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Abstract. We conduct a theoretical and practical comparison of two
Ring-LWE-based, scale-invariant, leveled homomorphic encryption sche-
mes – Fan and Vercauteren’s adaptation of BGV and the YASHE scheme
proposed by Bos, Lauter, Loftus and Naehrig. In particular, we explain
how to choose parameters to ensure correctness and security against
lattice attacks. Our parameter selection improves the approach of van de
Pol and Smart to choose parameters for schemes based on the Ring-LWE
problem by using the BKZ-2.0 simulation algorithm.

We implemented both encryption schemes in C++, using the arithmetic
library FLINT, and compared them in practice to assess their respective
strengths and weaknesses. In particular, we performed a homomorphic
evaluation of the lightweight block cipher SIMON. Combining block ci-
phers with homomorphic encryption allows to solve the gargantuan ci-
phertext expansion in cloud applications.

1 Introduction

In 2009, Gentry proposed the first fully homomorphic encryption scheme [16].
A fully homomorphic encryption (FHE) scheme is an encryption scheme that
allows, from ciphertexts E(a) and E(b) encrypting bits a, b, to obtain encryp-
tions of ¬a, a ∧ b and a ∨ b without using the secret key. Clearly, this allows
to publicly evaluate any Boolean circuit given encryptions of the input bits.
This powerful primitive has become an active research subject in the last four
years. Numerous schemes based on different hardness assumptions have been
proposed [16,12,5,4,30,20] and have improved upon previous approaches.

In all of the aforementioned schemes, a ciphertext contains a noise that grows
with each homomorphic operation. The noise is minimal when the ciphertext is a
fresh encryption of a plaintext bit and has not yet been operated on. Homomor-
phic operations as those above can be (and are often) expressed as homomorphic
addition and multiplication operations, i.e. addition and multiplication in the bi-
nary field F2. Both increase the noise in ciphertexts, which means that the noise
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in a resulting encryption is larger than the noise in the respective input en-
cryptions. In particular, homomorphic multiplication increases the noise term
significantly.

After a certain amount of such homomorphic computations have been carried
out, the noise reaches a certain maximal size after which no more homomorphic
operations can be done without losing correctness of the encryption scheme. At
this point, the ciphertext needs to be publicly refreshed to allow subsequent
homomorphic operations. This refreshing procedure is called bootstrapping and
is very costly. As a consequence, only few of the FHE schemes have been fully
implemented [17,11,9] and the resulting performances are rather unsatisfactory.

However, real-world applications do not necessarily need to handle any input
circuit. One might avoid using the bootstrapping procedure if the multiplica-
tive depth of the circuit to be evaluated is known in advance and small enough
(cf. [33,21,24,3] and even [19]). Unfortunately, for the schemes of [17,11,9] the
noise grows exponentially with the depth of the circuit being evaluated, severely
limiting the circuits that can be evaluated with reasonable parameters. To mit-
igate this noise growth, Brakerski, Gentry and Vaikuntanathan introduced the
notion of leveled homomorphic encryption schemes [5]. In such a scheme, the
noise grows only linearly with the multiplicative depth of the circuit being eval-
uated. Therefore for a given circuit of reasonable depth, one can select the pa-
rameters of the scheme to homomorphically evaluate the circuit in a reasonable
time. They describe a leveled homomorphic encryption scheme called BGV using
a modulus switching technique. Furthermore, this scheme and other ring-based
homomorphic encryption schemes allow the use of larger plaintext spaces, where
bits are replaced by polynomials with coefficients modulo a plaintext modulus
possibly different from 2. Such plaintext spaces allow the encryption of more
information in a single ciphertext, for example via batching of plaintext bits.
Unfortunately, to homomorphically evaluate a circuit of multiplicative depth d
using the modulus switching technique, the public key needs to contain d distinct
versions of a so-called evaluation key.

At Crypto 2012, Brakerski proposed the new notion of scale-invariance [4]
for leveled homomorphic encryption schemes. In contrast to a scheme that uses
modulus switching, the ciphertexts for a scale-invariant scheme keep the same
modulus during the whole homomorphic evaluation and only one copy of the
scale-invariant evaluation key has to be stored. This technique has been adapted
to the BGV scheme [5] by Fan and Vercauteren [14], and to López-Alt, Tromer
and Vaikuntanathan’s scheme [30] by Bos, Lauter, Loftus and Naehrig [3].1 The
resulting schemes are called FV and YASHE, respectively. No implementation
of the FV scheme is known (except for a proof-of-concept implementation in a
computer algebra system that is used in [21]). The YASHE scheme [3] was the first
(and only) scale-invariant leveled homomorphic encryption scheme implemented
so far. Very satisfactory timings are claimed for a small modulus (then able to

1 This technique was also adapted to the homomorphic encryption scheme over the
integers [12] by Coron, Lepoint and Tibouchi [10].



320 T. Lepoint and M. Naehrig

handle only circuits of multiplicative depth at most 2) on a personal computer.
Unfortunately the implementation is not openly available for the community.

Sending Data to the Cloud. In typical real-world scenarios for using FHE with
cloud applications, one or more clients communicate with a cloud service. They
upload data encrypted with an FHE scheme under the public key of a specific
user. The cloud can process this data homomorphically and return an encrypted
result. Unfortunately, ciphertext expansion (i.e. the ciphertext size divided by
the plaintext size) of current FHE schemes is prohibitive (thousands to millions).
For example using techniques in [11] (for 72 bits of claimed security), sending
4MB of data on which the cloud is allowed to operate, would require to send
more than 73TB of encrypted data over the network.

