procedure can alternatively be viewed as finding a good frame for the “teleparallel
gauge current” [31].

10 The Best Matched Reference Geometry

There are 12 embedding variables subject to 10 4D isometric matching conditions,
or equivalently, 6 local Lorentz gauge parameters subject to 4 frame embedding
conditions. To fix the remaining 2, one can regard the quasi-local value as a measure
of the difference between the dynamical and the reference boundary values. So we
propose taking the optimal “best matched” embedding as the one which gives the
extreme value to the associated invariant mass m2 = −pi p j ḡi j . This is reasonable,
as one expects the quasi-local energy to be non-negative and to vanish only for
Minkowski space.

More precisely, we note two different situations:
I: Given a 2-surface S find the critical points of m2. This should determine the
reference up to Poincaré transformations.
II: Given a 2-surface S and a vector field N , then one can look to the choices of
the embedding variables that are a critical point of E(N , S). (Afterward one could
extremize over the choice of N .)

Based on some physical and practical computational arguments it seems reason-
able to expect a unique solution in general.

For spherically symmetric systems (both static and dynamic), using this and some
other related strategies we have found reasonable quasi-local energy results [32–35].
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On a Five-Dimensional Version
of the Goldberg-Sachs Theorem

Marcello Ortaggio, Vojtěch Pravda, Alena Pravdová and Harvey S. Reall

Abstract The recently developed generalization of the Goldberg-Sachs theorem to
five-dimensional Einstein spacetimes is summarized. This generalization involves
two steps. First it has been proven that in arbitrary dimension an Eistein spacetime
admitting a multiple WAND admits also a multiple geodetic WAND. Second, in five
dimensions, the 3 × 3 optical matrix of such geodetic multiple WAND can be cast
to one of three canonical forms, each determined by two free parameters.

1 Introduction

Recently a generalization of the Petrov classification of the Weyl tensor to arbitrary
dimension was developed [1] (see [2] for a recent review). It is thus natural to ask
whether the four dimensional Goldberg-Sachs (GS) theorem can be in some form
extended to higher dimensions.
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In four dimensions GS theorem proved to be a very useful tool for studying and
constructing new, algebraically special solutions of the Einstein equations, e.g. the
Kerr solution [3]. It states that in a (non-conformally flat) Einstein spacetime,1 a null
vector field is a repeated principal null direction (of the Weyl tensor) if, and only if,
it is geodetic and shear-free.

A higher dimensional analogue of the principal null direction (PND) of the Weyl
tensor is a so called Weyl Aligned Null Direction (WAND) which in four dimensions
coincides with PND. We will say that a higher dimensional spacetime is algebraically
special if it admits a multiple WAND (an analogue of a repeated PND).

In contrast with the four-dimensional case, higher dimensional Einstein space-
times may admit (only in type D spacetimes) non-geodetic multiple WANDs. How-
ever, it has been shown in [4] that such spacetimes also always admit geodetic
multiple WANDs. The higher dimensional generalization of the “geodetic” part of
the GS theorem thus reads [4]:

Proposition 1 An Einstein spacetime admits a multiple WAND if, and only if, it
admits a geodetic multiple WAND.

Therefore when considering algebraically special Einstein spacetimes without loss
of generality one can always choose a geodetic multiple WAND.

For the formulation of the “shearfree” part of the GS theorem we need to introduce
the (d − 2) × (d − 2) optical matrix ρi j

ρi j √ mμ
(i)m

ν
( j)→νΛμ, (1)

corresponding to a geodetic null vector field � coinciding with a multiple WAND
and with m(i) being orthonormal spacelike vectors orthogonal to �.

In contrast with the four-dimensional case, algebraically special Einstein space-
times may admit multiple WANDs with non-vanishing shear2 and in fact in the
generic case shear is non-vanishing. Therefore a generalization of necessary3 con-
ditions on ρi j following from the existence of multiple WAND will not be straight-
worward and in the next section we will thus limit ourselves to the case of five
dimensions.

Let us conclude this section with mentioning some special classes of spacetimes
where the necessary conditions on ρi j following from the multiple WAND condition
have been known in any dimensions.

1 An Einstein spacetime is a solution of the vacuum Einstein equation, possibly with a cosmological
constant, i.e. with the Ricci tensor Rab = (R/d)gab in d dimensions.
2 Shear is defined as traceless symmetric part of the optical matrix.
3 Sufficient conditions on ρi j for � to be a multiple WAND are not in full generality known, but
it has been shown [5, 6] that ρi j = 0 (Kundt class) and ρi j ∓ δi j (Robinson-Trautman class) are
examples of such sufficient conditions.
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1.1 Necessary Conditions on ρi j for Various Special Classes
of Spacetimes

1.1.1 Types N and III

The multiple WAND in vacuum spacetimes of type N must be geodetic, the optical
matrix must have rank 2 and it can be put into a form [7]

ρ = b diag

([
1 a

−a 1

]
, 0, . . . , 0

)
. (2)

The same form of ρ also applies to type III Ricci flat spacetimes [7] that either

(i) are five-dimensional,
(ii) satisfy a certain genericity condition [7],

(iii) have a non-twisting multiple WAND (with vanishing rotation, i.e., a = 0).

Generalization of the above type N and III results from the Ricci-flat case to the
Einstein case is straightforward, see [8]. Note that ρi j of the form (2) is shearfree for
d = 4 but not for d > 4 (for b ∼= 0).

1.1.2 Kerr-Schild Spacetimes

It can be shown [9, 10] that for Kerr-Schild (KS) spacetimes,4

gμν = ḡμν + Hkμkν, (3)

with vanishing T00 √ Tabkakb component of the energy–momentum tensor, the KS
vector k is a geodetic multiple WAND and the optical matrix can be put into a block
diagonal form

ρ = αdiag

(
1, . . . 1,

1

1 + α2b2
1

[
1 −αb1

αb1 1

]
, . . . ,

1

1 + α2b2
ν

[
1 −αbν

αbν 1

]
, 0, . . . , 0

)
. (4)

1.1.3 Asymptotically Flat Type II Spacetimes

Similar result as above holds also for asymptotically flat type II spacetimes [11].
It can be shown that in this case ρ obeys the optical constraint

ρikρ jk ∓ ρ(i j), (5)

4 ḡμν is a metric of constant curvature and KS vector k is null with respect to ḡμν and thus also
with respect to gμν .
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which in fact holds if and only if ρ can be put in the canonical form (4) by appro-
priately choosing the frame. Note that the optical constraint also holds in the type
N and III cases discussed above. In fact it turns out that in arbitrary dimension such
form of ρ is “preferred” and holds for generic algebraically special spacetimes (see
[12] for more precise formulation). Explicit examples of Einstein spacetimes with
all multiple WANDs violating the optical constraint are however also known [2].

2 GS Theorem in Five Dimensions

Let us now summarize main results of [12], where the necessary conditions for � to
be a multiple WAND in a five-dimensional algebraically special Einstein spacetime
have been found:

Theorem 1 In a five-dimensional algebraically special Einstein spacetime that is
not conformally flat, there exists a geodetic multiple WAND � and its optical matrix
can be put in one of the forms

(i) b

⎪
 1 a 0

−a 1 0
0 0 1 + a2


 , (6)

(ii) b

⎪
 1 a 0

−a 1 0
0 0 0


 , (7)

(iii) b

⎪
 1 a 0

−a −a2 0
0 0 0


 . (8)

If the spacetime is of type III or type N then the form must be (ii).

Note that for b ∼= 0 matrices (i), (ii), (iii) have rank 3, 2, 1, respectively, and for
b = 0 it is the Kundt spacetime. Only the case iii) with a ∼= 0 ∼= b does not satisfy
the optical constraint (5). However, it has been proven recently that this case cannot
occur for genuine type II spacetimes [13] (see also [14]) and for type D one can show
[12] the following:

Proposition 2 A five-dimensional type D Einstein spacetime admits a geodetic mul-
tiple WAND violating the optical constraint if, and only if, it admits a non-geodetic
multiple WAND.

Note that all 5d Einstein spacetimes admitting a non-geodetic multiple WAND are
explicitly known [4]. It turns out that these spacetimes always admit another geodetic
multiple WAND satisfying optical constraint and one can thus conclude:

Proposition 3 A five-dimensional algebraically special Einstein spacetime always
admits a geodetic multiple WAND obeying the optical constraint.
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Due to Theorem 1 the number of independent components of the optical matrix ρ
is reduced from 6 to 2 free parameters. This will lead to a considerable simplification
of the GHP equations [8] and hopefully also to a discovery of new higher dimensional
algebraically special Einstein spacetimes.

Let us conclude with some known examples of Einstein spacetimes belonging to
the cases (i)–(iii) of the Theorem 1 [12]:

• case (i)
a ∼= 0: the Myers-Perry [15] black hole solution (cf. [16]) and in fact all non-
degenerate (i.e. detρ ∼= 0) Einstein Kerr-Schild metrics with Minkowski or (A)dS
background [9, 10], 5d Kaluza-Klein bubble obtained by analytic continuation of
a singly spinning Myers-Perry solution [12, 17];
a = 0: this case corresponds to the Robinson-Trautman class [6] and in five
dimensions it reduces to the Schwarzschild-Tangherlini metric (possibly with a
cosmological constant).

• case (ii)
a ∼= 0: product of a 4d Ricci-flat algebraically special twisting solution with a flat
5th direction, e.g., the Kerr black string (i.e. the product of the 4d Kerr solution
with a flat direction), or more generally warped product of a 4d algebraically
special Einstein spacetime with a fifth direction (with non-vanishing cosmological
constant);
a = 0: a direct or warped product of any 4d Einstein type II Robinson-Trautman
metric [18], e.g. the Schwarzschild black string solution.

• case (iii)
Spacetimes belonging to this case are of type D ([13], see also [14]) and admit
a non-geodetic multiple WAND. All such metrics were determined in [4]—the
direct products d S3 × S2 and Ad S3 × H2 or the analytical continuation of the 5d
Schwarzschild solution [19] (generalized to include a cosmological constant and
planar or hyperbolic symmetry);
a ∼= 0: a specific twisting geodetic multiple WAND, e.g., in d S3 × S2, see [12];
a = 0: a non-twisting, expanding and shearing geodetic multiple WAND in d S3 ×
S2 or in the Kaluza-Klein bubble solution, see [12].

Acknowledgments The authors acknowledge support from research plan RVO: 67985840 and
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Gravitomagnetism: From Einstein’s
1912 Paper to the Satellites LAGEOS
and Gravity Probe B

Herbert Pfister

Abstract The first concrete calculations of (linear) gravitomagnetic effects were
performed by Einstein in 1912–1913. Einstein also directly and decisively con-
tributed to the “famous” papers by Thirring (and Lense) from 1918. Generalizations
to strong fields were performed not earlier than in 1966 by Brill and Cohen. Exten-
sions to higher orders of the angular velocity Λ by Pfister and Braun (1985–1989)
led to a solution of the centrifugal force problem and to a quasiglobal principle of
equivalence. The difficulties but also the recent successes to measure gravitomagnetic
effects are reviewed, and cosmological and Machian aspects of gravitomagnetism
are discussed.

1 Einstein’s Papers on Gravitomagnetism from 1912 and 1913

Einstein’s paper “Is there a gravitational action analogous to electromagnetic induc-
tion?” [1] from July 1912 (presumably his last work in Prague) is exceptional in
many ways: It is published in a journal for forensic medicine (as a birthday present
for his friend Heinrich Zangger), and it is very short (4 pages in the original setting,
equivalent to less than 1.5 pages in today’s Physical Review). It introduces audacious
new concepts: the model of a spherical mass shell with mass M and radius R (which
is useful until today in general relativity, because it is the optimal substitute for
Newton’s mass point, and because it allows to treat systems with matter by solving
only the vacuum equations of general relativity), moreover a new gravitomagnetic
“force”, and the first calculation of a dragging effect: If the mass shell is linearly
accelerated with φ , Einstein calculates that a test mass m at the center of the shell is
dragged with acceleration κ = 3

2 (M/R)φ (in units with G = c = 1).
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On the other hand, from today’s perspective of general relativity, most details of
the paper are wrong or inconsistent: The calculated mass increase of the test mass
m √ m→ = m + m M/R is only a coordinate effect in general relativity [2]; in the
calculated linear dragging acceleration κ the prefactor 3

2 has to be substituted by 4
3

[3], and, most importantly, a scalar relativistic gravity theory (which was the basis
of Einstein’s paper) can never produce a vectorial gravitomagnetic induction.

But the central new physical ideas of this paper (dragging and gravitomagnetism)
kept command over Einstein when in 1913 (now in Zürich, with Grossman) he for-
mulated the tensorial Entwurf theory. In the so-called Einstein-Besso manuscript
[4] of June 1913 they calculated within this theory, besides the main topic of per-
ihelion advance of Mercury, also a new value for the linear dragging acceleration
(κ = 2(M/R)φ ), a Coriolis force inside a rotating spherical mass shell, and there-
from a rotational dragging of test masses (half the value in final general relativity),
and a motion of the nodes of planets in the field of the rotating sun (1/4 of the
value in general relativity). It is quite interesting which parts of this manuscript Ein-
stein presented in his great and brilliant speech at the Naturforscher-Versammlung
in Vienna in September 1913 [5], and which parts he omitted. When Einstein had
finished general relativity in November 1915, he did not immediately come back to
the questions of dragging and gravitomagnetism, because there were more urgent
new problems (gravitational waves, cosmology, gravitational field energy, ... ), and
because he presumably imagined that the results on dragging and gravitomagnetism
in general relativity would be similar to his results in the Entwurf theory.

2 The Papers of Thirring (and Lense) on Gravitomagnetism
from 1918

It is well known that questions of dragging and gravitomagnetism in general relativity
were first taken up in 1917–1918 by Hans Thirring (and Lense). Not so well known
is that these papers owe nearly all their interesting and correct results to the direct
interference of Einstein. Thirring had started his work in April 1917 (see Thirring
[6] and Pfister [7]), with (partly wrong) calculations of centrifugal effects exerted by
rotating mass shells and full bodies, and he did not realize that these effects, being of
second order in the angular velocity Λ, are ridiculously small for all laboratory and
solar systems. In a letter of July 17 [8], Thirring informed Einstein about his work,
together with some questions. Einstein’s answer of August 2 [8] is short and polite, but
admirably clear and concise. He stresses that much more important and realistic than
centrifugal effects are Coriolis effects of first order of Λ; he explains to Thirring the
resulting dragging phenomena and the effects on the planets and moons in the solar
system, and tells him that he has calculated all these effects (in the Entwurf theory), a
fact which should have been known to Thirring from Einstein’s speech [5] in Vienna
in 1913. Only after this eye-opening lesson from Einstein is Thirring able to produce
his two “famous” papers [9, 10] of 1918. Still these papers have severe deficits: For the
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rotating mass shell Thirring calculates in the weak field approximation the dragging
acceleration of test masses of velocity v: a = 2d v×Λ, with dT h = 4M/3R, but only
near the center of the shell (for r ∓ R), and for the rotating full body he calculates
the so-called Lense-Thirring effect a = 2v × H , with the gravitomagnetic dipole
field H = 2MR2

5r3 [Λ−3(Λr)r/r2] only for r ∼ R, which does not apply to the modern
satellite experiments LAGEOS and Gravity Probe B. (See Sect. 5.) The centrifugal
results of order Λ2 in [9] contain many errors: an integration error observed by Laue
and Pauli in 1920, the error (observed by Lanczos [11]) that Thirring modelled the
mass shell as dust, and did therefore not correctly solve the Einstein equations, and
the result of an axial component of his centrifugal “force”, for which he gave a
wrong physical explanation. The contributions of Lense to [10] are anyhow only of
minor, technical character: The transformation of Thirring’s results from Cartesian
coordinates to the orbital elements used in astronomy, and their evaluation for some
planets and moons of the solar system.

In my judgement a more original and valuable (but seldom quoted) paper by
Thirring is his [12] where he as the first person (and correctly) formulates the analo-
gies between electromagnetism and the Einstein equations in linear approximation,
discusses the different signs and a factor 4 of the basic equations of gravitomagnetism
in comparison to electromagnetism, and here he even mentions the preliminary dis-
cussion of gravitomagnetism by Einstein in his Vienna speech [5] of 1913. (For a
modern and more extended treatment of gravitomagnetism see Ciufolini and Wheeler
[13].)

3 Generalizations to Strong Fields and Higher Orders of ω.
Solution of the Centrifugal Force Problem

Considerable progress and extension of the work of Einstein and Thirring happened
only in 1966 by the work of Brill and Cohen [14] who performed a first order rotational
perturbation not of Minkowski spacetime but of the Schwarzschild solution, with the
result for the dragging factor dBC = 4ν(2 − ν)/((1 + ν)(3 − ν)), with ν = M/2R,
where R is the shell radius in isotropic coordinates. The important new physical result
is that in the collapse limit ν √ 1 the factor dBC attains the value 1: total dragging,
and herewith a complete realization of the Machian postulate of relativity of rotation:
in this limit the interior of the shell cuts itself off as a type of separate universe, and
interior test particles are dragged along with the full angular velocity Λ of the shell.
As far as I know, Brill and Cohen were also the first to make clear that the interior
Coriolis field applies to all r < R, and the exterior dipole field to all r > R. (The
latter follows simply from symmetry arguments: a first order rotational perturbation
of a spherical system produces quite generally a pure dipole field proportional to
r−3.)

An extension of this work to higher orders of Λ, and in particular the problem of
the notoriously wrong “centrifugal force” inside a rotating mass shell had to wait for
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another 19 years to be solved in [15]. The solution is based on two “new” observations
which could and should have been made already in Thirring’s time, but which were
overlooked by all authors before 1985:

(a) Any physically realistic rotating body will suffer a centrifugal deformation in
orders Λ2 and higher, and cannot be expected to keep its spherical shape.

(b) If we aim to realize inside the rotating mass shell quasi-Newtonian conditions
with correct Coriolis and centrifugal forces—and no other forces!—, the interior
of the mass shell obviously has to be a flat piece of spacetime. In the first order
of Λ this flatness is more or less trivial; however, in order Λ2 it is by no means
trivial, and is indeed violated for Thirring’s solution, due to the axial component
of his “centrifugal force”.

These observations lead to the mathematical question whether it is possible to
connect a rotating flat metric through a mass shell (with, to begin with, unknown
geometrical and material properties) to the non-flat but asymptotically flat exterior
metric of a rotating body. In [15–17] we could show that this problem has (for given
M, R, and Λ ∓ 1/R) a unique solution in every order Λn , and that the resulting
mass shell has non-spherical (surprisingly oblate) geometry, non-spherical mass dis-
tribution, and differential rotation. Only in the collapse limit R √ M/2 the shell is
again spherical and rigidly rotating, as was already deduced by de la Cruz und Israel
[18].

4 A Quasi-Global Principle of Equivalence

The success with this “matter-induced centrifugal force” guided me to the following
hypothesis of a “quasi-global equivalence principle in general relativity” [15]. In
short: “Every acceleration field can be understood as a gravitational field.” In more
detail: If some finite laboratory (a flat region of spacetime) is in arbitrary accelerated
motion relative to the fixed stars, then all motions of free particles and all physical
laws, measured from laboratory axes, are modified by inertial forces. It is argued that
exactly the same modified motions and laws can be induced (at least for some time)
at all places of a laboratory at rest relative to the fixed stars, by suitable and suitably
accelerated masses outside the laboratory, e.g., in a mass shell. After formulating this
hypothesis in 1985, I found that similar ideas arose already in the years 1912–1913
in discussions of Einstein with Ehrenfest [19] and Mie [5]. But at that time these
people were quite sceptical about such a “macroequivalence”. Today there are good
arguments for the validity of the hypothesis at least for small accelerations because
for small rotations (in Pfister and Braun [15]) and small linear accelerations (in Pfister
et al. [3]) the hypothesis has been explicitly proven, and because arbitrary accelera-
tions can (at least in principle) be combined from linear and rotational accelerations.
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5 Measuring Gravitomagnetism

I should like to comment on the difficulties but also successes to measure the new
“force” gravitomagnetism. For laboratories on earth and for satellites we have on
one hand a factor MEarth/REarth ≤ 10−9 for any deviations from Newtonian gravity.
For rotational effects there comes another factor ΛEarth REarth/c ≤ 10−6, therefore
a factor 10−15 for any gravitomagnetic field, in comparison to Newtonian gravity.
(Already Einstein in his letter to Thirring from 1917 stated that “the effects stay far
below the measurement error”.) Since there exist no gravitomagnetic materials in
nature, there comes typically another factor ∂/c ∞ 10−5 from the velocity ∂ of the
rotating parts of the measuring device (except where these are photons or neutrinos).
The resulting demand of a total precision of 10−20 can presumably not be fulfilled by
any laboratory experiment in the foreseeable future, why I judge all pertaining recent
proposals as questionable, even if they use Bose-Einstein condensates as in [20]. For
neutron stars, pulsars, and black holes the above numbers are of course much more
favourable. But in these astrophysical systems there exist many competing, partly
unknown or poorly understood processes so that it is again questionable whether
they lead to a clear measurement of gravitomagnetism [21].

In contrast, already soon after the start of the first earth satellites (in 1957) there
appeared proposals (e.g., by Ginzburg and Schiff) to use these for tests of general rel-
ativity, because in space there is automatically high vacuum and low temperature, and
because such tests can accumulate data over long time (years). In an admirable effort
over 40 years (and with expenses of 700 million US$) the Stanford Gravity Probe
B project (a satellite with r/R ≤ 1.10) has finally confirmed the Lense-Thirring or
rather Schiff effect (precession of a gyroscope axis) with 19 % precision, much less
than the originally expected precision of 1 % ( Everitt et al. [22]). (The accompanying
geodetic precession is not a gravitomagnetic effect, because the “gravitomagnetic in-
variant” ∗R · R = 1

2ξνπκ τ Rνπμ∂ Rμ∂
κ τ is zero for this effect.) A somewhat better (10 %)

confirmation of the Lense-Thirring effect was, however, performed already some
years earlier by Ciufolini and Pavlis [23] by a (in principle) much simpler satellite
experiment: the careful measurement of the orbits of the passive satellites LAGEOS
I and II (with r/R ≤ 1.92) over 11 years, together with a precise measurement of
the earth multipole moments J2, J4, ... by the satellites CHAMP and GRACE. An
ingenious proposal by Ciufolini [24] to start LAGEOS II with orbital elements “com-
plementary” to LAGEOS I, and hereby cancelling the multipole contributions, was
unfortunately never realized. But the newly launched satellite LARES gives hope to
confirm a gravitomagnetic effect soon with 1 % precision.

If gravitational waves can be analyzed in detail in the future, this will also be an in-
direct test for gravitomagnetism, because, similar to electromagnetism, gravitational
waves have in equal parts gravitoelectric and gravitomagnetic contributions.
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6 Cosmological Remarks

Although the dragging results of Einstein, Thirring, Brill-Cohen et al. with their
asymptotically flat solutions do not really meet the Machian demand for a cosmo-
logical origin of inertia, it was proven by my PhD-student Klein [25], and by Bičák
et al. [26], and by Schmid [27] that rotational perturbations of standard FRW cosmolo-
gies provide similar dragging results. Concerning the observational confirmation of
the (non-causal!) determination of the local inertial frames by the cosmos as a whole,
I should like to quote from the MTW-book [28]: “Consider a bit of solid ground near
the geographic pole, and a support erected there, and from it hanging a pendulum.
Though the sky is cloudy, the observer watches the track of the Foucault pendulum
as it slowly turns through 360◦. Then the sky clears and, miracle of miracles, the
pendulum is found to be swinging all the time on an arc fixed relative to the far-away
stars.” The presently best measurement of this “non-rotation” (smaller than 10−9 of
the earth angular velocity) comes from the terrestrial reference system realized by
VLBI and GPS [29].
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Evolution of the Einstein Equations
to Future Null Infinity

Oliver Rinne and Vincent Moncrief

Abstract We describe recent progress with a formulation of the Einstein equations
on constant mean curvature surfaces extending to future null infinity. Long-time
stable numerical evolutions of an axisymmetric gravitationally perturbed Schwarz-
schild black hole have been obtained. Here we show how matter can be included
in our formulation. We study late-time tails for the spherically symmetric Einstein–
Yang–Mills equations both for initial data that disperse and that collapse to a black
hole.

1 Introduction

The standard approach to numerical simulations of asymptotically flat spacetimes
is to adopt the Cauchy formulation of general relativity and truncate the spatial
slices at a finite distance, where boundary conditions must be imposed. Apart from
leading to a well-posed initial-boundary value problem, such boundary conditions
should also be absorbing, i.e. they should be consistent with the solution on the
unbounded domain. The problem is that the correct boundary conditions are not
known at a finite distance. At best one may appeal to linearised theory. Bad choices
of boundary conditions are known to destroy relevant features of the solution. A far
more elegant approach is to include future null infinity in the numerical domain,
which is the true physical boundary of spacetime. In order to do this, we follow
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Penrose’s approach and apply a conformal transformation to the spacetime metric,
combined with a compactifying coordinate transformation. Rather than Friedrich’s
regular conformal field equations [1], we work directly with the Einstein equations
in an ADM-like formulation on constant mean curvature (CMC) slices [2]. This
formulation is reviewed in Sect. 2 and extended here to include matter sources. In
Sect. 3 we review a first numerical implementation of this system, which achieved
long-time stable evolution of a perturbed Schwarzschild black hole for the vacuum
Einstein equations in axisymmetry. In Sect. 4 we include matter in the form of a
Yang–Mills field, and we perform numerical simulations of the late-time decay of
this field, restricted to spherical symmetry. Our evolutions include cases that form a
black hole from regular initial data.

2 General Formulation

We decompose the spacetime metric (4)gμΛ in ADM form,

(4)g = −N 2dt2 + gi j (dxi + Xi dt)(dx j + X j dt), (1)

where gi j is the induced metric on the t = const slices, N is the lapse function and X
the shift vector. The conformal spacetime metric (4)φμΛ = κ2(4)gμΛ is decomposed
in a similar way,

(4)φ = −Ñ 2dt2 + φi j (dxi + Xi dt)(dx j + X j dt), (2)

where we identify φi j = κ2gi j and Ñ = κ N . The unit timelike normals of the phys-
ical and conformal spacetimes are related via nμ = κ ñμ. The extrinsic curvature of
the slices is defined as

Ki j = − 1
2Lngi j , (3)

where L denotes the Lie derivative. We require constant mean curvature,

gi j Ki j ≡ −K = const, (4)

with K > 0 so that the slices approach future null infinity I +. Our fundamental
evolution variable is the traceless part of the ADM momentum

ν tr i j = −μg

(
gik g jl − 1

3 gi j gkl
)

Kkl , (5)

where μg = √
det(gi j ).

Before continuing, we show how matter can be included in our formalism. We
restrict ourselves to tracefree energy-momentum tensors, gμΛTμΛ = 0. Examples
of matter models satisfying this condition include Maxwell and Yang–Mills fields
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and the conformally coupled scalar field. The tracefree condition insures that the
matter evolution equations are conformally invariant (and hence are regular at I +),
in particular,

(4)φ μΛ(4)∇̃μT̃Λ∂ = κ−4 (4)gμΛ(4)∇μTΛ∂ = 0, (6)

where we have introduced a conformally rescaled energy-momentum tensor T̃μΛ ≡
κ−2TμΛ . For this conformal energy-momentum tensor we introduce the usual pro-
jections

∂̃ ≡ ñμñΛ T̃μΛ, J̃ i ≡ −φ iμñΛ T̃μΛ, S̃i j ≡ φi
μφ j

Λ T̃μΛ, S̃ ≡ φ i j S̃i j . (7)

We are now ready to write down the ADM equations. Let ∇̃ denote the Levi–
Civita connection of φ , R̃i j its Ricci tensor and R̃ the Ricci scalar. The (not generally
constant) mean curvature of the slices in the conformal spacetime is denoted by K̃ .
The evolution equations are

Lñφi j = 2μ−1
φ φikφ jlν

tr kl − 2
3φi j K̃ , (8)

Lñν tr i j = −2μ−1
φ φklν

tr ikν tr jl − 2
3κ−1 Kν tr i j

+ μφ

[
Ñ−1∇̃ i ∇̃ j Ñ − R̃i j − 2κ−1∇̃ i ∇̃ jκ + ξκ2 S̃i j

]tr
. (9)

The Hamiltonian and momentum constraints read

0 = −4κ∇̃ i ∇̃iκ + 6φ i jκ,iκ, j − κ2 R̃ − 2
3 K 2

+ κ2μ−2
φ φikφ jlν

tr i jν tr kl + 2ξκ4∂̃, (10)

0 = ∇̃ j (κ
−2ν tr i j ) + ξμφ J̃ i . (11)

We also have an elliptic equation for the lapse arising from the constant mean cur-
vature condition (4),

0 = −κ2∇̃ i ∇̃i Ñ + 3κφ i j Ñ,iκ, j − 3
2 Ñφ i jκ,iκ, j + 1

6 Ñ K 2

− 1
4 Ñκ2 R̃ + 5

4 Ñκ2μ−2
φ φikφ jlν

tr i jν tr kl + 1
2ξ Ñκ4(S̃ + 2∂̃). (12)

In [2] we fixed the spatial coordinates by imposing a (spatial) harmonic gauge
condition. However, other choices are possible; for example, in Sects. 3 and 4 we
use coordinates adapted to the symmetry. There is also a residual conformal gauge
freedom inherent in the decomposition φμΛ = κ2gμΛ . In [2] we fixed this by requir-
ing the conformal scalar curvature R̃ to be constant. For the explicit forms of the
conformal metrics used in Sects. 3 and 4 there is no remaining conformal gauge
freedom.

The evolution equation (9) is formally singular at I +, where κ = 0. However
in [2] we showed how the offending terms can in fact be evaluated at I + in a
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regular way. This makes use of the fact that the constraints (10)–(11) and the CMC
slicing condition (12) are also degenerate at I +. On a given spatial slice, we choose
spherical polar coordinates such that the cut of the slice with I + corresponds to
r = r+ = const. We expand the fields in finite Taylor series in r about r+ and
substitute them in the degenerate elliptic equations. Thus we obtain the first three
radial derivatives of κ and the zeroth and first radial derivative of ν tr ri at I +. With
this information we can evaluate the formally singular terms in the evolution equation
(9) explicitly, provided that necessary conditions for smoothness ofI + are satisfied.
These include the condition that I + be shear-free and were obtained earlier in [3].
We show that these regularity conditions are preserved under the time evolution.
While our analysis in [2] assumed vacuum, it is easy to see that it is unaffected by
the addition of the matter sources, as will be shown in a forthcoming paper [4].

3 Axisymmetric Vacuum Gravity

The first numerical implementation [5] of the scheme presented in Sect. 2 assumed
vacuum and axisymmetry. The spatial conformal metric is written in quasi-isotropic
coordinates as

φ = e2π sin τ (dr2 + r2dτ2) + r2 sin2 τ dσ2, (13)

where π is a function of t , r and τ only, δ/δσ being the Killing vector. Preservation of
this form of the metric under the time evolution implies a first-order elliptic system
for the shift vector similar to the Cauchy–Riemann equations.

The numerical implementation is based on fourth-order finite differences on a
logically Cartesian grid in r and τ . The grid is allowed to be non-uniform in r in
order to better resolve the steep gradients occurring near the horizon of the black
hole spacetimes we consider. We use black hole excision, i.e. the inner boundary is
placed just inside the horizon. This boundary is spacelike, so evolution equations do
not require any boundary conditions there. The outer boundary is placed atI +, where
the regularised form of the evolution equations is used, as outlined at the end of the
previous section. One-sided derivatives are used at both boundaries. The constraint
equations, CMC slicing condition and spatial gauge condition are solved at each
time step using a nonlinear multigrid solver. The evolution equations are integrated
in time using the method of lines with a fourth-order Runge–Kutta method.

As a first test problem, we evolve Schwarzschild spacetime. We use the Schwarz-
schild metric in constant-mean-curvature coordinates derived in [6] with parameters
M = 1, K = 1

2 and C = 2. The Schwarzschild solution has a flat spatial conformal
metric, π = 0 in (13). We were able to evolve this solution for times as long as
103 M (and potentially longer) without any signs of instability, with approximate
fourth-order convergence as expected.

Next, we include a gravitational wave perturbation. For this we choose π to be a
Gaussian centred at r = 0.5 with width Ω = 0.05 and amplitude A = 10−4, initially
at rest. For comparison, the black hole horizon is at r = 0.0635 and I + is at r = 1.
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Fig. 1 Σ = 2 contribution
to the Bondi news function
for a gravitationally perturbed
Schwarzschild black hole
(mass M = 1) as a function
of time. Numerical results for
two different resolutions are
shown, (Nr , Nτ ) = (64, 8)

(dashed line) and (128, 16)

(solid line)
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We stress that this perturbation is evolved using the full nonlinear Einstein equations
rather than linearised theory.

We extract the gravitational radiation emitted by the system by evaluating the
Bondi news function [7] at I + in Fig. 1. The quasi-normal mode ringing phase is
clearly visible. The decay rate and frequency are consistent with the analytical result
from linearised theory. At later times the numerical solution has not yet converged
for the resolutions used here so we are currently unable to resolve the expected
power-law tail.

4 Spherically Symmetric Einstein–Yang–Mills

In this section, we include matter in the form of a Yang–Mills field. This is confor-
mally invariant; we choose to work in the conformal spacetime here. The energy-
momentum tensor is

T̃μΛ = F̃ (a)
μ∂ F̃Λ

∂(a) − 1
4
(4)φμΛ F̃ (a)

∂Ω F̃∂Ω(a), (14)

where the field-strength tensor F̃ (a)
μΛ is given in terms of the connection Ã(a)

μ by

F̃ (a)
μΛ = δμ Ã(a)

Λ − δΛ Ã(a)
μ + fabc Ã(b)

μ Ã(c)
Λ . (15)

Greek indices refer to the internal Yang–Mills gauge group, and the symbol fabc

is totally antisymmetric. Here we choose the gauge group to be SU(2), so Greek
indices range over 1, 2, 3 and we may write fabc = g[abc], where g is the Yang–
Mills coupling constant (taken to be g = −2 in the following) and [abc] is totally
antisymmetric with [123] = 1.
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Fig. 2 The Yang–Mills
potential F and electric field
DF at I + (solid lines) and
at the origin (dashed lines) in
a subcritical evolution. The
initial Bondi mass is 0.63
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We now restrict ourselves to spherical symmetry. In this case we may always
choose isotropic coordinates such that the spatial conformal metric is flat. This
implies a first-order ordinary differential equation for the shift vector, which now
has a radial component only. For the Yang–Mills connection we make the ansatz

Ã(a)
i = [ai j]x j F(t, r), Ã(a)

0 = 0. (16)

A more general spherically symmetric ansatz will be considered in [4]. Energy-
momentum conservation implies a nonlinear wave equation for F .

The numerical method used for this system is similar to the one described in Sect. 3.
One difference is that in spherical symmetry, the traceless momentum ν tr i j only has
one independent component, and we choose to solve the momentum constraint for it
rather than its evolution equation. Hence the system is fully constrained and the only
evolution equation used is the one for the Yang–Mills field. Also, our implementation
allows for both regular and excised centres so that we may start from regular initial
data until a black hole forms, which is then excised.

The Yang–Mills field F is taken to be a Gaussian centred at r = 0.5 with Ω = 0.05
(again, I + is at r = 1) and variable amplitude. The time derivative of F is chosen
such that the pulse is approximately ingoing initially.

First we take the amplitude to be sufficiently small such that the field disperses.
Figure 2 shows F at the origin and at I + as a function of coordinate time. For the
higher numerical resolution used in this (1+1)-dimensional simulation (Nr = 4000)
the tail is now well resolved. At the origin (and in fact at any finite distance) the
decay is approximately F ∼ t−4 whereas at I +, we find F ∼ t−2. This agrees
with the results in [8], and the same decay exponents were found in the test field
approximation [9].
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Fig. 3 The Yang–Mills
potential F and electric field
DF at I + (solid lines) and
at the horizon (from when
it forms, dashed lines) in a
supercritical evolution. The
initial Bondi mass is 3.0 and
the final Bondi mass (which
agrees with the final black
hole mass) is 2.5
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Let us also evaluate the electric field

D̃ i(a) =
√

−(4)φ F̃0i(a) ≡ [ai j]x j DF (t, r), (17)

also shown in Fig. 2. While this decays at the same rate as F at the origin, it decays
more slowly atI +, DF ∼ t−1. This may seem surprising at first but can be explained
by looking at the evolution equation for F ,

F,t = Xr F,r + 2r−1 Xr F − Ñ DF . (18)

At I + the r -derivative of F appearing on the right-hand side must decay more
slowly than F itself because F decays faster away from I +. From (18) we infer
that DF must also decay at the slower rate.

For sufficiently high amplitudes, the field collapses and a black hole forms (Fig. 3).
Interestingly, the Yang–Mills potential F does not decay to zero in this case but
approaches F = 2/(gr2), which is another vacuum state (the field strength tensor
vanishes). The electric field shows the same power-law decay as in the subcritical
evolution.
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Increase of Black Hole Entropy
in Lanczos-Lovelock Gravity

Sudipta Sarkar

Abstract The striking similarity of the laws of black hole mechanics with
thermodynamics was first established in case of general relativity (GR). A natural
question is to ask whether this analogy is a peculiar property of GR or a robust feature
of any generally covariant theory of gravity. We study this question in the context of
Lanczos-Lovelock gravity and provide a proof of classical quasi-stationary second
law.

1 Introduction

General relativity (GR), being quantum mechanically non-renormalizable, may make
sense as a Wilsonian effective theory working perturbatively in powers of the dimen-
sionless small parameter G (Energy)D−2, where G is the D-dimensional Newton’s
constant. Then the Einstein-Hilbert Lagrangian is the lowest order term (other than
the cosmological constant) in a derivative expansion of generally covariant actions
for a metric theory, and the presence of higher curvature terms is presumably in-
evitable. In general, the specific form of these terms will depend on the detailed
features of the quantum gravity model. Still, from a purely classical point of view, a
natural modification of the Einstein-Hilbert action is to include terms preserving the
diffeomorphism invariance and still leading to an equation of motion containing no
more than second order time derivatives. Interestingly, this generalization is unique,
[1, 2] and goes by the name of Lanczos-Lovelock gravity. Lanczos-Lovelock gravity
is free from perturbative ghost [3] and leads to a well-defined initial value formalism
[4]. The lowest order Lanczos-Lovelock correction term in space time dimensions
D > 4, namely the Gauss-Bonnet term, also appears as a low energy Λ√ correction
in case of heterotic string theory [3, 5]. Hence, it is interesting to pursue various
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classical and semi-classical properties of Lanczos-Lovelock gravity. For example,
the striking similarity of the laws of black hole mechanics with thermodynamics
was first established in case of general relativity [6] and a natural question is to ask
whether this analogy is a peculiar property of GR or a robust feature of any gener-
ally covariant theory of gravity. Studying the properties of black holes in a general
Lanczos-Lovelock theory may provide a partial answer to this important question.

The equilibrium state version of first law for black holes was established by
Wald and collaborators [7, 8] for any arbitrary diffeomorphism invariant theory of
gravity. The entropy of the black hole can be expressed as a local geometric quantity
integrated over a space-like cross section of the horizon and is associated with the
Noether charge of Killing isometry that generates the horizon.

Implicit in the investigations which uses the Wald entropy in these theories is the
assumption that the entropy associated with a horizon behaves like ordinary ther-
modynamic entropy. But, the equilibrium state version of first law for black holes,
established by Wald and collaborators [7, 8] requires the existence of a stationary
black hole with regular bifurcation surface. As a result, from the equilibrium state
version of first law, it is not immediately clear whether the Wald entropy always
increases under physical processes, except for black holes in GR, in which the “area
theorem” asserts that area of a black hole can not decrease in any process provided
null energy condition holds for the matter fields [9]. The area theorem, in turn, fol-
lows from Raychaudhuri equation and crucially depends on the contracted Einstein’s
equation Rabkakb = 8φ Tabkakb where ka is the tangent to the horizon. Since the
entropy of black holes is no longer proportional to area in Lanczos-Lovelock mod-
els of gravity, there is no obvious assurance that the entropy still obeys an increase
theorem. As a result, the question of validity of the second law of black hole ther-
modynamics for arbitrary theory of gravity remains an unresolved issue. Except for
the case of f (R)-gravity [10], there is no proof of the analog of Hawking’s area
theorem beyond GR. In the quasi-stationary case, an argument for second law valid
for all diffeomorphism invariant gravity theories was given in [10]; but it is based
on the assumption that the stationary comparison version of the first law implies the
physical process version for quasi-stationary processes.

For the thermodynamic interpretation to be valid, we would expect horizon en-
tropy to increase when a black hole in the Lanczos-Lovelock model participates in
some physical process, like, e.g., accretion of matter. Recently, a direct proof of the
physical process version of first law is proposed for Einstein-Gauss-Bonnet (EGB)
gravity [11] which establishes that the net change of black hole entropy during a
physical process is positive as long as matter satisfies null energy condition.

Here, we investigate this question for general Lanczos-Lovelock models and show
that during a physical process, the Wald entropy of stationary black holes in general
Lanczos-Lovelock gravity monotonically increases provided the matter stress energy
tensor obeys null energy condition. As a result, not only the net change of the entropy
is positive, but the entropy is increasing at every cross section of the horizon. In this
paper, we will present the essential idea and main steps of the calculations. For more
details of the derivation, see Kolekar et al. [12].
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Let us start with a brief review of the properties of stationary, non-extremal,
Killing horizons. (We adopt the metric signature (−,+,+,+, . . .) and our sign
conventions are the same as those of [13].) In a D-dimensional spacetime, the event
horizon is a null hypersurface H parametrized by an affine parameter κ. The vector
field ka = (νκ)

a is tangent to the horizon and obeys geodesic equation. All κ =
constant slices are space-like and foliate the horizon. Any point p on such slices has
coordinates {κ, x A} where x A, (A = 2, . . . , D) are the coordinates of a point on
κ = 0 slice connected with p by a horizon generator. We can construct a basis with
the vector fields, {ka, la, ea

A} where la is a second null vector such that laka = −1.
The induced metric on any slice is ∂ab = gab + 2k(alb) and ka∂ab = 0 = la∂ab.
The change of the induced metric from one slice to another can be obtained from the
metric evolution equation [13],

Lk∂ab = 2

(
ξab + π

(D − 2)
∂ab

)
, (1)

where ξab is the shear and π is the expansion of the horizon. If the event horizon is
also a Killing horizon,1 i.e. the horizon generators are the orbits of a Killing field
τa = (ν/νv)a , which is null on the horizon, then the surface gravity σ of the horizon
is defined as τa→aτb = σ τb. For stationary spacetimes with a Killing horizon, both
the expansion and shear vanish and using Raychaudhuri equation and the evolution
equation for shear, we obtain [13, 14] that on the horizon,

τaτ c∂ b
i ∂ d

k Rabcd = 0 = Rabτ
aτb = 0, (2)

and

τa∂ b
i ∂ c

j ∂
d
k Rabcd = 0. (3)

We would like to emphasize that in order to derive these relationships, we have only
used the fact that the horizon is a Killing horizon with zero expansion and shear
without assuming any further symmetry.

We would like to consider the situation when a stationary black hole is perturbed
by a weak matter stress energy tensor and ultimately settles down to a stationary state
in the asymptotic future. Since the black hole is stationary in the asymptotic future,
the vector field τa is an exact Killing vector at late times. The accretion process is
assumed to be slow such that all changes of the dynamical fields are first order in
some suitable bookkeeping parameter δ and that we can neglect all viscous effects.
More specifically, we assume that, π ∓ ξab ∓ O(δ).

In GR, a concrete example of such a physical process is a black hole of mass M
slowly accreting matter for a finite time and ultimately settling down to a stationary

1 Here we make an assumption, that the event horizon of a stationary black hole is also a Killing
horizon with regular bifurcation surface. Although this is certainly true for GR, we are not aware
of any proof for Lanczos-Lovelock gravity.
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state. Then a linearized version of the Raychaudhuri equation gives,

dπ

dκ
∼ −Rabkakb = −8 φ Tabkakb, (4)

where we have used Einstein’s equation to get the second equality. If the matter
stress tensor satisfies null energy condition, i. e. Tabkakb ≤ 0, the rate of change
of the expansion is negative on any slice prior to the asymptotic future. Since the
expansion vanishes in the future, the generators must have positive expansion during
the accretion process. As a result, the area is monotonically increasing in the physical
process. Note that, the result is crucially dependent on the field equation. As a result,
the monotonicity of the horizon area is only valid in case of GR. Our aim is to prove
a same statement for the Wald entropy during a dynamical change of the black holes
in Lanczos-Lovelock gravity.

We shall now turn our attention to the features of Lanczos-Lovelock gravity.
As discussed before, a natural generalization of the Einstein-Hilbert Lagrangian is
provided by the Lanczos-Lovelock Lagrangian, which is the sum of dimensionally
extended Euler densities,

L D =
[D−1)/2]∑

m=0

ΛmL
D

m , (5)

where the Λm are arbitrary constants and L D
m is the mth order Lanczos-Lovelock

term given by,

L D
m = 1

16φ

[D−1)/2]∑
m=0

1

2m
Ω

a1b1...am bm
c1d1...cmdm

Rc1d1
a1b1

· · · Rcm dm
ambm

, (6)

where Rcd
ab is the D dimensional curvature tensor and the generalized alternating

tensor Ω...
... is totally anti-symmetric in both set of indices. The Einstein-Hilbert La-

grangian is a special case of (6) when m = 1. The field equation of Lanczos-Lovelock
theory is, Gab/(16φ) + Λm E(m)ab = (1/2)Tab where,

Ei
(m) j = − 1

16φ

1

2m+1 Ω
ia1b1...am bm
jc1d1...cm dm

Rc1d1
a1b1

· · · Rcm dm
am bm

, (7)

and m ≤ 2. For convenience, we have written the GR part (i.e. for m = 1) separately
so that the GR limit can be easily verified by setting all Λm’s to zero. Spherically
symmetric black hole solutions in Lanczos-Lovelock gravity was derived in [15, 16]
and the Wald entropy associated with a stationary Killing horizon is [17–19],

S = 1

4

∫
Σ

∞
∂ d A, (8)
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where the entropy density

Σ =

1 +

[D−1)/2]∑
m=2

16φmΛm
(D−2)L(m−1)

⎪
 . (9)

The integration is over (D − 2)-dimensional space-like cross-section of the horizon
and (D−2)L(m−1) is the intrinsic (m − 1)th Lanczos-Lovelock scalar of the horizon
cross-section. We would like to prove that this entropy always increases when a black
hole is perturbed by a weak matter stress energy tensor of O(δ) provided the matter
obeys null energy condition.

The change in entropy is [10],

η S = 1

4

∫
H

(
dΣ

dκ
+ π Σ

)
dκ

∞
∂ d A. (10)

We define a quantity α as

α =
(

dΣ

dκ
+ π Σ

)
. (11)

In case of GR, α is equal to the expansion parameter of the null generators. But, in
case of a general gravity theory, α is the rate of change of the entropy associated with
a infinitesimal portion of horizon (see Jacobson et al. [10] for similar construction
in f (R) gravity). We would like to prove that given null energy condition holds, α

is positive on any slice in a physical process.
In order to proceed, we would like to study the rate of change of α along the

congruence using Raychaudhuri equation and the evolution equation of shear [13].
We are only interested in quantities first order in perturbation over a background
stationary spacetime. Therefore, when we encounter a product of two quantities X
and Y , to extract the part linear in perturbation, we will always express such a product
as,

XY ∼ X (B) Y (P) + X (P) Y (B), (12)

where X (B) is the value of the quantity X evaluated on the stationary background
and X (P) is the perturbed value of X linear in perturbation. Note that, on the sta-
tionary background, Raychaudhuri equation demands R(B)

ab kakb = 0 and since

T (B)
ab kakb = 0, we have E (B)

(m)abkakb = 0. Also, to simplify the calculation, we
use diffeomorphism freedom to make the null geodesic generators of the event hori-
zon of the perturbed black hole coincide with the null geodesic generators of the
background stationary black hole [20].

Using the perturbation scheme mentioned above and the evolution equation of
π and ξab to linear order as dπ/dκ ∼ −R(P)

ab kakb and dξab/dκ ∼ C (P)
acdbkckd and
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further using conditions (2) and (3) on the stationary background, the evolution
equation of α to linear order in perturbation can be written as [12]

dα

dκ
= −8φ Tabkakb + O(δ2). (13)

Equation (13) shows that if the null energy condition holds, the rate of change of
α is always negative during a slow classical dynamical process (i.e. ignoring the
terms which are higher order in the perturbation) which perturbs the black hole and
leads to a new stationary state. Since the final state is assumed to be stationary, both
π and ξ, and as a consequence, α vanish in the asymptotic future. Hence, we can
use the same argument as with the expansion parameter in case of GR to conclude
that α must be positive at every slice during the physical process. As a result, we
conclude that the horizon entropy of black holes in Lanczos-Lovelock gravity is a
monotonically increasing function during any quasi-stationary physical process, i.e.

d S

dκ
≤ 0, (14)

which is what we set out to prove.
In case of a dynamical scenario, it is possible to write down several candidates for

the black hole entropy beyond GR [21], such that all the expressions have the same
stationary limit. We have actually chosen a particular expression and the validity of
(14) favors such a choice. In fact, in Ref. [8], a local and geometrical prescription
for the entropy of dynamical black holes is proposed. This proposal is based on a
boost invariant construction and agrees with the Wald’s Noether charge formula for
stationary black holes and their perturbations. Interestingly, for Lanczos-Lovelock
gravity, the entropy expression used in this work matches the expression obtained
from the boost invariant construction. Consequently, our result provides a strong
justification in favor of the prescription for dynamical entropy as proposed in Ref. [8].
This may also be important to decide the right candidate for the entropy of non-
stationary black holes for non-Lanczos-Lovelock gravity models. Also, one would
like to relax the quasi-stationarity physical process assumption and calculate the full
change of the Wald entropy along the horizon to understand the validity of classical
second law for the Lanczos-Lovelock gravity.

The last point is related to the special status enjoyed by Lanczos-Lovelock models.
The derivation presented here used identities which are very specific to Lanczos-
Lovelock models and do not generalize to an arbitrary theory of gravity. Therefore, it
would be worthwhile to find a general approach which can answer whether classical
second law holds in a physical process for any diffeomorphism invariant gravity
theory or applies to a special class of action functionals. This may be useful as
a criterion to select a sub-class of diffeomorphism invariant actions as preferred
theories where a consistent formulation of black hole thermodynamics is possible.
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On the Stability Operator for MOTS
and the ‘Core’ of Black Holes

José M. M. Senovilla

Abstract Small deformations of marginally (outer) trapped surfaces are considered
by using their stability operator. In the case of spherical symmetry, one can use these
deformations on any marginally trapped round sphere to prove several interesting
results. The concept of ‘core’ of a black hole is introduced: it is a minimal region
that one should remove from the spacetime in order to get rid of all possible closed
trapped surfaces. In spherical symmetry one can prove that the spherical marginally
trapped tube is the boundary of a core. By using a novel formula for the principal
eigenvalue of the stability operator, I will argue how to pursue similar results in
general black-hole spacetimes.

1 Introduction: Basic Concepts and Notation

Let S denote a closed marginally outer trapped surface (MOTS) in the spacetime
(V , g). This means that the outer null expansion vanishes Λk = 0, where the two
future-pointing null vector fields orthogonal to S are denoted by φ and k, the latter
is declared to be outer, and we set φμkμ = −1 as a convenient normalization.
If in addition the other null expansion is non-positive (Λφ √ 0), then S is called
a marginally trapped surface (MTS). I will also use the concept of outer trapped
surface (OTS) when just Λk < 0 and of future trapped surface (TS) if both expansions
are negative: Λk < 0 and Λφ < 0. A hypersurface foliated by M(O)TS is called a
marginally (outer) trapped tube, abbreviated to M(O)TT. For further explanations
check [1–5].
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1.1 Stability Operator for MOTS

As proven in [6, 7], the variation of the vanishing expansion κ f nΛk along any normal
direction f n such that kμnμ = 1 reads

κ f nΛk = −νS f +2s B→B f + f

(
KS − s BsB + →Bs B − Gμ∂kμφ∂

∣∣
S − nξnξ

2
W

)
,

(1)
where KS is the Gaussian curvature on S, νS its Laplacian, Gμ∂ the Einstein tensor,
→ the covariant derivative on S, sB = kμeπ

B→π φξ (with eB the tangent vector fields
on S), and

W ∓ Gμ∂kμk∂
∣∣
S + π 2,

with π 2 the shear scalar of k at S. Obviously W ∼ 0 whenever Gμ∂kμk∂
∣∣
S ∼ 0 (for

instance if the null convergence condition holds [8]). Under this hypothesis, W = 0
can only happen if Gμ∂kμk∂

∣∣
S = π 2 = 0. This leads to Isolated Horizons [2], and

I shall assume W > 0 throughout.
Note that the direction n is selected by fixing its norm:

n = −φ + nμnμ

2
k, (2)

and observe also that the causal character of n is totally unrestricted.
The right-hand side in formula (1) defines a differential operator Ln acting (lin-

early) on the function f : κ f nΛk ∓ Ln f . Ln is an elliptic operator on S, called the
stability operator for the MOTS S in the normal direction n. Ln is not self-adjoint in
general, however it has a real principal eigenvalue τn, and the corresponding (real)
eigenfunction σn can be chosen to be positive on S [6, 7]. The (strict) stability of
the MOTS S is ruled by the (positivity) non-negativity of the principal eigenvalue τn
[6, 7].

2 Spherically Symmetric Spacetimes

In advanced coordinates, spherically symmetric spacetimes have the line-element

ds2 = −e2δ

(
1 − 2m

r

)
dv2 + 2eδdvdr + r2dΩ2,

where δ and m are functions of v and r . For each round sphere defined by
{r, v} =consts., its future null normals are

φ = −e−δΣr , k = Σv + 1

2

(
1 − 2m

r

)
eδΣr ,
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so that their null expansions are:

Λ
sph
k = eδ

r

(
1 − 2m

r

)
, Λ

sph
φ = −2e−δ

r
.

The apparent 3-horizon A3H : r − 2m(r, v) = 0 (≤ Λ
sph
k = 0) is an MTT. A3H

is actually the only spherically symmetric MTT: the only spherically symmetric
hypersurface foliated by MTSs—be they round spheres or not [9].

The round spheres are untrapped if r > 2m, and trapped if r < 2m. One can further
prove [9] that any closed trapped surface cannot be fully contained in a region with
r ∼ 2m, so that all of them must intersect the region {r < 2m}. However, how much
must a TS penetrate into {r < 2m}?

Let η ∞ A3H be any MT round sphere (i.e., Λ sph
k = 0) defined by r = rη =const.

The variation κ f nΛ
sph
k along normal directions simplifies drastically in this case,

because π 2 = 0 (k is shear-free ) and sB = 0. In other words, most of the terms in
the variation formula vanish and the variation simplifies to

κ f nΛ
sph
k = −νη f + f

(
1

r2
η

− Gμ∂kμφ∂ − 1

2
nξnξ Gμ∂kμk∂

)
.

Selecting f =constant, the vector n such that the expression enclosed in brackets
vanishes produces no variation on Λ

sph
k , meaning that n is tangent to the A3H simply

leading to other marginally trapped round spheres on A3H. Let us call such a vector

field m, so that m = −φ+ mμmμ

2 k, with 1
r2
η

− Gμ∂kμφ∂
∣∣
η

− mξmξ

2 Gμ∂kμk∂
∣∣∣
η

= 0,

characterizes A3H.
Consider now the parts of A3H with Gμ∂kμk∂ > 0 (i.e. W > 0). From the

properties of m one deduces that the perturbation along f n will enter into the region
with trapped round spheres (that is, {r < 2m}) at points with f (nμnμ−mμmμ) > 0.
Note that

(
Gξπ kξkπ |η

⎪
f
(
nμnμ − mμmμ

⎪ = −2
(
νη f + κ f nΛ

sph
k

)
. (3)

In order to construct examples of TSs which lie partly in {r > 2m}, consider the case
nμnμ −mμmμ > 0. For this choice the deformed surface enters the region {r < 2m}
at points with f > 0. Setting f ∓ a0 + f̃ for some as yet undetermined function f̃
and a constant a0, (3) can be split into two parts

(
Gξπ kξkπ |η

⎪
a0

(
nμnμ − mμmμ

⎪ + 2κ f nΛ
sph
k = 0,

1

2

(
Gξπ kξkπ |η

⎪ (
nμnμ − mμmμ

⎪ = −νη f̃

f̃
> 0.
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By our assumptions the first of these implies that κ f nΛ
sph
k < 0 if a0 > 0, so that the

deformed surface will be trapped. The second, in turn, is a mild restriction on the
function f̃ . A simple solution is to choose f̃ to be an eigenfunction of the Laplacian
νη , say f̃ = cl Pl for a fixed l ∗ N and constant cl , where Pl are the Legendre
polynomials.

Even more interestingly, we are ready to answer the question of how small the
fraction of any closed TS that extends outside {r < 2m} can be made. The aim is to

produce a C2 function f̃ defined on the sphere (i) obeying the inequality −νη f̃

f̃
> 0,

and (ii) positive only in a region that we can make arbitrarily small. By choosing
a sufficiently small constant a0 requirement (ii) implies that the part of the surface
extending outside {r > 2m} can be made arbitrarily small. To find f̃ explicitly,
introduce stereographic coordinates {ξ, α} on the sphere, so that the Laplacian takes

the form νη = Ω−1
(
Σ2
ξ + 1

ξ
Σξ + 1

ξ2 Σ2
α

)
, Ω = 4r2

η

(1+ξ2)2 . Then, a solution for f̃ is

the axially symmetric function

f̃ (ξ) =

⎜


c1

(
e

1
2a (2a−ξ2) − 1

)
ξ2 < 4a

8c1a

e

1

ξ2 − c1(1 + e−1) ξ2 > 4a.
(4)

This function is C2 (and can be further smoothed if necessary), and it is positive
only if ξ2 < 2a, that is on a disk surrounding the origin (the pole) whose size can
be chosen at will. It obeys

−νη f̃

f̃
=

⎜


Ω−1

a2

2a − ξ2

1 − e− 1
2a (2c−ξ2)

ξ2 < 4a

32aΩ−1

ξ4

ξ2

(e + 1)ξ2 − 8a
, ξ2 > 4a,

which is always larger than zero. Thus we have proven the following important and
perhaps surprising result [9].

Theorem 1 (Bengtsson and JMMS 2011) In spherically symmetric spacetimes,
there are closed f-trapped surfaces (topological spheres) penetrating both sides of
the (non-isolated part of the) apparent 3-horizon A3H\A3Hiso with arbitrarily small
portions outside the region {r > 2m}.

3 Cores

The (future)-trapped region T of a spacetime is defined as the set of points x ∗ V
such that x lies on a closed (future) TS [9]. This is a space–time concept, not to
be confused with the outer trapped region within spacelike hypersurfaces, which is
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defined as the union of the interiors of all (bounding) OTS in the given hypersurface
[6, 10]. I denote by B the boundary of the future trapped region T : B ∓ ΣT .

Closed TSs are clairvoyant, highly non-local objects [2, 9]. They cross MTTs
and even enter flat portions of the space–time [9, 11, 12]. In conjunction with the
non-uniqueness of MTTs [1, 9], this poses a fundamental puzzle for the physics of
black holes. Although several solutions can be pursued, a popular one is trying to
define a preferred MTT. Hitherto, though, there has been no good definition for that.
We have put forward a novel strategy [9]. The idea is based on the simple question:
what part of the spacetime is absolutely indispensable for the existence of the black
hole?

Definition 1 (Cores of Black Holes) A region Z is called the core of the f-trapped
region T if it is a minimal closed connected set that needs to be removed from the
spacetime in order to get rid of all closed f-trapped surfaces in T , and such that any
point on the boundary ΣZ is connected to B = ΣT in the closure of the remainder.

• Here, “minimal” means that there is no other set Z ′ with the same properties and
properly contained in Z .

• The final technical condition states that the excised space–time (V \Z , g) has the
property that ⊂x ∗ V \Z ∃ ΣZ there is continuous curve ρ ∞ V \Z ∃ ΣZ
joining x and B (ρ can have zero length if B ∩ ΣZ = ∅). The reason why this
is needed is explained in [9].

In spherically symmetric spacetimes one can prove that the regionZ ∓ {r √ 2m}
is a core [9]. The proof is founded on the previous Theorem 1. It should be observed
that this is an interesting and maybe deep result, for the concept of core is global and
requires full knowledge of the future while A3H is quasi-local. It is thus surprising
that A3H = ΣZ .

Actually, one can further prove that in spherically symmetric spacetimes, Z =
{r √ 2m} are the only spherically symmetric cores of T . Therefore, ΣZ = A3H
are the only spherically symmetric boundaries of a core. Nevertheless, there exist
non-spherically symmetric cores of the f-trapped region in spherically symmetric
spacetimes. This implies the non-uniqueness of cores, and of their boundaries [9].
Still, the identified coreZ = {r √ 2m} might be unique in the sense that its boundary
ΣZ = A3H is a MTT: we do not know whether other cores share this property or
not [9].

To study whether or not Theorem 1 can be generalized to general situations,
thereby providing the possibility of selecting a unique MTT as the boundary of a
selected core, consider the family of operators, parameterized by a function z ∗
C∞(S), with a similar structure as that of Ln: Lz f = −νS f +2s B→B f + z f . Each
Lz has a principal real eigenvalue τz—which depends on z—and the corresponding
eigenfunction σz > 0. For any given z one easily gets

∮

S

Lz f =
∮

S

(
2s B→B f + z f

)
=

∮

S

(
z − 2→Bs B

)
f,
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in particular for the principal eigenfunction

τz

∮

S

σz =
∮

S

(
z − 2→Bs B

)
σz .

This provides

1. a formula for the principal eigenvalue

τz =
⎡

S

(
z − 2→Bs B

⎪
σz⎡

S σz
. (5)

2. bounds for τz

min
S

(
z − 2→Bs B

)
√ τz √ max

S

(
z − 2→Bs B

)
. (6)

3. and that τz − (
z − 2→Bs B

⎪
must vanish somewhere on S for all z.

On any MOTS, varying Λk = 0 along the direction σzn one derives

Lnσz

σz
= τz − z + KS − s BsB + →Bs B − Gμ∂kμφ∂

∣∣
S − nξnξ

2
W.

Thus, whenever W = 0 on S, one can choose for any z a variation vector mz =
−φ + Mzk such that the righthand side vanishes

Mz = mξ
z mzξ

2
= 1

W

(
τz − z + KS − s BsB + →Bs B − Gμ∂kμφ∂

∣∣
S

)
, (7)

hence κσzmz Λk = 0. Observe that this mz depends on the chosen function z. The
general variation of Λk along mz reads

κ f mz Λk = −νS f + 2s B→B f + f (z − τz) = (Lz − τz) f, (8)

so that the stability operator Lmz of S along mz is simply Lz −τz which obviously has
a vanishing principal eigenvalue. The directions mz define locally MOTTs including
any given stable MOTS S [6, 7]. These MOTTs will generically be different for differ-
ent z. In fact, given that ⊂z1, z2 ∗ C∞(S), mz1 −mz2 = 1

W

(
τz1 − z1 − τz2 + z2

⎪
k,

one can easily prove that

mz1 = mz2 ⇐⇒ z1 − z2 = const.

Now, for any given z rewrite κ fnΛk = Ln f using (7) so that
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W

2
f
(
nξnξ − mξ

z mzξ
⎪ = (Lz − τz) f − κ f nΛk. (9)

Consider the particular function z = 2→Bs B . This may be the natural generaliza-
tion of the spherically symmetric MTT shown above. Observe that, for such a choice
of z, and letting L ∓ L2→B s B , its principal eigenvalue (say μ) vanishes, as follows
immediately from either (5) or (6). Moreover,

L f = −νS f + 2→B

(
f s B

)
= −→B

(
→B

f − 2 f s B
)

,

so that L is a divergence and thus
⎡

S L f = 0, ⊂ f . Moreover, (9) reduces to

W

2
f
(
nξnξ − mξmξ

⎪ = L f − κ f nΛk, (10)

where now the vector m = −φ + mξmξ

2 k is defined by

mξmξ

2
= 1

W

(
KS − →Bs B − s BsB − Gμ∂kμφ∂

∣∣
S

)
,

as follows from (7). For any other direction mz defining a local M(O)TT

W

2

(
mξ

z mzξ − mξmξ

⎪ = τz − (z − 2→Bs B),

and therefore point (3) above leads to

Result 1 The local M(O)TT defined by the direction m is such that any other nearby
local M(O)TT must interweave it with non-trivial intersections to both of its sides,
that is to say, the vector mz − m changes causal character on any of its M(O)TSs.

Concerning cores, I try to follow the same steps as in spherical symmetry, and
thus I start with a function f = a0σ + f̃ for a constant a0 > 0 and σ > 0 is the
principal eigenfunction of L . Then (10) becomes

W

2
(a0σ + f̃ )

(
nξnξ − mξmξ

⎪ = L f̃ − κ f nΛk.

that can be split into two parts:

W

2
a0σ

(
nξnξ − mξmξ

⎪ = −κ f nΛk, (11)

W

2
f̃
(
nξnξ − mξmξ

⎪ = L .̃ f. (12)

Equation (11) tells us that κ f nΛk < 0 whenever n points “above” m if a0 > 0 is
chosen. Therefore, using (12) the problem one needs to solve can be reformulated
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as follows: Is there a function f̃ on S such that (i) L f̃ / f̃ ∼ Δ > 0, (ii) f̃ changes
sign on S, (iii) f̃ is positive in a region as small as desired? To prove that there are
OTSs penetrating both sides of the MOTT it is enough to comply with points (i) and
(ii) only. This does happen if L has more real eigenvalues, for any real eigenvalue
is strictly positive (as μ = 0), hence the corresponding eigenfunction must change
sign on S, because integration of Lψ = τψ on S implies

⎡
ψ = 0. However, even if

there are no other real eigenvalues the result might still hold in general. In any case,
the above leads to the analysis of the condition L f̃ / f̃ > 0 for functions f̃ .

Acknowledgments Supported by grants FIS2010-15492 (MICINN), GIU06/37 (UPV/EHU) and
P09-FQM- 4496 (J. Andalucía–FEDER) and UFI 11/55 (UPV/EHU).

References

1. Ashtekar, A., Galloway, G.: Some uniqueness results for dynamical horizons. Adv. Theor.
Math. Phys. 9, 1 (2005)

2. Ashtekar, A., Krishnan, B.: Isolated and dynamical horizons and their applications. Living Rev.
Relativ. 7(10), lrr-2004-10 (2004). http://www.livingreviews.org/lrr-2004-10

3. Senovilla, J.: Classification of spacelike surfaces in spacetime. Class. Quantum Grav. 24, 3091
(2007). doi:10.1088/0264-9381/24/11/020

4. Senovilla, J.: Trapped surfaces. Int. J. Mod. Phys. D 20, 2139 (2011). doi:10.1142/
S0218271811020354

5. Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)
6. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons.

Phys. Rev. Lett. 95, 111102 (2005). doi:10.1103/PhysRevLett.95.111102
7. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and exis-

tence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12, 853 (2008)
8. Hawking, S., Ellis, G.: The Large Scale Structure of Space–Time. Cambridge Monographs on

Mathematical Physics (Cambridge University Press, Cambridge (1973)
9. Bengtsson, I., Senovilla, J.: Region with trapped surfaces in spherical symmetry, its core, and

their boundaries. Phys. Rev. D 83, 044012 (2011). doi:10.1103/PhysRevD.83.044012
10. Andersson, L., Metzger, J.: The area of horizons and the trapped region. Commun. Math. Phys.

290, 941 (2009). doi:10.1007/s00220-008-0723-y
11. Åman, J., Bengtsson I., Senovilla J.: Where are the trapped surfaces? In: Lazkoz, R., Vera, R.

(eds.) Gravitation in the Large, J. Phys.: Conf. Ser., vol. 229, p. 012004 (IOP, 2010). doi:10.
1088/1742-6596/229/1/012004

12. Bengtsson, I., Senovilla, J.: Note on trapped surfaces in the Vaidya solution. Phys. Rev. D 79,
024027 (2009). doi:10.1103/PhysRevD.79.024027

http://www.livingreviews.org/lrr-2004-10
http://dx.doi.org/10.1088/0264-9381/24/11/020
http://dx.doi.org/10.1142/S0218271811020354
http://dx.doi.org/10.1142/S0218271811020354
http://dx.doi.org/10.1103/PhysRevLett.95.111102
http://dx.doi.org/10.1103/PhysRevD.83.044012
http://dx.doi.org/10.1007/s00220-008-0723-y
http://dx.doi.org/10.1088/1742-6596/229/1/012004
http://dx.doi.org/10.1088/1742-6596/229/1/012004
http://dx.doi.org/10.1103/PhysRevD.79.024027


The Twin Paradox in Static Spacetimes
and Jacobi Fields

Leszek M. Sokołowski

Abstract The twin paradox of special relativity formulated in the geometrical setting
of general relativity gives rise to the problem of determining the longest timelike curve
between a given pair of points. As a first step one solves the local problem for a bundle
of nearby curves (geodesics) in terms of Jacobi fields and conjugate points. These
provide important information about geometrical properties of the given spacetime.
The second step, to determine the globally maximal length curve in the set of all
timelike curves with common endpoints, is harder and may be effectively performed
only in spacetimes with high symmetries.

1 Formulation of the Problem

The twin paradox in special relativity may be considered on two levels of compre-
hending. The first, lowest level of understanding deals with the problem of why the
effect is asymmetric at all: why one twin turns out younger than the other whereas the
time dilation effect for two clocks in uniform relative motion is actually symmetric.
Most textbooks on special relativity explain the problem on this level by discussing
the simplest (traditional) version of the paradox in which one twin remains all the
time at rest in one inertial frame and the other uniformly moves to a distant star,
then suddenly turns back and returns again at a constant velocity. By considering
the hyperplanes of simultaneity of the astronaut during his travel back and forth one
shows that the twin at rest must be older at the reunion than the astronaut; however
such calculation can be effectively performed only in this simplest case of twins’
motions. In consequence it does not provide a deeper understanding of the paradox.
In fact, what does occur if both the twins move at non-uniform velocities?
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The generic form of the paradox may be elucidated only on the second level which
requires to go beyond the elementary algebra of the special Lorentz transformation.
The solution is well known to the expert on relativity (though it is rather infrequently
stressed in textbooks) and is based on the identification of physical time measured by
a moving clock=proper time= length of the moving clock’s worldline. The prob-
lem is then reduced to a purely geometrical one of calculating worldline lengths in
Minkowski spacetime. Let the twins A and B travel at arbitrary velocities measured
in some inertial frame from point (event) P to Q, then their common age at P will
increase at Q by

sA =
Q∫

P

dsA = c

t2∫

t1

√
1 −

(vA

c

)2
dt,

sB =
Q∫

P

dsB = c

t2∫

t1

√
1 −

(vB

c

)2
dt √= sA.

respectively. Here t1 and t2 are the time coordinates of the points in the inertial frame.
In the geometrical setting the effect of different ageing of the twins is obvious.
Coming back to the simplest version of the paradox, what is less obvious and is
rather surprising at first glance as it stands in contradiction to our experience in
Euclidean geometry, is that the twin at rest gets older than the twin moving on a
curved (accelerated) worldline. This is due to the reverse triangle inequality which
gives rise to the theorem that in Minkowski spacetime the timelike straight line is
the longest timelike curve between any pair of its points. Yet a curved timelike line
joining two points may be arbitrarily small and it makes no sense to ask of how
to move from P to (chronologically related) Q in order to use as little as possible
of proper time—the interval s(P, Q) may be arbitrarily close to zero. The properly
posed problem is which timelike worldline from P to Q has the largest length and in
flat spacetime is clear.

The geometrical twin paradox becomes much more interesting in curved space-
times since the variety of possible physically relevant motions is much greater than in
the flat case. Besides comparing lengths of concrete worldlines in a given spacetime
one may ask if there are whole classes of worldlines which are longer than curves in
other classes and, first of all, which timelike curves attain the maximal length. The
first question is relevant in static spacetimes: what makes one twin younger than the
other—velocity (with respect to a static observer) or acceleration (acting e.g. on the
twin at rest)? Special cases investigated in first works on the subject do not allow
one to infer general statements. For instance, Abramowicz et al. [1], Abramowicz
and Bajtlik [2] investigated static worldlines and circular geodesics in Schwarzschild
spacetime and concluded that ‘in all situations in which the absolute motion may be
defined in terms of some invariant global properties of the spacetime, the twin who
moves faster with respect to the global standard of rest is younger at the reunion,
irrespectively to twins’ accelerations’. This conclusion is, however, false already
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in Schwarzschild world since introducing a third twin moving on a radial timelike
geodesic, first upwards and then downwards, one can show that his worldline is longer
than those of the other twins. Usually in this and many other spacetimes two points
may be connected by different geodesics and a worldline of the static observer and
the multitude of possibilities concerning their lengths precludes generic conclusions
such as that above.

Generically one can only seek for timelike curves having maximal length and
this is the problem we are dealing with here. To the best of our knowledge the first
who gave the correct but imprecise answer to the problem was Feynman (whilst at
Princeton in the 1940): the longest worldline is a timelike geodesic. The answer may
be deduced by analogy with the flat spacetime (geodesics are straight lines), but is
insufficient if there are two or more timelike geodesics with common endpoints, as
in the example above.

The general rigorous solution of the problem is achieved in two steps. The first
step is contained in Hawking and Ellis’ book [3] and we summarize it here in the
form of three propositions.

Proposition 1 In any convex normal neighbourhood, if p and q can be joined by a
timelike curve, then the unique timelike geodesic connecting them has length strictly
greater than that of any other piecewise smooth timelike curve between the points.1

The existence of a convex normal neighbourhood is crucial here. If q does not lie
in this neighbourhood of p then there are several timelike geodesics from p to q with
different lengths, as in the Schwarzschild case outside the event horizon. But how
to recognize whether given p and q can be connected by a unique timelike geodesic
(i.e. that their neighbourhood is normal)? The first step described in [3] deals with
bundles of nearby geodesics. Here the key notion is that of conjugate points.

Let Zμ(s) be a geodesic deviation vector field on a timelike geodesic γ with
tangent unit vector uα(s). If Zμ is chosen orthogonal to uμ, then it satisfies the
geodesic deviation equation

D2

ds2 Zμ = Rμ
αβν uα uβ Zν .

Any solution Zμ of the equation is called a Jacobi field on γ . Points p and q on
γ are said to be conjugate if there is Jacobi field Zμ √= 0 such that Zμ(q) = 0 iff
Zμ(p) = 0. If p and q are conjugate then one or more nearby geodesics intersect γ

at p and q (or pass infinitesimally close to γ at these points) and they have different
lengths. More precisely, if a geodesic γ joining points p1 and p2 has a point q
conjugate to p1 belonging to the segment p1 p2, then there exists a nearby timelike
curve (not necessarily a geodesic) with endpoints p1 and p2 which is longer than γ .
If there are no conjugate points, γ is the longest curve in the set of nearby curves.

1 Proposition 4.5.3 in [3].
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Proposition 2 A timelike geodesic attains the local maximum of length (i.e. among
nearby curves) from p1 to p2 iff there is no point conjugate to p1 on the segment
p1 p2.2

The very existence of conjugate points (but not their localization) is determined
by

Proposition 3 If Rαβ uα uβ → 0 on a timelike geodesic γ and if the tidal force
Rμανβ uα uβ √= 0 at some point p0 on γ , there will be a pair of conjugate points
somewhere on γ (providing that the geodesic can be extended sufficiently far).3

Returning to the twin paradox one concludes that the problem of which twin will
be older at the reunion has a general (i.e. without computing the lengths of concrete
worldlines) solution only if one of the twins’ worldlines is a timelike geodesic free of
conjugate points. From this conclusion one gets, e. g. that in Schwarzschild spacetime
the radial geodesic (flight up and down), being free of conjugate points, is longer
than the circular geodesic with the same endpoints since the latter has a conjugate
point in the middle of its segment; this outcome is hard to derive from the analytic
expressions for their lengths and and the two expressions can be compared only
numerically.

This is, however, not the full solution of the problem we are interested in. Con-
jugate points allow one to find locally maximal curves but not the globally maximal
ones. We are now entering the second step in solving the problem. The radial geo-
desic in Schwarzschild spacetime is longest in the bundle of nearby curves and is
longer than the distant circular geodesic, but a priori there might exist a timelike
geodesic, distant from the radial one and longer than that. We are looking for glob-
ally maximal length geodesics, i.e. curves whose length between their points attains
maximal value. This maximal length is named Lorentzian distance function d(p, q).
Properties of maximal timelike geodesics, or curves realizing the distance function,
are investigated in global Lorentzian geometry [4]. In [5] we quote six theorems from
the book [4] which in our opinion are most relevant for searching globally maximal
geodesics. Without glancing at them one may expect that these are mathematical
‘existence theorems’ stating the presence of some global properties of geodesics if
some global conditions hold. They cannot be and are not ‘constructive’. In fact, in
the search for locally maximal curves one investigates a bundle of close geodesics
and their properties may be expressed in terms of the geodesic deviation equation.
Yet in the problem of global maximality one compares the lengths of curves which
besides their common endpoints are distant from each other. This means that there is
no local analytic tool such as a differential equation (which expresses local properties
of a mathematical object) allowing one to seek for the globally maximal curve. To
find out which curve has the length equal to the distance function one has to study
all timelike curves joining the given pair of points. In other terms there is no effec-
tive algorithmic procedure which provides in a finite number of steps the maximal

2 Proposition 4.5.8 in [3].
3 Proposition 4.4.2 in [3].
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(unique or not) timelike curve for the given endpoints. The search is not hopeless if
one considers a spacetime with global symmetries (isometries). At least in the case
of static spherically symmetric spacetimes it is possible to show that some class of
timelike geodesics (the radial ones) consists of curves which are maximal on some
segments.

In this conference contribution we wish to make only a general introduction to
the problem of maximal curves in Lorentzian spacetimes, which has evolved from
the twin paradox in special relativity. Investigations of locally and globally maximal
timelike curves are still at an initial stage and some results have been found in
the simplest spacetimes of general relativity. These results reveal a multitude of
possibilities concerning Jacobi fields and conjugate points. For details we refer the
interested reader to author’s recent work [6] and to his forthcoming papers.
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Geodesic Deviation in Kundt Spacetimes
of any Dimension

Robert Švarc and Jiří Podolský

Abstract Using the invariant form of the equation of geodesic deviation, which
describes relative motion of free test particles, we investigate a general family of
D-dimensional Kundt spacetimes. We demonstrate that local influence of the grav-
itational field can be naturally decomposed into Newton-type tidal effects typical
for type II spacetimes, longitudinal deformations mainly present in spacetimes of
algebraic type III, and type N purely transverse effects corresponding to gravita-
tional waves with 1

2 D(D − 3) independent polarization states. We explicitly study
the most important examples, namely exact pp-waves, gyratons, and VSI spacetimes.
This analysis helps us to clarify the geometrical and physical interpretation of the
Kundt class of nonexpanding, nontwisting and shearfree geometries.

