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Abstract Once a formal representation of data is available an important issue
is to infer additional aspects out of this knowledge base. But according to the
type of representation scheme chosen, different techniques can be applied or gain
better or more accurate results. A reasoning broker system offers the possibility
to apply strategies for selecting the best reasoning system, or for letting run
different reasoners in parallel. In this article a reasoning broker system enabling
the usage and integration of remote reasoners is presented. Additionally, the new
reasoning capability of anytime reasoning has been developed and integrated into
the reasoning broker.

1 Introduction

One of the key advantages of representing domain knowledge in ontologies is the
formal semantics provided by the ontology language’s logical underpinning. For
instance, the Web Ontology Language (OWL) (Bock et al. 2009a) is based on
description logics (Baader et al. 2003), a family of decidable fragments of first-order
logic. This formal semantics enables the possibility of conducting logical reasoning
in order to infer implicit knowledge from explicitly stated axioms and facts. In order
to gain this added value, powerful inference engines (reasoners) are required, which
draw conclusions on the provided ontology.

Depending on the use case at hand, the extent to which logically expressive
language features are exploited in ontologies differs. Studies show that, in fact, most
of the ontologies found on the Web are of low expressiveness in terms of language
features used (Bock et al. 2008). Other differences that can be observed are in the
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size of ontologies with respect to the number of entities referenced by the ontology’s
axioms. These sizes can range from under a dozen up to several tens of thousands
of entities. A significant characteristic when analyzing the size of an ontology is the
type of the entities that occur in large numbers. For instance, there are ontologies
that contain a large number of classes, thus forming a taxonomically rich knowledge
model. On the other hand, there are ontologies with a smaller number of classes
and statements about their terminological relations, but a great amount of instances
asserted to those classes.

This variety of characteristics that discriminate the ontology landscape impose
different challenges on a reasoning engine, which consequently has to cope with
these ontologies. In the past decade, a plethora of reasoners has been developed
for OWL.! Some reasoners, such as HermiT? or Pellet® can serve as reference
implementations for the Description Logic fragment underlying OWL and DL,
and thus are capable of processing ontologies that exploit the full logical expres-
siveness. Other reasoners, such as KAON2.* strive for efficient reasoning with
ontologies containing a great number of instances, at the cost of slightly reduced
logical expressiveness. With the standardization of OWL 2, a range of language
profiles (Calvanese et al. 2009) was introduced, which deliberately reduce the
expressive power in order to reduce reasoning complexity. Reasoners such as CEL,’
TrOWL.® or ELLY’ implement such language profiles. Table 1 shows a (non-
exhaustive) list of reasoners together with some of their properties.

Apart from the obvious differences in language expressiveness reflected by OWL
profiles, there are more subtle characteristics, for instance in the combination of
language features, which have significant performance impact on the reasoning cal-
culus. Developers of reasoners typically implement various optimization strategies
that are automatically switched on, if the input ontology allows this. Nevertheless,
there are major differences in the runtime performance of state-of-the-art reasoning
systems depending on the input ontology and the reasoning task at hand. The
various strengths and weaknesses of reasoners have been studied extensively in
recent years (Bock et al. 2008; Gardiner et al. 2006; Liebig 2006; Luther et al. 2009;
Pan 2005), leading to the conclusion that there is no single best reasoning system
for all reasoning scenarios. Moreover, this leads to a major inconvenience for the
developer of any semantic application intending to utilize reasoning capabilities,
since choosing the best reasoner is a nontrivial task. In particular, in the case where
either input ontologies or reasoning tasks change, there might be different reasoners
suitable for different invocations.

Thttp://www.w3.0rg/2007/OWL/wiki/Implementations
Zhttp://www.hermit-reasoner.com/
3http://clarkparsia.com/pellet/
“http://kaon2.semanticweb.org/
Shttp://lat.inf.tu-dresden.de/systems/cel/
Shttp://trowl.eu/

"http://elly.sourceforge.net/
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Table 1 Non-exhaustive selection of state-of-the-art reasoning systems (Source: Bock et al.