To solve this issue, it was proposed in [33] to instead send the data encrypted
with a block cipher (in particular AES). The cloud service then encrypts the
ciphertexts with the FHE scheme and the user’s public key and homomorphically
decrypts them before they are processed. Therefore, network communication is
lowered to the data size (which is optimal) plus a costly one-time setup that
consists of sending the FHE public key and an FHE encryption of the block
cipher secret key.

The AES circuit was chosen as a standard circuit to evaluate because it is
nontrivial (but still reasonably small) and has an algebraic structure that works
well with the plaintext space of certain homomorphic encryption schemes [19].
However, there might be other ciphers that are more suitable for being evalu-
ated under homomorphic encryption. In June 2013, the U.S. National Security
Agency unveiled a family of lightweight block ciphers called SIMON [2]. These
block ciphers were engineered to be extremely small, easy to implement and ef-
ficient in hardware. SIMON has a classical Feistel structure and each round only
contains one AND. This particularly simple structure is a likely candidate for
homomorphic cryptography.

Our Contributions. In this work, we provide a concrete comparison of the sup-
posedly most practical leveled homomorphic encryption schemes FV and YASHE.
(To our knowledge, this is the first comparison of leveled homomorphic encryp-
tion schemes.) In particular, we revisit and provide precise upper bounds for the
norm of the noises in the FV scheme, as done for the YASHE scheme in [3]. It
appears from our work that the FV scheme has a theoretical smaller noise growth
than YASHE.

We revisit van de Pol and Smart’s approach [35] to derive secure parameters
for these schemes. They use the BKZ-2.0 simulation algorithm [7,8] (the most
up-to-date lattice basis reduction algorithm) to determine an upper bound on
the modulus to ensure a given level of security. We show that their methodology
has some small limitations and we describe how to resolve them. The resulting
method yields a more conservative but meaningful approach to select parameters
for lattice-based cryptosystems.

Finally, we propose proof-of-concept implementations of both FV and YASHE
in C++ using the arithmetic library FLINT [23]. This allows us to practically
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compare the noise growth and the performances of the FV and YASHE schemes.
The implementations provide insights into the behavior of these schemes for
circuits of multiplicative depth larger than 2 (contrary to the implementation
described in [3]). For this purpose, we implemented SIMON-32/64 using FV,
YASHE and the batch integer-based scheme from [10]. Our implementations are
publicly available for the community to reproduce our experiments [26]. Due
to the similarity in the design of the FV and YASHE schemes and the common
basis of our implementations, we believe that our comparison gives meaningful
insights into which scheme to use according to the desired application, and on
the achievable performance of leveled homomorphic encryption.

2 Preliminaries

In this section, we provide a succinct background on lattices, the (Ring) Learning
With Errors problem and recall the FV [14] and YASHE [3] leveled homomorphic
encryption schemes.

2.1 Lattices

A (full-rank) lattice of dimension m is a discrete additive subgroup of Rm. For
any such lattice L �= {0}, there exist linearly independent vectors b1, . . . ,bm ∈
R

m such that L = b1Z ⊕ · · · ⊕ bmZ. This set of vectors is called a basis of the
lattice. Thus a lattice can be represented by its basis matrix B ∈ R

m×m, i.e. the
matrix consisting of the rows bi in the canonical basis of Rm. In particular, we
have L = {z ·B : z ∈ Z

m}. The determinant (or volume) of a lattice is defined
as det(L) = (det(BBt))1/2 = |det(B)| , where B is any basis of L. This quantity
is well-defined since it is independent of the choice of basis.

Among all the bases of a lattice L, some are ‘better’ than others. The goal
of lattice basis reduction is to shorten the basis vectors and thus, since the
determinant is invariant, to make them more orthogonal. In particular, any basis
B = (b1, . . . ,bm) can be uniquely written as B = μ · D · Q where μ = (μij)
is lower triangular with unit diagonal, D is diagonal with positive coefficients
and Q has orthogonal row vectors. We call B∗ = D · Q the Gram-Schmidt
orthogonalization of B, and D = diag(‖b∗

1‖, . . . , ‖b∗
m‖) is the diagonal matrix

formed by the �2-norms ‖b∗
i ‖ of the Gram-Schmidt vectors.

Following the approach popularized by Gama and Nguyen [15], we say that
a specific basis B has root Hermite factor γ if its element of smallest norm b1

(i.e. we assume that basis vectors are ordered by their norm) satisfies

‖b1‖ = γm · |det(B)|1/m .

By using lattice basis reduction algorithms, one aims to determine an output
lattice basis with guaranteed norm and orthogonality properties. A classical lat-
tice basis reduction algorithm is LLL (due to Lenstra, Lenstra and Lovász [25]),
which ensures that for all i < m, δLLL‖b∗

i ‖2 � ‖b∗
i+1 + μi+1ib

∗
i ‖2 for a given pa-

rameter δLLL ∈ (1/4, 1]. The LLL algorithm runs in polynomial-time and provides
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bases of quite decent quality. For many cryptanalytic applications, Schnorr and
Euchner’s blockwise algorithm BKZ [36] is the most practical algorithm for lat-
tice basis reduction in high dimensions. It provides bases of higher quality but its
running time increases significantly with the blocksize. Now if A denotes a lattice
basis reduction algorithm, applying it to B yields a reduced basis B′ = A(B).
Thus we can define γA(B) as the value such that

‖b′
1‖ = γm

A(B) · |det(B′)|1/m = γm
A(B) · |det(B)|1/m .

It is conjectured [15,7] that the value γA(B) depends mostly on the lattice ba-
sis reduction algorithm, and not on the input basis B (unless it has a special
structure and cannot be considered random). Thus, in this paper, we refer to
this value as γA. For example for LLL and BKZ-20 (i.e. BKZ with a blocksize
β = 20), in the literature one can find the well-known values γLLL ≈ 1.021 and
γBKZ-20 ≈ 1.013.