1 Geometry of Kundt Spacetimes

The scalars Θ (expansion), A2 (twist) and σ 2 (shear) characterizing optical properties
of an affinely parameterized geodesic null congruence ka are

Θ = 1

D − 2
ka

;a, A2 = −k[a;b]ka;b, σ 2 = k(a;b)k
a;b − 1

D − 2
(ka

;a)2. (1)

Purely geometric definition of the Kundt family of spacetimes, namely that it admits
nonexpanding (Θ = 0), nontwisting (A = 0) and shearfree (σ = 0) such a congru-
ence, implies that there exist suitable coordinates in which the line element of any
Kundt spacetime can be written as [1–5]
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ds2 = gi j (u, x) dxi dx j + 2 gui (r, u, x) dxi du − 2 du dr + guu(r, u, x) du2. (2)

The coordinate r is the affine parameter along the congruence ka = ∂r , u = const.
are null (wave)surfaces, and x √ (x2, x3, . . . , x D−1) are D − 2 spatial coordinates
in the transverse Riemannian space. Notice that the spatial part gi j of the metric must
be independent of r , all other metric components gui and guu can, in principle, be
functions of all the coordinates (r, u, x). No specific Einstein field equations have
been employed yet.

For such most general Kundt line element (2) a lengthy calculation gives the
following components of the Riemann curvature tensor

Rr prq = 0, (3)

Rr pru = − 1
2 gup,rr , (4)

Rruru = − 1
2 guu,rr + 1

4 gi j gui,r gu j,r , (5)

Rr pkq = 0, (6)

Rr puq = 1
2 gup,rq + 1

4 gup,r guq,r − 1
4 gi j gui,r

(
2g j (p,q) − gpq, j

)
, (7)

Rrupq = gu[p,q],r , (8)

Rruup = gu[u,p],r + 1
4 gri gup,r gui,r − 1

4 gi j gui,r
(
2g j (u,p) − gup, j

)
, (9)

Rkplq = S Rkplq , (10)

Rupkq = gp[k,q],u − gu[k,q],p

+ 1
4

[
guk,r

(
gpq,u − 2gu(p,q)

) − guq,r
(
gpk,u − 2gu(p,k)

)]
+ 1

4 gri
[
guk,r

(
2gi(p,q) − gpq,i

) − guq,r
(
2gi(p,k) − gpk,i

)]
+ 1

4 gi j
(
2g j (u,q) − guq, j

) (
2gi(p,k) − gpk,i

)
− 1

4 gi j
(
2g j (u,k) − guk, j

) (
2gi(p,q) − gpq,i

)
, (11)

Rupuq = gu(p,q),u − 1
2

(
gpq,uu + guu,pq

) + 1
4 grr gup,r guq,r

− 1
4 guu,r

[
2gu(p,q) − gpq,u − gri

(
2gi(p,q) − gpq,i

)]
+ 1

4 gup,r
[
guu,q − gri

(
2gi(u,q) − guq,i

)]
+ 1

4 guq,r
[
guu,p − gri

(
2gi(u,p) − gup,i

)]
+ 1

4 gi j
(
2g j (u,p) − gup, j

) (
2gi(u,q) − guq,i

)
− 1

4 gi j
(
2gu j,u − guu, j

) (
2gi(p,q) − gpq,i

)
, (12)

where i, j, k, l, p, q denote the spatial components (and derivatives w.r.t.) x .
The superscript “ S” labels tensor quantities corresponding to the spatial metric gi j ,
with derivatives taken only with respect to the coordinates x . The components of the
Ricci tensor are

Rrr = 0, (13)

Rrk = − 1
2 guk,rr , (14)
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Rru = − 1
2 guu,rr + 1

2 gri gui,rr + 1
2 g pq gup,rq

+ 1
2 g pq gup,r guq,r − 1

4 g pq gi j gui,r
(
2g jp,q − gpq, j

)
, (15)

Rpq = S Rpq − gu(p,q),r − 1
2 gup,r guq,r + 1

2 gkl guk,r
(
2gl(p,q) − gpq,l

)
, (16)

Ruu = − 1
2 grr guu,rr − 2gri gu[u,i],r + 1

2 g pq
(
2gup,uq − gpq,uu − guu,pq

)
− 1

2 gr pgrq gup,r guq,r + 1
2 grr g pq gup,r guq,r + 1

2 g pq gri gup,r (2gq(u,i) − gui,q)

− 1
4 g pq guu,r

[
2gup,q − gpq,u − gri

(
2gip,q − gpq,i

)]
+ 1

2 g pq gup,r
[
guu,q − gri

(
2gi(u,q) − guq,i

)]
+ 1

4 g pq gi j
(
2g j (u,p) − gup, j

) (
2gi(u,q) − guq,i

)
− 1

4 g pq gi j
(
2gu j,u − guu, j

) (
2gip,q − gpq,i

)
, (17)

Ruk = − 1
2 grr guk,rr − gu[u,k],r + gri (gu[i,k],r − gk[u,i],r )

+g pq(gp[k,q],u − gu[k,q],p) − 1
2 gri guk,r gui,r

+ 1
4 g pq gri

[
4guq,r gk[p,i] + guk,r (2gi(p,q) − gpq,i )

]
+ 1

4 g pq
[
2gup,r guq,k − guk,r (2gup,q − gpq,u)

]
+ 1

4 g pq gi j
(
2g j (u,q) − guq, j

) (
2gi(p,k) − gpk,i

)
− 1

4 g pq gi j
(
2g j (u,k) − guk, j

) (
2gip,q − gpq,i

)
, (18)

and the Ricci scalar curvature of the Kundt spacetime (2) is given by

R = S R + guu,rr − 2gri gui,rr − 2g pq gup,rq

− 3
2 g pq gup,r guq,r + g pq gkl guk,r (2glp,q − gpq,l). (19)

2 Applying the Field Equations

So far we have not specified the matter content of the spacetimes. Now, following
the approach presented in [4], we can determine the r -dependence of the metric (2)
using the Einstein field equations Rab − 1

2 R gab + Λgab = 8πTab. Since Rrr = 0
and grr = 0, there is an obvious restriction on the energy-momentum tensor allowed
in the Kundt family, namely Trr = 0. Assuming Trk = 0, we can directly integrate the
Einstein equation Rrk = 0 with (14), yielding guk linear in r . Using the field equation
Rru + 1

2 R − Λ = 8πTru , this implies that the component Tru must be independent
of r . Taking the trace of Einstein’s equations we can also determine the r -dependence
of guu : if the trace T of energy-momentum tensor Tab does not depend on the coor-
dinate r , the metric function guu can only be (at most) quadratic in r , see (19). Under
these conditions

ds2 = gi j dxi dx j + 2 (ei + fi r) dxi du − 2 du dr + (a r2 + b r + c) du2, (20)
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where all the functions gi j , ei , fi , a, b and c are independent of r , and are constrained
by the specific Einstein equations [4]. In particular, any vacuum Kundt metric, pos-
sibly with a cosmological constant Λ and/or aligned electromagnetic field, can be
written in the form (20).

3 Geodesic Deviation in an Arbitrary Spacetime

In our recent work [6] we demonstrated that the equation of geodesic deviation, which
describes relative motion of nearby free test particles, can in any D-dimensional
spacetime be expressed in the invariant form

Z̈ (1) = 2Λ

(D − 2)(D − 1)
Z (1) + Ψ2S Z (1) + 1→

2
( Ψ1T j − Ψ3T j ) Z ( j)

+ 8π

D − 2

[
T(1)(1) Z (1) + T(1)( j) Z ( j) −

(
T(0)(0) + 2 T

D − 1

)
Z (1)

]
, (21)

Z̈ (i) = 2Λ

(D − 2)(D − 1)
Z (i) − Ψ2T (i j) Z ( j) + 1→

2
( Ψ1T i − Ψ3T i ) Z (1)

−1

2
( Ψ0i j + Ψ4i j ) Z ( j) + 8π

D − 2

[
T(i)(1) Z (1)

+T(i)( j) Z ( j) −
(

T(0)(0) + 2 T

D − 1

)
Z (i)

]
, (22)

with i, j = 2, . . . , D − 1 . Here Z (1), Z (2), . . . , Z (D−1) are spatial components of
the separation vector Z = Za ea between the test particles in a natural interpreta-
tion orthonormal frame {ea} where e(0) = u is the velocity vector of the fiducial
test particle (ea · eb = ηab), Z̈ (1), Z̈ (2), . . . , Z̈ (D−1) are the corresponding relative
accelerations, Tab are frame components of the energy-momentum tensor, and the
scalars ΨA... defined as

Ψ0i j = Cabcd ka mb
i kc md

j ,

Ψ1T i = Cabcd ka lb kc md
i , Ψ1i jk = Cabcd ka mb

i mc
j md

k ,

Ψ2S = Cabcd ka lb lc kd , Ψ2i jkl = Cabcd ma
i mb

j mc
k md

l ,

Ψ2T i j = Cabcd ka mb
i lc md

j , Ψ2i j = Cabcd ka lb mc
i md

j ,

Ψ3T i = Cabcd la kb lc md
i , Ψ3i jk = Cabcd la mb

i mc
j md

k ,

Ψ4i j = Cabcd la mb
i lc md

j , (23)
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Fig. 1 Evolution of the
separation vector Z that
connects particles moving
along geodesics γ (τ), γ̄ (τ ) is
given by the equation of geo-
desic deviation (21) and (22).
Its components are expressed
in the orthonormal frame
{ea}, e(0) = u. The associated
null frame {k, l, mi } is also
indicated

i, j, k, l = 2, . . . , D − 1 , are components of the Weyl tensor with respect to the
null frame {k, l, mi } associated with {ea} via the relations k = 1→

2
(u + e(1)),

l = 1→
2
(u − e(1)), mi = e(i), see Fig. 1.

Components of the Weyl tensor (23) are listed by their boost weight and directly
generalize the standard Newman–Penrose complex scalars ΨA known from the
D = 4 case [6, 7]. In equations (21), (22), only the “electric part” of the Weyl
tensor represented by the scalars in the left column of (23) occurs, and there are
various constraints and symmetries, for example

Ψ1T i = Ψ1k k i , Ψ2S = 1
2Ψ2kl kl , Ψ2T (i j) = 1

2Ψ2ik j k , Ψ3T i = Ψ3k k i ,

Ψ0i j = Ψ0(i j) , Ψ0k k = 0, Ψ4i j = Ψ4(i j) , Ψ4k k = 0. (24)

4 Geodesic Deviation in Kundt Spacetimes

For the general Kundt spacetime (2), the null interpretation frame adapted to an
arbitrary observer moving along a timelike geodesic γ (τ) with velocity u = ṙ ∂r +
u̇ ∂u + ẋ i∂i takes the form

k = 1→
2 u̇

∂r , l =
(→

2 ṙ − 1→
2 u̇

)
∂r + →

2 u̇ ∂u + →
2 ẋ i∂i ,

mi = 1

u̇
m j

i (g ju u̇ + g jk ẋk) ∂r + m j
i ∂ j , (25)

where m j
i satisfy g jl m j

i ml
k = δik to fulfil mi · mk = δik , k · l = −1. Vector k is ori-

ented along the nonexpanding, nontwisting and shearfree null congruence ka = ∂r

defining the Kundt family. Moreover, u = 1→
2
(k + l) and e(1) = 1→

2
(k − l) =
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→
2 k − u. The spatial vector e(1) is thus uniquely determined by the geometri-

cally privileged null congruence of the Kundt family, and the observer’s velocity u.
For this reason we call such a special direction e(1) longitudinal, while the D − 2
directions e(i) = mi transverse.

In order to evaluate the scalars (23) we need to calculate the Weyl tensor

Cabcd = Rabcd − 2

D − 2
( ga[c Rd]b − gb[c Rd]a) + 2 R ga[c gd]b

(D − 1)(D − 2)
, (26)

using the components of the Riemann and Ricci tensors (3)–(19). We immediately
observe that Cr prq = 0 which implies Ψ0i j = 0. Therefore, all Kundt spacetimes are
of algebraic type I, or more special, and ∂r is WAND.

Restricting now to the important subfamily (20) for which

gui = ei (u, x) + fi (u, x) r, guu = a(u, x) r2 + b(u, x) r + c(u, x), (27)

we obtain Rr pru = 0, Rr p = 0 which implies Cr pru = 0, Cr pkq = 0 so that Ψ1T i = 0,
Ψ1i jk = 0. Since all Weyl scalars of boost weights 2 and 1 vanish, the metric (20)
represents Kundt spacetimes of algebraic type II (or more special). Equations (21),
(22) for the geodesic deviation (omitting the frame components of Tab encoding the
direct influence of matter) in the case of the Kundt class of spacetimes (20) thus
simplify considerably to

Z̈ (1) = 2Λ

(D − 2)(D − 1)
Z (1) + Ψ2S Z (1) − 1→

2
Ψ3T j Z ( j), (28)

Z̈ (i) = 2Λ

(D − 2)(D − 1)
Z (i) − Ψ2T (i j) Z ( j) − 1→

2
Ψ3T i Z (1) − 1

2
Ψ4i j Z ( j),

where the only nonvanishing Weyl scalars are

Ψ2S = −Rruru + 2
D−2 Rru + 1

(D−1)(D−2)
R,

Ψ2T i j = m p
i mq

j

[
Rr puq − 1

D−2

(
gpq Rru − Rpq

) − 1
(D−1)(D−2)

R gpq
]
,

Ψ3T j = →
2 m p

j

{
ẋ k[Rruru gkp − Rrkup − Rrukp − 1

D−2

(
gkp Rru + Rkp

) ]

+ u̇
[
Rruru gup − Rruup − 1

D−2

(
gup Rru + Rup

) ]}
,

Ψ4i j = 2 m p
(i m

q
j)

{
ẋ k ẋ l[Rr puq gkl − gpk(2Rrluq − glq Rruru + 2Rrulq)

+ Rkplq − 1
D−2 gpq (gkl Rru + Rkl)

]
+ 2u̇ ẋ k[Rr puq guk − gup(Rrkuq − Rruru gqk + Rrukq)

− Rruup gqk + Rupkq − 1
D−2 gpq(guk Rru + Ruk)

]
+ u̇2[Rr puq guu − guq

(
2Rruup − gup Rruru

) + Rupuq
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− 1
D−2 gpq (guu Rru + Ruu)

]}
, (29)

and the components Rabcd are explicitly given by (5)–(12), Rab by (15)–(18), and
the Ricci scalar curvature R is given by (19).

The relative motion of free test particles in any Kundt spacetime (20) is thus
composed of the isotropic influence of the cosmological constant Λ, Newton-like tidal
deformations represented by Ψ2S , Ψ2T (i j) , longitudinal accelerations associated with
the direction +e(1) given by Ψ3T j , and transverse gravitational waves propagating
along +e(1) encoded in the symmetric traceless matrix Ψ4i j , see (24). The invariant
amplitudes (29) combine the curvature of the Kundt spacetime with kinematics of
the specific geodesic motion. In contrast to longitudinal and transverse wave effects,
the Newton-like deformations caused by Ψ2S and Ψ2T (i j) are independent of the
observer’s velocity components ẋ i and u̇.

More details can be found in our recent publications [8, 9].

5 Discussion of Particular Subfamilies

The Kundt class involves several physically interesting subfamilies, for example
pp-waves including gyratons and VSI spacetimes.

The pp-waves are defined by admitting a covariantly constant null vector field
ka [2, 3]. They thus belong to the Kundt class with all metric functions independent
of r , which is the metric (20) with fi = 0, a = 0 = b:

ds2 = gi j (u, x) dxi dx j + 2 ei (u, x) dxi du − 2 du dr + c(u, x) du2. (30)

The components ei encode the possible presence of gyratonic matter.
The VSI spacetimes have the property that their scalar curvature invariants of all

orders vanish identically. As shown in [10], these spacetimes must be of the form
(20) with flat transverse space gi j = δi j :

ds2 = δi j dxi dx j + 2 (ei + fi r) dxi du − 2 du dr + (a r2 + b r + c) du2. (31)

It is straightforward to apply our general results (28) to these particular subcases by
evaluating the corresponding Weyl scalars (29) and discussing their specific influence
on test particles. We have to restrict ourselves only to the simplest case here,1 to
vacuum VSI pp-waves without gyratons:

ds2 = δi j dxi dx j − 2 du dr + c(u, x) du2. (32)

Since Λ = 0, Ψ2S = 0 = Ψ2T i j , Ψ3T j = 0, the geodesic deviation reduces to

1 A thorough discussion of other cases can be found in our subsequent papers [8, 9].
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Fig. 2 Standard (left) and one
of peculiar deformations of a
detector indicating extension
of the gravitation wave into
higher dimensions (right)

Z̈ (1) = 0, Z̈ (i) = − 1
2 Ψ4i j Z ( j). (33)

This clearly represents gravitational waves propagating along the spatial direc-
tion (1), with the test particles influenced only in the transverse directions (i) =
(2), (3), . . . , (D−1). The elements of the symmetric and traceless (D−2)×(D−2)

matrix Ψ4i j = −u̇2 c,i j (where u̇ is a constant) directly encode the corresponding
wave amplitudes. Obviously, there are 1

2 D(D − 3) independent polarization states.

Taking, e.g., a quadratic function c(x) √ ∑D−1
i=2 Ai (xi )2 where the constants

must satisfy
∑D−1

i=2 Ai = 0, the wave-amplitude matrix becomes Ψ4i j = −2u̇2

diag(A2,A3, . . .). Relative motion of (initially static) particles given by (33) can be
explicitly integrated: in the spatial directions with positive eigenvalues Ai > 0 they
recede as Z (i)(τ ) = Z (i)

0 cosh
(→

Ai |u̇| τ)
, while with negative eigenvalues Ai < 0

they converge as Z (i)(τ ) = Z (i)
0 cos

(→
Ai |u̇| τ)

, and in the directions where Ai = 0

the particles stay fixed, Z (i)(τ ) = Z (i)
0 .

In principle, the presence of higher-dimensional components of gravitational
waves could be observed by detectors in our (1+3)-dimensional universe as the viola-
tion of the standard TT-property. Indeed, taking the simplest case D = 5, the matrix
reads Ψ4i j = −2u̇2 diag(A2,A3,A4) where A2 = −(A3 + A4). In the absence of
the higher-dimensional component, A4 = 0, an interferometer in our space detects
usual deformations shown in the left part of Fig. 2. But if A4 ∓= 0 then A2 ∓= −A3,
and a peculiar deformation, such as on the right part of Fig. 2, would be observed.
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A Class of Conformal Curves on Spherically
Symmetric Spacetimes

Juan A. Valiente Kroon and Christian Lübbe

Abstract A class of curves with special conformal properties (conformal curves)
is studied on the Reissner–Nordström spacetime. It is shown that initial data for the
conformal curves can be prescribed so that the resulting congruence of curves does not
contain any conjugate points in the domain of outer communication of the spacetime
and extend smoothly to future and past null infinity. The results of this analysis are
expected to be of relevance for the discussion of the Reissner–Nordström and other
spherically symmetric spacetimes as solutions to the conformal field equations and
for the numerical global evaluation of static black hole spacetimes.

1 Introduction

Conformal methods constitute a powerful tool for the discussion of global properties
of spacetimes—in particular those representing black holes. The conformal structure
of static electrovacuum black hole spacetimes is, to some extent, well understood—
see e.g. [1, 2]. However, the constructions involved often require several changes
of variables and the introduction of some type of null coordinates. This choice of
coordinates may not be the most convenient to undertake an analysis of global or
asymptotic properties of a spacetime by means of the conformal Einstein field equa-
tions—see e.g. the discussion in [3]. A key issue in this respect, is how to construct
in a systematic or canonical fashion a conformal extension of the spacetime which,
in addition, eases the analysis of the underlying conformal field equations—for a
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review of the conformal equations and the issues involved in their analysis see e.g.
[4]. In the case of vacuum spacetimes, gauges based on the use of conformal geo-
desics offer such a systematic approach—see e.g. [5, 6]. Conformal geodesics are
invariants of the conformal structure: a conformal transformations map conformal
geodesics into a conformal geodesics—this is not the case with standard geodesics
unless they are null.

One of the main advantages of the use of conformal geodesics in the construction
of gauge (and coordinate) systems in a vacuum spacetime is that they provide an a
priori conformal factor which can be read off directly from the data one has specified
to generate the congruence of conformal geodesics. Hence, one has a canonical
procedure to generate a conformal extension of the spacetime in question. In addition,
gauge systems based on conformal geodesics give rise to a fairly straightforward
hyperbolic reduction of the conformal Einstein field equations in which most of the
evolution equations are, in fact, transport equations—see e.g. [4, 7].

The useful property of having an a priori conformal factor is lost when one con-
siders conformal geodesics in non-vacuum spacetimes. Nevertheless, in [8] it has
been shown that this property can be recovered if one considers a more general class
of curves—the conformal curves. These conformal curves satisfy equations similar
to the conformal geodesic equations, but with a different coupling to the curvature
of the spacetime. In the vacuum case they coincide with the conformal geodesic
equations. Gauges based on this class of curves have been used in [8] to revisit the
stability proofs for the Minkowski and the de Sitter spacetimes given in [9] and to
obtain a stability result for purely radiative electrovacuum spacetimes. An important
remark concerning these results is that they deal with spacetimes, or are restricted to
regions of spacetimes, that do not contain singularities.

2 Conformal Curves

Given an interval I √ R, let x(Λ ), with Λ → I , denote a curve in a spacetime (M , g̃)

and let b(Λ ) denote a 1-form along x(Λ ). Furthermore, let ẋ ∓ dx/dΛ denote the
tangent vector field of the curve x(Λ ). The pairing between the vector ẋ and the
1-form b is denoted by ∼b, ẋ≤. In [8] the following equations have been introduced
for the pair (x(Λ ), b(Λ )):

∞̃ẋ ẋ = −2∼b, ẋ≤ẋ + g̃(ẋ, ẋ)bφ, (1a)

∞̃ẋ b = ∼b, ẋ≤b − 1
2 g̃φ(b, b)ẋκ + H̃(ẋ, ·), (1b)

where ∞̃ẋ denotes the directional derivative of the Levi–Civita connection of the
metric g̃, while H̃ denotes a rank 2 covariant tensor which upon the conformal
transformation g = ν2 g̃ transforms as:

H̃μ∂ − Hμ∂ = ∞μξ∂ + ξμξ∂ − 1
2 gπτξπξτ gμ∂,
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where ξμ ∓ ν−1∞μν . This transformation law is formally identical to that of the
Schouten tensor

L̃μ∂ ∓ 1
2 (R̃μ∂ − 1

6 R̃ g̃μ∂).

The equation (1a)–(1b) are called the conformal curve equations. In [8] the choice
H̃ = π g̃, has been adopted so that equation (1b) reduces to

∞̃ẋ b = ∼b, ẋ≤b − 1
2 g̃φ(b, b)ẋκ + πẋκ. (2)

In the following analysis we fix the initial conditions for the conformal curve equa-
tions such that the curves of the congruence are orthogonal to the initial hypersurface
S , while the initial value of the 1-form b is given by σ−1dσ where σ is a conformal
factor inducing a 1-point compactification of an asymptotically Euclidean end.

3 Conformal Curves in the Reissner–Nordström Spacetime

A natural question to be asked is whether conformal geodesics, and more gener-
ally, the class of conformal curves introduced in [10] can be used to analyse global
aspects of black hole spacetimes. In this respect, in [5] it has been shown that the
maximal extension of the Schwarzschild spacetime, the so-called Schwarzschild-
Kruskal spacetime [11], can be covered with a congruence of conformal geodesics
which has no conjugate points. The conformal Gaussian gauge system obtained using
this congruence offers a vantage perspective for the study of conformal properties
of the Schwarzschild spacetime and for its global evaluation by means of numerical
methods—see e.g. [12].

In the present contribution we briefly review the main results of [10] where the
question has been raised to what extent a similar construction can be performed for
the Reissner–Nordström spacetime. The consideration of the Reissner–Nordström
spacetime is, for several reasons, natural. The inclusion of the electromagnetic field
provides a model of angular momentum—see e.g. [13, 14]. We expect our analy-
sis to provide insights into more general (i.e. less symmetric) situations—e.g. the
Kerr and Kerr–Newman spacetimes. In addition, there is the expectation that black
hole spacetimes with timelike singularities could be more tractable from the point
of view of the conformal geometry than black holes with spacelike singularities.
This expectation is based on the analysis of the structure of spatial infinity of the
Schwarzschild spacetime. In this case the well understood divergence of the Weyl
tensor at spatial infinity can also be regarded as the timelike singularity of a negative
mass Schwarzschild spacetime—see e.g. [15] for a conformal diagram of this.
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The main result of the analysis in [10] is the following:

Theorem 1 The domains of outer communication of the extremal and the non-
extremal Reissner–Nordström spacetime can be covered with a timelike congruence
of conformal curves which contains no conjugate points. The congruence of confor-
mal curves extends smoothly to null infinity.

Numerical solutions of the conformal curve equations show, in fact, that conjugate
points do arise after the curves have crossed the horizon and entered the black hole
region. From the perspective of the Cauchy problem for the Einstein field equations,
these conjugate points are not a major concern as one is mainly interested in the
behaviour of the spacetime in the domain of outer communication and at the horizon.
This is, in particular, the case in the problem of the so-called non-linear stability of
black hole spacetimes—see e.g. [16].

Our main result provides a suitable conformal gauge to analyse the properties of
the Reissner–Nordström spacetime by means of the conformal Einstein field equa-
tions. In particular, it opens the possibility of global numerical evaluations of the
spacetime [17] similar to the ones carried out in [12] for the Schwarzschild space-
time.

4 Conformal Curves in Other Spacetimes

The analysis of [5] and [10] suggest the possibility of obtaining analogues of Theorem
1 for the Schwarzschild–de Sitter and Schwarzschild–anti de Sitter spacetimes. More
generally, one could also consider the Reissner–Nordström–de Sitter/anti-de Sitter
spacetimes. These spacetimes are static. In order to consider dynamical situations,
while at the same time retaining the assumption of spherical symmetry, one has
to bring into play other matter models. A suitable test case is given by the Vaidya
solution. Alternatively, one could consider spacetimes arising from the (spherically
symmetric) Einstein-scalar field and Einstein–Maxwell-scalar field system.

In general terms, it is conjectured that for spacetimes with a Maxwell field it
should be possible to obtain a result similar to that of Theorem 1 where at least the
outer domain of communication of the spacetime can be covered without having
conjugate points. If no Maxwell field is present then the situation should resemble
that of the analysis of the Schwarzschild spacetime in [5] where even the regions
inside the black hole can be covered by the congruence.

5 Qualitative Behaviour of the Curves

For our choice of initial data, the analysis of [10] identified three different types of
possible behaviours for the conformal curves. First of all, one has curves starting in
the asymptotic region of an initial hypersurface S which extend up to (and includ-
ing) future null infinity. Null infinity is reached for a finite value of a conformally
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(a)

(b)

(c) (d)

(e)

(f) (g)

Fig. 1 Schematic illustration of the behaviour of conformal curves. To the left the non-extremal
case: a the curve starting at r∗ = r+; b a curve with r+ < r∗ < r� ; c the critical curve r∗ = r� ; d
a curve with r∗ > r� . To the right the extremal case: e a curve with r∗ < r� ; f the critical curve
r∗ = r� ; g a curve with r∗ > r� . The curves are not depicted to scale

privileged parameter Λ . A different type of behaviour is given by conformal curves
starting closer to the horizon. These curves exhibit a periodic behaviour on the con-
formal diagram of the spacetime, reaching the horizon in a finite value of Λ and then
entering the so-called regions II and III (in the non-extremal case) and the region
II (in the extremal case) before re-emerging in a domain of outer communication.
An extreme case of this behaviour is that of the conformal curve starting exactly at
the bifurcation sphere of the non-extremal case—this corresponds to the curve (a) of
Fig. 1. A curious property of these curves is that they cannot get arbitrarily close to
the singularity. Hence, there are regions inside the black hole region which cannot
be probed by means of the curves. Separating the behaviour of curves entering the
black hole and those escaping to null infinity, one has critical curves which exactly
hit timelike infinity (i+) in a finite amount of the parameter Λ . These curves are of
special relevance for disentangling the conformal structure of i+. In particular, the
analysis of [10] shows that in the non-extremal case, the critical curves become null
at i+. A similar behaviour had been identified in the Schwarzschild spacetime [4].
Remarkably, for the extremal case the critical conformal curves remain timelike even
at i+.
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6 Conclusions

The type of analysis described in this contribution is a first step in the study of the
Reissner–Nordström spacetime (and more generally, spherically symmetric space-
times) as a solution of the conformal field equations. The main conclusion to be
extracted is that, at least in what concerns the domain of outer communication, a
class of conformally privileged curves can be used to probe the spacetimes. More-
over, the curves can be used individually, not as a congruence, to probe certain regions
inside the black hole region. In view of this programme, a result of special relevance
is the observation made in [10] that the conformal structure of the timelike infinity
(i+) of the extremal Reissner–Nordström spacetime may be more tractable, from an
analytic point of view, than that of the non-extremal case. With regards to non-linear
stability (or lack thereof) of black-hole spacetimes, the fact that the congruence de-
veloped conjugate points outside the domain of outer communication poses no real
limitation as this is the only region of the spacetime one is really concerned with—see
e.g. [16].

Comparing the conformal diagrams of the Reissner–Nordström spacetime and the
the Kerr spacetime, it is natural to wonder how much of the structure observed in
the present analysis has an analogue in the Kerr solution. For example, it is natural
to conjecture that the domain of outer communication of the Kerr spacetime can be
covered by means of a non-singular congruence of conformal geodesics reaching
beyond null infinity. It is likely that this congruence will degenerate after it has
crossed the event horizon and that the curves will have some type of singularity
avoiding properties so that there may exists regions in the black hole region which
can not be probed by this congruence. A more tantalising possibility is that, as in
the case of the extremal Reissner–Nordström spacetime, the extreme Kerr may have
a more tractable structure at i+. In any case, the analysis of conformal geodesics in
the Kerr spacetime is bound to be much more complicated as the warped product
structure of the line element is lost.
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Black Hole Collisions in Asymptotically
de Sitter Spacetimes
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Abstract We report on the first dynamical evolutions of black holes in
asymptotically de Sitter spacetimes. We focus on the head-on collision of equal mass
binaries and compare analytical and perturbative methods with full blown nonlin-
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ear simulations. Our results include an accurate determination of the merger/scatter
transition (consequence of an expanding background) for small mass binaries and a
test of the Cosmic Censorship conjecture, for large mass binaries. We observe that,
even starting from small separations, black holes in large mass binaries eventually
lose causal contact, in agreement with the conjecture.

1 Introduction

Nonlinear dynamics in cosmological backgrounds has the potential to teach us
immensely about our universe, and also to serve as prototype for nonlinear processes
in generic curved spacetimes. de Sitter spacetime is the simplest accelerating
universe—a maximally symmetric solution of Einstein’s equations with a positive
cosmological constant—which seems to model quite well the present cosmological
acceleration [1].

Key questions concerning the evolution towards a de Sitter, spatially
homogeneous universe are how inhomogeneities develop in time and, in particular, if
they are washed away by the cosmological expansion [2]. Answering them requires
controlling the imprint of the gravitational interaction between localised objects
on the large-scale expansion. Conversely, the cosmological dynamics should leave
imprints in strong gravitational phenomena like primordial black hole formation [3]
or the gravitational radiation emitted in a black hole binary coalescence, which carry
signatures of the cosmological acceleration as it travels across the universe. Identi-
fying these signatures is not only of conceptual interest but also phenomenologically
relevant, in view of the ongoing efforts to directly detect gravitational radiation.

Finally, dynamics in asymptotically de Sitter spacetimes could also teach us about
more fundamental questions such as cosmic censorship: two black holes of suffi-
ciently large mass in de Sitter spacetime would, upon merger, give rise to a too large
black hole to fit in its cosmological horizon. In this case the end state would be a
naked singularity. This possibility begs for a time evolution of such a configuration.
Does the time evolution of non-singular data containing two black holes result in a
naked singularity, or are potentially offending black holes simply driven away from
each other by the cosmological expansion?

Following [4], we here report on numerical evolutions of black hole binaries in
an asymptotically de Sitter geometry. Even though we consider a range of values
for the cosmological constant far larger than those which are phenomenologically
viable, these results provide useful insight on the general features of dynamical black
hole processes in spacetimes with a cosmological constant, which can improve our
understanding of our universe.

1.1 Schwarzschild-de Sitter

The Schwarzschild-de Sitter spacetime, written in static coordinates reads
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ds2 = − f (R)dT 2 + f (R)−1dR2 + R2dΩ2. (1)

The solution is characterised by two parameters: the black hole mass m and the
Hubble parameter H ,

f (R) = 1 − 2m/R − H2 R2, H √ √
Λ/3. (2)

f (R) has two zeros, at R = R±, R− < R+, if

0 < m H < m Hcrit, m Hcrit √ √
1/27. (3)

These zeros are the location of the black hole event horizon (R−) and of a cosmo-
logical horizon (R+). If H = 0, then R− = 2m; if m = 0, then R+ = 1/H . If
H, m →= 0, then R− > 2m and R+ < 1/H .

The basic dynamics in this spacetime may be inferred by looking at radial timelike
geodesics. They obey the equation (dR/dτ)2 = E2 − f (R), where τ is the proper
time and E is the conserved quantity associated to the Killing vector field ∂/∂T . In
the static patch (R− < R < R+), E can be regarded as energy. From this equation
we see that f (R) is an effective potential. This potential has a maximum at

Rmax = (m/H2)1/3. (4)

Geodesics starting from rest (i.e. dR/dτ(τ = τ0) = 0) will fall into the black hole
if R− < R < Rmax or move away from the black hole if Rmax < R < R+.

As we will discuss in the next section, the initial data for an evolution in the de Sitter
universe can be computed in a similar manner as has been done in asymptotically
flat space as long as one chooses a foliation with extrinsic curvature Ki j having
only a trace part [5, 6]. Such a coordinate system is known for Schwarzschild-de
Sitter: McVittie coordinates [7]. These are obtained from static coordinates by the
transformation (T, R) ∓ (t, r) given by

R = (1 + ξ)2a(t)r, T = t + H
∫

R dR

f (R)
∼

1 − 2m/R
, (5)

where a(t) = exp(Ht) and ξ √ m
2a(t)r . One obtains McVittie’s form for Schwarz-

schild-de Sitter:

ds2 = −
(

1 − ξ

1 + ξ

)2

dt2 + a(t)2(1 + ξ)4(dr2 + r2dΩ2). (6)

By setting m = 0 in McVittie coordinates one recovers an FRW cosmological
model with flat spatial curvature and an exponentially growing scale factor. The cos-
mological horizon HC discussed above, located at R = 1/H , stands at rHC =
1/(HeHt ). The spatial sections of HC seem to be shrinking down in this coordi-
nate system. What happens, in fact, is that the exponentially fast expansion is taking
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any observer to the outside of HC . This is a well known phenomenon in studies of
inflation and has important consequences for the numerical evolution.

1.2 Numerical Setup

For the numerical implementation we make use of the Baumgarte, Shapiro,
Shibata and Nakamura (BSSN) formulation, e.g. [8, 9] with the moving puncture
technique [10, 11]. In terms of the BSSN variables χ, γ̃i j , Ãi j , Γ̃

k (cf. App. A in
[9]), the evolution equations are the standard ones except for the one of the trace
of the extrinsic curvature which becomes

(
∂t − Lβ

)
K = [. . . ] − αΛ, where [. . . ]

denotes the standard right-hand side of the BSSN equations in the absence of source
terms (see e.g. [8]). Moreover, a new variable χ̄ = exp(2Ht)χ was evolved instead
of χ [2].

In references [5, 6] it was observed that imposing a spacetime slicing obeying
K i

j = −Hδi
j , and a spatial metric of the form dl2 = ψ4γ̃i j dxi dx j , the equations

to be solved in order to obtain initial data are equivalent to those in vacuum. In
particular, for a system of N black holes momentarily at rest (with respect to the
given spatial coordinate patch), the conformal factor ψ takes the form

ψ = 1 +
N∑

i=1

mi

2|r − r(i)| . (7)

There are N + 1 asymptotically de Sitter regions, as |r − r(i)| ∓ 0,+≤; the total
mass for observers in the common asymptotic region (|r −r(i)| ∓ +≤) is

∑
i mi [6].

1.3 Numerical Results

For binary black hole initial data, we start by reproducing the results of Nakao
et. al [6], where the critical distance between two black holes for the existence of
a common Black hole Apparent Horizon (BAH) already at t = 0 was studied. We
thus prepare initial data (7) with m1 = m2 and take all quantities in units of the total
mass m = m1 +m2. The two punctures are set initially at symmetric positions along
the z axis. The critical value for the cosmological constant, for which the black hole
and cosmological horizon coincide is now m Hcrit = 1/

∼
27. We call small (large)

mass binaries those, for which H < Hcrit (H > Hcrit). Our results for the critical
separation in small mass binaries, at t = 0, as function of the Hubble parameter are
shown in Fig. 1. The line (diamond symbols) agrees, after a necessary normalisation,
with Fig. 14 of [6].

We now consider head-on collisions of two black holes with no initial momentum,
i.e. the time evolution of these data. For subcritical Hubble constant H < Hcrit =
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Fig. 1 Critical coordinate distance for small mass binaries as a function of H/Hcrit . We obtain this
estimate from the coordinate distance to the horizon, (4), for a particular value of m. The t = 0
line refers to the critical separation between having or not having a common BAH in the initial
data. The inset shows details of the approach to the critical line for H = 0.6Hcrit , where a is an
acceleration parameter

1/(
∼

27m), we monitor the evolution of the areal radius of the BAHs and that of
the Cosmological Apparent Horizons (CAHs) of an observer at z = 0. For instance,
for H = 0.9Hcrit and proper (initial) separation 3.69m we find that the areal radii
of the BAH and CAH are approximately constant and equal to RBAH ∞ 2.36m and
RCAH ∞ 4.16m, respectively. As expected the two initial BAHs, as well as the final
horizon, are inside the CAH. As a comparison, a Schwarzschild-de Sitter spacetime
with the same H has RBAH ∞ 2.43m and RCAH ∞ 4.16m. This suggests that the
interaction effects (binding energy and emission of gravitational radiation) are of the
order of a few per cent for this configuration.

By performing a large set of simulations for various cosmological parameters H
and initial distance d, we have bracketed the critical distance for the merger/scatter
region as a function of the Hubble parameter H for the “dynamical” case, i.e., the
initial coordinate distance between the black holes such that no common BAH forms.
The results are displayed in Fig. 1 (circles and × symbols).

As expected the critical distance becomes larger as compared to the initial data
value (“t = 0” line): there are configurations for which a common BAH is absent
in the initial data but appears during the evolution (just as in asymptotically flat
spacetime). The numerical results can be qualitatively well approximated by a point
particle prediction—from (4). To do such comparison a transformation to McVittie
coordinates needs to be done; we have performed such transformation at McVittie
time t = 0. Intriguingly, for a particular value of m ∞ 0.7, the point particle approx-



252 M. Zilhão et al.

Fig. 2 Snapshots at different times of a simulation with H = 1.05Hcrit , and an initial coordinate
distance d/m = 1.5002. The dotted blue line denotes the CAHs (for the observers moving with the
black holes). The full animation for this simulation can be found in [12]

imation matches quantitatively very well the numerical result; the curve obtained
from the geodesic prediction in Fig. 1 is barely distinguishable from the numerical
results.

A further interesting feature concerns the approach to the critical line. For an
initially static binary close to the critical initial separation, the coordinate distance
d scales as d = d0 + at2. In general the acceleration parameter scales as log a =
C + Γ log(d − d0), where Γ = 1 in the geodesic approximation. A fit to our
numerical results for H = 0.6Hcrit (dashed curve in the inset of Fig. 1) for example
yields C = −3.1, Γ = 0.9 in rough agreement with this expectation. Details of this
regime are given in the inset of Fig. 1.

Finally, we have performed evolutions with H > Hcrit . On the assumption of
weak gravitational wave release, such evolutions can test the cosmic censorship
conjecture since the observation of a merger in such case would reveal a violation
of the conjecture [13]. From general arguments and from the simulations with H <

Hcrit , we know the cosmological repulsion will dominate for sufficiently large initial
distance and in that case we can even expect that a CAH for the observer at z = 0
will not encompass the BAHs. This indicates the black holes are no longer in causal
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contact and therefore can never merge. Our numerical results confirm this overall
picture. To test the potentially dangerous configurations, we focus on the regime in
which the black holes are initially very close. A typical example is depicted in Fig. 2,
for a supercritical cosmological constant H = 1.05Hcrit , and an initial coordinate
distance d/m = 1.5002. Even though the initial separation is very small, we find
that the holes move away from each other, with a proper separation increasing as the
simulation progresses. In fact, further into the evolution, a distorted CAH appears,
and remains for as long as the simulation lasts. The evolution therefore indicates that
the spacetime becomes, to an excellent approximation, empty de Sitter space for the
observer at z = 0 and that the black holes are not in causal contact. Observe that
qualitatively similar evolutions can be found in small mass binaries when the initial
distance is larger than the critical value

1.4 Final Remarks

We have presented evidence that the numerical evolution of black hole spacetimes
in de Sitter universes is under control. Our results open the door to new studies of
strong field gravity in cosmologically interesting scenarios. In closing, we would like
to mention that our results are compatible with cosmic censorship in cosmological
backgrounds. However, an analytic solution with multiple (charged and extremal)
black holes in asymptotically de Sitter spacetime is known, and has been used to study
cosmic censorship violations [14]. In collapsing universes a potential violation of the
conjecture has been reported, although the conclusion relied on singular initial data.
To clarify this issue, it would be of great interest to perform numerical evolution of
large mass black hole binaries, analogous to those performed herein, but in collapsing
universes. This will require adaptations of our setup, since the “expanding” behaviour
discussed of the coordinate system will turn into a “collapsing” one, which raises
new numerical challenges.
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On the Effects of Rotating Gravitational Waves

Jiří Bičák, Joseph Katz, Tomáš Ledvinka and Donald Lynden-Bell

Abstract We study effects of gravitational waves which in the first order form a
time-symmetric ingoing and then outgoing pulse of rotating waves. The influence of
the angular momentum of these waves on the rotation of local inertial frames with
respect to the frames at great distances is analyzed by solving the relevant Einstein
equation to second order. Also the apparent motions of the fixed stars on the celestial
sphere as seen through rotating waves from the local inertial frame in the centre are
calculated and displayed.

1 Introduction

It was just 100 years ago in Prague when Einstein wrote the paper [1] in which he,
for the first time, expressed his understanding of Mach’s Principle. Within his pre-
General Relativity theory in which there was only one metric function he considered
a mass point inside a shell accelerated “upwards” and found that the mass-point is
dragged along by the shell.

Many formulations and studies of Mach’s Principle appeared during the last 100
years, most of them were analyzed in the Tübingen conference in 1993 which led to
the remarkable volume [2] containing lectures as well as valuable discussions. We

J. Bičák · T. Ledvinka (B)

Institute of Theoretical Physics, Charles University,
180 00 Prague 8, Czech Republic
e-mail: tomas.ledvinka@mff.cuni.cz
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studied Machian effects in various contexts, both in asymptotically flat spacetimes
and within cosmological perturbation theory—see, e.g., [3], and number of references
therein; later, cf. Schmid [4].

More recently, we investigated a subtle question whether dragging of inertial
frames should be attributed also to gravitational waves. After the discovery of binary
pulsars losing energy and angular momentum as a consequence of emitting gravita-
tional radiation it would be surprising if gravitational waves did not have an influence
on local inertial frames. However, there are still doubts uttered about the status of
gravitational stress-energy as compared with stress-energy tensor TμΛ of matter in
relation to Machian ideas (see, e.g., [2], p. 83). In [5, 6] we analyzed dragging by
cylindrical gravitational waves.

In the present work based on Ref. [7] we investigate the effects of rotating gravi-
tational waves in a more general, asymptotically flat setting. We again start out from
linearized theory and construct an ingoing rotating pulse of radiation which later
transforms into an outgoing pulse. While in the cylindrical case our waves were
characterized by just one harmonic index m governing the number of wave crests in
φ, now the situation becomes considerably richer involving both spherical harmonic
indices l and m.

Near the origin the first-order metric of our waves behaves as rl , so the region
around the origin will be very nearly flat for l sufficiently large. When, however, a
local inertial frame is introduced at the origin, we find that its axes rotate with the
angular velocity κ0 with respect to the lines φ = const of the global frame, i.e.,
with respect to stars at infinity. The situation thus indeed resembles the interior of a
collapsing slowly rotating shell—see [8] where the vorticity of the lines φ = const
is given in covariant form.

2 Rotating Scalar and Gravitational Waves

We first construct a solution of the scalar wave equation in a form of the rotating
wave pulse written in spherical coordinates t, r, ν, ∂

ξlm(t, r, ν, ∂) = Ql(t, r)Ylm(ν, ∂) = Bl2
l l! (r/a)lYlm(ν, ∂)[(

(a + it)2 + r2
)
/a2

]l+1 , (1)

where l, m are harmonic indices, a is typical wave pulse width and Bl is the amplitude.
Here both numerator and denominator are complex functions so the actual wave
profile given by its real part has plenty of features as can be seen in Fig. 1. Among
them the rotating character of the wave, its regularity and the fact that for high values
of l the wave is concentrated near a shell with radius r2 = a2 + t2 are most important.

In the construction of rotating gravitational waves within linearized Einstein the-
ory we then use the Regge-Wheeler equation for odd-parity waves [9] which on the
flat Minkowski background simplifies to a usual wave equation �ξ = 0. We decom-
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Fig. 1 The snapshots of the rotating waves ξlm in times t/a = −1,− 1
2 , 0, 1

2 , 1 (from left to right)
for l = 17, m = 11. Waves are localized in the radial direction so that they resemble a falling and
rotating shell

pose the metric perturbations into tensor harmonics [9–11] and consider only the
odd-parity waves with the Regge-Wheeler gauge condition ((i) = (1), (2) denotes
the first- and second-order perturbations)

h(i)
μΛ =

∑
lm

√
2l(l + 1)

r

[
− h(i)

0lm(t, r)c0lm μΛ + ih(i)
1lm(t, r)clm μΛ

]
, (2)

where c0lm, clm are the odd-parity harmonics [11]. The first order radial functions
h(1)

0lm(t, r) = −πr (r2 Ql)/(l2 + l − 2) and h(1)
1lm(t, r) = −πt (r2 Ql)/(l2 + l − 2) of

the odd-parity metric perturbations we directly obtain from the radial part Ql(t, r)

of the scalar field ξlm .
In [7] we also analyze and relate the energy and angular momentum densities of

scalar and gravitational waves.

3 Second Order Perturbations

To determine the influence of gravitational waves h(1)
μΛ on the rotation of local inertial

frames at the axis of symmetry due to the second-order metric perturbations h(2)
μΛ we

solve the equations
R(1)

μΛ [h(2)] = − <R(2)
μΛ [h(1), h(1)]>, (3)

where we introduced the averaging symbol <>. We expand both sides in tensor
spherical harmonics. For general l the l.h.s. yields a hyperbolic set of equations for
radial functions h(2)

0 and h(2)
1 indicating non-instantaneous effects, but the inertial

frames at the origin will be influenced primarily by the dipole perturbations and
it is well known that for l = 1 one can fix h(2)

1 = 0 by an appropriate gauge

transformation [9, 12] and arrive thus at elliptic equation for h(2)
0 . In this equation

the axially symmetric component <R(2)
tφ [h(1), h(1)]> on the r.h.s. of (3) appears as

the only source for the dipole second-order perturbations



258 J. Bičák et al.

Fig. 2 The dependence of
normalized angular velocity
of the central inertial frame
κ0(l, 1; t)/κ0(l, 1; t = 0)

on the parameter l = 2,

3, 10, 20, 30 (from inside to
out). The dashed line indicates
the limit for large l
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2l(l + 1)r

τ∫

0

<R(2)
tφ > πν Yl0 dν. (4)

This equation can be solved by variation of constants. While the Coriolis and cen-
trifugal accelerations are higher order in the angular velocity, κ0 of the rotation of an
inertial frame (of a gyroscope) located near the origin, entering g(2)

tφ = −κ0 r2 sin2 ν ,
is determined by

κ0 = 1

4τ

→∫

0

∫

S2

R(2)
tφ [h(1), h(1)] dσ

dr

r
. (5)

Although R(2)
tφ [h(1), h(1)] has a complicated structure, we obtain the angular velocity

κ0 in the closed, although quite lengthy, form. The profiles of κ0(t) are in Fig. 2.

4 Observing Stars Through Gravitational Waves

We evaluate the first-order effects of the waves on the propagation of photons which
apparently change the position of distant stars in the sky as seen by an observer
fixed in the flat region at the origin. We found that the change of apparent star’s
celestial coordinates δφ, δν can be computed as a perturbation of the ingoing radial
null geodesic. This change of the direction of a momentum of the photon registered
at time T can be written using integrals along the unperturbed ray. They yield quite
simple formula for trajectory of the star with initial coordinates φ, ν in a form of
conformal mapping of a straight line in a complex plane by function z−l−2:
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l = 13 l = 33

Fig. 3 Since light from distant stars is influenced by the gravitational waves the observed positions
of the stars change. An observer at the origin can record the apparent position of the stars on the
celestial sphere on a photographic plate. When appropriately scaled and rotated, the trajectories of
all stars are the same. A star starts at the origin of the plate (x = y = 0 in the planes above) and
moves along closed trajectories the structure of which becomes more complicated with increasing
l. The trajectory of a star with celestial longitude φ fits in an ellipse with semi-axes Ων,Ωφ rotated
on the celestial sphere by the angle lτ/2 + mφ (see Eq. (6))

δφ(T )

Ωφ
+ i

δν(T )

Ων
= i l eimφ

(
1 + i T

a

)l+2 , (6)

where Ων = B̂lm Pm
l (cos ν)/sin ν , Ωφ = −B̂l P ∓m

l (cos ν), and B̂l = N m
l 2(l − 1)!

See Fig. 3 for examples of star image trajectories.
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Variations on Spacetimes with Boost-Rotation
Symmetry

Jiří Bičák and David Kofroň

Abstract Some new results on the boost-rotation symmetric spacetimes representing
pairs of rotating charged objects accelerated in opposite directions are summarized. A
particular attention is paid to (a) the Newtonian limit analyzed using the Ehlers frame
theory and (b) the special-relativistic limit of the C-metric. Starting from the new,
simpler form of the rotating charged C-metric we also show how to remove nodal
singularities and obtain a rotating charged black hole freely falling in an external
electromagnetic field.

1 Boost-Rotation Symmetric Spacetimes

Boost-rotation/axial symmetric spacetimes are important explicit examples of exact
solutions of Einstein field equations describing non-trivially moving sources of grav-
itational and electromagnetic field [1]. The only “initial” assumption that is made is
the existence of two Killing vectors: boost Killing vector ξ

μ
B whose orbits are hyper-

bolas and axial Killing vector ξ
μ
φ with closed circular orbits. The metric of a general

electrovacuum rotating boost-rotation symmetric spacetime in global coordinates
reads:

ds2 = −eμ
(
zdt − tdz + Ω(z2 − t2) dφ

)2 − eν (zdz − tdt)2

z2 − t2 +eνdρ2+e−μρr2dφ2 .

(1)
Functions μ, ν and Ω depend on a = z2 − t2 and b = r2 only and are determined by
the Ernst equations (basic consequence of the Einstein field equations under these
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Fig. 1 Space-time diagram of
boost-rotation symmetric
solution. This diagram
schematically indicates the
world lines of sources (thick
lines) and different conicity
regions of the axis (grey), or
world-sheets of the black-
holes horizons

symmetries) and the character of sources. The nonlinear Ernst equations are difficult
to solve but if rotation Ω and electromagnetic field vanish, then the basic Einstein
field equation reduces to the wave equation on an auxiliary flat spacetime �μ = 0,
while ν can be determined by quadrature.

The main features of the boost-rotation symmetric spacetimes are:

(a) they describe uniformly accelerated sources;
(b) are asymptotically flat at null infinity except, in general, at two its generators;
(c) the hypersurfaces z2 = t2, where the boost Killing vector ξ

μ
B is null, invariantly

divide the spacetime into four quadrants (see Fig. 1),

(c1) below the roof (reg. I and III)—locally Weyl metrics,
(c2) above the roof (reg. II and IV)—locally Einstein-Rosen, or Gowdy metrics;

(d) are of algebraic type I , in general; the C-metric, describing accelerated black
holes, is of type D;

(e) are radiative with a non-vanishing news function;
(f) along the axis of symmetry there are conical singularities in general—they can

be interpreted as strings or struts that cause the acceleration.

2 Newtonian Limit

Newtonian limit of a relativistic spacetime greatly corroborates its physical interpre-
tation. We perform the limit within the framework of the Ehlers frame theory (see
[2] for more details and references). The key point is the causality constant λ = c−2

which becomes zero in the limit. To do the limit we have to choose a suitable set of
observers and a naturally adapted coordinate system.

Using (1) with functions μ and ν known, we first introduce a shift of the coordinate
origin by putting z = ζ + λ−1g−1; otherwise the particles would “disappear” to
infinity (see Fig. 2).

Our procedure then results in a classical point particle undergoing uniform accel-
eration, z = 1

2 gt2, which generates classical field described by the Newtonian gravi-
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λ = 1 λ = 0.25 λ = 0.05

Fig. 2 The sequence of spacetime diagrams with decreasing λ = c−2 when making the coordinate
shift (upper part) and without it (lower part). The worldlines of the sources are shown

tational potential Φ = m/

√
r2 + (z − 1

2 gt2)2. This follows from the limit of explicit
examples of these spacetimes [2].

Our results thus strongly support the physical significance of the boost-rotation
symmetric spacetimes (in contrast to some previous conclusions [3] which made the
limit in the regions II and IV).

3 The Rotating Charged C-Metric

The rotating charged C-metric is a special case of the boost-rotation symmetric
spacetimes. It describes two rotating charged black holes. It can be written in the
form

ds2 = 1

A2(x − y)2

{
G (y)

1 + (a Axy)2

[(
1 + (a Ax)2) Kτ dτ + a A

(
1 − x2) Kφdφ

]2

− 1 + (a Axy)2

G (y)
dy2 + 1 + (a Axy)2

G (x)
dx2 + G (x)

1 + (a Axy)2

[(
1 + (a Ay)2) Kφdφ − a A

(
1 − y2) Kτ dτ

]2
}

, (2)
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Fig. 3 The worldsheet of
an accelerated, charged and
rotating disc producing accel-
erating magic electromagnetic
field

where A and a are parameters characterizing acceleration and rotation, the mass
parameter M enters function G which is polynomial of the 4-th order; Kφ ,Kτ are
suitable constants. It was recently factorized by Emparan, Hong and Teo. See [5] for
details and references. The transformation between the forms (2) and (1) is explicitly
known.

The flat spacetime limit (i.e. G → 0) of the charged rotating C-metric can be
shown to lead to an electromagnetic field of two counter-rotating bent charged discs
undergoing uniform acceleration (see Fig. 3, and [4] for details).

4 Removing the Conical Singularities

The charged C-metric represents a pair of uniformly accelerated black holes with
mass m, charge q and acceleration A. These can be “immersed” in an external electric
field E using the appropriate generating technique by Ernst. (The field breaks the
asymptotic flatness.) For a suitably chosen value of E the axis becomes regular
everywhere. This is because by adding the external field we include the “physical”
source of the acceleration in the solution—the electromagnetic force. Utilizing the
new factorized form of the C-metric, Ernst’s simple “equilibrium condition” m A =
q E valid for small accelerations is generalized to an arbitrary A. See [5] where
rotation is also included.

Acknowledgments We would like to acknowledge the support from the Czech Science
Foundation by grant GAČR No. 14-37086G.
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On the Existence and Properties of Helically
Symmetric Systems

Jiří Bičák, Martin Scholtz and Paul Tod

Abstract By an argument similar to that of Gibbons and Stewart, but in a different
coordinate system and less restrictive gauge, we show that any weakly asymptotically
simple, analytic vacuum or electro-vacuum spacetime which is periodic in time is
necessarily stationary. We generalized this theorem to the presence of scalar fields
and, among other results, derived new expressions for the Bondi mass in this case.
Here we summarize these results and also briefly discuss some new considerations
concerning the periodic solutions within linearized theory of gravity.

1 Introduction

The inspiral and coalescence of binary black holes or neutron stars appears to be the
most promising source for the detectors of gravitational waves, so that there has been
much effort going into the development of numerical codes and analytic approxi-
mation methods to find the corresponding solutions of Einstein’s equations. One of
the recent approaches [1–3], assumes the existence of a helical Killing vector k. In
a co-rotating frame k generates time translations but it becomes null on the light
cylinder and is spacelike outside. Hence, the spacetime is not stationary but it is still
periodic in the region where k is spacelike. Helical symmetry implies equal amounts
of outgoing and ingoing radiation present for all the time, so the spacetime is not
expected to be asymptotically flat.
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2 Non-existence of Asymptotically Flat Solutions Periodic in
Time

In [4] the authors used the spin-coefficient formalism to prove that any asymptoti-
cally flat vacuum periodic solution of Einstein’s equations is necessarily stationary.
They have proved the existence of Killing vector ∂u in the neighbourhood of null
infinity I which, however, is null by construction everywhere and hence does not
imply stationarity. In fact, even in the flat spacetime (stationary!) there is no Killing
vector which is everywhere null and extends to a translation on I . Therefore, the
Minkowski spacetime is not stationary according to the definition given in [4]. In
[5] we introduced a different coordinate system in which we were able to prove the
existence of Killing vector K a which is null on I but timelike in its neighbourhood,
see Fig. 1. Moreover, in [5, 6] we generalized the proof for the presence of electro-
magnetic fields and scalar fields and derived new expressions for the Bondi mass of
two kinds of scalar fields, massless Klein–Gordon and conformal scalar field.1 Our
main results are summarized in the following theorems and corollary.

Theorem 1 A weakly asymptotically simple vacuum or electro-vacuum spacetime
which is periodic in time and analytic in a neighbourhood of I necessarily has a
Killing vector which is timelike in the interior and extends to a translation on I . The
same holds for spacetimes with massless Klein–Gordon fields2 and for spacetimes
with conformally invariant scalar fields.

Corollary 1 In any weakly asymptotically simple, stationary electro-vacuum space-
time which is analytic in a neighbourhood of I , the electromagnetic field is also
stationary. The same holds for spacetimes with massless Klein–Gordon fields.

Theorem 2 The Bondi mass of the spacetime which is a weakly asymptotically
simple solution to Einstein-massless-Klein–Gordon equations is given in terms of
the standard Newman–Penrose coefficients by

MB = − 1

2
√

π

∮ (
Ψ 0

2 + 1
3 ∂u(φ0φ̄0) + σ 0 σ̇ 0

)
dS, (1)

where φ is the complex scalar field. The corresponding mass-loss formula reads

ṀB = − 1

2
√

π

∮ (
σ̇ 0 ˙̄σ 0 + 2 φ̇0 ˙̄φ0

)
dS,

where the dot means the derivative with respect to time u.

1 Massless Klein–Gordon field is a solution to the standard wave equation ∇a∇aφ = 0 while the
conformal scalar field satisfies the conformally invariant equation (∇a∇a + R/6)φ = 0.
2 In fact, this remains to be true also for a self-interacting scalar fields for which potential V (φ) is
appropriately decaying at I (see [6]).
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Fig. 1 The construction of the coordinate system and the Newman–Penrose null tetrad: the Killing
vector K a is null on I + but timelike in its neighbourhood. Coordinate u is an affine parameter
along null generators γ(x2,x3)(u) of I +, r is an affine parameter along null generators γ̃(u,x2,x3)(r)

of hypersurfaces intersecting I at cuts u = constant. On these two-sphere cuts, the coordinates x2

and x3 are introduced in an arbitrary way

The Bondi mass of the spacetime with conformal scalar sources is given by the
standard Newman–Penrose expression identical with (1) for φ0 = 0. The Bondi
mass-loss formula acquires the form

ṀB = − 1

2
√

π

∮ (
σ̇ 0 ˙̄σ 0 + 2 (φ̇0)2 − φ0 φ̈0

)
dS, (2)

where φ is the real scalar field. Expression (2) is not negative semidefinite; a conse-
quence of the null energy condition violation for conformally coupled scalar fields.

3 Helical Symmetry in Linearized Gravity

In this last section we turn to another aspect of the helical symmetry. Although no
exact solutions of the Einstein equations possessing this symmetry are known, such
solutions have been constructed in various “toy models” as, for example, in scalar
gravity [7] or Nordström theory [8]. In [9] the authors have found solutions describing
five dimensional asymptotically AdS black holes with scalar field. These spacetimes
have only one Killing vector (and hence are not stationary and axisymmteric) of the
form K = ∂t + ω∂ψ , which is tangent to the null generators of the horizon and can
be asymptotically timelike, null or spacelike, depending on the parameters of the
solution. Thus, these solutions exhibit a kind of helical symmetry.
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Here we present some properties of helically symmetric solutions representing the
fields of a particle moving on the circular orbit in the linearized Einstein’s theory. We
also show that it is feasible to achieve the equilibrium configuration of a binary system
of such particles if both retarded and advanced solutions are taken into account.

First we find the field produced by a point particle of mass m A (“particle A”)
moving uniformly along the circle of radius a with angular velocity ω in the plane
z = 0. We linearize the metric tensor in a usual way and introduce the trace-reversed
perturbation h̄μν , subject to the de Donder gauge condition ∇μh̄μν = 0. Linearized
Einstein’s equations then acquire the well-known form

�h̄μν = −16 π Tμν, (3)

where Tμν is an energy-momentum tensor corresponding to the point particle. The
advanced (−) and retarded (+) solutions to the wave equation (3), after the transfor-
mation to the co-rotating frame, read

˜̄h±
00 = −4m Aγ

ρ±

(
1 − ω2ar cos θ±

)2
, ˜̄h±

11 = −4m Aγ

ρ±
ω2a2 sin2 θ±,

˜̄h±
01 = −4m Aγ

ρ±

(
1 − ω2ar cos θ±

)
ωa sin θ±,

˜̄h±
02 = 4m Aγ

ρ±

(
1 − ω2ar cos θ±

)
ωar cos θ±, (4)

˜̄h±
12 = 4m Aγ

ρ±
ω2a2r sin θ± cos θ±, ˜̄h±

22 = −4m Aγ

ρ±
ω2a2r2 cos2 θ±,

where the functions θ± and ρ± are given implicitly by

θ± = ∓ωR± + φ0 − φ̂, ρ± = R± ± ωar sin θ±,

R± =
√

a2 + r2 + z2 − 2ar cos θ±. (5)

In terms of inertial coordinates, θ± = ωt± + φ0 − φ, where t± = t ∓ R±.
Due to the well-known inconsistency of the linearized theory, the solutions (4) do

not obey the gauge condition imposed. However, we have ∇μh̄±
μν = O

(
α2

)
, where

α = ωa/c (we set c = 1), so our calculations are consistent up to order O (α). In
particular, the Ricci tensor does not vanish outside the world line of particle A, but
Rμν = O

(
α2

)
.

Gravitational field given by the advanced solution in (4) does not display usual
peeling properties near future null infinity I +. In particular, the Newman–Penrose
components of the Weyl spinor Ψm , m = 0, . . . 4, decay as f (r)r−5+m , where f (r)

is an oscillating function of r .
The leading term in the asymptotic expansion of Ψ4 for both advanced and retarded

fields is
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1.5 π
2 (I+)

−2

0

2

·10−6

Ψ−
4 ∼ f(r)/r

Ψ+
4 ∼ r−1

arctan r

Ψ
4(

r)

Fig. 2 The comparison of behaviour of Ψ4 scalar in the neighbourhood of I + in the case of the
retarded solution (Ψ +

4 ) and the advanced solution (Ψ −
4 ). The value of Ψ ±

4 is plotted against rescaled
coordinate arctan r , so that the pointπ/2 on horizontal axis corresponds toI +. The retarded solution
Ψ +

4 exhibits usual r−1 decay while the advanced solution oscillates with increasing frequency

Ψ ±
4 = m α4 γ

2r(1 + α sin θ±)

(
10α2 + 15α sin θ± − sin 3θ± + (2α2 − 8) cos 2θ±

)
,

(6)

where θ+ is r -independent function given implicitly by (cf. [5])

θ+ = α cos θ+ + α u,

while θ− is an oscillating function of r ,

θ− = ω(u + r) + ω

√
a2 + r2 − 2ar cos θ− .

Thus, the retarded field decays in a usual way near I + but the advanced field decays
in an oscillatory manner in such a way that the limit of the rescaled field does not
exist at I +, see Fig. 2. Similar behaviour has been observed in the case of helically
symmetric electromagnetic field, see [10].

Next we consider the motion of the test particle B in the spacetime with metric
(4). For purely retarded (advanced) field of particle A, particle B is expected to move
along the spiral with decreasing (increasing) radius as an inspection of retarded
(advanced) effects suggests. This expectation is confirmed by the numerical solution
of geodesic equation the results of which are shown in Fig. 3. In order to achieve a
circular motion of particle B, it is necessary to take the solution in the time-symmetric
form

h̄μν = 1
2

(
h̄+

μν + h̄−
μν

)
.
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Fig. 3 The motion of test particle B in the field of particle A with mass m = 0.44041 (satisfying
the equilibrium condition for the time-symmetric field), and with velocity α = 0.1. The trajectories
are plotted for purely retarded, purely advanced, and for the time-symmetric field produced by
particle A
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Fig. 4 a The equilibrium value of the mass of particle A as a function of its velocity for selected
values of radius b along which particle B orbits with velocity αb. b Comparison with the Newtonian
value of equilibrium mass for b = 1 when the circular orbits of both particles have the same radius.
The orange region corresponds to the case when |h̄μν | > |ημν | so that the linearized theory breaks
down

With this choice, the angular acceleration φ̈ becomes zero and the only remaining
condition of equilibrium comes from the radial component of the geodesic equation,
r̈ = 0. For a given velocity, α, of particle A and for a given radius b of the orbit of
particle B, the condition of equilibrium can be solved explicitly with respect to the
mass m A of particle A. In Fig. 4a we plot the mass m A = m A(α, b) as a function of
the velocity α for selected values of parameter b (we use units in which a = 1); in
Fig. 4b the relativistic results are compared with the Newtonian results for b = 1.
Thus, if the mass m A(α, b) is chosen so as to satisfy the equilibrium condition,
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r̈ = 0, particle B will move along the circle of radius b with the velocity αb in the
(time-symmetric) field of particle B.

A complete discussion of the equilibrium of a binary system on circular orbits
will be given in [11].

Acknowledgments This work was supported by the grant GAČR 202/09/00772 of the Czech
Republic.
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Probing the Spacetime Structure Through
Dynamics

Felipe T. Falciano

Abstract We shall show that the self-interaction of a field can be geometrized
together with its perturbations in the sense that both dynamics are controlled by
the same metric.

1 Introduction

The main idea in the analogue models program is to simulate gravitational config-
urations in condense matter physics or using electromagnetic fields in non-linear
medium (see [1, 2]). Hence, to study some of the features of general relativity theory
by using controlled laboratory systems. The connection can be made once we notice
that the evolution of the perturbations of a given field can be described in a geomet-
rical language. Even though the majority of works in the literature concern only the
perturbative regime, it has been shown in Ref. [3] that one can also geometrize the
dynamics of the background field simultaneously with its perturbations.

The geometrization of the perturbation dynamics alone has only a kinematical
value. It is a change of description valid only for the perturbations. Thus, the effective
metric that defines the evolution of the perturbations cannot be interpreted as a real
geometry as it is done in general relativity.

For a scalar nonlinear theory with L(ϕ, w), where w ≡ γ μν∂μϕ ∂νϕ is the kinetic
term, the equation of motion is a quasi-linear second order partial differential equation
for ϕ. Its principal part that defines the effective metric

ĝμν ≡ Lwγ μν + 2Lww∂μϕ∂νϕ,
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determines the causal structure of the theory (see [4] for details). Furthermore, by
constructing a Riemannian affine structure such that ĝαβ||ν = 0, the rays describing
the perturbations of the scalar field follow null geodesics in the effective metric
ĝμν . Therefore, the effective metric determines the causal structure and controls the
propagation of the field’s excitations in the geometrical optics limit.

1.1 Geometrization of Field Dynamics

The general approach in analogue models deals simultaneously with two metrics, one
for the perturbations and another for the background. The geometrization scheme is
valid only for the perturbations while the background field works only as a medium
which defines the effective metric. This is probably the main difficulty in trying to
consider the effective metric as an emergent metric with the status of a Riemannian
metric as in general relativity.

A considerable improvement in this program is to include the background field in
the geometric description. Thus, we want to define an emergent metric that simulta-
neously encodes the dynamics of the background field and its perturbations.

It has been shown in Ref. [3] that any scalar non-linear theory described by
the Lagrangian L(w, ϕ) is equivalent to the field ϕ propagating in an emergent
spacetime with metric ĥμν(ϕ, ∂ϕ) and a suitable source j (ϕ, ∂ϕ). The emergent
metric ĥμν and the source field j are both constructed explicitly in terms of the field
and its derivatives. In addition, in the optical limit, the wave vectors associated with
perturbations follow null geodesics in the same ĥμν metric. Therefore, there is an
emergent spacetime “generated” by the non-linearity of the scalar field dynamics
which dictates the propagation of the scalar field.

The equation of motion for the scalar field can be written as

1√−γ
∂μ

(√−γ Lw, ∂νϕ γ μν
)

= 1

2
Lϕ. (1)

We shall define the emergent metric and its inverse as

ĥμν ≡ Lw√
1 + βw

(
γμν − β

1 + βw
ϕ,μϕ,ν

)
, with β ≡ 2Lww/Lw,

ĥμν ≡
√

1 + βw

Lw

(
γ μν + βϕ,μϕ,ν

)
.

To show that the above equation can be written as a Klein-Gordon in the ĥμν met-

ric, we need to calculate its determinant which amounts to
√

−ĥ = L2
w

(1+βw)3/2

√−γ .

Therefore, a straightforward calculation shows that
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√
−ĥĥμν∂νϕ =

√
−γ̂ Lwγ μν∂νϕ. (2)

Comparing the above equation with (1), we see that

�ĥϕ = j (ϕ, ∂ϕ), with j (ϕ, ∂ϕ) ≡ Lϕ

2L2
w

(1 + βw)3/2. (3)

The last but very important point is to show that the effective metric associated
with the perturbations is the same as defined above. This is straightforward once we

realize that ĥμν and ĝμν are conformally related, i.e. ĥμν =
√

1+βw
L2

w
ĝμν . Thus, the

rays also propagate as null geodesics in ĥμν .
The emergent metric ĥμν encodes simultaneously the dynamics of the nonlinear

field and its perturbations. This result goes further in the analogue program inasmuch
it includes the dynamics of the background field. Note, however, that it is imperative
that the non-linearity should be in the kinetic term. Algebraic non-linearities such
as L(w, ϕ) = w + V (ϕ) with V (ϕ) any function of the scalar field, trivialize the
effective metric in the form of the Minkowski metric. Thus, it is the non-linearity in
w that is essential to generate the curved emergent spacetime. Additionally, in the
other sense, in the particular case of a theory where the Lagrangian does not depend
explicitly on ϕ, i.e. L(w), equation (3) reduces to a “free" wave propagating in a
curved spacetime generated by itself

�ĥϕ = 0. (4)

We have used the term “free” field above but one should keep in mind that the
emergent metric depends non-trivially on the scalar field ϕ. Thus, the above “free”
Klein-Gordon equation is actually a complicated non-linear equation for ϕ. Notwith-
standing, as we have discussed in Sect. 1, there is a similar situation in general rela-
tivity when we use the term free scalar field. There, the metric appearing in the Klein-
Gordon equation brings information from Einstein’s equation that also depends on ϕ,
hence making the coupled system a very non-linear and involved system of equations
(see [3] for details).

2 General Remarks

The early proposal of general theory of relativity to encode gravitational interactions
within the metrical structure of the spacetime is strongly supported by the universality
of the interaction and the equality between inertial and gravitational masses. In this
manner, once this identification is done, the evolution of a particle in flat spacetime
subjugated to gravitational forces is equivalent to a Riemannian curved spacetime
free of any force. In this scenario there is a unique metric that works as a background
structure where the dynamics of all fields are defined.
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We have argued that the non-linearities in the kinetic term of the scalar field also
allow us to define a curved spacetime which incorporates its dynamics. The main
difference from general relativity is that the metric thus defined depends explicitly
on the scalar field while in GR the spacetime metric depends only implicitly through
Einstein’s equations. In addition, we do not have any guarantee that this metric
is universal in the sense that all fields would incorporate it in their dynamics. On
the contrary, this result seems to show that the geometrization of each non-linear
theory would define different metrics. Nevertheless, the possibility of defining a
single metric for interacting non-linear fields is not excluded. If we consider two
interacting non-linear fields it might be possible to define a single Riemannian metric
that encodes both non-linearities. Notwithstanding, the inclusion of interaction is a
non-trivial step that deserves careful analysis in the future.
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Analytical Conformal Compactification
of Schwarzschild Spacetime

Jakub Haláček and Tomáš Ledvinka

Abstract We discuss a construction of the coordinates simultaneously covering the
complete Schwarzschild manifold as well as its conformal extension beyondI ±. We
provide an example of such coordinates and show they are analytical both at horizon
and at null infinity. We also show, that having such analytical compactification can
improve convergence in certain numerical applications.

The Penrose–Carter diagrams became a standard way to visualize various aspects
of geometrical objects and physical processes in black hole spacetimes. The most
widely used prescription to compactify the Schwarzschild coordinates comes from
the textbook [1]. It is known it depicts the regions near infinity dissimilarly to those of
compactified Minkowski spacetime and thus more recent textbooks present modified
transformations from Kruskal to compactified coordinates [2, 3]. Unfortunately, even
these transformations do not provide analytical coordinates at null infinites, I ±.

Spacetimes which at distant regions resemble the Minkowski spacetime form a
class of asymptotically flat spacetimes (AFS) [4, 5]. For such spacetimes coordinates
and appropriate conformal factor Ω exist that make the conformally related metric

d̃s2 = Ω2 ds 2 (1)

regular at null infinity, where the conformal factor must vanish at infinity and the
leading terms of its expansion near J are prescribed as follows:

Ω(J ±) = 0, √̃μΩ(J ±) →= 0, (2)
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Ω(i0) = 0, √̃μΩ(i0) = 0, √̃μ√̃νΩ(i0) = 2g̃μν(i
0). (3)

We construct an explicit transformation and a conformal factor satisfying these
conditions for the Schwarzschild spacetime with

ds2 = −
(

1 − 2M

r

)
dt2 + dr2

1 − 2M
r

+ r2dω2. (4)

We generalize the coordinates smoothly covering I ± given in [4] in the form of a
direct transformation between Schwarzschild coordinates t, r and the compactified
null coordinates u, v

f (r(u, v)) = h(v) + h(−u), (5)

t (u, v) = h(v) − h(−u). (6)

Here f (r) = r + 2M ln[r/(2M) − 1] denotes Regge–Wheeler tortoise coordinate.
We put the horizon at u = 0 and v = 0, the past null infinity I − at u = −π/2, and
I + at v = π/2. If the function h is written as a combination of two analytic functions
h(z) = α(z) + 2M ln β(z), then using the usual conformal factor Ω ∓ cos u cos v,
we can show that the conformally related metric (1) obtained by such transformation
is analytic both at the horizon and at I ± if certain behavior of the functions α and
β at z = 0 and z = ±π/2 is satisfied.

A careful analysis shows that the function

h(x) = M

cos x
+ 2M ln

1 − cos x

sin x cos x
(7)

leads to the transformation (5–6) which provides analytic coverage of all regions
of Kruskal’s complete manifold as well as of the regions beyond null infinites of
the conformally related manifold. The compactified line element (1) can then be
simplified into

d̃s2 =
1 − 2M

r(u, v)
4M2 sin u sin v

du dv + Ω2 r(u, v)2dω2, (8)

where we have absorbed the derivatives of h into the conformal factor

Ω(u, v) = cos u cos v

4M2
√

(1 + cos u)2 − 2 cos3 u
√

(1 + cos v)2 − 2 cos3 v
. (9)

Note that no factors similar to exp(−r/2M), which in Kruskal’s coordinates spoil
the behavior at null infinities, appear in (8).
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Fig. 1 The Carter-Penrose diagram of the Schwarzschild spacetime covering its analytical exten-
sion beyond I ±

In Fig. 1 we illustrate the way the coordinates t and r cover the Penrose–Carter
diagram of compactified Schwarzschild spacetime, namely, we can see how these
coordinates behave near spatial infinity i0, the way singularity r = 0 and event
horizon r = 2M meet at future time-like infinity i+, and how a region of negative
r appears behind I ±. The fact that the conformal metric is an analytic function
of compactified coordinates has to be be proven from mathematical properties of
functions which appear in (5)–(9)—the most complicated is the proof of analyticity
at I ±, where we have to use either the implicit function theorem or theorem on
properties of solution of ordinary differential equations.

To emphasize the importance of analytic coordinates, we compare the coordinates
(5–6) with those suggested in [2] in a simple test. We assume a situation when a
problem is formulated as a differential equation which is numerically solved on
the compactified Schwarzschild spacetime. Coefficients in this equation reflect the
curved geometry of the spacetime and typically contain function 1/r = Ω g̃−1/2

θθ .
This function inherits analytic properties of g̃μν and Ω . In this test we consider a
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Fig. 2 When a space-like curve representing slice connecting the middle of the horizon and I + in
Penrose–Carter diagram is linearly parametrized straight line with parameter s ∼ (−1, 1), function
1/r in Novikov-Frolov and analytical coordinates can be plotted as a function of the parameter s

slice (of hyperboloidal type) which spans from the horizon to the null infinity with
parameter s ∼ [0, 1], determining coordinates u = −sπ/4, v = (1 + s)π/4.

In Fig. 2 (left) we plot function 1/r(s) along the slice. Indeed, we cannot distin-
guish which function behaves better. We also decompose both functions into Cheby-
shev series and in Fig. 2 (right) plot absolute values of the coefficients showing
that for analytic compactification the coefficients decay much faster (exponentially).
Since typically numerical methods of the solution of differential equations work bet-
ter when coefficients in the differential equation are analytic functions, it seems that
even for problems which occur entirely in the physical domain of the Schwarzschild
manifold the way the coordinates pierce through I ± matters.

We found a new way of constructing analytic coordinates for AFS and showed
a related diagram for the Schwarzschild spacetime. The same method can be used
for other vacuum AFSs, e.g. Reissner–Nordström or extreme Reissner–Nordström
solutions. Advantages of using this coordinate system for numerical methods in
general relativity were demonstrated.
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SVV-267301 (J.H.), and GAČR 202/09/0772 (T.L.).
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Solutions in the 2 + 1 Null Surface Formulation

Tina A. Harriott and J. G. Williams

Abstract The null surface formulation of general relativity (NSF) differs from the
standard approach by featuring a function Z , describing families of null surfaces, as
the prominent variable, rather than the metric tensor. It is possible to reproduce the
metric, to within a conformal factor, by using Z (entering through its third derivative,
which is denoted by Λ) and an auxiliary function Ω . The functions Λ and Ω depend
upon the spacetime coordinates, which are usually introduced in a manner that is
convenient for the null surfaces, and also upon an additional angular variable. A
brief summary of the (2 + 1)-dimensional null surface formulation is presented,
together with the NSF field equations for Λ and Ω . A few special solutions are
found and the properties of one of them are explored in detail.

