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Abstract. Block-cipher-based compression functions serve an impor-
tant purpose in cryptography since they allow to turn a given block
cipher into a one-way hash function. While there are a number of secure
double-block-length compression functions, there is little research on gen-
eralized constructions. This paper introduces the Counter-bDM family
of multi-block-length compression functions, which, to the best of our
knowledge, is the first provably secure block-cipher-based compression
function with freely scalable output size. We present generic collision-
and preimage-security proofs for it, and compare our results with those
of existing double-block-length constructions. Our security bounds show
that our construction is competitive with the best collision- and equal
to the best preimage-security bound of existing double-block-length con-
structions.

Keywords: block cipher, compression function, hash function, provable
security.

1 Introduction

While the SHA-3 competition has encouraged many new interesting ideas for
designing hash and compression functions (e.g., the sponge framework [3]), one
of the most popular approaches is to use a given block cipher and turn it into a
one-way function. While the roots to this simple principle can be tracked back
to Rabin [33] at the end of the 70s, the knowledge about it is still highly relevant
today. For instance, the standardized SHA-1 and SHA-2 hash function families
base on the SHACAL-1/2 ciphers. But also many submissions for the SHA-3
contest, such as – Blake [2], Skein [37], or SHAvite-3 [4] – are built on block
ciphers. The advantages are obvious: not only can compression-function design-
ers profit from the pseudo-randomness of an IND-CCA-secure cipher, but also
do they require only a single primitive to obtain both encryption and hashing –
an important matter when designing hardware for resource-constrained devices.

The best understood principle for block-cipher-based compression functions
are so-called single-block-length constructions, which compress a 2n-bit input
to an n-bit output, where n is the state size of the cipher. However, the state
size of the AES is 128 bits, which yields a 64-bit collision security, which is
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insufficient for many applications. As a consequence, one is usually interested
in double-block-length or, more generally, multi-block-length block-cipher-based
hash functions, which take an (an)-bit input and produce a (bn)-bit output, for
a > b ≥ 2.

Related Work. The idea of double-block-length hashing can be attributed
to Meyer and Schilling and their proposal of the rate-1/2 and rate-1/4 hash
functions MDC-2 and MDC-4 [6] in 1988. Together with the Davies-Meyer-like
schemes Abreast-DM and Tandem-DM from Lai and Massey [24], these four
are commonly known as classical constructions. A number of further double-
block-length functions have been proposed recently. According to Mennink [34],
these can be ordered into the classes DBL2n – which employ a cipher with
a 2n-bit key – and DBLn – which use a cipher with an n-bit key (see [41]
for example). The former class contains Abreast-DM, the variants by Lee
and Kwon [27], Tandem-DM, Hirose-DM [17], Stam’s supercharged Type-I
compression function [30,43,44], as well as the generalizations by Özen and
Stam [38] and by Hirose [16].

Moreover, Fleischmann et al. generalized several classes of Davies-Meyer de-
signs and proposed a class of cyclic constructions that contains the compression
functions Weimar-DM, Add-k-DM, and Cube-DM [12,14]. A more detailed
review of related work is provided in Appendix A. All of the mentioned pro-
vide a birthday- type collision security; in addition, there are security proofs
for Weimar-DM, Hirose-DM, Tandem-DM, and Abreast-DM are given in
[12,17,26,27,29].

While double-block-length hashing can offer an acceptable collision security, a
variety of applications demand secure multi-block-length functions with a freely
scalable output of the compression function. For instance, public-key signature
schemes expect inputs of the exact length of the signing key. Moreover, in the era
of SHA-3, hash values with a length of ≥ 256 bits are standard. But it is still an
open research question how to create provably secure b-block-length compression
functions for b > 2.

Contribution. First, we define the class MBLbn for multi-block-length com-
pression functions that employ a (bn, n)-bit keyed block cipher E : {0, 1}bn ×
{0, 1}n → {0, 1}n, and produce a bn-bit chaining value. Then, we present a freely
scalable multi-block-length compression function, called Counter-bDM, which,
to the best of our knowledge, is the first provably secure multi-block-length com-
pression function for b > 2. It is a generalization of the double-block-length com-
pression function Hirose-DM [18]. For the generic Counter-bDM, we present
a detailed security analysis for proofs of collision and preimage security, which
employs the idea of super queries by Armknecht et al. [1]. Similar approaches
were presented by Mennink [34] and Lee [25].

For b = 2 our resulting collision-security bound shows that every adversary
that wants to find a collision with advantage 1/2 requires 2125.18 queries, which is
comparable to the currently best collision- security bound of Weimar-DM [12].
Concerning preimage security, we obtain a near-optimal bound of 2251 queries,
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Table 1. Comparison of security results on double-block-length compression functions,
evaluated for n = 128 bits and a success probability of 1/2. For Cyclic-DM, k > 1;
for Add-k-DM k′ ≥ 2.

