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Abstract. Side-channel attacks are considered as one of the biggest
threats against modern crypto-systems. This motivates the design of ci-
phers which are naturally resistant against side-channel attacks. The
present paper proposes a scheme called DRECON to construct a block
cipher with innate protection against differential power attacks (DPA).
The scheme is motivated by tweakable block ciphers and is shown to
be secure against first-order DPA using information theoretic metrics.
DRECON is shown to be less expensive than masking and re-keying
countermeasures from the implementation perspective and can be effi-
ciently realized in both hardware and software platforms. On FPGAs
especially, DRECON can optimally utilize the abundant block RAMs
available and therefore have minimal overheads. We estimate the cost
overhead of DRECON in micro-controllers and FPGAs, two common
targets for cryptographic applications. Finally we demonstrate practi-
cal side-channel resistance of a DRECON implementation on a Xilinx
Virtex-5 FPGA (SASEBO GII board).

1 Introduction

In 1998, Paul Kocher demonstrated a new class of cryptographic attacks known
as differential power analysis (DPA) [13], which utilize information leakages from
power or electro-magnetic radiation of the cipher’s implementation. Since then,
several DPA attacks have been demonstrated on almost every crypto-system in
use. Today DPA has become one of the biggest threats to modern security sys-
tems. Over the years there have been several attempts to prevent these attacks.
A current trend is to either eliminate [37,38] or randomize [2,7] side-channel
leakage. An alternate trend is a modification of the protocols, for example,
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by changing a secret in every encryption [8,19,28]. However in both these preven-
tion methodologies, the underlying cryptographic algorithm is unchanged and
by itself remains weak against the attack. Further, many of the countermeasures
are ad-hoc, platform dependent, or require customized development processes. It
has also been seen that several countermeasures can only make the attack more
difficult and not fully protected.

Better protection can be achieved if the cryptographic algorithm itself is de-
signed with DPA in the hindsight in addition to the conventional cryptanalytic
attacks as the primitives used can be chosen with better side-channel attack
resistance. Due to this reason, research is being carried out in developing cryp-
tographic primitives that are easily protectable by masking [29,6], or that can
inherently tolerate these attacks. In this paper, we show how cryptographically
good sboxes can be arranged in such a way that would result in a cipher with
increased resistance against DPA. This strategy ensures DPA resistance without
compromising on classical cryptographic properties.

The scheme we present is called DRECON (DPA Resistant Encryption by
CONstruction), which attempts to design a complete block cipher with DPA
prevention as a pre-requisite. The scheme currently guarantees first-order secu-
rity, and can be used as a starting point to build ciphers with higher order DPA
resistance. The construction is inspired from tweakable block ciphers [14], where
in addition to the plaintext and key, the cipher takes a tweak. However, unlike the
tweakable block ciphers in [14], the construction requires the tweak to be kept
secret. The tweak is used to choose an sbox from a given pool of cryptographi-
cally strong sboxes, thus modifying the mapping between the plaintext and the
ciphertext. Protection against DPA is obtained based on the assumption that
the tweak is exclusively shared between the sender and the receiver and modified
in every encryption. Besides the fact that the primitives used in DRECON have
higher resistance against DPA attacks, there are several advantages over contem-
porary DPA countermeasures. Compared to randomization techniques such as
masking, we show that encryptions in software can be done faster. In hardware,
the area and performance overheads are considerably less compared to masking.
Further no custom libraries or design flows are required as compared to hid-
ing countermeasures such as [37,38] and unlike protocol countermeasures such
as [8,19,28], key expansion needs to be done just once. The construction is sup-
ported by information theoretic proofs of security. We show that the DRECON
is resistant against the first-order (1O) DPA attack in the presence of glitches
also. We have experimentally validated the result on a version of DRECON using
the powerful correlation-collision attacks.

The organization of the paper is as follows: in Section 2, the necessary back-
ground for DPA is presented along with an introduction to commonly used
countermeasures. Section 3 presents DRECON and evaluates its security against
DPA. In Section 4, implementation aspects of the scheme are presented for both
hardware and software platforms. We also validate its resistance to correlation-
collision attack on the SASEBO-GII side-channel evaluation board [33]. The
final section has the conclusion of the paper.
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2 Preliminaries

2.1 Notations

We denote random variables by capital letters (e.g. X) and their realization by
small letters (e.g. x). The universe for the variable is represented as a calligraphic
letter (e.g. X ).

Let x be part of the plaintext which gets ex-ored with part of a sub-key, k,
in an encrypting block cipher. Assume that x and k are chosen from X and
K respectively and its choice is represented by the random variable X and K
respectively. Generally, X is ex-ored with a unknown but fixed key k and then
undergoes a non-linear transformation with an sbox. We denote this operation
by S(X ⊕ k).

2.2 Differential Power Attacks

The aim of a DPA adversary is to use the side-channel leakage from either X⊕k
or S(X ⊕ k) to reveal the secret data k. The steps involved is to rank each
possible candidate k∗ ∈ K for the key k by statistically comparing the actual
leakage with a model of the leakage. The candidate ranked first is the most likely
and the one ranked last is the least likely candidate. The o−th order average
success rate of the attack is the probability with which the correct value of k
has a rank between 1 and o [36].

