
David Pointcheval
Damien Vergnaud (Eds.)

 123

LN
CS

 8
46

9

7th International Conference on Cryptology in Africa
Marrakesh, Morocco, May 28–30, 2014
Proceedings

Progress in Cryptology –
AFRICACRYPT 2014

Lecture Notes in Computer Science 8469
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

David Pointcheval Damien Vergnaud (Eds.)

Progress in Cryptology –
AFRICACRYPT 2014

7th International Conference on Cryptology in Africa
Marrakesh, Morocco, May 28-30, 2014
Proceedings

13

Volume Editors

David Pointcheval
Damien Vergnaud
Ecole Normale Supérieure
Computer Science Department
45, rue d’Ulm
75005 Paris, France
E-mail:{david.pointcheval, damien.vergnaud}@ens.fr

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-06733-9 e-ISBN 978-3-319-06734-6
DOI 10.1007/978-3-319-06734-6
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: Applied for

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

AFRICACRYPT 2014, the 7th International Conference on the Theory and
Application of Cryptographic Techniques in Africa took place May 28–30, 2014,
in Marrakesh, Morocco. The conference was organized by the ENSIAS and Mo-
hammed V-Souissi University, in cooperation with the International Association
for Cryptologic Research (IACR).

The conference received 83 submissions — the highest number in the confer-
ence’s history — and all were reviewed by the Program Committee. Each paper
was assigned at least three reviewers, while submissions co-authored by Pro-
gram Committee members were reviewed by at least four people. The Program
Committee, aided by reports from 65 external reviewers, produced a total of 262
reviews. After highly interactive discussions and a careful deliberation, the Pro-
gram Committee selected 26 papers for presentation. The authors of accepted
papers were given 2 weeks to prepare final versions for these proceedings. The
program was completed with invited talks: “Recent Advances on the Discrete
Logarithm Problem in Finite Fields” by Antoine Joux and “New Results for
Rank-Based Cryptography” by Philippe Gaborit. We are very grateful to them
for accepting our invitation. Philippe Gaborit’s invited talk appears as a survey
paper in this volume (co-authored with Olivier Ruatta, Julien Schrek, and Gilles
Zémor).

We would like to thank everyone who contributed to the success of the confer-
ence AFRICACRYPT 2014. We are deeply grateful to the Program Committee
for their hard work, enthusiasm, and conscientious efforts to ensure that each
paper received a thorough and fair review. These thanks are of course extended
to the external reviewers, listed on the following pages, who took the time to help
out during the whole evaluation process. We would also like to thank Thomas
Baignères and Matthieu Finiasz for writing the iChair software and Springer for
agreeing to an accelerated schedule for printing the proceedings. We also wish
to heartily thank Mostafa Belkasmi, General Chair, for his efforts in the organi-
zation of the conference, but also the Organizing Committee, the sponsors, and
all the partners, as well as Abderrahmane Nitaj for his continuous support. Last
but not the least, we extend our sincere thanks to all those who contributed to
AFRICACRYPT 2014 and especially to the participants, submitters, authors,
presenters, and invited speakers.

AFRICACRYPT has been emerging as a powerful forum for researchers to
interact, as well as share their work and knowledge with others for the overall
growth and development of cryptology research in the world, and more specifi-
cally in Africa.

May 2014 David Pointcheval
Damien Vergnaud

AFRICACRYPT 2014

7th International Conference on Cryptology in Africa

Marrakesh, Morocco, May 28–30, 2014

General Chair

Mostafa Belkasmi ENSIAS and Mohammed V-Souissi University,
Rabat, Morocco

Program Chairs

David Pointcheval ENS, Paris, France
Damien Vergnaud ENS, Paris, France

Program Committee

Abdelhak Azhari Hassan II University in Casablanca, Morocco
Hussain Benazza Ensam-Meknes, Moulay Ismail University,

Morocco
Dario Catalano Università di Catania, Italy
Riaal Domingues South African Communications and Security

Agency, South Africa
Dario Fiore IMDEA Software Institute, Spain
Pierre-Alain Fouque University of Rennes I, France
Georg Fuchsbauer IST Austria
Sanjam Garg IBM Research, USA
Essam Ghadafi University of Bristol, UK
Tetsu Iwata Nagoya University, Japan
Seny Kamara Microsoft Research, USA
Fabien Laguillaumie University of Lyon I, France
Benôıt Libert Technicolor, France
Mark Manulis University of Surrey, UK
Maŕıa Naya-Plasencia Inria, France
Abderrahmane Nitaj University of Caen, France
Kaisa Nyberg Aalto University School of Science, Finland
Sami Omar Tunis University, Tunisia
Ayoub Otmani University of Rouen, France
Duong Hieu Phan University of Paris 8, France
Vincent Rijmen KU Leuven and iMinds, Belgium

VIII AFRICACRYPT 2014

Magdy Saeb Arab Academy of Science, Technology and
Maritime Transport, Alexandria, Egypt

Reihaneh Safavi-Naini University of Calgary, Canada
Palash Sarkar Indian Statistical Institute, India
Peter Schwabe Radboud University Nijmegen,

The Netherlands
Francesco Sica Nazarbayev University, Kazakhstan
Djiby Sow University of Dakar, Senegal
François-Xavier Standaert UCL, Belgium
Christine Swart University of Cape Town, South Africa
Isamu Teranishi NEC, Japan
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan
Ivan Visconti Università di Salerno, Italy
Duncan Wong City University of Hong Kong, China
Amr M. Youssef Concordia University, Montreal, Quebec,

Canada

External Reviewers

Hadi Ahmadi
Riham AlTawy
Toshinori Araki
Diego Aranha
Nuttapong Attrapadung
Man Ho Allen Au
Aurélie Bauer
David Bernhard
Rishiraj Bhattacharyya
Céline Blondeau
Christina Boura
Florent Bruguier
Guilhem Castagnos
Nishanth Chandran
Craig Costello
Angelo De Caro
Baris Ege
Nicolas Estibals
Pooya Farshim
Jun Furukawa
Benôıt Gérard
Siyao Guo
Miia Hermelin
Shoichi Hirose
Viet Tung Hoang

Qiong Huang
Kimmo Järvinen
Mahavir Jhawar
Shaoquan Jiang
Antoine Joux
Dina Kamel
Pierre Karpman
Yusuke Kawamoto
Dakshita Khurana
Adeline Langlois
Enrique Larraia
Kaitai Liang
Zhen Liu
Grigory Marshalko
Santos Merino
Chris Mitchell
Amir Moradi
Pratyay Mukherjee
Christiane Peters
Christophe Petit
Orazio Puglisi
Tajjeeddine Rachidi
Carla Ràfols
Vanishree Rao
Christian Rechberger

AFRICACRYPT 2014 IX

Francesco Regazzoni
Benedikt Schmidt
Hadi Soleimany
Katherine Stange
Valentin Suder
Xiao Tan
Joana Treger
Dominique Unruh

Joop van de Pol
Kerem Varici
Frederik Vercauteren
Nicolas Veyrat-Charvillon
Pengwei Wang
Gaven Watson
Liang Feng Zhang

Table of Contents

New Results for Rank-Based Cryptography . 1
Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles Zémor

Public-Key Cryptography

Proxy Re-Encryption Scheme Supporting a Selection of Delegatees 13
Julien Devigne, Eleonora Guerrini, and Fabien Laguillaumie

Trapdoor Privacy in Asymmetric Searchable Encryption Schemes 31
Afonso Arriaga, Qiang Tang, and Peter Ryan

Kurosawa-Desmedt Key Encapsulation Mechanism, Revisited 51
Kaoru Kurosawa and Le Trieu Phong

Hash Functions

Differential Biases in Reduced-Round Keccak . 69
Sourav Das and Willi Meier

Practical Distinguishers against 6-Round Keccak-f Exploiting
Self-Symmetry . 88

Sukhendu Kuila, Dhiman Saha, Madhumangal Pal, and
Dipanwita Roy Chowdhury

Preimage Attacks on Reduced-Round Stribog . 109
Riham AlTawy and Amr M. Youssef

Secret-Key Cryptanalysis

Breaking the IOC Authenticated Encryption Mode 126
Paul Bottinelli, Reza Reyhanitabar, and Serge Vaudenay

New Treatment of the BSW Sampling and Its Applications to Stream
Ciphers . 136

Lin Ding, Chenhui Jin, Jie Guan, and Chuanda Qi

Multidimensional Zero-Correlation Linear Cryptanalysis of E2 147
Long Wen, Meiqin Wang, and Andrey Bogdanov

Public-Key Cryptanalysis and Number Theory

Further Improvement of Factoring RSA Moduli with Implicit Hint 165
Liqiang Peng, Lei Hu, Jun Xu, Zhangjie Huang, and Yonghong Xie

XII Table of Contents

New Attacks on the RSA Cryptosystem . 178
Abderrahmane Nitaj, Muhammad Rezal Kamel Ariffin,
Dieaa I. Nassr, and Hatem M. Bahig

Formulae for Computation of Tate Pairing on Hyperelliptic Curve
Using Hyperelliptic Nets . 199

Christophe Tran

Hardware Implementation

New Speed Records for Montgomery Modular Multiplication on 8-bit
AVR Microcontrollers . 215

Zhe Liu and Johann Großschädl

Minimizing S-Boxes in Hardware by Utilizing Linear Transformations . . . 235
Sebastian Kutzner, Phuong Ha Nguyen, Axel Poschmann, and
Marc Stöttinger

Efficient Masked S-Boxes Processing – A Step Forward – 251
Vincent Grosso, Emmanuel Prouff, and François-Xavier Standaert

A More Efficient AES Threshold Implementation . 267
Begül Bilgin, Benedikt Gierlichs, Svetla Nikova,
Ventzislav Nikov, and Vincent Rijmen

Protocols

Constant Rounds Almost Linear Complexity Multi-party Computation
for Prefix Sum . 285

Kazuma Ohara, Kazuo Ohta, Koutarou Suzuki, and
Kazuki Yoneyama

Position-Based Cryptography from Noisy Channels 300
Stefan Dziembowski and Maciej Zdanowicz

Lattice-Based Cryptography

A Comparison of the Homomorphic Encryption Schemes FV and
YASHE . 318

Tancrède Lepoint and Michael Naehrig

Towards Lattice Based Aggregate Signatures . 336
Rachid El Bansarkhani and Johannes Buchmann

Table of Contents XIII

Public-Key Cryptography

A Second Look at Fischlin’s Transformation . 356
Özgür Dagdelen and Daniele Venturi

Anonymous IBE from Quadratic Residuosity with Improved
Performance . 377

Michael Clear, Hitesh Tewari, and Ciarán McGoldrick

Expressive Attribute Based Signcryption with Constant-Size
Ciphertext . 398

Y. Sreenivasa Rao and Ratna Dutta

Secret-Key Cryptography

DRECON: DPA Resistant Encryption by Construction 420
Suvadeep Hajra, Chester Rebeiro, Shivam Bhasin, Gaurav Bajaj,
Sahil Sharma, Sylvain Guilley, and Debdeep Mukhopadhyay

Counter-bDM: A Provably Secure Family of Multi-Block-Length
Compression Functions . 440

Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, and
Jakob Wenzel

Universal Hash-Function Families: From Hashing to Authentication 459
Basel Alomair

Author Index . 475

New Results for Rank-Based Cryptography

Philippe Gaborit1, Olivier Ruatta1, Julien Schrek1, and Gilles Zémor2

1 Université de Limoges, XLIM-DMI,
123, Av. Albert Thomas

87060 Limoges Cedex, France
{gaborit,ruatta,schrek}@unilim.fr

2 Université Bordeaux I, A2X,
351 cours de la Libération

33400 Talence Cedex, France
gilles.zemor@math.u-bordeaux.fr

Abstract. In this paper we survey new results for rank-based cryptogra-
phy: cryptosystems which are based on error-correcting codes embedded
with the rank metric. These new results results first concern the LRPC
cryptosystem, a cryptosystem based on a new class of decodable rank
codes: the LRPC codes (for Low Rank Parity Check codes) which can
be seen as an analog of the classical LDPC codes but for rank metric.
The LRPC cryptosystem can benefit from very small public keys of less
than 2,000 bits and is moreover very fast. We also present new optimized
attacks for solving the general case of the rank syndrome decoding prob-
lem, together with a zero-knowledge authentication scheme and a new
signature scheme based on a mixed errors-erasures decoding of LRPC
codes, both these systems having public keys of a few thousand bits.
These new recent results highlight that rank-based cryptography has
many good features that can be used for practical cryptosystems.

Keywords: Public key cryptosystem, rank metric, error-correcting
codes.

1 Introduction

In recent year there has been a burst of activities regarding post-quantum cryp-
tography, the interest of such a field has become even more obvious since the
recent attacks on the discrete logarithm problem in small characteristic [2]. These
attacks show that finding new attacks on classical cryptographic systems is al-
ways a possibility and that it is important not have all its eggs in the same
basket.

Among potential candidate for alternative cryptography, lattice-based and
code-based cryptography are strong candidates. Rank-based cryptography relies
on the difficulty of decoding error-correcting codes embedded with the rank met-
ric (codes over extension fields of type GF (qm)), when code-based cryptography
relies on difficult problems related to error-correcting codes embedded with the

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

2 P. Gaborit et al.

Hamming metric (often over small fields GF (q)) and when lattice-based cryptog-
raphy is mainly based on the study of q-ary lattices, which can be seen as codes
over rings of type Z/qZ (for large q), embedded with the Euclidean distance.

The particular interest of rank metric is that the practical difficulty of the
problems grows very fast with the size of parameters. In particular it is possible
to reach a complexity of 280 for random instances with size only a few thousand
bits, when for lattices or codes, at least hundred thousand bits are needed. Of
course with codes and lattices it is possible to decrease to a few thousand bits
but with additional structure like quasi-cyclicity [4], but then the reduction
properties to difficult problems is lost.

The rank metric was introduced by Gabidulin in 1985 in [12], together with
the Gabidulin codes which are an equivalent of the Reed-Solomon codes for the
rank metric. Since then, rank metric codes have been used in many applications:
for coding theory and space-time codes and also for cryptography. Until now the
main tool for rank based cryptography relied on masking the Gabidulin codes
[13] in different ways and using the McEliece (or Niederreiter) setting with these
codes. Meanwhile most of the systems were broken by using structural attacks
which use the particular structure of the Gabidulin codes ([26], [11], [5], [21] -
see also [11]). A similar situation exists in the Hamming case for which most
of cryptosystems based on the Reed-Solomon have been broken for the same
reason: the Reed-Solomon are so structured that their structure is difficult to
mask and there is always structural information leaking.

Recently a new family of decodable codes in rank metric was proposed in
[14], namely the LRPC codes. The basic idea to decode these codes is similar
to the NTRU decryption method [19] or the LDPC approach and only uses the
fact of knowing a dual matrix with low weight in order to decode (or decrypt)
the code. The advantage of this approach is that the induced structure is very
poor compared to very structured codes like Reed-Solomon or Gabidulin codes.
For instance, the NTRU cryptosystem has never really been attacked for almost
20 years (nor has the more recent MDPC cryptosystem [23], an analog of the
NTRU cryptosystem with LDPC codes for Hamming distance and with small
public keys of 4, 800 bits).

In this paper we first review in Section 2, basic facts about rank metric and
the difficulty of decoding rank metric codes, then we consider LRPC codes in
Section 3 and their application to cryptography in Section 4, at last sections 5
and 6 deal with authentication and signature with rank metric.

2 Background on Rank Metric Codes and Cryptography

2.1 Definitions and Notation

Let q be a power of a prime p, m an integer and let Vn be a n dimensional vector
space over the finite field GF(qm) = Fqm . Let β = (β1, . . . , βm) be a basis of
GF (qm) over GF (q). Let Fi be the map from GF (qm) to GF (q) where Fi(x)
is the i-th coordinate of x in the basis β. To any v = (v1, . . . , vn) in Vn we
associate the matrix v ∈ Mm,n(Fq) in which vi,j = Fi(vj). The rank weight of

New Results for Rank-Based Cryptography 3

a vector v can be defined as the rank of the associated matrix v. If we name this
value rank(v) we can have a distance between two vectors x, y using the formula
rd(x, y) = rank(x − y). We refer to [22] for more details on codes for the rank
distance.

A rank code C of length n and dimension k over GF (qm) is a subspace
of dimension k of GF (qm)n embedded with rank metric. The minimum rank
distance of the code C is the minimum rank of non-zero vectors of the code.
One also considers the usual inner product which allows to define the notion of
dual code. An important notion which differs from the Hamming distance, is the
notion of support. Let x = (x1, x2, · · · , xn) ∈ GF (qm)n be a vector of rank r.
We denote by E :=< x1, x2, · · · , xn >, the GF (q)-sub vector space of GF (qm)
generated by the coordinates of x, {x1, x2, · · · , xn}. The vector space E is called
the support of x. In the following, C is a rank metric code of length n and
dimension k over GF (qm). The matrix G denotes a k × n generator matrix of
C and H one of its parity check matrix. At last, the notion of isometry which
in Hamming metric corresponds to the action on the code of n× n permutation
matrices, is replaced for rank metric by the action of n × n invertible matrices
over the base field GF (q).

2.2 Difficult Problem for Rank-Based Cryptography

The main problem used for rank codes in the cryptographic context is the gen-
eralization of the classical syndrome decoding problem with Hamming distance
in the case of rank metric:

Rank Syndrome Decoding Problem (RSD). Let H be a ((n − k) × n)
matrix over GF (qm) with k ≤ n, s ∈ GF (qm)k and r an integer. The problem
is to find x such that rank(x) = r and Hxt = s.

The RSD problem is not proven NP-hard, but this problem is very close to
the syndrome decoding problem in Hamming distance, which is NP-hard. In
practice the problem has been studied for more than 20 years and is considered
as difficult by the communauty.

2.3 Complexity of the Rank Decoding Problem

The complexity of practical attacks grows very fast with the size of parameters,
there is a structural reason for this: for Hamming distance a key notion in the
attacks is counting the number of words of length n and support size t, which
corresponds to the notion of Newton binomial coefficient

(
n
t

)
, whose value is

exponential and upper bounded by 2n. In the case of rank metric, counting the
number of possible supports of size r for a rank code of length n over GF (qm)
corresponds to counting the number of subspaces of dimension r in GF (qm):
the Gaussian binomial coefficient of size roughly qrm, whose value is also
exponential but with a quadratic term in the exponent.

4 P. Gaborit et al.

There exist two types of generic attacks on the problem:

- Combinatorial Attacks: these attacks are usually the best ones for small
values of q (typically q = 2) and when n and k are not too small, when q increases,
the combinatorial aspect makes them less efficient. The first non-trivial attack
on the problem was proposed by Chabaud and Stern [6] in 1996, then in 2002
Ourivski and Johannson [25] improved the previous attack and proposed a new
attack, meanwhile these two attacks did not take account of the value of n in
the exponent. Very recently the two previous attacks were generalized in [17] by

Gaborit et al. in (n−k)3m3q(r−1)� (k+1)m
n �)) and took the value of n into account

and were used to break some repaired versions of the GPT cryposystem. The
idea of the latter new approach is to use the notion of support of a word in rank
metric and then applying the classical Information Set Decoding [3] approach
with this generalized notion of support.

- Algebraic Attacks: the particular nature of rank metric makes it a natural
field for algebraic attacks and solving by Groebner basis, since these attacks
are largely independent of the value of q and in some cases may also be largely
independent on m. These attacks are usually the most efficient ones when q
increases. There exist different type of algebraic equations settings to try to solve
a multivariate system with Groebner basis. The algebraic context proposed by
Levy and Perret [20] in 2006 considers a quadratic setting over GF (q) by taking
as unknowns the support E of the error and the error coordinates regarding E.
It is also possible to consider the Kernel attack by [9] and the minor approach
[10] which give multivariate equations of degree r+1 over GF (q) obtained from
minors of matrices At last, more recently the annulator setting by Gaborit et al.
in [17] (which is valid on certain type of parameters but may not be independent
on m) give multivariate sparse equations of degree qr+1 but on the large field
GF (qm) rather than on the base field GF (q). The latter attack is based on the
notion of q-polynomial [24] and is particularly efficient when r is small. Moreover
all these attacks can be declined in an hybrid approach where some unknowns
are guessed.

3 Low Rank Parity Check Codes and Their Decoding

3.1 Definition of Low Rank Parity Check Codes

The idea of these codes is to generalize the classical LDPC codes approach for
Hamming distance to the rank metric. There is a natural analogy between low
density matrices and matrices with low rank.

Definition 1. A Low Rank Parity Check (LRPC) code of rank d, length n and
dimension k over GF (qm) is a code such that the code has for parity check
matrix, a (n − k) × n matrix H(hij) such that the sub-vector space of GF (qm)
generated by its coefficients hij has dimension at most d. We call this dimension
the weight of H. Denoting F the sub-vector space of GF (qm) generated by the
coefficients hij of H, we denote by {F1, F2, · · · , Fd} one of its basis.

New Results for Rank-Based Cryptography 5

In practice it means that for any 1 ≤ i ≤ n − k, 1 ≤ j ≤ n, there exist
hijl ∈ GF (q) such that hij =

∑d
l=1 hijlFl. Naturally the LRPC codes can also be

considered in a quasi-cyclic context in which the matrix H is double circulant (a
concatenation of two circulant matrices), which permits to dramatically decrease
the size of the description of the matrix H .

3.2 Decoding Algorithm for LRPC Codes

The general idea of the algorithm is to use the fact that all coordinates of the
parity check matrix H belong to the same vector space F of small dimension d.
Given an error e with associated support E of dimension r and its associated
syndrome s = H.et, we take advantage that when r and d are such that rd ≤
n− k, the GF (q)-vector space S generated by the coordinates of the syndrome
S =< s1, . . . , snk

> permits to recover, with a strong probability, the whole
product space P =< E.F > (generated by the EiFj , 1 ≤ i ≤ r, 1 ≤ i ≤ d),
of the error support E and the LRPC small vector space F . Then knowing the
whole product space P =< E.F >= S and the space F , allows to recover E by a
simple intersection of subspaces of the form: S times the inverse of the elements
of a basis of F . Once the support E of the error e is recovered, it is easy to
compute the exact value of each coordinate of e by solving a linear system.

Consider a [n, k] LRPC code C of low weight d over GF (qm), with generator
matrix G and dual (n− k)× n matrix H , such that all the coordinates hij of H
belong to a space F of rank d with basis {F1, · · · , Fd}.

Suppose the received word to be y = xG+e for x and e in GF (qm)n, and where
e(e1, · · · , en) is the error vector of rank r, which means that for any 1 ≤ i ≤ n,
ei ∈ E, a vector space of dimension r with basis (say) {E1, . . . , Er}. The Fig. 1
describes a general probabilistic algorithm which decodes an error e up to rank
distance r = (n− k)/d.

Correctness, Probability of Failure and Complexity of the Decoding.
The decoding algorithm is probabilistic since the probability to recover a set of
maximal independant elements of the syndrome space is probabilistic and also
since there is very small probability that Step 2 recovers a greater space than
E, but all these probabilities can be easily evaluated. In term of complexity of
decoding it is possible to use a formal description of the matrixH to compute the
inversion of the coefficients of the error vector e with only a quadratic complexity
(see [14] for details). Overall we have the following theorem:

Theorem 1 ([14]). Let H be a (n− k)× n dual matrix of a LRPC codes with
low rank d ≥ 2 over GF (qm), then algorithm 1 decodes a random error e of low
rank r such that rd ≤ n−k, with failure probability q−(n−k+1−rd) and complexity
r2(4d2m+ n2).

6 P. Gaborit et al.

1. Syndrome space computation
Compute the syndrome vector H.yt = s(s1, · · · , sn−k) and the syndrome
space S =< s1, · · · , sn−k >.

2. Recovering the support E of the error
Define Si = F−1

i S, the subspace where all generators of S are multiplied by
F−1
i . Compute the support of the error E = S1 ∩ S2 ∩ · · · ∩ Sd, and compute

a basis {E1, E2, · · · , Er} of E.

3. Recovering the error vector e
Write ei(1 ≤ i ≤ n) in the error support as ei =

∑n
i=1 eijEj , solve the

system H.et = s, where the equations H.et and the syndrome coordinates
si are written as elements of the product space P =< E.F > in the basis
{F1E1, · · · , F1Er, · · · , FdE1, · · · , FdEr}. The system has nr unknowns (the
eij) in Fq and (n− k).rd equations from the syndrome.

4. Recovering the message x
Recover x from the system xG = y − e.

Fig. 1. Algorithm 1:a general decoding algorithm for LRPC codes

4 Application of LRPC Codes to Cryptography:
The LRPC Cryptosystem

4.1 The LRPC Cryptosystem

The LRPC cryptosystem consists in applying a McEliece-like or a Niederreiter-
like encryption setting to the LRPC family of decodable codes: Figure 2 presents
the LRPC cryptosytem in a McEliece setting.

The system works for any LRPC code C and considering G in systematic
form permits to decrease a little the size of the public key. The case of double
circulant LRPC codes (DC-LRPC) is of particular interest since it permits to
dramatically decrease the size of the public key: in that case the matrix H can
be written (A|B) where A and B are two circulant invertible LRPC matrices
of low rank d and G can be written G = ((A−1B)t|I) (for At the transposed
matrix of A).

• General parameters of the LRPC cryptosystem:

Writing the matrices of the system in systematic form we obtain:

1. Size of public key (bits): LRPC: (n− k)kmLog2(q) / DC-LRPC: nm
2 Log2(q)

2. Size of secret key (bits): a seed can be used to recover the different parameters
3. Size of message: LRPC: nmLog2(q) / DC-LRPC: nmLog2(q)
4. Encryption rate: LRPC: k

n / DC-LRPC: 1
2

For decryption and encryption, the computational cost is dominated by the
matrix-vector multiplication and the cost of syndrome computing. In the case
of DC-LRPC , one can use the double-circulant structure to improve compu-
tations. The cost of a multiplication in the extension field GF (qm), in binary

New Results for Rank-Based Cryptography 7

1. Key creation Choose a random [n, k] LRPC code C over GF (qm), with low
rank support F of weight d, which corrects errors of rank r and with parity
check matrix, a (n − k) × n matrix H . Let G be a generator matrix of the
LRPC code C.
• Secret key: the LRPC (n− k)× n dual matrix H
• Public key: a k × n generator matrix G of the LRPC code C

2. Encryption
Translate the information vector M into a word x, choose a random error e
of rank r on GF (qm). The encryption of M is c = xG+ e.

3. Decryption
Compute the syndrome s = H.ct and recover the error vector e by decoding
s with the LRPC code, then compute xG = c− e and recover x.

Fig. 2. The LRPC cryptosystem

operations, is mLog2(m)Log2(Log2(m)) ([18]). The system in Fig. 2 is presented
in a McEliece setting, in that case the size of the message is larger than for the
Niederreiter setting but more can be proven regarding semantic security.

4.2 Security of the LRPC Cryptosystem

Attacks on the LRPC Cryptosystem. There are two type of attacks. The
first type of attacks are direct attacks on the message, in which the attacker
tries to recover directly the message by finding the error e of rank r with classical
attacks described in Section 2.3. For the type of considered parameters, the
recent combinatorial attacks or algebraic attacks of [14] are the most efficient
ones.

It is also possible to consider structural attacks and try to attack directly
the structure of the public key to recover the secret key. In particular one can
use the fact that all the elements of the dual LRPC matrix H belong to the
same subspace F of rank d. Let D be the dual code generated by H . Denote by
Hi(1 ≤ i ≤ n−k) the n−k rows of H and consider a word x of D obtained from

linear combinations in the small field GF (q): x =
∑n−k

i=1 aiHi for ai ∈ GF (q). All
the coordinates of x belongs to F , now since F has dimension d, fixing d variables
ai in GF (q) can allow to put to zero a coordinate of x, overall since there are
n − k variables ai one can put to zero (with a good probability depending of
the matrix H), �(n − k)/d� coordinates positions of x. Therefore with a good
probability the dual code D contains a word x with all coordinates in F and with
�(n − k)/d� coordinates to zero which can be the first �(n − k)/d� coordinates
without loss of generality. Hence the attacker can attack the subcode D′ of D
of all the words of D which are zero on the first �(n − k)/d� coordinates. This
code D′ is a [n− �(n− k)/d�, n− k − �(n− k)/d�] code which, by the previous
discussion, contains a word of rank d.

The previous structural attack uses deeply the structure of the LRPC matrix
so that the attacker has only to attack a smaller code which contains at least

8 P. Gaborit et al.

one word of rank d. This exponential attacks slightly reduces the computational
cost of the attack on the system and can be easily handled. This attack has an
equivalent attack for NTRU [19] and for MDPC codes [23] in which the attacker
uses the cyclicity to decrease slightly the number of columns of the attacked
matrix: by removing columns corresponding to zeros of a small weight vector of
the secret key.

4.3 Examples of Parameters

We give three examples of parameters for the DC-LPRC case: an example with
security 280 operations which optimizes the size of the public key at 1680 bits
with a decryption probability of 2−22, an example with security 2128, and at last
an example with decryption failure probability of 2−80.

These parameters update the parameters from [14] after the weak structural
attack described in Section 4.4.

In the table ’failure’ stands for probability of ’decryption failure’, the size of
the public key is in bits, the security is in bits. We give parameters for different
level of security, but also for different decryption failure, in particular it is possi-
ble to reach a 2−80 easily at the cost of doubling the size of the key. Notice that
the parameters are very versatile. Although no special attack is known for non
prime number we choose to consider prime numbers in general. The complexity
of decryption for the first set of parameters is 220 bit operations. In particular in
terms of computation cost the LRPC cryptosystem seems to compare very well
with the MDPC cryptosystem.

n k m q d r failure public key security
82 41 41 2 5 4 -22 1681 80
106 53 53 2 6 5 -24 2809 128
74 37 23 24 4 4 -88 3404 110

5 Zero-Knowledge Authentication with Rank Metric

5.1 Previous Work and Definitions

In 1995 Chen proposed in [7] a 5-pass zero-knowledge protocol based on rank
metric with cheating probability 1/2, the protocol was in the spirit of the Stern
SD protocol [27] meanwhile it turned out that the protocol was not correct and
was subsequently broken in [16]. The main reason was that the zero-knowledge
proof was false, especially since the author failed to construct an equivalent
notion of permutation for Hamming distance which would associate any word
of rank weight r to any particular given word of rank r. Indeed let x be a word
of length n and rank r with support E, then for any n × n random invertible
matrix P in the small field GF (q), the word xP has also rank r but the support
of x and xP are the same so that information leaks if one tries to hide x only
by turning it into xP .

New Results for Rank-Based Cryptography 9

The definition of the product ”∗” allows to obtain such a property for rank
metric. With the notation of Section 2.1: for a given basis β, we denote Φβ the
inverse of the function Vn → Mm,n(GF(q)) : x→ x computed with the basis β.

Definition 2 (product). Let Q be in Mm,m(GF(q)), v ∈ Vn and β a basis.
We define the product Q ∗ v such that Q ∗ v = Φβ(Qv), where v is constructed
from the basis β.

Then one can prove the following proposition which gives the equivalent notion
of permutation for Hamming distance but in a rank metric context:

Proposition 1 ([16]). For any x, y ∈ Vn and rank(x) = rank(y), it is possible
to find P ∈ Mn,n(GF(q)) and Q ∈ Mm,m(GF(q)) such that x = Q ∗ yP .

5.2 Description of the Protocol

The previous definition of the ”*” product permits to obtain a rank metric
adaptation of the Stern protocol [27] which was presented in [16]: the masking
of a codeword by a permutation is replaced by the masking x → Q ∗ xP which
has the same property in terms of rank distance as a permutation for a codeword
with Hamming distance, since it can transform any given x with given rank to
any element with the same rank. In the following the notation (a|b) corresponds
to the concatenation of a and b. The notation hash(a) is the hash value of a. A
given basis β is fixed and known in advance for the ”*” product.

For the protocol a public k × n matrix over GF (qm) H is fixed. The secret
key is a vector s of Vn(= (GF (qm)n) with rank r. The public key consists
of the matrix H , the syndrome i = Hst and the rank r of s. The protocol is
described in Fig. 3. For the protocol the small base field is GF (2), (ie: q = 2). It
is proven in [16] that the protocol described in Fig. 3, is a 3-pass zero-knowledge
protocol with cheating probability 2/3.

1. [Commitment step] The prover P chooses x ∈ Vn, P ∈
GLn(GF(q)) and Q ∈ GLm(q). He sends c1, c2, c3 such that :

c1 = hash(Q|P |Hxt), c2 = hash(Q ∗ xP), c3 = hash(Q ∗ (x+ s)P)

2. [Challenge step] The verifier V sends b ∈ {0, 1, 2} to P .
3. [Answer step] there are three possibilities :

– if b = 0, P reveals x and (Q|P)
– if b = 1, P reveals x+ s and (Q|P)
– if b = 2, P reveals Q ∗ xP and Q ∗ sP

4. [Verification step] there are three possibilities :
– if b = 0, V checks c1 and c2.
– if b = 1, V checks c1 and c3.
– if b = 2, V checks c2 and c3 and that rank(Q ∗ sP) = r.

Fig. 3. Rank-SD protocol

10 P. Gaborit et al.

Example of Parameters. If we consider, q = 2, n = 22,m = 23 and k = 9
one obtains a minimal distance of 8 by the rank Gilbert-Varshamov bound [22],
hence we can take r = 7 for the rank weight of the secret. The security of
the protocol relies then on the security of the hash function and on a general
random instance of the RSD problem defined in Section 2. In that case with
these parameters, the best practical known attacks lead to a complexity of at
least 280 operations (these parameters are updated from [16] after the recent
improvements on generic attacks of [17]). The fact that one can take a rank
weight r close to the rank Gilbert-Varshamov bound permits to greatly decrease
the size of the parameters.

Public matrix H : (n− k)× k ×m = 2691 bits

Public key i : (n− k)m = 299 bits

Secret key s : r(m + n) = 360 bits

Average Number of Bits Exchanged in One Round: 2 hash + one word
of GF(qm) ∼ 820 bits.

Overall the protocol is more efficient than the Stern SD scheme and can prob-
ably be optimized as in [1]. For instance by cyclicity: if one considers a double-
circulant matrix, the size of the public key decreases to only a few hundred bits:
a [22, 11] double circulant code, q = 2, m = 29 , r = 7 leads to a public key of
319 bits. A security of 2100 can be reached with k = 9, n = 27, q = 2,m = 24
and r = 10.

6 Signature with Rank Metric

The signature is usually the most difficult primitive to obtain. In the case of rank
metric, a first way to obtain a signature is to use the authentication scheme of
the previous section in a Fiat-Shamir paradigm context (see [1]). It permits to
build a signature scheme with small public key of a few thousand bits (even a
few hundred if one uses quasi-cyclicity) but with large signature size of order
a hundred thousand bits (although optimized rank-SD schemes should a priori
probably do always better than optimized SD schemes [1]).

Another approach consists (like for the CFS scheme [8]) in trying to con-
struct a hash and sign signature scheme. This approach is possible with rank
metric codes, by using the notion of generalized erasure. The notion of gener-
alized erasure means that the decoder knows not only the syndrome but has
also information on the support of the error. In a rank metric context it means
knowing a subspace of the support of the error e. The idea for the signature
scheme is then to try to decode a random syndrome but not as usual with only
errors, but with a mixed approach of errors and generalized erasures. It turns out
that it is possible to modify the LRPC decoding algorithm so that it is possible
to obtain a better decoding when a subspace of the error is known. Then for a
fixed known part of the error support it is possible to decode beyond the rank
Gilbert-Varshamov bound and then obtain a hash and sign signature algorithm.

New Results for Rank-Based Cryptography 11

Overall the RankSign signature scheme presented in [15] permits to obtain a
fast signature scheme with public key of order 10, 000 bits and signature of size
less than 2, 000 bits.

7 Conclusion

In this short survey paper we presented recent results for rank-based cryptog-
raphy. These results show that rank-based cryptography has a strong potential
in terms of size of keys because of the inherent difficulty of the RSD problem
and its links with the Gaussian binomial which counts subspaces of given di-
mension. We highlighted the LRPC cryptosystem which benefits from a very
low public key of less than 2, 000 bits and is moreover very fast. We also high-
lighted the analogy between the NTRU cryptosystem, the MDPC cryptosystem
and the present LRPC cryptosystem which are based on similar ideas. We also
presented the rank-SD authentication scheme and eventually gave the general
ideas on which relies the RankSign signature scheme which has also relatively
small public keys.

Overall even if more scrutiny is needed from the communauty, all these recent
results propose new promising direction for rank-based cryptography and for
obtaining fast asymmetric systems with small public keys.

References

1. Aguilar, C., Gaborit, P., Schrek, J.: A new zero-knowledge code based identification
scheme with reduced communication. In: 2011 IEEE Information Theory Workshop
(ITW), pp. 648–652 (2011)

2. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A quasi-polynomial algorithm
for discrete logarithm in finite fields of small characteristic, eprint iacr 2013/400

3. Becker, A., Joux, A., May, A., Meurer, A.: Decoding Random Binary Linear Codes
in 2 n/20: How 1 + 1 = 0 Improves Information Set Decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (2012)

4. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of
the McEliece Cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

5. Berger, T., Loidreau, P.: Designing an Efficient and Secure Public-Key Cryptosys-
tem Based on Reducible Rank Codes. In: Canteaut, A., Viswanathan, K. (eds.)
INDOCRYPT 2004. LNCS, vol. 3348, pp. 218–229. Springer, Heidelberg (2004)

6. Chabaud, F., Stern, J.: The Cryptographic Security of the Syndrome in Decoding
Problem for Rank Distance Codes. In: Kim, K.-C., Matsumoto, T. (eds.) ASI-
ACRYPT 1996. LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (1996)

7. Chen, K.: A New Identification Algorithm. In: Dawson, E., Golić, J. (eds.) Cryp-
tography: Policy and Algorithms 1995. LNCS, vol. 1029, pp. 244–249. Springer,
Heidelberg (1996)

8. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a Mc-Eliece-based dig-
ital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248,
pp. 157–174. Springer, Heidelberg (2001)

12 P. Gaborit et al.

9. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg
(2008)

10. Faugère, J.-C., El Din, M.S., Spaenlehauer, P.-J.: Computing loci of rank defects
of linear matrices using Grbner bases and applications to cryptology. In: ISSAC
2010, pp. 257–264 (2010)

11. Faure, C., Loidreau, P.: A New Public-Key Cryptosystem Based on the Problem of
Reconstructing p-Polynomials. In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969,
pp. 304–315. Springer, Heidelberg (2006)

12. Gabidulin, E.M.: Theory of Codes with Maximum Rank Distance. Probl. Peredachi
Inf. (21), 3–16 (1985)

13. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a Non-
Commutative Ring and their Applications in Cryptology. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991)

14. Gaborit, P., Murat, G., Ruatta, O., Zémor, G.: Low Rank Parity Check Codes and
their application in cryptography. In: The Preproceedings of Workshop on Coding
and Cryptography (WCC) 2013, Borgen, Norway, pp. 167–179 (2013)

15. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: RankSign: An efficient signature
algorithm based on the rank metric. eprint iacr (submitted)

16. Gaborit, P., Schrek, J., Zémor, G.: Full Cryptanalysis of the Chen Identifica-
tion Protocol. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 35–50.
Springer, Heidelberg (2011)

17. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome de-
coding problem. eprint. Submitted to IEEE Trans. Information Theory

18. von zur Gathen, J., Gerhard, J.: Modern computer algebra. Cambridge University
Press (2003)

19. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryp-
tosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288.
Springer, Heidelberg (1998)

20. Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. In: Pro-
ceedings of YACC 2006 (2006)

21. Loidreau, P.: Designing a Rank Metric Based McEliece Cryptosystem. In: Sendrier,
N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 142–152. Springer, Heidelberg (2010)

22. Loidreau, P.: Properties of codes in rank metric,
http://arxiv.org/abs/cs/0610057

23. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: New
McEliece Variants from Moderate Density Parity-Check Codes. Cryptology ePrint
Archive: Report 2012/409

24. Ore, O.: On a special class of polynomials. Trans. American Math. Soc. (1933)
25. Ourivski, A.V., Johansson, T.: New Technique for Decoding Codes in the Rank

Metric and Its Cryptography Applications. Probl. Inf. Transm. (38), 237–246
(2002)

26. Overbeck, R.: Structural Attacks for Public Key Cryptosystems based on Gabidulin
Codes. J. Cryptology 21(2), 280–301 (2008)

27. Stern, J.: A new paradigm for public key identification. IEEE Transactions on
Information Theory 42(6), 2757–2768 (1996)

http://arxiv.org/abs/cs/0610057

Proxy Re-Encryption Scheme Supporting

a Selection of Delegatees

Julien Devigne1, Eleonora Guerrini2, and Fabien Laguillaumie3

1 Orange Labs Applied Crypto Group, GREYC (CNRS, UCBN, ENSICAEN)
julien.devigne@orange.com

2 Université Montpellier 2, LIRMM (CNRS UM2)
eleonora.guerrini@lirmm.fr

3 Université Claude Bernard Lyon 1, LIP
(U. Lyon, CNRS, ENS Lyon, INRIA, UCBL)

fabien.laguillaumie@ens-lyon.fr

Abstract. Proxy re-encryption is a cryptographic primitive proposed by
Blaze, Bleumer and Strauss in 1998. It allows a user, Alice, to decide that
in case of unavailability, one (or several) particular user, the delegatee,
Bob, will be able to read her confidential messages. This is made possible
thanks to a semi-trusted third party, the proxy, which is given by Alice a
re-encryption key, computed with Alice’s secret key and Bob’s public key.
This information allows the proxy to transform a ciphertext intended to
Alice into a ciphertext intended to Bob. Very few constructions of proxy
re-encryption scheme actually handle the concern that the original sender
may not want his message to be read by Bob instead of Alice. In this
article, we adapt the primitive of proxy re-encryption to allow a sender
to choose who among the potential delegatees will be able to decrypt
his messages, and propose a simple and efficient scheme which is secure
under chosen plaintext attack under standard algorithmic assumptions
in a bilinear setting. We also add to our scheme a traceability of the proxy
so that Alice can detect if it has leaked some re-encryption keys.

Keywords: proxy re-encryption, cloud storage, traceability.

1 Introduction

Proxy re-encryption (PRE), invented in 1998 by Blaze et al. [8], allows a user
to delegate its decryption capability. To do so, this user, Alice, computes a
piece of information with her secret key skA and her delegatee Bob’s public key
pkB, called a re-encryption key and denoted by RA→B . This key is given to a
semi-trusted proxy, accessible (at least) during Alice’s unavailability. This re-
encryption key allows the proxy to transform a ciphertext intended to Alice into
a ciphertext intended to Bob. While doing this transformation, the proxy cannot
learn any information about plaintext messages. We are here interested in unidi-
rectional and single-hop schemes, which means (1) that with a re-encryption key
RA→B, a proxy cannot translate a ciphertext intended to Bob, into a ciphertext
intended to Alice1 and (2) that once a message has been moved into a ciphertext

1 Schemes which allow this symmetrical transformation are called bi-directional.

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 13–30, 2014.
c© Springer International Publishing Switzerland 2014

14 J. Devigne, E. Guerrini, and F. Laguillaumie

intended to Bob, no more transformation on the new ciphertext to Bob is possi-
ble2. PRE schemes found applications in digital rights management, distributed
file systems, privacy of medical records, outsourced filtering of encrypted spam,
and encrypted email forwarding,...

We here address an issue which has not been intensively studied so far: the
original sender, who encrypts a message to Alice, wants a priori his message to
be read by Alice, and only Alice. This is the definition of the notion of confiden-
tiality. In case of unavailability of Alice, she may authorize some users (who she
trusts, we can imagine), to read some of her messages. Nevertheless, the sender
may not want his message to Alice to be read by all these delegatees, i.e., he
might prefer to decide also who among these delegatees can actually decrypt
the message. Of course, we cannot prevent Alice to give afterward a message she
decrypted to anyone she wants, as well as the delegatees.

To prevent this transformation of Alice’s messages into messages intended to
all of the delegatees, we propose a specific proxy re-encryption scheme which
supports the selection of the delegatees by the original sender, who must have at
his disposal a description of the identities of the delegatees. The idea is that the
delegator assigns a temporary identity to each delegatee for the purpose we men-
tioned, using a structure of labeled tree (that we describe bellow). Corresponding
re-encryption keys will be computed by Alice and given to a proxy which will
re-encrypt her ciphertexts. The initial sender will then be able to decide that
a “second-level” ciphertext (which can be re-encrypted) that he produced for
Alice, will be decryptable only by the delegatees satisfying a certain pattern, in
the spirit of identity-based encryption with wildcards schemes [2,1].

Application. Our (medical) use-case is the following: several hospitals want to
cooperate to improve medical assistance and research, so they want to share
data on a cloud storage involving their medical patients with different illness.
Some parties from these hospitals decide to store their data on a common remote
server. A cancer expert from hospital 1 (let us call him Dr. John Carter) wants
to store some data about some patient behavior and he wants the advice of his
colleagues from other hospitals. If the cancer expert of hospital 2 (Dr. Susan
Lewis) is available, she can access these data on the server to work on, because
Dr. Carter has encrypted this data for Dr. Lewis. When Dr. Lewis is on vacation,
it might be important that other people from her hospital could access this
information, like the nurses of her unit or colleagues in some other units. So Dr.
Lewis chooses her delegatees, usually colleagues with whom she is used to work,
among these trusted colleagues and assigns them their identities as delegatees.
In this scenario the doctor Carter knows that his colleague is on vacation and
he gets her list of delegatees. If he estimates that the data are too sensitive
or private to be shared with all the delegatees of doctor Susan Lewis, he can
choose in this list, for example, only the professor in charge of the maternity
ward (assuming that his patient is also a pregnant woman).

2 Schemes which allow several translation of ciphertexts are called multi-hop.

Proxy Re-Encryption Scheme Supporting a Selection of Delegatees 15

We want do design a proxy re-encryption scheme which supports this choice
of delegatee’s by the sender. We propose the following solution: any hospital
is structured in different sectors and the delegator attributes an identity to
each of his delegatees, according to his position in the hospital. An identity
is chosen by the delegator, and is composed of different fields specifying the
hospital where they work, the field, the position in the group and the name,
structured in a labeled tree, as in Figure 1. For example a possible identity
is “hospital 2.cancer-ward.headoftheunit.susan.lewis” or “hospital 1.maternity-
ward.nurses.nurse2”. If professor John Carter of hospital 1 wants to share infor-
mation with the professor in charge of the cancer unit of hospital 2, he encrypts
data for his colleague, as well as for the identity of the delegatee he may accept,
for instance “hospital 2.maternity-ward.headoftheunit.lucy.knight” if he wants
this data to be read by the head of the maternity unit. Therefore, if this pro-
fessor is in vacation, a proxy re-encrypts the data for someone chosen directly
by the sender. More generally, these data might also be available for authorized
entities all the time (for instance in cloud applications). We want also to allow
a re-encryption for more delegatees in the following way: the proxy might re-
encrypt data for all the nurses of the maternity ward of the hospital 2. In this
case, we allow the sender who estimates that his message concern also all the
nurses to encrypt directly for the address ”hospital 2.maternity-ward.nurses.* ”
where the ”*” means “any nurses from the maternity-ward of hospital 2”.

In our scheme, a delegator chooses a set of delegatees structured according to
a labeled tree and creates for each of them a re-encryption key. Then the original
sender of the message chooses among these delegatees who can decrypt it, thanks
to a target path specified through a sequence of fixed strings and wildcards, where
any string can take the place of a wildcard in a matching identity. We propose
in the last section other applications related to cloud storage.

· · ·
· · ·

name1,pkn1

name2,pkn2

· · ·
professor,pkp

professors

lucy.knight,pklw
headof

theuni
t

maternity ward

susan.lewis,pksw
headoftheunit

ca
nc

er
war

d

hospital 2

secretary,pks
administration

technical staff

{
nurse2, pkn2

· · ·

nurses

professor,pkprprofesso
rs

maternity ward

nurse1,pkn1

nurses

{
doctor1, pkd1
doctor2, pkd2

doctors

{
professor1, pkp1
professor2, pkp2

prof
esso

rs

ca
nc

er
wa

rd

ho
sp
ita

l 1

Fig. 1. Labeled tree of the delegatees chosen by the delegator

16 J. Devigne, E. Guerrini, and F. Laguillaumie

Related Work. After Blaze, et al.’s seminal work [8], PRE have been widely
studied. The security model for proxy re-encryption scheme has been formalized
in [13] (only for bidirectional schemes but easily adaptable for the unidirectional
case, see [23]). Unidirectional schemes, built on bilinear maps, predominantly
reach a chosen plaintext security [5,22,25,3]. The scheme in [23] is only replayable
CCA secure in the sense of [14,13]. The one in [12] which is an amelioration of
[15] was proved CCA secure in the random oracle model.

Some functionalities have been also added to PRE, such as conditional proxy
re-encryption initiated by Tang [26] as type-based proxy re-encryption, and later
developed in [29,30,16,17,27,17], which already addresses the problem of control-
ling the decryption rights. The motivation from [26] was that the delegator may
want to decide whom of the delegatees might decrypt some ciphertexts. It has
been extended by Chu et al. in [16]. Our point of view is different, since we want
the original sender to choose who can eventually decrypt. To this end, Tang’s
and Chu et al.’s approach could also be used, but the number of re-encryption
keys would be more important, since if a delegator which corresponds to different
keywords will have as many corresponding re-encryption keys. Moreover Tang’s
scheme is proven in the random oracle model, whereas Chu et al.’s schemes are
proven in the standard model but need a master authority. In our protocol, we
want to exploit a structure among the delegatee’s, which can be naturally de-
scribed by a kind of hierarchical organization, as we have seen. Tang’s approach
is also related to the notion of proxy with keyword search from [20] (already
mentioned in [24]) and attributed-based proxy [21]. We could also have thought
about broadcast encryption to fit our cloud-storage applications, nevertheless,
PRE is better adapted, since it offers a more flexible system for users. For in-
stance, the proxy re-encryption primitive naturally offers dynamic right access
to confidential messages as explain in [11].

Our Contributions. We propose a PRE protocol which supports a selection of
the delegatees by the sender, once he knows a labeled tree organization of the
delegatees. We define this concept, which is close to the type-based proxy re-
encryption, then we propose a scheme which is proven to be semantically secure
under chosen plaintext attacks in the standard model under reasonable algo-
rithmic assumptions within bilinear groups. Our scheme is based on Libert and
Vergnaud’s traceable proxy re-encryption [22], and exploits the tag used to trace
malicious proxies, by introducing the labeled tree organization, in the spirit of
the identity-based encryption with wildcards [1,2]. It is therefore more efficient
than any trivial scheme which would consist in encrypting (with a classical PRE,
for instance) independently for any of the chosen delegatees. As in Libert and
Vergnaud’s paper, our work is related to Waters’ IBE scheme [28]. The idea is
that the original sender uses Waters’ hash function to set the identity of the
chosen delegatees. Nonetheless, for our security proof, we follow the alternative
security proof proposed by Bellare and Ristenpart [6] which avoids some tricky
step (namely the artificial abort) of the original proof. Moreover our scheme is
still compatible with ideas from Libert and Vergnaud’s traceable scheme and
can therefore be adapted to reach also their same traceability functionalities.

Proxy Re-Encryption Scheme Supporting a Selection of Delegatees 17

2 Preliminaries

2.1 Definitions and Security Model

We define here a single-hop unidirectional PRE scheme which supports a se-
lection of delegatees and its security requirements. In this context, the users
who want to send some message M to Alice can decide, in case of Alice’s un-
availability whom of her delegatees may be able to decrypt. To this end, Al-
ice firstly organized her delegatees according to a labeled tree denoted by T
(as in Figure 1), and attributes to each of them a corresponding identity path
(like “hospital 1.cancer-ward.professor.john.carter”). Then, the sender incorpo-
rates to the ciphertext intended to Alice a description of the identities of the
delegatees he accepts, called the target path, which can contain wildcards (like
“hospital 2.*.professor.*”). This ciphertext will be decryptable by all of delega-
tees whose identity matches this description. Formally, we say that an identity

path ID(B) = (id
(B)
1 , . . . , id

(B)
�) ∈ {0, 1}n1 × · · · × {0, 1}n� (for a set of integers

{n1, . . . , n�}) matches a target path S = (s1, . . . , s�) ∈ ({0, 1}n1 ∪ {∗}n1)× · · · ×
({0, 1}n� ∪ {∗}n�), if si = id

(B)
i for all i such that si �= (∗, . . . , ∗) (and we note

ID(B) ∈ S). We point out here that we suppose Alice to be honest in the sense
that she won’t publish a tree which will hide some path to fool the senders. This
is widely sufficient for most of the applications, but open an interesting cryp-
tographic question, which seems hard to answer without the use of a trusted
authority. We will discuss this issue in conclusion.

Syntactic Definition

Definition 1 (PRE). Let κ be an integer and T be a labeled tree which describes

all the identities ID(B) of each delegatee B (including a sequence of � integers
ni). A single-hop unidirectional selective proxy re-encryption scheme which sup-
ports a selection of delegatees consists of the following eight algorithms.

– Setup(κ, T) → P: this setup algorithm takes a security parameter κ as input
and produces the public parameters P (which includes the tree T).

– KeyGen(P) → (sk, pk): this key generation algorithm, whose inputs are the
public parameters, outputs a pair of secret and public keys (sk, pk), and is
executed by every user.

– ReKeygen(P , skA, pkA, pkB, ID(B)) → RA→B: given the public parameters,
user A’s pair of keys, the public key of the user B and its identity3, this
algorithm produces a re-encryption key RA→B which allows to transform
second level ciphertexts intended to A into first level ciphertexts for B.

– Encrypt1(P , pk,M) → C: this first level encryption algorithm takes as inputs
P, a public key and a message. It outputs a first level ciphertext C that
cannot be re-encrypted.

3 A user may have several identities ; for instance, in a Facebook-like application, a
user may be in the group of friends, as well as in the group of colleagues.

18 J. Devigne, E. Guerrini, and F. Laguillaumie

– Encrypt2(P , pk,M,S) → C: this second level encryption algorithm takes P,
a public key, a message and a target path S as inputs, and produces a second
level ciphertext C that can be re-encrypted. It includes the target path.

– ReEncrypt(P , RA→B, C) → C′/ ⊥: this algorithm takes as input the public
parameters, a re-encryption key RA→B and a second level ciphertext intended
to user A, to which is appended the target path. The output is a first level
ciphertext C′ re-encrypted for user B if his identity matches the target path
or an invalid message ⊥.

– Decrypt1(P , sk, C) → m/ ⊥: this first level decryption algorithm takes as
input P, a secret key and a first level ciphertext and outputs a plaintext M
or an invalid message ⊥.

– Decrypt2(P , sk, C) → m/ ⊥: this second level decryption algorithm takes as
input the public parameters, a secret key and a second level ciphertext and
outputs a plaintext M or ⊥.

For correctness, these algorithms must satisfy the following properties: for all
public parameters P generated by the Setup algorithm, for any message M , and
any couple of valid secret/public key pair (skA, pkA), (skB , pkB),
Decrypt1(P , skA,Encrypt1(P , pkA,M)) →M,
Decrypt2(P , skA,Encrypt2(P , pkA,M,S)) →M, and
Decrypt1(P , skB,ReEncrypt(P ,ReKeygen(P , skA, pkA, pkB, ID(B)),
Encrypt2(P , pkA,M,S)))→M,when B’s identity ID(B) matches the target path.

Security Model. As for public-key encryption, the semantic security is the
relevant security requirement for a PRE. We consider here chosen plaintext at-
tacks, in a static model where the adversary does not choose which users he can
corrupt. This is a classical approach: this security model is the one considered in
[4,5,13,22]. The differences due to the modifications of our definition of a PRE is
highlighted in the descriptions which follow. The security experiment is depicted
in Fig. 3. We consider also in this case that Alice, the original recipient, is hon-
est in the sense that she publishes a labeled tree which describes correctly her
delegatees. For most of the applications, this notion is sufficient (for instance, in
our preliminary example, Dr. Carter won’t add a nurse in the group of doctors).

Our model implicitly makes the knowledge of secret key (KOSK) assumption,
which means that all users know the secret key corresponding to their published
public key. This implies a trusted key generation model, or a model where a user
who wants its public key to be certified by a certification authority, to provide
a proof of knowledge of his secret key. See [23] for a discussion of the stronger
scenario of chosen-key model. Such model is also chosen in [4,5,13,22].

sIND-CPA security of PRE.Encrypt2. We define the static indistinguishability
under a chosen plaintext attack of the Encrypt2 algorithm of a single-hop uni-
directional selective proxy re-encryption scheme by describing a three-stage at-
tacker A = (Ainit,Af ,Ag). The challenge given to the adversary A is C� =
Encrypt2(P , pk�,Mδ,S). As for standard proxy re-encryption protocols, this at-
tacker has access to the secret keys of users which are corrupted (skc) and to all

Proxy Re-Encryption Scheme Supporting a Selection of Delegatees 19

re-encryption keys except those from the target user to a corrupted one (R�→c).
This restriction prevents the adversary to re-encrypt the challenge ciphertext into
a first-level ciphertext intended to a user whose secret key is known to the adver-
sary, turning in a trivial success. Our model for PRE which supports a selection
of delegatees differs a bit from the classical one, in the sense that during a first
stage, the adversary (Ainit) chooses a target path S, based on the labeled tree
that he knows. We stress out that our model allows the attacker to have also
access to the re-encryption keys from the target user to a corrupted one when its
identity does not match the target path S (R�→c �∈S). It captures the fact that
only users whose identity matches a path can decrypt a ciphertext which has
been re-encrypted by the proxy for an identity matching this path.

Definition 2 (sIND-CPA security of PRE.Encrypt2). Let κ be an integer and
T be a labeled tree. Let A = (Ainit,Af ,Ag) be an adversary against the CPA

indistinguishability of PRE.Encrypt2. Let Adv
sind-cpa
PRE.Encrypt2 ,A(κ, T) :=

2 · Pr
[
Expsind-cpaPRE.Encrypt2,A(κ, T) → true

]
− 1 with Expsind-cpaPRE.Encrypt2,A as defined in

Fig. 3 We say that PRE has sIND-CPA security of PRE.Encrypt2 if for every
p.p.t. adversary A = (Ainit,Af ,Ag), Adv

sind-cpa
PRE.Encrypt2,A(κ, T) is negligible.

sIND-CPA security of PRE.Encrypt1. We define the static indistinguishability
under a chosen plaintext attack of the Encrypt1 algorithm. The challenge given
to the adversary A is C� = Encrypt1(P , pk�,Mδ) where pk

� is the public key of
the target user. In this case, all re-encryption keys can be given to the adversary,
since first level ciphertexts cannot be re-encrypted. A PRE which satisfies this
definition is said to have sIND-CPA security for non-transformable ciphertexts.

sIND-CPA security of PRE.ReEncrypt. Eventually, we define the static indis-
tinguishability under CPA of the ReEncrypt algorithm. The challenge given to the
adversary A is C� = ReEncrypt(P , Ru→�,Encrypt2(P , pku,Mδ,S)) where pku is
the public key of the user u that can be either corrupted or not and a target
path S such that the target user’s identity matches this path S. In this case also,
all re-encryption keys can be given to the adversary, since first level ciphertexts
cannot be re-encrypted again. A PRE which satisfies this definition is said to
have sIND-CPA security for transformed ciphertexts.

Transferability. According to Hohenberger [19], a PRE is transferable if a coali-
tion of malicious proxies and delegatees succeeds in delegating their decryption
rights to non-authorized users. This means that given some re-encryption keys
and some delegatee’s secret key, it is possible to create a new re-encryption key
for a fresh user. It is always possible for a delegatee to transfer its decryption
capability, by giving his secret key. If this property is undesirable, most of the
proxy re-encryption scheme are transferable. We will see that our proposed PRE
is transferable as well, but fortunately, it is possible to incriminate a proxy that
took part of this collusion. Following the work of Libert and Vergnaud [22],
our scheme supports a white-box tracing, in the sense that if a proxy reveals
a re-encryption key which was not produced by the delegator, then the proxy

20 J. Devigne, E. Guerrini, and F. Laguillaumie

(but not the malicious delegatee), will be identified. Our scheme is therefore
white-box traceable [22], and can be extended to a black-box traceable scheme
at the expense of a loss of efficiency.

2.2 Algorithmic Assumption and Notations

Our scheme is built upon a bilinear group system, made up with an algorithm
BGSGen which takes a security parameter κ as input, and outputs a tuple
(q,G1,G2,GT , e, Φ), where q is a κ-bit prime, G1, G2 and GT are three mul-
tiplicative groups of order q, e : G1 × G2 → GT is an admissible bilinear map,
and Φ : G2 → G1 is an isomorphism not publicly invertible. The semantic secu-
rity relies on the hardness of the decision bilinear Diffie-Hellman problem:

Expdbdh
BGSGen,D(κ)

β
$←− {0, 1}

(q,G1,G2,GT , e, Φ) ← BGSGen(κ)

h
$←− G2, g ← Φ(h)

(a, b, c)
$←− (Z∗

q)
3

if β = 1 then d ← abc else d
$←− Z∗

q

β′ ← D(g, h, ha, hb, hc, e(g, h)d)
Return (β′ = β)

Fig. 2. DBDH experiment

Exp
sind-cpa
PRE.Encrypt2,A

(κ, T)

P ← Setup(κ, T)
(S�, st) ← Ainit(P)
(sk�, pk�) ← KeyGen(P)

{(skh, pkh) ← KeyGen(P)}
{(skc, pkc) ← KeyGen(P)}
{Rc→� ← ReKeyGen(P, skc, pkc, pk

�, ID�)},
{R�→h ← ReKeyGen(P, sk�, sk�, pkh, IDh)}
{Rh→� ← ReKeyGen(P, skh, pkh, pk�, ID�)} ,
{Rh→c ← ReKeyGen(P, skh, pkh, pkc, ID

c)}
{Rc→h ← ReKeyGen(P, skc, pkc, pkh, IDh)} ,

{R
h→h′ ← ReKeyGen(P, skh, pkh, pk′

h, IDh′
)}

{R
c→c′ ← ReKeyGen(P, skc, pkc, pk

′
c, IDc′)}

{R�→c �∈S� ← ReKeyGen(P, sk�, pk�, pkc �∈S� , IDc)}
(M0 ,M1, st′) ← Af (st, P, pk�, {pkc, skc}, {pkh},
{Rc→�}, {Rh→�},{R�→h}, {Rc→h}, {Rh→c},
{R

h→h′ },{Rc→c′ },{R�→c �∈S�})

δ
$←− {0, 1}

C� ← Encrypt2(P, pk�, Mδ, S�)

δ′ ← Ag(st′, C�)

Return (δ′ = δ)

Fig. 3. sIND-CPA experiment

Definition 3 (DBDH). Let (q,G1,G2,GT , e, Φ) be obtained from a bilinear group
system generator BGSGen with a security parameter κ as input, the decision bi-
linear Diffie-Hellman problem (DBDH) is to distinguish elements e(g, h)abc ∈ GT

from random elements from Gt given (g, h, ha, hb, hc) ∈ G1×G4
2. A distinguisher

D described in Fig. 2 (τ, ε)-breaks the problem if it has running time τ and
Advdbdh

BGSGen,D(κ) = 2Pr[Expdbdh
BGSGen,D(κ) ⇒ true]− 1 = ε. The DBDH problem is

said to be hard if for any p.p.t. distinguisher D, its advantage is negligible.

Notations: For n ∈ N and g ∈ Gn, we define the function4 Fg : {0, 1}n → G
as Fg(ω) =

∏n
j=1 g

wj

j (the group G will be either G1 or G2). Note that for any
s ∈ Z∗

q , (Fg(ω))
s = Fgs(ω). Moreover, if g ∈ (G2)

n then Φ(Fg) = FΦ(g). In what
follows, if M is a vector, Mi denotes its i-th element, so that if M is a vector of
vectors, Mi,j denotes the j-th element of its i-th subvector.

4 Note that this is essentially Waters’ function W (m) = g0

∏n
i=1 g

mi
i without a g0.

Proxy Re-Encryption Scheme Supporting a Selection of Delegatees 21

3 The Scheme

3.1 Intuition

Our scheme is a modification of Libert and Vergnaud’s scheme [22] (based on
Waters’ identity-based encryption scheme [28]), which exploits the string ωij

contained in the re-encryption key from user i to j (originally used to trace ma-
licious proxies) to incorporate information about the identity path of a delegatee.
This information on the delegatee’s identity is chosen and defined by the delega-
tor, and will actually also help later in our protocol, in case of dispute, to trace
back a malicious proxy. The technique to embed the authorized set of delegatees
chosen by the sender is similar to the one used in identity-based encryption with
wildcards [2,1] (which is already the core of the design of Libert and Vergnaud’s
scheme). The sender of the message chooses a target path S = {s1, . . . , s�} such
that either some block si1 , . . . , sik are equal to a block of star pattern “*”, ei-
ther a label that must be fulfilled by the delegatee’s identity. The wildcards
corresponding to the different starred blocks, indicate the parts of the identity
path that will be freely given in the second level ciphertext (using a random
exponent). In this way, the proxy will be able to reform a complete (Water’s)
function of the identity of the authorized delegatees during the re-encryption
process for each authorized delegatee, by completing these free blocks with their
corresponding identity blocks, when they match the path. More precisely, to
make the proxy to be able to reconstruct a whole Waters’ hash function of the
identity of an authorized user, a function with fixed predetermined part from S
(i.e., not corresponding to wildcards) is pre-computed (as (F

U
(A)
i

(si))
s), whereas

the “wild part” is left free as a set ((U
(A)
i,j)s) during the second level encryption.

This last set will be raised at the power of the identity path of the delegatees
which matches the target path S = (s1, . . . , s�) . In what follows, if � is an in-
teger, n = (n1, . . . , n�) ∈ N� is the lengths of the different paths at each level:
T is an authenticated (meaning that it has been signed by Alice) labeled tree,
whose paths of level i are of size ni.

3.2 Description of Our New Scheme

– Setup(κ, T): Let (q,G1,G2,GT , e, Φ) be a bilinear group system obtained
from BGSGen with κ as input. The integer � will be the number of blocks of
an identity. Let n = (n1, . . . , n�) a vector whose i-th coordinate ni defines
the size of the i-th block of an identity. Let h ∈ G2 be a random generator
and g = Φ(h). The output of Setup is (T , (q,G1,G2,GT , e, Φ), g, h,n, �).

– KeyGen(P): On input the public parameters, this algorithm picks at ran-

dom (z, y, v′) $←− (Z∗
q)

3, vi,j
$←− Z∗

q , ∀i ∈ [[1, �]], ∀j ∈ [[1, ni]] and produces the
vector (of vectors of different size) V such that Vi,j = hvi,j ∈ G2, ∀i ∈
[[1, �]], ∀j ∈ [[1, ni]] and V

′ = hv
′
, as well as U = Φ(V) (which means that Φ

22 J. Devigne, E. Guerrini, and F. Laguillaumie

is applied coordinate-wise) and5 U ′ = Φ(V ′). Eventually, sk = (z, y,V, V ′)
and pk = (Z, Y,U, U ′) where Z = e(g, h)z ∈ GT and Y = hy ∈ G2.

– ReKeyGen(P , skA, pkA, pkB, ID(B)): On input the public parameters, user
A’s private key skA = (zA, yA,V

(A), V ′(A)), user B’s public key pkB =

(ZB, YB,U
(B), U ′(B)) and identity ID(B).

1. Pick r
$←− Z∗

q and parse user B’s identity as ID(B) = (id
(B)
i)i∈[[1,�]] such

that id
(B)
i belongs to {0, 1}ni, ∀i ∈ [[1, �]].

2. RA→B =
(
ID(B), Y zA

B .(V ′(A))r.
∏�

i=1 FV
(A)
i

(
id

(B)
i

)r
, hr
)
.

– Encrypt1(P , pkB,M): Given the public parameters, a plaintextM ∈ Gt, user

B’s public key pkB = (ZB, YB ,U
(B), U ′(B)), it picks s

$←− Z∗
q and outputs

the first level ciphertext C′ = (M.e(g, h)s, e(g, YB)
s).

– Encrypt2(P , pkA,M,S): On input the public parameters, a plaintextM ∈ Gt,
user A’s public key pkA = (ZA, YA,U

(A), U ′(A)) and a target path S =
(s1, . . . , s�), where si ∈ {0, 1}ni ∪ {∗}ni, ∀i ∈ [[1, �]].

1. Pick s
$←− Z∗

q and set I∗ = {i ∈ [[1, �]] : si = (∗, . . . , ∗)}.
2. Output the second level ciphertext:

C = (M · Zs
A, g

s,
(
U ′(A).

∏
i�∈I∗

F
U

(A)
i

(si)
)s
,
(
(U

(A)
i,j)s

)
i∈I∗,j∈[[1,ni]]

,S).

– ReEncrypt(P , RA→B, C): On input public parameters, a re-encryption key

RA→B = (ID(B), t, ht) and a second level ciphertext C = (C1, C2, C3, c
(4),S).

1. If IDB /∈ S, return ⊥.
2. Otherwise, let I∗ = {i ∈ [[1, �]] : si = (∗, . . . , ∗)}.
3. Compute C′

3 = C3.
∏

i∈I∗ Fc
(4)
i

(id
(B)
i) with the full identity of B.

4. Output the first level ciphertext C′ = (C1, e(C2, t)/e(C
′
3, ht)).

– Decrypt1(P , skB, C′): On input public parameters, user B’s secret key skB =
(zB, yB,V

(B), V ′(B)) and a first level ciphertext C′ = (C′
1, C

′
2), return the

plaintext M = C′
1/C

′
2
1/yB .

– Decrypt2(P , skA, C): On input public parameters, user A’s secret key skA =
(zA, yA,V

(A), V ′(A)) and a second level ciphertext C = (C1, C2, C3, c
(4),S),

return the plaintext M = C1/e(C2, h)
zA .

The correctness of the scheme is easy to verify and is left to the reader.

Remark 1. Note that we could generalize the setting by allowing � and n to
be chosen independently for each delegator during the KeyGen algorithm. In
this case if we denote these values by �A and nA for a delegator A, each iden-

tity ID(B) would be composed of �A blocks id
(B)
1 , . . . , id

(B)
�A

of size respectively
nA,1, . . . , nA,�. Note that we could also allow wildcards in the si’s themselves,
but to match our target application we didn’t choose these options.

5 Note that U ′ will play the role of g0 in Waters’ function W (m) = g0

∏n
i=1 g

mi
i .

Proxy Re-Encryption Scheme Supporting a Selection of Delegatees 23

3.3 sIND − CPA Security of Our Scheme

In this section, we first prove the semantic security of the second level encryp-
tion algorithm. We actually consider a stronger model than the one presented
in Section 2.1. The adversary, instead of choosing during his init part the whole
challenge identity path S� = (s�1, . . . , s

�
�), he only chooses the set of positions

I�∗ = {i ∈ [[1, �]] : s�i = (∗, . . . , ∗)} of the wildcards. He will precise the whole
challenge during the challenge phase. This model is a bit stronger, but not nec-
essarily more intuitive, so that’s why we defined a slightly weaker model in
Section 2.1. Our scheme relies on Waters’ IBE scheme [28]. Contrary to Libert
and Vergnaud, we have to adapt Waters’ machinery to prove the security of our
scheme. Instead of following Waters’ original proof, we follow the alternative one
of Bellare and Ristenpart [6]. Indeed, they propose a simpler proof (with better
concrete security) where they avoid the artificial abort step.

Theorem 1. The scheme has sIND-CPA security of PRE.Encrypt2 under the
DBDH assumption in the standard model.

Proof. Keeping notations from Section 3.2, let A be an sIND-CPA attacker and
ε = Advsind-cpaPRE.Encrypt2,A(κ, T). Let 1 ≤ Q ≤ qε

9ν denote the number of re-encryption

key queries where ν =
∑

i/∈I�
∗
ni and let m =

⌈
9Q
ε

⌉
. We describe an algorithm B

which will break a DBDH instance, using an A throughout a sequence of games.

Preliminaries: We define J as the set {(i, j) | i ∈ [[1, �]] \ I�∗ , j ∈ [[1, ni]]}, ω as a
vector of vectors (ωi,j)(i,j)∈J such that ωi,j ∈ [[0, (m−1)]] for all (i, j) ∈ J , ω′ as an
element belonging to [[−ν(m− 1), 0]], Z as a vector of vectors (zi,j)i∈[[1,�]],j∈[[1,ni]]

such that all zi,j belongs to Z∗
q and z′ as an element of Z∗

q . For an identity
ID ∈ {0, 1}n1 × · · · × {0, 1}n�, we denote by ΩID the set of (i, j) such that
idi,j = 1 and i /∈ I�∗ . We also denote by ΛID the set of (i, j) such that idi,j = 1.
We define two functions G(ω, ω′, ID) = ω′ +

∑
(i,j)∈ΩID

ωi,j and H(Z, z′, ID) =

z′ +
∑

(i,j)∈ΛID
zi,j . Note that the sum in G is in Z whereas the sum in H

is modulo q. It is important to note that, if G(ω, ω′, ID) = 0 (mod q), then
G(ω, ω′, ID) = 0. This is because |G(ω, ω′, ID)| ≤ ν(m−1) < q for our choice of
m, q and of the range of the entries of ω. Finally, we denote by IDS� the identity
which consists of s�i (of the target path S�) for all i �∈ I�∗ and of 0ni otherwise.

Game 0. Let (g, h, ha, hb, hc, T) be a DBDH instance, i.e., T = e(g, h)abc if
β = 1 and T is random if β = 0. B will output a guess β′ of β. Let bad be a flag
initialized at false, and set to true if B is not able to simulate all answers to A’s
queries. When B runs A, it first receives its choice of wildcarded positions I�∗ .

– Target-key generation: B picks y�
$←− Z∗

q and produces the vector of vectors

V� composed of element in G2 where ∀(i, j) ∈ J , V�
i,j = (hb)ωi,jhz

�
i,j and the

element V ′� = (hb)ω
′
hz

′�
of G2 where J is chosen as in the preliminaries and

(ωi,j)(i,j)∈J , ω
′, Z� = (z�i,j)i∈[[1,�]],j∈[[1,ni]] and z

′� are randomly picked in the
set described in the preliminaries. This implicitly defines v�i,j = b×ωi,j+z

�
i,j

and v′� = b × ω′ + z′�. Moreover, ∀(i, j) /∈ J , we have V�
i,j = hz

�
i,j which

24 J. Devigne, E. Guerrini, and F. Laguillaumie

defines v�i,j = z�i,j , U
� = Φ(V�) and U ′� = Φ(V ′�). It gives to A a pk� =

(Z�, Y �,U�, U ′�), where Z� = e(Φ(ha), hb) and Y � = hy
�

.
– Other key generation: B runs the KeyGen algorithm and gives (sk, pk) to A

for a corrupted-key generation and only pk otherwise.
– Re-Encryption key generation. B generates re-encryption keys from a

user A to a user B as follows, for the identity ID(B) ∈ {0, 1}n1×· · ·×{0, 1}n�:
• If A is not the target user : B runs the ReKeyGen algorithm and gives
RA→B to A.

• If A is the target user and B is corrupted 6 , then B proceeds as follows :
1. Recover the secret key of B, skB = (zB, yB,V

(B), V ′(B)).

2. Pick randomly r
$←− Z∗

q .

3. If G(ω, ω′, ID(B))=0 (mod q), set bad ← true and return RA→B =
⊥.

4. Compute RA→B = (ID(B), R1, R2) with

R1 = (hb)yB .r.G(ω,ω′,ID(B))·hyB .r.H(Z�,z′�,ID(B))·(ha)−yB .H(Z�,z′�,ID(B))

G(ω,ω′ ,ID(B))

and R2 = (ha)
−yB

G(ω,ω′ ,ID(B)) · hryB .

It implicitly defines R1 = habyB ·
(
V ′� ·

∏�
i=1 FV�

i

(
id

(B)
i

))r̃
and R2 = hr̃

with r̃ = ryB − ayB

G(ω,ω′,ID(B))
.

• If A is the target user and B is honest, then B proceeds as follows. B
returns a random re-encryption key: RA→B = (ID(B), R1, R2), where R1

and R2 are randomly picked from G2. The adversary will not detect that
this re-encryption key is inconsistent since it does not have B’s secret key
and the considered attack is chosen plaintext and not chosen ciphertext.
Note that all other cases are impossible due to the IND-CPA rules.

– Challenge. A outputs two messages M0 and M1, and a target path7 S�.
We now consider the identity IDS

� defined during the preliminaries. If
G(ω, ω′, IDS�) �= 0, then bad is set to true and B gives C� =⊥ to A. Other-

wise B picks δ
$←− {0, 1} and gives to A:

C� =
(
Mδ · T, Φ(hc), Φ(hc)H(Z�,z′�,IDS�),

(
Φ(hc)z

�
i,j

)
i∈I∗,j∈[[1,ni]]

,S�
)
.

An adaptation of [6, Lemma 3.2] shows that the distribution of the re-

encryption keys simulated by B when G(ω, ω′, ID(B)) �= 0 is identically
distributed as the genuine algorithm, and when G(ω, ω′, IDS�) = 0, the
third component of the challenge ciphertext is well-formed.

– Guess. If bad = true, which means that B was not able to simulate correctly
all answers to A’s queries, then it returns a random guess β′. Otherwise A
returns δ′ and B returns 1 if δ = δ′ and 0 otherwise.

Game 1. In this game, we do not use the DBDH instance, so that B will be able
to simulate all re-encryption key and challenge queries. Let h ∈ G2, g = Φ(h),

a, b, c
$←− Z∗

p, β
$←− {0, 1} and bad ← false. If β = 1 then T = e(g, h)abc, otherwise

T is random. B runs A and receives its choice of wildcarded positions I�∗ .
6 We recall that this key is given to the adversary only if B’s id. does not match S�.
7 Cf. the introduction of Section 3.3.

Proxy Re-Encryption Scheme Supporting a Selection of Delegatees 25

– Target-key generation: It picks y�
$←− Z∗

q , sets z
� = ab and produces vector of

vectors V� composed of element in G2 where ∀(i, j) ∈ J , V�
i,j = (h)b.ωi,j+z�

i,j

and the element V ′� = (h)b.ω
′+z′�

which defines v�i,j = b×ωi,j+z
�
i,j and v

′� =

b× ω′ + z′�. Moreover, ∀(i, j) /∈ J , we have V�
i,j = hz

�
i,j which defines v�i,j =

z�i,j , U
� = Φ(V�) and U ′� = Φ(V ′�). It gives to A pk� = (Z�, Y �,U�, U ′�),

where Z� = e(g, h)z
�

and Y � = hy
�

.
– Other key generation: B proceeds as in Game 0.
– Re-Encryption key generation. B generates re-encryption keys from a

user A to a user B for the path ID(B) = (id
(B)
1 , . . . , id

(B)
�) as follows.

• If A is the target user and B is corrupted 6 then B proceeds as follows :
1. If G(ω, ω′, ID(B)) = 0 (mod q), then bad ← true, define RA→B as in

the scheme and return it to A.
2. Otherwise define RA→B as in the Game 0.

• Other re-encryption key generation: B proceeds as in Game 0.

– Challenge. A outputs two messages M0 and M1, and a target path S�. If
G(ω, ω′, IDS�) �= 0 then bad ← true and define the challenge as follows: Pick

δ
$←− {0, 1}, giveC�=(Mδ·T, gc,

(∏
i�∈I�

∗
FU�

i
(s�i)

)c
,
(
(U�

i,j)
c
)
i∈I�

∗ ,j∈[[1,ni]]
,S�)

to A, and, otherwise define it as in the Game 0.
– Guess. A returns δ′ and eventually B returns 1 if δ = δ′ and 0 otherwise,

even if bad = true.

Game 2. We modify the simulation of the re-encryption keys and the challenge,
in the case where the flag bad is set to true during Game 0. Let h ∈ G2,

g = Φ(h), a, b, c
$←− Z∗

p, β
$←− {0, 1} and bad ← false (bad will be set to true if B

fails to simulate correctly during the Game 0.). If β = 1 then T = e(g, h)abc,
otherwise T is random. B runs A and receives its wildcarded positions I�∗ .

– Target-key generation: B proceeds as in the previous game
– Other key generation: B proceeds as in the previous game.
– Re-Encryption key generation. B generates the re-encryption keys from

user A to user B as follows:

• If A is the target user and B is corrupted 6 , then B proceeds as follows :
1. If G(ω, ω′, ID(B)) = 0 (mod q), then set bad ← true.
2. Define the re-encryption RA→B as in the scheme.

• Other re-encryption key generation: B proceeds as in the previous game.

– Challenge. A outputs two messages M0 and M1, and a target path S� =

(s∗1, . . . , s∗�). If G(ω, ω
′, IDS�) �= 0, B sets bad ← true. Then B picks δ

$←−
{0, 1} and gives to A the ciphertext C∗ = (Mδ · T, gc,

(∏
i�∈I�

∗
FU�

i
(s�i)

)c
,(

(U�
i,j)

c
)
i∈I�

∗ ,j∈[[0,n]]
,S�).

– Guess. A returns δ′ and B returns 1 if δ = δ′ and 0 otherwise.

Game 3. This game proceeds as the previous one, except that all checks done
during the simulation to finally set bad to true are now done in the Guess phase.

26 J. Devigne, E. Guerrini, and F. Laguillaumie

Game 4. In this last game, we modify the definition of v�i,j . Indeed, ∀(i, j) ∈
[[1, �]]× [[1, ni]], we have v�i,j = z�i,j (which are all random), and at the beginning
of the Guess phase, B picks ω′ ∈ [[−t(m− 1), 0]] and ωi,j ∈ [[0, (m− 1)]] for all
(i, j) ∈ J and proceeds all checks as in Game 3.

The idea behind game-playing techniques is to build a chain of identical-until-
bad games. Two games are identical-until-bad if they are equivalent until the flag
bad is not set (see [7] for a proper definition): here from Game 0 to Game 4,
two consecutive games are actually identical-until-bad (since we follow [6]). This
is useful when we are not able to carry out the analysis for bounding directly
the advantage of an adversary (this is the case in the Game 0), but that we
can manage in some equivalent game (Game 4). In this way, we can switch the
analysis of Game 0 to a simpler analysis of the Game 4. Let now GD4 denote
the event “Game 4 does not set bad“.

Lemma 1. (Adapted from [6, Lemma 3.3]) Advdbdh
BGSGen,B(κ) = 2Pr[Game 4 ⇒

β ∧ GD4]− Pr[GD4].

Let I = (IDS∗ , ID1, . . . , IDQ) be a sequence of identities that are involved
in the same game (note that IDS∗ �= IDi for all 1 ≤ i ≤ Q). We need to com-
pute the probability γ(I) of GD4 according to such a sequence of identities. The
idea is to obtain a fitting formula like in [6, Lemma 3.4 and 3.5]. Our function
G(ω, ω′, ID) can be seen as the function F (x, ID′) defined in Bellare and Ris-
tenspart’s paper [6] where x = {ω′, ω1,1, . . . , ω1,n1 , . . . ω�,1, . . . , ω�,n�

} and ID′ =
{id1,1, . . . , id1,n1 , . . . , id�,1, . . . , id�,n�

}. Let Isp = {(IDS� , ID1, . . . , IDQ) ∈
({0, 1}n1 × · · · × {0, 1}n�)Q+1 : ∀i ∈ [[1, Q]] (IDS� �= IDi)}. For I ∈ Isp we have
γ(I) = Pr[G(ω, ω′, IDS�) = 0 ∧ G(ω, ω′, ID1) �= 0 ∧ . . . ∧ G(ω, ω′, IDQ) �= 0]
where the probability is taken over the ω. As pointed out by Bellare and Risten-
part, the problem here is that γ(I) varies with any chosen sequence I in Isp. For
that, let’s introduce Q(I) the event “Game 4 results in the identity sequence
I = (IDS� , ID1, . . . , IDQ) being queried by A”. As in [6, Lemma 3.4], we have

Lemma 2. For I ∈ Isp, Pr[Game 4 ⇒ β∧GD4 ∧Q(I)] = γ(I) Pr[Game 4 ⇒
β ∧Q(I)] and Pr[GD4 ∧Q(I)] = γ(I) Pr[Q(I)].

We now complete the analysis by computing an upper bound γmax and a
lower bound γmin for γ(I). We adapt [6, Lemma 3.4, Lemma 3.5] and obtain:

Lemma 3. 1
ν(m−1)+1 (1−

Q
m) ≤ γmin ≤ γmax ≤ 1

ν(m−1)+1 .

We now get into the analysis of the security of our scheme. Thanks to Lemma
1 we have that Advdbdh

BGSGen,B(κ) =
∑

I 2Pr[Game 4 ⇒ β ∧ GD4 ∧ Q(I)] −∑
I Pr[Game 4 ∧Q(I)] and using the “independence” of Lemma 2, we deduce

that Advdbdh
BGSGen,B(κ) ≥ γmin

∑
I 2Pr[Game4 ⇒ β∧Q(I)]−γmax

∑
I Pr[Q(I)].

Following [6] we have, Pr[Game4 ⇒ β] = 1
4Adv

sind-cpa
PRE.Encrypt2 ,A(κ, T) + 1

2 , which

leads to Advdbdh
BGSGen,B(κ) ≥ 2γmin(

1
4Adv

sind-cpa
PRE.Encrypt2 ,A(κ, T)+ 1

2)− γmax. If we set

α =
(
ν(m− 1) + 1

)−1
, and substitute γmin and γmax we get Advdbdh

BGSGen,B(κ) ≥

Proxy Re-Encryption Scheme Supporting a Selection of Delegatees 27

α
2

(
1− Q

m

)
ε+ α

(
1− Q

m

)
− α ≥ α

(
1
2

(
1− ε

9

)
ε− ε

9

)
≥ αε

3 . Putting all together and

using m =
⌈
9Q
ε

⌉
in α’s definition, we finally get Advdbdh

BGSGen,B(κ) ≥ ε2

27Qν+3ε . ��

The following theorem states the security of the encryption schemes under
DBDH, and the classical proof can be found in the full version of this paper.

Theorem 2. The scheme has sIND-CPA security of PRE.Encrypt1 (respectively
PRE.ReEncrypt) under the DBDH assumption in the standard model.

3.4 Transferability Issues and Traceability

To deal with traceability properties, we need to consider the following CheckKey
algorithm which checks the validity of a re-encryption key:
– CheckKey(P , skA, pkB, RA→B): Given the public parameters, user A’s private
key skA = (zA, yA,V

(A), V ′(A)), user B’s public key pkB = (ZB, YB,U
(B), U ′(B))

and a re-encryption key RA→B = (ID(B), t, ht) as inputs, it returns 1 if e(g, t) =

e(g, YB)
zA · e(V ′(A).

∏�
i=1 FV

(A)
i

(id
(B)
i), ht) and 0 otherwise. This algorithm re-

turns 1 if and only if the re-encryption key RA→B really allows to re-encrypt a
ciphertext intended to a user A into a ciphertext intended to a user B.

As already mentioned in the introduction, our scheme suffers from transfer-
ability. Indeed, a corrupted proxy with a valid8 re-encryption key from user A

to user B, RA→B = (ID(B), Y zA
B .(V ′(A))r.

∏�
i=1 FV

(A)
i

(id
(B)
i)r, hr) can create,

by colluding with B a re-encryption key from A to another corrupted user B′.
To do so, given RA→B and the two secret keys skB = (zB, yB,V

(B), V ′(B)) and
skB′ = (zB′ , yB′ ,V(B′), V ′(B′)), they can compute the key:

Rfake
A→B = (ID(B), Y zA

B′ .(V ′(A))r.yB′/yB .
∏�

i=1 FV
(A)
i

(id
(B)
i)r.yB′/yB , hr.yB′/yB)

which allows to re-encrypts ciphertexts from A to the user B′ and such that9

CheckKey(skA, pkB′ , Rfake
A→B) = 1. But B′ has to usurp the identity of B since

the first component of the new re-encryption key has to stay user B’s identity
ID(B) to pass the key check. It is therefore easily traceable in white box. On the
other hand, this traceability does not permit to detect which proxy is potentially
malicious as a re-encryption key is the same for all proxies, this can be useful in
the case where there is a single proxy such as PRE-based file storage [4,5].

Improving the Traceability. As our encryption is based on Libert and Ver-
gnaud’s scheme [22], we can add a white box traceability (useful when there are
several proxies) or a black box-traceability by concatenating to a re-encryption
RA→B, a random string ω to B’s identity and adding to the re-encryption some
information corresponding to this string. If ω is chosen randomly, then we can
have a white-box traceability, whereas if it is chosen as a random word of a
collusion secure code [10], we obtain a scheme with a black-box traceability.
We give in the long version, some details on the scheme supporting white-box

8 i.e., CheckKey(skA, pkB , RA→B) = 1.
9 If skB′ = 1 then this re-encryption key allows to decrypt all second level ciphertext
intended to A as in this case the secret key skB′ is not necessary anymore.

28 J. Devigne, E. Guerrini, and F. Laguillaumie

traceability. To obtain the black-box traceability we just have to modify the way
the random string ω is chosen in this scheme as explain in the previous paragraph.
The obtained protocol is still CPA-secure under the same assumptions and is
traceable as the traceability of the system is the same as the one use in [22].

4 Concluding Remarks

We proposed a PRE which allows a user to choose among some predetermined
delegatees who may decrypt a ciphertext originally intended to a delegator. It
allows to access efficiently a large range of delegatees thanks to wildcards and is
CPA secure under classical algorithmic assumptions in a bilinear setting.

Efficiency Considerations. A trivial use of a classical proxy re-encryption would
lead to produce as many ciphertext as chosen delegatees. The use of a tree
structure and wildcards gives with this respect a large improvement in terms of
efficiency. In our schemes, the size of the re-encryption keys does not depend on
the number of delegatees, except for ID(B) which is included in the re-encryption
key, and a re-encryption key from A to B has to be computed only once. On
the contrary, in Tang’s and Chu’s et al. approaches [26,16], such a re-encryption
key has to be computed for each group A decides that B belongs to. Our two
schemes with white box traceability have a ciphertext which contains the path,
so that its size has an additive factor of

∑
i ni. By associating re-encryption keys

to codewords of a collusion secure code, we obtain a scheme with a black-box
tracing algorithm and with ciphertext with linear size in the length of this code.

Another Application: Cloud Storage. We present another application for our
selective PRE: Alice has some data on a cloud storage and wants other users
(friends, family, colleagues) to access this space to add or read these data. So,
she organizes these users into groups, according to the type of relation they
have with her (friends, family, colleagues) and she publishes this group informa-
tion. Imagine now that someone wants to share some data with Alice and just
her friends (not with her family or colleagues). In this case, he encrypts these
data using our PRE scheme (here, the proxy is a service proposed by the cloud
provider) which supports the choice of the delegatees (here friends), so that the
ciphertext will be accessible to her and to Alice’s group of friends, as the original
sender chose. Alice can also securely store on the cloud some files and decide
with whom to share them (holiday’s photos with friends and family, working files
with colleagues) by encrypting with our PRE to herself and her choice of autho-
rized persons as delegatees. Now, suppose that a new user is added in the tree (if
there is room): she will just have to update the re-encryption key, to make the
re-encryption possible for this new user, without having to remove all encrypted
files and re-encrypt them. Our scheme extends to trees with branches of differ-
ent sizes when the description of the delegatees is more complex. Moreover, like
in [18], our scheme has the following interesting feature: even though the files
encrypted on the cloud have a size which depends on the path length, the files
downloaded by the users after conversion by the proxy have constant size, since
level-one ciphertext are Elgamal-like. This is crucial since it saves bandwidth,
and since the ciphertext may to be decrypted on a low-resource devices.

Proxy Re-Encryption Scheme Supporting a Selection of Delegatees 29

Open Questions. We considered a model where Alice is honest in the sense that
her tree is fairly designed: if she were not, she could add a hidden delegatee in
the labeled tree, and give to the proxy the re-encryption key from her to him, so
that he would be able to decrypt everything. Preventing such a behavior from
the delegator is an interesting cryptographic question. This problem seems to
be hard to solve without a trusted authority, which would linked the delegatee’s
identity path to their secret. From a positive side, in our setting, Alice can
adaptatively add new delegatee in her tree. Another interesting problem we left
open, is a manner for the proxy to re-encrypt for all the delegatees satisfying the
target path with only one constant-size ciphertext. Reaching a stronger security
level in the standard model (for instance CCA security) would be also important.

References

1. Abdalla, M., Birkett, J., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G.,
Schuldt, J.C.N., Smart, N.P.: Wildcarded identity-based encryption. Journal of
Cryptology 24(1), 42–82 (2011)

2. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 300–311. Springer,
Heidelberg (2006)

3. Ateniese, G., Benson, K., Hohenberger, S.: Key-private proxy re-encryption. In:
Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidelberg
(2009)

4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS. The Internet
Society (2005)

5. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

6. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: Simplified
proof and improved concrete security for Waters’ IBE scheme. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009)

7. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

8. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

9. Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Proceedings
of the 15th ACM Conference on Computer and Communications Security, CCS
2008, pp. 501–510. ACM (2008)

10. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data (extended ab-
stract). In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 452–465.
Springer, Heidelberg (1995)

11. Canard, S., Devigne, J.: Combined proxy re-encryption. In: ICISC (2013) (to appear)
12. Canard, S., Devigne, J., Laguillaumie, F.: Improving the security of an efficient

unidirectional proxy re-encryption scheme. Journal of Internet Services and Infor-
mation Security 1(2/3), 140–160 (2011)

30 J. Devigne, E. Guerrini, and F. Laguillaumie

13. Canetti,R.,Hohenberger, S.:Chosen-ciphertext secureproxy re-encryption. In:ACM
Conference on Computer and Communications Security 2007, pp. 185–194. ACM
(2007)

14. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg
(2003)

15. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 316–332. Springer, Heidelberg (2010)

16. Chu, C.-K., Weng, J., Chow, S.S.M., Zhou, J., Deng, R.H.: Conditional proxy
broadcast re-encryption. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009.
LNCS, vol. 5594, pp. 327–342. Springer, Heidelberg (2009)

17. Fang, L., Susilo, W., Ge, C., Wang, J.: Interactive conditional proxy re-encryption
with fine grain policy. Journal of Systems and Software 12, 2293–2302 (2011)

18. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE cipher-
texts. In: USENIX Security Symposium (2011)

19. Hohenberger, S.: Advances in Signatures, Encryption, and E-Cash from Bilinear
Groups. PhD thesis, MIT (May 2006)

20. Shao, X.L.J., Cao, Z., Lin, H.: Proxy re-encryption with keyword search. Informa-
tion Sciences 180(13), 2576–2587 (2010)

21. Liang, X., Cao, Z., Lin, H., Shao, J.: Attribute based proxy re-encryption with
delegating capabilities. In: ASIACCS 2009, pp. 276–286 (2009)

22. Libert, B., Vergnaud, D.: Tracing malicious proxies in proxy re-encryption. In:
Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 332–353.
Springer, Heidelberg (2008)

23. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379. Springer,
Heidelberg (2008)

24. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Transactions on Information Theory 57(3), 1786–1802 (2011)

25. Shao, J., Cao, Z.: CCA-secure proxy re-encryption without pairings. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 357–376. Springer, Heidelberg
(2009)

26. Tang, Q.: Type-based proxy re-encryption and its construction. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 130–144.
Springer, Heidelberg (2008)

27. Vivek, S.S., Sharmila Deva Selvi, S., Radhakishan, V., Pandu Rangan, C.: Con-
ditional proxy re-encryption — a more efficient construction. In: Wyld, D.C.,
Wozniak, M., Chaki, N., Meghanathan, N., Nagamalai, D. (eds.) CNSA 2011. CCIS,
vol. 196, pp. 502–512. Springer, Heidelberg (2011)

28. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

29. Weng, J., Deng, R.H., Ding, X., Chu, C.K., Lai, J.: Conditional proxy re-encryption
secure against chosen-ciphertext attack. In: ASIACCS 2009, pp. 322–332. ACM
(2009)

30. Weng, J., Yang, Y., Tang, Q., Deng, R.H., Bao, F.: Efficient conditional proxy re-
encryptionwith chosen-ciphertext security. In: Samarati, P.,Yung,M.,Martinelli, F.,
Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 151–166. Springer, Heidelberg
(2009)

Trapdoor Privacy in Asymmetric Searchable

Encryption Schemes

Afonso Arriaga, Qiang Tang, and Peter Ryan

SnT, University of Luxembourg
{afonso.delerue,qiang.tang,peter.ryan}@uni.lu

Abstract. Asymmetric searchable encryption allows searches to be car-
ried over ciphertexts, through delegation, and by means of trapdoors is-
sued by the owner of the data. Public Key Encryption with Keyword
Search (PEKS) is a primitive with such functionality that provides dele-
gation of exact-match searches. As it is important that ciphertexts pre-
serve data privacy, it is also important that trapdoors do not expose the
user’s search criteria. The difficulty of formalizing a security model for
trapdoor privacy lies in the verification functionality, which gives the ad-
versary the power of verifying if a trapdoor encodes a particular keyword.
In this paper, we provide a broader view on what can be achieved regard-
ing trapdoor privacy in asymmetric searchable encryption schemes, and
bridge the gap between previous definitions, which give limited privacy
guarantees in practice against search patterns. Since it is well-known that
PEKS schemes can be trivially constructed from any Anonymous IBE
scheme, we propose the security notion of Key Unlinkability for IBE,
which leads to strong guarantees of trapdoor privacy in PEKS, and we
construct a scheme that achieves this security notion.

