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Abstract. We investigate the problem of factoring RSA moduli with
implicit hint, which was firstly proposed by May and Ritzenhofen in
2009 where unknown prime factors of several RSA moduli shared some
number of least significant bits (LSBs) and was considered by Faugère et
al. in 2010 where some most significant bits (MSBs) were shared between
the primes. In this paper, we further consider this factorization with
implicit hint problem, present a method to deal with the case when the
number of shared LSBs or MSBs is not large enough to satisfy the bound
proposed by May et al. and Faugère et al. by making use of a result
from Herrmann and May for solving linear equations modulo unknown
divisors, and finally get a better lower bound on the the number of shared
LSBs or MSBs. To the best of our knowledge, our lower bound is better
than all known results and we can theoretically deal with the implicit
factorization for the case of balanced RSA moduli.

Keywords: RSA modulus, factorization with implicit hint, Copper-
smith’s technique.

1 Introduction

Factoring large integers efficiently is a problem of most concern in algorithmic
number theory and also in practical cryptographic applications since the RSA
public key cryptosystem based on the factorization problem has been widely
used. However, due to practical reasons, e.g., for achieving high implementation
efficiency, specific RSA parameters are often adopted and the security of such
an RSA cryptosystem may be threatened by cryptanalysis such as small pri-
vate exponent attack [4,20], small CRT-exponent (Chinese-remainder-theorem-
exponent) attack [12] and so on. Recently, Lenstra et al. [13] and Bernstein et
al. [3] utilized the weakness of pseudo random number generators to successfully
factor some RSA moduli which are used in the real world. Hence, the problem
of factoring RSA moduli with some specific hint is worthy of investigation.

In the PKC’2009 conference, May and Ritzenhofen proposed an efficient
method to factor RSA moduli with an implicit hint [16]. More precisely, for two
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n-bit RSA moduli N1 = p1q1 and N2 = p2q2 where p1 and p2 share tn least sig-
nificant bits (LSBs) and q1 and q2 are (αn)-bit prime integers, it has been proved
in [16] that if tn ≥ 2αn+3, then (q1, q2) is a shortest vector in a two-dimensional
lattice and it can be found by a lattice basis reduction algorithm. Thus, the two
RSA moduli can be factored. May et al. [16] also gave a heuristic generalization
for the factorization of multiple RSA moduli N1 = p1q1, · · · , Nk = pkqk, where
the number of shared LSBs, tn, is at least k

k−1αn. Shortly later, Faugère et al.
[7] made an extension analysis to deal with the case that p1, · · · , pk share most
significant bits (MSBs) or bits in the middle.

In 2011, Sarkar and Maitra [19] transformed the factorization with implicit
hint problem to the approximate integer common divisor problem [10,5], and
lower bounds on the number of LSBs or MSBs required to be shared is improved
in theory and experimentally [19]. Sarkar and Maitra used Coppersmith’s lattice-
based technique to find out the desired roots of modular equation, and the lower
bound they obtained was improved to{

t > max{α, αk2−(2α+1)k+1+
√
k2+2α2k−α2k2−2k+1

k2−3k+2 }, for k > 2,

t > 2α− α2, for k = 2.

Based on this result, Lu et al. [15] modified the polynomials in the construction

of the lattice and the bound was further improved as 1− (1− α)
k

k−1 .
In this paper, we firstly reconsider the problem of factoring RSA moduli with

primes sharing LSBs, which has been discussed by May et al. [16]. As it has been
shown in [16], if there are enough shared LSBs, the desired factorization can be
directly obtained from the L3 lattice basis reduction algorithm. We present a
method to deal with the case where the shared LSBs are not enough to ensure
that the desired factorization is included in the output of the L3 algorithm.
The idea is that we represent the vector which we desire to find out as an
integer linear combination of the reduced basis vectors of the lattice and obtain
a modular equation system, then we transform the modular equation system to
a modular equation with unknown modulus by applying the Chinese remainder
theorem, and finally, we solve this modular equation by a method of Herrmann
and May in [8]. Note that, our method does not require the constraint that t ≥ α
in [16,7,19,15], which means for multiple RSA moduli we can for the first time
theoretically deal with the implicit factorization for the case of balanced RSA
moduli (i.e., pi and qi have the same bitlength). The factorization of RSA moduli
with primes sharing MSBs is also revisited in this paper.