The success of the attack depends on how much information gets leaked. In
2004, Micali and Reyzin used leakage functions (denoted φ) to encapsulate the
information leaked through the side-channels [21]. The ideal leakage function is
one which leaks the entire internal state of the cipher. It can be defined as:

Id : y ∈ F
n
2 �→ y ∈ F

n
2 , (1)

where y = S(x⊕ k) is the intermediate state. A more realistic leakage function
is the Hamming weight leakage, which leaks the Hamming weight of y. It is
defined as

HW : y ∈ F
n
2 �→

n−1∑

i=0

yi ∈ N , (2)

where yi is the ith bit of the intermediate state y.

2.3 Countermeasures for DPA

Countermeasures for DPA are applied at the implementation level or at the
protocol level. The most common countermeasures used in the implementation
level are masking, shuffling, and hiding. The advantage of this is that they can
be applied on any cipher algorithm. On the other hand, they are affected by
the platform of implementation and do not always provide provable security.
Several hiding schemes have been proposed, which essentially use side-channel
resistant logic styles in order to prevent information leakage through the power
consumption. Examples of this can be found in [37,38]. These countermeasures
may require specific CMOS libraries or full custom designs. Masking and shuffling
do not have these limitations and will be discussed here in greater detail.
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Masking: Masking is the most frequently used countermeasure [2,7] applied
to implementations. A p-order masking scheme involves spreading each sen-
sitive variable Z into p + 1 shares Z0, . . . , Zp maintaining the invariant Z =
g(Z0, · · · , Zp). Each of the Zi’s are uniformly random and the joint distribution
of any p variables are independent of Z. Thus, any collection of variables less
than or equal to p contains no information about the sensitive variable Z. The
most commonly used masking is the first order masking (denoted 1O masking)
where a single uniformly random mask is used.

Let M be a random variable M with entropy hm ≤ n. In the 1O Boolean
masking scheme, it gets added to the sensitive variable X ⊕ k resulting in two
shares: X ⊕ k ⊕ M and M . Each sbox S is also replaced by a masked sbox
SM such that SM (X ⊕ k ⊕ M,M,M ′) = S(X ⊕ k) ⊕ M ′. In other words, the
masked sbox SM first unmasks the randomized variable X ⊕ k ⊕ M , passes
it through the sbox S and then re-masks the output S(X ⊕ k) by the output
mask M ′. The mask M is also replaced by the new mask M ′, thus the invariant
S(X⊕k) = SM (X⊕k⊕M,M,M ′)⊕M ′ is maintained. Now, the 1O side-channel
leakage has the form φ(S(X ⊕ k)⊕M ′). In the case where the leakage function
φ = Id (Equation 1), the entire output S(X⊕k)⊕M ′ is revealed to the adversary.
Information leakage is measured by the mutual information (abridged I) between
what can be observed by the attacker and the sensitive variable. Renaming the
variable M ′ as M :

I[S(X ⊕K)⊕M,X;K] = n− hm . (3)

This means that the countermeasure is perfect at 1O if and only if M has
entropy hm = n, i.e. M is uniformly distributed over Fn

2 .
In the case where φ = HW (defined in Equation 2), only the Hamming weight

of S(X ⊕ k)⊕M is revealed. The information leakage is equal to:

I[HW(S(X ⊕K)⊕M), X;K] =H[HW(K)]

−
∑

x,k

P[K = k]P[X = x] · H[HW(S(x⊕ k)⊕M)] .

(4)

If M is independent of X , the second term of the difference is equals to
H[HW(M)]. The value of Equation (4) is lower than that of Equation (3), but a
priori hard to make null if hm < n.

If hm = n, the single mask can perfectly shield against first-order attacks but
not against attacks of higher order such as [20]. This is because, in a second-
order attack the adversary is capable of obtaining the leakage φ(M) in addition
to φ(S(X ⊕ k) ⊕ M). However, the complexity of the attack increases. The
complexity is reduced significantly when the computations of M and S(X⊕k)⊕
M overlap. The leakage then takes the form φ(M)+φ(S(X⊕k)⊕M) and follows
a distribution whose higher order moment depends on X ⊕ k. These attacks are
known as univariate higher order attacks (the one which uses variance is called
univariate second order attack [39]).

A 1Omasking scheme is secure against a 1O attack in an idealistic model. Most
of the model is based on the assumption that the output of a circuit switches
only once in a clock cycle. However due to asymmetric path delay, output of
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a CMOS gate may switch more than once in a clock cycle. This phenomenon
is referred to as ‘glitch’ [16]. Since most of the masking schemes combine the
masked value X ⊕ k ⊕M and the masks M , M ′ within the same combinatorial
circuit, the leakage takes the form φ(X ⊕ k ⊕ M,M,M ′). Due to the glitches,
this leakage φ(X ⊕ k⊕M,M,M ′) becomes strongly correlated to the unmasked
sensitive variableX⊕k [27]. Consequently, the circuit becomes vulnerable to first
order DPA attacks [17,4,22,23]. Secure implementation of non-linear function in
the presence of glitches has been proposed in [27]. However, implementation of
such a scheme increases the hardware cost drastically [25,31].

Shuffling: An alternate randomization technique is shuffling [10,34]. Here in-
stead of a random mask being added, executions of several sensitive operations
are shuffled in time. If the execution of an operation is spread over m different
signals, then the information per signal is reduced m times. This works well
because DPA can target a single signal at a time. However 1O DPA attacks can
defeat shuffling using m2 times traces [3].