Keywords: Asymmetric Searchable Encryption, PEKS, Trapdoor Pri-
vacy, Function Privacy, Search Pattern Privacy, Key Unlinkability.

1 Introduction

As cloud services become increasingly popular, security concerns arise from ex-
posing the user’s data to third-party service providers. Encryption can be used
to protect the user’s data privacy, but usability is sacrificed if not even the most
basic operations, such as searching over the user’s data, can be delegated to
the service provider. In the public key setting, Boneh et al. [6] were the first
to propose a primitive to tackle this problem. They called it Public Key En-
cryption with Keyword Search (PEKS), a primitive that provides delegation of
exact-match searches over ciphertexts. A typical scenario where this primitive
can bring great benefits to users (and consequently to service providers wishing
to increase their customer base as well) is that of any email system.

Suppose user Alice stores her emails in the servers of some email service
provider, so that she can access them from either her laptop or her smartphone.
Alice does not trust the service provider or fears that government agencies may

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 31–50, 2014.
c© Springer International Publishing Switzerland 2014

32 A. Arriaga, Q. Tang, and P. Ryan

require the service provider to hand over all her data. Using standard pub-
lic key encryption, any user with Alice’s public key can send her encrypted
emails that only she can decrypt. For Alice to find a particular email later on,
the sender could also attach to the email some searchable ciphertexts, produced
from a PEKS scheme, with keywords that Alice might use when searching for
this email. These ciphertexts are searchable upon delegation, meaning that only
Alice can authorize the email service provider to search on her behalf by issuing
a trapdoor that encodes Alice’s search criteria (e.g. ciphertexts that encrypt the
keyword “project xx123 - meeting”), generated from her own secret key. The
service provider searches through all Alice’s emails for those containing search-
able ciphertexts that match the issued trapdoor, and returns to her only those
with a positive match.

Many efforts have been put in asymmetric searchable encryption in general,
as surveyed in [16], most towards more efficient PEKS schemes (or relying on
weaker assumptions) or towards primitives with more flexible search queries,
such as conjunctive, disjunctive, subset and inner product types of queries. Un-
til recently [14,9,10], the concern was always to preserve data privacy in the
ciphertexts and no attention was paid to possible information leakage from the
trapdoors. In fact, some schemes, as the statistically consistent scheme proposed
in [1], include the keyword itself in the trapdoor. In this paper we focus on
defining trapdoor privacy for PEKS and constructing a scheme that provably
stands up to the definition. Nevertheless, the definition can easily be extended
to asymmetric searchable encryption in general [13].

The difficulty of formalizing a security model for trapdoor privacy lies in the
verification functionality of PEKS, which in the public key setting depends on
the trapdoor itself and ciphertexts created from publicly known parameters. This
provides to any adversary the power to verify if a trapdoor encodes a particular
keyword. (The adversary encrypts the chosen keyword under the public key
associated with the trapdoor; if the ciphertext matches the trapdoor then the
trapdoor encodes the chosen keyword.) Therefore, an offline dictionary attack
can always be launched, putting aside the possibility of formalizing the security
notion of trapdoor privacy as a traditional choose-then-guess indistinguishability
game in the public-key setting - although possible in the symmetric setting [15].
In many cases, the keywords encoded in trapdoors are sufficiently unpredictable
for a dictionary attack to be infeasible. So, defining the right notion of trapdoor
privacy is crucial to guarantee that the user’s privacy is fully protected.

Related Work. Abdalla et al. [1], by extending the results left implicit in [6],
proposed a general black-box transformation from Anonymous Identity-Based
Encryption (IBE) to PEKS, where the resulting PEKS scheme is secure in the
traditional ciphertext indistinguishability sense. Identities and their secret keys
in the original IBE scheme map to keywords and trapdoors in resulting PEKS
scheme, respectively. The anonymity requirement informally states that cipher-
texts leak no information regarding the identity of the recipient, leading to the
commonly desired keyword-privacy guarantees over ciphertexts in PEKS. The
standard notion of ciphertext indistinguishability in IBE leads to Computational

Trapdoor Privacy in Asymmetric Searchable Encryption Schemes 33

Consistency in the resulting PEKS scheme, which informally means that it is
hard for computationally bounded adversaries to find two distinct keywords such
that the trapdoors for the first keyword positively match the ciphertexts of the
second keyword. (Note that if keywords are hashed before used in the scheme,
inconsistency happens at least every time H(w1) = H(w2), where w1 �= w2.) We
refer the reader to Section 2 for precise details on this transformation and to [1]
for formal proofs.

This (black-box) transformation allows us to define a “dual” security notion
for IBE that will lead to the desired trapdoor privacy notion in PEKS, and
motivates the construction of IBE schemes that can provably satisfy it. This
approach was also followed by [14,9,10], which, to the best of our knowledge,
are the only works to address the concerns on trapdoor privacy in asymmetric
searchable encryption.

Two distinct scenarios have to be considered to model trapdoor privacy. One
in the presence of ciphertexts that positively match the trapdoors, and the other
in the absence of such ciphertexts. Consider a toy example where the service
provider possesses one ciphertext that belongs to Alice and two trapdoors that
Alice issued for searches to be performed on her behalf. The service provider
executes the test-search and one of the following cases occurs:

(a) Both trapdoors positively match the stored ciphertext, in which case the
trapdoors encode the same keyword.

(b) Only one of the trapdoors match the ciphertext, in which case the trapdoors
encode different keywords.

(c) None of the trapdoors positively match the stored ciphertext.

From cases (a) and (b), we can see that, in the presence of ciphertexts that
match the trapdoors, an equality relation between the keywords encoded under
the trapdoors can be determined trivially. In such cases, the notion of trapdoor
privacy focus on revealing as little information as possible on the keywords them-
selves1. Recently, Boneh et al. [9] put forward two formal definitions of different
strengths for IBE, inspired by the security definition given for Deterministic En-
cryption in [3]: Function Privacy and Enhanced Function Privacy. The latter
leads to a security notion in PEKS (after the black-box transformation in [1]),
which addresses this scenario.

Case (c) covers the scenario where trapdoors do not match any ciphertext. It
is in Alice’s best interest to hide her search pattern from the service provider.
If the search pattern is revealed, the attacker could concentrate its resources on
breaking the privacy of trapdoors encoding the most frequent keywords, which
a priori are the most relevant to Alice. This issue is particularly important
for PEKS due to the possibility of launching dictionary attacks. Nishioka [14]
proposed a model denoted Search Pattern Privacy, which partially addresses this
scenario. However, the model limits the distinguishing game to two trapdoors,

1 Note that some information is inevitably leaked because of the verification function-
ality, e.g. if the trapdoor does not match a ciphertext which encrypts a particular
known keyword, it means that the trapdoor does not encode this keyword.

34 A. Arriaga, Q. Tang, and P. Ryan

which provides insufficient privacy guarantees in practice, considering that an
actual attacker may have access to a much larger number of (possibly related)
trapdoors. As we show in Section 4, and contrarily to intuition, the so-called
hybrid argument does not apply here, unless trapdoors can be efficiently re-
randomized. Also, after the transformation from IBE to PEKS, Function Privacy
leads to a security definition that provides limited privacy guarantees against
search patterns, since the resulting model prevents the adversary from being
challenged with trapdoors encoding the same keyword.

Our Contributions. We formulate the “dual” notion of Search Pattern Pri-
vacy [14], which we call Weak Key Unlinkability for IBE. We then show that
Weak Key Unlinkability is insufficient in practice. We do so by constructing a
new Anonymous IBE scheme with Weak Key Unlinkability, based on the Anony-
mous IBE scheme by Boyen and Waters [12], and show that the resulting PEKS
scheme (by applying black-box transformation in [1]) fails to hide search pat-
terns when more than two trapdoors have been issued. We then propose a new
security model, strictly stronger than Weak Key Unlinkability, which we call
Strong Key Unlinkability. We compare the different notions of security and show
that Key Unlinkability and Function Privacy [9] are orthogonal notions. Finally,
we extend our IBE scheme to groups of composite order, and prove its security
in the Strong Key Unlinkability model.

2 Preliminaries

Notation. We write a ← b to denote the algorithmic action of assigning the
value of b to the variable a. We use ⊥/∈ {0, 1}� to denote a special failure sym-
bol. If S is a set, we write a ←$ S for sampling a from S uniformly at ran-
dom. If X is a joint probability distribution with L random variables, we write
(x1, ..., xL) ←$ X for sampling (x1, ..., xL) from X. If A is a probabilistic algorithm
we write a ←$ A(i1, i2, . . . , in) for the action of running A on inputs i1, i2, . . . , in
with random coins, and assigning the result to a. If a is a variable, |a| denotes
the length in bits of its representation. We denote by a||b the concatenation of
variables a and b, represented as bit-strings.

Games. In this paper we use the code-based game-playing language [4]. Each
game has an Initialize and a Finalize procedure. It also has specifications of
procedures to respond to an adversary’s various queries. A game is run with an
adversaryA as follows. First Initialize runs and its outputs are passed toA. Then
A runs and its oracle queries are answered by the procedures of the game. When
A terminates, its output is passed to Finalize, which returns the outcome of
the game. In each game, we restrict attention to legitimate adversaries, which is
defined specifically for each game. We use lists as data structures to keep relevant
state in the games. The empty list is represented by empty square brackets [].
We denote by list ← a : list the action of appending element a to the head of
list. To access the value stored in index i of list and assign it to a, we write
a ← list[i]. To denote the number of elements in list, we use |list|. Unless stated
otherwise, lists are initialized empty and variables are first assigned with ⊥.

Trapdoor Privacy in Asymmetric Searchable Encryption Schemes 35

2.1 Bilinear Groups

We first revise pairings over prime-order groups and the associated Decision Bi-
linear Diffie-Hellman (DBDH) and Decision Linear (DLIN) assumptions [7,5].
We then revise pairings over composite-order groups [8], introduce the new
Composite Decision Diffie-Hellman (CDDH) assumption, and show that this as-
sumption is weaker than the well-established Composite 3-party Diffie-Hellman
(C3DH) assumption made in [11].

Bilinear Groups of Prime Order

Definition 1. A prime-order bilinear group generator is an algorithm GP that
takes as input a security parameter λ and outputs a description Γ = (p,G,GT, e, g)
whereG andGT are groups of order pwith efficiently-computable group laws, where
p is a λ-bit prime, g is a generator of G and e is an efficiently-computable bilinear
pairing e : G x G → GT.

Definition 2. Let Γ = (p,G,GT, e, g) be the description output by GP(λ). We
say the DBDH assumption holds for description Γ if, for every PPT adversary
A, the following definition of advantage is negligible in λ.

AdvDBDH
Γ,A := 2 · Pr[DBDH ⇒ True]− 1,

where game DBDH is described in Fig. 1.

procedure Initialize(λ):

Γ ←$ GP (λ)
(p,G,GT, e, g) ← Γ

z1 ←$ Zp

z2 ←$ Zp

z3 ←$ Zp

Z ←$ GT
bit ←$ {0, 1}
if bit = 0 return (Γ, gz1 , gz2 , gz3 , e(g, g)z1z2z3)
else return (Γ, gz1 , gz2 , gz3 , Z)

procedure Finalize(bit′):
if bit = bit′ return True
else return False

Fig. 1. Game DBDH

procedure Initialize(λ):

Γ ←$ GP (λ)
(p,G,GT, e, g) ← Γ

z1 ←$ Zp

z2 ←$ Zp

z3 ←$ Zp

z4 ←$ Zp

Z ←$ GT
bit ←$ {0, 1}
if bit = 0 return (Γ, gz1 , gz2 , gz1z3 , gz2z4 , gz3+z4)
else return (Γ, gz1 , gz2 , gz1z3 , gz2z4 , Z)

procedure Finalize(bit′):
if bit = bit′ return True
else return False

Fig. 2. Game DLIN

Definition 3. Let Γ = (p,G,GT, e, g) be the description output by GP(λ). We
say the DLIN assumption holds for description Γ if, for every PPT adversary
A, the following definition of advantage is negligible in λ.

AdvDLIN
Γ,A := 2 · Pr[DLIN ⇒ True]− 1,

where game DLIN is described in Fig. 2.

36 A. Arriaga, Q. Tang, and P. Ryan

Bilinear Groups of Composite Order

Definition 4. A composite-order bilinear group generator is an algorithm GC
that takes as input a security parameter λ and outputs a description Γ = (p, q,G,
GT, e, g) where G and GT are groups of order n = pq, where p and q are inde-
pendent λ-bit primes, with efficiently computable group laws, g is a generator of
G and e is an efficiently-computable bilinear pairing e : G x G → GT.

Subgroups Gp ⊂ G and Gq ⊂ G of order p and order q can be generated respec-
tively by gp = gq and gq = gp. We recall some important facts regarding these
groups:

– G = Gp x Gq

– e(gp, gq) = e(gq, gp) = e(g, g)n = 1

– e(gp, (gp)
a · (gq)b) = e(gp, (gp)

a) · e(gp, (gq)b) = e(gp, gp)
a

Definition 5. Let Γ = (p, q,G,GT, e, g) be the description output by GC(λ) and
Γ ′ = (n,G,GT, e, g), where n ← pq. We say the C3DH assumption holds for de-
scription Γ ′ if, for every PPT adversary A, the following definition of advantage
is negligible in λ.

AdvC3DH
Γ ′,A := 2 · Pr[C3DH ⇒ True]− 1,

where game C3DH is described in Fig. 3.

Definition 6. Let Γ = (p, q,G,GT, e, g) be the description output by GC(λ) and
Γ ′ = (n,G,GT, e, g), where n ← pq. We say the CDDH assumption holds for de-
scription Γ ′ if, for every PPT adversary A, the following definition of advantage
is negligible in λ.

AdvCDDH
Γ ′,A := 2 · Pr[CDDH ⇒ True]− 1,

where game CDDH is described in Fig. 4.

procedure Initialize(λ):

(p, q,G,GT, e, g) ←$ GC(λ)
n ← pq; gp ← gq; gq ← gp

Γ ′ ← (n,G,GT, e, g)
X1 ←$ Gq; X2 ←$ Gq; X3 ←$ Gq

a ←$ Zn; b ←$ Zn; c ←$ Zn; R ←$ G

bit ←$ {0, 1}
if bit = 0 return

... (Γ ′, gp, gq, (gp)
a, (gp)

b,X1(gp)
ab,X2(gp)

abc,X3(gp)
c)

else return

... (Γ ′, gp, gq, (gp)
a, (gp)

b,X1(gp)
ab,X2(gp)

abc,R)

procedure Finalize(bit′):

if bit = bit′ return True
else return False

Fig. 3. Game C3DH

procedure Initialize(λ):

(p, q,G,GT, e, g) ←$ GC(λ)
n ← pq; gp ← gq; gq ← gp

Γ ′ ← (n,G,GT, e, g)
X1 ←$ Gq; X2 ←$ Gq; X3 ←$ Gq

a ←$ Zn; b ←$ Zn; R ←$ G

bit ←$ {0, 1}
if bit = 0 return

... (Γ ′, gp, gq,X1(gp)
a,X2(gp)

b,X3(gp)
ab)

else return

... (Γ ′, gp, gq,X1(gp)
a,X2(gp)

b,R)

procedure Finalize(bit′):

if bit = bit′ return True
else return False

Fig. 4. Game CDDH

Trapdoor Privacy in Asymmetric Searchable Encryption Schemes 37

In game C3DH, adversary is given a tuple (Γ ′, gp, gq, (gp)a, (gp)b,X1(gp)
ab,

X2(gp)
abc, Z) and has to decide whether Z = X3(gp)

c, for some X3 ∈ Gq. For con-
venience, we rewrite this as (Γ ′, gp, gq, (gp)a, (gp)b,X1(gp)

ab,Y, X3(gp)
c), where Y

is either X2(gp)
abc or random in G. Now, notice that (Γ ′, gp, gq, X1(gp)

ab,X3(gp)
c,

Y) is a CDDH tuple. Therefore, CDDH is a weaker assumption than C3DH.

2.2 Anonymous Identity-Based Encryption

An IBE scheme Π = (Setup,Extract,Enc,Dec) is specified by four polynomial-
time algorithms associated with a message space M and an identity space I.

– Setup(λ): On input the security parameter λ, this algorithm returns a master
secret key msk and public parameters pp.

– Extract(pp,msk, id): On input public parameters pp, a master secret key msk
and an identity id ∈ I, this algorithm outputs a secret key sk.

– Enc(pp,m, id): On input public parameters pp, a message m ∈ M and an
identity id ∈ I, this algorithm outputs a ciphertext c.

– Dec(pp, c, sk): On input public parameters pp, a ciphertext c and a secret
key sk, this algorithm outputs either a message m or a failure symbol ⊥.

The correctness of an IBE scheme requires that decryption reverses encryption,
i.e., for any λ ∈ N, any (msk, pp) ←$ Setup(λ), any id ∈ I, any m ∈ M, we have
that Dec(pp,Enc(pp,m, id), Extract(pp, msk, id)) = m.

The standard notions of security for IBE are anonymity and semantic secu-
rity. Intuitively, anonymity requires that ciphertexts conceal the identity and
semantic security requires that ciphertexts conceal the message. We omit the
formal definitions in this version due to space limitations. These properties lead
to semantic security and computational consistency, respectively, in PEKS, after
applying the black-box transformation described in [1].

3 Security Definitions

In this section, we formulate the notion of Weak Key Unlinkability for IBE,
which leads to Nishioka’s Search Pattern Privacy model for PEKS [14], after the
black-box transformation from IBE to PEKS [1]. We then strengthen the model
by allowing the adversary to be challenged with multiple secret keys, instead of
just two. We refer to this new model as Strong Key Unlinkability. The resulting
“dual” property for PEKS allows the adversary to be challenged with multiple
trapdoors, which better reflects real-world scenarios. We then compare the new
notions of security introduced here with those introduced by Boneh et al. in [9],
and show that the two are orthogonal. Finally, we show that an easy and natural
transformation from Strong Key Unlinkability to a more generalized definition,
where the adversary is allowed to choose a joint probability distribution from
which identities are sampled - instead of being sampled uniformly at random
from the identity space - exists, as long as the adversary’s choice does not depend
on the public parameters of the scheme.

38 A. Arriaga, Q. Tang, and P. Ryan

3.1 Key Unlinkability for IBE

Key Unlinkability models for IBE require that the size of the identity space is
at least ω(logλ), where λ is the security parameter of the scheme.

Definition 7. An IBE scheme Π, associated with a non-polynomial size identity
space I, has Weak Key Unlinkability if, for every legitimate PPT adversary A,
the following definition of advantage is negligible in λ

AdvWEAK-KEY-UNLINK
Π,A (λ) := 2 · Pr[WEAK-KEY-UNLINK(λ) ⇒ True]− 1,

where game WEAK-KEY-UNLINK is described in Fig. 5.

Definition 8. An IBE scheme Π, associated with a non-polynomial size identity
space I, has Strong Key Unlinkability if, for every legitimate PPT adversary A,
the following definition of advantage is negligible in λ

AdvSTRONG-KEY-UNLINK
Π,A (λ) := 2 · Pr[STRONG-KEY-UNLINK(λ) ⇒ True]− 1,

where game STRONG-KEY-UNLINK is described in Fig. 6.

procedure Initialize(λ):

(msk, pp) ←$ Setup(λ)
bit ←$ {0, 1}
id0 ←$ I
id1 ←$ I
sk0 ←$ Extract(pp,msk, id0)
sk1 ←$ Extract(pp,msk, idbit)
return (pp, sk0, sk1)

procedure Extract(id):

skid ←$ Extract(pp,msk, id)
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 5. Game
WEAK-KEY-UNLINK

procedure Initialize(λ):

(msk, pp) ←$ Setup(λ)
bit ←$ {0, 1}
listid ← []
listsk ← []
return pp

procedure Extract(id):

sk ←$ Extract(pp,msk, id)
return tp

procedure Finalize(bit′):

return (bit = bit′)

procedure Challenge(list0, list1):

L ← |list0|
for i in {1..L}
... get id for listbit[i] from listid
... if id =⊥
... ... id ←$ I
... ... listid ← (listbit[i], id) : listid
... listsk[i] ←$ Extract(pp,msk, id)
return listsk

Fig. 6. Game STRONG-KEY-UNLINK. Adversary is legit-
imate if it only calls Challenge once with |list0| = |list1|.

3.2 Function Privacy for IBE: An Independent Security Notion

Recently, Boneh, Raghunathan and Segev [9] put forward two security notions, of
different strength, for IBE, inspired by the security definition given for determin-
istic encryption in [3]: Function Privacy and Enhanced Function Privacy. These
notions ask that “decryption keys reveal essentially no information on their cor-
responding identities, beyond the absolute minimum necessary”. In both defini-
tions, the adversary is first given the public parameters and then interacts with a
Real-or-Random function privacy oracle, which takes as input an adversarially-
chosen joint probability distribution – represented as a circuit – for random
variables X1,X2, ...,XL defined over the identity space I, and outputs L secret
keys either for identities sampled from the given joint probability distribution
or for independent and uniformly distributed identities over I.

Trapdoor Privacy in Asymmetric Searchable Encryption Schemes 39

An adversary is legitimate if, for every i ∈ {1..L} and every x1, ..., xi ∈ I, it
holds that:H∞(Xi|X1=x1, ...,Xi−1=xi−1) = − log(maxPr[Xi = xi|X1=x1,...,Xi−1=xi−1]) ≥
ω(logλ). Put differently, the chosen joint probability distribution for (X1, ...,XL)
has to be such that every random variable Xi is sufficiently unpredictable, even if
every random variable Xj<i has been fixed. To discard exhaustive searches, a con-
ditional min-entropyH∞(Xi|X1=x1,...,Xi−1) of at leastω(logλ) bits is required

2. The
Enhancedmodel provides the adversarywith an extra function-privacy encryption
oracle capable of encrypting adversarially-chosen messages under the identities
sampled by Real-or-Random oracle. Formal definitions can be found in [9].

We first remark that Key Unlinkability and Function Privacy security models
are essentially different in the way the challenger samples ids: in the former ids
are sampled uniformly from the id space, whereas in the latter model ids may
be sampled from an adversarial-chosen joint probability distribution, with (pos-
sibly) non-uniform random variables, but also high min-entropy requirements.
In the following subsections we provide counterexamples to show that Func-
tion Privacy (both Non-enhanced and Enhanced) and Key Unlinkability (both
Weak and Strong) are independent security notions. Meaningful counterexam-
ples follow. For a quick overview, Figure 7 states the relations between Weak
Key Unlinkability, Strong Key Unlinkability, Function Privacy and Enhanced
Function Privacy security notions.

Enhanced Function Privacy

Weak Key Unlinkability

Function Privacy

Strong Key Unlinkability

Fig. 7. Relations between Key Unlinkability and Function Privacy security notions

We stress that even Enhanced Function Privacy fails to capture the security
guarantees of Weak Key Unlinkability. In practice, transforming an anonymous
IBE with Enhanced Function Privacy to PEKS (according to the transformation
described in Section 2) results in no guarantee that the service provider will not
be able to find search patterns in the users’ trapdoors.

Enhanced Function Privacy �=⇒ Weak Key Unlinkability. Consider
F : {0, 1}λ x I → {0, 1}λ to be a secure PRF. We denote by f ←$ F the
operation: k ←$ {0, 1}λ; f ← F (k, ·). Let Π = (Setup,Extract,Enc,Dec) be an
enhanced function-private IBE. From Π we can construct Π ′, where Π ′ is still
enhanced function-private but definitely not weak key-unlinkable. We do so by
simply modifying the extraction algorithm and appending to each secret key

2 Theminimal unpredictability requirement of ω(log λ) bits has only been achieve later
in [10]. Schemes in [9] have only been proven secure for highly unpredictable identities
with min-entropy of λ+ ω(log λ).

40 A. Arriaga, Q. Tang, and P. Ryan

the result of a PRF on id. More precisely, Π ′ = (Setup′,Extract′,Enc′,Dec′) is
constructed as follows:

– Setup′(λ) : (msk, pp) ←$ Setup(λ); f ←$ F ; return ((msk, f), pp).
– Extract′(msk, id) : sk ←$ Extract(msk, id); sk′ ← (sk, f(id)); return sk′.
– Enc′(pp,m, id) : c ←$ Enc(pp,m, id); return c.
– Dec′(pp, c, id, sk′) : (sk, y) ← sk′; m ← Dec(pp, c, id, sk); return m.

Informally, since f is unknown to the adversary, the adversary cannot choose
distributions depending on f . Furthermore, F is a secure PRF, so no informa-
tion on id can be acquired. Therefore, Π ′ is still an enhanced function-private
IBE. But, because f is deterministic, it is trivial to identify with overwhelming
probability if two keys have been extracted from the same identity.

Strong Key Unlinkability �=⇒ Function Privacy. Again, we show this by
counterexample. Let Π = (Setup,Extract,Enc,Dec) be a strong key-unlinkable
IBE associated with id space I = {0, 1}2λ. We build Π ′ = (Setup′,Extract′,Enc′,
Dec′) based on Π as follows:

– Setup′(λ) : (msk, pp) ←$ Setup(λ); return (msk, pp).
– Extract′(msk, id) : sk ←$ Extract(msk, id); if id ∈ {0, 1}λ0λ then sk′ ← (sk||0)

else sk′ ← (sk||1); return sk′.
– Enc′(pp,m, id) : c ←$ Enc(pp,m, id) return c.
– Dec′(pp, c, id, sk′) : (sk||b) ← sk′;m ← Dec(pp, c, id, sk); return m.

In our counterexample scheme Π ′, we put a mark in keys for identities whose
last λ bits are 0, by appending a 0 to the key (otherwise, 1 is appended). Since
the subset containing these identities – let us call it U – is much smaller than
the identity space I, identities uniformly sampled from I are very unlikely to be
in U , and thus to possess the mark. In fact, this only happens with probability

Pr = 2λ

22λ
= 1

2λ
, which is a negligible function in the security parameter λ. Strong

Key Unlinkability is therefore preserved in Π ′. However, U is big enough so that
the unpredictability of an id uniformly sampled from U is high. By choosing to be
challenged on a random variable X that selects any element in U with probability
1
2λ and any element in {x ∈ I : x /∈ U} with zero probability, an adversary could
trivially win the function-privacy game, with overwhelming probability, just by
looking into the key’s mark. Also notice that the condition H∞(X) > ω(logλ)
is satisfied. Generically, we can conclude that a strong key-unlinkable scheme is
not necessarily function-private secure.

3.3 Adversarially-Chosen Joint Probability Distributions of
Keywords

In security gameStrongKeyUnlinkability [Fig. 6], identities are sampleduniformly
at random from the identity space, as opposed to from a (possibly non-uniform)
adversarially-chosen joint probability distribution. The latter approach was used
by Boneh et al. [9] to form the challenge in Function Privacy security models. In
most real-worldapplications of PEKS, keywords are not chosenuniformly from the

Trapdoor Privacy in Asymmetric Searchable Encryption Schemes 41

keyword space. Therefore, it is important to discuss the choice of our model and
the impact of generalizing it to deal with adversarially-chosen distributions.

The full versionof [9] proposes a genericmethod for transforming any IBEscheme
into an IBE scheme which achieves a weaker form of Enhanced Function Privacy,
where the adversary is not allowed to choose a joint probability distribution (from
which identities are sampled for the challenge) that depends on the public parame-
ters of the scheme. In fact, the challenger only provides the public parameters after
the joint probability distribution is fixed by the adversary. This relaxation results
in a definition denoted Non-Adaptive Enhanced Function Privacy.

Adopting the same strategy as [9,3], we strengthen our model by allowing
the adversary to choose a joint probability distribution from which identities are
sampled, instead of lists defining equality relations between identities. The envi-
ronment of the game becomes exactly that of Non-Enhanced Function Privacy
defined in [9] (and described here, in Subsection 3.2), but the unpredictabil-
ity requirements on what constitutes a legitimate joint probability distribution
X = {X1, ...,XL} are relaxed to H∞(Xi) ≥ ω(logλ), for every i ∈ {1..L}. Public
parameters can be provided before or after the adversary fixes X, resulting in two
models of different strengths. We refer to the model where the adversary fixes
a joint probability distribution (with possibly non-uniform random variables)
from which the challenger samples the identities after (resp. before) receiving
the public parameters as Adaptive (resp. Non-Adaptive) Key Unlinkability.

Definition 9. An IBE scheme Π, associated with a non-polynomial size iden-
tity space I, has Non-Adaptive Key Unlinkability if, for every legitimate PPT
adversary A, the following definition of advantage is negligible in λ

AdvKEY-UNLINK
Π,Anonadaptive

(λ) := 2·Pr[KEY-UNLINK(λ,mode = “non-adaptive”) ⇒ True]−1,

where game KEY-UNLINK is described in Fig. 8.

procedure Initialize(λ,mode):

(msk, pp) ←$ Setup(λ)
bit ←$ {0, 1}
list ← []
if mode = “adaptive” return pp

procedure Extract(id):

sk ←$ Extract(pp,msk, id)
return tp

procedure Challenge(X = {X1, ...,XL}):
if bit = 0
... (id1, ..., idL) ←$ X

if bit = 1
... (id1, ..., idL) ←$ IL

for i ∈ {1..L}
... list[i] ←$ Extract(pp,msk, idi)
return (list, pp)

procedure Finalize(bit′):

return (bit = bit′)

Fig. 8. Game KEY-UNLINK. X = {X1, ...,XL} is a joint probability distribution with L
random variables defined over the identity space I. Adversary is legitimate if H∞(Xi) ≥
ω(log λ), for every i ∈ {1..L}.

42 A. Arriaga, Q. Tang, and P. Ryan

Definition 10. An IBE scheme Π, associated with a non-polynomial size iden-
tity space I, has Adaptive Key Unlinkability if, for every legitimate PPT adver-
sary A, the following definition of advantage is negligible in λ

AdvKEY-UNLINK
Π,Aadaptive

(λ) := 2 · Pr[KEY-UNLINK(λ,mode = “adaptive”) ⇒ True]− 1,

where game KEY-UNLINK is described in Fig. 8.

Remark. The joint probability distribution X = {X1,X2} such that Pr[X2 =
x1] = 1 is legitimate for Adaptive (and Non-Adaptive) Key Unlinkability, as
long as H∞(X1) ≥ ω(logλ). In particular, if X1 is a uniform random variable
in I, then the game becomes that of Weak Key Unlinkability [Fig. 5]. However,
as expected, X is not a legitimate joint probability distribution for Function
Privacy (Enhanced or Non-Enhanced, Adaptive or Non-Adaptive).

Towards Non-Adaptive Key Unlinkability. We now show that there is an
easy and natural transformation from Strong Key Unlinkability to Non-Adaptive
Key Unlinkability. Let Π = (Setup,Extract,Enc,Dec) be an IBE scheme, asso-
ciated with message spaceM and identity space I, and letH : I ′ → I be a family
of hash functions. We construct an IBE schemeΠ ′ = (Setup′,Extract′,Enc′,Dec′),
associated with message space M and identity space I ′, as follows:

– Setup′(λ) : (msk, pp) ←$ Setup(λ); H ←$ H; return (msk, (pp,H)).
– Extract′(msk, id′) : id ← H(id′); sk ←$ Extract(msk, id); return sk.
– Enc′((pp,H),m, id′) : id ← H(id′); c ←$ Enc(pp,m, id); return c.
– Dec′((pp,H), c, id, sk′) : id ← H(id′); m ← Dec(pp, c, id, sk); return m.

Lemma 1. If |I ′| ≥ |I| ≥ 2ω(log λ) and IBE scheme Π has Strong Key Unlinka-
bility, then IBE scheme Π ′ has Non-Adaptive Key Unlinkability, in the random
oracle model.

Proof. Let A be a legitimate adversary against Non-Adaptive Key Unlinkabil-
ity, and let X = {X1, ...,XL} be the joint probability distribution that A chooses
for the challenge. We recall that a legitimate adversary is required to choose X
such that ∀ Xi ∈ X,H∞(Xi) ≥ ω(logλ), where λ is the security parameter of Π .
Game0 is the original Non-Adaptive Key Unlinkability game described above,
instantiated with IBE scheme Π ′. In Game1, H is modeled as a random ora-
cle. (id′1, ..., id

′
L) ←$ {X1, ...,XL} forms a list of bit-strings. A simulator S could

construct the challenge of Game1 by setting list0 = (id′1, ..., id
′
L) ←$ {X1, ...,XL}

and list1 with L different bit-strings, and querying the challenge procedure of
STRONG-KEY-UNLINKΠ,S with (list0, list1). The result is a well-formed tuple of
L secret keys, and A’s final guess can be forward to STRONG-KEY-UNLINKΠ,S .
Simulator S perfectly mimics the environment of Game1, unless A queries the
hash value of any id′i , in which case the simulation aborts. However, this event
only happens negligible probability. Therefore, we have thatAdvKEY-UNLINK

Π′,Anonadaptive
(λ) ≤

AdvSTRONG-KEY-UNLINK
Π,S (λ) + q·L

2ω(log λ) , where q is the number of queries A asks to
the random oracle. ��

Trapdoor Privacy in Asymmetric Searchable Encryption Schemes 43

Most IBE schemes, including the one introduced in this paper later on, only make
use of the hash value of identities (instead of the identities themselves). Thus,
the simplicity of Strong Key Unlinkability does not come at the expense of the
model’s security meaning. From a theoretical point of view, it seems interesting
(but we leave it as future work) to investigate the construction of IBE schemes
that achieve Key Unlinkability against adaptive adversaries. In practice, for what
concerns PEKS, it seems reasonable to assume that keywords will not depend
on the public parameters of the scheme, and, in particular, on the values output
by the hash function.

4 From Weak to Strong Key Unlinkability

A scheme with Weak Key Unlinkability. We construct a new anonymous
IBE scheme with Weak Key Unlinkability, based on the anonymous IBE scheme
of Boyen and Waters [12]. Our scheme relies on a bilinear group description Γ of
prime order. To eliminate the selective-ID constraint, we replace identities with
their hash values and model the hash function as a random oracle. Furthermore,
we simplify the resulted scheme by removing two group elements from the public
parameters and from private keys, and obtain the final scheme in Fig. 9. Com-
pared with the original scheme, our scheme also saves two exponentiations in the
key-extraction and encryption algorithms, and saves two pairing computations
in the decryption algorithm. Our scheme preserves anonymity and semantic se-
curity properties, provided that the hash function H, selected from a family of
hash functions H : I → G, is modeled as a random oracle. Added to this, the
scheme also has the Weak Key Unlinkability property.

Setup(λ):

Γ ←$ GP(λ)
(p,G,GT, e, g) ← Γ
w, t1, t2 ←$ Z

3
p

Ω ← e(g, g)t1t2w

v1 ← gt1

v2 ← gt2

H ←$ H : I → G

pp ← (Γ,Ω, v1, v2,H)
msk ← (w, t1, t2)
return (msk, pp)

Extract(pp,msk, id):

r ←$ Zp

(w, t1, t2) ← msk
(Γ,Ω, v1, v2,H) ← pp
(p,G,GT, e, g) ← Γ
h ← H(id)
d0 ← grt1t2

d1 ← g−wt2 · h−rt2
d2 ← g−wt1 · h−rt1
skid ← (d0, d1, d2)
return skid

Enc(pp,m, id):

s, s1 ←$ Z
2
p

(Γ,Ω, v1, v2,H) ← pp
(p,G,GT, e, g) ← Γ
h ← H(id)
ĉ ← Ωsm
c0 ← hs

c1 ← v
s−s1
1

c2 ← v
s1
2

c ← (ĉ, c0, c1, c2)
return c

Dec(pp, c, id, skid):

(Γ,Ω, v1, v2,H) ← pp
(p,G,GT, e, g) ← Γ
(d0, d1, d2) ← skid
(ĉ, c0, c1, c2) ← c
e0 ← e(c0, d0)
e1 ← e(c1, d1)
e2 ← e(c2, d2)
m ← ĉ · e0 · e1 · e2
return m

Fig. 9. Anonymous IBE scheme Π with Weak Key Unlinkability

Theorem 1. IBE scheme Π [Fig. 9] is semantically secure, in the random or-
acle model, assuming DBDH is intractable [Definition 2].

Theorem 2. IBE scheme Π [Fig. 9] is anonymous, in the random oracle model,
assuming DBDH and DLIN are intractable [Definitions 2 and 3].

We omit the proofs of Theorem 1 and Theorem 2 in this version due to space
limitations.

44 A. Arriaga, Q. Tang, and P. Ryan

Theorem 3 (Appendix A). IBE scheme Π [Fig. 9] has the Weak Key Un-
linkability property [Definition 7], in the random oracle model, assuming DLIN
is intractable [Definition 3].

Weak Key Unlinkability �=⇒ Strong Key Unlinkability. Standard real-
or-random definitions for public-key encryption model the encryption of a single
plaintext. These definitions are equivalent (with some loss in tightness) to those
allowing an adversary to acquire multiple encryptions, which can be shown by
applying the hybrid argument from [2]. One might be tempted to think that the
same hybrid argument also applies to Weak Key Unlinkability model. However,
this argument does not apply, since we can show that an adversary can still
easily distinguish patterns when more than two keys are issued with scheme Π
[Fig. 9].

Suppose that an adversary is asked to distinguished between tuples of the form
(Extract(id0),Extract(id0),Extract(id0)), where the three secret keys are extracted
from the same id, from those of the form (Extract(id0),Extract(id0), Extract(id1)),
where the third key is extracted from an independent id, for uniformly sampled
id0 and id1 ∈ I. Let (sk0, sk1, sk2) be the tuple the adversary receives, and for
which it has to decide its form. We further expand ski to (di0, di1, di2) according
to our scheme. If the keys were generated honestly, i.e. by following the algorithm
Extract as described in Fig. 9, the adversary simply has to check if

e(
d10
d00

,
d21
d01

)
?
= e(

d00
d20

,
d01
d11

)

to determine the form of the tuple with overwhelming probability. If the result
from the equality is true, then the three secret keys are very likely to have been
extracted for the same id3. If the result is false, then the tuple is definitely of the
form (Extract(id0),Extract(id0),Extract(id1)). For completeness, we show this by
expanding and simplifying the above expression.

e(
d10
d00

,
d21
d01

) = e(
d00
d20

,
d01
d11

) ⇔

e(
gr1t1t2

gr0t1t2
,
g−wt2 · h−r2t2

2

g−wt2 · h−r0t2
0

) = e(
gr0t1t2

gr2t1t2
,
g−wt2 · h−r0t2

0

g−wt2 · h−r1t2
1

) ⇔

e(
gr1t1t2

gr0t1t2
,
h−r2t2
2

h−r0t2
0

) = e(
gr0t1t2

gr2t1t2
,
h−r0t2
0

h−r1t2
0

) ⇔

e(g(r1−r0), hr00 · h−r2
2)t1(t2)

2

= e(g(r0−r2), h(r1−r0)
0)t1(t2)

2 ⇔

e(g, hr00 · h−r2
2) = e(g, h

(r0−r2)
0) ⇔

h2 = h0

3 Collisions in the hash function H may lead to misleading results but only occur with
negligible probability.

Trapdoor Privacy in Asymmetric Searchable Encryption Schemes 45

It is now clear that IBE scheme Π [Fig. 9] fails to achieve the Strong Key Un-
linkability property.

A scheme with Strong Key Unlinkability. We extend Π to groups of
composite order and obtain Π ′ [Fig. 10]. The extension is very simple: let all the
parameters in the original scheme be from the subgroup Gp (generated by gp)
and randomize each element of the extracted secret key by a random element
from the subgroup Gq (generated by gq). Note that the message space is GT.

Setup(1λ):

(p, q,G,GT, e, g) ←$ GC(λ)
n ← pq; gp ← gq; gq ← gp

Γ ← (n,G,GT, e, g, gp, gq)
w, t1, t2 ←$ Zn

Ω ← e(gp, gp)
t1t2w

v1 ← g
t1
p

v2 ← g
t2
p

H ←$ H : I → Gp

pp ← (Γ,Ω, v1, v2,H)
msk ← (w, t1, t2)
return (msk, pp)

Extract(pp,msk, id):

(w, t1, t2) ← msk
(Γ,Ω, v1, v2,H) ← pp
(n,G,GT, e, g, gp, gq) ← Γ
r ←$ Zn

x0, x1, x2 ←$ Gq

h ← H(id)

d0 ← x0 · grt1t2
p

d1 ← x1 · g−wt2
p · h−rt2

d2 ← x2 · g−wt1
p · h−rt1

sk ← (d0, d1, d2)
return sk

Enc(pp,m, id):

(Γ,Ω, v1, v2,H) ← pp
(n,G,GT, e, g, gp, gq) ← Γ
s, s1 ←$ Zn; h ← H(id)

ĉ ← Ωsm; c0 ← hs; c1 ← v
s−s1
1 ; c2 ← v

s1
2

c ← (ĉ, c0, c1, c2); return c

Dec(pp, c, id, skid):

(Γ,Ω, v1, v2,H) ← pp
(n,G,GT, e, g, gp, gq) ← Γ
(d0, d1, d2) ← skid; (ĉ, c0, c1, c2) ← c
e0 ← e(c0, d0); e1 ← e(c1, d1)
e2 ← e(c2, d2); m ← ĉ · e0 · e1 · e2
return m

Fig. 10. Anonymous IBE scheme Π ′ with Strong Key Unlinkability

The decryption algorithm remains correct, since

e0 = e(hs, x0 · grt1t2p) = e(hs, grt1t2p)

e1 = e(vs−s11 , x1 · g−wt2
p · h−rt2) = e(vs−s11 , g−wt2

p · h−rt2)
e2 = e(vs12 , x2 · g−wt1

p · h−rt1) = e(vs12 , g
−wt1
p · h−rt1)

Also, semantic security and anonymity properties are not affected, assuming
DBDH and DLIN hold in Gp. We only need to prove that Π ′ possesses the
Strong Key Unlinkability property.

Theorem 4 (Appendix B). IBE scheme Π ′ [Fig. 10] has Strong Key Unlink-
ability [Definition 8], assuming CDDH is intractable [Definition 5].

5 Conclusions and Future Directions

Our work shows that two distinct scenarios have to be considered to model
trapdoor privacy: one in the presence of ciphertexts that match trapdoors, and
the other in the absence of such ciphertexts. The notion of Strong Search Pattern
Privacy we introduced here addresses privacy concerns up to the point where
ciphertexts matching the issued trapdoors become available, after which, search
patterns can no longer be hidden from an attacker. Previous models provide
limited privacy guarantees against search patterns. Of theoretical interest, it
remains an open problem to prove if our scheme Π ′ [Fig. 10] (or any other)
can achieve security according to the generalized definition of Adaptive Key

46 A. Arriaga, Q. Tang, and P. Ryan

Unlinkability. The overarching goal would be to construct an Anonymous IBE
scheme which satisfies both Adaptive Key Unlinkability and Enhanced Function
Privacy, simultaneously.

Acknowledgements. The present project is supported by the National Re-
search Fund, Luxembourg.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T.,
Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited:
Consistency properties, relation to anonymous ibe, and extensions. Journal of
Cryptology 21(3), 350–391 (2008)

2. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

5. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

6. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

7. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

8. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

9. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: Hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg
(2013)

10. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 255–275. Springer, Heidelberg (2013)

11. Boneh, D.,Waters, B.: Conjunctive, subset, and range queries on encrypted data. In:
Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg
(2007)

12. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (Without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

13. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

Trapdoor Privacy in Asymmetric Searchable Encryption Schemes 47

14. Nishioka, M.: Perfect keyword privacy in PEKS systems. In: Takagi, T., Wang,
G., Qin, Z., Jiang, S., Yu, Y. (eds.) ProvSec 2012. LNCS, vol. 7496, pp. 175–192.
Springer, Heidelberg (2012)

15. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

16. Tang, Q.: Theory and Practice of Cryptography Solutions for Secure Information
Systems. In: Search in Encrypted Data: Theoretical Models and Practical Appli-
cations, pp. 84–108. IGI (2013)

A Proof of Theorem 3

LetA be any legitimate PPT adversary in gameWEAK-KEY-UNLINKΠ,A [Fig. 5].
By building a simulator S2 [Fig. 11] that plays game DLINΓ,S2 [Fig. 2] and simu-
lates game WEAK-KEY-UNLINKΠ,A in such a way that A’s guess can be forward
to game DLINΓ,S2 , we upper-bound the adversary’s advantage to the hardness
of deciding on an instance of this problem.

The master secret key is set as following: t1 = z1, t2 = z1 · a for random
a ∈ Zp, and w = z3·b

z1
for random b ∈ Zp. Although the values of t1, t2 and w are

unknown to S2, the corresponding public parameters can still be consistently
computed:

Ω = e(g, g)t1t2w = e(g, g)
z1z1a

z3·b
z1 = e(Z13, g)

ab

v1 = gt1 = Z1

v2 = gt2 = (Z1)
a

The hash function H is modeled as a random oracle and set to (gz1)x · g− 1
y ,

for random x, y ∈ Z2
p. We assume, without loss of generality, that A always asks

for the hash value of id before querying id to oracle Extract. Whenever asked to
extract a private key on some id, we set r = w · y, where y is the value used to
compute the hash of that particular id. Note that this still makes r uniformly
distributed over Zp and independent of h and w. Given this, private keys can be
extracted as follows:

d0 = grt1t2 = gwyt1t2 = g
z3·b
z1

yz1z1a = (Z13)
aby

d1 = g−wt2 · h−rt2 = g−wt2 · [(gz1)x · g− 1
y]−wyt2 = g−z1xwyt2 = g

−z1x z3·b
z1

yz1a = (Z13)
−abxy

d2 = g−wt1 · h−rt1 = g−wt1 · [(gz1)x · g− 1
y]−wyt1 = g−z1xwyt1 = g−z1x z3·b

z1
yz1 = (Z13)

−bxy

Finally, to complete the simulation, we extract two private keys to challenge
A, such that these private keys are for the same id if S2 received a valid DLIN
tuple, and for different ids otherwise. Let sk� = (d�0, d

�
1, d

�
2) and sk◦ = (d◦0, d◦1, d◦2)

be the challenge keys. We set h = gz1z4 , r� = b
(z1)2

and r◦ = z2+b
(z1)2

. Note that h is

uniformly distributed over G, and r� and r◦ are uniformily distributed over Zp,
independent of each other and of w. For completeness, we present the equalities
between the original expressions and those computed by the simulator.

48 A. Arriaga, Q. Tang, and P. Ryan

d�0 = gr
�t1t2 = g

b
(z1)2

z1z1a
= gab

d�1 = g−wt2 · h−r�t2 = g− z3b
z1

z1a · (gz1z4)−
b

(z1)2
z1a

= (g−ab)z3 · (g−ab)z4 = Z−ab

d�1 = g−wt1 · h−r�t1 = g
− z3b

z1
z1 · (gz1z4)−

b
(z1)2

z1
= (g−b)z3 · (g−b)z4 = Z−b

d◦0 = gr
◦t1t2 = g

z2+b

(z1)2
z1z1·a

= gz2·a+ab = (Z2)
a · gab

d◦1 = g−wt2 ·h−r◦t2 = g
− z3b

z1
z1a·(gz1z4)−

z2+b

(z1)2
z1a

= (g−ab)(z3+z4)·(gz2z4)−a = Z−ab·(Z24)
−a

d◦2 = g−wt1 · h−r◦t1 = g− z3b
z1

z1 · (gz1z4)−
z2+b

(z1)2
z1

= (g−b)(z3+z4) · (gz2z4)−1 = Z−b · (Z24)
−1

Therefore, we have thatAdvWEAK-KEY-UNLINK
Π,A (λ) = AdvDLIN

Γ,S2
, which concludes

our proof. ��

procedure Initialize(λ):

(Z1,Z2,Z13,Z24,Z) ← DLIN.Initialize
a ←$ Zp, b ←$ Zp

listH ← []

Ω ← e(Z13, g)
ab

v1 ← Z1

v2 ← (Z1)
a

d�0 ← gab, d◦0 ← (Z2)
a · gab

d�1 ← Z−ab, d◦1 ← Z−ab · (Z24)
−a

d�1 ← Z−b, d◦2 ← Z−b · (Z24)
−1

sk0 ← (d�0 , d
�
2 , d

�
2)

sk1 ← (d◦0 , d
◦
2 , d

◦
2)

pp ← (Ω, v1, v2)

return (pp, sk0, sk1)

procedure H(id) :

get (x, y) for id from listH
if (x, y) ==⊥
..... x ←$ Zp

..... y ←$ Zp

..... listH ← (id, x, y) : listH

h ← (gz1)x · g−
1
y

return h

procedure Extract(id):

get (x, y) for id from listH

d0 ← (Z13)
aby

d1 ← (Z13)
−abxy

d2 ← (Z13)
−bxy

skid ← (d0, d1, d2)
return skid

procedure Finalize(bit):

DLIN.Finalize(bit)

Fig. 11. Simulator S2 forwards A’s guess from game WEAK-KEY-UNLINKΠ,A to game
DLINΓ,S2

B Proof of Theorem 4

First, let us show an important re-randomization property that scheme Π ′

possess and that is relevant for the completion of this proof. From two keys
honestly extracted from the same identity, say sk0 = (d00, d01, d02) and sk1 =
(d10, d11, d12), one can generate new valid keys for that identity with fresh ran-
dom coins, without the knowledge of any secret parameter. Concretely, sk2 =
(d20, d21, d22) can be generated as follows, with a random y ∈ Zn and random
R0,R1,R2 ∈ Gq:

d20 = R0 · (d10d00
)y · d00 = [R0 · (x10)

y

(x00)(y−1)] · g[yr1−(y−1)r0]t1t2

d21 = R1 · (d11d01
)y · d01 = [R1 · (x11)

y

(x01)(y−1)] · g−wt2 · h−[yr1−(y−1)r0]t2

d22 = R2 · (d12d02
)y · d02 = [R2 · (x12)

y

(x02)(y−1)] · g−wt1 · h−[yr1−(y−1)r0]t1 [1.5mm]

Let A be any PPT adversary against STRONG-KEY-UNLINKΠ′,A [Fig. 6]. We
now drastically simplify the security model, so that it looks like the one presented

Trapdoor Privacy in Asymmetric Searchable Encryption Schemes 49

in Fig. 12, which we call 5-KEY-UNLINK. Using a hybrid argument and taking
advantage of the re-randomization property previously described, we show that
the advantage ofA against STRONG-KEY-UNLINKΠ′,A is polynomially-bounded
by the advantage of A against 5-KEY-UNLINK.

procedure Initialize(λ):

(msk, pp) ←$ Setup(1λ)
bit ←$ {0, 1}
id0 ←$ I
id1 ←$ I
sk0 ←$ Extract(pp,msk, id0)
sk1 ←$ Extract(pp,msk, id0)
sk2 ←$ Extract(pp,msk, idbit)
sk3 ←$ Extract(pp,msk, id1)
sk4 ←$ Extract(pp,msk, id1)
return (pp, sk0, sk1, sk2, sk3, sk4)

procedure Extract(id):

skid ←$ Extract(pp,msk, id)
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 12. 5-KEY-UNLINKΠ,A Game

In STRONG-KEY-UNLINKΠ′,A, A submits two lists list0 and list1 of the same
length, say L, for the challenge. For this argument, we construct L+1 lists. The
first list is list0 and the last list is list1. In between, we have L−1 intermediate lists
that transition from list0 to list1, one element at the time. The L−1 intermediate
lists are constructed such that the first list is list0, and for every i ∈ {1..L−1},
listi = listi−1, except for the element listi[i] which is taken from list1[i]. Again, the
last list is list1. The advantage A has in distinguishing list0 from list1 cannot be

more than the sum of the advantages of distinguishing listi−1 from listi, for every

i ∈ {1..(L+1)}. The probability of distinguishing listi−1 from listi cannot be more
than that of identifying the form of the tuple in model 5-KEY-UNLINK. More
precisely, one can expand the 5-tuple (sk◦0, sk

◦
1, sk

◦
2, sk

◦
3, sk

◦
4) from 5-KEY-UNLINK

into a L-tuple of keys that corresponds to the requirements of either listi−1 or listi.
Since the lists only (possibly) differ in position i, we set ski of the L-tuple to sk◦2.
Every other key is extracted from the extraction oracle of model 5-KEY-UNLINK
or generated from (sk◦0, sk

◦
1) or (sk◦3, sk

◦
4) if the key is required to be extracted

from the identity in listi−1[i] or listi[i], respectively.
The model can be further simplified to that of Fig. 13, which we call 4-KEY-

-UNLINK. Again, we make use of the so-called hybrid argument and the re-
randomization property introduced in the beginning of this proof that Π ′

possesses4, the difficulty of distinguishing a 5-tuple of keys extracted from (id0, id0,
id0, id1, id1) from those extracted from (id0, id0, id0, id0, id0), where id0 and id1
are sampled from I, is equivalent to that of distinguishing a 4-tuple of keys that
were extracted from (id0, id0, id1, id1) from those extracted from (id0, id0, id0, id0),
since the fifth key the adversary could generate himself. This difficulty of dis-
tinguishing the 5-tuple of keys extracted from (id0, id0, id1, id1, id1) from those
extracted from (id0, id0, id0, id0, id0) is also the same as distinguishing the key
tuple in 4-KEY-UNLINK model. So, the advantage A has in distinguishing the

4 From two keys honestly extracted for the same identity, we can generate a third one
with random coins.

50 A. Arriaga, Q. Tang, and P. Ryan

tuples in 5-KEY-UNLINK game cannot be more than twice the advantage A has
in distinguishing the tuples in 4-KEY-UNLINK.

procedure Initialize(λ):

(msk, pp) ←$ Setup(1λ)
bit ←$ {0, 1}
id0 ←$ I
id1 ←$ I
sk0 ←$ Extract(pp,msk, id0)
sk1 ←$ Extract(pp,msk, id0)
sk2 ←$ Extract(pp,msk, idbit)
sk3 ←$ Extract(pp,msk, idbit)
return (pp, sk0, sk1, sk2, sk3)

procedure Extract(id):

skid ←$ Extract(pp,msk, id)
return skid

procedure Finalize(bit′):

return (bit = bit′)

Fig. 13. 4-KEY-UNLINKΠ,A Game

procedure Initialize(λ):

(Γ, Za,Zb,Zab) ← CDDH.Initialize(λ)
(n,G,GT, e, g, gp, gq) ← Γ
w, t1, t2 ←$ Zn

Ω ← e(gp, gp)
t1 t2w

v1 ← g
t1
p

v2 ← g
t2
p

msk ← (w, t1, t2)
pp ← (Γ,Ω, v1, v2)

r�0 ←$ Zn

x00
′, x01

′, x02
′ ←$ Zn; x00 ← g

x00
′

q ; x01 ← g
x01

′
q ; x02 ← g

x02
′

q

sk�0 ← (x00 · (gp)r�0 t1t2 , x01 · Z−r�0 t2
a · (gp)−wt2 , x02 · Z−r�0 t1

a · (gp)−wt1)

r�1 ←$ Zn

x10
′, x11

′, x12
′ ←$ Zn; x10 ← g

x10
′

q ; x11 ← g
x11

′
q ; x12 ← g

x12
′

q

sk�1 ← (x10 · (gp)r�1 t1t2 , x11 · Z−r�1 t2
a · (gp)−wt2 , x12 · Z−r�1 t1

a · (gp)−wt1)

x20
′, x21

′, x22
′ ←$ Zn; x20 ← g

x20
′

q ; x21 ← g
x21

′
q ; x22 ← g

x22
′

q

sk�2 ← (x20 · Zt1t2
b

, x21 · Z−t2
ab

· (gp)−wt2 , x22 · Z−t1
ab

· (gp)−wt1)

u ←$ Zn

x30
′, x31

′, x32
′ ←$ Zn; x30 ← g

x30
′

q ; x31 ← g
x31

′
q ; x32 ← g

x32
′

q

sk�3 ← (x30 · Zut1t2
b , x31 · Z−ut2

ab · (gp)−wt2 , x32 · Z−ut1
ab · (gp)−wt1)

return (pp, sk�0 , sk
�
1, sk

�
2 , sk

�
3)

procedure Extract(id):

skid ←$ Extract(pp,msk, id)
return skid

procedure Finalize(bit):

return CDDH.Finalize(bit)

Fig. 14. Simulator S3 forwards A’s guess from 4-KEY-ANOΠ′,A to game CDDH

To complete the proof, we build a simulator S3 [Fig. 14] that by playing
game CDDHΓ ′,S3 outputs four keys (sk�0, sk

�
1, sk

�
2, sk

�
3) such that the adversary’s

guess in 4-KEY-UNLINKΠ′,A can be forward to game CDDHΓ ′,S3 . We refer to
key sk�i as the tuple (d�i0, d

�
i1, d

�
i2), associated with h�i , the hashed-identity from

which sk�i was extracted. If the simulator receives a well-formed CDDH tuple,
h�0 = h�1 = h�2 = h�3 is set to ga. Otherwise, h�0 = h�1 = ga and h�2 = h�3 with an
independent random value in Gp. We also set r�2 = b and r�3 = b ·u, for a random

u ∈ Zn. Finally, we have that AdvSTRONG-KEY-UNLINK
Π′,A (λ) ≤ 2L ·AdvCDDH

Γ ′,S3
, which

concludes our proof. ��

Kurosawa-Desmedt Key Encapsulation

Mechanism, Revisited

Kaoru Kurosawa1 and Le Trieu Phong2

1 Ibaraki University, Japan
kurosawa@mx.ibaraki.ac.jp

2 NICT, Japan
phong@nict.go.jp

Abstract. While the hybrid public key encryption scheme of Kurosawa
and Desmedt (CRYPTO 2004) is provably secure against chosen cipher-
text attacks (namely, IND-CCA-secure), its associated key encapsulation
mechanism (KEM) is not IND-CCA-secure (Herranz et al. 2006, Choi
et al. 2009). In this paper, we show a simple twist on the Kurosawa-
Desmedt KEM turning it into a scheme with IND-CCA security under
the decisional Diffie-Hellman assumption. Our KEM beats the standard-
ized version of Cramer-Shoup KEM in ISO/IEC 18033-2 by margins
of at least 20% in encapsulation speed, and 20% ∼ 60% in decapsu-
lation speed. Moreover, the public and secret key sizes in our schemes
are at least 160-bit smaller than those of the Cramer-Shoup KEM. We
then generalize the technique into hash proof systems, proposing several
KEM schemes with IND-CCA security under decision linear and deci-
sional composite residuosity assumptions respectively. All the KEMs are
in the standard model, and use standard, computationally secure sym-
metric building blocks.

Keywords: Kurosawa-Desmedt KEM, IND-CCA security, hash proof
systems, standard model.

1 Introduction

1.1 Background

Key Encapsulation Mechanism (KEM) is an asymmetric encryption technique
allows generating simultaneously a random key Ks together with its encryption
C, termed encapsulation. The key Ks then will be used for long data encryption,
while the encapsulation C is used for sharing Ks. In other words, KEM serves
as a delivery of secret keys used in symmetric encryption.

KEM implies public-key encryption (PKE). Indeed, it can be used to construct
hybrid PKE, namely PKE with unrestricted message space, when combining with
a data encapsulation mechanism (DEM) [11]. In practice, since the DEM part
is already highly efficient, one usually concerns about the performance of the
KEM part. Specific constructions of KEM are incorporated in the standards
ISO/IEC 18033-2 [1], ANSI X9.44 [4], and can be considered for e-Government

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 51–68, 2014.
c© Springer International Publishing Switzerland 2014

52 K. Kurosawa and L.T. Phong

usage in the future [2]. KEM is widely yet implicitly used in the TLS Handshake
Protocol [18].

In 2004, Kurosawa and Desmedt [19], improved upon the seminal work of
Cramer and Shoup [10], published an efficient hybrid PKE, whose security proof
was refined in [13], resisting chosen ciphetext attacks (IND-CCA) under the de-
cisional Diffie-Hellman (DDH) assumption. Unlike Cramer-Shoup scheme, the
KEM part of the Kurosawa-Desmedt scheme is not IND-CCA secure, as shown
in 2006 in [9, 15]. In 2007, by creatively switching elements in the Kurosawa-
Desmedt KEM, Kiltz [17] presented an IND-CCA-secure KEM, and yet un-
der the less standard Gap Hashed Diffie-Hellman (GHDH) assumption. On the
other hand, sticking to the DDH assumption, Abe, Gennaro, Kurosawa [3], and
Hofheinz, Kiltz [16] showed the Kurosawa-Desmedt KEM only meets weakened
notions of CCA security.

While weakened IND-CCA security as defined in [3,16] can be converted into
IND-CCA security (see Section 1.4), there is still no direct security proof for any
variant of the Kurosawa-Desmedt KEM. A summarization of these discussions
is in Table 1.

Table 1. Classification of Kurosawa-Desmedt (KD) KEM and its variants

Security (↓) Assumption (→) GHDH DDH

Weakened IND-CCA – [3], [16] (KD KEM)

IND-CCA [17] (dual KD KEM) This paper (with direct proof)

1.2 Our Contributions

Our results can be categorized as follows.

Theoretical Contribution. We show a slight twist on the insecure Kurosawa-
Desmedt KEM turning it into an IND-CCA-secure one. Formally, we propose a
variant of the Kurosawa-Desmedt KEM which can be proved IND-CCA-secure
under the DDH assumption. That is, we fulfill Table 1 with the most “desir-
able” KEM in terms of security assumption (namely, DDH) and security notion
(namely, IND-CCA).

The twist is simple. Details are discussed at length at the beginning of Section
3.1, but a high view is as follows. In the original Kurosawa-Desmedt KEM, the
encapsulation of a symmetric key v consists of group elements (u1, u2). In our
proposal, we do not return the whole v as the shared symmetric key, but split
it into two independent keys ks and ka. The key ks is then returned as the
shared key, while the key ka is internally used to authenticate the encapsulation
(u1, u2). This authentication step is important as it protects the KEM against
adversarial decapsulation queries, and is novel to this work in the sense that,
with the twist, previous security proof for hybrid PKE in [13] can be as is reused
for the KEM case, without any loss factor to the main complexity assumption.

Practical Impact. The result is not only of theoretical interest. Indeed, com-
pared to the existing practice [1], namely the standardized ACE-KEM basing on
the same assumption in the standard model, we achieve

Kurosawa-Desmedt Key Encapsulation Mechanism, Revisited 53

• more than 20% improvement over encapsulation speed, and at least 20%
improvement over decapsulation speed in general, and

• for specific choices of the base group such as prime-field NIST elliptic curves,
the speed improvement on decapsulation can go up to 60%.

These theoretical estimations are checked by experimental results in Section 3.2.
These improvements are significant, as frequently there are large amounts of
asymmetric encryption and decryption works, e.g., in SSL/TLS servers.

In sizes, the public and secret keys in our schemes are one group element, or
at least 160-bit, smaller than those of the ACE-KEM. The encapsulation length
is also slightly shorter. See Table 2 in Section 3.2 for details.

DLIN-Based and DCR-Based Extensions. Our method can be extended
to hash proofs systems. When coupling with known constructions of hash proof
systems in the literature, we obtain KEMs under the decision linear (DLIN) and
decisional composite residuosity (DCR) assumptions, respectively.

1.3 Other Usage of KEM Beyond Hybrid Encryption

While original application of KEM is hybrid PKE, the ability to output a shared
symmetric key allows KEM to have other applications as well. For example,
KEM can be used to build schemes for identification [5] and authenticated key
exchange (AKE) [8,14,23]. In particular, Boyd et al. [8] showed that a one-round
AKE protocol can be constructed from IND-CCA secure KEM, and Fujioka et
al. [14] showed that a two-pass AKE protocol with weak perfect forward secrecy
can be constructed from IND-CCA secure KEM. This additionally illustrates
why KEM is preferable over PKE alone.

1.4 More Related Works

The proof given in [19] depends on some information theoretically secure compo-
nents, which affects the efficiency of the hybrid PKE scheme. The refined proof
in [13] weakens the components to computationally secure ones.

Already in [9, 15], it was remarked that, if one models the key derivation
function as a random oracle and is content with a much stronger assumption
than DDH, the Kurosawa-Desmedt KEM can be proved IND-CCA-secure.

Okamoto [22] presented a KEM derived from the Kurosawa-Desmedt hybrid
PKE. The KEM is IND-CCA-secure under the DDH assumption, and yet the-
oretically relies on an arguably non-standard primitive called pseudo-random
function with pairwise independent random sources.

We are informed by Takahiro Matsuda that constrained IND-CCA (CCCA)
security [16] can be converted into standard IND-CCA security as done in [6]
using essentially the same idea with this work. The transformation, while generic
and applied to the original Kurosawa-Desmedt KEM, however has a loss factor
of 4 in the security reduction. Our approach in this paper puts aside constrained
IND-CCA definition, giving a direct proof for the KEM and related schemes

54 K. Kurosawa and L.T. Phong

from hash proof systems and yielding a theoretically better loss factor of 1 to
the main complexity assumptions (namely DDH, DLIN, and DCR).

In the same vein, LCCA-secure KEM as defined in [3] can be converted to
IND-CCA-secure Tag-KEM [3, Theorem 3] which in turn yields hybrid PKE.
The conversion again has a loss factor of 2 to the main complexity assumption.
The application of Tag-KEM beyond hybrid PKE is arguably less clear than
KEM.

The conversions from CCCA or LCCA security to CCA security, while be-
ing generic, are of theoretical interests, since proving that a concrete scheme
is CCCA-secure or LCCA-secure is apparently not easier than directly showing
that scheme is IND-CCA-secure.

2 Preliminaries

KEM. A KEM consists of key generation KG, encapsulation Encap, and decap-
sulation Decap algorithms. KG(1κ) with security parameter κ outputs public key
pk and secret key sk. The algorithm Encap(pk) returns a pair (C,K). Correctness
holds if Decap(sk, C) = K.

IND-CCA Security of KEM. To define the security, consider the following
game with adversary A. First, (pk, sk) ← KG(1κ) and pk is given to A. In the
so-called find stage, A can query any C of its choice to oracle Decap(sk, ·).

Then A invokes a challenge oracle who computes (C∗,K∗)←Encap(pk), then

takes K∗ randomly satisfying |K∗| = |K∗|, and chooses b
$← {0, 1}. The oracle

returns challenge pair (C∗,K(b)) in which K(0) = K∗ and K(1) = K∗.
After that, in the guess stage, A can again access to the oracle Decap(sk, ·),

but is not allowed to query C∗ to the decapsulation oracle. Finally, A returns b′

as a guess of the hidden b.
The KEM is IND-CCA-secure if the advantage

Advind−cca
A (κ) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣
is negligible in κ for all poly-time adversary A.

Taking an element a randomly from a set A is notationally expressed by

a
$← A. Let κ be the security parameter. We requires following building blocks.

Concrete schemes can be found in [1, Section 6].

TCR. A target collision resistant hash function TCR : E(κ) → R(κ) is defined

as follows. Given a target x∗ $←E(κ), it is hard for all poly-time adversary A to
find x ∈ E(κ) satisfying TCR(x) = TCR(x∗). Formally, the advantage

AdvTCR
A (κ) = Pr[x← A(x∗) : x �= x∗ ∧ TCR(x) = TCR(x∗)]

is negligible for all poly-time adversary A.

Kurosawa-Desmedt Key Encapsulation Mechanism, Revisited 55

KDF. We assume that there exists a key derivation function KDF : K(κ) →
{0, 1}2n(κ) such that KDF(v) for random v ∈ K(κ) is computationally random
over {0, 1}2n(κ). Formally, the advantage

AdvKDF
D (κ) =

∣∣∣∣∣ Pr
v

$← K(κ)

[D(KDF(v)) = 1]− Pr
(k,k′)

$← {0,1}2n(κ)

[D(k, k′) = 1]

∣∣∣∣∣
is negligible for all poly-time distinguishers D.

MAC. A message authentication codeMAC : {0, 1}n(κ)×E(κ) → {0, 1}τ(κ) takes
inputs k ∈ {0, 1}n(κ) and x ∈ E(κ) to compute tag t = MACk(x). For random key

k
$← {0, 1}n(κ), the adversary A is given at most one pair (x∗, t∗ = MACk(x

∗))
where x∗ is of A’s own choice. The adversary A then returns a pair (x, t). It is
required that the following advantage

AdvMAC
A (κ) = Pr[x �= x∗ ∧ t = MACk(x)]

is negligible for all poly-time distinguishers A. Note that the definition treats
MAC as a function where E(κ) contains both messages and randomness (if
any), the security notion already captures strong unforgeability against chosen-
message attacks.

3 Kurosawa-Desmedt KEM, Revisited

Let G = 〈g〉 be a group, generated by g, of prime public order 2κ < q < 2κ+1

for security parameter κ.
The DDH assumption on G asserts that, for all poly-time distinguishers D,

non-unit random elements g1, g2
$←G, and r �= s

$← Zq, the advantage

Advddh
D (κ) =

∣∣∣Pr[D(g1, g2, g
r
1, g

r
2) = 1]− Pr[D(g1, g2, g

r
1, g

s
2) = 1]

∣∣∣
is negligible on parameter κ.

3.1 Our Proposed KEM under DDH

The construction is depicted in Figure 1. In the construction, keys ks and ka are
of n-bit length. In Decap, if u1 �∈ G or u2 �∈ G then ⊥ is returned immediately
at the beginning. The description of symmetric building blocks TCR, KDF, and
MAC are in Section 2.

The main difference with the Kurosawa-Desmedt KEM is, in Encap(pk), the
element v is spitted in two keys (ks, ka) by KDF. Then, the key ka is used to
authenticate elements (u1, u2) inside Encap(pk), while the key ks is returned
as the shared symmetric key. The crucial point here is the authentication of
(u1, u2) by the MAC, which helps proving IND-CCA security of our proposal.
This technique, while simple, has been neglected in the literature.

56 K. Kurosawa and L.T. Phong

KG(1κ) : Encap(pk) : Decap(sk, C) :

g1, g2
$←G r

$← Zq Parse C = (u1, u2, t)

(x1, x2, y1, y2)
$← Z4

q u1 ← gr1, u2 ← gr2 α ← TCR(u1, u2)

c ← gx1
1 gx2

2 α ← TCR(u1, u2) v ← ux1+αy1
1 ux2+αy2

2

d ← gy11 gy22 v ← crdrα (ks, ka) ← KDF(v)
pk ← (g1, g2, c, d) (ks, ka) ← KDF(v) If t = MACka(u1, u2)
sk ← (x1, x2, y1, y2) t ← MACka(u1, u2) return ks
Return (pk, sk) Return C = (u1, u2, t) and K = ks Else return ⊥

Fig. 1. Our IND-CCA-secure KEM under the DDH assumption

Perhaps it is illustrative to see how our KEM resists against the chosen ci-
phertext attack in [9,15] that breaks the Kurosawa-Desmedt KEM. Recall that,
in the attack, the adversary first obtains the challenge encapsulation consisting
of (u∗1, u

∗
2). The adversary then queries the decapsulation oracle with query of

form ((u∗1)
r, (u∗2)

r) where r ∈ Zq is random of its own choice. In [9, 15], it is
showed that, by only two such queries, the encapsulated symmetric key can be
computed with overwhelming probability. In comparison, in our KEM, the tag t
is effective as a hedge against such malformed queries. When the adversary sub-
mits (u1, u2, t) = ((u∗1)r, (u∗2)r, t), the corresponding v can be proved randomly
distributed under the DDH assumption (in the proof, see Game4). This means
corresponding keys (ks, ka) = KDF(v) are randomly distributed. For the decap-
sulation not returning ⊥, the adversary had to come up with the tag t satisfying
t = MACka((u

∗
1)

r, (u∗2)
r), which is computationally hard since ka is random and

MAC is assumed secure.
Our use of MAC is different from the counterpart in the hybrid PKE [13] in its

input. In [13], MAC is used to authenticate a symmetrically encrypted plaintext
e. Namely, using our notations, in [13], e← SymmetricEncryptionks

(plaintext)
and then t ← MACka(e). In contrast, in Figure 1, we take “early” MAC on
(u1, u2). Nevertheless, the resemblance between our KEM and the hybrid PKE
allows us to re-utilize the proof in the hybrid encryption case.

3.2 Comparison and Implementation

Base Group. There are primarily two choices for the group G so that DDH
assumption is believed holds true. The first choice is to take G as the order q,
multiplicative subgroup of Z∗

p in which p = 1 (mod q) is a prime. The elements
in G are thus represented modulo p, and hence of |p| = 1024 bits (for 80-bit
security) or |p| = 3072 bits (for 128-bit security). See [11] for more details.

The second choice of G is to take elliptic curve groups of order q. This choice
reduces the length of element representation, since the length of q in bits can
be |q| = 160 (for 80-bit security), or |q| = 256 (for 128-bit security). See [21] for
specific curves.

Theoretical Comparison. In Table 2, we compare our KEMs with the ACE-
KEM in ISO/IEC 18033-2 [1], which refined the schemes in [10,11]. Both enjoys

Kurosawa-Desmedt Key Encapsulation Mechanism, Revisited 57

Table 2. Comparison of KEMs in standard model based on the DDH assumption.
Abbreviations in the table: me = multi-exponentiation, se = single-exponentiation,
gmc = group membership check, el = group element.

Scheme Assumption Encap [Encap]; [Decap] [pk, sk] size
length main costs of computation

ACE-KEM [1] DDH 3|q| [1 me, 3 se]; [0 me, 3 se, 1 gmc] [5 el, 4 el]

Ours, Figure 1 DDH 2|q|+ |t| [1 me, 2 se]; [1 me, 0 se, 2 gmc] [4 el, 4 el]

a tight security reduction to the DDH assumption. Since the tag size |t| can be
128 in our KEMs, our encapsulation size is slightly shorter than ACE-KEM. The
public key in our KEMs is one group element shorter.

To compare computation costs, we consider ACE-KEM implemented a group
of prime order q. We use the result that one multi-exponentiation in that group
can be carried out in (1 + 2/ log2 log2 q) log2 q multiplications [7], therefore can
be counted as approximately 1.2 single exponentiation, which also is supported
by experimental results in [20].

First, in groups where group membership checks are trivial, our KEM in
Figure 1 needs just one multi-exponentiation, thus beating the ACE-KEM at
dramatic margin of 60% in decapsulation speed. Examples of the groups include
NIST elliptic curves [21] defined over prime fields (P-192, P-224, P-256, P-384,
P-521) and binary fields (B-163, B-233, B-283, B-409, B-571).

Now assume that a group membership check is costly as one single exponen-
tiation, while more efficient methods (e.g., using the Legendre symbol) may be
available depending on the base group [11, Section 4.2]. Using abbreviations in
Table 2, we count: 1 me = 1.2 se, 1 gmc = 1 se.

Thus our encapsulation needs 3.2 (se), while that for ACE-KEM is 4.2 (se),
meaning more than 20% improvement in speed. For decapsulation, our schemes
in Figure 1 require 3.2 (se), while that of ACE-KEM is 4 (se), yielding at least
20% improvement.

Our KEM decapsulation speed is even either faster or comparable with stan-
dardized PSEC-KEM and ECIES-KEM schemes whose security proofs are not
in the standard model. Interested readers can find more details in the full version
of this paper [20].

Experimental Comparison. ISO/IEC 18033-2 comes with a reference im-
plementation, written by Anshuman Rawat and Victor Shoup (see website of
[1]). The implementation, among others, includes ACE-KEM, PSEC-KEM, and
ECIES-KEM. We add an implementation of our proposed KEM based on that
library. Timings of encryption and decryption are reported in Figure 2, in which
our scheme in Figure 1 is named “newkd”. The codes in [1] neither speed up
multi-exponentiation nor use Legendre symbol for group membership check. Our
code elaborates on these aspects by

– employing a square-and-multiply algorithm for multi-exponentiation (see
[20] for details), and

58 K. Kurosawa and L.T. Phong

7.5

5.6

3.7 3.6

5.3

2.1

3.7

1.8

0

1

2

3

4

5

6

7

8

ace newkd psec ecies

m
ill

is
ec

on
ds

Timings over elliptic curve P-192

enc

dec

12.2

9.2

6.1 5.9

8.9

3.4

6.1

3

0

2

4

6

8

10

12

14

ace newkd psec ecies

m
ill

is
ec

on
ds

Timings over elliptic curve B-163

enc

dec

35.4

26.2

16.4 16.8

25.1

9.9

16.1

8.3

0

5

10

15

20

25

30

35

40

ace newkd psec ecies

m
ill

is
ec

on
ds

Timings over modulo p group
(p is a safe prime)

enc

dec

5.5

4.1

2.9 2.7

5.1

4.3

2.6 2.6

0

1

2

3

4

5

6

ace newkd psec ecies

m
ill

is
ec

on
ds

Timings over modulo p group
(p is not a safe prime)

enc

dec

Fig. 2. Average timings, taken over 10000 executions, over different base groups. Ex-
periment is done over a laptop (Intel 2.0GHz CPU, 8GB RAM) running Ubuntu 12.04
LTS. The C compiler is g++ 4.6.3 using NTL 6.0.0 and GMP 5.1.1 libraries.

– using Legendre symbol for group membership check in G ⊂ Z∗
p where p is a

“safe” prime, namely p = 2q + 1 for a prime q (Sophie Germain prime).

Over all groups, one can confirm by Figure 2 that our proposed “newkd” is
more efficient than ACE-KEM in both encapsulation and decapsulation. The
bar charts also fit above theoretical comparisons.

Whenever above speedup tricks are applicable, namely over NIST’s elliptic
curves or over G ⊂ Z∗

p with safe prime p, one can confirm that our proposal’s
decapsulation is faster than PSEC-KEM, and is even comparable to ECIES-
KEM.

Over a subgroup G ⊂ Z∗
p where p is not a safe prime, the decapsulation

speed of “newkd” decreases. Here, two group membership checks, performed by
two exponentiations, must be done since the Legendre symbol trick cannot be
applied.

3.3 Security Proof

This subsection is devoted to prove the following theorem.

Theorem 1. The KEM in Figure 1 is IND-CCA-secure under the DDH as-
sumption.

Kurosawa-Desmedt Key Encapsulation Mechanism, Revisited 59

The following proof is similar to [13], adjusted for our KEM.

Proof. We will proceed in games, each of which is a modification of the previous
one. Below, Pr[Xi] = Pr[b′ = b in Gamei].

Game0: This game is the IND-CCA attack game with an adversary A. Recall
that κ is the security parameter, and Advind−cca

A (κ) = |Pr[b′ = b]− 1
2 |.

The challenge is (C∗,K(b)) where C∗ = (u∗1, u
∗
2, t

∗). We denote by r∗, α∗,
v∗, k∗s , k

∗
a the corresponding intermediate quantities. The key K(b) is (k∗s , k

∗
a) or

random depending on the bit b.

Game1: The challenge oracle uses secrets (x1, y1, x2, y2) to compute v∗. Namely,

v∗ = (u∗1)
x1+α∗y1(u∗2)

x2+α∗y2

where u∗1 = gr
∗

1 , u
∗
2 = gr

∗

2 and α∗ = TCR(u∗1, u
∗
2).

Moreover, for any query (u1, u2, t) with (u1, u2) �= (u∗1, u
∗
2) and TCR(u1, u2) =

TCR(u∗1, u
∗
2), the decapsulation oracle returns ⊥.

Then there exists a poly-time adversary A1 such that

|Pr[X0]− Pr[X1]| ≤ AdvTCR
A1

(κ) (1)

since the first change is notational, and the second one is based on the security
of TCR. More formally, A1 gets inputs (u∗1, u

∗
2), and simulates the environment

for A by generating the public and secret keys. A1 gives A the public key, and
answers A’s decapsulation queries using the secret key. In any decapsulation
query (u1, u2, t), if (u1, u2) �= (u∗1, u

∗
2) and TCR(u1, u2) = TCR(u∗1, u

∗
2), then A1

stops the simulation and returns the pair (u1, u2) as its output. The running time
of A1 in the worst case is that of A plus time for doing arithmetic computations
in G and time for some symmetric operations, so is of polynomial time.

Game2: In this game, elements u∗1 and u∗2 are computed as follows: r∗1
$← Zq,

u∗1 ← g
r∗1
1 , and r∗2

$← Zq \ {r∗1}, u∗2 ← g
r∗2
2 . Then there is a poly-time adversary A2

such that

|Pr[X1]− Pr[X2]| = Advddh
A2

(κ). (2)

The description of A2 is as follows. Its input is a tuple (g1, g2, u
∗
1, u

∗
2). A2 it-

self generates the secret key, and then coupling with generators g1, g2 of G, it
computes the public key. Since A2 holds the secret key, it can answer all decap-
sulation queries from A. The adversary A2 controls the hidden bit b, so that
it can compare that bit with A’s output bit b. In case b′ = b, A2 returns 1;
otherwise it returns 0. Any difference on the output b′ of A depending on tuple
(g1, g2, u

∗
1, u

∗
2) directly yields a difference on the probability A2 outputting 1, so

that above equation claim is justified. The running time of A2 in the worst case
is that of A plus time for doing arithmetic computations in G and time for some
symmetric operations, so is of polynomial time.

Game3: This game makes use of ω ∈ Z∗
q satisfying g2 = gω1 . With ω, we can

check in poly-time whether logg1 u1 = logg2 u2 by simply verifying uω1 = u2.

60 K. Kurosawa and L.T. Phong

Initialization of the game Decapsulation of adversarial query C = (u1, u2, t)

I1: ω
$← Z∗

q , g2 ← gω1

I2: (x1, x2, y1, y2)
$← Z4

q

c ← gx1
1 gx2

2 , d ← gy11 gy22
I3: r∗1

$← Zq, u
∗
1 ← g

r∗1
1

r∗2
$← Zq \ {r∗1}, u∗

2 ← g
r∗2
2

I4: α∗ ← TCR(u∗
1, u

∗
2)

v∗ ← (u∗
1)

x1+α∗y1(u∗
2)

x2+α∗y2

I5: (k∗
s , k

∗
a) ← KDF(v∗)

1. α = TCR(u1, u2)
2. if (u1, u2) �= (u∗

1, u
∗
2) and α = α∗ then

3. return ⊥
4. end if
5. if (u1, u2) = (u∗

1, u
∗
2) then

6. if t �= MACk∗
a
(u∗

1, u
∗
2) then return ⊥

7. else return k∗
s

8. else if (u1, u2) �∈ V then
9. α ← TCR(u1, u2)
10. v ← ux1+αy1

1 ux2+αy2
2

11. (ks, ka) ← KDF(v)
12. if t �= MACka(u1, u2) then return ⊥
13. else return ⊥ {Rejection rule in Game3}
14. else
15. α ← TCR(u1, u2)
16. v ← ux1+αy1

1 ux2+αy2
2

17. (ks, ka) ← KDF(v)
18. if t �= MACka(u1, u2) then return ⊥
19. else return ks
20. end if

Fig. 3. Oracles in Game3 for the proof of Theorem 1

Denote V = {(u1, u2) ∈ G2 : uω1 = u2}. In this game, any decapsulation query
(u1, u2, t) with (u1, u2) �∈ V is rejected. The initialization and decapsulation
oracle in this game are depicted in Figure 3.

Let Fi (i ≥ 3) be the event that a query is rejected at line 13 of the decapsula-
tion oracle in Gamei. Let Q be the bound on the total number of decapsulation
queries A makes, we have

|Pr[X2]− Pr[X3]| ≤ QPr[F3]. (3)

Game4: In this game, take v∗ $←G (at line I4) and v
$←G (at line 10 in the

decapsulation). This is because

⎡⎢⎢⎣
logg1 c
logg1 d
logg1 v

∗

logg1 v

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 ω 0
0 1 0 ω
r∗1 r

∗
1α

∗ r∗2ω r
∗
2ωα

∗

r1 r1α r2ω r2ωα

⎤⎥⎥⎦
︸ ︷︷ ︸

M

⎡⎢⎢⎣
x1
y1
x2
y2

⎤⎥⎥⎦

and determinant det(M) = ω2(r∗2−r∗1)(r2−r1)(α−α∗) �= 0 shows that (c, d, v∗, v)
are uniformly distributed as (x1, y1, x2, y2) are. We have

Pr[X3] = Pr[X4] (4)

Pr[F3] = Pr[F4]. (5)

Kurosawa-Desmedt Key Encapsulation Mechanism, Revisited 61

Game5:At line I5, take (k
∗
s , k

∗
a)

$←{0, 1}2n. This is because v∗ is taken randomly
in the previous game. Then there exists an adversary A5 against KDF such that

|Pr[X4]− Pr[X5]| ≤ AdvKDF
A5

(κ). (6)

The description of A5 is as follows. Its input is a string in {0, 1}2n. It uses the
input for the keys (k∗s , k

∗
a) at line I5, while generating the secret key and public

key and others as in lines I1 to I4. Since A2 holds the trapdoor for membership
testing ω and the secret key, it can handle decapsulation queries as in Figure 3.
When A returns b′, the adversary A5 checks whether b′ equals its chosen bit b.
If b′ = b, A5 returns 1. The running time of A5 in the worst case is that of A
plus time for doing arithmetic computations in G and time for some symmetric
operations, so is of polynomial time.

Game6: At line 7 in the decapsulation, return ⊥. This is because (u1, u2) =
(u∗1, u

∗
2) with probability 1

q2 before the challenge phase. Moreover, after the chal-

lenge phase when (u∗1, u∗2, t∗) was already announced, querying (u∗1, u∗2, t) with
t = MACk∗

a
(u∗1, u

∗
2) and t �= t∗ to the oracle means the adversary can break the

MAC. We have

|Pr[X5]− Pr[X6]| ≤ Q

(
1

q2
+AdvMAC

A6
(κ)

)
and Pr[X6] =

1

2
(7)

since (k∗s , k
∗
a) are perfectly random in this game.

The description of A6 is as follows. Its input is (u∗1, u∗2, t∗) where t∗ = MACk∗
a

(u∗1, u
∗
2) for random key k∗a. It generates the secret key and then simulates the

environment for A. Whenever A queries (u1, u2, t) for decapsulation in which
t �= t∗ and t = MACk∗

a
(u∗1, u∗2), the adversaryA6 halts the simulation and returns

(u∗1, u
∗
2, t). The running time of A6 in the worst case is that of A plus time for

doing arithmetic computations in G and time for some symmetric operations,
so is of polynomial time.

Game5′: Now we move back to consider Game4 again. This game is the same

as Game4, except that, (ks, ka)
$← {0, 1}2n at line 11. We have

|Pr[F4]− Pr[F5′]| ≤ AdvKDF
A′

5
(κ). (8)

Since the MAC key has been turned random,

Pr[F5′] ≤ AdvMAC
A′′

5
(κ) (9)

in which, as a recall, F5′ is the event that a query is rejected at line 13 of the
decapsulation oracle in this game. The descriptions of adversaries A′

5 against
KDF and A′′

5 against MAC are similar to those in Game5 and Game6.
By (5), (8), (9), we have

62 K. Kurosawa and L.T. Phong

Pr[F3] = Pr[F4] ≤ Pr[F5′] +AdvKDF
A′

5
(κ) ≤ AdvMAC

A′′
5

(κ) +AdvKDF
A′

5
(κ) (10)

and by (1), (2), (3), (4), (6), (7), and the bound (10),

Advind−cca
A (κ) ≤ AdvTCR

A1
(κ) +Advddh

A2
(κ) +Q

(
AdvMAC

A′′
5

(κ) +AdvKDF
A′

5
(κ)
)

+AdvKDF
A5

(κ) +Q

(
1

q2
+AdvMAC

A6
(κ)

)
ending the proof. ��

4 Generalization to Universal Hash Proof System

4.1 Hash Proof System

The notion of hash proof systems was introduced by Cramer and Shoup [12]. Let
SK,PK, and K be sets of secret keys, public keys, and encapsulated symmetric
keys. Let E be the set of all “valid” and “invalid” encapsulation, and V ⊂ E be
the set of all “valid” ones. To illustrate the above notation, in the DDH-based
scheme, SK = G4, PK = G2, E = G2, K = G, V = {(gr1, gr2) : r ∈ Zq}.

The subset membership assumption says that V is indistinguishable from E .
If V = {(gr1 , gr2) : r ∈ Zq} and E = G2 as above, this is exactly the DDH
assumption. Formally, the advantage

Advsm
D (κ) =

∣∣∣∣∣ Pr
U

$← E
[D(U) = 1]− Pr

U
$← V

[D(U) = 1]

∣∣∣∣∣
is negligible for all poly-time distinguishers D.

A function Λsk : E → K is projective if there exists a projection μ : SK → PK
such that pk = μ(sk) defines Λsk : V → K. Namely, for every E ∈ V , the value
K = Λsk(E) is uniquely determined by pk = μ(sk) and E. As an example, in
our scheme of Sect.3, Λsk

(
E = (u1, u2)

)
= ux1+αy1

1 ux2+αy2

2 where α = TCR(E).
A projective function Λsk is called computationally universal-2 [16] if for all

E,E′ �∈ V with E �= E′,(
pk,Λsk(E

′),Λsk(E)
)
and

(
pk,Λsk(E

′),K
)

are computationally indistinguishable, where sk
$←SK and K

$←K. Formally,
consider an adversaryA = (Afind,Aguess) in the following experiment Expcu2

A (κ).

KG(1κ) : Encap(pk) : Decap(sk, C) :

Run Param to define Take random witness r Parse C = (E, t)(
group,SK,PK,K, E = E(r)

$←V v ← Priv(sk,E)
E ,V,Λ(·)(·), μ

)
v ← Pub(pk,E, r) (ks, ka) ← KDF(v)

sk
$←SK (ks, ka) ← KDF(v) If t = MACka(E)

pk ← μ(sk) t ← MACka(E) return ks
Return (pk, sk) Return C = (E, t) and K = ks Else return ⊥

Fig. 4. Our generic KEM from hash proof system (Param,Pub,Priv)

Kurosawa-Desmedt Key Encapsulation Mechanism, Revisited 63

Experiment Expcu2
A (κ):

Run Param(1κ) to generate(
group,SK,PK,K, E ,V ,Λ(·)(·), μ

)
sk

$←SK, pk ← μ(sk), E′ $←E \ V
K ′ ← Λsk(E

′)

(E ∈ E \ V , st) ← AEvalsk(·)
find (pk,E′,K ′)

b
$←{0, 1},K(0)← Λsk(E),K(1)

$←SK
b′ ← Aguess(st,K(b))

If b′ = b then return 1 else return 0

In Expcu2
A (κ) on the right, the

oracle Evalsk(F) returns Λsk(F) if
F ∈ V and ⊥ otherwise. Compu-
tational universality requires that

Advcu2
A (κ) = Pr[Expcu2

A (κ) = 1]

is negligible for all poly-time A.

Hash Proof System. A hash
proof system HPS consists of
algorithms (Param,Pub,Priv) de-
scribed as follows. Algorithm
Param(1κ) first generates the de-
scription of group, SK, PK, K,
E , V , Λ(·)(·), and μ : SK →
PK. Algorithm Pub(pk,E, r) re-
turns K = Λsk(E) for E ∈ V ,
where the computation does not use sk but makes use of r, a witness of the
fact that E ∈ V . Algorithm Priv(sk, E) returns Λsk(E).

4.2 IND-CCA-Secure KEM from Hash Proof Systems

The KEM is depicted in Figure 4. The descriptions of symmetric building blocks
KDF and MAC are in Section 2.

Theorem 2. The generic construction of KEM in Figure 4 is IND-CCA-secure.

Proof. We proceed in games as follows.

Game0: This game is the IND-CCA attack game with leakage. Without loss of
generality, assume that E∗, r∗ are generated at the beginning of the game.

Game1: Compute Pub(pk,E∗, r∗) in the challenge encapsulation as Priv(sk, E∗).
This change is only notational since Priv(sk, E∗) = Pub(pk,E∗, r∗) = Λsk(E

∗)
so that Pr[X0] = Pr[X1].

Game2: Take E
∗ $←C \ V . We have

|Pr[X1]− Pr[X2]| ≤ Advsm
A2

(κ) (11)

thanked to the subset membership problem. The running time of A2 in the
worst case is that of A plus time for doing some computations in the hash proof
systems and time for some symmetric operations, so is of polynomial time.

Game3: Any decapsulation query (E, t) with E �= E∗ and E �∈ V is answered
by ⊥. Let Q be the total number of decapsulation queries, we have

|Pr[X2]− Pr[X3]| ≤ QPr[F3] (12)

64 K. Kurosawa and L.T. Phong

Initialization of the game Decapsulation of adversarial query C = (E, t)

I1: ω
$← Trapdoors

I2: sk
$←SK, pk ← μ(sk)

I3: E∗ $←C \ V
I4: v∗ ← Priv(sk,E∗)
I5: (k∗

s , k
∗
a) ← KDF(v∗)

1. if E = E∗ then
2. if t �= MACk∗

a
(E∗) then return ⊥

3. else return k∗
s

4. else if E �∈ V then
5. v ← Priv(sk,E)
6. (ks, ka) ← KDF(v)
7. if t �= MACka(E) then return ⊥
8. else return ⊥
9. else
10. v ← Priv(sk,E)
11. (ks, ka) ← KDF(v)
12. if t �= MACka(E) then return ⊥
13. else return ks
14. end if

Fig. 5. Oracles in Game3 for the proof of Theorem 2

where F3 is the event that a query is rejected by the above rule. The initialization
and the decapsulation oracle are depicted in Figure 5, in which F3 happens
whenever line 8 of decapsulation is reached.

Game4: In this game, take v∗ $←K (at line I4) and v
$←K (at line 5 in the

decapsulation). We have

|Pr[X3]− Pr[X4]| ≤ Advcu2
A4

(κ) (13)

|Pr[F3]− Pr[F4]| ≤ Advcu2
A′

4
(κ) (14)

where event F4 happens whenever line 8 of decapsulation is reached in this
game. The reasons are that v = Λsk(E) is computationally random conditioned
on pk, v∗ = Λsk(E

∗); and that v∗ = Λsk(E
∗) is computationally random con-

ditioned on pk, v thanks to the computational universality of the hash proof
system.

