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1  Introduction

Environmental contamination by hazardous environmental pollutants is a wide-
spread and increasingly serious problem confronting society, scientists, and regula-
tors worldwide (Debenest et al. 2010; Hajeb et al. 2011; Nanthi and Bolan 2012; 
Shahid et al. 2013a). Among these pollutants, the heavy metals, are a loosely- 
defined group of elements that are similar in that they all exhibit metallic properties, 
and have atomic masses >20 (excluding the alkali metals) and specific gravities >5 
(Rascio and Navari-Izzo 2011). This group mainly includes transition metals, some 
metalloids, and the lanthanides and actinides. Heavy metals can be toxic to plants, 
animals and humans, even at very low concentrations. Heavy metals are natural 
components of the earth’s crust and are present in different concentrations at differ-
ent sites (Shahid et al. 2012a).

Heavy metal environmental pollution has occurred since ancient times, although 
their impact became worse during the industrial revolution from increased metal 
production and from development of new technologies that utilized these metals 
(Arshad et al. 2008; Nasim and Dhir 2010; Uzu et al. 2010; Vuai and Tokuyama 
2011; Pourrut et al. 2011a, 2013; Bai et al. 2011; Tak et al. 2013; Shahid et al. 
2013b) (Fig. 1). Unlike organic chemicals, the majority of heavy metals cannot be 
easily metabolized into less toxic compounds. These metals have long residence 
times in soils (Radwan et al. 2010; Ahmad and Ashraf 2011; Shahid et al. 2012b), 
and may continue to exert harmful effects on the environment over long periods 
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(Giaccio et al. 2012), thereby representing a potential continuing threat to humans 
(Kerin and Lin 2010; Uzu et al. 2011a, b; Luo et al. 2012; Zhao et al. 2012; Foucault 
et al. 2013) and the environment (Schreck et al. 2011; Hunt et al. 2012).

The chemical, biological and physiological effects of heavy metal exposure to 
plants are of growing concern, because of their potential to accumulate therein and 
ultimately enter the food chain (Whiteside et al. 2010; Sarma et al. 2011; An et al. 
2012; Schreck et al. 2012). The toxic impact of heavy metals on plants have been 
widely studied (Krzesłowska et al. 2010; Martínez-Fernández et al. 2011; Ahmad 
et al. 2011a; Evangelou et al. 2012; Hu et al. 2012; Shahid et al. 2013c), and differ-
ent aspects thereon have been addressed in literature reviews (Pourrut et al. 2011b; 
Anjum et al. 2012).

Results of previous studies have shown that excessive accumulation of heavy 
metals in plant tissue can decrease root length, plant biomass, seed germination and 
chlorophyll biosynthesis (Singh et al. 2010). Inside the cell, heavy metals affect 
photosynthesis, respiration, mineral nutrition, enzymatic reactions and many other 
physiological factors (Pourrut et al. 2011b). A rather frequent and common effect of 
heavy metal toxicity in plants is increased production of reactive oxygen species 
(ROS). The production of ROS results from the interaction of heavy metals with 
electron transport activities, particularly in the chloroplast and mitochondrial mem-
branes. The increased production of ROS can disrupt the redox status of cells, 
resulting in oxidative stress to exposed cells, leading to membrane dismantling, 
biological macromolecule deterioration, ion leakage, lipid peroxidation and DNA- 
strand cleavage (He et al. 2011; Carrasco-Gil et al. 2012; Chen et al. 2012). However, 
the toxic effects of heavy-metal-induced ROS on plant macromolecules vary and 
depend on the duration of exposure, stage of plant development, concentration of 
heavy metals tested, intensity of plant stress and the particular organs studied.

To prevent heavy-metal-induced ROS injuries, plants have developed various 
defense mechanisms by which they can transform ROS into less-toxic products 
(Tang et al. 2010; Álvarez et al. 2012). These mechanisms include: prohibiting 
metal entrance into plants, increased root excretion of metals, limiting toxic metal 
accumulation in sensitive tissue, chelation by organic molecules, metal binding to 
the cell wall and sequestration in vacuoles. These mechanisms help plants to sustain 
their cellular redox state and mitigate the damage caused by oxidative stress (Tang 
et al. 2010). The majority of these defense mechanisms depend on metabolic media-
tion of natural compounds such as phytochelatins (PCs), reduced glutathione 
(GSH), carotenoids and tocopherols, and enzymatic antioxidant systems including 
catalase (CAT and EC 1.11.1.6), superoxide dismutases (SOD and EC 1.15.1.1), 
ascorbate peroxidase (APX, EC 1.11.1.11), peroxidase (POD, EC 1.11.1.7), guaia-
col peroxidase (GPX, EC 1.11.1.7), glutathione reductase (GR, EC 1.6.4.2), 
monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and dehydroascorbate 
reductase (DHAR, EC 1.8.5.1). The increased levels of these metabolic intermedi-
ary compounds and of antioxidant enzymes lead to increased stress tolerance against 
heavy-metal- induced ROS (He et al. 2011).

Considerable progress has been made in recent years in understanding how dif-
ferent plants respond physiologically to heavy-metal- and metalloid-induced stress. 
Despite this progress, information is limited on how these plant traits are regulated 
or are induced. How plants respond physiologically to heavy-metal-induced stress 
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varies with plant species, metal type and species, and exposure conditions. 
Additionally, the mechanisms by which heavy metals induce oxidative stress and 
the different ways in which plants may respond to ROS are not completely eluci-
dated. Therefore, predicting when, or how much heavy-metal-induced ROS produc-
tion will occur, and how plants will detoxify these ROS are very important steps for 
improving our ability to assess risks or improve phytoremediation performance. 
With this in mind, it is our objective in this literature review to summarize key 
aspects of how plants are affected by heavy-metal-induced ROS production. In par-
ticular, we address (1) how plant exposure to heavy metals generates ROS, (2) what 
the toxic effects of ROS are to plant macromolecules such as DNA, proteins, carbo-
hydrates and lipids, and (3) how plants defend themselves against, and eliminate 
ROS by enzymatic and non-enzymatic mechanisms.

2  What Are ROS?

“Reactive oxygen species” are generally regarded to exist when the following are 
present: (1) oxygen-derived free radicals such as hydroxyl (HO•), superoxide anion 
(O2

•−), peroxyl (RO2
•), and alkoxyl (RO•) radicals, or (2) oxygen-derived nonradical 

species such as hydrogen peroxide (H2O2), organic hydroperoxide (ROOH) and sin-
glet oxygen (½O2) (Corpas et al. 2011; Circu and Aw 2010). Although all of these 
oxygen-based toxic species are ROS, all ROS are not oxygen radicals. ROS are 
basically short lived, unstable and chemically very reactive molecules, possessing 
unpaired valence shell electrons (Wang et al. 2010).

3  ROS Production in Plant Metabolism

3.1  Natural Production of ROS in Plants

Under aerobic conditions, the generation of ROS is an inevitable aspect of life 
(Jaspers and Kangasjärvi 2010; Kovacic and Somanathan 2010; Swanson and 
Gilroy 2010; Wei et al. 2011; Foyer and Noctor 2012). Plant organelles such as 
mitochondria, chloroplasts and peroxisomes are considered to be major sources of 
ROS production in plant cells (Karuppanapandian et al. 2011a; del Río 2011; 
Borisova et al. 2012; Minibayeva et al. 2012; Pucciariello et al. 2012). In sun- or 
artificial-lighting conditions, peroxisomes and chloroplasts are the main sources 
of ROS (Foyer and Noctor 2003). However, in darkness, plant mitochondria are con-
sidered to be the main site of ROS production (Foyer and Noctor 2003). The main 
sites of ROS production are the complex I and the complex III of the mitochondrial 
electron transport chain (Barranco-Medina et al. 2007). It is believed that almost 2% 
of the O2 consumed by mitochondria is used to generate H2O2 (Becana et al. 2000). 
In the apoplast, ROS are produced as a consequence of NADPH oxidase activity 
(Achard et al. 2008; Weyemi and Dupuy 2012; Potocký et al. 2012).

M. Shahid et al.
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During non-stressed cellular metabolism, O2 is reduced to H2O. During this 
process, ROS such as O2

•−, H2O2 and OH• are produced as by-products, either by 
electron transfer or energy transfer reactions (Pucciariello et al. 2012; Borisova 
et al. 2012). The single electron reduction of O2 generates the anion superoxide 
(O2

•−). Superoxide is believed to be the precursor of most ROS and acts as a media-
tor in oxidative chain reactions. This anion is short-lived, which is easily dismutated 
to H2O2. In contrast to O2

•−, H2O2 is highly stable and diffusible and is capable of 
inactivating cell molecules, even at a very low concentration. The main threat 
imposed by O2

•− and H2O2 lies in their ability to generate highly reactive OH• radi-
cals (Møller et al. 2007; Bhatt and Tripathi 2011). In the presence of Fe, H2O2 and 
O2

•− interact in a Haber–Weiss reaction, which produces OH• (Minibayeva et al. 
2012). The OH• is considered to be the most reactive ROS, owing to its ability to 
start radical chain reactions, which are considered to be responsible for producing 
toxic effects in plants (Mittler et al. 2004; Jones et al. 2011). Under normal condi-
tions, an optimal ROS level is maintained by antioxidant enzymes.