1 Introduction

Frittelli et al. [1–3] have introduced an alternative approach to general relativity
called the null surface formulation (NSF). In this approach, it is not the metric gab

that plays a primary role, but a function Z , which is used to specify families of null
surfaces. If needed, a metric can be constructed up to a conformal factor from a
knowledge of Z and an auxiliary function Ω . A (2 + 1)-dimensional version of the
NSF has been developed by Forniet al. [4, 5], Tanimoto [6] and Silva-Ortigoza [7].
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Central to the NSF in 2+1 dimensions is a third-order ordinary differential equation,

u√√√ = Λ(u, u√, u√√, ϕ),

where the prime denotes differentiation with respect to the angular variable ϕ → S1.
Solutions are written u = Z(xa;ϕ) with xa (a = 0, 1, 2) representing three constants
of integration which are to be identified with coordinates in (2 + 1)-dimensional
spacetime.

The NSF uses intrinsic coordinates [2],

u ∓ θ0 := Z(xa;ϕ),

ω ∓ θ1 := u√ ∓ ∂u ∓ ∂ Z(xa;ϕ),

ρ ∓ θ2 := u√√ ∓ ∂2u ∓ ∂2 Z(xa;ϕ),

(where ∂ := ∂/∂ϕ denotes the derivative with respect to ϕ when xa is held fixed) to
derive field equations that are consistent with general relativity,

2[∂(∂ρΛ) − ∂ωΛ − 2
9 (∂ρΛ)2]∂ρΛ − ∂2(∂ρΛ) + 3 ∂(∂ωΛ) − 6 ∂uΛ = 0,

3 ∂Ω = Ω ∂ρΛ, ∂2
ρΩ = κTρρΩ.

2 Nontrivial Solution

In the present paper, instead of using our previous light cone cut approach [8], we
find a nontrivial solution directly by making the simplifying assumption that Λ and
Ω depend only upon ρ: Λ = Λ(ρ) and Ω = Ω(ρ). This implies Ω = Λ1/3. For
further simplicity, assume that Λ takes the particular form Λ = (a + ρ)k where a
and k are constants. This leads to the quadratic, (2/9) k2 − k + 1 = 0, which has
solutions k = 3 and k = 3/2. Ignoring the choice k = 3 (which leads to empty
space), we choose k = 3/2. This gives the solution

Λ = (a + ρ)3/2, Ω = (a + ρ)1/2,

with a nonzero source term,

Tρρ = − 1

4κ (a + ρ)2 ,

and corresponds to the metric

ds2 = (a + ρ)−1
[

1
4 (a + ρ) du2 +(a + ρ)1/2 dudω − 2 dudρ + dω2

]
.
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The three independent curvature scalars of 2 + 1 dimensions are found to be

R = 1

32
, Rab Rab = 3

1024
,

det ∼Rab∼
det ∼gab∼ = −

(
1

32

)3

,

and the components of the Einstein tensor are

Guu = − 3

256
, Guω = − 3

128
(a + ρ)−1/2, Guρ = 3

64
(a + ρ)−1,

Gωω = − 3

64
(a + ρ)−1, Gωρ = 1

8
(a + ρ)−3/2, Gρρ = −1

4
(a + ρ)−2.

The null surface formulation of general relativity does not distinguish between con-
formally related spacetimes, and so a conformally flat spacetime would be an unin-
teresting example. The Cotton-York tensor Cab is nonzero for the above solution,
indicating that the spacetime is not conformally flat:

Cuu = − 1

256
, Cuω = − 1

128
(a + ρ)−1/2, Cuρ = 1

64
(a + ρ)−1,

Cωω = − 1

64
(a + ρ)−1, Cωρ = 3

64
(a + ρ)−3/2, Cρρ = − 3

32
(a + ρ)−2.

In 2+1 dimensions, the Einstein equations, Gab = κ Tab, are sometimes replaced
by the Einstein-Cotton field equations of topologically massive gravity (thereby
allowing gravitational excitations):

Gab + λ gab + 1

m
Cab = κ Tab.

The constant m can take either sign. (In fact, in 2 + 1 dimensions, this is also true
for κ). It is straightforward to show that the metric under consideration satisfies the
field equations of topologically massive gravity for a perfect fluid source, Tab =
(μ + p)UaUb + p gab, with velocity Ua given by

Uu = 0, Uω = (a + ρ)−1/2, Uρ = −2(a + ρ)−1,

and with constant μ and p. Specifically:

m = −3/8, μ = −p, p = 1

κ

(
λ − 1

192

)
.

The most interesting case comes from choosing λ = 1/192. This gives a topologi-
cally massive gravity solution analogous to the regular de Sitter solution: a vacuum
solution with nonzero cosmological constant and nonzero expansion θ .



286 T. A. Harriott and J. G. Williams

Acknowledgments This work was supported by the Mount Saint Vincent University Dean of Arts
and Science Travel Fund. Discussions with Dr. Ted Newman and Dr. Simonetta Frittelli during the
authors’ visits to Pittsburgh are gratefully acknowledged.

References

1. Frittelli, S., Kozameh, C., Newman, E.: Lorentzian metrics from characteristic surfaces. J. Math.
Phys. 36, 4975 (1995). doi:10.1063/1.531209

2. Frittelli, S., Kozameh, C., Newman, E.: GR via characteristic surfaces. J. Math. Phys. 36, 4984
(1995). doi:10.1063/1.531210

3. Frittelli, S., Kozameh, C., Newman, E.: Linearized Einstein theory via null surfaces. J. Math.
Phys. 36, 5005 (1995). doi:10.1063/1.531211

4. Forni, D., Iriondo, M., Kozameh, C.: Null surfaces formulation in three dimensions. J. Math.
Phys. 41, 5517 (2000). doi:10.1063/1.533422

5. Forni, D., Iriondo, M., Kozameh, C., Parisi, M.: Understanding singularities in Cartan’s and
null surface formulation geometric structures. J. Math. Phys. 43, 1584 (2002). doi:10.1063/1.
1408282

6. Tanimoto, M. : On the null surface formalism—formulation in three dimensions and gauge
freedom, ArXiv:e-prints arXiv:gr-qc/9703003 (1997)

7. Silva-Ortigoza, G.: Null surfaces and their singularities in three-dimensional Minkowski space-
time. Gen. Relativ. Gravit. 32, 2243 (2000). doi:10.1023/A:1001943407824

8. Harriott, T., Williams, J.: Light cone cut solution in the 2+1 null surface formulation. In: Damour,
T., Jantzen, R., Ruffini, R. (eds.) Proceedings of the Twelfth Marcel Grossmann Meeting on
General Relativity, vol. 12, pp. 1896–1898. World Scientific, Singapore; Hackensack, NJ (2012).
doi:10.1142/9789814374552_0355

http://dx.doi.org/10.1063/1.531209
http://dx.doi.org/10.1063/1.531210
http://dx.doi.org/10.1063/1.531211
http://dx.doi.org/10.1063/1.533422
http://dx.doi.org/10.1063/1.1408282
http://dx.doi.org/10.1063/1.1408282
http://arxiv.org/abs/gr-qc/9703003
http://dx.doi.org/10.1023/A:1001943407824
http://dx.doi.org/10.1142/9789814374552_0355


Electric and Magnetic Weyl Tensors
in Higher Dimensions

S. Hervik, M. Ortaggio and L. Wylleman

Abstract Recent results on purely electric (PE) or magnetic (PM) spacetimes in n
dimensions are summarized. These include: Weyl types; diagonalizability; conditions
under which direct (or warped) products are PE/PM.

1 Definition and General Properties

The standard decomposition of the Maxwell tensor Fab into its electric and magnetic
parts E and B with respect to (wrt) an observer (i.e., a unit time-like vector u) can
be extended to any tensor in an n-dimensional spacetime [1–3]. Here we summarize
the results of [3] about the Weyl tensor, and the connection with the null alignment
classification [4, 5].

Consider the u-orthogonal projector hab = gab +uaub. The “electric” and “mag-
netic” parts of Cabcd can be defined, respectively, as [3]

(C+)ab
cd = haehbf hc

ghd
hCef gh + 4u[au[cCb]e

d] f ueu f , (1)

(C−)ab
cd = 2haehbf Cef k[cud]uk + 2uku[aCb]ke f hcehd f . (2)
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These extend the well-known 4D definitions [6, 7]. In any orthonormal frame adapted
to u the electric [magnetic] part accounts for the Weyl components with an even [odd]
number of indices u. At a spacetime point (or region) the Weyl tensor is called purely
electric [magnetic] (from now on, PE [PM]) wrt u if C− = 0 [C+ = 0]. The
corresponding spacetime is also called PE [PM]. Several conditions on PE/PM Weyl
tensors follow.

Proposition 1 (Bel-Debever-like criteria [3]). A Weyl tensor Cabcd is:
(i) PE wrt u iff uagabCbc[deu f ] = 0; (ii) PM wrt u iff u[aCbc][deu f ] = 0.

Proposition 2 (Eigenvalues [3]). A PE [PM] Weyl operator1 is diagonalizable, and
possesses only real [purely imaginary] eigenvalues. Moreover, a PM Weyl operator
has at least (n−1)(n−4)

2 zero eigenvalues.

Proposition 3 (Algebraic type [3]). A Weyl tensor which is PE/PM wrt a certain u
can only be of type G, Ii , D or O. In the type Ii and D cases, the second null direction
of the timelike plane spanned by u and any WAND is also a WAND (with the same
multiplicity). Furthermore, a type D Weyl tensor is PE iff it is type D(d), and PM iff
it is type D(abc).

Proposition 4 (Uniqueness of u [3]). A PE [PM] Weyl tensor is PE [PM] wrt: (i) a
unique u (up to sign) in the type Ii and G cases; (ii) any u belonging to the space
spanned by all double WANDs (and only wrt such us) in the type D case (noting
also that if there are more than two double WANDs the Weyl tensor is necessarily
PE (type D(d)) [10]).

2 PE Spacetimes

Proposition 5 ([3]). All spacetimes admitting a shearfree, twistfree, unit timelike
vector field u are PE wrt u. In coordinates such that u = V −1∂t , the line-element
reads

ds2 = −V (t, x)2dt2 + P(t, x)2ξαβ(x)dxαdxβ. (3)

The above metrics include, in particular, direct, warped and doubly warped prod-
ucts with a one-dimensional timelike factor, and thus all static spacetimes (see
also [11]). For a warped spacetime (M,g) with M = M (n1) × M (n2), one has
g = e2( f1+ f2)

(
g(n1) ⊕ g(n2)

)
, where g(ni ) is a metric on the factor space M (ni )

(i = 1, 2) and fi are functions on M (ni ) (M (ni ) has dimension ni , n = n1 + n2, and
M (n1) is Lorentzian).

Proposition 6 (Warps with n1 = 2 [3, 11]). A (doubly) warped spacetime with
n1 = 2 is either type O, or type D(d) and PE wrt any u living in M (n1); the uplifts
of the null directions of the tangent space to (M (n1),g(n1)) are double WANDs of

1 In the sense of the Weyl operator approach of [8] (see also [9]).
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(M,g). If (M (n2),g(n2)) is Einstein the type specializes to D(bd), and if it is of constant
curvature to D(bcd).

In particular, all spherically, hyperbolically or plane symmetric spacetimes belong
to the latter special case.

Proposition 7 (Warps with n1 = 3 [3, 11]). A (doubly) warped spacetime with
(M (n1),g(n1)) Einstein and n1 = 3 is of type D(d) or O. The uplift of any null
direction of the tangent space to (M (n1),g(n1)) is a double WAND of (M,g), which
is PE wrt any u living in M (n1).

Proposition 8 (Warps with n1 > 3 [3, 11]). In a (doubly) warped spacetime

(i) if (M (n1),g(n1)) is an Einstein spacetime of type D, (M,g) can be only of type D
(or O) and the uplift of a double WAND of (M (n1),g(n1)) is a double WAND of
(M,g)

(ii) if (M (n1),g(n1)) is of constant curvature, (M,g) is of type D(d) (or O) and the
uplifts of any null direction of the tangent space to (M (n1),g(n1)) is a double
WAND of (M,g); (M,g) is PE wrt any u living in M (n1).

Proposition 9 (PE direct products [3]). A direct product spacetime M (n) = M (n1)×
M (n2) is PE wrt a u that lives in M (n1) iff u is an eigenvector of R(n1)

ab , and M (n1) is PE
wrt u. (u is then also an eigenvector of the Ricci tensor Rab of M (n), i.e., Rui = 0.)

A conformal transformation (e.g., to a (doubly) warped space) will not, of course,
affect the above conclusions about the Weyl tensor. There exist also direct products
which are PE wrt a vector u not living in M (n1) [3].

Also the presence of certain (Weyl) isotropies (e.g., SO(n −2) for n > 4) implies
that the spacetime is PE, see [3, 8] for details and examples.

3 PM Spacetimes

Proposition 10 (PM direct products [3]). A direct product spacetime M (n) =
M (n1) × M (n2) is PM wrt a u that lives in M (n1) iff all the following conditions
hold (where R(ni ) is the Ricci scalar of M (ni )):

(i) M (n1) is PM wrt u and has a Ricci tensor of the form R(n1)
ab = R(n1)

n1
g(n1)

ab +u(aqb)

(with uaqa = 0).
(ii) M (n2) is of constant curvature and n2(n2 − 1)R(n1) + n1(n1 − 1)R(n2) = 0.

Further, M (n) is PM Einstein iff M (n1) is PM Ricci-flat and M (n2) is flat.

See [3] for explicit (non-Einstein) examples. However, in general PM spacetimes
are most elusive. For example,
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Proposition 11 ([3]). PM Einstein spacetimes of type D do not exist.

In [3] also several results for PE/PM Ricci and Riemann tensors have been worked
out, along with corresponding examples. In general, we observe that PE/PM tensors
provide examples of minimal tensors [12]. Thanks to the alignment theorem [13],
the latter are of special interest since they are precisely the tensors characterized by
their invariants [13] (cf. also [3]). This in turn sheds new light on the classification of
the Weyl tensor [5], providing a further invariant characterization that distinguishes
the (minimal) types G/I/D from the (non-minimal) types II/III/N.

Acknowledgments M.O. acknowledges support from research plan RVO: 67985840 and research
grant no P203/10/0749.
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Phase Structure of Five Dimensional Black
Di-ring

Hideo Iguchi

Abstract We investigate the phase structure of black di-ring in five-dimensional
asymptotically flat vacuum gravity. We numerically plot the points of black di-rings
in the phase diagram to study the region covered by black di-ring. The distribution
of black di-ring shows that the area of black di-ring is always less than the maximum
value of black ring. The plot indicates that there are black di-ring configurations
whose area parameters are arbitrarily close to zero.

1 Introduction

In five dimensions, in addition to the solutions with a single horizon, there exist
solutions with disconnected event horizons. Black Saturn which is a spherical black
hole surrounded by a black ring was constructed by the inverse scattering method
[1]. It was shown that the black rings can be superposed concentrically by using the
Bäcklund transformation [2]. This black di-ring solution also can be constructed by
the inverse scattering method [3].

The existence of multi-black hole configurations implies continuous non-unique-
ness of five-dimensional black holes. The phase diagram of the black Saturn was
investigated in [1, 4]. The plot of random sets of points in the phase diagram showed
that the black Saturn covers the wide region of the phase diagram. The phases of
black Saturn were investigated by the method based on the thin and long ring approx-
imation: the black Saturn can be modeled as a simple superposition of a Myers-Perry
black hole and a very thin black ring [1]. It was argued that the configurations that
approach maximal entropy for fixed mass and angular momentum are black Saturns
with a nearly static black hole and a very thin black ring.
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The black di-ring also indicates “an infinite non-uniqueness” [2]. It was con-
firmed that there are infinite number of black di-rings for the same mass and angular
momentum. The phase structure of a black di-ring in thermodynamic equilibrium
was investigated in [5, 6]. Distributions of black di-rings in the phase diagram have
not been fully investigated. When we approximate the black di-ring as a simple super-
position of two concentric black rings, we can roughly estimate the region covered
by the black di-ring in the phase diagram. The maximum of the area would be smaller
than the one of black Saturn for the same mass and angular momentum. Because of
the strong non-linearity, however, we need rigorous analysis for the distributions of
black di-ring in the phase diagram for a decisive conclusion.

2 Rod Structure of Black Di-ring

The rod structure analysis is a very useful tool to understand a higher dimensional
black hole solution. The rod structure of black di-ring is composed by two semi-
infinite rods and four finite rods. Two of four finite rods are timelike and the other two
finite and two semi-infinite rods are spacelike. The finite timelike rods have direction
vectors (1,Ωi , 0) if the solution has angular momentum along S1 direction. The rod
structure of black di-ring rotating along S1 direction is described in Fig. 1 (left). This
solution was constructed from the seed solution, whose rod structure is described in
Fig. 1 (right), by the inverse scattering method [3]. The seed solution has six finite
rods. We define six parameters by using the lengths of these finite rods as in Fig. 1.
Physical variables of black di-ring are expressed by using these six parameters.

3 Phase Structure of Black Di-ring

The physical variables of black di-ring are calculated from the exact expressions of
the solution. Following [1], we normalize the ADM angular momentum and the area
of horizons as

j2 = 27π

32G

J 2

M3 , ah = 3

16

√
3

π

Ah

(G M)3/2 , (1)

to compare the physical properties of black objects with the same ADM mass.
We fix the scaling freedom by d1 + d2 + d3 + d4 = 1. The balance conditions

impose two constraints on the parameters. As a result, the balanced black di-ring has
three dimensionless parameters. In the analysis, we choose d2, d3 and d4 as the three
parameters for the balanced black di-ring. The parameter d1 is determined by the
scaling. The parameters p and q are determined by solving the balance conditions.

To investigate the region of the phase diagram covered by black di-ring, we plot
the point ( j2, ah) corresponding to the sets of parameters (d2, d3, d4). The result is
shown in Fig. 2 (left). Figure 2 (right) is a similar plot for black Saturns.
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Fig. 1 Left Rod structure of black di-ring. Right Rod structure of seed solution of black di-ring
with S1 rotation

ah a

j j 2

h

Fig. 2 Left Distribution of black di-rings in the phase diagram. The black bold curves are the phases
of the Myers-Perry black hole and the black ring. Right Distribution of black Saturns in the phase
diagram. The black bold curves are the phases of the Myers-Perry black hole and the black ring

The total area of black di-ring can not become larger than the maximum of black
ring ah = 1. There are black di-ring configurations with total area ah greater than
the black ring with the same j2. It can be confirmed that the black di-ring solution
with j = 0 is possible while maintaining balance similar to black Saturn. In the plot
of Fig. 2 (left) the low entropy black di-ring ah � 0.2 is scarcely distributed except
around j2 = 1. When d1 = d3 = 0 the area of black di-ring becomes exactly zero.
If we simply set d1 = d3 = 0, it can be easily shown that the balance condition for
spacelike rod d4 is violated. Therefore we have to choose parameters such that p and
q become very small in addition to d1 and d3 for the small area black di-ring.

The low entropy black di-ring would be constructed by two different configura-
tions. One is a double thin ring and the other is a combination of a nearly extremal
fat ring with a large thin ring. The double thin ring configuration will be constructed
by choosing the rod parameters as d1 √ d2 and d3 √ d4. The corresponding plot of
the phase diagram becomes like Fig. 3 (left). The second configuration will be con-
structed by d1, d3, d4 √ d2 and d3 → d4. The corresponding plot is given in Fig. 3
(right). Both plots show that the black di-rings can exist in the region 0 < a < 0.2
of the phase diagram.
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Fig. 3 Left Plots for parameters which satisfy d1 √ d2 and d3 √ d4. Right Plots for parameters
which satisfy d1, d3, d4 √ d2 and d3 → d4

4 Summary

We analyzed the phase structure of the black di-ring. The distribution of black di-rings
in the phase diagram shows infinite non-uniqueness of the black di-ring. The config-
urations of black di-ring span the open strip 0 < ah < 1 and j2 > 0.
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The Null Geodesics in the Black
Saturn Spacetime

Alicja Konieczny

Abstract We calculate numerically null geodesics in the Black Saturn spacetime.
Our analysis is restricted to the rotation axis in the domain of outer communication.
The geodesics are calculated for two different Black Saturn configurations with the
same ADM mass and angular momentum.

1 Introduction

In 2007 Henriette Elvang and Pau Figueras presented the single spinning, uncharged
Black Saturn metric, which can be defined as “a Black Ring balanced by rotation
around a concentric spherical black hole in an asymptotically flat spacetime” [1].
This solution was constructed by inverse scattering method. It is an exact, stationary,
asymptotically flat 4+1 dimensional vacuum solution of Einstein’s equations, where
angular momentum keeps the configuration in equilibrium. This solution is really
interesting, because of the 2-fold continuous non-uniqueness for fixed ADM mass and
ADM angular momentum. The configuration with zero angular momentum measured
at infinity makes the Schwarzschild-Tangherlini solution non-unique. The solution
permits two rotational planes and also the possibility of charged Black Saturn, what
is not investigated here. Such a complicated solution does not allow us to check
algebraically if Einstein’s vacuum equations are satisfied, but in [1] authors describe
numerical tests, which show that all components of the Ricci tensor vanish.
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1.1 The Metric

The metric is rather complicated, and it might be written as follows [1]

ds2 = − Hy

Hx

[
dt +

(
ωψ

Hy
+ q

)
dψ

]2

+ Hx

[
k2 P

(
dρ2 + dz2

)
+ G y

Hy
dψ2 + Gx

Hx
dφ2

]
, (1)

where H, G, ω, P are functions of ρ and z coordinates, q is a constant included
in order to ensure asymptotic flatness and k is an integration constant. The explicit
formula of these functions can be found in [1].

2 Geodesics

If the space-time possesses n Killing vectors ξμ: ∇μξν + ∇νξμ = 0, there are
n conserved quantities connected with these vectors. The conjugate momenta are
given by pμ = gμν

dxν

dλ
where μ, ν = 1, 2, . . . , d, for d dimensional space-time. If

the Killing field ∂μ exists, pμ is conserved and can be used to simplify the equations.
Another equation is obtained from the null condition gμν

dxμ

dλ
dxν

dλ
= 0. All that allows

us to determine the path of photons for the given metric. From the form of the metric it
is clear that there are three Killing vectors ∂t , ∂ψ, ∂φ which generate three conserved
quantities along the geodesics:

− e = gtt
dt

dλ
+ gtψ

dψ

dλ
= − Hy

Hx

dt

dλ
− Hyq + ωψ

Hx

dψ

dλ
, (2)

l1 = gψψ

dψ

dλ
+ gtψ

dt

dλ

= − Hyq + ωψ

Hx

dt

dλ
+

⎪
G y Hx

Hy
−

Hy

(
q + ωψ

Hy

)

Hx


 dψ

dλ
, (3)

l2 = gφφ

dφ

dλ
= Gx

dφ

dλ
. (4)

We set l1 = l2 = 0, which means that the angular momenta are equal to zero, e
might be interpreted as just the scale of affine parameter and is chosen to be equal
to one. Now, taking Taylor expansion of the metric functions we calculate them in
the limit of ρ → 0 and take into account only the leading terms. These calculations
are based on the code used in [2]. The null condition takes the form (assuming that
dρ/dλ = 0)
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Fig. 1 Left panel—function t (λ) for different Black Saturn configurations and the same ADM
mass M = 1 and ADM angular momentum J = 0.5. Right panel—plot of t2(λ) − t1(λ) difference
between t (λ) functions

e2(−G y H2
x + (Hyq + ωψ)2) + G y H2

x Hyk2 P
( dz

dλ

⎜2

G y Hx Hy
= 0. (5)

3 The Results

We have considered the null geodesic equations on the axis of rotation, in the region of
outer communication, reduced them to the simplest form and then solved numerically
in a particular case. In one of the parameterizations, the Black Saturn is defined by
free parameters a5, a4, a3, which are related to the position and shape of the horizons
of the central black hole and the surrounding black ring [1]. In this paper, two different
sets of these parameters are investigated. It is impossible to calculate the geodesics
substituting the ρ = 0 into the metric functions, because this limit is non-trivial.

The metric functions are analytic near ρ = 0 in ρ for z > a2. Thus, we use
Taylor expansion in ρ, about ρ = 0. In this work we present the numerical solutions
for two Black Saturn configurations, such that the ADM mass M and ADM angular
momentum J are the same. If we solve the equations (3.30) and (3.31) from [1]
for fixed values of ADM mass M = 1 and angular momentum J = 0.5, it is now
possible to calculate the a3 and a5 parameters for two parameter values a4 = 1

2 , 1
4 .

The following sets of parameters and Black Saturnconfigurations were investigated:

1. a5 = 0.180344, a4 = 1
4 , a3 = 0.81897;

2. a5 = 0.45903, a4 = 1
2 , a3 = 0.85904.

Using Wolfram Mathematica, the equations for t (λ) and z(λ) were numerically
solved for this set of parameters, and the results are presented below. The functions
t (λ) seem to be the same, see Fig. 1 (left panel), but the difference is visible in a
plot of t1(λ) − t2(λ) see Fig. 1 (right panel). Almost the same situation occurs for
functions z(λ), see Fig. 2 (left panel) and (right panel). The Fig. 3 (left panel) shows
the t (z) dependence, where the t coordinate became the proper time for a distant,
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Fig. 2 Left panel—Function z(λ) for different Black Saturn configurations and the same ADM
mass M = 1 and ADM angular momentum J = 0.5. Right panel—plot of z2(λ)− z1(λ) difference
between z(λ) functions
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Fig. 3 Left panel—The parametric plot of t (z) geodesics for fixed Black Saturn ADM mass M = 1
and ADM angular momentum J = 0.5. Right panel—plot of difference t2(z2) − t1(z1) of t (z)

stationary observer. For increasing t , z tends to a2 = 1, and it is now visible, that
there is a horizon of the central black hole.
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Conformal Symmetries on the Horizon
and Black Hole Entropy in Generic
Dimensions

Jianwei Mei

Abstract In this short note I briefly summarize some recent results regarding
conformal symmetries on the horizon of general stationary and axisymmetric black
holes in generic dimensions.

1 Introduction

In an essay in 2007, Steve Carlip used the term “universality” to reflect the fact
that there exist a plethora of different ideas or calculations which (more or less)
all lead to the same correct result for black hole entropy [1]. Since the discovery
of the AdS/CFT correspondence it is expected that black hole entropy is related to
some conformal symmetries (either at the spatial infinity or on the horizon) of the
black holes [2–4]. But the term “universality” suggests a slightly more intriguing
possibility, namely that one might be able to learn general lessons about the black
hole entropy by studying the conformal symmetries alone, but without having to
know the full detail of the underlying theory of quantum gravity. This point, if true,
can be helpful in understanding the entropy of black holes in those dimensions where
a consistent theory of quantum gravity (e.g. string theory) is not currently available.
So it is of great importance to understand possible conformal symmetries related to
black holes in detail. Ideally, one would also like to know the full detail of the dual
conformal field theory (CFT) in the end.

In this short note, I briefly summarize some new results obtained during the
past few years, focusing on the more detailed understanding of conformal symme-
tries on the horizon of general stationary and axisymmetric black holes in arbitrary
dimensions.
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2 Extremal Black Holes and the Kerr/CFT Correspondence

The new development started with the Kerr/CFT conjecture [5]. Back in 1997,
Strominger already noticed that for any black hole having an Ad S(3) factor on
its horizon, the entropy can always be calculated in the same fashion as that for the
BTZ black hole [3]. In [5], the authors noticed that the near horizon limit of the
extremal Kerr (NHEK) metric at a fixed polar angle is a quotient of some warped
Ad S3. Since the BTZ black holes are quotients of Ad S(3), this close analogy in-
dicates that what has been done for the BTZ black hole may also be done for the
NHEK. Indeed, by using the techniques of Brown and Henneaux [2], the authors of
[5] found that quantum gravity on the NHEK background could be dual to a chiral
CFT with a central charge cL = 12J and a temperature TL = 1

2π
, where J is the

angular momentum of the Kerr black hole. Cardy’s formula then reproduces exactly
the Bekenstein-Hawking entropy.

Among many works that followed, one particularly important observation was
made in [6]. It was noticed that the near horizon limit of all extremal black holes
shares the same form of the metric, and this allows one to explain the entropy of
all extremal black holes through the Kerr/CFT conjecture once and for all [7]. In a
slightly different notation than [6], the common near-horizon metric is given by [7]

ds2 = 2 f 0
r

Δ√√
0

[
− (1 + r2)dt2 + dr2

1 + r2

]
+ g0

i j dθ i dθ j

+ g0
ab(dφa + kardt)(dφb + kbrdt), (1)

where t is the time, r is the radius, θ i are the longitudinal angles and φa are the
azimuthal angles. For the functions, f 0

r , g0
i j and g0

ab depend on θ i , while Δ√√
0 and ka

are constants. The constants ka are related to an interesting observation [8]: for each
non-vanishing angular momentum there is an independent copy of Virasoro algebra
and each copy is equally good in reproducing the Bekenstein-Hawking entropy! In
more detail, related to each direction φa , the corresponding central charge and the
temperature of the CFT are [6, 7]

ca = 3ka

2π
Area , T a = 1

2πka
, (2)

where Area is the area of the black hole horizon. Cardy formula then yields

S = 1

3
π2ca T a = Area

4
. (3)

Although one often prefers to understand the Kerr/CFT correspondence in relation
to string theory, it also fits our theme discussed in the introduction. In particular, the
near-horizon metric (1) is a blow-up of the thin region extremely close to the horizon
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of the black hole. So the conformal symmetries found in the background of the
near-horizon metric must also reside on/near the horizon.

3 Conformal Symmetries for Non-extremal Black Holes

The Kerr/CFT correspondence, as it was originally conjectured in [5], only works
for extremal black holes. This is because it is impossible to take the near horizon
limit for the metrics of non-extremal black holes.

However, as Carlip has pointed out recently, there is no need to take the near-
horizon limit in order to expose the conformal symmetries [9]. Just like in [4], one
can impose boundary conditions on the horizon and also recover the conformal
symmetries. In [10], this was carried out for general stationary and axisymmetric
black holes in generic dimensions. Similarly to the extremal case, this was made
possible by identifying the common form of all the relevant metrics,

ds2 = f
[

− Δ

v2 dt2 + dr2

Δ

]
+ gi j dθ i dθ j + gab(dφa − wadt)(dφb − wbdt), (4)

where the coordinates are the same as in (1), but the functions f , v, gi j , gab and wa

now depend on both r and θ i , while Δ only depends on r . More details of the metric
can be found in [10]. Note that (1) is easily recovered by taking the near horizon
limit of the above metric for extremal black holes. One of our main result is that,
just like for extremal black holes [7, 8], in the non-extremal case there is also an
independent copy of Virasoro algebra for each non-vanishing angular momentum,
and each Virasoro algebra is equally good in reproducing the Bekenstein-Hawking
entropy. But for non-extremal black holes, the result is off by a factor of 2 [10]. We
wish to resolve this problem in the near future.

4 Conformal Symmetries Without Boundary Conditions

There are possible issues related to the boundary conditions used in the Kerr/CFT
conjecture [11, 12]. But this does not necessarily harm the conformal symmetries,
because there are other ways to expose them. For example, one can study the dy-
namics of a probe scalar field near the black hole horizon, and as a result people have
suggested “hidden conformal symmetry” related to the Kerr black hole [13]. Further
evidence of the hidden conformal symmetry was also obtained through the “sub-
tracted geometry” [14]. In all these works the presence of the conformal symmetry is
inferred from the existence of approximate SL(2, R) symmetries in the radial wave
equation of a probing scalar field. Inspired by these results, we then notice that for
a stationary and axisymmetric black hole the on-shell Einstein-Hilbert action has a
rigid SL(m, R) symmetry, where m is the number of ignorable coordinates (t and φa)
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in the system. Corresponding to each rotation (φa) one has an SL(2, R) subgroup
from the SL(m, R). We then find that each of this SL(2, R) is enhanced to a Virasoro
algebra on the black hole horizon [15]. (See also [16] for an earlier indication.) So
again one has the nice result that there is an independent copy of Virasoro algebra
for each non-vanishing angular momentum.

5 Outlook

As said in [14] there has been little concrete progress towards a CFT interpretation
of general non-extremal black holes, despite some optimistic conventional wisdom.

From the recent results of the Kerr/CFT correspondence, many fingers seem to
be pointing at the existence of conformal symmetries on the black hole horizon. But
much still needs to be done to expose the conformal symmetries and to explicitly
show how they can account for the black hole entropy. For us, we are still off by a
factor of 2 in the Carlip-like treatment, and we still have not been able to abstract any
physical information from the conformal symmetries identified from the on-shell
Einstein-Hilbert action on the horizon.

But if we are eventually successful with this procedure, it is likely to expose some
common features in the quantum nature of black holes and such features are likely
to be shared by all spacetime dimensions.
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Finsler Spacetimes and Gravity

Christian Pfeifer and Mattias Wohlfarth

Abstract We consider the geometry of spacetime based on a non-metric, Finslerian,
length measure, which, in terms of physics, represents a generalized clock. Our
definition of Finsler spacetimes ensure a well defined notion of causality, a precise
description of observers and a geometric background for field theories. Moreover we
present our Finsler geometric extension of the Einstein equations, which determine
the geometry of Finsler spacetimes dynamically.

1 Introduction

For hundred years Lorentzian manifolds serve as geometric background for physics.
Equipped with the standard model of particle physics this led to the explanation of
a huge amount of observations. However, on this basis we have to conclude that
96 % of the universe is unknown; called dark matter and dark energy [1]. Today
most explanation attempts for this fact come from modifications of the standard
model of particle physics; but possibly a well controlled extension of the geometric
background for physics is able to shed light on the dark universe.

Here we present Finsler spacetimes which are capable to serve as generalized
geometric background for physics providing:

• a precise well-defined notion of causality,
• a notion of observers and their measurements,
• a geometric background for field theories,
• and gravitational dynamics consistent with general relativity.

Further details beyond this invitation can be found in our articles [2, 3].
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2 Finsler Geometry and its Causal Structure

One of the fundamental measurements in physics is the measurement of time. Its
theoretical description is given by Einstein’s clock postulate: The time that passes
for an observer between two events is given by the length of the observers worldline
connecting the events. In case the geometry of spacetime is fundamentally determined
by a metric this length is given by

S[x] =
∫

dτ

√
gab(x)ẋa ẋb . (1)

The key idea for Finsler spacetimes is a more general description of the measurement
of time which still realizes the weak equivalence principle:

S[x] =
∫

dτ F(x, ẋ) . (2)

It is based on a one-homogeneous function F on the tangent bundle which determines
the geometry of spacetime. This so called Finsler geometry is a well known math-
ematical framework which extends Riemannian metric geometry [4]. However this
standard Finsler geometry breaks down as soon as F has a non-trivial null-structure
Nx = {y √ Tx M |F(x, y) = 0}. For generalizations of the Lorentzian metric length
measures we introduce our definition of Finsler spacetimes which ensure the exis-
tence of a precise notion of causality and the existence of a well-defined geometry.

The description of Finsler spacetimes requires the tangent bundle TM of the space-
time manifold M. We consider the tangent bundle in manifold induced coordinates
(x, y) = Z √ TM, Z = ya∂a |x and its tangent spaces T(x,y)TM in the coordinate
basis {∂a = ∂

∂xa , ∂̄a = ∂
∂ya }.

A Finsler spacetime (M, L , F) is a smooth manifold M equipped with a contin-
uous function L : TM →∓ R such that

• L is smooth on the tangent bundle without the zero section TM\{0},
• L is reversible |L(x,−y)| = |L(x, y)|,
• L is positively homogeneous of degree r ∼ 2: L(x, λy) = λr L(x, y),
• gL

ab = 1
2 ∂̄a ∂̄b L is non-degenerate on TM\A, A ≤ TM measure zero,

• ∞x √ M there exists a non-empty closed connected set Sx √ Tx M where:
|L(x, y)| = 1 and sign(gL

ab) = (ε,−ε,−ε,−ε) with ε = |L(x,y)|
L(x,y)

.

The Finsler function F , which defines the geometric clock is a derived object and

defined as F = |L| 1
r ; the Finsler metric is gF

ab = 1
2 ∂̄a ∂̄b F2.

Our definition of Finsler spacetimes guarantees a causal structure in each tan-
gent space: Sx is the shell of unit timelike vectors which defines a cone of timelike
directions with null boundary, as displayed in Fig. 1.

The geometry of Finsler spacetimes is solely derived from derivatives of L in
terms of the unique Cartan non-linear connection coefficients: N a

b = 1
4 ∂̄b(gLaq
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Fig. 1 Causal structure of Finsler spacetime

(ym∂m ∂̄q L − ∂q L)). The connection between our definition of Finsler spacetimes
and standard Finsler geometry is given by the following theorem: Wherever L and F
are both differentiable they encode the same geometry, i.e. N [L] = N [F2].

3 Observers, Matter Fields, and Gravity

The nonlinear connection coefficients split TTM and T*TM into horizontal and ver-
tical space by {δa = ∂a − N b

a ∂̄b, ∂̄a} and {dxa, δya = dya + N a
vdxb}, as displayed

in Fig. 2. The horizontal (co-)tangent space is identified with the (co-)tangent space
along the manifold directions.

Timelike observers move on worldlines x(τ ) √ M with trajectory (x, ẋ) √ TM
and ẋ in the cone of timelike vectors. A horizontal orthonormal frame defines their
time and space directions along the manifold {Ea} = {E0 = ẋaδa, Eα}; gF

(x,ẋ)(Eμ,

Eν) = −ημν . Measurable quantities are components of horizontal tensors evaluated
in this frame at the observers’ TM position.

The geometry of Finsler spacetimes is built from tensors on TM; hence physical
fields coupling to this geometry will be of the same kind. Lagrange densities on TM
require the canonical Sasaki-type TM-metric G = −gF

ab(dxadxb + F−2δyaδyb),
which allows us to couple field theories to Finsler spacetime geometry as follows:
Choose an action for a p-form φ(x) on (M, g) : S[φ, g] = ∫

M
∗

gL (g, φ, dφ), use
the Lagrangian for a zero homogenous p-form field Φ(x, y) on (TM, G), introduce
Lagrange multipliers to restrict the p-form field to be horizontal, integrate over the
unit tangent bundleΣ = {(x, y) √ TM|F(x, y) = 1} to obtain the p-form field action
Sm[Φ, L , λ] = ∫

Σ
(
√

gF hFL (G, Φ, dΦ) + λ(1 − P H )Φ)|Σ . Variation yields the
equations of motion, the vanishing of all non horizontal components on shell and
the source term of the gravitational dynamics T|Σ . Our coupling principle ensures
that in case the Finsler spacetime is metric, field theories and gravitational dynamics
equal those of general relativity.
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Fig. 2 Horizontal and vertical
tangent space to the tangent
bundle
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The geodesic deviation on Finsler spacetimes gives rise to a tensor causing relative
gravitational acceleration ∇ẋ∇ẋ V a = Ra

bc(x, ẋ)ẋbV c. This non-linear curvature
given by Ra

bc = δ[b N a
c] leads to the curvature scalar RF = Ra

ab yb. No further
dependence on L or its derivatives appears, thus we choose RF as Lagrangian for
our Finsler gravity action S[L , Φ] = ∫

Σ
(
√

gF hFRF )|Σ + Sm[L , Φ]. Variation
with respect to the L yields the Finsler gravity field equation

gFab∂̄a ∂̄b RF − 6

F2 RF + 2gF
ab

(∇a Sb + Sa Sb + ∂̄a(yq∇q Sb)
) = −κT|Σ . (3)

It contains the curvature scalar, a measure of the departure from metric geometry S,
and a Finsler version of the Levi-Civita derivative. In case the function L is the metric
length measure the Finsler gravity equation is equivalent to the Einstein equations.

4 Conclusion

We constructed a theory of gravity for spacetimes equipped with a general Finsler
length measure. In case the Finsler length equals the metric length our theory becomes
general relativity, hence all solutions of the Einstein equations are solutions to our
Finsler gravity equation. The implications of Finsler spacetime gravity on the dark
universe can be studied by spherically symmetric and cosmological solutions that
go beyond metric geometry. A perturbative first order Finsler solution around the
Schwarzschild and Friedmann-Robertson-Walker metric is work in progress.
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Lagrangian Analysis of ‘Trivial’ Symmetries
in Models of Gravity

Debraj Roy

Abstract We study the differences between Poincaré and canonical Hamiltonian
symmetries in models of gravity through the corresponding Noether identities and
show that they are equivalent modulo trivial gauge symmetries.

1 Introduction

Poincaré symmetry is a fundamental symmetry of nature and a gauge theory of the
Poincaré group can be used to model theories of gravity. This Poincaré gauge theory
(PGT) was developed by Utiyama [1], Kibble [2], Sciama [3] and later on by various
authors [4]. PGT is built on a global manifold with local orthonormal frames glued
to each spacetime point by frame fields or triads (in 3D). The triads bi

μ are used
to translate between the global (index: Greek) and local (index: Latin) frames. To
construct a gauge theory, connections ωi

μ are introduced replacing partial derivatives
by corresponding covariant derivatives. The corresponding field strengths give rise
to the gravitational fields of curvature Ri

μν and torsion T i
μν

Ri
μν = ∂μωi

ν − ∂μωi
ν + εi

jk ω j
μωk

ν, (1)

T i
μν = √μbi

ν − √νbi
μ. (2)

These fields can now be used to write actions describing gravity in Riemann-Cartan
spacetime. Imposition of a condition on torsion through equations of motion (in
vacuum) may lead one to a spacetime with only curvature and no torsion—the usual
Einstein GR on Riemannian manifold.
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As gauge theories of the Poincaré group, Poincaré symmetries are already inbuilt.
A Dirac canonical analysis of symmetries on the other hand also yields a set of gauge
symmetries for the same models. By a gauge symmetry here we mean any continuous
symmetry of the basic fields that leave the action invariant. The total number of
independent gauge symmetries are however limited by the number of independent,
primary first class constraints [5]. So it transpires that there is a discrepancy with
established results in the apparent off-shell in-equivalence between the Poincaré and
canonical Hamiltonian symmetries. Here we study and resolve this from a lagrangian
point of view.

2 Noether Identities and Trivial Symmetries

For specifics of discussion, we take up the Mielke-Baekler model [6] describing a
cosmologically topological model of gravity with torsion. The action for the model
is

S =
∫

d3x εμνρ

[
abi

μ Riνρ − Λ

3
εi jkbi

μb j
νbk

ρ + α3

(
ωi

μ∂νωiρ

+1

3
εi jk ωi

μω j
νω

k
ρ

)
+ α4

2
bi

μTiνρ

]
, (3)

where the terms are the Einstein-Cartan term, cosmological term, Chern-Simons
term (in connection) and the torsion term, respectively. The Euler derivatives corre-
sponding to the independent canonical fields are:

δS

δbi
μ

= εμνρ
[
a Riνρ + α4 Tiνρ − Λεi jkb j

νbk
ρ

]
,

δS

δωi
μ

= εμνρ
[
α3 Riνρ + a Tiνρ + α4 εi jkb j

νbk
ρ

]
. (4)

The model independent Poincaré symmetries (subscript ‘P’) are [7]

δP bi
μ = −εi

jkb j
μθk − ∂μξρ bi

ρ − ξρ ∂ρbi
μ,

δPωi
μ = −∂μθ i − εi

jkω
j
μθk − ∂μξρ ωi

ρ − ξρ ∂ρωi
μ, (5)

while the canonical symmetries generated by the first-class gauge generator con-
structed through an off-shell algorithm [5, 8–10] are

δH bi
μ = √μεi − p εi

jk b j
μεk + εi

jk b j
μτ k,

δH ωi
μ = √μτ i − q εi

jk b j
μεk . (6)
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An inspection of the two symmetries (5) and (6) reveal that the canonical
symmetries are structurally dependent on the form of the action while the Poincaré
symmetries are independent of particular action. Also, to compare the two symme-
tries, we have to first find a suitable mapping between the different sets of gauge
parameters. To find this, we take recourse to the Noether identities corresponding to
the symmetries [11].

A Noether identity corresponds to each continuous gauge symmetry of an action,
marked by an independent gauge parameter. In fact, the identity is a direct con-
sequence of the invariance of the action. To see this, let us consider a generic
gauge symmetry expressed as terms proportional to the gauge parameter (εμ) and its
derivative

δqi = Riμεμ + R̃ν
iμ (∂νε

μ). (7)

The invariance of the action, step by step, leads to

δS =
∫

δL

δqi
δqi =

∫
δL

δqi

(
Riμεμ + R̃ ν

iμ ∂νε
μ
)

=
∫ [

δL

δqi
Riμ − ∂ν

(
δL

δqi
R̃ ν

iμ

)]
εμ = 0, (8)

where the quantity within braces forms the Noether identity due to the arbitrary
nature of each of the gauge parameters.

The Noether identities corresponding to PGT symmetries are

Pk = δS

δbi
μ

εi
jkb j

μ + δS

δωi
μ

εi
jkω

j
μ − ∂μ

(
δS

δωk
μ

)
= 0,

Rρ = δS

δbi
μ

∂ρbi
μ + δS

δωi
μ

∂ρωi
μ − ∂μ

(
bi

ρ

δS

δbi
μ

+ ωi
ρ

δS

δωi
μ

)
= 0, (9)

and that corresponding to canonical Hamiltonian symmetries of the Mielke-Baekler
action are

Ak = δS

δbi
μ

εi
jkb j

μ + δS

δωi
μ

εi
jkω

j
μ − ∂μ

(
δS

δωk
μ

)
= 0

Bk = −∂μ

(
δS

δbk
μ

)
+ δS

δbi
μ

εi
jkω

j
μ − p

δS

δbi
μ

εi
jkb j

μ − q
δS

δωi
μ

εi
jkb j

μ = 0 (10)

A comparison between (9) and (10) immediately shows that one identity from each
pair is already equivalent: Pk = Ak . Comparing the nature of the other identities it
is seen that the term −ωk

ρ Ak − bk
ρ Bk gives
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−Rρ + δS

δbi
μ

(
α3

→ ηi jεμνρ

)
δS

δb j
ν

+ δS

δbi
μ

(−a

→ ηi j εμνρ

)
δS

δω
j
ν

+ δS

δωi
μ

(−a

→ ηi j εμνρ

)
δS

δb j
ν

+ δS

δωi
μ

(
α4

→ ηi j εμνρ

)
δS

δb j
ν

= 0,

where → = 2 (α3α4 − a2). The terms proportional to square of Euler derivatives are
antisymmetric in their coefficients and as such drop out without having to use the
equations of motion, i.e. without having to set the Euler derivatives to zero. Thus
we get back the Poincaré Noether identities from the canonical hamiltonian Noether
identities, their difference being just ‘trivial’ gauge identities [12]. Thus substituting
Rρ = −bk

ρ Bk − ωk
ρ Ak and Pk = −Ak in δS = ∫ (

θk Pk + ξρ Rρ

) = 0 gives

∫ [
(−θk − ξρωk

ρ) Ak + (−bk
ρξρ) Bk

]
= 0. (11)

Comparing this with δS = ∫ (
εk Ak + τ k Bk

) = 0 gives us the required map between
the two sets of gauge parameters.

εi = −ξρbi
ρ and τ i = −θ i − ξρωi

ρ. (12)

So the Noether identities help us to generate the required map between different
sets of gauge parameters and show the equivalence of the two symmetries as their
difference is just ‘trivial’!
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Quasi-normal Frequencies, Horizon Area
Spectra and Multi-horizon Spacetimes

Jozef Skákala

Abstract We analyse the behavior of the asymptotic frequencies of the spherically
symmetric multi-horizon spacetimes (in particular Reissner-Nordström, Schwarz-
schild-deSitter, Reissner-Nordström-deSitter) and provide some suggestions for how
to interpret the results following the spirit of the modified Hod’s conjecture. The
interpretation suggested is in some sense analogical to the Schwarzschild case, but
has some new specific features.

1 Introduction

This short paper refers to work done over a longer period of time contained in papers
[1–3] and also to some extent in [4]. Black holes, when perturbed, show certain char-
acteristic damped oscillations which are called quasi-normal modes (QNMs). The
low damped black hole quasi-normal modes are of potential astrophysical interest,
as they carry information about the black hole parameters. More than a decade ago it
was conjectured that also the highly damped (asymptotic) modes might have physi-
cal importance, as they might carry information about quantum black holes [5]. The
original conjecture by Hod [5] was later modified by Maggiore [6]. The conjecture
of [6] was used in case of Schwarzschild black hole and also in cases of other black
holes to derive the area spectra of the black hole horizon. What is still missing is a
(unconstrained) application of the conjecture to the most immediate generalizations
of Schwarzschild spacetime, to the spherically symmetric multi-horizon spacetimes:
Reissner-Nordström (R-N), Schwarzschild-deSitter (S-dS) and Reissner-Nordström-
deSitter (R-N-dS) spacetime. This work is trying to fill the gap.
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2 Spherically Symmetric Multi-horizon Black Hole Spacetimes

The modified Hod’s (or Maggiore’s) conjecture relates asymptotic QNM frequencies
(ω = ωR + i · ωI ) to the black hole ADM mass quantum transition as:

ΔM = lim
n→∞(ωnI − ωn−1I )

.= lim
n→∞ Δ(n,n−1)ωnI . (1)

(For a detailed reasoning see [6]. Also everywhere in the paper we use Planck units
and n labels the QNM frequencies monotonically with respect to the imaginary
part.) For the multi-horizon spherically symmetric black hole spacetimes (R-N, S-dS,
R-N-dS) and the scalar, vector, tensor perturbations the asymptotic QNM frequencies
obey the following equation:

M∑
A=1

CA exp

(
N∑

i=1

Z Ai
2πω

|κi |

)
= 0. (2)

Z Ai takes one of the values Z Ai = 0, 1, 2, furthermore N is the number of horizons
and κi are the surface gravities of the different horizons. The analytical solutions of
formulas (2) are not known and this prevented many people of using the modified
Hod’s conjecture in R-N, S-dS, R-N-dS cases. In [3] we analysed the behaviour of
the solutions of (2) with the following results: If the ratio of all of the surface gravities
is a rational number then all the frequencies split in a finite number of equispaced
families (labeled by a) of the form:

ωan = (offset)a + in · lcm(|κ1|, |κ2|, . . . , |κN |). (3)

Here lcm is the least common multiple of the numbers in the bracket, hence
lcm(|κ1|, . . . , |κN |) = p1|κ1| = · · · = pN |κN |, where {p1, . . . , pN } is a set of
relatively prime integers. If the ratio of arbitrary two of the surface gravities is
irrational, then there does not exist an equispaced subsequence in the sequence of
asymptotic QNM frequencies. Moreover one can prove [1] for the R-N black hole
(but one expects it to hold for all the three cases) that, in case the ratio of the surface
gravities is irrational, the n → ∞ limit for Δn,n−1ωnI does not exist. Also for the
rational ratio of the surface gravities and the R-N black hole the only case in which
the limit n → ∞ Δn,n−1ωnI exists is if all the frequencies are given by families with
the same (offset)I . But this cannot be the case when the ratio of the surface gravities
is given by two relatively prime integers whose product is an odd number [1].

The previous considerations seem to suggest, that the modified Hod’s conjecture
has very little chance to survive the multi-horizon case. However the significantly dif-
ferent behaviour for the cases of rational/irrational ratios of surface gravities and the
general splitting of frequencies into families seem to indicate something important.
Moreover, it was already observed that surface gravities rational ratios have signif-
icant consequences for the multi-horizon spacetime thermodynamics [7]. Based on
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this observations let us pick the R-N case where the thermodynamical interpretation
is straightforward and consider the following: Let us presuppose that both of the hori-
zons in the R-N spacetime, the outer horizon with the area A+ and the inner Cauchy
horizon with the area A− have equispaced area spectra given as1 A± = 8πl2

pγ · n±.
The perturbations are supposed to carry no charge, so one expects that only the

ADM mass of the black hole will be changed. Thus [2] one can write the change of
the areas of the black hole horizons as:

ΔA± = 8πΔM

κ±
. (4)

But ΔA± can be given only as ΔA± = 8πγ m±, which implies ΔM = γ κ±m±.
Furthermore, this implies m+κ+ = m−κ− and thus κ+/κ− = m−/m+. This means
that if the single ADM mass transitions have to be allowed the surface gravities ratio
must be rational. Furthermore if one wants the emitted mass quantum to be as small
as possible, such that it is still compatible with the quantization of the two horizon’s
areas one obtains:

ΔM = γ · lcm(κ+, |κ−|). (5)

Then modified Hod’s conjecture suggests that

lim
n→∞ Δn,n−1ωnI = γ · lcm(κ+, |κ−|). (6)

This is indeed true if one takes the following interpretation of the frequencies (slight
modification of Maggiore’s conjecture): the straightforward extension of Maggiore’s
conjecture to the multi-horizon case is misleading, in fact only the equispaced fam-
ilies carry information about the quantum black hole mass transitions. (Every fre-
quency belongs to one of the families.) Thus one has to first identify the equispaced
families and then take the limit in the spacing in the imaginary part of the frequencies
within each of the families. Such interpretation then fixes together with the formula
(3) the parameter γ to be γ = 1. This means the area spectra of both of the horizons
are given as 8πn. Let us remind here, that the same analysis can be repeated for both
S-dS and R-N-dS spacetimes: Assuming that all the horizons have the same equi-
spaced area spectra, the single M parameter transitions lead to the surface gravities
rational ratio condition and the QNM frequencies given by the formula fix the spectra
of all the horizons to be 8πn, (after one considers our generalization/modification
of Maggiore’s conjecture).

1 This type of spectrum with γ = 1 is the one originally suggested by Bekenstein for the black hole
horizon area and represents the far most popular choice in the current literature. Let us also mention
that by different, but not too different lines of thinking as we present, it was already speculated that
both of the horizons in the R-N spacetime have the same area spectra of the Bekenstein form.



318 J. Skákala

3 Conclusions

To summarize: We suppose that also in the multi-horizon case the modified Hod’s
conjecture provides information about the spacetime horizons spectra, only the way
the information is encoded is more tricky than in the single horizon case. (This is
hardly anything surprising as the quantization of more than one horizon might play
a role in the game.) The QNM frequencies are consistent with each of the horizons
being quantized with spectra given as 8πn (in Planck units). If these conclusions are
accepted then still many open questions remain, for example, if similar interpretation
could survive in case of charged black holes that occur after a collapse of matter.
(In such case the black hole interior is very different to the extremely idealized R-N,
R-N-dS cases. For example a weak mass-inflation singularity occurs at the inner
horizon, but some results indicate that possibility of crossing the inner horizon might
still be considered.)
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Asymptotically AdS Spacetimes and Isometric
Embeddings

Steven Willison

Abstract An algebraic global isometric embedding of the nonrotating BTZ black
hole is presented. The ambient spacetime is M2,3, the 3+2 dimensional flat space-
time. We also present the analogous embedding for the Euclidean BTZ spacetime
and by performing a kind of double analytic continuation construct a 1-parameter
family of embeddings of cosmological AdS spacetime into M2,3 which coincide
asymptotically with the embedded BTZ manifold of the appropriate mass. Finally
we note that the family of embeddings of cosmological AdSn into M2,n generalises
to higher dimensions.

1 Some Differential Geometric Preliminaries

Anti de Sitter space ˜AdS is a Lorentzian manifold and as such all of the geometry
can be understood in terms of intrinsically defined properties. However, to manifest
more symmetries one often considers the following model: Let M p,n denote flat
spacetime of signature −p + n. The submanifold:

A := {Xμ √ M

2,n−1|Xμ Xνη(2,n−1)
μν = −1}, (1)

has the same intrinsic geometry as Anti de Stter space ˜AdS
n
. By this we mean that

the submanifold so defined is diffeomorphic to S ×R

3 and the induced metric is that
of a maximally symmetric Lorentzian spacetime with sectional curvatures −1. By
representing the spacetime as a submanifold certain geometrical facts become clear:
The intersections with hyperplanes P through the origin are geodesics, specifically
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A → P2,n−2 is a timelike geodesic and A → P1,n−1 is a pair of disconnected
spacelike geodesics; A contains closed timelike curves; the global isometry group
is SO(n, 1). This embedding of ˜AdS

n
is well known. Two spacetimes of special

interest which are locally isometric to ˜AdS are the cosmological AdS spacetime
and the BTZ [1] spacetime in 2+1 dimensions. The former is the universal covering
space obtained by unwrapping the timelike geodesics. The latter is a quotient space.
Therefore the local physics can be described as a constrained theory in flat spacetime
using A described above. However, to address global issues it can be helpful to have
a simple global isometric embedding. Below we present such embeddings for the
norotating BTZ spacetime (obtained in [2]) and also for AdSn .

A smooth embedding φ : M ∓ N is an injective map such that φ(M) is homeo-
morphic to M and φ∼ is injective. Note dim(N ) ≤ dim(M). Let (M, h) and (N , g)

be pseudo-Riemannian manifolds. A smooth embedding φ : M ∓ N is an isometric
embedding if φ∼g = h. If M is the entire maximally extended spacetime we call this
a global isometric embedding.

2 Embedding the BTZ and Cosmological AdS Spacetimes

In 2+1 dimensional gravity with negative cosmological constant, the Einstein
equation in vacuum is equivalent to Rμν

κλ = − 1
l2 (δ

μ
κ δν

λ − δν
κδ

μ
λ ). We set l = 1.

The spherically symmetric solution of mass a2 has the static form [1]

ds2 = (r2 − a2)dτ 2 + dr2

r2 − a2 + r2dφ2

outside of the event horizon (r = a). Since we are interested in global embeddings,
we introduce the Kruskal type coordinate system:

ds2 = 4
−dt2 + dx2

(1 + t2 − x2)2 + a2 (1 − t2 + x2)2

(1 + t2 − x2)2 dφ2 .

The domain of the coordinates is −1 < −t2 + x2 < 1, φ ∞ φ + 2π . This covers
the maximally extended space-time. The event horizons and bifurcation surface are
x = ±t and x = t = 0 respectively. Singularities (t2 − x2 = 1) and conformal
infinity (x2 − t2 = 1) are not considered part of the spacetime for our purposes.

Lemma 1 [2] The nonrotating BTZ black hole spacetime can be globally isomet-
rically embedded into the region X0 > 0 of M

2,3. The image is the intersection of
quadric hypersurfaces:

(X1)2 + (X2)2 = a2

1 + a2 (X0)2 , (X3)2 − (X4)2 = −1 + 1

1 + a2 (X0)2.
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Table 1 Various embeddings relevant to three dimensional gravity. The left and right colums are
related by X4 ∗ i X4

Embedding in M3,2 Embedding in M4,1

BTZ (mass = a2) Euclidean BTZ (mass = a2)

(X1)2 + (X2)2 = a2

1+a2 (X0)2, (X1)2 + (X2)2 = 1
a2+1

(X0)2,

(X3)2 − (X4)2 = 1
a2+1

(X0)2 − 1, (X3)2 + (X4)2 = a2

1+a2 (X0)2 − 1,

X0 > 0 (X0 = 0 singular). X0 > 0.
AdS3 “Thermal AdS3” (mass = 1/a2)

(X1)2 + (X2)2 = a2

1+a2 (X0)2 − 1, (X1)2 + (X2)2 = 1
a2+1

(X0)2 − 1,

(X3)2 − (X4)2 = 1
a2+1

(X0)2, (X3)2 + (X4)2 = a2

1+a2 (X0)2,

X0 > 0 (2 copies of AdS). X0 > 0.

The past and future singularities are located at the intersection of the two constraint
surfaces with the hyperplane X0 = 0.

The proof was given in Ref. [2]. Combining the constraint equations we have
Xμ Xνη

(2,3)
μν = −1 therefore a global embedding into ˜AdS4 exists. By lifting the

restriction X0 > 0 we obtain two copies of BTZ joined at the singularity, but it is
not a true embedding at X0 = 0: the tangent space map is not injective (the central
singularity is a conical singularity).

We may make an analytic continuation X4 ∓ i X4, whence we obtain an embed-
ding of the Euclidean black hole into M

(1,4) 1. In fact there is another embedding, of
an Euclidean black hole with mass parameter 1/a, which has the same asymptotic
form for large X0. They are related by (X1, X2) ∗ (X3, X4). We shall refer to this
as “thermal AdS." The reason for this apparently arbitrary distinction is that upon
making the analytic continuation X4 ∓ −i X4 we obtain now a global embedding
of (two copies of) the cosmological AdS3 which coincide asymptotically with the
exterior regions of the black hole. All of this is summarised in Table 1. In the case
of the embedding of AdS3, the parameter a has no intrinsic geometrical meaning,
and therefore no direct physical meaning. We call 2πa the extrinsic temperature2 in
this context since it is the temperature of the embedded BTZ spacetime to which it
is asymptotic.

The complete picture contained in Table 1 is peculiar to three dimensions and
depends on the fact that the black hole and AdS are related by a double Wick rota-
tion which exchanges the role of the angular coordinate with that of the Euclidean
time. However, we are able to present here the following result pertaining to higher
dimensions:

1 This belongs to a class of immersions of H3 into H4 obtained in Ref. [3]
2 Another kind of extrinsic notion of temperature, based on a local embedding modeled on A 3, was
introduced in Ref. [4].
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Lemma 2 Let Mn,2 be pseudo-Euclidean space with two time directions and stan-
dard coordinates X A = (T, X1, . . . , Xn, S)andα be a positive real number. Then the

submanifold {X A √ Mn,2|X A X BηAB = −1; (Xn)2 = S2 + α2

1+α2 T 2; T, Xn > 0}
is homeomorphic to R

n and globally isometric to AdSn.

Proof We introduce angular coordinates (θ i ), i = 1, . . . , n − 2 on the unit sphere
σ aσ a = 1 in R

n−1. We then consider a cylindrical polar system of coordinates
(τ, r, θ i ) on R

n . For convenience set r = sinh χ , χ ≤ 0. Then

Xa = sinh χ σ a(θ i ), a = 1, . . . , n − 1, (2)

Xn = α cosh χ cosh(τ/α), (3)

S = α cosh χ sinh(τ/α), (4)

T =
√

1 + α2 cosh χ, (5)

can be verified to extend to a global embedding (χ = 0 is purely a coordinate
singularity—the image is a smooth submanifold at Xa = 0). The pullback of the
Minkowski metric w.r.t. this embedding is

ds2 = − cosh2 χdτ 2 + dχ2 + sinh2 χdΩ2
n−2 , (6)

dΩ2
n−2 being the metric of the unit sphere. This is the metric of AdSn . 	⊂
Finally we note that it follows from Lemma 2 that there is a one-parameter family

of global isometric embeddings of AdSn into ˜AdSn+1.
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A Cosmological Concordance Model
with Particle Creation

J. S. Alcaniz, H. A. Borges, S. Carneiro, J. C. Fabris, C. Pigozzo
and W. Zimdahl

Abstract A constant-rate creation of dark particles in the late-time FLRW spacetime
provides a cosmological model in accordance with precise observational tests. The
matter creation backreaction implies in this context a vacuum energy density scaling
linearly with the Hubble parameter, which is consistent with the vacuum expecta-
tion value of the QCD condensate in a low-energy expanding spacetime. Both the
cosmological constant and coincidence problems are alleviated in this scenario. We
discuss the cosmological model that arises in this context and present a joint analy-
sis of observations of the first acoustic peak in the cosmic microwave background
(CMB) anisotropy spectrum, the Hubble diagram for supernovas of type Ia (SNIa),
the distance scale of baryonic acoustic oscillations (BAO) and the distribution of
large scale structures (LSS). We show that a good concordance is obtained, albeit
with a higher value of the present matter abundance than in the standard model.

The understanding of the gravitational role of vacuum fluctuations is in general a
difficult problem, since their energy density usually depends on the renormalization
method used and on an adequate definition of the vacuum state in the curved back-
ground. In the case of free massless fields in de Sitter spacetime, the renormalized
vacuum density is Λ ≈ H4 [1–4], which in a low-energy universe leads to a too tiny
cosmological term.

In the case we consider the vacuum energy of interacting fields, it has been sug-
gested that in a low energy, approximately de Sitter background the vacuum conden-
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sate originated from the QCD phase transition leads to Λ ≈ m3 H , where m ≈ 150
MeV is the energy scale of the transition [5–11]. These results are in fact intuitive.
In a de Sitter background the energy per observable degree of freedom is given by
the temperature of the horizon, E ≈ H . For a massless free field this energy is dis-
tributed in a volume 1/H3, leading to a density Λ ≈ H4, as above. For a strongly
interacting field in a low energy space-time, on the other hand, the occupied volume
is 1/m3, owing to confinement, and the expected density is Λ ≈ m3 H .

Such a late-time variation law for the vacuum term can also be derived as a back-
reaction of the creation of non-relativistic dark particles in the expanding spacetime
[12]. The Boltzmann equation for this process is

1

a3

d

dt

(
a3n

)
= Γ n, (1)

where n is the particle number density and Γ is a constant creation rate. By taking
ρm = nM , it can also be written as

ρ̇m + 3Hρm = Γρm, (2)

where M is the mass of the created particle. Let us take, in addition to (2), the
Friedmann equation

ρm + Λ = 3H2, (3)

with the vacuum term satisfying the equation of state pΛ = −Λ. Using (2) and (3)
we obtain the conservation equation for the total energy,

ρ̇ + 3H(ρ + p) = 0, (4)

provided we take1

Λ = 2Γ H. (5)

This is the time-variation law predicted for the vacuum density of the QCD conden-
sate, with Γ ≈ m3. Dividing it by 3H2, we obtain

Γ = 3

2
(1 − Ωm) H, (6)

where Ωm = 1 − ΩΛ ≡ ρm/(3H2) is the relative matter density (for simplicity,
we are considering only the spatially flat case). In the de Sitter limit (Ωm = 0),
we have Γ = 3H/2, that is, the creation rate is equal (apart from a numerical
factor) to the thermal bath temperature predicted by Gibbons and Hawking in the
de Sitter spacetime [13]. It also means that the scale of the future de Sitter horizon

1 Strictly speaking, this result is only exact if we neglect the conserved baryons in the balance
equations. Since baryons represent only about 5 % of the total energy content, this can be considered
a good approximation.
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is determined, through Γ , by the energy scale of the QCD phase transition, the
last cosmological transition we have. For the present time we have, from (6) (with
Ωm ≈ 1/3), H0 ≈ Γ ≈ m3, and hence Λ ≈ m6, where H0 is the current Hubble
parameter. The former result is an expression of the Eddington-Dirac large number
coincidence [14]. The later—also known as Zeldovich’s relation [15]—gives the
correct order of magnitude for Λ.

The corresponding cosmological model has a simple analytical solution, which
reduces to the CDM model for early times and to a de Sitter universe for t → ∞ [16].
It has the same free parameters of the standard model and presents good concordance
when tested against type Ia supernovas, baryonic acoustic oscillations, the position of
the first peak of CMB and the matter power spectrum [12, 17–21]. Furthermore, the
coincidence problem is alleviated, because the matter density contrast is suppressed
in the asymptotic future, owing to the matter production [12, 20].

With Λ = 2Γ H we obtain, from the Friedmann equations, the solution [16–19]

H

H0
≈ 1 − Ωm0 + Ωm0(1 + z)3/2 , (7)

where here, for simplicity, we have not added radiation. For high redshifts the matter
density scales as ρm(z) = 3H2

0 Ω2
m0z3. The extra factor Ωm0—as compared to the

ΛCDM model—is owing to the late-time process of matter production. In order to
have nowadays the same amount of matter, we need less matter in the past. Or, in
other words, if we have the same amount of matter in the past (say, at the time of
matter-radiation equality), this will lead to more matter today. We can also see from
(7) that, in the asymptotic limit z → −1, the solution tends to the de Sitter solution.
Note that, like the ΛCDM model, the above model has only two free parameters,
namely Ωm0 and H0. On the other hand, it can not be reduced to the ΛCDM case
except for z → −1. In this sense, it is falsifiable, that is, it may be ruled out by
observations.

The Hubble function (7) can be used to test the model against background obser-
vations like SNIa, BAO and the position of the first peak in the CMB spectrum
[17–19]. The analysis of the matter power spectrum was performed in [20], where,
for simplicity, baryons were not included and the cosmological term was not per-
turbed. In a subsequent publication a gauge-invariant analysis, explicitly considering
the presence of late-time non-adiabatic perturbations, has shown that the vacuum per-
turbations are indeed negligible, except for scales near the horizon [21].

We show in Table 1 the best-fit results for Ωm0 (with H0 marginalized) with three
samples of supernovas: the SDSS and Constitution compilations calibrated with the
MLCS2k2 fitter, and the Union2 sample. For the sake of comparison, we also show
the best-fit results for the spatially flat ΛCDM model. We should have in mind that
the Union2 dataset is calibrated with the Salt2 fitter, which makes use of a fiducial
ΛCDM model for including high-z supernovas in the calibration. Therefore, that
sample is not model-independent and, in the case of the standard model, the test
should be viewed as rather a test of consistence. From the table we can see that
for the model with particle creation the concordance is quite good. For the samples
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Table 1 2σ limits to Ωm0 (SNe + CMB + BAO + LSS)

Test Λ(t)CDM ΛCDM

Ωm0 χ2
min/ν Ωm0 χ2

min/ν

Union2 (SALT2) 0.420+0.009
−0.010 1.063 0.235 ± 0.011 1.027

SDSS (MLCS2k2) 0.450+0.014
−0.010 0.842 0.260+0.013

−0.016 1.231

Constitution (MLCS2k2-17) 0.450+0.008
−0.014 1.057 0.270 ± 0.013 1.384

calibrated with the MLCS2k2 fitter it is actually better than in the ΛCDM case. As
anticipated above, the present matter density is higher than in the standard case, with
Ωm0 ≈ 0.45.

With the concordance values of Ωm0 in hand, we can obtain the age parameter
of the Universe, as well as the redshift of transition between the decelerated and
accelerated phases. They are given, respectively, by [16–19]

H0t0 = 2 ln Ωm0

3(Ωm0 − 1)
, (8)

zT =
[

2

(
1

Ωm0
− 1

)]2/3

− 1. (9)

In the case of the SDSS and Constitution samples, this leads to H0t0 = 0.97 and
zT = 0.81, in good agreement with standard predictions and astronomical limits
[22]. For H0 ≈ 70 km/(s.Mpc), we have t0 ≈ 13.5 Gyr.

Particle creation is something expected in expanding spacetimes [23]. In spite of
the difficulty in deriving the production rate and backreaction in general, this phe-
nomenon may in principle be related with inflation [24] and with the present cosmic
acceleration, a possibility already considered in different ways by some authors [25,
26] . We have shown that a constant-rate creation of non-relativistic dark particles at
late times leads indeed to a viable concordance model.
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From ‘Nothing’ to Inflation and Back Again

Vladimír Balek

Abstract A procedure for solving Wheeler-DeWitt equation in Euclidean region,
following step by step the construction of tunneling wave function in nonrelativistic
quantum mechanics by Banks, Bender and Wu, is proposed. Solutions for a universe
satisfying no-boundary condition and a universe created from ‘nothing’ are compared
to the corresponding solutions for a particle in a two-dimensional potential well, and
effects of indefiniteness of metric and zero energy in Wheeler-DeWitt equation are
discussed.

1 Introduction

The basic two minisuperspace solutions of Wheeler-DeWitt equation were proposed
as long ago as at the beginning of 80’s. In 1983, Hartle and Hawking introduced their
no-boundary condition and used it to construct an inflationary solution in which scalar
field was decoupled from gravity and its effect on the expansion of the universe was
mimicked by the cosmological constant [1]. Hawking then replaced the conformal
coupling of the scalar field by the mass term and obtained a truly inflationary solu-
tion [2, 3]. Since then the model has been explored repeatedly. To mention just two
remarkable results, the universe was shown to avoid Big Crunch by quantum bounce
for all, not just fine-tuned, initial conditions [4]; and the model was used to demon-
strate the collapse of the measurement of time with the help of quantum mechanical
degrees of freedom in the period of maximal expansion [5]. Shortly before the no-
boundary solution appeared, in 1982, Vilenkin proposed another solution describing
creation of the universe from ‘nothing’ [6, 7]. Linde advocated the use of such solu-
tion ‘in those situations where the scale parameter a itself must be quantized’ [8], and
proposed a heuristic derivation of it via inverse Wick rotation. Later there appeared

V. Balek (B)

Department of Theoretical Physics, Comenius University, Bratislava, Slovakia
e-mail: balek@fmph.uniba.sk
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a different approach to ‘creationist’ cosmology, adopting the no-boundary condition
but making use of density matrix rather than wave function [9].

Both Hawking and Vilenkin solutions contain an Euclidean region in which the
wave function describes tunneling of the universe, either from a finite radius to a
point (Hawking solution) or from a point to a finite radius (Vilenkin solution). In
nonrelativistic quantum mechanics, a complete WKB solution in the tunneling region
in two dimensions was obtained by Banks et al. [10]. The solution refers to a particle
escaping from a potential well, but with some effort can be modified to apply also
to the opposite case when a particle tunnels from outside the barrier into the well.
The cosmological problem is two-dimensional and allows for WKB approximation,
therefore it would be natural to employ the same construction in it. However, as for
now the solution by Banks, Bender and Wu was apparently not used in this way,
although Vilenkin mentions in [7] that his tunneling solution is ‘similar’ to it.

In this note a procedure for computing the wave function of the universe in the
Euclidean region is outlined. In Sect. 2 the construction by Banks, Bender and Wu
is summarized, rewritten so that it works both ways, outwards as well as inwards; in
Sect. 3 new features of the construction appearing when it is carried over to cosmology
are discussed; and in Sect. 4 possible applications of the theory are suggested.

2 Tunneling in Quantum Mechanics

Consider a particle in two dimensions obeying Schrödinger equation

[ − ∂2
x − ∂2

y + 1
4 (x2 + y2) − 1

4ε(x4 + y4 + 2cx2 y2) − E
]
ψ = 0, (1)

where the parameters ε and c satisfy 0 < ε √ 1 and |c| < 1. The potential into
which the particle is placed consists of a circularly symmetric well and a quatrefoil
barrier around it. We are interested in two processes, tunneling of the particle from
the well to the other side of the barrier and vice versa, both along the positive x axis.
The particle tunneling outwards has a (quasi) discrete spectrum, which coincides
to a great precision, if the energies are not too high, with the spectrum in a well
extrapolated to infinity. From the requirement that only an outgoing wave appears
behind the barrier it follows that the energies acquire a small imaginary part equal
to − 1

2 × the decay rate of the state inside the well. The particle tunneling inwards,
on the other hand, can have any energy. In what follows we assume that ψ separates
in variables x , y inside the well and the energy Ey going to the y direction equals 1

2 .
In particular, the particle tunneling outwards can be in the ground state with E = 1
and Ex = Ey = 1

2 .
Let us start with rewriting the potential near the x axis as

V = V0 + 1
4 ky2, (2)
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where

V0 = 1
4 x2(1 − εx2), k = 1 − 2εcx2. (3)

The idea of solving (1) in the tunneling region is to separate a WKB wave function
in the longitudinal direction and a bell-shaped function with a variable width in the
transversal direction out of ψ . Thus, we write

ψ = Ap−1/2 exp
(

→
∫

pdx − 1
4 f y2

)
, p = √

V0 − Ex , (4)

with f depending on x and A depending on both x and y. The upper and lower
signs refer to a particle tunneling outwards and inwards respectively. Equation for
f is obtained by collecting the terms in the original equation proportional to y2 and
putting them equal to zero. In this way we relate the function f , defining the width
of the wave function, to the function k, defining the width of the valley the particle is
tunneling through; and we obtain an equation for A that separates after y is replaced
by an appropriate variable proportional to it.

In the leading order of WKB approximation equations for f and A lose the
second derivative with respect to x and, in addition, the function p multiplying the
first derivative loses the constant Ex under the square root sign. After rescaling
x ∓ ε−1/2x we have

2p
d

dx
∓ xw

d

dx
= −x2 d

dw
, w =

√
1 − x2,

and equation for f takes the form

± x2 d f

dw
= f 2 − k, k = 1 − 2cx2. (5)

The equation can be linearized by introducing an auxiliary function u such that

f = → x2

u

du

dw
. (6)

After inserting this into (5) we find that u obeys equation for associated Legendre
function with the lower index given by

ν(ν + 1) = 2c (7)

and the upper index equal to ±1. Equation for A separates in the variables w and
s = y/u, and if we write A as W S, where W is a function of w and S is a function
of s, we find that S is either cosine or hyperbolic cosine or constant. Matching the
tunneling solution to the solution inside the well singles out the third possibility.
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Thus, A depends on w only, and after a little algebra one finds

A = const
(1 − w

1 + w

)±1/4
u−1/2. (8)

Let us examine the behavior of f . To simplify the analysis, we return from the
variable w to x with the help of the formula

x
d

dw
= −w

d

dx
.

First we find the asymptotic of f for x ∼ 0. In order that the internal and external
solutions match, f must equal 1 at x = 0; thus, we write f as 1 + Δ and skip the
Δ2 term in (5). We obtain the equation

→ x
dΔ

dx
= 2(Δ + cx2), (9)

whose solution is

Δ =
{− 1

2 cx2

2cx2(log x + C ),
(10)

where the upper and lower expression refer to the upper and lower sign in (9) andC is
integration constant. We can see that the width of the tunneling wave function is given
uniquely for a particle tunneling outwards, but the stripes on which the wave function
is nonzero form a one-parametric sequence for a particle tunneling inwards. The rea-
son is presumably that the waves incident on the barrier along the positive x axis form
a one-parametric sequence, too, and different waves tunnel along different stripes.

From the asymptotic of f we can determine u. For w ∼ 1, or equivalently,
x

.= ≤
2(1 − w) ∼ 0, the asymptotics of the associated Legendre functions of first

and second kind are

P−1
ν = 1

2 x, Q1
ν = −x−1.

(It suffices to consider one upper index in Pν and Qν since the functions with op-
posite upper indices are proportional to each other.) To obtain f = 1 for x = 0 we
must choose u equal to P−1

ν and to Q1
ν + some coefficient × P−1

ν for a particle
tunneling out- and inwards. Moreover, by including the next-to-leading term into the
expansion of Q1

ν ,

ΔQ1
ν = 1

4ν(ν + 1)
[
2 log x

2 + ψ(ν) + ψ(ν + 2) − ψ(2) + γ
]
x + 1

4 x,

where ψ is digamma function and γ is Euler-Mascheroni constant, we can find the
coefficient in front of P−1

ν in the latter case.
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Finally, we can use u to compute f on the whole interval of x . Note that for c > 1
2

the function k becomes negative before x reaches 1, so that the valley the particle is
tunneling through turns to a slope. According to (5), this drives the derivative d f/dx
to more negative values and makes f to fall down faster for a particle tunneling
outwards. Nevertheless, f stays positive and ψ stays suppressed in the transversal
direction up to x = 1 for any c. If the particle is tunneling inwards, f increases near
x = 1 for the values of c in question, and only with decreasing c it starts to decrease.
For low enough c’s, f passes through zero before x reaches 1; however, this holds
only for C = 0 and can be cured by choosing positive C .