2.2 Ring-LWE

In this section, we briefly introduce notation for stating the Ring-LWE-based ho-
momorphic encryption schemes FV and YASHE, and formulate the Ring Learning
With Errors (RLWE) Problem relating to the security of the two schemes. For
further details, we refer to [31], [14], and [3].

Let d be a positive integer and let Φd(x) ∈ Z[x] be the d-th cyclotomic
polynomial. Let R = Z[x]/(Φd(x)), i.e. the ring R is isomorphic to the ring
of integers of the d-th cyclotomic number field. The elements of R are polyno-
mials with integer coefficients of degree less than n = ϕ(d). For any polynomial
a =

∑n
i=0 aix

i ∈ Z[x], let ‖a‖∞ = max{|ai| : 0 � i � n} be the infinity
norm of a. When multiplying elements of R, the norm of the product grows
at most with a factor δ = sup{‖ab‖∞/‖a‖∞‖b‖∞ : a, b ∈ R}, the so-called
expansion factor. For an integer modulus q > 0, define Rq = R/qR. If t is an-
other positive integer, let rt(q) be the reduction of q modulo t into the interval
[0, t), and let Δ = 	q/t
, then q = Δt + rt(q). Denote by [·]q reduction modulo
q into the interval (−q/2, q/2] of an integer or integer polynomial (coefficient
wise). Fix an integer base w and let �w,q = 	logw(q)
 + 1. Then a polynomial

a ∈ Rq can be written in base w as
∑�w,q−1

i=0 aiw
i, where ai ∈ R with coeffi-

cients in (−w/2, w/2]. Define WordDecompw,q(a) = ([ai]w)
�w,q−1
i=0 ∈ R�w,q and

PowersOfw,q(a) = ([awi]q)
�w,q−1
i=0 ∈ R�w,q . Note that

〈WordDecompw,q(a),PowersOfw,q(b)〉 = ab (mod q) .

Let χkey and χerr be two discrete, bounded probability distributions on R.
In practical instantiations, the distribution χerr is typically a truncated discrete
Gaussian distribution that is statistically close to a discrete Gaussian. The dis-
tribution χkey is chosen to be a very narrow distribution, sometimes even such
that the coefficients of the sampled elements are in the set {−1, 0, 1}. We denote
the bounds corresponding to these distributions by Bkey and Berr, respectively.
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This means that ‖e‖∞ < Berr for e ← χerr and ‖f‖∞ < Bkey for f ← χkey.
With the help of χkey and χerr, we define the Ring-LWE distribution on Rq×Rq

as follows: sample a ← Rq uniformly at random, s ← χkey and e ← χerr, and
output (a, [as+ e]q).

Next, we formulate a version of the Ring-LWE problem that applies to the
schemes FV and YASHE considered in this paper.

Definition 1 (Ring-LWE problem). With notation as above, the Ring-Lear-
ning With Errors Problem is the problem to distinguish with non-negligible
probability between independent samples (ai, [ais+ ei]q) from the Ring-LWE dis-
tribution and the same number of independent samples (ai, bi) from the uniform
distribution on Rq ×Rq.

In order for FV and YASHE to be secure, the RLWE problem as stated above
needs to be infeasible. We refer to [14] and [3] for additional assumptions and
detailed discussions of the properties of χkey and χerr.

2.3 The Fully Homomorphic Encryption Scheme FV

Fan and Vercauteren [14] port Brakerski’s scale-invariant FHE scheme intro-
duced in [4] to the RLWE setting. Using the message encoding as demonstrated
in an RLWE encryption scheme presented in an extended version of [31] makes
it possible to avoid the modulus switching technique for obtaining a leveled ho-
momorphic scheme. We briefly summarize (a slightly generalized version of) the
FV scheme in this subsection.

• FV.ParamsGen(λ): Given the security parameter λ, fix a positive integer d
that determines R, moduli q and t with 1 < t < q, distributions χkey, χerr

on R, and an integer base w > 1. Output (d, q, t, χkey, χerr, w).
• FV.KeyGen(d, q, t, χkey, χerr, w): Sample s ← χkey, a ← Rq uniformly at ran-

dom, and e ← χerr and compute b = [−(as + e)]q. Sample a ← R
�w,q
q

uniformly at random, e ← χ
�w,q
err , compute γ = ([PowersOfw,q(s

2) − (e + a ·
s)]q, a) ∈ R�w,q ,and output (pk, sk, evk) = ((b, a), s,γ).

• FV.Encrypt((b, a),m): The message space is R/tR. For a message m + tR,
sample u ← χkey, e1, e2 ← χerr, and output the ciphertext c = ([Δ[m]t +
bu+ e1]q, [au+ e2]q) ∈ R2.

• FV.Decrypt(s, c = (c0, c2)): Output m = [	t/q · [c0 + c1s]q�]t ∈ Rt.
• FV.Add(c1, c2): Given ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1), out-
put cadd = ([c1,0 + c2,0]q, [c1,1 + c2,1]q).

• FV.ReLin(c̃mult, evk): Let (b, a) = evk and let c̃mult = (c0, c1, c2). Output the
ciphertext

([c0 + 〈WordDecompw,q(c2),b〉]q , [c1 + 〈WordDecompw,q(c2), a〉]q).
• FV.Mult(c1, c2, evk): Output the ciphertext cmult = FV.ReLin(c̃mult, evk),
where

c̃mult = (c0, c1, c2) =

([⌊
t

q
c1,0c2,0

⌉]
q

,

[⌊
t

q
(c1,0c2,1 + c1,1c2,0)

⌉]
q

,

[⌊
t

q
c1,1c2,1

⌉]
q

)
.
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2.4 The Fully Homomorphic Encryption Scheme YASHE

In [3], a fully homomorphic encryption scheme is introduced that is based on the
modified version of NTRU by Stehlé and Steinfeld [38] and the multi-key fully
homomorphic encryption scheme presented in [30]. In this subsection, we state
the more practical variant of the leveled homomorphic scheme from [3].

