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Abstract The non-unicost Set Covering Problem is a well-known NP-hard
problem with many practical applications. In this work, a new approach based on
Binary Firefly Algorithm is proposed to solve this problem. The Firefly Algorithm
has attracted much attention and has been applied to many optimization problems.
Here, we demonstrate that is also able to produce very competitive results solving
the portfolio of set covering problems from the OR-Library.
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1 Introduction

The Set Covering Problem (SCP) is a class of representative combinatorial opti-
mization problem that has been applied to many real world problems, such as crew
scheduling in airlines [1], facility location problem [2], and production planning in
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industry [3]. The SCP is a well-known NP-hard in the strong sense [4]. Many
algorithms have been developed to solve it has been reported to literature. Exact
algorithms are mostly based on branch-and-bound and branch-and-cut [5, 6].
However, these algorithms are rather time consuming and can only solve instances
of very limited size. For this reason, many research efforts have been focused on
the development of heuristics to find good or near-optimal solutions within a
reasonable period of time. Classical greedy algorithms are very simple, fast, and
easy to code in practice, but they rarely produce high quality solutions for their
myopic and deterministic nature [7]. An improved greedy algorithm by incorpo-
rating randomness and memory into it and obtained promising results [8]. Com-
pared with classical greedy algorithms, heuristics based on Lagrangian relaxation
with subgradient optimization are much more effective. The most efficient ones are
those proposed in [9, 10]. As top-level general search strategies, metaheuristics
were also applied to the SCP. An incomplete list of this kind of heuristics for the
SCP includes genetic algorithm [11], simulated annealing algorithm [12], tabu
search algorithm [13], evolutionary algorithms [14], ant colony optimization
(ACO) [15], electromagnetism (unicost SCP) [16], gravitational emulation search
[17] and cultural algorithms [18]. A deeper comprehension of most of the effective
algorithms for the SCP can be found in [19].

In this paper, a new approach based on Binary Firefly Algorithm for the SCP is
presented. Firefly Algorithm (FA) is a recently developed, population-based
metaheuristic [20, 21]. So far, it has been shown that firefly algorithm is very
efficient in dealing with multimodal, global optimization problems. For a deeper
comprehension of review of firefly advances and applications please refer to [22,
23]. Researches on FA for SCP have not been seen to date.

This paper is organized as follows: In Sect. 2, we formally describe the SCP.
The Sect. 3, we present the overview of FA. The description of the proposed
approach is described in Sect. 3. In Sect. 5, we present experimental results
obtained when applying the algorithm for solving the 65 instances different of
SCP. Finally, in Sect. 6 we conclude the paper.

2 Problem Description

The Set Covering Problem (SCP) can be formally defined as follows. Let A = (aij)
be an m-row, n-column, zero-one matrix. We say that a column j covers a row i if
aij = 1. Each column j is associated with a nonnegative real cost cj. Let
I = {1, …, m} and J = {1, …, n} be the row set and column set, respectively.
The SCP calls for a minimum cost subset S ( J, such that each row i 2 I is
covered by at least one column j 2 S. A mathematical model for the SCP is

Minimize f ðxÞ ¼
Xn

j¼1

cjxj ð1Þ
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subject to

Xn

j¼1

aijxj� 1; 8i 2 I ð2Þ

xj 2 f0; 1g; 8j 2 J ð3Þ

The goal is to minimize the sum of the costs of the selected columns, where
xj = 1 if the column j is in the solution, 0 otherwise. The restrictions ensure that
each row i is covered by at least one column.

3 Overview of Firefly Algorithm

Nature-inspired methodologies are among the most powerful algorithms for
optimization problems. The Firefly Algorithm (FA) is a novel nature-inspired
algorithm inspired by the social behavior of fireflies. By idealizing some of the
flashing characteristics of fireflies, a firefly-inspired algorithm was presented in
[20, 21]. The pseudo code of the firefly-inspired algorithm was developed using
these three idealized rules:

• All fireflies are unisex and are attracted to other fireflies regardless of their sex.
• The degree of the attractiveness of a firefly is proportional to its brightness, and

thus for any two flashing fireflies, the one that is less bright will move towards the
brighter one. More brightness means less distance between two fireflies. However,
if any two flashing fireflies have the same brightness, then they move randomly.

• Finally, the brightness of a firefly is determined by the value of the objective
function. For a maximization problem, the brightness of each firefly is pro-
portional to the value of the objective function and vice versa.