Game5:At line I5, take (k
∗
s , k

∗
a)

$←{0, 1}2n. This is because v∗ is taken randomly
in the previous game. Then there exists an adversary A5 against KDF such that

|Pr[X4]− Pr[X5]| ≤ AdvKDF
A5

(κ). (15)

The description of A5 is the same as its counterpart in the proof of Theorem 1.

Game6: At line 3 in the decapsulation, return ⊥. This is because E = E∗ with
probability 1

|E| before the challenge phase. Moreover, after the challenge phase

when (E∗, t∗) was already announced, querying (E∗, t) with t = MACk∗
a
(E∗) and

t �= t∗ to the oracle means the adversary can break the MAC. We have

Kurosawa-Desmedt Key Encapsulation Mechanism, Revisited 65

|Pr[X5]− Pr[X6]| ≤ Q

(
1

|E| +AdvMAC
A6

(κ)

)
and Pr[X6] =

1

2
(16)

since (k∗s , k
∗
a) are perfectly random in this game.

The description of A6 is as follows. Its input is (E∗, t∗) where t∗= MACk∗
a
(E∗)

for random key k∗a. It generates the secret key and then simulates the environ-
ment for A. Whenever A queries (E, t) for decapsulation in which t �= t∗ and
t = MACk∗

a
(E∗), the adversary A6 halts the simulation and returns (E∗, t).

Game5′: Now we move back to consider Game4 again. This game is the same

as Game4, except that, (ks, ka)
$← {0, 1}2n at line 6. We have

|Pr[F4]− Pr[F5′]| ≤ AdvKDF
A′

5
(κ). (17)

The description of A5 is the same as its counterpart in the proof of Theorem 1.
Since the MAC key ka has been turned random,

Pr[F5′] ≤ AdvMAC
A′′

5
(κ) (18)

in which, as a recall, F5′ is the event that a query is rejected at line 8 of the
decapsulation oracle in this game. The descriptions of adversaries A′

5 against
KDF and A′′

5 against MAC are similar to those in Game5 and Game6.
By (14), (17), and (18),

Pr[F3] ≤ Advcu2
A′

4
(κ) +AdvKDF

A′
5
(κ) +AdvMAC

A′′
5
(κ) (19)

Summing up (11), (12), (13), (15), (16), and (19),

Advind−cca
A (κ) ≤ Advsm

A2
(κ) +Q

(
Advcu2

A′
4
(κ) +AdvKDF

A′
5
(κ) +AdvMAC

A′′
5

(κ)
)

+Advcu2
A4

(κ) +AdvKDF
A5

(κ) +Q

(
1

|E| +AdvMAC
A6

(κ)

)
ending the proof. ��

4.3 Instantiation under the DLIN Assumption

We use the HPS based on the decisional linear assumption (DLIN) given by
[16]. In this HPS, SK = Z6

q , PK = G4, K = G. Also E = G3 and V =
{(gr11 , gr22 , hr1+r2) : r1, r2 ∈ Zq}, where g1, g2, h ∈ G. The DLIN assumption
asserts that E and V are indistinguishable. The projective function is

Λsk(u1, u2, u3) = ux1+αy1

1 ux2+αy2

2 uz+αz′

3 ⇐⇒ Λsk(u1, u2, u3) = (c1d
α
1)

r1(c2d
α
2)

r2

using the same notations as in Figure 6. To check E ∈ E \ V in Figure 5, use
trapdoors logg1 h ∈ Zq and logg2 h ∈ Zq.

Lemma 1 (Lemma 6.3 in [16]). The above hash proof system is computa-
tionally universal-2 if TCR is target collision resistant.

66 K. Kurosawa and L.T. Phong

KG(1κ) : Encap(pk) : Decap(sk, C) :

g1, g2, h
$←G r1, r2

$← Zq Parse C = (u1, u2, u3, t)

(x1, x2, y1, y2)
$← Z4

q u1 ← gr11 , u2 ← gr22 α ← TCR(u1, u2, u3)

(z, z′) $← Z2
q u3 ← hr1+r2 v ← ux1+αy1

1 ux2+αy2
2 uz+αz′

3

c1 ← gx1
1 hz, c2 ← gx2

2 hz α ← TCR(u1, u2, u3) (ks, ka) ← KDF(v)

d1 ← gy11 hz′ , d2 ← gy22 hz′ v ← (c1d
α
1)

r1(c2d
α
2)

r2 If t = MACka(u1, u2, u3)
pk ← (g1, g2, h, (ks, ka) ← KDF(v) return ks

c1, d1, c2, d2) t ← MACka(u1, u2, u3) Else
sk ← (x1, x2, y1, y2, z, z

′) Return C = (u1, u2, u3, t) return ⊥
Return (pk, sk) and K = ks

KG(1κ) : Encap(pk) : Decap(sk, C) :

g
$←G, g2 ← gN1 r

$←{0, . . . , N1/4} Parse C = (u, t)

(x, y)
$←SK u ← gr2 mod N2

1 α ← TCR(u)
c ← gx2 mod N2

1 α ← TCR(u) v ← ux+yα mod N1

d = gy2 mod N2
1 v ← (cdα)r mod N1 (ks, ka) ← KDF(v)

pk = (N1, g2, c, d) (ks, ka) ← KDF(v) If t = MACka(u)
sk ← (x, y) t ← MACka(u) return ks
Return (pk, sk) Return C = (u, t) and K = ks Else return ⊥

Fig. 6. Our DLIN-based KEM (above) and DCR-based KEM (below)

Our DLIN-based KEM appears in Figure 6. The symmetric building blocks
are TCR : G3 → Zq, KDF : G → {0, 1}2n, and MAC : {0, 1}n × G3 → {0, 1}τ .
Security requirements are given in Section 2.

Theorem 3. The construction of KEM in Figure 6 is IND-CCA-secure under
the DLIN assumption.

Proof. Directly from Lemma 1 and Theorem 2. ��

4.4 Instantiation under the DCR Assumption

We use the HPS based on the decisional composite residuosity assumption
(DCR) given in [16]. Let p1 = 2p2 + 1 and q1 = 2q2 + 1 be primes, where
p2 and q2 are also primes. Let N1 = p1q1 and N2 = p2q2. Let G be the subgroup
of Z∗

N2
1
with order N1N2. Note that G is written as G = GN1 · GN2 where GNi

denotes a cyclic group of order Ni. Let g be a generator of G, so that g1 = gN2

is a generator of GN1 and g2 = gN1 is a generator of GN2 .
In this HPS, SK = {0, . . . , �N2

1 /2�}2, PK = G2
N2

, K = ZN1 . Also E = G and
V = {gr2 mod N2

1 : r ∈ {0, . . . , N1/4}}. The DCR assumption says that E and V
are indistinguishable. To check E ∈ E \ V in Figure 5, use trapdoor N2.

The projection function is, using the same notation as in Figure 6,

Λsk(u) = ux+yα mod N1 ⇐⇒ Λsk(u = gr2 mod N2
1) = (cdα)r mod N1.

Lemma 2 (By [12,16]). The above hash proof system is computationally uni-
versal 2 if TCR is target collision resistant.

Kurosawa-Desmedt Key Encapsulation Mechanism, Revisited 67

Our DLIN-based KEM appears in Figure 6, which uses symmetric building
blocks TCR : ZN2

1
→ Z�N2

1 /2�, and KDF : ZN1 → {0, 1}2n, and MAC : {0, 1}n ×
ZN2

1
→ {0, 1}τ .

Theorem 4. The construction of KEM in Figure 6 is IND-CCA-secure under
the DCR assumption.

Proof. Directly from Lemma 2 and Theorem 2.

Acknowledgment. We are grateful to Takahiro Matsuda for informing us
about reference [6]. We also thank Qiong Huang and the anonymous review-
ers for comments that help refining this manuscript.

References

1. International Organization for Standardization, Genève, Switzerland. ISO/IEC
18033-2:2006, Information technology — Security techniques — Encryption
Algorithms — Part 2: Asymmetric Ciphers, Final Committee Draft (2006),
http://shoup.net/iso/

2. Cryptography Research and Evaluation Committees (CRYPTREC). Specifica-
tions of ciphers in the Candidate Recommended Ciphers List (March, 2013),
http://www.cryptrec.go.jp/english/method.html

3. Abe, M., Gennaro, R., Kurosawa, K.: Tag-KEM/DEM: A new framework for hybrid
encryption. J. Cryptology 21(1), 97–130 (2008)

4. American National Standards Institute. ANSI X9.44-2007: Key Establishment Us-
ing Integer Factorization Cryptography (2007)

5. Anada, H., Arita, S.: Identification schemes from key encapsulation mechanisms.
IEICE Transactions 95-A(7), 1136–1155 (2012)

6. Baek, J., Galindo, D., Susilo, W., Zhou, J.: Constructing strong KEM from weak
KEM (or how to revive the KEM/DEM framework). In: Ostrovsky, R., De Prisco,
R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 358–374. Springer, Heidelberg
(2008)

7. Bernstein, D.J.: Pippenger’s exponentiation algorithm (2002),
http://cr.yp.to/papers/pippenger.pdf

8. Boyd, C., Cliff, Y., Nieto, J.M.G., Paterson, K.G.: One-round key exchange in the
standard model. IJACT 1(3), 181–199 (2009)

9. Choi, S.G., Herranz, J., Hofheinz, D., Hwang, J.Y., Kiltz, E., Lee, D.H., Yung, M.:
The Kurosawa-Desmedt key encapsulation is not chosen-ciphertext secure. Inf.
Process. Lett. 109(16), 897–901 (2009)

10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

11. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Com-
puting 33, 167–226 (2001)

12. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)

http://shoup.net/iso/
http://www.cryptrec.go.jp/english/method.html
http://cr.yp.to/papers/pippenger.pdf

68 K. Kurosawa and L.T. Phong

13. Desmedt, Y., Gennaro, R., Kurosawa, K., Shoup, V.: A new and improved
paradigm for hybrid encryption secure against chosen-ciphertext attack. J. Cryp-
tology 23(1), 91–120 (2010)

14. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer, Heidelberg
(2012)

15. Herranz, J., Hofheinz, D., Kiltz, E.: The Kurosawa-Desmedt key encapsulation is
not chosen-ciphertext secure. IACR Cryptology ePrint Archive 2006, 207 (2006)

16. Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation.
Cryptology ePrint Archive, Report 2007/288 (2007), http://eprint.iacr.org/.
Full version of a paper at Menezes, A. (ed.): CRYPTO 2007. LNCS, vol. 4622.
Springer, Heidelberg (2007)

17. Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-
Hellman. In: Okamoto, T.,Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297.
Springer, Heidelberg (2007)

18. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 429–448. Springer, Heidelberg (2013)

19. Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

20. Kurosawa, K., Phong, L.T.: Kurosawa-Desmedt key encapsulation mechanism, re-
visited. Cryptology ePrint Archive, Report 2013/765 (2013),
http://eprint.iacr.org/; Full version of this manuscript

21. National Institute of Standards and Technology. Recommended elliptic curves for
federal government use (1999),
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf

22. Okamoto, T.: Authenticated key exchange and key encapsulation in the standard
model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007) Revised version available at
http://eprint.iacr.org/2007/473

23. Yoneyama, K.: Compact authenticated key exchange from bounded CCA-secure
KEM. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250,
pp. 161–178. Springer, Heidelberg (2013)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://eprint.iacr.org/2007/473

Differential Biases in Reduced-Round Keccak

Sourav Das and Willi Meier

Alcatel-Lucent India Ltd. and FHNW, Windisch, Switzerland
sourav10101976@gmail.com

Abstract. The Keccak hash function is the winner of the SHA-3 com-
petition. In this paper, we examine differential propagation properties of
Keccak constituent functions. We discover that low-weight differentials
produce a number of biased and fixed difference bits in the state after two
rounds and provide a theoretical explanation for the existence of such
a bias. We also describe several other propagation properties of Keccak
with respect to differential cryptanalysis. Combining our propagation
analysis with results from the existing literature we find distinguishers
on six rounds of the Keccak hash function with complexity 252 for the
first time in this paper.

Keywords: SHA-3, Propagation Analysis, Double-kernel, TDA.

1 Introduction

Cryptographic hash functions are important tools in cryptography that can be
used for multiple purposes including authentication, integrity check of executa-
bles, digital signatures, etc. These are deterministic functions, H , that given an
input or message of an arbitrary length, M , return a short pseudo-random value
of fixed length, n. A hash function should be easy to compute and is usually
defined by an iterative construction and a compression function.

The classical security requirements of a hash function are:

1. Collision resistance: finding two message M1 and M2 so that H(M1) =
H(M2) must be “hard”. The minimum complexity of such an attack is given
by birthday bound which is 2n/2 calls to the compression function.

2. Second preimage resistance: Given a message M1 and its hash value h =
H(M1), finding another message M2 so that H(M2) = h must be hard.
The generic second preimage attack has a complexity of 2n calls to the
compression function.

3. Preimage resistance: Given a hash value h, finding a message M1 so that
H(M1) = h must be hard. The generic preimage attack requires 2n calls to
the compression function.

In a practical sense, finding a collision or a (second) preimage of the hash
function should require not significantly less calls to the compression function
than the generic attacks. Besides these properties, a hash function is expected to

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 69–87, 2014.
c© Springer International Publishing Switzerland 2014

70 S. Das and W. Meier

satisfy a few other conditions, e.g, the hash output should not be distinguishable
from random output.

In the last decade, many of the standardized hash functions e.g. MD5 [19],
SHA1 [16] have suffered from serious collision attacks [21], [20]. The confidence
in the standard SHA-2 has then been put into question due to its resemblance
with SHA-1. As a consequence, the American National Institute of Standards
and Technology (NIST) has launched in 2008 a competition to find a new hash
function standard, SHA-3. From the 64 initial submissions, two rounds and four
years later, Keccak emerged as the winner in 2012.

Keccak is a sponge based hash function. One of the stated reasons for the
selection of Keccak by NIST as the new SHA-3 hash standard was its exceptional
resistance to cryptanalytic attacks [7]. Even though it was a prime target for
several years and a lot of cryptanalytic effort went into it [1], [5], [3], [8], [12],
[4], [10], [11], [9], [13], [17], there was limited progress so far in mounting an
attack even in greatly simplified versions of its various flavors. In particular, the
best known results so far have been successful only up to five rounds of Keccak.
One of the main reasons for this lack of progress is that the probabilities of the
standard differential characteristics of Keccak’s internal permutation are quite
small, as was rigorously shown in [8].

This paper investigates on the propagation properties of certain low-weight
differentials in Keccak. It discovers that there exist biased differential bits in the
output part of Keccak after two rounds. It traces back the existence of these
biased bits to the quadratic non-linear function, χ, of Keccak. There also exist
state bits with fixed difference with probability 1 after two rounds. The existence
of fixed difference bits with probability 1 after two rounds was reported in [14],
[15], without giving further explanation. As a consequence of the propagation
analysis as described in this paper we not only provide a clear explanation for
the existence of such bits, but also discover many bits with strongly biased dif-
ferences. Further, this paper extends the propagation properties to four rounds
of Keccak by using a double-kernel, a concept studied in [17], extending from
the concept of a kernel of differences in [4]. We exhaustively search all possi-
ble double-kernels upto weight six in Keccak permutation and discover some
interesting properties of double-kernels.

As a main application, we show that some of our four-round distinguishers
enable an extension to six-round distinguishers for Keccak-224. The complexity
of the resulting distinguishers amounts to the evaluation of the hash function
for 252 message pairs. This uses computation backwards for two rounds and is
based on results published in [9] and [10], where a heuristic algorithm is designed
(called Target Difference Algorithm - TDA), that allows to find message pairs
which satisfy a given target difference after one Keccak permutation round.

In [17] a very efficient distinguisher on four rounds of the Keccak hash func-
tion is described. This uses the concept of free bits combined with well chosen
messages, and is not available for backwards computation over two rounds, to
provide a distinguisher over six rounds. Also, there are previous results known
on distinguishers of the Keccak permutation, that enter more than six rounds:

Differential Biases in Reduced-Round Keccak 71

Zero-sum distinguishers [1], can distinguish the full 24-round internal permu-
tation from a random permutation [5], [6], [12], and in [13], a differential dis-
tinguisher on eight rounds of the internal permutation is described. However
these distinguishers are not easily amenable to provide distinguishers for the
hash function. This paper provides a six round round distinguisher on Keccak
hash function i.e. it considers the initial capacity bits set to zero. The Table 1
provides the best results of cryptanalysis of Keccak hash function.

Table 1. The best cryptanalytic results on Keccak on the hash function settings

Variant No of Rounds Complexity Type of Attack Reference

512, 384, 256, 224 4 Improvement by 23 - 28 preimage [15]

224,256 4 practical collision [10]

224,256 5 practical near-collision [10]

256 5 2115 collision [11]

384, 512 3 practical collision [11]

224, 256 4 224 distinguisher [17]

224 6 252 distinguisher This Paper

As a final application of our propagation analysis, we provide an explanation
why the near collision on five rounds of Keccak as reported in [9], [10], does not
match with the expected near collision predicted by their differential trail.

This paper is organized as follows. Section 2 describes the Keccak hash func-
tion. The propagation properties of Keccak sponge constituent functions are
given in Section 3. Section 4 shows how to get 2 rounds distinguishers using the
propagation properties. Section 5 gives the application of the propagation prop-
erties to get biased difference bits upto six rounds of Keccak and thereby get
a six round distinguisher. Finally, Section 6 shows another application of these
propagation properties.

2 Description of Keccak

Keccak is a family of sponge hash functions. A sponge hash function absorbs
a message block of r bits into its internal state and subsequently applies an
internal permutation to the state. This step is repeated until all the blocks of
the message to hash have been treated. Next, in the squeezing phase, r bits
are generated from the state before each new permutation application, until the
number of desired output bits has been generated. In the following we recall
the recommended Keccak versions for SHA-3. All versions use the same internal
permutation: Keccakf [1600].

The Keccakf [1600] state consists of 1600 bits, organized in 64 slices of 5× 5
bits. The position of a bit in a slice can be given by its x and y value. The z
coordinate gives the number of the slice 0 ≤ z ≤ 63. Most of the steps in the
round function of Keccak are invariant to a translation in z direction. The only
part non-invariant is the round constant addition ι.

72 S. Das and W. Meier

The permutation of the full Keccak hash function consists of 24 iterations of
the round function. The round function itself is composed of five steps:

1. θ: Xor to each bit the XOR of two columns (column = same x value, y
from 0 to 4). The first column is in the same slice as the bit and the second
column is in the slice before the bit.

2. ρ: Translate a bit in z direction.
3. π: Permute the bits within a slice.
4. χ: Apply a 5× 5 S-box on one row (row = same y value, x from 0 to 4).
5. ι: Addition of round constant.

Each of the versions (224, 256, 384 and 512 output bits) has a different block
message size r. The capacity in a sponge construction is the size of the internal
state minus the size of a message block. Consequently, they all have a different
capacity c:

– For an output of 224 bits, r = 1152 and c = 448.
– For an output of 256 bits, r = 1088 and c = 512.
– For an output of 384 bits, r = 832 and c = 768.
– For an output of 512 bits, r = 576 and c = 1024.

In this paper, we have represented the state as a 5 × 5 matrix where each
element of the matrix is a 64-bit lane (lane= same x and y value, z ranging
from 0 to 63). In the lane, the LSB is at the right side i.e. it is in Little Endian
notation.

3 Propagation Properties of the Keccak Constituent
Functions

In this section, we consider some propagation properties of the constituent func-
tions θ, ρ, π, χ and ι. In propagation analysis, we perform a large number of
experiments and observe the state output differences. If the state difference is
always 1, then we call that state difference bit as active. If it is always 0, then we
call that difference bit as inactive. If the state difference is 0 for half the times
(and 1 for half the times), then we call that state difference bit as balanced.

3.1 Propagation Properties of θ, ρ, π and ι

The θ transformation on each state bit depends linearly on 10 other state bits
and the self bit.

Property 1. If an even number of bits of the input of θ are active (i.e. change
their value with probability 1), and the remaining input bits are inactive (i.e.
stay constant), then the output state bit is inactive.

Similarly, if an odd number of bits of the input of θ are active, and the
remaining input bits are inactive, then the output state bit is active.

Differential Biases in Reduced-Round Keccak 73

Property 2. If any bit of the input state of θ is balanced then the output state
bit is also balanced.

Property 3. The functions ρ, π and ι, being simple bitwise permutations, do not
change any propagation properties of the input.

3.2 Propagation Properties of χ

The S-box of the χ layer is a 5-bit S-box, where every output bit yi depends
on only three input bits. Out of these, it is dependent linearly on one bit and
non-linearly on another two bits (operations are in GF (2)):

yi = xi + (xi+1 + 1) · xi+2 (1)

Assume a set of input differences causes a set of output differences. We de-
scribe how the input set affects the output set for a particular bit.

Property 4. If xi is active and there is no difference in any of xi+1 and xi+2,
then the output bit, yi, is active.

Property 5. If there is a difference either in xi+1 or xi+2 or in both, then the
output is balanced.

If there is a difference in one of these inputs, the output difference will depend
on the value of the other non-linear bit. If the value of the other bit is zero, then
there is no difference in the output, else if it is 1, then there is a difference.
Assume a difference in both inputs. If the input values for ∼ (xi+1) and xi+2

are 00 (11), the other input values are 11 (00), hence the product difference is
1 for these two cases. If the input values of these two bits are 01 (10), then the
other values are 10 (01), hence the product difference is 0.

Next we consider the properties when some input differences are balanced.

Property 6. If the difference in xi is balanced, then the output difference is also
balanced (independently of the propagation properties of the other input vari-
ables).

Now consider the following two cases with fixed difference in xi.

Property 7. If either the difference in xi+1 or xi+2 is balanced, and the other
difference is fixed, then the output difference is biased with probability 3/4.

Property 8. If differences in both xi+1 and xi+2 are balanced, then the output
difference is biased with probability 5/8.

If differences in both xi+1 and xi+2 are balanced, the following are the possi-
bilities about their input differences:

00 implies difference zero for 25 percent cases.
01, 10, 11 implies the output is balanced for 25× 3 = 75 percent cases.

74 S. Das and W. Meier

So the output difference is zero for (25+75/2)/100=125/200=5/8 cases.
Next, we consider some properties from the difference distribution table (DDT)

of the S-box of Keccak. The DDT of the Keccac S-box can be found in Appendix
B, Table 7 of [13]. We can see an important property as below.

Property 9. In the DDT of the Keccac S-box, every bit is either fixed or balanced.

This follows immediately from the fact that χ is a quadratic function. The
difference function for each output bit is linear for any given input difference in
χ and is thus either fixed or balanced. For example, when the input difference is
0x01 (which is used maximally in our analysis), the possible output differences
are 0x01, 0x09, 0x11 and 0x19 each having occurrences of exactly eight times.
One can observe that the output difference is always 1 in the 0th bit; it is always
0 on 1st and 2nd bits; and, always balanced on the 3rd and the 4th bits. This
property can be easily proven for every case using the boolean equation of the
S-box i.e. Equation 1.

4 Application of Propagation Properties: Two Rounds
Distinguishers

In this section, we show the first application of the propagation properties as
described in the previous section. First we present how to calculate the distin-
guishers using the active, inactive and the biased bits. The balanced bits seem
of no assistance, as they don’t remain exactly balanced bits after few rounds.

4.1 Method for Finding Distinguishers

The above properties suggest that there will be fixed and balanced difference
bits after a round when we start with a low-weight differential (refer Properties
4, 5, 6). After another round, the balanced difference bits and the fixed difference
bits will give rise to biased difference bits (refer Properties 7 and 8). It is evident
from all the properties of χ functions that the there are five possibilities of the
differential state bits after performing a large number of experiments, namely,
always active (m), always inactive (n), biased towards zero or one in 75 percent
trials (q), biased towards zero or one in 62.5 percent trials (r) and unbiased (s).
We show below how we construct a favorable event for a distinguisher. A suitable
favorable event for our distinguisher might be as follows:

1. We have m+ n deterministic bits. We require these to have the right value.

2. We have a number q of bits with probability about 0.75 to be either 0 or
1. Then the expected value of bits which take the value as predicted by the
bias is q · p = 0.75 · q.

3. We have r bits to be either 0 or 1 with prob. about 0.625. Then the expected
value of correct bits is 0.625 · r.

Differential Biases in Reduced-Round Keccak 75

Thus our test first asks if the (m + n) deterministic bits are correct. If no,
ignore the rest. If yes, count the numbers of correct bits under the previous
conditions 2. and 3. If one or both of these numbers are at least k1 = 0.75 · q or
k2 = 0.625 · r, respectively, we have a desirable event.

According to Binomial distribution, the probability for at least k successes in
n trials having a probability p is:

P (X ≥ k) = Σn
i=kC

n
i p

i(1− p)n−i (2)

This can be approximated by a normal distribution. For this we make use of
the following formulae for n trials with probability p:
Mean=μ = np, Standard deviation=σ =

√
np(1− p).

Convert the binomial variable (X) to normal variable by: Z = (X − μ)/σ.
Finally, calculate the probability of the event, P ((np − μ)/σ < Z ≤ (n −

μ)/σ) = P (0 < Z ≤ (n − μ)/σ) (since, np = μ), from the normal distribution
table.

Clearly, if we require all the bits are correct, the probability becomes pn. We
look for a favourable event that is able to distinguish later the hash output from
random with a good tradeoff between distinguishing property and number of
samples. An example of such a favourable event is given below.

Example 1. Assume that in a large number of experiments, we have got 16 de-
terministic difference bits (i.e. totally active or inactive bits), 35 bits with a
differential bias 0.75 and 31 bits with a differential bias 0.625. Consider now an
event to be favorable if all 16 deterministic bits are correct, and at the same
time all 35 bits with bias 0.75 are correct. Moreover require that for the bits
with bias 0.625, at least μ = np = 31× 0.625 = 19.375 bits are correct.

Then, for the 16 deterministic bits and the 35 bits with the bias 0.75, the
probability of success for the random case is, 2−16−35 = 2−51, whereas for the
biased case is 1× 0.7535 ≈ 2−15.

According to normal approximation, the probability that at least μ = 19.375
of the 31 bits with a differential bias of 0.625 are correct is 1/2. If the bits were
random, then μ = 31 × .5 = 15.5 and σ = 2.78. In that case, the probability
of the same number of bits to be correct were: P (((19.375− 15.5)/2.78) < Z ≤
((31 − 15.5)/2.78)) = P (1.39 < Z ≤ 5.57). From a table, P = 1 − 0.91774 =
0.08226 = 2−3.6.

Hence, the total probability for the biased case is 2−15−1 = 2−16 whereas for
the random case it is 2−51−3.6 = 2−54.6. So, the total probability for the event
in the biased case is almost 239 times higher than the random case. This gives a
strong distinguishing property for this event.

��

4.2 Two Rounds Distinguishers for Low Weight Differentials

In this section, it will be shown that low-weight differentials can provide distin-
guishers for two rounds. Let us consider some low weight differentials of weight

76 S. Das and W. Meier

w on the message part of the hash function. Now let us see how the differences
propagate through different constituent functions of Keccak.
θ Function of Round 1: On the θ function of the first round, the differences

of weight w, will spread the differences to roughly 11w bits if the differences are
sparse enough. Hence, on a large number of experiments, the state difference
remains fixed after the θ function of the first round.
ρ, π and ι Functions of Round 1: These functions keep the weight of the

differences.
χ Function of Round 1: The χ function will keep the difference fixed (either

0 or 1) for some bits, and make it balanced for some other bits, as follows from
Properties 4, 5, 6 and 9.
θ Function of Round 2: The balanced bit differences produced in the χ layer

in the first round will make 11 bits per balanced bits of the state as balanced.
On the other hand, the fixed differences (of value 1) will make 11 bits per state
bit (excluding the balanced bits) as fixed differences (of value 1). If all the 11
bits involved in the θ transformation of a particular state bit have no differences
(i.e. fixed difference 0) then, that particular state bit difference will be always 0.
Since, at the end of round 1, the number of balanced state bits is still small, there
are still a lot of fixed difference bits at the end of θ transformation of Round 2.
ρ, π and ι Functions of Round 2: These functions keep the weight of the

differences.
χ Function of Round 2: At this point, the χ function has three types

of input state differences. The first one is always 0, the second one is always
1 and the third one is balanced in a large number of experiments. By virtue
of the Properties 4 to 9, it produces fixed output differences, balanced output
differences and biased output differences in a large number of experiments.

Thus, at the end of Round 2, we still get fixed output differences and biased
output differences in the state. If we get some of these conditions in the output
part of the hash function, then we will have distinguishers. Now there are special
techniques already developed in literature to have low-weight differences up to a
certain number of rounds. Using those techniques combined with the propagation
analysis shown so far, we will show how to get distinguishers for 3, 4, 5 and 6
rounds in the rest of the paper.

Note that we can expect biased bits starting with a low weight differential
only after two rounds but not after one round. Further as we shall see, we cannot
expect biased bits after three rounds.

Now, we are able to get biased difference bits after two rounds of Keccak,
provided the input difference has relatively small weight. Let us try to quan-
tify how much small i.e. what is the maximum weight that can give rise to the
fixed/biased bits after the second round. The χ layer is the one that creates
the balanced bits at round 1 and θ layer is the one which spreads the balanced
bits at round 2. Let wmax be the maximum weight that will produce fixed bits
and/or biased bits after round 2. After θ layer, this weight will spread to 11wmax

state bits. In χ layer, every fixed difference bit makes two more bits balanced
(by extension of Property 5). Hence after the first χ layer, 22wmax bits become

Differential Biases in Reduced-Round Keccak 77

balanced. After the second θ layer, the total number of bits that becomes bal-
anced are 11× 22wmax = 242wmax. Again in χ layer, if an input difference bit is
balanced, the corresponding output difference bit is also balanced (by property
6). In order that all the 1600 state bits do not become balanced after θ layer of
round 2, the maximum value of wmax can be only 1600/242 ≈ 6.

In our case, we have always started with a differential of weight 6, and indeed
we have got some fixed or biased bits in the output after two rounds. The above
heuristics assume that the weight is evenly distributed in the state. However,
this is not the case always and some difference bits are clustered (θ and χ, tend
to cluster but ρ and π attempt to distribute them evenly). This clustering gives
us some more fixed/biased difference bits after round 2. But, most of the bits
after round 2 are balanced, hence the θ operation and the χ operation in round
3 spreads the balanced bits to all the state bits. Thus we don’t get any more
fixed or biased bits after round 3.

4.3 The Effect of ι in Differential Bias Propagation

The round constant, ι, of the last round will not have any effect on the differ-
entials. This is because the round constant is simply XORed at the end and
the differences will cancel it out. However, in our biased differential propagation
analysis, we have passed through one extra round by value before calculating
the final differential for our propagation analysis. Hence, in our method of cal-
culating differential bias propagation, the ι constant will matter for the last but
one round. It will not matter for the last round. However, the round constants
are different for different rounds and our differential bias propagation analysis
are performed in the last two rounds. So, when we consider the differential bias
propagation analysis for Keccak permutation for two, three and four rounds, we
should consider the ι constants for first, second and third round, respectively.
But, when we consider the distinguishers for Keccak hash functions later, we will
prepend two more rounds. In that case, we have to consider the right ι constant
accordingly (i.e. ι of round 5, for a six round distinguisher) in the subsequent
sections.

5 Distinguishers of Six Rounds of Keccak

In this section, we proceed step by step to extend the distinguishers of two
rounds using the propagation properties, to three, four and six rounds distin-
guishers. We extend the two rounds distinguishers for three rounds using the
concept of kernels. A kernel is, as defined by Keccak authors, a state difference
with even number of differences in each column. When the state difference is in
a kernel, the θ transformation on that state differences will not change it. We
further extend this for four rounds by using a double-kernel. A double kernel, as
considered in [17], is a differential path where the state differences of two suc-
cessive rounds are in a kernel. As a main application, a few of the distinguishers
as found for four rounds will be extended to the hash function when reduced

78 S. Das and W. Meier

to six rounds by using target-difference-algorithm (TDA). TDA, as defined in
[10], allows to find message pairs which satisfy a given target difference after one
Keccak permutation round.

5.1 Extension to 3 Rounds - Starting with a Kernel

We can easily extend the above distinguishers to 3 rounds by starting with a
Kernel. If we start with a low difference kernel with the differences in the message
part of the hash function, the θ, ρ, π will maintain the same difference; then it
is already well-known that the χ layer will maintain this sparse difference with
a probability 2−2 per difference bit [17]. If there are r difference bits, then the
total probability of maintaining the same difference is 2−2r. Thus, at the end
of round 1, we get a low-weight difference with a probability 2−2r. This can be
now the starting point for the distinguisher of two rounds using our method.
Hence, we can easily get three rounds distinguishers using this method with an
additional complexity of 2−2r (r ≤ 6).

5.2 Extension to 4 Rounds - Starting with a Double Kernel

Most of the successful differential paths on various rounds have made use of the
double kernels to increase the number of rounds. We also immediately increase
the number of rounds for the double kernel. We have used some of the existing
two round trails to find distinguishers up to four rounds.

We start with the double kernel that was found in [17]. The double kernel
defined by them is shown in Table 2. Starting with this differential, we have
performed 220 experiments1 with two more rounds and checked the output part
after four rounds for Keccak-224, Keccak-256, Keccak-384 and Keccak-512 to
see if there are biased bits. We have found many bits which are fixed (i.e. always
active or always inactive) and many bits which are biased. The results are shown
in Table 3 where the entries with 0.75 means that for those many bits, the num-
ber of zeros (or ones) occurred 75 or 25 percent times and the entries with 0.625
means that for those many bits, the number of zeros (or ones) occurred 62.5 or
37.5 percent times. These cases represent the biased bits. We can easily employ
the methods given in Section 4 (see Example 1) to determine the distinguishers.
Note that in [17] already a very efficient distinguisher on the Keccak hash func-
tion reduced to four rounds is described. This is based however on a trick using
free bits and selecting appropriate messages that is not available when we later
prepend two more rounds.

1 We started our analysis with 220 experiments; but later on we found that we can
clearly distinguish the biased and fixed bits with 10000 or even 1000 experiments.
As computational time difference between 10000 and 1000 experiments was not
significant enough, in the subsequent sections we have performed experimentation
with 10000 samples.

Differential Biases in Reduced-Round Keccak 79

Table 2. The differential path of [17]

- - - - - - - - - - - - - - - 1 8 -
- - - - - - - - - - - - - - - 1 - 4 -

δ0 - - - - - - - - - - - - - - - - 8 - 4 -
- -
- -

- - - - - - - - - - - - - - - 1 - 2 -
- -

δ1 - - - - - - - - - - - - - - - 1 - - - - - - 1- -
- 1- 2 -
- -

- - - - - - - - - - - - - - - 1 -
- 8 - - - - - - - - - - - 2 -

δ2 -
- 4 - 1- -
- - - - - - - - - - - - - - 8 -

Table 3. The biased difference bits after 4-rounds using the differential path of [17]

Variant Active Inactive 0.75 0.625

224 7 9 35 31

256 7 11 45 34

384 7 17 77 59

512 10 20 100 73

5.3 Differential Distinguishers with All Possible Double Kernels Up
to Weight Six

After finding deterministic and biased bits, we investigated towards finding the
best possible results by looking into all possible double kernels upto weight six.
As shown in the previous section, we get two rounds distinguishers using the
propagation properties only when we start with a differential of weight upto
six. Since we start with a kernel with three non-zero columns, each with weight
2, the computational complexity to find all the double kernels is reasonable.
The computational complexity to find all the double kernels is: (all possible
combinations of two bits in three different columns) × (all possible combinations
of three columns in 320 columns) = (C5

2)
3×(C320

3) = 5.4×109 ρ and π operations.
We found that there exists an “equivalent class” of double kernels. Note that
a kernel becomes a double kernel only when a specific permutation of ρ and
π rearranges them to another kernel. Now if the difference bits in the original
kernel are shifted along the z-direction equally, then ρ will shift those difference
bits equally. The lane rearrangement done by the π function will keep the state
again in a kernel. Hence, the following property of double kernel can easily be
observed.

Property 10. For a low-weight kernel which results into a double-kernel, if the
difference bits are equally shifted along the z-axis, then the new kernel also
results in a double kernel.

Since there are 64 bits in a lane, the following property follows:

80 S. Das and W. Meier

Property 11. The total number of double kernels must be divisible by 64.

Finally, each of these shifted double kernels will provide almost same but
shifted propagation properties for the state bits. That means there will be similar
number of active, inactive and biased bits in the state after four rounds for each
of these double kernels. However, it is not exactly same because of the effect
of ι in the last but one round (see Section 4.3). Hence, we give the following
propagation property of a double kernel:

Property 12. There exists an equivalent class, with respect to the propagation
properties of two additional rounds, of double kernels consisting of 64 members
which will give rise to the almost same number of biased differential bits (active,
inactive, biased) in the state after four rounds.

We have done an exhaustive search of double kernels and found a total of 512
double kernels in Keccak. Hence, there are a total of eight equivalent classes of
double kernels. The double kernels for all the eight cases are given in the Table
4. For each of the double kernels of Table 3, the number of active bits, inactive
bits, bits with bias 0.25 (towards 0), 0.75, 0.625, 0.375 and their corresponding
μ, σ and Z (refer to Section 4) are given in Table 5. Using Table 4 and the
normal distribution table, the distinguishers can be easily calculated as outlined
in Section 4.

5.4 A Concrete Six Round Distinguisher of Keccak-224

In this section, we extend our work in the previous section to a six round dis-
tinguisher by using the results of [9] and [10]. It can be noted that it is easy
to go one round backwards in Keccak permutation starting from a low-weight
differential. The inverse χ layer maps 1-bit difference to a 1-bit difference with a
probability 2−2. Hence, going backwards by one round has a complexity of 2−12

for a differential with weight 6, as in our case. But, going back one round in the
hash function is a challenging task. The main challenge is to keep the capacity
bits to zero at the beginning of the hash function. The θ − inverse function of
Keccak propagates too many bits even when we start with a low-weight differ-
ence. This problem was solved for the first time (heuristically) in [10] and [9].
They called this algorithm to solve this problem as Target Difference Algorithm
(TDA). Prepending one more round, on page 14, Section 5.2 of [9], they say that
“For Keccak-224, the algorithm typically returned an affine subspace of message
pairs with dimension of about 100 within one minute” when they go backwards
from a differential of double kernel i.e. with weight six. As done by them, we
go back one more round directly with a probability of 2−12 and then appeal to
their findings on TDA to get the hash inputs (and gain one more round). The
two rounds given by the double kernels (which occurs with a probability of 2−24)
and additional two rounds to get biased differential bits enable us to get a six
round distinguisher. This six rounds distinguisher is the result of a combination
of TDA [9], double-kernel concept of [17] and the differential bias analysis of this
paper.

Differential Biases in Reduced-Round Keccak 81

Table 4. The equivalent classes of the double-kernels

Sl No δi Differentials

- - - - - - - - - - - - - - - 1 8 -
- - - - - - - - - - - - - - - 1 - 4 -

1 δ0 - - - - - - - - - - - - - - - - 8 - 4 -
- -
- -

- - - - - - - - - - - - - - - 1 - 2 -
- -

1 δ1 - - - - - - - - - - - - - - - 1 - - - - - - 1 -
- 1 - 2 -
- -

- - - - - - - - - - - - - - - 1 - 2 - - - - - - - - -
- - - - - - - - - - - - - - - 1 - 4 -

2 δ0 -
- 4 - 2 - - - - - - - - -
- -

- - - - - - - - - - - - - - - 1 -
- -

2 δ1 - 1 - 2 -
- - - - - - - - - - - - - - - 1 - - - - - - 1 - 2 -
- -

- - - - - - - - - - - - - - - 1 - 4 -
- -

3 δ0 - 4 - - - - - - - - - - 1 -
- - - - - - - - - - - - - - - 1 - 1 -
- -

- - - - - - - - - - - - - - - 1 - 2 - - - - - - - - - - - - - - - - 2 -
- -

3 δ1 - 2 -
- -
- - - - - - - - - - - - - - - 1 - 2 -

- - - - - - - - - - - - - - - 1 - 1 -
- 2 - - - - - - - - - - - 1 -

4 δ0 -
- -
- - - - - - - - - - - - - - - 1 - 2 -

- - - - - - - - - - - - - - - 1 -
- - - - - - - - - - - - - - - 1 - 4 - - - -

4 δ1 - 8 - 4 - - - -
- -
- 8 -

- -
- - - - - - - - - - - - - - - 1 - 2 -

5 δ0 - - - - - - - - - - - - - - - - 1 - 2 -
- - - - - - - - - - - - - - - 1 1 -
- -

- -
- 2 -

5 δ1 - 4 -
- 1 - 4 -
- 1 - 2 -

- -
- -

6 δ0 - - - - - - - - - - - - - - - 1 - 1 - - - - - - -
- 2 - 1 - - - - - - -
- - - - - - - - - - - - - - - 1 - 2 -

- -
- 8 - 4 - - - -

6 δ1 - 1 - 4 - - - -
- 1 -
- 8 -

- 1 - 4 - - - - - - - - -
- -

7 δ0 - 1 - - - - - - - - 8 -
- 8 - 4 - - - - - - - - -
- -

- 4 -
- -

7 δ1 - - - - - - - - - - - - - - - 2 - 4 -
- - - - - - - - - - - - - - - 2 - 4 - - - - - - 4 -
- -

- 1 - - - - - - - 4 -
- -

8 δ0 -
- 4 - - - - - - - - - - - - 8 - - - - - - - - - - -
- 1 - 8 - - - - - - - - - - -

- 8 - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - -
4 - 2 - - - - - - - - - - - - - - -

8 δ1 - 8 -
- -
4 -

82 S. Das and W. Meier

Table 5. The differential biased bits after 4-rounds for all double kernels

Sl. Variant Active Inactive 0.75 μ.75 σ.75 Z.75 .25 μ.25 σ.25 Z.25 0.625 μ.625 σ.625 Z.625 .375 μ.375 σ.375 Z.375

1 224 7 9 9 6.75 1.30 1.73 26 6.50 2.21 8.83 7 4.38 1.28 2.05 24 9.00 2.37 6.32

1 256 7 11 10 7.50 1.37 1.83 35 2.50 2.56 12.69 7 4.38 1.28 2.05 27 10.13 2.52 6.71

1 384 7 17 19 14.25 1.89 2.52 58 4.75 3.30 16.15 13 8.13 1.75 2.79 46 17.25 3.28 8.76

1 512 10 20 20 15.00 1.94 2.58 80 5.00 3.87 19.36 16 10.00 1.94 3.10 57 21.38 3.66 9.75

2 224 4 11 11 8.25 1.44 1.91 24 6.00 2.12 8.49 11 6.88 1.61 2.57 22 8.25 2.27 6.06

2 256 4 12 11 8.25 1.44 1.91 28 2.75 2.29 11.02 13 8.13 1.75 2.79 25 9.38 2.42 6.45

2 384 4 16 15 11.25 1.68 2.24 45 3.75 2.90 14.20 20 12.50 2.17 3.46 39 14.63 3.02 8.06

2 512 4 19 19 14.25 1.89 2.52 58 4.75 3.30 16.15 22 13.75 2.27 3.63 55 20.63 3.59 9.57

3 224 1 7 8 6.00 1.22 1.63 22 5.50 2.03 8.12 7 4.38 1.28 2.05 22 8.25 2.27 6.06

3 256 1 7 9 6.75 1.30 1.73 28 2.25 2.29 11.24 9 5.63 1.45 2.32 25 9.38 2.42 6.45

3 384 4 13 15 11.25 1.68 2.24 41 3.75 2.77 13.43 21 13.13 2.22 3.55 34 12.75 2.82 7.53

3 512 6 15 24 18.00 2.12 2.83 57 6.00 3.27 15.60 24 15.00 2.37 3.79 51 19.13 3.46 9.22

4 224 0 4 11 8.25 1.44 1.91 20 5.00 1.94 7.75 12 7.50 1.68 2.68 24 9.00 2.37 6.32

4 256 0 5 13 9.75 1.56 2.08 24 3.25 2.12 9.78 14 8.75 1.81 2.90 26 9.75 2.47 6.58

4 384 4 8 19 14.25 1.89 2.52 36 4.75 2.60 12.03 19 11.88 2.11 3.38 44 16.50 3.21 8.56

4 512 5 13 25 18.75 2.17 2.89 49 6.25 3.03 14.10 22 13.75 2.27 3.63 59 22.13 3.72 9.92

5 224 4 4 8 6.00 1.22 1.63 32 8.00 2.45 9.80 5 3.13 1.08 1.73 29 10.88 2.61 6.95

5 256 4 4 11 8.25 1.44 1.91 36 2.75 2.60 12.80 6 3.75 1.19 1.90 33 12.38 2.78 7.42

5 384 8 8 19 14.25 1.89 2.52 53 4.75 3.15 15.31 12 7.50 1.68 2.68 45 16.88 3.25 8.66

5 512 9 13 23 17.25 2.08 2.77 69 5.75 3.60 17.58 22 13.75 2.27 3.63 58 21.75 3.69 9.83

6 224 0 2 12 9.00 1.50 2.00 18 4.50 1.84 7.35 14 8.75 1.81 2.90 27 10.13 2.52 6.71

6 256 0 2 14 10.50 1.62 2.16 20 3.50 1.94 8.52 16 10.00 1.94 3.10 29 10.88 2.61 6.95

6 384 2 4 18 13.50 1.84 2.45 34 4.50 2.52 11.68 27 16.88 2.52 4.02 40 15.00 3.06 8.16

6 512 3 4 23 17.25 2.08 2.77 44 5.75 2.87 13.32 34 21.25 2.82 4.52 54 20.25 3.56 9.49

7 224 3 11 11 8.25 1.44 1.91 26 6.50 2.21 8.83 8 5.00 1.37 2.19 28 10.50 2.56 6.83

7 256 3 11 13 9.75 1.56 2.08 31 3.25 2.41 11.51 10 6.25 1.53 2.45 28 10.50 2.56 6.83

7 384 6 16 21 15.75 1.98 2.65 49 5.25 3.03 14.43 16 10.00 1.94 3.10 39 14.63 3.02 8.06

7 512 8 24 27 20.25 2.25 3.00 66 6.75 3.52 16.84 20 12.50 2.17 3.46 51 19.13 3.46 9.22

8 224 4 1 8 6.00 1.22 1.63 18 4.50 1.84 7.35 10 6.25 1.53 2.45 20 7.50 2.17 5.77

8 256 5 1 9 6.75 1.30 1.73 19 2.25 1.89 8.87 13 8.13 1.75 2.79 24 9.00 2.37 6.32

8 384 7 4 12 9.00 1.50 2.00 27 3.00 2.25 10.67 20 12.50 2.17 3.46 36 13.50 2.90 7.75

8 512 8 4 21 15.75 1.98 2.65 37 5.25 2.63 12.05 24 15.00 2.37 3.79 50 18.75 3.42 9.13

Now let us calculate the complexity of these distinguishers. The double-kernel
has a probability of 2−24. Going backwards by one round will have a complexity
of 2−12. Hence, the total complexity of the differential path for this distinguisher
is 2−36. To have a distinguisher of six rounds using our propagation analysis,
the total probability of a suitably chosen favorable event should be larger than
the probability of the event if it were purely random. For the double kernel of
[17] which corresponds to the entry with Sl. No. 1 in Table 3 and 4, such a
favorable event is shown in Example 1. We found that the probability of the
event using our propagation analysis is 2−16. Multiplying by the probability of
the characteristic, we get the total probability of this event as 2−16−36 = 2−52,
whereas in the random case, the probability is 2−54.6. Since, the probability of the
event is at least four times higher than the random case, we have a distinguisher
for this event. The complexity of the distinguisher is about 252.

Clearly, we can have stronger distinguishers with an additional complexity
by repeating the experiment or by considering an event with more bits with
probability 0.625 to be correct.

Since the differential path for the six round distinguisher itself has a complex-
ity of 236, we cannot get any favorable event for some cases in Table 4 and Table
5. But for 3 out of 8 equivalent cases, we can get a favorable event leading to a

Differential Biases in Reduced-Round Keccak 83

distinguisher. The cases for which we have a distinguisher are with Sl. No. 1, 2
and 7 in Table 4 and 5.

This distinguisher does not carry over to a six round distinguisher of Keccak-
256 without any further refinements (e.g., message modification), as the space
of message pairs delivered by TDA as reported in [9] in this case may not always
be large enough.

The methods as developed for ordinary differentials carry over to generalized
internal differentials as brought up in [11]. However regarding distinguishers
they appear to lead to no better results. This can also be extended for special
differential characteristics as in [8]. Here again it doesn’t appear to lead to better
results regarding distinguishers.

6 A Second Application of Propagation Properties

As a final note, please observe that the difference bits in the near collision found
in [10],[9] do not follow the difference bits predicted by the trail (see Appendix
B of [10],[9]). Table 5 gives the 4-round characteristic that has been used to get
near collisions. The near collision they have got are (the difference nibbles are
shown in underline): For Keccak-256:
Output1=
407D4466 FEA8B231 EC968181 DF902165 23C219FF 54571D70 2800F506 E818644B
Output2=
407D4466 FEA8B231 EC928181 FF902165 23C019FF 1C571D74 2800F516 E810656B
For Keccak-224:
Output1=
85373497 97D871C2 FBD0A823 584C0ED4 C1B3BF4F BC408766 0584B08D
Output2=

85373497 97D871C2 FBD0A823 784C0ED4 E1B1BF5F BC408776 0584B08D

Note that the output strings given here are with 32 bits whereas the differen-
tials given in Table 5 are 64 bits; both with little-endian format. For Keccak-256,
the bits that are different in the near-collision are (starting the bit numbering
from 0), 82(0x52), 125(0x7D), 145(0x91), 162(0xA2), 187(0xBB), 190(0xBE),
196(0xC4), 229(0xE5), 232(0xE8), 243(0xF3). For Keccak-224, the positions are,
125 (0x7D), 132(0x84), 145(0x91), 157(0x9D), 164(0xA4). Clearly, the near col-
lision found does not coincide with the difference bits predicted by the charac-
teristic (as given in δ4 of Table 5). The authors did not give an explanation for
that. Here, we give an explanation.

We started with δ3 of Table 6 and checked the number of difference bits in the
output part of Keccak-256 (automatically implying Keccak-224 as well). Table
7 gives the number of times the bits were different in the first 320 bits of the
state which includes the output part i.e. the first 256 bits of the state (the rows
indicate the first nibble and the columns indicate the second nibble of the out-
put state bit position). Note that the first 320 bits are the first row of the state
along the 64-bit lanes. We can observe that even with the differential biases, we
can’t explain the near collision completely. For example, the state bit at position
0x52 is always zero, but this bit shows up in the near collision of [9] as a difference

84 S. Das and W. Meier

Table 6. The 4-Round Characteristic Leading to Near Collision in [9]

BD135E2FA6BD1346 12D789A92F12D78F D7E26BC344D7E224 E69AF134B5E69AD5 98BC4D6BF898BC58
BD135E2FA6BD1346 12D789A82F12D78F D7E26BC344D7E264 E69AF134B5E69AD5 98BC4D6BF898BC58

δ0 BD135E2FA6BD1346 12D789AB2F12D78F D7E26BC344D7E224 E69AF134B5E29AD5 98BC4D6BF898BC58
BD135E2FA6BD1346 12D789A92F12D78F D7E26BC344D7E224 E69AF134B5E69AD5 98BC4D6BF898BC58
BD135E2FA6BD1346 12D789A92F12D78F D7E26BC344D7E224 E29AF134B5E69AD5 98BC4D6BF898BC58

- 1 - 4 - - - - - - - - - - - -
- -

δ1 - 1 - - - - - - - - 8 -
- 8 - 4 - - - - - - - - - - - -
- -

- 4 -
- -

δ2 - - - - - - - - - - - - 2 - 4 -
- - - - - - - - - - - - 2 - 4 - - - - - - 4 -
- -

- 8 - - - - - - - - - - - - - - - - - - -
- 1 -

δ3 - 8 -
- 2 -
- - - - - - - - - - 1 - 4 -

- - - - - - - - - - - - - - - - 2 - - - - - - - - - - - - - - - 4 8 - - - - - 4 - - - 2 - - - - - 4 - - - 1 2 - - - - - - - - - - - - 8 - - - 8 2 - - - - - 1 -
- - - - 9 8 - - - - - - - - - - - 2 - - - 2 - 8 - - - - - 4 - - - - - - - - - - - - - - - - - - 4 - - - - - - - - - - - - - - - - - 1 - - - - 8 - - - - 2 - - -

δ4 - - - - - - - - - - - 4 - - - - 2 - - - 1 - - - - - - - - - - - - - - - 1 2 - - - - - - - - - - 4 - - - 2 - - - 2 - 8 - - - - - - - - - - - 4 - - - - - - - - -
- - - 1 - 4 - - - - - 2 - - - 1 - 8 - - - - - - - - 2 - - - - - 8 - - - - - 4 - - - - - 4 - - - - - - - - 9- -
- - 2 - - - 1 - - - - - 4 - - - - - - - - - - - - - - - - 4 8 - 1 - 4 - - - - - 2 - - - 1 - 8 - - - -

Table 7. The Difference Distribution in the first 320 bits after Extending One Round
from δ3 of the Table 6

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 5039 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 5096 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 5019 0 4984 4982 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 4982 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 5005 0 0 4953 0 0 4993 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 4942 4978 0 10000 4996 0

8 0 0 0 0 5089 0 0 0 0 0 0 0 0 0 0 0

9 0 10000 0 0 0 0 0 0 0 0 0 0 0 5011 0 0

A 0 0 10000 4925 0 5030 0 0 4971 0 0 0 0 0 0 0

B 0 0 0 5006 0 0 0 0 0 0 5068 10000 0 0 10000 0

C 0 0 0 0 5055 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0 0 0 0 0 0 4977 0 0

E 0 0 0 4984 0 10000 0 0 10000 0 0 0 0 0 0 0

F 0 0 0 4935 0 0 0 0 0 0 10000 0 0 0 0 0

10 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 10000 0 0

12 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 10000 0 0 0 0 0 0 0 0 0 5024 0 0

Differential Biases in Reduced-Round Keccak 85

Table 8. The δ3 of Table 6 with the difference bit in row 3, column 4 mapping to 11
in χ layer

- 8 - - - - - - - - - - - - - - - - - - -
- 1 -

δ3 - 8 -
- 2 - - - - - - - - - - - - - - - 2 -
- - - - - - - - - - 1 - 4 -

Table 9. The Difference Distribution in the first 320 bits after Extending One Round
from δ3 of the Table 8

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 5039 5027 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 5096 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 5019 0 4984 4982 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 4982 10000 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 5005 0 0 4953 0 0 4993 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 4978 0 10000 4996 0

8 0 0 0 0 5089 0 0 0 0 0 0 0 0 0 0 0

9 0 10000 0 0 0 0 0 0 0 0 0 0 0 5011 0 0

A 0 0 10000 4925 0 5030 0 0 4971 0 0 0 0 0 0 0

B 0 0 0 5006 0 0 0 0 0 0 0 10000 0 0 10000 0

C 0 0 0 0 5055 0 0 0 0 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0 0 0 0 0 0 0 4977 0 0

E 0 0 0 4984 0 10000 0 0 10000 0 0 0 0 0 0 0

F 0 0 0 4935 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0

11 0 0 5111 0 0 0 0 0 0 0 0 0 0 10000 0 0

12 0 0 0 10000 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 10000 0 0 0 0 0 0 0 0 0 5024 0 0

bit. Now, take a look into the DDT of the S-box as given in [13]. Notice that
for a single bit difference, there are only four possible outputs; each happens
with the probability 2−2. We found that the actual path taken in δ3 of Table 6
is not a single bit difference mapping to a single bit difference in all the cases.
The difference bit in row 3, column 3 (starting count with 0) of δ3 of Table 6
actually mapped to a two bit difference in the output. The corresponding δ3 is
shown in Table 7. With this δ3, we have performed experimentation with 10000
samples with one more round and Table 9 gives the number of output bits that
were different in the first 320 state bits. Now we see that state bit position 0x52
is always active. This is the case for all the state bits mentioned above as the
difference bits in near collision except the bit positions 0xC4 and 0xF3 where
bits were active for 50 percent times. Recall that in Property 5, we have stated
that if xi+1 is always different, then xi is balanced in the χ layer. If we look for
the next bit along the row for these two bit positions, we can see that both the
bit positions (0xC4+0x40=)0x104 and (0xF3+0x40=)0x133 are always active;

86 S. Das and W. Meier

hence bit positions 0xC4 and 0xF3 are balanced. Hence we can explain the near
collision found in [9].

7 Conclusion

We have analysed the propagation properties of Keccak constituent functions.
For low weight input differences this enables to derive a number of fixed or
strongly biased difference bits after two rounds. Combined with the concept of
double kernel [17] this leads to several differential distinguishers over four rounds
of Keccak. Some of these distinguishers are flexible enough to be extended via
the TDA algorithm in [10] to efficient differential distinguishers of the Keccak
hash function when reduced to six rounds, despite the quite low probabilities of
individual characteristics. We have discovered a few properties of Keccak that
contribute to a better understanding of this hash function. The results found in
this paper pose no threat to the security of full round Keccak.

Acknowledgement. We are grateful to the anonymous reviewers for their com-
ments that have helped to improve the presentation of this paper.

References

1. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. NIST Mailing List (2009)

2. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: CCS, Proceedings of the 1st ACM Conference on Computer
and Communications Security, pp. 62–73. ACM (1993)

3. Bernstein, D.J.: Second preimages for 6 (7?(8??)) rounds of keccak? NIST Mailing
List (2010)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak SHA-3 submis-
sion. Submission to NIST, Round 3 (2011)

5. Boura, C., Canteaut, A.: Zero-Sum Distinguishers for Iterated Permutations and
Application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011)

6. Boura, C., Canteaut, A., De Cannière, C.: Higher Order Differential Properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011)

7. Chang, S., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham,
L.E.: Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Compe-
tition (2012),
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/

Round3ReportNISTIR7896.pdf

8. Daemen, J., Van Assche, G.: Differential Propagation Analysis of Keccak. In: Can-
teaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 422–441. Springer, Heidelberg
(2012)

9. Dinur, I., Dunkelman, O., Shamir, A.: Improved Practical Attacks on Round-
Reduced Keccak. To appear in Journal of Cryptology

http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Round3ReportNISTIR7896.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Round3ReportNISTIR7896.pdf

Differential Biases in Reduced-Round Keccak 87

10. Dinur, I., Dunkelman, O., Shamir, A.: New Attacks on Keccak-224 and Keccak-
256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer,
Heidelberg (2012)

11. Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of
SHA-3 Using Generalized Internal Differentials. In: FSE 2013. LNCS (2013)

12. Duan, M., Lai, X.: Improved Zero-Sum Distinguisher for Full Round Keccak-f
Permutation. Cryptology ePrint Archive, Report 2011/023 (2011)

13. Duc, A., et al.: Unaligned Rebound Attack – Application to Keccak,
http://eprint.iacr.org/2011/420

14. Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Preimage attacks on the
round-reduced Keccak with the aid of differential cryptanalysis. Cryptology ePrint
Archive, http://eprint.iacr.org/2013/561.pdf

15. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-
reduced Keccak. In: FSE (2013), http://eprint.iacr.org/2012/546.pdf

16. National Institute of Standards and Technology. FIPS 180-1: Secure Hash Standard
(April 1995), http://csrc.nist.gov

17. Naya-Plasencia, M., Röck, A., Meier, W.: Practical Analysis of Reduced-Round
Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS,
vol. 7107, pp. 236–254. Springer, Heidelberg (2011)

18. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)

19. Rivest, R.L.: The MD5 message-digest algorithm. Request for Comments (RFC)
1320, Internet Activities Board, Internet Privacy Task Force (April 1992)

20. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

21. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

http://eprint.iacr.org/2011/420
http://eprint.iacr.org/2013/561.pdf
http://eprint.iacr.org/2012/546.pdf
http://csrc.nist.gov

Practical Distinguishers against 6-Round

Keccak-f Exploiting Self-Symmetry

Sukhendu Kuila1, Dhiman Saha2,
Madhumangal Pal1, and Dipanwita Roy Chowdhury2

1 Department of Mathematics, Vidyasagar University, India
{babu.sukhendu,mmpalvu}@gmail.com

2 Department of Computer Science and Engineering, IIT Kharagpur, India
{dhimans,drc}@cse.iitkgp.ernet.in

Abstract. Thispaperpresentsnewdistinguishers againstKeccak-f [1600]
permutation reaching up to 6-rounds. The main intuition is to exploit the
self-symmetry of the internal state of Keccak. Formal analysis reveals that
the proposed distinguisher can penetrate up to 3 rounds and the penetra-
tion depends only on the hamming weight of the round-constant of the
initial round. New strategies developed in this work, when combined,
are shown to distinguish up to 5-rounds with a probability of 1 using
a single query. Finally, the extension to 6-rounds with a complexity of
211 gives us the most efficient 6-round distinguisher reported in litera-
ture. All claims and formal arguments conform to the results obtained
by extensive experimentation.

Keywords: distinguisher, keccak, hash function analysis, internal dif-
ferentials, self-symmetry.

1 Introduction

In the last 5 years, the cryptographic community has seen remarkable progress
in the design and analysis of hash functions and the credit mainly goes to the
introduction of the SHA-3 contest by NIST following the concerns over the secu-
rity flaws in SHA-1 and SHA-2. The contest declared 5 finalists and in October
2012 announced KECCAK as the next SHA-3 standard. The hash function
Keccak [3], has a permutation based internal function and employs the sponge-
construction [2] as the mode of operation. Keccak has shown great strength
against all classical and state-of-the-art cryptanalytic techniques. So far we have
seen several directions on the cryptanalysis of Keccak. By exploiting low al-
gebraic degrees of Keccak, attacks such as [9,1] have been reported. While [9]
requires very high time complexity, [1] requires heavy memory overhead along
with marginally less than brute-force time complexity. Classical differential prop-
agation in Keccak internal permutation has been done by the designers in [5].
Another direction to cryptanalyze Keccak is based on some heuristic methods.
Here the attack is conducted on experimental basis. In such an attack [13], SAT-
SOLVER was used to obtain second-preimages on Keccak. Similarly another

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 88–108, 2014.
c© Springer International Publishing Switzerland 2014

Practical Distinguishers against 6-Round Keccak-f 89

heuristic approach showing collision attack which exploits differential as well
as algebraic properties was given by Dinur et al. using the Target Difference
Algorithm [7]. There have been attempts to analyze Keccak by also exploiting
structural properties such as Cube attack in [11]. Rotational cryptanalysis [12]
and internal differential cryptanalysis [6] have also emerged to be powerful tools
in the analysis of Keccak. The attacks reported on Keccak can be broadly classi-
fied into three types, namely, pre-image, collision and distinguishing attacks. In
this paper, we deal with the third type of attack that aims at distinguishing the
Keccak internal permutation function from a truly random permutation, thereby
showing non-random behavior.

Most of the previous cryptanalysis results on Keccak that try to distinguish
it are based on finding high probability differential paths [14,10]. In this respect,
internal differential attack [15] is a relatively new type of cryptanalytic method
extensively used in [6] for Keccak. Here also the main focus is to obtain subset
characteristic which holds with high probability. On the other hand, in [12],
rotational cryptanalysis is applied on Keccak which does not require any differ-
ential or rotational path. The only deterministic cryptanalysis which does not
require any differential path/subset characteristic is zero-sum distinguisher [8].
However, the complexity of the distinguishing attack is very high. In this paper
we first develop a distinguisher that requires a single query to the permutation
oracle to succeed. Later, we augment it with some other strategies to reach a
higher number of rounds. This work is primarily based on the evolution of self-
symmetry through each round of the Keccak permutation. The idea of exploiting
the internal relations of a state was introduced by Peyrin [15] in Crypto 2010 and
generalized by Dinur [6] et al. in FSE 2013. However, in [6], the authors exploit
the property to find characteristic which lead to collision attacks. To the best of
our knowledge, our work is the first attempt to use the self-symmetry property
to devise distinguishers against Keccak. A comparison with other contemporary
distinguishing attacks on Keccak is given in Table 1. Our main contribution can
be summarized as follows:
– Formalize the existence of self-symmetric properties through any 3-rounds

of Keccak and use it to devise the basic distinguisher which works with a
single query.

– Extend the self-symmetric property probabilistically to augment the basic
distinguisher by using a special property of the θ-operation in the Keccak
round function.

– Exploit the structural properties of Keccak permutation, to find an elegant
state construction technique which extends the distinguisher one more round
with the same complexity.

– Finally, we simplify the Target Internal Difference Algorithm [6] proposed
by Dinur et. al., to further extend the attack to 6-rounds.

– Distinguishers up to 5-rounds succeed with a probability 1 and the 6-round
distinguisher works with a theoretical complexity of 211.

The rest of the paper is organized as follows: The basic notations and defi-
nitions are given in Section 2. The different distinguishing strategies developed

90 S. Kuila et al.

Table 1. Summary of distinguishing attacks on Keccak

Reference Exploiting property Rounds Complexity

[8] Zero sum 24 21579

[14] Differential path 4 225 + 2N,N ≥ 1

[12] Rotational symmetry 4 28.6

[10] Differential path 4 22

Our Self-symmetry 4 Single Query

[12] Rotational symmetry 5 212

[10] Differential path 5 28

Our Self-symmetry 5 Single Query

[10] Differential path 6 232

Our Self-symmetry 6 211

are illustrated individually in Section 3. The experimental results showcasing
the attacks are detailed in Section 4. Section 5 gives the concluding remarks.

2 Notations

In this work we consider the largest variant of the Keccak-f permutation i.e.,
Keccak-f [1600] and denote it by K, Kn signifying n rounds of Keccak where
1 ≤ n ≤ 24. The entire state, denoted by S, is visualized as a collection of 64
ordered slices1, 64 being the lane-size. We next introduce concept of a substate
followed by the definition of an index which is vital in modeling the type of
symmetry that a given state S exhibits.

Definition 1. A Substate2 (σ) of the Keccak-f [1600] state S is a collection of
n consecutive slices such that n|64.

Definition 2. A 1600-bit Keccak state S is called Self-Symmetric (Sη), if all
its substates are equal. This precludes that the substates must be equal-sized. The
size of each-substate (i.e, the dimension in z-axis) is denoted by η. It is clear that
η | 64 and so η ∈ {1, 2, · · · , 32}. For a self-symmetric state, for each substate
(σi), i ∈ {0, 1, · · · , 64η − 1}, we have (σ0 = σ1 = · · · = σ 64

η −1). The parameter η

is called the Self-Symmetry Index. For arbitrary self-symmetric state Sη

Sη =

64/η∣∣∣∣∣∣
i=1

σi, where

{
σ0 = σ1 = · · · = σ64/η−1

σi
R←− U25×η∣∣∣∣∣∣ is the concatenation operator. Un represents a Uniform Distribution of all

possible 2n strings over {0, 1}n. The co-ordinate relation between the state and
the substates is as follows:

1 The definition of a slice is consistent with the Keccak submission document and is
defined as a 5× 5 matrix of bits.

2 The concept of a substate is similar to the concept of Consecutive Slice Sets given
by Dinur et al. in [6].

Practical Distinguishers against 6-Round Keccak-f 91

S(x, y, z) = σ� z
η �(x, y, z mod η)

It follows from Definition 2 that for a fixed η, we can have 225×η possible self-
symmetric states. The set {Sη} represents the set of all self-symmetric states with
Self-Symmetry Index = η. One can note that η actually signifies the granularity
of the self-symmetry available in the entire state of Keccak-f permutation.

Definition 3. Self-Symmetry Class (ωx,y,z) of a state Sη refers to the set of
points in the same lane (x, y), {(x, y, z1), (x, y, z2), . . . , (x, y, z 64

η
)} ∈ Sη whose

z-coordinates form the residue class z modulo η i.e, (z1 ≡ z2 ≡ · · · ≡ z 64
η

≡ z

mod η). It is clear that each point in a fixed ωx,y,z comes from a different substate
and consequently |ωx,y,z| = 64

η .

ωx,y,z = {(x, y, z′) ∈ Sη|z′ ≡ z mod η}, where

{
x, y ∈ {0, 1, · · · , 4},
z ∈ {0, 1, · · · , η − 1}

In this work we study the behavior of these Self-Symmetry Classes under the
influence of Keccak round operations. Moreover, we are interested in all values
of η, as it magnifies our degrees of freedom. We can now bring into the picture,
the well-known idea of internal difference which is the basis of the distinguisher
proposed in this paper.

Definition 4. The Internal Difference (Δi,j) of a state is the point-wise
XOR of its substates σi and σj :

Δi,j = Δj,i = σi ⊕ σj , where

{
i �= j,

i, j ∈ {0, 1, · · · , 64η − 1}

For a Self-Symmetric State, Δi,j = 0, ∀(i, j)

Definition 5. The quantity pηx,y(z, z
′) is the probability that for the pair of sub-

states
(
σ� z

η �, σ� z′
η �
)

where z �= z′, we have σ� z
η �(x, y, zmod η) = σ� z′

η �(x, y, z
′

mod η). i.e., the internal difference Δ� z
η �,� z′

η �(x, y, zmod η) = 0.

pη
x,y(z, z

′) = Pr[σ	 z
η

(x, y, z mod η) = σ
	 z′

η

(x, y, z′ mod η)], where

{
x, y ∈ {0, 1, · · · , 4},
z, z′ ∈ {0, 1, · · · , 63}

Definition 6. A Symmetric-Pair (x, y, z, z′)η is a pair of co-ordinates
{(x, y, z), (x, y, z′)} at which the internal symmetry of the initial state (Sη) is
still 3 preserved. For all symmetric-pairs (x, y, z, z′)η of a state, pηx,y(z, z

′) = 1.
Each point of a symmetric-pair is called a Symmetric-Point and is denoted
by (x, y, z)s.

3 It could have been that due to the cumulative effect of the Keccak internal operations,
the point had lost its symmetry.

92 S. Kuila et al.

For a self-symmetric state, any pair of points belonging to the same self-
symmetry class will form a symmetric-pair i.e., for Sη, pηx,y(z, z

′) = 1 ∀{(x, y, z),
(x, y, z′)} ∈ ωx,y,zmod η.

Definition 7. The Kernel (Cη
n) of a state is the set of all symmetric-pairs of

the state after n rounds of Keccak permutation i.e., ∀{(x, y, z), (x, y, z′)} ∈ Cη
n,

pηx,y(z, z
′) = 1.

Later in the paper we furnish theoretical analysis on the existence of such
Kernels and then devise ways to find them for different rounds of Keccak. We
next give a measure of the asymmetry exhibited by a state. This helps us to
capture the asymmetry induced in a state by the various operations in the Keccak
permutation. In the next section we develop a formal argument to quantify the
dispersion of the asymmetry in a single Keccak round.

Definition 8. The Asymmetry of a state S, denoted by N η
a , is the cardinal-

ity of the set of co-ordinates which do not belong to any symmetric-pair. For
such a point (x, y, z) of the state, pηx,y(z, z

′) = 0 w.r.t to any symmetric-point
(x, y, z′)s which belongs to the same self-symmetry class i.e,. {(x, y, z), (x, y, z′) ∈
ωx,y,zmod η}.

N η
a (S) =

∣∣A∣∣, where A = {(x, y, z) : pηx,y(z, z′) = 0, ∀(x, y, z′)s ∈ ωx,y,z mod η}

0

1

2

3

(4,4,0)

(4,4,16)

(4,4,32)

(4,4,48)(4

Fig. 1. A self-symmetric state with η = 16

The relation between a self-symmetric state and its substates and the concept
of the self-symmetry classes is illustrated in Fig. 1. Here we see a self-symmetric
state with η = 16. There are (64η) = 4 substates σi. Four points are highlighted
to convey that they belong to the same self-symmetry class ω4,4,0.

Practical Distinguishers against 6-Round Keccak-f 93

3 Distinguishing Strategies Exploiting Self-Symmetry

Distinguishing attacks try to characterize the output distribution of a crypto-
graphic construction. In the ideal setting, the output of a cryptographic primitive
(F) is said to be pseudorandom if it is impossible to distinguish in polynomial
time between interactions with F and interactions with a truly random permu-
tation. Thus, the primary aim of distinguishing attacks is to nullify this claim by
showing that the output of F is non-random. In this work, we try to devise dis-
tinguishers against various round-reduced versions of the Keccak permutation.
In order to do so we exploit various properties of the Keccak round functions
to develop three new strategies and modify an existing one. Combining these
strategies together we are able to distinguish up to 6-rounds of Keccak. Interest-
ingly most of the distinguishers succeed with a probability 1 using only a single
query. In the next subsections we illustrate all the strategies one by one.

3.1 The Kernel Strategy

The Kernel strategy is the most important weapon that helps us to penetrate
any three rounds of Keccak. It exploits the self-symmetry available in an initial
state. In particular, it tries to track how the symmetry of a state changes as it
passes through different rounds of the Keccak permutation. We, first, give formal
arguments on quantifying the diffusion of asymmetry in one round of Keccak.

Analysis of Diffusion of Asymmetry in One Round of Keccak. We now
analyze how different operations of the Keccak-f contribute in dispersing the
asymmetry at the input to the output of a single round.
– theta (θ) : The operation θ has a maximum diffusion of 11, so it disperses

the asymmetry at its input to a maximum of 11 times.
– rho and pie (ρ, π) : The mappings ρ, π only translate the bit positions and

hence the number of asymmetric bits remains the same.
– chi (χ) : The maximum diffusion of χ is 3. We measured the average diffusion

of χ using computer experiments by observing the hamming weight of output
difference of χ for 1-bit change in the input. The average diffusion of χ can
be computed from Table 2 as : 1×40+2×80+3×40

40+80+40 = 320
160 = 2. So, after χ the

number of asymmetric bits can increase by a factor of 2 on an average.
– iota (ι) : The final contribution to the asymmetry comes from ι which in-

creases it by the hamming-weight of the round constant for a given round.
The above analysis reveals the following property that gives a recurrence relation
to model the spread of asymmetry between two consecutive rounds of Keccak.

Table 2. Diffusion table for χ for 1-bit input difference

Diffusion(# of bits) 1 2 3

Count 40 80 40

94 S. Kuila et al.

Property 1. The asymmetry of a self-symmetric state after the ith round of
Keccak can be expressed in terms of the asymmetry after the (i − 1)th round by
the following recurrence relation:

N η
a (Ki(Sη)) ≤ N η

a (Ki−1(Sη))× 22 + hi, (1)

where hi is the hamming-weight(HW) of the round-constant for the ith round
and initial condition is N η

a (Sη) = 0.

Analysis: First, let us verify the initial condition of the recursion.

N η
a (Sη) = 0 [Sη is a self-symmetric state]

The rest of the formalization follows from the analysis furnished in subsection
3.1 which leads us to the following derivation:

N η
a (Ki(Sη)) = N η

a (ι ◦ χ ◦ ρ ◦ π ◦ θ(Ki−1(Sη))

≤ N η
a (ι ◦ χ ◦ ρ ◦ π(Ki−1(Sη))× 11 [∵ Max. diffusion of θ is 11]

= N η
a (ι ◦ χ(Ki−1(Sη))× 11 [∵ Diffusion of ρ, π is 0]

≈ N η
a (ι(Ki−1(Sη))× 11× 2 [∵ Avg. diffusion of χ is 2]

= N η
a ((Ki−1(Sη))× 22 + hi �

Remark. The positions of non zero bits in round constants are fixed. So all
the N η

a (Ki(S)) symmetry disturbing positions remain fixed and consequently
symmetry preserving positions also remain fixed. These symmetry preserving
positions constitute the Kernel of the state defined earlier and play a central
role in devising distinguishers that succeed with a single query. It is important
to note that the above bound is not a strict bound as we are considering the
average diffusion in case of χ. However, we later show that it suffices to consider
the average case and is also supported well by experimental evidence.

Property 2. The self-symmetric property of a state is destroyed4 after 4 rounds
of Keccak permutation.

Analysis: This property becomes evident by unraveling the recurrence in (1).

N η
a (Ki(S)) ≤ N η

a (Ki−1(S)) × 22 + hi

= N η
a [N η

a (Ki−2(S)) × 22 + hi−1]× 22 + hi

= N η
a [N η

a (Ki−2(S)) × 222] +N η
a (hi−1)× 22 + hi

= N η
a (Ki−2(S)) × 222 + hi−1 × 22 + hi

The first term is the most dominant term of the recurrence and grows by 22 times
in every round. It is clear that further unraveling of the recursion would imply
that more than 1600 bits of the state have been rendered asymmetric due to
the dominant term alone. Consequently, the state looses its entire self-symmetry
and hence, the self-symmetry will no longer hold deterministically. �
4 It can be noted that this property holds strictly even while considering the average
case.

Practical Distinguishers against 6-Round Keccak-f 95

Remark. The converse of Property (2) implies that in the average case the
self-symmetry of an initial state holds deterministically for at least 3 rounds of
the Keccak permutation. This property is used in the construction of 3-round
distinguishers against Keccak that hold with a probability of 1.

With all necessary tools in place we are now ready to introduce the basic
distinguisher that utilizes the Kernel. We first describe the basic technique.

The Distinguishing Algorithm Using The Kernel.

1: procedure Distinguisher(P(S), η, n) � S R←− {Sη}
2: Load the Kernel Cη

n

3: Select any symmetric-pair (x, y, z, z′)η ∈ Cη
n

4: Compute pηx,y(z, z
′)

5: if pηx,y(z, z
′) = 1 then

6: return 1
7: end if
8: Repeat steps 3-7 to increase probability of success
9: end procedure

Based on the above algorithm we formally define the distinguisher as follows:

Definition 9. Let Cη
n be the Kernel after n-rounds of Keccak and D be a

polynomial-time distinguisher which takes as input the output of a permutation.
D returns 1 if and only if for any randomly selected symmetric-pair (x, y, z, z′)η ∈
Cη
n, we have pηx,y(z, z

′) = 1. Now if R be a random permutation, then the distin-
guishing probability of D for n-rounds of Keccak permutation is given by∣∣∣Pr[D(Kn(Sη)) = 1]− Pr[D(R(Sη)) = 1]

∣∣∣ (2)

For the random-permutation R, the probability of D returning 1 is

Pr[D(R(Sη)) = 1] =
1

2
(3)

In the previous section we furnished theoretical claims about the existence
of the Kernel for 3 rounds of Keccak. In the next subsection we experimentally
show that for n = 3, 4, 5 |Cη

n| � 0 i.e.,

Pr[D(Kn(Sη)) = 1] = 1 (4)

Hence for n = 3, 4, 5, the advantage of the distinguisher D can be obtained by
substituting values from Equations (3) and (4) in Equation (2).

Adv(D) = 1− 1

2
(5)

It is interesting to note that Equation (5) gives the least value of the adversarial
advantage. Since, |Cη

n| � 0, the adversary could verify the hypothesis for a

96 S. Kuila et al.

different symmetric-pair from the Kernel, thereby, increasing its probability of
success. Thus, actual advantage of the distinguisher in terms of the number of
symmetric-pairs it checks for is given by

Advr
(D) = 1−

(
1

2

)r

,where r is the number of distinct symmetric-pairs (6)

The adversarial advantage Advr
(D) → 1, as r increases. This justifies why the

proposed distinguishers succeed with a probability very close to 1 using a single
query only. We now illustrate the technique of finding any Kernel Cη

n.

Finding the Kernel. Here we show a procedure to ascertain the symmetric-
pairs that maintain the self-symmetry of an initial state(Sη) after n rounds of
Keccak permutation. This is an one-time overhead on the part of the adversary.
The procedure is illustrated below. We randomly select aroundm self-symmetric
states Sη. For each state we apply the Keccak permutation for n rounds. We
compute internal-differences for all possible combinations of substates. We then
find pairs of points {(x, y, z), (x, y, z′)} belonging to the same self-symmetry class
ωx,y,zmod η such that the probability pηx,y(z, z

′) = 1. We store these points for
each iteration of the algorithm in a set. At the end we take an intersection among
all the sets. The resulting set constitutes the symmetric-pairs and is the desired
Kernel for the self-symmetry index η after n rounds. It is important to take
the intersection over m-sets because it eliminates the noisy pairs of points i.e.,

{(x, y, z), (x, y, z′) | pηx,y(z, z′)
R←− {0, 1}}. It has been experimentally verified

that a value of m = 30 suffices to extract the actual Kernel.

1: procedure FindKernel(η, n)
2: for k = 1 : m do � m ≈ 30 (verified experimentally)

3: Sη R←− {Sη}
4: Obtain Kn(Sη)
5: Compute Δi,j ∀ (σi, σj) ∈ Kn(Sη).
6: I(k) = {{(x, y, z), (x, y, z′)} ∈ ωx,y,zmod η | pηx,y(z, z′) = 1}
7: end for

8: return Cη
n =

m⋂
k=1

I(k)

9: end procedure

We now enlist some interesting properties of Kernels inferred experimentally.
These properties are consistent with the theoretical analysis covered in the pre-
vious section of this work.
– The size of a Kernel is fixed for a particular value of η.
– Kernel size decreases as one increases the number of rounds. In particular

after 3-rounds Kernel-size reduces to zero which conforms to Property (2).
Remark. To find the Kernels for n > 3, we run Keccak permutation starting
from the (n− 2)th round to the nth round.

– Kernels for lower values of η are supersets of Kernels for higher values i.e.,
Cη1
n ⊂ Cη2

n , if η1 > η2

Practical Distinguishers against 6-Round Keccak-f 97

Table 3. Kernel-sizes for different rounds and self-symmetry indices

Kernel-Size : |Cη
n|

η n = 3 n = 4 n = 5

1 12855 1017 109

2 6242 631 95

4 3002 266 69

8 1355 147 44

16 532 20 12

32 161 3 0

Table 3 gives the sizes of the Kernel for each value of η and for round n = 3, 4, 5.
It is important to note that by Property (2) an n-round Kernel works only if
the input to (n − 2)th round is self-symmetric. This implies that for a 5-round
Kernel, the input to the 3rd-round must be self-symmetric. Later in this work, we
develop strategies that help to achieve this requirement. The Kernel along with
these methods helps in devising distinguishers against K4 and K5 that require
a single query to succeed. Interestingly, the Kernel can also be extended in the
forward direction using a property that is detailed in the next subsection.

3.2 The Quartet Strategy

The Quartet strategy is an interesting technique that helps to probabilistically
extend any n-round Kernel distinguisher to (n + 1) rounds. The extension to
the (n + 1)th round exploits the Kernel Cη

n and a particular property of the
θ operation. The strategy is detailed below. We consider two symmetric-pairs
{(p1, p2), (p3, p4)} ∈ Cη

n which satisfy the condition that (p1, p3) and (p2, p4)
belong to the same columns respectively. Thus the points p1, p2, p3, p4 are of the
following form :

{p1 = (x, y1, z1), p2 = (x, y1, z2)} ∈ ωx,y1,z

{p3 = (x, y2, z1), p4 = (x, y2, z2)} ∈ ωx,y2,z

}
where z1 ≡ z2 ≡ z mod η

A pictorial representation of a quartet is given in Fig. 2. Our aim is to track
the behavior of the quartet (p1, p2, p3, p4) through the (n + 1)th round of the
Keccak permutation. In particular, we are interested in finding out the value of
p1 ⊕ p2 ⊕ p3 ⊕ p4 after the round. Our primary intuition is that the distribution
of the variable X = K(p1)⊕K(p2)⊕K(p3)⊕K(p4) is non-random. Here, K(pi)
refers the value of π ◦ ρ(pi) after the (n+ 1)th round. In order to prove this we
use the following property of the θ-transformation:

Property 3. The symmetric-difference of the values of the points belonging to
the same column is not affected by the θ-transformation. If pi = (x, yi, z), pj =
(x, yj , z), i �= j, then

θ(pi ⊕ pj) = pi ⊕ pj

98 S. Kuila et al.

2,3,z

2,1,z

Fig. 2. A typical quartet (p1, p2, p3, p4) ∈ Cη
n

This property is evident from the fact that θ affects all points in the same
column in the same way i.e., it will either invert all of them or none of them.
Thus the difference between points in the same column is preserved. Now, let us
look at our quartet (p1, p2, p3, p4). Based on Property (3) we have :

θ(p1 ⊕ p3) = p1 ⊕ p3

θ(p2 ⊕ p4) = p2 ⊕ p4

Also, since (p1, p2) and (p3, p4) are symmetric-pairs from Cη
n, by virtue of the

n-round Kernel distinguisher the following will hold for Kn with a probability 1.

Pr[p1 ⊕ p2 = 0] = 1

Pr[p3 ⊕ p4 = 0] = 1
(7)

We next analyze the effect of the (n+1)th round on the value of the variable
X by looking at all the internal transformations individually:
1. θ-transformation : The θ-transformation preserves the value of the expres-

sion p1 ⊕ p2 ⊕ p3 ⊕ p4.

θ(p1)⊕ θ(p2)⊕ θ(p3)⊕ θ(p4) = θ(p1)⊕ θ(p3)⊕ θ(p2)⊕ θ(p4)

= θ(p1 ⊕ p3)⊕ θ(p3 ⊕ p4)

= p1 ⊕ p2 ⊕ p3 ⊕ p4 [By Property (3)]

2. π and ρ-transformations : π and ρ have no effect on the value of p1 ⊕
p2 ⊕ p3 ⊕ p4. They just permute the position of each pi. So now we look at
the value of the positions p′i = π ◦ ρ(pi).

π ◦ ρ(p1)⊕ π ◦ ρ(p2)⊕ π ◦ ρ(p3)⊕ π ◦ ρ(p4) = p′1 ⊕ p′2 ⊕ p′3 ⊕ p′4
[Value unchanged |p′i| = |pi|]

3. χ-transformation : χ which is the only non-linear transformation will prob-
abilistically preserve the value of each p′i i.e., each pi. Let the probability of

Practical Distinguishers against 6-Round Keccak-f 99

χ to preserve the value of bit be t. Then we have :

Pr[χ(p′1) = p′1 & χ(p′2) = p′2 & χ(p′3) = p′3 & χ(p′4) = p′4] = t4

From the Difference Distribution Table (DDT) of χ, we computed the value
of t in the following way: For all values of a bit variable x = b0b1b2b3b4
we computed χ(x) = χ(b0b1b2b3b4) = b′0b

′
1b

′
2b

′
3b

′
4. Then we computed the

probability5 Pr[bi = b′i] =
3
4 .

4. ι-transformation : ι can be safely ignored since ι ◦ ι gives the identity
transformation. Thus applying ι on K would nullify its effect.

Now let us look at the probability that the random-variable

[
4⊕

i=1

K(pi)

]
= 0

Pr

[
4⊕

i=1

K(pi) = 0

]
= Pr [K(pi) = pi, ∀pi] + Pr [K(pi) = pi, for exactly a single pair (pi, pj)]

+ Pr [K(pi) �= pi, ∀pi]

= t4 +
(4
2

)
t2(1 − t)2 + (1 − t)4

= 0.53125 [Substituting value of t]

Now, if we would be dealing with a random permutation R, then we would
have Pr[

⊕4
i=1 R(pi) = 0] = 1

2 . We now get the theoretical value of the adversarial
advantage as follows:

Adv(D) =
∣∣∣Pr[D(Kn+1(Sη)) = 1]− Pr[D(R(Sη)) = 1]

∣∣∣ = 0.53125− 1

2
(8)

Equation (8) verifies our intuition that the distribution of the variable X =
K(p1) ⊕ K(p2) ⊕ K(p3) ⊕ K(p4) is non-random. Thus given an n-round Kernel,
we can search for a quartet {pi ∈ Cη

n, i = 1, 2, 3, 4}. If found, we can devise
an (n + 1)-round distinguisher by looking at the distribution of the variable
(p′1 ⊕ p′2 ⊕ p′3 ⊕ p′4) where p

′
i = π ◦ ρ(pi) over a reasonable number of queries. A

concrete lower bound for the number of queries can be expressed in the form of
the following inequality given by Chernoff bound [4] :

q ≥ 1

Adv (D)2
ln

1√
ε

where ε→ Error bound (9)

The typical value for ε = 0.05. From Equation (8) and Chernoff inequality (9),
we get q ≥ 1534 ≈ 211. Thus the theoretical complexity of any quartet based
distinguisher is around 211.

3.3 Self-Symmetric State Construction (SSC)

The SSC strategy when used in conjunction with the Kernel strategy can pen-
etrate any four rounds of Keccak. As stated earlier, the Kernel strategy can

5 We mean to say that Pr[b0 = b′0] = Pr[b1 = b′1] = Pr[b2 = b′2] = Pr[b3 = b′3] =
Pr[b4 = b′4] =

3
4
.

100 S. Kuila et al.

deterministically distinguish any three rounds of Keccak and solely depends
on the self-symmetry of the initial state. The SSC technique generates states
that become self-symmetric after one round i.e., it produces states X such that
K(X) = Sη, and is applicable for any round of Keccak. Hence, if we prepend SSC
before the Kernel strategy, we get (n+ 1)-round distinguisher from an n-round
distinguisher. Before describing the technique, we define a function (φ), that
modifies a state at specific points to get another state which is self-symmetric,
following certain constraints.

Definition 10. Let us consider a self-symmetric state Sη
1 and let Sη

1 (ci,j), where
(0 ≤ i ≤ 4) and (0 ≤ j ≤ 63) denote the ith column in the jth slice of Sη

1 . Also let
par (Sη

1 (ci,j)) denote the parity of the column Sη
1 (ci,j). The function φ is defined

as follows:

φ(Sη
1) = Sη

2 , where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sη
2 (x, y, z) = s, s

R←− {0, 1} if Sη
1 (x, y, z) = 0, ∀(x, y) for a particular z

otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sη
2 (x, y, z) = Sη

1 (x, y, z) if Sη
1 (x, y, z) = 1 ∨ x = y,

otherwise Sη
2 (x, y, z) = s, s

R←− {0, 1},
such that⎧⎪⎨⎪⎩

par (Sη
2 (ci,j)) − par (Sη

1 (ci,j)) ≡ 0 (mod2)∀(i, j)
or

par (Sη
2 (ci,j)) − par (Sη

1 (ci,j)) ≡ 1 (mod2)∀(i, j)

Our basic aim is to construct states S for which K(S) becomes self-symmetric.
Since all the operations θ, ρ, π, χ preserve self-symmetry except ι, the problem
reduces to finding states which when applied to θ, ρ, π, χ give states which are
symmetric except the bit positions where ι is supposed to act. We split the prob-
lem into smaller and relatively simpler sub-problems by exploiting the properties
of θ and χ. An abstract form of the algorithm is given below:

1: procedure SSC(η)
2: Compute fixed states A,B each of which is 1600-bit
3: Generate state C, such that C = φ(B)
4: Compute (A⊕ C) is the desired state i.e., K(A ⊕ C) = Sη

5: return State (A⊕ C)
6: end procedure

The computation of the fixed states A,B is illustrated next. Though this
method can be generalized for any η ∈ {1, 2, 4, 8, 16, 32} and any intermediate
round, for simplicity, we limit our discussion to the first round and find states
with η = 1. The primary intuition to get self-symmetric state after first round
is to analyze what happens as we go backward one round from a self-symmetric
state. So we first look at the five operations of Keccak permutation ι, χ, ρ, π, θ
reversely. Here we recall that the only symmetry disturbing operation is ι and
the Hamming-weight of the round-constant in first round is 1.

Since ι in first round acts only on bit-position (0, 0, 63), any self-symmetric
state remains self symmetric after χ−1 except for the row (∗, 0, 63). This is
because χ acts independently on rows. The row (∗, 0, 63) and the correspond-
ing symmetric positions (for η = 1, all the rows (i, 0, j);i = 0, 1, 2, 3, 4; j =
0, 1, · · · , 62) at the input of χ are assigned specific values represented by
five-bit vectors aj (j = 0, 1, · · · , 63) such that a0 = a1 = · · · = a62 �= a63.

Practical Distinguishers against 6-Round Keccak-f 101

Let χ(aj) = bj , then it follows that b0 = b1 = · · · = b62 �= b63. Now if ak and
a63 (k �= 63) differ in i (i ≤ 5) positions (strictly including MSB position) these
i positions are called asymmetric bits while remaining (5− i) fixed bits of the
row are called fixed symmetric bits. Note here that we gain many degrees of
freedom as we can choose any ak’s satisfying the above conditions. However,
for the sake of compact representation, we look more into χ function and ob-
serve that there exist four value pairs (a0, a63) for which (a0, a63) differ in 0th

position and corresponding (b0, b63) also differ in 0th position. The values are
given in Table 4. When going backward, if we denote the state just after χ−1

as S then S has the property that it is any self-symmetric state except for row
(∗, 0, 63) which is assigned the value of the fixed five-bit vector a. π−1 and ρ−1

just permute the positions of bits of S with their values unaltered. When going
through π−1, ρ−1 we track the positions of asymmetric i bits as well as (5 − i)
fixed symmetric bits which were situated in row (∗, 0, 63) of the state S. Let
π−1 ◦ ρ−1(S) = S′. We now split S′ into two states : fixed asymmetric state
(A1) and fixed symmetric state (B1) such that S′ = A1 ⊕ B1. The state A1 is
formed by taking an all-zero state and then overwriting it with the i asymmetric
bits in their respective positions. State B1 is the concatenation of 64 identical
slices and each slice consists of (5 − i) fixed symmetric bits maintaining their
positions and remaining bits are filled with 0′s. By inspecting the operation π−1,
we observe that 0th row of any slice in S comes into the diagonal positions of
the corresponding slice of the state S′. Finally, we see the effect of θ−1:

∴ θ−1(S′) = θ−1(A1 ⊕B1)

= θ−1(A1)⊕ θ−1(B1)

= A⊕B

Since A1 is a fixed state we can easily compute A = θ−1(A1) and store the
states A which will be utilized later. Since θ (consequently θ−1) is translation-
invariant so self-symmetry of B1 is preserved in B. We next try to construct
symmetric states Cj from B such that B ⊂

⋂
j Cj and B1 ⊂

⋂
j θ(Cj). Here our

main intention is to construct any self-symmetric state which consists of fixed
rows whose Hamming weight is non zero. Consequently, we have to construct
states such that when θ is applied to the state, it does not disturb the values of
the fixed row in B1. This property will hold if the parity of all the columns of
(Cj ⊕ B)∀j is either even or odd. Herein, comes the application of function φ
defined earlier which ensures this property of states Cj . Since in this example,

Table 4. Input and output pairs for χ that differ only in MSB

Input pair Output pair

00001 & 10001 00101 & 10101

00011 & 10011 01011 & 11011

00101 & 10101 10001 & 00001

00111 & 10111 10111 & 00111

102 S. Kuila et al.

η = 1, all slices of C becomes identical and hence degrees of freedom lies in
how many distinct states Cj can be obtained applying the concept of φ on a
single slice of B. For larger values of η, larger number of distinct states Cj can
be obtained from fixed state B because φ can then be applied on η number of
consecutive slices. So by precomputing A and B, one can easily construct C and
consequently get (A⊕C) which becomes self-symmetric after the first round of
Keccak. The following instance illustrates the construction of such a state.