3 Tunneling in Cosmology

Consider a closed universe with a scalar field living in it, and denote the radius of
the universe by a and the value of the field by φ. Suppose, furthermore, that the field
is massive with the mass m and the theory includes cosmological constant Λ; thus,
the field has quadratic potential shifted upwards by λ = 1

3Λ. The wave function of
the universe satisfies the Wheeler-DeWitt equation

[ − ∂2
a + a−2∂2

φ + a2(1 − λa2 − m2a2φ2)
]
ψ = 0. (11)

To account for the ambiguity due to operator ordering, the operator −∂2
a has to be

modified to −a−μ∂aaμ∂a with an arbitrary μ. However, in the WKB approximation
we are interested in, this affects only the preexponential factor in ψ , therefore we
can put μ = 0.

Equation (11) is almost identical to the equation we obtain from (1) by passing
from rectangular to polar coordinates, restricting the polar angle to |ϕ| √ 1 and
replacing the operator −r−1∂r r∂r , again with the reference to WKB approximation,
by −∂2

r . The new equation reads

[ − ∂2
r − r−2∂2

φ + 1
4r2(1 − εr2 + 2εγ r2ϕ2) − E

]
ψ = 0, (12)

where γ = 1 − c. We will solve this equation in a similar way as (1) and discuss
equation (11) later. First we express ψ as

ψ = Bq−1/2 exp
(

→
∫

qdr − 1
4 gϕ2

)
, q =

√
V0 − E, (13)

with V0 = 1
4r2(1 − εr2) and g related to κ = 2εγ r4 in a similar way as f was

related to k. After rescaling r ∓ ε−1/2r , ϕ ∓ ε1/2ϕ, κ ∓ ε−1κ and g ∓ ε−1g
and introducing ξ = ≤

1 − r2, we have

± r2 dg

dξ
= r−2g2 − κ, κ = 2γ r4, (14)
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and after writing g as

g = →r4

v

dv

dξ
, (15)

we find that v obeys equation for Gegenbauer function with the lower index given
by

α(α + 3) = −2γ (16)

and the upper index equal to 3
2 . Finally, for the function B we obtain

B = const v−1/2. (17)

To fix the combination of Gegenbauer functions in v we must explore the behavior
of g for r ∼ 0. When doing so we notice that now there are two terms proportional
to y2 in the exponential near the origin, the term − 1

4 gϕ2 .= − 1
4r−2gy2 and the term

→ 1
4 y2 coming from

∫
qdr̂ ∼

∫
1
2 r̂dr̂ = 1

4 r̂2 = 1
4 (x̂2 + y2),

where we have denoted the original, non-rescaled variables x and r by x̂ and r̂ . These
two terms must add to produce the term − 1

4 y2 appearing in the solution inside the
well. The resulting asymptotics of g are

g =
{ 1

2γ r4

2r2[1 + cr2(log r + D)]. (18)

This yields v equal to C3/2
α and D3/2

α + some coefficient × C3/2
α for a particle tun-

neling out- and inwards respectively; and knowing v, we can determine the behavior
of g on the whole interval of r .

Once we have found f we do not need to compute g from scratch. Instead, we
can express g in terms of f . For that purpose we insert

∫
qdr̂ =

∫
1
2 r̂ξdr̂ = ε−1

∫
1
2rξdr = −ε−1 1

6 (ξ3 − 1)
.=

∫
pdx̂ + 1

4ξ y2

into (13) and compare the resulting expression to (4). We obtain

g = r2( f → ξ), (19)

where f is to be regarded as a function of r . This coincides with the function g
constructed previously, if we express C3/2

α and D3/2
α in terms of P−1

ν and Q1
ν and

put D = C − 1
4 .
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Equation (11) differs from (12) in that it has reversed sign of the kinetic term
in φ direction and vanishing energy. Because of the former property the metric of
the kinetic term is indefinite. The sign of the mass term is reversed or stays the
same depending on whether m is real, which corresponds to a metastable vacuum, or
imaginary, which corresponds to an unstable vacuum. However, it is the relative signs
with respect to the kinetic terms in a and φ directions which matter; and no matter
what the absolute sign, one of these signs stays the same while the other is reversed.

The two solutions of equation (11), with minus and plus sign in the exponential,
describe tunneling of the universe outwards, from a point to a finite radius, and in-
wards, from a finite radius to a point. An immediate consequence of the indefinitness
of metric is that the signs in the equation for g are switched. As a result, we obtain
one-parametric class of g’s for a universe tunneling outwards and a single g for a
universe tunneling inwards. Having just one solution in the latter case is consistent
with the observation that the wave function of the universe is determined completely
by the no-boundary condition. Having infinitely many solutions in the former case
can be explained by the fact that the energy is zero, which means that the imaginary
part of energy is zero, which means that the outgoing probability current stays finite
up to the zero radius of the universe. The corresponding outgoing waves must be put
into the theory by hand and apparently form a one-parametric sequence, similarly as
ingoing waves in the quantum mechanical problem with a particle tunneling inwards.

In the previous discussion we have assumed that m is real. However, as mentioned
by Vilenkin in [7], when considering a universe tunneling outwards it is reasonable
to pass to imaginary m. The point is that the tunneling path shortens, and the wave
function becomes less suppressed behind the barrier, if the shift of the potential
λ increases. Thus, the tunneling is most effective at the global maximum of the
potential. Imaginary m and tunneling outwards in cosmology corresponds to c > 1
and tunneling inwards in quantum mechanics. For such tunneling we find, in addition
to a one-parametric class of g’s with the asymptotic given in the lower line of (18),
one more g with the asymptotic

g = − 1
2γ r4. (20)

This solution must be abandoned since the corresponding f equals −1 at x = 0,
which means that the wave function explodes in the transversal direction. However,
in the cosmological setting such g seems admissible, and even privileged because
of its one-to-one correspondence with g appearing in the problem with a universe
tunneling inwards.

4 Conclusion

We have shown how the procedure by Banks, Bender and Wu can be carried over to
cosmology and used to construct the wave function of the universe in the Euclidean
region. The way how to do that has been only sketched here, the details will be given
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elsewhere [11]. In particular, we have skipped the discussion of the behavior of the
wave function ‘inside the well’, in the region where the radius of the universe is close
to zero. This question is vital for the construction, because as long as the tunneling
solution is not matched with the solution ‘inside the well’, it remains unjustified.

For a universe tunneling inwards, tunneling solution converts at the edges of
Euclidean region into oscillatory one, describing time-symmetric evolution during
which the universe repeatedly crosses that region. The crossings do not seem to
change the course of the evolution, but can still have some imprint on it, and the
knowledge of the exact form of tunneling solution can help to identify that imprint.
For a universe tunneling outwards there apparently exists, in addition to ‘regular’
solution which behaves like that for a universe tunneling inwards, a one-parametric
class of solutions with markedly different behavior. Such solutions can mediate
tunneling not only to the maximum of potential but also to its minimum, therefore
can be helpful when contemplating the possibility of creating a universe with scalar
field in metastable state directly from ‘nothing’.
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Quasinormal Modes from a Naked
Singularity

Cecilia Chirenti, Jozef Skákala and Alberto Saa

Abstract What should be the quasinormal modes associated with a spacetime that
contains a naked singularity instead of a black hole? In the present work we address
this problem by studying the scattering of scalar fields on a curved background
described by a Reissner-Nordström spacetime with q > m. We show that there
is a qualitative difference between cases with 1 < q2/m2 � 9/8 and cases with
q2/m2 � 9/8. We discuss the necessary conditions for the well-posedness of the
problem, and present results for the low l and large l limit.

1 Introduction

The naked Reissner-Nordström (R-N) singularity is a classical general relativistic
solution in electrovacuum. The solution is expected to have a very limited meaning,
due to the fact that such singularities cannot be created by a gravitational collapse,
or by dropping a charge into the black hole. (By weak cosmic censorship conjec-
ture general naked singularities should be prohibited in general theory of relativity,
although there are indications that by including quantum effects the violations of
the conjecture could be considered [1].) Moreover, a naked singularity created from
some exotic initial data conditions should become quickly neutralized (classically, or
via quantum pair production). Some results also indicate that if one considers electro-
gravitational perturbations the R-N naked singularity becomes linearly unstable [2].
However it was discovered that the scalar field scattering problem on such a singular
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background can be still well defined [3–8], since the waves remain regular at the
origin. Despite of this nice property of the scattering problem, the spacetime is not
globally hyperbolic and the time evolution of the fields is not unique [9, 10]. This
means one has to specify additional boundary condition at the singularity to obtain
a fully unique time evolution. Another way of seeing the problem is through the
language of operators: one can understand the spatial part of the wave operator to
be a positive symmetric operator acting on a L2 Hilbert space, and then obtain the
scalar field dynamics through a suitable positive self-adjoint extension of such a sym-
metric operator [3, 4]. (One “preferred” way in which such a self-adjoint extension
can be always realized is through the so called Friedrich’s extension [3], which will
also be the case of this paper.) Anyway, after uniquely specifying the dynamics, one
should be able to characterize the scattering by a set of characteristic oscillations,
the quasi-normal modes.

Low damped quasi-normal modes are in general used as a possible source of infor-
mation about potential astrophysical objects (such as neutron stars, black holes), the
highly damped modes are potentially interesting from the point of view of quantum
gravity. Since a lot of work was devoted to the problem of quasinormal modes of the
Reissner-Nordström black hole, it might be interesting to observe what happens if
one transits from the R-N black hole case to the R-N naked singularity case (with a
reflective boundary condition). Information about “what happens” shows how many
features of the quasi-normal modes of the black hole spacetimes are specific to the
black holes themselves and what features survive much more general conditions.
Thus, briefly, we hope that despite of the fact that most likely the R-N naked singu-
larity model does not correspond to a realistic physical situation, there are still many
interesting things one can learn from such a model. One of them is a question that
we want to answer in the present paper, in particular what will be the behaviour of
the low damped quasinormal modes when departing from the R-N black hole to the
R-N naked singularity.

2 The Time Evolution Problem for a Scalar Field in the R-N
Naked Singularity

In this section we will follow the standard analysis of the scalar field evolution
in a curved background. (As an example of such an analysis see the treatment of
Schwarzschild black hole perturbations in [11, 12]. For a review that presents also
such techniques, see for example [13].) Take the Klein-Gordon equation for the
complex (charged) scalar field:

1√−g
∂μ(

√−g gμν∂νΨ ) = 0, (1)

with the metric line element given as
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gμνdxμdxν = − f (r)dt2 + f (r)−1dr2 + r2dΩ2. (2)

For the Reissner-Nordström (R-N) singularity the function f (r) is in Planck units
given as:

f (r) = 1 − 2m

r
+ q2

r2 , (q2 > m2). (3)

Take the decomposition of the field into the spherical harmonics

Ψ (t, r, θ, φ) =
∑
l,m

ψl(t, r)Yml(θ, φ). (4)

After we separate the variables we obtain the following reduced equation

d2ψl(t, r)

dt2 = f (r)

r2

d

dr

[
r2 f (r)

dψl(t, r)

dr

]
− l(l + 1) f (r)

r2 ψl(t, r). (5)

The unique solution of the given initial data problem is obtained if the condition
of boundedness of the Green’s function leads to a unique way to construct Green’s
function from the two linerly independent solutions Ul1, Ul2 of the homogeneous
equation associated to (5). Unfortunately for the case of R-N naked singularity both
of the linearly independent solutions Ul1, Ul2 are regular at 0 and the problem is
underdetermined.

Is there any intuitive physical condition that we can further impose on the fields,
that will uniquely select the appropriate Green’s function? At least to get the geomet-
rical optics continuous extension of the black hole case one can impose the condition
that nothing falls in or out of the singularity. This means there is neither absorption
nor superradiation in the scattering and the S-matrix of the K-G field is a unitary
operator.

Further in the text we will employ the field vanishing condition at 0. (This bound-
ary condition at the singularity corresponds to what is known as Friedrich’s extension
of a symmetric operator.) Thus the quasinormal modes will relate to the scattering
problem following from the time evolution determined by the boundary condition
ψ(0, t) = 0 [14].

3 The Scalar Wave Scattering on a Naked Singularity

Using φl defined as φl(r, t) = rψl(r, t) and x the tortoise coordinate given by the
condition:

dr

dx
= f (r), (6)

one can rewrite (5) into the following form
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Fig. 1 Potential V (r) given by (8) with l = 2, m = 0.5 for q = 0.48, 0.5, 0.52, 0.54 and 0.56.
(The curves from left to right correspond to the increase of charge.) Note that the dashed part of
the potential (for q = 0.48 and 0.5) is inside the black hole horizon

∂2φl(x, t)

∂t2 − ∂2φl(x, t)

∂x2 = V (m, q, l, x)φl(x, t), (7)

with

V (m, q, l, x) =
[

l(l + 1)

r2(x)
+ 2m

r3(x)
− 2q2

r4(x)

]
f
(
r(x)

)
. (8)

And, for the normal modes e−iωtφl(r), we can write

∂2φl(x)

∂x2 +
[
ω2 − V (m, q, l, x)

]
φl(x) = 0. (9)

If q > m, we can see that f (r) given by (3) has no zeros for real arguments, but
(6) can be analytically integrated.

The potential (8) has for the ratio q2/m2 less than approximately 9/8 and the
relevant x (in the naked singularity case the domain of x is constrained) 3 extrema,
one smaller “outer” maximum, one dominant “inner” maximum and minimum in the
potential valley between them. (For r → 0 the function V (r) → −∓.) For q2/m2

more than approximately 9/8 the potential has only one maximum (thus only one
peak). These features of the potential (8) can be seen in the Fig. 1.
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Fig. 2 Left Behavior of φ with l = 2 as a function of r near the center r = 0 for a late time
tF = 350, shown here in order to exemplify the effect of conditions (11) and (12) in the numerical
integration, for a spacetime with q = 0.5 and q = 0.52. Right The same as in the left plot, but this
time for the function ψ = φ/r

4 The Naked Singularity for the Small Wave Mode Numbers:
Numerical Results for the Frequencies

Our objective in this section is to solve (7) with potential (8) numerically, in the case
where q > m as described in the last section. To do this, we rewrite (7) in terms of
the light-cone variables u = t − x and v = t + x , where x corresponds to the tortoise
coordinate (6), as

∂2φ

∂t2 − ∂2φ

∂x2 = −4
∂2φ

∂u∂v
= V (r)φ , (10)

that can be integrated with the boundary conditions

φ(r = 0, t) = φ(u, v = u + 2x0) = 0 , (11)

φ(u = 0, v) = e− (v−vc)2

2σ2 , (12)

where condition (11) is a necessary condition on the field φ near the origin (see the
discussion on Fig. 2 below) and condition (12) defines an “arbitrary” relevant initial
signal to be propagated. We use the algorithm

φN = φW + φE − φS − φW + φE

8
V ΔvΔu , (13)

where Δu and Δv are the integration steps in u and v, respectively. Note that here V
is the potential (8) evaluated at the same r coordinate as φS (and φN ).

As we can see in Fig. 2, the boundary conditions (11) and (12) ensure the necessary
conditions on the fields φ and ψ near the center. As we discussed previously in Sect. 2,
the physically correct boundary condition for ψ is ψ(0, t) = 0. From this we must
have for φ(r, t) = rψ(r, t) that φ(0, t) = 0 and φ∼(0, t) = 0.
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Fig. 4 Above frequencies of the fundamental mode as a function of l for m = 0.5 and q = 0.52
(q2/m2 < 9/8). Below same as above, but this time for m = 0.5 and q = 0.6 (q2/m2 > 9/8)

In the left plot of Fig. 3 we present some typical time evolutions of φ, for a l = 2
and different q/m ratios. In the right plot we present the obtained frequencies of
the QNMs (fundamental mode) in the ωR × ωI plane. We can see a discontinuity in
the frequencies as q/m → 1, as was expected from the discussion of the potential
V (r) (see Fig. 1). We also point here that we see no significant changes, but rather a
smooth behavior as q2/m2 → 9/8 (q/m → 1.06 in the plot). But we see a point of
inflection in ωR at q/m ≤ 1.16, for which we did not find an analytical explanation.

Finally, in Fig. 4 we explore how the frequencies of the QNMs change with l. As
usual in black hole scattering problems, we see that the oscillation frequency ωR

increases with l. But the qualitative behaviour of ωI changes significantly with q/m.
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In the upper plots (q2/m2 � 9/8), |ωI | decreases with l, that is, the damping time
is longer. In the lower plots (q2/m2 � 9/8), we have the opposite tendency. This
behaviour is connected to the potential V (r). It might be also interesting to mention
that in case q2/m2 � 9/8, there is a qualitative similarity in the behaviour of the
imaginary part of the frequencies as a function of l, between the case when l is small
and the l large limit.

5 Conclusions

In this paper we analysed the problem of scalar field scattering on a R-N naked
singularity background from the point of view of quasi-normal modes. The evolution
on the R-N naked singularity is non-unique unless one specifies additional boundary
condition representing a “hair” of the singularity. The quasi-normal modes then
carry information about the “hair”. We applied a particular boundary condition, that
nothing comes out, or in from the singularity and analysed analytically, as well
as numerically, the characteristic oscillations of the scalar field perturbations (low
damped quasi-normal modes). In [14] we also analysed the eikonal l ∞ 1 case via the
analytical approach confirming the intuition obtained through the massless particle
viewpoint, and showed that an approach based on analytical approximations can be
useful also for the small l wave mode numbers. For the small l-s we calculated the
frequencies numerically via the characteristic integration method.

The basic results can be summarized as follows: for the large l there is a continuous
transition in the low damped QNM modes between the R-N black hole and the
R-N naked singularity (see [14]). However, when the ratio q2/m2 becomes larger
than approximately 9/8 then the picture becomes significantly different and the low
damped modes do not exist for large l-s. (This is a very different picture from the BH
based intuition.) For the small l numbers the modes face a discontinuous transition
when transiting from the black hole to the naked singularity. Furthermore, the l
dependence |ωI | (for small l) changes as q2/m2 becomes larger than approximately
9/8: |ωI | decreases for q2/m2 � 9/8 and increases for q2/m2 � 9/8. It might be
interesting to notice that for q2/m2 � 9/8 the increase of |ωI | as a function of l
(for small l-s) matches the behaviour of |ωI | for large l-s. In the case of large l-s
and q2/m2 � 9/8 we have shown that |ωI | of the fundamental mode grows at least
cubically with l and thus, as we already mentioned, the low damped modes do not
exist [14].
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Tracing a Relativistic Milky Way Within
the RAMOD Measurement Protocol

Mariateresa Crosta

Abstract Advancement in astronomical observations and technical instrumentation
implies taking into account the general relativistic effects due to the dynamical grav-
itational fields encountered by light while propagating from a star to the observer.
Therefore, data exploitation for Gaia-like space astrometric mission (ESA, launch
2013) requires a fully relativistic interpretation of the inverse ray-tracing problem,
namely the development of a highly accurate astrometric model, named RAMOD,
in accordance with the geometrical environment affecting light propagation itself
and the precepts of the theory of measurement. This could open a new rendition of
the stellar distances and proper motions, or even an alternative detection perspec-
tive of many subtle relativistic effects suffered by light while it is propagating and
subsequently recorded in the physical measurements.

1 Introduction

The role of astrometry has been revitalized thanks to the space mission Gaia [1]
which will be launched by ESA not earlier than September 2013. The expected end-
of-life astrometric performance, at the level of μ as accuracy, requires to take into
account light deflections effects due to the Solar System bodies. This implies that any
astrometric measurement has to be modelled in a way that stellar light propagation
and detection should be both conceived in a general relativistic framework. As matter
of fact, the trajectory of a photon is traced by solving the null geodesic in a curved
space-time dictated by General Relativity (GR) and at the same time, the detection
process usually takes place in a geometrical environment generated by a n-body
distribution as it is that of our Solar System (SS).
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Nowadays, a few approaches exist that model light propagation in a relativistic
context. Among them, the post-Newtonian (pN) and the post-Minkowskian (pM)
approximations are those mainly used ([2–4] and references therein). Inside the Con-
sortium constitued for the Gaia data reduction (Gaia CU3, Core Processing, DPAC)
two different formulations of relativistic light propagation have been developed to
model astrometric observations of distant sources by an SS observer: (i) the GREM
formulation [3], known as the Gaia baseline model IAU coordinate based [5], and (ii)
the RAMOD model [6], an alternative approach fully compliant with the precepts of
local measurement in a relativistic setting. Actually RAMOD is a family of astromet-
ric models of increasing intrinsic accuracy conceived to solve the inverse ray-tracing
problem in a general relativistic framework. Their theoretical equivalence to the 1-μ
as accuracy level has been recently demonstrated ([7] and reference therein) and
will be exploited, in a process, called in the Gaia jargon, Astrometric Verification
Unit (AVU) by comparing the results of two fully independent astrometric recon-
structions of the celestial sphere to assess all-sky scientific reliability on position,
including parallax, and proper motions. The link between the models is crucial as far
as the Gaia’s goal is concerned: the unbiased measurements, i.e. independently from
models, of the most fundamental astrophysical stellar parameters (absolute distance,
angular position, velocity, and mass) for approximately 1 billion individual stars!

It can be inferred that the treatment of light propagation in time-dependent gravita-
tional fields encompasses issues from fundamental astronomy to cosmology ([8–13]
and references therein). The accurate measurement of the motions of stars in our
Galaxy can also provide access to the cosmological signatures in the disk and halo,
while astrometric experiments from within our Solar System can probe possible
deviations from GR in an unrivaled way just one century after Einsteins’s great dis-
coveries. With the Gaia mission approaching launch, Relativistic Astrometry is about
to trace the geometry of the visible Milky Way.

2 The Astrometric Problem

The astrometric problem consists, firstly, in solving the null geodesic for the single
stellar photon, in order to trace back the light trajectory to the initial position of the
emitting source and, then, determine its astrometric parameters through the astro-
metric observable, according to the chosen reference frames. Differently from the
other approaches, RAMOD’s full solution requires the integration of a set of coupled
non-linear differential equations, called “master equations”. The unknown of these
equations is the local line-of-sight Λ̄ as measured by the fiducial observer u at the
point of observation in her/his rest-space. At the time of observation, Λ̄ provides the
boundary condition for uniquely solving the light path by means of the relativistic
definition of the observable [14] and the satellite-observer frames [15]. The main pur-
pose of the RAMOD approach is to express the null geodesic through all the phys-
ical quantities entering the process of measurement without any approximations,
in order to entangle all the possible interactions of light with the background
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geometry. RAMOD uses a 3+1 characterization of space-time in order to measure
physical phenomena along the proper time and on the rest-space of a set of fiducial
observers according to the following measurement protocol [16]: (i) specify the phe-
nomenon under investigation; (ii) identify the covariant equations which describe it;
(iii) identify the observer who makes the measurements; (iv) choose a frame adapted
to that observer allowing the space-time splitting into the observer’s space and time;
(v) understand the locality properties of the measurement under consideration (local
or non-local with respect to the background curvature); (vi) identify the frame com-
ponents of those quantities which are the observational targets; (vii) find a physical
interpretation of the above components following a suitable criterion; (viii) verify
the degree of the residual ambiguity in the interpretation of the measurements and
decide the strategy to evaluate it (i.e. comparing what is already known).

Solving the astrometric problem in practice means to compile an astrometric
catalog with the same order of accuracy as the measurements. To what extent, then,
is the process of star coordinate “reconstruction” consistent with General Relativity
and Theory of Measurements?

3 The Geometry of the Astrometric Problem

Gaia-like measurement takes place inside the Solar System, i.e. a weakly relativistic
gravitationally bound system, described by the metric gφκ = νφκ + hφκ + O(h2).
Now, in order to gauge how much curvature can be considered local or not with
respect to the measurement, let us resort to the virial theorem which requires an
energy balance of the order of |hφκ | ≤ U/c2 ∼ v2/c2, where v is the characteristic
relative velocity within the system.1 Therefore the level of accuracy is fixed by the
order of the small quantity ∂ ∼ (v/c). Since the system is weakly relativistic, the
perturbation tensor hφκ contributes with even terms in ∂ to g00 and gi j (lowest order
∂2) and with odd terms in ∂ to g0i (lowest order ∂3, [16, 17]); its spatial variations
are of the order of |hφκ |, while its time variation is of the order of ∂|hφκ |. This means
that at the order of ∂3, not only the time dependence of the background metric cannot
be ignored any longer, but also the vorticity, which measures—in the process of
foliation—how a world-line of an observer rotates around a neighboring one, can
be neglected being proportional to the g0i term of the metric (see details in [7]).
Consequently, it is not possible to define a rest-space of a fiducial observer that
covers the entire space-time. Any observer u can be considered at rest with respect
to the coordinates xi only locally, and for this reason u is called the local barycentric
observer, as identified in [18]. The master equations satisfied by the vector field Λ̄ up
to the ∂3 order of accuracy are

1 For a typical velocity ∼30 km/s, (v/c)2 ∼1 milli-arcsec.



350 M. Crosta

d Λ̄0

dξ
= Λ̄i Λ̄ j h0 j,i + 1

2
h00,0, (1)

d Λ̄k

dξ
= 1

2
Λ̄k Λ̄i Λ̄ j hi j,0 − Λ̄i Λ̄ j

(
hkj,i − 1

2
hi j,k

)
− 1

2
Λ̄k Λ̄i h00,i

− Λ̄i (
hk0,i + hki,0 − h0i,k

) + 1

2
h00,k + Λ̄k Λ̄i h0i,0 − hk0,0, (2)

named “RAMOD4 master equations” in the dynamical case [7, 18], ξ being the
parameter of the null geodesic. Note that there is a differential equation also for the
Λ̄0 component, which represents an opportunity to better decipher light propagation
in future developments.

The ∂2 regime, instead, is referred to as the “static case”, or “static space-time”,
i.e. a stationary space-time in which a time-like Killing vector field u has vanishing
vorticity [6]. In this case the parameter ξ on u is the proper time of the physi-
cal observers who transport the spatial coordinates without shift. Any hypersurface
t (x, y, z) = constant , at each different coordinate time t , can be considered the rest
space everywhere of the observer u and the geometry that each photon feels is, then,
identified with the weak relativistic metric where g0i = 0. In these circumstances
we can define a one-parameter local diffeomorphism which maps each point of the
null geodesic to the point on the slice at the time of observation, say S(to) [6]:

d Λ̄k

dξ
= −Λ̄k

(
1

2
Λ̄i h00,i

)
− πks

(
hs j,i − 1

2
hi j,s

)
Λ̄i Λ̄ j + 1

2
πksh00,s . (3)

Equation (3) determines light propagation in the static case, and are called “RAMOD3
master equations” [6]. Nevertheless, (2) can be integrated taking into account also
the expansion of the congruence u [7] and, then, velocity of a uniform source can be
included from τ0h00. Only a vorticity-free space-time allows to parametrize simul-
taneously the mapped trajectory with respect to the Center of Mass on S(to); if the
Euclidean scalar product is applied, the RAMOD procedure for the parametrization
generalizes the one used in [2] or [3, 7].

The fact that light tracing is different with or without the vorticity term makes
evident how the RAMOD recipe, based on a measurement protocol, differs from
a direct “coordinate” approach which, instead, does not need to discriminate the
accuracy of the geometry to be involved.

4 Matching Physics and Coordinates at High Accuracy

The quantity Λ̄ is the unitary four-vector representing the local line-of-sight of the
incoming photon as measured by the local observer u in his/her gravitational envi-
ronment; it represents a physical quantity in any case, with or without vorticity. By
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implementing its coordinate expressions straightaway, (2), i.e. those for the spatial
components, are converted into the coordinate ones derived in [2] at the first pM
approximation of the null geodesic [7]. This result was expected, since both models
are deduced from the null geodesic in a weak field regime. Then, once such an equiv-
alence is obtained, one could solve the master equation in the RAMOD framework by
applying the same procedure as adopted in [2]. However, consistently with the rea-
soning of the previous section, only RAMOD3 master equation can be transformed
into the solution given by [2], since the parametrization in RAMOD is possible only
in a vorticity-free space-time. In fact, if one assumes a constant light direction and a
perturbed straight line trajectory, the equivalence of the two parametrizations implies
a change of coordinates which transforms (2) into the same parametrized equation
(36) used in [2]. Nevertherless, the integration of the null geodesic in [2] intends to
consider the gravitomagnetic effects. In addition, the metric coefficients hφκ depend
on the retarded distance r(a) as discussed in [18]. This means that one has to compute
the spatial coordinate distance r(a) from the points on the photon trajectory to the
a-th gravity source at the appropriate retarded time and up to the required accuracy.
Hence, if we wish our model to be accurate to ∂3, it suffices that the retarded distance
r contributes to the gravitational potentials—which we recall are at least of order
∂2—with terms of the order of ∂. Instead, to the order of ∂2 (static geometry), the
contribution of the relative velocities of the gravitating sources can be neglected.
Indeed, in the stationary case, with expansion, one can choose to further expand the
retarded distance in order to keep the terms depending on the source’s velocity up
to the desired accuracy. Obviously the effects due to the bodies’ velocity cannot be
related to a gravity-magnetic effect, at least up to the scale where the vorticity can
be neglected. Actually, the positions of the bodies can be recorded as subsequent
snapshots onto the mapped trajectories and deduced as “postponed” corrections in
the reconstruction of the photon’s path.

The importance of the measurement protocol in setting the correct role of the
coordinates, and thus avoiding misinterpretations of parallel but different quantities,
is also discussed in [14], where, within the context of the Gaia mission (ESA, [1]), a
first comparison between RAMOD and GREM (Gaia RElativistic Model, [3]) was
carried out via the extrapolation of the aberrational term in the local light direction.
Differences, that already exist at the level of the aberration effect, suggest particular
care in the interpretation of the final catalog. Another example which shows how
the accurate inclusion of the geometry redraws a standard measurement, is given by
the formula for the Doppler shift in [13]. The spectroscopic and astrometric data
that will be provided by the new generation of satellites can be complemented with
one another, thus leading to a general-relativistic Doppler which is exact up to and
including the ∂3 terms. It is also showed that a previously proposed Doppler-shift
formula is definitely not adequate to this task, since it misses relevant relativistic
corrections already at ∂2.
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5 Conclusions

Modeling light propagation is intrinsically connected to the identification of the
geometry where photons move. The different conception of RAMOD provides a
method to exploit highly accurate observations to their full extent, as could be the
case for the astrometric data coming from the ESA mission Gaia, possibly a new
beginning in the field of Relativistic Astrometry. The comparison between differ-
ent light modeling approaches is extremely important since Gaia will “change” our
scientific vision and we are implementing new methods using real data. By com-
paring different formulations of a null geodesic we have the opportunity to exploit
the advantages of the different methods and improve on our understanding of light
propagation. As far as RAMOD method is concerned, the geometrical distinction
between the master equations introduces a criterion to disentangle coordinate and
physical effects.

In RAMOD the vorticity term cannot be neglected at the order of ∂3: ignoring
it locally is valid only in a small neighborhood compared to the scale of vorticity
itself. When the vorticity term is needed the light trajectory cannot be laid out on a
unique rest-space of simultaneity from the observer to the star, wherever the latter
could be located. Without vorticity RAMOD allows a parametrization of the light
trajectory and sets the level of reciprocal consistency with the existing approaches.
Only master equations of RAMOD4, i.e. the case of a dynamical space-time, fully
preserve the active content of gravity. This solution is accurate enough to implement
Relativistic Astrometry beyond Gaia. Considering the number of objects that can
be observed in high accuracy regime, the local line-of-sight, as a physical entity,
can be also used in the future for an “inverse parameter problem” approach, able to
statistically determine the metric also outside the Solar System [19].
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Is There a Flatness Problem in Classical
Cosmology?

Phillip Helbig

Abstract I discuss various definitions of the flatness problem and previous claims
that it does not exist. I also present a new quantitative argument which shows that it
does not exist in cosmological models which collapse in the future.

1 Introduction

Questioning the existence of the flatness problem might seem to some like question-
ing the existence of the expansion of the universe. The flatness problem (e.g. [1]) and
the fact that inflation can solve it (e.g. [2]) have become part of standard cosmology,
at least for many definitions of ‘standard’. How can something so fundamental not
exist? My own view is that the emphasis has been so much on the solution of the
flatness problem through inflation that the flatness problem itself has been rather
neglected and its existence just assumed without being investigated in detail.

2 Basic Cosmology

I assume that, at the level of detail necessary, the universe can be described by the
Friedmann–Lemaître equation

Ṙ2 = 8πGρR2

3
+ ΛR2

3
− kc2, (1)

P. Helbig (B)

Thomas-Mann-Str. 9, 63477 Maintal, Germany
e-mail: helbig@astro.multivax.de

J. Bičák and T. Ledvinka (eds.), Relativity and Gravitation, 355
Springer Proceedings in Physics 157, DOI: 10.1007/978-3-319-06761-2_50,
© Springer International Publishing Switzerland 2014



356 P. Helbig

Fig. 1 Evolutionary
trajectories in the λ-Ω plane
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where the symbols have their usual meaning (e.g. [3]). It can be useful to express
(1) with the values of the dimensionless parameters as observed now, denoted by the
suffix 0. This leads to

Ṙ2 = Ṙ2
0

(
Ω0 R0

R
+ λ0 R2

R2
0

− K0

)
. (2)

Note that, at any time,

R = c

H

sign(K )√|K | . (3)

In general, H , λ and Ω all change with time. (See [4] for an excellent discussion of
the evolution of λ and Ω .) The change in λ with time is due entirely to the change in H
with time, since Λ is constant; the variation in Ω is due both to variation in H and to
the decrease in density as the universe expands. For the present discussion, the basic
information needed can be seen in Fig. 1, referring at the moment only to the thick
lines and curves. The vertical line corresponds to λ = 0; the diagonal line corresponds
to k = 0 with k = −1 below it and k = +1 above it. The curve near the vertical line
(corresponding to the A1 curve in [4]) separates models which will collapse (to the
left) from those which will expand forever (to the right). Models on the curve start
arbitrarily close to the Einstein– de Sitter model (like all non-empty big-bang models)
and asymptotically approach the static Einstein model which has λ = Ω = ∞ (since
H = 0; Λ and ρ have finite values). The other curve (corresponding to the A2 curve
in [4]) separates big-bang models (to the left) from non–big-bang models (to the
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right); the latter contract from an infinite to a finite size, then expand forever. Models
on the curve start at the static Einstein model and asymptotically approach the de Sitter
model (the latter feature is shared with all models which expand forever and have
λ > 0). The thin curves show some sample trajectories in the λ-Ω parameter space.
(Note that all the thick lines, curves and points of intersection in Fig. 1 are also
trajectories.) Also, note that the trajectories do not cross; this means that the history
of a cosmological model (i.e. the way λ and Ω change with time) is completely
determined by the values at any point on it (in practice, by measuring the values at
the present time, λ0 and Ω0).

3 A Very Brief History of the Flatness Problem

The flatness problem appears in two forms. One states that if Ω ≈ 1 today, then in the
early universe it was arbitrarily close to 1; the assumption is that some ‘mechanism’
is needed to explain this ‘fine-tuning’ (e.g. [2]). (It is usually not stated but almost
always assumed that no fine-tuning would be necessary if Ω were not ≈ 1 today.)
The other states that if Ω changes with time, then we should be surprised that Ω

is (still) ≈ 1 today [5].1 Coles and Ellis [6] discuss three ‘solutions’ to the flatness
problem—Ω ≡ 1 (and λ ≡ 0), k = 0, anthropically selected special time—which,
however, are ultimately unsatisfactory. Are there any satisfactory ones?

The flatness problem is often presented as a fine-tuning problem (e.g. [2]): if Ω

is near 1 to day, then at some time tfine in the past it must have been 1 to a very
high accuracy. I refer to this sense of the flatness problem as the ‘qualitative flatness
problem’. This argument is completely bogus, as has been pointed out by many
authors [5, 6]: all non-empty models begin their evolution at the Einstein– de Sitter
model, so of course the further back in time one goes, the ‘more finely tuned’ Ω is.
The point is, within the context of classical cosmology, there is nothing special about
a time tfine chosen so that Ω is very close to 1 at that point.

Evrard and Coles [7] (see also Coles and Ellis [6]) also point out that the assump-
tion implicit in the qualitative flatness problem, namely that some wide range of
Ω values are a priori equally likely at some early time, constitutes a prior which is
incompatible with the assumption of minimal information. This can be regarded as
a quantitative solution to the qualitative flatness problem (or, perhaps, an argument
against its existence).

The qualitative flatness problem thus does not exist; it is merely a consequence of
the way in which a universe, described by the Friedmann–Lemaître equation, evolves
and how dimensionless observable quantities such as Ω are defined. Nevertheless,

1 Historically, the flatness problem was first discussed during a time when λ was thought to be zero.
If λ is not constrained to be zero, then the flatness problem should be re-phrased as the Einstein–
de Sitter problem, i.e. the question is why the universe is (in some sense) close to the Einstein–
de Sitter model (which is an unstable fixed point and a repulsor) today when |λ| and Ω can take on
values between 0 and ∞. However, for brevity I will continue to use the term ‘flatness problem’
even for the more general case and sometimes mention only the change in Ω with time.
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even if it is not a puzzle why Ω = 1 at early times, one can still ask whether we
should be surprised that Ω ≈ 1 today. The rest of this article is concerned mainly
with the second form: should we be surprised that Ω ≈ 1 today? This ‘quantitative
flatness problem’ is more subtle, but also has solutions within the context of classical
cosmology.

4 Cosmological Models Which Collapse in the Future

All cosmological models (assumed to be expanding now) with λ < 0 will collapse
in the future: R̈ is negative for all values of R and for large R is proportional to R.
Models with λ = 0 will collapse for Ω > 1. In addition, models with λ > 0 will
collapse provided that Ω > 1 (which in this case implies K > 0, i.e. k = +1), q > 0
and α < 1, where

α = sign(K )
27Ω2λ

4K 3 (4)

[4, 5]. (The A1 and A2 curves mentioned above have α = 1.) In Fig. 1, these are in
the area between λ = 0 and the A1 curve. Empty big-bang models start arbitrarily
close to the Milne model with (λ,Ω) values of (0, 0); non-empty big-bang models
start arbitrarily close to the Einstein–de Sitter model with (λ,Ω) values of (0, 1). The
evolution of λ and Ω can be viewed as trajectories in the parameter space: λ and Ω

evolve from the starting point to infinity and return along the same trajectory. (For
the definitive discussion, see [4]; a very useful visualization can be found in [8].) The
interesting question with regard to the flatness problem is the amount of time spent
in various parts of parameter space. To quantify this, I have calculated the quotient
of the age of the universe now and at the time of maximum expansion as a function
of λ and Ω . The age of the universe is given by

t =
R(t)∫

0

dR√
Ṙ2

0

(
Ω0 R0

R + λ0 R2

R2
0

− K0

) , (5)

which follows from (2). For the current age, the upper limit is given by (3); at the time
of maximum expansion it is found by calculating the (smallest) zero of Ṙ2 (since
Ṙ2 cannot be negative). This is shown in Fig. 2. It is clear that large values of λ and
Ω occur only during a relatively short time in the history of the universe, near the
time of maximum expansion (at the precise time of maximum expansion, λ and Ω

are infinite since H = 0). Note that this argument is completely independent of H0.
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Fig. 2 The age of the universe
as a fraction of the time be-
tween the big bang and max-
imum expansion. Contours,
from right to left, are at 0.5,
0.6, 0.7, 0.8 and 0.9
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5 Cosmological Models Which Expand Forever: Reversing the
Fine-tuning Problem

Lake [5] has presented a solution which solves the flatness problem as well for models
with k = +1 which will expand forever. (For non-collapsing models, large values of
λ and Ω are possible only for k = +1.) Trajectories in the λ-Ω plane have a constant
of motion given by (4). It seems natural to distinguish cosmological models on the
basis of their value of α. Large values of λ and Ω are possible only for α � 1. This
is shown in Fig. 3. (Note that, for clarity, only Ω > 1 is shown!) It is obvious that
α ≤ 1 is a necessary condition for having infinitely large values of λ or Ω . Already
for α = 2 the maximum value of λ is just 2 (for Ω = 2) and the maximum value of
Ω is ≈ 3.5 (for λ = 1.25).

In this case, the fine-tuning argument is reversed; only in the case of fine-tuning
do λ and Ω become arbitrarily large. This demonstrates quantitatively that there
is no quantitative flatness problem regarding arbitrarily large values of λ or Ω for
models which expand forever. This argument is also independent of the value of H0.
However, all non-empty models which expand forever asymptotically approach the
de Sitter model at (λ,Ω) = (1, 0). Thus, one final aspect of the quantitative flatness
problem remains: Ω can become arbitrarily small. This is investigated in the next
section.
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Fig. 3 The constant of motion
α (see (4)). From upper left to
lower left, contours are at 0.1,
0.2, 0.5, 1, 2, 5, 10, 20, 50 and
100

λ

Ω

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

2.
0

3.
0

4.
0

5.
0

6.
0

7.
0

6 Cosmological Models Which Expand Forever: the Weak
Anthropic Principle

I have now covered the entire λ-Ω parameter space except for big-bang models with
(a) q < 0 (which implies λ > 0) and (b) Ω less than ≈ 2 (all three values of k are
possible) and shown that in all cases there is no flatness problem. What about this
remaining portion of parameter space? Models here all have K ≈ 0 and approach
the de Sitter model asymptotically. This means that there is no flatness problem in
the restricted sense, as pointed out by Lake [5]. However, Ω becomes arbitrarily
small (and λ arbitrarily close to 1). Thus, there is still a problem in that we do not
observe such values, even though they exist for almost the entire (infinite) lifetime
of the universe. This is essentially the question ‘if the universe lasts forever, then
why are we near the beginning?’ Note that this question could be asked at any time.
One could leave it at that and say that since any finite age is arbitrarily close to the
beginning, there is nothing special about our time and thus no flatness problem in
the time-scale sense (i.e. the quantitative flatness problem, why is Ω not arbitrarily
small today). This is discussed in more detail in [9].

7 Summary

The qualitative flatness problem, i.e. the puzzle why the universe was arbitrarily close
to the Einstein–de Sitter model (or, for an empty universe, the Milne or de Sitter
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model) at early times, does not exist. It is merely a consequence of the way λ and
Ω are defined. Neither does the quantitative flatness problem exist: although the
cosmological parameters in general evolve with time, it is not puzzling that we don’t
observe extreme values for them today. In the case of models which will collapse
in the future this is because large (absolute) values of λ and Ω occur only during
a relatively short time in the lifetime of such a universe, namely near the time of
maximum expansion. λ and Ω can become large only when H becomes small, and
this happens only during the time when the universe is at or near its maximum size.
(Arbitrarily small (absolute) values, if they occur at all, also occur for only a relatively
short time.) For models which will expand forever, large values are possible only for
k = +1. However, this occurs only for α ≈ 1. In this case, the fine-tuning argument
is reversed; only in the case of fine-tuning do λ and Ω become arbitrarily large. Since
all models which will expand forever asymptotically approach Ω = 0, arbitrarily
small values of Ω can occur. Those with λ = 0 (and hence k = −1) approach the
Milne model with Ω = 0; models with λ > 0, whatever the value of k, approach
the de Sitter model with λ = 1 (the Milne and de Sitter models themselves are of
course stationary points). (If λ = 0 at any time then λ = 0 at all times. Otherwise,
arbitrarily small values of λ, if they occur at all, occur only for a relatively short
time.) However, if H0 has a value similar to or smaller than the observed value, small
values of Ω will occur only in the far future when anthropic arguments probably
make the observation of such a low value of Ω unlikely. While (for λ > 0) a higher
value of H0 would allow a low value of Ω even for an age near the observed age,
such a universe would have spent only a very short time during which Ω was not
very small, so structure formation would have been strongly suppressed.
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Cosmology in f (R) Exponential Gravity

Luisa Jaime, Marcelo Salgado and Leonardo Patiño

Abstract Using an approach that treats the Ricci scalar itself as a degree of freedom,
we analyze the cosmological evolution within an f (R) model that has been proposed
recently (exponential gravity) and that can be viable for explaining the accelerated
expansion and other features of the Universe. This approach differs from the usual
scalar–tensor method and, among other things, it spares us from dealing with unnec-
essary discussions about frames. It also leads to a simple system of equations which
is particularly suited for a numerical analysis.

1 Introduction

Since the discovery of the accelerated expansion of the Universe from the obser-
vations of supernovae Ia [1–3] and its interpretation using the ΛCDM model of
standard cosmology, a large amount of investigations have been devoted to explain
the same phenomenon but using dark energy substances different from the cosmolog-
ical constant Λ. One can rank the dark energy models from the most “conservative”
to the most “radical” ones. Among the former we can mention those which do not
introduce new fields or modifications to general relativity but which consider that
inhomogeneities in the Universe could be enough to account for the observations [4].
There are also the models that introduce new fields and perfect fluids with exotic
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equations of state within the framework of general relativity (GR) in order to avoid
the “problems” associated with Λ [5–8]. For instance, quintessence, k-essence, and
Chaplygin gas are some of the most popular models of this kind. The most radi-
cal attempts to explain the accelerated expansion are perhaps those which propose
to modify GR while keeping the hypothesis of homogeneity and isotropy as a first
approximation. Many alternate theories of gravity have been proposed to explain this
phenomenon as well as those related with the dark matter (e.g. rotation curves of
galaxies). The modified f (R) metric gravity is just one of such theories and maybe
the most analyzed one in the last ten years, where the geometry takes care of mimick-
ing the dark energy. This alternative is certainly radical since GR has been thoroughly
tested for almost one hundred years and it has not only supported all the tests but
in addition most of its predictions have been confirmed as well. Thus, the challenge
of modified gravity is both to be consistent with GR tests and also to explain the
phenomena they were called for. This is not a trivial task and many f (R) models
have failed in the attempt. The story concerning dark substances does not end with
the accelerated expansion. The measurements of the angular distribution of cosmic
background radiation anisotropies in the sky can also be explained by the ΛCDM
model, and therefore, the task for the alternative models, theories or dark energy
substances is even more demanding.

As we mentioned, f (R) theories have been studied in detail in a recent past and
it is out of the scope of the present article to discuss all the properties, problems and
features associated with some of the specific models proposed before (see [9–13] for
a review).

Our aim is to report the results of a potentially viable candidate, termed exponential
gravity, as a model for the accelerated expansion, but using an approach that has been
proposed recently by us [14] and which avoids the identification with the scalar–
tensor theories. The reason to follow this “unorthodox” method is because in some
cases the scalar–tensor (ST) method can lead to ill-defined potentials, and moreover
because we want to circumvent any possible discussion concerning the use of frames
(Einstein vs. Jordan). Debates of this sort plague the subject, some of which have
only led to create confusion instead of shedding light.

With our technique we propose to treat the Ricci scalar itself as a degree of free-
dom, instead of using φ = fR as in the ST method (hereafter a subindex R indicates
∂/∂R). Our approach also spare us of inverting all the quantities depending on R for
treating them as functions of φ. Moreover, we have found that in several specific
applications the field equations can be recasted in a rather friendly way that allows
us to treat them numerically or even analytically [14, 15]. In the next section we
present our method and apply it to the Friedmann-Roberson-Walker (FRW) space-
time within the scope of analyzing the cosmological evolution using the exponential
gravity model. The analysis of other viable f (R) models using the current approach
can be seen in [14] and in references therein using other techniques.
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2 f (R) Theories, the Ricci Scalar Approach

The action in f (R) gravity is given by:

S[gab,ψ] =
∫

f (R)

2κ

√−g d4x + Smatt[gab,ψ], (1)

where κ → 8πG0 (we use units where c = 1), f (R) is a sufficiently differentiable
but otherwise a priori arbitrary function of the Ricci scalar R, and ψ represents
schematically the matter fields. The field equation obtained from (1) is:

fR Rab − 1

2
f gab − (∓a∓b − gab�) fR = κTab, (2)

where fR indicates ∂R f , � = gab∓a∓b is the covariant D’Alambertian and Tab is
the energy-momentum tensor (EMT) of matter associated with the ψ fields. From
this equation it is straightforward to obtain the following equation and its trace [14,
15]

Gab = 1

fR

[
fRR∓a∓b R + fR R R(∓a R)(∓b R) − gab

6

(
R fR + f + 2κT

)
+ κTab

]
, (3)

�R = 1

3 fR R

[
κT − 3 fR R R(∓ R)2 + 2 f − R fR

]
, (4)

where (∓ R)2 := gab(∓a R)(∓b R) and T := T a
a .

The idea is then to solve simultaneously (3) and (4) for the metric gab and R as a
system of coupled partial differential equations.

It is important to mention that the field equations imply that the EMT of matter
alone is conserved, i.e., it satisfies ∓aT ab = 0.

In this contribution we shall focus on the model f (R) = R∼[R̃ − λ(1 − e−R̃)],
referred to as exponential gravity, where R̃ = R/R∼, λ is a positive dimensionless
constant and R∼ > 0 is also a constant that fixes the built-in scale and which is of the
order of the current Hubble parameter H2

0 . This kind of exponential models have been
analyzed in the past by several authors using a different technique [16–21]. Other
variants of this model have also been analyzed [22]. The scalar fR = 1 − λe−R̃

is positive provided R > R∼lnλ and this condition ensures Geff := G0/ fR >

0. This latter is always satisfied in the cosmological solutions given below. The
possible de Sitter points correspond to trivial solutions R = R1 = const. of (4)
in vacuum (T = 0) and give rise to an effective cosmological constant Λeff =
R1/4 in (3) (Gab = −gabΛeff in vacuum). Here R1 > 0 is a critical point of the
“potential” V (R) such that VR(R1) = 0 with VR := (2 f − R fR)/3 = R∼[R̃(1 +
λe−R̃) − 2λ(1 − e−R̃)]/3, and VRR = 1 − λ(1 + R̃)e−R̃ . The “potential” is given by
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Fig. 1 f (R) exponential gravity (left panel) and the potential V (R) (right panel) for several values
of λ

V (R) = R2∼[R̃(R̃ − 4λ)− 2λ(R̃ + 3)e−R̃)]/6. For 0 < λ ≤ 1 one can easily see that
V (R) has just one critical point at R = 0 which is not a de Sitter point as in this case
Λeff → 0. The point is a global minimum (c.f. VRR(0) = 1 − λ). For λ > 1 there is a
local maximum at R = 0 and a global minimum at R = R1 > 0 which corresponds
to the actual de Sitter point that the cosmological solution reaches asymptotically in
the future. There is also a local minimum at R = R2 < 0, but it is an anti de Sitter
point which is never reached as the cosmological solutions take place only in the
domain R > 0. The potential V (R) is depicted in Fig. 1 (right panel) where one can
appreciate the critical points just described. In the high curvature regime R̃ ∞ 1,
we have f (R) ∗ R − λR∼, and thus the model acquires an effective cosmological
constant Λ∞

eff := λR∼/2 (c.f. left panel of Fig. 1). From the figure we see that
for λ sufficiently high, the de Sitter point verifies R̃1 ∞ 1, and thus R1 ∗ 2λR∼
as it turns out from VR(R1) = 0. Therefore Λeff ∗ Λ∞

eff . Finally, we stress that

fRR = λe−R̃/R∼ > 0 which ensures that no singularities are found in the equations
due to this scalar and moreover it guarantees that given VRR(R1) > 0 the effective
mass m2 := VRR/ fR R = ( fR − R fRR)/(3 fR R)|R1 of the scalar mode is positive.

3 Cosmology in f (R)

We assume the spatially flat FRW metric given by:

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
. (5)
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From (3) and (4) we have

R̈ = −3H Ṙ − 1

3 fRR

[
3 fR R R Ṙ2 + 2 f − fR R + κT

]
, (6)

H2 = κ

3
(ρ + ρX ) , (7)

Ḣ = −H2 − κ

6
{ρ + ρX + 3 (prad + pX )} , (8)

where a dot stands for d/dt and H = ȧ/a, is the Hubble expansion. In the above
equations we have included the energy density ρ associated with matter (baryons,
dark matter and radiation) as well as the geometric dark energy (GDE) density ρX

and pressure pX given respectively by Jaime et al. [14]

ρX = 1

κ fR

{
1

2
( fR R − f ) − 3 fRR H Ṙ + κρ (1 − fR)

}
, (9)

pX = − 1

3κ fR

{
1

2
( fR R + f ) + 3 fRR H Ṙ − κ (ρ − 3prad fR)

}
. (10)

Another differential equation that can be used to solve for H instead of (8) is
given by R = 6(Ḣ + 2H2). This latter is no other than the Ricci scalar computed
directly from the metric (5). Equation (7) amounts to the modified Hamiltonian
constraint which we use to set the initial data and also to monitor the accuracy
of the numerical solutions at every integration step. At this regard, we stress that
we shall not use the cosmic time t but instead α = ln(a/a0) as “time” parameter
(see [14]), where a0 is the present value of a. Notice that at the de Sitter point
R ⊂ R1 = const. where 2 f (R1) = R1 fR(R1) and with ρ ⊂ 0, prad ⊂ 0 (9)
and (10), lead to ρX ⊂ Λeff/κ and pX ⊂ −Λeff/κ , respectively, and from (7)
and (8), H2 ⊂ H2

vac = Λeff/3 = R1/12, and q = −ä/(aH2) ⊂ qvac = −1. So
the main idea behind all f (R) models is that as the Universe evolves, R ⊂ R1, and
thus the GDE dominates and mimics an effective cosmological constant that allows
to explain the accelerated expansion required to account for the observations.

The matter variables obey the conservation equation ρ̇i = −3H (ρi + pi ) for each
fluid component (with pbar,DM = 0 and prad = ρrad/3) which integrates straightfor-
wardly and gives rise to the usual expression for the energy density of matter plus
radiation: ρ = (ρ0

bar + ρ0
DM)(a/a0)

−3 + ρ0
rad(a/a0)

−4, where the knotted quantities
indicate their values today. The X–fluid variables (9) and (10) also satisfy a con-
servation equation similar to the one above, but with an EOS ωX := pX/ρX that
evolves in cosmic time. Other possible inequivalent definitions of ρX , pX and ωX

have been adopted in the past, but they suffer of several drawbacks (see [14] for a
detailed discussion).

The total EOS is defined by ωtot = (prad + pX )/(ρ + ρX ) which using (9) and
(10) yields
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Fig. 2 Ricci scalar (left panel) and the Hubble expansion (right panel) for several values of λ and
R∼ (given in units of H2

0 )

ωtot = −1

3

[
1
2 ( fR R + f ) + 3 fRR H Ṙ − κρ

1
2 ( fR R − f ) − 3 fRR H Ṙ + κρ

]
. (11)

This EOS allows us to track the epochs where the Universe is expanding in a
decelerating or accelerating fashion. If ωtot < −1/3 then ä > 0, while ä < 0 if
ωtot > −1/3.

4 Numerical Results and Discussion

We integrate the differential equations forward, from past to future, starting from a
given z = a0/a − 1, where matter dominates, to z ⊂ −1 where the GDE prevails.
The initial conditions are fixed as in [14]. Figure 2 shows the Hubble expansion and
the Ricci scalar for several values of λ. In all the cases where λ > 1, R reaches the de
Sitter point at the global minimum of V (R). For λ = 1 because the potential is very
flat around the global minimum at R = 0, and also due to the friction term, R varies
very slowly as it approaches the minimum. This explains why in this case the model
also mimics a cosmological constant. Figure 3 depicts the fraction of dimensionless
densities Ωi = κρi/(3H2) which satisfy the constraint Ωrad + Ωmatt + ΩX = 1,
whereΩmatt := Ωbar+ΩDM. The radiation contribution, although taken into account,
is very small and cannot be appreciated from the plots. The current abundances at
z = 0 (today) match reasonably well the predicted values of the ΛCDM model and
the exponential models show an adequate matter domination era. The EOS of GDE
is plotted in Fig. 4 (left panel), and like in other f (R) models [14], it oscillates
around the phantom divide value ωΛ = −1 before reaching its asymptotic value as
z ⊂ −1. The total EOS depicted in Fig. 4 (right panel) shows that at higher z the
Universe is dominated by matter with ωtot ∃ 0, and then interpolates to the value
ωtot = −1 in the far future. At z = 0, ωtot is similar to the value ωtot ∃ 0.75 predicted
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Fig. 3 Evolution of Ωmatt (red solid line) and ΩX (blue solid line) for λ = 1 and R∼ = 4H2
0 (left

panel) and λ = 2.5 and R∼ = 2H2
0 (right panel). For reference the corresponding quantities of the

ΛCDM model are included in each panel (dashed lines)

Fig. 4 The EOS ωX (left panel) and the total EOS ωtot (right panel)

Fig. 5 Luminous distance (left panel) compared with the Union 2 data [3]. Deceleration parameter
(right panel)

by the ΛCDM model. Figure 5 (left panel) shows the (modulus) luminous distance
computed as in [14] and the deceleration parameter (right panel).

In these exponential models it is technically difficult to integrate far in the past
since fRR ⊂ 0 exponentially. Since this quantity appears in the denominator of (6), it
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produces large variations that affects the precision during the numerical integration.
This is something that we had encountered in other f (R) models [14].

The exponential model seems to be consistent with the cosmological observations
and also with the Solar System [17]. Nevertheless, like other f (R) models that
look viable as well, a closer examination is required in all possible scenarios before
considering f (R) theories as a serious threat to general relativity.

Acknowledgments This work was partially supported by PAPIIT grants IN107113 and IN117012.
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Regular and Chaotic Motion in General
Relativity: The Case of a Massive Magnetic
Dipole

Ondřej Kopáček, Jiří Kovář, Vladimír Karas and Yasufumi Kojima

Abstract Circular motion of particles, dust grains and fluids in the vicinity of
compact objects has been investigated as a model for accretion of gaseous and dusty
environment. Here we further discuss, within the framework of general relativity,
figures of equilibrium of matter under the influence of combined gravitational and
large-scale magnetic fields, assuming that the accreted material acquires a small elec-
tric charge due to interplay of plasma processes and photoionization. In particular, we
employ an exact solution describing the massive magnetic dipole and we identify the
regions of stable motion. We also investigate situations when the particle dynamics
exhibits the onset of chaos. In order to characterize the measure of chaoticness we
employ techniques of Poincaré surfaces of section and of recurrence plots.

1 Introduction

This work represents a continuation of our steady effort [1–3] to understand dynamic
properties of charged test particles being exposed to the simultaneous action of strong
gravitational and electromagnetic fields surrounding compact objects – neutron stars
and black holes. As we bear astrophysical motivation in our mind we choose such
fields which could constitute a reasonable model of a real situation occurring in the
vicinity of these objects. Survey of the test particle trajectories might be regarded as
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a single particle approximation to the complex dynamics of the astrophysical plasma
which is applicable once the plasma is diluted sufficiently. Regions of diluted plasma
are likely to be found above and below the main accretion body of astrophysical
systems driven by compact objects.

In this contribution (which is based mainly on results previously published in [4])
we investigate the motion of the charged test particles around a massive magnetic
dipole described by Bonnor’s exact solution of coupled Einstein-Maxwell equations
[5]. Such setup allows motion in the off-equatorial lobes if the parameters of the
system are chosen carefully. We investigate motion in these lobes. We are particularly
curious about the dynamic regime of motion (chaotic versus regular) and how does it
change if we alter some of the parameters. Besides the standard technique of Poincaré
surfaces of section we employ the recurrence analysis [6] and show that recurrence
plots might serve as an alternative tool to the surfaces of section when analysing
individual trajectories.

2 Massive Magnetic Dipole

Using spheroidal coordinates (t, r, θ, φ) and geometrized units c = G = 1 the
line element of Bonnor’s exact solution [5] describing the static spacetime around
massive magnetic dipole and corresponding vector potential Aα are given as follows

ds2 = −
(

P

Y

)2

dt2 + P2Y 2

Q3 Z
(dr2 + Zdθ2) + Y 2 Z sin2 θ

P2 dφ2, (1)

Aα =
(

0, 0, 0,
2abr sin2 θ

P

)
, (2)

where P = r2−2ar −b2 cos2 θ , Q = (r −a)2−(a2+b2) cos2 θ , Y = r2−b2 cos2 θ

and Z = r2 − 2ar − b2.
The solution is characterized by two independent parameters a and b. Inspection

of the asymptotic behaviour of the field reveals that these are related to the total mass
of the source M as M = 2a and to the magnetic dipole moment μ as μ = 2ab.
The solution has relatively complicated singular behviour at P = 0, Q = 0, Z = 0
and Y = 0. However, here we are interested in the regular part of the spacetime
only. Therefore we restrict ourselves to Z > 0 which translates to the condition
r > rh √ a +→

a2 + b2. We investigate the test particle dynamics above the horizon
rh only.

The solution is asymptotically flat (for a = 0 exactly flat). The metric (1) actually
represents a magnetostatic limit of a more general exact solution [7] suggested to
describe the exterior field of a rotating neutron star. In the case of Bonnor’s solution,
the rotation is not considered and the value of a quadrupole mass moment is fixed by
values of the parameters a and b. Setting b = 0 reduces the metric to Zipoy-Voorhees
metric with δ = 2 [8, 9].
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Generalized Hamiltonian (“super Hamiltonian”) describing the motion of the
ionised test particle of charge q̃ is given as follows [10]:

H = 1

2
gμν(πμ − q̃ Aμ)(πν − q̃ Aν), (3)

where πμ is the generalized (canonical) momentum.
Hamiltonian equations of motion are given in a standard way:

dxμ/dλ = ∂H /∂πμ, dπμ/dλ = −∂H /∂xμ, (4)

where λ = τ/m is the affine parameter, τ the proper time and m represents the rest
mass of the particle.

The second Hamilton’s equation ensures that the momenta

πt = pt + q̃ At √ −Ẽ, (5)

πφ = pφ + q̃ Aφ √ L̃, (6)

represent constants of motion, reflecting stationarity and axial symmetry of the con-
sidered background.

Numerical integration of Hamilton’s equations (4) is carried out using the multi-
step Adams-Bashforth-Moulton solver of variable order. In several cases when higher
accuracy is demanded we employ 7-8th order Dormand-Prince method. Initial val-
ues of non-constant components of the canonical momentum πr (0) and πθ (0) are
obtained from ur (0) (which we set) and uθ (0) which is calculated from the normal-
ization condition gμνuμuν = −1 where we always choose the non-negative root as
a value of uθ (0).

Two-dimensional (i.e. related to the motion in two coordinates, r and θ ) effective
potential may be expressed as follows:

V 2
eff = P2

Y 2

[
1 + P2

Y 2 Z sin2 θ

(
L − qμ

r sin2 θ

P

)2
]

, (7)

where we introduce specific angular momentum L √ L̃/m and specific charge
q √ q̃/m.

3 Dynamics of Test Particles

We perform a numerical survey of dynamics of test particles moving within potential
wells formed along both the equatorial and off-equatorial circular orbits (so called
halo orbits, illustrated by Fig. 1). In order to do so, we apply several complementary
methods of investigation of nonlinear dynamic systems. First of all, we construct
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Fig. 1 Off-equatorial trajectories of charged test particle with L = −2.356 a and q = 5.581 in
the Bonnor spacetime with b = 1 a. In the left panel we present a stereometric projection of two
trajectories: the upper one with E = 0.8169 shows ordered motion while with the higher energy the
dynamics acquires properties of deterministic chaos (bottom trajectory with E = 0.8182). Poloidal
projection of these trajectories along with several iso-contours of the effective potential is shown
in the right panel. Both particles were launched at r(0) = 6 a, θ(0) = π/3 with ur (0) = 0. Grey
color marks r = rh surface in both plots

Poincaré surfaces of section which give an overall perspective of the phase space
dynamics on a given energy hypersurface (for a given values of system parameters).
For the inspection of individual trajectories, however, we prefer to analyse their
recurrence plots [6], which proved to be very useful method in our previous work
[1]. Besides other properties of recurrence plots (RPs), we highlight their ability to
clearly distinguish between chaotic and regular dynamics on a short time scale, thus
reducing the integration time needed for the analysis. We also investigate intrinsic
frequencies of the orbits employing the rotation number ν [11] that allows us to
detect and locate resonances of the system.

In order to compare dynamic properties of the system in all three cases (particle in
a non-magnetized b = 0 spacetime, uncharged particle in a magnetized spacetime,
and a general case q ∓= 0, b ∓= 0), we first investigate the motion in equatorial
potential wells, since there are no circular halo orbits for b = 0. In Fig. 2, we present
series of Poincaré surfaces of section with θsec = π/2 along with the corresponding
plots of a rotation number as a function of initial value of radial coordinate.

The upper left panel of Fig. 2 shows the Poincaré surface of the test particles
trajectories when the magnetic dipole is switched off by setting b = 0. We observe
perfectly ordered motion with no traces of secondary fixed points nested in Birkhoff
islands nor the chaotic orbits. Such a simple pattern on the section is characteristic for
integrable systems. The integrability conjecture is also supported by the behaviour
of rotation number, which is smooth and non-constant throughout the lobe. While
we show roughly 50 trajectories on the section, the ν-plot is constructed from around
1000 of them, which allows much more detailed inspection for the possible presence
of tiny chaotic domains or faint resonances.
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Fig. 2 Dynamics in equatorial lobes (θmin = θsec = π/2). Left panels show equatorial surfaces of
section while the corresponding rotation curves are shown on the right. Common parameters of the
trajectories in the top panels are E = 0.951, L = 7.2058 a, q = 0 and b = 0 for which the potential
minimum appears at rmin = 15 a with Vmin = 0.9494. Middle panels show the situation for particles
with E = 0.94, L = 6.1076 a, q = 0 and b = 2.8535 a which brings the stable circular orbit to
rmin = 10 a with Emin = 0.9234. Bottom panels are plotted for E = 0.818, L = −2.7277 a,
q = 4.7181 and b = 1 a (Vmin = 0.8165 at rmin = 6 a)

If we perturb the system by the magnetic field, however, the chain of Birkhoff
islands develops. Although we know that there are some integrable system with
resonant islands of single multiplicity [11], here its presence arouses suspicion of
nonintegrability, since none were present for b = 0. Indeed, in the following (see
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Fig. 3 Dynamics of test particles in reduced Bonnor spacetime (b = 0) in the opened equatorial
lobe (θmin = θsec = π/2). Upper panels show regular dynamics, however, zooming the region
near the throat reveals the presence of chaotic orbits (bottom panels). Common parameters of the
trajectories are E = 0.9522, L = 7.2058 a, q = 0 and b = 0. Unlike the case shown in the upper
panels of the Fig. 2 here the potential lobe is opened allowing the particles to fall onto the horizon.
Stability island observed in the bottom surface of section corresponds to ν = 6/7 resonance

figure 4), we observe chaotic motion in this setup (q = 0, b ∓= 0), which is irrefutable
evidence of being nonintegrable. Finally, in the bottom panel of figure 2, we introduce
the charge of the test particle. We choose such a combination of parameters that leads
to the same value of ratio rmin/rh, as it acquired in the previous uncharged case.
This makes the two cases better comparable and the effect of the newly introduced
electromagnetic forces more distinguishable. In the last surface of section, we really
observe much more complex patterns compared to those of uncharged particles.
KAM curves of quasiperiodic orbits are present as well as several Birkhoff chains
of islands corresponding to the resonances of intrinsic frequencies of the system.
These are interwoven with pronounced chaotic layers. Such a picture is typical for a
considerably perturbed system far from integrability.

However, further examination of the dynamics in opened potential lobes in the
non-magnetized system presented in Fig. 3 reveals presence of narrow zones of
chaotic orbits which proves the system nonintegrable. These chaotic orbits corre-
spond to those particles which actually leave the potential well after certain amount
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Fig. 4 Poincaré surfaces (θsec = π/3) for uncharged particles moving within halo lobes in the
Bonnor spacetime with b = 5.9771 a. Particles with L = 3.6743 a are launched from the vicinity
of the potential minimum (rmin = 10 a, θmin = θsec = π/3 and Vmin = 0.8717) with various values
of energy. The upper left panel shows the section for the level E = 0.8718 (small halo lobe), in the
upper right we set E = 0.873 (large halo lobe), E = 0.8739 produces cross-equatorial lobe which
just emerged from symmetric halo lobes (bottom left panel), while with E = 0.88 we obtain the
large cross-equatorial lobe which almost opens

of time. Coincidentally, the nonintegrability of motion in a general Zipoy-Voorhees
spacetime was very recently shown by Lukes-Gerakopoulos in [12] where the
issue was treated in detail. We summarize that although the dynamics in the non-
magnetized Bonnor spacetime (i.e. Zipoy-Voorhees with δ = 2) is typically regular
(we actually found no chaotic orbit in closed lobes) the underlying system is not
integrable.

In the following, we compare dynamics in off-equatorial potential wells for
uncharged (Fig. 4) and charged particles (Fig. 5). For the sake of better compara-
bility, these are both chosen to have θmin = θsec = π/3 and equal value of rmin/rh .
Both series show Poincaré surfaces of section of particles being launched from the
vicinity of off-equatorial potential minima (in which the circular halo orbit resides)
differing in energy E , which governs the size and shape of the lobe (E sets the level
at which the effective potential surface is being intersected). Comparing Figs. 4 and 5
we conclude that charging the test particle makes it more prone to chaotic dynamics
and we also observe that the energy of the particle triggers chaotic motion.
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Fig. 5 Poincaré surfaces of section (θsec = π/3) for charged particles with q = 0.1259 moving
within halo lobes in the Bonnor spacetime with b = 4.5393 a. Particles with L = −3.5486 a
are launched from a vicinity of the potential minimum (rmin = 8 a, θmin = θsec = π/3 and
Vmin = 0.8475) with various values of energy. The upper left panel shows the section for the level
E = 0.8477 (small halo lobe), in the upper right we set E = 0.8495 (large halo lobe), E = 0.8496
produces cross-equatorial lobe which just emerged from symmetric halo lobes (bottom left panel)
while with E = 0.851 we obtain the large cross-equatorial lobe

To illustrate the continuous transition from ordered to chaotic dynamics, we pick
a particular trajectory of charged particle and plot series of Poincaré sections along
with corresponding recurrence plots in Fig. 6. We launch the particle from the locus
of the off-equatorial potential minimum with various values of energy E , while other
parameters remain fixed. The sequence begins with the energy corresponding to a
small halo lobe where we observe ordered motion manifested by narrow curves on
the surface of section and, simple diagonal pattern of the recurrence plot (upper
left panels of Fig. 6). Increasing the energy, however, gradually shifts the dynamics
towards deterministic chaos—trajectory becomes more and more ergodic as it spans
larger fraction of given energy hypersurface in the phase space.
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Fig. 6 Poincaré surfaces of section (θsec = π/3) and corresponding recurrence plots for charged
particle with q = 5.581 moving within halo lobes in the Bonnor spacetime with b = 1 a. Particle
with L = −2.356 a is launched just from the locus of the off-equatorial potential well minimum
(rmin = 6 a, θmin = θsec = π/3 and Vmin = 0.81675) with various values of energy (from the
upper left to the bottom right: E = 0.8168, E = 0.818, E = 0.8182, E = 0.8183, E = 0.819
and E = 0.8198). First three pairs of plots show the situation in the halo lobe, while bottom plots
reveal the dynamics after merging of the lobes. A decisive surface of section cannot be constructed
for the particle in an opened lobe (E = 0.8198) as it escapes after several intersections with the
surface, while the corresponding RP shows the chaotic nature of the motion unambiguously. Unlike
the previous figures, we plot all intersection points: downward crossings with uθ ∼ 0 (black dot)
as well as those resulting from upward crossings with uθ < 0 (red dot) on the Poincaré surfaces



382 O. Kopáček et al.

4 Conclusions

In this contribution we presented a brief numerical study of test particle dynamics
occurring in the Bonnor spacetime. First we analysed motion in equatorial poten-
tial wells in three different cases, namely motion in non-magnetized spacetime with
b = 0, motion of uncharged particles on the magnetized background (q = 0, b ∓= 0)
and dynamics in the general case q ∓= 0, b ∓= 0. Our results show that without mag-
netic field the system hosts mostly regular orbits and the dynamics of test particles
resembles closely fully integrable systems. However, further numerical inspection
revealed that chaotic orbits are also present in this setup proving the system non-
integrable. Then we observed that the magnetic parameter b introduces profound
perturbation of the dynamics. Moreover, a charge of particle acts as an extra pertur-
bation, which shifts magnetized system even farther from the integrability.

Within the off-equatorial potential wells we also studied the role of particle energy
E on the degree of chaos found in the system, concluding that it acts as a trigger
for the chaotic motion. As the energy is gradually increased, the system undergoes
a continuous transition from the regular behaviour to the chaotic dynamics, being
almost fully ergodic on the given hypersurface. We illustrated such transition by
means of Poincaré surfaces of section and recurrence plots.
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2. Kovář, J., Kopáček, O., Karas, V., Stuchlík, Z.: Off-equatorial orbits in strong gravitational
fields near compact objects II: halo motion around magnetic compact stars and magnetized
black holes. Class. Quantum Grav. 27, 135006 (2010). doi:10.1088/0264-9381/27/13/135006
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The Fitting Problem in a Lattice Universe

Julien Larena

Abstract We present a regular cubic lattice solution to Einstein field equations that is
exact at second order in a small parameter. We show that this solution is kinematically
equivalent to the Friedmann-Lemaître-Robertson-Walker (FLRW) solution with the
same averaged energy density. This allows us to discuss the fitting problem in that
framework: are observables along the past lightcone of observers equivalent to those
in the analogue FLRW model obtained by smoothing spatially the distribution of
matter? We find a criterion on the compacity of the objects that must be satisfied
in order for the answer to this question to be positive and given by perturbative
arguments. If this criterion is not met, the answer to this question must be addressed
fully non perturbatively along the past lightcone, even though the spacetime geometry
can be described perturbatively.

1 What is the Fitting Problem?

Cosmology is unique among physical sciences for a certain number of reasons. First,
the Universe is given once and for all, and there is no possibility to compare it to
another Universe. This can usually be overcome by supposing that the initial condi-
tions for the Big Bang model must be generic in some reasonable sense, or that some
mechanism (e.g. inflation) is responsible for making them generic. Second, we are
the only available observers in the Universe; there might be other observers, but we
do not have access to their observations. The only piece of information we have on the
Universe comes from our past lightcone, and a few local (geological) measurements
on our worldline. Therefore, in general, one cannot rely purely on observations to
fully determine the nature and dynamics of the Universe: one has to introduce extra
assumptions on the theory of gravitation, the geometry of the Universe on large scales
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and the physical nature of its matter content. In the present paper, we will suppose
throughout that gravity obeys the laws of General Relativity, and we will concentrate
on the other two points: the geometry of the Universe and its matter content. In the
standard model of cosmology, it is assumed that ‘on average’, on sufficiently large
scales, the distribution of matter in the Universe is well described by a set of perfect
fluids whose energy densities and pressures are locally homogeneous and isotropic;
this results in Friedmann-Lemaître-Robertson-Walker (FLRW) Universes with spa-
tial sections that are maximally symmetric, i.e. determined entirely by their constant
Gaussian curvature. This assumption is based on the observed almost isotropy of the
Cosmic Microwave Background around us, together with the Copernican Principle,
and is usually called the Cosmological Principle. It is clear that it is an extrapola-
tion outside our past lightcone, since the notion of average implicitly present in this
principle tells us something about the spatial distribution of matter, starting from its
distribution along our past lightcone. In a nutshell, the fitting problem [1] can be
summarized by the question: does the effective FLRW model obtained by extrapo-
lating the observed properties down our past lightcone coincide with the effective
FLRW model obtained by smoothing the spatial distribution of matter? Of course,
this question is not independent on the set of observers used to define the notion of
spatial distribution: it makes use of a preferred set of observers, called fundamental
in the standard model; usually, in the late-time Universe, the fundamental observers
are supposed to be comoving with virialised objects such as galaxies, so as to include
us among fundamental observers. In this paper, we will try and address the fitting
problem by considering a special dynamical solution to the field equations consist-
ing in a regular cubic lattice of initial cell size L and of objects of equal masses M .
The solution is exact at second order in the small parameter

√
M/L and we will see

that it exhibits, on average, the same dynamical behaviour than the equivalent flat
FLRW model with a non-relativistic fluid of density ρ = M/L3, therefore showing
that, at second order in

√
M/L , there is no backreaction in the model [2]. Then,

because the solution for the metric is exact at this order, we will be able to solve
the Sachs equations at second order in

√
M/L in order to reconstruct observables

such that the distance-redshift relation. We will see that this solution for observables
presents some divergences linked with the compacity of the object: if the extension
η of the objects is too small, the perturbative expansion of the solution of the Sachs
equations is no longer valid, even though the perturbative expansion of the solution
of the Einstein field equations remains stable. Namely, we will show that observ-
ables in this model remain very close to the observables calculated in the analogue
FLRW model with energy density ρ = M/L3, as long as the parameters of the
lattice obey: M

L → O (1)
( η

L

)4. If this condition is not satisfied, then observables
cannot be calculated perturbatively, even though the metric is well approximated by
the perturbative expansion, and one must solve the full system of Sachs equations
[3]. Results regarding this complete integration are hinted at in this paper. These
results illustrate the importance of the fitting problem in cosmology: the kinemat-
ically averaged FLRW model and the FLRW reconstructed by fitting observations
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might differ significantly (if calculated perturbatively, at least), even in the absence
of (kinematical) backreaction. We work in units G = c = 1.

2 A Lattice Universe: Kinematics and Observables

2.1 The Cubic Lattice Solution

Let us start by describing the lattice solution (see [2] for a complete derivation);
we will only sketch the results and discuss their implications. We start with a cubic
lattice of size L with identical masses M at the centre of each cell. If the masses on
the lattice are to represent typical galaxies, we can choose, as our typical parameters
M ∓ 1011 M∼ and L ∓ 1 Mpc, where M∼ ∓ 1030 kg is the Solar mass, and L is
of order of the intergalactic distances. Then, the natural parameter of the lattice is
RS/L ∓ 10−8 → 1, where RS = 2M is the Schwarzschild radius of the masses.
Therefore, we can look for a solution expanded into powers of

√
M/L (in [2] we

prove that there is no perturbative solution in powers of M/L); this will lead to
linearised field equations that can be solved exactly. We choose coordinates that are
comoving with the masses: g00 = −1, and spatial coordinates are Cartesian and
adapted to the symmetries of the lattice. The distribution of matter is therefore a
three dimensional Dirac comb with the masses located at xn = Ln, n ≤ Z

3; the
energy momentum tensor is then: Tab = T00δ

0
aδ0

b such that:

T00 ∞ M
∑
n≤Z3

δ(3)(x − Ln).