3.2  Heavy-Metal-Induced Production of ROS in Plants

When exposed to heavy metals, plants are known to produce increased quantities of 
ROS (Table 1). This phenomenon is regarded to be among the earliest of biochemi-
cal changes, when plants are subjected to heavy metals stress (Jasinski et al. 2008; 
Yadav 2010; Grover et al. 2010; Lushchak 2011; Opdenakker et al. 2012). A serious 
imbalance occurs from the production and elimination of ROS, and this imbalance 
leads to dramatic physiological challenges to the plant that we call “oxidative stress” 
(Morina et al. 2010; Kováčik et al. 2010). Metals, such as Cu, Fe, Pb, Cd, Cr, As, 
Hg, Cr and Zn, all have the ability to induce the formation of ROS (Duquesnoy et al. 
2010; Vanhoudt et al. 2010a, b; Márquez-García et al. 2011; Körpe and Aras 2011).

However, the phenomenon of ROS production is different for redox-active and 
redox-inactive metals (Pourrut et al. 2008; Opdenakker et al. 2012). Redox-active 
metals such as Fe and Cu catalyze Haber–Weiss/Fenton reactions:

 
Cu Cu e and Fe Fe e+ + - + + -+ +( ) 

2 2 3 ,
 

in which H2O2 is broken down into OH• at neutral pH (Valko et al. 2006; Sahi and 
Sharma 2005) (Fig. 2). In contrast, redox-inactive metals, such as Pb, Cd, As, Hg, Ni 
and Zn inhibit enzymatic activities as a result of their affinity for –SH groups on the 
enzyme (Mishra et al. 2006; Cuypers et al. 2011; Pourrut et al. 2011b). Redox- 
inactive metals form covalent bonds with protein sulfhydryl groups because of their 
electron-sharing affinities. Inactivation of enzymes results from the interaction of 
heavy metals with proteins, either at the catalytic site or elsewhere. Heavy metals, 
especially Pb, can also inactivate enzymes by binding to functional groups (COOH) 
present in proteins (Gupta et al. 2009, 2010). Moreover, displacement of essential 
cations by heavy metals from specific enzyme binding sites disrupts the ROS bal-
ance in cells, and results in ROS overproduction. For example, Zn, which acts as 
co-factor for many enzymes, can be replaced by heavy metals, causing enzyme 
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Table 1 Heavy-metal-induced reactive oxygen species (ROS) production in different plant species

Heavy metals ROS Plant species References

Al OH•, H2O2, O2
− Hordeum vulgare Achary et al. (2012)

NO• Secale cereale He et al. 2012)
Triticum aestivum

As NOO•, H2O2, O2
− Oryza sativa Singh et al. (2009)

Cd H2O2 Arabidopsis thaliana Martínez-Peñalver et al. (2012)
H2O2 Chlorella vulgaris Piotrowska-Niczyporuk et al. (2012)
H2O2, O2

− Gracilaria dura Kumar et al. (2012)
H2O2 Brassica juncea Ahmad et al. (2011b)
H2O2 Medicago sativa Antolín et al. (2010)
H2O2 Ipomoea batatas Kim et al. (2010)
OH•, H2O2, O2

− Alocasia macrorrhiza Liu et al. (2010a)
H2O2, O2

− Solanum nigrum Deng et al. (2010)
H2O2 Brassica juncea Guan et al. (2009)
NO•, H2O2, O2

− Pisum sativum Rodrıguez-Serrano et al. (2009)
OH•, H2O2, O2

− Ceratophyllum demersum Aravind et al. (2009)
H2O2 Triticum aestivum Singh et al. (2008)
H2O2, O2

− Arabis paniculata Qiu et al. (2008)
NO• Triticum aestivum Groppa et al. (2008)
H2O2 Vicia faba Lin et al. (2007)
O2

− Mytilus galloprovincialis Koutsogiannaki et al. (2006)
H2O2 Nicotiana tabacum Olmos et al. (2003)
O2

− Lupinus luteus Kopyra and Gwóźdź (2003)
H2O2 Pisum sativum Romero-Puertas et al. (2002)
O2

−− Oryza sativa Shah et al. (2001)
Cu H2O2 Pisum sativum Turchi et al. (2012)

H2O2 Arabidopsis thaliana Martínez-Peñalver et al. (2012)
H2O2, O2

- Matricaria chamomilla Kováčik et al. (2010)
H2O2 Ipomoea batatas Kim et al. (2010)
H2O2 Medicago sativa Antolín et al. (2010)
NO•, H2O2 Lycopersicon lycopersicum Wang et al. (2010)
H2O2, O2

− Withania somnifera Khatun et al. (2008)
Mn H2O2, O2

− Cucumis sativus Shi and Zhu (2008)
Ni H2O2, O2

− Hypnum plumaeforme Sun et al. (2010)
Thuidium cymbifolium
Brachythecium piligerum

Pb H2O2 Vicia faba Shahid et al. (2012a, b, c, d)
H2O2 Chlorella vulgaris Piotrowska-Niczyporuk et al. (2012)
H2O2, O2

− Vallisneria natans Wang et al. (2010)
O2

− Spinacia oleracea Wang et al. (2010)
H2O2 Triticum aestivum Yang et al. (2010)
H2O2, O2

− Hypnum plumaeforme Sun et al. (2010)
Thuidium cymbifolium
Brachythecium piligerum

OH•, H2O2, O2
− Alocasia macrorrhiza Liu et al. (2010a)

H2O2 Medicago sativa Antolín et al. (2010)
H2O2 Sedum alfredii Liu et al. (2008)
O2

− Vicia faba Pourrut et al. (2008)
H2O2 Elsholtzia argyi Islam et al. (2008)
H2O2, O2

− Sedum alfredii Huang et al. (2008)
H2O2 Oryza sativa Chen et al. (2007)
O2

− Lupinus luteus Kopyra and Gwóźdź (2003)
Zn H2O2 Pisum sativum Turchi et al. (2012)

H2O2 Ipomoea batatas Kim et al. (2010)
O2

− Mytilus galloprovincialis Koutsogiannaki et al. (2006)

O2
•−, superoxide anion; HO•, hydroxyl; H2O2, hydrogen peroxide; NO•, nitric oxide; NOO•, nitrogen 

dioxide
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inhibition and oxidative stress. Heavy metals are also capable of depleting GSH 
inside plant cells (Pourrut et al. 2011b, 2013; Lee et al. 2012). When this happens, 
heavy metals deplete the major antioxidants that exist within cells, which disrupts 
the ROS balance. Heavy metals also enhance ROS production via binding and con-
suming GSH and its derivatives directly, which are required to scavenge any ROS 
generated (Lee et al. 2003). In addition, plasma-membrane-bound NADPH oxidase 
is involved in heavy-metal-induced oxidative stress (Sagi and Fluhr 2006; Pourrut 
et al. 2008, 2013; Weyemi and Dupuy 2012; Potocký et al. 2012). Plasma membrane- 
bound NADPH oxidases can utilize cytosolic NADPH to generate O2

•−, which is 
quickly dismutated to H2O2 by SOD (Pourrut et al. 2008). The ROS formed by the 
NADPH oxidase exists outside the plasma membrane, where the pH is normally 
lower than that inside the cell (Sagi and Fluhr 2006). Heavy-metal-induced ROS 
generation via NADPH oxidase was reported in Cd-treated Pisum sativum 
(Rodríguez-Serrano et al. 2006), Ni-treated Triticum durum (Hao et al. 2006) and 
Pb-treated Vicia faba (Pourrut et al. 2008). Moreover, Ca2+ and protein kinases have 
also been reported to have a role in heavy-metal-induced ROS production by activat-
ing NADPH oxidase (Yeh et al. 2007; Sahi and Sharma 2005; Pourrut et al. 2013).

4  Roles of ROS in Plant Metabolism

Traditionally ROS were considered to be toxic by-products of aerobic metabolism, 
but several recent reports clarified the essential roles of ROS in living organisms 
(Bailly et al. 2008; Rai et al. 2011; Bartoli et al. 2012; Swanson et al. 2011). These 
essential roles include:

• Plant metabolic defense under stress (Juan et al. 2010; Shin et al. 2011; Rai et al. 
2011; Gémes et al. 2011),

• Plant disease resistance (i.e., bacterial and viral) (Jaspers and Kangasjärvi 2010; 
Shin et al. 2011; Kranner et al. 2010; Rai et al. 2011),

Heavy Metals O2
•

•

O2

H2O2 OH

SO
D

Fe3+

Fe3+

Fe2+

Fe2+

Mitochondria
Oxidases (NADPH) Fenton Reaction

Haber-Weiss Reaction

Fig. 2 The Haber–Weiss and Fenton reaction pathways; SOD= Superoxide Dismutase  [modified 
from Kehrer (2000)]
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• Plant signal transduction that controls programmed cell death (Pitzschke and 
Hirt 2006; Blokhina and Fagerstedt 2010; Gill and Tuteja 2010; Rai et al. 2011; 
Corpas et al. 2011),

• Plant growth regulation (e.g., cell wall loosening) (Kranner et al. 2010; Šírová 
et al. 2011; Arasimowicz-Jelonek et al. 2011),

• Regulation of photorespiration and photosynthesis (Edreva 2005; Gill and Tuteja 
2010),

• Initiating mitogen-activated protein kinase cascades (Jaspers and Kangasjärvi 
2010),

• Regulation of root physiology (root hair development, root cell wall loosening 
and stiffening) (Foreman et al. 2003),

• Regulation of stomatal movement (Yu et al. 2009; Gill and Tuteja 2010),
• Regulation of the cell cycle (Mittler et al. 2004; Gadjev et al. 2008; Gill and 

Tuteja 2010),
• Fruit ripening and senescence (Karuppanapandian et al. 2011a, b), and
• Alleviation of seed dormancy (Oracz et al. 2009; Kranner et al. 2010; Whitaker 

et al. 2010; Roach et al. 2010).