• YASHE.ParamsGen(λ): Given the security parameter λ, fix a positive integer
d that determines R, moduli q and t with 1 < t < q, distributions χkey, χerr

on R, and an integer base w > 1. Output (d, q, t, χkey , χerr, w).
• YASHE.KeyGen(d, q, t, χkey, χerr, w): Sample f ′, g ← χkey and let f = [tf ′ +
1]q. If f is not invertible modulo q, choose a new f ′. Compute the inverse

f−1 ∈ R of f modulo q and set h = [tgf−1]q. Sample e, s ← χ
�w,q
err , compute

γ = [PowersOfw,q(f) + e+ h · s]q ∈ R�w,q and output (pk, sk, evk) = (h, f,γ).
• YASHE.Encrypt(h,m): The message space is R/tR. For a message m + tR,
sample s, e ← χerr, and output the ciphertext c = [Δ[m]t + e+ hs]q ∈ R.

• YASHE.Decrypt(f, c): Decrypt a ciphertext c by m = [	t/q · [fc]q�]t ∈ R.
• YASHE.Add(c1, c2): Output cadd = [c1 + c2]q.
• YASHE.KeySwitch(c̃mult, evk): Output [〈WordDecompw,q(c̃mult), evk〉]q.
• YASHE.Mult(c1, c2, evk): Output the ciphertext

cmult = YASHE.KeySwitch(c̃mult, evk), where c̃mult = [	t/q · c1c2�]q .

3 Parameter Derivation

In this section, we explain how to derive parameters for the fully homomorphic
encryption schemes FV [14] and YASHE [3]. For security, we follow van de Pol
and Smart’s approach to derive the maximal size of the modulus achievable in
a given dimension [35] and consider the distinguishing attack against RLWE. In
particular, we use Chen and Nguyen’s simulation algorithm for the state-of-the-
art lattice basis reduction algorithm BKZ-2.0 [7,8]. For correctness, we provide a
lower bound on the modulus in a given dimension and for a targeted number of
levels (depending on the application), for both schemes FV and YASHE. There-
fore for a given application, it suffices to combine these upper and lower bounds
to select a suitable modulus.

3.1 Revisiting van de Pol and Smart’s Approach

We assume the reader to be familiar with Schnorr and Euchner’s blockwise
algorithm BKZ [36], and Chen and Nguyen’s improved version BKZ-2.0 [7,8].
We provide more details in the full version [27] of this paper. In the following
BKZ-2.0N,β means that BKZ-2.0 is run with blocksize β and for a maximal
number of N rounds. In [35], van de Pol and Smart use the formula of [7,8],

cost(BKZ-2.0N,β) � N×(m−β)×cost(Enumeration in dimension β)+O(1) (1)
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to estimate the cost of BKZ-2.0N,β (in terms of the number of nodes visited) on an
m-dimensional basis, and to generate secure parameters.2 Instead of using BKZ-
2.0 to verify heuristically selected parameters, they rather propose a rational
method to tackle the parameter selection, which we describe below.

For a given security parameter λ and a dimension m, van de Pol and Smart
propose to derive the smallest root Hermite factor γ(m) on an m-dimensional
lattice achievable using BKZ-2.0 by an adversary limited to a computational cost
of at most cost(BKZ-2.0) � 2λ. By Equation (1), this means that for all β and
N , we need to have

N × (m− β)× cost(Enumeration in dimension β) � 2λ .

Thus, for each β and using the enumeration costs in [7] (or [8]), one obtains an
upper bound Nmax on the number of BKZ-2.0 rounds with blocksize β that an
adversary bounded as above can afford to run, i.e. such that this latter inequality
is still verified. Next, the quality of the resulting basis is estimated by running
the BKZ-2.0Nmax,β

simulation algorithm on a random lattice with blocksize β and
Nmax rounds. This yields a root Hermite factor γ(m,β) for this specific blocksize
β. By taking the minimum value over all blocksizes, one obtains the minimum
root Hermite factor γ(m) achievable in dimension m for the security parameter
λ using BKZ-2.0.

Van de Pol and Smart show that, for the homomorphic evaluation of the
AES circuit of [19], by using their new approach for a given security level, it is
possible to work with significantly smaller lattice dimensions than what previous
methods recommended, which affects the performance of the underlying lattice-
based homomorphic encryption scheme.

Limitations of [35]. However, the approach presented in [35] has some limita-
tions. First of all, van de Pol and Smart only consider dimensions that are a
power of two. They use linear interpolation for the missing values and therefore
obtain a simplified model which does not reflect the real behavior of the minimal
root Hermite factor. Also, the enumeration costs used in [35] are based on the
proceedings version [7] of the BKZ-2.0 paper. Recently a full version [8] with
smaller enumeration costs has been published, which forces one to revisit van de
Pol and Smart’s results. Last but not least, they only consider blocksizes that
are a multiple of 10 (due to the tables in [7]). This leads to a phenomenon of
plateaus (cf. Fig 1) and might lead to a choice of parameters ensuring less than
λ bits of security.