Table 5. Generation of one-round self-symmetric state (Here, C = φ(B))

(a)
B(Slice)
0 1 0 1 0
0 0 0 1 0
0 1 1 1 0
0 1 0 0 0
0 1 0 1 0

(b) State A

EBC69AF135E26BC4 7134BC4D789AF135 CD79135E26BC4D78 DE26D789AF135E26 09ABE26BC4D789AF
EBC69AF135E26BC5 7134BC4D789AF135 CD79135E26BC4D78 DE26D789AF135E26 09ABE26BC4D789AF
EBC69AF135E26BC5 7134BC4D789AF135 CD79135E26BC4D78 DE26D789AF135E26 09ABE26BC4D789AF
EBC69AF135E26BC5 7134BC4D789AF135 CD79135E26BC4D78 DE26D789AF135E26 09ABE26BC4D789AF
EBC69AF135E26BC5 7134BC4D789AF135 CD79135E26BC4D78 DE26D789AF135E26 09AFE26BC4D789AF

(c)
C(Slice)
0 1 0 1 0
1 0 0 1 0
1 1 1 1 0
1 1 1 0 0
1 1 1 1 0

(d) State (C ⊕ A)

EBC69AF135E26BC4 8ECB43B287650ECA CD79135E26BC4D78 21D9287650ECA1D9 09ABE26BC4D789AF
1439650ECA1D943A 7134BC4D789AF135 CD79135E26BC4D78 21D9287650ECA1D9 09ABE26BC4D789AF
1439650ECA1D943A 8ECB43B287650ECA 3286ECA1D943B287 21D9287650ECA1D9 09ABE26BC4D789AF
1439650ECA1D943A 8ECB43B287650ECA 3286ECA1D943B287 DE26D789AF135E26 09ABE26BC4D789AF
1439650ECA1D943A 8ECB43B287650ECA 3286ECA1D943B287 21D9287650ECA1D9 09AFE26BC4D789AF

(e) K(C ⊕ A) ∈ {S1}
0000000000000000 FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF 0000000000000000 0000000000000000 0000000000000000 FFFFFFFFFFFFFFFF
0000000000000000 0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 FFFFFFFFFFFFFFFF
0000000000000000 0000000000000000 0000000000000000 FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000 FFFFFFFFFFFFFFFF 0000000000000000

Table 5 depicts a typical example of the message construction. Here, states
A,B are pre-computed. Since state B is self-symmetric with η = 1, it is rep-
resented using a single slice. State C is randomly generated from State B fol-
lowing function φ. After applying the first round of Keccak on C ⊕ A we get a
self-symmetric state with η = 1. Based on SSC, we give the following definition:

Definition 11. An One-Symmetric State (Sη) is a state that becomes self-
symmetric after one round of Keccak permutation.

Sη = {S : K(S) ∈ {Sη}}

Thus {Sη} is the set of all one-symmetric states. Using SSC we can generate
subsets of {Sη} for all values of η. In the example above (C ⊕A) ∈ {Sη}.

3.4 Simplified Target Internal Difference Algorithm (sTIDA)

Here, our primary aim is to produce one-symmetric (Definition 11) states. This
when combined with SSC gives a way to make states that are two-round self-
symmetric. Let us start by the following definition:

Practical Distinguishers against 6-Round Keccak-f 103

Definition 12. A Two-Symmetric State (S η) is a state that becomes one-
symmetric after one round of the Keccak permutation or alternatively becomes
self-symmetric after two rounds of the Keccak permutation.

S η = S :

{
K(S) ∈ {Sη}
K2(S) ∈ {Sη}

}
Here, we intent to generate states that belong to {S η}. For this purpose we
tweak the Target Internal Difference Algorithm(TIDA) algorithm proposed by
Dinur et al. in [6]. The authors of TIDA have claimed that despite being a
heuristic algorithm, it has high rate of success. Given a target internal difference,
TIDA can produce states that yield that difference after one round of Keccak.
In our case the requirement is similar but has some additional constraints. We
want TIDA to generate arbitrary states S satisfying the following constraints :

Input →
{
ΔT (target internal difference)
ST (specific target state)

}
Output → S :

{
ΔT = (K(S)) and
ST ⊂ (K(S) ∩ ST)

}
∀S

The basic TIDA consists of two phases : difference phase and value phase. Let
us first look at the difference phase and handle the parts that are not relevant
to us. The goal of difference phase is achieved by two constraints:
– Some specified positions6 of initial internal difference(ΔI) are bound to 0.
– ΔI be such that ι ◦ χ ◦ ρ ◦ π ◦ θ(ΔI) = ΔT .

However, we are only interested in analyzing Keccak permutation rather than
Keccak hash algorithm. So we discard7 the first constraint of the difference phase.
In this case we have full (25×η) degrees of freedom8 for any self-symmetric state
Sη. In difference phase, the basic TIDA exploits the property that for a particular
output difference of a Keccak Sbox, the input difference consists of at least 5
two-dimensional affine subspaces [7]. In our simplified TIDA, we also go with
the same strategy for all the active Sboxes except some specific fixed Sboxes
which are determined by the SSC technique. The Sboxes of fixed slices in SSC
method are regarded here as fixed Sboxes. If u be the number of specific target
slices, we preserve their values by assigning appropriate values at the inputs of
the corresponding Sboxes. In doing, so we loose (25×u) degrees of freedom. We
next move our focus to the value phase of the basic TIDA which also imposes
two constraints. The first constraint simply equates the capacity part to p||0�,
where p represents padding bits. We discard this value constraint. However, we
preserve the second value constraint.

It is to be noted that the success of sTIDA depends heavily on the chosen
value of the parameter η. The largest value of η for which a quartet is found in
the 5th round Kernel is 8. As we have already lost 25× u degrees of freedom in
the difference phase, we are left with (8×25−25×u) degrees of freedom. To make
sTIDA successful, the quantity (8× 25− 25×u) must be positive. Moreover, the

6 Capacity part of Sponge construction.
7 This is why we call it as Simplified Target Internal Difference Algorithm (sTIDA).
8 On the contrary, for the hash function there are only (r-8) degrees of freedom; where
r is the bit-rate of sponge function.

104 S. Kuila et al.

theoretical lower bound on the number of queries to verify the Quartet strategy
is 211. Thus for the whole attack to succeed we need to have (8×25−25×u)> 11.
The above expression directly implies that to maximize the degrees of freedom
one has to minimize the value of u. During our experimentation, in creating an
one-symmetric state using SSC with η = 8 for round-2 we found cases where
u = 4. Thus (8× 25− 4× 25) degrees of freedom are left which are sufficient for
our algorithm. In general, as TIDA survives with more constraints [6], sTIDA
will also successfully produce two-symmetric states for lower values of u.

4 Experimental Results

In this section we show how we can combine the various strategies developed so
far to generate different types of distinguishers against Keccak. We start with
an overview and then look at each in detail. Figure 3 gives an idea about all
the distinguishers developed in this work and the relevant strategies adopted. It
is also important to note the sequence in which the methods are applied. The
first level of the distinguishers require a single query to succeed and all use the
Kernel strategy at the end. We already mentioned, that the Quartet technique
can extend the Kernel probabilistically to one more round. As a result, the second
level distinguishers use the Quartet as the extension strategy and we are able
to reach up to 6-rounds. It is also worth noting that SSC and sTIDA are used
before applying the Kernel method in order to make the appropriate changes as
per the requirement of the Kernel mentioned in subsection 3.1. We now look at
these results individually, starting with the basic 3-round distinguisher.

Rounds 3

Strategy Kernel

Complexity
Single
Query

Rounds 4

Extension
Strategy

Quartet

Complexity 211

Rounds 4

Strategy SSC + Kernel

Complexity
Single
Query

Rounds 5

Extension
Strategy

Quartet

Complexity 211

Rounds 5

Strategy sTIDA + SSC + Kernel

Complexity
Single
Query

Rounds 6

Extension
Strategy

Quartet

Complexity 211

Extend

Distinguishers

4
Extend Extend

Extend Extend

Fig. 3. An overview of all the distinguishers with corresponding strategies

4.1 The Basic 3-Round Distinguisher Using Only the Kernel

Once the Kernels (Cη
3) have been extracted, it is easy to mount the 3-round

distinguisher. Let us detail an instance to make things clear. For this, we take

Practical Distinguishers against 6-Round Keccak-f 105

Table 6. Input state : S16 (hexadecimal)

B443B443B443B443 745F745F745F745F C38CC38CC38CC38C 348B348B348B348B 4678467846784678
5C825C825C825C82 74F074F074F074F0 D0F9D0F9D0F9D0F9 85F085F085F085F0 772B772B772B772B
CD96CD96CD96CD96 7CA87CA87CA87CA8 429B429B429B429B 0D430D430D430D43 C8A9C8A9C8A9C8A9
229C229C229C229C 76D376D376D376D3 5840584058405840 B172B172B172B172 8521852185218521
35D135D135D135D1 C6B6C6B6C6B6C6B6 81BE81BE81BE81BE E389E389E389E389 9E879E879E879E87

η = 16. From Table (3) we have |C16
3 | = 532. We choose any five9 symmetric-pairs

from C16
3 . The pairs chosen here are as follows:

(3, 3, 9, 57)16 →{(3, 3, 9), (3, 3, 57) ∈ ω3,3,9}
(0, 0, 5, 21)16 →{(0, 0, 5), (0, 0, 21) ∈ ω0,0,5}
(0, 2, 6, 38)16 →{(0, 2, 6), (0, 2, 38) ∈ ω0,2,6}
(2, 1, 30, 46)16 →{(2, 1, 30), (2, 1, 46) ∈ ω2,1,14}
(2, 4, 31, 63)16 →{(2, 4, 31), (2, 4, 63) ∈ ω2,4,15}

These pairs should preserve the self-symmetry of an initial state (Sη) after 3
rounds of Keccak. The state S16 used in this example is shown in hexadecimal
lane-wise format in Table 6. Figure 4(a) shows the same state pictorially in the
form of a two-dimensional (2D) matrix. Each row represents a lane and each
column is a slice. The output K3(S16) is depicted in Fig. 4(b). The values of the
five symmetric-pairs ∈ C16

3 chosen in this example are shown as � and � squares.
Interestingly, here one can also verify the distinguishing hypothesis visually.
Picking any symmetric-pair given above one can see that in Fig. 4(b) they are
either both � or both � which means that they are equal. This implies that the
self-symmetry of S16 where points belonging to the same symmetry class are
either all � or � squares as shown in Fig. 4(a) is preserved by the symmetric-
pairs chosen from C16

3 as shown in Fig. 4(b). For a random permutation, the

probability that chosen pairs would be symmetric
(
1
2

)5
. Thus the adversarial

advantage Adv5
(D) = 1 −

(
1
2

)5
is close to 1. Recall that we need only one

self-symmetric state to verify the hypothesis. Thus the proposed distinguisher
enables an adversary to distinguish K3 from R using only a single query.

4.2 The 4-Round Distinguisher Employing Multiple Strategies

Due to Property (2), we cannot directly extend the 3-round distinguisher to 4
rounds. However, we can reach 4-rounds in two ways. One employs SSC prior to
using the Kernel while the other extends the Kernel using the Quartet.

Using SSC before the 4-Round Kernel (Cη
4). The main idea here is that

if we can have a self-symmetric state at the input of 2nd round the distinguisher

9 An adversary can choose any number of pairs.

106 S. Kuila et al.

(a) S16(Table 6) in 2D format (lanes arranged in rows)

(b) Output = K3(S16) (Here �,� ∈ C16
3)

Fig. 4. Example showing that symmetric-pairs ∈ C16
3 in K3(S16) preserve the self-

symmetry of the initial state S16 (� = 0,� = 1)

will hold for 4-rounds too. The only assumption here is that the input to 2nd

round is self-symmetric. Herein, comes the role of SSC. It helps, with high degree
of freedom, to generate states that become self-symmetric after the first round of
Keccak. Once this is done the attacks proceeds as before. We choose symmetric-
pairs from Cη

4 and the rest of the attack follows like the 3-round distinguisher.
Thus, we get a single-query distinguisher for K4.

Using a Quartet from the 3-Round Kernel (Cη
3). Here, we extract a quar-

tet from Cη
3 , then employ the Quartet strategy developed earlier to probabilis-

tically extend the distinguisher to the next round. Let us look at the following
example where we take η = 32 and choose the quartet (p1, p2, p3, p4) ∈ C32

3 as
follows:

{p1 = (0, 0, 24), p2 = (0, 0, 56)} ∈ ω0,0,24

{p3 = (0, 1, 24), p4 = (0, 1, 56)} ∈ ω0,1,24

}
where pi ∈ C32

3

We generated a random self-symmetric state with η = 32 and computed K4(S32)

and looked at the value of [
⊕4

i=1 p
′
i] where

10 p′i = ρ ◦ π(pi) ∈ K4(S32). This
process was repeated for around 211 times as per the lower bound derived from
Chernoff inequality (9) in subsection 3.2. The probability was computed to be

Pr[
⊕4

i=1 p
′
i = 0] = 0.5322, very close to the theoretical probability (0.53215) of

a Quartet distinguisher. This verifies the distinguisher against K4 that succeed
with non-negligible probability and have a practical complexity of 211.

10 p′1 = (0, 0, 24), p′2 = (0, 0, 56), p′3 = (1, 3, 20), p′4 = (1, 3, 52).

Practical Distinguishers against 6-Round Keccak-f 107

4.3 The 5-Round Distinguisher Employing Multiple Strategies

The 5-round distinguisher also has two variants : one working with a single query
while the other is probabilistic.

Using sTIDA and SSC before the 5-Round Kernel (Cη
5). The concept

is similar to the one mentioned in subsection 4.2, the only difference being the
fact that we now need states that become self-symmetric after two rounds. Con-
sequently, we use both sTIDA and SSC. Using these strategies together, we are
able to generate states S such that K2(S) ∈ Sη with reasonable degrees of free-
dom. This satisfies the requirement of the 5-round Kernel (Cη

5) that the input
to 5 − 2 = 3rd round must be self-symmetric. Next we choose symmetric-pairs
from (Cη

5) and proceed as before getting a single-query distinguisher against K5.

Using a Quartet from the 4-Round Kernel (Cη
4). This attack exploits

the quartets available in Cη
4 and extends the single-query 4-round distinguisher

described in subsection 4.2 to the 5th round. As before it requires around 210

queries to conclude that the quartet does behave randomly.

4.4 The 6-Round Distinguisher Deploying All the Strategies

All the properties studied in this work are used together to reach the 6th round of
the Keccak permutation. The main idea is to use the single-query 5-round attack
developed in subsection 4.3 and use the Quartet strategy on the 5-round Kernel
(Cη

5). Thus if we unfold the distinguisher we look at the following sequence :
sTIDA → SSC → Kernel → Quartet → D(K6). For verifying the distinguisher,
we take η = 8 and choose the quartet (p1, p2, p3, p4) ∈ C8

5 as follows:

{p1 = (0, 3, 30), p2 = (0, 3, 38)} ∈ ω0,3,6

{p3 = (0, 4, 30), p4 = (0, 4, 38)} ∈ ω0,4,6

}
where pi ∈ C8

5

So at the output of K6 we look at the points p′1 = (3, 4, 53), p′2 = (3, 4, 51), p′3 =
(4, 2, 12), p′4 = (4, 2, 20) where (p′i = ρ ◦ π(pi)). Conforming to theoretical es-
timates, we find that 211 queries are sufficient to conclude that the variable[⊕4

i=1 p
′
i

]
does not follow a random distribution.

5 Conclusion

In this work we have used the concept of internal-differentials to find self-
symmetric properties of the Keccak permutation that hold with a probability of
1 for any three rounds. We have studied new properties of Keccak and devel-
oped strategies based on our observations. Combining these strategies 3-round
distinguisher can easily be extended to 4 and 5 rounds with a probability 1. It is
further extended to 6-rounds with a complexity of 211. As a future work it would
be interesting to study whether the proposed strategies can be further exploited
to reach a higher number of rounds.

108 S. Kuila et al.

References

1. Bernstein, D.: Second preimages for 6 (7?(8??)) rounds of Keccak? (November
2010),
http://ehash.iaik.tugraz.at/uploads/6/65/

NIST-mailing-list Bernstein-Daemen.txt

2. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. In: Ecrypt
Hash Workshop 2007 (May 2007)

3. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submission.
Submission to NIST, Round 3 (2011),
http://keccak.noekeon.org/Keccak-submission-3.pdf

4. Chernoff, H.: A Note on an Inequality Involving the Normal Distribution. The
Annals of Probability 9(3), 533–535 (1981),
http://dx.doi.org/10.1214/aop/1176994428

5. Daemen, J., Van Assche, G.: Differential propagation analysis of keccak. In: Can-
teaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 422–441. Springer, Heidelberg
(2012), http://dx.doi.org/10.1007/978-3-642-34047-5_24

6. Dinur, I., Dunkelman, O., Shamir, A.: Collision Attacks on Up to 5 Rounds of
SHA-3 Using Generalized Internal Differentials. Cryptology ePrint Archive, Report
2012/672 (2012), http://eprint.iacr.org/

7. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on keccak-224 and keccak-
256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer,
Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-34047-5_25

8. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f per-
mutation. Cryptology ePrint Archive, Report 2011/023 (2011),
http://eprint.iacr.org/2011/023.pdf

9. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round
keccak-f permutation. Chinese Science Bulletin 57(6), 694–697 (2012),
http://dx.doi.org/10.1007/s11434-011-4909-x

10. Duc, A., Guo, J., Peyrin, T., Wei, L.: Unaligned rebound attack: Application to
Keccak. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 402–421. Springer,
Heidelberg (2012)

11. Lathrop, J.: Cube attacks on cryptographic hash functions. Master’s thesis (2009),
http://www.cs.rit.edu/~jal6806/thesis/

12. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of
round-reduced Keccak. Cryptology ePrint Archive, Report 2012/546 (2012),
http://eprint.iacr.org/

13. Morawiecki, P., Srebrny, M.: A sat-based preimage analysis of reduced kec-
cak hash functions. IACR Cryptology ePrint Archive 2010, 285 (2010),
http://dblp.uni-trier.de/db/journals/iacr/iacr2010.html#MorawieckiS10

14. Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round Kec-
cak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107,
pp. 236–254. Springer, Heidelberg (2011)

15. Peyrin, T.: Improved Differential Attacks for ECHO and Grøstl. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 370–392. Springer, Heidelberg (2010)

http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
http://ehash.iaik.tugraz.at/uploads/6/65/NIST-mailing-list_Bernstein-Daemen.txt
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://dx.doi.org/10.1214/aop/1176994428
http://dx.doi.org/10.1007/978-3-642-34047-5_24
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-34047-5_25
http://eprint.iacr.org/2011/023.pdf
http://dx.doi.org/10.1007/s11434-011-4909-x
http://www.cs.rit.edu/~jal6806/thesis/
http://eprint.iacr.org/
http://dblp.uni-trier.de/db/journals/iacr/iacr2010.html#MorawieckiS10

Preimage Attacks on Reduced-Round Stribog

Riham AlTawy and Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada

Abstract. In August 2012, the Stribog hash function was selected as
the new Russian cryptographic hash standard (GOST R 34.11-2012).
Stribog employs twelve rounds of an AES-based compression function
operating in Miyaguchi-Preneel mode. In this paper, we investigate the
preimage resistance of the Stribog hash function. In particular, we apply
a meet in the middle preimage attack on the compression function which
allows us to obtain a 5-round pseudo preimage for a given compression
function output with time complexity of 2448 and memory complexity of
264. Additionally, we adopt a guess and determine approach to obtain a
6-round chunk separation that balances the available degrees of freedom
and the guess size. The proposed chunk separation allows us to attack 6
out of 12 rounds with time and memory complexities of 2496 and 2112,
respectively. Finally, by employing a multicollision attack, we show that
preimages of the 5 and 6-round reduced hash function can be generated
with time complexity of 2481 and 2505, respectively. The two preimage
attacks have equal memory complexity of 2256.

Keywords: Cryptanalysis, Hash functions, Meet in the middle, Preim-
age attack, GOST R 34.11-2012, Stribog.

1 Introduction

The attacks by Wang et al. on MD5 [23] and SHA-1 [22] followed by the SHA-3
competition [18] have led to a flurry in the area of hash function cryptanalysis.
The primary targets of these attacks are the Add-Rotate-Xor (ARX) based hash
functions where one can find differential patterns that propagate with acceptable
probabilities. Additionally, using message modification techniques, significant
complexity reduction is achieved. Consequently, during the SHA-3 competition,
different design concepts were introduced, out of which are the Advanced En-
cryption Standard (AES) based designs that are known for their resistance to
standard differential attacks due to the wide trail strategy. The ISO standard
Whirlpool [19], the SHA-3 finalist Grøstl [7], and the new Russian hash standard
Stribog [1] are among the proposed AES-based hash functions.

Stribog was proposed in 2010 [13]. It has an output length of 512/256-bit.
The compression function employs a 12-round AES-like cipher with 8 × 8-byte
internal state preceded with one round of nonlinear whitening of the chaining
value. The compression function operates in Miyaguchi-Preneel (MP) mode and

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 109–125, 2014.
c© Springer International Publishing Switzerland 2014

110 R. AlTawy and A.M. Youssef

is plugged in Merkle-Damg̊ard domain extender with a finalization step [1]. Stri-
bog officially replaces the previous standard GOST R 34.11-94 which has been
theoretically broken in [16,15] and recently analyzed in [14]. Early works related
to the cryptanalysis of Stribog have been introduced in [2,3] and [11].

Following the work of Lai and Massey [12], the meet in the middle (MitM)
preimage attack [6] was proposed by Aoki and Sasaki. The main idea of the pro-
posed technique is to divide the attacked rounds into two independent executions
such that each execution is affected by a different set of inputs. The outputs of
the two executions meet at a matching point where a solution is selected to sat-
isfy both executions. The MitM preimage attack has been applied to MD4 [6,8],
MD5 [6], HAS-160 [9], and all functions of the SHA family [5,4,8]. The attack
exploits the fact that all the previously mentioned functions are ARX-based and
operate in the Davis-Mayer (DM) mode, where the state is initialized by the
chaining value and some of the expanded message blocks are used independently
each round. Thus, one can determine which message blocks affect each execu-
tion for the MitM attack. However, several AES-based hash functions operate in
the Miyaguchi-Preneel mode, where the input message is fed to the initial state
which undergoes a chain of successive transformations. Consequently, the process
of separating independent executions becomes relatively more complicated.

In FSE 2011, Sasaki proposed the first MitM preimage attack on several AES
hashing modes [20]. In the same work, a 5-round pseudo preimage attack on the
compression function of Whirlpool was presented and used for a second preim-
age attack on the whole hash function. Afterwards, Wu et al. applied the MitM
preimage attack on Grøstl [24] and used a time-memory trade off approach to
improve the time complexity of the 5-round attack on the Whirlpool compression
function. Lastly, a pseudo preimage attack on the 6-round Whirlpool compres-
sion function and a memoryless preimage attack on the reduced hash function
were proposed in [21].

In this work, we investigate the security of Stribog and its compression func-
tion, assessing their resistance to the MitM preimage attacks. We present a
pseudo preimage attack on the compression function reduced to 5 out of 12
rounds by employing the partial matching and initial structure concepts [20]. In
particular, we present an execution separation for the compression function that
balances the degrees of freedom in both execution directions with their corre-
sponding matching probability [24]. Furthermore, we extend the attack by one
round using the guess and determine approach [21], which allows us to guess parts
of the state that belongs to one execution. The proposed 6-round chunk sepa-
ration maximizes the overall complexity of the attack by balancing the adopted
degrees of freedom and the guess size. Finally, we show how to generate preim-
ages of the Stribog hash function using the presented pseudo preimage attacks
on the compression function. In Table 1, we provide a summary of the current
cryptanalytic results on the Stribog hash function.

The rest of the paper is organized as follows. In the next section, the speci-
fication of the Stribog hash function along with the notation used throughout
the paper are provided. A brief overview of the MitM preimage attack and the

Preimage Attacks on Reduced-Round Stribog 111

Table 1. Summary of the current cryptanalytic results on Stribog

Target #Rounds Time Memory Data Attack Reference

Internal cipher
5 28 28 -

Free-start collision [2]
8 264 28 -

Internal permutation
6.5 264 - 264

Integral [3]
7.5 2120 - 2120 distinguisher

Compression function

7.75 2184 28 -
Semi free-start

[2]

4.75 28 - - collision

7.75 272 28 -

Semi free-start near8.75 2128 28 -

9.75 2184 28 - collision

5 2448 264 -
Pseudo preimage

Sec. 4

6 2496 2112 - Sec. 5

6 264 - 264
Integral [3]

7 2120 - 2120 distinguisher

Hash function
5 2481 2256 -

Preimage Sec. 6
6 2505 2256 -

used approaches are given in Section 3. Afterwards, in Sections 4 and 5, we
provide detailed description of the attacks and their corresponding complexity.
In Section 6, we show how preimages of the hash function are generated using
the attacks presented in Sections 4 and 5. Finally, the paper is concluded and a
short discussion is provided in Section 7.

2 Specification of Stribog

Stribog outputs a 512 or 256-bit hash value, where half the last state is truncated
when adopting the 256-bit output. The standard specifies two different IVs to be
used with the two output lengths. The function can process messages of length
up to 2512 − 1. The compression function iterates over 12 rounds of an AES-
like cipher with an 8 × 8 byte internal state and a final round of key mixing.
The compression function operates in Miyaguchi-Preneel mode and is plugged in
Merkle-Damg̊ard domain extender with a finalization step. The input message
M is padded into a multiple of 512 bits by appending one followed by zeros. The
message length for MD-strengthening is further included as an extra separate
block, followed by a block of a checksum evaluated by the modulo 2512 addition

of all message blocks as a finalization step. More precisely, let n = � |M |
512

� and

the input message M = x‖mn‖..‖m1‖m0, where |M | is length of M , and x
is an un-complete or an empty block. The message is padded as follows: let
mn+1 = 0511−|x|‖1‖x, then the padded message M = mn+1‖mn‖..‖m1‖m0. Let∑

= mn+1+ ..+m1+m0. The compression function gN is fed with three inputs:
the chaining value hi−1, a message block mi−1, and the counter of bits hashed

112 R. AlTawy and A.M. Youssef

Fig. 1. Stribog’s compression function gN

so far Ni−1 = 512× i. (see Figure 1). Let hi be a 512-bit chaining variable. The
first state is loaded with the initial value IV and assigned to h0. The hash value
of M is computed as follows:

hi ← gN (hi−1,mi−1, Ni−1) for i = 1, 2, .., n+ 2

hn+3 ← g0(hn+2, |M |, 0)

h(M) ← g0(hn+3,
∑

, 0),

where h(M) is the hash value of M , and g0 is gN with N = 0. As depicted in
Figure 1, the compression function gN consists of:

– KN : a nonlinear whitening round of the chaining value. It takes a 512-bit
chaining variable hi−1 and a counter of the bits hashed so far Ni−1 and
outputs a 512-bit key K.

– E: an AES-based cipher that iterates over the message for 12 rounds in
addition to a finalization key mixing round. The cipher E takes a 512-bit
key K and a 512-bit message block m as a plaintext. As shown in Figure
2, it consists of two similar parallel flows for the state update and the key
scheduling.

Fig. 2. The internal block cipher (E)

Both KN and E operate on an 8× 8 byte key state K. E updates an additional
8 × 8 byte message state M . In one round, a given state is updated by the
following sequence of transformations:

Preimage Attacks on Reduced-Round Stribog 113

– AddKey(X): XOR with either a round key, a constant, or the counter of bits
hashed so far (N).

– SubBytes (S): A nonlinear byte bijective mapping.
– Transposition (P): Byte permutation.
– Linear Transformation (L): Row multiplication by an MDS matrix in GF(2).

Initially, state K is loaded with the chaining value hi−1 and updated by KN as
follows:

k0 = L ◦ P ◦ S ◦X [Ni−1](K).

Now K contains the key k0 to be used by the cipher E. The message state M is
initially loaded with the message block m and E(k0,m) runs the key scheduling
function on state K to generate 12 round keys k1, k2, .., k12 as follows:

ki = L ◦ P ◦ S ◦X [Ci−1](ki−1), for i = 1, 2, .., 12,

where Ci−1 is the ith round constant. The state M is updated as follows:

Mi = L ◦ P ◦ S ◦X [ki−1](Mi−1), for i = 1, 2, ..., 12.

The final round output is given by E(k0,m) = M12 ⊕ k12. The output of gN
in the Miyaguchi-Preneel mode is E(KN (hi−1, Ni−1),mi−1) ⊕ mi−1 ⊕ hi−1 as
shown in Figure 1. For further details, the reader is referred to [1].

2.1 Notation

LetM and K be (8× 8)-byte states denoting the message and key state, respec-
tively. The following notation will be used throughout the paper:

– Mi: The message state at the beginning of round i.
– MU

i : The message state after the U transformation at round i, where U ∈
X,S, P, L.

– Mi[r, c]: A byte at row r and column c of state Mi.
– Mi[row r]: Eight bytes located at row r of Mi state.
– Mi[col c]: Eight bytes located at column c of Mi state.

Same notation applies to K.

3 MitM Preimage Attacks on AES-Based Hash Functions

The first preimage attack on AES-based hash functions [20] was proposed for
the cryptanalysis of the AES cipher operating in several hashing modes. It is
a meet in the middle attack where the attacked rounds are divided at a given
round (starting point) into two independent executions called the forward and
backward chunks. To maintain the independence constraint, each chunk must be
influenced by a different set of inputs. These set of inputs are often called the
chunk neutral bytes, e.g., if a change in a given byte affects the forward chunk

114 R. AlTawy and A.M. Youssef

only, then this byte is known as a forward neutral byte, and consequently, it
is a forward degree of freedom as well. Accordingly, the degree of freedom for
each execution direction is the number of independent starting values for each
execution. Hence, the output of the forward and the backward executions can
be independently calculated and stored. Similar to all MitM attacks, the two
separated chunks must meet at a common round (matching point) for matching
a solution from both the forward and backward directions that satisfies both
executions. This is accomplished by adopting the cut and splice technique [6]
that employs the mode of operation of the hash functions which chains the
input and output states through feedforwarding. More precisely, this technique
regards the first and last states as successive rounds. Subsequently, the whole
attacked rounds behave in a cyclic manner and one can find a common matching
point between the forward and backward executions and one can also select any
starting point.

Improvements to this attack aim to stretch the starting and matching points
over more than one round state and hence extend the number of the overall
attacked rounds. Specifically, the initial structure approach [20] provides the
means for the starting point to cover a few successive transformations where
bytes in the states belong to both the forward and backward chunks. Although,
neutral bytes of both chunks are shared within the initial structure, independence
of both executions is achieved in the rounds at the edges of the initial structure.
Additionally, the partial matching technique [6] allows only parts of the state to
be matched at the matching point. This method is used to extend the matching
point further and makes use of the fact that round transformations may update
only parts of the state. Thus the remaining unchanged parts can be used for
matching. This approach is highly successful in ARX-based hash functions which
are characterized by the slow diffusion of their round update functions and so
some state variables remain independent in one direction while execution is in the
opposite direction. The unaffected parts of the states at each chunk are used for
partial matching at the matching point. However, in AES-based hash functions,
full diffusion is achieved after two rounds and this approach can be used to extend
the matching point of two states for a limited number of transformations. Once
a partial match is found, the inputs of both chunks that resulted in the matched
values are selected and used to evaluate the remaining undetermined parts of
the state at the matching point to check for a full state match.

Fig. 3. MitM preimage attack techniques for hash functions operating in MP mode

Preimage Attacks on Reduced-Round Stribog 115

Figure 3 illustrates the MitM preimage attack approaches when a hash func-
tion operates in the Miyaguchi-Preneel mode. The red and blue arrows denote
the forward and backward executions on the message state, respectively.

In what follows, we apply the techniques discussed in this section to derive a
5-round pseudo preimage attack on the Stribog compression function.

4 5-Round Pseudo Preimage of the Compression
Function

For a compression function CF that operates on a chaining value h and a mes-
sage block m, a preimage attack is defined as follows: given h and x, where x is
the compression function output, find m such that CF (h,m) = x. However, in
a pseudo preimage attack, only x is given and we must find h and m such that
CF (h,m) = x. Generally, pseudo preimages of the compression function of some
narrow pipe constructions are important because they can be turned to preim-
ages of the hash function with little cost [17]. As for Stribog, the impact of the
pseudo preimage attacks on its compression function is demonstrated in Section
6, where we combine these attacks with 2t multicollision to produce preimages
for the hash function. Pseudo preimage attacks are adopted when the compres-
sion function operates in Davis-Mayer mode where the first state is initialized
by the chaining value. Subsequently, using the cut and splice technique enforces
changes in the first state through the feedforward. Additionally, the initial phase
of MitM preimage attack usually produces pseudo preimages when the function
operates in the Miyaguchi-Preneel mode and the complexity of finding a preim-
age is higher than the available bits that can be chosen freely in the message.
Consequently, the chaining value is utilized as a source of randomization to sat-
isfy the number of multiple restarts required by the attack. As a result, we end
up with a pseudo preimage rather than a preimage of the compression function
output.

The attack on the compression function starts by chunk separation. Specif-
ically, we divide five rounds of Stribog execution into a forward chunk and a
backward chunk around a starting point (initial structure). The adopted chunk
separation is shown in Figure 4. The forward chunk starts at M3 and ends at
MP

4 which is the input state to the matching point. The backward chunk starts
at MP

1 and ends after the feedforward at ML
4 which is the output state of the

matching point. The red bytes are the neutral bytes for the forward chunk and
after choosing them in the initial structure, all other red bytes can be indepen-
dently calculated. White bytes in the forward chunk are the ones whose values
depend on the neutral bytes of the backward chunk which are the blue bytes
in the initial structure. Accordingly, their values are undetermined, these bytes
cannot be evaluated until a partial match is found. Same rationale applies to the
backward chunk and the blue bytes. Grey bytes are constants which are either
given (compression function output) or chosen (chaining value and constants in
the initial structure).

In the initial structure, we try to balance the degrees of freedom in each di-
rection and the number of known bytes at the end of each chunk. The degrees

116 R. AlTawy and A.M. Youssef

Fig. 4. Chunk separation for a 5-round MitM preimage attack on Stribog compression
function. BSV: Backward starting value, FSV: Forward starting value, MV: Matching
value.

of freedom in both directions should produce candidate pairs at the matching
point to satisfy the matching probability. More precisely, to minimize the com-
plexity, the total degrees of freedom in both chunks must be greater than the
matching size. For further clarification, we first explain the idea behind the ini-
tial structure. The main point is to choose several bytes as neutral bytes so that
the number of output bytes of the L and L−1 transformations at the start of
each chunk that are constant or relatively constant is maximized. A relatively
constant byte is a byte whose value is affected by the degrees of freedom in
one execution direction but remains constant from the opposite execution per-
spective. The initial structure for the 5-round MitM preimage attack on the
compression function of Stribog is shown in Figure 5. We start by randomly
choosing the five constant bytes in d[row 0] and then determine the values of
blue bytes in c[row 0] so that after applying L on c[row 0], we maintain the cho-
sen five constants. Since we need five constant bytes in d[row 0], we only need

Preimage Attacks on Reduced-Round Stribog 117

Fig. 5. Initial structure for the 5-round attack on the Stribog compression function

five free variables in c[row 0] to solve a system of five equations when the other
three bytes are fixed. Accordingly, for any of the first three rows in state c, we
can randomly choose any three blue bytes and compute the remaining five so
that the output of L maintains the previously chosen five constants at d[row 0].
To this end, we have nine free blue bytes (three for each row in state c). Thus the
backward degrees of freedom is 272 which means that we can start the backward
execution by 272 different starting values and hence 272 different output values
at the matching point ML

4 . Similarly, we choose 32 constants in state a and for
each row in state b we randomly choose one red byte and compute the other
four bytes such that, after the L−1 transformation, we get the predetermined
constants at each row in a. However, the value of the four shaded blue bytes in
each row of state a depends also on the three blue bytes in the rows of state b.
We call these bytes relative constants because their final values cannot be de-
termined until the backward execution starts and these values are different for
each execution iteration. Specifically, their final values are the predetermined
constants XORed with the corresponding blue bytes multiplied by the L−1 co-
efficients. In the sequel, we have eight free bytes (one for each row in b) which
means 264 forward degrees of freedom to start the forward execution and hence
264 different input values to the matching point MP

4 .
At the matching point, we match results at MP

4 from the forward chunk with
the values atML

4 from the backward chunk through the L transformation. As de-
picted in Figure 4 at the matching point, five bytes are known from the forward
computation and four bytes are known from the backward computation in each
row. As a result, we can form four linear equations using three unknowns and
match the resulting forward and backward values through the remaining equa-
tion. More precisely, we use the following equation to compute a given output
row y through the linear transformation L given an input row x.

[x7 x6 x5 x4 x3 x2 x1 x0]

⎡⎢⎢⎢⎢⎣
l0,7 l0,6 l0,5 l0,4 l0,3 l0,2 l0,1 l0,0
l1,7 l1,6 l1,5 l1,4 l1,3 l1,2 l1,1 l1,0
l2,7 l2,6 l2,5 l2,4 l2,3 l2,2 l2,1 l2,0
l3,7 l3,6 l3,5 l3,4 l3,3 l3,2 l3,1 l3,0
l4,7 l4,6 l4,5 l4,4 l4,3 l4,2 l4,1 l4,0
l5,7 l5,6 l5,5 l5,4 l5,3 l5,2 l5,1 l5,0
l6,7 l6,6 l6,5 l6,4 l6,3 l6,2 l6,1 l6,0
l7,7 l7,6 l7,5 l7,4 l7,3 l7,2 l7,1 l7,0

⎤⎥⎥⎥⎥⎦ = [y7 y6 y5 y4 y3 y2 y1 y0]

118 R. AlTawy and A.M. Youssef

In the above equation, the overline denotes the unknown bytes at a given row.
More precisely, the input contains the unknown bytes x5, x4, and x3 and the
corresponding output contains the known bytes y7, y5, y3, and y1. Accordingly,
given the GF (28) equivalent of the Stribog binary matrix [11], we can form the
following equations:

y7 = tin7 ⊕ x5 · l2,7 ⊕ x4 · l3,7 ⊕ x3 · l4,7 (1)

y5 = tin5 ⊕ x5 · l2,5 ⊕ x4 · l3,5 ⊕ x3 · l4,5 (2)

y3 = tin3 ⊕ x5 · l2,3 ⊕ x4 · l3,3 ⊕ x3 · l4,3 (3)

y1 = tin1 ⊕ x5 · l2,1 ⊕ x4 · l3,1 ⊕ x3 · l4,1, (4)

where tini is the total of the known input bytes in the ith row multiplied by their
corresponding matrix coefficients. To this end, we calculate x5, x4, and x3 from
equations 1, 2, and 3 and substitute their values in equation 4. Consequently,
the two sides of equation 4 are all known from both input and output directions.
Hence, the matching size per row is one byte and hence the matching probability
for the whole state is 2−64. The choice of the number forward and backward
values directly affects the matching probability as their number determines the
number of red and blue bytes at a given row at the matching point. If the number
of blue and red bytes are not properly chosen at the initial structure, one might
have no value to match at the matching point. In other words, we cannot have a
MitM matching value if the total number of red and blue bytes in a given row at
the matching point is less than or equal to eight. The attack can be summarized
as follows:

1. Randomly choose the chaining value and the constants at the initial struc-
ture.

2. For each forward starting value fwi in the 264 forward starting values at
M2, compute the forward matching value fmi at M

P
4 and store (fwi, fmi)

in a lookup table T .
3. For each backward starting value bwj in the 272 backward starting values in
MP

2 compute the backward matching value bmj at ML
4 and check if there

exists an fmi = bmj in T . If found, then a partial match exists and the full
match should be checked using the matched starting points fwi and bwi. If
a full match exists, then output the chaining value and the messageM0, else
go to step 1.

The complexity of the MitM preimage attack is given by 2n(2−r+2−b+2−m),
where n is the state size and r, b, and m are the forward, backward, and match-
ing bit sizes, respectively [24]. The choice of these parameters should minimize
the complexity and this can be achieved by keeping r, b and m, as close as
possible. In the chunk separation shown in Figure 4, r = 64, b = 72, and
m = 64. To further explain the complexity of the attack, we consider the
attack procedure. After step 2, we have 264 forward matching values and we
need 264 memory to store them. At the end of step 3, we have 272 backward

Preimage Attacks on Reduced-Round Stribog 119

Fig. 6. Chunk separation for a 6-round MitM preimage attack on Stribog compression
function. BSV: Backward starting value, FSV: Forward starting value, MV: Matching
value.

matching values. Accordingly, we get 264+72 = 2136 partial matching candidate
pairs. Since the probability of a partial match is 2−64, we expect 272 partially
matching pairs. The probability that a partial match results in a full match is
264−512 = 2−448. Consequently, the expected number of fully matching pairs is
2−376. Thus we need to repeat the attack 2376 times to get a fully matching
pair. The time complexity for one repetition of the attack is 264 for the forward
computation, 272 for the backward computation, and 272 to check that partially
matching pairs fully match. Consequently, the overall complexity of the attack
is 2376(264 + 272 + 272) ≈ 2448 time and 264 memory

120 R. AlTawy and A.M. Youssef

Fig. 7. Preimage attack on the Stribog hash function

5 Extending the Attack to 6-Rounds

The previous 5-round attack cannot be extended to 6-rounds because at the
end of each chunk execution the state has undetermined bytes at each row.
Consequently, applying the linear transformation L to such state results in a fully
undetermined state and no matching can be achieved. A guess and determine
approach [21] can be used in one direction to guess the undetermined bytes in
some rows. Thus we have some known state rows after the linear transformation
L. The proposed chunk separation for the 6-round MitM attack is shown in
Figure 6. In order to be able extend the attack by one extra round, we guess
the twelve undetermined bytes (yellow bytes) in state MP

4 . As a result, we can
reach state MP

5 with four determined columns where matching takes place.
Our choice of the separation and guessed parameters is based on our analysis

of the attack complexity and enumerating several values. Our main objective is
to maximize the attack probability by carefully selecting the forward, backward,
and guessed bit values. We aim to maximize the number of forward bits and keep
the backward and the matching number of bits larger than the number of guessed
bits and as close as possible. For our attack, the chosen forward, backward, and
guessed bit sizes are 16, 128, and 96, respectively. Setting these parameters fixes
the matching bit size which is equal to 128. In what follows, we give the attack
procedure and complexity based on the above chosen parameters:

1. Randomly choose the chaining value and the constants the initial structure.
2. For each forward starting value fwi and guessed value gi in the 216 forward

starting values and the 296 guessed values, compute the forward matching
value fmi at M

P
5 and store (fwi, gi, fmi) in a lookup table T .

3. For each backward starting value bwj in the 2128 backward starting values,
compute the backward matching value bmj at ML

5 and check if there exists
an fmi = bmj in T . If found, then a partial match exists and the full match
should be checked using the matched forward, guessed, and backwards values

Preimage Attacks on Reduced-Round Stribog 121

fwi, gi, and bwi. If a full match exists, then output the chaining value and
the message M0, else go to step 1.

After step 2, we have 216+96 = 2112 forward matching values which need
2112 memory for the look up table. At the end of step 3, we have 2128 backward
matching values. Accordingly, we get 2112+128 = 2240 partial matching candidate
pairs. Since the probability of a partial match is 2−128 and the probability of
a correct guess is 2−96, we expect 2240−128−96 = 216 correctly guessed partially
matching pairs. The probability that a partial match is a full match is 2−384.
Consequently, the expected number of fully matching pairs is 2−368 and hence
we need to repeat the attack 2368 times to get a full match. The time complexity
for one repetition is 2112 for the forward computation, 2128 for the backward
computation, and 216 to check that partially matching pairs fully match. The
overall complexity of the attack is 2368(2112 + 2128 + 216) ≈ 2496 time and 2112

memory.

6 Preimage of the Stribog Hash Function

In this section, we show how the previously presented pseudo preimage attacks
on the Stribog compression function can be utilized to produce preimages for
the whole hash function. Stribog has a finalization step which is the last com-
pression function call in the hash function. In this step, the compression function
operates on the modular addition of the previously processed message blocks.
At first glance, this may seem to limit the ability of turning a pseudo preim-
age of the compression function to a hash function preimage because inverting
the last compression function call returns the sum of the message blocks and
thus constraints their values. However, a preimage of the hash function can be
found when we consider a large set of long messages that produce different sums
and a set pseudo preimage attacks on the last compression function call. Hence,
another MitM attack can be performed on both sets to find the message that
corresponds to the retrieved sum [15]. As depicted in Figure 7, the attack is
divided into four stages:

1. Given the hash function output H(M), we produce 2p pseudo preimages for
the last compression function call. The output of this step is 2p pairs of the
last chaining value and the message sum (H515,

∑
o). We store these results

in a table T .
2. In this stage, we construct a large set of equal length messages such that

all of them collide at H512. This structure is called a multicollision of length
512 [10]. More precisely, a multicollision of length t is a set of 2t messages
where each message consists of exactly t block and every application of the
compression function results in the same chaining value. Consequently, all
the 2t messages lead to the sameHt value. Building a multicollision of length
t is done with time complexity of t · 2n/2 and memory complexity of t · 2 · n
to store t 2-message blocks, where n is the state size. In our case, we build
2512 multicollision, i.e., Mi = mj

1‖m
j
2‖...‖m

j
512, where i ∈

{
1, .., 2512

}
and

122 R. AlTawy and A.M. Youssef

j ∈ {1, 2} such that all the M ′
is lead to the same H512. To this end, we have

2512 different massages stored in 512 · 2 · 512 = 219 memory and hence 2512

candidate sums
∑

Mi
.

3. At this point, we try to connect the results of stages 1 and 2 using the
freedom of choosing m513. Specifically, since we are using messages of 513
complete blocks, then both the padding block mp and the length block |M |
are known constants. We also have one known value of H512 produced from
the previous stage. In the sequel, we randomly choose m∗

513, compute H∗
515

and check if it exists in T . As T contains 2p entries, it is expected to find a
match after 2512−p evaluations of the following three compression function
calls:

H513 = gN (H512,m
∗
513, N513)

H514 = gN (H513,mp, N514)

H∗
515 = g0(H514, |M |)

Once a matching H515 value is found in T, the corresponding
∑

o is fixed as
well. Hence the desired sum at the output of the multicollision

∑
Mi

is equal
to
∑

o −mp −m513.

4. At the last stage of the attack, we try to find a message Mi out of the
2512 messages generated in stage 2 that has a sum equal to the sum

∑
Mi

acquired at the previous stage. This can be achieved by a meet in the middle
attack. More precisely, we first calculate all the 2256 sums of the first half
of all the 2256 messages

∑
M1

= mj
1 + mj

2 + ... + mj
256 and we store them

in a table. Afterwards, for each second half message we compute the sum∑
M2

= mj
266 +mj

267 + ... +mj
512 and check if

∑
Mi

−
∑

M2
is in the table.

It is expected to find a match after 2256 checks. Once a match is found, the
concatenation of the two message halves that correspond to the matching
sums and m513 is the preimage of the given H(M).

The time complexity of the attack is evaluated as follows: we need 2P× (com-
plexity of pseudo preimage attack) in stage 1, 512×2256 to build the multicollision
at stage 2, 2512−p evaluations of three compression function calls at stage 3, and
finally 2256 for the MitM attack in stage 4. The memory complexity for the four
stages is as follows: 2p 2-states to store the pseudo preimages in stage 1, 512
2-message blocks for the multicollision, and 2256 for the MitM table in stage 4.
Since the time complexity is highly influenced by p, so we have chosen p = 32
for the 5-round attack and p = 8 for the 6-round attack to obtain the maximum
gain. Accordingly, preimages for 5-round Stribog hash function can be produced
with a time complexity of 232+448+29+256+2512−32× 3+2256 ≈ 2481. The time
complexity for the 6-round attack is 28+496 + 29+256 + 2512−8 × 3 + 2256 ≈ 2505,
both attacks have a similar memory complexity of 2256 dominated by the MitM
attack in stage 4.

Preimage Attacks on Reduced-Round Stribog 123

7 Conclusion and Discussion

In this paper, we have analyzed Stribog and its compression function with re-
spect to preimage attacks. We have shown that with a carefully balanced chunk
separation, pseudo preimages for the 5-round reduced compression function are
generated with time complexity of 2448 and memory complexity of 264. Addi-
tionally, we have adopted a guess and determine technique to obtain a 6-round
chunk separation that maximizes the forward degrees of freedom and balances
the backward and the guess bit sizes. As a result, we were able to extend the
5-round attack by one more round with time complexity of 2496 and memory
complexity of 2112. Finally, using 2512 multicollision and another MitM attack,
the compression function pseudo preimage attacks are used to produce 5 and
6-round hash function preimages with time complexity of 2481 and 2505, respec-
tively. The two preimage attacks have equal memory complexity of 2256.

It should be noted that the Stribog compression function key whitening round
KN enhances its resistance to certain attacks. Specifically, the attacks that re-
quire similar diffusion of the executions of both the message and the chaining
value. The guess and determine approach is more effective in reducing the com-
plexity when similar chunk separation is performed on the key of the internal
cipher to provide additional starting values in both directions [21]. However, key
separation cannot be achieved because Stribog has an initial nonlinear whitening
round that deviates the chaining value (key) from the message by one round.
Hence, even if we were able to start from the middle and separate the chain-
ing value execution, we lose all information when we get to the input chaining
value because of the wide trail effect. Similar observation has been noted in [2],
where the effect of the additional nonlinear round on finding free-start collision
has been discussed. Finally, we know that the presented results do not directly
impact the practical security of the Stribog hash function. However, they are
forward steps in the public cryptanalysis of this new Russian standard that will
likely be included in future suites and protocols.

Acknowledgment. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions that helped improve the quality
of the paper. This work is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

References

1. The National Hash Standard of the Russian Federation GOST R 34.11-2012.
Russian Federal Agency on Technical Regulation and Metrology report (2012),
https://www.tc26.ru/en/GOSTR34112012/GOST_R_34_112012_eng.pdf

2. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound attacks on Stribog. In: ICISC
(2013), http://eprint.iacr.org/2013/539.pdf

3. AlTawy, R., Youssef, A.M.: Integral distinguishers for reduced-round stribog. Cryp-
tology ePrint Archive, Report 2013/648 (2013),
http://eprint.iacr.org/2013/648.pdf

https://www.tc26.ru/en/GOSTR34112012/GOST_R_34_112012_eng.pdf
http://eprint.iacr.org/2013/539.pdf
http://eprint.iacr.org/2013/648.pdf

124 R. AlTawy and A.M. Youssef

4. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y.,Wang, L.: Preimages for step-reduced
SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 578–597.
Springer, Heidelberg (2009)

5. Aoki, K., Sasaki, Y.: Meet-in-the-middle preimage attacks against reduced SHA-0
and SHA-1. In: Halevi, S. (ed.) CRYPTO2009. LNCS, vol. 5677, pp. 70–89. Springer,
Heidelberg (2009)

6. Aoki, K., Sasaki, Y.: Preimage attacks on one-blockMD4, 63-stepMD5 andmore. In:
Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–119.
Springer, Heidelberg (2009)

7. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl a SHA-3 candidate. NIST Submission (2008)

8. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preim-
age attacks: First results on full Tiger, and improved results on MD4 and
SHA-2. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer,
Heidelberg (2010)

9. Hong, D., Koo, B., Sasaki, Y.: Improved preimage attack for 68-step HAS-160.
In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 332–348. Springer,
Heidelberg (2010)

10. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

11. Kazymyrov, O., Kazymyrova, V.: Algebraic aspects of the russian hash standard
GOST R 34.11-2012. In: CTCrypt, pp. 160–176 (2013),
http://eprint.iacr.org/2013/556

12. Lai, X., Massey, J.L.: Hash function based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

13. Matyukhin, D., Rudskoy, V., Shishkin, V.: A perspective hashing algorithm. In:
RusCrypto (2010) (in Russian)

14. Matyukhin, D., Shishkin, V.: Some methods of hash functions analysis with appli-
cation to the GOST P 34.11-94 algorithm. Mat. Vopr. Kriptogr 3, 71–89 (2012)
(in Russian)

15. Mendel, F., Pramstaller, N., Rechberger, C.: A (second) preimage attack on the
GOST hash function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 224–234.
Springer, Heidelberg (2008)

16. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis
of the GOST hash function. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 162–178. Springer, Heidelberg (2008)

17. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of applied cryptog-
raphy. CRC press (2010)

18. NIST. Announcing request for candidate algorithm nominations for a new crypto-
graphic hash algorithm (SHA-3) family. In: Federal Register, vol. 72(212) (November
2007),
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

19. Rijmen, V., Barreto, P.S.L.M.: The Whirlpool hashing function. NISSIE Submis-
sion (2000)

20. Sasaki, Y.: Meet-in-the-middle preimage attacks on AES hashing modes and an ap-
plication to Whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–396.
Springer, Heidelberg (2011)

http://eprint.iacr.org/2013/556
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf

Preimage Attacks on Reduced-Round Stribog 125

21. Sasaki, Y., Wang, L., Wu, S., Wu, W.: Investigating fundamental security require-
ments on Whirlpool: Improved preimage and collision attacks. In: Wang, X., Sako,
K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg
(2012)

22. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

23. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

24. Wu, S., Feng, D., Wu, W., Guo, J., Dong, L., Zou, J.: (Pseudo) preimage attack on
round-reduced Grøstl hash function and others. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 127–145. Springer, Heidelberg (2012)

Breaking the IOC Authenticated Encryption
Mode

Paul Bottinelli, Reza Reyhanitabar, and Serge Vaudenay

EPFL, Lausanne, Switzerland
{paul.bottinelli,reza.reyhanitabar,serge.vaudenay}@epfl.ch

Abstract. In this paper we cryptanalyse a block cipher mode of oper-
ation, called Input Output Chaining (IOC), designed by Recacha and
submitted to NIST in 2013 for consideration as a lightweight authenti-
cated encryption mode. We present an existential forgery attack against
IOC which makes only one chosen message query, runs in a small con-
stant time, and succeeds with an overwhelming probability 1 − 3 × 2−n,
where n is the block length of the underlying block cipher. Therefore,
this attack fully breaks the integrity of IOC.

Keywords: authenticated encryption, confidentiality, integrity, block
cipher, existential forgery.

1 Introduction

An Authenticated Encryption (AE) scheme is a symmetric-key cryptographic
scheme whose goal is to guarantee both confidentiality (privacy) and integrity
(authenticity) of data. Even though authenticated encryption had been used
for many years, it was only in the early 2000s that the security notions for
AE, as a distinct cryptographic goal, were formalized in [3, 5, 8]. Having been
explored for about two decades, analysis and design of AE schemes yet remains
a highly active and interesting area of research, as evidenced by the currently
running Competition for Authenticated Encryption: Security, Applicability, and
Robustness (“CAESAR”) [6].

A popular approach to constructing an AE scheme, adopted by widely-used
security protocols such as SSH, SSL/TLS, and IPsec, is to generically combine
a confidentiality-only encryption scheme (such as the CBC mode of operation
for a block cipher) with a message authentication code (MAC). This approach is
neither very efficient as it requires processing the message twice (once to achieve
privacy and once to ensure authenticity) nor robust against implementation at-
tacks [7, 18]. A comprehensive analysis of generically composed AE schemes is
provided by Bellare and Namprempre [3, 4].

The strive for more efficient AE schemes has been the incentive for consider-
able effort on constructing several AE algorithms, including block cipher modes
of operation for authenticated encryption [1] and dedicated AE designs [2, 10].

Several schemes have tried to use a simple, classical approach known as the
“encrypt-with-redundancy” paradigm, where a non-cryptographic checksum is

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 126–135, 2014.
c© Springer International Publishing Switzerland 2014

Breaking the IOC Authenticated Encryption Mode 127

appended to the message before encrypting it, but almost all such schemes have
been fully or partially broken [9,11–13]. Generic attacks on a large class of such
schemes are described by Preneel in [14].

Recently, Mitchell in ACISP 2013 [13] analyzed an AE scheme called Input
Output Block Chaining (IOBC), which is based on the encrypt-with-redundancy
paradigm. IOBC was proposed in 1996 by Recacha in his PhD thesis and pub-
lished (in Spanish) in [15]; however, only recently the author provided an English
description of IOBC, which was then analyzed by Mitchell [13], who showed a
known-plaintext-based forgery attack with a complexity of about 2n/3 (where n
is the block length of the underlying block cipher).

To fix the weakness pointed out by the attack in [13], Recacha revised IOBC
and proposed the Input Output Chaining (IOC) to NIST in April 2013 for con-
sideration as a (lightweight) authenticated encryption mode [16]. The designer
has recently published the latest revised version of IOC in January 2014 [17], to
fix the flaws in its original guideline for fresh IV generation for IOC.

In this paper, we present an attack on IOC which applies both to the original
version as submitted to NIST [16] and the most recently revised version available
from [17]. Our attack is an existential forgery attack that can forge a ciphertext,
having queried just one short chosen message (of length 5 blocks) within a small
constant time; therefore, it completely breaks the integrity of IOC as an AE
scheme.

Organization of the Paper. In Section 2 we provide a brief description of the
IOC scheme. In Section 3 we explain our forgery attack against IOC. The paper
is concluded in Section 4.

2 Description of IOC

In this section, we first describe the latest version of IOC [17] and then we will
point out the changes made by the designer to get this version from the originally
submitted version in [16]. The differences between the two versions do not affect
the way that our attack works, hence we will only briefly overview them.

IOC [17] is a mode of operation for a block cipher. Let EK(·) denote the
encryption operation of the block cipher under the key K. Let the block length
of the block cipher be n bits. During the lifetime of a key K (called a “security
session”) each message P to be encrypted gets a unique sequence number denoted
by S. When such a security session is initiated, the sequence number S is reset
to 1 and then is incremented synchronously for each message exchanged between
the sender and the receiver. To encrypt a message P = P1 · · · Pm with message
number S, the encryption algorithm of IOC uses two random and secret initial
values, IVa and IVb, which are renewed for each message. It is assumed that the
message length is a multiple of the block length n, otherwise a length indicating
padding can be used to make it so.

The encryption and decryption processes of IOC are described in Algorithm
1 and Algorithm 2 and depicted in Fig. 1. The value ICV (Integrity Check

128 P. Bottinelli, R. Reyhanitabar, and S. Vaudenay

Vector) is a secret value computed using the secret initial values IVa and IVb,
the message number S, and the length of the message in blocks, i.e. m. The tag
value MDC (Modification Detection Code) aims to detect any forged ciphertext.
〈x〉n denotes the representation of an integer x as an n-bit string and + denotes
the regular arithmetic addition modulo 2n.

When a security session corresponding to a key K is established, the values
IVa and IVb are computed as follows:

IVa = EK′(〈0〉n)
IVb = EK′(IVa)

where K ′ = K + S.
When subsequent messages are encrypted, the following two possibilities are

presented. Either use the last inner vectors, namely IVa = Om+1 and IVb =
Im+1, or derive new values with the method presented above, with an updated
value of S.

Algorithm 1: IOC.EncryptK(S, IVa, IVb, P)
1: Let P = P1P2 · · · Pm where |Pi| = n
2: O0 ← IVa

3: I0 ← IVb

4: ICV ← (〈S〉n ⊕ IVa) + (〈m〉n ⊕ IVb)
5: for i ← 1 to m do
6: Ii ← Pi ⊕ Oi−1
7: Oi ← EK(Ii)
8: Ci ← Oi + Ii−1
9: end for

10: MDC ← Im + EK(ICV ⊕ Om)
11: return C||MDC = C1 . . . Cm||MDC

2.1 Differences between Two Versions of IOC

The two versions of IOC, namely the one submitted to NIST in [16] (the “old”
version) and the latest version in [17] (as described in Algorithm 1 and Algorithm
2) have the same iteration structure for the encryption and decryption parts
except the final application of the block cipher for generation and verification
of the tag MDC. They also differ in the way that the secret and random initial
values IVa and IVb are generated. The latter difference, i.e. generation of the
IVs, does not make any change as far as our attack is concerned, so we do not
detail this change.

As for the first difference, we note that MDC in the old version of IOC [16] is
computed as below:

MDC = EOm⊕〈S〉n(〈m〉n ⊕ Im)

Breaking the IOC Authenticated Encryption Mode 129

Algorithm 2: IOC.DecryptK(S, IVa, IVb, C′||MDC′)
1: Let C′ = C′

1C′
2 · · · C′

m where |C′
i| = n

2: Q0 ← IVa

3: Y0 ← IVb

4: ICV ← (〈S〉n ⊕ IVa) + (〈m〉n ⊕ IVb)
5: for i ← 1 to m do
6: Qi ← C′

i − Yi−1
7: Yi ← DK(Qi)
8: Ri ← Yi ⊕ Qi−1
9: end for

10: ICV ′ ← Qm ⊕ DK(MDC′ − Ym)
11: if ICV ′ = ICV then
12: return R = R1R2 . . . Rm

13: else
14: return invalid
15: end if

P1

EK

C1

· · ·

· · ·+

IVa

IVb

I1

O1

P2

EK

C2

+

I2

O2

Pm

EK

Cm

+

Im

Om

EK

MDC

+

ICV

C ′
1

DK

R1

· · ·

· · ·

IVb

IVa

Q1

Y1

C ′
2

DK

R2

Q2

Y2

C ′
m

DK

Rm

Qm

Ym

DK

ICV ′

MDC ′

Fig. 1. Encryption and decryption processes in IOC

130 P. Bottinelli, R. Reyhanitabar, and S. Vaudenay

where 〈x〉n denotes the representation of x as an n-bit string.
As we will show in the following section, our attack is not prevented by this

MDC generation; that is, we have a successful forgery attack against both the
new and old versions of IOC.

3 Forgery Attack against IOC

Two notions of integrity (authenticity) can be considered for AE schemes: in-
tegrity of plaintexts (INT-PTXT) and integrity of ciphertexts (INT-CTXT)
[3, 4]. INT-PTXT requires that producing a ciphertext that is decrypted to
a new message (never encrypted by the sender) must be computationally in-
feasible. INT-CTXT requires that producing any new ciphertext that can be
decrypted (i.e. not rejected) must be computationally infeasible, regardless of
whether or not the decrypted plaintext is new. Clearly, INT-CTXT is a stronger
property than INT-PTXT and AE schemes aim to provide INT-CTXT.

We show an attack which only needs a single chosen message to be encrypted
and then forges a new ciphertext that is decrypted to a new plaintext by the
decryption algorithm. The attack succeeds with probability 1 − 3 × 2−n (≈ 1),
where n is the block length of the block cipher. That is, we show that IOC does
not satisfy even the weaker integrity property, namely INT-PTXT.

The attack goes as follows. Consider a plaintext P consisting of five blocks
whose values are all zero:

P = P1P2P3P4P5, where Pi = 0n for i ∈ {1, 5},

and send it to the encryption oracle (together with its sequence number S).
Note that sequence numbers are not secret and can be seen by an adversary. For
example, if this is the first message to be encrypted by the IOC using a key K
then S = 1.

Figure 2 shows the inner values computed during the encryption process. A
picture of the encryption of P can be seen in Figure 3.

Pi Ii = Pi ⊕ Oi−1 Oi = EK(Ii) Ci = Oi + Ii−1

P1 = 0n I1 = IVa O1 = EK(IVa) C1 = O1 + IVb

P2 = 0n I2 = O1 O2 = EK(O1) C2 = O2 + IVa

P3 = 0n I3 = O2 O3 = EK(O2) C3 = O3 + O1
P4 = 0n I4 = O3 O4 = EK(O3) C4 = O4 + O2
P5 = 0n I5 = O4 O5 = EK(O4) C5 = O5 + O3

Fig. 2. Encryption of the plaintext P with IOC. The columns show the different inner
values and the corresponding ciphertext blocks obtained.

We get the ciphertext C1C2C3C4C5||MDC, where the values Ci are as in the
rightmost column in Fig. 2, and we have

MDC = I5 + EK(ICV ⊕ O5). (1)

Breaking the IOC Authenticated Encryption Mode 131

P1

EK

C1

+

IVa

IVb

I1

O1

P2

EK

C2

+

I2

O2

EK

MDC

P3

EK

C3

+

I3

O3

P4

EK

C4

+

I4

O4

P5

EK

C5

+

I5

O5

ICV

+

Fig. 3. Encryption process in IOC with a plaintext of 5 blocks

Now, we modify C to forge a ciphertext C′ = C′
1C′

2C′
3C′

4C′
5||MDC as follows

C′
1 = C5 − C3 + C1

C′
2 = C4

C′
3 = C3

C′
4 = C4

C′
5 = C5.

First, we need to show that the forged ciphertext C′ is different from C. This
is easy to verify as follows. If C′ = C then we must have C′

1 = C1 and C′
2 = C2,

implying that

C′
1 = C1 ⇐⇒ C5 − C3 + C1 = C1 ⇐⇒ C5 = C3

⇐⇒ O5 + O3 = O3 + O1 ⇐⇒ O5 = O1

⇐⇒ EK(EK(EK(EK(EK(IVa))))) = EK(IVa)
⇐⇒ EK(EK(EK(EK(IVa)))) = IVa

and

C′
2 = C2 ⇐⇒ C4 = C2 ⇐⇒ O4 + O2 = O2 + IVa

⇐⇒ O4 = IVa ⇐⇒ EK(EK(EK(EK(IVa)))) = IVa

As the underlying block cipher E is assumed to be a secure block cipher; i.e.
EK(.) (for a secret random key K) is indistinguishable from a random permuta-
tion π : {0, 1}n → {0, 1}n, it can be shown (Lemma 1) that the event specified
by the condition above will occur with a (negligible) probability 3 × 2−n; hence,
with an overwhelming probability 1 − 3 × 2−n (≈ 1) the forged ciphertext C′ is
new.

132 P. Bottinelli, R. Reyhanitabar, and S. Vaudenay

Lemma 1. Let π : {0, 1}n → {0, 1}n be a random permutation. For any value
IV ∈ {0, 1}n, the probability that π(π(π(π(IV)))) = IV is 3 × 2−n.

Proof. We say that IV is in a 1-cycle of π iff π(IV) = IV , and it is in a k-cycle
(1 < k ≤ 2n) iff: π(IV) = v1 �= IV, π(v1) = v2 �= IV, · · · , π(vk−2) = vk−1 �= IV
and π(vk−1) = vk = IV .

Now, it can be seen that π(π(π(π(IV)))) = IV happens if IV is in a 1-cycle
or a 2-cycle or a 4-cycle of π.

The probability that IV is in a 1-cycle of a random permutation π is clearly
2−n. It remains to calculate the probability that IV is in a k-cycle of π. Let
M = 2n. Then we have

Pr[IV is in a k-cyle] = M − 1
M

M − 2
M − 1

· · · M − k

M − k + 1
1

M − k
= 1

M
= 2−n

So, Pr [π(π(π(π(IV)))) = IV] = 3 × 2−n �
The attack proceeds as follows. Send C′ = C′

1C′
2C′

3C′
4C′

5||MDC to the decryp-
tion oracle (receiver) together with the same sequence number S (corresponding
to the queried plaintext P). In other words, just modify the original ciphertext
C to get C′, then forward C′ in place of C to the receiver for decryption.

Note that C′ is forwarded in the same security session as the one in which P
was queried. As a result, the key K has not changed. Thus, when sending the
sequence number S corresponding to P , the values IVa and IVb derived in the
decryption process for the forged ciphertext C′ are the same that the ones used
to protect the chosen plaintext P .

Fig. 4 shows the inner values computed during the decryption process of the
ciphertext C′. A picture of the decryption of C′ can be seen in Fig. 5.

C′
i Qi = C′

i − Yi−1 Yi = DK(Qi) Ri = Yi ⊕ Qi−1

C′
1 = O5 + IVb Q1 = O5 Y1 = DK(O5) = O4 R1 = O4 ⊕ IVa

C′
2 = O4 + O2 Q2 = O2 Y2 = DK(O2) = O1 R2 = O1 ⊕ O5

C′
3 = O3 + O1 Q3 = O3 Y3 = DK(O3) = O2 R3 = O2 ⊕ O2 = 0

C′
4 = O4 + O2 Q4 = O4 Y4 = DK(O4) = O3 R4 = O3 ⊕ O3 = 0

C′
5 = O5 + O3 Q5 = O5 Y5 = DK(O5) = O4 R5 = O4 ⊕ O4 = 0

Fig. 4. Decryption of the ciphertext C′ with IOC. The columns show the different
inner values and the corresponding plaintext blocks obtained.

The computation of the value ICV ′ as in line 10 of Algorithm 2 goes as follows

ICV ′ = Q5 ⊕ DK(MDC − Y5) (2)
= Q5 ⊕ DK((I5 + EK(ICV ⊕ O5)) − Y5) (3)
= Q5 ⊕ DK(EK(ICV ⊕ O5)) (4)
= Q5 ⊕ (ICV ⊕ O5) (5)
= ICV (6)

Breaking the IOC Authenticated Encryption Mode 133

C ′
1

DK

R1

Q1

Y1

C ′
2

R2

DK

MDC ′C ′
3

R3

C ′
4

R4

C ′
5

R5

IVb

IVa

Q2 Q3 Q4 Q5

Y2 Y3 Y4 Y5

DK DK DK DK

- - - - - -

ICV ′

Fig. 5. Decryption process in IOC with a ciphertext of 5 blocks and the MDC

where equalities (2) and (3) come from Equation 1 and equalities (3) and (4) are
driven from the fact that Y5 = O4 and O4 = I5 as it can be seen in Fig. 4 and
Fig. 2.

This shows that the verification step in line 11 of Algorithm 2 will pass,
and thus the ciphertext C′ will be considered as valid. Finally, we will get the
plaintext R = R1R2R3R4R5 as computed in the rightmost column in Fig. 4 and
depicted in Fig. 5.

It is easy to verify that R is a new message, i.e. different from the queried
message P . To do so, note that R1 �= P1 = 0 with probability 1−3×2−n, because
R1 = 0 iff O4 = IVa iff EK(EK(EK(EK(IVa)))) = IVa and this happens only
with probability 3 × 2−n when the block cipher is secure (PRP).

Hence, with probability 1 − 3 × 2−n, we can forge a new ciphertext which is
decrypted to a new plaintext.

Attack on the Old Version of IOC. Interestingly, our attack also applies to
the old version of IOC [16] (see subsection 2.1). We remind that the two versions
of IOC have the same iteration structure for the encryption and decryption
processes except the final application of the block cipher for generation and
verification of MDC.

In the old version of IOC [16] the MDC is computed as below:

MDC = EOm⊕〈S〉n(〈m〉n ⊕ Im)

Hence, the tag MDC for the queried message P = P1 · · · P5, where Pi = 0n

for all i, is computed (see Fig. 2) as

MDC = EO5⊕〈S〉n(〈5〉n ⊕ I5) = EO5⊕〈S〉n(〈5〉n ⊕ O4).

The tag computed during the decryption of C′ = C′
1C′

2C′
3C′

4C′
5||MDC is com-

puted (see Fig. 4) as

MDC′ = EQ5⊕〈S〉n(〈5〉n ⊕ Y5) = EO5⊕〈S〉n(〈5〉n ⊕ O4) = MDC.

134 P. Bottinelli, R. Reyhanitabar, and S. Vaudenay

Hence, the forged ciphertext C′ passes the MDC tag verification and will not
be rejected.

4 Conclusion

We presented an existential forgery attack against the IOC authenticated encryp-
tion mode that fully breaks the integrity of the algorithm. Our attack requires
only a single, short chosen message to be encrypted by IOC, runs in a small con-
stant time, and succeeds with an overwhelming probability. Despite the provided
lengthy but rather informal security arguments for IOC by the designer, our at-
tack shows the danger that lies in relying on non-rigorous security arguments
and stresses the importance of backing cryptographic designs, in particular new
AE schemes, by sound security proofs.

References

1. Authenticated Encryption Modes. National Institute of Standards and Technology,
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html#01

2. ISO/IEC 19772:2009: Information technology – Security techniques – Authenticated
encryption. International Organization for Standardization, Geneva, Switzerland
(2009)

3. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among No-
tions and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

4. Bellare, M., Namprempre, C.: Authenticated Encryption: Relations among Notions
and Analysis of the Generic Composition Paradigm. J. Cryptology 21(4), 469–491
(2008)

5. Bellare, M., Rogaway, P.: Encode-Then-Encipher Encryption: How to Exploit
Nonces or Redundancy in Plaintexts for Efficient Cryptography. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg
(2000)

6. Bernstein, D.J.: Cryptographic competitions: CAESAR,
http://competitions.cr.yp.to

7. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password Interception in
a SSL/TLS Channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 583–599. Springer, Heidelberg (2003)

8. Katz, J., Yung, M.: Unforgeable Encryption and Chosen Ciphertext Secure Modes
of Operation. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 284–299.
Springer, Heidelberg (2001)

9. Kohl, J.T.: The use of Encryption in Kerberos for Network Authentication. In:
Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 35–43. Springer, Heidelberg
(1990)

10. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011)

11. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html#01
http://competitions.cr.yp.to

Breaking the IOC Authenticated Encryption Mode 135

12. Mitchell, C.J.: Cryptanalysis of Two Variants of PCBC Mode When Used for
Message Integrity. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS,
vol. 3574, pp. 560–571. Springer, Heidelberg (2005)

13. Mitchell, C.J.: Analysing the IOBC Authenticated Encryption Mode. In: Boyd, C.,
Simpson, L. (eds.) ACISP. LNCS, vol. 7959, pp. 1–12. Springer, Heidelberg (2013)

14. Preneel, B.: Cryptographic Primitives for Information Authentication - State of the
Art. In: Preneel, B., Rijmen, V. (eds.) State of the Art in Applied Cryptography.
LNCS, vol. 1528, pp. 49–104. Springer, Heidelberg (1998)

15. Recacha, F.: IOBC: Un nuevo modo de encadenamiento para cifrado en bloque.
In: Proceedings: IV Reunion Espanola de Criptologia, Valladolid, pp. 85–92
(September 1996)

16. Recacha, F.: IOC: The Most Lightweight Authenticated Encryption Mode? Na-
tional Institute of Standards and Technology, Modes Development, Proposed
Modes (April 2013),
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html

17. Recacha, F.: Input Output Chaining (IOC) AE Mode Revisited (January 2014),
http://inputoutputblockchaining.blogspot.ch/

18. Vaudenay, S.: Security Flaws Induced by CBC Padding - Applications to SSL,
IPSEC, WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (2002)

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://inputoutputblockchaining.blogspot.ch/

New Treatment of the BSW Sampling and Its

Applications to Stream Ciphers�

Lin Ding1, Chenhui Jin1, Jie Guan1, and Chuanda Qi2

1 Information Science and Technology Institute, 450000 Zhengzhou, China
2 Xinyang Normal University, 464000 Xinyang, China

{dinglin cipher,guanjie007}@163.com, jinchenhui@126.com,

qichuanda@sina.com

Abstract. By combining the time-memory-data tradeoff (TMDTO) at-
tack independently proposed by Babbage and Golić (BG) with the BSW
sampling technique, this paper explores to mount a new TMDTO attack
on stream ciphers. The new attack gives a wider variety of trade-offs,
compared with original BG-TMDTO attack. It is efficient when multiple
data is allowed for the attacker from the same key with different IVs,
even though the internal state size is twice the key size. We apply the
new attack to MICKEY and Grain stream ciphers, and improves the ex-
isting TMDTO attacks on them. Our attacks on Grain v1 and Grain-128
stream ciphers are rather attractive in the respect that the online time,
offline time and memory complexities are all better than an exhaustive
key search, and the amount of keystream needed are completely valid.
Finally, we generalize the new attack to a Guess and Determine-TMDTO
attack on stream ciphers, and mount a Guess and Determine-TMDTO
attack on SOSEMANUK stream cipher with the online time and offline
time complexities both equal to 2128, which achieves the best time com-
plexity level compared with all existing attacks on SOSEMANUK so far.

Keywords: Cryptanalysis, Time-memory-data tradeoff attack, BSW sam-
pling, Guess and Determine attack, Stream cipher, MICKEY, Grain,
SOSEMANUK.

1 Introduction

Stream ciphers can be described as keyed generators of pseudo random sequences
over a finite field. Usually, the problem of recovering the secret key of stream ci-
pher can be generalized as the problem of inverting a one-way function y = f(x).
Exhaustive key search and table lookup attack are two extreme examples of
generic attacks to invert one-way functions. Time-Memory tradeoff (TMTO)
attack is a method combining the exhaustive key search and the table lookup
attack, and offers a generic technique to invert one-way functions, where one

� This work is supported in part by the National Natural Science Foundation of China
(No. 61202491, 61272041, 61272488) and Foundation of Science and Technology on
Information Assurance Laboratory (Grant No. KJ-13-007).

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 136–146, 2014.
c© Springer International Publishing Switzerland 2014

New Treatment of the BSW Sampling 137

can trade off time and memory costs. A typical TMTO attack consists of two
phases, i.e., the offline (or pre-computation) phase and the online phase. The
complexities of TMTO attack can be evaluated by looking at three main pa-
rameters, i.e., the online time complexity T, the memory cost M, and the offline
time complexity P.

The idea of TMTO attack was originally proposed by Hellman [1] for attacking
the DES block cipher. The attack has a lower time complexity (in online phase)
than the exhaustive key search and a lower memory complexity than the table
lookup attack. Its tradeoff curve is obtained as TM2 = N2 and P = N , where
N is the number of possible keys. Hence, a reasonable choice of M and T is T =
M = N2/3, which is lower than the exhaustive key search. However, the offline
time complexity of Hellmans attack is always no less than the time complexity
of the exhaustive key search.

Babbage [2] and Golić [3] independently proposed a simple time-memory-data
tradeoff (TMDTO) attack on stream ciphers. The tradeoff curve of Babbage-
Golić (BG-TMDTO) attack can be represented as TM = N , P =M and T = D,
where D is the amount of data available to the attacker. Here, N is the number
of possible internal states. In ASIACRYPT 2000, Biryukov and Shamir [4] found
that TMTO attacks against stream ciphers can be extended to TMDTO attacks
by utilizing multiple data points. The idea of Biryukov-Shamir (BS-TMDTO)
attack was similar to the original attack by Hellman. The tradeoff curve of this
attack can be represented as TM2D2 = N2 and P = N/D, while the restriction
1 ≤ D2 ≤ T has to be satisfied. The attack was applied to one of the most
widely deployed stream ciphers, GSM’s A5/1. In these attacks, the attacker
tries to invert the function mapping the internal state of stream cipher to a
segment of the keystream output. These attacks imply that the state size should
be at least twice the key size, which is widely considered as an essential design
principle for modern stream ciphers.

On a different attack scenario, TMDTO attacks can also be used to invert
the function mapping the initial inputs (e.g., Key and IV) of stream cipher to
a segment of the keystream output. In the TMDTO attack proposed by Hong
and Sarkar [5], they treat both the secret key and IV as unknown in the offline
phase. The trade-off curve for Hong-Sarkar (HS-TMDTO) attack is the same as
the BS-TMDTO attack with N = K × V . Here, denote K and V the numbers
of possible keys and IVs respectively.

In [6], Dunkelman and Keller presented a new approach to TMDTO attacks
against stream ciphers. They did not treat the IV as part of the secret key
material, after exploiting the fact that the IV is known during an online attack.
The Dunkelman-Keller (DK-TMDTO) attack get the same trade-off curve as
TM2D2 = N2 and P = N/D, but with the restriction 1 ≤ D2 ≤ T replaced by
the restrictions V ≥ D and T ≥ D. The attack implies that if the key length is
n bits, the cipher offers n-bit security with respect to DK-TMDTO attacks only
if the IV length is at least 1.5n bits. However, its offline time complexity cannot
be faster than exhaustive key search irrespective of the IV length.

138 L. Ding et al.

The concept of BSW Sampling was introduced by Biryukov, Shamir and Wag-
ner [7] at FSE 2000. It helps the BS-TMDTO attack to get a wider choice of pa-
rameters by relaxing its restriction. However, a view exists that the BG-TMDTO
attack is not really helped as much by the BSW sampling technique [8]. This
paper explores the possibility of combining the BG-TMDTO attack with the
BSW sampling technique to mount a new TMDTO attack on stream ciphers.
The new attack can be considered as a generalization of BG-TMDTO attack. It
is rather efficient when multiple data is allowed for the attacker from the same
key with different IVs, even though the internal state size is twice the key size.
As applications, we mount new TMDTO attacks on MICKEY and Grain stream
ciphers. Finally, a general Guess and Determine-TMDTO attack on stream ci-
phers is presented by exploiting the fact that the BSW sample technique can
be generalized to a simple Guess and Determine attack. As an application, we
give a Guess and Determine-TMDTO attack on SOSEMANUK stream cipher,
which achieves the best time complexity level compared with all existing attacks
on SOSEMANUK so far.

This paper is organized as follows. Our new attack is proposed in Section 2.
Applications of the new attack and some discussions on it are given in Section
3. The paper is concluded in Section 4.

2 New Time-Memory-Data Tradeoff Attack

2.1 BSW Sampling Technique

Inverting a one-way function has an important role in the security of most en-
cryption schemes. The problem of recovering the internal state of a stream cipher,
given multiple keystream segments, can be generalized as an inversion problem,
as shown as follows.

Given a one-way function f : X → Y and a set D = {yi}i ⊂ Y , to
identify an internal state x ∈ X such that f(x) = yi for some i.

Where N = |X | denotes the number of possible internal states, and Y the set of
enough keystream segments.

The BSW sampling aims at obtaining wider choices of tradeoff parameters for
the tradeoff curve of BS-TMDTO attack. Its main idea is to find an efficient way
to generate and enumerate special cipher states, from which the first subsequent
keystream output bits of the cipher are a fixed string (such as a run of consecutive
1 or 0 bits). If this can be done for a run of l bits, the sampling resistance of
the cipher is defined to be R = 2−l. Usually, the BSW sampling tradeoff works
when the following assumption is satisfied for a given stream cipher.

Assumption 1. For a given stream cipher with the internal state size n =
log2N , given the value of n− l particular state bits of it and the first l keystream
bits produced from that state, the remaining l internal state bits may be deduced
directly.

New Treatment of the BSW Sampling 139

It is easy to see that the sampling resistance of the given stream cipher is
R = 2−l under the assumption. Given the sampling resistance, the attacker
can apply the BS tradeoff to the problem of inverting the restricted function
f ′ : X ′ → Y ′, rather than the function f : X → Y . The restricted function is
obtained as follows.

1. Fix a specific function by choosing an l -bit string S.
2. Given an (n − l)-bit input value x, treat S as the first l bits of keystream,

compute the remaining l state bits according to the assumption above, and
then expand it to n bits.

3. Clock the stream cipher n steps, generating an n-bit keystream segment S|y.
4. Output y.

Clearly, the inversion problem of inverting the function f mapping n-bit states
to n-bit keystream segments is equivalent to the inversion problem of inverting
the restricted function f ′ : {0, 1}n−l → {0, 1}n−l. Thus, the attacker would
consider the cost of inverting f ′ rather than the full stream cipher.

The trade-off curve for BSW sampling is the same as the BS-TMDTO attack,
i.e., TM2D2 = N2 and P = N/D, while a wider choice of parameters by relaxing
the restriction 1 ≤ D2 ≤ T to 1 ≤ R2D2 ≤ T . The BSW sampling technique has
been applied to MICKEY and Grain stream ciphers, see [9,8] for more details.
The BSW sampling technique allows mounting the BS-TMDTO attack in a
larger variety of settings by relaxing the restriction, though the obtained tradeoff
curve keeps unchanged.

2.2 New Treatment of the BSW Sampling Technique

As shown above, the BSW sampling technique helps the BS-TMDTO attack to
get a wider choice of parameters by relaxing its restriction. However, claimed
by [8], the BG tradeoff is not really helped as much by the BSW sampling, as
the amount of keystream needed remains prohibitive. In fact, if the keystream
segments available for cryptanalysis are generated by only one single (K, IV),
the required amount of keystream is indeed prohibitive. However, if the proposed
cryptanalysis does not require a long keystream generated by one single (K, IV)
pair but a (large) number of short keystreams generated by the same key with
different IVs, the required amount of keystream may be completely valid in
this respect. This motivates us to explore the possibility of combining the BG-
TMDTO attack with the BSW sampling technique to mount a new TMDTO
attack. In this attack, the keystream segments available for cryptanalysis are
generated by the same key with different IVs.

Assume that an attacker can collect a set of d keystream sequences generated
by the given stream cipher for different IVs, and that the length of each sequence
is d′. Accordingly, we assume that the set of samples available for the cryptanal-
ysis consists of approximately D = d · d′ 2n-bit keystream segment samples.

140 L. Ding et al.

Like the typical TMDTO attack, the new attack consists of two phases, i.e., the
offline phase and the online phase. The attack utilizes an integer parameter r
satisfying the restriction 1 ≤ r ≤ R−1.

The offline phase is to construct some tables consisting of pairs of internal
state and corresponding keystream segment. The algorithm for the offline phase
is described as follows.

The Offline Algorithm

Choose r strings S1, · · · , Sr randomly, and each consists of l bits. For each fixed
string Si, do the followings.

1. Choose N ′ strings I1, · · · , IN ′ randomly, and each consists of n− l bits.
2. Treat Si as the first l bits of keystream and Ij as the n−l particular state bits,

compute the remaining l bits, clock the stream cipher n steps to generate an
n-bit keystream segment, and then memory the (n-bit internal state, n-bit
keystream segment) pair in the table Ti.

The online phase is to recover an internal state which has generated a keystream
segment in one table. The algorithm for the online phase is described as follows.

The Online Algorithm

For each 2n-bit keystream segment sample available for the cryptanalysis, check
if the first l bits of the sample match one of r strings S1, · · · , Sr. If a matching is
not found, go to check the next 2n-bit keystream segment sample. If a matching
is found, do the followings.

1. For each matching (say Si) found, check if the first n-bit keystream segment
exists in the second column of the corresponding table (i.e., Ti). If it does not
exist, move to consideration of the next 2n-bit keystream segment sample.
If it exists, read the corresponding n-bit internal state in the first column of
the table, clock the stream cipher 2n steps to generate 2n keystream bits,
and then match them with the sample. If the match passes, go to the output
(a). Otherwise, move to consideration of the next 2n-bit keystream segment
sample.

2. If no more keystream segment samples, go to the output (b).

Output: (a) recovered n-bit internal state; (b) a flag that the algorithm has
failed.

The complexities of the proposed TMDTO attack are calculated as follows.
In the offline phase, for each fixed string Si, N

′ strings should be chosen
randomly to execute the Step 2. Thus, the time complexity of the offline phase

New Treatment of the BSW Sampling 141

(denoted as P) is mainly determined by the number of (Si, Ij), which implies
that P = rN ′. At the same time, the memory complexity of the offline phase
(denoted as M) is the same with the offline time complexity, i.e., M = P = rN ′,
since the offline phase has to construct r tables, and that the size of each table
is N ′.

Clearly, a total of rN ′ (n-bit internal state, n-bit keystream segment) pairs
has been stored in the offline phase, sinceN ′ strings are chosen randomly for each
of all r strings S1, · · · , Sr in this phase. According to the birthday paradox, the
expected number of keystream segment samples available for the online phase
should be D = N/rN ′. Since the probability that the first l bits of a given
sample match one of r strings S1, · · · , Sr is p = r · 2−l = rR, the expected
number of matchings found among all D keystream segment samples should be
D · p = RN/N ′. It is easy to see that the time complexity of the online phase
(denoted as T) is mainly determined by the number of matchings found among
all samples, which implies that T = D · p = RN/N ′. Note that the unit of the
online time complexity is one table lookup. Therefore, the trade-off curve of our
attack is given as follows.

MT = rRN , MD = N , P =M and D = d · d′

Where r is integer parameter satisfying the restriction 1 ≤ r ≤ R−1.
Clearly, the tradeoff curve of our attack is the same as the BG-TMDTO attack

when r = R−1 holds. Thus, the BG-TMDTO attack may be considered as a
special case of our attack. By introducing the integer parameter, our attack gives
a wider variety of trade-offs. Let Dmax = dmax · d′max be the maximum number
of keystream bits generated by the key K, where d′max denotes the maximum
number of keystream bits generated by a single (K, IV), and dmax denotes the
maximum number of keystream sequences generated by the same key K and
different IVs. A lemma is obtained as follows.

Lemma 1. For a given stream cipher with the internal state size of log2N bits,
when N1/2 < Dmax < (rR)−1N1/2 is allowed for the attacker, 1 ≤ r < R−1,
there certainly exists a TMDTO attack with the online time, offline time and
memory complexities all faster than an exhaustive key search on the cipher, even
though the internal state size is twice the key size.

Proof. Recall the trade-off curve of our attack as follows.

MT = rRN , MD = N , P =M and D = d · d′

When N1/2 < Dmax < (rR)−1N1/2 is allowed for the attacker, we may choose
the data complexity such that N1/2 < D ≤ Dmax, which implies

rRN1/2 < P =M = N
D < N1/2

T = rRN
M < rRN

rRN1/2 = N1/2

142 L. Ding et al.

Thus, this Lemma follows directly.

Our attack can be considered as a generalization of the BG-TMDTO attack.
It is rather efficient when multiple data is allowed for the attacker from the same
key with different IVs, even though the internal state size is twice the key size.

3 Applications and Discussions

3.1 Previous Works on MICKEY and Grain Stream Ciphers

At FSE 2000, particularly efficient attacks on A5/1 were proposed by using the
BSW sampling technique [7]. After then, the BS-TMDTO attack with BSW
sampling had been applied to MICKEY 1.0 and Grain stream ciphers, see [9,8].

MICKEY 1.0 [10] is a hardware-oriented stream cipher proposed by Babbage
and Dodd in 2005. Its strengthened version, named MICKEY 2.0 [11], had been
selected as one of the seven finalists of eSTREAM project. In [9], Hong and
Kim showed that MICKEY 1.0 stream cipher has a sampling resistance of at
most 2−27. Since MICKEY 1.0 has an internal state size of 160 bits, the BS-
TMDTO attack with BSW sampling on the cipher has the online and offline
time complexities of 267 and 2100 respectively, while the time complexity of
an exhaustive key search is 280. The attack is not applicable to MICKEY 2.0,
because the internal state size was increased from 160 to 200 bits. MICKEY-128
2.0 [11] is a variant of MICKEY 2.0, which supports a key size of 128 bits, and
an IV varying between 0 and 80 bits in length. Its internal state size is of 320
bits.

Grain v1 [12], a hardware-oriented stream cipher proposed by Hell, Johansson
and Meier, is also one of the seven eSTREAM finalists. It has a key size of 80
bits, an IV size of 64 bits, and an internal state size of 160 bits. In [8], Bjørstad
showed that Grain v1 stream cipher has a sampling resistance of at most 2−21.
The BS-TMDTO attack with BSW sampling on the cipher has the online and
offline time complexities of 270 and 2104 respectively. Grain-128 [12] is a variant
of Grain, which supports a key size of 128 bits, and an IV size of 96 bits. Its
internal state size is of 256 bits.

3.2 New Attacks on MICKEY and Grain Stream Ciphers

Now, we will apply our attack to MICKEY and Grain stream ciphers. MICKEY
1.0 has a key size of 80 bits, and supports an IV varying between 0 and 80
bits in length. As for MICKEY 1.0 stream cipher, we get that N = 2160 and
R = 2−27. In the specification of MICKEY 1.0, there exists a restriction that
the maximum length of keystream sequence that may be generated with a single
(K, IV) pair is 240 bits, and it is acceptable to generate 240 such sequences, all
from the same key K but with different values of IV. This restriction implies
d ≤ 240 and d′ ≤ 240. Here, we choose d = d′ = 240, and r = 1. Since N = 2160

and R = 2−27 are known, we can mount a TMDTO attack on MICKEY 1.0 with
M = D = P = N1/2 = 280 and T = 253.

New Treatment of the BSW Sampling 143

Table 1. The results and comparisons with the existing attacks

Stream ciphers R Attacks Parameter T M D P

MICKEY 1.0 2−27 [9]
This paper

-
r = 1

267

253
267

280
260

d = d′ = 240
2100

280

MICKEY 2.0 2−33 This paper r = 1 247 2120 d = d′ = 240 2120

MICKEY-128 2.0 2−54 This paper r = 1 274 2192 d = d′ = 264 2192

Grain v1 2−21
[8]

This paper
This paper

-
r = 1
r = 211

270

269.5

275

259

269.5

275

256

d = d′ = 245.25

d = d′ = 242.5

2104

269.5

275

Grain-128 2−22 This paper
This paper

r = 1
r = 212

2117

2123
2117

2123
d = d′ = 269.5

d = d′ = 266.5
2117

2123

Similarly, we can mount TMDTO attacks on MICKEY 2.0, MICKEY-128 2.0,
Grain v1 and Grain-128 stream ciphers. The results and comparisons with the
existing attacks are summarized in Table 1.

Note that similar to MICKEY 2.0, there also exists a restriction for MICKEY-
128 2.0 that the maximum length of keystream sequence that may be generated
with a single (K, IV) pair is 264 bits, and it is acceptable to generate 264 such
sequences, all from the same key K but with different values of IV. Thus, the
restrictions d ≤ 264 and d′ ≤ 264 should hold simultaneously. While, as for Grain
v1 and Grain-128 stream ciphers, their specifications do not specify any limits
to the amount of keystream that may be generated by the same key K with
different IVs, so our attacks on them are completely valid in this respect.

According to Table 1, our TMDTO attacks have one remarkable advantage in
the online time complexity, which is always better than an exhaustive key search.
Since the offline phase only performs once, the attack with a low online time
complexity works, particularly when the attacker wants to recover many internal
states generated by different secret keys in the online phase. Furthermore, as for
Grain v1 and Grain-128 stream ciphers, our attacks are rather attractive in
the respect that the online time, offline time and memory complexities are all
better than an exhaustive key search, and the amount of keystream needed are
completely valid.

3.3 General Guess and Determine-TMDTO Attack

The Guess and Determine (GD) attack is a common attack on stream ciphers.
Its main idea is to guess a portion of the internal state, and then to recover the
remaining internal state by using a small amount of known keystream. Clearly,
the BSW sample technique can be generalized to a simple Guess and Determine
attack. The Assumption 1 can be rewritten as follows.

Assumption 2. For a given stream cipher with internal state size n = log2N ,
the attacker guesses the values of n−l particular internal state bits, the remaining
l internal state bits may be determined directly by using the first l keystream
bits produced from that state.

144 L. Ding et al.

Assume that for a given stream cipher, the attacker obtains a simple Guess
and Determine attack, described as the Assumption 2. The attack has a time
complexity of 2n−l, requiring l keystream bits. It can be transformed into a
Guess and Determine-TMDTO attack by fitting it into the model showed in
Subsection 2.2.

Take the SOSEMANUK stream cipher [13], one of seven eSTREAM finalists,
for example. SOSEMANUK has an internal state size of 384 bits. The internal
state of SOSEMANUK at time t can be showed as st+1, · · · , st+10, R1t+1, R2t+1,
and that each contains 32 bits. Its key length is variable between 128 and 256
bits. It accommodates a 128-bit IV. Any key length is claimed to achieve 128-
bit security. The best Guess and Determine attack on the cipher so far has
been proposed by Feng et al. [14] in ASIACRYPT 2010, with a time complexity
of 2176. In their attack, the attacker guesses a total of 176 internal state bits,
and then determine the remaining 208 internal state bits by using eight 32-bit
keystream words (i.e., a total of 256 keystream bits). The attack consists of
five phases. Their attack can not be transformed into a Guess and Determine-
TMDTO attack, since it requires too many keystream bits that it does not fit into
our model. Here, we give a new Guess and Determine attack on SOSEMANUK
as follows. We follow the notes used in [14]. Let x be a 32-bit word. Denote x(i)

the i-th byte component of x, 0 ≤ i ≤ 3, i.e., x = x(3)||x(2)||x(1)||x(0), where
each x(i) is a byte, and || is the concatenation of two bit strings. For simplicity
we write x(1)||x(0) as x(0,1) and x(2)||x(1)||x(0) as x(0,1,2).