Actually, the field equations do not have a solution for such a source term [2, 4],
because the formal series solution presents a UV divergence coming from the point-
like nature of the masses. Therefore, we introduce a UV cut-off by giving a small but
finite extension to the masses, η and by replacing the Dirac deltas by their standard

approximation: δ(x−nL) ∓ 1
η
√

π
e
− (x−nL)2

η2 . Then, we write the source term in Fourier

series, and we expand the field equations in powers of
√

M/L and solve them order
by order, to find the following solution at second order: ∗i ≤ {1, 2, 3}, g0i = 0, and
∗(i, j) ≤ {1, 2, 3}2:

gi j = δi j

[
1 + 2ε

√
M

L

√
8π

3

t

L
+ 2M

L

(
fη(x) + 2π t2

3L2

⎪]
+ M

L
t2∂2

i j fη(x), (1)

where ε = ±1 and:

fη(x) = 1

π

∑
n≤Z3∗

e− π2 |n|2η2

L2

|n|2 e
2π
L in.x. (2)
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Let us insist on the fact that this solution is exact at order M/L . We can now calculate
the rate of expansion between two masses of the lattice. For that, consider two
masses on the x-axis (all the other axes are equivalent, by symmetry), separated by
a coordinate distance N L , for N an integer. The physical distance between the two
masses is given by l(t) = ∫ N L

0
√

gxx dx , and, expanding the square root to order
M/L we find the effective scale factor of the lattice:

a(t) ⊂ l(t)

N L
= 1 + ε

√
8π

3

√
M

L3 t − 2π Mt2

3L3 . (3)

The Hubble flow defined by H(t) = ȧ(t)/a(t) is then found to be, at order M/L:

H(t) = ε

√
8π
3

√
M
L3 − 4π Mt

L3 . Thus defining the initial Hubble rate H0 = ε

√
8π
3

√
M
L3

and choosing the expanding solution, ε = 1, we get:

H(t) = H0 − 3

2
H2

0 t + O(H3
0 ), (4)

and this corresponds exactly, at order M/L ∞ H2
0 to a flat FLRW model filled

with non-relativistic dust. The result is actually valid at order (M/L)3/2 [2]. Thus,
the model with discrete masses on a cubic lattice, once smoothed, is identical to a
FLRW model with dust, with the corresponding smeared energy density. This means
that, from purely kinematical considerations, one cannot distinguish between the
average, homogeneous fluid description of the lattice and the exact behaviour of
this lattice: there is no backreaction (in the sense of [5]) associated with spatially
smoothing the lattice.

2.2 Observables, Compacity and the Fitting Problem

Now that we have a solution of the field equations that does not display backreaction,
we can try and address the fitting problem by comparing observables in the lattice
with observables in the corresponding, smoothed FLRW Universe with the same
kinematics: any discrepancy between the two will be a sign that there exists a fitting
problem. In order to carry the comparison, we calculate the distance/redshift relation
in the lattice. The 4-velocity of an observer in one of the objects of mass M is given
by ua = (1, 0, 0, 0) according to our choice of coordinates, and we define λ, an
affine parameter down light rays. We denote by O and S the locations of observer
and the source respectively. Given the normalisation chosen in [3], the null vector
of a past-directed light ray, ka is such that k0

O = 1, so that we have, for the redshift:

1 + z(λ) = (kaua)S
(kaua)O

= k0 (λ). Therefore, we can solve the 0 component of the

null geodesic equation order by order in terms of
√

M/L . The distance is obtained
similarly by solving Sachs equations [6] expanded at order M/L . The Sachs equations
are actually exactly solvable in this perturbative scheme because the equations for
the isotropic expansion and the shear decouple from each other at that order. Details
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of the calculations can be found in [3]. In terms of the past-directed affine parameter
λ < 0 (and λ = 0 at the observer), we find that, at order M/L:

z(λ) = −
√

M

L

√
8π

3

λ

L
+ M

L

(
14πλ2

3L2 +
⎜

fη(x(λ)) − λ∂i fη(x(λ))vi
]λ

0

)
, (5)

rA(λ) = − λ + 2π

3

M

L

λ3

L2

⎡
⎣1 +

∑
(n,p,q)≤Dv

e
− π2(n2+p2+q2)η2

L2

⎧
⎨

+ 2

π

M

L

∑
n≤N3∗\Dv

e
− π2(n2+p2+q2)η2

L2

l=4∑
l=1

⎡
⎣−λ

cos
⎩

2πλv.ul
L

⎛

(v.ul )
2 + L

π

sin
⎩

2πλv.ul
L

⎛

(v.ul )
3

⎧
⎨ .

(6)

Here: u1 = (n, p, q), u2 = (n,−p,−q), u3 = (n, p,−q), u4 = (n,−p, q),
and Dv = {(n, p, q) ≤ N

3∗ : ∃ l ≤ {1, 2, 3, 4}/ul .v = 0}. This means that the
first sum is over all the triplets that cancel one at least of the ul .v, whereas the
second sum is over all the other triplets. These expressions coincide with their FLRW
counterparts for the FLRW model obtained by smoothing the distribution of masses
of the lattice, up to a priori small corrections proportional to M/L (the parts that are
non-polynomial in λ). Actually, it turns out that the additional terms in the expression
for rA (λ) are not generally small, because some denominators in the second sum
become extremely small and the corrections to the FLRW distance become of order√

M/L , or even 1, instead of being of order M/L; see [3] for a detailed discussion of
these effects. By carefully studying these additional terms, we arrive at the conclusion
that the perturbative corrections to the FLRW distance/redshift relation remain small
provided:

M

L
→ O(1) ×

⎩ η

L

⎛4
. (7)

This relation between the mass of the object, M/L , and the compactness of the lattice,
η/L , shows that if objects are too compact, the perturbative expansion breaks down, as
far as the calculation of observables down a past lightcone is concerned, even though
the perturbative calculations remain a good way of estimating the spacetime geometry
(i.e. of solving the Einstein field equations). Similar problems were encountered
in perturbations of an FLRW background in [7]. If this criterion is not satisfied,
the perturbative calculations cannot be trusted, as second order terms (in

√
M/L)

become of order O(1): one needs to integrate the system of Sachs equations without
any perturbative expansion, thus retaining the coupling between isotropic expansion
and shear. This is an ongoing work [8] and preliminary results indicate that when
Eq. (7) is not satisfied, the contribution of the shear modifies significantly the FLRW
observables: the corrections are usually smaller than the order 1 corrections predicted
by the perturbative expansion presented here, but they are definitely significant to
raise the issue of a fitting problem. For example, Fig. 1 shows the percent change
δrA(z) = 100 × (

rA(z) − r F L RW
A (z)

)
/r F L RW

A (z) in the angular distance between a
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Fig. 1 Percent change δrA(z) in the angular distance between a lattice with M = 1012 M∼, L =
1 Mpc, η = 0.01L and its FLRW counterpart, obtained from a complete integration of Sachs
equations. The result is presented for 25 different directions on the celestial sphere of the observer
located at the centre of one of the masses

Table 1 Some typical lattices and their characteristic parameters

Object RS (Mpc) L (Mpc) η (Mpc) Criterion passed

Neutron star 10−19 10−6 10−18 No
Galaxy (disk) 10−8 1 10−2 No (marginally)
Galaxy (disk+DM halo) 10−7 1 0.05 Yes (marginally)
Galaxy cluster 10−4 30 20 Yes

The choices are only indicative. The last column answers the question: does such a lattice satisfy
the criterion (7)?

lattice with M = 1012 M∼, L = 1 Mpc, η = 0.01L (lattice of galaxy-like objects)
that does not satisfy the criterion (7) and the equivalent smoothed FLRW model,
obtained from a complete integration of Sachs equations. We see that the ‘divergence’
problem encountered for such lattices when using perturbative methods is somehow
‘cured’ by solving the full system, even though, differences appear and seem to be
systematically increasing with the redshift, irrespective of the direction on the sky.

Table 1 presents the typical values of M , L and η for some lattices of standard
astrophysical objects and shows whether the criterion (7) is satisfied or not for such
lattices. We see that a lattice of galaxies composed of their disk only marginally
fails to pass the criterion, whereas when we include the Dark Matter halo, they pass
the test marginally. A lattice of cluster-like objects passes the criterion easily, but
η/L ∓ 1, and one can hardly talk of a lattice of separated objects in that case: such
objects could not really be considered as virialised, independent objects as we did in
this work.
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3 Discussion

We have presented a toy model of the Universe in the form of a regular cubic lattice
of equal masses of typical size η whose kinematics is identical on large scales to
the FLRW model obtained by smoothing the distribution of masses; this model does
not exhibit any backreaction. We have seen that, despite the fact that a perturbative
expansion in terms of RS/L gives a very good approximation for the geometry of
space-time, it is not suitable for the accurate calculation of observables in the model
if the objects are too compact. Specifically, we have shown that a perturbative cal-
culation of observables can be trusted only if the parameters of the lattice satisfy
(7). If this is not the case, a non perturbative approach is needed to fully take into
account the effect of the Weyl curvature sourcing the shear of bundles of null geo-
desics. Somehow, this was to be expected: the perturbative calculation decouples
the shear from the isotropic expansion, making the observables independent on the
Weyl curvature, but we know that in a mostly empty Universe (masses very com-
pact), the behaviour of null ray bundles must be dominated by the Weyl curvature.
The bound (7) gives a quantitative criterion to decide what ‘too compact’ means. This
also illustrates the importance of the fitting problem: if (7) is not satisfied, the FLRW
reconstructed by smoothing spatially the kinematics of the model differs systemati-
cally and sometimes significantly from the FLRW model fitting the observations on
the past lightcone of observers. Choosing the order of magnitude of the parameters
of the model to represent something ‘realistic’ is difficult, but it is interesting to
note from Table 1 that galaxy-like objects and lattices are exactly at the transition
between the lattices that pass the criterion (7) and those which do not. This might be
extremely important in the precise characterisation of the properties of Dark Energy,
and the detailed exploration of the consequences of this bound as well as the precise
non perturbative estimates in the cases when it is not satisfied are the subject of an
ongoing work [8].
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Hair of Astrophysical Black Holes

Maxim Lyutikov

Abstract The “no hair” theorem is not formally applicable for black holes formed
from collapse of a rotating neutron star. Rotating neutron stars can self-produce
particles via vacuum breakdown forming a highly conducting plasma magnetosphere
such that magnetic field lines are effectively “frozen-in” the star both before and
during collapse. In the limit of no resistivity, this introduces a topological constraint
which prohibits the magnetic field from sliding off the newly-formed event horizon.
As a result, during collapse of a neutron star into a black hole, the latter conserves the
number of magnetic flux tubes NB = eΛ∞/(φc�), where Λ∞ is the initial magnetic
flux through the hemispheres of the progenitor and out to infinity. The black hole’s
magnetosphere subsequently relaxes to the split monopole magnetic field geometry
with self-generated currents outside the event horizon. The dissipation of the resulting
equatorial current sheet leads to a slow loss of the anchored flux tubes, a process that
makes the black hole bald on long resistive time scales rather than the short light-
crossing time scales expected from the vacuum “no-hair” theorem.

1 Introduction

The “no hair” theorem [1] postulates that all black hole solutions of the Einstein-
Maxwell equations of gravitation and electromagnetism in general relativity can be
completely characterized by only three externally observable classical parameters:
mass, electric charge, and angular momentum. The key point in the classical proof [2]
is that the outside medium is a vacuum. In contrast, the surroundings of astrophysi-
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cal high energy sources like pulsars and black holes can rarely be treated as vacuum
[3–5]. The ubiquitous presence of magnetic fields combined with high (often rela-
tivistic) velocities produce inductive electric fields with electric potential drops high
enough to break the vacuum via various radiative effects (curvature emission followed
by a single photon pair production in magnetic field, or inverse Compton scattering
followed by a two photon pair production). For example, in case of neutron stars
the rotation of the magnetic field lines frozen into the crust generates an inductive
electric field, which, due to the high conductivity of the neutron star interior, induces
surface charges. The electric field of these induced surface charges has a component
parallel to the dipolar magnetic field. These parallel electric fields accelerate charges
to the energy E ∼ eBsRs(κR0/c)2, where Bs and Rs are the surface magnetic field,
radius of a neutron star and κ is the angular rotation frequency. The resulting pri-
mary beam of leptons produces a dense secondary plasma via vacuum breakdown.
Thus, in case of neutron stars the electric charges and currents are self-generated:
no external source is needed. Rotating black holes can also lead to a similar vacuum
break-down [4].

We demonstrated that contrary to the prediction of the “no hair” theorem, the
collapse of a rotating neutron star into the black hole results in a formation of a long
lived self-generated conducting BH magnetosphere. This results from the violation
of the key assumption of the “no hair” theorem, that the outside is vacuum, and
allows a black hole to preserve open magnetic flux tubes that initially connect to the
neutron star surface.

2 The Black Hole Hair: The Conserved Poloidal Magnetic Flux

Consider collapse of a rotating neutron star into the BH. Before the onset of the
collapse, the electric currents within the neutron star create poloidal magnetic field.
Rotation of the poloidal magnetic field lines and the resulting inductive electric
field lead to the creation, through vacuum breakdown, of the conducting plasma
and poloidal electric currents. The presence of a conducting plasma then imposes a
topological constraint, that the magnetic field lines which initially were connecting
the neutron star surface to the infinity must connect the black hole horizon to the
infinity.

During the collapse, as the surface of a neutron star approaches the horizon,
the closed magnetic field lines will be quickly absorbed by the black hole, while the
open field lines (those connecting to infinity) have to remain open by the frozen-in
condition. Thus, a black hole can have only open fields lines, connecting its horizon
to the infinity. There is a well known solution that satisfies this condition: an exact
split monopolar solution for rotating magnetosphere due to [6]; it was generalized to
Schwarzschild metrics by [4]. We recently found an exact non-linear time-dependent
split monopole-type structure of magnetospheres driven by spinning and collapsing
neutron star in Schwarzschild geometry [7]. We demonstrated that the collapsing
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neutron star enshrouded in a self-generated conducting magnetosphere does not
allow a quick release of the magnetic fields to infinity.

Thus, if a collapsing black hole can self-sustain the plasma production in its
magnetosphere, the magnetic field lines that were initially connecting the neutron star
surface to infinity will connect the black hole horizon to the infinity. Each hemisphere
then keeps the magnetic flux that was initially connected to the infinity. For a neutron
star with the surface magnetic field BNS and the initial pre-collapse radius RNS and
period PNS , the magnetic flux through each hemisphere connecting to infinity is
Λ∞ ≈ 2φ2BNSR3

NS/(PNSc) [3]. Using quantization of the magnetic flux [8], this
corresponds to a conserved quantum number of magnetic flux tubes

NB = eΛ∞/(φc�) = 2φBNSeR3
NS/(c

2
�PNS) = 1041 BNS

1012 G

PNS

1 msec
. (1)

This quantum number is the black hole “hair”: an observer at infinity can measure
the corresponding Poynting flux and infer the number NB.

3 Numerical Simulations

We have performed numerical simulations that confirm the basic principle that the
“no-hair” theorem and related time-dependent vacuum simulations are not applicable
to a plasma-filled black hole magnetosphere. We do not model the process of vacuum
breakdown and the subsequent formation of a plasma-filled magnetosphere. Instead,
we assume the neutron star already created a plasma-filled magnetosphere (or that
the black hole self-generates a plasma-filled magnetosphere), and we assume that
the neutron star has already collapsed to a black hole. Only once an event horizon
has formed would the magnetic field begin to slip-off the black hole in vacuum,
so starting with an event horizon should be a strong enough test—one should not
have to follow the collapse of the neutron star to a black hole as long as a plasma
is present. The goal of the simulations is to measure the decay timescale of the
magnetic flux threading the event horizon of the black hole: ΛEM = (1/2)

∫
S dS|Br |

as integrated over the surface (S) of the black hole horizon (Fig. 1). We show that
the magnetic dipole decay seen in vacuum solutions is avoided or delayed by three
effects: (1) presence of plasma and self-generation of toroidal currents; (2) black
hole spin induced poloidal currents; and (3) plasma pressure support of current layers
generated internally by dissipating currents. These effects cause the field to avoid
vacuum-like decay of the dipole magnetic field and help support the newly-formed
split-monopole magnetic field against magnetic reconnection (Fig. 2).

These GRMHD simulations use the fully conservative, shock-capturing GRMHD
scheme called HARM [9] using Kerr-Schild coordinates in the Kerr metric for a
sequence of spins.

We perform simulations that either use the force-free or use the fully energy-
conserving MHD equations of motions. These approximate, respectively, the limits
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Fig. 1 A contour plot of the magnetic flux (ν = RA∂) showing the inner (cylindrical radius) R <

10 GM/c2 for the MHD a = 0.99 model described in the text. The structure of the magnetosphere
relaxes to monopolar-like solution, as predicted by [7]. Note also the development of the tearing
modes and the formation of magnetic islands in the equatorial current sheet

of radiatively efficient emission and radiatively inefficient emission once the plasma
has been generated. That is, if the electromagnetic field dominates the rest-mass
and internal energy density over most of the volume outside current sheets, then the
force-free limit corresponds to an instantaneous loss (such as radiation) of magnetic
energy dissipated in current sheets, while the fully energy-conserving MHD limit
without cooling corresponds to all dissipated energy going into internal + kinetic
energy that remains in the system and sustains the current sheet against dissipation.
A non-energy-conserving system of equations or simulation code would be unable
to properly follow the energy conservation process of electromagnetic dissipation
within the current sheet that leads to plasma formation there. The force-free electro-
dynamics equations of motion are not solely relied upon because they are undefined
within current sheets and any particular resistive force-free electrodynamics equa-
tions [10–12] still leave some degree of ambiguity in how the resistivity would map
onto the full magnetohydrodynamical (MHD) equations. For the MHD equations, an
ideal ξ = 4/3 gas equation of state is chosen, which can be considered as mimicking
a radiatively inefficient high-energy particle distribution component generated by the
dissipation of the currents within the reconnecting layer.
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Fig. 2 Schematic presentations of magnetic flux surfaces in the BH-torus system. Toroidal electric
current in the torus creates poloidal magnetic field. The field lines that intersect the BH are twisted
by the rotation of the space-time (carry poloidal electric current) and open up to infinity. There are
two types of magnetic field lines separated by a separatrix (dashed lines): closed field lines and open
magnetic field lines that intersect the Kerr BH. (The section shows only the poloidal component
of the magnetic field.) After the torus is accreted, the open magnetic field lines remain on the BH,
relaxing to a twisted monopolar structure [4, 6]

4 Astrophysical Applications

The fact that isolated black holes formed in a collapse of rotating neutron stars can
retain their open magnetic flux for times much longer than the collapse time implies
that isolated BHs can spindown electromagnetically, converting the rotational energy
in the electromagnetic wind. This can be important for short GRBs: in [13] we address
the key problem of the neutron star merger paradigm in application to short GRBs,
the presence of energetic prompt tails and flares at very long time scales, orders of
magnitude longer than the active stage of the merger. We identify the prompt GRB
spike as coming from the energy dissipation of the wind powered by a transient
accretion torus surrounding the newly formed GRB. It’s duration is limited by the
life of the torus, tens to hundreds of milliseconds. The long extended emission comes
from wind powered by the isolated rotating BH, that produces equatorially-collimated
outflow. It’s duration is limited by the retention time scale of the magnetic field, and
it contains more total energy than the prompt spike.

Thus, the proposed model for short GRBs implies a different type of collimation
of the outflow than the conventionally envisioned jet-like structure, at least in the
prompt tail stage. An observer on the axis see only the axially collimated prompt
emission generated by the BH-torus system, while an observer at medium polar
angles sees both the prompt spike and the equatorially-collimated extended tail.
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In addition, the efficiency of energy extraction of the black hole spin energy
during episodic accretion of magnetized blobs can exceed the average mass accretion
rate Ṁc2, while the total extracted energy can exceed the accreted rest mass. This
phenomenon can lead to production of powerful flares via accretion of fairly small
amount of matter.
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Backreaction Effects
on the Luminosity-Redshift
Relation in Inhomogeneous Cosmology

Giovanni Marozzi

Abstract We recall a general gauge invariant formalism for defining cosmological
averages that are relevant for observations based on light-like signals. Using such
formalism, together with adapted “geodesic light-cone” coordinates, the effect of
a stochastic background of cosmological perturbations on the luminosity-redshift
relation is computed to second order. The resulting expressions are free from both
ultraviolet and infrared divergences, implying that such perturbations cannot mimic
a sizable fraction of dark energy. Different averages are estimated and depend on the
particular function of the luminosity distance being averaged. The energy flux, being
minimally affected by perturbations at large z, is proposed as the best choice for pre-
cision estimates of dark-energy parameters. Nonetheless, its irreducible (stochastic)
variance induces statistical errors on Λφ(z) typically lying in the few-percent range.

1 Introduction

Establishing the existence of dark energy and determining its parameters is one of the
central issues in modern cosmology. Evidence for a sizable dark-energy component
in the cosmic fluid comes from different sources: CMB anisotropies, models of large-
scale-structure formation and, most directly, the luminosity redshift relation of Type
Ia supernovae, used as standard candles.

In this latter case, on which we concentrate our attention, the analysis is usually
made in the simplified context of a homogeneous and isotropic (FLRW) cosmol-
ogy. The issue has then been raised about whether inhomogeneities may affect the
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conclusion of such a naive analysis. In particular, one should address this question in
the presence of stochastically isotropic and homogeneous perturbations of the kind
predicted by inflation. In such a context, the possibility that sub-horizon perturba-
tions may simulate a substantial fraction of dark energy, or that they may at least
play some role in the context of near-future precision cosmology, has to be seriously
considered.

In order to address these issues we follow [1] and study the luminosity-redshift
relation in a spatially-flat κCDM model. The luminosity distance dL now depends
on the redshift z as well as on the angular coordinates of the sources, and must be
inserted in an appropriate light-cone and ensemble average [2, 3].

The paper is organized as follows. In Sect. 2 we briefly present the prescription
used to average on null hypersurfaces. In Sect. 3 we discuss the effect of a stochastic
background of inhomogeneities on different functions of the luminosity-redshift
relation. Our conclusive remarks are then presented in Sect. 4.

2 Gauge Invariant Light-Cone Averaging

Let us here briefly present a general gauge invariant formalism for defining cos-
mological averages that are relevant for observations based on light-like signals.
Following [2], we start with a spacetime integral where the four-dimensional inte-
gration region is bounded by two hypersurfaces, one spacelike and the other one
null (corresponding e.g. to the past light cone of some observer). Let us choose, in
particular, the region inside the past light cone of an observer bounded in the past by
the hypersurface defined by A(x) = A0: clearly a gauge invariant definition of the
integral of a scalar S(x) over such a hypervolume can be written as

I (S;−; A0, V0) =
∫
M4

d4x
√−g ν(V0 − V )ν(A − A0)S(x), (1)

where V (x) is a scalar satisfying ∂μV ∂μV = 0, and where the “−” symbol on the
l.h.s. denotes the absence of delta-like window functions.

Starting with this hypervolume integral we can construct covariant and gauge
invariant hypersurface and surface integrals considering the variation of the volume
average along the flow lines nμ normal to the reference hypersurface ξ(A) defined
by A(x) equal to a constant.

Considering the variation of the hypervolume integral by shifting the light cone
V = V0 along nμ, we obtain the integral on the past light cone itself starting from a
given hypersurface in the past

I (S; V0; A0) =
∫

d4x
√−g π(V0 − V )ν(A − A0)

|∂μV ∂μ A|√−∂τ A∂τ A
S(x) . (2)
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While considering the variation of the hypervolume integral both by shifting the
light cone V = V0 and the hypersurface A = A0 along nμ, we obtain the integral on
the 2-sphere embedded in the past light cone

I (S; V0, A0;−) =
∫

d4x
√−g π(V0 − V )π(A − A0)|∂μV ∂μ A|S(x) . (3)

We note, finally, that averages of a scalar S over different (hyper)surfaces are
trivially defined by:

→S∓V0,A0 = I (S; V0, A0;−)

I (1; V0, A0;−)
; (4)

→S∓A0
V0

= I (S; V0; A0)

I (1; V0; A0)
. (5)

3 Backreaction on the Luminosity-Redshift Relation

Let us start by recalling the standard expression for the luminosity distance in an
unperturbed flat κCDM model, with present fractions of critical density Λκ and
Λm = 1 − Λφ:

d F L RW
L (z) = 1 + z

H0

∫ z

0

dz∼
[
Λφ + Λm(1 + z∼)3

]1/2 . (6)

Consider now the expression for dL in the corresponding perturbed geometry. Com-
bining light-cone and ensemble averages (denoted, respectively, by brackets and
over-bars), we can write the averaged result in the form:

→dL∓(z) = d F L RW
L [1 + fd(z)] , (7)

where fd(z) represents the “backreaction” on dL due to inhomogeneities. For con-
sistency, dL has to be computed (at least) up to the second perturbative order since
ensemble averages of first-order quantities are vanishing for stochastic perturbations.
A detailed computation of fd(z) would thus enable to extract the “true” value of the
dark-energy parameters from the measurement of →dL ∓(z) after taking the correction
into account.

However, as already stressed in [3], given the covariant (light-cone) average of a
perturbed (inhomogeneous) observable S the average of a generic function of this
observable differs, in general, from the function of its average, i.e. →F(S)∓ ≤= F(→S∓).
Expanding the observable to second order as S = S0 + S1 + S2 + · · · , one finds:

→F(S)∓ = F(S0) + F ∼(S0)→S1 + S2∓ + F ∼∼(S0)→S2
1/2∓, (8)
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where →S1∓ ≤= 0 as a consequence of the “induced backreaction” terms (see [3]).
Thus different functions of the luminosity distance are differently affected by the in-
homogeneities, and require different “subtraction” procedures. Finding the function
that minimizes the backreaction will help of course for a precision estimate of the
cosmological parameters.

The average value of σ, obviously controlled by the average of d−2
L , has to be

carried out on the past light cone of the observer, at a fixed redshift z, using the
gauge-invariant prescription described. This is most conveniently done [2, 3] in
the so-called geodesic light-cone gauge (GLC), where the metric depends on six
arbitrary functions (δ, U a, Ωab, a, b = 1, 2), and the line element takes the form
(with Σ̃1 = Σ̃ , Σ̃2 = η̃):

ds2 =δ2dw2−2δdwdα + Ωab(d Σ̃a − U adw)(d Σ̃b− U bdw). (9)

In the GLC gauge the past light cone is defined by the condition w = w0 = const,
and the redshift is given by:

1 + z = δ(w0, α0, Σ̃
a)/δ(w0, α, Σ̃

a). (10)

Furthermore, the luminosity distance of the source is simply expressed as [3] dL =
(1 + z)2Ω 1/4(sin Σ̃ )−1/2, yielding the following exact result [4]:

→d−2
L ∓(z, w0) = 4ρ(1 + z)−4

∫
d2Σ̃a

√
Ω (w0, α (z, Σ̃a), Σ̃b)

, (11)

where Ω = det Ωab, and α(z, Σ̃a) is obtained by solving (10). The above expression
has a simple physical interpretation: the averaged flux, for a given z, is inversely
proportional to the proper area of the surface lying on our past light-cone at the given
value of z.

To compute this quantity in the perturbed geometry of our interest, we need to
express it in a gauge where the stochastic background of cosmological perturbations is
explicitly known up to second order. To this purpose, we can use the standard Poisson
gauge where we include first and second-order scalar perturbations, neglecting their
tensor and vector counterparts. Performing the relevant transformations to second
order we arrive at the following analogue of (7):

→d−2
L ∓=

(
d F L RW

L

)−2
(IΔ(z))−1 ∞

(
d F L RW

L

)−2
[1+ fσ(z)] , (12)

where Iσ has in general the following structure:

Iσ(z) =
∫

dη̃d Σ̃ sin Σ̃

4ρ

[
1 + I1 + I1,1 + I2

]
(Σ̃ , η̃, z). (13)
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HereI1, I1,1, I2 are, respectively, the first-order, quadratic first-order, and genuine
second-order contributions of our stochastic fluctuations. After solving the relevant
perturbation equations [5] they can all be expressed in terms of the first-order Bardeen
potential ψ (x, η). Using the stochastic properties of this perturbation, and expand-
ing in Fourier modes ψk(η), we can then obtain an expression for (Iσ)−1 where the
scalar perturbations only appear through the so-called dimensionless power spec-
trum, P(k, η) = (k3/2ρ2)|ψk(η)|2.

Considering a κCDM model we have to proceed with an approximate numerical
integration. The result can be then written in the form

fσ(z) =
∫ ∗

0

dk

k
P(k)

[
f1,1(k, z) + f2(k, z)

]
. (14)

At leading order the contribution, in the region of z relevant for dark-energy
phenomenology, comes from terms of the type f (k, z) ∼ (k/H0)

2 f̃ (z), and we can
write, to a very good accuracy,

fσ(z) ⊂
[

f̃1,1(z) + f̃2(z)
] ∫ ∗

0

dk

k

(
k

H0

)2

P(k) . (15)

The absolute value (and sign) of fσ(z) is illustrated in Fig. 1, showing that the
backreaction of a realistic spectrum of stochastic perturbations induces negligible
corrections to the averaged flux at large z. In addition, such corrections have the
wrong z-dependence (in particular change sign at some z) to simulate even a tiny
dark energy component. For the considered spectrum (behaving as kns−5 log2 k at
large k, see [6]) the spectral integral is convergent and very weakly sensitive to
the chosen value of the UV cutoff [3] representing here the limit of validity of our
perturbative approach.

The small value of | fσ | at large z leads us to conclude that the averaged flux is a
particularly appropriate quantity for extracting from the observational data the “true”
cosmological parameters. On the other hand, the situation is somewhat different for
other functions of dL .

Indeed, let’s apply the general result (8) to the flux variable, S = σ, and consider
two important examples: F(σ) = σ−1/2 ∼ dL , and F(σ) = −2.5 log10 Δ +
const ∼ μ (the distance modulus). For dL , following the notations of (7) and using
the general result (8), we obtain:

fd = −(1/2) fσ + (3/8)→(σ1/σ0)
2∓. (16)

Similarly, for the distance modulus we obtain:

→μ∓ − μF L RW = −1.25(log10 e)
[
2 fσ − →(σ1/σ0)

2∓
]
. (17)
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Fig. 1 The correction fσ of (12) (thin curves) is compared with the correction fd of (16)
(thick curves), for a φCDM model with Λφ = 0.73. We have used two different cutoff values:
kU V = 0.1 Mpc−1 (dashed curves) and kU V = 1 Mpc−1 (solid curves). We have used for P(k)

the inflationary scalar spectrum with the WMAP parameters [7] and the transfer function given in
[6] (see also [3])

As clearly shown by the two above equations, the corrections to the averaged
values of dL and μ are qualitatively different from those of the flux, because of the
extra contribution (inevitable for any non-linear function of the flux) proportional to
the square of the first-order fluctuations. The averaged flux corrections have leading
spectral contributions of the type k2P(k); on the contrary, the new corrections to dL

and μ are due to the so-called “lensing effect”, they dominate at large z, and have
leading spectral contributions of the type k3P(k) (as already discussed in [3]). The
explicit numerical integration, reported in Fig. 1, confirms that | fσ | ∃ fd at large z.
We stress that even the k3-enhanced contributions are UV-finite for the case under
consideration.

Let us now briefly discuss to what extent the enhanced corrections due to the
squared first-order fluctuations can affect the determination of the dark-energy pa-
rameters if quantities other than the flux are used in the fits. To this purpose we
consider the much used (average of the) distance modulus given in (17), referred
as usual to the homogeneous Milne model with μM = 5 log10[(2 + z)z/(2H0)]. In
Fig. 2 we compare the averaged value →μ∓ − μM with the corresponding expression
in a homogeneous φCDM model with different values of Λφ. We also show the
expected dispersion around the averaged result, represented by the square root of the
variance [3]. The latter is given by:

√
→μ2∓ − (→μ∓)2 = ±2.5(log10 e)

√
→(σ1/σ0)

2∓; (18)
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Fig. 2 The averaged distance modulus →μ∓ − μM (thick solid curve), and its dispersion of (18)
(shaded region) are computed for Λφ = 0.73 and compared with the homogeneous value for the
unperturbed φCDM models with Λφ = 0.69, 0.71, 0.73, 0.75, 0.77 (dashed curves). We have used
kU V = 1Mpc−1 and the same spectrum as in Fig. 1

while for the flux we simply find:

√
→(σ/σ0)

2∓ − (→σ/σ0∓
)2 = ±

√
→(σ1/σ0)

2∓ . (19)

As illustrated in Fig. 2, we find that, even for the distance modulus, the effect of
inhomogeneities on the average only affects the determination of Λφ at the third
decimal figure (see also Fig. 1), at least for the inflationary power spectrum with
the φCDM transfer function of [6]: in that case, the curves for →μ∓ and μFLRW are
practically coincident at large z.

4 Conclusions

The main results presented in this paper can be summarized as follows. We have
recalled a covariant and gauge invariant formalism to average on null hypersurfaces
and to analyze the effects of inhomogeneities on astrophysical observables related
to light-like (massless) signals.

Then we have seen how the gauge invariant light-cone averaging of the luminosity-
redshift relation leads to results which are automatically free from UV/IR divergences
for any function of the luminosity distance, and, as a consequence, cannot simulate
a substantial fraction of dark energy.
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The actual value of the backreaction strongly depends on the quantity being
averaged. It turns out to be minimal for the flux which, therefore, stands out as the
safest observable for precision cosmology. For other observables the backreaction is
instead considerably larger.

The dispersion due to stochastic fluctuations is much larger than the backreaction
itself, implying an irreducible scatter of the data that may limit to the percent level (see
Fig. 2) the precision attainable on cosmological parameters because of the present
limited statistics.
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Scalar Averaging in Szekeres Models

Roberto A. Sussman

Abstract We introduce a formalism of scalar proper volume weighted averages (the
“q-average”) acting on compact comoving domains of quasi-spherical Szekeres mod-
els with a dust source. Although these models do not admit isometries, the resulting
averaged scalars are spherically symmetric functionals that can be defined as local
functions (the “q-scalars”) by considering a varying averaging domain. The fluctua-
tions of the density and Hubble scalar with respect to their corresponding q-scalars
determine the Riemann, Weyl, electric Weyl and shear tensors through irreducible
covariant algebraic expansions. The q-average of all invariant scalars formed by con-
tractions of these tensors are directly related to statistical variance and covariance
moments of the density and Hubble scalar with respect to their q-averages. The q-
scalars and q-averages, together with their fluctuations, lead to complete systems of
evolution equations and algebraic constraints that fully determine the dynamics of
the models. However, these evolution equations lack the “back-reaction” correlation
terms characteristic of Buchert’s averaging scheme.

1 Introduction

The Szekeres dust models are a well known class of exact solution of Einstein’s
equations that admit (in general) no Killing vectors [1]. For this reason they are natural
candidates to construct models of cosmological inhomogeneities that are much less
idealized than spherically symmetric configurations that arise from the Lemaître–
Tolman–Bondi (LTB) models [2] (their spherical limiting case). However, Szekeres
models provide also an ideal theoretical framework for the study of generic properties
of inhomogeneity, such as averaging. In this brief article we introduce a formalism of
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proper volume weighted averages acting on compact comoving domains, and thus we
consider only the “quasi-spherical” QS subclass of models for which such domains
always exist [3].

2 Quasi-Spherical Szekeres Models

QS Szekeres dust models can be described by the following metric reminiscent of
the spherically symmetric LTB metric:

ds2 = −dt2 + E 2 Y √2

1 − K
dr2 + Y 2

[
dx2 + dy2

]
, (1)

where Y = Y (t, r, x, y) and E = E (r, x, y) are given by

Y = R

E
, E = S

2

[
1 +

(
x − P

S

)2

+
(

x − Q

S

)2
]

, (2)

with R = R(t, r) being the area distance that appears in LTB metrics and S(r), P(r),
Q(r) are the Szekeres characteristic free arbitrary functions, so that (1) becomes
the LTB metric if they are constants. The metric function Y satisfies an analogous
Friedman–like equation as R in LTB models:

Ẏ 2 = 2M̃

Y
− K̃ , M̃ = M(r)

E 3 , K̃ = K (r)

E 2 . (3)

The main covariant scalars are the density, Λ, the Hubble expansion scalar φ = →aua

and the Ricci scalar 3R of hypersurfaces 3T [t] orthogonal to ua take also LTB–like
form:

4κ

3
Λ = M̃ √

3Y 2Y √ , H ∓ φ

3
= (Y 2Y √)̇

3Y 2Y √ , K ∓
3R

6
= (K̃ Y )√

3Y 2Y √ . (4)

3 Quasi-Local Average and Quasi-Local Scalars

Let A be a scalar function defined along an arbitrary hypersurface 3T [t] whose
proper volume element is dV = F−1Y 2Y √drdxdy, with F ∓ ∼

1 − K/E , the
quasi-local scalar average of A for a compact comoving domain D[rb] bounded by
r = rb is the linear functional

≤A∞q [rb] =
∫
D AFdV∫
D FdV

=
∫

dy
∫

dx
∫ rb

0 AY 2 Y √dr∫
dy

∫
dx

∫ rb
0 Y 2 Y √dr

, (5)



Scalar Averaging in Szekeres Models 409

which applied to A = Λ, H , K yields [with the help form (3) and (4)] averaged
quantities that do not depend on the “non-spherical” coordinates (x, y) (even if the
A depend on all 4 coordinates, see [3, 4]):

4κ

3
≤Λ∞q [rb] = M̃b

Y 3
b

= Mb

R3
b

, ≤K ∞q [rb] = K̃b

Y 2
b

= Kb

R2
b

, (6)

≤H ∞q [rb] = Ẏb

Yb
= Ṙb

Rb
, ≤H ∞2

q [rb] = 8κ

3
≤Λ∞q [rb] − ≤K ∞q [rb], (7)

where the subindex b denotes evaluation at r = rb. Since rb is arbitrary, we can
construct the following functions of (t, r) that evaluate locally (the “q-scalars”) from
the functionals (6)–(7) by considering domains with varying boundary:

4κ

3
Λq = M

R3 , Hq = Ṙ

R
, Kq = K

R2 , H 2
q = 8κ

3
Λq − Kq . (8)

The relevant curvature and kinematic tensors of the models: the Riemann (Rab
cd ), Ricci

(Rab), Weyl (Cacbd ) and electric Weyl (Eab = ucudCacbd ) tensors, as well as the
shear tensor (νab), are all expressible in terms of irreducible algebraic decompositions
containing only the metric, the projection tensor hab = gab + uaub and a common
divergence-less tensor eab = hab − 3∂a∂b (∂a = ∼

hrrξ
r
a), with the coefficients

given by Λ, H and their fluctuations with respect to Λq , Hq :

Rab
cd = 8κ

3
Λ

(
3ξ

[a
[c ξ

b]
d] + 6ξ

[a
[c ub]ud] − ξa[cξb

d]
)

+ Cab
cd , (9)

Ra
b = 4κΛ

(
ha

b + uaub
)
, Cab

cd = 4κ

3
Dq(Λ)(h[a

[c − 3u[cu[a)eb]
d]), (10)

νab = −Dq(H ) eab, Eab = 4κ

3
Dq(Λ)eab, (11)

where the fluctuations Dq(Λ) and Dq(H ) are defined as

4κ

3
Dq(Λ) = 4κ

3
(Λ − Λq) = 4κ

3

Λ√
q

3Y √/Y
= π2, (12)

Dq(H ) = H − Hq = H √
q

3Y √/Y
= −τ, (13)

with τ and the conformal invariant σ2 (the eigenvalues of Eab and νab in terms of
eab) given by

τ = νabeab = −1

3

(
Ẏ √

Y √ − Ẏ

Y

)
, π2 = Eabeab = M̃

Y 3 − 4κ

3
Λ. (14)
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4 Statistical Fluctuations and Invariant Scalars

The statistical fluctuation of a Szekeres scalar A with respect to its q-average ≤A∞q

is given by

Dst
q(A) = A(t, r, x, y) − ≤A∞q [rb](t) ∗ ≤Dst(A)∞q [rb] = 0, (15)

and is a non-local quantity that depends in inner points of the domain and also on its
boundary r = rb. Evidently, the fluctuations Dq(Λ) and Dq(H ) in (12) and (13) are
not statistical fluctuations, as they are evaluated locally and thus ≤Dq(Λ)∞q [rb] 	= 0
and ≤Dq(H )∞q [rb] 	= 0 hold. However, as proven in [5, 6], the averages of local
quadratic fluctuations coincides with the average of quadratic statistical fluctuations,
and thus relates these averages with the variance and covariance statistical moments
Varq and Covq

1

≤ [Dq(Λ)]2 ∞q = ≤ [Dst
q(Λ)]2 ∞q = ≤Λ2∞q − ≤Λ∞2

q = Varq(Λ), (16)

≤ [Dq(H )]2 ∞q = ≤ [Dst
q(H )]2 ∞q = ≤H 2∞q − ≤H ∞2

q = Varq(H ), (17)

≤ Dq(Λ) Dq(H ) ∞q = ≤ Dst
q(Λ) Dst

q(H ) ∞q = ≤ΛH ∞q − ≤Λ∞q≤H ∞q

= Covq(Λ,H ), (18)

where we omitted the domain indicator [rb] to simplify the notation.
The relation between the local fluctuations Dq(Λ), Dq(H ) and the covariant

scalars σ2 and τ in (12) and (13) illustrates an interesting and appealing relation
between the q-average and the characteristic tensors of the models through the prop-
erties (16), (17) and (18): the q-averages of all quadratic contractions of the curvature
and shear tensors in (9)–(11) are directly expressible in terms of statistical moments
of Λ and H with respect to ≤Λ∞q and ≤H ∞q :

≤νabν
ab∞q = 6≤τ2∞q = 6Varq(H ), (19)

≤Eab Eab∞q = 6≤(π2)
2∞q = 32κ2

3
Varq(Λ), (20)

≤νab Eab∞q = 6≤τ E ∞q = 8κCovq(Λ,H ), (21)

≤CabcdCabcd∞q = 256κ2

3
Varq(Λ) = 4

3
Varq(R) = 8≤Eab Eab∞q , (22)

≤RabcdR
abcd∞q = 256κ2

3

[
Varq(Λ) + 5

4
≤Λ2∞q

]
= 4

3
Varq(R) + 5

3
≤R2∞q ,

(23)

1 This result was proven for LTB models, but it is straightforward to prove that it also holds for the
QS Szekeres models.
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where we used the fact that the Ricci scalar is R = 8κΛ, and thus: ≤R∞q = 8κ≤Λ∞q

and RabRab = R2. We can express the ratio of Weyl versus Ricci curvature
(σ2/R) and anisotropic vs isotropic expansion (τ/H ) as ratios between the q-
scalars Λq , Hq and their counterparts Λ, H :

6π2

R
= 1 − Λq

Λ
,

τ

H
= Hq

H
− 1. (24)

Also, the quadratic ratio of Weyl to Ricci curvatures is expressible as the ratio of the
averages of (π2)

2 and R2, and as a sort of “standard deviation” of Λ with respect to
≤Λ∞q :

6≤Eab Eab∞q

≤RabRab∞q
= 6≤(π2)

2∞q

≤(R)2∞q
= 6Varq(Λ)

≤Λ2∞q
= ≤Λ2∞q − ≤Λ∞2

q

≤Λ2∞q
. (25)

A similar standard deviation of H with respect to ≤H ∞q follows as the quotient of
averages of quadratic covariant scalars νabν

ab and H 2:

≤νabν
ab∞q

6≤H 2∞q
= ≤τ2∞q

≤H 2∞q
= Varq(H )

≤H 2∞q
= ≤H 2∞q − ≤H ∞2

q

≤H 2∞q
, (26)

where we used (14).

5 Comparison with Buchert’s Average

Buchert’s scalar average is the standard proper volume average, ≤A∞p[rb], hence it
is defined by (5) with F = 1:

≤A∞p[rb] =
∫
D AdV∫
D dV

=
∫

dy
∫

dx
∫ rb

0 AF−1Y 2 Y √dr∫
dy

∫
dx

∫ rb
0 F−1Y 2 Y √dr

. (27)

Evidently, the scalars τ and σ2 are not related to the the local fluctuations Dp(Λ),
Dp(H ) (analogous to Dp(Λ), Dp(H )) through a closed and straightforward man-
ner as (12)–(13). Therefore, the relations between the Buchert’s averages of invariant
quadratic scalars and the variance and covariance moments with respect to this aver-
age is much more complicated than the simple elegant relations (19)–(23). Likewise,
we cannot express with this average the ratio of Weyl to Ricci curvature as in (25)
and (26).

It is straightforward to show that the “back-reaction” correlations terms that appear
when applying Buchert’s average to evolution equations vanish if we apply the q-
average (5). The Raychaudhuri equation for Szekeres models is

Ḣ = −H 2 − δ

6
Λ − 2 τ2, (28)
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averaging on both sides, using (13) and the commutation rule (we omit the domain
indicator)

Ω

Ωt
≤A∞q −

〈
Ω A

Ωt

〉
q

= ≤A∞̇q − ≤ Ȧ∞q = 3≤H A∞q − 3≤H ∞p≤A∞q , (29)

for A = H we obtain

≤H ∞̇q [rb] = −≤H ∞2
q [rb] − 4κ

3
≤Λ∞q [rb] + 2Qq [rb], (30)

where Qq [rb] is the back-reaction term :

Qq [rb] ∓ ≤(H − ≤H ∞q
)2∞q − ≤(H − Hq

)2∞q

= ≤
[
Dst

q(H )
]2∞q [rb] − ≤[Dq(H )

]2∞q [rb] = 0, (31)

which vanishes identically for every domain as a consequence of (16) (see [5, 6]).
Hence, (30) reduces exactly to a FLRW Raychaudhuri equation given in terms of
q-averages. While Buchert’s average satisfies the same commutation rule (29), the
scalar τ2 is not directly related to a local fluctuation of H [i.e. as in the relation
(13)], hence its application to the Raychaudhuri equation (28) yields a different result:
equation (30) with the p average, but with nonzero back-reaction:

Qp[rb] ∓ ≤(H − ≤H ∞p
)2∞p − ≤(H − Hq

)2∞p

= ≤
[
Dst

p(H )
]2∞p[rb] − ≤

[
Dst

q(H )
]2∞p[rb] 	= 0, (32)

where we used (17).

6 Evolution Equations

While the re-interpretation of the dynamics through the presence of extra back-
reaction terms is not possible with the q-average, the latter yields evolution equations
that are complete and self-consistent, as opposed to the evolution equations from
Buchert’s average that require making extra assumptions on the back-reaction terms
in order to close the system. As shown in [3], if we define relative fluctuations (or
“exact perturbations”) as

Σ(A) ∓ Dq(A)

Aq
= A − Aq

Aq
= A√

q/Aq

3Y √/Y
, A = Λ, H , K , (33)
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the dynamics of the models becomes completely determined by the following system
of autonomous evolution equations:

Λ̇q = −3ΛqHq , (34)

Ḣq = −H 2
q − 4κ

3
Λq , (35)

Σ̇(Λ) = −3(1 + Σ(Λ))HqΣ(H ), (36)

Σ̇(H ) = −(1 + 3Σ(H ))HqΣ(H ) + 4κΛq

3Hq
(Σ(H ) − Σ(Λ)), (37)

subjected to the algebraic constraints

H 2
q = 8κ

3
Λq − Kq , 2Σ(H ) = ηq Σ(Λ) + (1 − ηq)Σ(K ), (38)

where we have introduced the following q-scalar analogous to a FLRW Omega factor

ηq ∓ 8κΛq

3H 2
q

, ηq − 1 = Kq

H 2
q

. (39)

If we consider instead non-local statistical relative fluctuations

Σ(A)
NL = Dst

q(A)

≤A∞q [rb] , (40)

such that

1 + Σ(A)
NL = Aq(r)

≤A∞q [rb] (1 + Σ(A)), (41)

we obtain the following system of evolution equations:

≤H ∞̇q [rb] = −≤H ∞2
q [rb] − 4κ

3
≤Λ∞q [rb], (42)

≤Λ ∞̇q [rb] = −3≤H ∞q [rb]≤Λ∞q [rb], (43)

Σ̇
(Λ)
NL = −3(1 + Σ

(Λ)
NL ) ≤H ∞q [rb] Σ

(H )
NL , (44)

Σ̇
(H )
NL = −(1 + 3Σ

(H )
NL ) ≤H ∞q [rb]Σ(H )

NL + 4κ ≤Λ∞q [rb]
3≤H ∞2

q [rb] (Σ
(H )
NL − Σ

(Λ)
NL ) (45)

−2≤H ∞q [rb]
(

1 − Hq (r)

≤H ∞q [rb]
)2

+ 4(Hq (r) − ≤H ∞q [rb])Σ(H )
NL ,

which, in order to render a fully complete system, must be supplemented by the
evolution equations (34) and (35) for Λq andHq . This system is subjected to the same
algebraic constraints (38), but given in terms of q-averages and non-local relative
fluctuations. Evidently, (42)–(45) is much more complicated than (34)–(37), and
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both systems coincide for comoving observers at the domain boundary r = rb where
≤H ∞q [rb] = Hq(rb) holds for all t .

7 Conclusions

Szekeres models provide an ideal tool to explore the theoretical consequences of
non-trivial inhomogeneity, and in particular, the relation between averaging and the
geometric objects that characterize inhomogeneous spacetimes. We have shown how
a suitable weighted scalar average (the q-average) allows us to relate the average of
invariant scalars and statistical variance and covariance moments of the density and
Hubble scalar. We have also shown that the dynamics of the models can be com-
pletely determined by evolution equations constructed with these averaged scalars
(and functions constructed with them) and their fluctuations, which can be local or
non-local (statistical). While the evolution equations of the q-averages lack “back-
reaction” terms characteristic of Buchert’s average (the q-average with unit weight
factor), these evolution equations are complete and self-consistent systems that can
be handled numerically in the multiple potential applications of the Szekeres quasi-
spherical solution to model building in Cosmology and General Relativity.
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On the Interplay Between Radial
and Angular Reflection Emissivity
from the Black Hole Accretion Disc

Jiří Svoboda, Michal Dovčiak, René W. Goosmann
and Vladimír Karas

Abstract Accretion processes around relativistic compact objects, such as black
holes or neutron stars, can be well studied through X-ray spectroscopy. The disc
reflection spectra detected in observations of several active galactic nuclei and X-ray
binaries in our and nearby galaxies suggest high steepness of the radial emissivity.
This can be primarily caused by compactness of the illuminating radiation. In our
recent paper [1], we showed that the measurement of the steep radial emissivity
index might also be over-estimated by ignoring the radial ionisation structure and the
proper angular-emissivity law, which is non-trivial in the fully relativistic regime.
In this paper, we demonstrate the interplay of the angular and radial emissivity.
Employing an improper angular emissivity in the reflection models leads to over-
estimated values for the black-hole angular momentum and the radial-emissivity
index (by about 10 %).

1 Introduction

X-ray spectroscopy provides a unique way to study accretion physics in the strong-
gravity field. X-ray reflection spectra have been used to measure angular momentum
of black holes as well as the other geometrical parameters of the accretion discs, such
as its inclination angle, radial emissivity, inner and outer disc radius (for a review, see

J. Svoboda (B)

European Space Astronomy Centre of ESA, P.O. Box 78, Villanueva de la Cañada,
28691 Madrid, Spain
e-mail: jsvoboda@sciops.esa.int

J. Svoboda · M. Dovčiak · V. Karas
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R.W. Goosmann
Observatoire astronomique de Strasbourg, Equipe Hautes Energies 11 rue de l ’Université,
67000 Strasbourg, France
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Fig. 1 Contours of the local emission angle, θe(r, φ), near a maximally rotating black hole, a = 1,
depicted in the equatorial plane (x, y). The black hole and the accretion disc rotate counter clock-
wise. The inner region is shown up to r = 20 gravitational radii from the black hole. A distant
observer is located towards the top of the figure. The inclination angle is 30 (left) and 70◦ (right).
Adopted from [2]

e.g. [3]). Current relativistic kernels that are applied to reflection models to include the
relativistic effects on the spectral shape are based on a series of simplified assumptions
and, in particular, they assume a single/broken power-law form of the radial reflection
emissivity and an angular emissivity law defined by a simple analytical formula,
most frequently employing a limb-darkening profile [4]. Due to the abberation effect
and strongly curved photon trajectories, the emission angle is not identical with the
inclination angle. It is particularly prominent at the innermost region where it is
always very high (see Fig. 1). Such a complex structure implies a non-trivial link
between the radial and the angular emissivity when fitting the data.

The intrinsic disc radial emissivity is naturally expected to decrease with increas-
ing distance, i.e. the reflection emissivity is

ε(r) = r−q , (1)

where q is the emissivity index that can be constant over all radii or a varying
quantity. The thermal dissipation of the disc decreases as r−3 [5]. Therefore, the
simplest assumption is postulating the same dependence for the reflection. The most
energetic photons are produced in the innermost regions, where by consequence
the strongest irradiation of the disc occurs. In addition, assuming a point-like X-ray
source at height h on the disc axis, the irradiation of the disc in the absence of any
relativistic effect is proportional to (r2 + h2)−3/2 ∝ r−3, as shown e.g. by [6]. An
emissivity profile with q = 3 is therefore considered as standard, while steeper/flatter
indices may need to be explained.
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Steep emissivity profiles have been measured in X-ray spectra of several active
galactic nuclei, such as MCG -6-30-15 [7], 1H0707-495 [8], and IRAS 13224-3809
[9], as well as X-ray binaries with a black hole, such as XTE J1650-500 [10],
GX 339-4 [11], and Cyg X-1 [12], or with a neutron star, e.g. Cyg X-2 [13]. The
measured indices reach values up to q ≈ 7.

Martocchia et al. [14], and Wilkins and Fabian [15] examined whether the required
steep emissivity law as well as the predicted equivalent width of the cold reflection
line of iron and the Compton reflection component can be reproduced in a phenom-
enological (lamp-post) model where the X-ray illuminating source is located on the
common symmetry axis of the black hole and the equatorial accretion disc. They
suggested that the radial emissivity function of the reflection component steepens
when the height parameter of the primary irradiation source decreases.

In this paper, we discuss the effect of the angular emissivity in addition to the
assumption of the compact centrally localised corona. The reader may also look
at [2] and [1], where more geometrical cases are considered as well as the radially
dependent ionisation structure (in the latter one). This paper is organised as follows. In
Sect. 2, we describe our model set-up. Analytical approaches of the angular emissivity
are compared with the numerical one in Sect. 3. Inter-dependence of the angular and
radial emissivity is demonstrated in Sect. 4, and the main conclusions are drawn in
Sect. 5.

2 Model Pre-requisites

The configuration of a very compact corona located on the rotational axis just above
the black hole, known also as the lamp-post scheme, was studied as a simple disc-
corona scenario by George and Fabian [16] and Matt et al. [17]. In this scenario, the
irradiation far from the source radially decreases as r−3. In the central region, the
relativistic effects influence the disc illumination, thus shape the reflection spectra of
black hole accretion discs [18]. As a result, the different parts of the disc are irradiated
with different intensities, making the emissivity profiles in reflection models distinct
from the standard value of q = 3. If the height of the source is sufficiently close to the
black hole event horizon, light bending implies higher irradiation of the innermost
region compared to the outer parts of the disc. The exact profile of the radial emissivity
depends on the geometrical properties of the source. Different cases of axial, orbiting,
jet, and extended sources were studied by Wilkins and Fabian [15]. The steepest
profiles were obtained for point-like sources at small heights along the vertical axis.

The physical set-up of our model is a combination of the general-relativistic lamp-
post scheme for an X-ray illuminated accretion disc near a rotating black hole [14]
based on the KY package [19] and a self-consistent Monte Carlo scheme for the
X-ray reprocessing within the disc environment [20]. We used local (re-) emission
tables that were computed by the radiative transfer code NOAR [21] for the case
of “cold” reflection (i.e. for neutral or weakly ionised matter). Photo-absorption,
Compton scattering, and the fluorescent emission of the iron K line are considered.
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Fig. 2 Left Comparison of simple approximations of angular emissivity defined by (2). Right Radial
dependence of the incident angle in the lamp-post geometry for different heights. The spin is a = 1
and the inclination angle is 30◦

A stratified plane-parallel atmosphere irradiated by a power law with the photon
index Γ = 1.9 is assumed. A large number of primary photons were sampled in
the 2–300 keV energy range to ensure sufficiently high quality statistics. At all local
emission angles, the Poissonian noise level is much smaller than any relevant spectral
feature. The computations were done for various incident local emission angles, both
polar and azimuthal.

3 Angular Emissivity: Simple Approximations Versus
Numerical Results

The angular emissivity law, M (μe, re, Ee), defines the distribution of the intrinsic
intensity outgoing from each radius re of the disc surface with respect to the per-
pendicular direction. The emission angle θe = arccos μe is measured from the disc
normal direction to the equatorial plane, in the disc co-moving frame. The general
expression is usually simplified to a simple function of μe. Three cases are the most
frequently considered:

Case 1:
Case 2:
Case 3:

M (μe) =
⎧⎨
⎩

1 + 2.06 μe (limb-darkening) [4]
1 (locally isotropic emission)
ln(1 + μ−1

e ) (limb-brightening) [22]
(2)

Figure 2 (left panel) shows the comparison of these analytical approaches. Limb
brightening and limb darkening are completely different. While the limb-darkening
law diminishes radiation reflected into high emission angles the limb-brightening
profile enhances such a reflected emission. Although limb darkening is the most
frequently used approximation in the current spectroscopic analyses, several X-ray
simulations of irradiated disc atmospheres suggest the presence of limb brightening
(see e.g. [23–25]) instead.
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Fig. 3 Angular emissivity from our numerical model depending on the incident angle μi and the
emission angle μe

Our results also exhibit the evidence for limb brightening, as shown in Fig. 3. The
incident angle plays an important role. A strong limb-brightening effect occurs for
grazing incident angles, while almost isotropic dependence is obtained for irradiation
of the disc from above. We note that in the strongly curved space-time around a rapidly
rotating black hole, the irradiation from “above” does not occur under the lamp, as
it would be in the Newtonian physics. In the innermost region, both the incident and
emission angles are grazing (see Fig. 1 and the right panel of Fig. 2). This is due
to the combined effects of aberration and light bending which grow greatly near the
inner rim of the disc.

4 Inter-dependence Between Angular and Radial Emissivity

The angular emissivity is linked with the radial emissivity owing to the significant
radial dependence of the emission angle (see Fig. 1). The local emission angle spans
the entire range, from 0 (perpendicular, face-on) to 90

◦
(grazing, edge-on) degrees.

The highest value is obtained in the innermost region, and only far from the centre
the emission angle is consistent with the inclination angle, i.e. μe(r, φ) → μobs for
r → ∞.

Figure 4 shows the contour plots between the black hole angular momentum and
the radial emissivity index for different cases of angular emissivity. The simulated
data were created with our numerical procedure. The details of the simulations are
described in Sect. 2 of [1]. The radial-emissivity index is slightly under-estimated by
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Fig. 4 Contour plots of the spin a and the radial emissivity parameter q. The data were generated
with the lamp-post model with the height h = 1.5 rg. The default value of the spin was a = 0.94,
which is indicated by a dashed line in the graph. Different prescriptions for the angular emissivity
were used: Top left Angular emissivity from numerical calculations. Top right Limb brightening.
Bottom left Isotropic. Bottom right Limb darkening. The contour lines correspond to 1σ, 2σ , and
3σ levels. Adopted from [1]

the model with limb brightening and it is slightly over-estimated by the model with
the isotropic angular emissivity. This illustrates the fact that our numerical results
do exhibit limb-brightening effect but on average over all incident angles it is not
as strong effect as limb brightening defined by the analytical formula in (2). The
model with limb darkening clearly produces the worst fit, it over-estimates the radial
emissivity index by ≈ 10 % and also over-estimates the spin-value.

5 Conclusions

The angular emissivity significantly modifies the total emission expected from the
reflection on a black hole accretion disc. The non-trivial dependence of the emission
angle on the radial and azimuthal coordinate in the disc implies that (i) there is a link
between the radial and angular emissivity, and (ii) the black hole spin measurements
via reflection models are affected by the employed angular-emissivity prescription.
Our numerical model suggests the presence of limb brightening whose exact profile
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depends on the incident angle, and thus on the geometry of the primary-radiation
source. The strongest limb-brightening effect is obtained for the highest value of the
incident angle while almost isotropic dependence is present in the case of irradiation
from above. The highest reflection efficiency occurs at the innermost region around a
rapidly rotating black hole, where both the incident and emission angles are largest.
Averaged over all incident angles, our limb-brightening effect is weaker than the
analytical prescription of the limb-brightening law defined by Haardt [22].
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Critical-Curve Topologies of Triple
Gravitational Lenses

Kamil Daněk and David Heyrovský

Abstract An extrasolar analog of the Sun–Jupiter–Saturn system has been
discovered recently by detecting its gravitational microlensing action on the flux
from a background star [1]. More generally, however, gravitational lensing by a sys-
tem of three bodies has not yet been satisfactorily analyzed theoretically. Correct
interpretation of microlensing light curves requires an understanding of the geom-
etry of the underlying lens caustic and critical curves. These curves correspond to
source positions and image positions, respectively, with infinite point-source-flux
amplification. Following the pioneering Erdl and Schneider analysis of the parame-
ter dependence of binary lensing [2], we extend their approach to special cases of
the triple lens. While the binary lens is characterized by two parameters, three more
parameters are needed to describe the triple lens. We present here an example of a
three-dimensional cut through the five-dimensional parameter space, identifying the
boundaries of regions with different critical-curve topology.

1 Lens Equation and Critical-Curve Topology

An n-point-mass gravitational lens deflects light from a background source and forms
multiple images, which can be found by solving the lens equation

β = θ −
n∑

i=1

4G Mi

c2

DL S

DL DS

θ − θi

|θ − θi|2
, (1)

where β is the angular source position, θ angular image position, θi angular lens
positions, Mi lens masses, G gravitational constant, c speed of light, distances DL
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from observer to lens, DS observer to source, and DL S lens to source. We can express
all angular positions in units of the Einstein radius

θE =
√

4G M

c2

DL S

DL DS
(2)

corresponding to total mass M , and instead of vectors we use complex notation
introduced by [3], so that β → ζ , θ → z, θ i → zi .

For n = 3 with relative masses μi = Mi/M we then get the triple lens equation
in the form

ζ = z − μ1

z̄ − z̄1
− μ2

z̄ − z̄2
− μ3

z̄ − z̄3
. (3)

Its critical curve parameterized by phase ϕ ∈ [ 0, π) is given by

μ1

(z − z1)2 + μ2

(z − z2)2 + μ3

(z − z3)2 = e−2iϕ , (4)

and the caustic ζ(z(ϕ)) is obtained by plugging critical-curve points z(ϕ) into (3).
The critical curve generally consists of several separate loops that may merge (or
split) only when the critical curve passes through a saddle point of the lens-equation
Jacobian. These points can be found by solving

μ1

(z − z1)3 + μ2

(z − z2)3 + μ3

(z − z3)3 = 0. (5)

Lens parameters corresponding to these topology changes can be obtained using the
Sylvester matrix method to find the conditions for the existence of common roots of
polynomials obtained from (4) and (5).

For the binary lens it is possible to obtain the conditions in analytical form, but for
the general triple lens the equations are prohibitively intricate. However, for various
simple two-parameter triple-lens models the conditions for topology change can be
found in the form of polynomial equations in terms of the lens parameters. Several
such examples can be found in [4]. We also found an algorithm for obtaining the
conditions numerically for three-parameter triple-lens models. We demonstrate here
the results obtained for the general equal-mass triple lens.

2 Equal-Mass Triple Lens

In this model we treat the “size” and “shape” of the triangular lens configuration
separately. The size is expressed by the perimeter p, while the shape is determined
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Fig. 1 Left panel Sketch of triple lens with equal-mass lenses at the vertices. Right panel Relative
side-length ternary plot showing the shapes of triangles corresponding to the grid-point at their
centroid

Fig. 2 Center Parameter space cut for perimeter p = 1.68 divided according to critical-curve
topology. Left and Right Examples of critical curves (red) and caustics (blue) from each region,
with lens positions marked by black crosses

by the position in the ternary plot shown in Fig. 1. The full parameter space is
represented by a sequence of vertically stacked ternary plots with increasing p.

For illustration we show the p = 1.68 cut in Fig. 2. Here the parameter space is
divided into 13 regions, but because of symmetry there are only four types of regions
with three critical-curve topologies. In Fig. 3 we present a sequence of ternary plots
with increasing p. There are 39 disjoint regions in the 3-D parameter space that
can be grouped into 12 types using the symmetry of the problem. The equal-mass
triple lens permits nine different critical-curve topologies, sketched at the left side
of Fig. 3.
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Fig. 3 Constant perimeter cuts and critical-curve topologies: Ternary plots for values of p increas-
ing from top left to bottom right. Colors correspond to critical-curve topologies sketched in the left
column
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Modified Gravity Theories and Dark Matter
Models Tested by Galactic Rotation Curves

Marek Dwornik, Zoltán Keresztes and László Árpád Gergely

Abstract Bose–Einstein condensate dark matter model and Randall–Sundrum type
2 brane-world theory are tested with galactic rotation curves. Analytical expressions
are derived for the rotational velocities of test particles around the galactic center in
both cases. The velocity profiles are fitted to the observed rotation curve data of high
surface brightness and low surface brightness galaxies. The brane-world model fits
better the rotation curves with asymptotically flat behaviour.

1 Introduction

Luminous matter alone can not explain the observed behaviour of the galactic rotation
curves and an invisible, dark matter component is needed [1]. One possibility to
explain dark matter is to introduce collisionless dark scalar particles in the form of a
Bose–Einstein condensate (BEC) [2, 3]. However, up to now the evidence for dark
matter has been only found by its gravitational interaction. It cannot be excluded that
general relativity breaks down at scales of galaxies and beyond. Therefore several
modified gravity models have been proposed to replace dark matter [4–6]. The Weyl
fluid appearing in Randall–Sundrum type 2 (RS2) brane-world models can behave
as an effective source for gravity and it is able to replace dark matter in galactic
dynamics [7, 8].

We investigate here galactic rotation curves in RS2 brane-world and the BEC
model for high surface brightness (HSB) and low surface brightness (LSB) galaxies.

M. Dwornik (B), Z. Keresztes, · L. Á. Gergely
Departments of Theoretical and Experimental Physics, University of Szeged,
Dóm tér 9., Szeged 6720, Hungary
e-mail: marek@titan.physx.u-szeged.hu
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2 The Baryonic Matter

Distribution of baryonic matter in HSB galaxies is described as the sum of a thin
stellar disk and a spherically symmetric bulge component.

We assume that the mass distribution of bulge component with radius rbulge fol-
lows the de-projected luminosity distribution with a factor called mass-to-light ratio
σ . The surface brightness profile of the spheroidal bulge is described by a generalized
Sérsic function [9]: Ibulge(r) = I0,bulge exp

[− (r/r0)
1/n]

, where I0,bulge and r0 are
the central surface brightness and the characteristic radius of the bulge, respectively,
and n is the shape parameter of the magnitude-radius curve. The contribution to the
rotational velocity is

v2
bulge(r) = G Mbulge(r)

r
, (1)

with gravitational constant G and mass of the bulge Mbulge(r) = σ Ibulge(r) within
the radius r projected on the sky.

In a spiral galaxy the radial surface brightness profile of the disk decreases expo-
nentially with the radius [10]: Idisk(r) = I0,disk exp (−r/h) , where I0,disk is the disk
central surface brightness and h is a characteristic disk length scale. The contribution
of the disk to the circular velocity is [10]:

v2
disk(x) = G Mdisk

2h
x2(I0 K0 − I1 K1), (2)

where x = r/h and Mdisk is the total mass of the disk. The functions Im and Km are
the modified Bessel functions of the first and second kind with order m, respectively.
The Bessel functions are evaluated at x/2.

The best fitting values of I0,bulge, n, r0, rbulge, I0,disk and h are derived from the
available photometric data. In case of LSB galaxies the baryonic model only consists
of a thin stellar disk component which is the same as for the HSB galaxies.

3 Models for the Dark Matter Component

The mass density distribution of the static gravitationally bounded Bose–Einstein
condensate is described by the Lane–Emden equation. An analytical solution for
dark matter BEC was obtained in Ref. [3]: ρB EC (r) = ρ

(c)
B EC (sin(kr)/kr), where

k = √
Gm3/�

2a and ρ
(c)
B EC is the central mass density of the condensate. The mass

profile of the galactic halo is m B EC (r) = 4π
∫

ρB EC (r)r2dr giving the following
contribution to the rotational velocity [3]:

v2
B EC (r) = 4πGρ

(c)
B EC

k2

(
sin kr

kr
− cos kr

)
. (3)
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Fig. 1 Best fit curves for the observed velocity profiles of the HSB galaxy ESO445G19 and the
LSB galaxy NGC3274. The solid black and dashed red curves show the BEC and Weyl models,
respectively. In case of HSB galaxy, the shape of the curve near the center where baryonic matter
dominates is determined by the photometric data

In RS2 brane-world theory the 4-dimensional effective Einstein equation has
extra source terms, which arise from the embedding of the 3-brane in the bulk [11].
We assume that the brane embedding is Z2-symmetric and there is no matter in
the 5-dimensional spacetime but there is a cosmological constant. Nevertheless the
effect of the brane cosmological constant arising from the brane tension and the 5-
dimensional cosmological constant is neglected at the scales of galaxies. Then at low
energies there is only one extra source term in the effective Einstein equation arising
from the 5-dimensional Weyl curvature, which acts as a fluid (the Weyl fluid). The
contribution to the rotational velocity in a Post-Newtonian approximation is derived
in [8]:

v2
W eyl(r) ≈ G

(
Mtot

0

)
r

+ c2β + c2C
(rb

r

)1−α

, r > r∗, (4)

with constants α, β, C and Mtot
0 charaterizing the Weyl fluid and velocity of light

c. A scaling constant rb was introduced such that C becomes dimensionless and
rb = rbulge was chosen. The rotational velocity (4) is valid for any r > r∗, where r∗
represents the radius beyond which the baryonic matter does not extend. We assume
that (i) the contribution of the Weyl fluid can be neglected within the bulge radius, and
(ii) the observed rotation curves within rbulge can be explained with baryonic matter
alone (it is given by the sum of (1) and (2) for HSB and by (2) for LSB galaxies).
Outside rbulge we assume the effects of the disk can be handled as perturbation,
therefore the rotational curves are generated by the sum of (2) and (4).

The best fit rotational curves of the Weyl and BEC models for the observed velocity
profiles of the HSB galaxy ESO445G19 and the LSB galaxy NGC3274 are shown
in Fig. 1.
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4 Concluding Remarks

We investigated whether RS2 brane-world and Bose–Einstein condensate dark matter
models can explain the galactic rotational curves. Analytical expressions for the
rotational velocity of a test particle around the galactic center in both model scenarios
were derived. The rotation curves can be well-explained by both models and we
represented this for both HSB and LSB galaxies in Fig. 1. The Weyl model was
confronted with a larger galaxy sample, finding good agrement with the observations
in [8].
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Averaging Inside the LRS Family

Petr Kašpar, David Vrba and Otakar Svítek

Abstract Averaging problem in GR and cosmology is of fundamental importance. It
is still not clear how to unambiguously average the Einstein equations and the metric
tensor. One of the most promising attempts how to deal with averaging in GR are the
Buchert equations. However, only scalar part of the Einstein equations is averaged and
the system is not closed. Here we will present LRS (locally rotationally symmetric)
spacetimes, where one can find preferred spatial direction and the evolution and the
constraint equations are described only by scalars. By averaging these scalars we
will obtain generalized Buchert equations for LRS spacetimes.

1 Introduction

The averaging problem in general relativity was studied by Ellis [1] and has been
investigated many times since then. However, despite some attempts [2], it is not
obvious, how to take an average of a tensorial quantity. On the other, hand averaging
of scalars according to Buchert [3] is a fully covariant operation, though it has some
drawbacks as well. It is performed over some domain on a spatial hypersurface and
it depends on the slicing of the spacetime and on the scale.

The key problem in cosmology is that calculating the Einstein tensor from the
averaged metric is not the same thing as calculating the Einstein tensor from inho-
mogeneous metric and taking the average after that:

GμΛ

(〈
gμΛ

〉) √= 〈
GμΛ

(
gμΛ

)〉
. (1)

This property follows from the nonlinearity of Einstein equations.
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2 Buchert Equations

Averaging of scalars was considered by Buchert [3]. The average of a scalar φ over
a domain D on a spatial hypersurface is defined as

→φ∓ ∼ 1

VD

∫

D

φ
√

det gi j d3x, (2)

where VD is the volume of the domain D . Taking the average of the Raychaudhuri
equation and the Hamiltonian for irrotational dust leads to the Buchert equations [3]

3
äD
aD

= −4κ →ν∓ + Q, (3)

3
˙aD

2

a2
D

= 8κ →ν∓ − 1

2
→R∓ − 1

2
Q. (4)

Here ν is the matter density, R is the Ricci scalar on the spatial hypersurface and
aD is the effective scale factor of the domainD . The quantityQ in Buchert equations
(3)–(4) is called the backreaction and is defined as

Q ∼ 2

3

⎪〈
∂2

〉
− →∂∓2

)
− 2

〈
ξ 2

〉
. (5)

3 LRS Spacetime

Locally rotationally symmetric (LRS) spacetimes are defined by the following char-
acterization [4]: In an open neighborhood of each point p, there is a nondiscrete
subgroup of the Lorentz group which leaves the Riemann tensor and its covariant
derivatives to the third order invariant. There is, therefore, a preferred direction eμ

(the axis of symmetry) in every point in LRS spacetimes.
We will use the covariant 3+1 splitting of a spacetime with the timelike vector uμ

normalized by the condition uνuν = −1 and the projection tensor hμΛ = gμΛ+uμuΛ .
Because of the property of the LRS spacetime, all covariantly defined spacelike
vectors orthogonal to uμ must be proportional to eμ [5].

u̇μ = u̇eμ, πμ = πeμ, hξ
μ≤ξ ν = ν∞eμ, hξ

μ≤ξ p = p∞eμ, hξ
μ≤ξ ∂ = ∂ ∞eμ.

Dot here denotes the covariant derivative along the flow vector uμ and the prime
denotes covariant derivative along the vector eμ. With the help of the tensor eμΛ =
1
3 (3eμeΛ − hμΛ), we have the relations for the shear tensor and the electric and
magnetic parts of the Weyl tensor
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ξμΛ = 2∗
3
ξeμΛ, EμΛ = 2∗

3
EeμΛ, HμΛ = 2∗

3
HeμΛ. (6)

We will now define the magnitude of the spatial rotation k and the magnitude of
the spatial divergence a,

k ∼ ∣∣τσδΩ Σ
(≤δeΩ

)
uΣ

∣∣ , a ∼ hσ
δ

(≤σeδ
)
. (7)

4 Averaging LRS Spacetime

For simplicity we will restrict to the class II LRS spacetime with the condition p = 0
(dust models) which includes LTB spacetimes and their generalizations to spacelike
2-surfaces with negative or zero curvature scalar. Given a preferred spacelike direc-
tion, all the equations describing LRS metric are scalar. It means we can perform
averaging (which is covariantly defined for scalars). In order to obtain averaged
equations we need to derive the commutation relations for the prime (and the time)
derivative (with respect to the preferred direction) and averaging,

→A∓∞D = eμημ

⎜
 1

VD

∫

D

d3x
√

det gi j A


⎡ = −→α ∓D →A∓D + →Aα ∓D + 〈

A∞〉
D , (8)

where α is defined by the relation
(√

det gi j
)∞ = √

det gi jα. Similarly we get the
commutation rule for the time derivative. Averaged equations for the dust class II
LRS spacetime read as follows:

→∂∓· = − 1

3
→∂∓2 − 4κ →ν∓ + 2

3

⎪〈
∂2

〉
− →∂∓2

)
− 2

〈
ξ 2

〉
,

→ξ ∓· = − 1∗
3

→ξ ∓2 − 2

3
→∂∓ →ξ ∓ − →E∓ + 1∗

3

⎪
→ξ ∓2 −

〈
ξ 2

〉)
+ 1

3
(→∂ξ ∓ − →∂∓ →ξ ∓),

→E∓· = − 4κ →ν∓ →ξ ∓ + ∗
3 →E∓ →ξ ∓ − →∂∓ →E∓ − 4κ (→νξ ∓ − →ν∓ →ξ ∓),

+ ∗
3 (→Eξ ∓ − →E∓ →ξ ∓),

→ν∓· = − →ν∓ →∂∓,
→a∓· = − 1

3
→a∓ →∂∓ + 1∗

3
→a∓ →ξ ∓ + 2

3
(→a∂∓ − →a∓ →∂∓) + 1∗

3
(→aξ ∓ − →a∓ →ξ ∓),

→ξ ∓∞ = 1∗
3

→∂∓∞ − 2

3
→a∓ →ξ ∓ + →ξα∓ − →α ∓ →ξ ∓ − 1∗

3
(→α∂∓ − →α ∓ →∂∓)

−3

2
(→aξ ∓ − →a∓ →ξ ∓),
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→E∓∞ = − 2

3
→a∓ →E∓ + 4κ∗

3
→ν∓∞ − 2

3
(→aE∓ − →a∓ →E∓)

+→α E∓ − →α ∓ →E∓ − 4κ∗
3

(→αν∓ − →α ∓ →ν∓),

→a∓∞ = 2

9
→∂∓2 + 2

3
∗

3
→∂∓ →ξ ∓ − 4

3
→ξ ∓2 − 2∗

3
→E∓ − 1

2
→a∓2 − 16κ

3
→ν∓

+ →aα ∓ − →a∓ →α ∓ + 2

9

⎪〈
∂2

〉
− →∂∓2

)
+ 2

3
∗

3
(→∂ξ ∓ − →∂∓ →ξ ∓)

−4

3

⎪〈
ξ 2

〉
− →ξ ∓2

)
− 1

2

⎪〈
a2

〉
− →a∓2

)
. (9)

The underlined part of the equations denotes the additional terms created by
averaging. We can recognize the familiar Buchert equation with the kinematical
backreaction term and the mass conservation equation.

5 Conclusion

We have shown how to generalize the Buchert equations for the LRS spacetimes.
Averaged Einstein equations consist of evolution equations and constraints that are
preserved in time.
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Effect of Magnetic Fields on Equatorial
Circular Orbits in Kerr Spacetimes

Ignacio F. Ranea-Sandoval and Héctor Vucetich

Abstract In this work we analyze the effects of an external magnetic field on charged
particles on equatorial circular orbits in a Kerr spacetime, both in the black hole and
the naked singularity cases. Understanding these phenomena is of great importance
because equatorial circular orbits are a key ingredient of simple accretion disc mod-
els. We focus on two important magnetic field configurations: (a) a uniform magnetic
field aligned with the angular momentum and (b) a dipolar magnetic field. We center
our attention on the effect of these external fields on the marginally bound and mar-
ginally stable equatorial circular orbits because they give information on observable
quantities that could be useful to determine whether the central object is a black hole
or a naked singularity. Using a perturbative approach we are able to give analytic
results and compare (in the black hole case) with previous results.

1 Introduction

Since Penrose proposed what is now known as the Cosmic Censorship Conjecture,
spacetimes with naked singularities have been the subject of great debate. In [1] and
references therein the authors prove the existence of unstable perturbations for the
most relevant nakedly singular spacetimes. These and other works clearly favour
black holes over naked singularities to model extremely compact objects.

Following an alternative approach, in [2] the differences between circular
geodesics around a Kerr black hole and a Kerr naked singularity are studied.
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Accretion processes are usually associated with compact objects and are the main
tools astrophysicists possess to study their properties. The presence of magnetic fields
in accretion discs produce observable phenomena which are worth examining.