Overcoming the Limitations of [35]. To overcome these issues, we performed the
same experiments as van de Pol and Smart but for all dimensions from 1000

2 The term O(1) occurs due to the fact that in high dimension, the enumeration time
is usually dominant compared to the time spent on computing the Gram-Schmidt
orthogonalization and LLL reduction [7,8]. Note again that Chen and Nguyen provide
an ideal simulation algorithm – experimental applications of BKZ-2.0 might yield a
basis with a larger root Hermite factor. Therefore, using Equation (1) to estimate
parameters is conservative.
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Fig. 1. Minimal root Hermite factor γ(m) achievable with a complexity less than 280,
in function of the dimension m

up to 65000. We also considered both the enumeration costs given in Chen and
Nguyen’s proceedings paper [7] as well as those in the full version [8]. We plotted
the results in Fig. 1. As expected, the linear interpolation of [35] does not fully
reflect the behavior of the experiments for the other dimensions.

However, when performing the experiments for all dimensions, but only avoid-
ing linear interpolation, we still observe the plateau phenomenon. This can be
explained by the fact that the enumeration costs from [7] are only used for
blocksizes that are a multiple of Δβ = 10 (which are the only values given in
[7]), and only those are considered in [35]. Each plateau consists of the mini-
mal root Hermite factor achievable for a specific blocksize β. Now for the whole
plateau, BKZ-2.0Nmax,β

terminates in less than Nmax rounds, i.e. a fix-point is
attained at some round i < Nmax. The next plateau corresponds to a block-
size β − Δβ = β − 10. Between plateaus, the number Nmax is the limiting fac-
tor in BKZ-2.0 (i.e. BKZ-2.0Nmax,β

terminates at round Nmax) and determines
the achievable root Hermite factor (therefore this latter value increases until a
blocksize of size β − 10 instead of β is more useful).

To resolve this issue, we used the least squares method to interpolate the
enumeration costs for blocksizes β that are not a multiple of 10 (for more details
see the full version [27] of this paper). These new costs allowed us to perform the
experiments with all blocksizes β ∈ {100, . . . , 250} (i.e. with steps Δβ = 1) and
we obtained the plain lines in Fig. 1.3 As one can see there, parameters selected
from plateaus might yield attacks of complexity smaller than 2λ if the attacker
chooses a blocksize that actually allows to achieve a smaller root Hermite factor.

Therefore, to be more conservative than [35] in our parameter selection, in the
rest of the paper, we use the values of γ(m) for Δβ = 1 using the enumeration

3 Note that, without loss of generality, we only considered blocksizes larger than 100.
Indeed, for β = 100 the cost of the enumeration of [8] is 239 and BKZ-2.0 usually
reaches a fix point in less than 100 rounds (cf. [8, Fig.7]). Therefore for a target
security level of 80 bits and dimensions up to ≈ 232, one will not be able to obtain
a better reduction with a β < 100.
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costs of [8]. Note that there is a significant difference in the achievable values
compared to [35].

3.2 Security Requirements for RLWE: The Distinguishing Attack

In this section, we restate and extend the security analysis of [35]. Namely, we
consider the distinguishing attack against RLWE (see [32,28]). In the following,
we denote by 0 < ε < 1 the advantage with which we allow the adversary to
distinguish an RLWE instance (a, b = a ·s+e) ∈ R2

q from a uniform random pair
(a, u) ∈ R2

q (i.e. the advantage of the adversary for solving the Decisional-RLWE
problem). For any a ∈ Rq, we denote by Λq(a) the lattice

Λq(a) = {y ∈ Rq : ∃ z ∈ R, y = a · z mod q}.

Recall that, for an n-dimensional lattice Λ, we denote by Λ× its dual, i.e. the
lattice defined by Λ× = {v ∈ R

n : ∀ b ∈ Λ, 〈v, b〉 ∈ Z}. The distinguishing attack
consists in finding a small vector v ∈ q ·Λq(a)

×. Then, for all y ∈ Λq(a), 〈v, y〉 =
0 mod q. To distinguish whether a given pair (a, u) was sampled according to
the RLWE distribution or the uniform distribution, one tests whether the inner
product 〈v, u〉 is ‘close’ to 0 modulo q (i.e. whether |〈v, u〉| < q/4) or not.

Indeed, when u is uniformly distributed in Rq and n � 2λ + 1, 〈v, u〉 is
statistically close to the uniform distribution by the leftover hash lemma and the
test accepts with probability 1/2 − negl(λ). However, when (a, u) is an RLWE
sample, i.e. there exists s ∈ Rq and e ← χerr such that u = a · s + e, we have
〈v, u〉 = 〈v, e〉 mod q, which is essentially a sample from a Gaussian (reduced
modulo q) with standard deviation ‖v‖ · σerr. Now when this parameter is not
much larger than q, 〈v, e〉 can be distinguished from uniform with advantage
exp(−πτ2) with τ = ‖v‖ · σerr/q, for details see [32,28].

The distinguishing attack against LWE is more efficient when working with a
m×n matrix with m > n [32,28,35]. Moreover, it is unknown how to exploit the
ring structure of RLWE to improve lattice reduction [15,7]. Therefore, we will
embed our RLWE instance into an LWE lattice. Next we apply the distinguishing
attack against LWE and the result can be used to distinguish the RLWE instance
from uniform. Define an LWE matrix A ∈ Z

m×n
q associated to a as the matrix

whose first n lines are the coefficient vectors of xi · a for i = 0, . . . , n − 1 and
the m−n last lines are small linear combinations of the first n lines. Denote the
LWE lattice

Λq(A) = {y ∈ Z
m : ∃ z ∈ Z

n, y = Az mod q}.
Now, we use lattice basis reduction in order to find such a short vector v ∈
q · Λq(A)

×. An optimal use of BKZ-2.0 would allow us to recover a vector v
such that ‖v‖ = γ(m)m · qn/m (because det(qΛq(A)

×) = qn, cf. [35]). Therefore,
to keep the advantage of the BKZ-2.0-adversary small enough, we need to have
exp(−πτ2) � ε, i.e.