Protocol Level: DPA requires several power traces in order to successfully
retrieve the secret key due to the noise present in the target device and due to
the non-injective nature of the leakage function. Protocol level countermeasures
prevent the adversary from collecting the required number of traces. In [28],
Kocher suggests to update the key on a regular basis. The rate of updation should
be fast enough to prevent an adversary from collecting the necessary traces. The
updation rate should be evaluated for each device and cipher implementation.
In the strongest form, every encryption is done with a new key.

There are various ways in which key updation (or re-keying) can be done.
Abdalla and Bellare in [1] classify them into two schemes: parallel and serial.
In the parallel re-keying scheme, a key update is derived directly from the mas-
ter key using a suitable function f . For example the ith key update (denoted
Ki) can be obtained from Ki = f(K, i), where K is a master key. Methods of
key updation using this scheme have been suggested in [19] and [8]. To obtain
provable security using the scheme, it is required that the key updates are pre-
computed and stored in memory. Thus the number of encryptions is limited by
the size of memory. In the serial re-keying scheme, a new key is obtained from
the previous key using a suitable function f . For example, the ith key can be
obtained from the previous key as follows: Ki = f(Ki−1), while the first key
used is derived from the master key (i.e. K1 = f(K)). Re-keying mechanisms
using this technique were suggested in [28] and [18].

The drawback of the re-keying mechanisms is that with each key update, new
round keys have to be computed. Thus, the overhead is not only in the genera-
tion of the new key, but also the computation of the key expansion algorithm.
This can add significant overheads in the performance, especially in software im-
plementations. Our proposal does not suffer from this drawback. In DRECON,
the round keys are fixed for all encryptions. Instead, only the tweak is updated
by a function similar to f used in the previous schemes.
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3 The DRECON Scheme

In 2002, Liskov, Rivest, and Wagner introduced tweakable block ciphers to add
more variability to the functionality [14]. Here an additional secret input called
the tweak is present, which if changed alters the map between the plaintext and
ciphertext thereby obtaining more variations in the mapping. Both the sender
and the receiver need to know the tweak in addition to the secret key. The
proposal in this paper is inspired by tweakable block ciphers, and uses a regularly
changing tweak to stymie differential power attacks. In this section, we present
the proposal and then compare its security with that of 1O masking.

DRECON: The secret in DRECON comprises of the tuple (t, k), where t is
called the tweak and k the key used in the block cipher. The key k is held
constant for all encryptions, while the tweak t changes for each encryption,
using a tweak generation algorithm. The tweak is used to select a function from
the set F{F1,F2, · · · ,Fr}, where Fj : {0, 1}n �→ {0, 1}n and (1 ≤ j ≤ r), are
cryptographically strong sbox functions. For every application of the sbox on
X , a function from F is selected depending on the value of the tweak (t) and
applied to X . This sbox, known as the tweaked-sbox, is represented by S(·, ·) and
defined as follows:

S(t,X) ← Ft(X) where t
R← {1, 2, · · · , r}.

In a typical iterative block cipher, the first round key is added to plaintext before
the sbox operation and the sbox operation has the form S(x ⊕ k). However, in
DRECON, we choose to omit the whitening at the beginning of the encryption.
Thus, each round except the last round consists of substitution layer, diffusion
layer and key addition layer. The last round consists of only substitution layer.
The sboxes of the substitution layers is replaced by the tweaked-sbox. For all
round, the same tweaks are used though two different tweaked-sboxes of the same
round use two different tweaks independently. The first round of DRECON is
shown in Figure 1. It may be noted that DRECON requires no key whitening
at the beginning and end of the block cipher since the tweaked-sboxes provide
the required randomization of the input and output respectively.

3.1 Information Theoretic Analysis

First we will analyse the security of the above scheme for glitch-free circuit. Then
we will analyse its resistance in the presence of glitches. For all the analysis, we
consider the known plaintext attacks where its distribution is uniformly random.

In the Absence of Glitch: Let us assume there is no diffusion layer, since
its presence does not dilute the side-channel security of DRECON. Let T be
the random variable representing the tweak and having entropy ht. In the worst
case, the entire state gets leaked (that is φ = Id). Hence, one can get the 1O
leakage S(T,X)⊕ k. The information leakage can be shown to be

I[S(T,X)⊕K,X;K] = H[X] −
∑

x

P[X = x] · H[S(T, x)] . (5)



426 S. Hajra et al.

Tweaked
Sbox

Tweaked
Sbox

Diffusion Layer

Tweaked
Sbox

Tweaked
Sbox

. . .

. . .

. . .

Fi
rs

t R
ou

nd
Se

co
nd

 R
ou

nd

. . .

. . .

T1 Tq

k1

Zq

Z1 ⊕ k1 Zq ⊕ kq

T1 Tq

Z1

X1 Xq

S(X1, T1) S(Xq, Tq)

kq

Fig. 1. First round of DRECON. The same structure is repeated for all rounds except
the last round which is consisted of only substitution layer.

This quantity is greater than or equal to n − ht if ht ≤ n. When ht > n, it is
greater than or equal to 0.

Comparing Equations (5) and (3), we note that DRECON performs as good
as 1O masking scheme for the Id leakage functions (the worst case), provided the
following propositions are respected.

Proposition 1. I[S(T,X)⊕K,X ;K] = n− ht if and only if �(x, t0, t1) ∈ F
n
2 ×

T × T , such that S(t0, x) = S(t1, x).

This means that for all x ∈ F
n
2 , the values taken by the random variable S(T, x)

are of cardinality 2ht .