Table 1 lists a comparison of our result with the previous results in [16], [7],
[19] and [15], where

F (α, k) =

{
αk2−(2α+1)k+1+

√
k2+2α2k−α2k2−2k+1

k2−3k+2 , for k > 2,

2α− α2, for k = 2,

G(α, k) =
k

k − 1
(α − 1 + (1− α)

k+1
k + (k + 1)(1− (1− α)

1
k )(1 − α)),



Further Improvement of Factoring RSA Moduli with Implicit Hint 167

Table 1. Comparison with existing results on t

[16] [7] [19] [15] this paper

LSB k
k−1

α - F (a, k) 1− (1− α)
k

k−1 G(α, k)

MSB - k
k−1

α+ 6
n

F (a, k) 1− (1− α)
k

k−1 G(α, k)

and the curves of G(α, k) and 1 − (1 − α)
k

k−1 as functions on α can be seen in

Figures 1 and 2 in Sections 3 and 4 which show G(α, k) < 1 − (1 − α)
k

k−1 . To
the best of our knowledge, our lower bound on the number of the shared bits is
theoretically better than all known results and experimental results also show
this improvement.

2 Preliminaries

Let w1, w2, · · · , wk be k linearly independent vectors in R
n. They span a k-

dimensional lattice L which is the set of all integer linear combinations, c1w1 +
· · ·+ ckwk, of w1, · · · , wk, where c1, · · · , ck ∈ Z. The vectors w1, · · · , wk form a
basis of the lattice L. Any lattice of dimension larger than 1 has infinitely many
bases [18].

Calculating the shortest vectors in a lattice is known to be an NP-hard prob-
lem under randomized reductions [2]. However, some approximations of shortest
vectors in a lattice can be found out in polynomial time and the famous L3

lattice basis reduction algorithm is invented thirty years ago for attending such
a goal [14,18], and since then lattice becomes a fundamental tool to analyze the
security of public key cryptosystems.

Lemma 1. (L3, [14,18]) Let L be a lattice of dimension k. Applying the L3

algorithm to L, the outputted reduced basis vectors v1, · · · , vk satisfy that

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
k(k−i)

4(k+1−i) det(L)
1

k+1−i , for any 1 ≤ i ≤ k.

Lattices are used to find small roots of univariate modular equations and
bivariate equations [6], and this strategy is now usually called Coppersmith’s
technique. In [11], Jochemsz and May extended the technique and gave a general
result to find roots of multivariate polynomials.

Given a polynomial g(x1, · · · , xk) =
∑

(i1,··· ,ik)
ai1,··· ,ikx

i1
1 · · ·xik

k , define the

norm of g by

‖g(x1, · · · , xk)‖ =
( ∑

(i1,··· ,ik)
a2i1,··· ,ik

)1/2

.

The following lemma due to Howgrave-Graham [9] gives a sufficient condition
under which roots of a modular equation also satisfy an integer equation.
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Lemma 2. (Howgrave-Graham, [9]) Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an
integer polynomial with at most w monomials. Suppose that

1.g(y1, · · · , yk) ≡ 0 (mod pm) for |y1| ≤ X1, · · · , |yk| ≤ Xk, and

2.‖g(x1X1, · · · , xkXk)‖ <
pm√
w

Then g(y1, · · · , yk) = 0 holds over the integers.

Lattice based approaches of solving small roots of a modular or integer equa-
tion are first to construct a lattice from the polynomial of the equation, then
by lattice basis reduction algorithm obtain new short lattice vectors which cor-
respond to new polynomials with small norms and with the same roots as the
original polynomial. These approaches usually rely on the following heuristic
assumption.

Assumption 1. The common roots of the polynomials yielded by lattice based
constructions can be efficiently computed by using numerical method, symbolic
method or exploiting the special structure of these polynomials.

In our analysis, we will use the following theorem proposed by Herrmann and
May in [8]. Based on Coppersmith’s technique, they gave upper bounds on the
size of solutions of a bivariate linear equation modulo an unknown divisor of a
known composite integer.