In the new attack, we should first guess s1, s2, s3, s
(0)
4 , R2

(0,1,2)
1 and R11 (a

total of 160 bits). Note that in their attack, they make an assumption on the
least significant bit of R11. As showed in the Section 6 of [14], it shows that the
assumption is not necessary for their attack to work. For convenience, we guess
the least significant bit of R11 directly instead of making one assumption. After
then, we determine s4, s5, s6, R21 and s10 by executing the Phase 1-3 of their
attack. Finally, the attacker should guess s7, s8 and s9 (a total of 96 bits). Up to
now, we have recovered all 384 internal state bits of SOSEMANUK. The attack
only uses four 32-bit keystream words, i.e., z1, z2, z3 and z4.

In the new attack, we should guess s1, s2, s3, s
(0)
4 , R2

(0,1,2)
1 , s7, s8, s9 and R11

(a total of 256 bits), and then recover the remaining 128 internal state bits
by using four 32-bit keystream words (a total of 128 bits). The new attack
fits into our model quite well. Thus, we have N = 2384 and R = 2−128 for
SOSEMANUK stream cipher. Our results and comparison with the existing
attacks are summarized in Table 2.

Note that the specification of SOSEMANUK does not specify any limits to
the amount of keystream that may be generated under a single (K, IV), so our
attacks are completely valid in this respect. According to Table 2, the attacker
can mount a Guess and Determine-TMDTO attack with the online time, offline
time and memory complexities all equal to 2128, which achieves the best time
complexity level compared with all existing attacks on SOSEMANUK so far.
Of course, one can also mount a Guess and Determine-TMDTO attack with an

New Treatment of the BSW Sampling 145

Table 2. The results and comparisons with the existing attacks on SOSEMANUK

Attacks Parameter T M D P

GD attack [14] - 2176 - 24 -

Linear Cryptanalysis [15] - 2147.9 2147.1 2145.5 -

Linear Cryptanalysis [16] - 2147.4 2146.8 2135.7 -

This paper r = 1 2136 2120 d = 2128, d′ = 2136 2120

This paper r = 1 2128 2128 d = d′ = 2128 2128

This paper r = 1 2116 2140 d = d′ = 2122 2140

online time complexity of 2116, which is significantly better than an exhaustive
key search, at the cost of increased offline time and memory complexities.

4 Conclusions

By combining the BG-TMDTO attack with the BSW sampling technique, this
paper proposes a new TMDTO attack on stream ciphers. The results show that
the new attack gives a wider variety of trade-offs, compared with original BG-
TMDTO attack, and is efficient when multiple data is allowed for the attacker
from the same key with different IVs, even though the internal state size is twice
the key size. As applications, we mount TMDTO attacks on MICKEY and Grain
stream ciphers. Particularly, as for Grain v1 and Grain-128 stream ciphers, our
TMDTO attacks are rather attractive in the respect that the online time, offline
time and memory complexities are all better than an exhaustive key search, and
the amount of keystream needed are completely valid. The results are sufficient
evidences of validity of our attack. Finally, we generalize our attack to a Guess
and Determine-TMDTO attack, and apply it to SOSEMANUK stream cipher,
which achieves the best time complexity level compared with all existing attacks
on SOSEMANUK so far. We hope that our attack provides some new insights
on TMDTO attacks on stream ciphers.

Acknowledgements. The authors would like to thank the anonymous reviewers
and Dr. Long Wen for their valuable comments and suggestions.

References

1. Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Transactions on Infor-
mation Theory 26(4), 401–406 (1980)

2. Babbage, S.: Improved exhaustive search attacks on stream ciphers. In: Euro-
pean Convention on Security and Detection 1995. IEE Conference Publication,
pp. 161–166. IEEE Press, New York (1995)

3. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

146 L. Ding et al.

4. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000)

5. Hong, J., Sarkar, P.: New Applications of Time Memory Data Tradeoffs. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353–372. Springer, Heidelberg
(2005)

6. Dunkelman, O., Keller, N.: Treatment of the initial value in Time-Memory-Data
Trade-off attacks on stream ciphers. Information Processing Letters 107(5), 133–137
(2008)

7. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg
(2001)

8. Bjørstad, T.E.: Cryptanalysis of Grain using Time/Memory/Data Tradeoffs.
ECRYPT Stream Cipher Project Report 2008/012 (2008),
http://www.ecrypt.eu.org/stream

9. Hong, J., Kim, W.-H.: TMD-Tradeoff and State Entropy Loss Considerations of
Streamcipher MICKEY. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.)
INDOCRYPT 2005. LNCS, vol. 3797, pp. 169–182. Springer, Heidelberg (2005)

10. Babbage, S., Dodd, M.: The stream cipher MICKEY (version 1). ECRYPT Stream
Cipher Project Report 2005/015 (2005), http://www.ecrypt.eu.org/stream

11. Babbage, S., Dodd, M.: The MICKEY Stream Ciphers. In: Robshaw, M., Billet,
O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 191–209. Springer,
Heidelberg (2008)

12. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain Family of Stream
Ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS,
vol. 4986, pp. 179–190. Springer, Heidelberg (2008)

13. Berbain, C., et al.: Sosemanuk, A Fast Software-Oriented Stream Cipher. In:
Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986,
pp. 98–118. Springer, Heidelberg (2008)

14. Feng, X., Liu, J., Zhou, Z., Wu, C., Feng, D.: A Byte-Based Guess and Determine
Attack on SOSEMANUK. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 146–157. Springer, Heidelberg (2010)

15. Lee, J.-K., Lee, D.-H., Park, S.: Cryptanalysis of SOSEMANUK and SNOW 2.0
using linear masks. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 524–538. Springer, Heidelberg (2008)

16. Cho, J.Y., Hermelin, M.: Improved Linear Cryptanalysis of SOSEMANUK. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 101–117. Springer, Heidelberg
(2010)

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

Multidimensional Zero-Correlation Linear

Cryptanalysis of E2

Long Wen1, Meiqin Wang1,�, and Andrey Bogdanov2,�

1 Key Laboratory of Cryptologic Technology and Information Security,
Ministry of Education, Shandong University, Jinan 250100, China

longwen@mail.sdu.edu.cn, mqwang@sdu.edu.cn
2 Technical University of Denmark, Denmark

anbog@dtu.dk

Abstract. E2 is a block cipher designed by NTT and was a first-round
AES candidate. E2’s design principles influenced several more recent
block ciphers including Camellia, an ISO/IEC standard cipher. So far
the cryptanalytic results for round-reduced E2 have been concentrating
around truncated and impossible differentials. At the same time, rather
recently at SAC’13, it has been shown how to improve upon the im-
possible differential cryptanalysis of Camellia with the zero-correlation
linear cryptanalysis. Due to some similarities between E2 and Camellia,
E2 might also render itself more susceptible to this type of cryptanalysis.

In this paper, we investigate the security of E2 against zero-correlation
linear cryptanalysis. We identify zero-correlation linear approximations
over 6 rounds of E2. With these linear approximations, we can attack 8-
round E2-128 and 9-round E2-256 without IT and FT . The attack on 8-
round E2-128 requires 2124.1 known plaintexts (KPs), 2119.3 encryptions
and 299 bytes memory. The attack on 9-round E2-256 requires 2124.6

KPs, 2225.5 encryptions and 299 bytes memory. In contrast, the previous
attacks on 8-round E2-128 had an uncertain time complexity and one
could only attack 8-round E2-256. Besides, for the first time, we propose
a key recovery attack on reduced-round E2 with both IT and FT taken
into consideration. More concretely, we can attack 6-round E2-128 with
2123.7 KPs, 2119.1 encryptions and 229 bytes and 7-round E2-256 requires
2124.7 KPs, 2252.8 encryptions and 291 bytes when both IT and FT are
considered.

Keywords: Block cipher, zero-correlation, multidimensional linear crypt-
analysis, E2.

1 Introduction

Zero-Correlation Linear Cryptanalysis. The concept of zero-correlation
linear cryptanalysis is proposed by Bogdanov and Rijmen in [3]. The founda-
tion of this new kind of cryptanalytic technique is the availability of numerous

� Corresponding Authors.

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 147–164, 2014.
c© Springer International Publishing Switzerland 2014

148 L. Wen, M. Wang, and A. Bogdanov

key-independent unbiased linear approximations with correlation zero in many
ciphers. (If a linear approximation holds with probability p, then its correlation
is defined by c = 2p− 1). Despite the novelty of this new cryptanalysis, its ap-
plication is limited due to the data complexity required to mount the attack,
where almost the whole codebook is needed to distinguish right key guess and
wrong key guess. Yet, this drawback is overcome at FSE’12 [4] by Bogdanov
and Wang. They constructed a more data-efficient distinguisher utilizing the
existence of multiple linear approximations with correlation zero in the target
ciphers. Improved attacks on TEA and XTEA are presented in [4] using the
new distinguisher. However, the distinguisher in [4] is constructed based on the
assumption that all obtained zero-correlation linear approximations are inde-
pendent, which is not met in certain target ciphers. In a follow-up work at ASI-
ACRYPT’12 [5], fundamental links of integral cryptanalysis to zero-correlation
cryptanalysis have been revealed. Namely, integrals (similar to saturation or mul-
tiset distinguishers) have been demonstrated to be essentially a special case of the
zero-correlation property. Moreover, the multidimensional zero-correlation linear
distinguisher has been constructed for the zero-correlation property, which re-
moved the unnecessary independency assumptions on the distinguishing side [4].
This new model can be seen as multidimensional linear cryptanalysis [13] with
capacity equal to zero and its validity is verified by experiments on small vari-
ant of LBlock with 32-bit block at WCC’13 by Soleimany and Nyberg [6]. At
SAC’13 [8] the Discrete Fast Fourier Transform technique is applied in the zero-
correlation linear cryptanalysis resulting in improved attacks on Camellia-128
and Camellia-192. As zero-correlation linear cryptanalysis is considered as the
counter part of impossible differential cryptanalysis in the domain of linear crypt-
analysis, a mathematical link between impossible differential distinguisher and
zero-correlation linear distinguisher is revealed by Blondeau and Nyberg [7] at
EUROCRYPT’13.

E2 Block Cipher and Existing Cryptanalysis. E2 [10] is a 128-bit block
cipher proposed by NTT and is one of the fifteen candidates in the first round
of AES project. Although E2 was not selected as AES, its design principle has
been used in Camellia [1], which is adopted as one of the ISO block ciphers [9].
Classical Feistel structure is adopted in E2. The key size could be 128, 192 or
256-bit, and are denoted as E2-128, E2-192 and E2-256, respectively. All three
version of E2 have the same round number, 12. The round function employs
Substitution-Permutation-Substitution (SPS) structure with byte table lookups
and byte XOR operation. Moreover, the initial transformation IT and the final
transformation FT consisting of XOR operation and modular multiplication
operation with subkeys and byte permutation are applied before the first round
and after the last round, respectively.

The security of E2 has been evaluated with truncated differential cryptanalysis
and impossible differential cryptanalysis. At FSE’99 [14], Matsui and Tokita
identified a truncated differential characteristic for 7-round E2 and mounted key
recovery attack on 8-round E2-128 without IT and FT under data complexity

Multidimensional Zero-Correlation Linear Cryptanalysis of E2 149

2100 chosen plaintexts and indefinite time complexity1. At SAC’99 [15], Moriai
et al. found another 7-round truncated differential characteristic with higher
probability than that identified by Matsui et al., and a possible key recovery
attack on 8-round E2-128 without IT and FT is given under data complexity
294 chosen plaintexts and uncertain time complexity2. Then they proposed the
distinguishing attack (other than key recovery attack) on 7-round E2-128 with
IT and FT .

In the case of impossible differential cryptanalysis of E2, Wei et al. [16] iden-
tified 6-round impossible differential characteristics of E2, yet they didn’t report
key recovery attack on E2. In [17], Wei et al. presented key recovery attack on
7-round E2-128 without IT and FT requiring 2120 chosen plaintexts and 2115.5

encryptions, and the key recovery attack on 8-round E2-256 without IT and FT
is reported with data complexity 2121 chosen plaintexts and time complexity
2214 encryptions.

Our Contributions. In this paper, we present zero-correlation cryptanalysis
for E2 block cipher. Our contributions are three-fold and various key recovery
attacks on E2-128 and E2-256 are summarized in Table 1.

– Zero-correlation linear approximations over 6-round E2 are derived.
– Key recovery attacks on 8-round E2-128 and 9-round E2-256 without con-

sidering IT and FT are mounted using multidimensional zero-correlation
linear cryptanalytic technique. Compared with the previous impossible dif-
ferential attacks, our attacks can work one more round. In comparison with
the previous truncated differential attacks, the time complexity of our attack
on 8-round E2-128 is explicitly lower than that of exhaustive search.

– We present the first key recovery attacks on 6-round E2-128 and 7-round E2-
256 with both IT and FT taken into consideration. The previous impossible
differential attack in [15] can work on 8-round E2-128 with only IT or FT
taken into consideration. Moreover, whether this attack’s time complexity is
lower than exhaustive search is still unknown.

Organization of the Paper. The remainder of this paper is organized as
follows. Section 2 describes basis zero-correlation linear cryptanalysis, multidi-
mensional zero-correlation linear cryptanalysis and E2 block cipher. Section 3
presents how to identify zero-correlation linear approximations for 6-round E2.
Section 4 deals the multidimensional zero-correlation linear cryptanalysis of 8-
round E2-128 and 9-round E2-256 without IT and FT . Section 5 reports the

1 They claim : “The straightforward method for realizing the algorithm above re-
quires complexity more than 2128, but by discarding impossible pairs and introducing
a counting method for the second layer subkey with 264 counters, we can reduce the
complexity to less than 2128.”

2 They claim: “Note that the complexity of the procedure above for deriving the last
round keys (128 bits) exceeds the complexity of exhaustive search O(2128). We’ve not
confirmed whether an improved attack with complexity less than O(2128) is possible.”

150 L. Wen, M. Wang, and A. Bogdanov

Table 1. Summary of Key Recovery Attacks on E2-128 and E2-256

Attack Round IT/FT Data Time Memory Ref.

E2-128

Impossible Differential 7 none 2120CPs 2115.5 – [17]
Truncated Differential∗ 8 none 2100CPs < 2128 – [14]
Multidimensional Z.C. 8 none 2124.1KPs 2119.3 299 Sect. 4

Truncated Differential† 8 one‡ 294CPs – – [15]
Multidimensional Z.C. 6 both 2123.7KPs 2119.1 229 Sect. 5

E2-256

Impossible Differential 8 none 2121CPs 2214 – [17]
Multidimensional Z.C. 9 none 2124.6KPs 2225.5 299 Sect. 4

Multidimensional Z.C. 7 both 2124.7KPs 2252.8 291 Sect. 5
∗
No detailed attack procedure is described in [14]. See Footnote 1 on the
previous page.

†
Authors of [15] are not sure whether it is possible to mount the attack
with time complexity of less than 2128 encryptions. See Footnote 2 on the
previous page. Besides, a distinguishing attack on 7-round E2 with IT and
FT reported in [15] is not listed in the table.

‡
“one” means only IT or FT is taken into consideration, but not both.

key recovery attacks on 6-round E2-128 and 7-round E2-256 with IT and FT .
We conclude the paper in Section 6.

2 Preliminaries

2.1 Basics of Zero-Correlation Linear Cryptanalysis [3]

Consider an n-bit block cipher fK with key K. Let P denote a plaintext which
is mapped to a ciphertext C under key K, C = fK(P). If ΓP and ΓC are
nonzero plaintext and ciphertext linear masks of n-bit each, we denote the linear
approximation Γ T

P · P ⊕ Γ T
C · C = 0 as ΓP → ΓC . Here, Γ

T
A · A denotes the

multiplication of the transposed bit vector ΓA (linear mask for A) by a column
bit vector A over F2. The linear approximation ΓP → ΓC has probability

pΓP ,ΓC = Pr
P∈Fn

2

{Γ T
P · P ⊕ Γ T

C · C = 0}.

The value cΓP ,ΓC = 2pΓP ,ΓC − 1 is called the correlation of linear approximation
ΓP → ΓC . Note that pΓP ,ΓC = 1/2 is equivalent to zero correlation cΓP ,ΓC = 0.

Given a distinguisher of zero-correlation linear approximation(s) over a part of
the cipher, the basic key recovery can be done with a technique similar to that of
Matsui’s Algorithm 2 [11]. That is the attacker partially encrypts/decrypts the
plantext-ciphertext (denoted as PC) pairs to the boundaries of the distinguisher

Multidimensional Zero-Correlation Linear Cryptanalysis of E2 151

and then verifies the distinguisher property to distinguish between right key
guess and wrong key guess.

2.2 Multidimensional Zero-Correlation Linear Cryptanalysis [5]

Suppose that we can obtain � zero-correlation linear approximations over a part
of a cipher and these linear approximations are a linear space spanned by m
base zero-correlation linear approximations, � = 2m − 1. For each of the 2m

values z ∈ Fm
2 , the attacker initializes a counter V [z], z = 0, 1, 2, . . . , 2m − 1,

to zero. The attacker partially encrypts and decrypts each distinct PC pair to
the boundaries of zero-correlation linear approximations by guessing some key
values and compute the corresponding data value in Fm

2 by evaluating the m
basis linear approximations and increments the corresponding counter V [z] by
one. Then the attacker computes the statistic T :

T =

2m−1∑
i=0

(V [z]−N2−m)2

N2−m(1− 2−m)
. (1)

The statistic T for the right key guess follows a χ2-distribution with mean μ0 =

(�− 1)2
n−N
2n−1 and variance σ2

0 = 2(�− 1)
(

2n−N
2n−1

)2
, while for the wrong key guess

it follows a χ2-distribution with mean μ1 = �− 1 and variance σ2
1 = 2(�− 1).

We denote the type-I error probability as β0 (the probability to wrongfully
discard the right key guess), the type-II error probability as β1 (the probability
that a wrong key guess survives the filteration). If we consider the decision
threshold as τ = μ0 + σ0z1−β0 = μ1 − σ1z1−β1 where z1−β0 and z1−β1 are the
respective quantiles of the standard normal distribution, then the number of
known plaintexts N should satisfy

N =
(2n − 1)(z1−β0 + z1−β1)√

(� − 1)/2 + z1−β0

+ 1. (2)

General Attack Procedure. Decompose the target cipher E as a cascade E =
Ef ◦Ed ◦Eb, where Ed is covered by the � zero-correlation linear approximations
(can be generated by m base zero-correlation linear approximations) that we
obtained and Ef and Eb are the rounds that are added before and appended
after Ed.

The attacker partially encrypts and decrypts the N PC pairs through Ef and
Eb by guessing some key values to the boundaries of Ed. Then the counters V [z]
is constructed from N PC pairs under each possible key value and the statistic
T are computed according to Equation (1). By choosing proper β0 and β1, the
attacker can compute the threshold value τ . If T ≤ τ then guessed key values
are right key candidates. All right key candidates are then tested against a few
PC pairs and in the end only the right key will survive.

Normally the partial sum technique is used during the partial encryption and
decryption phase to help reduce the time complexity of the partial encryption

152 L. Wen, M. Wang, and A. Bogdanov

and decryption phase because only a part of state values are involved in this
phase. Also, there usually exists some data-time trade-off as the number of PC
pairs is related to the β0 and β1 and the value of β1 (the probability that a
wrong key guess surviving the filteration) would affect the time complexity of
the final exhaustive search for the right key value.

2.3 Description of E2

E2 [10] is a 128-bit block cipher proposed by NTT in 1998 and is selected as one
of the fifteen candidates in the first round of AES project. A 12-round Feistel
network along with an initial transformation IT and a final transformation FT
are adopted in E2, see Figure 1(a). The key size can be 128, 192 or 256 bits. The
round function uses SPS structure including the XOR operation with the first
round subkey, the first nonlinear transformation consisting of eight parallel 8×8
S-boxes, the linear transformation P , the XOR operation with the second round
subkey and the second nonlinear transformation consisting of eight parallel S-
boxes (8× 8). The details of the round function are illustrated in Figure 1(b).

The linear transformation P : F64
2 → F64

2 in F can also be expressed with
matrix-vector product where zi, z

′
i ∈ F8

2, 1 ≤ i ≤ 8:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z′
1

z′
2

z′
3

z′
4

z′
5

z′
6

z′
7

z′
8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6
z7
z8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

IfX,Y,A,B ∈ F128
2 , the initial transformation IT and the final transformation

FT can be shown as follows where the byte permutation BP and BP−1 are
shown in Figure 1(c):

IT : F128
2 × F128

2 × F128
2 → F128

2 ; (X,A,B) → BP ((X ⊕A)⊗B),
FT : F128

2 × F128
2 × F128

2 → F128
2 ; (X,A,B) → (BP−1(X)"B)⊕A.

As to operation⊗ and", if we representX = (x1, x2, x3, x4), Y = (y1, y2, y3, y4),
and B = (b1, b2, b3, b4), where xi, yi, bi ∈ F32

2 , 1 ≤ i ≤ 4, and use ∨1 to denote
bitwise logical OR with 1 ∈ F32

2 , then we have:

Y = X ⊗B := yi = xi(bi ∨ 1) mod 232 (i = 1, 2, 3, 4),
Y = X "B := xi = yi(bi ∨ 1)−1 mod 232 (i = 1, 2, 3, 4).

As E2’s key schedule is somewhat complex and our attacks do not utilize
the key relation, we omit the details of E2’s key schedule. For the complete
specification of E2, we refer to [10].

Multidimensional Zero-Correlation Linear Cryptanalysis of E2 153

IT

FT

P

C

F
K1

F
K2

F
K12

R0L0

R1L1

R2L2

R11L11

R12 L12

K15
K16

K13
K14

(a) E2 Algorithm

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

y1
y2
y3
y4
y5
y6
y7
y8

x1
x2
x3
x4
x5
x6
x7
x8

z1
z2
z3
z4
z5
z6
z7
z8

z1'

z2'

z3'

z4'

z5'

z6'

z7'

z8'

xy

K(2) K(1)F-Function

(b) Round Function of E2

x1(1) x1(2) x1(3) x1(4) x2(1) x2(2) x2(3) x2(4) x3(1) x3(2) x3(3) x3(4) x4(1) x4(2) x4(3) x4(4)

x1(1) x2(2) x3(3) x4(4) x2(1) x3(2) x4(3) x1(4) x3(1) x4(2) x1(3) x2(4) x4(1) x1(2) x2(3) x3(4)

BP -1

BP

x1 x2 x3 x4

y1 y2 y3 y4

(c) BP Function of E2

Fig. 1. E2 Block Cipher

3 Zero-Correlation Linear Approximations over 6-Round
E2

Following the properties on the propagation of linear masks over basic block
cipher operations proposed in [2,3], we can derive several types of zero-correlation
linear approximations for 6-round E2.

Property 1. If the input mask is (0|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|b) and the output
mask after 6-round E2 is (0|0|0|0|0|0|h|0, 0|0|0|0|0|0|0|0), where b, h ∈ F8

2, b �=
0, h �= 0, then the correlation of these linear approximations is zero, see Figure 2.

Proof. As discussed in [2,12], when analyzing mask values in linear cryptanalysis,
each XOR operation is replaced by a branch operation and each branch operation
is replaced by an XOR operation. This means that for an XOR operation, the
values of the two input mask values is equal to the output mask value. On the
other hand, for a branch operation, the XOR of the two output mask values
should be equal to the input mask value. This duality is the basic difference
between linear and differential cryptanalysis.

Therefore, for the linear transformation P of E2, the relation between the
input mask and the output mask can be obtained with the dual of linear trans-
formation P , denoted as LP . LP can be obtained by replacing the XOR opera-
tion and the branch operation with each other and reversing direction of arrows.
Details of P and LP are illustrated in Figure 3 and Figure 4, respectively.

154 L. Wen, M. Wang, and A. Bogdanov

BRL P KSKS

BRL P KSKS

BRL P KSKS

BRL P KSKS

BRL P KSKS

BRL P KSKS

(0|0|0|0|0|0|0|0) (0|0|0|0|0|0|0|b)

(0|0|0|0|0|0|0|b)
(b|0|0|0|0|0|0|0)

(c|0|0|0|0|0|0|0)

(0|c|c|c|c|c|c|0) (0|0|0|0|0|0|0|0)

(0|c2|c3|c4|c5|c6|c7|0)(0|0|c2|c3|c4|c5|c6|c7)
(0|0|0|0|0|0|0|b)

(f1|f2|f3|f4|f5|f6|f7|f8)

(e1|e2|e3|e4|e5|e6|e7|e8)

(f1|f2|f3|f4|f5|f6|f7|f8 b)

(0|0|0|0|0|0|h|0) (0|0|0|0|0|0|0|0)

(0|0|0|0|0|0|0|0)

(0|0|0|0|0|0|0|h)
(g|0|g|g|g|0|0|g)

(g1|0|g3|g4|g5|0|0|g8)

e2=d3 d4 d5 d6 d7=0
e6=d4 d5 d6=0

d6=0
Contradiction!

(0|c2|c3|c4|c5|c6|c7|0)

(0|0|d3|d4|d5|d6|d7|d8)

(0|0|0|0|0|0|0|g)

(0|0|0|0|0|0|h|0)

(0|0|0|0|0|0|h|0) (g1|0|g3|g4|g5|0|0|g8)

(g1|0|g3|g4|g5|0|0|g8)
e7=d3 d6 d7=0

Fig. 2. Zero-Correlation Linear Approximations for 6-Round E2

z1
z2
z3
z4
z5
z6
z7
z8

z1'
z2'
z3'
z4'
z5'
z6'
z7'
z8'

Input ValueOutput Value

Fig. 3. Linear Transformation P

mz1
mz2
mz3
mz4
mz5
mz6
mz7
mz8

mz1'
mz2'
mz3'
mz4'
mz5'
mz6'
mz7'
mz8'

Input MaskOutput Mask

Fig. 4. Dual of Linear Transformation LP

At the same time, Figure 3 and Figure 4 could be expressed with matrix-vector
products as follows:⎛⎜⎜⎜⎜⎜⎝

z′
1

z′
2

z′
3

z′
4

z′
5

z′
6

z′
7

z′
8

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
z1
z2
z3
z4
z5
z6
z7
z8

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
mz1
mz2
mz3
mz4
mz5
mz6
mz7
mz8

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0 1 1 1 1 1 0 1
1 0 1 1 1 1 1 0
1 1 0 1 0 1 1 1
1 1 1 0 1 0 1 1
1 0 1 1 1 0 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎝
mz′

1
mz′

2
mz′

3
mz′

4
mz′

5
mz′

6
mz′

7
mz′

8

⎞⎟⎟⎟⎟⎟⎠ .

As shown in Figure 2, in the forward direction we can get that the mask
for L3 is (f1|f2|f3|f4|f5 ⊕ b|f6|f7|f8) from the input mask of the first round
(0|0|0|0|0|0|0|0, 0|0|0|0|0|0|0|b) where fi(i = 1, . . . , 8) are unknown masks. And

Multidimensional Zero-Correlation Linear Cryptanalysis of E2 155

in the backward direction, the mask for L3 that we deduce from the output mask
of the last round (0|0|0|0|0|0|h|0, 0|0|0|0|0|0|0|0) is (g1|0|g3|g4|g5|0|0|g8), where
gi(i = 1, 3, 4, 5, 8) are non-zero masks. Then we have f2 = 0, f6 = 0 and f7 = 0
and therefore e2 = 0, e6 = 0 and e7 = 0, which give us the following equations:

e2 = d3 ⊕ d4 ⊕ d5 ⊕ d6 ⊕ d7 = 0, e6 = d4 ⊕ d5 ⊕ d6 = 0, e7 = d3 ⊕ d6 ⊕ d7 = 0.

From these equations, we can derive d6 = 0. This contradicts with the fact that
d6 �= 0. In this case, we claim that linear approximations shown in Figure 2 have
zero correlation. ��

Similarly, other zero-correlation linear approximations over 6-round E2 can be
derived. For example, Figure 5 illustrates another type of zero-correlation linear
approximations over 6-round E2.

BRL P KSKS

BRL P KSKS

BRL P KSKS

BRL P KSKS

BRL P KSKS

BRL P KSKS

(0|0|0|0|0|0|0|0) (0|0|0|0|0|b|0|0)

(0|0|0|0|0|b|0|0)
(0|0|0|0|0|0|b|0)

(0|0|0|0|0|0|c|0)

(0|c|c|c|0|0|c|c) (0|0|0|0|0|0|0|0)

(0|c2|c3|c4|0|0|c7|c8)(c8|0|c2|c3|c4|0|0|c7)
(0|0|0|0|0|b|0|0)

(f1|f2|f3|f4|f5|f6|f7|f8)

(e1|e2|e3|e4|e5|e6|e7|e8)

(f1|f2|f3|f4|f5|f6 b|f7|f8)

(0|0|0|0|h|0|0|0) (0|0|0|0|0|0|0|0)

(0|0|0|0|h|0|0|0)(0|0|0|0|0|0|0|0)

(0|0|0|0|h|0|0|0)
(0|0|0|0|0|h|0|0)

(0|0|0|0|0|g|0|0)

(g|g|g|0|0|g|g|0)

(g1|g2|g3|0|0|g6|g7|0)

e1=d3 d4 d5 d8=0
e5=d1 d3 d4 d5 d8=0

d1=0
Contradiction!

(0|c2|c3|c4|0|0|c7|c8)

(d1|0|d3|d4|d5|0|0|d8)

(g1|g2|g3|0|0|g6|g7|0)

(g1|g2|g3|0|0|g6|g7|0)

Fig. 5. Another Type of Zero-Correlation Linear Approximations for 6-Round E2

4 Multidimensional Zero-Correlation Linear
Cryptanalysis of E2 without IT and FT

4.1 Key Recovery Attack on 8-Round E2-128 without IT and FT

With the zero-correlation linear approximations over 6-round E2 presented in
Figure 5, we can attack 8-round E2 without IT and FT by adding one round

156 L. Wen, M. Wang, and A. Bogdanov

BRL P KSKS

BRL P KSKS

K1
(1)K1

(2)

K8
(1)K8

(2)

L0 R0

L1 R1

L7 R7

Zero-Correlation Linear
Approximation of 6-Round E2

L8 R8

XY

ZU

(0|0|0|0|0|0|0|0) (0|0|0|0|0|b|0|0)

(0|0|0|0|0|0|0|0)(0|0|0|0|h|0|0|0)

(0|0|0|0|*|0|0|0) (0|0|0|0|0|*|0|0) (*|*|*|0|0|*|*|0)

(0|0|0|0|0|*|0|0)

(0|0|0|0|0|0|*|0) (0|*|*|*|0|0|*|*)

(0|*|*|*|0|0|*|*)

(*|*|*|0|0|*|*|0)

Fig. 6. Attack on 8-Round E2-128 without IT and FT

before and appending one round after the 6-round E2 zero-correlation linear
approximations, see Figure 6. In Figure 6, state bytes that are involved in the
partial encryption and decryption are denoted with ‘*’ and those bytes that have
nothing to do with the partial encryption and decryption are denoted by ‘0’.

As described in the general procedure earlier, the attack starts with the partial
encryption and decryption where the partial sum technique is used. X , Y , Z
and U are the intermediate states in the first round and the last round shown in
Figure 6. From now on, we use “[j]” referring the jth byte of a variable containing
multiple bytes and ‘|’ denoting the concatenation of two binary strings.

1. Allocate 32-bit counters V1[s1] for all possible values of 96-bit s1 = L0[6]|
R0[2, 3, 4, 7, 8]|L8[5]|R8[1, 2, 3, 6, 7] and initialize these counters to zero. Ex-
tract s1 from each of N PC pairs and increment the corresponding counter
V1[s1] by one. In this step, no more that 2128 PC pairs are divided into 296

distinct values of s1, the expected counter for each s1 is no more than 232,
so 32-bit counter is sufficient. The time complexity of this step is N memory
accesses to process N PC pairs. If we assume that processing one PC pair
is equivalent to 1/4 round encryption, then the time complexity of this step
is about N · 1/4 · 1/8 encryptions.

2. Allocate 32-bit counters V2[s2] for all possible values of 96-bit s2 = L0[6]
|R0[3, 4, 7, 8]|X [2]|L8[5]|R8[1, 2, 3, 6, 7] and initialize them to zero. Guess 8-

bitK
(1)
1 [2] and partially encrypt s1 to compute s2 and add the corresponding

V1[x1] to V2[x2], that is V2[s2]+ = V1[s1]. The time complexity of this step
is about 28 · 296 · 1/4 · 1/8 = 299 encryptions.

The following steps in the partial encryption and decryption phase are similar
to Step 2, thus to be consistent and to be more clear we use Table 2 to show the
details of each partial encryption and decryption step. In Table 2, the second col-
umn stands for the subkey bytes that have to be guessed in each step, the third

Multidimensional Zero-Correlation Linear Cryptanalysis of E2 157

column denotes the time complexity of corresponding step measured in 1/8 round
encryption. In each step, we compute the values of the intermediate state si, 3 ≤
i ≤ 13, which are shown in column “Computed States”. For each possible value
of si, the counter Vi[si] will record how many PC pairs could produce the corre-
sponding intermediate state si. The counter along with its size are shown in the
last column.

Table 2. Partial Encryption and Decryption of the Attack on 8-Round E2-128

Step Guess Complexity Computed States Counter-Size

3 K
(1)
1 [3] 216 · 296 s3 = L0[6]|R0[4, 7, 8]|X[2] ⊕X[3]|L8[5]|R8[1, 2, 3, 6, 7] V3 − 288

4 K
(1)
1 [4] 224 · 288 s4 = L0[6]|R0[7, 8]|X[2] ⊕X[3] ⊕X[4]|L8 [5]|R8[1, 2, 3, 6, 7] V4 − 280

5 K
(1)
1 [7] 232 · 280 s5 = L0[6]|R0[8]|X[2] ⊕X[3]⊕X[4]⊕X[7]|L8 [5]|R8[1, 2, 3, 6, 7] V5 − 272

6 K
(1)
1 [8] 240 · 272 s6 = L0[6]|Y [7]|L8[5]|R8[1, 2, 3, 6, 7] V6 − 264

7 K
(2)
1 [7] 248 · 264 s7 = R1[6]|L8[5]|R8[1, 2, 3, 6, 7] V7 − 256

8 K
(1)
8 [1] 256 · 256 s8 = R1[6]|L8[5]|R8[2, 3, 6, 7]|Z[1] V8 − 256

9 K
(1)
8 [2] 264 · 256 s9 = R1[6]|L8[5]|R8[3, 6, 7]|Z[1] ⊕ Z[2] V9 − 248

10 K
(1)
8 [3] 272 · 248 s10 = R1[6]|L8[5]|R8[6, 7]|Z[1] ⊕ Z[2] ⊕ Z[3] V10 − 240

11 K
(1)
8 [6] 280 · 240 s11 = R1[6]|L8[5]|R8[7]|Z[1] ⊕ Z[2] ⊕ Z[3] ⊕ Z[6] V11 − 232

12 K
(1)
8 [7] 288 · 232 s12 = R1[6]|L8[5]|U [6] V12 − 224

13 K
(2)
8 [6] 296 · 224 s13 = R1[6]|L7[5] V13 − 216

After Step 13, we have reached the boundaries of the zero-correlation linear
approximations over 6-round E2. We then proceed the following steps to recover
the right key.

14. Allocate 128-bit counters V [z] for 16-bit z and initialize them to zero where z
is the concatenation of evaluations of 16 basis zero-correlation masks. Com-
pute z from s13 with 16 basis zero-correlation masks, then V [z]+ = V13[s13].
Compute the statistic T according to Equation (1). The computation in this
step is to construct V [z] from V13 and then compute T . If we assume con-
structing V [z] from V13 as one encryption and computing T from V [a] as
another encryption, then the time complexity of this step is about 296·2 = 297

encryptions because after Step 13, we have guessed 96-bit key values.
15. If T ≤ τ , then the guessed key value is a right key candidate. All key values

compatible to the guessed key value are exhaustively searched.

The dominant time complexity of the partial encryption and decryption phase
lies in Step 1 and Step 9 to Step 13. Step 1 is about N ·2−5 encryptions and Step
9 to Step 13 requires about 5 · 2120 · 1/8 · 1/8 ≈ 2116.3 encryptions. By construct
the time complexity of Step 14 is negligible. The time complexity of Step 15,
where we exhaustively search the right key value, is related to the value of β1
that we choose. If we set β0 = 2−2.7, β1 = 2−98, then z1−β0 ≈ 1.0, z1−β1 = 11.4.
Since n = 128, � = 216, then according to Equation (2), the data complexity
N is about 2124.1. In this case, the time complexity of Step 1 is about 2119.1

encryptions and the time complexity of Step 15 is negligible since only the right
key guess is expected to survive the filteration. The overall time complexity is

158 L. Wen, M. Wang, and A. Bogdanov

then about 2119.1 + 2116.3 ≈ 2119.3 encryptions. The memory requirements are
dominated by Step 1 and Step 2, where we need 2 ·4 ·296 = 299 bytes to store V1
and V2. Thus, our key recovery attack on 8-round E2-128 without IT and FT
needs 2124.1 known plaintexts, 2119.3 encryptions and 299 bytes memory.

4.2 Key Recovery Attack on 9-Round E2-256 without IT and FT

If the zero-correlation linear approximations over 6-round E2 in Figure 5 cover
round 2 to round 7, by adding one round before and appending two rounds after
the linear approximations, we can attack 9-round E2-256, illustrated in Figure 7.

BRL P KSKS

BRL P KSKS

K1
(1)K1

(2)

K8
(1)K8

(2)

L0 R0

L1 R1

L7 R7

Zero-Correlation Linear
Approximation of 6-Round E2

L9 R9

BRL P KSKS
K9

(1)K9
(2)

L8 R8

(*|*|*|*|*|*|*|*)(*|*|*|*|*|*|*|*)

XY

ZU

(0|0|0|0|0|0|0|0) (0|0|0|0|0|b|0|0)

(0|0|0|0|0|0|0|0)(0|0|0|0|h|0|0|0)

(0|0|0|0|*|0|0|0) (0|0|0|0|0|*|0|0) (*|*|*|0|0|*|*|0)

(0|0|0|0|0|*|0|0)

(0|0|0|0|0|0|*|0) (0|*|*|*|0|0|*|*)

(0|*|*|*|0|0|*|*)

(0|*|*|*|0|0|*|*)

(*|*|*|0|0|*|*|0)

(*|*|*|0|0|*|*|0)

Fig. 7. Attack on 9-Round E2-256 without IT and FT

Comparing Figure 6 and Figure 7, we can find that the attack on 9-round
E2-256 is quite similar as the attack on 8-round E2-128 except that we have to
partially decrypt one more round in the partial decryption phase. Thus, if we

firstly guess all values of the bytes in K
(1)
9 and K

(2)
9 that are involved partial

decryption over round 9, and the remaining procedure is basically the same as
that of the attack on 8-round E2-128. To be more concrete, the first step in the
attack on 9-round E2-256 is:

1. Guess all possible values of 13-byte key K
(2)
9 [2, 3, 4, 7, 8] and K

(1)
9 . Under

each possible value allocate 32-bit counters V1[s1] for all possible values
of 96-bit s1 = L0[6]|R0[2, 3, 4, 7, 8]|R8[5]|L8[1, 2, 3, 6, 7] and initialize them
to zero. Partially decrypt N PC pairs through round 9 to get value of

Multidimensional Zero-Correlation Linear Cryptanalysis of E2 159

R8[5]|L8[1, 2, 3, 6, 7] and increment the corresponding V1[s1] by one where
L0[6]|R0[2, 3, 4, 7, 8] is extracted from plaintext. Note that in the attack on
9-round E2-256, s1 is slightly different from the one in the attack on 8-round
E2-128 due to the swap operation after round 8. The time complexity of this
step is about 2104 ·N · 1/9 encryptions.

The following procedure of the attack on 9-round E2-256 is basically the
same as Step 2 to Step 15 of the attack on 8-round E2-128. The only difference is
introduced by the slightly different s1 in the two attacks. As this difference is only
a matter of different notations and does not affect the data, time complexities
or memory requirements. Thus, we omit the details of the following steps. Just
as the attack on 8-round E2-128, the partial encryption and decryption are done
after Step 13, statistic T is computed in Step 14 and the exhaustively searching
the right key is still done in Step 15.

As we guessed 13-byte key values in Step 1, the time complexities of Step 2 to
Step 13 now should be multiplied by 2104 while the dominant time complexity of
the partial encryption and decryption still lies in Step 1 and Step 9 to Step 13.
The time complexity of Step 9 to Step 13 is now about 2104 · 5 · 2120 · 1/8 · 1/9 ≈
2220.2. The time complexity of Step 14 is about 2104 · 297 = 2221 encryptions.
Still the time complexity of Step 15 is related to value of β1 we choose. If we
set β0 = 2−2.7, β1 = 2−202, then z1−β0 ≈ 1.0, z1−β1 ≈ 16.5. Since n = 128,
� = 216, then according to Equation (2), the data complexity N is about 2124.6.
As we have guessed 104+ 96 = 200 bits key value after Step 13 and β1 = 2−202,
only the right key value is expected to survive the filteration making the time
complexity of Step 15 negligible. Thus the time complexity of our attack on 9-
round E2-256 is about 2104 · 2124.6 · 1/9+ 2220.2 +2221 ≈ 2225.5 encryptions. The
memory requirements is still dominated by Step 1 and Step 2 to store V1 and
V2. In all, our attack on 9-round E2-256 requires 2124.6 known plaintexts, 2225.5

encryptions and 299 bytes memory.

5 Multidimensional Zero-Correlation Linear
Cryptanalysis of E2 with IT and FT

In this section, we present zero-correlation attacks on 6-round E2-128 and 7-
round E2-256 with IT and FT using the zero-correlation linear approximations
in Figure 2. We firstly show a property about the modular multiplication over
F32

2 that is adopted both in IT and FT .

Property 2. Denote 32-bit input, output and subkey of the modular multiplica-
tion over F32

2 in IT function as (x1, x2, x3, x4), (y1, y2, y3, y4) and (k1, k2, k3, k4)
respectively, where x4, y4 and k4 are the most significant bytes. Then the output
byte yi, 1 ≤ i ≤ 4 is only related to x1, . . . , xi and k1, . . . , ki.

According to the property of modular multiplication operation in F32
2 , it is

easy to prove Property 2. The meaning of Property 2 is that when we want to
compute yi, we only need to guess k1, . . . , ki other than guess all 32-bit subkey

160 L. Wen, M. Wang, and A. Bogdanov

values. Meanwhile, there is no need to obtain all 32-bit input value either, the
knowledge of the value x1, . . . , xi is sufficient to compute yi. Note that in FT
function, it is the inverse of subkey that are involved in the the modular mul-
tiplication operation. In this case, we will guess the value of the inverse of the
subkey other than directly guessing the value of the subkey. Thus when partially
encrypt over IT function and partially decrypt over FT function, Property 2
can be utilized to decrease the number of guessed key bytes.

5.1 Key Recovery Attack on 6-Round E2-128 with IT and FT

To attack 6-round E2-128 with IT and FT , the 6-round zero-correlation linear
approximations from Figure 2 now start from the input of round 1 and ends
at the output of round 6. The IT function is added before and FT function is
appended after the linear approximations, refer to Figure 8(a).

The partial encryption and decryption using the partial sum technique are
proceeded as follows.

1. Allocate 128-bit counters V1[s1] for 2
24 possible values of s1 = PR[4]|CR[7, 8]

and initialize them to zero. For each one of the N PC pairs, extract the value
of s1 and increment the corresponding counter V1[s1]. The time complexity
of step is N memory accesses to process N PC pairs. Still we assume that
processing each PC pair is equivalent to 1/4 round encryption, then the time
complexity of this step is about N · 1/4 · 1/6 encryptions.

2. Allocate 128-bit counters V2[s2] for 2
24 possible values of s2 = R0[8]|CR[7, 8]

and initialize them to zero. Guess K7[12] and K8[12] and partially en-
crypt s1 to get the value of s2, then update the corresponding counter by
V2[s2]+ = V1[s1]. The computation in this step is much simpler than one
round encryption and is proceeded about 216 · 224 = 240 times.

3. Allocate 128-bit counters V3[s3] for 2
16 possible values of s3 = R0[8]|L6[7] and

initialize them to zero. Guess K
′

9[15, 16] (K
′

9 = (K9 ∨ 1)−1) and K10[15, 16]
and partially decrypt s2 to obtain the value of s3, then update the correspond-
ing counter by V3[s3]+ = V2[s2]. The computation in this step is also much
simpler than one round encryption and is proceeded about 248 · 224 = 272

times.

After Step 3, we have reached the boundaries of the zero-correlation linear
approximations over the first six rounds. We then construct V [z] and compute
statistic T and filter out the wrong key guess. The right key is then recovered by
exhaustively search all right key candidates. The detailed procedure is described
Step 4 and Step 5.

4. Allocate 128-bit counter V [z] for 216 values of z and initialize them to zero,
where z is the concatenation of evaluations of 16 basis zero-correlationmasks.
Compute z from s3 with 16 basis zero-correlation masks, then V [z]+ =
V3[x3]. Compute statistic T according to Equation (1). Again we assume
the computation in this step is equivalent to 2 encryptions, then the time
complexity of this step is about 248 · 2 = 249 encryptions.

Multidimensional Zero-Correlation Linear Cryptanalysis of E2 161

BRL P KSKS
K1

(1)K1
(2)

(0|0|0|0|0|0|0|*)

(*|0|0|0|0|0|0|0) (0|*|*|*|*|*|*|0)

L0 R0

L1 R1

Zero-Correlation Linear
Approximation of 6-Round E2

K9

K8

K11

K10

(0|0|0|0|0|0|0|0) (0|0|0|0|0|0|0|b)

(0|0|0|0|0|0|0|0)(0|0|0|0|0|0|h|0)
L7 R7

P
(0|*|*|*|0|0|*|*) (0|0|0|0|*|*|*|*)

PL PR

C

(0|0|0|0|0|0|*|*)(0|0|0|0|0|0|0|0)
CL CR

(0|*|*|*|*|*|*|0)

XY

(b) Attack on 7-Round E2-256

(0|0|0|0|0|0|0|0) (0|0|0|0|0|0|0|b)

(0|0|0|0|0|0|0|0)(0|0|0|0|0|0|h|0)

Zero-Correlation Linear
Approximation of 6-Round E2

K8

K7

K10

K9

L0 R0

L6 R6

P

C

(0|0|0|0|0|0|*|*)(0|0|0|0|0|0|0|0)
CL CR

(0|0|0|0|0|0|0|0) (0|0|0|*|0|0|0|0)
PL PR

(a) Attack on 6-Round E2-128

Fig. 8. Attacks on 6-Round E2-128 and 7-Round E2-256 with IT and FT

5. If T ≤ τ , then the guessed key value is a possible right key candidate and
all key values can be recovered by exhaustively search.

Set β0 = 2−2.7, β1 = 2−50, then z1−β0 ≈ 1.0, z1−β1 = 7.96. Since n = 128,
� = 216, then according to Equation (2), the data complexity N is about 2123.7

known plaintexts and the time complexity of Step 1 is about 2123.7 · 1/4 · 1/6 ≈
2119.1 encryptions. By contrast, the time complexity of Step 2 and Step 3 is
negligible. As only 48-bit key values are guessed in the partial encryption and
decryption phase and β1 = 2−50, only the right key value is supposed to survive
the filteration. Thus the time complexity of the exhaustively search in Step 5 is
also negligible. The memory requirements are dominated by Step 1 and Step 2,
where we need about 2 · 16 · 224 = 229 bytes to store the counters V1 and V2. In
one word, our attack on 6-round E2-128 with IT and FT requires 2123.7 known
plaintexts, 2119.1 encryptions and 229 bytes memory.

162 L. Wen, M. Wang, and A. Bogdanov

5.2 Key Recovery Attack on 7-Round E2-256 with IT and FT

This time the zero-correlation linear approximations of 6-round E2 from Fig-
ure 2 cover round 2 to round 7, by adding IT function and one round function
before and appending FT function after the linear approximations, we can at-
tack 7-round E2-256 with IT and FT . The details of our attack is illustrated in
Figure 8(b).

Still we need to partially encrypt and decrypt N PC pairs to the boundaries
of zero-correlation linear approximations.

1. Allocate 64-bit counters V1[s1] for 2
88 possible values of s1 = and initialize

them to zero. For each one of the N PC pairs, extract the value of s1 =
PL[2, 3, 4, 7, 8]|PR[5, 6, 7, 8]|CR[7, 8] and increment the corresponding counter
V1[s1]. The time complexity of step is N memory accesses to process N PC
pairs. Assuming that processing each PC pair is equivalent to 1/4 round
encryption, then the time complexity of this step is about N · 1/4 · 1/7
encryptions.

2. Allocate 64-bit countersV2[s2] for 2
72 possible values of s2 = L0[8]|R0[2, 3, 4, 5,

6, 7]|CR[7, 8] and initialize them to zero. Guess the values ofK8[2, 3, 4, 7, 8, 13,
14, 15, 16] and K9[2, 3, 4, 7, 8, 13, 14, 15, 16], partially encrypt s1 through the
IT function to get s2 and update V2[s2]+ = V1[s1]. Assuming that the com-
putation of s2 through the IT function as 1/2 round encryption, then the time
complexity of this step is about 2144 · 288 · 1/2 · 1/7 ≈ 2228.2 encryptions.

3. Allocate 64-bit counters V3[s3] for 2
64 possible values of s3 = L0[8]|R0[2, 3, 4,

5, 6, 7]|L7[7] and initialize them to zero. Guess the values of K10[15, 16] and
K12[15, 16], partially decrypt through the FT function to obtain s3 and
update V3[s3]+ = V2[s2]. Assuming that the computation of s3 through
partial FT function as 1/4 round encryption. Then the time complexity of
this step is about 2176 · 272 · 1/4 · 1/7 ≈ 2243.2 encryptions.

The remaining steps in the partial encryption and decryption phase are similar
to Step 2 and Step 3. Thus we summarize the remaining steps in Table 3, where
the columns have the same meaning as those of Table 2 and the “Complexity”
is still measured in 1/8 round encryption.

11. Allocate 128-bit counter V [z] for 16-bit z and initialize to zero where z is
the concatenation of evaluations of 16 basis zero-correlation masks. Compute

Table 3. Partial Encryption and Decryption on 7-Round E2-256

Step Guess Complexity Computed States Counter-Size

4 K
(1)
1 [2] 2184 · 264 s4 = L0[8]|R0[3, 4, 5, 6, 7]|X[2]|L7 [7] V4 − 264

5 K
(1)
1 [3] 2192 · 264 s5 = L0[8]|R0[4, 5, 6, 7]|X[2] ⊕X[3]|L7 [7] V5 − 256

6 K
(1)
1 [4] 2200 · 256 s6 = L0[8]|R0[5, 6, 7]|X[2] ⊕X[3]⊕X[4]|L7[7] V6 − 248

7 K
(1)
1 [5] 2208 · 248 s7 = L0[8]|R0[6, 7]|X[2] ⊕X[3] ⊕X[4] ⊕X[5]|L7[7] V7 − 240

8 K
(1)
1 [6] 2216 · 240 s8 = L0[8]|R0[7]|X[2] ⊕X[3]⊕X[4]⊕X[5]⊕X[6]|L7 [7] V8 − 232

9 K
(1)
1 [7] 2224 · 232 s9 = L0[8]|Y [1]|L7[7] V9 − 224

10 K
(2)
1 [1] 2232 · 224 s10 = R1[8]|L7[7] V10 − 216

Multidimensional Zero-Correlation Linear Cryptanalysis of E2 163

z from x10 with 16 basis zero-correlation masks, then V [z]+ = V10[s10].
Compute statistic T according to Equation (1). The time complexity of this
step is about 2232 · 2 = 2233 encryptions.

12. If T ≤ τ , then the guessed key value is a possible right key candidate. Then
exhaustively search all compatible key values to recover the right key value.

As N is no more than 2128, thus the time complexity of Step 1 is negligible.
The time complexity of the partial encryption and decryption phase is about
2243.2+2248 ·1/8·1/7+6·2256 ·1/8·1/7 ≈ 2252.8 encryptions. By contrast, the time
complexity of Step 11 is negligible. Set β0 = 2−2.7, β1 = 2−234, then z1−β0 ≈ 1.0,
z1−β1 ≈ 17.8. In this case only the right key guess is supposed to survive the
filteration, making the time complexity of exhaustive search negligible. Since
n = 128, � = 216, then according to Equation (2), the data complexity N is
about 2124.7. In all, the time complexity of our attack on 7-round E2-256 with
IT and FT requires 2124.7 known plaintexts, 2252.8 encryptions and 8 · 288 = 291

bytes memory.

6 Conclusion

In this paper, we evaluate the security of E2 with respect to the technique of
multidimensional zero-correlation linear cryptanalysis. As a result, we can attack
8-round E2-128 and 9-round E2-256 without IT and FT . We further propose
the first key recovery attacks on reduced-round E2 with both IT and FT taken
into consideration, where 6-round E2-128 and 7-round E2-256 can be attacked.
Our attacks on E2 without IT and FT is the best attack with explicit time
complexity better than exhaustive search in term of round number.

Acknowledgements. This work has been supported by the National Basic
Research 973 Program of China under Grant No. 2013CB834205, the National
Natural Science Foundation of China under Grant Nos. 61133013, 61103237,
the Program for New Century Excellent Talents in University of China under
Grant No. NCET-13-0350, as well as the Interdisciplinary Research Foundation
of Shandong University of China under Grant No. 2012JC018.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms-Design
and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012,
pp. 39–56. Springer, Heidelberg (2001)

2. Biham, E.: On Matsui’s Linear Cryptanalysis. In: De Santis, A. (ed.) EURO-
CRYPT 1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995)

3. Bogdanov, A., Rijmen, V.: Linear Hulls with Correlation Zero and Linear Crypt-
analysis of Block Ciphers. Accepted to Designs, Codes and Cryptography (2012)
(in press)

164 L. Wen, M. Wang, and A. Bogdanov

4. Bogdanov, A., Wang, M.: Zero Correlation Linear Cryptanalysis with Reduced
Data Complexity. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 29–48.
Springer, Heidelberg (2012)

5. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and Multidimensional
Linear Distinguishers with Correlation Zero. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012)

6. Soleimany, H., Nyberg, K.: Zero-Correlation Linear Cryptanalysis of Reduced-
Round LBlock. In: WCC 2013 (2013)

7. Blondeau, C., Nyberg, K.: New Links Between Differential and Linear Cryptanal-
ysis. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 388–404. Springer, Heidelberg (2013)

8. Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-Correlation Linear
Cryptanalysis with FFT and Improved Attacks on ISO Standards Camellia and
CLEFIA. In: SAC 2013. LNCS. Springer (2014)

9. ISO/IEC 18033-3:2005, Information technology – Security techniques – Encryption
algrithm – Part 3: Block Ciphers (July 2005)

10. Kanda, M., Moriai, S., Aoki, K., Ueda, H., Takashima, Y., Ohta, K., Matsumoto,
T.: E2-a new 128-bit block cipher. IEICE Transactions Fundamentals of Electron-
ics, Communications and Computer Sciences E83-A(1), 48–59 (2000)

11. Matsui, M.: Linear Cryptanalysis Method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

12. Matsui, M.: On Correlation between the Order of S-boxes and the Strength of
DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375.
Springer, Heidelberg (1995)

13. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional Extension of Matsui’s Al-
gorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227.
Springer, Heidelberg (2009)

14. Matsui, M., Tokita, T.: Cryptanalysis of a Reduced Version of the Block Cipher E2.
In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 71–80. Springer, Heidelberg
(1999)

15. Moriai, S., Sugita, M., Aoki, K., Kanda, M.: Security of E2 against Truncated
Differential Cryptanalysis. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS,
vol. 1758, pp. 106–117. Springer, Heidelberg (2000)

16. Wei, Y., Li, P., Sun, B., Li, C.: Impossible Differential Cryptanalysis on Feistel
Ciphers with SP and SPS Round Functions. In: Zhou, J., Yung, M. (eds.) ACNS
2010. LNCS, vol. 6123, pp. 105–122. Springer, Heidelberg (2010)

17. Wei, Y., Yang, X., Li, C., Du, W.: Impossible Differential Cryptanalysis on
Tweaked E2. In: Xu, L., Bertino, E., Mu, Y. (eds.) NSS 2012. LNCS, vol. 7645,
pp. 392–404. Springer, Heidelberg (2012)

Further Improvement of Factoring RSA Moduli

with Implicit Hint

Liqiang Peng1,2, Lei Hu1,2, Jun Xu1,2, Zhangjie Huang1,2, and Yonghong Xie1,2

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing 100093, China
2 Data Assurance and Communication Security Research Center,

Chinese Academy of Sciences, Beijing 100093, China
{lqpeng,hu,jxu,zjhuang,xyxie}@is.ac.cn

Abstract. We investigate the problem of factoring RSA moduli with
implicit hint, which was firstly proposed by May and Ritzenhofen in
2009 where unknown prime factors of several RSA moduli shared some
number of least significant bits (LSBs) and was considered by Faugère et
al. in 2010 where some most significant bits (MSBs) were shared between
the primes. In this paper, we further consider this factorization with
implicit hint problem, present a method to deal with the case when the
number of shared LSBs or MSBs is not large enough to satisfy the bound
proposed by May et al. and Faugère et al. by making use of a result
from Herrmann and May for solving linear equations modulo unknown
divisors, and finally get a better lower bound on the the number of shared
LSBs or MSBs. To the best of our knowledge, our lower bound is better
than all known results and we can theoretically deal with the implicit
factorization for the case of balanced RSA moduli.

Keywords: RSA modulus, factorization with implicit hint, Copper-
smith’s technique.

1 Introduction

Factoring large integers efficiently is a problem of most concern in algorithmic
number theory and also in practical cryptographic applications since the RSA
public key cryptosystem based on the factorization problem has been widely
used. However, due to practical reasons, e.g., for achieving high implementation
efficiency, specific RSA parameters are often adopted and the security of such
an RSA cryptosystem may be threatened by cryptanalysis such as small pri-
vate exponent attack [4,20], small CRT-exponent (Chinese-remainder-theorem-
exponent) attack [12] and so on. Recently, Lenstra et al. [13] and Bernstein et
al. [3] utilized the weakness of pseudo random number generators to successfully
factor some RSA moduli which are used in the real world. Hence, the problem
of factoring RSA moduli with some specific hint is worthy of investigation.

In the PKC’2009 conference, May and Ritzenhofen proposed an efficient
method to factor RSA moduli with an implicit hint [16]. More precisely, for two

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 165–177, 2014.
c© Springer International Publishing Switzerland 2014

166 L. Peng et al.

n-bit RSA moduli N1 = p1q1 and N2 = p2q2 where p1 and p2 share tn least sig-
nificant bits (LSBs) and q1 and q2 are (αn)-bit prime integers, it has been proved
in [16] that if tn ≥ 2αn+3, then (q1, q2) is a shortest vector in a two-dimensional
lattice and it can be found by a lattice basis reduction algorithm. Thus, the two
RSA moduli can be factored. May et al. [16] also gave a heuristic generalization
for the factorization of multiple RSA moduli N1 = p1q1, · · · , Nk = pkqk, where
the number of shared LSBs, tn, is at least k

k−1αn. Shortly later, Faugère et al.
[7] made an extension analysis to deal with the case that p1, · · · , pk share most
significant bits (MSBs) or bits in the middle.

In 2011, Sarkar and Maitra [19] transformed the factorization with implicit
hint problem to the approximate integer common divisor problem [10,5], and
lower bounds on the number of LSBs or MSBs required to be shared is improved
in theory and experimentally [19]. Sarkar and Maitra used Coppersmith’s lattice-
based technique to find out the desired roots of modular equation, and the lower
bound they obtained was improved to{

t > max{α, αk
2−(2α+1)k+1+

√
k2+2α2k−α2k2−2k+1

k2−3k+2 }, for k > 2,

t > 2α− α2, for k = 2.

Based on this result, Lu et al. [15] modified the polynomials in the construction

of the lattice and the bound was further improved as 1− (1− α)
k

k−1 .
In this paper, we firstly reconsider the problem of factoring RSA moduli with

primes sharing LSBs, which has been discussed by May et al. [16]. As it has been
shown in [16], if there are enough shared LSBs, the desired factorization can be
directly obtained from the L3 lattice basis reduction algorithm. We present a
method to deal with the case where the shared LSBs are not enough to ensure
that the desired factorization is included in the output of the L3 algorithm.
The idea is that we represent the vector which we desire to find out as an
integer linear combination of the reduced basis vectors of the lattice and obtain
a modular equation system, then we transform the modular equation system to
a modular equation with unknown modulus by applying the Chinese remainder
theorem, and finally, we solve this modular equation by a method of Herrmann
and May in [8]. Note that, our method does not require the constraint that t ≥ α
in [16,7,19,15], which means for multiple RSA moduli we can for the first time
theoretically deal with the implicit factorization for the case of balanced RSA
moduli (i.e., pi and qi have the same bitlength). The factorization of RSA moduli
with primes sharing MSBs is also revisited in this paper.

Table 1 lists a comparison of our result with the previous results in [16], [7],
[19] and [15], where

F (α, k) =

{
αk2−(2α+1)k+1+

√
k2+2α2k−α2k2−2k+1

k2−3k+2 , for k > 2,

2α− α2, for k = 2,

G(α, k) =
k

k − 1
(α − 1 + (1− α)

k+1
k + (k + 1)(1− (1− α)

1
k)(1 − α)),

Further Improvement of Factoring RSA Moduli with Implicit Hint 167

Table 1. Comparison with existing results on t

[16] [7] [19] [15] this paper

LSB k
k−1

α - F (a, k) 1− (1− α)
k

k−1 G(α, k)

MSB - k
k−1

α+ 6
n

F (a, k) 1− (1− α)
k

k−1 G(α, k)

and the curves of G(α, k) and 1 − (1 − α)
k

k−1 as functions on α can be seen in

Figures 1 and 2 in Sections 3 and 4 which show G(α, k) < 1 − (1 − α)
k

k−1 . To
the best of our knowledge, our lower bound on the number of the shared bits is
theoretically better than all known results and experimental results also show
this improvement.

2 Preliminaries

Let w1, w2, · · · , wk be k linearly independent vectors in Rn. They span a k-
dimensional lattice L which is the set of all integer linear combinations, c1w1 +
· · ·+ ckwk, of w1, · · · , wk, where c1, · · · , ck ∈ Z. The vectors w1, · · · , wk form a
basis of the lattice L. Any lattice of dimension larger than 1 has infinitely many
bases [18].

Calculating the shortest vectors in a lattice is known to be an NP-hard prob-
lem under randomized reductions [2]. However, some approximations of shortest
vectors in a lattice can be found out in polynomial time and the famous L3

lattice basis reduction algorithm is invented thirty years ago for attending such
a goal [14,18], and since then lattice becomes a fundamental tool to analyze the
security of public key cryptosystems.

Lemma 1. (L3, [14,18]) Let L be a lattice of dimension k. Applying the L3

algorithm to L, the outputted reduced basis vectors v1, · · · , vk satisfy that

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
k(k−i)

4(k+1−i) det(L)
1

k+1−i , for any 1 ≤ i ≤ k.

Lattices are used to find small roots of univariate modular equations and
bivariate equations [6], and this strategy is now usually called Coppersmith’s
technique. In [11], Jochemsz and May extended the technique and gave a general
result to find roots of multivariate polynomials.

Given a polynomial g(x1, · · · , xk) =
∑

(i1,··· ,ik)
ai1,··· ,ikx

i1
1 · · ·xikk , define the

norm of g by

‖g(x1, · · · , xk)‖ =
(∑

(i1,··· ,ik)
a2i1,··· ,ik

)1/2
.

The following lemma due to Howgrave-Graham [9] gives a sufficient condition
under which roots of a modular equation also satisfy an integer equation.

168 L. Peng et al.

Lemma 2. (Howgrave-Graham, [9]) Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an
integer polynomial with at most w monomials. Suppose that

1.g(y1, · · · , yk) ≡ 0 (mod pm) for |y1| ≤ X1, · · · , |yk| ≤ Xk, and

2.‖g(x1X1, · · · , xkXk)‖ <
pm√
w

Then g(y1, · · · , yk) = 0 holds over the integers.

Lattice based approaches of solving small roots of a modular or integer equa-
tion are first to construct a lattice from the polynomial of the equation, then
by lattice basis reduction algorithm obtain new short lattice vectors which cor-
respond to new polynomials with small norms and with the same roots as the
original polynomial. These approaches usually rely on the following heuristic
assumption.

Assumption 1. The common roots of the polynomials yielded by lattice based
constructions can be efficiently computed by using numerical method, symbolic
method or exploiting the special structure of these polynomials.

In our analysis, we will use the following theorem proposed by Herrmann and
May in [8]. Based on Coppersmith’s technique, they gave upper bounds on the
size of solutions of a bivariate linear equation modulo an unknown divisor of a
known composite integer.

Theorem 1. (Herrmann and May, [8]) Let ε > 0, N be a sufficiently large
composite integer with an unknown divisor p ≥ Nβ, and f(x1, x2) ∈ Z[x1, x2]
be a bivariate linear polynomial. Under Assumption 1, one can find all solutions
(y1, y2) of the equation f(x1, x2) = 0 (mod p) with |y1| ≤ Nγ and |y2| ≤ N δ if

γ + δ ≤ 3β − 2 + 2(1− β)
3
2 − ε. (1)

The above theorem 1 has been extended to a modular equation with k ≥ 3
variables [8].

Theorem 2. (Herrmann and May, [8]) Let ε > 0, N be a sufficiently large com-
posite integer with an unknown divisor p ≥ Nβ, f(x1, · · · , xk) ∈ Z[x1, · · · , xk]
be a monic linear polynomial in k variables. Under Assumption 1, one can
find all solutions (y1, · · · , yk) of the equation f(x1, · · · , xk) = 0 (mod p) with
|y1| ≤ Nγ1 , · · · , |yk| ≤ Nγk if

k∑
i=1

γi ≤ 1− (1− β)
k+1
k − (k + 1)(1− k

√
1− β)(1 − β)− ε. (2)

More details about the theorems can be referred to [8]. Note that, in our
experiments, the equations obtained by calculation of the resultant or finding
a Gröbner basis are not univariate polynomials, however we can exploit the
structure of these polynomials to solve out the desired small roots.

Further Improvement of Factoring RSA Moduli with Implicit Hint 169

3 Factoring Two RSA Moduli with Implicitly Common
LSBs

Recall in the implicit factoring of two RSA moduli in [16], there are two different
n-bit RSA moduli N1 = p1q1 and N2 = p2q2, where p1 and p2 satisfy that
p1 ≡ p2(mod 2tn), where 0 < t < logNi

pi for i = 1, 2.
Since p1 ≡ p2(mod 2tn), we let p1 = p+ 2tnp̃1 and p2 = p+ 2tnp̃2. We have

(p+ 2tnp̃1)q1 = N1,

(p+ 2tnp̃2)q2 = N2,

which means

pq1 = N1 (mod 2tn),

pq2 = N2 (mod 2tn).

Moreover, we get the following linear equation

(N−1
1 N2)q1 − q2 ≡ 0 (mod 2tn), (3)

where N−1
1 is the inverse of N1 modulo 2tn.

In [16], the authors have proved that the vector (q1, q2) is the shortest vector
of the two-dimensional lattice L1 generated by the row vectors of the following
matrix (

1 N−1
1 N2

0 2tn

)
(4)

when q1 and q2 are both (αn)-bit numbers and tn > 2(αn + 1), where α ≈
1 − logNi

pi for i = 1, 2. Note that t < logNi
pi ≈ 1 − α. Once q1 and q2 are

obtained by the L3 algorithm in polynomial time, N1 and N2 are factored.
However, when tn ≤ 2(αn+1) the vector (q1, q2) is not the shortest vector of

L1, which means (q1, q2) is generally not included in the outputted basis (λ1, λ2)
of the L3 algorithm. Write the vector (q1, q2) as a linear combination of λ1 and
λ2. Below we present a method to find out the linear combination by solving
linear equations modulo unknown RSA factors. Once the linear combination is
found, a better bound on t than that in [16] is obtained.

Let λ1 = (l11, l12) and λ2 = (l21, l22) be the basis vectors of L1 obtained from
the L3 algorithm. Then we have a rough estimation on the lij , with overwhelming
probability, the minima of a lattice are all asymptotically close to the Gaussian

heuristic [1], hence we have ‖λ1‖ ≈ ‖λ2‖ ≈
√

2
2πedet(L)

1
2 . Thus, the sizes of

l11, l12, l21, l22 can be estimated from det(L1)
1
2 = 2

tn
2 .

Let (q1, q2) be represented as (q1, q2) = x1λ1 + x2λ2 with integral coefficients
x1 and x2. Then we get two modular equations modulo unknown prime numbers{

x1l11 + x2l21 = q1 ≡ 0 (mod q1),
x1l12 + x2l22 = q2 ≡ 0 (mod q2).

(5)

170 L. Peng et al.

Since l11, l12, l21, l22 have roughly the same size, the desired coefficients x1 and
x2 can be roughly estimated as

qj
2lij

for any i and j.

Using the Chinese remainder theorem, from (5) we get an equation with the
form of

ax1 + bx2 ≡ 0 (mod q1q2), (6)

where a is an integer satisfying a ≡ l11 (mod N1) and a ≡ l12 (mod N2), and b
is an integer satisfying b ≡ l21 (mod N1) and b ≡ l22 (mod N2). Clearly, a and
b can be calculated from l11, l12, l21, l22, N1 and N2 by the extended Euclidean
algorithm.

Since q1 ≈ q2 ≈ 2αn, we have q1q2 ≈ (N1N2)
α. By Theorem 1, we can

find all solutions (y1, y2) of equation (6) with |y1| ≤ (N1N2)
δ1 ≈ 22δ1n and

|y2| ≤ (N1N2)
δ2 ≈ 22δ2n if

δ1 + δ2 ≤ 3α− 2 + 2(1− α)
3
2 − ε.

When δ1 ≈ δ2, we have

2δ1 ≈ 2δ2 ≤ 3α− 2 + 2(1− α)
3
2 − ε. (7)

From (5), there is a good possibility that the desired solution of (5) can be
estimated with q1

2l11
≈ 2(α−

t
2)n. Hence, when

α− t

2
≤ 3α− 2 + 2(1− α)

3
2 − ε,

or equivalently,
t ≥ 4− 4α− 4(1− α)

3
2 + ε,

the desired solution can be solved out.
Comparing with the works of [16], [19] and [15], we can get the following

Figure 1.

Experimental Results:
We have implemented the experiment program in Sage 5.12 computer alge-
bra system on a PC with Intel(R) Core(TM) Duo CPU(2.53GHz, 1.9GB RAM
ubuntu 13.10) and carried out the L2 algorithm [17]. In all experiments, we ob-
tained several integer equations with desired roots (y1, y2) over Z and found that
these equations had a common factor with the form of ax1 + bx2. In these situ-
ations, ay1 + by2 always equals to 0 and gcd(y1, y2) is small. Hence, the solution
(y1, y2) can be solved out.

The following Table 2 lists some theoretical and experimental results on fac-
toring two 1024-bit RSA moduli with shared LSBs.

4 Extending to Factoring Multiple RSA Moduli with
Implicitly Common LSBs

In the case of multiple RSA moduli with implicit common LSBs, let Ni = piqi,
i = 1, 2, · · · , k, be k different n-bit RSA moduli and pi share tn least significant

Further Improvement of Factoring RSA Moduli with Implicit Hint 171

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a

t

Fig. 1. Comparison with previous ranges on t with respect to α. Since t ≤ 1− α, any
valid range is under the thick solid diagonal line. Here the dotted line denotes the lower
bound on t in [16], the dashed line denotes that in [19] and [15], and the thin solid line
denotes that in this paper. The grey shaded area is a new improvement presented in
this paper.

Table 2. Theoretical and experimental results of factoring 1024-bit RSA moduli with
LSBs. Here dim denotes the dimension of the lattice.

k
bitsize of (pi, qi), i.e.,

((1− α)log2Ni, αlog2Ni)
no. of shared LSBs in pi ([19]) no. of shared LSBs in pi (this paper)
theo. expt. dim time (sec) theo. expt. dim time (sec)

2 (874, 150) 278 – – – 267 278 190 1880.10

2 (824, 200) 361 – – – 340 357 190 1899.21

2 (774, 250) 439 – – – 405 412 190 2814.84

2 (724, 300) 513 – – – 461 470 190 2964.74

bits. Let qi be of (αn)-bit. Write the moduli as

N1 = (p+ 2tnp̃1)q1,

· · ·
Nk = (p+ 2tnp̃k)qk.

Then,

N1 ≡ pq1 (mod 2tn),

· · ·
Nk ≡ pqk (mod 2tn).

Similarly as in the analysis in the previous section for the case k = 2, we have
N1

q1
≡ Ni

qi
(mod 2tn), for i = 2, 3, · · · , k. Since the modular equation N−1

1 Niq1 −
qi ≡ 0 (mod 2tn) holds, we get a vector (q1, q2, · · · , qk) in a k-dimensional lattice

172 L. Peng et al.

L2 which is generated by the row vectors of the following matrix⎛⎜⎜⎜⎜⎜⎝
1 N−1

1 N2 N
−1
1 N3 · · · N−1

1 Nk

0 2tn 0 · · · 0
0 0 2tn · · · 0
...

...
...

. . .
...

0 0 0 · · · 2tn

⎞⎟⎟⎟⎟⎟⎠ .

In [16], it is proved that when t ≥ k
k−1α, with a good possibility (q1, q2, · · · , qk)

is a shortest vector in L2 and it can be found out by applying the L3 algorithm
to L2. However, when t < k

k−1α, (q1, q2, · · · , qk) is not included in the L3 re-
duced basis {λ1, · · · , λk} of L2. Similarly as in the previous section, we repre-
sent (q1, q2, · · · , qk) as a linear combination of λ1, · · · , λk, i.e., (q1, · · · , qk) =
x1λ1 + x2λ2 + · · ·+ xkλk, where x1, · · · , xk are integers.

Hence, we have the following modular equation system⎧⎨⎩
x1l11 + x2l21 + · · ·+ xklk1 = q1 ≡ 0 (mod q1),

· · ·
x1l1k + x2l2k + · · ·+ xklkk = qk ≡ 0 (mod qk),

(8)

where λi = (li1, li2, · · · , lik), i = 1, 2, · · · , k.
The lengths of the output vectors of the L3 algorithm can be estimated based

on the Gaussian heuristic and experimental experience of the L3 algorithm. We
roughly estimate the sizes of |λ1|, · · · , |λk| and the entries of λi as det(L2)

1
k =

2
nt(k−1)

k and the solution of (8) as |xi| ≈ qi
klij

≈ 2αn−
nt(k−1)

k −log2k ≤ 2αn−
nt(k−1)

k .

Similarly as in the previous section, we can obtain an equation with the form
of

a1x1 + a2x2 + · · ·+ akxk ≡ 0 (mod q1q2 · · · qk) (9)

from equation system (8) by using the Chinese remainder theorem, where ai is
an integer satisfying ai ≡ lij (mod Nj) for 1 ≤ j ≤ k and it can be calculated
from the lij and Nj .

For this linear polynomial equation in k variables modulo the unknown in-
teger q1q2 · · · qk ≈ (N1N2 · · ·Nk)

α, by Theorem 2 the variables with |xi| ≤
(N1N2 · · ·Nk)

δi ≈ 2kδin, i = 1, 2, · · · , k, can be solved out if

k∑
i=1

δi ≤ 1− (1− α)
k+1
k − (k + 1)(1− k

√
1− α)(1− α)− ε,

or equivalently,

kδi ≤ 1− (1− α)
k+1
k − (k + 1)(1− k

√
1− α)(1 − α)− ε

when δ1 ≈ δ2 ≈ · · · ≈ δk.
Hence, when

α− t(k − 1)

k
≤ 1− (1− α)

k+1
k − (k + 1)(1− k

√
1− α)(1 − α)− ε,

Further Improvement of Factoring RSA Moduli with Implicit Hint 173

or namely,

t ≥ k

k − 1
(α− 1 + (1− α)

k+1
k + (k + 1)(1− (1 − α)

1
k)(1− α)) + ε, (10)

the desired solution can be solved out.
To the best of our knowledge, the previous best theoretical bound on t is given

in [15]: t ≥ 1−(1−α) k
k−1 . We make a comparison between our theoretical bound

(10) and this bound, see Figure 2 for the cases of k = 3 and k = 4. We shall note
that when k ≥ 3, there exists t satisfying t ≤ 1−α and the inequality (10), which
removes the requirement that t ≥ α in [16,7,19,15] and means for multiple RSA
moduli we can for the first time theoretically deal with the implicit factorization
for the case of balanced RSA moduli (i.e., pi and qi have the same bitlength and
α = 1

2).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a

t

(a) k = 3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

a

t

(b) k = 4

Fig. 2. The comparison between the bound (10) and the known best bound in [15]. As
in Figure 1, any valid range is under the thick solid diagonal line. Here the dashed line
denotes the lower bound on t in [15], the thin solid line denotes that in this paper, the
grey shaded area on the figure is a new improvement presented in this paper.

Experimental Results:
We have implemented the program in Sage 5.12 computer algebra system on a
PC with Intel(R) Core(TM) Duo CPU (2.53GHz, 1.9GB RAM ubuntu 13.10).

In all experiments for the case k = 3 and 1000-bit RSA moduli, we obtained
several integer equations with desired roots (y1, y2, y3) over Z. To find out the
roots, we used the technique of calculation of resultants and we always obtained
a homogeneous equation of the form of c1x

4
2+c2x

3
2x3+c3x

2
2x

2
3+c4x2x

3
3+c5x

4
3 = 0

which has the desired roots. Then we transformed these homogeneous bivariate
equations to univariate equations over Q and obtained the ratio of y2

y3
by solving

univariate equations. Similarly as in the experiments in the previous section,
the common divisor of the desired roots is always small, hence we can obtain
the desired roots (y1, y2, y3). See Table 3 for the comparison with the previous
bounds on t.

174 L. Peng et al.

Table 3. For 1000-bit RSA moduli, theoretical and experimental bounds on t

k bitsize of qi
[16] [19] this paper

theo. expt. theo. expt. theo. expt.

3 250 375 378 352 367 309 350

3 300 450 452 416 431 354 420

3 350 525 527 478 499 392 440

3 400 600 – 539 562 423 480

We notice that, when k is increasing, the lower bound on t will decrease,
however, the dimension of the lattice constructed for solving the roots of the
polynomials will be also increase. Due to the restriction of our computing ability,
it is hard to evaluate the experimental results for larger k.

5 Factoring RSA Moduli with Implicitly Common MSBs

In [7], Faugère et al. extended May et al.’s results to factoring RSA moduli with
primes implicitly sharing most significant bits (MSBs). Below we briefly recall
Faugère et al.’s work.

Given two n-bit RSA moduli, N1 = p1q1 and N2 = p2q2, where q1 and q2 are
(αn)-bit primes and p1 and p2 share tn MSBs, namely |p1 − p2| ≤ 2n−αn−tn+1.

Consider the two-dimensional lattice L3 which is generated by the row vectors
of the following matrix

M3 =

(
K 0 N2

0 K −N1

)
where K = �2n−tn+ 1

2 �. It has been proved in [7] that when tn ≥ 2αn+3, or for
simplicity t ≥ 2α for efficiently large n, the vector (q1K, q2K, q1q2(p2−p1)) is the
shortest vector in L3. Similarly, when t ≤ 2α the vector (q1K, q2K, q1q2(p2−p1))
that we wanted is not the shortest vector of L3 and q1 and q2 can not be obtained
directly from the basis vectors λ1 and λ2 of L3 which are outputted by applying
the L3 algorithm.

In order to enable our result succinct, we make a rough estimation on the
sizes of λ1 = (l11, l12, l13) and λ2 = (l21, l22, l23) and their entries. Since

det(L3) = det(M3M
T
3) = K

√
N2

1 +N2
2 +K2 ≈ 22n−tn+1,

the length of |λ1| and |λ2| can be estimated as det(L3)
1
2 ≈ 2n−

tn
2 + 1

2 , hence the
entries can be bounded as |lij | ≈ 2n−

tn
2 , i = 1, 2, j = 1, 2, 3.

Since (q1K, q2K, q1q2(p2 − p1)) ∈ L3, there exist integers x1 and x2 such that
(q1K, q2K, q1q2(p2 − p1)) = x1λ1 + x2λ2. Hence, we obtain a modular equation
system {

x1l11 + x2l21 = q1K ≡ 0 (mod q1),
x1l12 + x2l22 = q2K ≡ 0 (mod q2).

(11)

Further Improvement of Factoring RSA Moduli with Implicit Hint 175

Since |lij | ≈ 2n−
tn
2 , the solutions to (11) can be estimated roughly by xi ≈

qjK
2lij

≈ 2αn+n−tn−n+ tn
2 ≈ 2αn−

tn
2 .

Using the Chinese remainder theorem, from (11) we get a modular equation
with the form of

ax1 + bx2 ≡ 0 (mod q1q2). (12)

On the other hand, since q1q2 ≈ (N1N2)
α, from Theorem 1 the solution of

(12) with |y1| < (N1N2)
δ1 ≈ 22δ1n and |y2| < (N1N2)

δ2 ≈ 22δ2n can be found if

δ1 + δ2 ≤ 3α− 2 + 2(1− α)
3
2 − ε.

With δ1 ≈ δ2, we have

2δ1 ≈ 2δ2 ≤ 3α− 2 + 2(1− α)
3
2 − ε.

Hence, when

α− t

2
≤ 2δ1 ≤ 3α− 2 + 2(1− α)

3
2 − ε,

or equivalently,
t ≥ 4− 4α− 4(1− α)

3
2 + ε,

the desired solution can be solved out.
The above method can be extended to factoring multiple RSA moduli with

primes implicitly sharing MSBs. In a similar way, we can prove that one can
factor k RSA moduli with primes implicitly sharing (tn)-bit MSBs if

t ≥ k

k − 1
(α− 1 + (1− α)

k+1
k + (k + 1)(1− (1− α)

1
k)(1 − α)) + ε.

To illustrate our optimization on the lower bounds on t, we list in Table 4
some numerical values for comparison with the results in [16], [7], [19] and [15]. It
can be seen that our improvement with previous results increases as α increases.

Table 4. Comparison with previous results on the theoretical bounds on t

k α [16]([7]) [19] [15] this paper α [16]([7]) [19] [15] this paper

5 0.20 0.2500 0.2437 0.2434 0.2182 0.30 0.3750 0.3606 0.3597 0.3012

5 0.40 0.5000 0.4740 0.4719 0.3642 0.45 0.5625 0.5292 0.5264 0.3874

5 0.50 – – – 0.4045 – – – – –

10 0.20 0.2222 0.2197 0.2196 0.1962 0.30 0.3333 0.3276 0.3272 0.2725

10 0.40 0.4444 0.4341 0.4331 0.3320 0.45 0.5000 0.4868 0.4853 0.3546

10 0.50 – – – 0.3720 – – – – –

50 0.20 0.2041 0.2037 0.2036 0.1818 0.30 0.3061 0.3052 0.3051 0.2539

50 0.40 0.4082 0.4064 0.4062 0.3112 0.45 0.4592 0.4570 0.4567 0.3335

50 0.50 – – – 0.3512 – – – – –

Experimental Results:
We implemented our analysis in Sage 5.12 computer algebra system on a PC
with Intel(R) Core(TM) Duo CPU(2.53GHz, 1.9GB RAM ubuntu 13.10). We
present some numerical values for comparison with [19] in Table 5.

176 L. Peng et al.

Table 5. For 1024-bit RSA moduli, theoretical and experimental results on factoring
RSA moduli with implicitly common MSBs

k
bitsize of (pi, qi)

((1− α)log2Ni, αlog2Ni)
no. of shared MSBs in pi ([19]) no. of shared MSBs in pi (this paper)
theo. expt. dim time (sec) theo. expt. dim time (sec)

2 (874,150) 278 289 16 1.38 267 278 190 1974.34

2 (824,200) 361 372 16 1.51 340 358 190 2030.92

2 (774,250) 439 453 16 1.78 405 415 190 2940.35

2 (724,300) 513 527 16 2.14 461 474 190 3105.79

3 (874,150) 217 230 56 29.24 203 225 220 5770.99

3 (824,200) 286 304 56 36.28 260 288 220 6719.03

3 (774,250) 352 375 56 51.04 311 343 220 6773.48

3 (724,300) 417 441 56 70.55 356 395 220 7510.86

3 (674,350) 480 505 56 87.18 395 442 220 8403.91

3 (624,400) 540 569 56 117.14 428 483 220 9244.42

6 Conclusion

In this paper, we presented a further method for factoring RSA moduli with
implicitly common LSBs or MSBs, and got a more lower bound on the number
of the bits shared by the unknown primes of the RSA moduli. Our improvement
can deal with some situations where the number of shared LSBs or MSBs does
not satisfy the lower bounds proposed by May and Ritzenhofen in [16] and
Faugère et al. in [7]. It is nice to see our theoretical bound and experimental
results both have an improvement on existing results.

Acknowledgements. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions. The work of this paper was supported
by the National Key Basic Research Program of China (2013CB834203), the
National Natural Science Foundation of China (Grant 61070172), the Strate-
gic Priority Research Program of Chinese Academy of Sciences under Grant
XDA06010702, and the State Key Laboratory of Information Security, Chinese
Academy of Sciences.

References

1. Ajtai, M.: Generating random lattices according to the invariant distribution. Draft
of March (2006)

2. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reduc-
tions. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, pp. 10–19. ACM (1998)

3. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange,
T., van Someren, N.: Factoring RSA keys from certified smart cards: Coppersmith
in the wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 341–360. Springer, Heidelberg (2013)

4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Transactions on Information Theory 46(4), 1339–1349 (2000)

Further Improvement of Factoring RSA Moduli with Implicit Hint 177

5. Cohn, H., Heninger, N.: Approximate common divisors via lattices. arXiv preprint
arXiv:1108.2714 (2011)

6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

7. Faugère, J.-C., Marinier, R., Renault, G.: Implicit factoring with shared most sig-
nificant and middle bits. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 70–87. Springer, Heidelberg (2010)

8. Herrmann,M.,May, A.: Solving linear equations modulo divisors: On factoring given
any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 406–424.
Springer, Heidelberg (2008)

9. Howgrave-Graham, N.: Finding small roots of univariate modular equations
revisited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

10. Howgrave-Graham, N.: Approximate integer common divisors. In: Silverman, J.H.
(ed.) CaLC 2001. LNCS, vol. 2146, pp. 51–66. Springer, Heidelberg (2001)

11. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

12. Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-
exponents smaller than N0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

13. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter,
C.: Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 626–642. Springer, Heidelberg (2012)

14. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261(4), 515–534 (1982)

15. Lu, Y., Zhang, R., Lin, D.: Improved bounds for the implicit factorization problem.
Advances in Mathematics of Communications 7(3), 243–251 (2013)

16. May, A., Ritzenhofen, M.: Implicit factoring: On polynomial time factoring given
only an implicit hint. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 1–14. Springer, Heidelberg (2009)

17. Nguên, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)

18. Nguyen, P.Q., Valle, B.: The LLL algorithm: Survey and applications. Springer
Publishing Company, Incorporated (2009)

19. Sarkar, S., Maitra, S.: Approximate integer common divisor problem relates to
implicit factorization. IEEE Transactions on Information Theory 57(6), 4002–4013
(2011)

20. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

New Attacks on the RSA Cryptosystem

Abderrahmane Nitaj1, Muhammad Rezal Kamel Ariffin2,3,
Dieaa I. Nassr4, and Hatem M. Bahig4

1 Laboratoire de Mathématiques Nicolas Oresme
Université de Caen Basse Normandie, France

abderrahmane.nitaj@unicaen.fr
2 Al-Kindi Cryptography Research Laboratory,
Institute for Mathematical Research, Malaysia

3 Department of Mathematics, Faculty of Science,
Universiti Putra Malaysia (UPM), Selangor, Malaysia

rezal@upm.edu.my
4 Computer Science Division, Department of Mathematics,
Faculty of Science, Ain Shams University, Cairo, Egypt

hmbahig@sci.asu.edu.eg, diaa_rsa@yahoo.com

Abstract. This paper presents three new attacks on the RSA cryp-
tosystem. The first two attacks work when k RSA public keys (Ni, ei)
are such that there exist k relations of the shape eix−yiφ(Ni) = zi or of
the shape eixi − yφ(Ni) = zi where Ni = piqi, φ(Ni) = (pi − 1)(qi − 1)
and the parameters x, xi, y, yi, zi are suitably small in terms of the prime
factors of the moduli. We show that our attacks enable us to simulta-
neously factor the k RSA moduli Ni. The third attack works when the
prime factors p and q of the modulus N = pq share an amount of their
least significant bits (LSBs) in the presence of two decryption exponents
d1 and d2 sharing an amount of their most significant bits (MSBs). The
three attacks improve the bounds of some former attacks that make RSA
insecure.

Keywords: RSA, Cryptanalysis, Factorization, LLL algorithm, Simul-
taneous diophantine approximations, Coppersmith’s method.

1 Introduction

The RSA cryptosystem [14] is currently the most widely known and widely used
public key cryptosystem. The main parameters in RSA are the RSA modulus
N and the public exponent e. The modulus N = pq is the product of two
large primes of equal bit-size and e satisfies gcd(e, φ(N)) = 1 where φ(N) =
(p − 1)(q − 1) is the Euler totient function. The integer d satisfying ed ≡ 1
(mod φ(N)) is the private exponent. The RSA cryptosystem is deployed in
various application systems for encryption, signing and for providing privacy
and ensuring authenticity of digital data. Therefore, most research is focused
on reducing the encryption/decryption execution time or the signature veri-
fication/generation time. For example, to reduce the decryption time or the

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 178–198, 2014.
c© Springer International Publishing Switzerland 2014

New Attacks on the RSA Cryptosystem 179

signature generation time, one may wish to use a small private exponent d. Un-
fortunately, based on the convergents of the continued fraction expansion of e

N ,

Wiener [19] showed that the RSA cryptosystem is insecure when d < N1/4.
Boneh and Durfee [3] proposed an extension of Wiener’s attack that allows the
RSA cryptosystem to be broken when d < N0.292. Their Method is based on
lattice basis reduction techniques. Similarly, Blömer and May [2] proposed an
extension of Wiener’s attack and showed that the RSA cryptosystem is insecure
if there exist three integers x, y and z satisfying ex−yφ(N) = z with x < 1

3N
1/4

and |z| < exN−3/4. Their method combines lattice basis reduction techniques
and the continued fraction algorithm. In general, the use of short secret expo-
nent encounters serious security problem in various instances of RSA. A typical
example is when a single user generates many instances of RSA (N, ei) with
the same modulus and small private exponents [8]. Another example is when
a single user generates k instances of RSA (Ni, ei), each with the same small
private exponent d. Using k equations eid− kiφ(Ni) = 1, Hinek [6] showed that
it is possible to factor the k modulus Ni if d < N δ with δ = k

2(k+1) − ε where ε

is a small constant depending on the size of maxNi. Similarly, to improve the
computational efficiency of server-aided signature generation (see [16]), one may
use RSA with a modulus N = pq such that the prime factors p and q share
a large number of least significant bits (LSBs). The security of this variant of
RSA has been analyzed under the partial key exposure attacks in [16], [17], [20],
and [18]. In [18], Sun et al. showed that RSA is more vulnerable in the situ-
ation when p and q share a large number of LSBs than the standard scenario
when the prime factors p and q differ in the first LSBs. When e = Nγ , they
showed that RSA is vulnerable if |p − q| = 2mx with 2m = Nα and d < N δ

whenever δ < 7
6 − 2

3α − 1
3

√
(1− 4α)(1 − 4α+ 6γ). For example, if γ = 1, and

α = 0.2, then δ < 0.662, that is, RSA is insecure if the private exponent is
such that d < N0.662. In [8], Howgrave-Graham and Seifert extended Wiener’s
attack in the presence of many decryption exponents for a single RSA modulus.
They showed that RSA is insecure if one knows two public exponents e1 and e2
such that the corresponding private exponents d1 and d2 satisfy d1, d2 < N0.357.
In [11], Sarkar and Maitra improved this bound up to d1, d2 < N0.416.

In this paper, we present three new attacks on RSA. The first attack works for
k ≥ 2 moduliNi = piqi, i = 1, . . . , k, when k instances (Ni, ei) are such that there
exist an integer x, k integers yi, and k integers zi satisfying eix− yiφ(Ni) = zi.
We show that the k RSA moduli Ni can be factored in polynomial time if
N = miniNi and

x < N δ, yi < N δ, |zi| <
pi − qi

3(pi + qi)
yiN

1/4 where δ =
k

2(k + 1)
.

The second attack works when the k instances (Ni, ei) of RSA are such that
there exist an integer y, and k integers xi, and k integers zi satisfying eixi −
yφ(Ni) = zi. Similarly, we show that the k RSA moduli Ni can be factored in
polynomial time if N = miniNi, mini ei = Nα, and

180 A. Nitaj et al.

xi < N δ, y < N δ, |zi| <
pi − qi

3(pi + qi)
yN1/4 where δ =

(2α− 1)k

2(k + 1)
.

In both scenarios, we transform the equations into a simultaneous diophantine
problem and apply lattice basis reduction techniques to find the parameters
(x, yi) or (y, xi). This leads to a suitable approximation of pi + qi which allows
us to apply Coppersmith’s method [4] to compute the prime factors pi and qi of
the moduli Ni.

The third attack enables us to factor an RSA modulus N = pq when the
prime factors share their LSBs in the presence of two public exponents e1 and e2
such that the corresponding decryption exponents d1 and d2 share their MSBs.
To be more precise, suppose that e = Nγ , |p − q| = 2mx with 2m = Nα, and
|d1 − d2| < Nβ . We show that one can factor the RSA modulus if d1, d2 < N δ

under the condition

δ <
5

2
− 2α− β − 1

4

√
6(1− 4α)(5 + 4γ − 4α− 4β). (1)

As an example, observe that, in the situation that γ = 1, α = 0.2, and β = δ,
that is d1 and d2 differ in the first MSBs, then the condition (1) gives δ < 0.736
which improves the bound δ < 0.662 obtained in [18]. On the other hand, in the
standard situation γ = 1, α = 0, and β = δ, that is when the prime integers p,
q do not share any LSBs and d1, d2 do not share any MSBs, the condition (1)
gives δ < 0.422 which also improves the bound δ < 0.416 found in [11]. Our
method is based on Coppersmith’s method for solving polynomial equations

The remainder of this paper is organized as follows. In Section 2, we review
the tools that we apply in the scenarios, namely Coppersmith’s method, lattice
basis reduction and simultaneous diophantine approximations. We also present
some useful results that will be used through the paper. In Section 3, we present
the first attack. In Section 4, we present the second attack and in Section 5, we
present the third attack. We conclude in Section 6.

2 Preliminaries

In this section, we give some basics on Coppersmith’s method, lattice basis
reduction techniques and simultaneous diophantine equations that will be used
in this paper.

2.1 Coppersmith’s Method

At Eurocrypt’96, Coppersmith [4] proposed an algorithm for finding small roots
of bivariate integer polynomial equations in polynomial-time. The algorithm is
based on the LLL algorithm [10] for lattice reduction. A clever application of
Coppersmith’s algorithm is to factor an RSA modulus N = pq when half of the
least significant or most significants bits of p are known.

New Attacks on the RSA Cryptosystem 181

Theorem 1 (Coppersmith). Let N = pq be the product of two unknown in-
tegers such that q < p < 2q. Given an approximation of p with additive error
term at most N

1
4 , then p and q can be found in polynomial time.