Proposition 2. I[S(T,X) ⊕ K,X ;K] = n − ht if and only if ∀x, t ∈ T �→
S(t, x) ∈ F

n
2 is balanced.

Thus, to make the information leakage null, ht should be atleast n. In other
words, the tweak should be atleast n bit long.

In the Presence of Glitches: Let us first assume that there is no glitch in
the key addition layer. This assumption is aligned with the existing observations
in the literature [16] and much of the effort has been directed to make a non-
linear circuit resistant in the presence of glitches [27]. We also assume that tweak
T is following an uniformly random distribution with entropy ht ≥ n and the
tweaked-sbox satisfies the balancedness property of Proposition 2.

Under the above assumptions, the output of the substitution layer in the first
round (see Figure 1) is a uniformly random unknown variable. Hence the leakages
of the linear layer of the first round take the form φ(R ⊕ k) for some uniformly
distributed unknown random variable R. Thus, univariate attack targeting that
layer is not feasible. However, the leakage of an sbox S(R ⊕ k, T ) in an inter-
mediate round takes the form φ(R ⊕ k, T ) which may leak some information of
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the secret k if there exists a dependency between R and T . To analyse the case
further, we assume that the diffusion layer consists of q/m maximum distance
separable (MDS) mapping M : ({0, 1}n)m �→ ({0, 1}n)m where q is the number
of sboxes present in a single round, m ≥ 2 and q is divisible by m. Lemma 1
provides the following result.

Lemma 1. Let X1, . . . , Xq be the random variables representing the plaintext
inputs of DRECON. Let Z ⊕ k and T be the inputs to an sbox S(Z ⊕ k, T ) of an
intermediate round where T is the random variable representing the tweak input
to the sbox. Then the random variable Z is independent to the joint distribution
of X1, . . . , Xq and T .

The proof of the above lemma is given in Appendix A. Before computing the
bound of the information leakage, we state without proof two well known results
of information theory [5]:

Lemma 2. Let U1, . . . , Ur be r mutually independent variables. Then

H[U1, . . . , Ur] =
r∑

i=1

H[Ui]

Lemma 3. Let U1 and U2 be two random variables. Then

I[U1;U2] = H[U1] + H[U2]− H[U1, U2]

Applying the above three lemmas, the information leakage φ(Z⊕k, T ) due to
the sbox S(Z ⊕ k, T ) can be computed as

I[φ(Z1 ⊕K,T ), X1, . . . , Xq;K] ≤I[Z1 ⊕K,T,X1, . . . , Xq ;K]

=0 .

Hence, DRECON is resistant against 1O DPA in the presence of glitches also.

DRECON and Shuffling: DRECON is not a shuffling countermeasure. A
typical shuffling countermeasure would have computed the correct result some-
times and at others something which is totally uncorrelated from the data. Thus
shuffling is not perfect at first order. On the other hand, DRECON is sound at
1O using the mutual information metric.

DRECON and Masking: As discussed in Section 2.3, a simple masking like
Boolean masking provides perfect secrecy against 1O DPA only in glitch free
circuits. By custom design of circuits, glitches can be reduced, but can never
be eliminated totally. On the other hand, masking schemes that of [27] provides
high resistance against 1O DPA in the presence of glitches, but are very costly
to implement. Thus, DRECON provides a cost-effective alternative to those
masking schemes against 1O DPA in the presence of glitches.
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DRECON and Re-keying: DRECON, in some sense, is similar to re-keying
mechanisms. However unlike re-keying, the key is held constant for all encryp-
tions while it is the tweak that changes and needs to be synchronized between
the sender and receiver. If the key is changed such as in [28,8,18,19], then in
addition to the generation of the new key, the key expansion algorithm has to
be executed in order to generate the new round keys. DRECON doesn’t suffer
from this drawback since it is only the tweak that needs to be generated.

4 An Application of the DRECON Scheme

DRECON is implementation friendly for both software and hardware platforms
and can be easily derived from any legacy block cipher, preferably one which has
small sboxes of dimensions for example 4×4. When implemented with DRECON,
each of the sboxes of the legacy cipher is chosen from a pool of cryptographically
equal strong sboxes for each encryption based on the unknown tweak such that
Proposition 2 is satisfied. Thus, the classical blackbox cryptanalytic attacks are
no more applicable under the assumption that the tweak is a uniformly random
variable parameter.

In this article, we consider two implementations of DRECON which are based
on AES algorithm. The first implementation is more resource friendly and based
on a simplified AES algorithm. The simplified AES algorithm, which we name
as 4× 4 AES, follows the standard AES specification, except that the 8× 8 sbox
is replaced by a pair of 4 × 4 sboxes. Thus, there are 32 sbox access per round
instead of 16 for the regular AES algorithm. The second implementation is based
on the standard AES which we refer as 8× 8 AES.

The adapted n× n AES algorithm with DRECON is called n×n DRECON-
AES where possible values of n is 4 and 8. The DRECON-AES has the following
properties. Each round of DRECON-AES has the same structure as that of
n×n AES except the AddRoundKeys of the first and the last round are omitted.
The ShiftRow operation of the last round is also omitted, and thus last round
is left with only the SubBytes operation (Figure 2). Further, each n × n bit
sbox is replaced by a n × n bit tweaked-sbox. Each tweaked-sbox is a set of
2n (r = 2n, n = 4 or 8) non-linear functions having the equal cryptographic
strength, which put together satisfies Proposition 2. The criteria for selection of
these sboxes is specified in Section 4.3.