Theorem 1. (Herrmann and May, [8]) Let ε > 0, N be a sufficiently large
composite integer with an unknown divisor p ≥ Nβ, and f(x1, x2) ∈ Z[x1, x2]
be a bivariate linear polynomial. Under Assumption 1, one can find all solutions
(y1, y2) of the equation f(x1, x2) = 0 (mod p) with |y1| ≤ Nγ and |y2| ≤ N δ if

γ + δ ≤ 3β − 2 + 2(1− β)
3
2 − ε. (1)

The above theorem 1 has been extended to a modular equation with k ≥ 3
variables [8].

Theorem 2. (Herrmann and May, [8]) Let ε > 0, N be a sufficiently large com-
posite integer with an unknown divisor p ≥ Nβ, f(x1, · · · , xk) ∈ Z[x1, · · · , xk]
be a monic linear polynomial in k variables. Under Assumption 1, one can
find all solutions (y1, · · · , yk) of the equation f(x1, · · · , xk) = 0 (mod p) with
|y1| ≤ Nγ1 , · · · , |yk| ≤ Nγk if

k∑
i=1

γi ≤ 1− (1− β)
k+1
k − (k + 1)(1− k

√
1− β)(1 − β)− ε. (2)

More details about the theorems can be referred to [8]. Note that, in our
experiments, the equations obtained by calculation of the resultant or finding
a Gröbner basis are not univariate polynomials, however we can exploit the
structure of these polynomials to solve out the desired small roots.
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3 Factoring Two RSA Moduli with Implicitly Common
LSBs

Recall in the implicit factoring of two RSA moduli in [16], there are two different
n-bit RSA moduli N1 = p1q1 and N2 = p2q2, where p1 and p2 satisfy that
p1 ≡ p2(mod 2tn), where 0 < t < logNi

pi for i = 1, 2.
Since p1 ≡ p2(mod 2tn), we let p1 = p+ 2tnp̃1 and p2 = p+ 2tnp̃2. We have

(p+ 2tnp̃1)q1 = N1,

(p+ 2tnp̃2)q2 = N2,

which means

pq1 = N1 (mod 2tn),

pq2 = N2 (mod 2tn).

Moreover, we get the following linear equation

(N−1
1 N2)q1 − q2 ≡ 0 (mod 2tn), (3)

where N−1
1 is the inverse of N1 modulo 2tn.

In [16], the authors have proved that the vector (q1, q2) is the shortest vector
of the two-dimensional lattice L1 generated by the row vectors of the following
matrix (

1 N−1
1 N2

0 2tn

)
(4)

when q1 and q2 are both (αn)-bit numbers and tn > 2(αn + 1), where α ≈
1 − logNi

pi for i = 1, 2. Note that t < logNi
pi ≈ 1 − α. Once q1 and q2 are

obtained by the L3 algorithm in polynomial time, N1 and N2 are factored.
However, when tn ≤ 2(αn+1) the vector (q1, q2) is not the shortest vector of

L1, which means (q1, q2) is generally not included in the outputted basis (λ1, λ2)
of the L3 algorithm. Write the vector (q1, q2) as a linear combination of λ1 and
λ2. Below we present a method to find out the linear combination by solving
linear equations modulo unknown RSA factors. Once the linear combination is
found, a better bound on t than that in [16] is obtained.

Let λ1 = (l11, l12) and λ2 = (l21, l22) be the basis vectors of L1 obtained from
the L3 algorithm. Then we have a rough estimation on the lij , with overwhelming
probability, the minima of a lattice are all asymptotically close to the Gaussian

heuristic [1], hence we have ‖λ1‖ ≈ ‖λ2‖ ≈
√

2
2πedet(L)

1
2 . Thus, the sizes of

l11, l12, l21, l22 can be estimated from det(L1)
1
2 = 2

tn
2 .

Let (q1, q2) be represented as (q1, q2) = x1λ1 + x2λ2 with integral coefficients
x1 and x2. Then we get two modular equations modulo unknown prime numbers{

x1l11 + x2l21 = q1 ≡ 0 (mod q1),
x1l12 + x2l22 = q2 ≡ 0 (mod q2).