Coppersmith’s method has been heuristically extended to many variables. To
find the small roots of a multivariate polynomial f(x1, · · · , xn), we construct a
set of coprime polynomials with small coefficients which contain the same roots
over the integers. This can be done by applying the LLL algorithm to a lattice
that can be built using the strategy of Jochemsz and May [9]. To this end, a
practical way is the use the following result of Howgrave-Graham [7].

Theorem 2 (Howgrave-Graham). Let h(x1, · · · , xn) ∈ Z[x1, · · · , xn] be a

polynomial with at most ω monomials. Suppose that h
(
x
(0)
1 , · · · , x(0)n

)
≡ 0

(mod R) where |x(0)i | < Xi for i = 1, . . . , n, and

h(x1X1, · · · , xnXn) <
R√
ω
.

Then h
(
x
(0)
1 , · · · , x(0)n

)
= 0 holds over the integers.

To find the small roots of the first polynomials of the LLL-reduced basis, we can
use Gröbner bases or evaluation of resultants.

2.2 Lattice Reductions and Simultaneous Diophantine
Approximations

Let u1 . . . , ud be d linearly independent vectors of Rn with d ≤ n. The set of all
integer linear combinations of the vectors u1 . . . , ud is called a lattice and is in
the form

L =

{
d∑

i=1

xiui | xi ∈ Z

}
.

The set (u1, . . . , ud) is called a basis of L and d is its dimension. The determinant
of L is defined as det(L) =

√
det(UTU) where U is the the matrix of the ui’s

in the canonical basis of Rn. Define ‖v‖ to be the Euclidean norm of a vector
v ∈ L. A central problem in lattice reduction is to find a short non-zero vector in
L. The LLL algorithm of Lenstra, Lenstra, and Lovász [10] produces a reduced
basis and answers positively but partially this problem. The following result fixes
the sizes of the reduced basis vectors (see [12]).

Theorem 3. Let L be a lattice of dimension ω with a basis {v1, . . . , vω}. The
LLL algorithm produces a reduced basis {b1, · · · , bω} satisfying

‖b1‖ ≤ ‖b2‖ ≤ · · · ≤ ‖bi‖ ≤ 2
ω(ω−1)
4(ω+1−i det(L)

1
ω+1−i ,

for all 1 ≤ i ≤ ω.

182 A. Nitaj et al.

One important application of the LLL algorithm is that it provides a solution
to the simultaneous diophantine approximations problem which is defined as
follows. Let α1, . . . , αn be n real numbers and ε a real number such that 0 <
ε < 1. A classical theorem of Dirichlet asserts that there exist integers p1, · · · , pn
and a positive integer q ≤ ε−n such that

|qαi − pi| < ε for 1 ≤ i ≤ n.

In 1982, Lenstra, Lenstra and Lovász[10] described a method to find simul-
taneous diophantine approximations to rational numbers. In their work, they
considered a lattice with real entries. We state below a similar result for a lattice
with integer entries.

Theorem 4 (Simultaneous Diophantine Approximations). There is a
polynomial time algorithm, for given rational numbers α1, . . . , αn and 0 < ε < 1,
to compute integers p1, · · · , pn and a positive integer q such that

max
i

|qαi − pi| < ε and q ≤ 2n(n−3)/4 · 3n · ε−n.

Proof. See Appendix A. ��

2.3 Primes Sharing LSBs

The following lemma is reformulation of a result of [15]. It concerns an RSA
modulus N = pq when the prime factors p and q share an amount of their LSBs.

Lemma 1. Let N = pq be an RSA modulus with q < p < 2q. Suppose that
p− q = 2mu for a known value m. Then p = 2mp1+u0 and q = 2mq1+u0 where
u0 is a solution of the equation x2 ≡ N (mod 2m) and p+ q = 22mv + v0 with

v0 ≡ 2u0 +
(
N − u20

)
u−1
0 (mod 22m).

Proof. See Appendix B. ��

2.4 Approximations of the Primes in RSA

Let N = pq be an RSA modulus with q < p < 2q. Then p + q satisfies the
following inequalities (see [13])

2
√
N < p+ q <

3
√
2
√
N

2
. (2)

The following result shows that any approximation of p + q will lead to an
approximation of p.

Lemma 2. Let N = pq be an RSA modulus with q < p < 2q. Suppose we know
an approximation S of p+ q such that S > 2N

1
2 and

|p+ q − S| < p− q

3(p+ q)
N

1
4 .

Then P̃ = 1
2

(
S +

√
S2 − 4N

)
is an approximation of p satisfying |p− P̃ | < N

1
4 .

New Attacks on the RSA Cryptosystem 183

Proof. See Appendix C. ��

Remark 1. Notice that in Section 4.1.2 of the ANSI X9.31:1998 standard for
public key cryptography [1], there are a number of recommendations for the
generation of the primes in N = pq. One criteria is that the primes p, q shall
satisfy p− q > 2−100

√
N. Combining with (2) when q < p < 2q and N > 21024,

this implies that the term p−q
3(p+q)N

1
4 satisfies

p− q

3(p+ q)
N

1
4 >

2−100
√
N

9
√
2
2

√
N

· 2256 =
2157

9
√
2
.

This shows that, when N = pq > 21024 and the prime factors p and q are
chosen following the ANSI X9.31:1998 standard, the approximation extra term
(p−q)
3(p+q)N

1
4 of p+ q is not too small.

3 The First Attack on k RSA Moduli

In this section, we are given k ≥ 2 moduli Ni = piqi with the same size N . We
suppose in this scenario that the RSA moduli satisfy k equations eix−yiφ(Ni) =
zi. Notice that the parameters φ(Ni) = (pi − 1)(qi − 1) are also unknown. We
show that it is possible to factor the RSA moduli Ni if the unknown parameters
x, yi and zi are suitably small.

Theorem 5. For k ≥ 2, let Ni = piqi, 1 ≤ i ≤ k, be k RSA moduli. Let
N = miniNi. Let ei, i = 1, . . . , k, be k public exponents. Define δ = k

2(k+1) . If

there exist an integer x < N δ and k integers yi < N δ and |zi| < pi−qi
3(pi+qi)

yiN
1/4

such that eix − yiφ(Ni) = zi for i = 1, . . . , k, then one can factor the k RSA
moduli N1, · · ·Nk in polynomial time.

Proof. For k ≥ 2 and i = 1, . . . , k, the equation eix − yiφ(Ni) = zi can be
rewritten as eix− yi(Ni + 1) = zi − yi(pi + qi). Hence∣∣∣∣ ei

Ni + 1
x− yi

∣∣∣∣ = |zi − yi(pi + qi)|
Ni + 1

. (3)

Let N = miniNi and suppose that yi < N δ and |zi| < pi−qi
3(pi+qi)

yiN
1/4. Then

|zi| < yiN
1/4 < N δ+ 1

4 . Since by (2) we have pi + qi <
3
√
2

2

√
N , we will get

|zi − yi(pi + qi)|
Ni + 1

≤ |zi|+ yi(pi + qi)

N

<
N δ+1/4 + 3

√
2

2 N δ+1/2

N

<

√
5N δ+1/2

N

=
√
5N δ−1/2.

184 A. Nitaj et al.

Plugging in (3), we get ∣∣∣∣ ei
Ni + 1

x− yi

∣∣∣∣ < √
5N δ−1/2.

We now proceed to prove the existence of the integer x. Let ε =
√
5N δ−1/2,

δ = k
2(k+1) . We have

N δ = Nk/2−kδ < 2k(k−3)/4 · 3k ·
(√

5N δ−1/2
)−k

= 2k(k−3)/4 · 3k · ε−k.

It follows that if x < N δ, then x < 2k(k−3)/4 · 3kε−k. Summarizing, for i =
1, . . . , k, we have ∣∣∣∣ ei

Ni + 1
x− yi

∣∣∣∣ < ε, x < 2k(k−3)/4 · 3k · ε−k.

It follows that the conditions of Theorem 4 are fulfilled which will find x and yi
for i = 1, . . . , k. Next, using the equation eix− yiφ(Ni) = zi, we get

pi + qi = Ni + 1− eix

yi
+
zi
yi
.

Since |zi| < pi−qi
3(pi+qi)

yiN
1/4, then zi

yi
< pi−qi

3(pi+qi)
N1/4 and Si = Ni + 1 − eix

yi
is

an approximation of pi + qi with an error of at most pi−qi
3(pi+qi)

N1/4. Hence, using

Lemma 2, we can find an approximation P̃i =
1
2

(
Si +

√
S2
i − 4Ni

)
of pi such

that |pi − P̃i| < N1/4. Then, for each i = 1, . . . , k, we find pi using Theorem 1.
This leads to the factorization of the k RSA moduli N1, . . . , Nk. ��
Remark 2. It is conjectured in [3] that an RSA instance with a modulus N = pq
and a public exponent e is insecure if ed − yφ(N) = 1 with d < N1/2. This
conjecture can be related to Theorem 5 as follows. Suppose that k RSA moduli
N1, · · · , Nk and k public exponents e1, . . . , ek satisfy e1d−y1φ(N1) = 1 and eid−
yiφ(Ni) = zi, i = 2, . . . , k, where d < N δ, yi < N δ

1 and |zi| < pi−qi
3(pi+qi)

yiN
1/4 with

δ = k
2(k+1) . Then, by Theorem 5, one can factor the RSA moduli N1, · · · , Nk.

Observe that, for sufficiently large k, we have δ ≈ 1
2 , which answer positively

the conjecture in this case.

Example 1. Consider the following 3 RSA moduli and public exponents

N1 = 1339354515091823859151801241, e1 = 1050185284614316002488409263,

N2 = 5761318740014279657192789531, e2 = 1492152853356436953159599262

N3 = 1257936900682879025849691469, e3 = 103918896908705941667125587.

Then N = max(N1, N2, N3) = 5761318740014279657192789531. Since k = 3,
we get δ = k

2(k+1) = 0.375 and ε =
√
5N δ−1/2 ≈ 0.000757. Using (11) with

n = k = 3, we find

C =
[
3n+1 · 2

(n+1)(n−4)
4 · ε−n−1

]
= 123330787675873.

New Attacks on the RSA Cryptosystem 185

Consider the lattice L spanned by the matrix

M =

⎡⎢⎢⎣
1 − [Ce1/(N1 + 1)] −$Ce2/(N2 + 1)] − [Ce3/(N3 + 1)%
0 C 0 0
0 0 C 0
0 0 0 C

⎤⎥⎥⎦ .
Then, applying the LLL algorithm to L, we get a reduced basis with the matrix

K =

⎡⎢⎢⎣
−3779027519,−18311525449,−3194797920,−5032583842
7689269805,−1894087712, 24623557005,−10208017761
33347077827,−5532195789,−23880055457,−2777199762
1955330759,−28195205997, 36977018712, 75348896931

⎤⎥⎥⎦ .
Next, computing K ·M−1, we observe that the first row is

[−3779027519,−2963128168,−978749302,−312187655],

from which we deduce x = 3779027519, y1 = 2963128168, y2 = 978749302 and

y3 = 312187655. Using x and yi for i = 1, 2, 3, define Si =
[
Ni + 1− eix

yi

]
. We

get

S1 = 73202632183869, S2 = 152156156125079, S3 = 102878795201660.

For i = 1, 2, 3, let Di =
[√

S2
i − 4Ni

]
. We get

D1 = 1098771258961, D2 = 10306351764921, D3 = 74513749733949.

By Lemma 2, for i = 1, 2, 3, P̃i =
1
2 (Si+Di) is a candidate for an approximation

of pi. Applying Coppersmith’s method 1 with P̃i for i = 1, 2, 3, we get

p1 = 37150702190747, p2 = 81231254125183, p3 = 88696272470797.

This leads us to the factorization of the 3 RSA moduli N1, N2 and N3. Observe
that x > N0.344 is much larger than Blőmer-May’s bound x < 1

3N
1/4. This shows

that Blömer-May’s attack will not give the factorization of the RSA moduli in
this example.

4 The Second Attack on k RSA Moduli

In this section, we consider the second scenario when the k RSA moduli satisfy
k equations of the shape eixi − yφ(Ni) = zi where the parameters xi, y and zi
are suitably small unknown parameters.

Theorem 6. For k ≥ 3, let Ni = piqi, 1 ≤ i ≤ k, be k RSA moduli with the
same size N . Let ei, i = 1, . . . , k, be k public exponents with mini ei = Nα.

Let δ = (2α−1)k
2(k+1) . If there exist an integer y < N δ and k integers xi < N δ and

|zi| < pi−qi
3(pi+qi)

yN1/4 such that eixi − yφ(Ni) = zi for i = 1, . . . , k, then one can

factor the k RSA moduli N1, · · ·Nk in polynomial time.

186 A. Nitaj et al.

Proof. For i = 1, . . . , k, the equation eixi− yφ(Ni) = zi can be transformed into
eixi − y(Ni + 1) = zi − y(pi + qi). Hence∣∣∣∣Ni + 1

ei
y − xi

∣∣∣∣ = |zi − y(pi + qi)|
ei

. (4)

Let N = maxiNi. Suppose that y < N δ and |zi| < pi−qi
3(pi+qi)

yN1/4. Also, suppose

that mini ei = Nα. Since by (2) we have pi + qi <
√
3
2

√
Ni, then we get

|zi − y(pi + qi)|
ei

≤ |zi|+ y(pi + qi)

Nα

<
N δ+ 1

4 + 3
√
2

2 N
δ+ 1

2
i

Nα

<

√
5N δ+ 1

2

Nα

=
√
5N δ+ 1

2−α.

Using this in (4), we get ∣∣∣∣Ni + 1

ei
y − xi

∣∣∣∣ < √
5N δ+ 1

2−α.

We now proceed to prove the existence of y and the integers xi. Let ε =√
5N δ+ 1

2−α, δ = (2α−1)k
2(k+1) . We have

N δεk = 5
k
2N δ+kδ+ k

2−kα = 5
k
2 .

Then, since 5
k
2 < 2

k(k−3)
4 · 3k for k ≥ 2, we get N δεk < 2k(k−3)/4 · 3k. It follows

that if y < N δ, then y < 2k(k−3)/4 · 3kε−k. Summarizing, we have∣∣∣∣Ni + 1

ei
y − xi

∣∣∣∣ < ε, y < 2k(k−3)/4 · 3k · ε−k, for i = 1, . . . , k,

It follows that the conditions of Theorem 4 are fulfilled and we will obtain y and
xi for i = 1, . . . , k. Next, by utilizing the equation eixi − yφ(Ni) = zi, we get

pi + qi = Ni + 1− eixi
y

+
zi
y
.

Since |zi| < pi−qi
3(pi+qi)

yN1/4, then |zi|
y < pi−qi

3(pi+qi)
N1/4 and Si = Ni + 1 − eixi

y is

an approximation of pi + qi with an error of at most pi−qi
3(pi+qi)

N1/4. Hence, using

Lemma 2, we can find an approximation P̃i =
1
2

(
Si +

√
S2
i − 4Ni

)
of pi such

that |pi − P̃i| < N1/4. Then, using Theorem 1, we find pi for i = 1, . . . , k. This
leads to the factorization of the k RSA moduli N1, . . . , Nk. ��

New Attacks on the RSA Cryptosystem 187

Example 2. Consider the following three RSA moduli and three public exponents

N1 = 701404527220444023808491592451,

e1 = 598872437015970469816654047240,

N2 = 287595248854210987719090191831,

e2 = 166801923182837419445821944696,

N3 = 431174708848373283683684641751,

e3 = 373743791338260494286817160907.

Then N = max(N1, N2, N3) = 701404527220444023808491592451. We also get

min(e1, e2, e3) = Nα with α ≈ 0.9791. Since k = 3, we get δ = k(2α−1)
2(k+1) =

0.359325 and ε =
√
5N δ+1/2−α ≈ 0.000595. Using (11) with n = k = 3, let

C =
[
3n+1 · 2

(n+1)(n−4)
4 · ε−n−1

]
= 323072188568099.

Consider the lattice L spanned by the the rows of the matrix

M =

⎡⎢⎢⎣
1 − [C(N1 + 1)/e1] −$C(N2 + 1)/e2] − [C(N3 + 1)/e3%
0 C 0 0
0 0 C 0
0 0 0 C

⎤⎥⎥⎦ .
Then, applying the LLL algorithm to L, we get a reduced basis with the matrix

K =

⎡⎢⎢⎣
9963214223 −13283752558 −23775330798 −12098528625

−23587427317 −20479775765 −11829398252 7542788188
−80616201478 123609103667 −102601176821 −4090837289
−641512285490−64738610576−108985237738−147068239663

⎤⎥⎥⎦ .
Next, we get

K ·M−1 =

⎡⎢⎢⎣
9963214223 11669001827 17178297583 11494200282

−23587427317−27625796886 −40668787863 −27211962691
−80616201478−94418385601−138996218289−93003999013
−41512285490−48619544294 −71574331088 −47891223947

⎤⎥⎥⎦ .
From the first row, we deduce y = 9963214223, x1 = 11669001827, x2 =
17178297583, and x3 = 11494200282. Using y and xi for i = 1, 2, 3, define

Si =
[
Ni + 1− eixi

y

]
. We get

S1 = 1677562597323852, S2 = 1169977613299368, S3 = 1377024442150848.

For i = 1, 2, 3, let Di =
[√

S2
i − 4Ni

]
. We get

D1 = 92726258730590, D2 = 467404129426390, D3 = 414122540907110.

188 A. Nitaj et al.

By Lemma 2, for i = 1, 2, 3, P̃i =
1
2 (Si+Di) is a candidate for an approximation

of pi. Applying Coppersmith’s method 1 with P̃i for i = 1, 2, 3, we get

p1 = 885144428027221, p2 = 818690871362879, p3 = 895573491528979.

This leads to the factorization of the three RSA moduli N1, N2 and N3. Observe
that min(x1, x2, x3) > N0.337 is much larger than Blömer-May’s bound x <
1
3N

1/4. This shows that Blömer-May’s attack does not work in this case.

5 The Third Attack on RSA With Primes and
Decryption Exponents Sharing Bits

In this section, we present the attack which applies when the prime factors of an
RSA modulus share an amount of their LSBs in the presence of two decryption
exponents d1 and d2 sharing an amount of their MSBs.

5.1 The Attack

Theorem 7. Let N = pq be an RSA modulus such that p − q = 2mu where
2m ≈ Nα. Let e1 and e2 be two public exponents satisfying e1, e2 ≈ Nγ, e1d1 −
k1φ(N) = 1, and e2d2 − k2φ(N) = 1. Suppose that d1, d2 < N δ and |d1 − d2| <
Nβ. Then one can factor N in polynomial time if

δ <
5

2
− 2α− β − 1

4

√
6(1− 4α)(5 + 4γ − 4α− 4β).

Proof. Suppose that e1 and e2 are two public exponents satisfying e1d1−k1φ(N) =
1, e2d2 − k2φ(N) = 1. Multiplying the first equation by e2 and the second by e1
and subtracting, we get

e1e2(d1 − d2)− e2k1φ(N) + e1k2φ(N) = e2 − e1. (5)

Suppose that p − q = 2mu. Then, Lemma 1 shows that p + q is in the form
p + q = v0 + 22mv where v0 ≡ 2u0 +

((
N − u20

)
u−1
0 (mod 22m)

)
and u0 is a

solution of the modular equation x2 ≡ N (mod 2m). Hence

φ(N) = N + 1− (p+ q) = N + 1− v0 − 22mv.

Plugging this in (5), we get

e1e2(d1 − d2)− e2k1
(
N + 1− v0 − 22mv

)
+ e1k2

(
N + 1− v0 − 22mv

)
= e2 − e1.

which can be rewritten as

e1e2(d1 − d2)− e2(N + 1− v0)k1 + 22me2k1v + e1(N + 1− v0)k2

− 22me1k2v + (e1 − e2) = 0.
(6)

New Attacks on the RSA Cryptosystem 189

Fix the known and the unknown parameters as follows⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1=e1e2,
a2=−e2(N + 1− v0),
a3=22me2,
a4=e1(N + 1− v0),
a5=−22me1,
a6=e1 − e2,

and

⎧⎪⎪⎨⎪⎪⎩
x1=d1 − d2,
x2=k1,
x3=k2,
x4=v.

Hence, the equation (6) becomes a1x1+a2x2+a3x2x4+a4x3+a5x3x4+a6 = 0.
Consider the polynomial

f(x1, x2, x3, x4) = a1x1 + a2x2 + a3x2x4 + a4x3 + a5x3x4 + a6.

Then (d1−d2, k1, k2, v) is a root of f(x1, x2, x3, x4) which can be small enough to
be found by Coppersmith’s technique. To find the small roots of f(x1, x2, x3, x4)
using this method, we use the extended strategy of Jochemsz and May [9]. We
will need the following bounds.

• max(e1, e2) = Nγ ,

• max(d1, d2) < N δ,

• |d1 − d2| < X1 = Nβ,

• k1 = e1d1−1
φ(N) < X2 = Nγ+δ−1,

• k2 = e2d2−1
φ(N) < X3 = Nγ+δ−1,

• p− q = 2mu with 2m = Nα and α < 1
4 .

• By (2) and Lemma 1, p+ q = 22mv + v0 with v < X4 = 3N1/2−2α.

Observe that α < 1
4 , otherwise p and q can be found using Coppersmith’s

metho [4]. Let us fix the bounds of the unknown parameters

X1 = Nβ, X2 = Nγ+δ−1, X3 = Nγ+δ−1, X4 = 3N1/2−2α. (7)

Let m and t be two positive integers. Define the set

S =
⋃

0≤j≤t

{xi11 xi22 xi33 x
i3+j
3

∣∣∣ xi11 x
i2
2 x

i3
3 x

i4
4 monomial of fm−1}.

and the set

M = {monomials of xi11 x
i2
2 x

i3
3 x

i4
4 f

∣∣∣ xi11 x
i2
2 x

i3
3 x

i4
4 ∈ S}.

Neglecting the coefficients, it is easy to find that fm−1(x1, x2, x3, x4) satisfies

fm−1(x1, x2, x3, x4) =
m−1∑
i1=0

m−1−i1∑
i2=0

m−1−i1−i2∑
i3=0

i2+i3∑
i4=0

xi11 x
i2
2 x

i3
3 x

i4
4 .

190 A. Nitaj et al.

This leads to the characterization of the monomials xi11 x
i2
2 x

i3
3 x

i4
4 of S:

xi11 x
i2
2 x

i3
3 x

i4
4 ∈ S if

⎧⎪⎪⎨⎪⎪⎩
i1=0, . . . ,m− 1,
i2=0, . . . ,m− 1− i1,
i3=0, . . . ,m− 1− i1 − i2,
i4=0, . . . , i2 + i3 + t.

We also easily find

xi11 x
i2
2 x

i3
3 x

i4
4 ∈M if

⎧⎪⎪⎨⎪⎪⎩
i1=0, . . . ,m,
i2=0, . . . ,m− i1,
i3=0, . . . ,m− i1 − i2,
i4=0, . . . , i2 + i3 + t.

Define

W = ‖f(x1X1, x2X2, x3X3, x4X4)‖∞
= max(|a1|X1, |a2|X2, |a3|X2X3, |a4|X4, |a5|X4X3, |a6|).

Then W satisfies

W ≥ |a2|X2 = e2(N + 1− v0)N
γ+δ−1 ≈ N2γ+δ. (8)

Next, define
R =WXm−1

1 Xm−1
2 Xm−1

3 Xm−1+t
4 .

Without loss of generality, suppose that a6 = e1 − e2 is coprime with R. We
define f ′(x1, x2, x3, x4) = a−1

6 f(x1, x2, x3, x4) (mod R) so that f ′(0, 0, 0, 0) = 1.
Next, define the polynomials

gi1,i2,i3,i4 = xi11 x
i2
2 x

i3
3 x

i4
4 f

′Xm−1−i1
1 Xm−1−i2

2 Xm−1−i3
3 Xm−1+t−i4

4 ,

with xi11 x
i2
2 x

i3
3 x

i4
4 ∈ S,

hi1,i2,i3,i4 = xi11 x
i2
2 x

i3
3 x

i4
4 R,

with xi11 x
i2
2 x

i3
3 x

i4
4 ∈M

∖
S.

The monomials of M
∖
S reduce to xi11 x

i2
2 x

i3
3 x

i4
4 with (x1, x2, x3, x4) ∈ Si for

i = 1, 2, 3 where

S1 = {xi11 xi22 xi33 xi44 } for

⎧⎪⎪⎨⎪⎪⎩
i1=m,
i2=0, . . . ,m− i1,
i3=0, . . . ,m− i1 − i2,
i4=0, . . . , i2 + i3 + t.

S2 = {xi11 xi22 xi33 xi44 } for

⎧⎪⎪⎨⎪⎪⎩
i1=0, . . . ,m− 1,
i2=m− i1,
i3=0, . . . ,m− i1 − i2,
i4=0, . . . , i2 + i3 + t.

S3 = {xi11 xi22 xi33 xi44 } for

⎧⎪⎪⎨⎪⎪⎩
i1=0, . . . ,m− 1,
i2=0, . . . ,m− 1− i1,
i3=m− i1 − i2,
i4=0, . . . , i2 + i3 + t.

New Attacks on the RSA Cryptosystem 191

As shown in [9], we use the coefficients of gi1,i2,i3,i4(x1X1, x2X2, x3X3, x4X4) and
hi1,i2,i3,i4(x1X1, x2X2, x3X3, x4X4) to build a basis of a lattice L with dimension

ω =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M

1 =
1

12
(m+ 1)(m+ 2)(m+ 3)(m+ 2t+ 2).

The following ordering of the monomials is performed to construct an upper

triangular matrix: if
∑
ij <

∑
i′j then xi11 x

i2
2 x

i3
3 x

i4
4 < x

i′1
1 x

i′2
2 x

i′3
3 x

i′4
4 and if

∑
ij =∑

i′j then the monomials are lexicographically ordered. The diagonal entries of
the matrix are of the form{

(X1X2X3)
m−1Xm−1+t

4 for the polynomials g

WXm−1+i1
1 Xm−1+i2

2 Xm−1+i3
3 Xm−1+t+i4

4 for the polynomials h.

Define

sj =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈M\S

ij, for j = 1, . . . , 4. (9)

The determinant of L is then

det(L) =W |M\S|X(m−1+t)|S|+(m−1+t)|M\S|+s4
4

3∏
j=1

X
(m−1)|S|+(m−1)|M\S|+sj
j

=W |M\S|x(m−1+t)ω+s4
4

3∏
j=1

X
(m−1)ω+sj
j .

All the polynomials g(x1, x2, x3, x4) and h(x1, x2, x3, x4) and their combinations
share the root (d1 − d2, k1, k2, v) modulo R. Applying the LLL algorithm to the
lattice L with the basis spanned by the polynomials g(x1X1, x2X2, x3X3, x4X4)
and h(x1X1, x2X2, x3X3, x4X4), we get a new basis with short vectors. Let
fi(x1X1, x2X2, x3X3, x4X4), i = 1, 2, 3 be three short vectors of the reduced ba-
sis. Each fi is a combination of g and h, and then share the root (d1−d2, k1, k2, v).
Then, by Theorem 3, we have for i = 1, 2, 3

‖fi(x1X1, x2X2, x3X3, x4X4)‖ < 2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 .

For i = 1, 2, 3, we force the polynomials fi to satisfy Howgrave-Graham’s bound
‖fi(x1X1, x2X2, x3X3, x4X4)‖ < R√

ω
. A sufficient condition is

2
ω(ω−1)
4(ω−2 det(L)

1
ω−2 <

R√
ω
,

which can be transformed into det(L) < Rω, that is

W |M\S|x(m−1+t)ω+s4
4

3∏
j=1

X
(m−1)ω+sj
j <

(
WXm−1

1 Xm−1
2 Xm−1

3 Xm−1+t
4

)ω
.

192 A. Nitaj et al.

Using ω = |M | and |M | − |M\S| = |S|, we get

4∏
j=1

X
sj
j < W |S|. (10)

Using (9), we easily get

s1 =
1

12
m(m+ 1)(m+ 2)(m+ 2t+ 1),

s2 =
1

24
m(m+ 1)(m+ 2)(3m+ 4t+ 5),

s3 =
1

24
m(m+ 1)(m+ 2)(3m+ 4t+ 5),

s4 =
1

24
(m+ 1)(m+ 2)(3m2 + 5m+ 8tm+ 6t+ 6t2).

Similarly, we get

|S| =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 ∈S

1 =
1

12
m(m+ 1)(m+ 2)(m+ 2t+ 1).

Set t = τm, then,

s1 =
1

12
(2τ + 1)m4 + o(m4),

s2 =
1

24
(4τ + 3)m4 + o(m4),

s3 =
1

24
(4τ + 3)m4 + o(m4),

s4 =
1

24
(6τ2 + 8τ + 3)m4 + o(m4),

|S| = 1

12
(2τ + 1)m4 + o(m4).

Using this, and after simplifying by m4, the inequation (10) transforms into

X
1
12 (2τ+1)
1 X

1
24 (4τ+3)
2 X

1
24 (4τ+3)
3 X

1
24 (6τ

2+8τ+3)
4 < W

1
12 (2τ+1).

Substituting the values of X1, X2, X3, X4 from (7) and W from (8), we get

1

12
(2τ + 1)β +

1

24
(4τ + 3)(γ + δ − 1) +

1

24
(4τ + 3)(γ + δ − 1)

+
1

24
(6τ2 + 8τ + 3)

(
1

2
− 2α

)
<

1

12
(2τ + 1)(2γ + δ),

or equivalently,

(6− 24α)τ2 + (8β + 8δ − 8− 32α)τ + 4γ + 4β + 8δ − 9− 12α < 0.

New Attacks on the RSA Cryptosystem 193

For the optimal value τ = 2(1+4α−β−δ)
3(1−4α) , this reduces to

−8δ2+(40−32α−16β)δ+16α2−48γα+16βα+8α+28β−35+12γ−8β2 < 0,

which is valid if

δ <
5

2
− 2α− β − 1

4

√
6(1− 4α)(5 + 4γ − 4α− 4β).

Under this condition, we find four polynomials, namely f , f1, f2 and f3 with
the root (d1 − d2, k1, k2, v). Using the resultant technique, we find the solution
(d1 − d2, k1, k2, v). Using v, we compute p − q = 2mv. Since N = pq, we get
p2−2mvp−N = 0 which leads to the factorization of the RSA modulus N = pq.
This terminates the proof. ��

5.2 Comparison with Former Attacks

We compare the bound on δ of Theorem 7 with two former bounds, namely the
bound obtained by Sarkar and Maitra in [11] and the bound obtained by Sun et
al. in [18].

5.2.1 Comparison with the Bound of Sarkar and Maitra
In [11], Sarkar and Maitra showed that for d1, d2 < N δ, and |d1 − d2| < Nβ ,
RSA is insecure if δ < 5

8 −
1
2β. To compare this with the bound of Theorem 7, we

consider γ = 1 and α = 0 in the next result. This corresponds to the situation
when e1 ≈ e2 ≈ N and p and d differ in their first LSBs.

Corollary 1. Let N = pq be an RSA modulus. Let e1 and e2 be two public
exponents satisfying e1d1−k1φ(N) = 1, e2d2−k2φ(N) = 1. Suppose that d1, d2 ≤
N δ and |d1 − d2| < Nβ. Then one can factor N in polynomial time if

δ <
5

2
− β − 1

4

√
6(9− 4β).

Proof. This is a direct application of Theorem 7 with γ = 1 and α = 0. ��

In Table 1, we compare the bound δ < 5
8 − 1

2β. of Sarkar and Maitra and the
bound of Corollary 1 for various values of β = logN (|d1 − d2|).

Table 1. Comparison of the new method with the method of [11]

β = logN (|d1 − d2|) β = 0.6 β = 0.5 β = 0.4 β = 0.3 β = 0.25

Bound for δ in [11] 0.325 0.375 0.425 0.475 0.5

Bound for δ in Corollary 1 0.326 0.379 0.434 0.489 0.517

One may note that when d1 and d2 differ in their first MSBs, then β = δ and
the bound of Sarkar and Maitra is valid if δ < 5

12 ≈ 0.416, while the bound of
Corollary 1 gives δ < 0.422.

194 A. Nitaj et al.

5.2.2 Comparison with the Bound in Sun et al.
In [18], Sun et al. showed that RSA is insecure when e = Nγ , p− q = 2mv with
2m = Nα, and d < N δ, if δ < 7

6 − 2
3α− 1

3

√
(1− 4α)(1 − 4α+ 6γ). To compare

our method with the method of Sun et al., we consider Theorem 7 with β = δ,
that is when d1 and d2 do not share any amount of their MSBs. We get the
following corollary.

Corollary 2. Let N = pq be an RSA modulus such that p − q = 2mu where
2m ≈ Nα. Let e1 and e2 be two public exponents satisfying e1, e2 ≈ Nγ, and
e1d1−k1φ(N) = 1, e2d2−k2φ(N) = 1. Suppose that d1, d2 ≤ N δ. Then one can
factor N in polynomial time if

δ <
17

16
− 1

4
α− 1

16

√
3(1− 4α)(3 + 32γ − 12α).

Proof. In the bound of δ in Theorem 7, if we plug β = δ and solve the inequation
for δ, we get the desired bound on δ. ��

In Table 2, we compare the largest values of δ of Corollary 2 and the the largest
values obtained in [18] for various values of γ = logN (e) and α = logN (2m).

Table 2. Comparisons of the new method with the method of [18] for α = logN (2m)

γ = logN (e) γ = 1 γ = 0.9 γ = 0.8 γ = 0.7 γ = 0.6

Bound for δ in [18] with α = 0 0.284 0.323 0.363 0.406 0.451

New bound for δ with α = 0 0.422 0.452 0.483 0.516 0.552

Bound for δ in [18] with α = 0.1 0.436 0.467 0.500 0.534 0.570

New bound for δ with α = 0.1 0.550 0.573 0.598 0.625 0.653

Bound for δ in [18] with α = 0.2 0.662 0.680 0.699 0.720 0.742

New bound for δ with α = 0.2 0.736 0.750 0.764 0.780 0.797

Bound for δ in [18] with α = 0.25 1 1 1 1 1

New bound for δ with α = 0.25 1 1 1 1 1

6 Conclusion

For k ≥ 2 and i = 1, . . . , k, let (Ni, ei) be k RSA instances with k moduli Ni =
piqi and k public exponents ei. In this paper, we proposed a new method to factor
all the RSA moduli N1, . . . , Nk in the scenario that the RSA instances satisfy
k equations of the shape eix− yiφ(Ni) = zi or of the shape eixi − yφ(Ni) = zi
with suitably small parameters xi, yi, zi, x, y where φ(Ni) = (pi − 1)(qi − 1).
We also proposed an attack on RSA when the prime factors p and q of the RSA
modulus N = pq are of the same bit-size. The attack factors N when p and q
share a number of their least significant bits (LSBs) in the presence of two public
exponents e1 and e2 with decryption exponents d1 and d2 sharing an amount of
their most significant bits (MSBs).

New Attacks on the RSA Cryptosystem 195

References

1. ANSI Standard X9.31-1998, Digital Signatures Using Reversible Public Key Cryp-
tography for the Financial Services Industry (rDSA)

2. Blömer, J., May, A.: A generalized Wiener attack on RSA. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004)

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999)

4. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

5. H̊astad, J.: On using RSA with low exponent in a public key network. In: Williams,
H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 403–408. Springer, Heidelberg (1986)

6. Hinek, J.: On the Security of Some Variants of RSA, Phd. Thesis, Waterloo,
Ontario, Canada (2007)

7. Howgrave-Graham, N.: Finding small roots of univariate modular equations re-
visited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

8. Howgrave-Graham, N., Seifert, J.-P.: Extending Wiener’s attack in the presence of
many decrypting exponents. In: Baumgart, R. (ed.) CQRE 1999. LNCS, vol. 1740,
pp. 153–166. Springer, Heidelberg (1999)

9. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

10. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261, 513–534 (1982)

11. Sarkar, S., Maitra, S.: Cryptanalysis of RSA with two decryption exponents. In-
formation Processing Letters 110, 178–181 (2010)

12. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. Ph.D. thesis,
University of Paderborn (2003)

13. Nitaj, A.: Another generalization of Wiener’s attack on RSA. In: Vaudenay, S.
(ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 174–190. Springer, Heidelberg
(2008)

14. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

15. Steinfeld, R., Zheng, Y.: On the Security of RSA with Primes Sharing Least-
Significant Bits. Appl. Algebra Eng. Commun. Comput. 15(3-4), 179–200 (2004)

16. Steinfeld, R., Zheng, Y.: An advantage of Low-Exponent RSA with Modulus
Primes Sharing Least Significant Bits. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 52–62. Springer, Heidelberg (2001)

17. Steinfeld, R., Zheng, Y.: On the Security of RSA with Primes Sharing Least-
Significant Bits. Appl. Algebra Eng. Commun. Comput. 15(3-4), 179–200 (2004)

18. Sun, H.-M., Wu, M.-E., Steinfeld, R., Guo, J., Wang, H.: Cryptanalysis of Short
Exponent RSA with Primes Sharing Least Significant Bits. In: Franklin, M.K.,
Hui, L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 49–63. Springer,
Heidelberg (2008)

19. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36, 553–558 (1990)

20. Zhao, Y.-D., Qi, W.-F.: Small private-exponent attack on RSA with primes sharing
bits. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS,
vol. 4779, pp. 221–229. Springer, Heidelberg (2007)

196 A. Nitaj et al.

A Proof of Theorem 4

Proof. Let ε ∈ (0, 1). Set

C =
⌈
3n+1 · 2

(n+1)(n−4)
4 · ε−n−1

⌉
, (11)

where $x% is the integer greater than or equal to x. Consider the lattice L spanned
by the rows of the matrix

M =

⎡⎢⎢⎢⎢⎢⎢⎣

1 − [Cα1] − [Cα2] · · · − [Cαn]

0 C 0 · · · 0

0 0 C · · · 0
...

...
...

. . .
...

0 0 0 · · · C

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where [x] is the nearest integer to x. The determinant of L is det(L) = Cn and
the dimension is n + 1. Applying the LLL algorithm, we find a reduced basis
(b1, · · · , bn+1) with

‖b1‖ ≤ 2n/4 det(L)1/(n+1) = 2n/4Cn/(n+1).

Since b1 ∈ L, we can write b1 = ±[q, p1, p2, . . . , pn]M , that is

b1 = ± [q, Cp1 − q [Cα1] , Cp2 − q [Cα2] , · · · , Cpn − q [Cαn]] , (12)

where q > 0. Hence, the norm of b1 satisfies

‖b1‖ =

(
q2 +

n∑
i=1

|Cpi − q [Cαi] |2
)1/2

≤ 2n/4Cn/(n+1),

which leads to

q ≤
⌊
2n/4Cn/(n+1)

⌋
and max

i
|Cpi − q [Cαi]| ≤ 2n/4Cn/(n+1). (13)

Let us consider the entries qαi − pi. We have

|qαi − pi| =
1

C
|Cqαi − Cpi|

≤ 1

C
(|Cqαi − q[Cαi]|+ |q[Cαi]− Cpi|)

=
1

C
(q|Cαi − [Cαi]|+ |q[Cαi]− Cpi|)

≤ 1

C

(
1

2
q + |q[Cαi]− Cpi|

)
.

Using the two inequalities in (13), we get

|qαi − pi| ≤
1

C

(
1

2
· 2n/4Cn/(n+1) + 2n/4Cn/(n+1)

)
=

3 · 2(n−4)/4

C1/(n+1)

New Attacks on the RSA Cryptosystem 197

Observe that (11) gives

3n+1 · 2
(n+1)(n−4)

4 · ε−n−1 ≤ C ≤≤ 3n+1 · 2
(n+1)(n−3)

4 ε−n−1, (14)

which leads to ε ≥ 3·2(n−4)/4

C1/(n+1) . As a consequence, we get |qαi − pi| ≤ ε. On the
other hand, using (13) and (14) , we get

q ≤
⌊
2n/4Cn/(n+1)

⌋
≤ 2n/4Cn/(n+1) ≤ 2n(n−3)/4 · 3n · ε−n.

To compute the vector [q, p1, p2, . . . , pn], we use (12)

[q, p1, p2, . . . , pn] = ± [q, Cp1 − q [Cα1] , Cp2 − q [Cα2] , · · · , Cpn − q [Cαn]]M
−1.

This terminates the proof. ��

B Proof of Lemma 1

Proof. Suppose that p− q = 2mu. Then p = q+2mu and N = q2+2muq. Hence
q2 ≡ N (mod 2m). Let u0 be a solution of the congruence x2 ≡ N (mod 2m).
For m ≤ 2, this equation has only one solution and for m ≥ 3, there are four
solutions that can be found in polynomial time using Hensel’s Lemma. Then
q ≡ u0 (mod 2m) for one of the solutions u0 which implies that q = 2mq1 + u0
for a positive integer q1. Now, we have

p = q + 2mu = 2mq1 + u0 + 2mu = 2m(q1 + u) + u0 = 2mp1 + u0,

where p1 = q1 + u. Using N = pq, we get

N = (2mp1 + u0) (2
mq1 + u0) = 22mp1q1 + 2mu0(p1 + q1) + u20.

From this, we deduce 2mu0(p1 + q1) + u20 ≡ N (mod 22m). Since u0 is odd, we
obtain

2m(p1 + q1) ≡
(
N − u20

)
u−1
0 (mod 22m),

which can be rewritten as 2m(p1 + q1) = 22mv + t0 with

t0 ≡
(
N − u20

)
u−1
0 (mod 22m).

Finally, we get
p+ q = 2mp1 + u0 + 2mq1 + u0

= 2m(p1 + q1) + 2u0

= 22mv + t0 + 2u0

= 22mv + v0,

where v0 = t0 + 2u0. This terminates the proof. ��

198 A. Nitaj et al.

C Proof of Lemma 2

Proof. Suppose that S > 2N
1
2 and let D =

√
S2 − 4N . We have∣∣(p− q)2 −D2

∣∣ = ∣∣(p− q)2 − S2 + 4N
∣∣ = ∣∣(p+ q)2 − S2

∣∣ .
Dividing by p− q +D, we get

|p− q −D| = (p+ q + S)|p+ q − S|
p− q +D

Next, suppose |p+ q − S| < p−q
3(p+q)N

1
4 . Since p−q

3(p+q)N
1
4 < N

1
4 , then

p+ q + S < 2(p+ q) +N
1
4 < 3(p+ q).

Combining with p− q +D > p− q, we deduce

|p− q −D| < 3(p+ q)|p+ q − S|
p− q

<
3(p+ q)

p− q
· p− q

3(p+ q)
N

1
4 = N

1
4 .

Now, set P̃ = 1
2 (S +D). We have∣∣∣p− P̃

∣∣∣ = ∣∣∣∣p− 1

2
(S +D)

∣∣∣∣
=

1

2
|p+ q − S + p− q −D|

≤ 1

2
· |p+ q − S|+ 1

2
|p− q −D|

<
1

2
· p− q

3(p+ q)
N

1
4 +

1

2
N

1
4

< N
1
4 ,

where we used 1
2 · p−q

3(p+q) <
1
2 . This terminates the proof. ��

Formulae for Computation of Tate Pairing
on Hyperelliptic Curve Using Hyperelliptic Nets

Christophe Tran

IRMAR, UMR CNRS 6625, Université de Rennes 1, Campus de Beaulieu F-35042,
France

Abstract. Stange has showed how to compute the Tate pairing on an
elliptic curve using elliptic nets. After that, Uchida and Uchiyama gave
a generalization of elliptic nets to hyperelliptic curves. They also gave
an algorithm to compute the Tate pairing on a hyperelliptic curve of
genus 2. In this paper, we extend their algorithm for curves of all genus.
In a computational point of view, we also study the optimality of these
algorithms.

Keywords: Tate pairing, hyperelliptic curve, hyperelliptic net.

1 Introduction

In the years 2000, the bilinear property of pairings permitted the construction
of new cryptographic protocols. The most famous examples are certainly the
identity based encryption schemes.

The Tate pairing is usually computed by the Miller’s algorithm, but Stange
([11]) proposed a new tool to compute the Tate pairing on an elliptic curve : the
elliptic nets. In 2012, Uchida and Uchiyama ([13]) gave a generalization of the
notion of elliptic nets to hyperelliptic curves, and explained how to use these
nets to compute pairings on a curve of genus 2.

The contributions of this paper are the following:

– a simplification of the formula to compute pairings using hyperelliptic nets
(theorem 9),

– a generalization of the algorithms based on hyperelliptic nets given in [13]
for genus 2 to all genus (sections 5 and 6),

– the proof of the optimality of these algorithms, in a sense defined in section
5.1.

In section 2, we recall some notions of arithmetic on hyperelliptic curves; in
section 3, we recall some properties of the sigma function used in the construction
of the elliptic and hyperelliptic nets; in section 4 we recall the theory of elliptic
nets of Stange, and the theory of hyperelliptic nets of Uchida and Uchiyama; in
sections 5 and 6 we give our version of the formulae to compute pairings, and the
derived algorithms; finally, we illustrate them in a genus 3 example in section 7.

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 199–214, 2014.
© Springer International Publishing Switzerland 2014

200 C. Tran

2 Background on Hyperelliptic Curves

Here we fix some notations and terminology for the rest of the paper (more in-
formations could be found in [1], [2], or [3] for example).

Let C be the hyperelliptic curve of genus g defined over a field K by the equation

C : y2 + H(x)y = F (x),

with H and F ∈ K[x], F monic of degree 2g + 1, and deg(H) ≤ g + 1. So C has
one point at infinity, denoted O.

Its Jacobian J is the abelian variety defined over K whose points are classes
of divisors of degree 0 modulo the principal divisors.

Let λ : C → J be an embedding such that λ(O) is the neutral element of J .
The theta divisor Θ on J is defined by Θ = λ(C) + · · · + λ(C) (g − 1 times).

Definition 1. For a divisor D and a positive integer s, the scalar multiplication
of D by s is denoted [s]D. The Miller function fs,D is the uniquely defined up
to scalar multiplication by elements of K∗ rational function with divisor

(fs,D) = sD − ([s]D).

Remark 1. If D ∈ J (K)[r], then fr,D is the unique (up to scalar multiplication)
function of divisor [r]D.

We now consider the case where K is a finite field Fq. Let r prime such that
r|�J(Fq). The entire group μr of r-th roots of unity is contained in Fqk , where
k ∈ N is the minimal with r|qk − 1 (k is called the embedding degree).

Theorem 1. The application

τ : J (Fqk)[r] × J (Fqk)[r] → μn ⊂ F∗
qk

(D1, D2) �→ (fr,D1(D2))
qk−1

r .

is a well-defined pairing called the modified Tate-Lichtenbaum pairing.

Let π denote the q-power of the Frobenius endomorphism. In practice, we will
take D1 ∈ G1 and D2 ∈ G2, with G1 = J (Fq)[r] and G2 = J [r] ∩ ker(π − [q]).
This choice ensures that G1 is 1-dimensional over Z/rZ, G2 ⊂ J (Fqk) and
G1 �= G2.

3 Sigma Function

The sigma function gives the equations defining J as an algebraic variety over a
projective space, and the group law in these coordinates. We begin by recalling
the situation in genus 1 (see for example [10]).

Formulae for Computation of Tate Pairing on Hyperelliptic Curve 201

3.1 The Weierstrass Sigma Funtion

Let E be an elliptic curve defined over C by the lattice Λ (i.e. E � C/Λ).

Definition 2. The infinite product

z
∏

ω∈Λ
ω 	=0

(
1 − z

ω

)
e(z/ω)+ 1

2 (z/ω)2

defines a holomorphic function on all of C called the Weierstrass σ function
(relative to E). It has simple zeros at each point z of the lattice Λ and no other
zeros.

The group law on E(C) can be describe by:

Proposition 1. For all u and v of C,

σ(u + v)σ(u − v)
σ(u)2σ(v)2

= ℘(v) − ℘(u)

(for a recall of the definition of the Weierstrass ℘ function, see [10] for example).

Using this relation, we can prove the following property of the σ function:

Proposition 2. For all u, v, w and z ∈ C, we have

σ(u + v)σ(u − v)σ(w + z)σ(w − z)
+ σ(u + w)σ(u − w)σ(z + v)σ(z − v)

+ σ(u + z)σ(u − z)σ(v + w)σ(v − w) = 0.

We will see in section 4.1 this is with this property Stange defined her elliptic
nets. We now examine the situation for curves of higher genus.

3.2 The Kleinian Sigma Funtion

The equivalent for the hyperelliptic curves is the Kleinian sigma function. It is
a function on Cg. As its formula is a little complicated (and not very useful in
this work), we do not recall its exact definition, which can be found in [4] and
[6] for example. Imitating the genus 1 case, we begin by studying the zero locus
of σ:

Proposition 3. Let C be a hyperelliptic curve of genus g defined over C. Its
Jacobian J is isomorphic to a torus Cg/Λ.
The zero locus of the σ function relative to C is well-defined over Cg/Λ : σ has
simple zeros on the points of Θ and nowhere else.

The following is a property of σ we will use in the rest of this work:

Proposition 4. σ is an odd function when g ≡ 1 or 2 (mod 4) and even in the
other cases.

202 C. Tran

As for g = 1, the group law on J can be described by the σ function:

Proposition 5. For i, j, k ∈ {1, 2, . . . , g} and u ∈ Cg, we define the hyperelliptic
℘−functions:

℘ij(u) = − ∂2

∂ui∂uj
logσ(u), ℘ijk(u) = − ∂3

∂ui∂uj∂uk
logσ(u),

which are well defined over J � Cg/Λ.
Let D1, D2 ∈ J . There are well-defined polynomials Fg(D1, D2) depending

only on the (℘ij(D1))i,j, (℘ijk(D1))i,j,k, the (℘ij(D2))i,j,k and the (℘ij(D2))i,j,k

such that
σ(D1 + D2)σ(D1 − D2)

σ(D1)2σ(D2)2
= Fg(D1, D2).

We now give the equivalent of proposition 2 for all genus:

Proposition 6. Let m > 2g be an integer and u(1), . . . u(m) ∈ Cg. The matrix

A =
(

σ(u(i) + u(j))σ(u(i) − u(j))
)

1≤i,j≤m

has det(A) = 0.

This property is the starting point of the hyperelliptic nets theory.

Remark 2. The traditional way to make computations on J is to use the Mum-
ford representation of the elements of J (see for example [1]). The Mumford
representation (u, v) of D ∈ J \Θ can be expressed by:

u = xg −
g∑

l=1

℘lg(D)xl−1, v =
g∑

l=1

℘lgg(D)
2

xl−1.

4 Background on Hyperelliptic Nets

We begin by recalling the genus 1 case, i.e. the Stange’s elliptic net theory
([11]). We then will see that the work of Uchida and Uchiyama in [13] follows
the same program as Stange : definition of the nets on C, transport of the nets
and their properties to general fields, and development of a formula linking the
Tate pairing and the nets. They also gave an algorithm to compute the Tate
pairing on hyperelliptic curves of genus 2 using hyperelliptic nets.

Once we have recalled all these results, we will simplify the Uchida and
Uchiyama’s formula (theorem 9) and extend their algorithm to all genus (section
5 and 6).

4.1 The Genus One Case

We begin by recalling the definition of an elliptic net:

Formulae for Computation of Tate Pairing on Hyperelliptic Curve 203

Definition 3. Let A be a finitely generated free abelian group, and R be an
integral domain. An elliptic net is a map W : A → R such that for all a, b, c
and d in A:

W (a + b)W (a − b)W (c + d)W (c − d)
+ W (a + c)W (a − c)W (d + b)W (d − b)

+ W (a + d)W (a − d)W (b + c)W (b − c) = 0,

In the aim of computing pairing, A will be Z2 and R will be the field we are
working on : C in a first time, Fqk for cryptographic use.

Let E be an elliptic curve defined over C. With the sigma function attached
to E , Stange built a first elliptic net:

Proposition 7. For all v = (v1, v2) ∈ Z2,

Ψv(z1, z2) = σ(v1z1 + v2z2)
σ(z1)v2

1−v1v2σ(z1 + z2)v1v2σ(z2)v2
2−v1v2

is a well-defined function on E × E.

Remark 3. In her original work, Stange defined Ψv for v in general Zn. We
specialize n = 2 because it is the only interesting case to compute Tate pairings.

Proposition 8. The function W : Z2 → C defined by W (v1, v2) = Ψv(z1, z2)
is an elliptic net. For computational purpose, it has the interesting property
W (1, 0) = W (0, 1) = W (1, 1) = 1.

As we know the divisor of σ, we can compute the divisor of Ψv.

Theorem 2 ([11]). Let s : E2 → E and, for i = 1 or 2, pi : E2 → E denote re-
spectively the sum of all components and the projection onto the i-th component,
and s∗ and p∗

i their pullbacks. The divisor of Ψv is:

DE,v = (([v1] × [v2])∗s∗O)−v1v2 ((p∗
1 × p∗

2)s∗O)−(v2
1−v1v2)p∗

1O−(v2
2−v1v2)p∗

2O.

This theorem has two important consequences. Firstly, we can transport the
elliptic net theory over arbitrary fields:

Theorem 3. Let E be an elliptic curve defined over a field K. Let P1 and P2
two points of E. There is an elliptic net WE,(P1,P2) : Z2 → K such that

– WE,(P1,P2)(0, 1) = WE,(P1,P2)(1, 0) = WE,(P1,P2)(1, 1) = 1;
– WE,(P1,P2)(v1, v2) = 0 ⇔ [v1]P1 + [v2]P2 = O on the curve E.

Such an elliptic net is said associated to the curve E and the points P1 and P2.

Secondly, we can link these nets to the Tate pairing:

204 C. Tran

Theorem 4. If E is defined over the finite field Fq of characteristic p, let r be
prime with p, and k be the embedding degree of E (Fq). Let P1 ∈ G1 and P2 ∈ G2
(the two groups defined in section 2). Let W be an elliptic net associated to E,
P1 and P2. The Tate pairing of P1 and P2 is

τ(P1, P2) =
(

W (r + 1, 1)W (1, 0)
W (r + 1, 0)W (1, 1)

) qk−1
r

= (W (r + 1, 1))
qk−1

r

Remark 4. The first equality is due to Stange, the second was established in [9],
using the final exponentiation and the fact that for all integers a, W (a, 0) ∈ Fq.

4.2 The General Case

The definition of an hyperelliptic net is postponed for a while. The first step of
Uchida and Uchiyama is the equivalent of proposition 7 : the construction of Ψv.

Proposition 9. Let C/C be an hyperelliptic curve of genus g, J be its Jacobian
and σ be its sigma function.
For v = (v1, v2) ∈ Z2,

Ψv(z1, z2) = σ(v1z1 + v2z2)
σ(z1)v2

1−v1v2σ(z1 + z2)v1v2σ(z2)v2
2−v1v2

is a well-defined function on J × J .

As in the previous section, we only study the case v ∈ Z2, because our aim is
the computation of pairings.

Theorem 5. Let s : J 2 → J and, for i = 1 or 2, pi : J 2 → J denote respec-
tively the sum of all components and the projection onto the i-th component, and
s∗ and p∗

i their pullbacks. For v �= 0, the divisor of Φv is:

DC,v = (([v1] × [v2])∗s∗Θ)−v1v2 ((p∗
1 × p∗

2)s∗Θ)−(v2
1−v1v2)p∗

1Θ−(v2
2−v1v2)p∗

2Θ.

The next theorem is the recurrent property which extends the equation defining
the elliptic net:

Theorem 6. Let m > 2g be an integer and for 1 ≤ i ≤ m, vi ∈ (1/2Z)2 such
that for all 1 ≤ i, j ≤ m, vi + vj and vi − vj ∈ Z2.
The matrix

A = (Φvi+vjΦvi−vj)1≤i,j≤m

has det(A) = 0.

Remark 5. When g ≡ 1 or 2 (mod 4), this theorem can only be used with even
values of m. Indeed, as σ is an odd function in these cases, the matrix A is
antisymmetric, and the determinant of an antisymmetric matrix of odd size is

Formulae for Computation of Tate Pairing on Hyperelliptic Curve 205

identically 0. If m = 2n, its determinant is the square of a degree n polynomial
called the Pfaffian of A and denoted P f(A):

P f(A) = 1
2nn!

∑

σ∈S2n

sgn(σ)
n∏

i=1
aσ(2i−1),σ2i

where S2n is the symmetric group and sgn(σ) is the signature of σ.

For example, for g = 1, theorem 6 with m = 4 (the minimal possible value)
gives the elliptic nets equation. So this equation can be used as a definition
of an hyperelliptic net. As in the genus 1 case, using theorem 5, Uchida and
Uchiyama could define hyperelliptic nets over all fields:

Theorem 7. Let C/K be an hyperelliptic curve defined over an arbitrary field
K, and D1 and D2 two divisors of C. There is a map WC,(D1,D2) : Z2 → K such
that

– WC,(D1,D2) = 0 ⇔ [v1]D1 + [v2]D2 ∈ Θ.
– W satisfies the relation of theorem 6, i.e. for all integer m > 2g and

v1, . . . vm, w1, . . . wm in 1/2Z such that for all i and j, vi±vj and wi±wj ∈ Z,
the matrix

A = (W (vi + vj , wi + wj)W (vi − vj , wi − wj))1≤i,j≤m

has det(A) = 0.

WC,(D1,D2) is called an hyperelliptic net associated to C and (D1, D2).

Using theorem 5, Uchida and Uchiyama established the following relation be-
tween the Tate pairing and the hyperelliptic net:

Theorem 8. Let D1 ∈ G1 and D2 ∈ G2. Let W be an hyperelliptic net associ-
ated to D1 and D2. The Tate pairing of D1 and D2 is

τ(D1, D2) =
(

W (r + 1, 1)W (1, 0)
W (r + 1, 0)W (1, 1)

) qk−1
r

As Ogura et al. did in [9] for g = 1, we can simplify this formula:

Theorem 9. With D1, D2 and W as in the previous theorem, the Tate pairing
of D1 and D2 is

τ(D1, D2) =
(

W (r + 1, 1)
W (1, 1)

) qk−1
r

.

Proof. The key ingredient of this proof is the following : as D1 ∈ J (Fq), for all
a ∈ Z, W (a, 0) ∈ Fq.

Indeed, by proposition 6, we have for all a and b ∈ Z,

206 C. Tran

W (a + b, 0)W (a − b, 0)
W (a, 0)2W (b, 0)2

= Fg([a]D1, [b]D1),

where the right-hand side of this equality is a polynomial with integer coefficients
in the Mumford coordinates of [a]D1 and [b]D1. In particular, it is an element of
Fq. As W is defined by the divisor given in theorem 5, we can fix W (1, 0) ∈ Fq

(in practice, it is convenient to choose W (1, 0) = 1, as in the elliptic case). So
by induction, for all integers a, W (a, 0) ∈ Fq.

We now can use the final exponentiation to simplify the expression of theorem
8 : as r is prime, r|qk − 1 and r � q − 1, we have q − 1| qk−1

r and

(
W (1, 0)

W (r + 1, 0)

) qk−1
r

= 1.

�
We now explain how we can use theorem 6 to compute this term W (r + 1, 1)
needed in theorem 9. We have to make the distinction between the case g ≡ 1, 2
(mod 4) and the case g ≡ 0, 3 (mod 4) : in the first case, we have to compute
pfaffians, which are polynomials of degree m/2 in the coefficients of the matrix,
whereas in the second case we only have the determinant tool, which is a poly-
nomial of degree m. An other important difference between the two situations
is that if g ≡ 1, 2 (mod 4), then σ(0) = 0.

5 The Hyperelliptic Net Algorithm in the Case
g ≡ 1, 2 (mod 4)

5.1 Definitions of the Blocks and the Settings

Let D1 ∈ G1 and D2 ∈ G2. Let W be an hyperelliptic net associated to D1 and
D2. The aim is to compute W (r + 1, 1) using theorem 6. Before we give the
formularies for this, let’s explain how we can manipulate this theorem.

As m > 2g has to be even, we take m = 2g + 2. The matrix A of theorem 6
becomes

A = (W (vi + vj , wi + wj)W (vi − vj , wi − wj))1≤i,j≤m ,

with v1, . . . vm, w1, . . . wm of our choice in 1/2Z such that for all i and j, vi ± vj

and wi ± wj ∈ Z.
As W (0, 0) = 0, we can already remark that the diagonal terms of A are all

0. Moreover, we have to choose for all i �= j, (vi, wi) �= (vj , wj), or det(A) will
be the null polynomial, and so theorem 6 will become useless.
So our goal is to find values for the (vi)1≤i≤m and the (wi)1≤i≤m such that

– for all i �= j, (vi, wi) �= (vj , wj);
– there are indexes i0 �= j0 such that (vi0 + vj0 , wi0 + wj0) = (r + 1, 1) and

W (vi0 − vj0 , wi0 − wj0) is known;

Formulae for Computation of Tate Pairing on Hyperelliptic Curve 207

– for all indexes i �= i0 and j �= j0, the W (vi + vj , wi + wj)W (vi − vj , wi − wj)
are known.

For example, let M = �r + 1� + 1, we can choose (v1, w1) = (M, 1) and
(v2, w2) = (r + 1 − M, 0) = (M − 1, 0) or (M − 2, 0) depending on the par-
ity of r. If we choose the other vi and wi to be as small as possible, then we
obtain a polynomial relationship involving the W (r + 1, 1) we want, some terms
W (M + a, b) with small a and b, and some terms W (a′, b′) with small a′ and b′.
We then see that before to obtain W (r +1, 1), we have to compute several terms
W (M + a, b).

So, we will build a double-and-add algorithm. Following Stange’s idea, we define
the notion of block centered in an integer k. Then, we have to write down the
formulae explaining how, if we know the block centered in k, we can obtain the
block centered in 2k or in 2k + 1. So finally, we will have W (r + 1, 1).

Theorem 10. We define the initial terms as

– the 2m − 7 terms {W (i, 0) | 1 ≤ i ≤ 2m − 7} (or the two terms W (1, 0) and
W (2, 0) if g = 1 and m = 4),

– the 2m − 2 terms {W (i, 1) | 1 − m ≤ i ≤ m − 2}.

Let k ∈ N. We define a block centered on k to be

– the 4m − 8 values {W (k + i, 0) | − 2m + 4 ≤ i ≤ 2m − 5},
– the 2m − 5 values {W (k + i, 1) | 3 − m ≤ i ≤ m − 3}.

If we have the initial terms and the block centered on k, then we can compute
the block centered on 2k and the block centered on 2k + 1.

Remark 6. A block is composed of two levels : the terms W (k + i, 0), which only
involve D1 and are in Fq, and the terms W (k + i, 1), which involve both D1 and
D2, and are in Fqk .

Proof. We start with the terms independent of D2.
In the matrix A = (W (vi + vj , wi + wj)W (vi − vj , wi − wj))1≤i,j≤m =(aij)1≤i,j≤m,

we take the following:

– for all 1 ≤ i ≤ m, wi = 0,
– v1 = l + l′ + 1,
– v2 = l − 1,
– for 3 ≤ i ≤ m, vi = m − i.

These settings will now be called settings (l, l′, 0) for

k − (m − 2) ≤ l ≤ k + (m − 2), l′ = 0 or − 1.

By these settings, we compute the W (2k + c, 0) for 4 − 2m ≤ c ≤ 2m − 4 (with
l′ = 0 if c is even and l′ = −1 if c is odd), using the terms of the block centered
in k and the initial terms independent of D2.

208 C. Tran

For the terms involving both D1 and D2, we use the settings settings (k, c, 1)
for −(m − 3) ≤ c ≤ m − 2:

– w1 = 1 and the other wi are 0,
– v1 = k,
– v2 = k + c,
– for 3 ≤ i ≤ m, vi = m − i.

�
For g = 1 and g = 2, we obtain the same formulae than Stange ([11]) and Uchida
and Uchiyama ([13]) respectively. We now see in the next proposition that these
formulae are "optimal" in the following sense:
Proposition 10. If someone want to compute W (r + 1, 1) by a double-and-add
algorithm using theorem 8, then our choice of definition of block is of minimal
size.
Proof. We explain this statement for the settings (l, l′, 0), the same ideas being
used for the settings (k, c, 1).

We want to compute W (2k+a, 0), for some value of a, by choosing in A the right
vi and wi. Obviously, we prefer to do all computations in the base fields Fq, so
we choose wi = 0 for all i. As we have seen in the discussion at the beginning
of this section, we cannot have vi = vj for some i �= j. So we have to chose

– v1 + v2 = 2k + a and v1 − v2 small : we write v1 = k + a1 and v2 = k + a2
with a1 + a2 = a and for example a1 > a2;

– {v3, . . . , vm} = {0, 1, . . . , m − 3}.
With this choice of setting, we obtain W (2k + a, 0) as a function of the {W (k +
i, 0) | a2 − (m + 3) ≤ i ≤ a1 + m − 3}. To minimize the number of the inputs, we
have to take a1 − a2 > 0 as small as possible, i.e. a1 − a2 = 1 if a = a1 + a2 is
odd, and a1−a2 = 2 if a is even. This is exactly the setting (l, l′, 0) we described
in the proof of theorem 10. �

5.2 Formulae
We now exhibit the formulae given by the different settings (l, 0, 0), (l, −1, 0)
and (k, c, 1) we have defined.

For 1 ≤ i, j, k, l ≤ m, let Aij denote the matrix A with the i-th and j-th rows
and columns removed, and Aijkl be the matrix A with the i-th, j-th, k-th and
l-th rows and columns removed. Then the pfaffian of A can be developed as
follows:

0 = P f(A) = a12P f(A12) +
m∑

i=3
(−1)ia1iP f(A1i)

= a12P f(A12) +
m∑

i=3

∑

j 	=i
3≤j≤m

(−1)i+ja1ia2jP f(A12ij).

Formulae for Computation of Tate Pairing on Hyperelliptic Curve 209

The P f(A12) and P f(A12ij) are the same for all the settings, and so are pre-
computed. So finally we obtain the formulae:

– for −m + 2 ≤ c ≤ m − 2,

W (2k + 2c, 0) =
∑

j 	=i
3≤i,j≤m

(−1)i+j+1P f (A12ij)
P f (A12) W (2, 0)

a1ia2j

with a1i = W (k + c + m + 1 − i, 0)W (k + c + 1 + i − m, 0) and a2j =
W (k + c + m − 1 − j, 0)W (k + c − 1 + j − m, 0);

– for −m + 3 ≤ c ≤ m − 2,

W (2k + 2c + 1, 0) =
∑

j 	=i
3≤i,j≤m

(−1)i+j+1P f (A12ij)
P f (A12) W (1, 0)

a1ia2j

with a1i = W (k + c + m + 1 − i, 0)W (k + c + 1 + i − m, 0) and a2j =
W (k + c + m − j, 0)W (k + c + j − m, 0);

– for −m + 3 ≤ c ≤ m − 2,

W (2k + c, 1) =
∑

j 	=i
3≤i,j≤m

(−1)i+j+1P f (A12ij)
P f (A12) W (−c, 1)

a1ia2j

with a1i = W (k+m−i, 1)W (k+i−m, 1) and a2j = W (k+c+m−j, 0)W (k+
c + j − m, 0);

Remark 7. In genus 1, as m = 4, all the P f(A12ij) are equal to 1, as are the
W (1, 0), W (0, 1) and W (1, 1). With these simplifications, we have the formulae
given by Stange in [11].

So at each step of the double-and-add algorithm, the work is twofold : compute
the coefficients a1i and a2j , 3 ≤ i, j ≤ m, for all the settings (l, 0, 0), (l, −1, 0)
and (k, c, 1), and then put them in these formulae to compute all the terms of
the block.

But, we have to notice that some coefficients are redundant:
– the a1j of the setting (l + 1, −1, 0) are the same than those of the setting

(l, 0, 0),
– the a2j of the setting (l, −1, 0) are the same than those of the setting (l, 0, 0),
– the a2j of the setting (l + 2, −1, 0) are the a1j of the setting (l, 0, 0),
– the a1j of the setting (k, c, 1) for all c are the same,
– the a2j of the setting (k, c, 1) are the same than those of the setting (k + c +

1, 0, 0).
So, the coefficients we still have to compute are:

– the a1j , 3 ≤ j ≤ m, for all the 2m − 4 settings (l, 0, 0);
– the a2j , 3 ≤ j ≤ m, for the settings (k − m + 2, 0, 0) and (k − m + 3, 0, 0) or

(k − m + 3, 0, 0) and (k − m + 4, 0, 0);
– the a1j , 3 ≤ j ≤ m, for the setting (k, −m + 3, 1).

210 C. Tran

6 The Hyperelliptic Net Algorithm in the Case
g ≡ 0, 3 (mod 4)

6.1 Definitions of the Blocks and the Settings

The strategy is the same as in the case g ≡ 1, 2 (mod 4) : given a block centered
in k, we build the block centered in 2k or 2k + 1 by using theorem 6, and so
by a double-and-add algorithm we finally obtain W (r +1, 1).The difference with
the previous section is that now W is even, and we don’t have W (0, 0) = 0
anymore, so:

– the matrix A = (W (vi + vj , wi + wj)W (vi − vj , wi − wj))1≤i,j≤m is now
symmetric,

– we don’t have to take m even, so we choose m = 2g + 1,
– unfortunately, we don’t have the tool pfaffian anymore but only the deter-

minant, so the computations will be longer.

Theorem 11. We define the initial terms as

– the 2m − 3 terms {W (i, 0) | 0 ≤ i ≤ 2m − 4},
– the 2m − 2 terms {W (i, 1) | 0 ≤ i ≤ 2m − 3}.

Let k ∈ N. We define a block centered on k to be

– the 4m − 6 values {W (k + i, 0) | − 2m + 4 ≤ i ≤ 2m − 3},
– the 2m − 2 values {W (k + i, 1) | 0 ≤ i ≤ 2m − 3}.

If we have the initial terms and the block centered on k, then we can compute
the block centered on 2k and the block centered on 2k + 1.

Proof. In the matrix A = (W (vi + vj , wi + wj)W (vi − vj , wi − wj))1≤i,j≤m, we
take the following:

– for all 1 ≤ i ≤ m, wi = ε/2,
– v1 = k + l,
– for 2 ≤ i ≤ m, vi = m − i.

These settings will be called settings (l, 0, ε), for ε = 0, 1, −m + 2 ≤ l ≤ m − 1
if ε = 0 and 0 ≤ l ≤ m − 1 if ε = 1. With them, we compute the W (2k + 2l, ε).

Then, by the settings (l, 1, ε), ε = 0, 1, −m + 2 ≤ l ≤ m − 2 if ε = 0 and
0 ≤ l ≤ m − 2 if ε = 1:

– for all 1 ≤ i ≤ m, wi = ε/2,
– v1 = k + l + 1/2,
– for 2 ≤ i ≤ m, vi = m − i + 1/2,

we compute the W (2k + 2l + 1, ε). �
As in the case g ≡ 1, 2 (mod 4), these settings are "optimal".

Formulae for Computation of Tate Pairing on Hyperelliptic Curve 211

6.2 Formulae

As in the genus 1, 2 (mod 4) case, we now exhibit the formulae given by the
settings we have defined.

For 1 ≤ i, j, k, l ≤ m, let Âi,j denote the matrix A with the i-th row and the
j-th column removed, and Âij,kl be the matrix A with the i-th and j-th rows,
and the k-th and l-th columns removed. Then the determinant of A can be
developed as follows:

0 = a11det
(

Â1,1

)
+

∑

1≤i,j≤m

(−1)i+ja1ia1jdet
(

Â1i,1j

)

with det
(

Â1,1

)
and the det

(
Â1i,1j

)
precomputed. Unlike the g ≡ 1, 2 (mod 4)

case, these determinants are different for each setting. So, we will note them
with the letters B, C, D and E respectively for the settings (l, 0, 0), (l, 1, 0),
(l, 0, 1) and (l, 1, 1):

– for −m + 2 ≤ l ≤ m − 1,

W (2k + 2l, 0) =
∑

2≤i,j≤m

(−1)i+j+1det
(

B̂1j,1i

)

det
(

B̂1,1

)
W (0, 0)

a1ia1j

with a1i = W (k + l + m − i, 0)W (k + l + i − m, 0);
– for −m + 2 ≤ l ≤ m − 2,

W (2k + 2l + 1, 0) =
∑

2≤i,j≤m

(−1)i+j+1det
(

Ĉ1j,1i

)

det
(

Ĉ1,1

)
W (0, 0)

a1ia1j

with a1i = W (k + l + m + 1 − i, 0)W (k + l + i − m, 0);
– for 0 ≤ l ≤ m − 1,

W (2k + 2l, 1) =
∑

2≤i,j≤m

(−1)i+j+1det
(

D̂1j,1i

)

det
(

D̂1,1

)
W (0, 0)

a1ia1j

with a1i = W (k + l + m − i, 1)W (k + l + i − m, 0);
– for 0 ≤ l ≤ m − 2,

W (2k + 2l + 1, 1) =
∑

2≤i,j≤m

(−1)i+j+1det
(

Ê1j,1i

)

det
(

Ê1,1

)
W (0, 0)

a1ia1j

with a1i = W (k + l + m + 1 − i, 1)W (k + l + i − m, 0).

There is an other unpleasant difference with the g ≡ 1, 2 (mod 4) case : we do
not have any redundant coefficients among the a1i and a2j , and so we have to
compute all of them.

212 C. Tran

7 Genus 3 Case

We now present the algorithm in genus 3 case. We suppose we have a genus 3
hyperelliptic curve

C : y2 = x7 + λ6x6 + · · · + λ0

defined on a field Fq of characteristic p. Let J be its jacobian, we are given two
divisors D and D′ by their Mumford representation:

D = [U, V] with U = x3 + U2x2 + U1 + U0, V = V2x2 + V1X + V0,

D′ = [U ′, V ′] with U ′ = x3 + U ′
2x2 + U ′

1 + U ′
0, V ′ = V ′

2x2 + V ′
1X + V ′

0 .

The first thing to do is to generate the hyperelliptic net W associated to C, D
and D′. Then we use formulae of section 6.2 in an example.

7.1 Initialization

For g = 3, we have m = 9, so the initial values we need are the {W (i, 0) | i =
0, . . . , 14} and the {W (i, 1) | i = 0, . . . , 15}.

We are able to set W (1, 0) = W (0, 1) = 1, and for the other values we use
proposition 5:

∀a, b, i ∈ Z,
W (a + b, i)W (a − b, i)

W (a, i)2W (b, 0)2
= F3([a]D1 + [i]D2, [b]D1), W (2a, 0)

W (a, 0)4
= G3([a]D1),

with the polynomials F3 and G3 given by (see [5] and [12]):

F3(u, v) = (℘31(v) − ℘31(u))(℘22(v) − ℘22(u)) − (℘31(v) − ℘31(u))2

+ (℘32(v) − ℘32(u))(℘21(v) − ℘21(u)) + (℘33(v) − ℘33(u))(℘11(v) − ℘11(u)),
G3(u) = ℘113(u)℘223(u) + ℘133(u)℘122(u) − 2℘133(u)℘113(u)

− ℘123(u)2 − ℘233(u)℘112(u) + ℘133(u)℘113(u) + ℘333(u)℘111(u).

We recall that the ℘i3 and ℘i33, 1 ≤ i ≤ 3, of a divisor D are directly given
by its Mumford coordinates (see remark 2). For the others ℘-functions, we use
the formulae given in the appendix C of [8]. In details, we use the three first
formulae to compute successively ℘22, ℘12 and ℘11. Then we use the formulae of
weight (−18) to compute the seven products ℘ijk℘lmn we need in the expression
of G3.

7.2 An Example

Let C be the curve

y2 = x7 + 3x6 + 2x5 + 10x4 + 9x3 + 3x2 + 11

Formulae for Computation of Tate Pairing on Hyperelliptic Curve 213

defined over F29 and J its jacobian. With r = 41, the embedding degree is 40,
so the exponent in the computation of the pairing is

e = 2940 − 1
41 = 764075121631975351615803381072559018207546756758889888800.

Let a ∈ F29 a root of
X40 + X5 + 4 ∈ F29[X]

then F2940 � F29(a).

Let D1 ∈ J (F29)[41] be given by its Mumford representation [x3 + 2x2 + 9x +
24, 23x2 + 24x + 4]. Let D2 ∈ J (F2940) be:

U =x3 + (27a5 + 27a2 + 28a + 16)x2 + (4a7 + 2a6 + 21a5 + 2a3 + 21a2 + 5a + 10)x+

25a8 + 26a7 + 24a6 + 18a5 + 24a3 + 18a2 + a + 8

V =(26a39 + 16a38 + 14a37 + 7a36 + 27a35 + 19a34 + 7a33 + 19a32 + 15a31 + a30+

21a29 + 2a28 + 5a27 + 22a26 + 27a25 + 21a24 + 4a23 + 5a22 + 6a21 + 27a20+6a19+

27a18 + 13a17 + 12a16 + 15a15 + 10a14 + 23a13+23a12+25a11+2a10+4a9+14a8+

a26 + 21a25 + 26a24 + 28a23 + 10a22 + 14a21+ 3a20+23a19+14a18+26a17+7a16+

23a7 + 3a6 + 28a5 + 2a4 + 26a3 + 12a2 + 27a + 4)x2+(a39+15a38+6a37+13a36+

20a35 + 5a34 + 23a33 + 28a32 + 8a31 + 20a30 + 16a29+a28+12a27+ 13a15+28a14+

15a13 + 25a12 + a11 + 19a10 + 11a9 + 17a8 + 21a7 +11a6+12a5+16a4+8a2+21a+

22)x + 15a39 + 14a38 + 23a37 + 25a36 + 27a35 + 14a34 + 13a33 + 10a31 + 3a30+

14a29 + 13a28 + 27a27 + 14a26 + 21a25 + 13a24 + 8a23 + 25a22 + 27a21 + 23a19+

24a18 + 11a17 + 6a16 + a15 + 3a14 + 18a13 + a12 + 21a11 + 2a10 + 26a9+

26a8 + 11a7 + 4a6 + 18a5 + 9a4 + 28a3 + 5a2 + 4a + 6).

We denote WD1,D2 the hyperelliptic net build as in section 7.1. Then we com-
pute:

(WD1,D2(42, 1))e = 4a39 + 14a38 + 21a37 + · · · + 5a2 + 4a + 16.

We have to verify we obtain have a well defined bilinear map

τ : J (Fq)[r] × J (Fqk)/rJ (Fqk) → μr

(D1, D2) �→ (WD1,D2(r + 1, 1))e

– we choose a random D3 ∈ J (Fqk) and verify that

(WD1,D2+rD3(r + 1, 1))e = (WD1,D2(r + 1, 1))e ;

– we choose random integers m and n and verify that

(WmD1,nD2(r + 1, 1))e = (WD1,D2(r + 1, 1))emn
.

214 C. Tran

8 Conclusion

The point of this article is to extend the algorithm to compute pairings using
hyperelliptic nets to all genus. This algorithm can be an interesting alternative
to the traditional Miller method. In particular, the hyperelliptic nets can take
advantage of all the improvements made on Miller algorithm in the last decade :
computation of pairing with shorter length of loop as the ate pairing, exploitation
of efficiently computable automorphisms, or use of degenerate divisors... The
effects of all these technics on hyperelliptic nets have to be study in future work.

References

1. Avanzi, R., Cohen, H., Doche, C., Frey, G., Lange, T., Nguyen, K., Vercauteren, F.:
Handbook of elliptic and hyperelliptic curve cryptography. Discrete Mathematics
and Its Applications, vol. 34, pp. 115–123. CRC Press (2006)

2. Balakrishnan, J., Belding, J., Chisholm, S., Eeisenträger, K., Stange, K.E., Teske,
E.: Pairings on hyperelliptic curves. ArXiv e-prints, 09083731 (2009)

3. Blake, I., Seroussi, G., Smart, N.: Advances in elliptic curve cryptography. Lon-
don Mathematical Society Lecture Note Series, vol. 317, pp. 183–212. Cambridge
University press (2005)

4. Buchstaber, V., Enolskii, V.: Explicit algebraic description of hyperelliptic jacobians
on the basis of the Klein σ-functions. Functional Analysis and Its Applications 30(1),
44–47 (1996)

5. Buchstaber, V., Enolskii, V., Leykin, D.: A recursive family of differential polyno-
mials generated by the Sylvester identity and additions theorems for hyperelliptic
Kleinian functions. Functional Analysis and Its Applications 34(4), 240–251 (1997)

6. Buchstaber, V., Enolskii, V., Leykin, D.: Hyperelliptic Kleinian functions and
applications. Solitons Geometry and Topology: On the Crossroad, Advances in
Math. Sciences, Am. Math. Soc. Transl, Series 2 179, 1–34 (1997)

7. Cantor, D.: Computing in the Jacobian of a hyperelliptic curve. Mathematics of
Computation 48(177), 95–101 (1987)

8. Eilbeck, J., England, M., Ônishi, Y.: Abelian functions associated with genus three
algebraic curves. LMS J. Comput. Math. 14, 291–326 (2011)

9. Ogura, N., Kanayama, N., Uchiyama, S., Okamoto, E.: Cryptographic pairings
based on elliptic nets. In: Iwata, T., Nishigaki, M. (eds.) IWSEC 2011. LNCS,
vol. 7038, pp. 65–78. Springer, Heidelberg (2011)

10. Silverman, J.: The arithmetic of elliptic curves, pp. 157–178. Springer, New York
(1985)

11. Stange, K.E.: The Tate pairing via elliptic nets. In: Takagi, T., Okamoto, T.,
Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 329–348.
Springer, Heidelberg (2007)

12. Uchida, Y.: Division polynomials and canonical local heights on hyperelliptic
Jacobians. Manuscrypta Mathematica 134(3-4), 273–308 (2011)

13. Uchida, Y., Uchiyama, S.: The Tate-Lichtenbaum pairing on a hyperelliptic curve
via hyperelliptic nets. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 218–233. Springer, Heidelberg (2013)

New Speed Records for Montgomery Modular

Multiplication on 8-Bit AVR Microcontrollers

Zhe Liu and Johann Großschädl

University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security (LACS),

6, rue Richard Coudenhove-Kalergi, L–1359 Luxembourg
{zhe.liu,johann.groszschaedl}@uni.lu

Abstract. Modular multiplication of large integers is a performance-
critical arithmetic operation of many public-key cryptosystems such as
RSA, DSA, Diffie-Hellman (DH) and their elliptic curve-based variants
ECDSA and ECDH. The computational cost of modular multiplication
and related operations (e.g. exponentiation) poses a practical challenge
to the widespread deployment of public-key cryptography, especially on
embedded devices equipped with 8-bit processors (smart cards, wireless
sensor nodes, etc.). In this paper, we describe basic software techniques
to improve the performance of Montgomery modular multiplication on
8-bit AVR-based microcontrollers. First, we present a new variant of the
widely-used hybrid method for multiple-precision multiplication that is
10.6% faster than the original hybrid technique of Gura et al. Then, we
discuss different hybrid Montgomery multiplication algorithms, includ-
ing Hybrid Finely Integrated Product Scanning (HFIPS), and introduce
a novel approach for Montgomery multiplication, which we call Hybrid
Separated Product Scanning (HSPS). Finally, we show how to perform
the modular subtraction of Montgomery reduction in a regular fashion
without execution of conditional statements so as to counteract Simple
Power Analysis (SPA) attacks. Our AVR implementation of the HFIPS
and HSPS method outperforms the Montgomery multiplication of the
MIRACL Crypto SDK by up to 21.58% and 14.24%, respectively, and is
twice as fast as the modular multiplication of the TinyECC library.

Keywords: AVR architecture, multi-precision arithmetic, hybrid multi-
plication, modular reduction, SPA countermeasure.

1 Introduction

Long integer modular arithmetic, in particular modular multiplication, is at the
heart of many practical public-key cryptosystems, including “traditional” ones
that operate in a large ring or group (e.g. RSA [23], DSA [22], Diffie-Hellman
[7]), as well as elliptic curve schemes (e.g. ECDSA [22], ECDH [14]) if they use
a prime field Fp as underlying algebraic structure. The major operation of the
former class of cryptosystems is exponentiation in either Zn or Z∗

p, which can be
carried out through modular multiplications and modular squarings [9]. On the

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 215–234, 2014.
c© Springer International Publishing Switzerland 2014

216 Z. Liu and J. Großschädl

other hand, elliptic curve schemes perform scalar multiplication in an additive
group, an operation that in turn is composed of additions, multiplications, and
inversions in the underlying field [14]. However, most software implementations
use projective coordinates to represent points on the curve, thereby trading in-
versions for multiplications in Fp to reduce the overall execution time. In this
case, the performance of a scalar multiplication is primarily determined by the
efficiency of the multiplication in the prime field Fp. Modular multiplication is
also a performance-critical arithmetic operation of pairing-based cryptosystems
(e.g. identity-based encryption, short signature schemes) [3].

It is common practice in Elliptic Curve Cryptography (ECC) to use primes
of a “special” form so as to facilitate the modular reduction [14]. A well-known
example are pseudo-Mersenne primes, i.e. primes that are slightly smaller than
a power of two and can be written as p = 2n − c where c is typically chosen to
fit into a single register of the target processor. The computational complexity
of reduction modulo such primes grows linearly with their length, whereas the
reduction operation for general primes has quadratic complexity [14]. A second
example of primes that allow one to perform a reduction in linear time are the
so-called generalized-Mersenne primes, which are standardized by the National
Institute of Standards and Technology (NIST) [22]. Software implementations
of ECC often follow a dual approach and support both fast modular reduction
techniques for a small set of special primes (e.g. the NIST primes) and a generic
reduction routine for “arbitrary” primes. Many cryptographic libraries, such as
TinyECC [18] and OpenSSL, take this approach to combine high performance
with high flexibility. Therefore, generic modular multiplication techniques, like
those introduced by Barrett [4] and Montgomery [21] roughly 30 years ago, are
not only important for RSA but also for ECC.

Formally, a modular multiplication A ·B modM involves multiplying two n-
bit operands A and B, yielding a 2n-bit product P = A · B, followed by the
reduction of P modulo M to get a final result in the range of [0,M − 1]. The
latter operation, i.e. the reduction of P with respect to a given modulus M , has
a major impact on the execution time of a modular multiplication. A straight-
forward way to obtain the residue P modM is to divide P by M and find the
remainder of this division. However, performing integer division in software is
extremely expensive for large operands, which makes this approach unpractical
for cryptographic applications. In 1985, Peter Montgomery [21] introduced an
efficient (and nowadays widely-used) technique to accomplish a modular reduc-
tion without trial division. The basic idea is to replace the modular reduction
P modM by a computation of the form P · 2−n modM (where n denotes the
bitlength of M), which is much cheaper than computing the actual residue via
division. In general, when implemented in software, the Montgomery reduction
of a 2n-bit product P with respect to an n-bit modulus M is just slightly more
costly than the multiplication of two n-bit operands [10].

The efficient implementation of multiplication, reduction and other compu-
tation-intensive arithmetic operations is particularly challenging for embedded
processors with limited resources. The root of the problem is the length of the

New Speed Records for Montgomery Modular Multiplication 217

operands (e.g. 160 bits for an elliptic curve cryptosystem, 1024 bits in the case
of RSA), which exceeds the word-size of a small 8 or 16-bit processor by up to
two orders of magnitude. Recent research in the area of long-integer arithmetic
for such processors focused on the 8-bit AVR architecture [1] (e.g. ATmega128
[2]) as target platform. In 2004, Gura et al published a landmark paper [13] on
optimizing modular arithmetic for AVR processors in which they introduce the
idea of hybrid multiplication. By exploiting the large register file to store (parts
of) the operands, the hybrid method allows for a considerable reduction of the
number of load instructions compared to a conventional (i.e. column-wise) im-
plementation of multiple-precision multiplication [6,13]. Gura et al reported an
execution time of 3106 clock cycles for a (160 × 160)-bit multiplication on the
ATmega128, a result that was subsequently further improved by Uhsadel et al
(2881 cycles [27]), Liu et al (2865 cycles [19]), Zhang et al (2845 cycles [32]), as
well as Scott et al (2651 cycles with “unrolled” loops [24]).

In this paper, we continue the line of research described above and advance
the state-of-the-art in efficient modular arithmetic for 8-bit AVR processors in
three directions. First, we introduce a new variant of the hybrid multiplication
technique that is roughly 10% faster than Gura et al’s original hybrid method
[13]. Our hybrid technique is similar to the one of Zhang et al [32], but benefits
from better register allocation and reduced loop overhead (i.e. improved initial-
ization of pointers and more efficient testing of branch conditions). Thanks to
our sophisticated register allocation, only 30 (out of 32) AVR working registers
are actually occupied during execution of a hybrid multiplication, which allows
for easy integration of Montgomery reduction1. The second contribution of this
paper is a comprehensive performance analysis and comparison of six methods
for software implementation of Montgomery multiplication; five are described in
[17] and the sixth variant is from [19]. Our results shed some new light on the
relative performance of the different Montgomery multiplication methods since
they contradict the findings of the current literature, e.g. [17]. Finally, as third
contribution, we describe how to perform the final subtraction of M (which is
required when a Montgomery product is not fully reduced) in a regular fashion
so as to thwart side-channel attacks [20]. Our approach tolerates incompletely-
reduced operands and ensures that always the same sequence of instructions is
executed, regardless of the actual value of the Montgomery product.

2 Montgomery Modular Multiplication

Montgomery multiplication (named after Peter Montgomery) was originally in-
troduced in 1985 [21] and has since then become one of the most-widely used
techniques for high-speed implementation of modular multiplication [8]. In the

1 The integration of Montgomery reduction into hybrid multiplication (using e.g. the
so-called FIOS or FIPS method [17]) can significantly increase the register pressure
since two registers are necessary to accommodate the 16-bit pointer to the modulus
M . We designed our hybrid multiplication to take this into account by leaving two
registers for M , which helps to prevent register spills in the FIPS inner loop.

218 Z. Liu and J. Großschädl

Algorithm 1. Calculation of the Montgomery product

Input: An odd n-bit modulus M , Montgomery radix R = 2n, two operands A,B in
the range [0,M − 1], and pre-computed constant M ′ = −M−1 mod R

Output: Montgomery product Z = MonPro(A,B) = A · B ·R−1 mod M
1: T ← A ·B
2: Q ← T ·M ′ mod R
3: Z ← (T +Q ·M)/R
4: if Z ≥ M then Z ← Z −M end if
5: return Z

following, we use M to denote an odd modulus consisting of n bits and A,B to
denote two residues modulo M , i.e. 0 ≤ A,B < M . Rather than computing the
residue of A · B modM directly, Montgomery’s algorithm returns the so-called
Montgomery product of A and B as result, which is defined as follows.

MonPro(A,B) = A ·B · R−1 mod M (1)

The factor R in Equation (1) is often referred to as Montgomery radix and can
be any integer that is bigger than M and relatively prime to it, i.e. R needs to
satisfy gcd (N,R) = 1. However, for reasons of implementation efficiency, R is
in general a power of two, e.g. R = 2n. The central idea of Montgomery multi-
plication is to replace the reduction modulo M (which would normally require
a costly division by M) by a division by R and a reduction mod R, which are
cheap operations when R is a power of two. More precisely, a division by 2n is
merely an n-bit right-shift operation, while a reduction modulo 2n requires the
truncation of all high-order bits above the n-th position. Algorithm 1 specifies
the computation of the Montgomery product in detail. In addition to the three
operands A, B, and M , the algorithm needs M ′ as input, which is the inverse
of −M (or, more precisely, the inverse of R −M) modulo R. However, M ′ can
be pre-computed (using e.g. the Euclidean algorithm as described in [17]) since
it depends only on M and R, i.e. M ′ is fixed for a given M .

Based on Algorithm 1, the Montgomery product A · B · R−1 modM can be
obtained as follows. First, the n-bit operand A is multiplied by n-bit operand
B, giving a 2n-bit product T . Then, in line 2, the quotient Q = − T

M mod R is
calculated, which is simply a multiplication of the low-order n bits of T by the
pre-computed constant M ′ = −M−1 mod R [8]. Note that we actually need to
calculate only the lower half (i.e. the n least significant bits) of T ·M ′ because
our Montgomery radix R is 2n. In line 3, a multiplication and a division by R is
performed; the latter is just an n-bit right-shift since R = 2n. Thus, we have to
calculate only the upper half of the product Q ·M . The n least significant bits
of T +Q ·M are 0, which means the division by R (i.e. the n-bit right-shift) in
line 3 does not destroy any information. The result Z obtained so far may be
not fully reduced (i.e. Z may not be the least non-negative residue modulo M)
so that a “final subtraction” of M becomes necessary (line 4). In summary, the
computational cost of Algorithm 1 amounts to one conventional multiplication
of n-bit operands (line 1) and two “half” multiplications where only either the

New Speed Records for Montgomery Modular Multiplication 219

lower part (line 2) or the upper part (line 3) of the product is really needed. As
a consequence, computing the Montgomery product is just slightly more costly
than two conventional multiplications.

Software implementations of Algorithm 1 generally store the large integers
A, B, and M in arrays of single-precision words (i.e. arrays of unsigned int in
C and similar programming languages). Assuming a processor with a word-size
of w bits, an n-bit integer X consists of s = $n/w% single-precision (i.e. w-bit)
words. Throughout this paper, we will use uppercase letters to represent large
integers, whereas lowercase letters, usually with a numerical index, will denote
individual w-bit words. The most and least significant word of an integer X are
xs−1 and x0, respectively, i.e. we have X = (xs−1, . . . , x1, x0). There exist sev-
eral implementation options and optimization techniques to efficiently perform
a Montgomery multiplication in software; they can be categorized according to
the order in which the words of the operands (resp. product) are accessed and
whether multiplication and modular reduction are carried out separately or in
an integrated fashion (see e.g. [17] for details). In brief, when using the so-called
operand scanning method, the words of the operands are loaded sequentially, in
ascending order, starting with the least significant word. On the other hand, the
main characteristic of the product scanning technique is that each word of the
result is stored (i.e. written to memory) only once, which happens in ascending
order [6]. Both methods can be used to implement Montgomery multiplication
in either a separated way (i.e. the modular reduction is accomplished after the
multiplication) or an integrated way by alternating multiplication and reduction
steps. In the latter case, we can further distinguish between a coarse and a fine
integration of multiplication and modular reduction. Combinations of all these
techniques allow for a multitude of algorithms for calculating the Montgomery
product, six of which we briefly describe in the following subsections.

2.1 Separated Operand Scanning (SOS)

In Koç et al’s original description of the SOS method, both the multiplication
and the reduction are carried out according to the operand-scanning technique
[17]. The inner loop of the multiplication (and also that of the reduction) per-
forms operations of the form (u, v) ← a · b + c + d, whereby a, b, c, and d are
single-precision integers (i.e. w-bit words) and (u, v) denotes a double-precision
(i.e. 2w-bit) quantity. Each execution of this inner loop on a general-purpose
RISC processor, e.g. the ATmega128, involves a mul and four add (resp. adc)
instructions2. Assuming s-word operands, the operand-scanning multiplication
of the SOS method executes s2 mul, 4s2 add (or adc), 2s2 + s load, as well as
s2 + s store instructions (see Algorithm 1 in [10] for a detailed analysis). The
original operand-scanning approach for Montgomery reduction as described in

2 Note that we count the number of add instructions (in the same way as [10]), while
Koç et al [17] assess the number of add operations. Adding a single-precision word
to a double-precision quantity (u, v) counts for one add operation, but requires two
add instructions, one of which is actually an adc (add-with-carry).