The effects of magnetic fields on accretion discs around a rotating black hole
where studied, and the changes in the innermost stable orbit and in the marginally
bound orbits are analyzed in [3–5]. As we are only able to observe the effects of
the presence of a black hole on particles, changes in these particular radii may give
observable quantities that could allow us to distinguish between different theoretical
models for compact objects.

In this work we present some of the analytical results of [6] in which the change
in the position of the inner edge of an accretion disc in a Kerr spacetime is studied.
We generalize previous results by allowing the rotation parameter a to adopt values
larger that one. For the sake of space limitation we will not present mathematical
details, which are left to the extended work [6].

2 Theoretical Basics

Kerr spacetime represents the exterior gravitational field of a rotating body and is
one of the most important exact solutions to Einstein’s field equations. Stationary
magnetic field configurations in a Kerr background have been studied in detail in
[7–9]. The study of the motion of charged particles in the equatorial plane in the
presence of fields that preserve the Killing nature of both ∂φ and ∂t is usually done
using variations of the arguments in the pioneering works of Carter [10] for uncharged
particles.

3 Results

We use an effective potential and a perturbative approach that allow us to investigate
analytically the cases in which the coupling between the external magnetic field
and the effective charge of the particles is small. As a result we obtain analytic
expressions for the position of the innermost stable and marginally bound radii of
equatorial circular orbits.

As explained in [3–5], the coupling between the magnetic field strength and the
effective charge of particles is measured by a parameter called λ. Our perturbative
approach allows us to study the λ √ 1 regime which corresponds to the astrophysi-
cally relevant case of a (neutral over large scales) simple fluid disc.

We summarize part of our results in Fig. 1 for the case of a uniform magnetic
field, and in Fig. 2 for the dipolar case. These results are in a complete agreement
with those obtained for black holes in [3, 5].
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Fig. 1 Radii of the marginally bound orbit (solid or dotted lines) and of the innermost stable orbit
(dashed lines) as a function of the rotation parameter a. Equally thick lines correspond to equal
values of the parameter λ which measures the coupling between the matter’s electric charge and
the external magnetic field strength: the thinnest for λ = 0 and the thickest for λ = 0.1

Fig. 2 Radii of the marginally bound orbit and of the innermost stable orbit as a function of the
rotation parameter a. The line styles and thickness correspond to the ones presented in Fig. 1
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4 Conclusions

Using a perturbative approach we are able to reproduce analytically previously
reported numerical results for the radii of the most relevant circular orbits of charged
particles orbiting a Kerr black hole with an external magnetic field, and extend these
results to the superspinning case. The study of the properties of more complex disc
models can be an important tool to test observationally the validity of Penrose’s
Cosmic Censorship Conjecture, and to properly understand the proposed disc-jet
relationship.
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Exotic (Dark) Eigenspinors of the Charge
Conjugation Operator and Cosmological
Applications

Roldao da Rocha

Abstract We report about some achievements and developments provided by the
ELKO program, in particular the ones recently accomplished [1]. Exotic dark spinor
fields have been investigated in the context of inequivalent spin structures on arbitrary
curved spacetimes, which induces an additional term in the associated Dirac operator,
related to a Čech cohomology class. It implies that the non-trivial topology associated
with the spacetime can engender—from the dynamics of ELKO dark spinor fields—
drastic constraints on the spacetime metric structure.

1 ELKO (Dark) Spinor Fields

Without loss of generality, an ELKO Λ can be written as Λ (p) = φ(p)e±i p·x where
φ(p) = (iκν√(p)

ν(p)

)
, and given the rotation generators J, the Wigner’s spin-1/2 time

reversal operator κ satisfies κJκ−1 = −J√. Hereon the Weyl representation of ∂ μ

is used. ELKO spinor fields are eigenspinors of the charge conjugation operator C

defined here by its action Cφ(p) = ±φ(p), for C =
(

O iκ
−iκ O

)
K . The operator K

C-conjugates 2-component spinor fields appearing on the right. The plus sign stands
for self-conjugate spinor fields, φS(p), while the minus yields anti self-conjugate
spinor fields, φA(p). Explicitly, the complete form of ELKO can be found by solving
the equation of helicity (ξ ·̂p)ν± = ±ν± in the rest frame and subsequently boosting,
to recover the result for any p [2]. Here p̂ := p/→p→. The boosted four spinor fields
result in
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φ
S/A
{∓,±}(p) =

√
E + m

2m

(
1∓ p

E + m

)
φ

S/A
{∓,±}(0), for φ

S/A
{∓,±}(0) =

(±iκ[ν±(0)]√
ν±(0)

)
.

(1)
As κ[ν±(0)]√ and ν±(0) have opposite helicities, ELKO cannot be an eigenspinor
field of the helicity operator.

2 ELKO Dynamics: Exotic Spin Structure

To observe that dark spinor fields are a natural probe of the non-trivial topology
one should firstly notice that such exotic spinor fields are parallel transported like
standard spinor fields. Meanwhile, an outstanding property distinguishes both kinds
of spinor fields: the covariant derivative acting on these exotic spinor fields changes
by an additional one-form field that is a manifestation of the non-trivial topology. The
exotic structure endows the Dirac operator with an additional term 1

2π i τ
−1(x)dτ(x),

which is real and closed, but not exact, and defines an integer cohomology class in
the Čech sense. Using the relation between Čech and de Rham cohomologies, the
integral of 1

2π i τ
−1(x)dτ(x) around any closed curve is an integer. The point is that

for dark ELKO spinor fields such an exotic term cannot be absorbed by an external
gauge field representing an element of H1(M,Z2), inasmuch as ELKO fields cannot
carry gauge charges.

In addition to the ELKO spinor fields φ(x)—that were indeed defined as sections
in the bundle PSpine

1,3
(M) ×σ C

4, in Sect. 2—one can get a second type of ELKO

φ̊(x), which can be described by sections in the inequivalent spin structure-induced
spinor bundle P̊Spine

1,3
(M) ×σ C

4, with a variation of the covariant derivative, given
by

i∂ μ∼̊μ = i∂ μ∼μ + τ−1(x)dτ(x). (2)

The exotic Dirac equation is given then by

(i∂ μ∼μ + (τ−1(x) dτ(x)) − mI)δ(x) = 0, (3)

δ denotes a Dirac spinor field. The exotic Dirac spinor fields are annihilated by(
i∂ μ∼μ + (τ−1(x) dτ(x)) ± mI

)
where the plus and minus signs stands respectively

for particles and antiparticles. Hereon we denote τ−1(x) dτ(x) by a(x) in order to
shorten all formulæ notations.

ELKO spinor field can not be eigenspinors of the exotic Dirac operator i∂ μ∼μ +
a(x). Namely, the mass terms carry opposite signs and consequently ELKO cannot
be annihilated by

(
i∂ μ∼μ + a(x) ± mI

)
, because the term Ω

Σ
η which implies that

ΩS = −1 and ΩA = +1. Furthermore, as comprehensively discussed we can express
τ(x) = exp(iα(x)) ≤ U(1). The exotic spin structure term in this way reads
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τ−1(x)dτ(x) = exp(−iα(x))(i∂ μ∼μα(x)) exp(iα(x)) = i∂ μρμα(x). (4)

The exotic Dirac operator i∂ μ∼μ + i∂ μρμα −mI annihilates each of the four exotic
Dirac spinor fields but does not annihilate ELKO.

There was an extensive discussion about the subtle differences between Majorana
and ELKO spinor fields. Both in the Lounesto spinor field classification are type-(5)
spinor fields. It would be useful to discuss whether the exotic Dirac operator can be
considered as a square root of the Klein–Gordon operator. This feature must remain
true for the ELKO and its exotic partner:

(
(i∂ μ∼μ + a(x))ΔΣ

η ± mIΩΣ
η

) (
(i∂ μ∼μ + a(x))ΔΣ

η ∓ mIΩΣ
η

) = (gμψ∼μ∼ψ + m2)I ΔΣ
η (5)

since the introduction of an exotic spin structure does not modify the Klein–Gordon
propagator fulfillment by dark spinor fields.

The corresponding Klein–Gordon equation is given by

(� + m2 + gμψ∼μ∼ψα + ρμα∼μ + ρμαρμα)φ̊(x)
S/A
{±,∓} = 0. (6)

In order that the Klein–Gordon propagator for the exotic ELKO remains the same it
follows that

(�α + ρμα∼μ + ρμαρμα)φ̊
S/A
{±,∓}(x) = 0. (7)

The fact that (7) holds for every exotic dark spinor field φ̊
S/A
{±,∓}(x), lets us analyze in

particular the solutions of (7) applied to, for instance, φ̊S{−,+}(x). Using the expression

∼μφ̊
S/A
{∓,±} = ρμφ̊

S/A
{∓,±} − 1

4
Γμσξ ∂ σ∂ ξ φ̊

S/A
{∓,±}, (8)

for such case, after some calculation it follows that

(�α) φ̊
S/A
{∓,±} + (ρ0α)

⎪
ρ0φ̊

S/A
{∓,±} − 1

4

(
(Γ000 − Γ0 j j )φ̊

S/A
{∓,±} + iΓ001φ̊

A/S
{±,∓}

+Γ002φ̊
S/A
{±,∓} ∓ Γ003φ̊

S/A
{∓,±} ± iΓ012φ̊

A/S
{∓,±} + iΓ013φ̊

A/S
{±,∓} ∓ Γ023φ̊

S/A
{±,∓}

)]

−g00(ρ0α)2φ̊
S/A
{∓,±} = 0, (9)

where Γ0 j j = Γ011 + Γ022 + Γ033. The equation above couples again all the four

exotic spinor fields φ̊
S/A
{±,∓}, in the case of spacetimes where the associated connections

are non zero.
It is possible for cosmological applications to assume that the dark spinor fields

depend only on the time variable t via a matter field χ(t) compatible with homo-
geneity and isotropy and act as the only dynamical cosmological variable, in such a
way that φ̊

S/A
{±,∓}(x) can be explicitly written as
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φ̊
A/S
{−,+}(x) = χ(t) Ψ

A/S
{−,+}, φ̊

A/S
{+,−}(x) = χ(t) ι

A/S
{+,−}, (10)

where ι S/A and Ψ S/A are linearly independent constant spinor fields

Ψ S{−,+} =


⎜⎜

0
i
1
0


⎡⎡⎣ , Ψ A{−,+} =


⎜⎜

0
−i
1
0


⎡⎡⎣ , ι S{+,−} =


⎜⎜

1
0
0
−i


⎡⎡⎣ , ι A{+,−} = −


⎜⎜

1
0
0
i


⎡⎡⎣ . (11)

The matter field χ(t) satisfies χ̇
χ

= − 1
3

⎧
1

3M2
Pl

�t t +O(χ4), where M−2
Pl = 8π G is the

coupling constant, and total energy-momentum tensor is denoted by �t t , involving
also the Planck mass, and the Hubble constant. Therefore we can write χ(t) =
exp(ãt), where ã is the constant given in the equation above. Using now (10) and
(11) we have (ρ0α)Γ012 = 0, which means that if α is time dependent, it necessarily
means that Γ012 = 0. Otherwise, in the case where α does not depend on time, it
implies that ρ0α = 0, and then we obtain the Laplace equation ∼2α = 0. The dark
spinor field dynamics can thus be used to probe the topological sector determined
by α . In addition, the above obtained second and third equations imply that

�α + (ρ0α)

(
1 − 1

2
(Γ000 − Γ011 − Γ022 − Γ033 − Γ003)

)
− (ρ0α)2 = 0, (12)

which means that if α = α(t), so necessarily 4− (Γ000 −Γ011 −Γ022 −Γ033) = ρ0α .
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On Motion of the Magellanic Clouds
in the Milky Way Gravitational Field

Zdeněk Stuchlík and Jan Schee

Abstract We demonstrate that the cosmological constant substantially influences
motion of both Magellanic Clouds in the gravitational field of Milky Way.

1 Introduction

It is usually assumed that for the motion on the scales given by the distance of
neighbouring galaxies the influence of the cosmological constant is negligible. We
demonstrate that the role of the cosmic repulsion is crucial even on such relatively
small scales, using calculations of trajectories and binding mass for Magellanic
Clouds.

2 Magellanic Clouds and Intial Conditions

Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are dwarf galax-
ies in the vicinity of Milky Way (MW). We assume both SMC and LMC to be test
particles moving (independently) in the MW field, since their mass is substantially
smaller than that of the MW and their distance from the visible Galaxy disc is sub-
stantially larger than its extension. The Newtonian approach can be used since the GR
effects are negligible [1]. Velocity (km/s) and radial vectors (kpc) in galactocentric
coordinates are [2] given in Table 1.
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Table 1 LMC and SMC coordinates and velocities

x y z

SMC
xi 15.3 −36.9 −43.3
vi −87 ± 48 −247 ± 42 149 ± 37

LMC
xi −0.8 −41.5 −26.9
vi −86 ± 12 −268 ± 11 252 ± 16

3 Milky Way Gravitational Field

The gravitational field of the Milky Way is generated in the standard way by the
Galactic disc,

Udisk = − ξG Mdisk√
x2 + y2 + (k + √

z2 + b2)2
, (1)

the Galactic bulge,

Ubulge = −G Mbulge

r + c
, (2)

and the CDM halo
Uhalo = v2

halo ln(r2 + d2), (3)

where ξ = 1, k = 6.5 kpc, b = 0.26 kpc, c = 0.7 kpc. There is Mdisc = 5×1010 M→
and Mbulge = 1.5×1010 M→. Since vhalo = 114 km s−1, d = 12 kpc, the logarithmic
halo model implies the halo mass formula

Mhalo = 2v2
halor3

G(r2 + d2)
∓ Mhalo(r = 60 kpc) = 3.5 × 1011 M→. (4)

4 The Role of the Cosmological Constant

Outside the CDM halo we assume that the whole Milky Way halo mass is concen-
trated in its centre, and its gravitational field is then modelled by the Cosmological
Paczynski-Wiita (CPW) potential [3]

UP N = −
(

G M

r
+ Λc2

6
r2

) (
1 − 2G M

c2r
− Λ

3
r2

)−1

. (5)
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Inside the MW halo, the Newtonian cosmological term

UΛ = −Λc2

6
r2, Λ = 1.3 × 10−56 cm−2 (6)

is added to the terms representing gravitational field of the disk, bulge and halo.
At the static radius, rs = [(3G M)/(c2Λ)]1/3, gravitational attraction and cosmic
repulsion are balanced. It gives boundary of gravitationally bound system detached
from cosmic expansion.

5 Influence of Λ > 0 on the MC Motion

We integrate the equation of motion both to the time when Λ drives the expansion
and Milky Way can be considered a fully developed gravitating system, z ∼ 1 ∓
t ≤ 7.5 Gyr. Trajectories are located in the region detached from the cosmological
expansion ∞ up to the scale ≤Mpc. Typical trajectories are illustrated in Fig. 1 (for
details see [1]).

6 The Binding Mass

Using the effective potential

Veff = 1

2

L2

r2 − G M

r
− Λr2c2

6
, (7)

the radius of the unstable circular orbit ruc is given by

dVeff

dr
= 0 ∓ L2 = ruc

(
G M − Λc2

3
r2

uc

)
. (8)

The binding mass Mb is determined by the condition E(r0) = E(ruc):

Mb = G−1
(

1

ruc
− 1

r0

)−1
[

Λc2

6
(r2

0 − r2
uc) + 1

2

(
1

r2
uc

− 1

r2
0

)
− v2

r

]
, (9)

L = ruc

(
G Mb − Λc2

3
r2

uc

)
. (10)
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Fig. 1 Y − Z crossections of typical SMC and LMC trajectories

Table 2 The dependence of the binding mass Mb and the radius of the unstable circular orbit ruc
on the cosmological constant Λ for LMC and SMC

Λ (cm−2) Mb (1011M→) ruc (kpc)

SMC
1.3 × 10−56 6.843 (+10.3 %) 887
0 6.200 ∗
LMC
1.3 × 10−56 8.863 (+7.7 %) 978
0 8.230 ∗

The estimates of the binding mass are in Table 2. Calculations including the halo
effect imply Mb at least twice as large. For LMC, influence of Λ > 0 on the value
of Mb is about 50 % [4].
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7 Conclusion

Comparing the influence of Λ > 0 on the MCs motion with those of dynamical
friction or gravitational effects of M31, we find the influence of Λ > 0 to be the
same or slightly higher [4].
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Geodesic Chaos in Perturbed Black-Hole
Fields

Petra Suková and Oldřich Semerák

Abstract Dynamics of time-like geodesics in the static and axially symmetric field
of a black hole surrounded by a thin disc is studied by two recurrence methods, the
recurrence plots (RPs) and the average of directional vectors (ADVs). Their results
supplement the information obtained before from Poincaré surfaces of section and
from phase-variable evolutions and the corresponding power spectra. The occurrence
of chaos due to the presence of ambient matter may be important for evolution and
appearance of astrophysical black-hole systems.

Inspired by models of accreting astrophysical black holes, we consider a simple,
static and axisymmetric exact configuration of a black hole surrounded by a con-
centric thin disc or ring. Due to the presence of the additional source, the geodesic
dynamics—originally completely integrable in the Schwarzschild field—generally
becomes chaotic. Having illustrated this on Poincaré sections and on phase-variable
time series and their power spectra [1], we have now turned to two recurrence meth-
ods which are based on statistics (i) over recurrences of the orbits to cells of the phase
space (the recurrence plots [2, 3], RPs) and (ii) over direction in which the orbits
recurrently pass through the cells (the average of directional vectors [4], ADVs).
Here just a short glimpse on the results is given obtained for time-like geodesics in
the field of a black hole (of mass M) surrounded by the inverted 1st Morgan-Morgan
disc with mass M = 0.5M and inner Schwarzschild radius r = 15M; see [5–7] for
details of our earlier results.

RPs consist in recording the recurrence matrix whose components (zeros or ones)
indicate (non-)recurrences of a given orbit to selected cells. This symmetric matrix
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itself reveals the nature of dynamics, but here we rather show several examples of
useful “quantifiers” which can be computed from the recurrence data. The simplest
of them is the recurrence rate RR, given by the ratio of the recurrence points within
all points of the matrix. Another one called DET is given by ratio of the points which
form a diagonal line longer than a certain minimum lmin within all the recurrence
points. The inverse of the longest diagonal DIV = 1/Lmax has been shown to provide
a rough estimate of the largest Lyapunov exponent. A lower estimate of the sum of
positive Lyapunov exponents is given by the correlation (or Rényi’s) entropy K̂2 ,
determined by a slope of the cumulative histogram plotted (in log scale) against
the diagonal length l (for large l). Statistics over vertical (or horizontal) lines of the
matrix brings similar quantifiers, for example, LAM is a counter-part of DET and
V ENTROPY is obtained from probability that a chosen vertical line has a prescribed
length l. Note that the recurrence matrix and all the quantifiers of course depend on
the chosen size of spatial cells and on time step with which the orbits are processed.

We launch geodesic particles with zero radial velocity from different radii between
r = 8M and r = 25M with specific energy E = 0.955 and specific angular momen-
tum L = 4M. Poincaré section of several hundreds of such orbits coloured according
to the value of DIV is depicted in Fig. 1 together with the behavior of several RP
quantifiers.

The other method, ADVs, is based on monitoring the evolution of tangent to the
trajectory in selected boxes of the phase space “reconstructed”, for a given data series
x(τ ), by taking the delayed replicas x(τ ), x(τ −Δτ), x(τ − 2Δτ), . . . , x(τ − dΔτ)

as its axes, where Δτ is a chosen time shift. The vectors obtained for a large number
of transits through the j-th box are summed, the resulting vector is normalised and the
norm is averaged over all boxes which were crossed n-times. Finally, the dependence
of this average on n and also of the averaged quadratic difference from random-walk
case on time lag, Λ̄(Δτ), are analysed. For random data the average decreases more
quickly than for a deterministic signal; for a regular orbit, it remains 1 theoretically.
The ADV method was originally proposed to distinguish between deterministic and
random data, but we have found it is also sensitive to different degrees of chaoticity.

The comparison of the above methods is illustrated in Fig. 2. Several trajectories
have been followed there for a very long time: the most chaotic trajectories up to
τmax = 250000M while other to τmax = 800000M (one orbital period represents
some 300M of proper time). The particle position is recorded with the step Δτ =
0.25M.1 Each trajectory is plotted in a different colour; regular orbits are green,
weakly chaotic orbits range from light blue to orange and yellow and the most chaotic
ones are purple. It is seen that the character of orbits is revealed by Poincaré diagram
as well as by the values of DIV or K2, and also from the behaviour of Λ̄(Δτ). We pay
particular attention to comparison of the quantities DIV or K2 (bottom left). Namely,
although K2 is considered a more precise and reliable estimate of orbital divergence,
its correct determination is tricky and less suitable for an automatic procedure (see [5]

1 ADVs require a sufficient number of orbital points in each phase-space box (and the boxes must
be small enough, naturally), which leads to quite large data sets. In comparison, for the RPs more
sparse data are sufficient (time step 30–50M).
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Fig. 1 Poincaré section (top left) with each orbit coloured according to the value of DIV in log
scale. The red line indicates starting points. The other plots show several recurrence quantifiers as
functions of the initial radius of the orbits

for details). The DIV quantifier is obtained much more easily and reliably. The plot
shows that the log values of DIV and K2 are roughly proportional and that different
types of motion (regular, weakly chaotic and strongly chaotic) yield clearly different
values of both quantities.

In the last two plots of Fig. 2, the ADV main result Λ̄ is shown against the time
lag Δτ . At bottom left, the time lag ranges from 10 to 2000M (more than 6 orbital
periods); Λ̄(Δτ) for strongly chaotic trajectories (purple) is rapidly decreasing, while
weakly chaotic and regular trajectories look quite similar. At bottom right, Λ̄(Δτ)

is given for much bigger time lags (250000–252000M); here the difference between
weakly chaotic and regular orbits becomes obvious.
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Gravitational Waveforms for Black Hole
Binaries with Unequal Masses

Márton Tápai, Zoltán Keresztes and László Árpád Gergely

Abstract We derive a post-Newtonian (PN) inspiral-only gravitational waveform
for unequal mass, spinning black hole binaries. Towards the end of the inspiral the
larger spin dominates over the orbital angular momentum (while the smaller spin
is negligible), hence the name Spin-Dominated Waveforms (SDW). Such systems
are common sources for future gravitational wave detectors and during the inspiral
the largest amplitude waves are emitted exactly in its last part. The SDW waveforms
emerge as a double expansion in the PN parameter and the ratio of the orbital angular
momentum to the dominant spin.

1 Introduction

Gravitational wave detectors like the Advanced LIGO (aLIGO), or the planned
Einstein Telescope (ET), LAGRANGE and eLISA (NGO) space missions will
measure gravitational waves from black hole binaries of various total masses m.
For astrophysical black hole binaries (with total mass m a few tens of the mass of
the sun M√), the comparable mass and the unequal mass case are both likely. For
supermassive black hole binaries (total mass is between 106 M√ and 1010 M√) the
typical mass ratio ν is between 0.3 and 0.03 [1, 2].

For unequal masses the mass ratio can stand as a second small parameter. The
purpose of this paper is to give an approximation for the gravitational waveforms in
the small mass ratio regime.
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2 Spin-Dominated Waveforms

It was shown in Ref. [1], that for rapidly spinning black hole binaries, the smaller
spin is of order ν2 compared to the dominant spin S1, thus it can be neglected to first
order in ν. Furthermore the ratio of the orbital angular momentum L N and S1 was
also given [1] as

S1

L N
→ ε1/2ν−1χ1 , (1)

where ε = Gm/c2r → v2/c2 (with r the orbital separation and v the orbital velocity
of the reduced mass particle μ = m1m2/m, G the gravitational constant, c the speed
of light) is the post-Newtonian (PN) parameter and χ1 ∓ [0, 1] is the dimensionless
spin. For maximally spinning black holes χ1 = 1.

As the PN parameter increases throughout the inspiral, the relation (1) shows, that
S1 will dominate over L N at the end of the inspiral (thus the approximated waveforms
are called Spin-Dominated Waveforms, SDW). This condition at the technical level
is included in the smallness of the parameter ξ = ε−1/2ν.

PN waveforms were previously calculated to 1.5 PN order [3, 4], and to 2 PN
order in Ref. [5]. In order to approximate the waveforms in the small mass ratio
regime, we expand the waveforms in both parameters ε and ξ . The waveforms have
the following structure [6]:

h+× = 2G2m2ε1/2ξ

c4 Dr

[
h0+×

+ β1h0β
+×

+ ε1/2
(

h0.5+×
+ β1h0.5β

+×
− 2ξh0+×

)

+ ε

(
h1+×

− 4ξh0.5+×
+ β1h1β

+×
+ h1SO+×

+ β1h1βSO
+×

)

+ ε3/2
(

h1.5+×
+ h1.5SO+×

+ h1.5tail+×

)]
, (2)

D being the luminosity distance to the source. The terms are of different ε and ξ

orders, as indicated in Table 1, and are given in detail in Ref. [6]. The angle β1
spanned by J and S1 is of order ξ too [6].

3 Limits of Validity

We impose the smallness condition ξ ∼ 0.1. This defines a lower limit of the PN
parameter ε1 = Gm/c2r1 = 100ν2, implying an upper limit for the mass ratio,
νmax = 0.0316 → 1:32. The upper limit for ε is defined by the end of the inspiral
(chosen here as ε2 = 0.1 [7]).

From the expression m = c3ε3/2 (πG f )−1 including the gravitational wave fre-
quency f , and the leading order radiative orbital angular frequency evolution [8] an
integration leads to the time Δt during which the binary evolves from ε1 to ε2:
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Table 1 SDW contributions of different ξ and ε orders

ε0 ε1/2 ε1 ε3/2

ξ0 h0+×
h0.5+×

h1+×
, h1SO+×

h1.5+×
, h1.5SO+×

, h1.5tail+×
ξ1 h0β

+×
h0.5β

+×
h1β

+×
, h1βSO

+×
The SO terms contain the dominant spin

Fig. 1 The time interval Δt until which the SDWs can be detected by eLISA (NGO) as function
of the total mass m and mass ratio ν. Δt either begins at the lower bound of the sensitivity range
of eLISA (ε f min), or when the SDW approximation begins to hold (ε1), and ends at the end of the
inspiral (chosen here as ε2 = 0.1). The color code is logarithmic

Δt = 5Gm

28c3

(1 + ν)2

ν

(
ε−4

1 − ε−4
2

)
. (3)

Δt is shown as function of m and ν on Fig. 1. Even with the SDW approximation
holding, the lower sensitivity bound ( fmin = 10−4 for eLISA [9]) of the instrument
may impose a larger value of the PN parameter, as the lower validity bound ε fmin .
Hence Δt is calculated from max

(
ε1, ε fmin

)
to ε2.

A lower limit for the mass ratio comes from the assumption that the second
compact object has at least the mass of a neutron star (1.4 M√). The total mass is
bounded from above by the lower frequency bound of the detector (for eLISA m =
2×107M√, hence the minimal mass ratio for the eLISA detector is νmin = 7×10−8).

4 Concluding Remarks

For unequal mass ratios the larger spin dominates over the orbital angular momentum
at the end of the inspiral. We have quantified this by the introduction of a second
small parameter ξ and computed the respective waveforms as a series expansion in
both this and the PN parameter. A comparison between the general waveforms of
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Ref. [4] and the SDWs showed that the SDWs are approximately 80 % shorter, due
to the smaller parameter space and the second expansion in ξ . We expect the SDWs
to be useful tools in gravitational wave detection.
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Part III
Quantum Fields and Quantum Gravity



Phenomenology of Quantum Gravity
and its Possible Role in Neutrino Anomalies

Mario A. Acero and Yuri Bonder

Abstract New phenomenological models of Quantum Gravity have suggested that
a Lorentz-Invariant discrete spacetime structure may become manifest through a
nonstandard coupling of matter fields and spacetime curvature. On the other hand,
there is strong experimental evidence suggesting that neutrino oscillations cannot be
described by simply considering neutrinos as massive particles. In this manuscript we
motivate and construct one particular phenomenological model of Quantum Gravity
that could account for the so-called neutrino anomalies.

1 Introduction

To construct a theory that reconciles Quantum Mechanics and General Relativity
is one of the most challenging problems in Physics. This still unfinished theory is
called Quantum Gravity (QG), and we believe that the difficulty in building such
theory may be, in part, due to the lack of experimental guidance. Regarding particle
physics, the Standard Model of particles (SM) includes three massless neutrinos.
The Higgs mechanism [1], through which the masses of all other fermions (as well
as bosons) are generated, does not apply to neutrinos because the neutrino fields do
not have right handed components [2]. However, the experimental observation of
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neutrinos changing from one flavor to another, a phenomenon known as neutrino
oscillation, has motivated people to suggest that neutrinos are actually massive and
current research looks for an extension of the SM to include neutrino masses. The
simplest extension of the SM (but certainly not the only one, see Refs. [2–4]) is to
include right handed components of the neutrino fields, so that they acquire mass
through the same mechanism as the other particles.

Nevertheless, to include neutrino masses seems to be insufficient to account for
all observations. In this work we argue that the anomalous neutrino oscillations could
be regarded as traces of the quantum nature of gravity. More concretely, we propose
a modification to the simple extension of the SM described above motivated by a
phenomenological model of QG in order to explain all neutrino observations. Before
we continue, we warn the reader that we only present the motivation and possible
applications of a class of phenomenological models of QG to neutrinos; a deeper
study of this issue is needed to test if these models are a feasible explanation of the
neutrino anomalies.

2 Neutrino Oscillations

Neutrino oscillations are transition of a neutrino in a definite flavor state into a
neutrino with a different flavor. The basic idea is that a neutrino flavor state is a
linear combination of states with definite mass. The oscillation probability, in the
two-neutrinos approximation, is given by [2]

Pνα√νβ (L , E) = sin2(2θ) sin2
(

Δm2L

4E

)
, α →= β, (1)

where L and E are, respectively, the distance traveled by the neutrino and its energy
(both in the laboratory reference frame), and the two fundamental parameters of this
process are the mixing angle θ and the masses-squared difference Δm2 ∓ m2

2 − m2
1.

It is under this effective model that most of the experimental data have been ana-
lyzed, given that many experiments are not sensitive to the effects of three-neutrino
mixing [2].

Now, from observations of solar, atmospheric, reactor, and accelerator-based
neutrino-oscillation experiments, it has been possible to establish firmly the exis-
tence of three mixing angles and two separated mass-splitting parameters of order
10−5 eV2 and 10−3 eV2 (for an updated combined data analysis, see [5–7]). Yet,
there are some results that cannot be explained with these parameters. The Liquid
Scintillator Neutrino Detector (LSND) [8, 9] experiment found that their oscilla-
tion data point to Δm2 = O(1 eV2), which is much larger than the Δm2 found by
the experiments mentioned before [10–13]. More recently, in an attempt to check
this anomalous outcome, the MiniBooNE collaboration [14, 15] found that, with a
99 % confidence level, their analysis leads to a Δm2 that is consistent with that from
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LSND. Note that both experiments, LSND and MiniBooNE, produced the neutrinos
in accelerators and have the same L/E (see Eq. (1)). Additional anomalous results
have been under study and include the Reactor antineutrino anomaly [16] and the
Gallium anomaly [17, 18].

Currently, a great effort is underway to clarify these issues, both from the
theoretical and experimental point of view and a number of experiments currently
running, and different proposals for the future, are devoted to it [19–25]. On theo-
retical grounds, perhaps the most popular explanation is the existence of, at least,
one additional neutrino which has to have different properties compared to those
included in the SM. This (or these) new neutrino is known as sterile, given that it
does not take part in the weak interactions of the SM [2]. However, there is no further
evidence supporting the existence of sterile neutrinos. In this work, we take a dif-
ferent strategy where there is no need to add new particles. In contrast, we propose
that gravity, whose fundamental version is still unknown, may couple to the neutrino
fields in a non-standard way, producing the anomalous neutrino oscillations. In addi-
tion, if gravity is behind neutrino oscillations, it is conceivable that these depend on
the gravitational environment, as is suggested by the aforementioned experimental
results. In the next section, we briefly present the phenomenological model of QG
that gives rise to these couplings.

3 Lorentz Invariant Phenomenology of Quantum Gravity

The phenomenology of QG has been dominated, in the last years, by searching for
Lorentz-Invariance (LI) violations. This may be motivated by the fact that a naive
discrete spacetime structure naturally selects preferred directions. Besides the signif-
icant empirical bounds on LI violations (for the most complete collection of bounds
see [26]), Collins [27] have argued that a LI violating discrete spacetime inhabited
by quantum fields can be discarded by experiments. Essentially, the radiative correc-
tions would magnify the effects of a LI violating discrete spacetime up to the point
where they should have been observed. These arguments motivated a new type of
phenomenological models of QG [28, 29] where a LI discrete spacetime structure
is sought precisely by using the hypothesis that the symmetry of spacetime building
blocks is LI.

It is hard to envision a discrete spacetime structure that respects LI. However, in
order to build a phenomenological model, there is no need to have a concrete picture of
such a structure. The basic idea is that the presence of a LI discrete spacetime structure
may reveal itself when there is a mismatch between the symmetries of spacetime (at a
macroscopic scale) and the symmetries of its building blocks. As mentioned above, in
these models one assumes that spacetime building blocks are LI, thus, the mismatch
with the macroscopic symmetry would occur when the macroscopic spacetime is not
LI. This, in turn, happens in curved spacetime regions, suggesting that the effects of a
LI discrete spacetime structure could manifest themselves as non-standard couplings
of curvature and matter fields.
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Studying a coupling of matter and the Ricci tensor (or the curvature scalar) is not
interesting phenomenologically because, according to Einstein’s equations, these
geometrical objects at a given spacetime point are determined by the matter at that
same point. Thus, coupling matter with the Ricci tensor can be considered at the
phenomenological level a self-coupling. Thus, the Weyl tensor Wabcd , which loosely
speaking is the part of the Riemann tensor that remains when the Ricci part is sub-
tracted [30], is the object that should be coupled with the matter fields. Moreover,
the coupling must vanish in flat spacetime regions where spacetime is actually LI.

In the past, one particular model was extensively studied. It involves fermionic
matter fields that couple to the eigenvalues and eigenvectors of two Hermitian oper-
ators built out of the Weyl tensor through complicated couplings [29]. This model
has been able to produce some bounds in the neutron sector [31] and to motivate an
experiment where the effect predicted by the model was sought [32, 33] and bounds
on the electron sector were obtained. In the next section, a particular model for
neutrinos that may help explain some of the anomalies described above is presented.

4 Neutrino Effective Mass

For simplicity, we only consider Dirac neutrinos with non-vanishing masses and right
handed components. The strategy is to generate effective masses that depend on the
gravitational environment. Following the motivation discussed above, this effective
mass should be obtained through non-minimal couplings of spacetime curvature
(Weyl tensor) and the neutrino fields. This coupling should vanish in flat spacetime
regions and must respect gauge invariance to have a theory with a well posed initial
value formulation (see the discussion on that matter in Ref. [30]).

To define this coupling term we write the Lagrangian density describing Dirac
massive neutrinos in a curved background:

Lg+ew = ieν̄Lαea
μγ μD(g+ew)

a νLα + ieν̄Rαea
μγ μD(g)

a νRα

− eΓαβ

(
ν̄LαφνRβ + ν̄RαφνLβ

)
, (2)

where νL and νR are the left and right neutrinos, φ is (one component of) the Higgs
field, Γαβ are the (dimensionless) Yukawa coupling constants, ea

μ are the tetrads, e is

the spacetime natural volume form and D(g+ew)
a is the covariant derivative including

gauge interaction and gravity while D(g)
a contains only the gravitational part. The

indices α, β label the neutrino flavor. The charged lepton part of the Lagrangian,
which should be included to have explicit gauge invariance, is not written since the
gauge interaction is not considered in what follows.

To respect gauge invariance, the gravity modification to the mass term must enter
into the Lagrangian density (2) though the replacement
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Γαβ √ Γαβ + bαβ f

(
W

M2
P

)
, (3)

where bαβ are the coupling coefficients, W (x) ∓ √
Wabcd W abcd and f is a dimen-

sionless real function. The Planck mass, MP , is introduced in such a way that the
argument of f is also dimensionless. The simplest function f that is only suppressed
by one power of MP in the denominator is

f

(
W

M2
P

)
=

∼
W

MP
, (4)

which is the function we consider.
Once the gauge symmetry is spontaneously broken, the gravitational part of the

Lagrangian density (2) takes the form

Lg = ieν̄Lαea
μγ μ D(g)

a νLα + ieν̄Rαea
μγ μD(g)

a νRα

− e

(
mαβ + aαβ

∼
W

MP

) (
ν̄LανRβ + ν̄RανLβ

)
, (5)

where mαβ = Γαβ < φ > and aαβ = bαβ < φ >. Observe that the mass matrix in
this case is

Mαβ(x) ∓ mαβ + aαβ

∼
W (x)

MP
. (6)

Typically, mαβ generates neutrino flavor mixing. In the case we are dealing with, these
oscillations would be caused by Mαβ which, in all cases of phenomenological interest
can be thought as mαβ plus a small modulation that depends on the gravitational
environment. As neutrinos from different sources (solar, atmospheric, reactor, and
accelerator) travel in different gravitational backgrounds, according to the model
presented here, they should oscillate slightly differently.

In order to gain some intuition, we consider the effects of this model for
neutrinos traveling closely to the Earth’s surface, as happens in accelerator and reac-
tor experiments. In this case W can be taken approximately as constant given by
W = ∼

48M/R3 where R and M stand for the radius and mass of the Earth, respec-
tively. The numerical value is

∼
W ≤ 10−46 MP , which would then require aαβ to

be extremely large in order to produce any measurable effect. Thus, at first sight this
model seems to be ruled out. However, let us remind the reader that the size of aαβ

is somehow artificial since we put in MP by hand. Moreover, a different function f
could be chosen that could make testable predictions. In any case, a much deeper
analysis is required. In particular, one would need to try to fit the free parameters
of the model to explain the neutrino anomalies before taking these models seri-
ously. This may be particularly difficult to achieve because, in certain cases, the tidal
effects of a wall or a mountain can dominate over the effects of the entire Earth (see
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Ref. [34]), thus, a very precise knowledge of the gravitational-source distribution on
the neutrinos’ path may be needed to correctly model the neutrino oscillations. Also,
the effects of matter, which also generate neutrino oscillation [35], must be consid-
ered. An intriguing possibility is to try to mimic the well-know MSW [36, 37] effect
and search for gravitational environments where resonances could be expected.1

To conclude, we want to stress the reasons that motivated us to consider gravity as
a possible explanation for the anomalous neutrino behavior. First, we know gravity
exists, thus, we do not need to invoke new fields/particles that have not been observed
to account for the anomalies. Second, it is conceivable that QG may influence matter
in exotic ways and these effects could become manifest at scales below the Planck
regime. Third, neutrino experiments are done with particles that have traveled in
different gravitational environments, which may account, at least in part, for the
different behavior.
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Loop Quantum Cosmology: Anisotropy
and Singularity Resolution

Alejandro Corichi, Asieh Karami and Edison Montoya

Abstract In this contribution we consider the issue of singularity resolution within
loop quantum cosmology (LQC) for different homogeneous models. We present
results of numerical evolutions of effective equations for both isotropic as well as
anisotropic cosmologies, with and without spatial curvature. To address the issue
of singularity resolution we examine geometrical and curvature invariants that yield
information about the spacetime geometry. We discuss generic behavior found for a
variety of initial conditions.

1 Introduction

In general relativity (GR) the singularity theorems of Hawking, Penrose and Geroch
tell us that, under reasonable assumptions, singularities are generic. A spacetime
is said to be singular if it is not geodesically complete, which may happen when
some geometrical curvature invariants diverge. The expectation is that, by quantiz-
ing the gravitational degrees of freedom, namely, with a complete theory unifying
gravity and the quantum, the singularities shall be resolved. Loop quantization (as in
Loop Quantum Gravity) of the homogeneous, isotropic and flat Friedman-Robertson-
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Walker (FRW) cosmology coupled to a massless scalar field φ, can be exactly solved
[1]. For that model it was shown that:

• The matter density operator ρ̂ has an absolute upper bound and the expansion θ
is also bounded. One can conclude that curvature scalars do not diverge. This is a
signal that a singularity is not present.

• All states undergo a bounce and with this, the big bang is replaced by a big bounce.
• The GR dynamics is recovered as we go away from the Planck scale, this means

that we are recovering the original theory that we want.
• Dynamics of semiclassical states are well captured by an effective theory that

retains information about the loop quantum geometry.
• With all these, one can conclude that the singularities are resolved: the geodesics

are inextendible, and are well defined on the other side of the would be big bang.

The fact that the effective theory provides an accurate description of the dynamics
at the Planck scale is strongly used to explore the anisotropic models. The effective
theory is obtained from the quantum Hamiltonian operator by taking expectation
values on appropriately defined states. The thus obtained effective Hamiltonian then
generates the dynamics on a classical phase space. The solutions to the effective
theory were shown in [2] to accurately describe the evolution of the expectation value
of the observables in the quantum theory when they are considered on semiclassical
states. Those results were extended to open, closed and flat FRW models with and
without cosmological constant (see [3] for a review). Loop quantum cosmology
(LQC) has been extended to the simplest anisotropic cosmological models, namely
Bianchi I, II and IX [4–6]. But in none of these cases, the quantum theory has
been solved, even numerically. Then, in order to study these models at semiclassical
level, one generally assumes that the effective theory reproduces the solutions to
the quantum theory when semiclassical states are considered. This is our working
hypothesis, which is well justified by the results in the isotropic cases. It would be
interesting to know whether the evolution of the semiclassical states reproduces the
solutions which we get from the effective theory. From this point of view, the study
of the effective theory can be seen as the first step in this direction.

The new issues to consider in the anisotropic models are: is the bounce generic? We
now have anisotropy/Weyl curvature, how does it behave near the singularity/bounce?
Can we have different kind of bounce, say, dominated by shear σ? Are the geometric
scalars absolutely bounded? The goal of this contribution is to answer these questions
using the effective theory for Bianchi I which has anisotropies, Bianchi II that has
anisotropies and spatial curvature and Bianchi IX which has all the features of Bianchi
I, II and is furthermore, spatially compact. Even more, the Bianchi IX model has a
non trivial classical limit, in the sense that, Bianchi IX is chaotic in the classical
theory and behaves like Bianchi I with Bianchi II transitions as one approaches the
singularity.
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2 Preliminaries

In this section we briefly review the quantization of some cosmological models
which include k = 0 and k = 1 FRW and Bianchi I, II and IX models by using loop
quantum gravity methods. Let us consider the spacetime as M = Λ × R where Λ

is a spatial 3-manifold which can be identified by the symmetry group of the chosen
model and is endowed with a fiducial metric oqab and associated fixed fiducial basis
of 1-forms oωi

a and vectors oea
i . If Λ is non-compact then we fix a fiducial cell, V ,

adapted to the fiducial triads with finite volume Vo. In GR, the gravitational phase
space consists of pairs (Ai

a, Ea
i ) on Λ where Ai

a is a SU(2) connection and Ea
i is

a densitized triad of weight 1. Since all of the models in which we are interested
are homogeneous and, if we restrict ourselves to diagonal metrics, one can fix the

gauge in such a way that Ai
a = ci

V 1/3
o

oωi
a and Ea

i = pi

V 2/3
o

√
oq oea

i , where pi in

terms of the scale factors ai are |pi | = V 2/3
o a j ak . Note that in isotropic cases, each of

phase space variables has only one independent component. The Poisson brackets can
be expressed as {ci , p j } = 8πGγδi

j and for isotropic models, the Poisson bracket
is {c, p} = 8πGγ/3 where γ is Barbero-Immirzi parameter. With this choice of
variables and gauge fixing, the Gauss and diffeomorphism constraints are satisfied
and the only constraint is the Hamiltonian constraint

CH =
∫
V

N


− ε

i j
k Ea

i Eb
j

16πGγ2
√|q|

(
Fk

ab − (1 + γ2)φk
ab

)
+ Hmatter


⎪ d3x, (1)

where N is the lapse function, Hmatter = ρV and φab is the curvature of spin
connection κ i

a compatible with the triads.
To construct the quantum kinematics, we have to select a set of elementary observ-

ables such that their associated operators are unambiguous. In loop quantum gravity
they are the holonomies he defined by the connection Ai

a along edges e and the
fluxes of the densitized triad Ea

i across surfaces. For our homogeneous models we
choose holonomies and pi . To have the corresponding constraint operator, one needs
to express it in terms of the chosen phase space functions he and pi . The first term,
ε

i j
k Ea

i Eb
j /

√|q|, as in loop quantum gravity, can be treated by using Thiemann’s
strategy [7].

εi jk
Eai Ebj

√|q| =
∑

i

1

2πγGμ
εabcωi

cTr(h(μ)
i {h(μ)−1, V }τk), (2)

where h(μ)
i is the holonomy along the edge parallel to i th vector basis with length μ

and V is the volume, which is equal to
√|p1 p2 p3|. Note that μ is arbitrary. Now to

define an operator related to the first term, we can use the right hand side of (2) and
replace Poisson brackets with commutation relations. To find an operator related to
the curvature Fk

ab, for isotropic models and Bianchi I, one can consider a square �i j
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in the i–j plane which is spanned by two of the fiducial triads (for closed isotropic
model since triads do not commute, to define this plane we use a triad and a right
invariant vector oξa

i ), each of its sides has length μ̄i . Therefore, Fk
ab is given by

Fk
ab = 2 lim

Ar�→0
ε k

i j Tr

(hμ̄
�i j

− I

μ̄i μ̄ j
τ k

)
oωi

a
oω

j
b . (3)

Since in loop quantum gravity, the area operator does not have a zero eigenvalue,
one can take the limit of (3) when the area is equal to the smallest eigenvalue of
area operator, λ2 = 4

√
3πγl2

p, instead of zero. Then, V 1/3
o μ̄i ai = λ where ai is the

scale factor. For Bianchi II and IX, we cannot use this method because the resulting
operator is not almost periodic, therefore we express connection Ai

a in terms of
holonomies and then use the standard definition of curvature Fk

ab. The operators
corresponding to the connection are given by

ĉi = ̂sin μ̄i ci

μ̄i
, where μ̄i = λ

√⎜⎜⎜⎜ pi

p j pk

⎜⎜⎜⎜ , i ∓= j ∓= k. (4)

Note that using this quantization method for flat FRW and Bianchi I models, one
has the same result as the direct quantization of curvature Fk

ab, but for closed FRW it
leads to a different quantum theory which is more compatible with the isotropic limit
of Bianchi IX. We call the first method of quantization curvature based quantization
and the second one connection based. In Bianchi II and Bianchi IX models the terms
related to the curvatures, Fk

ab and φk
ab, contain some negative powers of pi which are

not well defined operators. To solve this problem we use the same idea as Thiemann’s
strategy. Write

|pi |(ν−1)/2 = −
√|pi |

4πGγ j ( j + 1)μ̃iν
τi h

(μ̃i )
i {h(μ̃i )−1

i , |pi |ν/2}, (5)

where μ̃i is the length of a curve, ν ∼ (0, 1) and j ∼ 1
2 N is for the representation.

Therefore, for these three different operators we have three different curve lengths
(μ, μ̄, μ̃) where μ and μ̃ can be some arbitrary functions of pi , so for simplicity we
can choose all of them to be equal to μ̄. On the other hand we have another free
parameter in the definition of negative powers of pi , where for simplicity we take
j = 1/2, and since the largest negative power of pi which appears in the constraint
is −1/4 we will take ν = 1/2 to have them directly from (5) and after that to express

the other negative powers by them. The eigenvalues for the operator ̂|pi |−1/4 are
given by

Ji = h(V )

Vc

∏
j ∓=i

p1/4
j , where h(V ) = √

V + Vc − √|V − Vc|, Vc = 2πγλν2
p.
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By using these results and choosing some factor ordering, we can construct the
total constraint operator. Note that with a different choice of factor ordering we
will have different operators but the main results will remain almost the same. By
solving the constraint equation ĈH · ∂ = 0, we have the physical states in physical
Hilbert space Hphys. Then we need to identify the physical observables. To test
singularity resolution we will study some geometric observables: expansion θ, shear
σ2, curvature scalars and also volume of the universe V and matter density ρ, as
relational observables in terms of φ, a massless scalar field.

Since working with full quantum theories of the models is difficult and, as shown
in [2] for some models, the behavior of the effective or semiclassical equations, which
are classical equations with some quantum corrections, are good approximations to
the numerical quantum evolutions even near the Planck scale, we will work with the
effective equations.

3 Effective Theories

Isotropic Flat and Closed Models

In the FRW model with k = 0, the effective Hamiltonian is given by

Hk=0 = 3

8πGγ2λ2 V 2 sin(λβ)2 − p2
φ

2
≤ 0, (6)

where pφ is the momentum of the field, V is the volume and β its conjugate variable.
They are related to the c and p variables by the equations V = p3/2, β = c/

√
p

and satisfy the Poisson bracket {β, V } = 4πGγ and {φ, pφ} = 1. It was shown [2]
that the dynamics of semiclassical states are well captured by the effective Friedman

equation H2 = 8πG
3 ρ

(
1 − ρ

ρcrit

)
, where H = V̇ /3V is the Hubble parameter and

ρ = p2
φ/2V 2 is the matter density. The GR dynamics is recovered as we go away

from the Planck scale ρ < ρcrit/10, with ρcrit = 3
8πGγ2λ2 .

Now, for the isotropic closed model, as we discussed in previous section, there
are two different quantum theories depending on the two different methods of quan-
tization of the curvature Fk

ab. The Hamiltonians are,

H (1)
k=1 = 3V 2

8πGγ2λ2 [sin2(λβ − D) − sin2 D + (1 + γ2)D2] − p2
φ

2
≤ 0, (7)

H (2)
k=1 = 3V 2

8πGγ2λ2 [sin2 λβ − 2D sin λβ + (1 + γ2)D2] − p2
φ

2
≤ 0, (8)

where D = λϑ/V −1/3 and ϑ = (2π2)1/3. Since for both effective theories there are
some geometric observables which are not absolutely bounded, we go further and
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use more corrections which come from the inverse triad term in the full theory, to
see if the unboundedness of those observables is generic, or whether it improves by
adding more corrections. Therefore the Hamiltonian constraints change to

H (1)
k=1 = 3A(V )V

8πGγ2λ2 [sin2(λβ − D) − sin2 D + (1 + γ2)D2] − p2
φ

2
≤ 0, (9)

H (2)
k=1 = 3A(V )V

8πGγ2λ2 [sin2 λβ − 2D sin λβ + (1 + γ2)D2] − p2
φ

2
≤ 0, (10)

where A(V ) = 1
2Vc

(V + Vc − |V − Vc|) is a correction term which comes from the

operator ε
i j
k Ea

i Eb
j /

√|q|.

Bianchi I and II

The Hamiltonian for Bianchi I and II can be written in a single expression,

HBII = p1 p2 p3

8πGγ2λ2 [ sin μ̄1c1 sin μ̄2c2 + sin μ̄2c2 sin μ̄3c3 + sin μ̄3c3 sin μ̄1c1]

+ 1

8πGγ2

⎡
α(p2 p3)

3/2

λ
√

p1
sin μ̄1c1 − (1 + γ2)

(
αp2 p3

2p1

)2 ⎣
− p2

φ

2
≤ 0,

where the parameterα allows us to distinguish between Bianchi I (α = 0) and Bianchi
II (α = 1). This Hamiltonian together with the Poisson Brackets {ci , p j } = 8πGγδi

j
and {φ, pφ} = 1 gives the effective equations of motion.

Bianchi IX

In the previous Hamiltonians we choose the lapse N = V . But now in Bianchi
IX, we choose N = 1 to include more inverse triad corrections, then the effective
Hamiltonian is given by

HBIX = − V 4 A(V )h6(V )

8πGV 6
c γ2λ2

(
sin μ̄1c1 sin μ̄2c2 + sin μ̄1c1 sin μ̄3c3

+ sin μ̄2c2 sin μ̄3c3

)
+ ϑA(V )h4(V )

4πGV 4
c γ2λ

(
p2

1 p2
2 sin μ̄3c3 + p2

2 p2
3 sin μ̄1c1

+p2
1 p2

3 sin μ̄2c2

)
− ϑ2(1+γ2)A(V )h4(V )

8πGV 4
c γ2

(
2V

⎡
p2

1 + p2
2 + p2

3

⎣

−
⎡
(p1 p2)

4 + (p1 p3)
4 + (p2 p3)

4
⎣

h6(V )

V 6
c

)
+ h6(V )V 2

2V 6
c

p2
φ ≤ 0.
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4 Results

Now we will compare the results of the effective theories for the isotropic FRW
k = 0 and k = 1, diagonal Bianchi I, II and IX. All of them with a matter content
a massless scalar field satisfying the Klein-Gordon equation. A good starting point
to compare the results is to answer the questions that we asked in the introduction,
later we will mention other important results:

• Is the bounce generic? Yes. All solutions have a bounce. In other words, singular-
ities are resolved. In the closed FRW and the Bianchi IX model, there are infinite
number of bounces and recollapses due to the compactness of the spatial manifold.

• How does anisotropy/Weyl curvature behave near the bounce? These quantities far
from the bounce approach their classical values, but when they reach the region near
the bounce they behave differently. In Bianchi I, they present only one maximum.
In Bianchi II, they exhibit a richer behavior because now they can be zero at the
bounce or near to it, and have more than one maximum (for the shear there are up
to 4 maxima and for the scalar curvature up to 2 maxima [8]). For Bianchi IX, if we
restrict the analysis to one of the infinite number of bounces, it can be shown that
anisotropy and curvature behave in the same way as Bianchi I or II. The subject
of current research is whether there are new behaviors [9].

• Can we have different kind of bounce, say, dominated by shear σ? Yes, but only in
Bianchi II and IX. In Bianchi I the dynamical contribution from matter is always
bigger than the one from the shear, even in the solution which reaches the maximal
shear at the bounce [8].

• Are geometric scalars θ,σ and ρ absolutely bounded? In the flat isotropic model
all the solutions to the effective equations have a maximal density equal to the
critical density, and a maximal expansion (θ2

max = 6πGρcrit = 3/(2γλ)) when
ρ = ρcrit/2. For FRW k = 1 model, every solution has its maximum density but in
general the density is not absolutely bounded. In the effective theory which comes
from connection based quantization, expansion can tend to infinity. For the other
case, expansion has the same bound as the flat FRW model. However, by adding
some more corrections from inverse triad term, one can show that actually in both
effective theories the density and the expansion have finite values. For Bianchi I,
in all the solutions ρ and θ are upperly bounded by their values in the isotropic
case and σ is bounded by σ2

max = 10.125/(3γ2λ2) [10]. For Bianchi II, θ,σ and
ρ are also bounded, but for larger values than the ones in Bianchi I, i.e., there are
solutions where the matter density is larger than the critical density. With point-
like and cigar-like classical singularities [8], the density can achieve the maximal
value (ρ ≤ 0.54ρPl ) as a consequence of the shear being zero at the bounce and
curvature different from zero. For Bianchi IX the behavior is the same as in closed
FRW, if the inverse triad corrections are not used, then the geometric scalars are
not absolutely bounded. But if the inverse triad corrections are used, then on each
solution the geometric scalars are bounded but there is not an absolute bound for
all the solutions [9, 10].
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• Bianchi I, II and therefore the isotropic case k = 0 are limiting cases of Bianchi
IX, but they are not contained within Bianchi IX. While the isotropic FRW k = 1 is
contained within Bianchi IX only if the inverse triad corrections are not included,
when they are included then the k = 1 universe is a limiting case, like the k = 0
universe.

• A set of quantities that are very useful are the Kasner exponents (in classical
Bianchi I, the scale factors are ai = tki , where ki are the Kasner exponents),
because they can be used to determine which kind of solution is obtained. The
Kasner exponents tell us about the Bianchi I transitions (if they exist) and par-
ticularly in Bianchi IX, they are used to study the BKL behavior in the vacuum
case.

5 Conclusions

One of the main issues that a quantum theory of gravity is expected to address is
that of singularity resolution. Loop quantum cosmology has provided a complete
description in the case of isotropic cosmological models and singularity resolution
has been shown to be generic. A pressing question is whether these results can be
generalized to anisotropic models. In this case we lack a complete quantum theory,
but one can rely on the existence of an effective description, capturing the main
(loop) quantum geometric features. In this contribution we have described the main
features of such effective solutions. Singularities seem to be generically resolved as
the time evolution of geometrical scalars is well behaved past the would be classical
singularity. With the study of these anisotropic models, a question that still arises is
whether this behavior is generic for non-homogeneous configurations. That is, are
we a step forward toward generic quantum singularity resolution?
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Tensor Operators in Loop Quantum Gravity

Maïté Dupuis and Florian Girelli

Abstract We discuss how the quantization of the spinorial formalism for Loop
Quantum Gravity naturally leads to the notion of tensor operators. These objects
encode the natural structure to discuss observables associated to the intertwiner
space. They allow in particular to deal with any type of gauge group, classical or
quantum. After reviewing the standard case of SU(2), we focus on the specific
example of Uq(su(2)) and illustrate how dealing with a quantum group leads to the
notion of quantum curved geometry.

1 Introduction

The current Loop Quantum Gravity (LQG) theory describes the quantum gravity
regime with zero cosmological constant. The kinematical Hilbert space of the theory
is spanned by quantum states for spatial geometries, the so-called spin networks [1].
Recently, it has been realized that spin network states are the quantization of some
classical spinor states [2]. This spinorial formalism is reviewed in the next section,
where we recall how it is linked to a discrete version of General Relativity, the twisted
geometries. Then, focusing on a given vertex, we show how the spinorial structure
associated to this vertex can be quantized in terms of tensor operators for the gauge
group SU(2). This allows us to embed the U(N ) framework in a new mathematical
formalism generalizable to the quantum group case [3].

In the second part, we show how the use of tensor operators in LQG can be
generalized to the quantum group Uq(su(2)). The use of a quantum group as gauge

M. Dupuis
Institute for Theoretical Physics III, University Erlangen-Nuremberg, Erlangen, Germany
e-mail: maite.dupuis@gravity.fau.de

F. Girelli (B)

Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
e-mail: fgirelli@uwaterloo.ca
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group instead of the Lie group SU(2) is motivated by the idea that this could be a way
to introduce a non-vanishing cosmological constant Λ in the LQG framework [4].
From tensor operators, we build observables for Uq(su(2))-intertwiner that allow
us to identify geometric observables for curved geometries such as the angle and
length/area operators.

2 The Spinorial Formalism for LQG

The starting point of LQG is a smeared algebra, the holonomy-flux algebra, associated
to graphs embedded into the spatial manifold. The continuum Ashtekar-Barbero
variables are replaced by a pair (ge, Xe) √ SU(2) × su(2) associated to the edge e
of a given graph Γ .

At the quantum level, the kinematical Hilbert space of LQG is spanned by the spin
network states, |Γ, { je}, {ιv}→ where je √ N/2 is a representation of SU(2) and is as-
sociated to each edge e of Γ . ιv is a SU(2)-intertwiner associated to the vertex v of Γ .
The geometrical interpretation of spin network states is provided by the properties of
the angle, area and volume operators which are diagonalized by these quantum states.
All geometric information is then encoded in the combinatorial aspects of the graphs.
Let us now focus on a given graph Γ and consider a truncature of the full continuum
theory to a finite Hilbert space HΓ = L2(SU(2)E , d E g) with E the number of
edges of Γ and dg the Haar measure on SU(2). To understand what the classical
degrees of freedom represented by the spin network states inHΓ are, let us introduce
classical spinor networks.

2.1 Classical Spinor Networks

We focus on a given edge e of the graph Γ . This oriented edge is decorated by two

spinors |ze→ =
(

z(0)
e

z(1)
e

)
√ C

2 and |z̃e→ √ C
2 respectively associated to the source

vertex s(e) of e, and to the target vertex t (e) of e. The phase space is defined by
assuming that |ze→ is dual to its conjugate |z̄e→: {z(a)

e , z̄(b)
e } = −iδab where a, b √

{0, 1}. The space C2 ×C
2, equipped with its canonical Poisson brackets, allows us to

obtain the structure of the phase space of LQG on a given edge e, SU(2) × su(2) ∓
T ∼SU(2). Indeed, the holonomy-flux algebra can be expressed in terms of the spinor
variables1:

Xe := ≤ze|σ |ze→, ge := |ze→[z̃e| − |ze]≤z̃e|√≤ze|ze→≤z̃e|z̃e→
, (1)

1 We do not consider here the degenerate configuration ≤z|z→ = 0 which is equivalent to |X| = 0.
See [5] to see how this degenerate case can be treated.
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with the additional area matching constraint on the spinors, Me := ≤ze|ze→ −
≤z̃e|z̃e→ = 0, where σ i are the Pauli matrices and |ze] :=

(
−z̄(1)

e

z̄(0)
e

)
. Imposing

this constraint Me ensures that the two 3-vectors Xe and X̃e have the same norm
and that ge is unitary. The 6-dimensional space T ∼SU(2) and its symplectic struc-
ture are recovered by symplectic reduction of C

2 × C
2 by the constraint Me,

T ∼SU(2) ∓ (C2 × C
2)//M .

Let us now go back to the full graph Γ . The spinors are now labelled by a ver-
tex v and one of the edges e which has v for vertex. Thus, Γ is decorated with
a set of spinors |ze,v→. The components of the corresponding vectors Xe,v can be
seen as generating SU(2) transformation on the spinor |ze,v→. The classical equiv-
alent of the closure constraint which imposes the global SU(2) invariance at each
node of the graph Γ of a spin network state is simply written in terms of the 3-
vectors as

∑
e∞v Xe,v = 0. This translates into a matricial constraint on the spinor

variables, Cv ∗ ∑
e∞v

(|ze,v→≤ze,v| − 1
2 ≤ze,v|ze,v→I

)
. If E and v denote respectively

the number of edges of Γ and the number of vertex of Γ , the symplectic reduc-
tion of (C2 × C

2)//(Me)
E by (Cv)

V gives a symplectic space isomorphic to the
gauge invariant phase-space of LQG on a fixed graph. Moreover, Γ decorated by
{|ze,v→/Me = 0 and Cv = 0, ∀ e, v ⊂ Γ } defines a spinor network.

2.2 Twisted Geometries

A nice geometrical interpretation of a spinor network comes from twisted geome-
tries [6]. Essentially, a spinor network can be interpreted as a collection of polyhedra
glued along their faces, where two shared faces have the same area but not neces-
sary the same shape. The twisted geometry formalism is based on a seminal work
by Minkowski which showed how given a vertex and a set of variables defining
the twisted geometries, one can reconstruct a unique polyhedron dual to the vertex
[7]. These variables and their relationship to the spinor variables are the following:
je ∗ ≤ze|ze→

2 the area of the dual surface to the edge e; two unit vectors Ne,s(e), Ñe,t (e)

such as Xe,v(ze,v) = je Ne,v; an angle ξe ∗ −2(arg(z(1)
e ) − arg(z̃(1)

e )) the conjugate
variable of je. Ne,s(e), Ñe,t (e) are the two normals to the dual surface to the edge e
as seen from the two vertex frames sharing it. ξe is related to the extrinsic curvature
between the frames.

The name “twisted geometries” is motivated by this picture where geometries can
be discontinuous at the faces connecting the polyhedra. This is related to the fact that
the kinematical Hilbert space of LQG has room for torsion. In this sense, twisted
geometries are more general than Regge Calculus which is torsion-free. For a graph
with 4-valent vertices, Regge Calculus can be recovered by constraining the twisted
geometries with some “shape-matching conditions” [8].
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2.3 Tensor Operators

The quantization of a spinor |z→ and of its dual |z] or more precisely of their conjugate
variables give tensor operators of rank 1/2 for SU(2):

≤z| = (z̄(0), z̄(1)) ∃ T 1/2 =
(

a†

b†

)
, [z| = (−z(1), z(0)) ∃ −T̃ 1/2 =

(−b
a

)
,

(2)
where αi = a, b are harmonic oscillators, [αi , α

†
j ] = δi j , the other commutators be-

ing zero. More generally, a tensor operator of rank j √ N/2, t j
m , is an object transform-

ing as a vector | j, m→ (m √ {− j, · · · ,+ j}) under the adjoint action, ∩, of su(2). We
have Jz∩t j

m = [Jz, t j
m] = m t j

m, J±∩t j
m = [J±, t j

m] = √
( j ∅ m)( j ± m + 1) t j

m±1,
where Jz, J± are the su(2)-generators.

Note that Jz, J± can also be seen as the components of a tensor operator of rank 1
for su(2). And just as |1, l→ = ∑

m C1/2 1/2 1
m l−m l |1/2, m→⊗|1/2, m − l→ (l √ {−1, 0, 1})

where C1/2 1/2 1
m m−l l are Clebsh-Gordan (CG) coefficients, the tensor operator of rank 1

(−J+/
√

2, Jz, J−/
√

2) can be expressed in terms of tensor operators of ranks 1/2
defined in (2) and we recover the Jordan-Schwinger representation of SU(2). The
U(N ) formalism developed for SU (2) intertwiners in terms of harmonic oscillators
can also be rewritten in terms of tensor operators of rank 1/2, (i)T 1/2, (i)T̃ 1/2,
where i denotes the i th leg of a given vertex v. The observables Ei j = a†

i a j + b†
i b j ,

Fi j = ai b j − a j bi and F†
i j (i, j √ {1, . . . , N }) for the space of N valent SU(2)-

intertwiners are simply rank 0 tensor operators built from these tensor operators
of rank 1/2 using CG coefficients to combine them into a scalar operator. These
operators can be used to generate all observables for the intertwiner [9].

3 Generalization to Uq(su(2)) as Gauge Group: Towards
Curved Discrete Geometries?

3.1 Tensor Operators

We focus on Uq(su(2)) with q real, which representation theory is similar to the
one of su(2). We refer to the Appendix for the definition and properties regarding
Uq(su(2)) [10]. As for the q = 1 case, a tensor operator is an operator t j

m which
transforms at the same time under the adjoint action, ∩, of Uq(su(2)) and as the
vector | jm→,

K ∩ t j
m = K t j

m K −1 = qmt j
m, (3)

J± ∩ t j
m = J± t j

m K −1 − q± 1
2 K −1 t j

m J± = √[ j ∅ m][ j ± m + 1] t j
m±1,
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The decomposition of a tensor operator into a product of tensor operators mentioned
in the previous section remains valid. However, the tensor product of tensor operators
becomes complicated to construct in the q ⇐= 1 case. Indeed, if t is a tensor operator
then (1)t = t ⊗ 1 is a tensor operator, but 1 ⊗ t is in general not a tensor operator (it
is however a tensor operator if q = 1, i.e. for su(2)). We need to use the R-matrix
to construct an intertwining map from the permutation. We say that the permutation
composed with the R-matrix is a q-deformed permutation. Starting from a given t
of rank j , we can build N tensor operators of rank j using consecutive deformed
permutations. For all i √ {1, . . . , N },

(i)t = (Ri i−1..Ri1(1 ⊗ ... ⊗ t)R−1
i1 ..R−1

i i−1) ⊗ 1 ⊗ ..1 (4)

is a tensor operator of same rank as t. The fundamental tensor operators are the
tensor operators of rank 1/2, the spinor operators. Similarly to the q = 1 case, a
pair of q-harmonic oscillators provides a convenient set of variables to realize these
operators [11]. The annihilation and creation operators αi = ai , bi , α

†
i = a†

i , b†
i , and

the number operator Nαi satisfy now the following conditions

[αi , α j ] = [α†
i , α

†
j ] = 0, [αi , α

†
j ]q± 1

2
= δi j q

∅Nαi , (5)

q Nαi /2α
†
i = q1/2α

†
i q Nαi /2, q Nαi /2αi = q−1/2αi q

Nαi /2.

We can use this pair of harmonic oscillators to construct the Jordan-Schwinger real-
ization the Uq(su(2)) generators [11]

Jz = 1

2
(Na − Nb), J+ = a†b, J− = b†a, (6)

which are not the components of a tensor operator of rank 1, contrary to the q = 1
case. Using (5), we can recover the Uq(su(2)) commutation relations provided in
(10). We can also use the Fock space of this pair q-harmonic oscillators to generate
the representations of Uq(su(2)).

Thanks to this realization, we can find the two solutions of (3) for j = 1/2, which
transform therefore as spinors.

t
1
2 =

(
a†q Na/4

b†q(2Na+Nb)/4

)
q∃1−∃ T 1/2, t̃

1
2 =

(
q(2Na+Nb+1)/4b
−q(Na−1)/4a

)
q∃1−∃ −T̃ 1/2. (7)

Using the relevant CG coefficients, we construct the operators t1 which transform as

vectors, t1±1 = t
1
2±t̃

1
2±, t1

0 = 1√[2]

(
q− 1

4 t
1
2+ t̃

1
2− + q

1
4 t

1
2−t̃

1
2+
)

. Explicitly, we have,
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t1±1 = ∅ q− 1
2√[2]q

1
2 (Na+Nb)q

Jz
2 J±,

q∃1−∃ ∅ J±√
2

(8)

t1
0 = q− 1

2

[2] q
1
2 (Na+Nb)(q−1/2 J+ J− − q1/2 J− J+)

q∃1−∃ Jz .

Any other tensor operator of rank j can be built in a similar way by combining spinor
operators and CG coefficients. Then, the construction of tensor operators of rank j
from tensor products of a given tensor operator can be done using (4). Note that in
general (n)t j1 and (m)t̃ j2 will not commute in the quantum group case, contrary to
the q = 1 case.

3.2 Observables for the q-Deformed Intertwiner Space

In LQG, the intertwiner |ι j1.. jN → is understood as the fundamental chunk of quantum
space. We have seen in the previous section that the use of tensor operators allows
to construct operators invariant under the adjoint action of su(2) and to recover the
complete algebra of observables defined in the U(N ) framework. The tensor operator
formalism allows us to extend this framework to the quantum group case in a direct
manner.

As in the su(2) case, each leg k of the intertwiner corresponds to a representation

V jk . We can associate with each leg a tensor operator (k)t
1
2 . Using Uq(su(2)) re-

coupling theory, it is possible to build from these tensor operators a tensor operator
of rank 0, i.e. an observable. Let us denote |ιqj1.. jN

→ the intertwiner defined from
representations of Uq(su(2)). Using spinor operators, as in the q = 1 case, there are
only three types of observables that can be constructed2:

Ei j =−√[2]
∑
mi

qC
1
2

1
2 0

m1m20
(i)t

1
2
m1

( j)t̃
1
2
m2

q∃1−∃a†
i a j + b†

i b j = Ei j

G †
i j =−√[2]

∑
mi

qC
1
2

1
2 0

m1m20
(i)t

1
2
m1

( j)t
1
2
m2

q∃−∃ a†
i b†

j − b†
i a†

j = F†
i j

Fi j =−√[2]
∑
mi

qC
1
2

1
2 0

m1m20
(i) t̃

1
2
m1

( j)t̃
1
2
m2

q∃1−∃ ai b j − bi a j = Fi j ,

where the operators Ei j , F†
i j , Fi j of the U (N ) formalism are recovered. Prelimi-

nary results indicate that the Ei j can be expressed as functions of the generators of
Uq(u(N )) [3]. This means that the Uq(su(2)) intertwiner can be seen as a repre-

2 The other ordering choice for (i)t
1
2
m1 and ( j) t̃

1
2
m2 is equivalent to our choice modulo a rescaling of

the operators.
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Fig. 1 Hyperbolic and flat triangles represented in the Poincaré disk and the plane respectively

sentation of Uq(u(N )), a natural generalization of the classical case, where the E’s
form a u(N ) algebra.

Using vector operators we can construct different interesting observables. Con-
sidering (i)t1 and ( j)t1, we construct the following scalar operator, (i)t1 · ( j)t1 ∗
qC

1 1 0
m1m20

(i)t1
m1

( j)t1
m2

. Using recoupling theory, we calculate the action of this op-

erator on a three legs intertwiner |ιqjb jc ja
→. For simplicity, we assume now a 2d space,

i.e. LQG for a 2+1 spacetime. We can then interpret this intertwiner as the quantum
state of a triangle. In the limit q ∃ 1, we know that (b)t1 · (c)t1 ⇒ (b)J · (c)J
is interpreted as the quantization of the cosine of the angle θa between the tangent
vectors ûc, ûb (cf Fig. 1).

The action of (b)J · (c)J on |ιq=1
jb jc ja

→ leads to a quantized version of the flat cosine
law [12]. When performing the calculation with q ⇐= 1, we obtain that the action of
(b)t1 · (c)t1, for an appropriate choice of normalization, is diagonal on |ιqjb jc ja

→ with
eigenvalue,

cosh λ
2 cosh(( ja + 1

2 )λ) − cosh(( jb + 1
2 )λ) cosh(( jc + 1

2 )λ))

sinh(( jb + 1
2 )λ) sinh(( jc + 1

2 )λ)
, (9)

where λ = l p
R with l p the Planck length, R the cosmological radius, R = 1√

Λ
and

Λ the positive cosmological constant. This suggests now that we are dealing with a
quantization of the hyperbolic cosine law,

−n̂b · n̂c = ûb · ûc = cos θa = − cosh la
R + cosh lb

R cosh lc
R

sinh lb
R sinh lc

R

.

When R goes to infinity, we recover the standard flat cosine law. This strongly
suggests that dealing with Uq(su(2)) 3-legs intertwiner encodes a quantization of
the curved hyperbolic triangle (cf Fig. 1), where the quantized length is l̂i = ji + 1

2 .
Morevoer, if we consider the case where ja = 0 and jb, jc ⇐= 0, unlike the classical
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case, we do not get θa = 0. This means that the introduction of curvature induced a
minimum angle as already guessed in [13].

A similar argument can be made when dealing with 3d spatial geometries. In

this case, λ = l2
p

R2 . The vectors operators encode the quantization of the normals to

surfaces. The area operator is then quantized with eigenvalues j + 1
2 , and not as the

Uq(su(2)) Casimir as usually proposed in the quantum group case [4].
To recover a quantization of the hyperbolic cosine law shows that we are on

the right track to determine the variables encoding a curved twisted geometry. The
natural candidates are the complex variables zi variables which are the “classical”
analogues of the q-harmonic oscillators (5), equipped with a q-calculus. In this case,

the relevant differential is given by Dq f (z) ∗ ( f (zq
1
2 )− f (zq− 1

2 ))/(z(q
1
2 −q− 1

2 )).
We leave this for further investigations.

4 Outlook

Twisted geometries and the LQG spinorial reformulation provide an interesting
framework to get a better understanding of the classical degrees of freedom car-
ried by a spin network, a quantum state of space. When quantizing this spinorial
formalism of LQG, tensor operators arise naturally. These objects are easy to gener-
alize to the quantum group case. Whereas at this stage, we do not know clearly how
to introduce the cosmological constant in the LQG framework, we have showed how
using the quantum group does encode the presence of a cosmological constant in the
geometry dual to an intertwiner. In particular we have obtained a quantization of the
hyperbolic cosine law.

Morevoer, identifying these tensor operators as the right building blocks provides
new techniques to eventually solve the issue of the quantum groups appearance in
the LQG context as well as new directions to explore.

For example, it is now possible using the E ’s and F ’s observables to generalize
the Hamiltonian constraint for 3d gravity proposed in [14] in order to get an invariant
Hamiltonian operator underUq(su(2)). This would allow to connect for the first time
an LQG Hamiltonian constraint and the 6 j-symbols for Uq(su(2)) which appears
in the Turaev-Viro model. This would allow to probe how the use of quantum group
is a good approximation for encoding the cosmological constant.

Appendix: Uq(su(2))

The quasi-triangular Hopf algebra Uq(su(2)) is generated by the elements J±,

K = q
Jz
2 which satisfy
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K J±K −1 = q± 1
2 J±, [J+, J−] = K 2 − K −2

q1/2 − q−1/2 . (10)

The coproduct Δ : Uq(su(2)) ∃ Uq(su(2)) ⊗ Uq(su(2)) and antipode S :
Uq(su(2)) ∃ Uq(su(2)) are given by

ΔK = K ⊗ K , ΔJ± = J± ⊗ K + K −1 ⊗ J±, SK = K −1, S J± = −q±1/2 J±.

The R-matrix R √ Uq(su(2)) ⊗ Uq(su(2)) encodes the quasi-triangular struc-
ture, which tells us how much the coproduct is non-commutative. If we note
ψ : Uq(su(2)) ⊗ Uq(su(2)) ∃ Uq(su(2)) ⊗ Uq(su(2)) the permutation, then
we have ψ ◦ ΔX = R(ΔX)R−1, ∀X √ Uq(su(2)). Standard notations are
R12 = ∑

R1 ⊗ R2, R21 = ∑
R2 ⊗ R1, . . . When q is real, the representation

theory of Uq(su(2)) is essentially the same as that of su(2) [10]. A representation
V j is hence generated by the vectors | j, m→ with j √ N/2 and m √ {− j, .., j}. The

key-difference is that we use q-numbers [x] ∗ qx/2−q−x/2

q1/2−q−1/2 .

K | j, m→ = qm | j, m→, J± | j, m→ = √[ j ∅ m][ j ± m + 1] | j, m ± 1→.

The adjoint action of Uq(su(2)) on some operator O is

J± ∩ O = J±OK −1 − q±1/2 K −1O J±, K ∩ O = KOK −1.
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Probability Distributions for Quantum Stress
Tensors in Two and Four Dimensions

Christopher J. Fewster, L. H. Ford and Thomas A. Roman

Abstract The probability distributions for individual measurements for the smeared
energy densities of quantum fields, in the two and four-dimensional Minkowski
vacuum are discussed. These distributions share the property that there is a lower
bound at a finite negative value, but no upper bound. Thus arbitrarily large positive
energy density fluctuations are possible. In two dimensions we are able to give an
exact unique analytic form for the distribution. However, in four dimensions, we are
not able to give closed form expressions for the probability distribution, but rather
use calculations of a finite number of moments to estimate the lower bound, and
the asymptotic form of the tail of the distribution. The first 65 moments are used
for these purposes. All of our four-dimensional results are subject to the caveat that
these distributions are not uniquely determined by the moments. One can apply the
asymptotic form of the electromagnetic energy density distribution to estimate the
nucleation rates of black holes and of Boltzmann brains.

1 Introduction

There has been extensive work in recent decades on the definition and use of the
expectation value of a quantum stress tensor operator. However, the semiclassical
theory does not describe the effects of quantum fluctuations of the stress tensor
around its expectation value.
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One way to examine these fluctuations is through the probability distribution for
individual measurements of a smeared stress tensor operator. This distribution was
given recently for Gaussian averaged stress tensors operators in two-dimensional
flat spacetime [1] using analytical methods, and more recently for averaged stress
tensors in four-dimensional spacetime from calculations of a finite set of moments.
(Throughout our discussion, all quadratic operators are understood to be normal-
ordered with respect to the Minkowski vacuum state.)