(5)
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Since l11, l12, l21, l22 have roughly the same size, the desired coefficients x1 and
x2 can be roughly estimated as

qj
2lij

for any i and j.

Using the Chinese remainder theorem, from (5) we get an equation with the
form of

ax1 + bx2 ≡ 0 (mod q1q2), (6)

where a is an integer satisfying a ≡ l11 (mod N1) and a ≡ l12 (mod N2), and b
is an integer satisfying b ≡ l21 (mod N1) and b ≡ l22 (mod N2). Clearly, a and
b can be calculated from l11, l12, l21, l22, N1 and N2 by the extended Euclidean
algorithm.

Since q1 ≈ q2 ≈ 2αn, we have q1q2 ≈ (N1N2)
α. By Theorem 1, we can

find all solutions (y1, y2) of equation (6) with |y1| ≤ (N1N2)
δ1 ≈ 22δ1n and

|y2| ≤ (N1N2)
δ2 ≈ 22δ2n if

δ1 + δ2 ≤ 3α− 2 + 2(1− α)
3
2 − ε.

When δ1 ≈ δ2, we have

2δ1 ≈ 2δ2 ≤ 3α− 2 + 2(1− α)
3
2 − ε. (7)

From (5), there is a good possibility that the desired solution of (5) can be
estimated with q1

2l11
≈ 2(α−

t
2 )n. Hence, when

α− t

2
≤ 3α− 2 + 2(1− α)

3
2 − ε,

or equivalently,
t ≥ 4− 4α− 4(1− α)

3
2 + ε,

the desired solution can be solved out.
Comparing with the works of [16], [19] and [15], we can get the following

Figure 1.

Experimental Results:
We have implemented the experiment program in Sage 5.12 computer alge-
bra system on a PC with Intel(R) Core(TM) Duo CPU(2.53GHz, 1.9GB RAM
ubuntu 13.10) and carried out the L2 algorithm [17]. In all experiments, we ob-
tained several integer equations with desired roots (y1, y2) over Z and found that
these equations had a common factor with the form of ax1 + bx2. In these situ-
ations, ay1 + by2 always equals to 0 and gcd(y1, y2) is small. Hence, the solution
(y1, y2) can be solved out.

The following Table 2 lists some theoretical and experimental results on fac-
toring two 1024-bit RSA moduli with shared LSBs.

4 Extending to Factoring Multiple RSA Moduli with
Implicitly Common LSBs

In the case of multiple RSA moduli with implicit common LSBs, let Ni = piqi,
i = 1, 2, · · · , k, be k different n-bit RSA moduli and pi share tn least significant
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Fig. 1. Comparison with previous ranges on t with respect to α. Since t ≤ 1− α, any
valid range is under the thick solid diagonal line. Here the dotted line denotes the lower
bound on t in [16], the dashed line denotes that in [19] and [15], and the thin solid line
denotes that in this paper. The grey shaded area is a new improvement presented in
this paper.

Table 2. Theoretical and experimental results of factoring 1024-bit RSA moduli with
LSBs. Here dim denotes the dimension of the lattice.

k
bitsize of (pi, qi), i.e.,

((1− α)log2Ni, αlog2Ni)
no. of shared LSBs in pi ([19]) no. of shared LSBs in pi (this paper)
theo. expt. dim time (sec) theo. expt. dim time (sec)

2 (874, 150) 278 – – – 267 278 190 1880.10

2 (824, 200) 361 – – – 340 357 190 1899.21

2 (774, 250) 439 – – – 405 412 190 2814.84

2 (724, 300) 513 – – – 461 470 190 2964.74

bits. Let qi be of (αn)-bit. Write the moduli as

N1 = (p+ 2tnp̃1)q1,

· · ·
Nk = (p+ 2tnp̃k)qk.

Then,

N1 ≡ pq1 (mod 2tn),

· · ·
Nk ≡ pqk (mod 2tn).