Compression function Collision bound Preimage bound

Abreast-DM [24] 2124.42 [14,26] 2246 [1]

Add-k-DM [14] 2127−k′
[14] ≈ 2128 [14,26]

Counter-2DM [Sec. 3] 2125.18 [Sec. 5] 2251 [Sec. 6]
Cube-DM [14] 2125.41 [14] ≈ 2128 [14,26]

Cyclic-DM (cycle length > 2) [14] 2127−k [14] ≈ 2128 [14,26]
Cyclic-DM (cycle length 2) [14] 2124.55 [14] ≈ 2128 [14,26]
Hirose-DM [17] 2125.23 [13] 2251 [1]
Lee/Kwon [27] 2125.0 [26] ≈ 2128 [14,26]
Tandem-DM [24] 2120.87 [29] 2246 [1]
Weimar-DM [12] 2126.73 [9] 2251 [12]

which is equivalent to the currently best bound of Weimar-DM. Table 1 com-
pares our bounds with that of previously published double-block-length com-
pression functions.

Outline. In what remains, Section 2 revisits the basic notions concerning block-
cipher-based compression functions. Section 3 introduces Counter-bDM.
Section 4 summarizes the formal security definitions that are essential for our
analysis. In Section 5 we present the proof for the collision security of Coun-
ter-bDM. Section 6 then derives the preimage-security bound. Finally, Section 7
concludes the paper.

2 Basic Notions

This section recaps the relevant basic notions. We borrow the description of
block-cipher-based compression functions from [12]:

Definition 1 (Block Cipher). Let k, n ≥ 1 be integers. We define a (k, n)-bit
block cipher as a keyed family of permutations, which consists of an encryption
function E : {0, 1}k × {0, 1}n → {0, 1}n, and its inverse (decryption) function
D = E−1 : {0, 1}k × {0, 1}n → {0, 1}n. Both take a k-bit key K and an n-bit
input block X, and produce an n-bit output Y , where DK(EK(X)) = X, for all
X ∈ {0, 1}n,K ∈ {0, 1}k. We denote by Block(k, n) the set of all (k, n)-bit block
ciphers.

Definition 2 (Single-Block-Length Compression Function). Let n ≥ 1 be
an integer. A single-block-length (SBL) block-cipher-based compression function
is a function HSBL : {0, 1}n ×{0, 1}n → {0, 1}n which uses a block cipher from
Block(n, n).
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The idea was discussed in the literature first by Rabin [33]. Most SBL func-
tions use a block cipher from Block(n, n) and compress a 2n-bit string to an
n-bit string. A popular example is the Davies-Meyer (DM) [46] mode:

HDM (M,U) = EM (U)⊕ U,

which is essentially used twice inside Hirose-DM and b times, in slightly mod-
ified fashion, inside Counter-bDM.

Definition 3 (Multi-Block-Length Compression Function). Let b, n ≥ 1
be integers. A multi-block-length (MBL) block-cipher-based compression function
is a function HMBL : {0, 1}bn × {0, 1}n → {0, 1}bn, which takes an n-bit mes-
sage and a bn-bit chaining value, and outputs a new bn-bit chaining value.

Independent Ciphers. The sophisticated task of proving the security for a
multi-block-length compression function simplifies greatly if one can ensure that
the b outputs of the individual block-cipher calls in one invocation of the com-
pression function are independent and distinct from each other. Previous double-
block-length constructions achieve this requirement by either. . .

Distinct Permutations: . . . using b independent permutations in the compres-
sion function. This approach is used, e.g., by the early construction of Hirose
[16] or those by Rogaway and Steinberger [41].

Distinct Keys: . . . guaranteeing that all key inputs Ki used for the block-
cipher calls inside one compression-function call are different: Ki �= Kj , 1 ≤
i < j ≤ b, which results in having de facto different permutations. This
approach is used, e.g., by Weimar-DM [12].

Distinct Plaintexts: . . . guaranteeing that all b plaintext inputs Xi used as
inputs to the block cipher in one compression-function call are different:
Xi �= Xj , 1 ≤ i < j ≤ b. This approach is used, e.g., by Cube-DM [14] or
Hirose-DM [18].

The first approach renders unpractical in practice since it requires multiple
permutation implementations of the class MBLbn. The further two approaches
are similar. However, using a different key in every block-cipher call implies
the potential need of running the key schedule of the underlying block cipher
multiple times. Therefore, we employ the latter strategy function for Coun-
ter-bDM, i.e., we ensure that all plaintext inputs to the block-cipher calls are
different.

3 Counter-bDM

This section defines the Counter-bDM family of multi-block-length compres-
sion functions. Note that we use HCbDM as short notion of Counter-bDM.