4.1 Operation of DRECON-AES

Using DRECON-AES to secure communication between a sender and receiver
has three phases as shown in Figure 3. The phases are explained below.
– Bootstrapping: To bootstrap, both parties need to agree on a secret key

as well as a secret master tweak. Standard key exchange protocols can be
used for the purpose.

– Key Expansion: The next step is to generate the round keys at both ends
using a key scheduling algorithm. The sboxes in AES key scheduling algo-
rithm are replaced by the tweaked-sbox. The tweak bits are generated by a
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tweak generation algorithm discussed in Section 4.2. The same tweak is used
for all accesses during the key generation. The round keys are thus gener-
ated once and stored which are then used for every encryption until there is
a change in the session key.

– Encryption: is then performed. Each encryption requires 128 bits of tweak
to be generated, since each sbox takes a tweak input of equal size of its
original input and all rounds use the same tweak.

The entire operation of the 4× 4 DRECON-AES is summarized in Algorithm 1
of Appendix B. The operations of the 8× 8 DRECON-AES are similar to those
of 4 × 4 DRECON-AES except every pair of consecutive 4 × 4 tweaked-sboxes
is replaced by a 8× 8 tweaked-sbox.

4.2 Tweak Generation Algorithm

From the master tweak agreed upon by the sender and receiver, tweaks need
to be generated for each encryption. The tweak generation needs to produce
uniformly random tweaks in the range of 1 to r in order to select one of the r
sboxes (for DRECON-AES r = 16 or 256). Further, the algorithm needs to be
secure against power attacks as is discussed in detail in [19].

Any mask generation function (MGF) or stream cipher implemented in a
secure manner can be used as a tweak generator. However, given the fact that
the adversary has no control or knowledge of the input and output of the tweak
generator, lightweight solutions can be developed by balancing registers and
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minimizing the combinational logic, which can otherwise leak [9]. A possible
construction for a tweak generation algorithm makes use of an LFSR as shown in
figure 4. The design uses two pairs of shift registers (S and S), each comprising
of n flip-flops. The flip-flops in S are a complement of the flip-flops in S. To
obtain such a state, the master tweak is used to seed S and the complement
of the master tweak is used to seed S. Further, the feedback obtained from
an n degree primitive polynomial is complemented before being fed back to
S. Since all clocks toggle at the same time, the leakage from the registers is
minimised. The alternate source of leakage, from the combinational paths, is
also kept minimum by choosing a primitive polynomial with small number of
coefficients. For DRECON-AES, n = 128 and the primitive polynomial chosen
was α128 ⊕ α7 ⊕ α2 ⊕ α⊕ 1.

4.3 Choosing the S-boxes

Proposition 2 mandates that in order to make I[S(T,X)⊕K,X ;K] minimum,
S(T, x) should be balanced for all x. To make I[S(T,X) ⊕ K,X ;K] zero, it is
enough to have ht = n. Again to make S(T, x) balanced, we can choose the size
of T to be 2n. Further, each of the sboxes needs to have good cryptographic
properties to ensure security against black box attacks.

Exhaustive search can be used to find such sboxes. However, when the size
of the sbox is large, it becomes infeasible. We choose the set of sboxes which
are obtained using an affine transformations of a cryptographically strong sbox.
That is, if S(·) is a cryptographically strong sbox, we find a set of 2n strong
sboxes by setting Fi(x) = αS(x)⊕ i for all i = 0, · · · , 2n−1 where α is an invert-
ible matrix of dimensions n × n. Since affine transformation does not changes
the cryptographic properties of sboxes, all the sboxes of the set possess equal
cryptographic straingth of the original sbox.

4.4 Software Implementation of DRECON-AES

DRECON-AES can be efficiently implemented on a micro-controller. We define
a micro-controller model to compare the cost of DRECON-AES with the first-
order masking of AES. We use an 8-bit micro-controller model [11] which takes:

Clock

n degree primitive polynomial

sn−1 sn−3sn−2 s0sn−4

s0sn−4sn−3sn−2sn−1

S

S

Fig. 4. Tweak Generation for DRECON
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– load/store from/to RAM takes one clock cycle,
– load/store from/to ROM takes two clock cycles,
– XOR two registers takes one clock cycle,
– shift by one bit takes one clock cycle.
– swapping two nibbles of a byte takes one clock cycle.
We assume that the tweaked-sbox is stored in ROM. The masked implemen-

tations are assumed to use GLUT (global look-up table) with the same input
and the output mask (as it is first order protection). The GLUT is also stored
in ROM. Key Expansion is considered precomputed and thus omitted.

8 × 8 DRECON-AES: In the given scenario, the cost of each AES sub-
operation for a standard 8× 8 AES in terms of number of cycles are [11]:
– SubBytes (SB): 80
– ShiftRows (SR): 24
– MixColumns (MC): 256
– AddRoundKey (ARK): 64
– Memory Size: 256 Bytes
In DRECON-AES, the linear operations are exactly same as AES. The Sub-

Bytes is the only component which has changed. For 8× 8 DRECON-AES, the
number of clock cycles required for the SubBytes operation is SB∗ = 96. It also
needs one SR and two ARK operations less than the standard AES. Thus, the
full 8 × 8 DRECON-AES (without Key Expansion) would need Encryption =
10× SB∗ + 9× SR+ 9 ×MC + 9 ×ARK i.e. 4056 clock cycles and 256× 256
bytes or 64Kbytes of ROM.