220 Z. Liu and J. Großschädl

Algorithm 2. Montgomery reduction (operand scanning form)

Input: An s-word modulus M = (ms−1, . . . ,m1,m0), operand P = (p2s−1, . . . , p1, p0)
with P < 2M − 1, and pre-computed constant m′

0 = −m−1
0 mod 2w

Output: Montgomery residue Z = P · 2−n mod M
1: t ← 0
2: for i from 0 by 1 to s− 1 do
3: u ← 0
4: q ← pi ·m′

0 mod 2w

5: for j from 0 by 1 to s− 1 do
6: (u, v) ← mj · q + pi+j + u
7: pi+j ← v
8: end for
9: (u, v) ← pi+s + u+ t

10: pi+s ← v
11: t ← u
12: end for
13: for j from 0 by 1 to s− 1 do
14: zj ← pj+s

15: end for
16: zs ← t
17: if Z ≥ M then Z ← Z −M end if

Section 4 of [17] employs a special ADD function to propagate a carry bit up to
the most significant word. Our implementation simply holds the carry bit in an
extra register t and adds it in the next iteration of the outer loop as shown in
Algorithm 2. In this way, the operand-scanning form of Montgomery reduction
consists of s2 + s mul, 4s2 + 2s add or adc, 2s2 + 2s+ 1 load, and s2 + 2s+ 1
store instructions, which means the SOS method (excluding final subtraction)
needs to execute 2s2 + s mul, 8s2 + 2s add (resp. adc), 4s2 + 3s+ 1 load, and
2s2 + 3s+ 1 store instructions altogether.

2.2 Finely Integrated Product Scanning (FIPS)

The FIPS method (Algorithm 1 in [11]), originally introduced in [8], performs
multiplication and reduction steps in a “finely” interleaved fashion in the same
inner loop. From an algorithmic viewpoint, the FIPS technique consists of two
nested loops; both inner loops compute (parts of) the product A ·B and then
add (parts of) the product Q ·M to it. After the first inner loop, a word of the
quotient Q is calculated with help of the least-significant word of M ′ (i.e. the
pre-computed constant m′

0 = −m−1
0 mod 2w [17]) and temporarily stored in the

array of the final result. The least-significant word of the intermediate sum ob-
tained at the end of the second inner loop is always zero, which means it can be
right-shifted by w bits without “destroying” any information. In each iteration
of the second outer loop, a word of the result (i.e. the Montgomery product) is
obtained and written to memory. Note that this result consists of s + 1 words
(whereby the MSW is either 0 or 1) since it may be incompletely reduced.

New Speed Records for Montgomery Modular Multiplication 221

In each iteration of one of the inner loops, two multiply-accumulate (MAC)
operations of the form (t, u, v) ← (t, u, v) + a · b are carried out, i.e. two words
are multiplied and the double-precision product is added to a cumulative sum
held in the three registers v, u and t. Note that Koç et al [17] employ a special
ADD function to process carries (similar to the SOS method), but we avoid this
by using three registers to hold the cumulative sum. The inner-loop operation
of our FIPS method is identical to that of the product-scanning multiplication
[14] and needs one mul and three add instructions. In total, the FIPS method
requires 2s2 + s mul, 6s2 add/adc, 4s2 − s load, and 2s+ 1 store instructions
altogether (excluding final subtraction) [10].

2.3 Coarsely Integrated Operand Scanning (CIOS)

Instead of computing the complete multiplication first and doing the reduction
afterwards (like in Section 2.1), the CIOS method performs multiplication and
reduction in an interleaved fashion, similar to Section 2.2. Algorithm 4 in [10]
describes the CIOS method in detail; it consists of an outer loop that contains
two inner loops. The first inner loop calculates parts of the product A · B and
stores the intermediate result in an array in RAM. After the first inner loop, a
word of the quotient Q is determined, which is subsequently used in the second
inner loop to get a multiple of M to be added to the intermediate result. This
addition zeroes out the least significant word of the intermediate result and so
contributes to the modular reduction. A w-bit right-shift operation is implicit-
ly performed in the second inner loop through indexing, i.e. by writing a word
with index i to the (i− 1)-th position in the target array. The two inner loops
execute exactly the same operation as the SOS method, namely a computation
of the form (u, v) ← a · b + c + d. We eventually obtain a result that consists
of s+ 1 words (with the most-significant word being either 0 or 1), which means
a final subtraction of M may be necessary to get a fully reduced result [17]. In
total, the CIOS method requires 2s2 + s mul, 8s2 + 4s add, 4s2 + 5s load, and
2s2 + 3s store instructions (see [10] for further details3).

2.4 Coarsely Integrated Hybrid Scanning (CIHS)

This method, introduced in [17, Section 8], is related to both the SOS and the
CIOS approach sketched before. It is called “hybrid scanning” method because
it mixes operand scanning and product scanning for multiplication, while the
reduction operation is accomplished solely in operand-scanning form. The CIHS
method consists of two outer loops and three inner loops. The first outer loop
computes a part of the product A · B, while the second outer loop contributes
to the reduction operation and the rest of the multiplication. Furthermore, the
second outer loop shifts the intermediate result one word (i.e. by w bits) to the
right in each iteration. The “splitting” of the multiplication is possible since, in

3 Note that the number of add (resp. adc) instructions for the CIOS method specified
in Table 4 of [10] is wrong; the correct number is 8s2 + 4s for s-word operands.

222 Z. Liu and J. Großschädl

the course of Montgomery modular reduction, the variable m computed at the
beginning of the second outer loop only depends on t0. The operation executed
by the first two inner loops is exactly the same as that of the SOS and CIOS
method, respectively. However, the third inner loop is slightly simpler because
it performs an operation of the form (u, v) ← a · b + c, each execution of which
costs one mul and two add (resp. adc) instructions. Putting it all together, the
CIHS method requires 2s2 + s mul, 9s2 + 5s add/adc, 11s2/2 + 7s/2 load, as
well as 3s2 + 2s store instructions (excluding the final subtraction).

2.5 Finely Integrated Operand Scanning (FIOS)

The last operand-scanning variant of Montgomery multiplication we discuss in
this paper is the Finely Integrated Operand Scanning (FIOS) method, given in
[12, Algorithm 1]. Compared to the four methods outlined before, the structure
of this algorithm is very simple as it comprises just an outer loop with a single
inner loop. The inner loop of the FIOS variant described in [12] executes two
operations of the form (u, v) ← a · b + c + d, one contributes to the calculation
of the product of A and B, and the other to the Montgomery reduction of this
product. Similar to the CIOS method, the quality of the implementation of the
inner-loop operation has a major impact on the algorithm’s overall execution
time. In summary, the FIOS method of Montgomery multiplication requires to
perform 2s2 + s mul, 8s2 add, 3s2 + 4s load, and s2 + s store instructions.

2.6 Separated Product Scanning (SPS)

The Montgomery multiplication methods sketched in the previous five subsec-
tions were first described and analyzed by Koç et al [17]. In this subsection, we
present a sixth method, which we call Separated Product Scanning (SPS). The
SPS method separates multiplication steps and reduction steps (similar to the
SOS method), i.e. the Montgomery reduction is carried out as a self-contained
operation after the multiplication. As its name suggests, the SPS technique is
based on the product scanning approach for multiplication (see Algorithm 2 in
[10]) and then uses the product-scanning form of Montgomery reduction shown
in Algorithm 3. More details on this product-scanning based Montgomery re-
duction can be found in [10,19]. The SPS method was originally introduced in
[19] as a product-scanning variant of the SOS technique, but we feel that the
name “Separated Product Scanning” better denotes the characteristics of this
method. As per [10], a product-scanning multiplication of two s-word operands
consists of s2 mul, 3s2 add, 2s2 load, and 2s store instructions. Algorithm 3
requires s2 + s mul, 3s2 + 6s add, 2s2 + 2s load, and 2s+ 1 store instructions
[10], which amounts to 2s2 + s mul, 6s2 + 6s add (or adc), 4s2 + 2s load, and
4s+ 1 store instructions for the complete SPS method.

2.7 Analysis and Comparison

Table 1 summarizes and compares the base instruction counts of all six Mont-
gomery multiplication techniques considered in this section. The two variants

New Speed Records for Montgomery Modular Multiplication 223

Algorithm 3. Montgomery reduction (product scanning form) [10, Algorithm 5]

Input: An s-word modulus M = (ms−1, . . . ,m1,m0), a product P in the range of
[0, 2M − 2], pre-computed constant m′

0 = −m−1
0 mod 2w

Output: Montgomery residue Z = P · 2−n mod M
1: (t, u, v) ← 0
2: for i from 0 by 1 to s− 1 do
3: for j from 0 by 1 to i− 1 do
4: (t, u, v) ← (t, u, v) + zj ·mi−j

5: end for
6: (t, u, v) ← (t, u, v) + pi
7: zi ← v ·m′

0 mod 2w

8: (t, u, v) ← (t, u, v) + zi ·m0

9: v ← u, u ← t, t ← 0
10: end for
11: for i from s by 1 to 2s− 2 do
12: for j from i− s+ 1 by 1 to s− 1 do
13: (t, u, v) ← (t, u, v) + zj ·mi−j

14: end for
15: (t, u, v) ← (t, u, v) + pi
16: zi−s ← v
17: v ← u, u ← t, t ← 0
18: end for
19: (t, u, v) ← (t, u, v) + p2s−1

20: zs−1 ← v, zs ← u
21: if Z ≥ M then Z ← Z −M end if

Table 1. Comparison of base instructions for Multiplication modular multiplications
(excluding final subtraction)

Algorithm # mul # add # load # store

FIPS 2s2 + s 6s2 4s2 − s 2s+ 1

SPS 2s2 + s 6s2 + 6s 4s2 + 2s 4s+ 1

CIOS 2s2 + s 8s2 + 4s 4s2 + 5s 2s2 + 3s

SOS 2s2 + s 8s2 + 2s 4s2 + 3s+ 1 2s2 + 3s+ 1

CIHS 2s2 + s 9s2 + 5s 11s2/2 + 7s/2 3s2 + 2s

FIOS 2s2 + s 8s2 3s2 + 4s s2 + s

based on the product-scanning method (i.e. FIPS and SPS) execute multiply-
accumulate operations of the form (t, u, v) ← (t, u, v) + a · b in the inner loops
[10], whereby each operation involves three add or adc instructions to add the
product a · b to a cumulative sum. Consequently, the FIPS and SPS technique
execute three add (resp. adc) per one mul instruction. On the other hand, the
operand-scanning variants feature a common inner-loop operation of the form
(u, v) ← a · b+ c+ d, which costs four add/adc per mul instruction. A second
major difference between the product-scanning variants and their counterparts
based on the operand-scanning technique is the number of store instructions

224 Z. Liu and J. Großschädl

as shown in the last column of Table 1. The former execute store instructions
solely in the outer loops, whereas the latter perform stores in the inner loop(s)
[10]. Therefore, the number of store instructions carried out by FIPS and SPS
increases linearly with the number of words. The operand-scanning variants, on
the other hand, exhibit a quadratic growth of the number of stores.

Our analysis of the base instructions indicates a clear advantage of the two
product-scanning methods, which will be confirmed by implementation results
in Section 4. However, our analysis is not in agreement with that of Koç et al
[17], who clearly identified the CIOS method as the most efficient one on basis
of both their theoretical cost model and measured results. As stated in Section
2.1, this deviation can be explained by differences in the underlying cost model
since Koç et al consider the number of basic operations, whereas we count the
number of basic instructions as this is more accurate. Furthermore, Koç et al
use a special ADD function to propagate carries in their SOS, FIOS, and FIPS
method, which we do not need since we hold all carries in registers.

3 Our Implementation

In this section, we first introduce a novel variant of the hybrid multiplication
method, which saves 10.6% execution time compared to the original one from
[13]. Then, we combine our hybrid multiplication with Montgomery’s algorithm
to obtain different variants of a hybrid Montgomery multiplication. Finally, we
describe an efficient implementation of the conditional subtraction of M .

3.1 Optimized Hybrid Multiplication

A straightforward implementation of the product-scanning method processes a
single word of operand A and operand B at a time; therefore, in each iteration
of the inner loop, a word of each A and B is loaded from RAM, multiplied, and
added to a cumulative sum [6]. Gura et al [13] observed that the performance
of the product-scanning method can be significantly improved if several words
of the operands are processed in each iteration. This approach is, in essence, a
special form of loop unrolling and particularly efficient on processors featuring
a large number of registers. Taking the 8-bit AVR platform [1] as example, we
can easily process d = 4 (or even d = 5) bytes of the operands at a time, and
so reduce the number of loop iterations by a factor of d. In each iteration of the
inner loop, four bytes (i.e. 32 bits) of A and B are loaded from memory and
multiplied together to yield a 8-byte (i.e. 64-bit) result, which is then added to
a cumulative sum held in nine registers. Gura et al used the operand-scanning
approach for the 4-byte-by-4-byte (i.e. (32 × 32-bit)-bit) multiplications in the
inner loop as illustrated on the left of Figure 1. This multiplication technique is
referred to as “hybrid multiplication” because it combines product scanning in
the outer loop with operand scanning in the inner loop(s). The main advantage
of hybrid multiplication is a reduced number of load instructions compared to
the straightforward product-scanning method (see [13] for details).

New Speed Records for Montgomery Modular Multiplication 225

a0 · b0

a0 · b1

a0 · b2

a0 · b3

a1 · b0

a1 · b1

a1 · b2

a1 · b3

a2 · b0

a2 · b1

a2 · b2

a2 · b3

a3 · b0

a3 · b1

a3 · b2

a3 · b3

r0r1r2

Gura’s inner loop (d = 4)

a0 · b0

a0 · b1
a3 · b0

a1 · b2

a1 · b0
a2 · b0

a0 · b2
a2 · b2

a1 · b1

a3 · b1

a1 · b3
a2 · b3

a2 · b1

a0 · b3

a3 · b2

a3 · b3

r0r1r2r3r4

Liu’s inner loop (d = 4)

accumulator registers accumulator registers
r3r4r5r6r7r8 r5r6r7r8

a0 · b0

a1 · b0

a2 · b0

a3 · b0

a0 · b1

a1 · b1

a2 · b1
a3 · b1

a0 · b2

a1 · b2

a2 · b2

a3 · b2

a0 · b3
a1 · b3

a2 · b3

a3 · b3

r0r1r2

Our inner loop (d = 4)

accumulator registers
r3r4r5r6r7r8

Fig. 1. Comparison of inner-loop operation for hybrid multiplication

In recent years, there have been several attempts to improve the inner-loop
operation of the hybrid method, taking the properties of the AVR architecture
into account4. For example, Liu et al re-arranged in [19] the order of the multi-
plications in the inner loop (depicted in the middle of Figure 1), which allowed
them to decrease the number of mov (resp. movw) instructions compared to the
original hybrid method. Scott et al [24] used so-called “carry catcher” registers
to limit the propagation of carries and totally unrolled the loops to achieve an
extra speed-up. Our implementation of the inner loop, shown on the right side
of Figure 1, is inspired by both Liu et al and Scott et al. Just like Liu et al, we
schedule the mul instructions in a special order with the goal of reducing the
computational cost of the inner loop. If we assume d = 4, the 16 byte products
are calculated as shown in Figure 1, whereby the execution time elapses from
top to bottom, i.e. a0 · b2 is the first byte product we generate and a3 · b2 the
last. Our variant of the inner-loop operation borrows the idea of catching carry
bits from [24], but we do not use separate registers for that purpose.

To simplify the explanation of our inner loop, we split the 16 byte-products
into four blocks, indicated by dashed boxes in Figure 1. At the beginning, four
bytes of operand B (labeled b0, b1, b2 and b3 in Figure 1) along with two bytes
of A (namely a0 and a1) are loaded from RAM. We first multiply a0 by b2 and
copy the 16-bit product to two temporary registers, t0 and t1, with help of the
movw instruction. The register t1 holds the “upper” (i.e. more significant) byte of
the product and t0 the “lower” byte. Next, we form the product a0 · b0 and add
it along with the content of t0 to the three accumulator registers r0, r1 and r2. A
potential carry from this addition can be safely added into the temporary register

4 A special “feature” of AVR is that the mul instruction modifies the carry flag, which
complicates the implementation of multi-precision multiplication.

226 Z. Liu and J. Großschädl

t1 without overflowing it since the upper byte of the product of two 8-bit integers
is always smaller than 255. Thereafter, we multiply a0 by b1, add the resulting
16-bit product a0 · b1 to r1, r2, and propagate the carry from the last addition
to the temporary register t1. Again, it is not possible to overflow t1, not even in
the most extreme case where the operand bytes a0, b0, b1, and b2 as well as the
involved accumulator bytes r0, r1, and r2 have the maximum value of 255. After
computation of the last product of the first block (which is a1 · b3), we add t1 and
a1 · b3 to the three accumulator registers r3, r4, r5, and finally propagate the carry
bit from the last addition up to r8. In summary, the processing of the first block
in Figure 1 requires four mul, a movw, and a total of 13 add or adc instructions,
respectively.

The next two blocks are processed in essentially the same way as the first
block; the only actual difference is the loading of the remaining operand bytes
of A, namely a2 and a3, which is done during the second and third block, res-
pectively. Again, we use temporary register t1 to catch the carries generated in
the addition of the second and third byte-product of the respective block. The
loading of operand byte a2 is part of the second block and performed after the
multiplication of a0 by b3. Note that the byte a0 is not needed anymore once
a0 · b3 has been produced, which means we can load a2 into the register holding
a0. The operand byte a3 gets loaded after the multiplication of a1 by b2 in the
third block. At that time, the byte a1 is not needed anymore, and hence we can
load a3 into the same register, thereby overwriting a1. In summary, the second
and third block execute 12 and 11 add (or adc) instructions, respectively. The
number of mul and movw instructions are the same as for the first block.

The fourth block, in which the remaining four byte-products are generated
and added to the accumulator registers, differs a bit from the former three. We
first multiply a3 by b1 and move the resulting 16-bit product to the temporary
register pair t1, t0. Then, we compute the product a2 · b1, add its lower byte to
the accumulator register r3 and the upper byte to the two temporary registers
holding a3 · b1. The last addition does not produce a “carry out,” which means
this addition can not overflow the temporary register pair. Next in schedule is
the third product a3 · b0; it is processed in the same way as before and can also
not overflow the registers t1, t0. After finally multiplying a3 by b2, the tempo-
rary register t0 is added to r4, and a possible carry bit is added with t1 to the
product a2 · b3. The obtained sum is then added to the accumulator registers
r5, r6 and the carry from the last addition is propagated to r8. All in all, the
fourth block requires to execute 13 add (resp. adc) instructions, very similar to
the first block. The complete inner-loop operation for d = 4 consists of a total
of 46 add (or adc), 16 mul, eight ld (i.e. load), and four movw instructions. On
an ATmega128 processor [2], these instruction counts translate to an execution
time of 101 clock cycles per iteration of the inner loop (including update of the
loop-control variable and branch instruction). Another property of our loop is
its economic register usage; it occupies only 30 out of the 32 available registers
[1], which simplifies the implementation of Montgomery multiplication.

New Speed Records for Montgomery Modular Multiplication 227

Table 2. Comparison of instruction counts for 160-bit multi-precision multiplication
on the ATmega128 (without function call overhead)

Instruction type add mul ld st mov Other Total

CPI 1 2 2 2 1 cycles cycles

Classic Comba 1200 400 800 40 81 44 3805

Gura et al [13] 1360 400 167 40 355 197 3106

Uhsadel et al [27] 986 400 238 40 355 184 2881

Liu et al [19] 1194 400 200 40 212 179 2865

Zhang et al [32] 1092 400 200 20 202 271 2845

Our work (parameterised) 1213 400 200 40 100 185 2778

Hutter et al [15] (looped) 1252 400 92 66 41 276 2685

Scott et al [24] (unrolled) 1263 400 200 40 70 38 2651

Hutter et al [15] (unrolled) 1240 400 80 60 2 68 2395

Seo et al [25] (unrolled) 1240 400 70 60 n/a 56 2356

Seo et al [26] (unrolled) 1230 400 70 60 n/a 56 2346

3.2 Evaluation of Our Optimized Hybrid Multiplication

Table 2 shows the instruction counts and total execution time (in clock cycles)
of our improved hybrid method for a (160 × 160)-bit multiplication on an AT-
mega128 processor [2]. We use (160 × 160)-bit multiplication as benchmark to
allow for a direct comparison with past work that targeted ECC. Note that the
instruction numbers in the columns labeled with add, ld, and mov also include
adc, ldd, and movw, respectively (i.e. we do not differentiate between add and
adc as they both require a single cycle on AVR processors). Our variant of the
hybrid method executes a (160× 160)-bit multiplication in just 2778 cycles on
the ATmega128, which is approximately 10.6% faster than the original hybrid
method of Gura et al [13]. This saving in execution time is mainly due to the
fact that we have to carry out only 100 mov (resp. movw) instructions, whereas
Gura et al need 355 mov or movw instructions. Furthermore, our special sched-
uling of the multiplications in the inner loops reduces the number of add (and
adc) instructions, similar to the implementations described in [19] or [32]. The
hybrid multiplication technique of Uhsadel et al [27] requires 2881 cycles, even
though their implementation (as well as the one of Gura et al [13]) is based on
d = 5 for 160-bit operands instead of d = 4 as in our work.

In general, when analyzing different software libraries for multiple-precision
arithmetic, one has to distinguish three implementation options with respect to
the processing of loops: unrolled, looped, and parameterized. Loop unrolling is
well known to improve performance as it eliminates the loop overhead (such as
the updating of a loop counter or execution of a branch instruction) and allows
for some extra optimizations. For example, the first and last iteration of a loop
often differs from the middle iterations and can, therefore, be specifically tuned
when the loop is unrolled. The drawbacks of loop unrolling are large code size
(i.e. increased program memory) and poor flexibility (resp. scalability) since an

228 Z. Liu and J. Großschädl

Table 3. Comparison of code size (in bytes) of “conventional” multiplication (without
reduction) for operand lengths ranging from 160 to 1024 bits

Implementation 160 192 224 256 512 1024

Hutter et al [15] (looped) 1562 1866 1538 1766 1544 1572

Hutter et al [15] (unrolled) 3778 5436 7340 9558 37884 151044

Our work (parameterised) 514 514 514 514 514 514

unrolled implementation supports just a single operand length. At the opposite
end of the design space are parameterized implementations, which allow one to
pass the operand length as a parameter to a function call. Such parameterized
implementations are very flexible since one and the same function can process
operands of any size, but this flexibility comes at the expense of decreased per-
formance due to the fact that (full) loop unrolling and other optimizations are
not possible anymore. Somewhere in the middle between these two approaches
are looped implementations, which have “rolled” loops but still support only a
single operand length. Looped implementations outperform their parameterized
counterparts since they provide more avenues for optimization. Having a fixed
operand helps to improve the performance as the number of loop iterations is
constant and can therefore be “hard-coded.” Thus, it is not necessary to waste
a register for storing the operand length, which leaves more registers available
for the actual computation.

Even though our implementation of the hybrid method is parameterized, it
compares very well with looped and unrolled implementations. For example, the
looped version of Hutter et al’s operand caching technique [15] is just 93 cycles
faster than our work (2685 vs. 2778 cycles, see Table 2), even though their code
is optimized for 160-bit operands, while our implementation supports operands
of any length. However, this slight performance gain comes at the cost of three
times larger codes size, which can be seen from Table 3. Furthermore, one has
to consider that Hutter et al achieved their execution time of 2685 clock cycles
by using all 32 available registers5 of the ATmega128. The unrolled implemen-
tations from [15,24,25,26], while being fast, suffer from a prohibitively large code
size, especially for operands exceeding 256 bits in size (see Table 3). Full loop
unrolling may be a viable optimization for ECC, but not for RSA.

3.3 Hybrid Montgomery Multiplication

Similar to the “ordinary” multiplication (without modular reduction), also the
six Montgomery multiplication techniques described in this paper can be made

5 Note that the fastest implementation of a conventional multiplication (i.e. a multi-
plication without reduction) does not necessarily lead to the fastest implementation
of Montgomery multiplication. Generic algorithms for modular multiplication have
three input operands (namely A, B, and M), which increases the register pressure
compared to an ordinary multiplication. Our variant of the hybrid method occupies
only 30 registers and, thus, allows for easy integration of Montgomery reduction.

New Speed Records for Montgomery Modular Multiplication 229

significantly faster by applying the hybrid method in order to take advantage
of the large register file of the AVR platform [1]. Processing several bytes of the
operands in each inner-loop iteration yields a performance gain by reducing the
number of loads/stores and loop overhead. By combining the hybrid technique
with the six Montgomery variants, we get six hybrid Montgomery multiplica-
tion methods, which we call hybrid SOS (HSOS), hybrid FIPS (HFIPS), hybrid
CIOS (HCIOS), hybrid CIHS (HCIHS), hybrid FIOS (HFIOS), and hybrid SPS
(HSPS). Our implementations of these six algorithms have in common that, in
each iteration of the inner loop, four bytes of the operands are loaded into the
register file and the total number of loop iterations is accordingly reduced by a
factor of four compared to the corresponding straightforward (i.e. non-hybrid)
Montgomery multiplication technique.

The hybrid product-scanning techniques, namely HFIPS and HSPS, execute
operations of the form (t, u, v) ← (t, u, v) + a · b in the inner loops, whereby the
two operand words a and b consist of four bytes each. A total of nine registers
is necessary to hold the cumulative sum (t, u, v). Therefore, we can employ the
highly-optimized hybrid implementation of the inner-loop operation shown on
the right of Figure 1 and explained in detail in Section 3.1. Unlike HSPS, the
HFIPS method has to keep four pointers (namely the pointers to the arrays in
which the two operands A, B, the result Z, and the modulus M are stored) in
registers during the execution of the inner loop to reach top performance. The
inner-loop implementation from Subsection 3.1 is ideally suited for the HFIPS
method since it needs only 30 registers so that the remaining two registers can
be used to hold the pointer to M . The four hybrid Montgomery multiplication
methods based on operand-scanning (i.e. HSOS, HCIOS, HCIHS, and HFIOS)
have a slightly different inner loop due to the fact that they execute operations
of the form (u, v) ← a · b+ c+ d and (u, v) ← a · b+ c. We implemented these
operations to process four bytes at once (i.e. per loop iteration) and optimized
them following exactly the same strategies as discussed in Section 3.1.

3.4 Regular Execution of Final Subtraction

As shown in Algorithm 1, the calculation of the Montgomery product may re-
quire a final subtraction of the modulus M to get a fully reduced result in the
range of [0,M − 1]. However, this final subtraction is not carried out when the
intermediate result after step 3 of Algorithm 1 is already smaller than M . It is
well known that such a conditional execution of a subtraction typically entails
observable differences in the power consumption profile, which can be exploited
to mount an SPA attack as described in [30] for RSA and in [29] for an elliptic
curve cryptosystem. Walter proposed in [28] a smart approach to eliminate the
final subtraction by using a larger Montgomery radix of e.g. R = 2n+2 instead
of R = 2n and adapting the Montgomery algorithm accordingly. However, this
approach requires to calculate the Montgomery product with longer operands
(since, as in our case, the operand length must be a multiple of 32), which can
severely degrade performance. To overcome this problem, we implemented the
final subtraction in an unconditional way by “zeroing out” the words mi of the

230 Z. Liu and J. Großschädl

Algorithm 4. Final subtraction without conditional statements

Input: (s + 1)-word Montgomery product Z = (zs, zs−1, . . . , z1, z0) with zs ∈ {0, 1}
and s-word modulus M = (ms−1, . . . ,m1,m0)

Output: Z = Z −M if zs = 1, otherwise, Z = Z − 0
1: mask ← −zs mod 2w {w is the bitlength of a word}
2: (ε, z0) ← z0 − (mi & mask)
3: for i from 1 by 1 to s− 1 do
4: (ε, zi) ← zi − (mi & mask)− ε
5: end for
6: return Z = (zs−1, . . . , z1, z0)

modulus M , if necessary, as shown in Algorithm 4. The notation in Algorithm
4 follows that of [14], i.e. the word-subtractions are carried out with help of an
“subtract with borrow” instruction whereby ε represents the borrow bit.

Based on the concept of incomplete modular arithmetic [31], we do not per-
form an exact comparison between Z and M , but rather use the value of the
most significant word zs of Z to determine whether Z is too big or not. More
precisely, we use zs to derive a mask that is either a zero word (if zs = 0) or an
“all 1” word (if zs = 1). As shown in line 1 of Algorithm 4, such a mask can be
simply generated by forming the two’s complement of zs. The mask is applied
to the bytes of M (i.e. each mi is logically ANDed with the mask) before they
are subtracted from the words zi using subtract-with-borrow instructions. In
this way, we either subtract the modulus M from product Z (if zs = 1) or we
subtract 0 (if zs = 0) so that Z remains the same. The final result may not be
the least non-negative residue, but is always in the range [0, 2n − 1] and hence
fits into s words. This incomplete reduction does not introduce any problems
in practice since the n-bit result, even if not fully reduced, can still be used as
operand in a subsequent Montgomery multiplication (see [31] for details).

4 Performance Evaluation and Comparison

We implemented the six hybrid Montgomery multiplication algorithms in AVR
assembly language and evaluated their performance for operands ranging from
160 to 1024 bits. Table 4 shows the simulated execution times we obtained on an
ATmega128 processor [2]; these figures include time for the unconditional final
subtraction introduced in Section 3.4. Our fastest method, HFIPS, only needs
6080 clock cycles to perform a full 160-bit Montgomery multiplication, which is
approximately 1.4 times faster than the slowest algorithm, namely HFIOS. All
obtained execution times are visualized on the left of Figure 2.

Besides the computational complexity of algorithms themselves, there are a
few other factors affecting the actual performance of the various multiplication
methods. For example, the overhead for controlling the loop or the cost to find
the correct start address of arrays also impact the execution time. Our results
indicate that the interleaved versions of hybrid Montgomery multiplication are
sightly faster than the separated versions, e.g. HFIPS outperforms HSPS, and

New Speed Records for Montgomery Modular Multiplication 231

Table 4. Execution time (in clock cycles) of six hybrid Montgomery multiplication
techniques for different operand lengths

Algorithm 160 192 224 256 512 768 1024

HFIPS 6080 8539 11420 14723 56339 124964 220596

HSPS 6648 9171 12110 15465 57281 125722 221044

HCIOS 7140 9983 13310 17121 65033 143922 253787

HSOS 7921 10956 14500 18553 69301 152626 268788

HCIHS 8127 11385 15197 19563 74435 164764 290549

HFIOS 8216 11660 15716 20384 79760 178315 316018

0k

5k

10k

15k

20k

25k

160 192 224 256

Operand length (bits)

E
xe

cu
tio

n
 t

im
e
 (

cl
o
ck

 c
yc

le
s) HFIPS HSPS

HSOS HCIOS

HCIHS HFIOS

0k

5k

10k

15k

20k

25k

30k

35k

160 192 224 256

Operand length (bits)

E
xe

cu
tio

n
 t

im
e
 (

cl
o
ck

 c
yc

le
s) TinyECC

MIRACL

This work

Fig. 2. Performance comparison of our six Montgomery algorithms (left) and compar-
ison or our HFIPS method with Miracl and TinyECC (right)

HCIOS is faster than HSOS. This is mainly because the interleaved versions, in
general, incur less overhead than the separated versions (i.e. reduced overhead
for controlling loops, handling pointers, and calculating start addresses).

The HCIHS and HFIOS method are the slowest of the six hybrid Montgo-
mery multiplication techniques shown in Table 4. The poor performance of the
HCIHS approach is primarily due to the overhead caused by frequent loadings
of operands into registers. On the other hand, HFIOS uses a lot of time for the
pointer arithmetic required to obtain the correct start address of the operands
at the beginning of a loop. Another disadvantage of this method is that it has to
handle six variables, namely aj , bi, mj , q, t, and zj , in the inner loop. Since the
hybrid multiplication of aj · bi occupies almost all of the 32 working registers, a
number of expensive push and pop operations are required to save pointers on
the stack. The cost of the stack operations in HFIOS is higher than cost of the
frequent operand loadings in HCIHS; thus, HFIOS is slower than HCIHS.

Table 5 compares our hybrid product-scanning methods, namely HSPS and
HFIPS, with the two popular cryptographic libraries TinyECC [18] and Miracl
[5] for operands ranging from 160 to 1024 bits in size. The right side of Figure
2 visualizes the execution times of TinyECC, Miracl, and HFIPS, which is the
fastest of our six implementations of Montgomery multiplication. To ensure a
fair comparison, we downloaded the source code of TinyECC and Miracl from

232 Z. Liu and J. Großschädl

Table 5. Montgomery Multiplication timings (in clock cycles) of TinyECC, Miracl,
and our implementation of the HSPS and HFIPS method

Implementation 160 192 224 256 512 1024

TinyECC [18] 14929 20060 25765 n/a n/a n/a

Miracl [5] 7753 10653 14033 17761 58806 221329

This work (HSPS) 6648 9171 12110 15465 57281 221044

This work (HFIPS) 6080 8539 11420 14723 56339 220596

the corresponding home pages, compiled them with AVR studio, and simulated
the execution times in a coherent fashion. Both our HFIPS and HSPS method
are more than twice as fast as the modular multiplication of TinyECC. On the
other hand, compared to the Montgomery multiplication of Miracl, our HFIPS
method saves 21.6%, 19.8%, 18.6%, 17.1% execution time for 160, 192, 224, and
256-bit operands, respectively. Note that the performance gap between HFIPS
and Miracl becomes smaller when the operand size grows above 256 bits since
Miracl employs the asymptotically faster Karatsuba technique [16] to speed up
multiplication when the operand length exceeds a certain threshold.

5 Conclusions

The contribution of this work is threefold. First, we presented a new approach to
implement hybrid multiplication, saving 10.6% execution time compared to the
original method of Gura et al (CHES 2004). This performance gain is achieved
by re-ordering the sequence of multiplications in the inner loop along with an
efficient way of catching carries, thereby reducing the total number of add and
mov (resp. movw) instructions. Another advantage of our hybrid technique is its
suitability to implement interleaved variants Montgomery multiplication since
it occupies only 30 registers of an AVR processor. Our second contribution is a
through analysis and comparison of six hybrid variants of Montgomery modu-
lar multiplication. Based on a more precise cost model along with some small
optimizations (e.g. elimination of the ADD function for carry propagation), we
conclude that the FIPS and SPS method reach the best performance, which is
contradicting previous results of Koç et al, who found the CIOS method to be
superior. A detailed benchmarking on an 8-bit ATmega128 processor confirms
our theoretical evaluation and shows that the hybrid FIPS technique requires
merely 6080 clock cycles to execute a 160-bit Montgomery multiplication. This
result sets a new speed record for modular multiplication on an 8-bit platform
and outperforms the Miracl library by more than 20%. Our implementation is
parameterized and very compact in terms of code size. The third contribution
of this paper is a simple yet efficient approach to perform the conditional final
subtraction in an unconditional way by “zeroing out” the words of the modulus
if the intermediate result is already smaller than 2n. This ensures that always
exactly the same sequence of instructions is executed, regardless of the actual
value of the operands, which helps to thwart certain side-channel attacks.

New Speed Records for Montgomery Modular Multiplication 233

References

1. Atmel Corporation. 8-bit ARVR© Instruction Set. User Guide (July 2008),
http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf

2. Atmel Corporation. 8-bit ARVR© Microcontroller with 128K Bytes In-System
Programmable Flash: ATmega128, ATmega128L. Datasheet (June 2008),
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

3. Barreto, P.S., Kim, H.Y., Lynn, B., Scott, M.: Efficient algorithms for pairing-based
cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368.
Springer, Heidelberg (2002)

4. Barrett, P.: Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

5. CertiVox Corporation. CertiVox MIRACL SDK. Source code (June 2012),
http://www.certivox.com

6. Comba, P.G.: Exponentiation cryptosystems on the IBM PC. IBM Systems Jour-
nal 29(4), 526–538 (1990)

7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

8. Dussé, S.R., Kaliski Jr., B.S.: A cryptographic library for the Motorola DSP 56000.
In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 230–244. Springer,
Heidelberg (1991)

9. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algo-
rithms 27(1), 129–146 (1998)

10. Großschädl, J., Avanzi, R.M., Savaş, E., Tillich, S.: Energy-efficient software im-
plementation of long integer modular arithmetic. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 75–90. Springer, Heidelberg (2005)

11. Großschädl, J., Kamendje, G.-A.: Architectural enhancements for montgomery
multiplication on embedded RISC processors. In: Zhou, J., Yung, M., Han, Y.
(eds.) ACNS 2003. LNCS, vol. 2846, pp. 418–434. Springer, Heidelberg (2003)

12. Großschädl, J., Kamendje, G.-A.: Optimized RISC architecture for multiple-
precision modular arithmetic. In: Hutter, D., Müller, G., Stephan, W., Ullmann,
M. (eds.) Security in Pervasive Computing 2003. LNCS, vol. 2802, pp. 253–270.
Springer, Heidelberg (2004)

13. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and RSA on 8-bit cPUs. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

14. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-
raphy. Springer (2004)

15. Hutter, M., Wenger, E.: Fast multi-precision multiplication for public-key cryptog-
raphy on embedded microprocessors. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 459–474. Springer, Heidelberg (2011)

16. Karatsuba, A.A., Ofman, Y.P.: Multiplication of multidigit numbers on automata.
Soviet Physics - Doklady 7(7), 595–596 (1963)

17. Koç, Ç.K., Acar, T., Kaliski, B.S.: Analyzing and comparing Montgomery multi-
plication algorithms. IEEE Micro 16(3), 26–33 (1996)

18. Liu, A., Ning, P.: TinyECC: A configurable library for elliptic curve cryptography
in wireless sensor networks. In: Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (IPSN 2008), pp. 245–256. IEEE
Computer Society Press (2008)

http://www.atmel.com/dyn/resources/prod_documents/doc0856.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.certivox.com

234 Z. Liu and J. Großschädl

19. Liu, Z., Großschädl, J., Kizhvatov, I.: Efficient and side-channel resistant RSA
implementation for 8-bit AVR microcontrollers. In: Proceedings of the 1st Interna-
tional Workshop on the Security of the Internet of Things, SECIOT 2010 (2010)

20. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2007)

21. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519–521 (1985)

22. National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). FIPS Publication 186-4 (July 2013),
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

23. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

24. Scott, M., Szczechowiak, P.: Optimizing multiprecision multiplication for pub-
lic key cryptography. Cryptology ePrint Archive, Report 2007/299 (2007),
http://eprint.iacr.org

25. Seo, H., Kim, H.: Multi-precision multiplication for public-key cryptography on
embedded microprocessors. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS,
vol. 7690, pp. 55–67. Springer, Heidelberg (2012)

26. Seo, H., Kim, H.: Optimized multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. International Journal of Computer and
Communication Engineering 2(3), 255–259 (2013)

27. Uhsadel, L., Poschmann, A., Paar, C.: Enabling full-size public-key algorithms on
8-bit sensor nodes. In: Stajano, F., Meadows, C., Capkun, S., Moore, T. (eds.)
ESAS 2007. LNCS, vol. 4572, pp. 73–86. Springer, Heidelberg (2007)

28. Walter, C.D.: Montgomery exponentiation needs no final subtractions. Electronics
Letters 38(21), 1831–1832 (1999)

29. Walter, C.D.: Simple power analysis of unified code for ECC double and add.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 191–204.
Springer, Heidelberg (2004)

30. Walter, C.D., Thompson, S.: Distinguishing exponent digits by observing modular
subtractions. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 192–207.
Springer, Heidelberg (2001)

31. Yanık, T., Savaş, E., K. Koç, Ç.: Incomplete reduction in modular arithmetic. IEE
Proceedings – Computers and Digital Techniques 149(2), 46–52 (2002)

32. Zhang, Y., Großschädl, J.: Efficient prime-field arithmetic for elliptic curve cryp-
tography on wireless sensor nodes. In: Proceedings of the 1st International Con-
ference on Computer Science and Network Technology (ICCSNT 2011), vol. 1, pp.
459–466. IEEE (2011)

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://eprint.iacr.org

Minimizing S-Boxes in Hardware by Utilizing

Linear Transformations

Sebastian Kutzner, Phuong Ha Nguyen,
Axel Poschmann, and Marc Stöttinger

Physical Analysis and Cryptographic Engineering (PACE),
Temasek Laboratories at Nanyang Technological University, Singapore

{skutzner,aposchmann,mstottinger}@ntu.edu.sg

Abstract. Countermeasures against side-channel analysis attacks are
increasingly considered already during the design/implementation step of
cryptographic algorithms for embedded devices. An important challenge
is to reduce the overhead (area, time) introduced by the countermeasures,
and, consequently, in the past years a lot of progress has been achieved
in this direction. In this contribution we propose a further optimization
of decomposing 4-bit S-boxes by exploiting affine transformations and a
single shared quadratic permutation. Thereby many various S-boxes can
be merged into one component and thus reduce the resource overhead.
We applied our proposed scheme on a Threshold Implementation masked
Present S-box and its inverse in order to construct a merged masked S-
box, which can be used for both encryption and decryption. This design
saves up to 24% resources on a Virtex-5 FPGA platform and up to 28%
for an ASIC implementation compared to previously published designs.
It is noteworthy to stress that our technique is not restricted to the TI
countermeasure, but also allows to reduce the resource requirements of
the non-linear layer of cryptographic algorithms with a set of different
S-boxes, such as SERPENT or DES, amongst others.

1 Introduction

Since the introduction of side-channel analysis attacks by Kocher in [9], these
attacks gained more and more attention in the area of circuit design for security-
critical applications. Commonly, these non-invasive implementation attacks are
used to reveal secret parameters or values from devices running cryptographic
algorithms by exploiting their physical behavior during runtime. More precisely,
the physical characteristic of the implementation, such as the power consump-
tion [9], the electromagnetic emission [2], or the execution duration [8] of an
implemented algorithm, is used to gather additional information about the not
directly accessible, but still exploitable intermediate values. Among these attacks
differential power analysis attacks have become the most popular and commonly
conducted side-channel analysis attacks. They exploit the data-dependent dy-
namic power consumption of CMOS-technology based circuits by using sophis-
ticated statistical methods in order to verify hypotheses about the used secret
key. For further information about power analysis attacks we refer to [13].

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 235–250, 2014.
c© Springer International Publishing Switzerland 2014

236 S. Kutzner et al.

Of course countermeasures have been proposed meanwhile to cope with such
kind of attacks. For instance, the masking countermeasure randomizes the in-
termediate values to gain resistance against power analysis attacks on software
and hardware implementations. But even so the implementation of the masking
scheme itself has to be carried out carefully in order to avoid data-dependent
glitches. It was shown in [7, 14] that these data-dependent glitches especially in
hardware implementations can be exploited and by that compromise the mask-
ing countermeasure. One promising efficient masking scheme, which is provable
secure against glitches and resistant against first-order power analysis attacks,
is the Threshold Implementation (TI) countermeasure, cf. [16, 17].

In this paper we further investigate optimizations of the TI masking scheme.
We focus on a general optimization for all 4-bit S-boxes,which can be decomposed
into quadratic S-boxes. These S-boxes are grouped together under the term A16.
The term and classification of A16 was introduced by Bilgin et al in [3]. Our
optimization aims at minimizing the resource overhead of a 4-bit S-box with 3-
shares, which is generated by a newly proposed decomposition step based on the
original 4-bit S-box. In particular, the proposed decomposition procedure enables
us to combine any of the S-boxes in A16 into one component using the same
quadratic permutation core. Hence we are able to merge several 4-bit S-boxes
of different S-box classes1 together into one shared and TI masked component.
As an illustrative example how the S-box lookup and its inverse can be merged
efficiently, we applied the proposed decomposition scheme on the S-box and the
inverse of S-box of the Present [4], a lightweight block cipher standardized
in ISO/IEC-29192 [1]. We are merging the Present S-box SPresent(·) and the
inverse Present S-box S−1

Present
(·) into one component, sharing the same non-

linear function for encryption and decryption. By doing so the resource overhead
of the over all Present design can be reduced even further.

The remainder of this paper is organized as follows: In Sect. 2 we discuss in
more in detail how various 4-bit S-boxes can be decomposed for the TI coun-
termeasure by using the same quadratic permutation. In Sect. 3 we show how
to apply the proposed decomposition on the Present S-box for performing en-
cryption and decryption. Before we conclude this paper in Sect. 6, we discuss an
FPGA implementation of the merged S-box in Sect. 4, as well as its side-channel
resistance in Sect. 5.

2 Decomposing S-boxes for TI Scheme

The core idea of the TI masking scheme is to share the computation of a non-
linear Boolean function of dth order into d+1 shares. Hence, the computation of
the intermediate values is masked and not directly exploitable by a straightfor-
ward power analysis attack. Initially, a 4-bit S-box as for example in Present

2

has to be shared by four shares. Due to a sophisticated decomposition of the

1 Members of A16.
2 The non-linear permutation of that S-box is cubic.

Minimizing S-Boxes in Hardware by Utilizing Linear Transformations 237

S-box into quadratic and linear Boolean terms, only three shares are required,
as it has been demonstrated in [20].

In this section we investigate the decomposability of so-called optimal 4-bit
S-boxes in a more general way. First, we recall the definition of optimal S-boxes
and some background about decomposing non-linear functions for usage in the
TI-scheme. After that we demonstrate how to decompose a subset of all optimal
4-bit S-boxes into quadratic Boolean functions by using the same non-linear core
permutation G and affine transformations.

2.1 Optimal 4-Bit S-boxes

A 4-bit S-box is considered as cryptographically optimal, if it fulfills the natural
requirement to be resistant against linear and differential cryptanalysis as best
as possible. According to the definitions in [12] an optimal 4-bit S-box has the
following properties:

Definition 1. Let S: F4
2→F4

2 be an S-box. If S(·) fulfills the following conditions
we call S(·) an optimal S-box:

1. S(·) is a bijection,
2. Lin(S(·)) = 8,
3. Diff(S(·)) = 4.

The values Lin(S(·)) and Diff(S(·)) are measures for the resilience of an S-box
against linear attacks and differential attacks, respectively. The chosen values of
Lin(S) and Diff(S) are discussed in [12] based on observation by Nyberg in [18].
Furthermore, the authors of [12] categorize all possible optimal 4-bit S-boxes
into 16 classes of non-equivalent optimal S-boxes. Based on the observation and
discussion in [6] and [19] resistance against linear attacks Lin(S(·)) of an S-box
and the resistance against differential attacks Diff(S(·)) of an S-box does not
change if an affine transformation is applied on the S-box. This linear equivalence
between two optimal S-boxes (based on Definition 1) can be expressed formally
with Definition 2:

Definition 2. Two S-boxes S(·), S′
(·) are linearly equivalent iff there exist two

4×4-bit invertible matrices A,B and two 4-bit vector c, d such that

S(x) = A(S
′
(Bx⊕ c)⊕ d), ∀x ∈ {0, . . . , 15}.

Based on Definition 2 two linear equivalent S-boxes S(·), S′
(·) with the same

properties can be transformed into each other and thus belong to the same
categorization of S-box class. For sake of convenience and readability with the
reference, we follow the notations in [12], so the affine 4 × 4-bit transformation
matrices will be noted in a hexadecimal form from now on:

A =

⎛⎜⎜⎝
1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a
4
8
b

⎞⎟⎟⎠ =
(
0xb84a

)
, (1)

238 S. Kutzner et al.

2.2 Decomposition of Optimal 4-bit S-boxes for the TI Scheme

The TI masking scheme is based on secret sharing and distributed computation.
In particular the non-linear element of the cipher, namely the S-box of degree d, is
distributed with the d+1 shares. The final result can be obtained by an XORing
the d+1 shares, thereby the correctness property of the masked permutation
is fulfilled. In each part of the computation only d shares are involved, the
computation is fully independent from the original secret and assure the non-
completeness property of the scheme. The last property which has been fulfilled
for the shared computation is the so-called uniformity. It assures that the output
distribution of the shared computed permutation is identical to the unshared one.

The reason to decompose 4-bit S-boxes into a combination of quadratic and
linear Boolean functions is to reduce the number of shares required for a TI-
protected implementation, which in turn reduces the resources required. A de-
composition of an optimal 4-bit S-box is given by the following definition:

Definition 3. If a vectorial Boolean function such as a permutation S(·) can
be written as a composition of several lower degree vectorial Boolean functions
f1(·), f2(·), . . . , fn(·), i.e S(·) = fn(. . . f2(f1(·))), then f1(·), f2(·), . . . , fn(·) is
called the decomposition of S(·).

After a given 4-bit S-box has been decomposed into several 4-bit quadratic
permutations we can apply the TI countermeasure by using each of the 4-bit
quadratic permutations to construct a 12-bit permutation, cf. [17]. In order to
assure a proper masking of the intermediate calculations, this 12-bit quadratic
permutation has to be so-called shareable by definition 4.

Definition 4. A 4-bit linear or quadratic permutation is called sharable if it
can be converted to a 12-bit permutation which fulfils the following properties of
TI: correctness, non-completeness and uniformity, cf. [17].

Note 1. The composition of a quadratic permutation and a linear permutation
is again quadratic. Hence, a quadratic permutation is able to be described as
a composition of linear and quadratic permutations. Recalling the equivalence
observation in Definition 2, one can easily see that if one S-box of an optimal
4-bit S-box class is decomposable and sharable, then all S-boxes of this class are
shareable, see [3].

Hence, all 4-bit S-boxes of the S-box classes 0, 1, 2, 4, 5, 7, 8, 13 out of the 16
classes defined in [12] are sharable and forming a cluster of S-box classes refereed
to as group A16, cf. [10].

2.3 Decomposing all S-Boxes of A16 with One Quadratic
Permutation

The same quadratic permutation can be used for sharing the 4-bit permuta-
tion to construct a 12-bit permutation for each S-box of the same S-box class,

Minimizing S-Boxes in Hardware by Utilizing Linear Transformations 239

Table 1. Core permutation G

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G(x) 0 4 1 5 2 15 11 6 8 12 9 13 14 3 7 10

if definition 2 and definition 4 are exploited. Furthermore, due to careful selec-
tion of the quadratic permutation, it can be reused for each share in an iterative
manner to reduce resource overhead, see [10]. As reported in [10], we can also
construct an arbitrary S-box by exploiting a consecutive execution of an appro-
priate quadratic permutation G′ so that S′(·) = G′(G′(·)). We investigated if it
is possible to find a generic procedure to generate all shareable S-boxes of A16

in a similar manner. As result we came up with a special decomposition struc-
ture in order to further generalize the idea of sharing a basic quadratic 4-bit
permutation as a non-linear mapping core for shareable S-boxes of A16:

S(·)=fn(. . .f2(f1(·)))=Mn ·G(Mn−1G(. . .M1(G(·))), (2)

whereMn, . . . ,M0 are invertible matrices and G is a quadratic, sharable permu-
tation of A16. This new S-box transformation utilizes definition 2, definition 3,
and the idea behind lemma 3 and lemma 6 in [3], that each S-box of the group
A16 can be composed by a sequence of other S-boxes. This means by using this
appropriate core permutation G, listed in Tab. 1, we can construct each S-box
belonging to A16 with the core permutation G and affine transformation. So each
S-box belonging to one of the classes within the group A16 can be constructed by
using the decomposition description of Eq. (2) with an appropriate transposition
matrix M cls and G as given in Tab. 2.

BecauseG is a permutation within the groupA16, it is a sharable quadratic per-
mutation and can be shared by a 3-share TI-scheme. Hence, based on Definition 2
and Note 1 we are able to construct all possible optimal S-boxes of A16. By using

Table 2. S-box representation of A16 using core G

S-box class Transformation matrix Transformation to the S-box S(x)

0 Mcls0 = 0x1249 S(·) = G(Mcls0G(·))
1 Mcls1 = 0x1248 S(·) = G(Mcls1G(·))
2 Mcls2 = 0x1259 S(·) = G(Mcls2G(·))
4 Mcls4 = 0x12e6 S(·) = G(Mcls4G(G(·)))
5 Mcls5 = 0x14a7 S(·) = G(Mcls5G(G(G(·))))
7 Mcls7 = 0x1843 S(·) = G(Mcls7G(G(·)))
8 Mcls8 = 0x1295 S(·) = G(Mcls8G(·))
13 Mcls13 = 0x134b S(·) = G(Mcls13G(G(·)))

240 S. Kutzner et al.

the decomposition construction in Tab. 2 and appropriate affine transformation
due to Definition 2 we can implement any TI-masked 4-bit optimal S-box which
is equivalent to one of the S-boxes in A16. Utilizing these two tricks we can reduce
the time complexity to find a decomposition for a given S-box to 219.

Furthermore, we can use this trick to share the resources of an S-box and its
inversion in order to use only one component to perform the substitution for the
encryption and decryption of S(·) and S−1(·) ∈ A16. For example, the S-box
S(·) used in Present and its inverse S−1(·) of can be merged together and used
in a 3-share masked TI countermeasure implementation.

3 Application on the Present Block Cipher

In this section we apply the proposed decomposition method for sharing G on
the Present S-box SPresent(·) and its inverse S−1

Present
(·). First, we present the

decomposed design for the S-box and the inverse S-box of Present separately
by means of determining the correct parameter A, B, c, and d of the affine
transformations in definition 2. Second, we show how to construct a merged S-
box by combining SPresent(·) and S−1

Present
(·), while using the same core function

G. At the end of this section we describe how to share the commonly used
quadratic core function G for its application in the TI masking scheme.

3.1 S-Box Decomposition

Encryption S-box. The decomposition of SPresent(·) in Eq. (2) uses
M cls1 = 0x1248, because SPresent(·) belongs to class 1, see Tab. 2. Please note
that in this case M cls1 = I and thus, the matrix multiplication of M cls1 can
be spared in Eq. 3 without changing the description of the S-box. This S-box
description is similar to the S-box decomposition in [10].

SPresent(x) =A(S
′(Bx⊕ c)⊕ d) = A(G(M cls1G(Bx ⊕ c))⊕ d),

=A(G(G(Bx ⊕ c))⊕ d), ∀x ∈ {0, . . . , 15}, (3)

The parameter for affine transformation from S′(·) to S(·) is given in the ap-
pendix at Subsect. A.

Decryption S-box. The decomposition of S−1
Present

(·) has the same basic struc-
ture as the decomposition of SPresent(·), because the inverse of the Present

S-box also belongs to class 1 of A16. Hence, the S
−1
Present

(·) can also be expressed
by a linear combination of the linearly equivalent by. Eq. (4).

S−1
Present

(x) = Ã(S′−1(B̃x⊕ c̃)⊕ d̃) = Ã(G(M cls1G(B̃x⊕ c̃))⊕ d̃),

=Ã(G(G(B̃x⊕ c̃))⊕ d̃), ∀x ∈ {0, . . . , 15} (4)

Minimizing S-Boxes in Hardware by Utilizing Linear Transformations 241

Optimized TI S-box from [11] Proposed merged TI S-box

ĩn1

ĩn2

ĩn3 õut3

õut2

õut1

in1

in2

in3

out1

out2

out3

in1

in2

in3

ĩn1

ĩn2

ĩn3

out1

out2

out3

õut3

õut2

õut1E
nc

ry
pt

io
n

D
ec

ry
pt

io
n

Original TI S-box from [20]

in1

in2

in3

out1

out2

out3

B−1(x+ c)

ĩn1

ĩn2

ĩn3 õut3

õut2

õut1B̃−1(x+ c̃)

B−1(x+ c)

Fig. 1. S-box decomposition schemes

Actually, the same quadratic mapping function G(·), which was used to de-
compose SPresent(·), can be used again to construct S−1

Present
(·) as described in

Sect. 2. We derived the appropriate parameter values of Ã, B̃, c̃ and d̃ by hand
in order to satisfy Eq. (4), see Subsect. A.

Merged S-box. Furthermore, by employing the proposed decomposition struc-
ture in Sect. 2, the S-box properties of SPresent(·) and S−1

Present
(·) can be ex-

ploited to find a suitable linear transformation between them. In that manner
the S(·) can be reused in Eq. (4) with suitable parameters for both the affine
transformation, inside and outside of the non-linear Boolean mapping function
G(·), cf. Eq. (5). Suitable parameters for fulfilling the Eq. (5) are provided in
the appendix, given in Eq. (10) and in Eq. (12).

S−1
Present

(x) = Ã(S′−1(B̃x⊕ c̃)⊕ d̃) = H(S(Ex⊕ f)⊕ q)

= H(A(G(G(B(Ex⊕f)⊕c))⊕d)⊕q),
∀x ∈ {0, . . . , 15} (5)

Applying the decomposition methods of SPresent(·) and S−1
Present

(·) in Eq. (5)
the two S-box modules can efficiently be merged and thus, the resource overhead
is reduced, cf. Fig. 1.

3.2 Decomposed S-box Structure for Threshold Implementation

The TI masking scheme can be applied to the merged design of the Present

S-box of S(·) and S−1(·) straightforward, if the core permutation G is sharable.

242 S. Kutzner et al.

Only G has to be shared, because the affine transformation exploiting the linear
equivalence between SPresent(·) and S−1

Present
(·) are linear. The algebraic normal

form (ANF) of the quadratic function G(·) is given in Eq. (6).

G(x, y, z, w) = (g3, g2, g1, g0)

g3 = x⊕ yz ⊕ yw

g2 = xy ⊕ w

g1 = y

g0 = z ⊕ yw. (6)

A shared version of G(·) has already been presented in [11] but only with
the focus of decomposing the S-box SPresent(·) for the encryption function of
Present. We can just reuse this description of shared G (G1(·), G2(·), and
G3(·)) for our design, because we use the same core function G for our decom-
position in Eq. (5):

G1(x2, y2, z2, w2, x3, y3, z3, w3) = (g13, g12, g11, g10)

g13 = x2 ⊕ y2z2 ⊕ y2z3 ⊕ y3z2 ⊕ y2w2 ⊕ y2w3 ⊕ y3w2

g12 = w2 ⊕ x2y2 ⊕ x2y3 ⊕ x3y2

g11 = y2

g10 = z2 ⊕ y2w2 ⊕ y2w3 ⊕ y3w2

G2(x1, y1, z1, w1, x3, y3, z3, w3) = (g23, g22, g21, g20) (7)

g23 = x1 ⊕ y1z1 ⊕ y1z3 ⊕ y3z1 ⊕ y1w1 ⊕ y1w3 ⊕ y3w1

g22 = w1 ⊕ x1y1 ⊕ x1y3 ⊕ x3y1

g21 = y1

g20 = z1 ⊕ y1w1 ⊕ y1w3 ⊕ y3w1

G3(x1, y1, z1, w1, x2, y2, z2, w2) = (g33, g32, g31, g30) (8)

g33 = x1 ⊕ y1z1 ⊕ y1z2 ⊕ y2z1 ⊕ y1w1 ⊕ y1w2 ⊕ y2w1

g32 = w1 ⊕ x1y1 ⊕ x1y2 ⊕ x2y1

g31 = y1

g30 = z1 ⊕ y1w1 ⊕ y1w2 ⊕ y2w1

(9)

The index numbers 1, 2, 3 mark each of the share input parameters of the
shared functions of G1, G2, and G3, while the letters x, y, z, and w denote the
bit position of each of the three shared input nibbles.

4 Implementation of Present with Merged S-boxes

We applied our previous observations on the 3-share Present S-box for a TI
countermeasure scheme by implementing the proposed merged S-box design,

Minimizing S-Boxes in Hardware by Utilizing Linear Transformations 243

denoted as SGG,mer from now on, on a Virtex-5 FPGA platform. The right
hand side of Fig. 1 depicts the architecture of the proposed merged TI S-box
design SGG,mer. For comparison reasons we also implemented a straightforward
TI 3-share-Present S-box (SG′F,enc) based on the design in [20]. Six different
quadratic permutations are needed for the S-box and its inverse as well, following
the design in [20], as it is clearly illustrated on the left hand side of Fig. 1. We
also implemented the Present S-box S(·) (SGG,enc) and the inverse Present

S-box S−1(·) (SGG,dec) based on the proposed optimized shared S-box scheme of
Kutzner et al. in [11]. The middle section of Fig. 1 shows the general structure
of the implementation of SGG,enc and SGG,dec.

Furthermore, we also implemented several versions of a round based Present

block cipher for performing encryption and decryption on the Virtex-5 platform.
For those designs we used the optimized three shares and the proposed merged
three shares TI Present S-box design of Sect. 3. All of the 4 presented S-box
designs use a pipeline register to assure that only two out of three shares are
processed at the same time, as it is recommended by the concept description of
the TI masking scheme in [17].

4.1 Resource Consumption of Merged Designs

The implementation of the merged 3-share S-box design SGG,mer follows the
previously stated design idea. The originally twelve non-linear shared function,
which are needed for calculating S(·) and S−1(·), are decomposed into only one
shared non-linear function and five different linear affine transformations. The
implementation of the sharable version of the S-box uses the shared version of
G(·) in Eq. (7), and not a shared implementation of G(G(·)). The implemented
function G(G(·)) is cubic and hence does not fulfill the requirements of a sharable
permutation function using only three shares. Therefore, an additional affine
transformation is required in a feedback path of the S-box design to perform
G(G(·)) iteratively, as depicted in the upper part of Fig. 2.

The additionally required iterative step is hidden by the pipelined structure
of the S-box and thus, will not cause any additional clock cycle influencing the
latency of the S-box. The efficient implementation of the additional functionality
of SGG,mer to calculate the inverse of the S-box S−1(·) is established by reusing
three of the five affine transformations for performing the calculation of S−1(·).
Hence, only 4 additional slices are needed for the additional affine transforma-
tions of SGG,mer compared to the design of SGG,enc. One additional slices is
need for the additional multiplexer input of the SGG,mer design. The different
slice occupation between SGG,enc and SGG,dec is caused by the different affine
transformations, which are necessary to map the sharable quadratic permutation
G(·) to S(·) or S−1(·), respectively. A straightforward combined implementation
of SGG,enc and SGG,dec can be estimated with a resource occupation of approx-
imately 21 slices without considering further optimization due to the synthesis
step, cf. Tab. 3. Hence, this amount of resource utilization is by far larger (ap-
prox. 24%) than the resource utilization of the proposed SGG,mer design.

244 S. Kutzner et al.

GG_Merge

key
Key

scheduler

data_in

data_out
16 G

G
_M

E
R

_2 S
boxes

P
P

P

P
-1

P
-1

P
-1

1 0

md2

md1

encryption

done

Decryption path

Encryption path

GG_MER

GBx+c

Bx+c G

Bx+c G

Reg.
4 bit

Reg.
4 bit

Reg.
4 bit

A(x+d)

Hx+q

Ex+f

B-1(x+c)

A(x+d)

Hx+q

A(x+d)

Hx+q

Ex+f

Ex+f

Outinv1

Outinv2

Outinv3

Out1

Out2

Out3

Ininv1

In1

Ininv2

In2

Ininv3

In3

B-1(x+c)

B-1(x+c)

Fig. 2. Design of the merge Present TI implementation

We integrated the three different shared G(·) function based S-box designs
in four different Present block cipher designs to evaluate the impact of the
the GG MER S-box design on the resource utilization. At first, we implement a
round-oriented Present (PGG,enc) based on the optimized design in [11]. Sec-
ond, we exchanged the affine representation according to Eq. (11) and extended
the key scheduler to perform only decryptions with the second design (PGG,dec).
The third design PGG,com is a joined implementation of PGG,enc and PGG,dec,
which can perform both encryption and decryption by using the same secret key
as input. One encryption run with 63 clock cycles has to be performed in advance
to perform a decryption with the correct round keys, which are derived from the
initial secret key. After one encryption run is conducted several decryptions can
be performed sequently, which also takes 63 clock cycles by reusing the stored
least round key.

The fourth implemented design PGG,mer is identical to PGG,com except for
the used S-box design, instead of using the two S-boxes SGG,enc and SGG,enc,
the proposed merged S-box GG MER is used. For better comparison the imple-
mentation properties of the various four designs are summarized in Tab. 4. The
analysis results clearly indicate that the design PGG,meris more efficient than

Minimizing S-Boxes in Hardware by Utilizing Linear Transformations 245

Table 3. Resource Utilization of Present TI-S-box designs on Virtex-5

Design Performance properties

Name
Based S-box mode Area Latency Max. Freq.
on S(·) S−1(·) [Slices] [clk. cyc.] [MHz]

SG′F,enc [20] x 14 1 410
SGG,enc [11] x 11 1 374
SGG,dec Sect. 3.1 x 10 1 449
SGG,mer Sect. 3.1 x x 16 1 346

PGG,com. The resource utilization is reduced by 23%, while the throughput is
increased by 4 Mbit/s, if the S-box GG MER is used instead of a combined
version of PGG,enc and PGG,dec.

4.2 Merged Present Design for Encryption and Decryption

To provide a holistic view, we also provide results for ASIC implementations.
We used Synopsys Design Compiler version E-2010.12-SP2 to synthesize our
designs to the standard cell library UMCL18G212T3, which is based on a 180nm
process. Tab. 5 shows that the design PGG,mer requires 28% less resources than
the PGG,com design. We used both resource optimization option simple and ultra
of the synthesis tool for a more general comparison between the designs.

5 Side-Channel Evaluation

In this section we present practical side-channel evaluations of our new design to
prove that it matches the same security level as previous designs, i.e., resistance
against first-order attacks even in the presence of glitches. We mount two at-
tacks, i.e., Correlation-Power-Analysis (CPA) [5] targeting the register update,
and a correlation-enhanced collision attack [15] targeting glitches in the S-box
calculation.

Table 4. Resource Utilization of TI-masked Present designs on Virtex-5

Design Performance properties

Name
Mode Area Freq. Duration T’put

ENC DEC [Slices] [Mhz] [clk cyc.] [Mbit/s]

PGG,enc x 278 265 63 269
PGG,dec x 251 266 63(+63) 270

PGG,com x x 463 252 63(+63) 256
PGG,mer x x 355 256 63(+63) 260

Difference -23.0% +1.6% – +1.6%

246 S. Kutzner et al.

Table 5. Resource Utilization of TI-masked Present designs on UMC180

Design Synth. opt. for area

Name
Mode Duration Simple Ultra

ENC DEC [clk cyc.] [GE] [GE]

PGG,com x x 63(+63) 14,592 12,259
PGG,mer x x 63(+63) 10,550 8,830

Difference – -27.7% -28.0%

We implemented our design on a SASEBO-GII side-channel evaluation board
(hosting a Xilinx Virtex-5 FPGA) running at 2 MHz. For the analysis we recorded
5,000,000 traces with a sampling rate of 1GS/s using a LeCroy WaveRunner
610Zi oscilloscope. Every trace consists of 2,000 samples and covers the first
three clock cycles of an encryption, see Fig. 3.

Since our design differs from previous designs we had to modify the attack
models. As mentioned before we target the register update of the three 4-bit
registers within the S-box. Note that the registers save the S-box input, unlike
many other implementations which save the S-box output. In the first clock
cycle of an encryption the values data in ⊕ md1 ⊕ md2 ⊕ key, md1, and md2
are saved in the registers and are overwritten in the second clock cycle by the
intermediate (shared) S-box state B−1(G(B(x) ⊕ c) ⊕ c), cf. Fig. 2. Hence, we
chose our attack model to be the Hamming distance between these two register
values of two consecutive clock cycles, i.e., the transition count of the register
update. To verify our setup as well as our attack models we first mounted the
two aforementioned attacks with known masks on 50,000 traces, targeting the
highest nibble (CPA) and the highest and second highest nibble, respectively
(collision). Figure 4(a) and 4(b) show the two successful attacks yielding clear
correlations in the second clock cycle (time frame from samples 1300 to 1400 cf.

Fig. 3. Power Trace of the first three clock cycles of a Present encryption

Minimizing S-Boxes in Hardware by Utilizing Linear Transformations 247

(a) Result of CPA

(b) Result of correlation-enhanced collision attack

Fig. 4. Attacks on the proposed TI Present design with known masks

Fig. 3), as expected. Approximately 800 traces are needed to recover the correct
key nibble.

Finally, we mounted the two attacks on the 5,000,000 traces. As we can see
in Fig. 5(a) and 5(b), the correct key hypothesis does not yield the highest
correlation, neither in the CPA nor in the correlation-enhanced collision attack.
Hence, we have practically shown that our design matches the same security level
as previous designs, while being significantly smaller, cf. [11, 20] The results of
the side-channel analysis resistance against first order attacks of the encryption
can be directly transferred to the decryption of GG Merge, because the same
secured non-linear 3-share function G(·) is used.

248 S. Kutzner et al.

(a) Result of CPA with unknown masks

(b) Result of correlation-enhanced collision attack

Fig. 5. Attacks on the proposed TI Present design with unknown masks

6 Conclusion

In this paper we presented an efficient way to merge at least two different S-box
descriptions into one design by using a single quadratic function as the non-
linear core together with some affine transformations. We applied our theoretic
investigation on the Present S-box S(·) and its inverse S−1(·) as a demonstra-
tive example. Hence, we optimized the 4-bit substitution element of Present

by using only 5 linear affine transformations and a single non-linear mapping
core to perform both S(·) and S−1(·). Due to this decomposed structure the
Threshold Implementation countermeasure [17] can be applied straightforward
on the proposed merged S-box design. Additionally, we implemented several
round based TI masked versions of Present capable to perform encryption and

Minimizing S-Boxes in Hardware by Utilizing Linear Transformations 249

decryption. For FPGA implementations, the overall resource utilization of the
entire Present implementation using the proposed merged S-box design is at
least 23% smaller than using an S-box design based on the optimal S-box design
proposed in [11] while at the same time achieving a higher throughput. For ASIC
implementation our approach saves 28% of the area. Our evaluation shows that
the proposed optimization does not cause any new exploitable design flaws and
thus it is still resistant against first-order attacks using up to 5,000,000 traces.
For future work we will investigate the usage of the proposed decomposition for
merging S-boxes of different classes.

References

1. ISO/IEC 29192-2: Information Technology – Security Techniques – Lightweight
Cryptography – Part 2: Block Ciphers

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

3. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold Implementations
of All 3 3 and 4 4 S-Boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

4. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M., Seurin, Y., Vikkelsoe, C.: PRESENT - An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

5. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis With a Leakage
Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp.
16–29. Springer, Heidelberg (2004)

6. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for des-like cryptosystems. Des. Codes Cryptography 15(2), 125–156 (1998)

7. Fischer, W., Gammel, B.M.: Masking at gate level in the presence of glitches. In:
Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 187–200. Springer,
Heidelberg (2005)

8. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Kutzner, S., Nguyen, P.H., Poschmann, A.: Enabling 3-share Threshold Implemen-
tations for any 4-bit S-box. IACR Cryptology ePrint Archive 2012, 510 (2012)

11. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share Threshold Imple-
mentations for 4-bit S-boxes. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864,
pp. 99–113. Springer, Heidelberg (2013)

12. Leander, G., Poschmann, A.: On the Classification of 4 Bit S-Boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007), http://dx.doi.org/10.1007/978-3-540-73074-3_13

13. Mangard, S., Popp, T., Oswald, M.E.: Power Analysis Attacks - Revealing the
Secrets of Smart Cards. Springer (2007)

http://dx.doi.org/10.1007/978-3-540-73074-3_13

250 S. Kutzner et al.

14. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked aes hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005)

15. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

16. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009)

17. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlin-
ear Functions in the Presence of Glitches. J. Cryptology 24(2), 292–321 (2011)

18. Nyberg, K.: Perfect nonlinear s-boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)

19. Nyberg, K.: Differentially uniform mappings for cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

20. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-Channel
Resistant Crypto for less than 2,300 GE. Journal of Cryptology, 1–24 (2010)

A Affine Transformation Parameters

Affine transformation parameters for the Present S-box used for encryption:

A =

⎛⎜⎜⎝
1 0 1 0
0 1 0 0
1 0 0 0
1 0 1 1

⎞⎟⎟⎠
2

, B =

⎛⎜⎜⎝
1 1 0 0
0 1 1 0
0 0 1 0
1 0 1 0

⎞⎟⎟⎠
2

,

c = (0001)2, and d = (0101)2. (10)

Affine transformation parameters for the Present S-box used for decryption:

Ã =

⎛⎜⎜⎝
1 0 0 0
0 1 1 1
0 1 0 1
1 0 0 1

⎞⎟⎟⎠
2

, B̃ =

⎛⎜⎜⎝
0 1 0 1
1 0 1 0
1 1 0 1
1 1 0 0

⎞⎟⎟⎠
2

,

c̃ = (1101)2, and d̃ = (0010)2. (11)

Affine transformationparameters for the decryption functionality of themerged
Present S-box design:

H =

⎛⎜⎜⎝
0 0 1 0
1 1 0 1
0 1 1 1
1 0 1 1

⎞⎟⎟⎠
2

, E =

⎛⎜⎜⎝
1 0 0 0
1 1 0 1
0 1 1 1
1 0 1 1

⎞⎟⎟⎠
2

,

f = (0011)2, and q = (0011)2. (12)

Efficient Masked S-Boxes Processing

– A Step Forward –

Vincent Grosso1, Emmanuel Prouff2, and François-Xavier Standaert1

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium
2 ANSSI, 51 Bd de la Tour-Maubourg, 75700 Paris 07 SP, France

Abstract. To defeat side-channel attacks, the implementation of block
cipher algorithms in embedded devices must include dedicated counter-
measures. To this end, security designers usually apply secret sharing
techniques and build masking schemes to securely operate an shared
data. The popularity of this approach can be explained by the fact that
it enables formal security proofs. The construction of masking schemes
thwarting higher-order side-channel attacks, which correspond to a pow-
erful adversary able to exploit the leakage of the different shares, has been
a hot topic during the last decade. Several solutions have been proposed,
usually at the cost of significant performance overheads. As a result, the
quest for efficient masked S-box implementations is still ongoing. In this
paper, we focus on the scheme proposed by Carlet et al at FSE 2012, and
latter improved by Roy and Vivek at CHES 2013. This scheme is today
the most efficient one to secure a generic S-box at any order. By exploit-
ing an idea introduced by Coron et al at FSE 2013, we show that Carlet
et al’s scheme can still be improved for S-boxes with input dimension
larger than four. We obtain this result thanks to a new definition for the
addition-chain exponentiation used during the masked S-box processing.
For the AES and DES S-boxes, we show that our improvement leads to
significant efficiency gains.

1 Introduction

Side-channel attacks (SCA) are a class of attacks, where the attacker has access
to some leakages about the internal state during the computation [16]. In prac-
tice, such scenario makes it possible to attack implementations that are believed
secure against classical (black-box) cryptanalyses. To defeat SCA, implemen-
tations of cryptographic algorithms must embed appropriate countermeasures.
This is actually mandatory for implementations dedicated to smart card pay-
ments, pay-TV applications or citizen authentication with e-Passports.

Securing block cipher implementations has been a long-standing issue for the
embedded systems industry. A sound approach is to use secret sharing [2,24],
often called masking in the context of side-channel attacks [6]. The principle is
to split every sensitive variable1 x occurring during the computation into d+ 1

1 A variable is said to be sensitive in an SCA context if it functionally depends on
both a public variable and a secret whose size is small enough to enable exhaustive
search.

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 251–266, 2014.
c© Springer International Publishing Switzerland 2014

252 V. Grosso, E. Prouff, and F.-X. Standaert

shares x0, . . . , xd in such a way that the following relation is satisfied for a group
operation ⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the addition over some field
of characteristic 2 (i.e. ⊥ will be the bitwise addition ⊕). Usually, the d shares
x1, . . . , xd (called the masks) are randomly picked up and the last one x0 (called
the masked variable) is processed such that it satisfies (1). The full tuple (xi)i is
further called a dth-order encoding of x. When d random masks are involved per
sensitive variable, the masking is said to be of order d. It has been shown that
the complexity of mounting a successful side-channel attack against a masked
implementation increases exponentially with the masking order [6,10,19]. Start-
ing from this observation, the design of efficient masking schemes for different
ciphers has become a foreground issue.

Higher-Order Masking Schemes. A higher-order secure (masking) scheme must
ensure that the final shares correspond to the expected ciphertext on the one
hand, and it must ensure the dth-order security property for the chosen order
d on the other hand. The latter property states that every tuple of d or less
intermediate variables is independent of any sensitive variable. When satisfied,
it guarantees that no attack exploiting information on less than d intermediate
results can succeed. As argued in several previous works (see e.g. [21] or [23]),
the main difficulty in designing higher-order secure schemes for block ciphers lies
in masking the S-box(es), which are the only internal primitives that perform
non-linear operations.

Masking and S-Boxes. Whereas many solutions have been proposed to deal with
the case of first-order masking (see e.g. [3,18]), only few solutions exist for the
higher-order case. A scheme has been proposed by Schramm and Paar in [23]
which generalizes the (first-order) table re-computation method described in [18].
Although the authors apply their method in the particular case of an AES imple-
mentation, it is generic and can be applied to protect any S-box. Unfortunately,
this scheme has been shown to be vulnerable to a 3rd-order attack whatever the
chosen masking order [8]. In other words, it only provides 2nd-order security.
Further schemes were proposed by Rivain, Dottax and Prouff in [20] with formal
security proofs but still limited to 2nd-order security.

To the best of our knowledge, four approaches currently exist which enable
the design of dth-order secure masking schemes for any arbitrary chosen d. One
is due to Genelle et al and consists in mixing additive and multiplicative shar-
ings (namely to use alternatively (1) for ⊥= ⊕ and ⊥= ×). This scheme is
primarily dedicated to the AES algorithm and seems difficult to generalize ef-
ficiently to other block ciphers where the S-box is not affinely equivalent to a
power function. The second one is due to Prouff and Roche and it relies on so-
lutions developed in secure multi-party computation [1]. It is much less efficient
than the other schemes (see e.g. [12]) but, contrary to them, remains secure
even in presence of hardware glitches [17]. The third approach has been recently

Efficient Masked S-Boxes Processing 253

proposed by Coron in [7]. The core idea is to represent the S-box by several
look-up tables which are regenerated from fresh random masks and the S-box
truth table, each time a new S-box processing must be done. It extends the table
re-computation technique introduced in the original paper by Kocher et al [16].
The security of Coron’s scheme against higher-order SCA is formally proved un-
der the assumption that the variable shares leak independently. Its asymptotic
timing complexity is quadratic in the number of shares and can be applied to
any S-box. However, the RAM memory consumption to secure (at order d) an
S-box with input (resp. output) dimension n (resp. m) is m(d+1)2n bits, which
can quickly exceed the memory capacity of the hosted device.

The three methods recalled in previous paragraph have important limitations
which strongly impact their practicability: the first method is hardly general-
izable to any S-box and the two other ones have a large extra cost (in terms
of either processing or memory complexity). Actually, when the S-box to se-
cure is not a power function and has input/output dimensions close to 8, the
fourth approach is the most practical one when d is greater than or equal to 3.
This approach, proposed in [5], generalizes the study conducted in [21] for power
functions. The core idea is to split the S-box processing into a sequence of field
multiplications and F2-linear operations, and then to secure both operations in-
dependently. The complexity of the masking schemes for the multiplication and
a F2-linear operation2 is O(d2) and O(d) respectively. Moreover, the constant
terms in these complexities are (usually) significantly greater for the multipli-
cation than for the F2-linear operations. Based on this observation, the authors
of [5] propose to look for S-box representations that minimize the number of
field multiplications which are not F2-linear

3 (this kind of multiplication shall
be called non-linear in this paper). This led them to introduce the notion of S-
box masking complexity, which corresponds to the minimal number of non-linear
multiplications needed to evaluate the S-box. This complexity is evaluated for
any power function defined in F2n with n ≤ 10 (in particular, the complexity of
x ∈ F28 → x254, which is the non-linear part of the AES S-box, is shown to be
equal to 4). Tight upper bounds on the masking complexity are also given for
any random S-box. The work of Carlet et al has been further improved by Roy
and Vivek in [22], where it is in particular shown that the masking complexity
of the DES S-boxes is lower-bounded by 3. The authors of [22] also present a
method that requires 7 non-linear multiplications. Another improvement of [5]
has been proposed in [9], where it is shown that it is possible to improve the
processing of the non-linear multiplications with the particular form x × g(x)

2 A function f is F2-linear if it satisfies f(x ⊕ y) = f(x) ⊕ f(y) for any pair (x, y)
of elements in its domain. This property must not be confused with linearity of a
function which is defined such that f(ax ⊕ by) = af(x) ⊕ bf(y). A linear function
is F2-linear but the converse is false in general (the homogeneity of degree 1 must
indeed be also satisfied for the converse to be true).

3 A multiplication over a field of characteristic 2 is F2-linear if it corresponds to a
squaring.

254 V. Grosso, E. Prouff, and F.-X. Standaert

with g being F2-linear. This type of multiplication is called bilinear in the rest
of the paper4.

Our Contribution. In this paper we refine the notion of S-box masking com-
plexity introduced in [5] and further studied in [22]. We still link it to the min-
imum number of non-linear multiplications needed to evaluate the S-box, but
we don’t include bilinear multiplications in this counting. We justify this choice
thanks to the analysis in [9] which shows that the complexity of the latter mul-
tiplications is between that of general non-linear multiplications (costly) and
that of F2-linear multiplications (cheap). For all exponentiations in F2n , with
n ∈ {4, 6, 8}, we give the new masking complexities and we afterwards illustrate,
for the AES and DES S-boxes, the effective gain obtained by using the corre-
sponding new addition-chain exponentiation [11]. This works raises the need for
new polynomial evaluation algorithms minimizing the number of multiplications
which are neither linear nor bilinear. It could also be of interest to study whether
specialized (efficient) schemes cannot be dedicated to the secure processing of
other types of non-linear multiplications (which are not linear or bilinear but
have some helpful properties).

2 Existing Schemes for Elementary Operations

In this section, it is assumed that the S-box to protect manipulates data of
bit-length n (typically n ∈ {4, 8, 16}). Depending on the kind of operation to
process, these data can be viewed as elements of the vector space Fn

2 defined over
the field (F2,⊕,&), where ⊕ is the XOR operation and & the AND operator. Or,
they can be defined as elements of the field F2n

∼= (F2[X]/p(X),⊕,×), where
p(X) is an irreducible polynomial of degree n and × denotes the polynomial
multiplication modulo p(X).

As recalled in the previous section, the most efficient solution which today ex-
ists to secure an S-box against higher-order SCA is to rewrite it as a polynomial
function over F2n and to split its evaluation as a sequence of F2-linear opera-
tions and multiplications. Indeed, whatever d, dth-order secure schemes exist for
these two types of operations. We recall them hereafter. Note that, some mask
refreshing must sometimes be done between different calls to these algorithms in
order to guaranty the security of the whole process. Since, mask refreshing has
a minor impact on the efficiency improvement proposed in this paper we do not
recall here the mask refreshing algorithm and we exclude it from the description
of the S-box secure evaluation procedures in Section 3 (for more details about
this point we suggest the reading of [9,21]).

4 We chose this term because the multiplication y × g(x), viewed as a function over
F2n × F2n , is indeed F2-bilinear when g is F2-linear. For such a function g, it may
be checked that the algebraic degree [4, Chapter 9] of x �→ x × g(x), viewed as a
vectorial function, is quadratic.

Efficient Masked S-Boxes Processing 255

F2-linear operation. To securely process a F2-linear function g on a data x
encoded by the tuple (xi)i, we just need to evaluate the function on each share
xi separately. The sharing (g(xi))i is indeed an encoding of g(x).

Algorithm 1. Secure evaluation of a F2-linear function g

Require: Shares (xi)i satisfying ⊕ixi = x.
Ensure: Shares (yi)i satisfying ⊕iyi = g(x).
1: for i from 0 to d do
2: yi ← g(xi)
3: end for

In particular, Algorithm 1 can be applied to secure the Frobenius endomor-
phism over the field F2n (i.e. the squaring in characteristic 2) as this operation
is F2-linear.

Multiplication. To securely process the multiplication between two sensitive vari-
ables x and y encoded by (xi)i and (yi)i respectively, the following algorithm
has been proposed in [13] (and generalized in [21]).

Algorithm 2. Multiplication of two masked secrets x and y

Require: Shares (xi)i and (yi)i satisfying ⊕ixi = x and ⊕iyi = y
Ensure: Shares (wi)i satisfying ⊕iwi = x× y
1: for i from 0 to d do
2: for j from i+ 1 to d do
3: ri,j ∈R F2n

4: ri,j ← (ri,j ⊕ xi × yj)⊕ xj × yi
5: end for
6: end for
7: for i from 0 to d do
8: wi ← xi × yi
9: for j from 0 to d, j �= i do
10: wi ← wi ⊕ ri,j
11: end for
12: end for

Remark 1. The order of the XORs operations in Step 4 must be respected for the
security guarantee to hold.

Starting from Lagrange’s interpolation formula, [5] and [22] introduce S-box
evaluation techniques which are only based on Algorithms 1 and 2 (and a third
algorithm used to refresh the sharings when the input sharings correspond to
dependent variables). Because the complexity of the dth-order secure multiplica-
tion is quadratic, whereas that of an F2-linear function is linear, the polynomial

256 V. Grosso, E. Prouff, and F.-X. Standaert

evaluation strategies try to minimize the number of calls to Algorithm 2. How-
ever, Coron et al have recently shown that multiplications of the form x× g(x),
with g being F2-linear, can be securely evaluated more efficiently than standard
multiplications [9]. This observation naturally raises the following new question:
can we improve the complexities of the S-box evaluation strategies in [5,22] by
replacing, as much as possible, standard multiplications by multiplications in the
form x× g(x). Before dealing with this question, let us first recall the particular
multiplication proposed in [9].

Multiplications of the form x × g(x), with g F2-linear. To securely process this
type of multiplication, the following algorithm is proposed in [9].

Algorithm 3. Secure evaluation of a product of h(x) = x× g(x)

Require: shares (xi)i satisfying ⊕ixi = x.
Ensure: shares (yi)i satisfying ⊕iyi = h(x).
1: for i from 0 to d do
2: for j from i+ 1 to d do
3: ri,j ∈R F2n

4: r′i,j ∈R F2n

5: t ← ri,j
6: t ← t⊕ h(xi ⊕ r′i,j)
7: t ← t⊕ h(xj ⊕ r′i,j)
8: t ← t⊕ h((xi ⊕ r′i,j)⊕ xj)
9: t ← t⊕ h(r′i,j)
10: rj,i ← t
11: end for
12: end for
13: for i from 0 to d do
14: yi ← h(xi)
15: for j from 0 to d, j �= i do
16: yi ← yi ⊕ ri,j
17: end for
18: end for

Notation. In the particular case where g is an exponentiation by a power of 2,
say g(x) = x2

s

, the function h is denoted by hs+1.

The complexity of Algorithm 3 is still quadratic but, for many typical applica-
tion contexts, the constant terms are much smaller than in Algorithm 2. Indeed,
the processing of h can be tabulated on standard embedded processors as long
as n � 10, whereas the field multiplications × occurring in Algorithm 2 cannot
if n � 5. In the following, functions/operations which can be evaluated thanks
to Algorithm 1 or Algorithm 2 will be said to be of Type-I or Type-III re-
spectively. Functions of the form x× g(x) with g F2-linear will be said to be of
Type-II. Table 1 summarizes the cost of the three algorithms in term of XORs,
field multiplications and look-up table accesses (referred to as LUT access).

Efficient Masked S-Boxes Processing 257

Table 1. Cost of different algorithms

XOR Multiplication LUT access

Algorithm 1 0 0 d+ 1
Algorithm 2 2d2 + 2d d2 + 2d + 1 0
Algorithm 3 5d2 + 5d 0 2d2 + 3d + 1

In most of classical architectures, a memory access (or a XOR) can be done
in 1 or 2 CPU clock cycles, whereas the processing of a field multiplication with
the CPU instructions set only requires between 20 and 40 cycles (we recall some
classical field multiplication algorithms in Appendix A). This explains why the
replacing of Type-III operations by Type-II ones leads to a significant efficiency
improvement when n ∈ [5; 10]. Based on this observation, we propose in the
next section new sequences of operations that lead to practically more efficient
processing of power functions than the state of the art solutions [5,22].

3 New Proposal for Power Functions Evaluation

Considering the fact that the processing of power functions in the form x1+2s

(which corresponds to the Type-II operation x×x2s) is more efficient than that of
other power functions, we followed an approach close to [5] in order to exhibit the
most efficient processing for any power function defined in F2n for n ≤ 8. Namely,
for every power function x → xα, we exhibit by exhaustive search a sequence of
operations of types I, II and III, which minimizes first the number of Type III
operations, and then the number of Type II operations. This amounts to find,
for each exponent α, the shortest addition chain5 [15] with the supplementary
constraint that multiplications by 2t, for any integer t, or additions in the form
v + 2tv are for free. We recall that an addition chain for α ∈ N is an increasing
sequence of integers v0, ..., vs such that v0 = 1, vs = α and for any j �= 0 there
exist two indices i < j and k < j (not necessary different) s.t. vj = vi + vk. The
length of such a sequence is defined as the total number of additions (including
multiplications by 2) needed to get vs = α from v0 = 1, with only operations
between elements of the sequence. The definition of length used in [5,22] excludes
multiplications by 2. For the reasons discussed previously, we extend the classical
definition of the addition chain by adding the operation v → (1 + 2t)v for any
integer t. We moreover assume that this operation is also excluded from the
sequence length definition (it indeed corresponds to the function ht+1 : xv →
x(1+2t)v). The corresponding new length definition is referred to as extended
length in the following. Our purpose is to minimize it. This point is the main
(and important) difference with the (shortest) sequences investigated in [5]. Our
results are given6 in Table 2 for n = 8, where the exponents are grouped into
classes. Each class, say Cj , corresponds to the set of exponents which can be
obtained by multiplying j by a power of 2 (modulo 2n − 1).

5 In the context of exponentiation processing, these chains are sometimes also referred
to as addition-chain exponentiation (see for instance [11]).

6 Tables for the cases n = 4, 6 are given in Appendix B.

258 V. Grosso, E. Prouff, and F.-X. Standaert

Table 2. Smallest cost to process xα with operations of types II and III

Type-II # Type-III Exponent α

0 0 C0 = {0},C1 = {1, 2, 4, 8, 16, 32, 64, 128}
1 0 C3 = {3, 6, 12, 24, 48, 96, 192, 129},

C5 = {5, 10, 20, 40, 80, 160, 65, 130},
C9 = {9, 18, 36, 72, 144, 33, 66, 132}, C17 =
{17, 34, 68, 136}

2 0 C15 = {15, 30, 60, 120, 240, 225, 195, 135},
C21 = {21, 42, 84, 168, 81, 162, 69, 138},
C25 = {25, 50, 100, 200, 145, 35, 70, 140},
C27 = {27, 54, 108, 216, 177, 99, 198, 141},
C45 = {45, 90, 180, 105, 210, 165, 75, 150},
C51 = {51, 102, 204, 153}, C85 = {85, 170}

3 0 C63 = {63, 126, 252, 249, 243, 231, 207, 159},
C95 = {95, 190, 125, 250, 245, 235, 215, 175},
C111 = {111, 222, 189, 123, 246, 237, 219, 183}

4 0 C39 = {39, 78, 156, 57, 114, 228, 201, 147},
C55 = {55, 110, 220, 185, 115, 230, 205, 155},
C87 = {87, 174, 93, 186, 117, 234, 213, 171}

1 1 C7 = {7, 14, 28, 56, 112, 224, 193, 131},
C11 = {11, 22, 44, 88, 176, 97, 194, 133},
C13 = {13, 26, 52, 104, 208, 161, 67, 134},
C19 = {19, 38, 76, 152, 49, 98, 196, 137},
C37 = {37, 74, 148, 41, 82, 164, 73, 146}

2 1 C23 = {23, 46, 92, 184, 113, 226, 197, 139},
C29 = {29, 58, 116, 232, 209, 163, 71, 142},
C31 = {31, 62, 124, 248, 241, 227, 199, 143},
C43 = {43, 86, 172, 89, 178, 101, 202, 149},
C47 = {47, 94, 188, 121, 242, 229, 203, 151},
C53 = {53, 106, 212, 169, 83, 166, 77, 154},
C59 = {59, 118, 236, 217, 179, 103, 206, 157},
C61 = {61, 122, 244, 233, 211, 167, 79, 158},
C91 = {91, 182, 109, 218, 181, 107, 214, 173},
C119 = {119, 238, 221, 187}

3 1 C127 = {127, 254, 253, 251, 247, 239, 223, 191}

Remark 2. As the cost of Type-I operations is negligible compared to the cost
of operations of types II and III, we chose to not give them in Table 2.

Remark 3. The costs given in Table 2 have been obtained by first minimizing the
global number of Type-II and Type-III operations, and then by minimizing the
number of Type-III multiplications. It can be noticed that other minimization
strategies could be applied. For instance, if the goal is to minimize the number
of Type-III multiplications, then it can be checked that x254 can be evaluated
without such operation: first process x63, then (x+x63)3 = x189+x127+x65+x3,
end eventually process x189, x65 and x3, and subtract them to (x+ x63)3 to get

Efficient Masked S-Boxes Processing 259

x254 = (x127)2 (which gives a processing without Type-III operations and 9
Type-II operations).

For the exponentiation x → x254 (the non-linear part of the AES S-box),
we found the extended addition chain (1, 2, 5, 25, 125, 127, 254) whose extended
length is 1. This sequence indeed requires only 1 operation of Type-III(+) (to
get 127), 2 operations of Type-I (×) (to get and 2 and 254) and 3 operations of
Type-II (×(1 + 22)) (to get 5, 25 and 125)). It may moreover be observed that
the sequence involves the same operation v → (1 + 2t)v (for t = 2) each time,
which reduces the memory required to implement the solution.

The extended addition chain used for the AES S-box is represented in Figure 1.

1

2

5 25 125

127 254

Type-II

Type-II Type-II

Type-III

Type-III

Type-I Type-I

Fig. 1. AES S-box extended addition chain

Algorithm 4 shows how to use the extended addition chain to calculate invert
in the field F28 .

Algorithm 4. Exponentiation to the 254

Require: x.
Ensure: y = x254.

y ← x2 Type-I
x ← x× x4 Type-II
x ← x× x4 Type-II
x ← x× x4 Type-II
y ← y × x Type-III
y ← y2 Type-I

For DES, we take advantage of the S-box representation proposed in [22]. In
that paper it has been shown that all DES S-boxes can be calculated with 7
non-linear multiplications. They indeed can be represented by a polynomial of
the form:

260 V. Grosso, E. Prouff, and F.-X. Standaert

PDES(x) = (x36 + p1(x))× (((x18 + p2(x))× p3(x)) + (x9 + p4(x)))

+ ((x18 + p5(x)) × p6(x) + (x9 + p7(x))),

where the polynomials pi(x) are of degree at most 9, and can be obtained
by successive Euclidean polynomial divisions. Hence, only monomials of degree
lower than 9 plus x18 and x36 are required to calculate any DES S-box. To com-
pute these powers, we found an extended addition chain of extended length 1.
It is represented in Figure 2 allows to calculate monomials x, x2, x3, x4, x5, x6,
x7, x8, x9, x18 and x36, where it can be checked that only 3 Type-II operations
and 1 Type-III operation are needed.

1

2

3

5

4 8

6

7

9 18 36

Type-I

Type-I Type-I

Type-I Type-I

Type-I

Type-II Type-II

Type-II

Type-III

Type-III

Fig. 2. DES monomials extended addition chain

Eventually, once monomials are calculated, we can evaluate the different poly-
nomials pi(x). Then, 3 more operations of Type-III are required to calculate
PDES. These 3 multiplications are the 3 polynomial multiplications in PDES. As a
result, any of the DES S-boxes can be computed using 4 Type-III operations and
3 of Type-II operations. Full description of computation of DES S-boxes is given
in Algorithm 5.