As the attractiveness of a firefly is proportional to the light intensity seen by
adjacent fireflies, we can now define the variation of attractiveness b with the
distance r by

b ¼ b0e�cr2 ð4Þ

where b0 is the attractiveness at r = 0. The distance rij between two fireflies is
determined by

rij ¼ xi � x j
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

k¼1

xi
k � x j

k

� �2

vuut ð5Þ

where xk
i is the kth component of the spatial coordinate of the ith firefly and d is the

number of dimensions. The movement of a firefly i is attracted to another more
attractive (brighter) firefly j is determined by
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xtþ1
i ¼ xt

i þ b0e�cr2
ij xt

j � xt
i

� �
þ a rand � 1

2

� 	
ð6Þ

where xij is the firefly position of the next generation. xt
i and xt

j are the current

position of the fireflies and xtþ1
i is the ith firefly position of the next generation.

The second term is due to attraction. The third term introduces randomization,
with a being the randomization parameter and ‘‘rand’’ is a random number gen-
erated uniformly but distributed between 0 and 1. The value of c determines the
variation of attractiveness, which corresponds to the variation of distance from the
communicated firefly. When c = 0, there is no variation or the fireflies have
constant attractiveness. When c = 1, it results in attractiveness being close to zero,
which again is equivalent to the complete random search. In general, the value of c
[20, 21] is in between [0, 10].

4 Description of the Proposed Approach

In this section, the FA is proposed to solve the SCP using binary representation.

Step 1 Initialize the firefly parameters (c, b0, size for the firefly population and the
maximum number of generation, for the termination process).

Step 2 Initialization of firefly position. Initialize randomly M = [X1; X2; …; Xm]
of m solutions or firefly positions in the multi-dimensional search space,
where m represents the size of the firefly population. Each solution of X is
represented by the d-dimensional binary vector.

Step 3 Evaluation of fitness of the population. For this case the function of fitness
is equal to the objective function SCP (Eq. 1).

Step 4 Modification of firefly position. A firefly produces a modification in the
position based on the brightness between the fireflies. The new position is
determined by modifying the value (old firefly position) using Eq. 6 for
each dimension of a firefly. The result of the new component of the firefly,
is probable to be a real number, to fix this, apply a threshold of 0 and 1. If
x0p is greater than the threshold, it is very likely to choose 1, otherwise 0.
The threshold level can be made to range from 0 to 1, and in order to
achieve this a tanh function is used as given in [24].

tanh x0p










� �
¼

expð2 � jx0pjÞ � 1

expð2 � jx0pjÞ þ 1
ð7Þ

Step 5 The new solution is subjected to an evaluation, if is not a feasible solution
generated then is repaired. To make feasible solution is to determine which
rows have not yet been covered and choose the columns needed for cov-
erage. The search for these columns is based in: cost of a column/number
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of rows not covered that cover the column j. Once the solution has become
feasible applies optimization step to eliminate those redundant columns. A
redundant column is that if removed, the solution remains feasible.

Step 6 Memorize the best solution achieved so far. Increment the generation count.
Step 7 Stop the process and display the result if the termination criteria are sat-

isfied. Termination criteria used in this work are the specified maximum
number of generations. Otherwise, go to step 3.

5 Experiments and Results

The performance of Binary Firefly Algorithm was evaluated experimentally using
65 SCP test instances from OR-Library of Beasley [25]. These instances are
divided into 11 groups and each group contains 5 or 10 instances. Table 1 shows
their detailed information where ‘‘Density’’ is the percentage of non-zero entries in
the SCP matrix. The algorithm was coded in C in the development environment
NetBeans 7.3 with support for C/C++ and run on a PC with a 1.8 GHz Intel Core
2 Duo T5670 CPU and 3.0 GB RAM, under Windows 8 system.

In all experiments, the Binary Firefly Algorithm is executed 50 generations, and
30 times each instance. This number was determined by the rapid convergence to a
local optimal closest to global optimum. We used a population of 25 fireflies. The
parameters c, b0 are initialized to 1. These parameters were selected empirically
after a large number of tests and showed good results but may not be optimal for
all instances.

Table 2 shows the results obtained of the 65 instances. Column ‘‘Optimum’’
reports the optimal or the best known solution value of each instance. Columns
‘‘Min. value found’’, ‘‘Max. value found’’ and ‘‘Average’’ reports the minimum,
maximum, and average of the best solutions obtained in the 30 executions.