(2012))
CEL Native Profiles EL
Semantics Direct
(Non-)conformance Lacks support for nominals (ObjectHasValue
and ObjectOneOf) and data types/values
Algorithm Proprietary
API OWL API (not for v3.1)
Authorization Open source
ELLY Native profiles EL,RL
Semantics Direct
(Non-)conformance OWL profile support under development
Algorithm Rule inferencing
API OWL API (old version)
Authorization Open source
FaCT++ Native profiles DL
Semantics Direct
(Non-)conformance Fully conforming except for keys and some
data types
Algorithm Tableau
API OWL API, DIG interface
Authorization Open source
HermiT Native profiles DL
Semantics Direct
(Non-)conformance Fully conforming
Algorithm Hypertableau
API OWL API
Authorization Open source
Pellet Native profiles DL, EL
Semantics Direct
(Non-)conformance Fully conforming
Algorithm Tableau
API OWL API, Jena API, DIG interface
Authorization Open source
RacerPro Native profiles DL
Semantics Direct
(Non-)conformance No nominals and RBox
Algorithm Tableau
API OWL API, DIG interface, OWLIlink
Authorization Commercial (free for research)
TrOWL Native profiles DL, EL, QL
Semantics Direct
(Non-)conformance
Algorithm Various proprietary
API OWL API (not for v3.1)
Authorization Open-source
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Fig. 1 Architecture of the HERAKLES reasoning broker (Source: Bock et al. (2012))

This article describes how the problem can be addressed using a reasoning broker
approach, which serves as a hub between existing reasoners and a client. For the
client, this broker appears as a single reasoner but delegates reasoning request
intelligently to its (specialized) reasoning engines in the back end. The broker thus
utilizes the capabilities of all connected reasoners, and provides additional added
value, such as anytime reasoning simulation by approximation.

In the following Sect. 2, the general architecture of the reasoning broker system
is introduced, which can be configured by several broker strategies, which are
presented in Sect. 3. The special case of anytime behavior by approximation is dealt
with in Sect. 4, before the article concludes in Sect. 5.

2 Broker Architecture

A reasoning broker framework for OWL has been implemented as the HERAKLES
system® (Bock et al. 2009b,c) in the context of the THESEUS research program.
The overall architecture of the system is illustrated in Fig. 1.

From an abstract point of view, the broker connects to several external 3rd party
reasoning systems in the back end, while serving as a single reasoner endpoint
for a semantic client application. The way the broker interacts with the external
reasoning systems is driven by two broker strategies: A load strategy and an
execution strategy, each of which is exchangeable in order to accommodate the

8http://herakles.sourceforge.net
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particular usage scenario of the broker (see Sect.3). Moreover, since the broker is
the central component of a distributed reasoning infrastructure, it can implement
centralized caching and load balancing mechanisms, in order to provide instant
response for reoccurring requests, and efficiently manage the available reasoner
resources.

From a more technical point of view, the HERAKLES system is internally
based on the OWL API (Horridge and Bechhofer 2011), a popular, Java-based
framework for dealing with OWL ontologies and a number of conforming reasoners.
Due to this, semantic applications that are based on the OWL API as well can
directly use the reasoner interface implementation provided by HERAKLES. On
the other hand, HERAKLES implements the OWLIink protocol (Liebig et al.
2010), a standardization effort aiming at setting up a common interface in order
to connect different semantic applications in particular reasoners. Adapting to this,
HERAKLES can connect with arbitrary OWL reasoners that exhibit themselves
as OWLlIink servers.’ Since the OWLIink protocol is HTTP-based, HERAKLES
can operate with remote reasoners in a distributed environment. The fact that
HERAKLES itself acts as an OWLIlink server enables the setup of an intelligent
reasoning service in a highly distributed environment.

3 Broker Strategies

The reasoning broker does not implement a reasoning engine or an inference
calculus of any kind. Instead, reasoning requests are intelligently delegated to
external third party reasoners that might be specialized for efficient processing of
particular requests. This intelligent delegation is controlled by two broker strategies
that are integrated into the broker as independent modules:

* A load strategy is responsible for loading ontologies into the registered external
reasoners.

e An execution strategy is responsible for invoking the external reasoners for
particular reasoning requests.