The role of H2O2 as a signaling molecule, when it intervenes to defend against 
heavy metal stress has gained considerable attention in recent years. H2O2 can medi-
ate the activities of protein kinases, protein phosphatases and transcription factors 
(Opdenakker et al. 2012). Protein kinases can regulate gene transcription by repress-
ing or activating transcription factors (Pandey and Somssich 2009). Several authors 
have reported that ROS and protein kinases are activated, in response to heavy metal 
exposure. Yeh et al. (2007) reported the induction of kinases via ROS production 
from Cu2+ and Cd2+ stress. Moreover, cadmium exposure is reported to have induced 
protein kinase transcripts via the accumulation of ROS in Zea mays (Wang et al. 
2010) and Arabidopsis thaliana (Liu et al. 2010). However, very little is known 
about the mechanisms and the exact signaling pathways that operate behind these 
processes in plants that are under heavy metal stress.

5  Toxic Effects of Heavy-Metal-Induced ROS 
on Macromolecules in Plants

Heavy-metal-induced ROS can elicit widespread damage to plants, examples of 
which are enzyme inhibition, protein oxidation, lipid peroxidation and DNA and 
RNA damage (Martínez Domínguez et al. 2009; Cuypers et al. 2011). It has been 
reported that the indirect effect of heavy metals on plants macromolecules via ROS 
production is more toxic and rapid than the direct effect (Pourrut et al. 2011b). 
Reactive oxygen species are involved in the early steps of heavy-metal-induced 
toxicity to plants, and hence act as initiators of heavy metal toxicity (Shahid et al. 
2012c; Martínez-Peñalver et al. 2012).

M. Shahid et al.
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5.1  Lipid Peroxidation

Lipids are very important cellular components that play vital roles in various bio-
logical processes, such as providing energy for cellular metabolism, building cell 
membranes, and maintaining organelle and cell integrity and composition (Wallis 
and Browse 2002; Xiao and Chye 2011). Inside the plant, plasma cell membranes 
are the primary target of heavy metal action (Cuypers et al. 2011). Heavy metals are 
known to cause lipid peroxidation via ROS production (Fig. 3) (Cuypers et al. 2011; 
Wahsha et al. 2012; Márquez-García et al. 2012; Chen et al. 2012). Lipid peroxida-
tion causes deterioration of cell membranes, and is one of the most harmful effects 
induced in plants by heavy-metal exposure (Pourrut et al. 2013). Lipid peroxidation 
may result from increased lipoxygenase activity, which initiates the formation of 
oxylipins (Porta and Rocha-Sosa 2002). Lipoxygenase has been reported to play an 
important role in heavy-metal-induced oxidative stress in Gracilaria dura, Lessonia 
nigrescens and Arabidopsis thaliana (Smeets et al. 2008; Kumar et al. 2012; 
Vanhoudt et al. 2011).

The phenomenon of lipid peroxidation is most common in polyunsaturated 
fatty acids and involves three distinct stages: initiation, progression and termina-
tion (Pourrut et al. 2011b; Bhattacharjee 2012). Reactive oxygen species are the 
most common initiators of lipid peroxidation in living cells. These ROS remove 

C
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+ L   [OH ] C + LH
. .

.
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.
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Lipid Radical

Unsaturated LipidLipid Peroxyl Radical

+

Lipid Radical

.

.

O2H2O2

SOD

.

Heavy Metals

(I)

(II)

(III)

Fig. 3 Depictions of the possible mechanisms by which metals induce lipid peroxidation. The mecha-
nism of heavy-metal-induced lipid peroxidation is initiated most likely via OH•. The process involves 
three distinct stages: initiation, progression and termination [modified from Bhattacharjee (2005)]
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the hydrogen atom from a methylene group (–CH2–), thus, giving rise to peroxyl 
radicals (Grover et al. 2010; Singh et al. 2010). The ROS-induced initiation of 
lipid peroxidation varies with stress condition and cell type. Under normal condi-
tions, lipid peroxidation in green plant tissues is generally initiated by O2

•−, a non-
radical electrophilic by-product of light capture in photosystem II (PSII) 
(Triantaphylidès and Havaux 2009). Heavy metals are known to inhibit PSII, and 
thus increase O2

•− production in leaves, which leads to increased lipid peroxidation 
(Triantaphylidès et al. 2008; Triantaphylidès and Havaux 2009; Farmer and 
Mueller 2013). In chlorophyll- lacking tissues, lipid peroxidation is started by OH•, 
a radical produced by Fe- or Cu-catalysed degradation of H2O2 (Farmer and 
Mueller 2013). Although O2

•− and H2O2 are capable of initiating the reactions that 
are responsible for lipid peroxidation, only OH• is sufficiently reactive, especially 
in the presence of transition metals such as Cu or Fe (Bhattacharjee 2005; Pourrut 
et al. 2013). One electron redox cycle results in the formation of peroxyl and alk-
oxyl radicals (Karuppanapandian et al. 2011a). The fatty acid radical formed is not 
very stable. In an aerobic environment, oxygen reacts with the fatty acid, thereby 
creating another unstable peroxyl-fatty acid radical. Once initiated, ROO• groups 
are capable to continue the peroxidation chain reaction by receiving a hydrogen 
atom from neighbouring polyunsaturated fatty acids (Bhattacharjee 2005; 
Karuppanapandian et al. 2011a). The resulting lipid hydroperoxide is a highly 
unstable molecule and decays into several reactive species such as lipid epoxides, 
aldehydes (malonyldialdehyde), lipid alkoxyl radicals, alkanes and alcohols 
(Bhattacharjee 2005). The cycle continues from the presence of fatty acid side 
chains that are in close proximity to plant membranes, which facilitates autocata-
lytic propagation of lipid peroxidation.

Generally lipid peroxidation causes: (1) increased membrane leakiness to sub-
stances that do not normally cross membranes, other than via specific channels, 
(2) decreased membrane fluidity, which makes it easier for phospholipids to be 
exchanged between the two halves of the bilayer, and (3) damage to membrane 
proteins that inactivate receptors, enzymes, and ion channels. Several studies 
revealed toxic effects from lipid peroxidation in plants (Yamauchi and Sugimoto 
2010; Farmer and Mueller 2013). Some recent studies reported that heavy metal 
toxicity to different physiological processes occurs via ROS-induced lipid peroxi-
dation (Shahid et al. 2013d). The by-products of lipid peroxidation also strongly 
affect photosynthetic reactions. For example, acrolein, linolenic acid-13-ketotriene 
and 12-oxo-phytodienoic acid are well known to induce toxic effects on PSII 
(Alméras et al. 2003). Exogenous acrolein is reported to deplete chloroplast gluta-
thione pools (Mano 2012). Lipid peroxidation also causes covalent modification 
of plant proteins due to the binding of electrophilic lipid fragments with proteins 
(Farmer and Mueller 2013). This covalent binding occurs when nucleophilic 
atoms (e.g., S or N) bind to the β-carbon of α,β-unsaturated carbonyl groups. 
Nowadays, increased attention is being given to the damaging effects of lipid per-
oxidation products, which can be monitored by using of transgenic approaches 
(Mano 2012).
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5.2  DNA Damage

Heavy-metal-induced genotoxicity in plant cells is a complex phenomenon, and the 
mechanisms behind this process are not yet well understood (Aina et al. 2004; Tuteja 
et al. 2009; Cuypers et al. 2011; Zhu et al. 2011; Shen et al. 2012). According to 
some authors, heavy-metal-induced DNA damage is not direct but occurs indirectly 
through ROS production (Gichner et al. 2006; Gupta and Sarin 2009; Barbosa et al. 
2010; Hirata et al. 2010, 2011). Heavy-metal-induced DNA damage has been 
reported in several plants, examples of which are, Trifolium repens (Aina et al. 2004), 
Cannabis sativa (Aina et al. 2004), Allium cepa (Barbosa et al. 2010), Vicia faba 
(Marcato-Romain et al. 2009a; Pourrut et al. 2011c), Boletus edulis (Collin- Hansen 
et al. 2005), and Nicotiana tabacum and Solanum tuberosum (Gichner et al. 2006).

Among ROS, OH• is the most reactive entity in damaging all components of the 
DNA molecule (Jones et al. 2011). Reactive oxygen species interactions with DNA 
results in: damage to cross-links, base deletions, base modifications, strand breaks 
and damage to pyrimidine dimers (Tuteja et al. 2001; Gastaldo et al. 2008). Among 
these affected DNA sites, base deletion is the most frequent DNA damage induced 
by either heavy metals, ionizing radiation or ultra violet radiation (Gastaldo et al. 
2008). DNA has four different potential sites to which metals may bind, i.e., the 
ribose hydroxyls, the negatively charged phosphate oxygen atoms, the exocyclic 
base keto groups and the base ring nitrogens (Oliveira et al. 2008). Most transition 
metal ions interact in a complex way with DNA: more than two different sites are 
generally involved. Heavy metals generally bind directly to the bases, with the N7 
atom of purines or N3 of pyrimidines and indirectly to the phosphate groups 
(Anastassopoulou 2003). In vitro studies indicated that heavy metals like Cd, Cr, 
Cu, Hg, Pb and Zn interact with DNA, particularly at sulfhydryl groups and the 
phosphate backbone (Sheng et al. 2008). Moreover, heavy metals may alter gene 
expression (Rossman 2000) and they appear to interact with Zn-fingers, which bind 
tetrahedrally to cysteine (Cys) thiolates and/or histidine imidazole groups to main-
tain the DNA three-dimensional structure (Witkiewicz-Kucharczyk and Bal 2006). 
DNA damage can occur either from replication errors, induction of signal transduc-
tion pathways, induction of transcription, cell membrane destruction and/or genomic 
instability (Cooke et al. 2003). In plants and other living organisms, damage inflicted 
on DNA and repair mechanisms generally occur concomitantly, making these pro-
cesses both complex and difficult to independently assess (Gastaldo et al. 2008).