1.1 Quantum Inequalities

Quantum inequalities are lower bounds on the expectation values of the smeared
energy density operator in arbitrary quantum states [2–7]. If we sample in time along
the worldline of an inertial observer, the quantum inequality takes the form

∫ √

−√
f (t) →Tμνuμuν∓ dt ∼ − C

τd
, (1)

where Tμνuμuν is the normal-ordered energy density operator, which is classically
non-negative, t is the observer’s proper time, and f (t) is a sampling function with
characteristic width τ . Here C is a numerical constant, typically small compared
to unity, d is the number of spacetime dimensions, and we work in units where
c = � = 1.

Although quantum field theory allows negative expectation values of the energy
density, quantum inequalities place strong constraints on the effects of this negative
energy for violating the second law of thermodynamics [2], maintaining traversable
wormholes [8] or warpdrive spacetimes [9]. The implication of (1) is that there is
an inverse power relation between the magnitude and duration of negative energy
density.

For a massless scalar field in two-dimensional spacetime, Flanagan [6] has found
a formula for the constant C for a given f (t) which makes (1) an optimal inequality.
This formula is

C = 1

6π

∫ √

−√
du

(
d

du

√
g(u)

)2

, (2)

where f (t) = τ−1g(u) and u = t/τ . In four-dimensional spacetime, Fewster and
Eveson [7] have derived an analogous formula for C , but in this case the bound is
not necessarily optimal.
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2 Shifted Gamma Distributions: 2D Case

In two-dimensional Minkowski spacetime, we determined the probability distrib-
ution for individual measurements, in the vacuum state, of the Gaussian sampled
energy density

ρ = 1≤
π τ

∫ √

−√
Ttt e−t2/τ2

dt. (3)

This was achieved by finding a closed form expression for the generating function
of the moments →ρn∓ of ρ, from which the probability distribution was obtained. The
definition of the n’th moment of the distribution of a variable x is given by

an =
∫

xn P(x) dx . (4)

The resulting distribution is conveniently expressed in terms of the dimensionless
variable x = ρ τ2 and is a shifted Gamma distribution:

P(x) = ϑ(x + x0)
βα(x + x0)

α−1

Γ (α)
exp(−β(x + x0)), (5)

with parameters

x0 = 1

12π
, α = 1

12
, β = π. (6)

Here x = −x0 is the lower bound of the distribution (Fig. 1).
The lower bound, −x0, for the probability distribution for energy density fluctua-

tions in the vacuum is exactly Flanagan’s optimum lower bound, (2), on the Gaussian
sampled expectation value. As was argued in Ref. [1], this is a general feature, giving
a deep connection between quantum inequality bounds and stress tensor probability
distributions. The quantum inequality bound is the lowest eigenvalue of the sam-
pled operator, and is hence the lowest possible expectation value and the smallest
result which can be found in a measurement. That the probability distribution for
vacuum fluctuations actually extends down to this value is more subtle and depends
upon special properties of the vacuum state, and is implied by the Reeh-Schlieder
theorem.

There is no upper bound on P(x), as arbitrarily large values of the energy density
can arise in vacuum fluctuations. Nonetheless, for the massless scalar field, negative
values are much more likely; 84 % of the time, a measurement of the Gaussian
averaged energy density will produce a negative value. However, the positive values
found the remaining 16 % of the time will typically be much larger, and the average
first moment of P(x) will be zero.

Furthermore, the probability distribution for the two-dimensional stress tensor is
uniquely determined by its moments, as a consequence of the Hamburger moment
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Fig. 1 The graph of P(x) versus x of the probability distribution function for the energy density, ρ,
of a massless scalar field sampled in time with a Gaussian of width τ . Here x = ρτ 2. The distribution
has an integrable singularity at the optimal quantum inequality bound x = −x0 = −1/12π

theorem [10]. This condition is a sufficient, although not necessary, condition for
uniqueness, and is fulfilled by the moments of the shifted Gamma distribution.

3 The 4D Case

In four dimensions, the operators ρS , and ρEM all have dimensions of length−4. Their
probability distributions P(x) are taken to be functions of the dimensionless variable

x = (4π τ2)2 A, (7)

where A is the Lorentzian time average of ρS , and ρEM, where ρS and ρEM are the
smeared energy density operators for the massless scalar field, and electromagnetic
fields, respectively.

The distributions were calculated numerically from 65 moments [11]. The sit-
uation here is less straightforward. In this case, the moments grow too rapidly to
satisfy the Hamburger moment criterion. Unfortunately, this means that we cannot
be guaranteed of finding a unique probability distribution P(x) from these mo-
ments. These probability distributions share some of the main characteristics of their
two-dimensional counterparts. They have a lower bound but no upper bound. Our
techniques allow us to give approximate lower bounds and the asymptotic forms of
the tails of the distributions.
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Our estimates for the lower bounds are

− x0(ρEM) ∞ −0.0472, −x0(ρS) ∞ −0.0236. (8)

These are also estimates of the optimal quantum inequality bounds for each field.
In contrast, the non-optimal bound for ρS , given by the method of Fewster and
Eveson [7], is −x0(FE) = −27/128 ∞ −0.21, which is an order of magnitude
larger.

It is of interest to note that the magnitudes of the dimensionless lower bounds,
given in (8) are small compared to unity. The fact that the probability distribution
has a long positive tail, and must have a unit zeroth moment and a vanishing first
moment, implies that the total probability of a negative value to be substantial. The
small magnitudes of x0(ρS) and x0(ρEM) imply strong constraints on the magnitude
of negative energy which can arise either as an expectation value in an arbitrary state,
or as a fluctuation in the vacuum. They also imply that an individual measurement
of the sampled energy density in the vacuum state is very likely to yield a negative
value.

One can show that the asymptotic behavior of the tail of the probability distribu-
tion is determined by the moments, even if the exact probability distribution is not
uniquely determined. Our fitted tail decreases asymptotically as

Pfit ∗ x−2 e−ax1/3
, (9)

where a is a constant. We are also able to show that no distribution with the same
moments can have a tail which decreases at a faster rate than ours.

By contrast, the tail of a Boltzmann distribution for thermal fluctuations falls off
as

PBoltzmann ∗ e−βx , (10)

where β is a constant. Therefore vacuum fluctuations outweigh thermal fluctuations
at high energies (Fig. 2).

3.1 Application: Black Hole Nucleation

The fact that the energy density probability distribution has a long positive tail implies
a finite probability for the nucleation of black holes out of the Minkowski vacuum
via large, though infrequent positive fluctuations (see Ref. [11]). This probability
cannot be too large, of course, or it will conflict with observation. Our estimate of
the probability depends only on the asymptotic form of the tail. (One can use similar
arguments to estimate the probability of “Boltzmann brains” nucleating out of the
vacuum.)
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Fig. 2 The figure shows a comparison of the asymptotic form of the tails of both our fitted dis-
tribution for vacuum fluctuations and for the thermal fluctuations described by the Boltzmann
distribution. At high energies, vacuum fluctuations outweigh thermal fluctuations

4 Summary

We have found that the probability distribution for vacuum fluctuations of the
Gaussian-smeared energy density for a massless scalar field in two-dimensional
spacetime is uniquely defined by a shifted gamma distribution. The distribution has
a negative lower bound but no upper bound. It has an integrable singularity (i.e.,
a “spike”) at the lower bound. In addition, we find that there is a deep connection
between the lower bound of the distribution and the quantum inequalities. In fact the
lower bound of the distribution coincides exactly with the optimal quantum inequality
bound for a Gaussian sampling function, derived earlier by Flanagan.

The lower bound is very small in magnitude, but the probability density is large
in the region between zero and the lower bound. As a result, rather surprisingly, the
probability of obtaining a negative result in an individual measurement is 84 %! Al-
though the negative fluctuations are very frequent, they are small in magnitude. As a
result, one would not expect to see large effects of negative energy (e.g., violations of
the second law, wormholes, warpdrives, etc.) nucleating out of the vacuum. However,
the distribution has a long positive tail, which guarantees that the frequent but small
negative energy density fluctuations are balanced by the much rarer but larger posi-
tive energy fluctuations. Therefore, the expectation value of the energy density in the
Minkowski vacuum state is zero. It is quite remarkable that the quantum inequalities
which are bounds on the expectation value of the energy density in an arbitrary quan-
tum state, should be so intimately related to the probability distribution of individual
measurements of the energy density made in the vacuum state.
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In four dimensions, we find similarities with the two-dimensional case, in that
there is a lower bound but no upper bound. We are able to give numerical estimates
of the lower bounds, i.e., the optimal bounds, and the asymptotic form of the tails.
The lower bounds are negative with small magnitudes. However, our methods do
not allow us to determine whether there is a “spike” at the lower bound, as in two
dimensions. Nonetheless, the low magnitudes of the lower bounds indicate that a
significant fraction of the probability must lie in the negative region. Therefore, as
in the two-dimensional case, the probability of obtaining a negative value in an indi-
vidual measurement is quite high. The long positive tail drops off more slowly than
that of a Boltzmann distribution, which implies that vacuum fluctuations dominate
over thermal fluctuations at high energies.

Unfortunately, it seems likely that it is not possible to uniquely determine the
four-dimensional distributions from the moments alone, as the latter do not obey the
Hamburger moment condition. Nonetheless, we are able to glean some information
from the moments. For example, we can determine that no distribution with the same
moments as ours can have a tail which decreases faster than ours. The asymptotic
forms of the long positive tail allow us to estimate the probability of nucleation of
(small) black holes and “Boltzmann brains” out of the vacuum.

Clearly further work can be done on this subject. One topic would be to see what
additional information can be obtained from our calculated four-dimensional proba-
bility distributions, even if they cannot be uniquely determined from their moments.
For example, does the “spike” behavior persist in four dimensions as well as in two,
and what is its physical significance? Another would be to determine what the op-
timal quantum inequality bounds actually are. It would also be useful to try various
sampling functions. Can the probability distributions and optimal bounds can be ob-
tained by other methods which do not have the limitation of the ambiguities in the
moment methods? There is more to do to explore the physical content of stress-tensor
fluctuations.
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Spontaneous Breaking of Lorentz Symmetry
for Canonical Gravity

Steffen Gielen

Abstract In the Ashtekar-Barbero formulation of canonical general relativity based
on an SU(2) connection, Lorentz covariance is a subtle issue which has been the focus
of some debate. Here we present a Lorentz covariant formulation generalising the
notion of a foliation of spacetime to a field of local observers which specify a time
direction only locally. This field spontaneously breaks the local SO(3,1) symmetry
down to a subgroup SO(3); we show that the apparent symmetry breaking to SO(3) is
not in conflict with Lorentz covariance. We give a geometric picture of our construc-
tion as Cartan geometrodynamics and outline further applications of the formalism
of local observers, motivating the idea that observer space, instead of spacetime,
should serve as the fundamental arena for gravitational physics.

1 Introduction

In first order formulations of general relativity one has a notion of local Lorentz invari-
ance, which can be thought of as one way of implementing the equivalence principle.1

It is crucial to understand the fate of this gauge symmetry in attempts to quantise
gravity, both theoretically and with regard to a possible phenomenology of quantum
gravity (including matter). There are strong experimental constraints on many pos-
sible types of violation of Lorentz covariance and any proposed theory of quantum
gravity must prove itself consistent with such constraints.

In Hamiltonian formulations, in particular the Ashtekar-Barbero connection for-
mulation [1, 2], the issue of Lorentz covariance has been the focus of some debate,
since the Ashtekar-Barbero formulation naturally uses the gauge group SU(2) or

1 Linking my talk at this wonderful conference to Einstein’s Prague days.
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SO(3),2 instead of the full Lorentz group. The use of this smaller gauge group is
connected to the appearance of second-class constraints in previous attempts to main-
tain full Lorentz covariance. Here we show how to avoid second class constraints and
stay Lorentz covariant by introducing a field of local observers. Details are given in
the paper [3].

2 Canonical First Order General Relativity

Starting from the Lorentz covariant Palatini-Holst action for vacuum general rela-
tivity without cosmological constant

S[e, ω] = 1

8πG

∫
κabcd ea √ eb √ Rcd [ω] , (1)

where κabcd is an SO(3, 1)-invariant bilinear form on so(3, 1),

κabcd = 1

2
εabcd + 1

2γ
(ηacηbd − ηadηbc) , (2)

one can perform the usual canonical analysis and find that the 18 momenta π i
ab

conjugate to the spatial components of the connection ωab
i are expressible in terms of

only 12 tetrad components ea
i . This leads to second class constraints, which provide

an obstacle to quantisation and usually require introducing new variables which are
harder to interpret in terms of spacetime geometry.

In Holst’s analysis [4] leading to the well-known Ashtekar-Barbero formulation of
canonical gravity, one deals with this issue by explicit symmetry breaking to SO(3):
Imposing ‘time gauge’ e0

i = 0 and defining

Aab = ωab + γ

2
εab

cdωcd , (3)

only the so(3) part of A (the Ashtekar-Barbero connection) has nonvanishing con-
jugate momentum, and one avoids second class constraints. However, this comes at
the price of losing Lorentz symmetry which is broken explicitly by the gauge choice.

In our formalism we replace time gauge by a condition involving a field of internal
observers y which specifies a time direction locally, and leads to a spontaneous
breaking of symmetry from SO(3, 1) to a subgroup SO(3)y depending on y(x) at
each spacetime point x .

2 The covering group SU(2) is required if one wants to include spinors. We consider pure gravity;
the symmetry groups we discuss arise as the isometry groups of real manifolds or the stabilisers of
points in them, and can be taken to be real-valued matrix groups. By expressions such as SO(3, 1),
we mean the connected component preserving orientation and time orientation.
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3 General Relativity with Local Observers

For a given spacetime manifold with metric g or frame field e, we define a field
of observers as a unit future-directed timelike vector field u. Using the frame field
we can map it to a spacetime scalar y = e(u) valued in the velocity hyperboloid
H3 = SO(3, 1)/SO(3). But such a field of internal observers can be defined without
specifying the metric, and is hence suitable for a framework in which the metric
arises dynamically as a solution to the equations of motion.

Our formalism for generalised canonical gravity builds on the following variables:

• a field of internal observers y, valued in H3 → R
3,1, thought of as giving a local

notion of time direction,
• a nowhere-vanishing 1-form û, thought of as non-dynamical and generalising the

normal to a foliation (if û √ dû = 0, û is of the form û = N dt)—one can always
reduce to the case of a foliation by choosing an appropriate û,

• an R
3
y-valued ‘triad’ 1-form E , where R

3
y is the subspace of R3,1 orthogonal to y

(this generalises time gauge).

The spacetime coframe field is then simply given by

e = E + û y, (4)

analogous to how one reconstructs the spacetime metric in the ADM formulation
using lapse and shift. As is usual in first order gravity, we must require e to be
nondegenerate. The field of internal observers y defines a field of spacetime observers
by y = e(u), and one finds that E(u) = 0 so that E is actually spatial.

Similarly, we define spatial and temporal parts of the spin connection,

ω = Ω + û Ξ, (5)

Substituting (4) and (5) into the Palatini-Holst action (1) gives us a generalised
Hamiltonian formulation of vacuum general relativity in terms of an action depending
on y, E,Ω and Ξ that we give in [3]. Up to this stage everything is Lorentz covariant
– we have just changed variables in the action.

The rôle of the field of internal observers y is to give us a local embedding of
SO(3) into SO(3, 1). The embedding can be freely changed by applying a Lorentz
transformation y ∓∼ y≤ = Λ y; allowing those Lorentz transformations instead of
thinking of y as fixed restores Lorentz covariance.

The spatial connection Ω can be projected to its so(3)y part Ω . Then under a
local Lorentz transformation

Ω ∓∼ Ω ≤ = Λ−1 Ω Λ + πy≤(Λ−1 d∞Λ) , (6)

where πy≤ is a projector onto so(3)y≤ and d∞ = d − û √£u is a spatial exterior deriva-
tive. Therefore, if one only applies SO(3)y transformations which leave y invariant,
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Ω transforms as an SO(3)y connection, while if one allows for transformations that
rotate the local internal observer y to y≤, the transformed connection Ω ≤ is in so(3)y≤ .
This is as it should be.

To understand the dynamical structure of this formalism, we focus on the term in
the action that determines the symplectic structure in Hamiltonian general relativity,

S = 1

8πG

∫
κabcd û √ Ea √ Eb √ £uΩcd + · · · , (7)

Since E √ E is valued only in so(3)y , only half of the components of Ω have
nonvanishing conjugate momentum. The number of independent components of E
matches the number of conjugate momenta, and no second-class constraints arise—
but we did not find it necessary to impose any gauge fixing such as the time gauge
employed in Holst’s analysis.

One can make the splitting of so(3, 1) into a rotational subalgebra so(3)y and a
complement py explicit by choosing local bases J ab

I and Bab
I (depending on y). Then

AI := Ω I + γ K I , (8)

is conjugate to (E√E)I , whereΩ and K are the so(3)y andpy parts ofΩ . Equation (8)
is the Ashtekar-Barbero connection, and our formalism is dynamically equivalent to
the Ashtekar-Barbero formulation: It has the same phase space variables, subject
to the same constraints that define the dynamics. In the form (8) manifest Lorentz
covariance is lost; it can be recovered by viewing so(3)y and py not as fixed (isomor-
phic) representations of SO(3), but as subspaces of so(3, 1) specified by the field y.

4 Cartan Geometrodynamics

Situations of spontaneous symmetry breaking in gravitational theories are geomet-
rically best understood in terms of Cartan geometry [5]. A well-known example is
the MacDowell-Mansouri formulation [6] of gravity with cosmological constant (we
take Λ > 0 but Λ < 0 is analogous) in terms of the SO(4, 1) invariant action

SMM = − 3

32πGΛ

∫
εabcde

(
Fab √ Fcd

)
ye , (9)

where F is the curvature of an SO(4, 1) connection A. The field y takes values in de
Sitter spacetime SO(4, 1)/SO(3, 1) → R

4,1; it breaks the symmetry at each point in
spacetime to the subgroup SO(3, 1)y leaving y invariant. Fixing y = (0, 0, 0, 0, 1)

in the action breaks the symmetry explicitly.
The Lie algebra so(4, 1) splits into a subalgebra so(3, 1)y and a complement ty ;

identifying the so(3, 1)y part of A with the spin connection ω and the ty part with a
coframe e,
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A =

 ω

√
Λ
3 e

−
√

Λ
3 e 0

⎪
 , (10)

the action (9) reduces to the Einstein-Hilbert-Palatini action with a cosmological
term.

Cartan geometry is about infinitesimally approximating the geometry of a curved
manifold by a homogeneous spacetime G/H (in this case de Sitter spacetime) which
generalises the tangent space Rp,q used in (pseudo-)Riemannian geometry. The Car-
tan connection A relates the model spacetimes tangent to different points of the
manifold – for a model spacetime of non-zero curvature, A is flat if the manifold is
(locally) isomorphic to the model spacetime. This naturally introduces a cosmolog-
ical constant into gravity, given by the curvature scale of the model spacetime.

Our reformulation of the Ashtekar-Barbero formalism for canonical gravity is
best interpreted as describing the geometry of space as Cartan geometrodynamics:
The so(3)y connection Ω (or, alternatively, the Ashtekar-Barbero connection) and
the triad E can be assembled into a Cartan connection

A =
(

Ω 1
l E

0 0

)
, (11)

taking values in the Lie algebra of the Euclidean group iso(3) if we consider a vanish-
ing cosmological constant (l is an (unspecified) length scale put in for dimensional
reasons). The appearance of the group ISO(3) is understood as follows: Spacetime is
infinitesimally modelled on Minkowski spacetime, with isometry group ISO(3, 1).
At a given point in spacetime, picking an observer in the model Minkowski space-
time gives a notion of ‘space’ in the model spacetime as the maximal totally geodesic
hypersurface orthogonal to this observer – in the construction above, we referred to
this as the subspace R

3
y orthogonal to an observer y. This breaks the symmetry to

ISO(3), the isometry group of R3
y . Picking a point in R

3
y tangent to the spacetime

point then breaks the symmetry further to SO(3), giving the splitting (11). For a more
detailed discussion of the geometry behind Cartan geometrodynamics we refer to [7].

5 Summary and Outlook

We have given a reformulation of canonical general relativity in first order form which
uses local observers that define a local notion of time. These give an embedding of the
rotational subgroup SO(3) into the Lorentz group that allows to reconstruct Lorentz
covariance from the SO(3) Ashtekar-Barbero formulation of canonical gravity. The
geometry behind our constructions is best understood in terms of Cartan geometro-
dynamics. Since this formulation requires only a local choice of time direction not
necessarily related to a foliation of spacetime, it links the canonical and covariant
formulations of general relativity [8].
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It would be important to understand the coupling of matter—which would be
necessary to investigate the possibility of physically observable Lorentz violation—
and the role of the field of internal observers there. So far they have been treated
like lapse and shift, as Lagrange multipliers. Making the observer field dynamical
could relate our framework to models with dynamical reference frames, such as
Brown-Kuchař dust [9].

Similar constructions could also be useful in approaches to quantum gravity where
local Lorentz covariance is not manifest, such as Hořava-Lifshitz gravity, shape
dynamics or causal dynamical triangulations.

Taking the idea of local observers one step further, it is natural to consider the
space of all possible choices of local observer—observer space. In general relativity,
this is the direct product of spacetime with the local velocity space H3 of normalised
future-directed timelike vectors, but we consider it as a seven-dimensional manifold
in its own right and study its geometry, both in general relativity and in more gen-
eral settings. This is the viewpoint adopted in the work [7], where we show how
the Cartan connection A specified by a frame field e and a spin connection ω as in
(10) gives a Cartan geometry on observer space, with model space SO(4, 1)/SO(3),
the space of all observers in de Sitter spacetime. Conversely, we investigate inte-
grability conditions that allow the reconstruction of an invariant spacetime starting
from an observer space Cartan geometry (i.e. a general Cartan geometry modelled
on SO(4, 1)/SO(3)); intuitively, such a reconstruction is possible if the connection
is flat in the ‘velocity’ directions of observer space.

Different approaches to quantum gravity and quantum-gravity phenomenol-
ogy incorporate the idea that spacetime geometry is an observer-dependent (or
‘momentum-dependent’), relative concept. From the perspective of observer space,
such ideas correspond to observer space Cartan connections that are not flat in veloc-
ity directions, so that no invariant spacetime can be reconstructed.

One example is the proposal of relative locality [10] which suggests that ‘space-
time’ and hence the notion of locality are observer-dependent, but there is an invariant
momentum space shared by all observers. In [7] we find that the framework of rela-
tive locality corresponds to an observer space connection that is flat in ‘spacetime’,
not ‘velocity’ directions. For a general observer space geometry, both ‘spacetime’
and ‘velocity space’ are only defined relative to an observer.

It will be interesting to see whether other ideas, such as that of an ‘effective metric’
∗gμν〉k (depending on a momentum scale k) that appears in the asymptotic safety
scenario for quantum gravity [11], can be discussed in the framework of observer
space geometry.
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The Transfer Matrix in Four-Dimensional
Causal Dynamical Triangulations

Andrzej Görlich

Abstract Causal Dynamical Triangulations (CDT) is a background independent
approach to quantum gravity. In this paper we introduce a phenomenological transfer
matrix model, where at each time step a reduced set of quantum states is used.
The states are solely characterized by the discretized spatial volume. Using Monte
Carlo simulations we determine the effective transfer matrix elements and extract
the effective action for the scale factor. In this framework no degrees of freedom are
frozen, however, the obtained action agrees with the minisuperspace model.

1 Introduction

The model of Causal Dynamical Triangulations (CDT) was proposed some years
ago by Ambjørn et al. with the aim of defining a lattice formulation of quantum
gravity from first principles [1, 2]. The foundation of this model is the formalism
of path-integrals applied to quantize a theory of gravitation. The quantum gravity
path integral is regularized by discretizing the spacetime geometry g with piecewise
linear manifoldT . The building blocks of four dimensional CDT are four-simplices,
which properly glued along their faces form a simplicial manifold.

An important assumption of CDT is the causality condition. As a consequence
of the original Lorentzian signature of spacetime, only causal geometries should
contribute to the integral. We will consider globally hyperbolic pseudo-Riemannian
manifolds which allow introducing a global proper-time foliation. The leaves of
the foliation are spatial three-dimensional Cauchy surfaces called slices. Because
topology changes of the spatial slices are often associated with causality violation, we
forbid the topology of the leaves to alter in time. For simplicity, we chose the spatial
slices to have a fixed topology of a three-sphere, and establish periodic boundary
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conditions in the time direction. Therefore, the spacetime topology is M = S1 × S3.
Spatial slices of a triangulation are enumerated by a discrete time coordinate t .
Such time coordinate is assigned to each vertex of the triangulation, bringing on a
distinction between space-like links of length as and time-like links of length at .
Because each simplex contains vertices lying in two consecutive spatial slices, there
are two kinds of simplices: first of a type {4, 1} with four vertices lying in one spatial
slice and one in the neighboring slice, and second of a type {3, 2} with three vertices
lying in one spatial slice and two in the adjacent slice. The Wick rotation is performed
by the analytic continuation to imaginary lengths of the time-like links at √ iat . The
regularized partition function Z is now written as a sum over causal triangulationsT ,

Z =
∫

D[g]ei SE H [g] √
∑
T

e−S[T ]. (1)

The Einstein-Hilbert action SE H [g] = 1
16ΛG

∫
dt

∫
d3x

→−g(R −2φ) evaluated on
a simplicial manifold T composed of N4 simplices, among them N41 being of type
{4, 1}, and N0 vertices, gives the discrete Regge action,

S[T ] = −K0 N0 + K4 N4 + κ (N41 − 6N0), (2)

where K0, K4 and κ are bare coupling constants, and naively they are functions of
G, ν and at , as .

We applied Monte Carlo techniques, and using the Regge action (2), measured
expectation values of observables within the CDT framework. The simplest observ-
able is the scale factor a(t), or more conveniently the three-volume nt defined as the
number of tetrahedra building slice t .

For a certain range of the coupling constants, a typical configuration is bell-
shaped, with the average volume profile ∓nt ∼ ≤ cos3(t/B). The emerged background
geometry behaves like a well defined four-dimensional manifold and is perfectly
consistent with an Euclidean de Sitter universe, the classical vacuum solution of a
spatially homogeneous and isotropic minisuperspace model [3]. In earlier work we
have shown [4] that the discretized minisuperspace action,

S[nt ] = 1

∂

∑
t

(
(nt+1 − nt )

2

nt+1 + nt
+ μn1/3

t − νnt

)
, (3)

describes well not only the measured ∓nt ∼ but also the fluctuations

Ct t ∞ = ∓(nt − ∓nt ∼)(nt ∞ − ∓nt ∞ ∼)∼. (4)

The effective action (3) couples only adjacent slices. Such form suggests that there
exists an effective transfer matrix labeled only by the scale factor.
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2 The Transfer Matrix

The model of Causal Dynamical Triangulations is completely determined by a
transfer matrixM labeled by three-dimensional triangulations ξ . The matrix element
∓ξ1|M |ξ2∼ denotes the transition amplitude in one time step between states corre-
sponding to triangulations ξ1 and ξ2. It is given by the sum over all four-dimensional
triangulations T of a slab, with boundary triangulations ξ1 and ξ2,

∓ξ1|M |ξ2∼ =
∑

T |ξ1,ξ2

e−S[T ].

The transfer matrix M depends both on the entropy factor, which counts the number
of triangulations T connecting the boundaries in one time step, and the Regge action
S[T ]. The partition function (1) corresponding to T time steps is then expressed in
terms of the matrix M ,

Z =
∑
T

e−S[T ] = TrM T . (5)

The probability of finding a configuration with T spatial slices given by three-
dimensional triangulations ξ1, ξ2, . . . , ξT is

P(T )(ξ1, . . . , ξT ) = 1

Z
∓ξ1|M |ξ2∼∓ξ2|M |ξ3∼ . . . ∓ξT |M |ξ1∼. (6)

We used partition function (5) in Monte Carlo simulations. The measurements
performed so far, have been concentrated on the measurement of the three-volume
nt . The probability P(T )(n1, . . . , nT ) of finding a configuration with spatial volumes
n1, n2, . . . , nT is given by a proper sum of partial probabilities (6). Let T3(n) denote
the subset of three-dimensional triangulations which are built of exactly n three-
simplices. We use the projection operator π(n) ∗ |n∼∓n| on the subspace spanned
by T3(n),

π(n) ∗ |n∼∓n| ∗
∑

ξ∈T3(n)

|ξ ∼∓ξ |. (7)

to express the probability P(T )(n1, . . . , nT ),

P(T )(n1, . . . , nT ) = 1

Z
Tr [|n1∼∓n1|M |n2∼∓n2|M |n3∼ . . . ∓nT |M ] . (8)

In (8) it is misleading to think of the aggregated “state” |n∼ as a normalized sum of the
vectors |ξ ∼, ξ ∈ T3(n). Such a vector would again be a single vector located in the
space spanned by the |ξ ∼’s. It is more appropriate to interpret the “state” associated
with n as arising from a classical uniform probability distribution of states |ξ ∼ and
in this way to treat π(n) as the associated density operator.
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As mentioned in the Introduction, the form of the effective action (3) obtained
from the covariance matrix (4) suggests that there exists an effective transfer matrix
∓n|M |m∼ whose elements are labeled by the three-volumes and that it is possible to
effectively decompose observed distributions P(T )(n1, . . . , nT ) into a product

P(T )(n1, . . . , nT ) = 1

Z
∓n1|M |n2∼∓n2|M |n3∼ · · · ∓nT |M |n1∼. (9)

The effective transfer matrix M depends only on the coupling constants K0, κ and
K4 but not on the number of slices T . In analogy to (6), the elements of the effective
transfer matrix correspond to transition amplitudes in one time step between states
of a given three-volume.

3 Measurements

In the following, we will assume that we can work with an effective transfer matrix
∓n|M |m∼ and will show that equation (9) provides a very good approximation of
measured data [5].

For simplicity, let us define the two-point function,

P(T )(nt , nt+κt ) = 1

Z
∓nt |Mκt |nt+κt ∼∓nt+κt |MT −κt nt ∼ (10)

by summing (9) over all three-volumes except for times t and t + κt . The simplest
way to measure the matrix elements ∓n|M |m∼, up to a normalization, is to consider
T = 2,

∓n|M |m∼ ≤
√

P(2)(n1 = n, n2 = m).

The effective transfer matrix elements can be measured in various ways. In par-
ticular, as follows from (10) for T = 3, 4, we have

∓n|M |m∼ ≤ P(3)(n1 = n, n2 = m)√
P(4)(n1 = n, n3 = m)

. (11)

We tested, that the elements ∓n|M |m∼ measured in different ways completely agreed
up to numerical noise, supporting validity of equation (9). For technical reasons, most
measurements were performed using expression (11).

The coupling constant K4 in (2) plays a role of a cosmological constant. To
correctly perform simulations, we have to approach with K4 very close to its critical
value K crit

4 . To efficiently probe the desired range of the three-volume, we added to
the Regge action (2) a quadratic term to fix nt around nvol ,
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S √ S + τ
∑

t

(nt − nvol)
2.

Because it is consistent with the decomposition (9), its effect can be easily can-
celed. For technical reasons, we measured the transfer matrix M separately for a few
overlapping ranges of the three-volume.

4 The Effective Action

The effective action obtained from the covariance matrix (4) is directly related to the
effective transfer matrix M . The minisuperspace action (3) suggests that the effective
transfer matrix given by

∓n|M |m∼ = N e
− 1

∂

[
(n−m)2

n+m +μ( n+m
2 )

1/3−ν n+m
2

]
(12)

is a good approximation in the bulk where nt is large.1 Further, we will measure the
empirical transfer matrix elements ∓n|M |m∼, extract the parameters ∂ , μ and ν, and
check that (12) is indeed a good approximation of the data. The measured effective
transfer matrix M , for range 1200 < nt < 1600, is presented in Fig. 1 (left graph).
The right graph shows the difference between the measured matrix M and the best
fit (12). Indeed, the difference disappears in the numerical noise proving that the
approximation (12) is very good.

The measurements presented in this paper were performed for coupling constants
K0 = 2.2, κ = 0.6 and K4 = 0.922.

4.1 The Kinetic Term

To get a better estimation of the parameters associated with the effective action (3)
and (12), we first try to fit only the parameters of the kinetic term which is the
dominating term from a numerical point of view. We do that by keeping the sum of
the entries, i.e. n + m, fixed such that the potential term is not changing. In this way
we determine ∂ with high accuracy. The matrix elements for constant n + m = c
show the expected Gaussian dependence on n (see Fig. 2),

∓n|M |m∼ = ∓n|M |c − n∼ = N (c) exp

[
− (2n − c)2

∂ · c

]
, (13)

1 We slightly modified the form of the potential term. Such parametrization is more convenient to
extract the parameters of the action.
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Fig. 1 Left The empirical transfer matrix for range 1200 < nt < 1600. Right The difference
between the empirical and theoretical matrices disappears in the numerical noise
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Fig. 2 ∓n|M |c −n∼ plotted as a function of n for various values of c (dots). Gaussian fits are drawn
with a line

where the terms in the effective action which only depend on c are included in the
normalization.

We expect the denominator of the kinetic term k(c) to behave like k(n + m) =
∂ · (n + m). As shown in Fig. 3 this is indeed true and the parameter ∂ is constant
in the whole range of the three-volumes. The best linear fit gives ∂ = 26.07 ± 0.05.
This result is consistent with the values obtained from the fits for separate ranges
of nt .
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Fig. 3 The coefficient k(c) in the kinetic term as a function of c = n + m, (different colors denote
different ranges) and a linear fit k(n + m) = ∂ · (n + m) (red line)

4.2 The Potential Term

The potential part of the effective Lagrangian Lef f may be extracted from the diag-
onal elements of the transfer matrix,

Lef f (n, n) = − log∓n|M |n∼ + const = 1

∂

(
μn1/3 − νn

)
. (14)

For technical reasons, we measured the transfer matrix M separately for a few
different ranges of the three-volume. Because, the normalization is not uniquely
defined, in order to merge the effective Lagrangian, the constant in (14) has to be
properly adjusted. The measured merged effective Lagrangian is shown in Fig. 4. The
colors denote different ranges for which the transfer matrix was measured. Figure 4
presents also the fit of form (14). In the bulk region, where nt is large enough, the
theoretical expectation (14) fits very well. The measured values are μ = 16.5 ± 0.2
and ν = 0.049 ± 0.001, where we took ∂ = 26.07. Again, this result is consistent
with the values obtained from the fits for separate ranges of nt .

5 Conclusions

The model of Causal Dynamical Triangulations comes with a transfer matrix
∓ξ1|M |ξ2∼. The measured distributions of the three-volumes nt , e.g. P(T )(nt , nt+κt ),
have an exact definition in terms of the full transfer matrix M and the density matrix
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Fig. 4 log∓n|M |n∼ of the scaled transfer matrix (dots, different colors denote different ranges)
compared with the fit of the potential term −Lef f (red line, which stops at n = 400)

|n∼∓n|. The actual data coming from Monte Carlo simulations seem to allow for
a much simpler description in terms of an effective transfer matrix M , labeled by
abstract vectors |n∼ referring only to the three-volume. The effective transfer matrix
M allows to directly measure the effective action S[nt ]. An important advantage of
the present method, since the number of slices T is small, is a much faster mea-
surement of the transfer matrix compared to the covariance matrix, which was used
previously to extract the effective action. Basically over the whole range of nt the
effective transfer matrix elements can be represented as

∓n|M |m∼ = N e
− 1

∂

[
(n−m)2

n+m +μ( n+m
2 )

1/3−ν n+m
2

]
,

with high accuracy. This result is fully consistent with the reduced minisuperspace
action (3), although in CDT we do not freeze any degrees of freedom.

An issue not addressed in this article, is the problem of small three-volumes. For
small nt we do not observe a Gaussian distribution of the three-volume nt around the
mean value ∓nt ∼. Because of strong discretization effects, the probability distribu-
tions, and consequently the effective transfer matrix elements, split into three families
[6]. Despite different nature, after the smoothing procedure, the effective action for
small volumes is basically the same as for large volumes, with a small modification in
the potential [5]. It might be interpreted as possible curvature corrections, however,
we are not able to measure it accurately in a discretization independent way.
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Plane Gravitational Waves and Flat Space
in Loop Quantum Gravity

Franz Hinterleitner and Seth Major

Abstract Classically a system of arbitrary plane gravitational waves propagating
in the same or opposite directions can be restricted by first-class constraints to
unidirectional waves, which travel without dispersion on a flat background. The
unidirectionality constraints are formulated as well-defined Loop Quantum Gravity
operators, together with criteria for an anomaly-free implantation, which is crucial
for the occurrence or non-occurrence of dispersion, and more generally, of local
Lorentz invariance violations due to (loop) quantum effects. By a set of further first-
class constraints of the same kind we construct a quantum model of a no-wave state,
i.e. of empty space.

1 Introduction

The motivation behind this contribution is the search for quantum effects of gravity
in the form of dispersion of pure, unidirectional gravitational waves. The existence
or non-existence of gravitational wave dispersion, derived for a solvable system from
first loop quantum gravity (LQG) principles is an important criterion in the issue of
Lorentz invariance at the Planck scale in quantum gravity.

Our approach consists in a symmetry reduction to 1+1 dimensions on the
classical level, taken over from [1, 2], vacuum solutions in this model represent
plane gravitational waves moving back and forth in one direction. Further reduction
to unidirectional waves is achieved by a set of first-class constraints, derived from
the Killing equations that describe the special symmetry of space-time with unidi-
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rectional waves [3]. These constraints are to be imposed on the quantum states of
one-dimensional, but possibly colliding and interacting waves, and the question is
whether or not these constraints can single out waves propagating uniformly at the
speed of light.

As a by-product, by imposing one more set of Killing constraints, one can model
flat space. A successful quantum solution will show how LQG can predict gravita-
tional fluctuations of Minkowski geometry.

2 Classical Polarized Two-Way Waves in Ashtekar Variables

We are considering plane gravitational waves propagating in the positive and negative
z direction, the system is homogeneous in the x and the y directions, all metric
components depend only on z and t .

2.1 Variables

The metric is formulated in terms of adapted densitized triad variables with the
nonzero components

E = Ez
3 (1)

along the inhomogeneous direction, orthogonal to the components in the (x, y) plane

E x
1 = E x cos Λ, E x

2 = E x sin Λ,

E y
1 = −E y sin Λ, E y

2 = E y cos Λ.
(2)

The mutual orthogonality of these two triad vectors means that we are dealing with
polarized waves. In terms of these variables the spatial metric reads

dφ 2 = E
E y

E x
dx2 + E

E x

E y
dy2 + E x E y

E
dz2. (3)

The canonically conjugate variables are the connection components A , Kx , Ky ,
and P with the equal-time Poisson brackets

{Ka(z), Eb(z√)} = κ νb
a ν(z − z√), a, b = x, y,

{A (z),E (z√)} = {P(z), Λ(z√)} = κ ν(z − z√). (4)

κ is the gravitational constant. The symmetry-reduced model has four phase-space
degrees of freedom.
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2.2 The Constraints

The standard constraints of canonical general relativity, adapted to the above model,
are the Gauß constraint

G = 1

κ∂
(E √ + P), (5)

which generates rotations in the (x, y) plane, the diffeomorphism constraint

C = 1

κ

[
K √

x E x + K √
y E y − E √A + Λ√

∂
P

]
, (6)

and the Hamiltonian constraint

H = − 1

κ
→
E E x E y

[
E x Kx E y Ky + (E x Kx + E y Ky)E

(
A + Λ√

∂

)
− 1

4
E √2

(7)

−E E √√ − 1

4
E 2

[(
ln

E y

E x

)√]2
]

− κ

4
→
E E x E y

G2 − ∂

(√
E

E x E y
G

)√
.

A prime denotes the derivative with respect to z, ∂ is the Barbero-Immirzi parameter.
H is partially expressed by the Gauß constraint G. These first-class constraints reduce
the number of degrees of freedom to one, the correct number for polarized plane
waves.

3 Reduction to Unidirectional Waves

Unidirectional waves are characterized by the existence of a null Killing vector field
in the direction of propagation. This corresponds to a dependence of the metric
functions either on t − z or on t + z. To formulate such fields, we add an orthogonal
timelike direction and construct a space-time metric with lapse function N (t, z).

On a manifold with this metric we assume a null Killing vector field kμ with
∓(μkξ) = 0. Two of the Killing equations give rise to nontrivial conditions on the
phase space variables, for propagation in the positive z direction they are

Ux := E x Kx − 1

2
E √ − 1

2
E

(
E y √

E y
− E x √

E x

)
= 0, (8)

Uy := E y Ky − 1

2
E √ + 1

2
E

(
E y √

E y
− E x √

E x

)
= 0. (9)
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In addition to the standard constraints there can be at most one more first-class
constraint which, of course, cannot be a gauge generator, because an associated gauge
condition would reduce the number of degrees of freedom to zero.

To extract from Ux and Uy a relation that can be added as a set of first-class
constraints to the standard constraints, we take the linear combinations

U+ := Ux + Uy and U− := Ux − Uy, (10)

explicitly

U+ = E x Kx + E y Ky − E √, (11)

U− = E x Kx − E y Ky − E

(
ln

E y

E x

)√
. (12)

The Poisson brackets of these expressions, smeared out by test functions,

Ua[ f ] :=
∫

dz f (z)Ua(z), (13)

are
{U+[ f ], U+[g]} = {U+[ f ], U−[g]} = 0 (14)

and

{U−[ f ], U−[g]} = 2
∫

dz( f √g − f g√)E . (15)

The function U+ weakly Poisson-commutes also with G, C , and H :

{U+[ f ], G[g]} = 0, {U+[ f ], C[g]} = − 1

κ
U+[ f √g] ∼ 0, (16)

{U+[ f ], H [g]} = 1

κ
U+

[√
E

E x E y
f √g

]
− H [ f g] ∼ 0. (17)

This qualifies U+(z) as a set of first-class constraints that have to be added to G, C ,
and H , when we want to restrict counter-current waves to unidirectional ones at the
classical level.

Not being a gauge generator, but a restriction of the number of the physical degrees
of freedom, the new constraint reduces their number to one half, i.e. to one phase
space function. This corresponds to the original formulation [4], which contains two
functions, the so-called “wave factor” and the “background factor”, connected by
one non-trivial Einstein equation.
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4 Preparation for Quantization

After the formulation of unidirectional waves as a classical system with first-class
constraints we start the Dirac quantization programme, which distinguishes physical
states as those that are annihilated by the constraint operators.

This gives rise to two kinds of problems: The formulation of the constraints as
well-defined operators on a suitable Hilbert space of unconstrained states, and the
problem of non-trivial structure functions in the constraint algebra. For the standard
constraints these problems are solved in general LQG [5], for U+ they will be dealt
with in the following.

Both parts of U+, E x Kx + E y Ky as well as E √ are scalar densities, which can be
naturally integrated along z in order to construct an operator. The integral over some
interval I is

U+[I ] =
∫
I

dz (E x Kx + E y Ky) − E+ + E−, (18)

whereE± are the values at the endpoints ofI .E has a meaningful operator equivalent
in the adapted LQG framework [2]. In analogy to full LQG the integral can be
obtained as the Poisson bracket

∫
I

dz(E x Kx + E y Ky) = 2

{∫
I

dz
E x Kx E y Ky→

E E x E y
,

∫
I

dz√ →E E x E y

}
. (19)

The first expression is part of the kinetic Hamiltonian constraint, denoted by H1 in
the following, the second part is the volume of a slice of space, constructed from a
fiducial area in the (x, y) plane and the interval I in the z direction. Both have an
operator interpretation on one-dimensional spin network functions [2].

According to its factor-ordering, the operator formulation of the structure function
in (17) raises potentially an anomaly problem. When the factor ordering is chosen
analogous to that of the Hamilton constraint operator—connection components to
the left of triad components (see [5]1), then the operator constructed from

U+
√

E

E x E y
= (Kx E x + Ky E y − E √)E→

E E x E y
(20)

does not obviously annihilate solutions of the gauge constraints and U+ and its action
on them must be examined.

As in the case of U+, the first step is a consistent operator formulation: The
first part of (20) can be written as a Poisson bracket of the second part H2 of the
Hamiltonian constraint (7) with test function 1 and E (z),

− 1

κ

(
Kx E x + Ky E y

→
E E x E y

E

)
= {H2[1],E (z)}, (21)

1 A different factor ordering is presented in [6].
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so we can write

U+
√

E

E x E y
= κ{E (z), H2[1]} − E E √

→
E E x E y

. (22)

Both expressions have operator equivalents, the second term is part of H .

5 Quantum States and the Action of Operators

In LQG a suitable basis of kinematical quantum states is provided by spin network
functions, based on three-dimensional graphs. In the present case we have one-
dimensional graphs with U (1)-holonomies h(k)

e (A ) = exp
(
i k

2

∫
e A

)
, k ≤ Z asso-

ciated to its edges. Holonomies along curves in the (x, y) plane are shrunk to “point
holonomies” at the vertices v: h(μ)

v (X) = exp
(
i μ

2 X (v)
)
, h(π)

v (Y ) = exp
(
i π

2 Y (v)
)
,

and h(τ)
v (Λ) = exp(iτΛ(v)). X = ∂ Kx , Y = ∂ Ky . Λ is an angular variable, its

holonomy has values in U (1), μ, π ≤ R, their holonomies lie in the Bohr compacti-
fication of the reals, see [5].

Connection components act in the form of holonomy operators, which add one of
the above holonomies to a given state. States, denoted by |s∞, depend on the graph
G and the labels k, μ, π, and τ. Triad components and the conjugate variable to Λ

act as flux operators in the following way

Ê (z) |s∞ = ∂ σ2
P

2

k+(z) + k−(z)

2
|s∞,

∫
I

P̂ |s∞ = ∂ σ2
P

∑
v

τv |s∞
∫
I

Ê x |s∞ = ∂ σ2
P

2

∑
v

μv |s∞,
∫
I

Ê y |s∞ = ∂ σ2
P

2

∑
v

ξv |s∞. (23)

E is a scalar quantity, the other ones are scalar densities and have to be integrated
over an interval I to give raise to an operator, k±(z) are the representation labels
of the edge holonomies left and right to z, σP is the Planck length, the sum is taken
over all vertices of G in the interval I .

The Gauß constraint relates the labels k and τ,

τv = −(k+(v) − k−(v))/2, (24)

so gauge-invariant states are of the form

|s∞ =
∏

e

exp

[
ike

2

∫
e
(A (z) − Λ√(z))

] ∏
v

(
exp

[
iμv

2
X (v)

]
exp

[
iπv

2
Y (π)

])
.
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In this formula
∫

e Λ√ = Λ+(e) − Λ−(e) was used, where Λ± are the values of Λ at the
endpoints of the edge e.

6 Flat Space

In the case of unidirectional plane waves a null Killing vector field prevents waves
in the opposite direction. A second null Killing field in the opposite direction char-
acterizes a no-wave state, namely Minkowski space. The corresponding constraint
is

Ū+ = Kx E x + Ky E y + E √ = 0. (25)

Classically this one additional first-class constraint reduces the number of degrees
of freedom to zero, i.e. to one state. From U+ and Ū+ together follow the constraints

E √ = 0 and Kx E x + Ky E y = 0. (26)

The operator version of the latter expression is given by (19), the former one is just
the derivative of a flux operator.

In the following we consider these constraints separately, which is easier than in
the combination U+. To qualify as a model for flat space, a solution to them must
also be a solution to the Hamiltonian constraint and to the Poisson brackets with the
Hamiltonian constraint.

{E √[ f ], H [g]} =
∫

dz f √(z)g(z)

(
(Kx E x + Ky E y)E

κ
→
E E x E y

)
(z), (27)

{(Kx E x + Ky E y)[ f ], H [g]} = H [ f g]. (28)

From (27) a quantum anomaly may arise. An operator version is already given in
(21).

The first one of the constraints (26) is solved by states with the same label k for
all edges.

The second one is formulated by replacing the right-hand side of (19) by the
commutator of Ĥ1 with the volume operator. The action of Ĥ1 on a state |s∞ of the
form (5) with k+ = k− = k is given by

Ĥ1|s∞ = σP∂ − 3
2

2μ0π0

∑
v

√|μv||πv|
(√|2k + 1| − √|2k − 1|

)

× sin(μ0 X) sin(π0Y )|s∞, (29)

where μ0 and π0 are arbitrarily chosen, fixed values. The action of the volume
operator is



522 F. Hinterleitner and S. Major

V̂ |s∞ = ∂
3
3 σ3

Pl

2

∑
v

(|μv||πv||k|) 1
2 . (30)

Now assume the state function at a certain vertex to be given by the superposition

|s∞v =
∑
m,n

amn|k, m, n∞, (31)

where m = μv

μ0
and n = πv

π0
. The action of the commutator [V̂ , Ĥ1] on such a function

set equal to zero yields the following difference equation for the coefficients amn ,

√|m − 2||n − 2|
(√|m||n| − √|m − 2||n − 2|

)
am−2,n−2−

√|m + 2||n − 2|
(√|m||n| − √|m + 2||n − 2|

)
am+2,n−2− (32)

√|m − 2||n + 2|
(√|m||n| − √|m − 2||n + 2|

)
am−2,n+2+

√|m + 2||n + 2|
(√|m||n| − √|m + 2||n + 2|

)
am+2,n+2 = 0,

where the k-dependence has dropped out.
The equation resulting from the structure function (27) contains H2, whose oper-

ator version is more ambiguous, compare [1] and [2]. Anyway, after deciding for one
version, the action of the structure function operator on solutions of (26) may already
lead to an ambiguity, before the Hamiltonian constraint has to be solved. This would
indicate gravitational fluctuations of the Minkowski vacuum. Work is ongoing.
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Unruh-DeWitt Detector on the BTZ
Black Hole

Lee Hodgkinson and Jorma Louko

Abstract We examine an Unruh-DeWitt particle detector coupled to a scalar field in
three-dimensional curved spacetime, within first-order perturbation theory. We first
obtain a causal and manifestly regular expression for the instantaneous transition rate
in an arbitrary Hadamard state. We then specialise to the Bañados-Teitelboim-Zanelli
black hole and to a massless conformally coupled field in the Hartle-Hawking vac-
uum. A co-rotating detector responds thermally in the expected local Hawking tem-
perature, while a freely-falling detector shows no evidence of thermality in regimes
that we are able to probe, not even far from the horizon. The boundary condition at
the asymptotically anti-de Sitter infinity has a significant effect on the transition rate.

1 Introduction

Whenever non-inertial observers or curved backgrounds are present in quantum field
theory, the notions of vacuum state and particle number become non-unique. For this
reason it proves convenient to define particles operationally; that is to say, we couple
the field to a simple quantum mechanical system that we think of as our detector
and define particles via the field’s interaction with the energy levels of this system.
Upwards (respectively downwards) transitions can be interpreted as due to absorption
(emission) of field quanta, or particles. This is the Unruh-DeWitt model for a particle
detector [1, 2].
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In this contribution we address a pointlike Unruh-DeWitt detector coupled to a
scalar field in three-dimensional spacetime, within first-order perturbation theory.
We first find the detector’s instantaneous transition rate in an arbitrary Hadamard
state. We then specialise to a massless conformally coupled field on the Bañdados-
Teitelboim-Zanelli (BTZ) black hole, in the Hartle-Hawking vacuum, analysing the
thermal response seen by a co-rotating detector and the time evolution of the response
of a freely-falling detector. A longer exposition of the results can be found in [3].

2 Transition Rate in (2 + 1) Dimensions

With the Unruh-DeWitt detector, the fundamental quantity of interest is the proba-
bility of a transition between the energy eigenstates. In the framework of first order
perturbation theory the probability for a transition of energy E is proportional to the
response function,

F (E) = 2 lim
Λ√0+

→
∫ ∓

−∓
du φ(u)

∫ ∓

0
ds φ(u − s) e−i Es WΛ(u, u − s) , (1)

where φ is a smooth switching function that turns on (off) the detector’s interaction
with the field and WΛ(u, u−s) is a one-parameter family of functions that converge to
the pull-back of the Wightman distribution to the detector’s wordline [4–7]. A related
quantity of interest is the transition rate, which can be defined as the derivative of the
transition probability with respect to the total detection time. One must take great
care when obtaining the transition rate from the response function [8–11]. We will
adopt the approach developed in [7, 12, 13] of taking a controlled sharp switching
limit.

In three-dimensional spacetime, the Wightman distribution W (x, x∼) of a real
scalar field in a Hadamard state can be represented by the Λ √ 0+ limit of a family
of functions with the short distance form [14]

WΛ(x, x∼) = 1

4κ

[
U (x, x∼)≤
νΛ(x, x∼)

+ H(x, x∼)≤
2

]
, (2)

where Λ is a positive parameter, ν(x, x∼) is the squared geodesic distance between
x and x∼, νΛ(x, x∼) := ν(x, x∼) + 2iΛ

[
T (x) − T (x∼)

] + Λ2 and T is any globally-
defined future-increasing C∓ function. The branch of the square root is such that
the Λ √ 0+ limit of the square root is positive when ν(x, x∼) > 0 [6, 14]. Here
U (x, x∼) and H(x, x∼) are symmetric biscalars which have expansions governed by
certain recursion relations [14], and they are regular in the coincidence limit.

Given (2), the detector’s instantaneous transition rate can be shown to take the
form [3]
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Ḟ∂ (E) = 1

4
+ 2

∫ ∂−∂0

0
ds→

[
e−i Es W0(∂, ∂ − s)

⎪
, (3)

where ∂0 is the proper time at which the detector was switched on, ∂ is the proper
time at which the instantaneous transition rate is read off, and the function W0 is the
pointwise Λ √ 0+ limit of WΛ. We are assuming that any singularities that W (x, x∼)
may have at ν(x, x∼) ∞= 0, not captured by the asymptotic expansion (2), are so mild
that taking the pointwise limit is valid. Such singularities will in particular occur in
the BTZ spacetime below.

3 Detector in the BTZ Spacetime

We now specialise to a detector in the BTZ black hole spacetime [15–17]. This
spacetime can be obtained by periodically identifying AdS3, and in coordinates
adapted to the global isometries the metric takes the form

ds2 = −(N∗)2dt2 + f −2dr2 + r2 (
dξ + Nξdt

)2
, (4)

where N∗ = f =
(
−M + r2

π2 + J 2

4r2

)1/2
, Nξ = − J

2r2 , π is a positive parameter

that sets the AdS3 curvature scale, ξ has period 2κ , and a non-extremal black hole
is obtained when the mass parameter M and the angular momentum parameter J
satisfy |J | < Mπ. The spacetime has many similarities with the Kerr black hole,
but its null infinities are asymptotically AdS, as opposed to asymptotically flat. The
conformal diagram of the J = 0 case is shown in Fig. 1. The importance of this
asymptotic structure for us is that the spacetime is not globally hyperbolic, and to
build a sensible quantum field theory one must impose boundary conditions at the
infinity. We shall see that the detector response turns out to be highly sensitive to
these boundary conditions.

We consider a massless, conformally coupled field. We first introduce on the
covering space AdS3 the three AdS-invariant states whose Wightman functions are
given by [17]

G(τ )
A (x, x∼) = 1

4κ

⎜
 1√

σX2(x, x∼)
− τ√

σX2(x, x∼) + 4π2

⎡
⎣ , (5)

where σX2(x, x∼) is the squared geodesic distance between x and x∼ in the flatR2,2 in
which AdS3 can be embedded as a submanifold, the parameter τ ∈ {0, 1,−1} spec-
ifies whether the boundary condition at infinity is respectively transparent, Dirichlet
or Neumann, and we have suppressed the iΛ that controls the short distance form (2).
The Wightman function in the induced state on the BTZ spacetime is then given by
the image sum [17]
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Fig. 1 Conformal diagram
for the J = 0 BTZ black hole.
The Killing horizon of the
Killing vector δt is at r = r+,
where r+ = ≤

M π

GBTZ(x, x∼) = ⎧
n G A(x,Ωnx∼) , (6)

where Ωx∼ denotes the action on x∼ of the isometry (t, r, ξ) ⊂√ (t, r, ξ + 2κ), and
the notation suppresses the distinction between points on AdS3 and points on the
quotient spacetime. The scalar field is assumed untwisted so that no additional phase
factors appear in (6).

The detector’s transition rate is obtained by substituting (6) into (3). In Sects. 4
and 5 we discuss the transition rate for selected detector trajectories.

4 Co-Rotating Detector in BTZ

As the first example we consider a detector that is in the exterior region of the
BTZ black hole, at constant value of r and co-rotating with the horizon angular
velocity ΣH . In the special case J = 0, we have ΣH = 0 and the detector is static.
Unlike in Kerr, these detector trajectories exist at arbitrarily large values of r : this is
a consequence of the AdS asymptotics.

As the detector is stationary, we take the switch-on to be in the asymptotic past.
The Wightman function turns out to contain singularities between timelike-separated
points on the detector’s trajectory, but the consequent singularities in the transition
rate formula (3) are integrable and the transition rate remains well defined. Further,
contour manipulations allow the transition rate to be cast in a manifestly nonsin-
gular form that is amenable to analytic techniques, including asymptotic analyses
in a number of asymptotic regimes, as well as to numerical evaluation. We can in
particular verify analytically that the transition rate satisfies

Ḟ (E) = e−E/TlocḞ (−E), (7)

where Tloc is the co-rotating Hawking temperature at the detector’s location [17]. (As
the transition rate is stationary, we have dropped the subscript ∂ .) The transition rate
is hence thermal in the local Hawking temperature in the sense of the Kubo-Martin-
Schwinger (KMS) property [18, 19], as expected from the general properties of the
Hartle-Hawking vacuum [20, 21].
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ζ = 0 ζ = − 1 ζ = 1

Fig. 2 Ḟ for a co-rotating detector, as a function of the detector’s energy gap E divided by the
local Hawking temperature T , for a large non-spinning hole, with the detector near the hole (solid)
and far from hole (dotted). Note the significant differences between the three boundary conditions

The boundary condition at the infinity is found to have a significant effect on the
quantitative properties of the transition rate. The special case of a spinless black hole,
with a detector at large and small distances from the hole, is illustrated in Fig. 2.

5 Inertial Detector in BTZ Spacetime

As the second example we consider a detector on a geodesic that falls radially into the
spinless black hole. This trajectory is not stationary and the transition rate depends on
both the switch-on moment and the switch-off moment. Furthermore the switch-on
moment cannot be pushed to the infinite past because the trajectory starts at the white
hole singularity at a finite proper time.

We have found no parameter ranges where the transition rate would be thermal
in the sense of the KMS property (7). One situation where approximate thermality
might have been expected is near the turning point of a trajectory far from the horizon.
However, in this case the transition rate just reduces to that of a geodesic detector in
AdS3, which can be verified not to satisfy the KMS property. These observations are
compatible with embedding space arguments which suggest that a detector in AdS3
should respond thermally only when its proper acceleration exceeds 1/π [22–25].

We were however able to analyse the transition rate by a combination of asymptotic
methods and numerical methods. Figure 3 shows a plot of the transition rate when
the black hole is large and the switch-on and switch-off moments are not close to the
white hole and black hole singularities, with the transparent boundary condition at
the infinity.
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Fig. 3 The transition rate of a detector on a radial geodesic in the spinless BTZ spacetime, assuming
that the mass is large and that the switch-on and switch-off moments are not close to the white hole
and black hole singularities, with the transparent boundary condition at the infinity. The horizontal
axes are the detector’s energy gap E and the total detection time σ∂ := ∂ − ∂0, normalised by the
AdS scale π. Note the dominance of the de-excitation rate (E < 0) over the excitation rate (E > 0)
after the transient switch-on effects have died out

6 Concluding Remarks

That the response of a co-rotating detector in the BTZ spacetime is thermal in the co-
rotating Hawking temperature was to be expected from the general properties of the
Hartle-Hawking vacuum [20, 21]. Our formalism allowed us to analyse this thermal
response quantitatively, by a combination of analytic and numerical techniques. We
found in particular that the response depends strongly on the choice of the boundary
condition at the infinity. We also showed perturbatively that the response loses its
thermal character when the detector’s angular velocity differs from that of the black
hole.

For a detector falling radially into a spinless BTZ hole, we found no parameter
space regions where the transition rate would exhibit thermality. The transition rate
is again affected by the choice of the boundary condition at the infinity, but this effect
appears to be subdominant to those caused by the switching and the motion.

It would be interesting to compare our results for the transition rate in the BTZ
spacetime to that in Schwarzschild spacetime. For example, one may expect an
inertial detector in Schwarzschild to respond to the Hartle-Hawking vacuum approx-
imately thermally in the asymptotically flat region, owing to the asymptotic flatness
of Schwarzschild. We leave these questions subject to future work.
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On the Observability of Quantum-Gravitational
Effects in the Cosmic Microwave Background

Claus Kiefer and Manuel Krämer

Abstract In any approach to quantum gravity, it is crucial to look for observational
effects in order to discriminate between different approaches. Here, we discuss
how quantum-gravitational contributions to the anisotropy spectrum of the cosmic
microwave background arise in the framework of canonical quantum gravity using
the Wheeler–DeWitt equation. From the present non-observation of these contribu-
tions, we find a constraint on the Hubble parameter of inflation.

1 Introduction

One of today’s most significant tasks in theoretical physics is to find the correct
quantum theory of gravity. We have several approaches to such a theory at hand;
however, there has not yet been a definite prediction which is testable with today’s
level of precision by experiment or observation. The reason for this is that quantum
effects of gravity should only become sizable in situations where large curvature and
very high energies approaching the Planck scale are involved. This effectively makes
black hole physics and very early universe cosmology the two main applications for
a theory of quantum gravity.

Here, we want to focus on cosmology, and in particular on the Cosmic Microwave
Background (CMB), which has opened a new era of precision cosmology ever since
its anisotropies have been detected. The power spectrum of these anisotropies has
turned out to be a rich source of information about the very early universe and it is
therefore a very suitable candidate to look for quantum-gravitational effects.
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We have chosen to use quantum geometrodynamics as our framework, a direct
canonical quantization of gravity. It is unlikely that quantum geometrodynamics
turns out to be the ultimate answer to the problem of quantum gravity; however, it
should be able to be used at least as an effective theory, since it leads to Einstein’s
equations in the semiclassical limit, see e.g. [1].

Our aim is to calculate the dominant quantum-gravitational contribution for the
primordial power spectrum of cosmological perturbations, which arises from a semi-
classical approximation to the Wheeler–DeWitt equation of quantum cosmology.

This conference contribution is based on our papers [2] and [3].

2 The Quantum-Cosmological Model

In order to give a first estimate of how sizable quantum gravity effects for the CMB
can be, we choose the simplest model, an inflationary universe with perturbations of
only the scalar field φ, which plays the role of the inflaton. The background universe
is a flat Friedmann–Lemaître universe with a scale factor a √ exp(α). Furthermore,
we assume that the slow-roll approximation holds in the form of φ̇2 → |V (φ)|, where
V (φ) is the inflaton potential, which we choose to be V (φ) = 1

2 m2φ2 ∓ const. for
definiteness.

After setting � = c = 1, redefining the Planck mass as mP = ∼
3π/2G ∓

2.65 × 1019 GeV and rescaling the scalar field φ ≤ φ/
∼

2π , one arrives at the
following Wheeler–DeWitt equation in minisuperspace:

H0Ψ0(α, φ) √ e−3α

2

[
1

m2
P

∂2

∂α2 − ∂2

∂φ2 + e6αm2φ2

]
Ψ0(α, φ) = 0 . (1)

Furthermore, we make the assumption that the kinetic term of the φ-field can be
neglected, as it is small compared to the potential term ∂2Ψ0/∂φ2 → e6αm2φ2Ψ0.
This allows us to substitute mφ by mP H , where H denotes the quasi-static Hubble
parameter during inflation, and our Wheeler–DeWitt equation for the background
becomes

H0Ψ0(α) √ e−3α

2

[
1

m2
P

∂2

∂α2 + e6αm2
P H2

]
Ψ0(α) = 0 . (2)

We include inhomogeneities by adding perturbations to the homogeneous back-
ground inflaton field φ ≤ φ(t)+ δφ(x, t) and decompose them into Fourier modes,
where we assume for simplicity that the space is compact and the spectrum for the
wave vector k, k √ |k|, discrete: δφ(x, t) = ∑

k fk(t) eik·x. Note that we use units
in which k is a dimensionless quantity. For each of the modes we have a Hamiltonian

Hk = 1

2
e−3α

[
− ∂2

∂ f 2
k

+
(

k2e4α + m2e6α
)

f 2
k

]
,
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such that the Wheeler–DeWitt equation that includes the scalar field inhomogeneities
reads [4] [

H0 +
∞∑

k=1

Hk

]
Ψ

⎪
α, { fk}∞

k=1

) = 0 .

Due to the smallness of the fluctuations, one can neglect self-interactions of the
respective modes and therefore make a product ansatz for the full wave func-
tion including the fluctuation modes: Ψ

⎪
α, { fk}∞

k=1

) = Ψ0(α)
∏∞

k=1 Ψ̃k(α, fk). This
ansatz allows us to write out a Wheeler–DeWitt equation for each fluctuation mode
Ψk(α, fk) := Ψ0(α)Ψ̃k(α, fk), which takes the form:

1

2
e−3α

[
1

m2
P

∂2

∂α2 + e6αm2
P H2 − ∂2

∂ f 2
k

+ Wk(α) f 2
k

⎜
Ψk(α, fk) = 0 ,

where we have defined Wk(α) := k2e4α + m2e6α .

3 The Semiclassical Approximation

We are interested in finding quantum-gravitational correction terms to the standard
expressions used to calculate the power spectrum of quantum fluctuations in an
inflationary universe. Hence, it suffices to solve the Wheeler–DeWitt equation (3)
by performing a Born–Oppenheimer type of approximation, as it was presented for
the full Wheeler–DeWitt equation in [5]. The Born–Oppenheimer approximation is
widely used in molecular physics, where one can separate the degrees of freedom
of the molecules into slow ones (the nuclei) and fast ones (the electrons). In our
quantum-cosmological setting, the slow variable is the scale factor, while the fast
ones are the fluctuations fk .

We implement the Born–Oppenheimer approximation by making the ansatz
Ψk(α, fk) = ei S(α, fk ) and expanding S in terms of powers of m2

P: S(α, fk) =
m2

P S0 + m0
P S1 + m−2

P S2 + . . .. Inserting this ansatz into equation (3) and com-
paring terms of equal power of mP, one obtains that at order O(m2

P) S0 obeys the
classical Hamilton–Jacobi equation

[
∂S0

∂α

⎜2

− e6α H2 = 0 , (3)

which describes the classical minisuperspace background on which the quantum fluc-
tuations propagate. At the next orderO(m0

P), we define ψ
(0)
k (α, fk) √ γ (α) ei S1(α, fk )

and impose a condition in order to make γ (α) equal to the standard WKB prefactor.
At this point, we can introduce a time parameter t that arises from the approximate
background defined by the Hamilton–Jacobi equation (3), using the definition
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∂

∂t
:= − e−3α ∂S0

∂α

∂

∂α
. (4)

This limit can be compared with the limit of geometric optics that arises from wave
optics. In that case, light rays result as an approximate concept from the eikonal
equation. In our case, an approximate spacetime emerges, and one has an approximate
time t at one’s disposal.

Consequently, we find that each ψ
(0)
k (α, fk) obeys a Schrödinger equation with

respect to t : i ∂
∂t ψ

(0)
k = Hkψ

(0)
k .

Hence, the order O(m0
P) corresponds to the limit of quantum theory in an external

background. It is at this order where we will obtain the standard results for quantum
fluctuations in an inflationary universe.

But before that, we will take the semiclassical approximation one step fur-
ther, to the order O(m−2

P ), where we use a decomposition of S2(α, fk) as fol-
lows: S2(α, fk) √ ς(α) + η(α, fk). After demanding that ς(α) be the standard
second-order WKB correction, we find that the wave functions ψ

(1)
k (α, fk) :=

ψ
(0)
k (α, fk) ei m−2

P η(α, fk ) obey a quantum-gravitationally corrected Schrödinger equa-
tion of the form

i
∂

∂t
ψ

(1)
k = Hkψ

(1)
k − e3α

2m2
Pψ

(0)
k

[⎪
Hk

)2

V
ψ

(0)
k + i

∂

∂t

(
Hk

V

)
ψ

(0)
k

⎜
ψ

(1)
k , (5)

where V := e6α H2. The first term in this equation gives the dominant contribution,
while the second one corresponds to a small violation of unitarity with respect to
the standard inner L 2-product for the modes fk . Since it is usually negligible with
respect to the first term, we will neglect the unitarity-violation term in the following.

4 Calculation of the Power Spectrum

In order to calculate the power spectrum of the scalar field fluctuations, we have to
solve the uncorrected Schrödinger equation. We express α in terms of t and use the

Gaussian ansatz ψ
(0)
k (t, fk) = N (0)

k (t) e− 1
2 Ω

(0)
k (t) f 2

k .
This leads to the following system of equations:

˙N (0)
k (t) = − i

2
e−3α N (0)

k (t)Ω
(0)
k (t) , (6)

Ω̇
(0)
k (t) = i e−3α

⎡
−⎪

Ω
(0)
k (t)

)2 + Wk(t)
⎣
. (7)

Equation (7) has the following solution
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Ω
(0)
k (t) = k2a2

k2 + H2a2 (k + i Ha) + O

(
m2

H2

)
, (8)

while (6) together with the normalization of the states yields the solution |N (0)
k (t)|2

= (∗eΩ
(0)
k (t)/π)1/2. In order to use equation (7) to calculate the power spectrum,

we use the definition of the density contrast in the slow-roll regime given by

δk(t) ∓ δρk(t)

V0
= φ̇(t) σ̇k(t)

V0
.

Here, V0 represents the scalar-field potential evaluated at the background solution
φ(t), and σk(t) denotes the classical quantity related to the quantum-mechanical
variable fk(t). We implement this relation by taking the expectation value of fk with
respect to a Gaussian state:

σ 2
k (t) :=

⎧
ψk | f 2

k |ψk

⎨
=

⎩∗eΩk

π

∞⎛

−∞
f 2
k e− 1

2

⎝
Ω∗

k (t)+Ωk (t)
⎞

f 2
k d fk = 1

2 ∗eΩk(t)
.

The density contrast is then evaluated at the time tenter, when the corresponding
mode re-enters the Hubble radius during the radiation-dominated phase. By using a
standard relation,

δk(tenter) = 4

3

V0

φ̇2
δk(texit) = 4

3

σ̇k(t)

φ̇(t)

⎠⎠⎠⎠
t = texit

,

we can relate tenter to the time texit, when the mode exits the Hubble radius during
the inflationary phase.

We therefore evaluate σ̇
(0)
k (t) at the Hubble-scale crossing texit. Using ξ(texit) =

2π , we arrive at
⎠⎠σ̇ (0)

k (t)
⎠⎠
t = texit

⊂ H2 k−3/2. Since the power spectrum is defined as

Δ2
(0)(k) := 4πk3 |δk(tenter)|2 ⊂ H4

⎠⎠φ̇(t)
⎠⎠−2
texit

, we immediately see that we obtain a
scale-invariant power spectrum, which is the standard result for the simplest models
of inflation.

5 The Quantum-Gravitationally Corrected Power Spectrum

In order to calculate the quantum-gravitational correction to the power spectrum
we determined above, we have to look for an approximate solution to equation (5),
where we ignore the unitarity-violating term as mentioned. We assume that we can
accommodate the correction by the following modified Gaussian ansatz
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ψ
(1)
k (t, fk) =

⎫
N (0)

k (t) + 1

m2
P

N (1)
k (t)

⎬
exp

[
− 1

2

⎫
Ω

(0)
k (t) + 1

m2
P

Ω
(1)
k (t)

⎬
f 2
k

]
.

Inserting this ansatz into equation (5) leads to the following equation for the correction
term Ω

(1)
k (t):

Ω̇
(1)
k (t) ∓ −2 i e−3α Ω

(0)
k (t)

(
Ω

(1)
k (t) − 3

4V (t)

⎡⎪
Ω

(0)
k (t)

)2 − Wk(t)
⎣)

. (9)

We assume that this correction vanishes for late times, Ω
(1)
k (t) ≤ 0 as t ≤ ∞, and

can then solve equation (9) by the method of variation of constants, which reduces
the problem to a numerical integration.

The relevant quantum-gravitationally corrected quantity for determining the
power spectrum is given by

⎠⎠σ̇ (1)
k (t)

⎠⎠ =
⎠⎠⎠⎠⎠⎠

1∼
2

d

dt

⎭

⎫

∗eΩ
(0)
k (ξ) + 1

m2
P

∗eΩ
(1)
k (ξ)

⎬− 1
2



⎠⎠⎠⎠⎠⎠ (10)

and we can incorporate the quantum-gravitational correction into a correction term
Ck relating the uncorrected quantity σ̇

(0)
k to the corrected one σ̇

(1)
k in the following

way
⎠⎠σ̇ (1)

k

⎠⎠
texit

∃ |Ck |
⎠⎠σ̇ (0)

k

⎠⎠
texit

.
The correction term can then be numerically calculated

Ck :=
⎫

1 − 43.56
1

k3

H2

m2
P

⎬− 3
2
⎫

1 − 189.18
1

k3

H2

m2
P

⎬
, (11)

which allows us to immediately determine the quantum-gravitationally corrected
power spectrum Δ2

(1)(k) = Δ2
(0)(k) C2

k . Performing a Taylor expansion of Ck with

respect to (H/mP)2 leads to

Δ2
(1)(k) ∃ Δ2

(0)(k)

[
1 − 123.83

1

k3

H2

m2
P

+ 1

k6 O

⎫
H4

m4
P

⎬]2

. (12)

We therefore see that the quantum-gravitational correction explicitly breaks the scale
independence of the uncorrected power spectrum and leads to a suppression of
power at large scales (small k). However, our approximation breaks down when
the zero point is approached and one would have to take into account higher orders
of (H/mP)2 to suitably describe this limit.

From equation (12), one also sees that the quantum-gravitational effect only
becomes significant if the inflationary Hubble parameter H approaches the Planck
scale. From the observational bound of the scalar-to-tensor ratio we can deduce an
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Fig. 1 The function Ck for H = 1014 GeV, from [3]

upper bound on H , H � 10−5mP ∩ 1014 GeV. Figure 1 shows the correction term
Ck for this value of H . The corrected power spectrum in this limiting case takes the
following form:

Δ2
(1)(k) ∃ Δ2

(0)(k)

[
1 − 1.76 × 10−9 1

k3 + 1

k6 O
(

10−15
)⎜2

.

We thus see that even in this limiting case the quantum-gravitational effect is
extremely small and if one adds that at large scales measurement accuracy is funda-
mentally limited by cosmic variance, we have to conclude that one will not be able to
see this effect even with future, more precise measurements of the CMB anisotropies
by satellite missions like PLANCK. A more elaborate discussion of the observable
bounds from this calculation can be found in [6].

However, one can use our analysis to derive an upper limit on the Hubble parameter
independently of the observational bound based on the tensor-to-scalar ratio. Given
the fact that one has not yet unambiguously observed an effect as derived here in the
CMB anisotropy spectrum, one can assume for a rough estimate that C2

k has to be
not less than 0.95 for k ∩ 1 since one has observed that the power spectrum deviates
by less than 5 % from a scale-invariant spectrum [7]. In order to fulfill this condition,
one finds that H � 1.4 × 10−2 mP ∩ 4 × 1017 GeV, which is, however, weaker than
the bound from the tensor-to-scalar ratio.

Other approaches to quantum gravity also lead to effects in the CMB anisotropy
spectrum. While non-commutative geometry and string theory give a similar sup-
pression of power on the largest scales [8–10], loop quantum cosmology predicts an
enhancement [11, 12].
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6 Conclusion

We have seen that the Wheeler–DeWitt quantization of a model of an inflationary
universe with scalar field perturbations modifies the power spectrum of these pertur-
bations. While the suppression of power at large scales is not observable due to cosmic
variance, we can derive an upper bound on the Hubble parameter during inflation,
albeit weak. The comparison with other approaches to quantum gravity showed that
loop quantum cosmology leads to a qualitatively opposite effect. This shows that
looking for quantum-gravitational imprints in the cosmic microwave background
could help us to discriminate between different approaches to quantum gravity.
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Quantum Singularities in Conformally
Static Spacetimes

Deborah A. Konkowski and Thomas M. Helliwell

Abstract After a brief review of the standard definition and analysis of classical
singularities in general relativistic spacetimes, and of quantum singularities in static
spacetimes with timelike classical singularities, an extension of quantum singular-
ities to conformally static spacetimes is summarized and applied to two test cases.
The timelike classical singularities in a Friedmann-Robertson-Walker (FRW) uni-
verse with a cosmic string, and in Roberts spacetime, are shown to be quantum
mechanically singular when tested by either minimally coupled or conformally cou-
pled scalar waves. In the Roberts case, however, non-minimally coupled scalar waves
with a coupling constant ξ √ 2 do not detect the classical singularity.

1 Introduction

We study quantum wave packet propagation in conformally static spacetimes with
timelike classical singularities. If the wave propagation turns out to be well defined,
the spacetimes are said to be quantum mechanically non-singular.

The order of the paper is as follows: First, classical and quantum singularities
are defined with the latter restricted (as usual) to static spacetimes with timelike
singularities. Next, the definition of quantum singularity is extended to conformally
static spacetimes with a timelike singularity (spacelike singularities, if present, are
not tested). In particular, two spacetimes are tested with generally coupled scalar
waves: a Friedmann-Robertson-Walker (FRW) spacetime with a cosmic string and
the Roberts spacetime. Finally, conclusions are given, together with ideas for further
research.

D. A. Konkowski (B)

Mathematics Department, U.S. Naval Academy, Annapolis, MD 21402, USA
e-mail: dak@usna.edu

T. M. Helliwell
Physics Department, Harvey Mudd College, Claremont, CA 91711, USA
e-mail: helliwell@hmc.edu
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2 Classical Singularities

A spacetime (M, g) is taken to be a paracompact, C→, connected, Hausdorff mani-
fold M with a Lorentzian metric g [1]. So what is a classical singularity? A spacetime
is by definition smooth, so ‘singular’ points are not part of the spacetime; they must
be cut out of the spacetime manifold. This leaves a ‘hole’, with incomplete curves,
a seeming boundary to spacetime. How do we complete spacetime, and how do we
define a boundary ∂ M to spacetime? There have been a number of attempts, none of
them entirely satisfactory. Note that Cauchy completeness works only in Riemannian
metrics, not Lorentzian. Boundary definitions have included the a(abstract)-boundary
of Scott and Szekeres [2], the b(bundle)-boundary of Schmidt [3], the c(causal)-
boundary of Geroch, Kronheimer, and Penrose [4] and the g(geodesic)-boundary of
Geroch [5]. In this discussion we will use Geroch’s 1968 description of a classi-
cal singularity. He states that “a singularity is indicated by incomplete geodesics or
incomplete curves of bounded acceleration in a maximal spacetime.” This is clos-
est to the definition of classical singularity used in the famous singularity theorems
of Hawking and Penrose, which predict that singularities are ubiquitous in exact
solutions of Einstein’s equations (see, e.g., [6]).