Both, load and execution strategy are exchangeable in order to accommodate the
particular broker usage scenario at hand.

Loading The load strategy manages the initialization of the broker and all (rel-
evant) registered external reasoners with the ontologies in the current reasoning
scenario. Different load strategies are possible. A basic strategy simply asks all
registered reasoners to load the ontologies as requested by the client. An analyzing
strategy extracts various features from the ontologies in order to use this information
for intelligent selection of reasoners for particular reasoning tasks (see Sect. 3).

9Reasoners that do not provide an OWLlink server interface have to be wrapped with minor effort.
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Parallelization The scalability issue in the context of semantic technologies
becomes more and more important. One way to address scalability in terms of
ontology reasoning is to utilize parallelization (Bock 2008) techniques where
possible. A straightforward way of using a reasoning broker for executing reasoning
requests is to delegate the request to all registered (and idling) reasoners and return
the result of the reasoner that answers first. However, it has to be ensured that the
reasoners do not consume shared computing resources which would slow down the
algorithms due to reduced computational power. Thus the best setting for utilizing
such a strategy would be a distributed computing infrastructure with independent
compute nodes, or at least guaranteed computational resources for each node (e.g.
in a virtual environment, such as compute clouds).

Selection In case distributed computing resources are rare, or there is any other
reason to save computational resources, it is advisable to avoid blind invocation
of reasoning tasks on all available reasoners. Thus, using the features extracted
by an analyzing load strategy, a selection strategy can determine the best suitable
reasoner(s) for a given request. Apart from looking at simple rules based on the
known capabilities of the various reasoners, a machine learning approach has been
developed (Bock et al. 2012). In this approach, a corpus of real-world ontologies
from the Web and a set of generated queries are used to determine the fastest
reasoner for each ontology/query combination. The features of ontology and query
are used to teach a model that is later used to predict the best suitable reasoner for
any new ontology/query combination. Experiments have shown that this selection
strategy can predict the best suitable reasoner with an accuracy of up to 77 %.

Fault Recovery Parallelization and the availability of a number of different
reasoners can also be exploited to improve the robustness of the whole reasoning
process. A fault tolerant strategy has been developed, which works similarly to
the basic parallelization strategy, but reacts to failures of external reasoners. Such
failures can occur if a reasoner does not support a particular reasoning request,
or if a reasoner is in a prototypical and thus unstable state. Since a number of
reasoners is invoked simultaneously, the failure of one reasoner does not cause the
others to stop. An experiment with a series of subsequent queries was carried out
in order to test the fault recovery achieved by the said strategy (Bock et al. 2009b).
A set of 100 queries was executed using the HERAKLES reasoning broker. In four
test runs HERAKLES was configured three times with a single reasoner registered
(FaCT++, KAON2, and Pellet), and once with all reasoners registered. As Fig.2
shows, the configuration with FaCT++ shows the best runtime performance.
However, FaCT++ failed in 32 of the 100 queries. Compared to that, Pellet failed
in no case, at the cost of higher runtime. (In fact it could be observed that the queries
that caused long runtimes for Pellet are the ones that caused FaCT+-+- to fail rather
quickly, which explains the runtime discrepancy.) Using the broker configuration
with all reasoners registered and the fault tolerant strategy activated, all queries
could be processed with no failures in less time than when using Pellet alone. The
case where a series of queries is executed on a fixed set of ontologies is assumed
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to be a common one. Thus a broker framework such as HERAKLES provides some
real added value in terms of fault tolerance and runtime improvement.