Similarly as in the analysis in the previous section for the case k = 2, we have
N1

q1
≡ Ni

qi
(mod 2tn), for i = 2, 3, · · · , k. Since the modular equation N−1

1 Niq1 −
qi ≡ 0 (mod 2tn) holds, we get a vector (q1, q2, · · · , qk) in a k-dimensional lattice



172 L. Peng et al.

L2 which is generated by the row vectors of the following matrix⎛
⎜⎜⎜⎜⎜⎝

1 N−1
1 N2 N−1

1 N3 · · · N−1
1 Nk

0 2tn 0 · · · 0
0 0 2tn · · · 0
...

...
...

. . .
...

0 0 0 · · · 2tn

⎞
⎟⎟⎟⎟⎟⎠ .

In [16], it is proved that when t ≥ k
k−1α, with a good possibility (q1, q2, · · · , qk)

is a shortest vector in L2 and it can be found out by applying the L3 algorithm
to L2. However, when t < k

k−1α, (q1, q2, · · · , qk) is not included in the L3 re-
duced basis {λ1, · · · , λk} of L2. Similarly as in the previous section, we repre-
sent (q1, q2, · · · , qk) as a linear combination of λ1, · · · , λk, i.e., (q1, · · · , qk) =
x1λ1 + x2λ2 + · · ·+ xkλk, where x1, · · · , xk are integers.

Hence, we have the following modular equation system⎧⎨
⎩

x1l11 + x2l21 + · · ·+ xklk1 = q1 ≡ 0 (mod q1),
· · ·

x1l1k + x2l2k + · · ·+ xklkk = qk ≡ 0 (mod qk),
(8)

where λi = (li1, li2, · · · , lik), i = 1, 2, · · · , k.
The lengths of the output vectors of the L3 algorithm can be estimated based

on the Gaussian heuristic and experimental experience of the L3 algorithm. We
roughly estimate the sizes of |λ1|, · · · , |λk| and the entries of λi as det(L2)

1
k =

2
nt(k−1)

k and the solution of (8) as |xi| ≈ qi
klij

≈ 2αn−
nt(k−1)

k −log2k ≤ 2αn−
nt(k−1)

k .

Similarly as in the previous section, we can obtain an equation with the form
of

a1x1 + a2x2 + · · ·+ akxk ≡ 0 (mod q1q2 · · · qk) (9)

from equation system (8) by using the Chinese remainder theorem, where ai is
an integer satisfying ai ≡ lij (mod Nj) for 1 ≤ j ≤ k and it can be calculated
from the lij and Nj .

For this linear polynomial equation in k variables modulo the unknown in-
teger q1q2 · · · qk ≈ (N1N2 · · ·Nk)

α, by Theorem 2 the variables with |xi| ≤
(N1N2 · · ·Nk)

δi ≈ 2kδin, i = 1, 2, · · · , k, can be solved out if

k∑
i=1

δi ≤ 1− (1− α)
k+1
k − (k + 1)(1− k

√
1− α)(1− α)− ε,

or equivalently,

kδi ≤ 1− (1− α)
k+1
k − (k + 1)(1− k

√
1− α)(1 − α)− ε

when δ1 ≈ δ2 ≈ · · · ≈ δk.
Hence, when

α− t(k − 1)

k
≤ 1− (1− α)

k+1
k − (k + 1)(1− k

√
1− α)(1 − α)− ε,
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or namely,

t ≥ k

k − 1
(α− 1 + (1− α)

k+1
k + (k + 1)(1− (1 − α)

1
k )(1− α)) + ε, (10)

the desired solution can be solved out.
To the best of our knowledge, the previous best theoretical bound on t is given

in [15]: t ≥ 1−(1−α)
k

k−1 . We make a comparison between our theoretical bound
(10) and this bound, see Figure 2 for the cases of k = 3 and k = 4. We shall note
that when k ≥ 3, there exists t satisfying t ≤ 1−α and the inequality (10), which
removes the requirement that t ≥ α in [16,7,19,15] and means for multiple RSA
moduli we can for the first time theoretically deal with the implicit factorization
for the case of balanced RSA moduli (i.e., pi and qi have the same bitlength and
α = 1

2 ).
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(a) k = 3
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(b) k = 4

Fig. 2. The comparison between the bound (10) and the known best bound in [15]. As
in Figure 1, any valid range is under the thick solid diagonal line. Here the dashed line
denotes the lower bound on t in [15], the thin solid line denotes that in this paper, the
grey shaded area on the figure is a new improvement presented in this paper.