For masking using GLUT approach, the total number of 8 × 8 sboxes are
256 which is same as 8 × 8 DRECON-AES. The number of cycles to compute
SubBytes is also same as 8× 8 DRECON-AES i.e. SB∗ = 96 clock cycles. Apart
from SubBytes, there is one initial masking and a final demasking. This is called
Extra Mask Addition (MA) and takes as many clock cycles as ARK. At each
round, the MixColumns and ShiftRows operations need to be performed for the
mask also. Thus a total masked AES (without Key Expansion), would need
Encryption = 10× SB∗ +20× SR+18×MC +11×ARK +2×MA i.e. 6880
clock cycles and 256× 256 bytes or 64Kbytes of ROM. Total cost estimation of
8× 8 DRECON-AES and masked AES is shown in Table 1.

Table 1. Cost Comparison for 8-bit Micro-controller in terms of number of clock cycles
taken for various operations

Architecture SB SR MC ARK ROM (bytes) MA Encryption

AES 80 24 256 64 256 0 4048
8× 8 DRECON-AES 96 24 256 64 64K 0 4056

Masked AES 96 24 256 64 64K 64 6880
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Table 2. Cost Comparison for 8-bit Micro-controller in terms of number of clock cycles
taken for various operations

Architecture SB SR MC ARK ROM (bytes) MA Encryption

4× 4 DRECON-AES 256 24 256 64 128 0 5656
Masked Alternative 224 24 256 64 128 64 8160

4×4 DRECON-AES: Implementation of 4×4 DRECON-AES in 8-bit micro-
controller is a bit more tricky. The tweaked-sbox comprising of 16 non-linear
functions can be stored in 128-bytes of ROM. The tweak determines the correct
sbox for the current operation by additional XOR (Figure 5). Since the ROM
in micro-controllers are often organised in bytes, a conditional swap operation
followed by AND operation with 0x0F determines the correct output nibble.

With the defined model in the beginning of Section 4.4 into consideration, we
have derived the number of clock cycles for each encryption and compare with
its masking counterpart. Table 2 gives the number of cycles for SubBytes (SB),
ShiftRows (SR), MixColumns (MC), AddRoundKeys (ARK). The table also lists
the ROM required for the implementations.

The 8 × 8 DRECON-AES has almost null performance overhead, while its
masking counterpart has a significant performance overhead, both having a 256X
memory overhead. The memory overhead of the 8 × 8 DRECON-AES can be
further reduced to as low as 16X for 4 × 4 DRECON-AES only at the cost of
slightly higher performance overhead. For both the cases, DRECON-AES has
an advantage over its masking counterpart in terms of the performance while
having same memory overhead.

4.5 Hardware Implementation DRECON-AES

In hardware, two implementation styles are followed for DRECON-AES. The
first one is parallel implementation which is preferred when sbox is small as in

ADDR

SBOX7 SBOX15

SBOX1 SBOX9
SBOX8SBOX0

10

4 4

SBOX_OUT

TWEAK[3]

SBOX_SEL[3]

SBOX_IN

7

4

TWEAK[2:0]

SBOX_SEL[2:0]

128X8 ROM

3

Fig. 5. 4× 4 tweaked-sbox in Software
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Table 3. Comparing Resource Requirements for 8 × 8 DRECON-AES with Masking
on an FPGA (XC5VLX50-2FF324)

Implementation Slices LUTs Registers Clock Clock Period
Cycles (ns)

4× 4 AES1 1120 3472 1270 11 11.14
Masked 4× 4 AES 3427 10589 1765 11 23.83
4× 4 DRECON-AES 1379 3868 1583 11 10.3

14× 4 AES is an implementation of the AES-128 algorithm with the 8× 8 bit sbox
replaced by a pair of 4× 4 cryptographically strong sboxes.

the case of 4 × 4 DRECON-AES. The second is the serialized implementation
used when sboxes are larger or when small area implementations are required.
We adopted serialized implementation for 8× 8 DRECON-AES.

4× 4 DRECON-AES: Much like the RSM countermeasure proposed in [26],
DRECON makes excessive use of tables. This especially suits FPGA platforms
which possess large memory blocks (BRAM) to implement arrays of sboxes. The
BRAM are used to store the pool of sboxes (F) efficiently. BRAM based un-
protected implementation of ciphers have been shown to offer higher resistance
against DPA as compared to other unprotected implementations [35]. The mem-
ory is addressed by a 4 bit tweak as shown in Figure 6. For DRECON-AES, we
replicated this memory 32 times; once for each tweaked-sbox in the round. The
value of the tweak is used to select a row while the input data selects a column
in order to obtain the result. There are 32 such structures, one for each of the 32
substitution functions, present in the design. We use distributed RAM instead of
BRAM to accelerate the attack. Resource requirements for the DRECON-AES
implementation is compared with masked implementations of an equivalent AES
with 4× 4 sboxes in Table 3. The estimation for the masked implementation is
computed from [32].