When ROS interact with DNA, oxidized bases are frequently generated (Hirano 
and Tamae 2010). Among the different forms of oxidative DNA damage, effects 
with 8-oxoguanine has been most extensively investigated (Hirano and Tamae 
2010), and is also an event that may lead to neoplastic transformation (Bal and 
Kasprzak 2002). Using a plasmid-relaxation assay, Yang et al. (1999) demon- 
strated that Pb and Cd promoted DNA strand-breakage and formed 
8- hydroxydeoxyguanosine (8-OHdG) adducts in DNA. Recently, Hirata et al. 
(2011) showed As- and Cr-induced translesion DNA synthesis due to their increased 
affinity for DNA containing 8-OHdG.
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Heavy-metal-induced damage to DNA may also result in the production of 
micronuclei, which produce chromosome breaks or mitotic anomalies that require 
passage through mitosis to be recognisable (Marcato-Romain et al. 2009b). 
According to Johnson (1998), heavy metals are capable of interfering with the spin-
dle apparatus of dividing cells to produce DNA damage. Cenkci et al. (2009) 
described Pb-induced genotoxicity, using a random amplified polymorphic DNA 
(RAPD) profile, in Brassica rapa exposed to 0.5 to 5 mM concentrations of lead 
nitrate. Radić et al. (2011) demonstrated damage to DNA (estimated by tail extent 
moment) in Lemna minuta exposed to heavy metals from industrial wastewater. 
Recently, Shahid et al. (2011) reported the Pb-induced production of micronuclei in 
Vicia faba root tips via ROS production. More recently, Pourrut et al. (2011b) dem-
onstrated a close link between oxidative stress induced by Pb, DNA strand breaks 
and micronuclei formation in Vicia faba root tips.

5.3  Protein Damage

Heavy metals may also cause toxic effects in the structure of plant proteins (Tan 
et al. 2010; Luque-Garcia et al. 2011). Protein synthesis is the primary target of 
ROS damage in plants (Nishiyama et al. 2011). This heavy-metal-induced change 
in protein quantity or quality can occur via several mechanisms, e.g., binding of the 
metal ions to free thiols and other functional groups of proteins, replacement of Zn 
and other essential metal ions by free heavy metal ions in metal-dependent proteins, 
etc. Whatever the location of heavy metal-induced ROS, they generally interact 
with proteins that contain sulfur-containing amino acids and thiol groups. Proteins 
are more susceptible to heavy metal ions during the process of folding, than are 
proteins that have already reached their native state (Sharma et al. 2008).

Heavy-metal-induced ROS also cause a quantitative reduction in total protein 
content of cells (Mishra et al. ; Garcia et al. 2006). This quantitative decrease in total 
protein content results from various heavy metals effects: they modify gene expres-
sion (Kovalchuk et al. 2005), increase ribonuclease activity (Gopal and Rizvi 2008), 
consume amino acids to scavenge ROS (Gupta and Sinha 2009), and reduce free 
amino acid content (Gupta et al. 2009) that is linked to alteration in nitrogen metab-
olism (Chatterjee et al. 2004). Heavy metal ions form complexes with proteins by 
binding with –COOH, –NH2 and –SH groups (Tan et al. 2010). As a result, these 
modified biological molecules cannot function properly as a result of their structural 
modification, and this produces cell malfunction. When heavy metals bind to these 
active groups of proteins, they inactivate different enzyme systems, or alter protein 
structure, which is related to the catalytic properties of enzymes. Reactive oxygen 
species do oxidize the following protein amino acid side groups: Cys, Met, His, Arg, 
Lys, Pro, Tyr and Trp. Cadmium treatment raised the carbonylation level from 4 to 
5.6 nmol/mg protein in Pisum sativum plants (Romero-Puertas et al. 2002). Most of 
these reactions are irreversible, although in the specific case of thiol-group oxida-
tion, enzyme-catalyzed re-reduction is possible (Rouhier et al. 2006).
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Recent findings suggest that protein oxidation events are most likely to occur in 
proteins that are extremely close to the site of ROS production. Certain metal ion 
co-factors, such as Fe–S, are particularly susceptible to oxidation. Heavy metal 
exposure to plants not only causes a quantitative change to protein content, but also 
may alter the qualitative composition of cell proteins. The protein composition of 
root cells in V. faba seedlings was altered when exposed to Pb (Beltagi 2005), and 
this can result from the modification in transcriptome profile of numerous enzymes 
such as: cysteine proteinase, isocitrate lyase, arginine decarboxylase and serine 
hydroxymethyltransferase (Kovalchuk et al. 2005).

Heavy metals also may produce indirect effects on protein functioning that 
 curtails protein synthesis or inhibits protein functioning (Pena et al. 2008). For 
example, the plant proteolysis system helps to regulate protein processing and 
intracellular protein levels, and removes abnormal or damaged proteins from the 
cell (Buchanan et al. 2000). The proteolytic system is mainly localized inside cer-
tain organelles, e.g., cytoplasm and the nucleus (Rawlings 2004). Cadmium has 
been reported to cause oxidation of the proteasome in Zea mays (Pena et al. 2007) 
and Helianthus annuus plants (Pena et al. 2006). This enhancement of the protea-
some activity prevents accumulation of oxidatively damaged proteins in the cell 
(Pena et al. 2007).

5.4  Damage to Plant Carbohydrates

Carbohydrates are ubiquitous energy sources, and are key macromolecules for their 
role in plant metabolism and structure (Guan-fu 2011; Dong et al. 2011). 
Carbohydrates are the major products of photosynthesis and act as transport mole-
cules in plant growth, development and storage (Couée et al. 2006). They are 
involved in response mechanisms to different stressors, osmotic adjustment, and 
nutrient and metabolic signaling molecules (Hummel et al. 2009). They also help to 
maintain plasma membrane integrity (Guan-fu 2011), feed the NADPH-producing 
metabolic pathways involved in ROS scavenging, and interact with plant hormone 
signaling through molecules such as the auxins and cytokinins (Rolland et al. 2002), 
gibberellin, abscisic acid and ethylene (Price et al. 2004). Heavy metals are known 
to affect plant sugar content through ROS-induced oxidative stress. Interaction 
between soluble sugar content and ROS cause pollen abortion in Triticum aestivum 
(Lehner et al. 2008) or decreased pollen viability in Oryza sativa (Guan-fu 2011), 
which might be due to the interplay between programmed cell death and ROS. Any 
expression of sugar transporter genes that are induced by heavy metal stress may 
reduce the oxidant damage caused by overproduction of ROS (Nguyen et al. 
2010). Glucose is reported to enhance cellular defences against cytotoxicity of H2O2 
in plants, and enhances plantlet survival (Averill-Bates and Przybytkowski 1994). 
Under intense oxidative stress conditions, ROS affects the structure of carbohy-
drates (Zadák et al. 2009). When thus affected, plant defense mechanisms are 
weakened and plant  macromolecules (including glucose) become vulnerable to 
heavy metal toxicity.
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5.5  Interference with Signalling

Heavy metals interfere with cell signalling via mechanisms that are poorly under-
stood. Effects of heavy metals on cell signalling may be direct as a result of the 
interaction of metals with proteins, or indirect from the formation of metal-induced 
ROS. It has been proposed that heavy-metal-induced disregulation of signalling 
events play a key role in the response of heavy metal toxicity as well as in damage 
development. Metals affect the gene expression, transcription and activation of 
numerous signalling proteins, including growth factor receptors, G-proteins and 
tyrosine kinases (Harris and Shi 2003). In plants, several studies have shown that 
heavy metals (Cu, Zn, Pb and Cd) intervene with mitogen kinase signalling cas-
cades. Mitogen-activated protein kinase (MAPK) pathways incorporate various sig-
nalling stimuli, and specific elements are also activated by ROS (Zhang and Klessig 
2001). These MAPKs are rapidly activated in Medicago sativa by an excess of Cu 
(Jonak et al. 2004). However, Cd exposure activates MAPKs in Medicago sativa 
after a considerable delay (Jonak et al. 2004). The titer of jasmonic acid, salicylic 
acid and ethylene increases in plants after exposure to heavy metals (Pál et al. 2005), 
which then enhances H2O2 generation (Zawoznik et al. 2007) and interferes with cell 
signalling. Romero-Puertas et al. (2007) explained how the redox component scheme 
works, and explained how signalling molecules positively or negatively adjust the 
expression of antioxidant genes during long-term Cd stress in Pisum sativum.