Ellis and Schmidt have classified singular points into three types according to
their strength [1]: quasi-regular (mild, topological singularities), non-scalar curvature
(diverging tidal forces on curves ending at the singularity; finite tidal forces on
some nearby curves) and scalar curvature (diverging scalars—usually one considers
only C0 scalar polynomial invariants). Conical singularities, as in idealized cosmic
strings, are a good example of quasiregular singularities. The other two types of
singularities are stronger, curvature singularities. Nonscalar curvature singularities
include those in whimper cosmologies and certain plane-wave spacetimes, whereas
scalar curvature singularities are the best-known, occurring at the centers of black
holes or the beginning of big bang cosmologies.

2.1 Quantum Singularities

What happens if instead of classical particle paths (e.g., null and timelike geodesics)
one uses quantum mechanical particles (quantum wave packets) to identify singu-
larities? Following pioneering work by Wald [7], Horowitz and Marolf answered
this question for static spacetimes with timelike classical singularities. In their 1995
paper they posit that a spacetime is quantum mechanically (QM) nonsingular if the
evolution of a test scalar wave packet, representing a quantum particle, is uniquely
determined by the initial wave packet, the manifold and the metric, without having to
place boundary conditions at the classical singularity. Technically, a static spacetime
is QM-singular if the spatial portion of the Klein-Gordon operator is not essentially
self-adjoint on C→

o (Σ) in the space of square integrable functions L2(Σ), where Σ

is a spatial hypersurface.
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The term “essentially self adjoint” arises in functional analysis [8]. An operator
A is called self-adjoint if (i) A = A∓ and (ii) Dom(A) = Dom(A∓), where A∓ is the
adjoint of A and Dom is short for domain. An operator is essentially self-adjoint if
(i) is met and (ii) can be met by expanding the domain of the operator A or its adjoint
A∓ so that it is true.

There are two basic tests for essential self-adjointness [8]. The first uses the von
Neumann criterion of deficiency indices [9]; one studies solutions of AΨ = ±iΨ ,
where A is the spatial portion of the Klein-Gordon operator, and finds the number of
solutions for each sign that are self-adjoint. The second technique uses the so-called
Weyl limit point—limit circle criterion [10], which relates essential self-adjointness
of the Hamiltonian operator to the behavior of the “potential” in an effective one-
dimensional Schrödinger equation, which in turn determines the behavior of the
scalar wave packet. Relevant theorems that simplify the analysis can be found in
Reed and Simon [8].

Many authors have used the definition of quantum singularity to study the singu-
larity structure of spacetimes. For a summary, see, for example, the review article
by Pitelli and Letelier [11] or the conference proceeding by the authors [12] and the
references therein. Also, there is the alternative concept of ‘wave regularity’ intro-
duced by Ishibashi and Hosoya [13], which is relevant to the discussion. It uses a
non-standard Hilbert space, H1, the first Sobolev space.

3 Conformally Static Spacetimes

A spacetime gμν(xα) that is conformally static is related to a static spacetime ḡμν(xa)

by a conformal transformation C(η) of the metric. Here C(η) is the conformal factor,
where η is the conformal time, related to the time t by dt = Cdη. Simply put,
gμν(xα) = C2(η)ḡμν(xa). Here Greek letters α, β, ... label spacetime indices and
have the range over 0, 1, 2, 3, and Latin letters a, b, c, ... label spatial indicies that
range over 1, 2, 3.

The Lagrangian density for a generally coupled scalar field is [14],

L = 1/2(−g)1/2[gμνΦ,μ Φ,ν −(M2 + ξ R)Φ2], (1)

where M is the mass if the scalar particle, R is the scalar curvature, and ξ is the
coupling (in particular, ξ = 0 for minimal coupling and ξ = 1/6 for conformal
coupling). Varying the action S = ∫

L d4x gives the Klein-Gordon field equation,

|g|−1/2
(
|g|1/2gμνΦ,ν

)
,μ −ξ RΦ = M2Φ. (2)

In the massless case with conformal coupling, the field equation above is conformally
invariant under a conformal transformation of the metric and field; in this case the
inner product respecting the stress tensor for the field is also conformally invariant.
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This led Ishibashi and Hosoya to state [13], in the case of wave regularity, that “the
calculation is as simple as that in the static case when singularities in conformally
static space-times are probed with conformally coupled scalar fields.”

Here we study the quantum particle propagation in spacetimes with massive scalar
particles described by the Klein-Gordon equation and the limit point—limit circle
criterion of Weyl [8, 10]. In particular, after separating variables we study the radial
equation in a one-dimensional Schrödinger form with a ‘potential’ and determine
the number of solutions that are square integrable. If we obtain a unique solution,
without placing boundary conditions at the location of the classical singularity, we
can say that the solution to the full Klein-Gordon equation is quantum mechanically
(QM) nonsingular. The results depend on the spacetime metric parameters and wave
equation modes.

After separating variables we take the spatial portion to be an operator equation
on a Hilbert space L2(Σ) with inner product (see, e.g., [15]),

(χ, ζ ) =
∫

d3x |ḡ3/g00|1/2χ(xa)ζ(xb), (3)

where ḡ3 is the determinant of the spatial portion of the static metric, χ and ζ are
spatial mode solutions and a, b range over 1, 2, 3. Then we consider the radial
portion alone, change variables and write the radial equation in one-dimensional
Schrodinger form, Hu(x) = Eu(x), where the operator H = −d2/dx2 + V (x)

and E is a constant, with the singularity at x = 0. The inner product here is simply∫
dx |u(x)|2 and the Hilbert space is L2(0,→). At this point one can simply apply the

limit point—limit circle criterion as easily as in the static case in order to determine
the quantum singularity structure.

3.1 FRW with a Cosmic String

A simple metric modeling a Friedmann-Robertson-Walker cosmology with a cosmic
string [16] is given by

ds2 = a2(t)(−dt2 + dr2 + β2r2dφ2 + dz2) (4)

where β = 1−4μ and μ is the mass per unit length of the cosmic string. This metric
is conformally static (actually conformally flat). Classically it has a scalar curvature
singularity when a(t) is zero and a quasiregular singularity when β2 ∼= 1. Here we
will consider the timelike quasiregular singularity alone. The Klein-Gordon equation
with general coupling can be separated into mode solutions

Φ = T (t)H(r)eimφeikz, (5)
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where

T̈ + 2

(
ȧ

a

)
Ṫ + (M2a2 + ξ Ra2 − q)T = 0, (6)

and

H ≤≤ + 1

r
H ≤ + (−k2 − q − m2

β2r2 )H = 0. (7)

The T -equation alone contains M and R. Rewriting the dependent and independent
variables as r = x and H = xu(x), we get the correct inner product form and a
one-dimensional Schrödinger equation,

u≤≤ + (E − V (x))u = 0, (8)

where E = −k2 − q and

V (x) = m2 − β2/4

β2x2 . (9)

Near zero one can show that the potential V (x) is limit point if m2/β2 √ 1. Therefore
any modes with sufficiently large m are limit point, but m = 0 is limit circle; thus
generically this conformally static space-time is quantum mechanically singular.

3.2 Roberts Spacetime

The Roberts metric [17] is

ds2 = e2t (−dt2 + dr2 + G2(r)dΩ2) (10)

where G2(r) = (1/4)[1 + p − (1 − p)e−2r ](e2r − 1). The spacetime is confor-
mally static, spherically symmetric, and self-similar (see, e.g., [13]). It has a time-
like classical scalar curvature singularity at r = 0 for 0 < p < 1. The Klein-
Gordon equation can be solved by separation of variables with mode solutions given
by Φ = T (t)H(r)Ylm(θ, φ). The radial operator can be put in one-dimensional
Schrödinger form and the limit point—limit circle criterion applied. Details are given
in [18]. One finds that the spacetime is quantum mechanically singular if ξ < 2 and
quantum mechanically non-singular if ξ √ 2. Therefore, the classical timelike sin-
gularity remains singular when probed by minimally coupled (ξ = 0) waves or by
conformally coupled (ξ = 1/6) waves.
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4 Conclusions

After a brief review of the standard definition and analysis of classical singularities in
general relativistic spacetimes, and of quantum singularities in static spacetimes with
timelike classical singularities, an extension of quantum singularites to conformally
static spacetimes was summarized and applied to two test cases. The timelike classical
singularities in a FRW universe with a cosmic string and in Roberts spacetime were
shown to be quantum mechanically singular when tested by either minimally coupled
or conformally coupled scalar waves. In the Roberts case, however, non-minimally
coupled scalar waves with a coupling constant ξ √ 2 did not detect the classical
singularity.

Further analysis of the singularity structure of conformally static spacetimes is
underway [18]. A class of spherically symmetric conformally static spacetimes is
being analyzed; this class includes the spacetimes of HMN [19] and Fonarev [20],
as well as the Roberts spacetime.

Acknowledgments One of us (DAK) thanks B. Yaptinchay for useful discussions.
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Granularity in Angle: Observability
in Scattering Experiments

Seth A. Major and Jake C. Zappala

Abstract Geometry is quantized in loop quantum gravity. As a step toward building
a detailed phenomenology of this discrete geometry a model of an atom of geometry
is reviewed. The model, which preserves local Lorentz invariance, exhibits a lever
arm that raises the scale at which the granularity in angle becomes apparent. The
signature of this effect is a systematic shift of observed angles in processes such
as high energy particle scattering experiments. To check assumptions in the model,
coherent states of a simple atom of spatial geometry are explored using information
intrinsic to the quantum state.

1 Introduction

If space-time or spatial geometry is fundamentally discrete, it will be observationally
manifest. The kinematics of Loop Quantum Gravity (LQG) predicts discrete spectra
of spatial geometric quantities such as volume, angle, and length. Before the dynam-
ics, and the quantization, is complete we do not know whether the kinematic results
extend to the physical state space [1, 2]. However, in the absence of a complete
theory and even because the complete theory is not yet finished, it is useful to know
how the predicted discreteness in spatial geometry could be manifest in observation.

Perhaps the first reaction to granular geometry is that the theory breaks Lorentz
invariance. Certainly broken Lorentz symmetry leads to dramatic effects that pro-
duce strong constraints (see [3] and [4]), but broken local Lorentz invariance does
not necessarily follow from discreteness—the discrete nature of quantum angular
momentum does not imply the loss of rotational invariance. Furthermore, the relative
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velocity relating inertial reference frames depends on the metric and therefore the
measurements of areas of a surface in different frames are not directly comparable
[5]. More directly the causal set approach to quantum gravity shows that Lorentz
invariance and (space-time) discreteness are compatible.

Without the blunt effects of breaking local Lorentz invariance are there other
effects that might reveal the fundamental discreteness of spatial geometry? This
contribution reviews a model based on the kinematic predictions of discrete spatial
geometry in LQG and demonstrates that the answer is in the affirmative. The model
does not break local Lorentz invariance and yet there are effects at a mesoscopic
scale above the Planck scale [6]. The ‘lever arm’ that raises the scale is due to the
underlying asymmetry of the angle operator spectrum and the combinatorics of an
atom of spatial geometry. At this mesoscopic scale the local geometry differs from
flat three dimensional space leading to systematic shift in the distribution of measured
angles. To make such a model at this stage of development of LQG and QFT in such
a context requires assumptions. These are detailed in Sect. 3.

To begin to test these assumptions we explore coherent states based on the ‘hydro-
gen atom of spatial geometry’, a single 4-valent node. Within the limitations of this
model we still find a hint of a lever arm, although in this context it is purely due to
the uncertainty relations among non-commuting operators.

2 Angle Operator

The angle operator was originally defined in [7] and described further in [6, 8, 9].
In this contribution we focus on the spatial atom. So, briefly, the angle operator is
defined on a truncation of the full kinematic Hilbert space, at a single spin network
node. The incident links to this node are partitioned into three sets, C1, C2, and C3.
Three left-invariant gravitational field operators Li

1, Li
2, and Li

3 are defined by these
partitions. (The notation follows [10].) In terms of these gravitational field operators
for the partitions C1 and C2, the quantum angle operator is

Λ̂(12) := arccos
Li

1Li
2

|L1| |L2| , (1)

in which |L| = √
L2. The sum

∑3
k=1 Li

k vanishes due to gauge invariance and the
exhaustive partitions. The partitioning of links incident to the node selects classes of
preferred intertwiner bases. These are labeled by trivalent nodes where each leg of the
node, or branch, connects all links in a single partition. This node is the “intertwiner
core”. On this class of bases the spectrum of the angle operator is

Λ̂(12) | j1 j2 j3→ = Λ(12) | j1 j2 j3→ with (2)

Λ(12) = arccos

(
j3( j3 + 1) − j1( j1 + 1) − j2( j2 + 1)

2 [ j1( j1 + 1) j2( j2 + 1)]1/2

)
. (3)
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For more detail, see [6, 9]. With this angular spectrum there are two aspects of flat
spatial geometry that are hard to model. The spectrum is sparse for small angles and
the frequencies of eigenvalues is far from the sin Λ distribution of polar angles in flat,
3-dimensional continuum geometry. These are both manifestations of the asymmetry
in the angular spectrum. This asymmetry persists even when the spins are very large
[8, 11].

It is convenient to visualize the action of the angle operator on polyhedra, with
faces dual to the incident links [12]. The areas on the dual surfaces are simply related
to the spin j via φPl

√
j ( j + 1). The partitioning of C1, C2, and C3 induces a partition

of the dual surface into three surface areas S1, S2, and S3. The intertwiner core then
represents a decomposition of the polyhedron with “internal faces” determined by ji .

The notation is as follows. Twice the sum of the representations on the links
incident to the node in partition Ck is denoted by the “flux” sk also denoted s. In the
dual surface picture this is the flux of spin through the respective surfaces, roughly
equal to the face areas. The total flux is the sum of the spins on all the incident
edges, denoted s. The quantities nk = 2 jk , the internal areas, uniquely specify the
intertwiner core, denoted |n→. The fluxes sk and core labels nk are distinct and satisfy
nk ∓ sk .

3 Combinatorial Phenomenology

The phenomenological model of an atom of 3-geometry is based on the state space
described above and three, additional assumptions [6]: (1) The probability measure
on the space of intertwiner cores is uniform. (2) All incident links to the node are
spin-1/2. (3) The fluxes are large and semi-classical, 1 ∼ sk ∼ s3, k = 1, 2. The
last assumption is motivated by the numerical studies of [8, 11] showing that the
asymmetry in the angular spectrum shifts the distribution away from the usual sin Λ

distribution of polar angles. To recover the classical distribution it was necessary in
these studies to take large fluxes, and, in particular 1 ∼ s j ∼ s3, j = 1, 2. Fluxes
s that satisfy these relations are called “semi-classical fluxes”. This means that we
omit terms O(1/si ), O(1/ni ), and O(ni/si ). The assumption (2) is for simplicity,
although in statistical studies of large closed surfaces built from oriented areas the
spins are about one on average [13].

All physical processes involving angle that we currently observe are on very large
scales, many orders of magnitude above the Planck scale. These processes occur in a
large effective volume. Since volume scales as the (total flux)3/2 ≤ s3/2, the scaling
defines an effective length φs = φPls3/2 or energy Ms = MPl/

√
s scale. The scale is

set in the reference frame used in the experimental analysis, such as the CM frame.
With these assumptions, the combinatorics of the model of a spatial atom can be

solved analytically [6]. The combinatorics for the number of states may be simply
related to a path counting problem with a known solution [11]. For single branch of
the basis |n→, the probability of an internal spin (or face area) n given a total flux of s is
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ps(n) = n

s
exp

(
−n2

2s

)
. (4)

This is the Rayleigh distribution for a “distance” n covered in 2s steps in an isotropic
random walk with unit step size in two spatial dimensions. The total probability for
the internal state of the atom, ps(n), is just the product of three of these combinato-
rial factors. For large, semi-classical spins the normalized probability distribution is
simply expressed as

ps(Λ) =
∑

n

κ(Λ − Λ(n))ps(n). (5)

The partition fluxes s determine a mixed state, νs = ∑
n ps(n)P|n→, where P|n→ is

the projector on the orthonormal basis of the intertwiner core. The sum is over the
admissible integers n such that ni ∓ si . The projector is P|n→ =| ΛI →∞ΛI | where
| ΛI → = ∑

n cΛI (n) | n→. The probability of finding the angle eigenvalue ΛI in the
mixed state νs is

Prob(Λ = ΛI ; νs) = tr
(
νs PΛI

) =
∑

n

ps(n)|∞n | ΛI→|2 ≤ ps(Λ). (6)

This procedure can be used to calculate ps(Λ) for semi-classical fluxes

Ps(Λ) :=
∫

d3n ps(n)|cΛ (n)|2κ (Λ − Λ(n)) . (7)

The integration of (7) is straightforward [6]. The key step in the calculation is the
identification of the “shape parameter” ∂ := √

s1s2/s3 that measures the asymmetry
in the distribution of angles. As ∂ ∗ 0 the continuum distribution of polar angles is
recovered.

The resulting angular measure, when expressed in terms of Legendre polynomials,
and to O(∂3), is [6]

ν∂(Λ) 	 sin Λ

(
1 − 8

ξ
P1(cos Λ)∂ + 3

2
P2(cos Λ)∂2

)
. (8)

The affect of the modified distribution of polar angles is that the “shape” of space is
altered by the atom; the local angular geometry differs from flat 3-space. The total
flux s determines the 3-volume of the spatial atom and thus an effective mesoscopic
length scale, φs = √

sφP , greater than the fundamental discreteness scale of φP .
While the shape parameter ∂ is free of the Planck scale, the effective length scale,
determined by the total fluxes s, is tied to the discreteness scale of the theory. For
instance, a shape parameter ∂ ⊂ 10−3 requires a total flux of at least s ⊂ 106, raising
the length scale at which this asymmetry would be observed to be nine orders of
magnitude above the Planck scale. Any angular measurement involving processes at
this scale would be affected by this modified distribution. Thus the angle spectrum
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and the combinatorics of the intertwiner together provide a lever arm that lifts the
fundamental scale of the quantum geometry up to a larger, mesoscopic scale.

4 Example: Scattering

Let’s sketch how measurement of angle in an effective atom of geometry for a scat-
tering experiment works. (More detail may be found in [6].) Bhabha scattering is
convenient because the e+e− scattering process involves “point-like” fundamental
particles. The scattering cross section depends on angle and, in a theory that encom-
passes the quantum state of the geometry, scattering events are measurements of the
states that support the geometry. The affects of the discrete geometry will be evident
at some energy, modifying the QED vertex. Short distance modifications to QED
may be expressed in the Drell parameterization [14], which allows modifications to
“switch on” at CM energies corresponding to the short distance structure at the scale
φs . Two kinematic effects were studied in [6], one due to the averaging over angle
and the other due to the modified distribution of angle in the state described above.
The latter effect is dominant. Assuming that the spatial geometry is homogenous
so that each scattering event occurs in the same state described in Sect. 3 then the
Bhabha scattering cross section is, using the Drell parameterization [6],

(
dπ

dτ

)
/

(
dπ

dτ

)
QE D

	 1∃
(

3s

σ2±

) (
sin2 Λ

3 + cos2 Λ

) (
1 + 8

ξ
cos(Λ)∂ + · · ·

)
. (9)

A comparison between the model and the data, discussed in [6], shows that the
shape correction reduces the observed differential cross section at small angles and
increases it at large angles; the shape effect yields a systematic shift in the data.

To check the robustness of this prediction we must both check the framework and
the assumptions. In the next section we report on a check of the assumptions of the
model and study the most simple atom of geometry, a 4-valent node. We replace
the assumption of uniform probability with minimum relative uncertainty and allow
higher spin. This allows us to answer the question, Is there evidence of a lever arm
in the simplest 4-valent atom of geometry?

5 Coherent States and Angle

To check the robustness of the above model we developed coherent states for the sim-
ple 4-valent node, dual to a tetrahedron. Coherent states for semi-classical geometries
are based on (some flavor of) SU (2) coherent states, states that are peaked around
given directions, n̂, normal to the faces. These coherent states are sharply peaked
on the scalar products and thus angles, even for moderately large spin, j > 100.
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With such low spin there is no significant lever arm. However the coherent states
require classical information, the directions n̂. To avoid adding additional assump-
tions about these classical directions to our model, we constructed coherent states
only from quantum information intrinsic to the atom of geometry.

It has been known for some time that the state of the atom contains enough informa-
tion to establish dimension of space and the scalar products. The spin geometry the-
orem of Penrose and Moussouris [15, 16] states that for low relative uncertainties—
large spin—the state of the geometric atom yields vectors in Euclidean 3-space.
Furthermore, the proof is constructive. By minimizing the relative uncertainties, the
distribution of directions n̂ is determined. We can construct states that model semi-
classical geometry using only information intrinsic to the atom [17].

In this construction the directions in 3-space are well-defined when the relative
uncertainties of scalar products are minimized. More precisely, when the state is
“κ-classical” ∞δLk · Ll→ /jk jl < κ, pairs k, l, then directions associated to the faces
may be defined. The angles between normals are determined by the scalar products of
these vectors. The spin geometry theorem states that there exists a κ for any approx-
imation of vectors 3-dimensional Euclidean space. We constructed these vectors for
a tetrahedron.

We set the maximum spin, typically 20, and took a superposition over all states
of the atom of geometry, with amplitudes determined by a complex gaussian. We
fixed the parameters of the state (peak value, width, and phase) by minimizing the
relative uncertainties. This analysis is straightforward in the basis of one of the angle
operators. For the other angles, which do not commute with one another, one must
employ recoupling theory. As this results in a lengthy expression to minimize, we
used Mathematica to minimize the relative uncertainties.

This process of minimizing κ-constraints for the independent angles yields well-
defined directions but low-volume, “squashed” geometries. This is expected since
the minimization procedure essentially extremizes the cosine of the angle between
outgoing normals times a spin factor, held fixed by our choice of maximum spin.
Minimizing the resulting sine yields angles are near 0 and ξ , producing an elongated
shape of the atom (“squashed”), with angles near 0 and ξ . The minimization produces
a distribution of angles that is far from the distribution of classical polar angles.

However simultaneously minimizing the relative uncertainties and maximizing
the volume of the atom produces a distribution of angles peaked around the center of
the classical distribution, at the cost of increased relative uncertainty in the angle (i.e.
larger κ’s and a correspondingly worse approximation to the angles of the classical
tetrahedron). We see that the “cost” of modeling the classical distribution of angles
is an increase in relative uncertainty. As we know from the spin geometry theorem
to reduce the uncertainty further we need to increase the total flux, raising the effec-
tive scale of the atom of geometry. This “lever arm” is simply a manifestation of
the familiar uncertainty relations of non-commuting operators, rather than from the
combinatorics of more complex states.

This tetrahedron study shows that (1) It is possible to use quantum information
intrinsic to the state to define the coherent states. (Unfortunately the computation
grows unwieldily for higher spin and high valence atoms.) (2) There is a “short”
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lever arm in that the classical distribution of angle is achieved for atoms above the
Planck scale. But this lever arm is too short to raise the scale of the effects into
experimentally accessible regimes. However, the lever arm in Sect. 3 arises from the
combinatorics arising in complex atoms of geometry.

6 Discussion

This contribution reviews a model that explores effects arising from combinatorial
structures in the deep spatial quantum geometry of LQG [6]. The model, based on
assumptions in Sect. 3, relies on the combinatorics of a discrete model of spatial
geometry, a single atom of spatial geometry, the spin network node. This model
shows that potentially observable effects of quantum geometry need not be tied to
violations of local Lorentz symmetry and that a scale above the fundamental scale
of the theory can arise out of the combinatorics of the state.

To test the assumption of the uniform measure we developed coherent states based
on information intrinsic to the simplest atom, which is dual to a tetrahedron. Using
the spin geometry theorem we developed coherent states of the polyhedron and found
evidence for a lever arm. In this case the short lever arm is due to the non-commutivity
of operators, rather than the combinatorics of the state. However, this is a very simple
atom of geometry that does not have the combinatoric richness of complex higher
valence atoms. Work on modeling these more complex structures is ongoing.

Finally, it is important to note that work remains on modeling the vertex modifi-
cations in field theory. One possibility is to model the effective metric in, e.g.

L ∩
κ(x) = −e

∫
d4xΩ̄(x)ΣμΩ(x)gμη

κ (x − z)Aη(z), (10)

using spin foam techniques. It remains to be seen whether this shape-corrected QED
vertex yields the simple shape corrections discussed here.
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Signature Change in Loop Quantum
Cosmology

Jakub Mielczarek

Abstract The Wick rotation is commonly considered only as a useful computational
trick. However, as suggested by Hartle and Hawking already in early eighties, Wick
rotation may gain physical meaning at the Planck epoch. While such possibility is
conceptually interesting, leading to no-boundary proposal, mechanism behind the
signature change remains mysterious. We show that the signature change anticipated
by Hartle and Hawking naturally appears in loop quantum cosmology. Theory of
cosmological perturbations with the effects of quantum holonomies is discussed. It
was shown by Cailleteau et al. [3] that this theory can be uniquely formulated in an
anomaly-free manner. The obtained algebra of effective constraints turns out to be
modified so that the metric signature is changing from Lorentzian in low curvature
regime to Euclidean in high curvature regime. Implications of this phenomenon on
propagation of cosmological perturbations are discussed and corrections to inflation-
ary power spectra of scalar and tensor perturbations are derived. Possible relations
with other approaches to quantum gravity are outlined. We also propose an intu-
itive explanation of the observed signature change using analogy with spontaneous
symmetry breaking in “wired” metamaterials.

1 Introduction

The metric signature change from Lorentzian to Euclidean is usually performed by the
so-called Wick rotation (t √ −iτ ), under which the line element ds2 = −dt2 +dx2

transforms to ds2 = dτ 2 + dx2. The Wick rotation becomes especially important
in the path integral formulation of quantum mechanics. It allows to calculate non-
perturbative effects by considering instantons. Another advantage coming from the
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Wick rotation is improvement of a convergence property of some path integrals. But
these are just useful computational tricks.

However, in 1983 Hartle and Hawking proposed that Wick rotation may gain phys-
ical meaning at the Planck epoch [1]. This assumption was crucial for construction
of the so-called no-boundary proposal, which was a way to cope with the problem
of initial conditions for the Universe. While such possibility is conceptually inter-
esting, mechanism behind the signature change in the very early Universe remains
enigmatic.

If such transition from the Lorentzian to Euclidean space has occurred in the
early Universe, what could be the origin of this? Can the signature change be due to
some quantum gravity effects? So far, there have been no indications supporting such
possibility. However, recent results coming from symmetry reduced models of Loop
Quantum Gravity (LQG) [2] suggest that indeed the signature change may occur due
to the discrete nature of space at the Planck scale [3, 4].

2 Loops

In LQG, granularity of space at the Planck scale is manifested by discrete spec-
tra of geometric operators such as area and volume. The starting point for con-
structing LQG is the Hamiltonian formulation of General Relativity in language

of Ashtekar variables fulfilling
{

Ea
j (x), Ai

b(y)
}

= 8πGγ δa
bδi

jδ
(3)(x − y), where γ

is a free parameter of the theory called Barbero-Immirzi parameter. In this frame-
work, Hamiltonian of gravity sector can be written as a sum of three constraints:
HG[N , N a, N i ] = S[N ] + D[N a] + G[N i ] → 0. Here S is the scalar constraint, D
is the diffeomorphism constraint and G is the Gauss constraint. The constraints (S √
C1, D √ C2, G √ C3) fulfill the closed algebra {CI ,CJ } = f K

IJ(A j
b, Ea

i )CK ,

where f K
IJ(A j

b, Ea
i ) are some structure functions.

Based on the Ashtekar variables, nonlocal variables called holonomies and fluxes
are constructed. These new variables are the subject of quantization in LQG. For
our purposes, it is sufficient to note that holonomy is defined as parallel transport of
Aa = Ai

aτi along some curve e on a spatial hypersurface: he := P exp
∫

e Aadxa ,
where σ j = 2iτ j are Pauli matrices. The holonomies are elements of SU (2) group.

In LQG, a state of gravity is described by superposition of graphs called spin
networks. The links of the graphs are labelled by half integers ( j = 1/2, 1, 3/2, . . . )
corresponding to irreducible representations of the SU (2) group. An exemplary spin
network is shown in Fig. 1.

Loop Quantum Cosmology (LQC) [5] is a regular lattice model of LQG. In partic-
ular, symmetries of isotropy and homogeneity are imposed on the spin network within
LQC. In what follows, we will consider an isotropic model with small perturbative
inhomogeneities around a flat Friedmann-Robertson-Walker (FRW) background.

In LQC, physical area of the elementary lattice cell Ar� = p̄μ̄2, where p̄ = a2

and a is a scale factor. In general μ̄ ∓ p̄β , where −1/2 ∼ β ∼ 0. For the so-called
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Fig. 1 In LQG, state of geometry is described by the spin network (left). In LQC, the spin net-
work takes the form of regular lattice (right). The (red) loop represents holonomy h� around the
elementary cell

μ̄−scheme (“new quantization scheme”): μ̄ =
√

Δ
p̄ , where usually Δ is assumed to

be area gap derived from LQG: Δ = 2
≤

3πγ l2
Pl . The μ̄−scheme, in which physical

area of the elementary lattice cell is constant during the cosmological evolution, was
shown to be physically favoured.

At the effective level, effects of discreteness can be studied by introducing the so-
called holonomy corrections. They are obtained by replacing curvature of Ashtekar
connection by holonomy around elementary loop (see Fig. 1). This procedure is
called polymerization.

3 Cosmological Perturbations

In most cosmological applications, Ashtekar variables can be decomposed into the
background (here flat FRW) and perturbation parts: Ea

i = Ēa
i + δEa

i and Ai
a =

Āi
a + δAi

a , where Ēa
i = p̄δa

i and Āi
a = γ k̄δi

a . The perturbations of the Ashtekar
variables can be related with the standard metric perturbations: scalar modes (Φ,
Ψ , E, B), vector modes (Sa , Fa) and tensor modes (hab). In total, there are 10
perturbative degrees of freedom. Furthermore, matter degrees of freedom are also
subject of perturbative decomposition. In what follows we consider a model with
a scalar field, so ϕ and its canonically conjugated momenta π can be written as:
ϕ = ϕ̄ + δϕ and π = π̄ + δπ . Applying the above decompositions, total constraints
Ctot = CG + CM , which take into account contributions from gravity and matter,
can be expanded. Our analysis is performed up to the second order in perturbative
development: Ctot = C (0) + C (1) + C (2) + ..., so the corresponding equations of
motion stay linear.
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4 Anomaly Freedom and Algebra of Constraints

The effects of discreteness of space are introduced by employing the holonomy cor-
rections. Such corrections modify the classical constraintsCtot to some new effective
quantum constraints C Q

tot . The modification follows the correspondence principle,
such that in the limit μ̄ √ 0, the modified constraints C Q

tot √ Ctot . The procedure
of introducing quantum corrections suffers from various ambiguities. Moreover, the
resulting algebra of modified constraints is in general not closed:

{C Q
I ,C Q

J } = gK
IJ(A j

b, Ea
i )C Q

K + AIJ , (1)

where AIJ are some anomaly terms. Closure of algebra is required by mathematical
consistency of the theory. So, the question is: Can we introduce quantum holonomy
corrections in the anomaly-free manner (i.e. such that AIJ = 0)? The answer turns
out to be “yes”. Moreover, there is a unique way of modifying constraints such
that the algebra is closed [3]. Additionally, the conditions of anomaly-freedom are
fulfilled if and only if β = −1/2, which corresponds to the μ̄-scheme. Therefore,
the only remaining free parameter is the area of elementary lattice cell Δ, which is
however expected to be of the order of the Planck area l2

Pl .
The obtained algebra of the effective quantum constraint is [3]:

{
Dtot [N a

1 ], Dtot [N a
2 ]} = 0, (2){

Stot [N ], Dtot [N a]} = −Stot [δN a∂aδN ], (3)

{Stot [N1], Stot [N2]} = Ω Dtot

[
N̄

p̄
∂a(δN2 − δN1)

]
. (4)

The algebra is closed but deformed with respect to the classical case due to the
presence of Ω in (4). Therefore, general covariance is modified. The new factor Ω

can be expressed as follows: Ω = cos(2μ̄γ k̄) = 1 − 2ρ/ρc ∞ [−1, 1], where ρ is
energy density of the scalar matter and the critical energy density ρc := 3

8πGΔ
∗

ρPl := m4
Pl . What is the interpretation of the above deformation of the algebra of

constraints? In order to answer this question let us recall the classical equivalent of
the modified bracket (4) for a space with signature σ [2]:

{Stot [N1], Stot [N2]} = σ D

[
N̄

p̄
∂a(δN2 − δN1)

]
.

Here, σ = 1 corresponds to the Lorentzian signature and σ = −1 to the Euclidean
one. Therefore, we conclude that modification of the effective algebra of constraints
(4) means that the space becomes Euclidean for ρ > ρc/2, while Lorentzian geome-
try emerges for ρ < ρc/2. In the regime of high curvatures and high energy densities
(ρ > ρc/2), spacetime becomes 4-dimensional Euclidean space. There is no distin-
guished time direction in this phase. It is interesting to notice that this model exhibits
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properties of the Hartle-Hawking no-boundary proposal. However here signature
change occurs smoothly with an increase of energy density.

The same effect of signature change was observed also for inhomogeneous spher-
ically symmetric models with holonomy corrections [4]. Therefore, we have a good
reason to believe that this phenomenon is a general consequence of quantum poly-
merization of space. Moreover, we can speculate that the off-shell algebra of quantum
constraints in LQG should also exhibit such property, i.e. [Ŝ, Ŝ] = iΩ D̂.

Among many other comments, the fact that ultralocal gravity [6], where {S, S} =
0, is recovered at the transition point ρ = ρc/2 is worth stressing.

5 Equations of Motion

The obtained anomaly-free formulation can be now used to derive equations of
motion for both background variables and perturbations. The background dynamics
is governed by the modified Friedmann equation H2 = 8πG

3 ρ (1 − ρ/ρc), where H
is the Hubble factor. Clearly, only ρ ∼ ρc are physically allowed, which was used to
determine the range of Ω .

For the scalar perturbations one can define a gauge-invariant variable v and the
corresponding modified Mukhanov equation [3]:

d2

dτ 2 v − Ω∇2v − z
⊂⊂

z
v = 0, (5)

where z := ≤
p̄ ϕ̇

H . Here, τ = ∫
dt/a is a conformal time. For the considered model

with a scalar field, vector modes are pure gauge, and therefore do not contribute [7].
Equation for tensor modes takes the form [8]

d2

dτ 2 hab + 2

(
aH − 1

2Ω

dΩ

dτ

)
d

dτ
hab − Ω∇2hab = 0.

The obtained equations are modified by the presence of Ω in front of the Laplace
operator. Therefore, transition to the Euclidean domain leads to a change of equation
type from hyperbolic to elliptic, as expected. Furthermore, we see that the speed of
propagation is varying, since c2

s = Ω .

6 Holonomy Corrections to Inflationary Power Spectra

As an application of the obtained equations of motion we will derive holonomy
corrections to the inflationary scalar and tensor power spectra. We will focus on the
slow-roll inflationary model driven by a single scalar field ϕ with potential V (ϕ)
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occurring in the Lorentzian domain. The slow-roll parameters with the holonomy
corrections are:

ε := m2
Pl

16π

(
V,ϕ

V

)2 1

(1 − V/ρc)
and η := m2

Pl

8π

(
V,ϕϕ

V

)
1

(1 − V/ρc)
.

Derivation of the scalar and tensor power spectra is based on application of the
standard techniques of the quantum field theory in curved spaces. Moreover, normal-
ization is such that in the UV limit the Minkowski vacuum is recovered. Obtained
spectra of scalar and tensor (gravitational waves) perturbations are

PS(k) = AS

(
k

aH

)nS−1

and PT (k) = AT

(
k

aH

)nT

,

where amplitudes and spectral indices are given as follows:

AS = 1

πε

(
H

m Pl

)2 (
1 + 2

V

ρc

)
and nS = 1 + 2η − 6ε

(
1 − V

ρc

)
,

AT = 16

π

(
H

m Pl

)2 (
1 + 3

V

ρc

)
and nT = −2ε

(
1 − 3

V

ρc

)
.

Furthermore, the consistency relation is

r := AT

AS
∃ 16ε

(
1 + V

ρc

)
. (6)

The corrections are introduced by the factors V/ρc, which are of the order of 10−12

for typical values of parameters. Confrontation of the obtained spectra with the
available CMB data will be studied elsewhere [9]. In a more detailed analysis, initial
conditions should be established at the transition point ρ = ρc/2, which can lead to
some additional modification of the power spectra. This issue will be investigated in
our further research.

7 Towards Understanding the Signature Change

It is tempting to understand the origin of the signature change at a microscopic level.
Is this a kind of phase transition occurring at the level of the spin network or, more
generally, at the level of some four dimensional spin foam model? One possibility is
that some sort of spontaneous symmetry breaking takes place, leading to distinction
of the time dimension in low curvature regime.
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Fig. 2 At high temperatures orientation of nanowires is random (left). At low temperatures, some
direction is distinguished due to the spontaneous symmetry breaking (right). In the distinguished
direction, dielectric permittivity is negative, leading to emergence of a time variable

A relevant example of spontaneous symmetry breaking is given by ferromagnets.
At high temperatures, ferromagnets are loosing their magnetic properties. The spins
(magnetic moments) are randomly orientated, and no direction is distinguished. The
system satisfies the SO(3) rotational symmetry, which is also a symmetry of the
corresponding Hamiltonian. However, while temperature is decreased, spins start to
orientate in some direction and magnetic domains are formed. This process begins
when temperature is lowered below the so-called Curie temperature.

One can speculate that an analogous phase transition occurs in case of gravity.
Namely, at high energies, the symmetry is, say, SO(4). There is no distinction of any
time coordinate. However, while lowering the energy density, which is an analogue
of temperature, the symmetry will be broken to SO(3). The energy density ρc/2
is an analogue of the Curie temperature. It is possible that SO(3) symmetry of the
triad rotations in Ashtekar formalism (doubly covered by SU (2) group in LQG) is
in fact a residual symmetry of some wider symmetry before spontaneous symmetry
breaking.

The phase transition, similar to the one discussed in case of ferromagnets, may
occur for the so-called “wired” metamaterials composed of nanowires. It was shown
that for such materials, an effective emergence of time variable may occur because of
negative dielectric permittivity [10]. At high temperatures, dielectric permittivities in
all directions are positive. However in a low temperature state, nanowires may align
in some direction as spins do. In this distinguished direction, dielectric permittivity
becomes negative leading to emergence of “time” direction at the level of equations
of motion for electromagnetic field (see Fig. 2). We speculate that the same kind of
process occurs in case of gravity, leading to emergence of a time variable. Structure
of four dimensional Euclidean space undergoes phase transition, such that some
particular direction is picked (presumably domains with different time directions
can form). Equations of motion for the fields living on such frame change from
elliptic to hyperbolic, which is interpreted as emergence of the time direction. We
will explore this interpretation in more details in our further studies.
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8 Summary and Outlook

We have shown that metric signature change may occur due to polymerization of
space at the Planck scale. Preliminary analysis of this new phenomenon was carried
out. Many questions remain open and are awaiting detailed analysis. In particular: Is
there signature change in full LQG too? What are the initial conditions at ρ = ρc/2?
What is happening at the microscopic scale? How is the propagation of high energy
photons affected? And many, many others.

Summarizing, the paradigm shift seems to be observed in LQC. There is no longer
deterministic bouncing phase as was thought for many years. The Big Bounce model
in LQC seems to be an artifact of the strong assumption of homogeneity. Due to
the Euclidean stage there is no access to the information contained in contacting
Universe, which gives answer to the long standing debate on cosmic forgetfulness.

Acknowledgments I would like thank to Aurélien Barrau, Thomas Cailleteau and Julien Grain for
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useful remarks.
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Quantum Fields in Gravity

Giovanni Acquaviva

Abstract We give a brief description of some compelling connections between
general relativity and thermodynamics through (i) the semi-classical tunnelling
method(s) and (ii) the field-theoretical modelling of Unruh-DeWitt detectors. In both
approaches it is possible to interpret some quantities in a thermodynamical frame.

1 Introduction

The idea of treating the emission of radiation from black holes as a tunelling process
across the horizon traces back to the first path-integral derivation by Hartle and
Hawking [1]. As a matter of fact, the null-geodesic method introduced by Kraus,
Parikh and Wilczek [2, 3] and the Hamilton-Jacobi method proposed more recently
by Padmanabhan and collaborators [4] can be considered as semi-classical versions
of the original derivation. On the other hand, the Unruh-DeWitt detector [5, 6] con-
stitutes a field-theoretical approach to the problem, providing a more exact answer
to questions regarding the particle content of the field and its thermal features for
different observers.

2 The Tunnelling Method(s)

The null-geodesic and the Hamilton-Jacobi methods mentioned above both rely on
the calculation of the classical action S of a particle along a trajectory crossing the
horizon. Since such a trajectory is classically forbidden, the action itself developes
an imaginary contribution which, in the WKB approximation, allows to calculate the
tunnelling probability rate
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Λem √ exp (−2 →S) , (1)

where → stands for imaginary part. The use of Kodama-Hayward theoretical results
[7, 8], which allow to express observables of interest in terms of invariant quantities,
has been a main ingredient.

In [9] this methods has been analysed in detail and the following results have been
proven:

• a solid basis for the covariance of the method has been given;
• formal equivalence of the two aforementioned approaches holds at least in station-

ary cases;
• the method provides an invariant and consistent answer in a variety of situations

(higher-dimensional solutions, Taub and Taub-NUT solutions, decay of unstable
particles, emission from cosmological horizons and naked singularities).

The calculation can be summarized in the following steps regarding the Hamilton–
Jacobi approach:

1. assume that the tunnelling particle’s action S satisfies the relativistic Hamilton–
Jacobi equation

gμφκμSκφ S + m2 = 0; (2)

2. reconstruct the whole action, starting from the symmetries of the problem; the
integration is carried along an oriented, null curve ν with at least one point on
the horizon

S =
∫

ν

dxμ κμS; (3)

3. perform a near-horizon approximation and regularize the divergence in the in-
tegral according to Feynman’s prescription: the solution of the integral has in
general a non-vanishing imaginary part.

The result can be given in the general form

Λem = Λabs exp

(
−2∂ ξH

πH

)
, (4)

where ξH and πH are respectively the invariant energy of the tunnelling particle
and the invariant surface gravity in Hayward’s theory. Through comparison of the
transition rate with the Boltzmann factor, we can identify an invariant temperature

TH = πH

2∂
. (5)
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3 Unruh-DeWitt Detectors

We consider a conformally flat 4-dimensional metric, a massless scalar field confor-
mally coupled to the metric and a two-level quantum system coupled to the scalar
field. The idea is to calculate the probability for the absorption of a scalar quantum
and the consequent excitation of the two-level system through the transition rate

d F

dτ
= 1

2∂2

∫ ∓

0
cos (E s)

(
1

σ 2(τ, s)
+ 1

s2

)
ds − 1

2∂2

∫ ∓

δτ

cos (E s)

σ 2(τ, s)
, (6)

where E is the energy gap of the detector and s is the duration of the detection (see
[10] for details on the construction of equation (6)). The second integral is the finite-
time contribution, generally an oscillating tail exponentially damped. The bulk of the
information about the transition rate comes from the geodesic distance between the
“switching on” and “switching off” events, evaluated along a fixed trajectory x(τ )

σ 2(τ, s) = a(τ )a(τ − s) [x(τ ) − x(τ − s)]2 , (7)

whose inverse is proportional to the positive frequency Wightman function. The a(t)
is the conformal factor.

Let’s analyze two simple stationary cases: the Schwarzschild black hole and the de
Sitter cosmology. The detector will be placed on a Kodama trajectory, which means
that it will sit at a fixed distance from the horizon. Both cases can be treated in the
same way, because the function σ 2 can be written in general

σ 2(s) = −4V

π2 sinh2
(

π

2
∼

V
s

)
, (8)

where π is the surface gravity and
∼

V = ∼−g00. A Wightman function which, as
in (8), is stationary and periodic in imaginary time is called “thermal” because when
Fourier-transformed, it gives a Planckian transition spectrum. In our case, calculating
both the stationary and the finite-time contributions,

d F

dτ
= 1

2∂

E

exp
(

2∂
∼

V E
π

)
− 1

+ E

2∂2

∓∑
n=1

n e−nπδτ/
∼

V

n2 + V E2/π2

(
π∼
V E

cos(Eδτ) − sin(Eδτ)

)
. (9)
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4 Conclusions

As regards the tunnelling method, it has been shown that the formalism gives an
invariant answer and allows extensions to more general black hole horizons in vari-
ous dimensions as well as cosmological horizons and naked singularities. Moreover,
the extension to dynamical space-times has been carried out: in this framework the
radiation seems to originate near the local trapping horizon, not the global event
horizon.
The Unruh-DeWitt detector constitutes a more exact approach to the Unruh-Hawking
effect, relying on a quantum field-theoretical calculation. In stationary cases the re-
sponse function of the detector is shown to be thermal with temperature given by
the surface gravity, just as in the tunnelling approach. The generalization to non-
stationary situations gives rise to problems in the analytical resolution and in gen-
eral, when the background is time-dependent, it is not possible to clearly identify
a Boltzmann-like term in the response function and thus the thermal interpretation
seems lost.
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Classical and Quantum Scattering
in Impulsive Backgrounds

Peter Aichelburg and Herbert Balasin

Abstract We present a simple but rigorous approach to solve the nonlinear distri-
butional scattering problem of particles in impulsive fields. As an illustration we
consider a Dirac particle in an impulsive Yang-Mills wave.

1 Introduction

Due to the singular nature of the pulse and the nonlinear character of the problem
a generalized framework for singular functions (distributions) has to be used. This
will be done in terms of Colombeau’s new generalized functions, which form an
algebra therefore allowing for nonlinear operations and contain distribution space
via an appropriate coarse-graining operation (association).1 From the physical point
of view the Colombeau algebra affords a systematic way to deal with “regulariza-
tions” of singular objects, i.e. idealized situations that contain only certain parts
of the information (i.e. total charge in case of point-charge distribution) whereas
the other regularization-specific information is discarded. In this regard Colombeau
objects contain information upon the small-scale (micro-)structure of the physical
objects. Upon nonlinear operations part of the micro-structure can be magnified to
the macroscopic level. At this level equality is modelled by the so-called associa-
tion operation which groups together (different) Colombeau-objects that contain the
same macro-aspect. However, this coarse-graining operation is in general incom-

1 We are going to use the so-called simplified algebra [1] which allows a concise treatment and
has the advantage of being immediately usable in the manifold context [2].
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patible with nonlinear operations due to the aforementioned magnification effect.
The most well-known example of this effect being the product of arbitrary powers
of the Heaviside-θ with θ √, i.e. θn−1θ √ → (1/n)δ. Although we have θn → θ and
θ √ → δ, that is to say although all powers of θ have the same macro-aspect as θ itself
and θ √ has the same macro-aspect as δ the product θnθ √ nevertheless remembers the
microaspect of which power of θ has been multiplied by θ √ the resulting object having
the same macro-aspect as δ but different pre-factors.

2 The Method

Our approach to solve the nonlinear scattering problems employs precisely this struc-
tural interplay between macroscopic and microscopic aspects. Namely, in the first
step we construct the solution from the macroscopic form of the scattering-equation,
i.e. by gluing free solutions. The gluing of the solution and the singular character of
the equations contain the microscopic information. Imposing the nonlinear scattering
equation we obtain upon coarse graining, in the second step, magnified micro-aspects
which appear in form of undetermined parameters. In order to determine these ambi-
guities we invoke additional conditions in the form of conservation laws that would
be an automatic consequence in the smooth context but do not necessarily follow
in the singular context, since they involve nonlinear operations. In this sense we let
the equations themselves determine the ambiguities and do not stipulate their values
beforehand. Our approach does, due to the use of the Colombeau-algebra, not rely on
any particular regularization scheme but rather determines the conditions that phys-
ically sensible regularizations have to obey. At the same time keeping most of the
simple set-up of the original problem. The scattering by impulsive fields initiated by
’t Hooft [3] using Penrose’s [4] cut-and-paste method has been studied previously
in a number of papers e.g. the classical aspects of test particles (without spin) in
gravitational pp-waves first by Balasin [5], and then by Kunzinger and Steinbauer
[6], making use of the full Colombeau machinery. The scattering of Dirac particles
was considered e.g. by Sanchez and deVega [7], however with the drawback of an
arbitrary choice of the arising ambiguities.

3 Impulsive Yang-Mills Scattering

In the following we will consider scattering of quantum particles in an impulsive
pp-wave Yang-Mills field. The latter is treated in analogy to the gravitational case

Ai
a = f i pa, (p∂) f i = 0, p2 = 0, ∂a pb = 0.

Borrowing terminology from the gravitational case the Lie-algebra-valued function
f i will be referred to as the wave-profile. For the quantum particle we will consider
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the corresponding Dirac equation with respect to a pp-wave Yang-Mills field, where
we take the spinor field to transform with respect to the canonical representation of
the Lie-group G on its Lie-algebra

(γ a Da − m)ψ = 0, {γa, γb} = 2ηab, Da = ∂a − [Aa, .].

Taking the pp-wave character of the Yang-Mills field into account the Dirac equation
becomes

(γ a∂a − m)ψ − [ f, /pψ] = 0.

The impulsive nature of the wave reflects itself in the appearance of a delta function
in the wave profile concentrated on the null hyperplane with generator pa , i.e. f i =
δ(px) f̃ i , where f̃ i is the reduced profile that depends only on the spacelike directions
along the null plane. Within the Colombeau-algebra we may glue the Dirac spinor ψ

from two solutions of the free Dirac equation “above” and “below” the pulse-plane

ψ = θ+ψ+ + θ−ψ−
θ+ = θ

θ− = 1 − θ
.

Together with θδ → Aδ the weak equation (γ a∂a − m)ψ − [ f, /pψ] → 0 therefore
entails

/pψ+ − /pψ− = A[ f̃ , /pψ+] + (1 − A)[ f̃ , /pψ−],

or equivalently

(id − A[ f̃ , .])/pψ+ = (id + (1 − A)[ f̃ , .])/pψ−. (1)

The “ambiguity” (macroaspect of the product between θ and δ) A will be deter-
mined by a physical condition. The smooth Dirac equation implies the existence of
a conserved current J a

J a = [ψ̄, γ aψ] ψ̄ := ψ† B − Bγ a B−1 = γ a† ∓ γ̄ a = −γ a,

via

Da[ψ̄,γ aψ] = [Daψ, γ aψ] + [ψ̄, γ a Daψ]
= −[γ a Daψ,ψ] + [ψ̄, γ a Daψ] = −m[ψ̄, ψ] + m[ψ̄, ψ] = 0,

where in the first equality we took the reality of Da with respect to YM-inner-product
and in the second the imaginary character γ a (anti-hermiticity with respect to the
Dirac adjoint) into account. In the impulsive pp-wave context conservation involving
non-linear operations no longer follows from the weak equation. Therefore requiring
the weak conservation equation
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Da[ψ̄, γ aψ] = ∂a[ψ̄, γ aψ] + [ f, [ψ̄, /pψ]]
= ∂a[ψ̄, γ aψ] + δ[ f̃ , [ψ̄, /pψ]] → 0

yields, together with θ2δ → Bδ,

[ψ̄+(0), /pψ+(0)] − [ψ̄−(0), /pψ−(0)] + B[ f̃ , [ψ̄+(0), /pψ+(0)]] + (A − B)×
([ f̃ , [ψ̄+(0), /pψ−(0)]] + [ f̃ , [ψ̄−(0), /pψ+(0)]]) + (1 − 2A + B)[ f̃ , [ψ̄−(0), /pψ−(0)]] = 0.

(2)

By taking the inner product of (2) with f̃ we find

tr( f̃ [ψ̄+(0), /pψ+(0)]) − tr( f̃ [ψ̄−(0), /pψ−(0)]) = 0,

which yields together with (1)

tr(ψ̄−(0)(id + (1 − A)[ f̃ , .])†(id − A[ f̃ , .])−1†(id − A[ f̃ , .])−1×
(id + (1 − A)[ f̃ , .])[ f̃ , /pψ−(0)]) = tr(ψ̄−(0)[ f̃ , /pψ−(0)])

fixing A = 1/2. This result, however, implies together with (2), B = 1/4, thereby
fixing both ambiguities. Therefore the junction condition reads in its final form

/pψ+(0) = (id − 1

2
[ f̃ , .])−1(id + 1

2
[ f̃ , .])/pψ−(0),

where U = (id − 1/2[ f̃ , .])−1(id + 1/2[ f̃ , .]) is unitary with respect to the inner
product, being the Cayley-transform of the anti-hermitean operator 1/2[ f̃ , .] and no
further restriction on ψ±.
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Effective Vacuum Bianchi IX in Loop
Quantum Cosmology

Alejandro Corichi, Asieh Karami and Edison Montoya

Abstract In classical general relativity, the chaotic behavior of the Bianchi IX model
can be useful to describe the generic local evolution near a singularity. However, one
expects that quantum effects can modify it. In this contribution we show that the
modifications which come from Loop Quantum Cosmology imply a non-chaotic
effective behavior.

1 Introduction

Bianchi models are spatially homogeneous models such that the symmetry group S
acts simply and transitively on a space manifold Λ √= S . The symmetry group for
Bianchi IX model is generated by three spatial rotations on a 3-sphere. We identify
this group with SU(2) to define fiducial frames and co-frames. The fiducial cell is a
3-sphere with radius ao (=2) and its volume is Vo = 2φ2a3

o . We define κo = V 1/3
o

and ν = κo/ao = (2φ2)1/3. In terms of the phase space variables used in loop
quantum gravity (LQG) [1–3], a connection Ai

a and a densitized triad Ea
i , the classical

constraint is
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J. Bičák and T. Ledvinka (eds.), Relativity and Gravitation, 573
Springer Proceedings in Physics 157, DOI: 10.1007/978-3-319-06761-2_80,
© Springer International Publishing Switzerland 2014



574 A. Corichi et al.

CH =
∫
V

N

[
− Ea

i Eb
j

16φG∂ 2
→|q|ξ

i j
k

(
Fk

ab − (1 + ∂ 2)πk
ab

)
+ Hmatter

]
d3x , (1)

where N is the lapse function, Hmatter = τV and πab is the curvature of the spin
connection σ i

a which is compatible with the triads. In what follows, we take N = 1
and since we work in vacuum, τ is equal to zero. If we restrict ourselves to diagonal
Bianchi IX model, we can parametrize Ai

a and Ea
i as Ai

a = ci oδi
a/κo and Ea

i =
pi

→
oq oea

i /κ2
o, the pi ’s in terms of scale factors ai are |pi | = κ2

oa j ak , and the volume
is V = →|p1 p2 p3|. The nonzero Poisson brackets are given by {ci , p j } = 8φG∂ Ωi j ,
where ∂ is the Barbero-Immirzi parameter.

To quantize the Hamiltonian constraint in (1), we find an operator correspond-
ing to Fab and we express the connection Ai

a in terms of holonomies [4]. The op-

erators associated to the connection are then given by ĉi = ̂sin μ̄i ci/μ̄i , where
μ̄i = Σ

√
pi/p j pk , i ∓= j ∓= k and Σ2 = 4

→
3φ∂ l2

p is the smallest eigenvalue of area
in LQG.

For the term which contains the inverse of the metric determinant, and for those
which contain the negative powers of pi ’s, we use the Thiemann strategy [3]. The
idea is to find some classical equivalent expression for them in terms of holonomies
and positive powers of p’s and then quantize this expression. For instance, to quantize
a negative power of pi we know that, classically, there is the following identity

|pi |(κ−1)/2 = −
→|pi |

4φG∂μiκj ( j + 1)
ηi h

(μi )
i {h(μi )−1

i , |pi |κ/2} , (2)

where μ is the length of a curve which is used for calculating the holonomy, κ is a
number between 0 and 1 and j ∼ 1

2 N labels the representation. For simplicity we
take j = 1/2 and choose μi = μ̄iκo because they appear in the terms corresponding
to curvature. Since the largest negative power of p’s which appears in the constraint
is −1/4 we will take κ = 1/2 to obtain it directly from the above equation. After
that, we express the other negative powers by it. The eigenvalues for the operator
̂|pi |−1/4 are

Ji = h(V )

Vc

∏
j ∓=i

p1/4
j , where h(V ) = √

V + Vc − √|V − Vc|, Vc = 2φ∂Σκ2
p.

The correction term which comes from the ξ
i j
k Ea

i Eb
j /

→|q| is A(V ) = (V + Vc −
|V −Vc|)/2Vc. Hence, with these definitions one obtains the corresponding constraint
operator.

In this work, we are interested in studying the classical effective Hamiltonian
which has some modifications from the quantum theory to gain qualitative insights
into the leading order quantum effects. Since the Hamiltonian is invariant under
parity, we restrict ourselves to positive pi ’s. The effective Hamiltonian which is
derived from the quantum theory is
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Heff = − V 4 A(V )h6(V )

8φGV 6
c ∂ 2Σ2

(
sin μ̄1c1 sin μ̄2c2 + sin μ̄1c1 sin μ̄3c3

+ sin μ̄2c2 sin μ̄3c3

)
+ ν A(V )h4(V )

4φGV 4
c ∂ 2Σ

(
p2

1 p2
2 sin μ̄3c3 + p2

2 p2
3 sin μ̄1c1

+ p2
1 p2

3 sin μ̄2c2

)
− ν2(1 + ∂ 2)A(V )h4(V )

8φGV 4
c ∂ 2

(
2V

[
p2

1 + p2
2 + p2

3

]

−
[
(p1 p2)

4 + (p1 p3)
4 + (p2 p3)

4
]

h6(V )

V 6
c

)
.

2 The Effective Potential

It is helpful to use the potential term of the constraint to study the solutions. The
classical potential which comes from the spin connection’s curvature in the classical
constraint, in terms of Misner variables is [5]

W = 1

2
e−4π

(
e−4α+ − 4e−α+ cosh

→
3α− + 2e−2α+[cosh 2

→
3α− − 1]

)
, (3)

whereπ = − 1
3 log V and the anisotropiesα± are defined via a1 = e−π+(α++→

3α−)/2,

a2 = e−π+(α+−→
3α−)/2 and a3 = e−π−α+ . Since the π dependence factorizes, one

can obtain an anisotropy potential V (α+, α−) which exhibits exponential walls for
large anisotropies. The universe can be seen as a particle moving in such a potential
(W ) that presents reflections at the walls. An infinite number of these reflections
implies that the system behaves chaotically. When the volume becomes small, the
quantum effects become important and one should work with the full quantum theory,
but one can use the effective equations to have a qualitative view of what happens
near the classical singularity. From the effective Hamiltonian, the modified potential
can be derived as a function of pi :

W = − V 2 A(V )h4(V )

V 4
c

(
p2

1 + p2
2 + p2

3 −
[
(p1 p2)

4 + (p1 p3)
4 + (p2 p3)

4
]

h6(V )

2V V 6
c

)
.

For a simple case, when α− = 0 and α+ ≤ −∞, the classical potential is
W (α+,π) √ 1

2 e−4π−4α+ . If we rewrite the modified potential in terms of Mis-
ner variables we can see that in this limit, the modified potential behaves as

1
2V 9

c
e−52π−4α+ where the α+-dependency of both classical and modified potential

are the same, so we have an infinite wall for the modified potential too, (see Fig. 1,
left). Note however that, for small volumes, the modified potential can be negative
at some points.
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Fig. 1 Left modified potential when α− = 0. Right zero surfaces of the maximum allowed density;
density in regions A and B can be non-negative but in region C it is always negative; both in Planck
units

3 Density

In the general case, as can be seen in Fig. 1 (right), the maximum allowed density
(which arises from the modified Hamiltonian by choosing the sine functions equal
to −1), has two distinct disconnected regions with positive values. Therefore, if we
impose the weak energy condition and start the evolution within one region, the
universe cannot reach the other region. To study the vacuum Bianchi IX, we start
from large volumes which lie in region B of Fig. 1 (right) and, as we go to smaller
volumes, we cannot reach zero volume because ‘crossing’ to region A is not allowed.
Therefore, there is a smallest reachable volume in region B and, since very large
anisotropies are not allowed near this smallest volume, and the modified potential
is not too large there, then we have, at most, finite oscillations before reaching the
bounce. On the other hand, in the internal region A, the anisotropies are very large
when some of the pi are very small, and then the volume of the universe cannot be
large enough to start the evolution from there.

4 Conclusions

We have studied the behavior of a modified potential for the Bianchi IX model
when quantum effects become important. We showed that the potential wall does
not disappear and we have potential chaotic behavior near the classical singularity.
However, if the weak energy condition holds and if we start from large volumes and
evolve the equations into small volumes, there will be a lower bound for volumewithin
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region B, and one does not reach region A (connected to zero volume). Since there
are no large anisotropies near the smallest allowed volume, the solutions will not
exhibit chaotic behavior.
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Coupling Dimers to CDT to Obtain Higher
Order Multicritical Behavior

Lisa Glaser

Abstract This contribution reviews some recent results on dimers coupled to CDT.
A bijective mapping between dimers and tree-like graphs allows for a simple way
to introduce dimers to CDT. This can be generalized further to obtain different
multicritical points.

1 Introduction

Causal Dynamical Triangulations (CDT) is a proposed theory of quantum gravity.
In CDT the path integral for gravity is regularized through simplices as in dynamical
triangulation. CDT introduces a preferred time slicing to provide for a well-defined
Wick rotation. This preferred time slicing leads to a better behaved continuum theory
[1] (see [2] for a review).

For matrix models it is well-known that random lattices can be coupled to matter,
like dimers or the Ising model, to find quantum gravity coupled to conformal field
theories [3, 4]. It is then an interesting prospect to try and couple matter to the random
lattices of CDT.

In this article we review the results obtained in [5] and present a simple extension
of the model which allows for higher order multicritical points.1

1 Quite similar results have been obtained simultaneously in [6, 7].
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2 Coupling CDT to Dimers

Durhuus et al. [8] proved that there is a bijective mapping between rooted tree graphs
and CDT (see Fig. 1). This bijection makes it possible to determine the critical expo-
nents of CDT using recursive equations as in [9]. It also makes it possible to consider
the easier problem of coupling dimers to a rooted tree graph instead of directly plac-
ing them on the CDT. The simple rule of placing any number of hard dimers on the
tree will lead to a partition function which allows for new multicritical behavior [5].

Hard dimers are a type of matter with local interactions. One can imagine a dimer
like a fixed rod that can be added to the lattice on any link whose neighboring links
are not taken up with dimers. This is illustrated in Fig. 1 on the right.

The partition function for CDT with dimers reads

Z(μ, ξ) =
∑
BP

e−μ
∑

HD(BP)

ξ|HD(BP)|, (1)

where BP is the set of all tree-like graphs, HD(BP) the set of all dimer configurations
on that graph and HD(BP) the number of dimers in a given configuration. This
partition function can be solved using recursive equations which arise for the tree
like graphs and are discussed in detail in [9]. The recursion depicted in Fig. 2 leads
to the equations

Z = e−μ

(
1

1 − Z
+ W

1

(1 − Z)2

)
, W = e−μξ

(
1

1 − Z

)
, (2)

where Z is the partition function for a tree with a normal link at the root and W is
the partition function for a tree rooted in a dimer. At a n-multicritical point the first
n − 1 derivatives of the coupling μ by the partition function Z are zero

∂μ

∂Z

∣∣∣∣
Zc

= · · · = ∂n−1μ

∂Zn−1

∣∣∣∣
Zc

= 0. (3)

We can then solve equations (2) to find the third multicritical point at Zc = 5
8 ,

ξc = − 1
12 and eμc = 32

9 . The critical exponents at this point are γ = 1
3 , dH = 3

2 and
σ = 1

2 . In pure CDT, not coupled to dimers, one finds γ = 1
2 , dH = 2 and σ is not

defined, so it is clear that CDT coupled to dimers lies in a different universality class
than pure CDT. Therefore it represents an interacting system of matter and gravity.
However the negative weight ξ does make the physical interpretation of the results
less clear [10]. It is easy to generalize this model to higher order multicritical points.
To do so one introduces different types of dimers, denoted as type a with weight ξ
and type b with weight ζ. The rule is then that a vertex with an incoming dimer can
not spawn any type of dimer, while a vertex with an incoming empty link can spawn
at most one dimer of each color. This is illustrated in Fig. 2. This model leads to the
partition function
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t-1

t

t+1

t+2

Fig. 1 On the left is an embedding of a simple CDT. The green marked lines on it are those that
are also part of the graph. These suffice to characterize the entire CDT. If we only had the green
lines we could get back to the full CDT by just reintroducing the space-like links and the leftmost
link at every vertex. The figure on the right are three time slices of a CDT. The tree graph is marked
green. The red markings indicate dimers, which can be placed on the tree so as to be non-touching

Fig. 2 These figures are pictorial representations of equations (2), (5). Dimers are depicted as red
(blue) links. The upper left figure is equivalent to the first equation in (2) while the lower left is the
second equation there. The right figure corresponds to equation (5)

Z(μ, ξ, ζ) =
∑
BP

e−μ
∑

HD(BP(a,b))

ξ|a|ζ |b|, (4)

where HD(BP(a, b)) denotes the set of configurations of hard dimers of type a and
b and |a| (|b|) is the number of dimers of type a (b) in the configuration. It can again
be solved using recursive equations for the tree graphs

Z = e−μ

(
1

1 − Z
+ 1

(1 − Z)2 (W + V ) + W V

(1 − Z)3

)
, (5)

where W denotes the partition function starting in a dimer of type a and V for dimers
of type b. For W and V we obtain equations like (2).
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This model has one multicritical point of fourth order at

(ξc, ζc) =
(

1

90

(
5 ∓ i

√
35

)
,

1

90

(
−5 ± i

√
35

))
and e−μc = 256

75
.

The critical exponents are γ = 1
4 and dH = 4

3 . It is possible to extend this model to
any further multicritical point by introducing additional colors of dimers.

3 Summary

Introducing dimer-like matter to CDT leads to new critical behavior. This means
that there is a coupling between the quantum gravity of CDT and the matter of the
dimers. Through the introduction of different types of dimers it is possible to obtain
multicritical points of any order.

Acknowledgments I would like to thank the Danish Research Council for financial support via
the grant “Quantum gravity and the role of Black holes”.
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A Sheet of Graphene: Quantum Field
in a Discrete Curved Space

Nikodem Szpak

Abstract The dynamics of electrons in a sheet of graphene can be described as a
quantum field living in a discrete space—the graphene honeycomb lattice. As this
space can be curved in various ways, the system offers a fascinating tool for studying
and simulating the impacts of non-trivial geometries on quantum fields living in it.
Local and global deformations as well as defects of the lattice can be mapped, via
a discrete differential geometry, onto curvature and torsion in the continuous analog
model. This allows for physical simulation and observation of quantum evolution
and scattering in curved geometry and interaction with torsion. Time-dependent
lattice perturbations, such as sound waves, can be interpreted as dynamical geome-
try and mimic gravitational waves. The immanent quantum character of the lattice
structure—composed of carbon atoms—can be used for proposing a physical simu-
lator of quantum geometry. We discuss the main ideas constituting these analogies,
the latter being the topic of our ongoing project.

1 Introduction

Graphene, probably the most intensively studied material in the last decade, consists
of a regular two-dimensional lattice of carbon atoms. Scientists try to produce, mea-
sure and model graphene in order to better understand its many original features. But
graphene can also be seen as a laboratory offering the unique possibility of quantum
simulations of relativistic phenomena which are known from particle physics but are
still not accessible in experiments. Its crucial feature is the energy dispersion relation
for electronic excitations which is similar to that of the relativistic Dirac equation.
Thus, the excitations of the ground state of graphene behave like relativistic ele-
mentary particles and offer new insights into some ultra-relativistic processes. One
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of the new directions of graphene research, made possible by the newest scanning
techniques, is related to the investigation of its non-flat (curvature) and non-perfect
(defects) crystalline structures and their influence on its macroscopic properties [1].

The dynamics of quasi-particles hopping on the crystal lattice can be effectively
described as a class of discrete Hubbard Hamiltonians [2], which have been exten-
sively studied in the literature in the past half of the century [3]. Universality of the
Hubbard class allows for matching together physical systems of very different origin
but having the same mathematical description and designing new simulators in which
one system mimics another. Deep connections exist between the lattice Hamiltonians
and discretized fundamental relativistic field theories [4–7]. In the current project,
we are working to extend this analogy to curved and dynamically perturbed lattices
by involving the quickly developing language of discrete differential geometry [8].
Similarly, as is the case in numerical methods based on finite difference schemes, it
should allow for the approximation of the dynamics of continuous quantum fields
by their evolution in discrete spaces. These relations offer a new exciting possibility
of designing lattice quantum simulators for continuous quantum fields evolving in
curved geometries. We plan to conduct a systematic investigation of various types of
lattice perturbations and to assign them to geometric objects such as metric, connec-
tion, curvature or torsion. The advantage of this approach should be two-fold: firstly, it
should provide a new elegant language for the effective description of the curved and
defective structures in graphene, which should help to better understand their prop-
erties since the continuous analog field equations are mathematically much more
treatable than the corresponding discrete systems. Secondly, the language should
allow to interpret these types of defects as quanta of curvature or torsion and give
rise to a new, very interesting type of simulators of quantum fields living in curved
spaces or even of quantum geometry.

2 Discrete Differential Geometry from Hubbard Models

The basic Hubbard Hamiltonian has the form

Ĥ =
∑
√n,m→

Tnm Λ̂†
n Λ̂m +

∑
n

Vn Λ̂†
n Λ̂n + h.c., (1)

where Λ̂
†
n and Λ̂n stand for creation and annihilation of a (quasi)particle at site n.

Usually, the first sum is carried over all neighboring pairs of sites denoted as √n, m→.
The hopping parameters Tnm represent probabilities for a (quasi)particle to jump
between the sites n and m in a given time and Vn represents a local potential at site n.

The simplest example of a relation between the Hubbard model and a field dynam-
ics is the scalar field φn = φ(xn) in one dimension discretized on a non-uniform
lattice xn = (n+κn)ν where κn parameterize small displacements of the regular grid.
The Laplace-Beltrami operator ∂g , defined in a Riemannian geometry with metric
gi j , has the continuous representation
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Fig. 1 The hexagonal lattice of graphene (left) and the dispersion relation for the Hubbard model
with one Dirac cone magnified (right)

∂g = 1∓|g|ξi

(√|g|gi jξ jφ
)

, (2)

where |g| = | det gi j |. Going from the continuum to the lattice, as is also done in
numerical calculations, one needs a discrete scheme for calculating derivatives, e.g.
ξ̄xφn = (φn+1 − φn)/an where an = xn+1 − xn = (1 + κn+1 − κn)ν is the distance
between two neighboring lattice sites. Then, a discretized Laplacian on the lattice
reads

∂̄φn = 1

anν
ξ̄x

(
1

anν
ξ̄xφn

)
. (3)

The dynamics of a quantum particle satisfying the nonrelativistic Schrödinger equa-
tion Hφ = −∂φ+V φ can be thus approximated on the lattice by a Hubbard Hamil-
tonian (1) with the hopping parameters Tn,n+1 ∼ Jn = [−1 + 2(κn+1 − κn)]/ν2 and
Vn = [2−2(κn+1 − κn−1)]/ν2. Since the latter describes crystalline systems in solid
state physics it allows for the construction of a class of analog models in which lattice
systems with given Jn and Vn can mimic quantum physics in curved space with the
effective metric (g11)n = (an)2 = (1 + κn+1 − κn)2ν2.

In higher dimensions the situation is more complex—in addition to parameters
representing distances between the neighbors the angles between the lattice links
also enter the formula for the discretized Laplace-Beltrami operator. The language
of non-orthonormal frames, in which the metric g(a)(b) = e(a) · e(b) is related to
the co-frame e(a) spanned by the links attached to each lattice vortex, is then more
suitable. In this approach, perturbations of the metric correspond to the strain tensor
πg(a)(b) = κab = 1

2 (ξaub + ξbua) where ua is the deformation field describing
perturbations of the lattice. The same strain tensor appears in models describing
electrons in deformed crystals [9], whenever the dispersion relation is quadratic at
low energies, i.e. E(k) ≤ πabkakb. It allows for the construction of analog models
in which the lattice strain κab gives rise to curved geometry with an effective metric
gab = πab + κab.

In contrast, in hexagonal lattices like graphene, the dispersion relation is linear
at low energies (Fig. 1), i.e. E(k) ≤ ±|k|, and the effective discrete field behaves
like a Dirac spinor and the metric does not couple directly to it. As is known from
the continuous Dirac equation defined on a curved space, the covariant derivative
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appearing in the 2+1-dimensional massless Dirac equation

iξtτ = c̄ σ (a)e i
(a)(ξi − δi )τ

contains the spin connection δi = 1
8Ω

(a)(b)
i [Σ(a), Σ(b)] with coefficients Ω

(a)(b)
i =

e(a)
j (ξi e(b) j + δ

j
ike(b)k) obtainable from the frame field e i

(a) only. c̄ is the effective
velocity of light in graphene, about 300 times smaller than the speed of light in
vacuum c.

There also exists a mechanism generating mass in the Dirac field based on breaking
the hexagonal symmetry. The so called Kekule perturbations [10] modify the hopping
parameters in such a way that the energy spectrum splits into two gapped bands and
the Dirac points disappear leaving relativistic dispersion relation for massive particles
|E(k)| ∞ ±∓

m2 + k2 at low energies. The mass of the excitations can be freely
tuned by the strength of the Kekule perturbation.

This language enables for the description of several types of plastic deformations
of graphene like strain, ripples or folding by means of external curvature from embed-
ding in the third dimension and has been applied to study the electronic properties of
curved graphene (for a review see Vozmediano et al. [11] and the references therein).

3 Curvature and Torsion from Lattice Defects

All lattice deformations discussed so far have had a character of small perturbations,
not changing its global structure. However, it is virtually impossible to have real
crystals with macroscopic curvature without structural defects. Therefore, in our
current project, we focus on lattice irregularities that have an impact on the long
range lattice structure. This requires an extension of the current approach by the
description of structural defects like dislocations and disclinations. These effects
can introduce effective curvature and torsion fields, giving rise to Riemann-Cartan
geometries in which the simulated quantum fields can evolve.

Geometrization of the defects has been initiated by Kleinert [12] and applied to
graphene by Vozmediano et al. [11]. Extending the geometric language based on
non-orthonormal frames allows for a direct interpretation of defects in terms of (a
discrete) differential geometry: disclinations appear to be quanta of curvature while
dislocations appear to be quanta of torsion [12, 13].

4 Open Problems

The elegant geometric language has one drawback, presenting an obstacle in appli-
cations to physical systems. The framework proposed so far assumes that the frame
field e i

(a), defined directly by the lengths and angles between the lattice links, gives
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rise to a natural connection δ
(a)
(b)(c) = e(a)

i ξ(b)e i
(c) which defines parallelism on the

lattice (cf. [14]). These connection coefficients tell the particles moving in the curved
geometry which lines are straight and which are bent. While in the discretized dif-
ferential geometry that approach seems to be quite natural, when applied to physical
crystals it appears inaccurate. Electrons in crystals satisfy a fundamental ab initio
quantum description and the notion of parallelism (straight lines) must derive from
its properties, not from the geometry of the lattice links only. In other words, it is an
idealizing assumption that the effective continuous geometric fields (frame, metric,
curvature, torsion) are identical to those of the underlying lattice geometry. How-
ever, in the quantum simulators these are the Hamiltonians that have to match, not
the geometries. Therefore, we see an urgent need to improve the current state-of-
the-art by developing methods for deriving the real connection coefficients from the
underlying quantum physical models.

5 Applications

The presented language opens the way for the modeling and simulation of very
interesting effects in which quantum fields interact with curvature and torsion either
distributed across the lattice or in the form of localized singularities. Once it has been
fully developed, specific examples of quantum fields and their coupling to curvature
can be considered. The simplest examples which can be studied are graphene sheets
with point or line defects. Already a single dislocation defect (quantum of a torsion
in the analog model) is theoretically very interesting. In some sense, it corresponds
to a vortex on which the scattering of quantum fields poses a very complex problem
with many surprises, e.g. recently discovered bound states [15, 16]. The vortex
background is also related to rotating black-hole spacetimes (e.g. the Kerr black
hole) for which many conjectures about the field behavior (energy conservation,
boundedness) remain open.

Line defects in two dimensions correspond to grain boundaries and occur com-
monly in graphene. They can be simulated in the analog models with extended torsion
density (cf. [17]) and bear some similarities to cosmic strings.

Further, the so called “5-7” defects introduce significant elastic distortions in
the lattice around [18], bending the nearby “straight lines”. Especially interesting
are the defects giving rise to the global angle defects, such as the “5” or “7”-rings
(Fig. 2), which correspond to a curvature quanta in the analog model. They bend the
“geodesic” lines around the curvature centers in a way corresponding to gravity or
anti-gravity (positive or negative mass, respectively).

Similar ideas to those described here, have been also proposed for optical
lattices—another discrete system with very promising features as an analog sys-
tem for quantum fields. Analogs of cosmological spacetimes [19] or torsion [20]
have been discussed but have not been realized yet.
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Fig. 2 Flat (left) and bumpy (right) graphene defects

Fig. 3 Graphene ripples (left) compared to gravitational waves modifying space geometry (right)

6 Outlook

Graphene also allows quantum simulators with dynamical geometries mimicking
the evolution of (quantum) fields in the presence of passing gravitational waves to
be considered. Sound waves in graphene, causing tiny changes in the carbon atom
positions, can represent time-dependent perturbations of the lattice geometry and
mimic the metric waves. This idea seems especially attractive since it aims to provide
a simulator with truly time-dependent geometry as we know it only from General
Relativity (Fig. 3).

Another very attractive idea appearing to be within reach is the simulation of
quantum geometry. Considering slightly displaced atoms in a crystal as a base for
the effective geometry in which the valence electrons live and treating the atoms
themselves as quantum objects should lead to some form of quantum geometry (cf.
spin net and spin foam models [21, 22])—a very hotly discussed topic in Quantum
Gravity. The phenomenon of defect dynamics, in which defects slowly propagate on
the lattice, change type or disappear, adds another perspective for studying dynamical
quantum geometries.
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7 Conclusions

Graphene is a very flexible material with rich geometric possibilities. It provides
an ideal model for implementing both types of curvature appearing in the lattice
models: (a) the extrinsic curvature present due to folding and embedding of the two-
dimensional graphene sheets in three dimensions and (b) the intrinsic curvature and
torsion coming into play due to structural defects. Moreover, graphene allows for
the design of closed surfaces with nontrivial topologies, as is the case for fullerenes,
nanotubes and similar structures.

Configurations in which the effective Hamiltonians, in the continuous limit, corre-
spond to quantum fields interacting with curvature or torsion open up the possibility
of designing a new type of quantum simulators with some hope of proposing the first
physical simulator of quantum geometry for quantum fields. It needs to be mentioned
that the problem of the evolution of quantum fields in the presence of curvature and
torsion still poses some fundamental questions of a theoretical nature and as such
has never been observed in any laboratory experiment. Any access to such systems
would be highly desirable.

The increasing interest in the technological applications of graphene requires the
development of an efficient and easy-to-use geometric language (toolbox) for the
classification and modeling of various types of graphene geometries as well as the
prediction, description and study of new phenomena appearing in defective graphene
structures. Understanding the implications of defects on its physical properties and
purposive usage of the defects can be another big step in the engineering of new
materials.
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