8 × 8 DRECON-AES: To implement 8× 8 DRECON-AES, we followed the
design of [23]. Serialised architecture with a rotating shift register and a single
sbox is used. Each sbox access is split into two cycles. In the first cycle, two bytes
- one from the state register and other from the tweak register - are applied to
the input of the tweaked-sbox and its output is saved into the state byte. In
the next cycle, both the state register and the tweak register are rotated by
one byte. Thus, the SubBytes operation requires 2 × 16 = 32 clock cycles. The
purpose of performing the state-byte update and rotation of state register in two
different clock cycles is to be able to perform a sound security analysis of the
implementation [23]. After the SubBytes operation, ShiftRows, MixColumns and
AddRoundKey operations are performed in one clock cycle making a single round
consisting of 33 clock cycles. The 8× 8 tweaked-sbox consists of 28 8× 8 sboxes.
Each of the 28 sboxes was generated from AES sbox using the second strategy
of Section 4.3. The resource requirement of 8 × 8 DRECON-AES implemented
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Table 4. Comparing Resource Requirements for 8 × 8 DRECON-AES with Masking
on an FPGA (XC5VLX50-2FF324)

Implementation Slices LUTs Registers Clock Period
(ns)

Masked AES1 3948 13278 1592 14.955
8× 8 DRECON-AES 1355 3716 1568 10.789

1The implementation exclude the PRNG used to generate mask.
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(b) 2O correlation-collision attack

Fig. 7. Results of correlation-collision attack on 8 × 8 DRECON-AES using about
10, 00, 000 traces. The correlation coefficients for wrong key differences are shown in
grey and for the correct key difference (in this case k1 ⊕ k2 = 108) in black.

in SASEBO-GII FPGA platform is shown in Table 4. The table also shows
the resource requirement of the second scheme of [15] implemented in the same
platform.

4.6 Attack on the Hardware Implementation

Recently correlation-collision attacks [24,22,23] have become a very effective tool
to expose the vulnerabilities of 1O masking scheme in the presence of glitches.
In [23], the authors have discussed the security of several ROM-based masking
scheme of AES against correlation-collision attacks. In this section, we provide
a similar security analysis of 8× 8 DRECON-AES.

In correlation-collision attack [24], two sets of leakages of the same sbox in-
stant during two different clock cycles with two different inputs, xi ⊕ ki and
xj ⊕ kj , are compared using a statistical test. If the two sets of leakages are
similar in some statistical sense, a collision between the two sets are detected
by the statistical test. The collision assures the relation xi ⊕ ki = xj ⊕ kj or
ki ⊕ kj = xi ⊕ xj . Correlation-collision attack was originally proposed to detect
collision using the correlation between the mean values of the two sets of leak-
ages. However in [22,23], it has been used to consider the higher order moments
of the leakages also.
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To verify the resistance of 8 × 8 DRECON-AES against DPA attack in the
presence of glitches, we performed correlation-collision attack using both 1O
and the 2O moments as described in [22]. For this evaluation also, SASEBO-GII
board was used. The algorithm was implemented in Virtex 5 XC5VLX50 FPGA
of SASEBO-GII which is driven by a clock frequency of 2 MHz. The power traces
were acquired using Tektronix MSO 4034B Oscilloscope at the rate of 2.5 GS/s
i.e. 1, 250 samples per clock period. Figure 7 shows the result of both 1O and the
2O correlation-collision attack on the leakages of the first and the second sbox
access of the second round 8 × 8 DRECON-AES using about 10, 00, 000 traces.
It may be noted that similar implementations of several masking schemes have
been reported to be vulnerable to correlation-collision attack in [23].

5 Conclusion

DRECON provides a simple and efficient method of constructing block ciphers
with inherent and provable security against DPA. The use of off-the-shelf sboxes
ensures that the cipher is secure against classical cryptanalysis. In a glitch-free
scenario, the security against DPA is proved to be equal to first-order Boolean
masking from an information theoretic perspective. Its resistance against uni-
variate DPA is also proved in the presence of glitches. Additionally, the first-
order and second-order univariate DPA security is validated empirically with
implementations on the SASEBO GII side-channel evaluation board. From the
implementation perspective, DRECON has several advantages over standard
countermeasures such as masking, hiding, and re-keying. In future, we hope to
extend DRECON to provide security against higher-order DPA attacks as well.
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4. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved
Collision-Correlation Power Analysis on First Order Protected AES. In: Preneel,
B., Takagi, T. (eds.) [30], pp. 49–62

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Series in
Telecommunications and Signal Processing. Wiley-Interscience (July 2006)

6. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block Ciphers That
Are Easier to Mask: How Far Can We Go? In: Bertoni, G., Coron, J.-S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

7. Goubin, L., Patarin, J.: DES and Differential Power Analysis (The “Duplication”
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27. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlin-
ear Functions in the Presence of Glitches. J. Cryptology 24(2), 292–321 (2011)

28. Kocher, P.C.: Leak-Resistant Cryptograhic Indexed Key Update, US Patent
6539092 (2003)

29. Piret, G., Roche, T., Carlet, C.: PICARO – A Block Cipher Allowing Efficient
Higher-Order Side-Channel Resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.)
ACNS 2012. LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)

30. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917, pp. 2011–2013.
Springer, Heidelberg (2011)

31. Prouff, E., Roche, T.: Higher-Order Glitches Free Implementation of the AES Using
Secure Multi-party Computation Protocols. In: Preneel, B., Takagi, T. (eds.) [30],
pp. 63–78

32. Regazzoni, F., Yi, W., Standaert, F.X.: FPGA Implementations of the AESMasked
Against Power Analysis Attacks. In: Proceedings of 2nd International Workshop
on Constructive Side-Channel Analysis and Secure Design (COSADE) (February
2011)