γ(m)m · q(n/m)−1 · σerr �
√
− log(ε)/π .
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Table 1.Maximal values of log2(q) to ensure λ = 80 bits of security, with distinguishing
advantage ε = 2−80 and standard deviation σerr = 8

n 1024 2048 4096 8192 16384
Maximal log2(q) (method of [28]) 40.6 79.4 157.0 312.2 622.7
Maximal log2(q) (our method) 47.5 95.4 192.0 392.1 799.6

Define α =
√− log(ε)/π. To ensure security for all m > n, we obtain the condi-

tion

log2(q) � min
m>n

m2 · log2(γ(m)) +m · log2(σ/α)
m− n

. (2)

Let us fix the security parameter λ. Following the experiment described in
Section 3.1, one can recover the minimal root Hermite factor γ(m) for all m > n.
Therefore, given a target distinguishing advantage ε, a dimension n and an error
distribution χerr, one can derive the maximal possible value for log2(q) using
Equation (2). Some interesting values are presented in Table 1. As in [35], it
seems that the parameters obtained by using Lindner and Peikert’s method [28]
are more conservative than those obtained with the BKZ-2.0 simulation.4

3.3 Correctness and Noise Growth of YASHE

Any YASHE ciphertext c carries an inherent noise term, which is an element
v ∈ R of minimal norm ‖v‖∞ such that fc = Δ[m]t + v (mod q). If ‖v‖∞
is small enough, decryption works correctly, which means that it returns the
message m modulo t. More precisely, [3, Lemma 1] shows that this is the case if
‖v‖∞ < (Δ− rt(q))/2. A freshly encrypted ciphertext output by YASHE.Encrypt
has an inherent noise term v that can be bounded by ‖v‖∞ < V = δtBkey(2Berr+
rt(q)/2), see [3, Lemma 2].

During a homomorphic addition, the inherent noise terms roughly add up such
that the resulting noise term is bounded by ‖vadd‖∞ � ‖v1‖∞ + ‖v2‖∞ + rt(q),
where v1 and v2 are the respective noise terms in c1 and c2. For a multiplication
operation, noise growth is much larger. It is shown in [3, Theorem 4 and Lemma
4] that, when ‖v1‖∞, ‖v2‖∞ < V the noise term after multiplication can be
bounded by

‖vmult‖∞ < δt(4 + δtBkey)V + δ2t2Bkey(Bkey + t) + δ2t�w,qwBerrBkey.

For a homomorphic computation with L levels of multiplications (and consider-
ing only the noise growth from multiplications), [3, Corollary 1 and Lemma 9]

4 In [29], Lin and Nguyen obtained significant improvements upon Lindner-Peikert’s
decoding attack [28] using only pruned enumeration. However, there is no detail on
how to compute the success probability, nor on how to estimate the number of nodes
to enumerate, nor on how long an enumeration takes. It remains an interesting open
problem to adapt van de Pol and Smart’s approach to Lin and Nguyen’s attack for
parameter selection, as it is currently unclear how to compute the above values.
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give an upper bound on the inherent noise in the resulting ciphertext as ‖v‖∞ <
CL

1 V + LCL−1
1 C2, where

C1 = (1 + 4(δtBkey)
−1)δ2t2Bkey, C2 = δ2tBkey (t(Bkey + t) + �w,qwBerr) .

In order to choose parameters for YASHE so that the scheme can correctly eval-
uate such a computation with L multiplicative levels, the parameters need to
satisfy CL

1 V +LCL−1
1 C2 < (Δ− rt(q))/2. In Table 2(a), we provide some values

for power-of-two dimensions n and levels L = 0, 1, 10, 50.

3.4 Correctness and Noise Growth of FV

We can treat FV and YASHE ciphertexts similarly by simply interchanging c0 +
c1s and fc. Thus, for an FV ciphertext (c0, c1) the inherent noise term is an
element v ∈ R of minimal norm such that c0 + c1s = Δ[m]t + v (mod q). Since
decryption is the same once [c0 + c1s]q or [fc]q are computed, respectively, this
also means that correctness of decryption is given under the same condition
‖v‖∞ < (Δ− rt(q))/2 in both schemes. In an FV ciphertext, the value v = e1 +
e2s− eu satisfies c0 + c1s = Δ[m]t + v (mod q) and therefore, we can bound the
noise term in a freshly encrypted FV ciphertext by ‖v‖∞ < V = Berr(1+2δBkey).

The same reasoning shows that noise growth during homomorphic addition
can be bounded in the same way by ‖vadd‖∞ � ‖v1‖∞+‖v2‖∞+rt(q). Following
the exact same proofs as for YASHE as in [3] (see the proofs for the more practical
variant YASHE’, which we use here), one can show that the noise growth during
a homomorphic multiplication is bounded by

‖vmult‖∞ < δt(4 + δBkey)V + δ2Bkey(Bkey + t2) + δ�w,qwBerr,

where as before, it is assumed that ‖v1‖∞, ‖v2‖∞ < V . Note that the bound on
the multiplication noise growth is smaller than the respective bound for YASHE
by roughly a factor t. This means that FV is more robust against an increase
of the parameter t. Similarly as above, when doing a computation in L levels
of multiplications (carried out in a binary tree without taking into account the
noise growth for homomorphic additions), the noise growth can be bounded by
‖v‖∞ < CL

1 V + LCL−1
1 C2, where

C1 = (1+ε2)δ
2tBkey, C2 = δ2Bkey(Bkey+t2)+δ�w,qwBerr, ε2 = 4(δBkey)

−1,

and the correctness condition for choosing FV parameters for an L-leveled mul-
tiplication is CL

1 V + LCL−1
1 C2 < (Δ − rt(q))/2 as above. In Table 2(b), we

provide some values for power-of-two dimensions n and levels L = 0, 1, 10, 50;
these values illustrate the smaller theoretical noise growth for FV in comparison
to YASHE.