Definition 4 (Counter-bDM). Let E be a block cipher from Block(bn, n).
The compression function HCbDM : {0, 1}bn × {0, 1}n → {0, 1}bn is defined by

HCbDM (M,U1, . . . , Ub) = (V1, . . . , Vb),
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where the outputs Vi are given by Vi = EK(U1 ⊕ (i − 1)) ⊕ U1, with K =
U2 || . . . || Ub || M .

Two concrete examples of our multi-block-length compression-function family,
Counter-3DM (left) and Counter-4DM (right), are illustrated in Figure 1.
However, in our security analysis in Sections 5 and 6 we consider the generic
version Counter-bDM.
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Fig. 1. Two examplary compression functions HC3DM (left) and HC4DM (right) from
the family of compression functions HCbDM

It is easy to see that, due to the XOR with the counter i − 1, all plaintext
inputs Xi to the block-cipher calls are pair-wise distinct. Additionally, since all
values i − 1 are in the range of [0, . . . , b − 1], the counter values affect only
the least significant �log2(b)	 bits of the plaintexts. We call the most significant
n− �log2(b)	 bits of the plaintexts a common prefix.

Definition 5 (Common-Prefix Property). Let X = Xpre || Xpost, X ∈
{0, 1}n be an n-bit integer, where Xpre denotes the n−�log2(b)	 most significant
bits, and Xpost the �log2(b)	 least significant bits of X. Further, let Xi = X ⊕
(i − 1) (with 1 ≤ i ≤ b) denote the values which are used as plaintext inputs to
the block-cipher calls in one invocation of HCbDM . Then, all values Xi share the
same common prefix Xpre ∈ {0, 1}n−�log2(b)�.

Remark 1. For the remainder of this paper, we denote by c = 2�log2(b)� ≥ b the
maximal number of plaintexts X = Xpre || Xpost which can share the same
prefix Xpre.
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We will see later that both the pair-wise distinct plaintexts and the common-
prefix property will be beneficial for an easy-to-grasp security analysis of Coun-
ter-bDM.

4 Proof Preliminaries

This section formally describes the notions and properties that are relevant for
our security analysis of Counter-bDM.

4.1 Proof Model

The security of a block-cipher-based compression function should depend only
on the security of the construction, and not on that of the (potentially insecure)
chosen block cipher inside. Thus, one usually considers the ideal-cipher model
, wherein a block cipher is modeled as a family of random n-bit random per-
mutations {EK}. The permutation E that is used in the compression function

is chosen at random from Block(k, n): E
$←− Block(k, n). Thus, we follow the

notions by Black et al. [5].
An adversary A is defined as a probabilistic, computationally unbounded al-

gorithm that is limited only by a number of q queries it can ask to an oracle
E. For any of its queries, the adversary is allowed to ask either a forward (en-
cryption) query EK(X) = Y , or a backward (decryption) query X = DK(Y ),
where X,Y ∈ {0, 1}n and ∀X : DK(EK(X)) = X . Each query Qi is stored as
a 3-tuple (Xi, Yi,Ki) in a query history Q, where we denote by Qi the state of
the query history after i queries have been asked by the adversary, for 1 ≤ i ≤ q.
We further borrow two usual assumptions about A from [12]:

1. If A has successfully found a collision or a preimage for HCbDM , it has ob-
tained the necessary encryption or decryption results only by making queries
to the oracle E.

2. A does not ask queries to which it already knows the answer, e.g., if A
already knows the answer to a forward query Y = EK(X), it will not ask
DK(Y ) – which must return X – and vice versa.

4.2 Collision-Security

We define the collision security of our compression function HCbDM by the
advantage of an adversary A to win Experiment 1.

Experiment 1 (Collision-Finding Experiment Exp-CollA, HCbDM (bn))

1. An adversary A is given oracle access to a block cipher E ∈ Block(bn, n).
2. After asking at most q queries (Xi, Yi,Ki) for 1 ≤ i ≤ q, it outputs a pair

(M,U1, . . . , Ub), (M
′, U ′

1, . . . , U
′
b) ∈ {0, 1}(b+1)n × {0, 1}(b+1)n.
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3. The adversary wins the experiment iff its output is a valid collision for
HCbDM , i.e.,

HCbDM (M,U1, . . . , Ub) = HCbDM (M ′, U ′
1, . . . , U

′
b) and

(M,U1, . . . , Ub) �= (M ′, U ′
1, . . . , U

′
b).

Otherwise, A loses the experiment.

The advantage of an adversary A to find such a collision for HCbDM is given
by the probability that A can win Experiment 1, or formally written, by

AdvCOLL
HCbDM (A) = Pr

[
Exp-CollA, HCbDM (bn) = 1

]

Since we only limit the adversary by the number of queries, it is allows to ask
to E, we write

AdvCOLL
HCbDM (q) := max

A

{
AdvCOLL

HCbDM (A)
}
,

where the maximum is taken over all adversaries that ask at most q oracle queries
in total.