33. Research Center for Information Security National Institute of Advanced Indus-
trial Science and Technology: Side-channel Attack Standard Evaluation Board
SASEBO-GII Specification, Version 1.01 (2009)

34. Rivain, M., Prouff, E., Doget, J.: Higher-Order Masking and Shuffling for Software
Implementations of Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

35. Shah, S., Velegalati, R., Kaps, J.P., Hwang, D.: Investigation of DPA Resistance of
Block RAMs in Cryptographic Implementations on FPGAs. In: Prasanna, V.K.,
Becker, J., Cumplido, R. (eds.) ReConFig, pp. 274–279. IEEE Computer Society
(2010)

36. Standaert, F.X., Pereira, O., Yu, Y., Quisquater, J.J., Yung, M., Oswald, E.:
Leakage Resilient Cryptography in Practice. Cryptology ePrint Archive, Report
2009/341 (2009), http://eprint.iacr.org/

37. Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards. In: ESSCIRC 2002, pp. 403–406 (2002)

38. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Re-
sistant ASIC or FPGA Implementation. In: DATE, pp. 246–251. IEEE Computer
Society (2004)

39. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

40. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)

http://eprint.iacr.org/


438 S. Hajra et al.

Appendix A: Proof of Lemma 1

Without loss of generality, we assume that the sbox in the statement of Lemma 1
belongs to the second round. Thus, the random variable Z is the output of a MDS
mapping M of the diffusion layer in the first round (see Figure 1) which takes the
outputs of m sboxes of the first round as inputs. Let S(Xi1 , Ti1), S(Xi2 , Ti2),
. . ., S(Xim , Tim) be the inputs to the the MDS mapping. Since the operation is a
MDS mapping, it can be realised by a q×q matrix whose elements are essentially
non-zero. Thus Z can be represented as a1 ·S(Xi1 , Ti1)⊕ · · · ⊕ am ·S(Xim , Tim)
where aj ∈ {0, 1}n \ {0}n. We can now compute the posterior probability of
Z = z given X1, . . . , Xq, T as

P[Z = z|X1 = x1, . . . , Xq = xq, T = t] =P[Z = z|Xi1 = xi1 , . . . , Xim = xim , T = t]

=P[a1 · S(Xi1 , Ti1)⊕ · · · ⊕ am · S(Xim , Tim)=z

|Xi1 = xi1 , . . . , Xim = xim , T = t]

=P[a1 · S(xi1 , Ti1)⊕ · · · ⊕ am · S(xim , Tim) = z

|T = t]

The variable T may or may not belong to {Ti1 , · · · , Tim}. Let us first assume
that T does not belong to {Ti1 , · · · , Tim}. In that case, the above probability
can be given by

P[Z = z|X1 = x1, . . . , Xq = xq, T = t] =P[a1 · S(xi1 , Ti1)⊕ · · · ⊕ am · S(xim , Tim) = z]

Since, the sbox S(·, ·) satisfies Proposition 2 and Tis are uniformly random, the
variable a1 · S(xi1 , Ti1) ⊕ · · · ⊕ am · S(xim , Tim) is also uniformly random and
consequently P[Z = z|X1 = x1, . . . , Xq = xq, T = t] = 1/2n.

On the other hand, if T belongs to {Ti1 , · · · , Tiq}, let say T = Ti1 , the posterior
probability of Z = z can be given by

P[Z = z|X1 = x1, . . . , Xq = xq, T = t] =P[a1 · S(xi1 , Ti1)⊕ · · · ⊕ am · S(xim , Tim) = z

|Ti1 = t]

=P[a1 · S(xi1 , t)⊕ · · · ⊕ am · S(xim , Tim ) = z]

=P[a2 · S(xi2 , Ti2)⊕ · · · ⊕ am · S(xim , Tim) =

z ⊕ a1 · S(xi1 , t)]

Since m ≥ 2, this probability is also equates to 1/2n. Thus, in both the cases the
posterior probabilities of Z = z is 1/2n which is equals to its a priori probability
P[Z = z]. Thus we conclude that Z is independent of the joint distribution of
the variables X1, . . . , Xq and T .
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Appendix B: Algorithm of 4× 4 DRECON-AES

Algorithm 1: Compute 4× 4 DRECON-AES

Input: T : Master Tweak, ntr: number of encryption, P : Array of ntr plaintext
Output: C: Array of ntr ciphertext

1 begin
2 Generate Key Expansion Tweak TK ∈ [0, 63] from Master Tweak T
3 Generate 16 Tweaked Sboxes
4 KeyExpansion k[1] . . . k[9]
5

6 for i = 1 to ntr do
7 Generate: 128 − bit Session Tweak TS

8 state ← P [i]
9 for round r = 1 to 9 do

10 for nibble n = 1 to 32 do
11 Sbox ← Sboxes[TS[(4 ∗ n : 4 ∗ n+ 3)mod16]]
12 state[n] ← Sbox(state[n]) (SubBytes)

13 end
14 state ← ShiftRows(state)
15 state ← MixColumns(state)
16 state ← AddRoundKey(state,k[r])

17 end
18 for nibble n = 1 to 32 do
19 Sbox ← Sboxes[TS[(4 ∗ n : 4 ∗ n+ 3)mod16]]
20 state[n] ← Sbox(state[n]) (Final SubBytes)

21 end
22 C[i] ← state

23 end
24 return C

25 end
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