4 Anytime Reasoning Through Approximation

Most reasoners are developed with the goal of providing sound and complete
answers to queries. For the reasoning task of instance retrieval, this would mean
that a request to obtain instances of a class description answers with a set which on
the one hand contains only correct instances (soundness), and on the other hand all
instances (completeness) for which it can logically be inferred that they belong to the
given class description. These soundness and completeness guarantees are causing
the algorithms to invoke complex inference procedures of high computational
complexity. Recent approaches developed in the context of the THESEUS research
program give up these soundness and completeness guarantees for an improved
runtime performance by approximation (Tserendorj 2010). The Screech system
developed in THESEUS is based on the KAON2 reasoner'® and comes in three
variants (Tserendorj et al. 2008):

* SCREECH-ALL: This variant ensures completeness but gives up soundness.
e SCREECHNONE: This variant ensures soundness but gives up completeness.
* SCREECH-ONE: This variant gives up both soundness and completeness.

1Ohttp://kaon2.semanticweb.org/
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Fig. 3 Combination of variants of the approximate reasoning system SCREECH in order to achieve
simulated anytime behavior for instance retrieval requests

It has been analyzed, how the combination of different kinds of anytime
algorithms exhibits an anytime behavior that cannot be achieved using a single
algorithm (Rudolph et al. 2008). The SCREECH variants introduced above can be
arranged in such a setting as illustrated in Fig. 3. For a given class expression, an
instantiation of SCREECH-NONE is invoked, which is sound but incomplete, and
thus delivers correct instances of this class expression, but the result set might
not be complete. Invoked at the same time, an instantiation of SCREECH-ALL,
which is complete but unsound, delivers a set that contains all correct instances, but
potentially also incorrect ones. A second SCREECH-NONE instance invoked with the
complement of the original class expression delivers a set of correct negative results,
and thus can be used to determine a subset of the result set from SCREECH-ALL
that is definitely incorrect. Though the SCREECH instances work as black boxes,
they can be invoked in parallel and will probably show different runtimes. After
any reasoner returns its results, they can be delivered to the client, provided the
soundness and completeness properties are indicated accordingly. Thus, an example
run may provide results as follows. First, SCREECH-ALL provides a set of instances
which might contain incorrect ones. Second, SCREECH-NONE (positive query)
returns with a subset of the results from SCREECH-ALL. These are definitely correct
and can be marked accordingly. Third, SCREECH-NONE (negative query) returns
with a subset of the results from SCREECH-ALL, which are definitely incorrect and
can be removed from the result set. The final result is a better approximation than
using any of the SCREECH variants alone. In order to finally get the correct (sound
and complete) result set, a standard reasoner may have been invoked in parallel as
well, which is expected to have a slower runtime performance, but is able to verify
the final result. These steps in result delivery provide the client with approximate
intermediate results that are subsequently refined.

An anytime strategy was implemented for the reasoning broker HERAKLES,
which uses the broker facilities of parallelization. To this end, a novel reasoner
interface was implemented to allow for asynchronous reasoning calls — a feature
required for anytime result delivery. The novel interface and broker strategy were
prototypically integrated into the ontology authoring tool Protégé (Bock et al.
2009c¢), where a color encoding was used to indicate the “certainty” of instances
in the result set.
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5 Conclusion

Reasoning brokerage was introduced as a concept that tackles the problem of
diversity in reasoner performance, which can be observed for existing reasoning
systems. To this end, the broker framework HERAKLES was presented as a solution
for semantic application developers, who face the problem of selecting the most
appropriate reasoning system for a given task. On the one hand, the broker is flexible
in terms of exchangeable broker strategies, while on the other hand it simplifies the
usability by providing the standardized programming interfaces of the OWL API
and OWLlIink to the application developer. A collection of broker strategies has
been implemented accommodating parallelization, selection (including machine
learning techniques), fault recovery, and anytime simulation through combinations
of approximate reasoning systems.

Apart from facilitating the incorporation of existing reasoners in semantic
applications, the reasoning broker system can encourage developers of reasoning
systems to focus on particular optimizations for specific reasoning problems,
without losing a large number of potential clients. HERAKLES is designed to
ease the development of additional broker strategies, which might be required in
a particular usage scenario. This flexibility supports the growing interest in semantic
technologies on the level of powerful and suitable reasoning systems for intelligent
applications.
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