4.3 Preimage Security

There are various notions considering preimage security (see [40] for example).
We adapt that of everywhere preimage security (EPRE), which was introduced
by Rogaway and Shrimpton in [40]. There, the adversary commits to a hash value
before it makes any queries to the oracle. The preimage security of our compres-
sion function HCbDM is therefore defined by the advantage that an adversary A
wins Experiment 2.

Experiment 2 (Preimage-Finding Experiment Exp-ePreA, HCbDM (bn))

1. An adversary A is given oracle access to a block cipher E ∈ Block(bn, n). Be-
fore it makes any queries, it announces a hash value (V1, . . . , Vb) ∈ {0, 1}bn.

2. After asking at most q queries (Xi, Yi,Ki) for 1 ≤ i ≤ q, it outputs a (b+1)-
tuple (M,U1, . . . , Ub) ∈ {0, 1}(b+1)n.

3. The adversary wins the experiment iff its output is a valid preimage for
(V1, . . . , Vb) and HCbDM , i.e.,

HCbDM (M,U1, . . . , Ub) = (V1, . . . , Vb).

Otherwise, A loses the experiment.

We let AdvEPRE
HCbDM (A) be true iff Exp-ePreA, HCbDM (bn) returns 1. The pre-

committed hash value (V1, . . . , Vb) is an omitted parameter of AdvEPRE
HCbDM (A).

We define
AdvEPRE

HCbDM (q) := max
A

{
AdvEPRE

HCbDM (A)
}
,

where the maximum is taken over all adversaries that ask at most q oracle queries
in total.
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5 Collision-Security Analysis of Counter-bDM

Let A be a collision-finding adversary for HCbDM that can ask queries to an or-
acle E. In between A and E, we construct another adversary A′ which simulates
A, but sometimes is allowed to make additional queries to E that are not taken
into account. Since A′ is more powerful than A, it is easy to see that it suffices
for us to upper bound the success probability of A′. Thereby, we say that an
adversary A (or A′, respectively) is successful if its query history contains the
means of computing a collision for HCbDM .

Attack Setting. During the attack, A maintains a query history Q wherein
it stores all queries it poses to E. An entry in the query history of A is a
tuple (K,X, Y ), where Y = EK(X). Simultaneously, A′ maintains a query list
L which contains all input/output pairs to the compression function HCbDM

that can be computed by A. An entry L ∈ L is a tuple (K,X, Y1, . . . , Yc) ∈
{0, 1}(b+1+c)n, where K ∈ {0, 1}bn, X ∈ {0, 1}n is the input to the compression
function HCbDM , and c = 2�log2(b)� (see Remark 1). The values Yi ∈ {0, 1}n are
given as the results of the forward queries Yi = EK(X ⊕ (i − 1)), for 1 ≤ i ≤ c.
Moreover, we define Lj to denote the state of L, which contains the first j queries
of A′, with j ≥ 1.

Collision Events. When E is modeled as an ideal cipher, we run into problems
when A asks close to or even more than q = 2n queries. In the case when A asks
q queries under the same key to E and q reaches 2n− 1, E loses its randomness.
As a remedy to this problem, Armknecht et al. proposed the idea of super queries
[1]; given some key K, A′ can pose regular queries to E or D until N/2 queries
with the same key K have been added to its query list L, where N = 2n.

If L contains N/2 queries for a key K and A requests another query for the
key K from A′, then, A′ poses all remaining queries (K, ∗, ∗) under this key to
E at once. In this case, we say that a super query occurred. All queries that are
part of a super query are not taken into account, i.e., they do not add to q, the
number of queries A is allowed to ask. Since these free queries are asked at once,
one no longer has to consider the success probability of a single query; instead,
one can consider the event that A′ is successful with any of the contained queries.
Thus, E does not lose its randomness. In the following, we define three mutually
exclusive events which cover all case when A′ can be successful.

NormalQueryWin(L). This describes the case when A′ finds a collision with its
current query Lj and a query Lr ∈ Lj−1, where Lj was a normal query.

SuperQueryWin(L). This describes the case when A′ finds a collision with its
current query Lj and a query Lr ∈ Lj−1, where L

j was part of a super query.
SameQueryWin(L). This describes the case when A′ finds a collision within

the same entry Lj ∈ L.
Since the adversary can only win if it finds a collision using either one of

the mentioned events, it is sufficient for us to upper bound the sum of the
probabilities. Thus, it holds that
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AdvCOLL
HCbDM (q) ≤ Pr[NormalQueryWin(L)] + Pr[SuperQueryWin(L)] (1)

+ Pr[SameQueryWin(L)].

Remark 2. Note that a tuple L ∈ L consists of c = 2�log2(b)� query results. Since
c always divides N/2, i.e., c |N/2, each tuple L is either part of a normal query
or a super query, but never both.