6  Plant Heavy-Metal Tolerance Mechanisms

To survive, plants have to constantly cope with stress. Certain plants (especially 
heavy metal hyperaccumulator plants) operate well even under extreme ROS pro-
duction situations that are caused by heavy metal toxicity. In fact, plants have 
evolved an array of defense mechanisms to combat oxidative damage, for the pur-
pose of restricting cell injury and tissue dysfunction (Shulaev et al. 2008; Benekos 
et al. 2010; Ruan et al. 2011). Such defense mechanisms act separately or simultane-
ously in plants to scavenge any ROS over-production. However, what specific plant 
defense mechanism are active, and the efficiency of it, depends on the plant species, 
plant maturity, type of metal involved, and the level and duration of exposure.

Generally, stress-tolerant plants better defend themselves against ROS than do 
stress-susceptible species (Liu and Pang 2010). Hyperaccumulator plants are effi-
cient at detoxifying and sequestering heavy metals, which enable them to accumu-
late high metal levels in their shoot tissues, without suffering phytotoxic effects 
(Rascio and Navari-Izzo 2011). Such preferential heavy metal detoxification/
sequestration does occur in specific plant structures, such as the epidermis (Freeman 
et al. 2006), trichomes (Küpper et al. 2000) and even the cuticle (Robinson et al. 
2003), where they cause toxicity to the photosynthetic apparatus, if not detoxified.
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6.1  Primary Heavy-Metal Tolerance Mechanisms

Heavy metals mainly enter plants from soil through the roots (Uzu et al. 2009; Tang 
et al. 2010). Heavy metals, especially Pb, are adsorbed onto the root surface before 
uptake and become bound to carboxyl groups of mucilage uronic acid or to the 
polysaccharides of the rhizoderm cell surface (Seregin et al. 2004; Pourrut et al. 
2011b). Such binding of heavy metals to exchange sites at the root surface is a com-
monly employed plant strategy to limit heavy metal absorption into root cells; the 
entrapment occurs in the apoplast by binding the metals to exuded organic acids or 
anionic groups of cell walls (Jiang and Liu 2010). In response to heavy metal toxic-
ity, root thickness can increase, and thereby increase the amount of metal adsorbed 
onto the root surface; when this occurs, the consequence is to reduce metal penetra-
tion into roots (Krzesłowska et al. 2009, 2010). Probst et al. (2009) observed 
increased cell wall thickness of Vicia faba as an ultrastructural alteration caused by 
a high metal level. Liu et al. (2004) and Andrade et al. (2004) reported similar 
increases in cell wall thickness, respectively, in shoots of Vicia faba that were 
exposed to Cu or Cd, and in marine macroalgus exposed to Cu. Such increases are 
believed to be associated with enhanced peroxidase activity (Liu et al. 2004; Probst 
et al. 2009). This enzyme catalyzes lignin synthesis (Arduini et al. 1995) and is 
generally produced in higher plants exposed to heavy metals (Prasad 1996). Probst 
et al. (2009) observed high amounts of electron-dense particles of metals (Pb and 
Zn) on the surface, and within the cell walls of Vicia faba roots. Similar Pb deposits 
were shown to exist along plasma membranes of Sesbania root cells by Sahi and 
Sharma (2005). Krzesłowska et al. (2009) reported reduced penetration of Pb into 
the plasma membrane in Funaria hygrometrica from increased cell wall thickness, 
as a result of Pb binding with JIM5-P, within the cell wall. However, Pb bound to 
JIM5-P can be remobilized by endocytosis (Krzesłowska et al. 2010). In has been 
reported in several studies that Pb is adsorbed onto roots in many plant species: 
Vigna unguiculata (Kopittke et al. 2007), Brassica juncea (Meyers et al. 2008), 
Festuca rubra (Ginn et al. 2008), Lactuca sativa (Uzu et al. 2009) and Funaria 
hygrometrica (Krzesłowska et al. 2010). The degree of adsorption of metals onto 
plant root surface varies with the physico-chemical properties of rhizosphere soil, 
and plant and metal type (Saifullah et al. 2009; Pourrut et al. 2011b). The adsorption 
of metals onto root surfaces reduces their entrance into plants, which is considered 
to be beneficial in the case of vegetables (Pourrut et al. 2011b).

Another defense mechanism plants adopt is to reduce the translocation of heavy 
metals to aerial plant parts. Most of the heavy metals absorbed by plants are seques-
tered in plant root cells. In root cells, toxic metals are detoxified by complexation 
with organic acids, amino acids or sequestered into vacuoles (Rascio and Navari- 
Izzo 2011; Pourrut et al. 2011b). Such complexation restricts the transfer of heavy 
metals towards aerial plant parts, thus protecting leaf tissues, and particularly the 
metabolically active photosynthetic cells from heavy metal damage (Rascio and 
Navari-Izzo 2011). Increased sequestration of heavy metals in root cells is achieved 
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by several mechanisms: they precipitate as insoluble salts in intercellular spaces 
(Meyers et al. 2008), they are immobilized by negatively charged pectins within the 
cell wall (Arias et al. 2010), they accumulate in plasma membranes (Jiang and Liu 
2010), or are sequestered in the vacuoles of rhizodermal and cortical cells (Kopittke 
et al. 2007). Many researchers have reported that >90% of heavy metals present 
accumulate in plant root cells of many plant species. Examples are: Vigna unguicu-
lata (Kopittke et al. 2007), Pisum sativum, Phaseolus vulgaris and Vicia faba 
(Pourrut et al. 2011a), Arabidopsis thaliana (Vanhoudt et al. 2010a) Avicennia 
marina (Yan and Lo 2011), Sedum alfredii (Gupta et al. 2010), Allium sativum 
(Jiang and Liu 2010), Lolium perenne (Jia et al. 2011), Oryza sativa (Hu et al. 
2011), Erica andevalensis (Mingorance et al. 2012) and Chrysopogon zizanioides 
(Danh et al. 2011). The phenomenon of increased amounts of metals being restricted 
to accumulating in roots is more common to Pb than to other heavy metals.

6.2  Secondary Heavy-Metal Tolerance Mechanisms

When plants take up high levels of heavy metals, toxicity is prevented only if the 
plants have a strong sink adequate for storing the toxic metals (Wojas et al. 2010; 
Hassan and Aarts 2011). By having such sinks, plants can evade the toxic effects of 
these metals. Vacuolar sequestration is an important feature that maintains plant 
metal homeostasis, and detoxifies heavy metals (Maestri et al. 2010). The hyperac-
cumulator plants have the ability to limit negative effects of metals by sequestering 
and/or binding them to molecules or plant structures. Heavy metals are detoxified in 
aerial parts of hyperaccumulators plants as a result of ligand binding or entrapment by 
vacuoles (Rascio and Navari-Izzo 2011). Vacuolar transporters partly fulfil this role, 
by contributing to the partitioning of metals into the vacuole (Martinoia et al. 2007).

The vacuole is the final destination for practically all toxic substances. There are 
several pathways by which metals are sequestered vacuoles. Genomic sequencing 
analysis has identified various families of transporters that are involved in heavy 
metal homeostasis in plants (Klatte et al. 2009; Chaffai and Koyama 2011). These 
transporter families include ATP-binding cassettes (ABC), heavy metal ATPases 
(HMAs), Zrt/Irt-like protein (ZIP), cation exchangers (CAXs), natural resistance- 
associated macrophage (NRAMP) and cation diffusion facilitators (CDF) (Grotz 
and Guerinot 2006; Hall and Williams 2003). Among these, CDF ABC and NRAMP 
have been identified as being critical for heavy metal tolerance (Hanikenne et al. 
2005; Chaffai and Koyama 2011).

Metallothioneins (MTs) and phytochelatins are the best characterized and 
important metal-binding ligands in plant cells (Rea 2012). Phytochelatins are 
small, heavy-metal-binding polypeptides that have the general structure of (γ-Glu-
Cys)nGly (n = 2–11). Phytochelatins belong to different classes of cysteine-rich 
heavy metal-binding protein molecules. Heavy metals are capable of stimulating 
the production of PCs, and activating the enzyme phytochelatin synthase (PCS) 
(Vadas and Ahner 2009; Jiang and Liu 2010). The synthesis of PCs is catalyzed 
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non- translationally by PCS, which is activated by metal ions such as Cd, Pb, Zn, 
and Cu (Andrade et al. 2010; Ogawa et al. 2011). In plants, these natural chelators 
bind and transport heavy metals to cell vacuoles (Israr et al. 2011). The transport of 
the metal- PC complex to vacuoles is thought to be facilitated by ABC transporters 
(Prévéral et al. 2009; Park et al. 2012), which for Oryza sativa seedlings, are 
encoded by OsPDR5/ABCG43 (Oda et al. 2011). PCs bind and transport heavy 
metals by forming mercaptide bonds with them (Verbruggen et al. 2009; Semane 
et al. 2010). Generally, PCs bind metals in the cytosol, and the resulting PC–metal 
complex is sequestrated in vacuoles (Ogawa et al. 2011), thereby reducing the con-
centration of free metal ions in the cytosol. In this way, these natural ligands inhibit 
ROS production that results from heavy metal interactions with the delicate redox 
system. In in-vivo studies, Yadav (2010) reported that PCs were involved in the 
cellular detoxification and accumulation of heavy metals as a result of their ability 
to form stable metal-PC complexes. Gisbert et al. (2003) reported that the induc-
tion and  over- expression of a Triticum aestivum gene encoding phytochelatin 
 synthase (TaPCS1) significantly increased uptake and tolerance of Nicotiana 
glauca to Pb and Cd.