4 Practical Implementations

In order to assess the relative practical efficiency of FV and YASHE, we imple-
mented these leveled homomorphic encryption schemes in C++ using the arith-
metic library FLINT [23]; our implementations are publicly available at [26].
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Table 2. Minimal value of log2(q) to ensure correctness of YASHE and FV, with over-
whelming probability, using standard deviation σerr = 8, plaintext modulus t = 2,
integer base w = 232, and Bkey = 1

(a) YASHE

n 1024 2048 4096 8192 16384

L = 0 20 21 22 23 24
L = 1 62 64 66 68 70
L = 10 265 286 306 326 346
L = 50 1150 1250 1350 1450 1550

(b) FV

n 1024 2048 4096 8192 16384

L = 0 19 20 21 22 23
L = 1 40 43 46 49 52
L = 10 229 250 271 292 313
L = 50 1069 1170 1271 1372 1473

Table 3. Timings of YASHE and FV using the same parameters as in [3]: R =
Z[x]/(x4096 + 1), q = 2127 − 1, w = 232, t = 210 on an Intel Core i7-2600 at 3.4
GHz with hyper-threading turned off and over-clocking (‘turbo boost’) disabled

Scheme KeyGen Encrypt Add Mult KeySwitch or ReLin Decrypt

YASHE 3.4s 16ms 0.7ms 18ms 31ms 15ms
FV 0.2s 34ms 1.4ms 59ms 89ms 16ms

YASHE [3] (estimation) – 23ms 0.020ms 27ms 4.3ms

Timings. In Table 3, we provide timings using the same parameters as in [3].
As expected from the structure of the ciphertexts, it takes twice more time to
Encrypt or Add using FV compared to YASHE and three times longer to multiply
two ciphertexts. These parameters also allow us to provide estimated timings for
the implementation of [3] on the same architecture as an illustration of a possi-
ble overhead in performances due to the arithmetic libraries (namely, FLINT)
and the C++ wrappers.5 This corroborates the significant performance gains ob-
tained in recent works in lattice-based cryptography [22,13] using home-made
implementations, instead of relying on arithmetic libraries [19,1].

Practical Noise Growth. In Sections 3.3 and 3.4, we provide strict theoretical
upper bounds on the noise growth during homomorphic operations in FV and
YASHE to ensure correctness with overwhelming probability. In practice however,
one expects a smaller noise growth on average and one could choose smaller
bounds ensuring correctness with high probability only. This yields a huge gain
in performance (allowing to reduce q, and thus n) while still ensuring correctness
most of the time. In Figure 2, we depict an average noise growth for levels 0 to
10 for FV and YASHE. For example, this figure shows that the real noise growth
allows one to reduce the bit size of q by nearly 33% to handle more than 10 levels.
Therefore, for optimal performances in practice, one should select a modulus q
as small as possible while still ensuring correctness with high probability.

5 Both Intel processors have hyper-threading turned off and over-clocking (‘turbo
boost’) disabled; thus timings were estimated proportionally to the processor speeds
of the computers (3.4 GHz versus 2.9 GHz).
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Fig. 2. Evolution of the norm of the noise using a standard deviation σ = 8, a plaintext
modulus t = 2, a word w = 232, and Bkey = 1, R = Z[x]/(x8192 + 1), and q a 392-bit
prime

4.1 Homomorphic Evaluation of SIMON

The SIMON Feistel Cipher. In June 2013, the U.S. National Security Agency
(NSA) unveiled SIMON, a family of lightweight block ciphers. These block ci-
phers were designed to provide an optimal hardware performance. SIMON has a
classical Feistel structure with the round block size of 2n bits. For performance
reasons, in what follows we focus on SIMON-32/64 having a block size of 2n = 32
bits, a 64-bit secret key and Nr = 32 rounds. At round i, SIMON operates on
the left n-bit half xi of the block (xi,yi) and applies a non-linear, non-bijective
function F : Fn

2 → F
n
2 to it. The output of F is XORed with the right half along

with a round key ki and the two halves are swapped. The function F is defined
as F (x) = ((x ≪ 8)⊗ (x ≪ 1))⊕ (x ≪ 2) where (x ≪ j) denotes left rotation
of x by j positions and ⊗ is binary AND. The round keys ki are very easily de-
rived from a master key k with shifts and XORs. Details on how these subkeys
are generated can be found in [2].

Homomorphic Representation of the State. As in [9,10] for AES, we encrypt the
SIMON state state-wise. More precisely, the left half x = (x1, . . . , xn) ∈ F

n
2 and

the right half y = (y1, . . . , yn) ∈ F
n
2 of the SIMON state are encrypted as a

set of 2n ciphertexts c1, . . . , cn, cn+1, . . . , c2n. For each 1 � j � n, cj encrypts
xj ∈ F2 and cn+j encrypts yj . In other words, the 2n bits of the SIMON state
are represented in 2n different ciphertexts. Note that the use of batching6 with
� slots allows one to perform � SIMON evaluations in parallel by encoding the
corresponding bit of the state of the i-th SIMON plaintext into the i-th slot.