Before we present our bound, we describe more precisely what we mean by
A′ has found a collision for HCbDM . Let Lr = (Kr, Xr, Y r

1 , . . . , Y
r
c ) represent

the r-th entry in L, and Lj = (Kj ,Xj,Y j
1 , . . . , Y

j
c ) the j-th entry in L, where

1 ≤ r < j ≤ q. We say that Lr and Lj provide the means for computing a
collision if ∃ �,m ∈ {0, . . . , c− 1} so that b equations of the following form hold:

EKr (Xr ⊕ �⊕ 0)⊕Xr = EKj (Xj ⊕m⊕ 0)⊕Xj,

EKr (Xr ⊕ �⊕ 1)⊕Xr = EKj (Xj ⊕m⊕ 1)⊕Xj,

...

EKr (Xr ⊕ �⊕ (b− 1))⊕Xr = EKj (Xj ⊕m⊕ (b− 1))⊕Xj.

Theorem 3. Let N = 2n. Then, it applies that

AdvCOLL
HCbDM (q) ≤ c2 · 2b · q2

N b
+

c3 · 2b+2 · q2
N b+1

.

Proof. After A has asked a (normal) forward query Y j = EKj (Xj) or a (nor-
mal) backward query Xj = DKj (Y j), A′ checks if Lj−1 already contains an
entry Lr = (Kj, Xj

pre || ∗, ∗, . . . , ∗), where Xj
pre denotes the prefix of Xj (see

Definition 5) and ∗ denotes arbitrary values. In the following, we analyze two
possible cases.

Case 1: Lr is not in Lj−1. In this case, A′ labels Y j as Y j
1 and asks (c− 1)

further queries to E that are not taken into account:

∀i ∈ {2, . . . , c} : Y j
i = EKj (Xj ⊕ (i− 1)).

A′ creates the tuple Lj = (Kj , Xj, Y j , . . . , Y j
c ) and appends it to its query list,

i.e., Lj = Lj−1 ∪ {Lj}. Now, we have to upper bound the success probability
of A′ to find a collision for HCbDM , i.e., the success probabilities for the events
mentioned above.

Subcase 1.1: NormalQueryWin(L). In this case, the adversary finds a collision
using a normal query Lj and a query Lr that was already contained in L. While
super queries may have occurred for different keys before, the query history of A′

may contain at most N/2− c plaintext-ciphertext pairs for the current key Kj .
So, our random permutation E samples the query responses Y j

1 , . . . , Y
j
c for the

current query at random from a set of size of at least N/2 + c ≥ N/2 elements.
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Hence, the probability that one equation from above holds for some fixed � and
m can be upper bounded by 1/(N/2); and the probability for b equations to hold
is then given by

1

(N/2)b
=

2b

N b
.

There are c2 possible combinations for � and m, s.t. b values V j
i can form a

valid collision with b values V r
i , with i ∈ {0, . . . , b − 1}. Thus, A′ has a success

probability for finding a collision for HCbDM for two fixed queries Lj and Lr is
at most

c2

(N/2)b
=

c2 · 2b
N b

.

Since the j-th query can form a collision with any of the previous entries
in Lj−1, we have to determine the maximum number of queries in Lj−1. If A′

obtained a super query for each key it queried before, Lj−1 may contain up to
2(j − 1) entries. Since the winning query has to be a normal query in this case,
L can contain at most q normal queries and up to (q − 1) queries (without the
current one) resulting from super queries in the history. This would imply that
one had to sum up the probabilities up to 2q − 1:

2q−1∑

j=1

2(j − 1) · c2 · 2b
N b

.

However, we can do better. In the NormalQueryWin(L) case, A′ will not win if
its last (winning) query was part of a super query. Hence, we do not need to test
if any of the super queries will produce a collision with any of their respective
previous queries, and we have to test only possible collisions with the (at most
q) normal queries. Nevertheless, A′ still has to test each of the q normal queries
if they collide with any of the at most 2q previous queries (including those which
were part of a super query). Therefore, the success probability of A′ to find a
collision for HCbDM can be upper bounded by

Pr[NormalQueryWin(L)] ≤
q∑

j=1

2(j − 1) · c2 · 2b
N b

≤ q2 · c2 · 2b
N b

. (2)

Subcase 1.2: SuperQueryWin(L). In this case, A′ wins with a super query,
i.e., it has asked the (N/2 + 1)-th query for Kj, triggering a super query to
occur. We can reuse the argument from Subcase 1.1 that the success probability
of A′ to obtain b colliding equations for two fixed queries Lr, Lj can be upper
bounded by

c2

(N/2)b
.

Here, the query history Lq contains at most 2q queries. But this time, we do
not have to test if any of the q normal queries produces a collision with any of
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their respective predecessors. Hence, we can upper bound the success probability
of A′ to find a collision for HCbDM with one super query by

2q · c2 · 2b
N b

.