Glutathione (GSH; γ-glutamatecysteine-glycine), a sulfur containing tri-peptide, 
is among the most important and critical of the low molecular weight biological 
thiols. Glutathione protects plants from heavy metal toxicity by quenching metal- 
induced ROS (Vanhoudt et al. 2010a; Seth 2012; Noctor et al. 2012). Glutathione 
reacts nonenzymatically with a series of ROS by forming thiyl radicals (Halliwell 
and Gutteridge 1999). Thiyl radicals may generate O2

•−, which can be neutralized by 
SOD/CAT enzymes. It is worth noting that GSH also reacts with the lipid peroxida-
tion metabolite 4-hydroxy-2-nonenal (Wonisch et al. 1997), and plays a role in the 
initial resistance against malondialdehyde, another highly toxic lipid peroxidation 
product (Turton et al. 1997).

Moreover, it is a substrate for PC biosynthesis, and certain related proteins play 
a key role in detoxifying heavy metals (Huang and Wang 2010; Ogawa et al. 2011). 
It is noteworthy that metals do not directly activate PCS activity, but rather, a GSH- 
metal complex is formed, (i.e., in which the metal binds to a thiol group), which 
activates PCS (Na and Salt 2010). Glutathione synthesis is catalyzed by two ATP- 
dependent enzymes, γ-glutamylcysteine synthetase (GSH1) and glutathione synthe-
tase (GSH2). Heavy metal exposure can induce different GSH genes, such as 
glutathione synthetase, glutamyl cysteine synthetase, glutathione peroxidase and 
glutathione reductase. A deficiency of GSH affects defense gene expression and the 
hypersensitive response in plants (Dubreuil-Maurizi et al. 2011). Glutathione is 
reported to enhance proline accumulation in heavy-metal-stressed plants, a role that 
is correlated with reduced damage to membranes and proteins (Liu et al. 2009). 
Generally, PCs and GSH are simultaneously stimulated in plants to detoxify heavy 
metals. However, Gupta et al. (2010) reported the induction of GSH alone for detox-
ification of heavy metals in Sedum alfredii. The enhanced production of GSH does 
not always increase plant tolerance or detoxify heavy metals to reduce plant stress 
(Xiang et al. 2001). Therefore, GSH alone may not be adequate to resist heavy- 
metal stress in plants (Noctor et al. 1998; Yadav 2010).
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Glutathione also plays an important indirect role in detoxifying heavy metals via 
activating the PCS enzyme. Once sufficient GSH levels are achieved during heavy 
metal stress, PCS become active and catalyzes the formation of PC–metal com-
plexes (Yadav 2010). PCS are activated when a heavy metal and two GSH mole-
cules form a thiolate complex (Cd–GS2 or Zn–GS2). Activation of PCS also results 
in the transfer of one γ-Glu-Cys moiety to a free GSH molecule or to a previously 
synthesized PC (Singla-Pareek et al. 2006). Depletion of GSH may result from its 
consumption for PCs synthesis (Mishra et al. 2006), or from direct binding with 
heavy metal ions (Andra et al. 2009a, b).

6.3  Glutathionylation

The thiol group of the amino acid cysteine is extremely vulnerable to ROS (oxida-
tive damage), due to its high sensitivity to oxidation. To protect proteins from oxida-
tion, plant cells have developed a tolerance mechanism, glutathionylation, which 
results in a reversible posttranslational modification of protein thiols (Michelet et al. 
2006; Zaffagnini et al. 2012a). During glutathionylation, the protein thiols are oxi-
dized to various reversible products, such as S-glutathionylation, sulfenic or sulfinic 
acids, and intra- or inter-protein disulfide bonds (Li and Zachgo 2009). The reaction 
mechanism of glutathionylation involves an exchange of a thiol/disulfide between 
GSSG and a protein thiol as following:

 Protein-SH GSSG Protein-SSG GSH+ +  

Several proteomic studies have demonstrated the glutathionylation of a number 
of chloroplast proteins under oxidative stress conditions (Ito et al. 2003; Zaffagnini 
et al. 2007, 2012a, b). The glutathionylation reaction is generally supported by 
ROS such as H2O2 under stress conditions (Zaffagnini et al. 2012b). In the absence 
of a glutathionylation reaction, the thiol group of cysteine could be oxidized to 
irreversible forms, i.e., sulfinates and sulfonates (Poole et al. 2004). In this way, 
the reaction of GSH with thiol groups of cysteine (glutathionylation) protects pro-
teins from possible damage by ROS on redox signaling, although it has yet to be 
completely elucidated and is currently under extensive investigation (Zaffagnini 
et al. 2012a).

A number of redoxactive enzymes are known to intervene in the glutathionyl-
ation process. Examples, on which we elaborate below, are the peroxiredoxins 
(PRDXs) (Dietz 2003; Zaffagnini et al. 2012a), glutaredoxins (GRXs) (Xing et al. 
2006; Meyers et al. 2008), thioredoxins (TRXs) (Buchanan and Balmer 2005; 
Zaffagnini et al. 2012a), and protein disulfide isomerases (Alergand et al. 2006). 
These redoxactive enzymes, together with a various redox-active target proteins 
defend proteins from irreversible oxidation especially under oxidative stress condi-
tions (Ströher and Dietz 2006; Meyers et al. 2008; Zaffagnini et al. 2012a).

M. Shahid et al.



19

Peroxiredoxin (PRDXs) comprises a family of thiol-based peroxidases found in 
organisms ranging from bacteria to mammals (Abbas et al. 2008; Bhatt and Tripathi 
2011; Anjum et al. 2012; Djuika et al. 2013). Though the roles of PRDXs have not 
yet been completely elucidated, their role in heavy-metal-induced ROS detoxifica-
tion is evident (Matamoros et al. 2010; Abbas et al. 2013). The proteomic analysis 
of maize roots (Requejo up-regulation of PRDXs under heavy metal stress. These 
enzymes usually catalyze the reduction of H2O2 and other hydroperoxides (ROOH) 
with help from reduced thioredoxins, to yield thioredoxin disulfide, water, and the 
corresponding alcohol (Dietz 2011; Deponte 2013; Djuika et al. 2013; Randall et al. 
2013). Bhatt and Tripathi (2011) described the reaction mechanism of PRDXs-
induced decomposition of O2

•− to H2O. They summarized the entire process in three 
steps: peroxidation, redox dehydration and reduction as reported by Aran et al. 
(2009). The reaction starts as a nucleophilic attack of the protein thiol on the perox-
ide, resulting in the release of an alcohol and concomitant oxidation to a sulfenic 
acid (RSOH), which starts the catalytic cycle (Ellis and Poole 1997). The thiol 
group of Cys attacks RSOH, resulting in the release of H2O and formation of a 
disulfide bridge. The catalytic cycle is stopped by a complementary reduction sys-
tem, which results in catalytically active PRDXs (Aran et al. 2009; Bhatt and 
Tripathi 2011). Peroxiredoxin with CAT and other peroxidases are reported to take 
part in signal transduction by controlling the intracellular H2O2 concentration 
(Randall et al. 2013; Poynton and Hampton 2013). In plants, PRDXs have four 
subgroups (1-Cys PRDX, 2-Cys PRDX, PRDX II and PRDX Q) that are based on 
the number and position of the conserved cysteine residues, genome-wide analysis 
of plants and their subunit composition (Rouhier et al. 2001; Rouhier and Jacquot 
2002; Poynton and Hampton 2013).

Thioredoxin (TRXs) is a family of antioxidant redox proteins (12.4 kDa) that facil-
itate the reduction of other proteins through the exchange of thiol/disulfide (Lemaire 
et al. 2003). For example, thioredoxins act as hydrogen donors for thioredoxin per-
oxidases or peroxiredoxin, which are involved in the removal of H2O2 (Verdoucq 
et al. 1999; Behm and Jacquot 2000). The reaction mechanism involves the reduc-
tion of the oxidized disulfide form of thioredoxin by NADPH and thioredoxin 
reductase (TRR). Depending on the primary sequence and sub-cellular localization, 
plants have six subgroups/types (TRXs f, m, x, y, h, and o). These subgroups have 
different sub-cellular compartmentalization and function. Thioredoxin-x, -y, -z, and 
NTRc are reported to act as electron donors to various antioxidant enzymes such as 
the glutathione peroxidises, methionine sulfoxide reductases and peroxiredoxins 
(Tarrago et al. 2009; Chibani et al. 2010).

However, it is not always evident that ROS detoxification by antioxidant enzymes 
requires electrons from the glutaredoxin or thioredoxin systems (Culotta et al. 2006; 
Benabdellah et al. 2009). It is reported that in GSH deficient cells, TRXs are over-
produced to compensate for GSH shortage (Pócsi et al. 2004). Examination of the 
redox state of TRXs and GRXs in mutant plants showed that TRXs are independent 
of the GSH/GRX system (Trotter and Grant 2003). Still the interaction of TRXs, 
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GRXs and GSH in redox-dependent regulation, based on disulphide/dithiol 
exchange reactions under stress conditions (overproduction of ROS), is not well 
established in plants.