Homomorphic Operations. This state-wise encrypted representation of the steps
allows to do the SIMON evaluation easily. Swapping the halves consists in modify-
ing the index of the encrypted state cj ↔ cn+j. Define encryptions eij of the bits

6 To evaluate a Boolean circuit, one can select t = 2 and encode each plaintext bit as
the constant coefficient of a plaintext polynomial. However, if one uses batching with
� slots, where each ciphertext can represent a number of � independent plaintexts,
one obtains a significant gain in the use of both space and computational resources.
Batching was adapted to the BGV scheme in [18], and can be made compatible with
both FV and YASHE.
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Table 4. Homomorphic Evaluations of SIMON-32/64 on a 4-core computer (Intel Core
i7-2600 at 3.4 GHz)

Scheme Parameter λ � = # Keygen Encrypt SIMON Relative Norm of Noise
set of slots State Evaluation time Final Maximal

FV Ib 64 2 4 s 7 s 526 s 263 s 509 516
YASHE Ia 64 1 64 s 4 s 200 s 200 s 561 569

YASHE (1 core) Ia 64 1 64 s 14 s 747 s 747 s 557 569

FV II > 80 1800 24 s 209 s 3062 s 1.70 s 918 1024
YASHE II > 80 1800 1300 s 104 s 1029 s 0.57 s 949 1024

SIBDGHV [10] – 64 199 1032 s 1 s 628 s 3.15 s 650 704

λ d n = φ(d) # of slots log2(q) log2(w) σ Bkey

Set-Ia 64 10501 10500 1 570 70 8 1
Set-Ib 64 9551 9550 2 517 65 8 1
Set-II > 80 32767 27000 1800 1025 257 8 1

kij of the round keys ki, for all i, j. (When using batching, one encrypts the vec-
tor (kij , . . . , kij) ∈ {0, 1}�.) This simple representation allows to XOR the right
half of the state with the key via n homomorphic additions cn+j ← cn+j+eij . A
shift of a positions as used in the function F is obtained by some index swapping
c(i+a) mod n. Finally, the only AND operation in the function F is obtained by n
homomorphic multiplications. Therefore to obtain an encrypted state c′1, . . . , c

′
2n

from an encrypted state c1, . . . , c2n, one can perform:

c′n+j ← cj; c′j = (c(j+8) mod n · c(j+1) mod n) + c(j+2) mod n + eij .

Practical Results. We homomorphically evaluated SIMON-32/64 using our C++

implementations of FV and YASHE (and also the implementation of [10] for the
leveled homomorphic encryption scheme over the integers).7

Results are provided in Table 4. Note that we selected parameters ensuring as
many bits of security for the homomorphic encryption schemes as the number
of bits of the SIMON key.8

4.2 Some Thoughts about Homomorphic Evaluations

Let us define the two notions latency and throughput associated to a homomor-
phic evaluation. We say that the latency of a homomorphic evaluation is the
time required to perform the entire homomorphic evaluation. Its throughput is
the number of blocks processed per unit of time.

The results presented in Table 4 emphasize an important point: different pa-
rameter sets can be selected, either to minimize the latency (Set-Ia and Set-Ib),
or to maximize the throughput (Set-II). In [10] and [19,9], the parameters were

7 Since each round of SIMON consists of one homomorphic multiplication, the leveled
homomorphic encryption schemes need to handle at least as many levels as the
number of rounds.

8 Parameter Set-II ensures more than 80 bits of security (more likely around 120 bits)
but the smaller the modulus q, the faster is the computation.
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selected to maximize the throughput using batching, and therefore claim a small
relative time per block – the latency however is several dozens of hours. However,
‘real world’ homomorphic evaluations (likely to be used in the cloud) should be
implemented in a transparent and user-friendly way. It is therefore questionable
whether the batching technique (to achieve larger throughput in treating blocks)
is suitable for further processing of data. In particular, it might only be suit-
able when this processing is identical over each block (which is likely not to be
the case in real world scenarios). Overall, one should rather select parameters
to have the latency as small as possible. The throughput can be increased by
running the homomorphic evaluations in a cluster.

5 Conclusion

In this work, we revisited van de Pol and Smart’s approach to tackle parameter
selection for lattice-based cryptosystems. We also conducted both a theoretical
and practical comparison of FV and YASHE. We obtained that the noise growth
is smaller in FV than in YASHE (both theoretically and practically). Conversely,
we obtained that YASHE is, as expected, faster than FV. As a side result, for
high performances, it seems interesting to implement all building blocks of the
schemes rather than to rely on external arithmetic libraries.

Next, we homomorphically evaluated the lightweight block cipher SIMON, and
discussed the notions of throughput and latency. We obtain that SIMON-32/64
can be evaluated completely in about 12 minutes on a single core and in about 3
minutes on 4 cores using OpenMP (when optimizing latency). If several blocks
are processed in parallel, SIMON-32/64 can be evaluated in about 500ms per
block (and less than 20 minutes total); and these timings can be lowered by
using additional cores.

Finally, note that our results can certainly be improved further by other op-
timizations. One could incorporate dynamic scaling during the computation as
discussed in [14] such that it is ensured that ciphertexts maintain their minimal
size. Another possible variant is to use the Chinese Remainder Theorem to pack
each half of the SIMON state into one single ciphertext instead of spreading it
out over n ciphertexts. Operations that need to move data between different
plaintext slots can be realized by Galois automorphisms as explained in [18].
This can possibly be further combined with batching of several SIMON states
into one ciphertext. To explore the application of these to both schemes and pos-
sibly further optimizations for realizing a fully home-made and fully optimized
implementation of a homomorphic SIMON evaluation is left as future work.

Acknowledgments. We thank the Africacrypt 2013 referees for their interest-
ing reviews, and Frederik Vercauteren for insightful comments on batching.
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