For a super query to occur, A has to ask at least N/(2c) regular queries. Thus,
there can be at most q/(N/2c) super queries in L and we obtain

Pr[SuperQueryWin(L)] ≤ 2q · c2 · 2b
N b

· q

N/2c
=

c3 · 2b+2 · q2
N b+1

. (3)

Subcase 1.3: SameQueryWin(L). In this case, A′ wins if it finds two integers
�,m ∈ {0, . . . , c− 1} with � �= m s.t.:

EKj (Xj ⊕ �⊕ 0)⊕Xj = EKj (Xj ⊕m⊕ 0)⊕Xj,

EKj (Xj ⊕ �⊕ 1)⊕Xj = EKj (Xj ⊕m⊕ 1)⊕Xj,

...

EKj (Xr ⊕ �⊕ (b− 1))⊕Xj = EKj (Xj ⊕m⊕ (b− 1))⊕Xj.

However, due to the XOR with the distinct values i − 1, all plaintext inputs
Xj⊕(i−1) in one compression-function call differ from each other. Furthermore,
since all plaintext inputs are encrypted under the same key Kj and E is an ideal
block cipher, their corresponding outputs Y j

i are all different and uniformly

distributed, and so are the values Y j
i ⊕ Xj after the feed-forward operation.

Hence, it is not possible for A′ to find a collision for HCbDM among the values
Y j
i ⊕Xj:

Pr[SameQueryWin(L)] = 0. (4)

Case 2: Lr is in Lj−1. In this case, the key Kj and the plaintext prefix

Xj
pre of A’s current query (Kj , Xj

pre || Xj
post′) are already stored in some en-

try Lr ∈ Lj−1, where Lr = (Kr, Xr
pre || Xr

post, Y
r
1 , . . . , Y

r
c ). A′ just extracts

Y r
(Xr

post⊕Xj

post′ )+1
from Lr, and passes it to A. This implies that A can learn only

information which A′ already possesses. Thus,

AdvCOLL
HCbDM (A) ≤ AdvCOLL

HCbDM (A′).

Our claim is given by summing up equations (2), (3), and (4). ��
Table 2 shows the minimal number of queries q an adversary has to ask in

order to obtain an advantage of AdvCOLL
HCbDM (q) = 1/2 for the most practical

block lengths n ∈ {64, 128} and depending on b.
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Table 2. Minimum number of block-cipher queries q that an adversary must ask in
order to find a collision for HCbDM with advantage 1/2

n = 64 n = 128

#blocks #queries optimal bound #blocks #queries optimal bound

b q 2bn/2 b q 2bn/2

2 261.50 264 2 2125.50 2128

4 2123.50 2128 4 2251.50 2256

8 2248.50 2256 8 2504.50 2512

6 Preimage-Security Analysis of Counter-bDM

Attack Setting. Let (V1, . . . , Vb) ∈ {0, 1}bn be the point to invert (see Defini-
tion 4), chosen by an adversary A before it makes any query to E. We define
that A has the goal to find a preimage for (V1, . . . , Vb) as described in Exper-
iment 2. For our preimage-security analysis, we adapt the procedure from our
collision analysis, i.e., we construct another adversaryA′, which simulatesA, but
sometimes is allowed to make additional queries to E that are not taken into
account. Again, since A′ is more powerful than A, it suffices to upper bound the
success probability of A′. Here, we say that A′ is successful if its query history
Q contains the means of computing a preimage for (V1, . . . , Vb).

The procedures of A and A′ asking queries to the oracle E and building
the query histories Q and L are the same as that described in our collision-
security proof. Furthermore, we adopt the events NormalQueryWin(L) and
SuperQueryWin(L) from there, which in this context, cover all possible winning
events for A′. Thus, it holds that

AdvEPRE
HCbDM (q) ≤ Pr[NormalQueryWin(L)] + Pr[SuperQueryWin(L)]. (5)

Before we present our bound, we describe more precisely what is meant by A′

has found a preimage for HCbDM . Let Lj = (Kj, Xj , Y j
1 , . . . , Y

j
c ) represent the

j-th entry in L. We say that Lj contains the means of computing a preimage if
∃ � ∈ {0, . . . , c− 1}, so that the following b equations hold:

EKj (Xj ⊕ �)⊕Xj = V1

EKj (Xj ⊕ �⊕ 1)⊕Xj = V2

...

EKj (Xj ⊕ �⊕ (b− 1))⊕Xj = Vb.

Theorem 4. Let N = 2n. Then, it applies that

AdvEPRE
HCbDM (q) ≤ c · 2b+1 · q

N b
.
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Proof. After A has asked a (normal) forward query Y j = EKj (Xj) or a (nor-
mal) backward query Xj = DKj (Y j), A′ checks if Lj−1 already contains an
entry Lr = (Kj , Xj

pre || ∗, ∗, . . . , ∗), where Xj
pre denotes the prefix of Xj. In the

following, we analyze the possible cases and upper bound their success proba-
bilities separately.