Glutaredoxins (GRXs) are oxidoreductases that catalyze the reversible reduction 
of disulfide bonds and participate in antioxidant defence by reducing various 
enzymes such as peroxiredoxins, dehydroascorbate, and methionine sulfoxide 
reductase (Buchanan and Balmer 2005; Li and Zachgo 2009). Glutaredoxins are 
oxidized by substrates, and reduced non-enzymatically by GSH. In the dithiol 
mechanism, electrons are transferred from NADPH to GR, then to GSH, and from 
there to GRXs. Finally, GRXs reduce target proteins by dithiol-disulfide exchange 
reactions in a manner similar to TRXs. The plant glutaredoxin family contains more 
than 30 members that are localized in different cell compartments (Couturier et al. 
2009; Zaffagnini et al. 2012b). Almost thirty different GRXs isoforms have been 
identified in A. thaliana. They are subgrouped in six classes based on their 
 redox- active center (Xing et al. 2006). Each class contains a variant of the active site 
motif and peculiar functional properties (Rouhier et al. 2006). GPXs appears to be 
involved in detoxifying H2O2 (Foyer and Noctor 2005, 2009) as well as lipid and 
phospholipid hydroperoxides (Avery and Avery 2001). GRXs also participate to 
reduce the oxidized cysteines, providing evidence of GRXs role in oxidative stress 
signaling (Michelet et al. 2006).

6.4  Nitrogen Metabolism

Nitrogen metabolism plays an important role in plant responses to heavy metal tox-
icity (Lea and Azevedo 2007; Andrade et al. 2010). Various nitrogenous metabo-
lites, such as polyamines, amino acids and amino acid-derived molecules can bind 
to and scavenge heavy-metal-induced ROS (Kovac et al. 2009; Radić et al. 2010). 
When plants are exposed to high heavy metals levels, it is reported that some plant 
amino acids (e.g., proline or histidine), scavenge ROS (Sharma and Dietz 2006; 
Fariduddin et al. 2009).

Huang and Wang (2010) suggested that free prolines help protect certain plant 
enzymes, osmoregulation and help to stabile the sub-cellular components and struc-
tures. Proline has been reported to accumulate in plants under heavy metal stress 
conditions, an indication that its increased presence provides a protective or a regu-
latory role (Sharma and Dietz 2006). Metal-tolerant plants contain higher constitu-
tive proline levels, even in the absence of excess metal ions, than do non-tolerant 
plants (Sharma and Dietz 2006; Huang and Wang 2010). Increased levels of proline 
correlate with enhanced metal tolerance in plants, and as a result, some researchers 
believe it to act as an antioxidant in metal-stressed cells (Gupta and Sarin 2009; 
Huang and Wang 2010). One of the proposed roles of proline is to reduce free radi-
cal levels that are generated from toxicity events. In this regard, proline acts in a 
manner that is similar to GSH, ascorbic acid or tocopherol. Heavy metals interfere 
with N metabolism to cause toxicity that alters the composition of amino acid in 
plants (Callahan et al. 2007).
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6.5  Antioxidant Enzymes

One of the most efficient mechanisms that plants use to protect themselves is to 
detoxify any free radicals that are present. Such detoxification prevents cell injury 
and tissue dysfunction and is accomplished in plant cells via activation of antioxi-
dants enzymes such as SOD, CAT, POD, APX, GR, DHAR and MDHAR (Table 2, 
Fig. 4) (Lomonte et al. 2010; Mou et al. 2011; Vanhoudt et al. 2011; Lyubenova and 
Schröder 2011; Cestone et al. 2012; Opdenakker et al. 2012; Shahid et al. 2013d). 
Previous results have shown that high levels of antioxidant enzymes can increase 
stress tolerance to heavy-metal-induced stress conditions. Many researchers have 
also reported that antioxidant enzymes are activated in different plant species to 
scavenge the ROS that are produced by heavy metal toxicity (Gonnelli et al. 2001; 
Kim et al. 2010; Kafel et al. 2010; Martínez Domínguez et al. 2010; He et al. 2011).

Plant species display different levels of tolerance to heavy metal exposure (Shahid 
et al. 2012d), and the enzymes in these plants display varying behavior when under 
heavy metal stress. Most of these antioxidative enzymes are electron donors and 
react with free radicals to form innocuous end products, such as water. The process 
involves the binding of these ROS to active enzyme sites, and then conversion to 
non-toxic and inactive products. Among these enzymes, SOD is a key one for 
defending plants against ROS. The catalytic properties of SOD were first detected by 
McCord and Fridovich (1969). SOD is responsible for dismutation of the two super-
oxide radicals to H2O2 and O2. In this way, SOD maintains O2

•− at a steady state level 
(Gao et al. 2010; Deng et al. 2010; Andrade et al. 2010; Cestone et al. 2012). An 
increase in SOD activity could be either direct through the action of heavy metal ions 
on SOD, or indirect through an increase in O2

•− levels (Chongpraditnun et al. 1992; 
Shahid et al. 2013d). When SOD appears, it generally does so in response to the 
production of heavy-metal-induced H2O2, which can form lipid peroxides by direct 
or indirect action by lipoxygenase- mediated lipid peroxidation (Deng et al. 2010). 
An increase in SOD activity may result from enhanced formation of O2

•− or from de 
novo synthesis of enzyme proteins (Verma and Dubey 2003; Yılmaz and Parlak 
2011). Catalase is generally present in mitochondria and peroxisomes, where it 
decomposes H2O2 to H2O and O2 (Hermes-Lima 2005; Tang et al. 2010; Shahid et al. 
2013d). Another enzyme class responsible for degrading H2O2 are the PODs, which 
are capable of reducing H2O2 to H2O. Guaiacol peroxidase is present in vacuoles, the 
cell wall, cytosol and extracellular spaces. POD is considered to be a marker of 
heavy metal toxicity, having broad specificity for phenolic substrates and higher 
affinity for H2O2 than CAT (Radwan et al. 2010). Guaiacol peroxidase consumes 
H2O2 to generate phenoxy compounds that are polymerized to produce cell wall 
components such as lignin (Mishra et al. 2006; Pourrut et al. 2011b).

Enzymes of ascorbate–glutathione cycle, APX and GR, are located mainly in 
chloroplasts, other cellular organelles and the cytoplasm, where they are involved in 
controlling the cellular redox status, especially under heavy metals stress conditions 
(Singh et al. 2010). Ascorbic acid is a primary and secondary antioxidant. APX 
utilizes ascorbate to reduce H2O2 to H2O and O2 (Mittler 2002; Triantaphylidès and 
Havaux 2009). During this process, ascorbate is oxidized to monodehydroascorbate. 
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Table 2 The antioxidant enzyme systems different plants use to defend themselves against heavy-metal- 
induced ROS

Heavy metals Enzymes Plant species References

Ag SOD, CAT Potamogeton crispus Xu et al. (2010b)
Al SOD, CAT, APX, GPOX Hordeum vulgare Achary et al. (2012)

SOD, POD Hordeum vulgare Guo et al. (2007)
As SOD, GR, SDH Aspergillus niger Mukherjee et al. (2010)

SOD, POD, APX, CAT Zea mays, Vicia faba Duquesnoy et al. (2010)
APX, MDHAR,  

DHAR, SOD, GST
Typha latifolia Lyubenova and Schröder (2011)

Cd SOD, POD, CAT Carassius auratus Chen et al. (2012)
SOD, APX, GR Gracilaria dura Kumar et al. (2012)
APX, MDHAR, DHAR, 

GR, GST
Helianthus annuus Nehnevajova et al. (2012)

SOD, CAT, APX, GR Solanum lycopersicum Cherif et al. (2011)
APX, MDHAR, DHAR, 

SOD, GST
Typha latifolia Lyubenova and Schröder (2011)

SOD, APX, CAT, GR Brassica juncea Ahmad et al. (2011b)
SOD, POD, CAT Medicago sativa Xu et al. (2010a)
POD, CAT Amaranthus hybridus Zhang et al. (2010)
GSH, GST Brassica juncea Szőllősi et al. (2009)
SOD, POD Hordeum vulgare Guo et al. (2007)

Cr GPX, APX, CAT, GR Zea mays Mallick et al. (2010)
APX, SOD, POD Lycopersicum esculatum Nayek et al. (2010)

Cu APX, MDHAR, DHAR, 
GR, GST

Helianthus annuus Nehnevajova et al. (2012)

SOD, CAT, APX Pisum sativum Turchi et al. (2012)
SOD, APX, GR Sesbania drummondii Israr et al. (2011)
GPX, CAT Phaseolusvulgaris Bouazizi et al. (2010)
SOD, POD, CAT Vetiveria zizanioides Xu et al. (2009)
SOD, POD, APX, CAT Withania somnifera Khatun et al. (2008)
SOD, GPX, CAT Datura stramonium Boojar and Goodarzi (2007)

Malva sylvestris
Chenopodium ambrosioides

SOD, POD Hordeum vulgare Guo et al. (2007)
Ni SOD, CAT, APX,  

GPOX, GR
Brassica juncea Kanwar et al. (2012)

SOD, APX, GR Sesbania drummondii Israr et al. (2011)
Pb SOD Spinacia oleracea Wang et al. (2010)

APX, MDHAR, DHAR, 
SOD, GST

Typha latifolia Lyubenova and Schröder (2011)

SOD, APX Sedum alfredii Gupta et al. (2010)
SOD, GPX, APX,  

CAT, GR
Najas indica Sing et al. (2010)

SOD, APX, GR Sesbania drummondii Israr et al. (2011)
APX, SOD, POD Lycopersicum esculatum Nayek et al. (2010)
SOD, CAT, AsA Zea mays Gupta et al. (2009)
APX, GR, GST Lathyrus sativus Brunet et al. (2009)
CAT, APX Wolffia arrhiza Piotrowska et al. (2009)
APX, SOD, POD Lycopersicum esculatum Nayek et al. (2010)

Zn APX, MDHAR, DHAR, 
GR, GST

Helianthus annuus Nehnevajova et al. (2012)

SOD, CAT, APX Pisum sativum Turchi et al. (2012)
SOD, CAT, APX, GR Solanum lycopersicum Cherif et al. (2011)
SOD, APX, GR Sesbania drummondii Israr et al. (2011)
SOD, POD, CAT Vetiveria zizanioides Xu et al. (2009)

SOD superoxide dismutase, APX ascorbate peroxidise, GPX guaiacol peroxidise, CAT catalase, GR gluta-
thione reductase, AsA ascorbic acid, GSH glutathione, GST glutathione S-transferase, POD peroxidase, 
DHAR dehydroascorbate; reductase, MDHAR monodehydroascorbate reductase, ACOX acyl co-A oxidase, 
SDH succinatedehydrogenase
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The monodehydroascorbate formed can be directly reduced back to ascorbate by 
monodehydroascorbate reductase (MDHAR), or may first be converted to 
 dehydroascorbate, and then reduced by dehydroascorbate reductase (DHAR). In the 
process, GSH acts as reductant, which is oxidized to GSSG (oxidized glutathione). 
When GR activity is induced, the GSH/GSSG ratio remains high, and thus allows 
GSH to participate in PC synthesis and ROS detoxification (Noctor et al. 1998).