Experimental Results:
We have implemented the program in Sage 5.12 computer algebra system on a
PC with Intel(R) Core(TM) Duo CPU (2.53GHz, 1.9GB RAM ubuntu 13.10).

In all experiments for the case k = 3 and 1000-bit RSA moduli, we obtained
several integer equations with desired roots (y1, y2, y3) over Z. To find out the
roots, we used the technique of calculation of resultants and we always obtained
a homogeneous equation of the form of c1x

4
2+c2x

3
2x3+c3x

2
2x

2
3+c4x2x

3
3+c5x

4
3 = 0

which has the desired roots. Then we transformed these homogeneous bivariate
equations to univariate equations over Q and obtained the ratio of y2

y3
by solving

univariate equations. Similarly as in the experiments in the previous section,
the common divisor of the desired roots is always small, hence we can obtain
the desired roots (y1, y2, y3). See Table 3 for the comparison with the previous
bounds on t.
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Table 3. For 1000-bit RSA moduli, theoretical and experimental bounds on t

k bitsize of qi
[16] [19] this paper

theo. expt. theo. expt. theo. expt.

3 250 375 378 352 367 309 350

3 300 450 452 416 431 354 420

3 350 525 527 478 499 392 440

3 400 600 – 539 562 423 480

We notice that, when k is increasing, the lower bound on t will decrease,
however, the dimension of the lattice constructed for solving the roots of the
polynomials will be also increase. Due to the restriction of our computing ability,
it is hard to evaluate the experimental results for larger k.

5 Factoring RSA Moduli with Implicitly Common MSBs

In [7], Faugère et al. extended May et al.’s results to factoring RSA moduli with
primes implicitly sharing most significant bits (MSBs). Below we briefly recall
Faugère et al.’s work.

Given two n-bit RSA moduli, N1 = p1q1 and N2 = p2q2, where q1 and q2 are
(αn)-bit primes and p1 and p2 share tn MSBs, namely |p1 − p2| ≤ 2n−αn−tn+1.

Consider the two-dimensional lattice L3 which is generated by the row vectors
of the following matrix

M3 =

(
K 0 N2

0 K −N1

)

where K = 	2n−tn+ 1
2 
. It has been proved in [7] that when tn ≥ 2αn+3, or for

simplicity t ≥ 2α for efficiently large n, the vector (q1K, q2K, q1q2(p2−p1)) is the
shortest vector in L3. Similarly, when t ≤ 2α the vector (q1K, q2K, q1q2(p2−p1))
that we wanted is not the shortest vector of L3 and q1 and q2 can not be obtained
directly from the basis vectors λ1 and λ2 of L3 which are outputted by applying
the L3 algorithm.

In order to enable our result succinct, we make a rough estimation on the
sizes of λ1 = (l11, l12, l13) and λ2 = (l21, l22, l23) and their entries. Since

det(L3) = det(M3M
T
3 ) = K

√
N2

1 +N2
2 +K2 ≈ 22n−tn+1,

the length of |λ1| and |λ2| can be estimated as det(L3)
1
2 ≈ 2n−

tn
2 + 1

2 , hence the
entries can be bounded as |lij | ≈ 2n−

tn
2 , i = 1, 2, j = 1, 2, 3.

Since (q1K, q2K, q1q2(p2 − p1)) ∈ L3, there exist integers x1 and x2 such that
(q1K, q2K, q1q2(p2 − p1)) = x1λ1 + x2λ2. Hence, we obtain a modular equation
system {

x1l11 + x2l21 = q1K ≡ 0 (mod q1),
x1l12 + x2l22 = q2K ≡ 0 (mod q2).

(11)
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Since |lij | ≈ 2n−
tn
2 , the solutions to (11) can be estimated roughly by xi ≈

qjK
2lij

≈ 2αn+n−tn−n+ tn
2 ≈ 2αn−

tn
2 .