Case 1: Lr is not in Lj−1. In this case, A′ labels Y as Y j
1 and asks c − 1

further queries to E that are not taken into account:

∀i ∈ {2, . . . , c} : Y j
i = EKj (Xj ⊕ (i− 1)).

Then, A′ creates the tuple Lj = (Kj, Xj, Y j
1 , . . . , Y

j
c ) and appends it to its

query list, i.e., Lj = Lj−1 ∪ {Lj}. Note that due to the XOR with i − 1, all

plaintexts Xj
i , with i ≤ i ≤ c, are pair-wise distinct. Thus, all ciphertexts Y j

i ,

and the results of all feed-forward operations (Y j
i ⊕ Xj) are always uniformly

distributed.
In the following, we have to upper bound the success probability of A′ to find

a preimage for HCbDM using either a normal query or a super query.

Subcase 1.1: NormalQueryWin(L). Since we assume that the winning query
is a normal one, A′ can have collected at most N/2 − c queries for the current
key Kj. Thus, E samples the query responses Y j

1 , . . . , Y
j
c at random from a

set of size of at least N/2 + c ≥ N/2 elements. From the c values Yi of L
j , the

probability that one equation EKj (Xj⊕�)⊕(Xj⊕�) = Vi from above holds for
some fixed value of �, can be upper bounded by 1/(N/2). The probability that
b equations from above hold for a fixed � can be upper bounded by 1/(N/2)b.
Since there are c possible values for �, the probability to obtain a preimage with
the j-th query is given by

c

(N/2)b
=

c · 2b
N b

.

Since A′ is allowed to ask at most q queries, it applies that

Pr[NormalQueryWin(L)] ≤ c · 2b · q
N b

. (6)

Subcase 1.2: SuperQueryWin(L). In this case, A′ has already posed and
stored N/2c queries for the key Kj of its winning query. From the super query, it
obtains the remaining N/2c queries forKj. We denote the latter set of queries by
SQ. From above, we already know that the probability that one point Lj ∈ SQ
satisfies the preimage property can be upper bounded by

c

(N/2)b
=

c · 2b
N b

.

Since the adversary obtains N/2c points from the super query, the success prob-
ability that one of them yields a preimage for the given point is given by

N

2c
· c · 2

b

N b
=

2b−1

N b−1
.
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Table 3. Minimum number of block-cipher queries q that an adversary must ask in
order to find a preimage for HCbDM with advantage 1/2

n = 64 n = 128

#blocks #queries optimal bound #blocks #queries optimal bound

b q 2bn b q 2bn

2 2123 2128 2 2251 2256

4 2248 2256 4 2504 2512

8 2499 2512 8 21011 21024

For every super query to occur, A′ has to collect N/2c queries in advance. Thus,
there are at most q/(N/2c) super queries and we obtain

Pr[SuperQueryWin(L)] ≤ q

N/2c
· 2b−1

N b−1
=

c · 2b · q
N b

. (7)

Case 2: Lr is in Lj−1. Like in the Case 2 of our collision-security proof, the

key Kj and the plaintext prefix Xj
pre of A’s current query (Kj, Xj

pre || Xj
post′)

are already stored in some entry Lr ∈ Lj−1, where Lr = (Kj , Xj
pre || Xj

post,
Y r
1 , . . . , Y

r
c ). Again, A′ extracts Y r

(Xr
post⊕Xj

post′ )+1
from Lr, and passes it to A.

This implies that A can learn only information that A′ already possesses and

AdvCOLL
HCbDM (A) ≤ AdvCOLL

HCbDM (A′).

Our claim is given by summing up equations (6) and (7). ��
For n = 128 and AdvEPRE

HCbDM (q) = 1/2, we list in Table 3 the amounts of
queries q an adversary has to make, depending on the value of b.

7 Conclusion and Outlook

This paper introduced Counter-bDM – the first provably secure family of
multi-block-length compression functions, that maps (b+1)n-bit inputs to bn-bit
outputs for arbitrary b ≥ 2. With Counter-bDM, we propose a simple, though,
very neat design, that not only avoids costly requirements such as the need of
having independent ciphers, or having to run the key schedule multiple times,
but also simplifies the analysis greatly. In our collision- and preimage-security
analysis we provided proofs for arbitrary block lengths b > 2. It remains an open
research topic to find a multi-block-length hash function with arbitrary output
size employing an n-bit or at most 2n-bit keyed block cipher.
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A Related Work

This part summarizes related work regarding to single- and double-block-length
hash functions.