Table 1 Details of the test instances

Instance set No. of instances m n Cost range Density (%) Optimal solution

4 10 200 1,000 [1, 100] 2 Known
5 10 200 2,000 [1, 100] 2 Known
6 5 200 1,000 [1, 100] 5 Known
A 5 300 3,000 [1, 100] 2 Known
B 5 300 3,000 [1, 100] 5 Known
C 5 400 4,000 [1, 100] 2 Known
D 5 400 4,000 [1, 100] 5 Known
NRE 5 500 5,000 [1, 100] 10 Unknown
NRF 5 500 5,000 [1, 100] 20 Unknown
NRG 5 1,000 10,000 [1, 100] 2 Unknown
NRH 5 1,000 10,000 [1, 100] 5 Unknown
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Table 2 Computational results on 65 instances of SCP

Instance Optimum Min. value found Max. value found Average

4.1 429 481 482 481.03
4.2 512 580 580 580.00
4.3 516 619 620 619.03
4.4 494 537 537 537.00
4.5 512 609 609 609.00
4.6 560 653 653 653.00
4.7 430 491 492 491.07
4.8 492 565 565 565.00
4.9 641 749 750 749.03
4.10 514 550 550 550.00
5.1 253 296 297 296.03
5.2 302 372 372 372.00
5.3 226 250 250 250.00
5.4 242 277 278 277.07
5.5 211 253 253 253.00
5.6 213 264 265 264.03
5.7 293 337 337 337.00
5.8 288 326 326 326.00
5.9 279 350 350 350.00
5.10 265 321 321 321.00
6.1 138 173 174 173.03
6.2 146 180 181 180.07
6.3 145 160 160 160.00
6.4 131 161 161 161.00
6.5 161 186 186 186.00
A.1 253 285 285 285.00
A.2 252 285 286 285.07
A.3 232 272 272 272.00
A.4 234 297 297 297.00
A.5 236 262 262 262.00
B.1 69 80 81 80.03
B.2 76 92 92 92.00
B.3 80 93 93 93.00
B.4 79 98 99 98.03
B.5 72 87 87 87.00
C.1 227 279 279 279.00
C.2 219 272 272 272.00
C.3 243 288 288 288.00
C.4 219 262 262 262.00
C.5 215 262 263 262.07
D.1 60 71 71 71.00
D.2 66 75 75 75.00
D.3 72 88 88 88.00
D.4 62 71 71 71.00
D.5 61 71 71 71.00
NRE.1 29 32 33 32.03

(continued)
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In the Fig. 1 shows the evolution of mean best values for the instances 4.1, 4.2
and 4.3, which shows the rapid convergence of cost minimization.
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Fig. 1 Evolution of mean
best values for SCP4.1,
SCP4.2 and SCP4.3

Table 2 (continued)

Instance Optimum Min. value found Max. value found Average

NRE.2 30 36 36 36.00
NRE.3 27 35 35 35.00
NRE.4 28 34 34 34.00
NRE.5 28 34 34 34.00
NRF.1 14 17 18 17.03
NRF.2 15 17 17 17.00
NRF.3 14 21 21 21.00
NRF.4 14 19 19 19.00
NRF.5 13 16 16 16.00
NRG.1 176 230 231 230.03
NRG.2 154 191 191 191.00
NRG.3 166 198 198 198.00
NRG.4 168 214 214 214.00
NRG.5 168 223 223 223.00
NRH.1 63 85 86 85.07
NRH.2 63 81 82 81.03
NRH.3 59 76 76 76.00
NRH.4 58 75 75 75.00
NRH.5 55 68 68 68.00
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6 Conclusions

As can be seen from the results obtained, the metaheuristic behaves of good way in
almost all instances, with the first set columns instances between 1,000 and 2,000,
there is a mean cost difference of 54 between the global optimum with the best
optimum obtained, and starts to decrease. With a set of columns in 5,000, Firefly
behaves very well coming to have a difference of 2 with respect to the best known
solution value (NRF.2). This paper has demonstrated the Binary Firefly Algorithm
is a valid alternative to solve the SCP, being that its main use is for continuous
domains.

An interesting research direction to pursue in future work about the integration
of autonomous search in the solving process, which in many cases has demon-
strated excellent results [26–29].
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