Using the Chinese remainder theorem, from (11) we get a modular equation
with the form of

ax1 + bx2 ≡ 0 (mod q1q2). (12)

On the other hand, since q1q2 ≈ (N1N2)
α, from Theorem 1 the solution of

(12) with |y1| < (N1N2)
δ1 ≈ 22δ1n and |y2| < (N1N2)

δ2 ≈ 22δ2n can be found if

δ1 + δ2 ≤ 3α− 2 + 2(1− α)
3
2 − ε.

With δ1 ≈ δ2, we have

2δ1 ≈ 2δ2 ≤ 3α− 2 + 2(1− α)
3
2 − ε.

Hence, when

α− t

2
≤ 2δ1 ≤ 3α− 2 + 2(1− α)

3
2 − ε,

or equivalently,
t ≥ 4− 4α− 4(1− α)

3
2 + ε,

the desired solution can be solved out.
The above method can be extended to factoring multiple RSA moduli with

primes implicitly sharing MSBs. In a similar way, we can prove that one can
factor k RSA moduli with primes implicitly sharing (tn)-bit MSBs if

t ≥ k

k − 1
(α− 1 + (1− α)

k+1
k + (k + 1)(1− (1− α)

1
k )(1 − α)) + ε.

To illustrate our optimization on the lower bounds on t, we list in Table 4
some numerical values for comparison with the results in [16], [7], [19] and [15]. It
can be seen that our improvement with previous results increases as α increases.

Table 4. Comparison with previous results on the theoretical bounds on t

k α [16]([7]) [19] [15] this paper α [16]([7]) [19] [15] this paper

5 0.20 0.2500 0.2437 0.2434 0.2182 0.30 0.3750 0.3606 0.3597 0.3012

5 0.40 0.5000 0.4740 0.4719 0.3642 0.45 0.5625 0.5292 0.5264 0.3874

5 0.50 – – – 0.4045 – – – – –

10 0.20 0.2222 0.2197 0.2196 0.1962 0.30 0.3333 0.3276 0.3272 0.2725

10 0.40 0.4444 0.4341 0.4331 0.3320 0.45 0.5000 0.4868 0.4853 0.3546

10 0.50 – – – 0.3720 – – – – –

50 0.20 0.2041 0.2037 0.2036 0.1818 0.30 0.3061 0.3052 0.3051 0.2539

50 0.40 0.4082 0.4064 0.4062 0.3112 0.45 0.4592 0.4570 0.4567 0.3335

50 0.50 – – – 0.3512 – – – – –

Experimental Results:
We implemented our analysis in Sage 5.12 computer algebra system on a PC
with Intel(R) Core(TM) Duo CPU(2.53GHz, 1.9GB RAM ubuntu 13.10). We
present some numerical values for comparison with [19] in Table 5.
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Table 5. For 1024-bit RSA moduli, theoretical and experimental results on factoring
RSA moduli with implicitly common MSBs

k
bitsize of (pi, qi)

((1− α)log2Ni, αlog2Ni)
no. of shared MSBs in pi ([19]) no. of shared MSBs in pi (this paper)
theo. expt. dim time (sec) theo. expt. dim time (sec)

2 (874,150) 278 289 16 1.38 267 278 190 1974.34

2 (824,200) 361 372 16 1.51 340 358 190 2030.92

2 (774,250) 439 453 16 1.78 405 415 190 2940.35

2 (724,300) 513 527 16 2.14 461 474 190 3105.79

3 (874,150) 217 230 56 29.24 203 225 220 5770.99

3 (824,200) 286 304 56 36.28 260 288 220 6719.03

3 (774,250) 352 375 56 51.04 311 343 220 6773.48

3 (724,300) 417 441 56 70.55 356 395 220 7510.86

3 (674,350) 480 505 56 87.18 395 442 220 8403.91

3 (624,400) 540 569 56 117.14 428 483 220 9244.42

6 Conclusion

In this paper, we presented a further method for factoring RSA moduli with
implicitly common LSBs or MSBs, and got a more lower bound on the number
of the bits shared by the unknown primes of the RSA moduli. Our improvement
can deal with some situations where the number of shared LSBs or MSBs does
not satisfy the lower bounds proposed by May and Ritzenhofen in [16] and
Faugère et al. in [7]. It is nice to see our theoretical bound and experimental
results both have an improvement on existing results.
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