Double-Block-Length Schemes. The essentially first double-block-length hash
functions were presented by Merkle [35], who proposed three constructions on
the basis of DES. Today, there are four so-called “classical” double-block-length
constructions, which were introduced in the early 1990s: MDC-2, MDC-4,
Abreast-DM, and Tandem-DM. MDC-2 and MDC-4 [8,20] are (n, n)-bit
double-block-length hash functions with rates 1/2 and 1/4, respectively. For
MDC-2, Steinberger [45] proved in 2006 that no adversary asking less than
274.9 queries will obtain a significant advantage at finding a collision. In a so-
phisticated proof, it was shown by Fleischmann, Forler, and Lucks [11] in 2012,
that for MDC-4 an adversary requires at least 274.7 queries to find a collision
with an advantage of 1/2.

Concerning rate-1 double-block-length hash functions, Lucks [31] presented
a first construction at Dagstuhl’07. Stam [44] also proposed a rate-1 single-call

http://www.skein-hash.info/downloads
http://www.skein-hash.info/downloads
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double-block-length function, for which he showed an almost-optimal collision-
resistance, up to a logarithmic factor. However, while Lucks and Stam claimed
a rate-1 property for their constructions, those are actually much slower, as
pointed out by Luo and Lai [32]. At CRYPTO’93, Hohl et al. [19] analyzed the
security of compression functions of rate-1/2 double-block-length hash functions.
In 1998, Knudsen, Lai, and Preneel [21] discussed the security of rate-1 double-
block-length hash functions. In 1999, Satoh, Haga, and Kurosawa [42] as well
as Hattori, Hirose, and Yoshida [15] in 2003 attacked rate-1 double-block-length
hash functions. At FSE’05, Nandi et al. [36] presented a rate-2/3 compression
function, which was later analyzed by Knudsen and Muller at ASIACRYPT’05
[22]. At CT-RSA’11, Lee and Stam [28] presented a faster alternative toMDC-2,
called MJH.

Double-Block-Length Schemes with Birthday-Type Collision Security.

Abreast-DM and Tandem-DM base on the famous Davies-Meyer scheme, and
have been presented by Lai and Massey [24] at EUROCRYPT’92. In 2004, Hirose
added a large class of rate-1/2 double-block-length hash functions, composed of
two independent (2n, n)-bit block ciphers, with 2n being the key and n the block
size [16] . At FSE’06, he proposed a new scheme called Hirose-DM [17], which
dropped the requirement of independent ciphers, and for which he provided
a collision-security proof in the ideal-cipher model, stating that no adversary
asking less than 2124.55 queries can find a collision with probability ≥ 1/2.

In [39], Peyrin et al. analyzed techniques to construct larger compression
functions by combining smaller ones. The authors proposed 3n-to-2n-bit and
4n-to-2n-bit constructions composed of five public functions, yet they did not
show proofs for their concepts.

In 2008, Chang et al. introduced a generic framework for purf-based multi
block length constructions [7], where purf denotes a public random function.

Considering Tandem-DM, Fleischmann, Gorski, and Lucks [13] gave a
collision-security proof at FSE’09, showing that no adversary can obtain a sig-
nificant advantage without making at least 2120.4 queries. In 2010, Lee, Stam,
and Steinberger [29] have shown that the proof of Fleischmann et al. has several
non-trivial flaws. Further, they provided a bound of 2120.87 queries for a collision
adversary.

For Abreast-DM, Fleischmann, Gorski, and Lucks [14] as well as Lee and
Kwon presented, independent from each other, collision-security bound of 2124.42

queries. More general, [14] introduced the class notion of Cyclic-DL, which in-
cluded the constructions Abreast-DM, Cyclic-DM, Add-k-DM, and Cube-
DM, and applied similar proofs for these. At IMA’09, Özen and Stam [38] pro-
posed a framework for double-block-length hash functions by extending the gen-
eralized framework by Stam at FSE’09 for single-call hash functions. Still, their
framework based on the usage of two independent block ciphers. At ProvSec’10,
Fleischmann et al. [10] extended their general classification of double-block-
length hash functions by the classes Generic-DL, Serial-DL, and Parallel-
DL. For the framework by Özen and Stam, they relaxed the requirement of
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distinct independent block ciphers and gave collision bounds for Tandem-DM
and Cyclic-DM. In [23], Krause, Armknecht, and Fleischmann provided tech-
niques for proving asymptotically-optimal preimage-resistance bounds for block-
cipher-based double-length, double-call hash functions. They introduced a new
Davies-Meyer double-block-length hash function for which they proved that no
adversary asking less than 22n−5 queries can find a preimage with probability
≥ 1/2. At ACISP’12, Fleischmann et al. [12] showed a very similar Davies-Meyer
construction – called Weimar-DM– for which they could prove the currently
best collision-security bound of 2126.23 queries, and the currently best preimage-
security bound among the previously known double-block-length hash function.
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