Several previous authors have reported heavy-metal-induced increases in anti-
oxidant enzymes (Table 2). Ali et al. (2011) observed activation of SOD, POD, 
APX, GR and CAT under Al or Cr stress in Hordeum vulgare. Israr et al. (2011) 
reported a significant increase in enzymatic (SOD, APX, GR) antioxidant levels in 
Sesbania drummondii seedlings, when the seedlings were exposed to Cu, Ni and Zn 
alone and in combination. Lomonte et al. (2010) reported increased CAT and SOD 
activity, in response to applying Hg to Atriplex codonocarpa for 4 weeks under 
hydroponic conditions. Radić et al. (2010) also reported increased SOD and POD 
activity, when Lemna minor plants were exposed to Al and Zn. Yadav (2010) 
observed that the antioxidants CAT, APX and glutathione S-transferase (GST) 
increased as the Cr concentration increased in Jatropha curcas. Shahid (2010) 
reported a Pb-induced increase in APX, SOD, GPX and GR levels in Vicia faba 
roots and leaves, as did (Choudhary et al. 2010) in Raphanus sativus by Cu. 
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Fig. 4 Schematic representation of heavy-metal-induced oxidative stress. Under normal condi-
tions (highlighted grey), O2

•− is produced by cellular respiration. This O2
•− is converted to H2O2 by 

SOD. The H2O2 produced is converted to H2O and O2 by the combined action of APX, GPOX, 
CAT and GR. In the presence of heavy metals, the O2

•− and H2O2 production is increased. The 
increased ROS is incompletely converted to H2O by the antioxidants. As a result, highly toxic HO• 
is produced by the Haber–Weiss or Fenton reactions. This HO• is the most toxic ROS and is 
believed to initiate lipid peroxidation, cell death, enzyme inactivation and genotoxicity
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Increased activity of POD and CAT in Amaranthus hybridus, in reponse to Cd 
 toxicity, was also observed by Zhang et al (2010). Singh et al. (2010) reported that 
the bioaccumulation of Pb by Najas indica activated several antioxidant enzymes 
(e.g., SOD, APX, GPX, CAT and GR). They also reported significantly increased 
cysteine synthase and glutathione-S-transferase activity. Similar results have been 
reported for Phaseolus aureus and Vicia sativa (Zhang et al. 2009). Recently, Shahid 
(2010) reported the results of a time course experiment (1, 4, 8; 12 and 24 h), in 
which the Pb-induced activation of antioxidant enzymes (APX, GPOX, SOD and 
GR), lipid peroxidation and ROS production occurred, after the Pb concentration 
reached significant levels in roots (after 1 h) and leaves (after 8 h). This suggests 
that Pb-induced lipid peroxidation, activation of enzymes and production of H2O2 
are very rapid phenomena. Moreover, the oxidative bursts in roots and leaves 
 coincide with periods of high Pb entrance rates to these tissues (1 and 12 h) 
(Pourrut et al. 2008).

7  Conclusions and Perspectives

In this review, we have highlighted key results from the previous and particular the 
recent published literature that addresses heavy-metal-induced physiological 
changes that occur in plants. Based on the literature cited in this review, we have 
drawn the following conclusions:

 1. The generation of ROS is an inevitable feature of higher plants and other aerobic 
organisms. These ROS are constantly generated as side-products of certain meta-
bolic pathways, and act to control various essential plant processes. Heavy metal 
exposure to plants disturbs the delicate balance between ROS production and 
elimination, leading to an enhanced steady-state ROS level that is called “oxida-
tive stress”. A common feature of oxidative stress is damage to proteins, DNA, 
and lipids. Consequently, it is suggested that metal-induced oxidative stress in 
cells may partially be responsible for the toxic effects produced by heavy metals.

 2. The plant kingdom has evolved a very efficient enzymatic and nonenzymatic 
defense system that allows ROS-scavenging to protect plant cells from oxidative 
damage. Retention of heavy metals in the cell wall is the first barrier against 
heavy metal stress. Heavy metal chelation by PCs, MTs, GSH and amino acids, 
and subsequent sequestration in vacuoles is another detoxification mechanism in 
plants. Biochemical tolerance to heavy metals is linked to activation of antioxi-
dant enzymes. These heavy metal tolerance mechanisms may be activated sepa-
rately or simultaneously, depending on the type and species of metal and plant.

 3. ROS-induced toxicity to different plant molecules and the various responses of 
plants to over production of ROS are often used as bioindicators in risk and envi-
ronmental quality assessment studies. Such biomarkers are appropriate for use in 
ecotoxicological studies. To further develop and improve these bioindicators, a 
better understanding of the processes and mechanisms involved in ROS produc-
tion, their toxicity and defense mechanisms in the presence of pollutants, such as 
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heavy metals, are needed. Moreover, all bioindicators are not equally sensitive 
to different pollutants under different environmental conditions. Therefore, the 
mechanisms behind ROS production, toxicity and detoxification should be 
 compared to optimize the most sensitive and efficient assays, with respect to 
environmental conditions like applied metal form and concentration, physico-
chemical parameters of medium and metal and plant type.

8  Summary

As a result of the industrial revolution, anthropogenic activities have enhanced the 
redistribution of many toxic heavy metals from the earth’s crust to different environ-
mental compartments. Environmental pollution by toxic heavy metals is increasing 
worldwide, and poses a rising threat to both the environment and to human health. 
Plants are exposed to heavy metals from various sources: mining and refining of 
ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes 
(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions 
and adjacent industrial activity.

Heavy metals induce various morphological, physiological, and biochemical 
dysfunctions in plants, either directly or indirectly, and cause various damaging 
effects. The most frequently documented and earliest consequence of heavy metal 
toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals 
such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, Al, Mn and Zn) cannot gen-
erate ROS directly by participating in biological redox reactions such as Haber–
Weiss/Fenton reactions. However, these metals induce ROS generation via different 
indirect mechanisms, such as stimulating the activity of NADPH oxidases, displac-
ing essential cations from specific binding sites of enzymes and inhibiting enzy-
matic activities from their affinity for –SH groups on the enzyme.

Under normal conditions, ROS play several essential roles in regulating the expres-
sion of different genes. Reactive oxygen species control numerous processes like the 
cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed 
cell death, pathogen defence and development. Enhanced generation of these species 
from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of 
cells, and causes oxidative stress. Cells with oxidative stress display various chemi-
cal, biological and physiological toxic symptoms as a result of the interaction between 
ROS and biomolecules. Heavy-metal-induced ROS cause lipid peroxidation, mem-
brane dismantling and damage to DNA, protein and carbohydrates. Plants have very 
well-organized defense systems, consisting of enzymatic and non-enzymatic antioxi-
dation processes. The primary defense mechanism for heavy metal detoxification is 
the reduced absorption of these metals into plants or their sequestration in root cells. 
Secondary heavy metal tolerance mechanisms include activation of antioxidant 
enzymes and the binding of heavy metals by phytochelatins, glutathione and amino 
acids. These defense systems work in combination to manage the cascades of oxida-
tive stress and to defend plant cells from the toxic effects of ROS.
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In this review, we summarized the biochemical processes involved in the 
overproduction of ROS as an aftermath to heavy metal exposure. We also described 
the ROS scavenging process that is associated with the antioxidant defense machin-
ery. Despite considerable progress in understanding the biochemistry of ROS over-
production and scavenging, we still lack in-depth studies on the parameters associated 
with heavy metal exclusion and tolerance capacity of plants. For example, data about 
the role of glutathione–glutaredoxin–thioredoxin system in ROS detoxification in 
plant cells are scarce. Moreover, how ROS mediate glutathionylation (redox signal-
ling) is still not completely understood. Similarly, induction of glutathione and phy-
tochelatins under oxidative stress is very well reported, but it is still unexplained that 
some studied compounds are not involved in the detoxification mechanisms. Moreover, 
although the role of metal transporters and gene expression is well established for a 
few metals and plants, much more research is needed. Eventually, when results for 
more metals and plants are available, the mechanism of the biochemical and genetic 
basis of heavy metal detoxification in plants will be better understood. Moreover, by 
using recently developed genetic and biotechnological tools it may be possible to 
produce plants that have traits desirable for imparting heavy metal tolerance.
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