Remark 4. Remark that having an optimal representation of a polynomial that
has exponents in different classes (as for the DES S-boxes) is quite challenging,
which explains the poorer efficiency compared to the AES S-box. Quite naturally,
we expect that further research should allow improving this (since smaller S-boxes
should generally be easier to mask).

4 Efficiency Comparisons and Simulations

In this section, we compare, for different orders d = 1, 2, 3, the efficiency of our
new extended addition chain with that of previous techniques to securely process

Efficient Masked S-Boxes Processing 261

Algorithm 5. DES S-boxes

Require: x1, pi,j coefficients of polynomial pi.
Ensure: p2 = PDES(x).

x2 ← x2
1 Type-I

x4 ← x2
2 Type-I

x8 ← x2
4 Type-I

x3 ← x1 × x2
1 Type-II

x6 ← x2
3 Type-I

x9 ← x1 × x8
1 Type-II

x18 ← x2
9 Type-I

x36 ← x2
18 Type-I

x5 ← x1 × x4
1 Type-II

x7 ← x2 × x5 Type-III
p1 ← ∑

p1,jxj

p2 ← ∑
p2,jxj

p3 ← ∑
p3,jxj

p4 ← ∑
p4,jxj

p5 ← ∑
p5,jxj

p6 ← ∑
p6,jxj

p7 ← ∑
p7,jxj

p2 ← p2 + x18

p2 ← p2 × p3 Type-III
p2 ← p2 + x9

p2 ← p2 + p4
p1 ← p1 + x36

p2 ← p2 × p1 Type-III
p5 ← p5 + x18

p5 ← p5 × p6 Type-III
p5 ← p5 + x9

p5 ← p5 + p7
p2 ← p2 + p5

the AES S-box and the first DES S-box (similar results can be obtained for the
other ones).

For the AES S-box, we implemented the schemes proposed in [21] and [9]. We
also implemented the scheme in [14], which follows a Tower Fields approach to
improve the timing complexities. Essentially, it consists in using the isomorphism
between F28 and (F24)

2 to have processing only in F24 where the multiplication
can be tabulated. Since our approach, described in the previous section, is advan-
tageous when the field multiplication cannot be tabulated, we did not consider
to combine it with Tower Fields approach.

The implementations are done in C and compile for ATMEGA644p micro-
controller thanks to the compiler avr gcc with optimisation flag -o2. We also did
some implementations directly in assembler for the same micro-controller.

For the AES the results are given in Table 3.

262 V. Grosso, E. Prouff, and F.-X. Standaert

Table 3. Secure AES S-box for ATMEGA644p

Solution [C] d = 1 [C] d = 2 [C] d = 3 [Assembly] d = 1

Addition chain [21] 753 1999 3702 623
Addition chain + Tower Fields [14] 897 1805 3077 565
Addition chain + Type-II op.[9] 540 1376 2554 431
Extended addition chain 488 1227 2319 338

For the DES the results are given in Table 4.

Table 4. Secure DES S-box for ATMEGA644p

Solution C d = 1 C d = 2 C d = 3

Addition chain [22] 2001 4646 8182
Extended addition chain 1623 3574 7413

In Table 5, we compare, on ATMEGA644p, the practical costs of the Type-II
and Type-III multiplications. For d = 1, it can be seen that Type-II multiplica-
tions are around 2.5 (when implemented in Assembly) or 2.4 (when implemented
in C) faster than Type-III multiplications. This means that, on ATMEGA644p,
replacing N Type-III multiplications by N ′ Type-II multiplications leads to a
global efficiency gain as long as N ′/N ≤ 2.4. This ratio becomes 2.8 for d = 2
and 2.3 for d = 3.

Table 5. Costs comparison (in cycles) for Type-II and Type-III operations over F28

Operation C d = 1 C d = 2 C d = 3 [Assembly] d = 1

Type-III 146 430 802 136
Type-II 61 152 344 54

As already pointed out, the interest of exchanging Type-III multiplications
by Type-II ones is only advantageous when the field (Type-III) multiplications
cannot been tabulated (i.e. when n ≥ 5). Hence, for the 4-bit PRESENT S-box,
our approach does not lead to practical efficiency improvement.

Conclusion

By exploiting an idea introduced by Coron et al at FSE 2013, we have shown
in this paper that Carlet et al’s masking scheme can be improved when the S-
box dimensions are too large to allow the tabulation of field multiplications. For
this purpose, we introduced a new type of addition-chain exponentiation which
combine three operations (multiplications by 2s, multiplications by 1 + 2s and
additions) instead of two. For the AES and DES S-boxes, our improvement leads
to an efficiency gain between 35% and 55%. Our work also opens avenues for
further research of polynomial evaluation techniques minimizing the number of
multiplications which are neither F2-linear nor F2-bilinear.

Efficient Masked S-Boxes Processing 263

Acknowledgements. Work funded in parts by the European Commission
through the ERC project 280141 (acronym CRASH) and the European ISEC ac-
tion grant HOME/2010/ISEC/AG/INT-011 B-CCENTRE project. F.-X. Stan-
daert is an associate researcher of the Belgian Fund for Scientific Research
(FNRS-F.R.S.). We also thank Jean-Sébastien Coron for pointing us out the
minimization strategy discussed in Remark 3.

References

1. Bellare, M., Goldwasser, S., Micciancio, D.: “Pseudo-random” number generation
within cryptographic algorithms: The DSS case. In: Kaliski Jr., B.S. (ed.) CRYPTO
1997. LNCS, vol. 1294, pp. 277–291. Springer, Heidelberg (1997)

2. Blakely, G.: Safeguarding cryptographic keys. In: National Comp. Conf. vol. 48,
pp. 313–317. AFIPS Press, New York (1979)

3. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004)

4. Carlet, C.: Boolean functions for cryptography and error correcting codes. Boolean
Methods and Models, pp. 257 (2010)

5. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
366–384. Springer, Heidelberg (2012)

6. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards sound approaches to counteract
power-analysis attacks. In: Wiener (ed.) [25], pp. 398–412

7. Coron, J.-S.: Higher Order Masking of Look-up Tables. In: Nguyen, P.Q., Oswald,
E. (eds.) Advances in Cryptology – EUROCRYPT 2014. LNCS. Springer (to ap-
pear, 2014)

8. Coron, J.-S., Prouff, E., Rivain, M.: Side channel cryptanalysis of a higher or-
der masking scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS,
vol. 4727, pp. 28–44. Springer, Heidelberg (2007)

9. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) Fast Software Encryption – FSE 2013.
LNCS. Springer (2013)(to appear)

10. Duc, A., Dziembowski, S., Faust, S.: Unifying Leakage Models: from Probing At-
tacks to Noisy Leakage. In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology
– EUROCRYPT 2014. LNCS, Springer (to appear, 2014)

11. Gordon, D.M.: A survey of fast exponentiation methods. J. Algorithms 27(1),
129–146 (1998)

12. Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: How
large is the gap for AES? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 400–416. Springer, Heidelberg (2013)

13. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Prob-
ing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

14. Kim, H., Hong, S., Lim, J.: A fast and provably secure higher-order masking of
AES S-box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
95–107. Springer, Heidelberg (2011)

15. Knuth, D.: The Art of Computer Programming, 3rd edn. vol. 2. Addison-Wesley
(1988)

264 V. Grosso, E. Prouff, and F.-X. Standaert

16. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener (ed.) [25],
pp. 388–397.

17. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

18. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

19. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 142–159. Springer, Heidelberg (2013)

20. Rivain, M., Dottax, E., Prouff, E.: Block ciphers implementations provably secure
against second order side channel analysis. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 127–143. Springer, Heidelberg (2008)

21. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

22. Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order mask-
ing scheme of FSE 2012. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS,
vol. 8086, pp. 417–434. Springer, Heidelberg (2013)

23. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

24. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

25. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)

A Field Multiplication Algorithms

In the algorithm hereafter, we recall how a multiplication over an extension of
F2 can be done. Since we consider extensions of the form F2n

∼= F2[X]/p(X)
where the coefficients of p(X) are in F2, we denote by p the binary vector whose
coordinates are the coefficients of p(X) (from MSB to LSB). The operation & t
stands for the shift of t bits and the ith bit of a binary vector b is denoted by
b(i).

For fields of small dimension (e.g. n ≤ 4), the multiplication can be tabu-
lated. Then, only one access to a double entry table is required to perform the
multiplication in an efficient manner. If the field is composed of 2n elements,
the table will have 22n elements of size n. For larger fields (e.g. n > 4) the size
of such a table becomes larger than the memory available in embedded system.
Hence, other evaluation methods are applied, such that the so-called log/alog
tables method. It is based on the fact that the non-zero elements of F2n can all
be represented as a power of a primitive element which is a root of p(X). The log
table is used to get this power for each x ∈ F2[X]/p(X), whereas the alog table
is used to get the element of F2[X]/p(X) that corresponds to a given power.
Under this representation, multiplying two non-zero elements x and y, simply
consists in processing alog(log(x) + log(y) mod 2n − 1).

Efficient Masked S-Boxes Processing 265

Algorithm 6. Field multiplication naive way

Require: Field elements a, b in F2n
∼= F2[X]/p(X), the binary representation p of

p(X).
Ensure: The field element c such that c = a× b
1: tmp ← a
2: c ← 0
3: for i from 0 to degree(p(X)) do
4: if b(i) = 1 then
5: c ← c⊕ tmp
6: end if
7: tmp ← tmp � 1
8: if tmp(degree(p(X))) = 1 then
9: tmp ← tmp⊕ p
10: end if
11: end for

Algorithm 7. Field multiplication with log/alog tables

Require: Field elements a, b.
Ensure: c such that c = a× b
1: d ← log[a]
2: e ← log[b]
3: c ← d+ e mod 2n − 1
4: c ← alog[c]

B Masking Complexity of Power Functions

For exponentiation in F24 , we report on the cost of our extended addition chain
in Table 6.

Table 6. Smallest cost to process xα with operations of types II and III in F24

Type-II # Type-III Exponent α

0 0 C0 = {0},C1 = {1, 2, 4, 8}
1 0 C3 = {3, 6, 12, 9}, C5 = {5, 10}
1 1 C7 = {7, 14, 13, 11}

For the case of operations in F26 , like for the DES S-boxes. We report on the
cost of our extended addition chain in Table 7.

266 V. Grosso, E. Prouff, and F.-X. Standaert

Table 7. Smallest cost to process xα with operations of types II and III in F26

Type-II # Type-III Exponent α

0 0 C0 = {0},C1 = {1, 2, 4, 8, 16, 32}
1 0 C3 = {3, 6, 12, 24, 48, 33}, C5 =

{5, 10, 20, 40, 17, 34}, C9 = {9, 18, 36}
2 0 C11 = {11, 22, 44, 25, 50, 37},C15 =

{15, 30, 60, 57, 51, 39} C27 = {27, 54, 45}
1 1 C7 = {7, 14, 28, 56, 49, 35} C13 =

{13, 26, 52, 41, 19, 38},C21 = {21, 42} C31 =
{31, 62, 61, 59, 55, 47, }

2 1 C23 = {23, 46, 29, 58, 53, 43}

A More Efficient AES Threshold Implementation

Begül Bilgin1,2, Benedikt Gierlichs1, Svetla Nikova1,
Ventzislav Nikov3, and Vincent Rijmen1

1 KU Leuven, ESAT-COSIC and iMinds, Belgium
{name.surname}@esat.kuleuven.be

2 University of Twente, EEMCS-DIES, The Netherlands
3 NXP Semiconductors, Belgium

venci.nikov@gmail.com

Abstract. Threshold Implementations provide provable security against
first-order power analysis attacks for hardware and software implementa-
tions. Like masking, the approach relies on secret sharing but it differs
in the implementation of logic functions. At Eurocrypt 2011 Moradi
et al. published the to date most compact Threshold Implementation
of AES-128 encryption. Their work shows that the number of required
random bits may be an additional evaluation criterion, next to area and
speed. We present a new Threshold Implementation of AES-128 encryp-
tion that is 18% smaller, 7.5% faster and that requires 8% less random
bits than the implementation from Eurocrypt 2011. In addition, we
provide results of a practical security evaluation based on real power
traces in adversary-friendly conditions. They confirm the first-order at-
tack resistance of our implementation and show good resistance against
higher-order attacks.

Keywords: Threshold Implementation,First-orderDPA,Glitches, Shar-
ing, AES, S-box.

1 Introduction

Embedded devices seem to be easily protected by modern ciphers in a black-box
scenario. However, in the late 90s [10] the security of such devices has been shown
to depend on the algorithm implementation. During the computation of an al-
gorithm the device leaks information. Side channel attacks (SCA) are among
the most relevant threats for the security of implementations of cryptographic
algorithms. Certain countermeasures aim at introducing noise in the side chan-
nel, e.g. random delays, random order execution, dummy operations, etc., while
masking conceals all sensitive intermediate values of a computation with random
data and allows one to formally argue the security such a protection provides.
Different masking schemes, like additive [8,9] and multiplicative [14], have been
proposed in order to provide security against differential power analysis (DPA)
attacks. However, it was shown [11,12,17] that masked hardware implementa-
tions can still be vulnerable to first-order DPA due to the presence of glitches.
One can try to eliminate the security relevant glitches by carefully balancing

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 267–284, 2014.
c© Springer International Publishing Switzerland 2014

268 B. Bilgin et al.

signal propagation delays, but this requires expertise, time, iterations of design
and testing, and hence is expensive. As an alternative, new masking schemes
have been developed that provide provable security even if glitches occur.

In 2006 Nikova et al. proposed such a scheme called Threshold Implementation
(TI) [19]. It is based on secret-sharing and provably secure against first-order
DPA [20]. In 2012 Prouff and Roche proposed a dth-order masking scheme [24],
based on Shamir’s secret sharing, for which they claim security even against
higher-order attacks. It is a general method that replaces every field multiplica-
tion by 4d3 field multiplications and 4d3 additions, using 2d2 bytes of random-
ness. In some cases this may prove too costly or inefficient. And [16] has shown
that the multivariate leakages can be exploitable in univariate attacks.

Related Work. The Threshold Implementation technique is based on a spe-
cific type of multi-party computation and applies Boolean masking. Interesting
properties of the technique are that it provides provable security against first-
order side-channel attacks, that it requires few assumptions on the hardware
leakage behavior, and that it allows to construct realistic-size circuits without
intervention and design iterations. However, threshold implementations can still
be broken by univariate mutual information analysis (MIA) [2,20] or univariate
higher-order attacks [15].

It has been shown that all 3 × 3 and 4 × 4 have a TI sharing with 3, 4 or
5 shares [5]. The TI approach has been applied to only few entire algorithms:
PRESENT [21], AES [18], Keccak [3] and Fides [4]. In AES, the S-box is the
by far most challenging part to share. Moradi et al. [18] have proposed a TI of
this S-box that constantly uses 3 shares based on the tower field approach.

Contribution. We propose a more compact and faster Threshold Implementa-
tion of AES-128 encryption that requires less random bits compared to the one
by Moradi et al. from Eurocrypt 2011. For the S-box we use the tower field
approach over GF (24) and for each block in the S-box computation we adapt
the number of shares. This reduces the area by 13% and the clock cycles by 40%.
However, our main focus is to optimize not only the S-box but the whole cipher.
Our implementation of AES is 18% smaller, 7.5% faster and requires 8% less
random bits than the implementation from Eurocrypt 2011. We investigate
the uniformity problem and the need for re-masking in more detail. We prove
that under certain circumstances, it is enough to re-mask only a fraction of the
shares. We provide results of a practical security evaluation based on real power
traces in adversary-friendly conditions. They confirm the theoretically guaran-
teed first-order attack resistance and show good security against higher-order
attacks.

2 Threshold Implementation

TIs use sharings with the following properties: correctness, incompleteness and
uniformity. The last property is often the most difficult to achieve. We propose

A More Efficient AES Threshold Implementation 269

implementations where not every function satisfies the property of uniformity
and use fresh randomness instead to do a re-masking. In this section, we recall
the TI properties defined in [19] and describe how circuit complexity can be
traded off for fresh random bits.

2.1 Notation and Definitions

We denote by upper-case characters stochastic variables, and by lower-case char-
acters the values they can take, i.e. elements of a finite field. Let X , taking values
in Fm, denote the input of the (unshared) function f . A masking takes as in-
puts a value x and some auxiliary values (random masks), and outputs a vector
(x1, . . . , xsx) such that the XOR-sum of the sx shares equals x. For all values x
with Pr(X = x) > 0, let Sh(x) denote the set of valid share vectors (x1, . . . , xsx)
for x:

Sh(x) = {(x1, . . . , xsx) ∈ Fmsx |x1 + · · ·+ xsx = x} .
Pr((X1, . . . , Xsx) = (x1, . . . , xsx)|X = x) denotes the probability that (X1, . . . ,
Xsx) = (x1, . . . , xsx) when the input of the masking equals x, taken over all
auxiliary inputs of the masking. Similarly, we denote the output of the unshared
function by Y , taking values in Fn, (y1, . . . , ysy) and Sh(y). Let F denote the
vector function with input (X1, . . . , Xsx) and output (Y1, . . . , Ysy); we will call
it a sharing. TIs, like most other masking schemes, require that the masking is
uniform, in the sense of the following definition.

Definition 1 (Uniform masking). A masking is uniform if and only if for
all x we have:

Pr((X1, . . . , Xsx) = (x1, . . . , xsx)|X = x) = |F|−m(sx−1)

if (x1, . . . , xsx) ∈ Sh(x), else it is 0.

In words, we call a masking uniform if for each value x of the variable X , the
corresponding vectors with masked values occur with the same probability.

Threshold implementations use sharings that satisfy the following properties.
Firstly, the sharing F of f needs to be correct :

∀y ∈ Fn, ∀(x1, . . . , xsx) ∈ Sh(x), ∀(y1, . . . , ysy) ∈ Sh(y) :

F (x1, . . . , xsx) = (y1, . . . , ysy) ⇔ f(x) = y.

Secondly, the sharing needs to be incomplete: every component function of F that
outputs Yi should be independent of at least one share Xi. The third property
is uniformity of the sharing [19]. Although the main point of this section is that
also sharings which do not satisfy the third property can be used in threshold
implementations, we provide the definition already now.

Definition 2 (Uniform sharing). The sharing F of f is uniform if and only
if

∀y ∈ Fn, ∀(y1, . . . , ysy) ∈ Sh(y), ∀x ∈ Fm with f(x) = y :∣∣{(x1, . . . , xsx) ∈ Sh(x)|F (x1, . . . , xsx) = (y1, . . . , ysy)
}∣∣ = |F|m(sx−1)

|F|n(sy−1)
.

270 B. Bilgin et al.

If sx = sy and m = n, this simplifies to:

∀y ∈ Fn, ∀(y1, y2, . . . , ysy) ∈ Sh(y)∀x ∈ Fn with f(x) = y :∣∣{(x1, x2, . . . , xsx) ∈ Sh(x)|F (x1, x2, . . . , xsx) = (y1, y2, . . . , ysy)
}∣∣ = 1 .

It follows that in this case a uniform sharing F is invertible if and only if f is
invertible.

2.2 Security from Correctness and Incompleteness

The security of threshold implementations against first-order side-channel at-
tacks follows from two intuitively easy steps. If the masking is uniform and the
sharing F is incomplete, then

1. any single component function of F does not get the information to deter-
mine the value of X (it does not know x), hence cannot leak any information
on X , and

2. the expected value (average) of any leakage signal of an implementation of
the sharing F , be it instantaneous or summed over an arbitrary period of
time, is constant.

Note that the only assumption on the physical behavior of the hardware or
software implementation of F that is needed for this reasoning, is that it should
be possible to implement the component functions in such a way that they
are each independent of one share Xi. In other words, the cross-talk between
implementations of different components should be negligible.

2.3 Uniformity for the Cascaded and Parallel Functions

If the threshold implementation technique is used to protect cascaded functions,
then extra measures need to be taken, such that the input for the next non-
linear operation is again a uniform masking. A similar situation occurs when the
threshold implementation technique is used to protect several functional blocks
acting in parallel on (partially) dependent inputs. This occurs for example in
implementations of the AES S-box using the tower field approach. If no special
care is taken, then “local uniformity” of the distributions of the inputs of the
individual blocks will not lead to “global uniformity”, i.e. for the joint distribu-
tions of the inputs of all blocks. For example, let g and h be two functions acting
on the same input X . Then, even if G and H are uniform sharings, producing
uniform Y = G(X) and Y ′ = H(X), this does not imply that (Y, Y ′) is uniform.
If each of the parallel blocks satisfies the properties of correctness and incom-
pleteness, there will be no leakage of signals within the parallel blocks. However,
the lack of uniformity in the joint distribution of the masking of the outputs
can lead to information leakage if the outputs are combined as inputs to a next
function.

We can take different types of actions to remedy this problem.Thefirst approach
is to require uniformity of the sharing F (Definition 2). We can show that if the

A More Efficient AES Threshold Implementation 271

sharing is uniform and the masking of its input is uniform, then also the masking
of its output is uniform.

Theorem 1. If the masking of X is uniform and the sharing F is uniform, then
the masking of Y = f(X), defined by (y1, . . . , ysy) = F (x1, . . . , xsx), is uniform.

The proof is omitted here to save space. Practice shows that adding the unifor-
mity requirement to a sharing tends to blow up the mathematical complexity of
the sharing, as well as the cost of its implementation. In some applications, it
might be better to consider a second approach: re-masking as for example done
by Moradi et al. [18]. Indeed, by adding new random masks to the shares, we
can make the distribution uniform.

2.4 Reducing the Randomness Used in a Re-masking Step

The following theorem allows to reduce the amount of random bits used by re-
masking steps of threshold implementations: under certain circumstances, only
a fraction of the shares needs to be re-masked.

Theorem 2. Let (X1, . . . , Xs) be a sharing of a variableX ∈ Fm, wherePr(X1 =
x1, . . . , Xt = xt) = |F|−tm, ∀(x1, . . . , xt) for some t with 1 ≤ t ≤ s. Then the
sharing (Y1, . . . , Ys), defined by Yi = Xi for 1 ≤ i ≤ t and Yi = Xi + Ri for
t < i ≤ s, is a uniform sharing for X, i.e.: Pr(Y1 = y1, . . . , Ys = ys|X = y1 +
· · · ys) = |F|(1−s)m, provided that the Ri, i = t + 1, . . . , s − 1 are independently
and uniformly distributed random variables and that Rs = −(Rt+1 + · · ·+Rs−1).

Proof. We give here a sketch of the proof. We have:

Pr(Y1 = y1, . . . , Ys = ys|X = y1 + · · · ys)
= Pr(Y1 = y1, . . . , Yt = yt|X = y1 + · · · ys) (1)

·Pr(Yt+1 = yt+1, . . . , Ys = ys|X = y1 + · · · ys, Y1 = y1, . . . , Yt = yt) .

Since Yi = Xi for 1 ≤ i ≤ t, the first factor equals |F|−tm. For the second factor
we recall the definition of Yt+1 to obtain that:

Pr(Yt+1 = yt+1) =
∑
xt+1

Pr(Xt+1 = xt+1) Pr(Rt+1 = yt+1 − xt+1)︸ ︷︷ ︸
|F|−m

.

The same holds for Yt+2, . . . , Ys−1 and since the Ri have independent distribu-
tions, we can equate the second factor of (1) to:

|F|(1−s−t)m
∑

xt+1,...,xs−1

Pr (Xt+1 = xt+1, . . . , Xs−1 = xs−1, Ys = ys|

X = y1 + · · ·+ ys, X1 = x1, . . . , Xt = xt) .

Recalling the definition of Ys completes the proof. ��

Note that generating the extra randomness required by the re-masking approach
may become a bigger challenge in some cases than the blow-up in gate count
caused by the uniform sharing approach.

272 B. Bilgin et al.

Conclusion. Assume that we have an input that is uniformly masked. Sec-
tion 2.2 explains that single circuits are secure against first-order side-channel
attacks, if they satisfy the incompleteness property. Section 2.3 explains that
for cascaded circuits we need to ensure that the inputs of all circuits are uni-
formly masked. This can be done either by using uniform sharings (Def. 2) or
by re-masking. The point that we want to stress here, however is that we do not
need to do both: an implementation that uses re-masking, does not need uniform
sharings in order to resist first-order attacks.

By relinquishing the uniformity requirement, it is often possible to reduce the
number of shares and the size of the implementation. This will be used in the
next section in order to reduce the number of shares in the subblocks of the AES
S-box and improve on the implementation of [18].

3 Implementation

In this section, we will discuss the new TI of AES in detail. We will first describe
the general data flow of our implementation. Then we will introduce a new ap-
proach to apply the TI to the S-box of AES which is the only non-linear layer
of the block cipher. We used ModelSim to verify the functionality of the pro-
posed design and Synopsys Design Vision D-201-.03-SP4 with Faraday Standard
Cell Library FSA0A C Generic Core, which is based on UMC 0.18μm GenericII
Logic Process with 1.8V voltage, for synthesis. We will conclude this section
by providing the performance of our design together with the comparison with
the previous work in [18]. We should note that the work in [18] uses a similar
standard cell library based on UMC 0.18μm logic process with 1.8V voltage.

3.1 General Data Flow

Our main goal for this implementation is to minimize the area and randomness
overhead caused by the sharing. To achieve this, we use a serial implementation
as proposed in [18] which requires only one S-box instance and loads the plaintext
and key byte-wise in row-wise order. Moreover, we adapt the number of shares
used in each operation in the block cipher. That is, we use two shares which is the
minimum number of shares possible for the affine operations such as MixColumns
or Key XOR and increase or decrease the number of shares when required for
the non-linear layer. This can also be seen in Fig. 1, as the key and the state
registers are 256 bits implying the two shares. With this approach we already
decrease a significant part of the register cost since one bit register costs 5.33
GE in our library.

The TI of the S-box, for which the details will be given in the following section,
requires four input shares and 20 bits of randomness and outputs three shares.
Therefore our initial sharing for the plaintext is also with four shares. However, it
is enough to initialize the sharing of the key with two shares. More details about
the key scheduling will be given later in this section. The two shares of the key are
XORed with two of the plaintext shares before the S-box operation. After three

A More Efficient AES Threshold Implementation 273

Fig. 1. Architecture of the serialized TI of AES-128.

clock cycles the first output share of the S-box operation is written to the register
P3 whereas the remaining two shares are written to the state register S33. The
data in P3 is XORed with the second share of the S-box output, in the state regis-
ter S33, after one clock cycle to be able to continue with two shares for the linear
operations. In the following AES rounds, we increase the number of shares from
two to four by using 24 bits of randomness one clock cycle before the S-box oper-
ation. We store the additional two shares in P0 to achieve the non-completeness
property in the following combinational logic. The registers P0 and P3 are used
both for the round transformations and the key scheduling.

State Array (Fig. 2a). The state array consists of sixteen 16-bit registers
each corresponding to the two shares of a byte in the state. From the first
to the sixteenth clock cycle, the four input shares (first round) or the shares
in the registers S00 and P0 (later rounds) are sent to the S-box module. The
corresponding three output shares are written to the registers S33 and P3. The
signal sig2 is active from the fourth to the nineteenth clock cycle to reduce the
number of shares from three to two in the state such that one of the shares in
S33 is XORed with P3 and the other share stays the same. The state is shifted
to the left horizontally from the third to the eighteenth clock cycle. The Shift
Rows operation is also completed in the nineteenth clock cycle with an irregular
horizontal shift. In the next four clock-cycles, the data in the registers S00, S10,
S20 and S30 are sent to MixColumns operation, the rest of the registers are
shifted to the left horizontally and the output of the MixColumns operation is
written to the registers S03, S13, S23 and S33. The MixColumns operation is
implemented column-wise as in [18] and with two shares working in parallel.
The registers except S10, S11 and S12 are implemented as scan flip-flops (SFF)
that are D-flip-flops (DFF) combined with 2-to-1 MUXes and can operate with
two inputs to reduce the area since a single 2-to-1 MUX costs 3.33 GE in our
library whereas one bit SFF costs 6.33 GE. One round of AES takes 23 clock
cycles. The signal sig1 is active for sixteen clock cycles, starting from the last
clock-cycle of each round, to increase the number of shares from two to four.

274 B. Bilgin et al.

sbin1,2

sbin3,4

||m1
∑
mi m2||m3

sig1

sig2
mcini

sbout1,2

sbout3

mcouti

S00

S01 S02 S03

S11 S12 S13S10

S21 S22 S23S20

S31 S32
S33S30

P0

P3

(a) State array with ShiftRows

sbin1,2

sig3

sbout1,2
sbout3

K00 K01 K02 K03

K11 K12 K13K10

K21 K22 K23K20

K31 K32 K33K30

P0

P3

||m1
∑
mi

m2||m3
sig4

sig5

sbin3,4

sig6

rcon

rndkeyi

rndkeyi

(b) Key array

Fig. 2. Architecture of the registers where Si, Ki and P0 hold two shares and P3 holds
one share. The registers P0 and P3 are shared by the state and the key array. The XOR
of the value in P3 and S33 (resp. K30) is on one share of the value in register S33 (resp.
K30) whereas all the other combinational operations are on two shares.

Key Array (Fig. 2b). Similar to the state array, the key array also consists
of sixteen 16-bit registers implemented as SFFs each corresponding to the two
shares of a byte in the key schedule. The round key is inserted from the register
K33 in the first sixteen clock cycles of each round. For the next three clock cycles,
the registers except K03, K13, K23 and K33 are not clocked. The registers K03,
K23 and K33 are also not clocked in the seventeenth clock cycle. In that clock
cycle, we increase the number of shares in the register K13. In the following three
clock cycles this re-sharing is done during the vertical shift from the register K23

to K13. Hence the re-sharing signal sig4 is active from the seventeenth to the
twentieth clock cycle. Signal sig5 is active from the eighteenth to the twenty-first
clock cycle to reduce the number of shares back to two. The registers K03, K13,
K23 and K33 are not clocked in the remaining two clock cycles of each round. We
choose this way of irregular clocking to avoid using extra MUXes in our design.
Two shares of the S-box output are XORed to the data in K00 in the last four
clock cycles of each round. In the twentieth clock cycle the round counter rcon
is additionally XORed to one of these shares. The number of shares is reduced
back to two by XORing the share in P3 to one of the shares in K30. Signal sig3
is active in the first sixteen clock cycles except the fourth, eighth, twelfth and
sixteenth clock cycles. The roundkey is taken from the register K00 to be XORed
with the corresponding plaintext before going to the S-box operation.

3.2 TI of the AES S-box

The S-box (Fig. 3) is instantiated only once to be used by both the key schedule
and the state update. In the first sixteen clock cycles, it gets its inputs from

A More Efficient AES Threshold Implementation 275

Fig. 3. The Sbox of our implementation.

the state. The input is taken from the key array in clock cycles eighteen to
twenty-one.

The S-box implementation in [18] uses the tower field approach up to GF (22)
for a smaller implementation. Therefore, the only non-linear operation is GF (22)
multiplication which must be followed by registers to avoid first order leakages.

We also chose to use the tower field approach, however, we decided to go to
GF (24) instead of GF (22). With this approach, the GF (24) inverter can be seen
as a four bit permutation and the GF (24) multiplier as a four bit multiplication
both of which are well studied in [6]. Therefore, we can find uniform TIs for
these non-linear blocks individually which implies using less fresh random bits
during the combination of these uniformly implemented pieces. Moreover, with
this approach the S-box calculation takes three clock cycles instead of five.

The algebraic normal form of the multiplier in GF (24) is given in
Appendix A.1. This multiplication can be shared uniformly as in Appendix A.3
with four input and three output shares. The required area is 625 GE without
any optimization.

The GF (24) inverter, on the other hand, can be represented with the formula
in Appendix A.2. To have a uniform sharing for this function, which belongs
to class C4

282 [5], we consider two options. Either using four shares which is the
minimum number of shares necessary for a uniform implementation in that class
and decomposing the function into three uniform sub-functions as Inv(x) =
F (G(H(x))), or using five shares without any decomposition. Our experiments
show that both versions have similar area requirements but a different number of
clock cycles. To reduce the number of cycles, we chose the version with five shares,
with the formula in Appendix A.4, which requires 618 GE. The sharing for this
module is found by using the method described in [20] which is slightly different
from the direct sharing [5]. We chose this formula since it can be implemented
with less logic gates in hardware compared to the direct sharing.

Even though it is enough to use only two shares for linear operations, we
sometimes chose to work on more than two shares to avoid the need for extra
random bits. The linear map of the tower-field S-box operates on four shares
since the multiplication needs four input shares. The inverter requires five input
shares and the multiplication outputs only three shares, therefore we use two
shares for the square scalar to have five shares in the beginning of the second

276 B. Bilgin et al.

phase. We use three shares for the inverse linear map of the tower-field S-box
since the multiplication outputs three shares.

Combining the Sub-blocks. During this process we face two challenges. One
is to keep the uniformity in the pipeline registers as the sub-blocks are combined.
That is a challenge Moradi et al. also faced and solved with re-masking. We also
apply re-masking in the second phase where we combine the 2 output shares
of the square scaler and the 3 output shares of the multiplier to 5 shares. We
must note that this combination also acts as the XOR of the output of the square
scaler and multiplier in the unshared case. By theorem 2, it is enough to re-mask
only the output shares from one function to achieve uniformity. We choose to
re-mask the output of the square scaler since it operates on less shares hence
requires less random bits. The correction mask, i.e. the XOR of the masks, is
XORed to one of the output shares of the multiplier to achieve correctness and
non-completeness.

The second challenge is to keep the uniformity as we increase or decrease
the number of shares. This is achieved by introducing new masks before the
S-box operation to increase from two to four shares and at the end of the second
phase to decrease from five to four shares. The output of the third phase is not
uniform when the three shares are considered together. However, we verified by
simulation that each share individually is uniform which implies that there is
no first-order leakage in the following register. We combine the first two shares
with an XOR and keep the third share as it is to go back to two shares. We also
verified that, when we decrease the number of shares to two, the output shares
are uniform.

We always keep the XOR of the masks in the pipeline registers and complete
the re-masking in the next clock cycle as in [18]. Overall, we need 44 fresh random
bits per S-box operation which is less than what was required in [18].

3.3 Performance

Like other countermeasures TIs require extra area and randomness. In this work
we minimize these needs for a more efficient implementation. In Table 1, we
show the area, randomness and timing requirements of our implementation and
compare them with [18]. The area cost for the state and the key arrays include
the ANDs and XORs that are in Fig. 2. An expected observation is that the
cost of the state and key array together with the MixColumns is reduced by
one third compared to [18] since we use two shares instead of three. The area
cost of the S-box is the sum of the combinational logic in three phases and the
registers required. For the three phases, we use four linear maps (each 42 GE),
two square scalers (each 9 GE), three multipliers (each 625 GE), one inverter
(618 GE), three inverse linear maps (each 33 GE) and some additional XORs
for re-masking. The registers P0 and P3 are also counted in the cost of the S-box
together with the pipelining registers P1 and P2.

A More Efficient AES Threshold Implementation 277

Table 1. Synthesis results for different versions of AES TI

State Key
S-box

MixCol
Contr.1

Key
MUX Other Total cycles

rand
Array Array Col XOR bits2

[18] 2529 2526 4244 1120 166 64 376 89 11114/110313 266 48
This paper 1698 1890 3708 770 221 48 746 21 9102 246 44
This paper3 1698 1890 3003 544 221 48 746 21 8171 246 44
1 including round constant 2 per S-box 3 compile ultra

In this implementation, the S-box occupies 40% of the total area. When com-
pared to the previous implementation by Moradi et al., the S-box is 13% smaller
and the overall area is 18% smaller. Moreover it is faster and requires less ran-
domness. The numbers provided in Table 1 are taken from the Synopsys tool with
compile command. We use these numbers for a fair quantitative comparison. On
the other hand, it is also possible to compile each function that is provided in
Appendix A.3 and A.4 individually with the compile ultra command to let the
tool optimize these functions and use the generated optimized descriptions of
these functions. This reduces the cost of TI of AES to 8171 GE. However, the
results for compile ultra mainly reflect how good the tools are at optimizing and
a comparison may not be fair.

4 Power Analysis

To evaluate the security of our design in practice we implement it on a SASEBO-
G board [1] using Xilinx ISE version 10.1. We use the “keep hierarchy” constraint
to prevent the tools from optimizing over module boundaries (see the last para-
graph of Sect. 2.2). The board features two Xilinx Virtex-II Pro FPGA devices:
we implement the TI AES and a PRNG on the crypto FPGA (xc2vp7) while
the control FPGA (xc2vp30) handles I/O with the measurement PC and other
equipment. The PRNG that generates all random bits is implemented as AES-
128 in CTR mode.

We measure the power consumption of the crypto FPGA during the first 1.5
rounds of TI AES as the voltage drop over a 1Ω resistor in the FPGA core GND
line. The output of the passive probe is sampled with a Tektronix DPO 7254C
digital oscilloscope at 1GS/s sampling rate.

Methodology. We define two main goals for our practical evaluation. First,
we want to verify our implementation’s resistance against first-order attacks.
But in practice adversaries are of course not restricted to applying such attacks.
Therefore, our second goal is to assess the level of security our implementation
provides against other, e.g. higher-order, power analysis attacks.

Since there is no single, all-embracing test to evaluate the security of an
implementation, we follow the approach of [18] and test its resistance against
state-of-the-art attacks. We narrow the evaluation to univariate attacks because
our implementation processes all shares of a value in parallel. Estimating the
information-theoretic metric by Standaert et al. [25] is out of reach. It would
require estimation of up to 256 Gaussian templates.

278 B. Bilgin et al.

We make several choices that are in favor of an adversary and make attacks
easier. First, to minimize algorithmic noise the PRNG and the TI AES do not
operate in parallel, i.e. the PRNG generates and stores a sufficient number of
random bits before each TI AES operation. In practice, running them in parallel
will increase the level of noise and thus the number of measurements needed for
an attack to succeed. Second, we provide the crypto FPGA with a stable 3MHz
clock frequency to ensure that the traces are well aligned and the power peaks
of adjacent clock cycles do not overlap (this would also help to assign a possibly
identified leak to a specific clock cycle). In practice, clocking the device at a
faster or unstable clock will make attacks harder. Note that the “combining ef-
fect” of the measurement setup or a faster clock described in [16] does not apply
to our situation. In our implementation all shares are processed and leak at the
same time, in contrast to the implementation analyzed in [16] where all shares
are processed and leak separated in time. Hence we expect the effect to not ease
an attack. Third, we let the adversary know the implementation. Specifically, if
the PRNG was switched off the adversary would be able to correctly compute
bit values and bit flips under the correct key hypothesis. In practice, obscu-
rity is often used as an additional layer of security. Fourth, we use synchronous
sampling [13] to avoid clock drift and achieve the best possible alignment. In
practice, secure devices use an internal (and unstable) clock source which pre-
vents synchronous sampling and increases the number of measurements needed
for an attack to succeed.

PRNG Switched Off. To confirm that our setup works correctly and to
get some reference values we first attack the implementation with the PRNG
switched off. We expect that the implementation can be broken with many
first-order attacks. As example, Fig. 4 shows the result of a correlation DPA
attack [7] that uses the Hamming distance of two consecutive S-box outputs as
power model. The attacks require 2 · 28 key hypotheses. To reduce the compu-
tational complexity we let the adversary know one key byte and aim to recover
the second one.

Fig. 4. Results of DPA attacks using HD model over 3/2/1 registers with PRNG
off; left: correlation traces for all key hypotheses computed using 50 000 power traces,
correct hypothesis in black, and a scaled power trace; right: max. correlation coefficient
per key hypothesis (from the overall time span) over number of traces used.

A More Efficient AES Threshold Implementation 279

Since the adversary knows the implementation, he can choose to compute the
Hamming distance over three 8-bit registers (S33 and P3; output of the S-box in
three shares), two 8-bit registers (S32; one cycle later; two shares) or ignore the
details and compute the distance over a single 8-bit register as if it was a plain
implementation. The results for all three options are identical. This is a property
of our implementation that vanishes when the PRNG is switched on. Only a few
hundred traces are required to recover the key with one of these attacks. It is
worth noticing that the highest correlation peak does not occur at the S-box
output registers, but three resp. two clock cycles later when the bit-flips occur
in register S30. This register drives the MixColumns logic and therefore has a
much greater fanout.

Fig. 5 shows the result of a correlation collision attack [17] that targets com-
binational logic. The attack computes two sets of mean traces for the values of
two processed plaintext bytes and shifts the mean traces in the time domain to
align them. It aims to recover the linear difference between the two key bytes
involved. To do so, it permutes one set of mean traces according to a hypothesis
on the linear difference and then correlates both sets of mean traces. The result
shows that this attack is successful with a few thousand measurements.

Fig. 5. Result of a correlation collision attack with PRNG off; left: correlation traces
for all hypotheses on the linear difference computed using 50 000 power traces, correct
hypothesis in black, and a scaled power trace; right: max. correlation coefficient per
hypothesis on the linear difference (from the overall time span) over number of traces
used.

PRNG Switched On. Next we repeat the evaluation with the PRNG switched
on, i.e. the TI AES uses unknown and unpredictable random bits. However, for
the DPA attacks using the Hamming distance over two or three registers as
power model we again suppose these bits were zero. Fig. 6 shows the results
of the first-order attacks against the protected implementation using 10 million
measurements. The results show that the attacks fail.

We proceed with higher-order attacks to assess the level of security our imple-
mentation provides. For our second-order DPA attacks we use the same power
models as before but center and then square the traces (for each time sample)
before correlating [8,23,26]. Second-order correlation collision attacks work as
above with mean traces replaced by variance traces [15].

280 B. Bilgin et al.

Fig. 6. Results of first-order DPA and correlation collision attacks with PRNG on
computed using 10 million traces; top, left: HD over 1 register; top, right: HD over 2
registers; bottom, left: HD over 3 registers; bottom, right: correlation collision.

Fig. 7. Results of second-order DPA (top) and correlation collision (bottom) attacks
with PRNG on computed using 10 million traces; right: min./max. correlation coeffi-
cient per hypothesis (from the overall time span) over number of traces used.

Fig. 7 (top) shows the results of the second-order DPA attack that uses the
Hamming distance in a single register as power model (as if it was a plain imple-
mentation). The attack requires about 600 000 traces to succeed. We note that
the highest correlation peak occurs again when the bitflips happen in register
S30, cf. Fig. 4. Second-order DPA attacks using the Hamming distance over two
resp. three registers as power model failed to recover the key.

A More Efficient AES Threshold Implementation 281

Fig. 7 (bottom) shows the results of the second-order correlation collision
attack. The attack requires about 3.5 million traces to succeed. A third-order
correlation collision attack works as above with mean traces replaced by skewness
traces [15]. This attack fails using 10 million measurements.

Discussion. The first goal of our evaluation is to verify our implementation’s
resistance against first-order attacks. But this goal is always limited by the num-
ber of measurements at hand. It is simply not possible to demonstrate resistance
against attacks with an infinite number of traces. We have shown that our im-
plementation resists state-of-the-art first-order attacks with 10 million traces in
conditions that are strongly in favor of the adversary (no algorithmic noise from
the PRNG, knowledge of the implementation, slow and stable clock, best possible
alignment). Given the theoretical foundations of TI and the correctness of our im-
plementation, we are convinced that our implementation resists first-order attacks
with any number of measurements, but we have no way to demonstrate that.

The second goal of our evaluation is to assess the level of security our imple-
mentation provides against other attacks. In the same adversary-friendly con-
ditions, the most trace-efficient second-order attack in our evaluation requires
about 600 000 traces. Recall that our evaluation focuses on univariate attacks,
so that the computational overhead is limited to estimating second-order mo-
ments and does not involve the notoriously more costly search over pairs of
points in time. However, regarding second-order attacks it is well known that
the number of traces required for an attack to succeed scales quadratically in
the noise standard deviation [8,22]. Therefore, second-order attacks against our
implementation in less favorable and more realistic, i.e. much more noisy, condi-
tions (algorithmic noise from the PRNG, no knowledge of the implementation,
faster and unstable clock, worse alignment) will require many more traces.

It is tempting to compare the results of our evaluation to the results of the
evaluation in [18]. However, not only the implementations but also the measure-
ment platforms and the conditions differ, so that any difference must not be
credited to an implementation alone. Already the numbers of traces required for
attacks against the implementations with PRNG switched off differ by roughly
two orders of magnitude. In addition, the analysis in [18] is limited to four clock
cycles during the S-box computation.

Acknowledgements. This work has been supported in part by the Research
Council of KU Leuven (OT/13/071), by the FWO (G.0550.12), by the Hercules
foundation and by GOA (tense). B. Bilgin was partially supported by the FWO
project G0B4213N, V. Nikov was supported by the European Commission (FP7)
within the Tamper Resistant Sensor Node (TAMPRES) project with contract
number 258754 and Benedikt Gierlichs is a Postdoctoral Fellow of the Research
Foundation - Flanders (FWO).

282 B. Bilgin et al.

References

1. AIST. Side-channel Attack Standard Evaluation BOard,
http://staff.aist.go.jp/akashi.satoh/SASEBO/en/

2. Batina, L., Gierlichs, B., Prouff, E., Rivain,M., Standaert, F.-X., Veyrat-Charvillon,
N.: Mutual Information Analysis: A Comprehensive Study. J. Cryptol. 24(2),
269–291 (2011)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Building power analysis resis-
tant implementations of Keccak. In: Second SHA-3 Candidate Conference (August
2010)

4. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: fides: Lightweight
authenticated cipher with side-channel resistance for constrained hardware. In:
Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158.
Springer, Heidelberg (2013)

5. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012)

6. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3 × 3 and 4 × 4 S-boxes. Cryptology ePrint Archive, Report 2012/300 (2012),
http://eprint.iacr.org/

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999)

9. Goubin, L., Patarin, J.: DES and differential power analysis the “duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

11. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

12. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005)

13. Messerges, T.S.: Power analysis attacks and countermeasures on cryptographic
algorithms. PhD thesis, University of Illinois at Chicago (2000)

14. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

15. Moradi, A.: Statistical tools flavor side-channel collision attacks. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 428–445.
Springer, Heidelberg (2012)

16. Moradi, A., Mischke, O.: On the simplicity of converting leakages from multivariate
to univariate. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp.
1–20. Springer, Heidelberg (2013)

17. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225,
pp. 125–139. Springer, Heidelberg (2010)

http://staff.aist.go.jp/akashi.satoh/SASEBO/en/
http://eprint.iacr.org/

A More Efficient AES Threshold Implementation 283

18. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

19. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006)

20. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

21. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2300 GE. J. Cryptology 24(2), 322–345 (2011)

22. Prouff, E., Rivain, M.: Masking against side-channel attacks: A formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 142–159. Springer, Heidelberg (2013)

23. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Computers 58(6), 799–811 (2009)

24. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using
secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011)

25. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

26. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

A Equations

A.1 Multiplier in GF (24)

(f1, f2, f3, f4) = (x1, x2, x3, x4)× (x5, x6, x7, x8)

f1 = x1x5 ⊕ x3x5 ⊕ x4x5 ⊕ x2x6 ⊕ x3x6⊕x1x7 ⊕ x2x7 ⊕ x3x7 ⊕ x4x7 ⊕ x1x8⊕x3x8

f2 = x2x5 ⊕ x3x5 ⊕ x1x6 ⊕ x2x6 ⊕ x4x6⊕x1x7 ⊕ x3x7 ⊕ x2x8 ⊕ x4x8

f3 = x1x5 ⊕ x2x5 ⊕ x3x5 ⊕ x4x5 ⊕ x1x6⊕x3x6 ⊕ x1x7 ⊕ x2x7 ⊕ x3x7 ⊕ x1x8⊕x4x8

f4 = x1x5 ⊕ x3x5 ⊕ x2x6 ⊕ x4x6 ⊕ x1x7⊕x4x7 ⊕ x2x8 ⊕ x3x8 ⊕ x4x8

A.2 Inverter in GF (24)

(f1, f2, f3, f4) = Inv(x1, x2, x3, x4)

f1 = x3 ⊕ x4 ⊕ x1x3 ⊕ x2x3 ⊕ x2x3x4

f2 = x4 ⊕ x1x3 ⊕ x2x3 ⊕ x2x4 ⊕ x1x3x4

f3 = x1 ⊕ x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x2x4

f4 = x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x3

284 B. Bilgin et al.

A.3 Sharing Multiplier in GF (24) with 4 Input 3 Output Shares

f = xy, where

f = f1 ⊕ f2 ⊕ f3

x = x1 ⊕ x2 ⊕ x3 ⊕ x4

y = y1 ⊕ y2 ⊕ y3 ⊕ y4

f1 = (x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3)⊕ y4

f2 = ((x1 ⊕ x3)(y1 ⊕ y4))⊕ x1y3 ⊕ x4

f3 = ((x2 ⊕ x4)(y1 ⊕ y4))⊕ x1y2 ⊕ x4 ⊕ y4

A.4 Sharing Inverter in GF (24) with 5 Input 5 Output Shares

f = xyz ⊕ xy ⊕ z, where

f = f1 ⊕ f2 ⊕ f3 ⊕ f4

x = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5

y = y1 ⊕ y2 ⊕ y3 ⊕ y4 ⊕ y5

z = z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z5

f1 = ((x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5))

⊕ ((x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)) ⊕ z2

f2 = (x1(y3 ⊕ y4 ⊕ y5)(z3 ⊕ z4 ⊕ z5) ⊕ y1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)

⊕ z1(x3 ⊕ x4 ⊕ x5)(y3 ⊕ y4 ⊕ y5) ⊕ x1y1(z3 ⊕ z4 ⊕ z5) ⊕ x1z1(y3 ⊕ y4 ⊕ y5)

⊕ y1z1(x3 ⊕ x4 ⊕ x5) ⊕ x1y1z1) ⊕ (x1(y3 ⊕ y4 ⊕ y5) ⊕ y1(x3 ⊕ x4 ⊕ x5) ⊕ x1y1) ⊕ z3

f3 = (x1y1z2 ⊕ x1y2z1 ⊕ x2y1x1 ⊕ x1y2z2 ⊕ x2y1z2 ⊕ x2y2z1 ⊕ x1y2z4 ⊕ x2y1z4 ⊕ x1y4z2

⊕ x2y4z1 ⊕ x4y1z2 ⊕ x4y2z1 ⊕ x1y2z5 ⊕ x2y1z5 ⊕ x1y5z2 ⊕ x2y5z1 ⊕ x5y1z2 ⊕ x5y2z1)

⊕ (x1y2 ⊕ y1x2) ⊕ z4

f4 = (x1y2z3 ⊕ x1y3z2 ⊕ x2y1z3 ⊕ x2y3z1 ⊕ x3y1z2 ⊕ x3y2z1) ⊕ 0 ⊕ z5

f5 = 0 ⊕ 0 ⊕ z1

Constant Rounds Almost Linear Complexity

Multi-party Computation for Prefix Sum

Kazuma Ohara1, Kazuo Ohta1, Koutarou Suzuki2, and Kazuki Yoneyama2

1 The University of Electro-Communications
1-5-1 Chofugaoka Chofu Tokyo 182-8585, Japan

2 NTT Secure Platform Laboratories
3-9-11 Midori-cho Musashino-shi Tokyo 180-8585, Japan

kazma.ohara@gmail.com, kazuo.ohta@uec.ac.jp,

{suzuki.koutarou,yoneyama.kazuki}@lab.ntt.co.jp

Abstract. One of research goals on multi-party computation (MPC) is
to achieve both perfectly secure and efficient protocols for basic functions
or operations (e.g., equality, comparison, bit decomposition, and modular
exponentiation). Recently, for many basic operations, MPC protocols
with constant rounds and linear communication cost (in the input size)
are proposed. In this paper, we propose the first MPC protocol for prefix
sum in general semigroups with constant 2d + 2dc rounds and almost
linear O(l log∗(c) l) communication complexity, where c is a constant, d is
the round complexity of subroutine protocol used in the MPC protocol, l
is the input size, and log∗(c) is the iterated logarithm function. The prefix
sum protocol can be seen as a generalization of the postfix comparison
protocol proposed by Toft. Moreover, as an application of the prefix
sum protocol, we construct the first bit addition protocol with constant
rounds and almost linear communication complexity.

Keywords: multi-party computation, constant round, prefix sum, bit
addition, bit decomposition.

1 Introduction

Multi-party computation (MPC) protocols for general circuits have been studied
in many researches [13,14,7,2,5]. However, such MPC protocol for general circuits
is often less efficient than MPC protocol for specific function, which is optimized
for the function. Therefore, there are many studies for dedicated MPC protocols
for specific functions. In this paper, we focus on the MPC protocol [2,5] using a
threshold secret sharing scheme, that is information theoretic secure. The MPC
protocol can efficiently compute arithmetic operations in finite field, including
multiplication and addition. However, several basic operations, including equal-
ity check, comparison, and modulo arithmetic, are hard to implement efficiently
by using the arithmetic operations. The bit decomposition protocol, that con-
verts a sharing of a finite field element to a sharing of bit representation of the
element, makes it possible to compute these basic operations efficiently.

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 285–299, 2014.
c© Springer International Publishing Switzerland 2014

286 K. Ohara et al.

The efficiency of the MPC is evaluated by two perspectives, round complexity
and communication complexity. Especially, the round complexity of a protocol
is significant, since it strongly affect the execution time for the protocol. So, the
constant round MPC protocols have been studied intensively as follows.

Damg̊ard et al. [6] proposed constant round MPC protocols for several impor-
tant operations, including comparison, equality, exponentiation, and bit decom-
position. The bit decomposition protocol that requires constant round O(l log l)
communication complexity, where l is the length of the input.

Nishide and Ohta [10] proposed MPC protocols for comparison and equality
check, and Ning and Xu [8,9] proposed MPC protocols for exponentiation and
modulo arithmetic. These protocols achieve constant round and linear commu-
nication complexity by avoiding the use of bit decomposition.

Toft [12] proposed bit decomposition protocol with constant round and almost
linear communication complexity, that is based on the subprotocol called postfix
comparison. The postfix comparison protocol takes two bit strings of l bit, and
outputs the results of comparison of most significant k bits for k = l, l− 1, ..., 1.
The postfix comparison protocol and the bit decomposition protocol using it re-
quire constant rounds and almost linear O(l log∗(c) l) communication complexity,

where c is a constant, l is the input size, and log∗(c) is the iterated logarithm
function.

Only the bit addition protocol in [6] is left with constant rounds and superlin-
ear O(l log l) communication complexity. We propose a MPC protocol for prefix
sum and a bit addition protocol as its application with constant round and
almost linear O(l log∗(c) l) communication complexity.

Our Contribution: In this paper, we propose a MPC protocol for prefix sum
in general semigroups (an algebraic structure consisting of a set together with an
associative binary operation ◦), i.e., it takes l elements (a0, ..., al−1) and outputs
the sums (ei = ◦ik=0ak)i=0,...,l−1 of prefix i elements of the inputs. The prefix
sum is an important basic operation, that is widely used in various algorithms
such as carry propagation, counting sort, list ranking, and recurrence relation
[3]. Especially, in the MPC setting, carry propagation is necessary to achieve bit
addition protocol.

Our prefix sum protocol requires constant 2d + 2dc round and almost linear
O(l log∗(c) l) communication complexity, where d is a round complexity of the
subroutine protocol (BlockSumin Sect. 3), c is an any integer, l is the input size,

and log∗(c) is the iterated logarithm function. The main tool of the proposed
protocol is the notion of (G(x), l)-tree (see Definition 1), that is a generalization
of binary tree (= (G(x) = x/2, l)-tree). In the proposed protocol, prefix sum is

computed along the path in (G(x) = log∗(c−1) x, l)-tree with log∗(c) l-depth, and
we can realize O(l log∗(c) l) communication complexity. The proposed protocol
can be seen as a generalization of the postfix comparison by Toft [12].

By applying the prefix sum to the carry calculation of bit addition [6], we
propose the first bit addition protocol that achieves constant 2d + 2dc round
and almost linear O(l log∗(c) l) communication complexity as in Table 2. As de-
scribed above, in previous works, only the bit addition protocol is left with

Constant Rounds Almost Linear Complexity Multi-party Computation 287

Table 1. Known protocols

Protocol References Rounds #Mul

[ab mod p]p ← Mul([a]p, [b]p) [2] 1 1

a ← Reveal([a]p) [2] 1 1/n

[a−1 mod p]p ← Inv([a]p) [1,6,10] 2 2

[r]p ← Rand() [6] 1 1

[ab]p ← Cond([b]p, [a1]p, [a0]p) [11] 1 1

[a
?
< b]p ← BitLessThan([a]B , [b]B) [12,8] 6 14l

([r]B, [r]p) ← SolvedBits() [12] 7 56l

O(l log l) communication complexity. Since it seems hard to realize O(l) commu-
nication complexity, the almost linear communication complexity is reasonable
for bit addition. Since the bit addition protocol is versatile as building block for
constructing many MPC protocols, our result is useful for making these MPC
protocols more efficient.

In addition, by applying our bit addition protcol to the construction of
Damg̊ard et al. [6], we have almost linear bit decomposition protocol. The de-
tailed estimation and comparison is shown in Table 2.

Organization: The rest of this paper is structured as follows. In section 2, we
described known MPC protocols, in particular, Toft’s postfix comparison proto-
col. In section 3, we propose a MPC protocol for prefix sum in general semigroups
with constant rounds and almost linear communication complexity. In section 4,
we construct a bit addition protocol with constant rounds and almost linear
communication complexity, and we compare with the existing protocols.

2 Preliminaries

2.1 Known MPC Techniques

There exist n parties P1, ...,Pn. Let p be a prime of bit length l. We use a linear
secret sharing scheme on Zp and secure MPC for addition and multiplication in
Zp based on the linear secret sharing scheme (LSSS). We denote by [a]p that a ∈
Zp is shared among n parties P1, ...,Pn by the LSSS. We also denote by [a]B =

([a1]p, ..., [al]p) that bit representation ai ∈ {0, 1} ⊂ Zp of a =
∑l

i=1 ai2
i−1 ∈ Zp

is shared among n parties P1, ...,Pn by the LSSS. The addition protocol Add
and the (public) multiplication protocol PubMul are fundamental tools. Add
takes shared values [a]p, [b]p (a, b ∈ Zp) as input and outputs shared addition
[a+ b mod p]p, i.e.,

[a+ b mod p]p ← Add([a]p, [b]p) (denoted as [a+ b]p for simplicity).

PubMul takes public value k ∈ Zp and shared value [a]p (a ∈ Zp) as input and
outputs shared multiplication [ka mod p]p, i.e.,

[ka mod p]p ← PubMul(k, [a]p) (denoted as [ka]p for simplicity).

288 K. Ohara et al.

We assume both Add and PubMul are computable without communication due
to the underlying LSSS. Also, we use an important protocol to compute multi-
plication of two shared values, denoted as Mul. Mul takes shared values [a]p, [b]p
(a, b ∈ Zp) as input and outputs shared multiplication [ab mod p]p, i.e.,

[ab mod p]p ← Mul([a]p, [b]p) (denoted as [a · b]p for simplicity).

We measure the round complexity by the number of rounds of parallel invoca-
tions of Mul, that is described below, and the communication complexity by the
number of invocations of Mul, i.e., Mul requires 1 round and 1 multiplication.
The reveal protocol Reveal is also useful. Reveal takes a shared value [a]p (a ∈ Zp)
as input and outputs the value a ∈ Zp, i.e.,

a← Reveal([a]p).

It is known that Reveal requires 1 round and 1/n multiplication. Our protocol
uses following known protocols [6,11,10,12,8,9]:

– The Unbounded Fan-In Multiplication Protocol Mul∗ takes a shared
values [a0]p, . . . , [al−1]p (ai ∈ Zp for i = 0, . . . , l − 1) as input and outputs
shared products [Π l−1

i=kai]p for k = 0, . . . , l − 1, and requires 5 rounds and 6
multiplication [6], i.e.,

([al−1]p, [al−1al−2]p, . . . , [al−1al−2 · · · a0]p)←Mul∗([al−1]p, [al−2]p, . . . , [a0]p).

– The secure inversion protocol Inv takes a shared value [a]p (a ∈ Zp) as
input and outputs shared inversion [a−1 mod p]p, and requires 2 round and
2 multiplication [1,6,10], i.e.,

[a−1 mod p]p ← Inv([a]p).

– The shared random value generation protocol Rand takes no input
and outputs shared random value [r]p (r ∈ Zp), requires 1 round and 1
multiplication [6], i.e.,

[r]p ← Rand().

– The conditional selection protocol Cond takes a shared bit [b]p and
shared values [a1]p, [a0]p (a1, a0 ∈ Zp) as input and outputs shared value
[ab]p, and requires 1 round and 1 multiplication [11], i.e.,

[ab]p ← Cond([b]p, [a1]p, [a0]p).

– The bitwise less-than protocol BitLessThan takes bitwise shared values

[a1]B, [a0]B , (a ∈ Zp) as input and outputs shared bit [a
?
< b]p, requires 6

round and 14l multiplication [12,8], i.e.,

[a
?
< b]p ← BitLessThan([a]B , [b]B).

Constant Rounds Almost Linear Complexity Multi-party Computation 289

– The bitwise shared random value generation protocol SolvedBits takes
no input and outputs bitwise shared random value [r]B = ([r1]p, ..., [rl]p)

(ri ∈U {0, 1} ⊂ Zp) and shared random value [r]p (r =
∑l

i=1 ri2
i−1 ∈ Zp),

requires 7 round and 56l multiplication [12], i.e.,

([r]B , [r]p) ← SolvedBits().

We summarize known protocols as in Table.1.

2.2 Toft’s Almost Linear Bit Decomposition Protocol

Toft [11,12] proposed a MPC protocol BitDecomp for bit decomposition with con-

stant O(c) round and almost linear O(l log∗(c) l) communication complexity. To
construct the bit decomposition protocol BitDecomp, Toft proposed a MPC pro-
tocol PostComp for postfix comparison with constantO(c) round andO(l log∗(c) l)
communication complexity. The postfix comparison protocol PostComp takes two
shared values [a]B = ([al−1]p, . . . , [a0]p) and [b]B = ([bl−1]p, . . . , [b0]p) where

a =
∑l−1

i=0 2
iai and b =

∑l−1
i=0 2

ibi as input, and outputs [ci]p (i = 0, . . . , l − 1)
where ci = 1 if (a mod 2i) > (b mod 2i) and otherwise ci = 0, i.e.,

([cl−1]p, . . . , [c0]p) ← PostComp([a]B, [b]B).

Toft [12] introduced parallelized computation technique using l log∗(c) l-depth
tree to construct the postfix comparison protocol PostComp with constant O(c)

round and O(l log∗(c) l) communication complexity. In this paper, we generalize
the Toft’s technique to prefix sum in general semigroup in section 3. So, the
Toft’s construction of postfix comparison protocol PostComp can be described
using our prefix sum protocol in section 3 as follows.

We define semigroup X = {o>, o<, o=} with associative product

∀x ∈ X , o> ◦ x = o>,

∀x ∈ X , o< ◦ x = o<,

∀x ∈ X , o= ◦ x = x.

Intuitively, o>, o<, and o= means ak > bk, ak < bk, and ak = bk.
For input (al−1, . . . , a0) and (bl−1, . . . , b0) of PostComp, we define dk = o>

if ak > bk, dk = o< if ak < bk, and dk = o= if ak = bk. Then, output ci of
PostComp can be computed from prefix sum

ei = di−1 ◦ · · · ◦ d1 ◦ d0,

for i = l− 1, ..., 0. Since output ([cl−1]p, . . . , [c0]p) of PostComp can be computed
from prefix sum in semigroup X , we can apply prefix sum protocol in section
3 and obtain PostComp protocol with constant O(c) round and almost linear

O(l log∗(c) l) communication complexity.

290 K. Ohara et al.

0,0v

1,1v 0,1v

0,2v1,2v2,2v3,2v
03v13vvvvvvv 0,3v1,3v2,3v3,3v4,3v5,3v6,3v7,3v

Fig. 1. (x/2, l)-tree, i.e., binary tree for PrefixSum in case of l=8

3 Proposed MPC Protocol for Generic Prefix Sum

In this section, we propose an unconditionally secure MPC protocol to compute
prefix sum in general semigroup, that is an generalization of Toft’s technique
[12]. The proposed MPC protocol runs with constant 2d+2dc rounds and almost

linear O(l log∗(c) l) communication complexity.
Prefix sum can be computed trivially by sequential algorithm, but especially

in the model of MPC, sequential computation increases the round complexity,
that is running time of the MPC protocol. In this section, we describe the MPC
protocol for prefix sum operation by using parallel computing.

Let X be a finite semigroup and let ◦ : X ×X → X denote associative product
of X (i.e., ∀x1, x2, x3 ∈ X , (x1 ◦x2) ◦x3 = x1 ◦ (x2 ◦x3)). Notice that we do not
require the existence of inverse element and the commutativity for X . We define
the prefix sum of al−1, ..., a0 ∈ X with respect to product ◦ as

(ei = ai ◦ · · · ◦ a0 = ◦ik=0ak)i=0,...,l−1

= (a0, a1 ◦ a0, a2 ◦ a1 ◦ a0, ..., al−1 ◦ · · · ◦ a0).

We define iterated logarithm log∗(c) l as follows.

log∗(0) l = log l = log2 l

log∗(c) l =
{
1 + log∗(c)(log∗(c−1) l) (l > 1)
0 (l ≤ 1)

We denote log∗ l = log∗(1) l. The iterated logarithm log∗(c) l is the number of
times function log∗(c−1) must be iteratively applied to l before the result is less

than or equal to 1. For instance, we have log∗ l = log∗(1) l = 5 for l = 22
22

2

=
265536. Notice that log∗(c)(·) is equivalent to the inverse of Ackermann function
A(c+ 3, ·) up to constant.

Constant Rounds Almost Linear Complexity Multi-party Computation 291

0,0v

0,1v1,1v1,1 log −l
lv

children
log l

l

children
loglog

log

l

l
llog*

0,1log* −lv1,1log* −lv
1,1log* −− llv 2,1log* −− llv

Fig. 2. (log x, l)-tree for PrefixSum∗

Next, we define the notion of (G(x), l)-tree that is main tool of our proposed
protocol.

Definition 1 ((G(x), l)-tree). For function G such that G(x) < x and inte-
ger l > 1, we define that tree T is (G(x), l)-tree if each node at depth i has
Gi(l)/Gi+1(l) child nodes for i = 0, 1, ..., d where d = max{i : Gi+1(l) > 1}.

In (G(x), l)-tree T , at depth i, there are

– l/Gi(l) nodes,
– l/Gi−1(l) groups of brother nodes with the same parent node,
– Gi−1(l)/Gi(l) brother nodes in a group.

Note that (x/2, l)-tree is binary tree and has depth log l, (log x, l)-tree has

depth log∗ l, and (log∗(c−1) x, l)-tree has depth log∗(c) l.

In the following, we recall MPC protocol PrefixSum [6] for prefix sum with
O(l log l) communication complexity that is based on (x/2, l)-tree. Then, we
propose MPC protocol PrefixSum∗ for prefix sum with O(l log∗ l) communica-

tion complexity that is based on (log x, l)-tree, and MPC protocol PrefixSum∗(c)

for prefix sum with O(l log∗(c) l) communication complexity that is based on

(log∗(c−1) x, l)-tree.
We assume that there exists MPC protocol [ei]p ← BlockSum([ai]p, ...[a0]p)

to compute [ei]p = ◦ik=0[ak]p with constant d rounds and linear O(i) communi-
cation complexity. BlockSum is used in the following MPC protocols PrefixSum,
PrefixSum∗, and PrefixSum∗(c).

3.1 MPC Protocol for Prefix Sum with O(l log l) Complexity

In this section, we recall MPC protocol PrefixSum [6], which is based on (x/2, l)-
tree, to compute prefix sum with constant rounds and O(l log l) communication
complexity.

292 K. Ohara et al.

The prefix sum MPC protocol PrefixSum takes [al−1]p, . . . , [a0]p as input and
outputs [el−1]p, . . . , [e0]p such that ei = ◦ik=0ak for i = 0, . . . , l − 1, i.e.,

([el−1]p, . . . , [e0]p) ← PrefixSum([al−1]p, . . . , [a0]p),

and requires constant rounds and O(l log l) multiplications.
Chandra et al. [4] showed that the prefix sum w.r.t an operation ◦ can be

computed with constant depth circuit if the operation ◦ can be computed with
constant depth circuit. The prefix sum MPC protocol PrefixSum is based on this
technique.

The prefix sum MPC protocol PrefixSum is provided as follows. We assume l =
2k for simplicity. (When l = N is not power of 2, let l′ = min{2k | k ∈ N, 2k >
N} and [al′]p = · · · = [aN+1]p = [0]p, then compute ([el′−1]p, . . . , [e0]p) ←
PrefixSum([al′−1]p, . . . , [a0]p). The calculation on the index l′, l′ − 1, . . . , N + 1
can be ignored.)

1. Consider (x/2, l)-tree, i.e., binary tree and denote by vi,j the j-th node from
right at depth i for i = 0, ..., log l, j = 0, ..., 2i−1 as in Fig. 1. For each depth
i = 0, ..., log l, assign block [ai,j]p = ([aj·(l/2i)+(l/2i)−1]p, . . . , [aj·(l/2i))]p) to
node vi,j for j = 0, ..., 2i − 1. For each node vi,j , parallely compute value

[ei,j]p = ◦j·(l/2
i)+(l/2i)−1

k=j·(l/2i) [ak]p

using MPC protocol BlockSum.
2. For j = 0, ..., l − 1, parallely perform the following procedure to compute

[ej]p.
– Set node vlog l,j as current node and append [elog l,j]p to list L.
– If the right brother node vi,j of the current node exists, append value

[ei,j]p to list L. Set the parent node of the current node as current node,
and repeat this procedure until reaching the root node.

– If the current node is the root node, compute product of all elements in
list L using MPC protocol BlockSum to obtain [ej]p.

Example: In the example of Fig. 1, in step 1, we compute

[e0,0]p = [a7 ◦ a6 ◦ a5 ◦ a4 ◦ a3 ◦ a2 ◦ a1 ◦ a0]p,
[e1,1]p = [a7 ◦ a6 ◦ a5 ◦ a4]p, [e1,0]p = [a3 ◦ a2 ◦ a1 ◦ a0]p,
[e2,3]p = [a7 ◦ a6]p, ..., [e2,0]p = [a1 ◦ a0]p,
[e3,7]p = [a7]p, ..., [e3,0]p = [a0]p.

In step 2, we compute, for instance, [e7]p = [e3,7]p ◦ [e3,6]p ◦ [e2,2]p ◦ [e1,0]p and
[e4]p = [e3,4]p ◦ [e1,0]p.

Complexity: Recall that BlockSum computes [ei]p = ◦ik=0[ak]p with constant d
rounds and linear O(i) communication complexity.

In step 1, [ei,j]p are computed with constant d rounds and O(l)+ 2 ·O(l/2)+
4 ·O(l/4) + · · ·+ l ·O(1) = log l · O(l) = O(l log l) communication complexity.

Constant Rounds Almost Linear Complexity Multi-party Computation 293

In step 2, [ei]p are computed with constant d rounds l · O(log l) = O(l log l)
communication complexity, since the number of elements in list L is O(log l).

Thus, PrefixSum runs with constant 2d rounds and O(l log l) communication
complexity.

3.2 Proposed Protocol for Prefix Sum with O(l log∗ l) Complexity

In this section, we propose MPC protocol PrefixSum∗, which is based on (log x, l)-
tree, to compute prefix sum with constant rounds and O(l log∗ l) communication
complexity, that is an generalization of Toft’s technique [12].

The proposed prefix sum MPC protocol PrefixSum∗ takes [al−1]p, . . . , [a0]p as
input and outputs [el−1]p, . . . , [e0]p, i.e.,

([el−1]p, . . . , [e0]p) ← PrefixSum∗([al−1]p, . . . , [a0]p),

and requires constant rounds and O(l log∗ l) communication complexity.
The prefix sum MPC protocol PrefixSum∗ is provided as follows. We assume

l = 2·
··
2

for simplicity.

1. Consider (log x, l)-tree and denote by vi,j the j-th node from right at depth
i for i = 0, ..., log∗ l − 1, j = 0, ..., l/Gi(l) − 1 as in Fig. 1. For each depth
i = 0, ..., log∗ l, assign block [ai,j]p = ([aj·Gi(l)+Gi(l)−1]p, . . . , [aj·Gi(l))]p) to
node vi,j for j = 0, ..., l/Gi(l)−1. For each node vi,j , parallely compute value

[ei,j]p = ◦j·G
i(l)+Gi(l)−1

k=j·Gi(l) [ak]p

using MPC protocol BlockSum.
2. For each depth i = 0, ..., log∗ l − 2, for each group of brother nodes (vi,n+j)

j=0,...,G
i−1(l)

Gi(l)−1

with the same parent node, parallely execute prefix sum MPC

protocol

([e′i,n+j]p)j=0,...,Gi−1(l)/Gi(l)−1

← PrefixSum(([ei,n+j]p)j=0,...,Gi−1(l)/Gi(l)−1),

where [e′i,n+j]p = ◦jk=0[ei,n+k]p, and assign value e′i,n+j to node vi,n+j for

j = 0, ..., Gi−1(l)/Gi(l)− 1.
3. For j = 0, ..., l − 1, parallely perform the following procedure to compute

[ej]p.

– Set node vlog∗ l,j as current node and append [e′log l,j]p to list L.
– If the right next brother node vi,j of the current node exists, append

value [e′i,j]p to list L. Set the parent node of the current node as current
node, and repeat this procedure until reaching the root node.

– If the current node is the root node, compute product of all elements in
list L using MPC protocol BlockSum to obtain [ej]p.

294 K. Ohara et al.

Complexity: Recall that BlockSum computes [ei]p = ◦ik=0[ak]p with constant d
rounds and linear O(i) communication complexity.

In step 1, [ei,j]p are computed with constant d rounds and

O(l) + l/ log l ·O(log l) + l/ log log l · O(log log l) + · · ·
= log∗ l ·O(l) = O(l log∗ l)

communication complexity.
In step 2, each depth i = 0, ..., log∗ l − 2, total communication complexity of

executions of PrefixSum is O(l), since O((l/ log l) · log(l/ log l)) ≤ O((l/ log l) ·
log(l)) in level 1, (l/ log l) · O((log l/ log log l) · log(log l/ log log l)) ≤ (l/ log l) ·
O((log l/ log log l) · log(log l)) in level 2,... So, [e′i,j]p are computed with constant
2d rounds and

O

(
l

log l
log

l

log l

)
+

l

log l
· O
(

log l

log log l
log

log l

log log l

)
+ · · ·

≤ log∗ l · O(l) = O(l log∗ l)

communication complexity.
In step 3, [ei]p are computed with constant d rounds l ·O(log∗ l) = O(l log∗ l)

communication complexity, since the number of elements in list L is O(log∗ l).
Thus, PrefixSum∗ runs with constant 2d+ 2d rounds and O(l log∗ l) commu-

nication complexity.

3.3 Proposed Protocol for Prefix Sum with O(l log∗(c) l) Complexity

In this section, we propose MPC protocol PrefixSum∗(c), which is based on
(log∗(c−1) x, l)-tree, to compute prefix sum with constant 2d + 2dc rounds and

O(l log∗(c) l) communication complexity, that is also an generalization of Toft’s
technique [12].

The proposed prefix sum MPC protocol PrefixSum∗(c) takes [al−1]p, . . . , [a0]p
as input and outputs [el−1]p, . . . , [e0]p, i.e.,

([el−1]p, . . . , [e0]p) ← PrefixSum∗(c)([al−1]p, . . . , [a0]p),

and requires constant rounds and O(l log∗(c) l) multiplications.

The prefix sum MPC protocol PrefixSum∗(c) is same as PrefixSum∗ except the
following points.

– We use (log∗(c−1) x, l)-tree of depth log∗(c) l.
– We use PrefixSum∗(c−1) recursively in step 2. (We denote PrefixSum∗(1) =

PrefixSum∗.)

Complexity: Recall that BlockSum computes [ei]p = ◦ik=0[ak]p with constant d

rounds and linearO(i) communication complexity.We can assumePrefixSum∗(c−1)

computes prefix sumwith constant 2d+2d(c−1) rounds and linearO(l log∗(c−1) l)

communication complexity. We denote G(x) = log∗(c−1) x.

Constant Rounds Almost Linear Complexity Multi-party Computation 295

Protocol: BitAdd([a]B , [b]B).
Inputs: [a]B , [b]B
Outputs: ([d]B) = ([dl]p, . . . , [d0]p).

1. ([cl]p, . . . , [c1]p) ← SetCarry([a]B , [b]B).
2. [d0]p ← [a0]p + [b0]p − 2[c1]p,

[dl]p ← [cl]p
3. For i = 1, . . . , l − 1 in parallel : [di]p ← [ai]p + [bi]p + [ci]p − 2[ci+1]p.
4. Output ([dl]p, . . . , [d0]) .

Fig. 3. Description of BitAdd protocol [6]

In step 1, [ei,j]p are computed with constant d rounds and

O(l) + l/G(l) ·O(G(l)) + l/G2(l) · O(G2(l)) + · · ·
= log∗(c) l · O(l) = O(l log∗(c) l)

communication complexity.
In step 2, each depth i = 0, ..., log∗(c) l − 2, total communication complex-

ity of executions of PrefixSum∗(c−1) is O(l), since O((l/G(l)) · G(l/G(l))) ≤
O((l/G(l))·G(l)) in level 1, (l/G(l))·O((G(l)/G2(l))·G(G(l)/G2(l))) ≤ (l/G(l))·
O((G(l)/G2(l)) · G(G(l))) in level 2,... So, [e′i,j]p are computed with constant
2d+ 2d(c− 1) rounds and

O

(
l

G(l)
G

(
l

G(l)

))
+

l

G(l)
·O
(
G(l)

G2(l)
G

(
G(l)

G2(l)

))
+ · · ·

≤ log∗(c) l · O(l) = O(l log∗(c) l)

communication complexity.
In step 3, [ei]p are computedwith constantd rounds l·O(log∗(c) l) = O(l log∗(c) l)

communication complexity, since the number of elements in list L is O(log∗(c) l).
Thus, PrefixSum∗(c) runs with constant 2d+2dc rounds and O(l log∗(c) l) com-

munication complexity.

4 Proposed MPC Protocol for Bit Addition

In this section, we propose an unconditionally secure MPC protocol BitAdd with
constant 2d + 2dc + 1 rounds and almost linear O(l log∗(c) l) communication
complexity, that securely compute bit addition [a+b]B = [d]B = ([dl]p, . . . , [d0]p)
of shared values [a]B = ([al−1]p, . . . , [a0]p) and [b]B = ([bl−1]p, . . . , [b0]), i.e.,

[d]B ← BitAdd([a]B , [b]B).

BitAdd protocol is shown in Fig. 3, and uses carry calculation protocol SetCarry.
BitAdd protocol runs with R round and C multiplications, where SetCarry pro-
tocol runs with R round and C multiplications.

296 K. Ohara et al.

Protocol: SetSPK([a]B , [b]B).
Inputs: [a]B , [b]B
Outputs: ([el−1]p, . . . , [e0]p)

= (([sl−1]p, [pl−1]p, [kl−1]p), . . . , ([s0]p, [p0]p, [k0]p)).

1. For i = 0, . . . , l − 1 in parallel : [si]p ← Mul([ai]p, [bi]p).
2. For i = 0, . . . , l − 1 in parallel : [pi]p ← [ai]p + [bi]p − 2[si]p.
3. For i = 0, . . . , l − 1 in parallel : [ki]p ← 1− [si]p − [pi]p.
4. For i = 0, . . . , l − 1 : [ei]p := ([si]p, [pi]p, [ki]p).
5. Output ([el−1]p, . . . , [e0]p) .

Fig. 4. SetSPK Protocol [6]

4.1 Computation of Carry Bits

In this section, we recall carry calculation protocol SetCarry shown in Fig. 5 and
introduced in [6].

To compute carry bits, we define the operation ◦ : {S, P,K} × {S, P,K} →
{S, P,K} as

∀x, S ◦ x = S, ∀x,K ◦ x = K, ∀x, P ◦ x = x.

The operation ◦ is associative, and we have semigroup {S, P,K} with product ◦.
The operation ◦ handle propagation of carry bits as follows. For example, if

ei = P and ei−1 = x, ei ◦ ei−1 = P ◦ x = x. This means that i-th carry bit
depends on i− 1-th carry bit, i.e., P propagates carry bit. If ei = S (or ei = K),
i-th carry bit is set (or killed) regardless of the i− 1-th carry bit.

Let denote e′i = ◦ij=0ej = ei ◦ · · · ◦ e0 ◦ e−1 where e−1 = K. Note that e′i
is equal to S or K, and e′i = S means i-th carry bit is 1 and e′i = K means
i-th carry bit is 0. Thus, the computation of carry bits can be reduced to the
computation of prefix sum in semigroup {S, P,K} with product ◦.

SetSPK protocol, shown in Fig. 4, takes [a]B and [b]B as input and outputs
([el−1]p, . . . , [e0]p), where [ei]p = ([si]p, [pi]p, [ki]p), i.e.,

([el−1]p, . . . , [e0]p) ← SetSPK([a]B, [b]B).

SetSPK sets si = 1 (i.e. ei = S) iff ai+ bi = 2, pi = 1 (i.e. ei = P) iff ai+ bi = 1,
and ki = 1 (i.e. ei = K) iff ai + bi = 0. SetSPK protocol runs with 1 round and
l multiplications.

SetCarry protocol, shown in Fig. 5, takes [a]B and [b]B as input and outputs
carry bits ([cl]p, . . . , [c0]p), i.e.,

([cl]p, . . . , [c1]p) ← SetCarry([a]B, [b]B).

Note that if [e−1]p is not given as input of PrefixCarry protocol and ek = ek−1 =
· · · = e0 = P for some k, e′k, e

′
k−1, . . . , e0 is not equal to K but P . However, it is

no matter because ci+1 = si for all i and si = 0 when e′i = K or P .

Constant Rounds Almost Linear Complexity Multi-party Computation 297

Protocol: SetCarry([a]B , [b]B).
Inputs: [a]B , [b]B
Outputs: ([cl]p, . . . , [c1]p).

1. ([el−1]p, . . . , [e0]p) ← SetSPK([ai]p, [bi]p).
2. ([e′l−1]p, . . . , [e

′
0]p) ← PrefixCarry([el−1]p, . . . , [e0]p).

3. For i = 0, . . . , l − 1 :
([si]p, [pi]p, [ki]p) := [e′i]p, [ci+1]p ← [si].

4. Output ([c]B = ([cl]p, . . . , [c1]p) .

Fig. 5. SetCarry Protocol [6]

Protocol: BlockCarry(([em]p, . . . , [e1]p)).
Inputs: ([em]p, . . . , [e1]p) = (([sm]p, [pm]p, [km]p), . . . , ([s1]p, [p1]p, [k1]p)).
Outputs: [e′]p = ([s′]p, [p′]p, [k′]p).

1. ([fm]p, . . . , [f1]p) ← Mul∗([p[m]]p, . . . , [p[1]]p).
2. For i = 1, . . . , m in parallel : [gi]p ← Mul([fi]p, [si−1]p).
3. [s′]p ← ∨m

i=1[gi] ∨ [sm−1].
4. [p′]p ← [gm]p.
5. [k′]p ← 1− [s′]p − [p′]p.
6. [e′]p := ([s′]p, [p′]p, [k′]p)
7. Output [e′]p.

Fig. 6. BlockCarry Protocol [6]

Complexity: SetCarry protocol uses SetSPK protocol and PrefixCarry protocol.
SetCarry protocol runs with R + 1 round and C + l multiplications, where
PrefixCarry protocol runs with R round and C multiplications.

4.2 Proposed Prefix Carry Protocol

In this section, we propose carry calculation protocol PrefixCarry with constant
2d+ 2dc + 1 rounds and almost linear O(l log∗(c) l) communication complexity.
PrefixCarry protocol takes ([el−1]p, . . . , [e0]p) as input and outputs prefix sum
[e′l−1]p, . . . , [e

′
0]p, where e

′
i = ◦ij=0ej = ei ◦ · · · ◦ e0, i.e.,

([e′l−1]p, . . . , [e
′
0]p) ← PrefixCarry([el−1]p, . . . , [e0]p).

To construct PrefixCarry protocol, we prepare BlockCarry protocol [6] shown
in Fig. 6, that takes ([em]p, . . . , [e1]p) as input and outputs block sum [e′]p =
◦mi=1[ei]p, i.e.,

[e′]p ← BlockCarry([em]p, . . . , [e1]p).

BlockCarry protocol runs with 11 rounds and 13m multiplications.
To compute carry bits, PrefixCarry protocol computes prefix sum [e′l−1]p, . . . ,

[e′0]p, where e
′
i = ◦ij=0ej = ei ◦ · · · ◦ e0, in semigroup {S, P,K} with product ◦.

298 K. Ohara et al.

Table 2. Comparison with the existing bit addition and bit decomposition protocols.
In the row of BitAdd, bit addition protocol of [6] and the proposed bit addition protocols
are compared. In the row of BitDecomp, bit decomposition protocols of [6] and of [10],
bit decomposition protocols of [12], and bit decomposition protocols based on the
combination of [10] and the proposed bit addition protocols are compared.

Protocol Scheme Rounds The number of Mul Reference

BitAdd Damg̊ard et al. [6] 37 55l log l [6]
proposed 1: (log x, l)-tree 45 52l log∗ l + l Sec. 3.2

proposed 2: (log∗(c−1), l)-tree 23 + 22c 52l log∗(c) l + l Sec. 3.3

BitDecomp Damg̊ard et al. [6] 114 110l log l + 118l [6]

Nishide and Ohta [10] 25 47l log l + 63l + 30
√
l [10]

Toft [12] 33 57l log∗ l + 71l + 14
√
l log∗ l + 30

√
l [12]

Toft [12] 23 + 10c 57l log∗(c) l + 71l + 14
√
l log∗(c) l + 30

√
l [12]

[10] + proposed 1 52 52l log∗ l + 64l + 30
√
l This paper

[10] + proposed 2 30 + 22c 52l log∗(c) l + 64l + 30
√
l This paper

Thus, we apply the proposed MPC protocol for prefix sum in general semigroup
to specific semigroup {S, P,K}. The proposed PrefixCarry protocol can be imple-

mented asPrefixSum∗ protocol in section 3.2 orPrefixSum∗(c) protocol in section 3.3
using BlockCarry protocol as BlockSum protocol.

Complexity: As described in section 3.2, PrefixSum∗ protocol uses BlockCarry
protocol in twice. The first BlockCarry protocol takes l-size input, and is com-
puted for each level of (log x, l)-tree in parallel. The second BlockCarry protocol
takes log∗ l-size input, and is computed for each carry bit in parallel. Therefore,
the complexity of PrefixSum∗ is 44 rounds and 52l log∗ l multiplications. Since
the BitAdd protocol consist of PrefixSum∗ protocol and SetSPK protocol, the re-
sulting BitAdd protocol using PrefixSum∗ runs with 45 rounds and 52l log∗ l + l
multiplications.

The PrefixSum∗(c) protocol uses Prefix∗(c−1) recursively, and for all Prefix∗(i),
two BlockCarry protocols are required. Therefore, the complexity of PrefixSum∗ is
22+22c rounds and 52l log∗(c) l multiplications and the resulting BitAdd protocol
using PrefixSum∗(c) runs with 23+22c rounds and 52l log∗(c) l+ l multiplications.

So, we can improve communication complexity of BitAdd from O(l log l) mul-

tiplications [6] to O(l log∗(c) l) multiplications.

4.3 Comparison

We compare the proposed protocols with the existing constant rounds bit addi-
tion and bit decomposition protocols in Table 2.

The proposed bit addition protocol BitAdd is the first protocol that realizes
both of constant rounds and almost linear O(l log∗(c) l) communication complex-
ity. However, on the round complexity, BitAdd protocol of [6] is better than the
proposed.

The proposed bit decomposition protocol BitDecomp based on the combina-
tion of bit decomposition protocol of [10] and the proposed bit addition protocol

Constant Rounds Almost Linear Complexity Multi-party Computation 299

BitAdd realizes both of constant rounds and almost linear O(l log∗(c) l) commu-
nication complexity. However, on the round complexity, BitDecomp protocol of
[12] is better than the proposed.

References

1. Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in Con-
stant Number of Rounds of Interaction. In: PODC 1989, pp. 201–209 (1989)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In: STOC 1988, pp. 1–10
(1988)

3. Blelloch, G.E.: Prefix sums and their applications. In: Reif, J.H. (ed.) Synthesis of
Parallel Algorithms. Morgan Kaufmann (1991)

4. Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded fan-in circuits and associative
functions. In: STOC 1983, pp. 52–60 (1983)

5. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty Unconditionally Secure Proto-
cols (Extended Abstract). In: STOC 1988, pp. 11–19 (1988)

6. Damg̊ard, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure
Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and
Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
285–304. Springer, Heidelberg (2006)

7. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority. In: STOC 1987, pp.
218–229 (1987)

8. Ning, C., Xu, Q.: Multiparty Computation for Modulo Reduction without Bit-
Decomposition and a Generalization to Bit-Decomposition. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (2010)

9. Ning, C., Xu, Q.: Constant-Rounds, Linear Multi-party Computation for Exponen-
tiation and Modulo Reduction with Perfect Security. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 572–589. Springer, Heidelberg (2011)

10. Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Com-
parison Without Bit-Decomposition Protocol. In: Okamoto, T., Wang, X. (eds.)
PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

11. Toft, T.: Primitives and Applications for Multi-party Computation. PhD thesis,
University of Aarhus (2007)

12. Toft, T.: Constant-Rounds, Almost-Linear Bit-Decomposition of Secret Shared
Values. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357–371.
Springer, Heidelberg (2009)

13. Yao, A.C.-C.: Protocols for Secure Computations (Extended Abstract). In: FOCS
1982, pp. 160–164 (1982)

14. Yao, A.C.-C.: How to Generate and Exchange Secrets (Extended Abstract). In:
FOCS 1986, pp. 162–167 (1986)

Position-Based Cryptography

from Noisy Channels�

Stefan Dziembowski1 and Maciej Zdanowicz2

1 Institute of Computer Science, University of Warsaw, Poland
2 Institute of Mathematics, University of Warsaw, Poland

Abstract. We study the problem of constructing secure positioning pro-
tocols (Sastry et. al, 2003). Informally, the goal of such protocols is to
enable a party P to convince a set of verifiers about P ’s location in space,
using information about the time it takes P to respond to queries sent
from different points. It has been shown by Chandran et al (2009) that in
general such task is impossible to achieve if the adversary can position his
stations in multiple points in space. Chandran et al proposed to over-
come this impossibility result by moving to Maurer’s bounded-storage
model. Namely, they construct schemes that are secure under the as-
sumption that the memory of the adversary is bounded. Later Buhrman
et al (2010) considered secure positioning protocols schemes in quantum
settings.

In this paper we show how to construct secure positioning schemes in
the so-called noisy channel scenario, i.e.: in the setting where the parties
participating in a protocol have access to a source of random bits sent to
them via independent noisy channels. We argue that for some practical
applications such assumptions may be more realistic than those used
before.

Keywords: Position-based cryptography, information theoretic security.

1 Introduction

The problem of secure positioning [11,12,3] can informally be described as fol-
lows. Suppose a party P wants to convince a verifier V that it is situated in a
certain geographic location. We are interested in the settings where verifier does
not trust P , and hence it is not enough that P simply determines its position P̂
(using a GPS device, say), and sends it to the verifier. Therefore, our goal is to
construct protocols that allow P to prove to V that it really is in the position P̂ .
Moreover, in many cases it would be useful to have a key-agreement protocol on
top of such a proof, i.e. to make the parties conclude the protocol with a secret
key k that can be used for future secure communication.

� This work was supported by the WELCOME/2010-4/2 grant founded within the
framework of the EU Innovative Economy (National Cohesion Strategy) Operational
Programme.

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 300–317, 2014.
c© Springer International Publishing Switzerland 2014

Position-Based Cryptography from Noisy Channels 301

There are several potential applications of such protocols. For example, one
could use them to grant free access to a wifi network to all users that are inside of
some building, or to provide an additional layer of security in the communication
between military bases: to communicate with a personnel of such a base one
would verify not only the knowledge of a secret key, but also the fact that the
party is located physically within the base. For a descryption of other potential
applications the reader may consult e.g. [4].

A standard, non-cryptographic, way to verify someone’s position P̂ is to go to
P̂ and physically check that P is indeed there. Obviously for several applications,
including those mentioned above, this solution is infeasible and hence one needs
a protocol that is purely based on the communication between P and V . In this
case the only known way to construct such protocols is to base them on the fact
that the speed of the electromagnetic signals is constant, and equal to the speed
of light c. For example, if V sends a message to P and P replies within time
t then this implies that P is in a distance at most ct/2 from V (assume for a
moment that we are interested only in verifying the position of P , not in the
key-agreement). Unfortunately, this method, known under the name distance
bounding protocols [1], gives only a very rough estimate of the position of P , as a
cheating P can be in fact closer to V than ct/2 and delay his answer to convince
V that he is further away.

A natural solution to this problem is to use a standard geometric technique
called triangulation (see e.g. [3]). More precisely, instead of considering just one
verifier, use 4 verifiers V1, . . . ,V4, and let each V i independently check (via
the distance bounding technique) that P is within the distance ‖V iP̂‖ from
him (where P̂ is the position claimed by P and ‖V iP̂‖ denotes the geometric
distance of Vi from P̂). It is easy to see that such information uniquely determines
the position of the prover within the tetrahedron determined by V1, . . . ,V4.
Hence, intuitively, P can succeed in convincing the verifiers only if he really is
in position P̂ . This argument is correct (see, e.g. [3]) as long as the cheater, who
wants to falsely claim that he is in position P̂, is only a single entity, located
in one geographic position. Unfortunately, the security of such protocols breaks
completely if there is a larger number of cheaters that may collude, or if one
cheater can appear in several copies (spread over different locations). To see
why it is the case, simply imagine a situation when an adversary Ai is placed
next to each verifier V i — in this case Ai can reply to the messages coming from
V i in the right moment in time, and hence A1, . . . ,A4, can jointly convince the
verifiers that there is a prover in position P̂ .

This, of course, shows only that the particular protocol considered above
(a simple combination of triangulation and distance bounding) does not work,
and one could hope to find other, more sophisticated solutions to this problem.
Unfortunately it turns out that in general in this model no secure positioning
protocol exists, unless one makes some additional assumptions about the power
of the cheaters. This impossibility result was shown by Chandran et al. [4], who
pioneered the theoretical study of positioning protocols, and coined the term
position-based cryptography.

302 S. Dziembowski and M. Zdanowicz

In their paper Chandran et al. pose a question if there exist natural assump-
tions about the power of the adversary that one could introduce into the model
in order to bypass their impossibility result. They answer it affirmatively, by
showing constructions of the position-based authentication and key agreement
schemes secure in the bounded-storage model of Maurer [9]. In this model one
assumes that the parties can send huge random strings that are too large to fit
into adversary’s memory. While from the theoretical point of view it is a beau-
tiful result, it is not clear how realistic this assumption is in practice, especially
given the fact that storage becomes increasingly cheaper nowadays. Hence the
random strings need to be really large, and it may be hard to generate them
and to perform computations on them. What makes things additionally difficult
is that [4] assume that all the random bits are broadcast at once (they call the
process of generating it an “explosion”), which would require the machines to
operate on very high rates (both to generate and to compute on these bits).
Moreover the bounded memory assumption can be violated by using “mirrors”
- in order to “store” some string R at some point B in space, simply make the
route of the signal longer, by placing a mirror in some point B′ in such a way
that the mirrored signal arrives to B with a certain delay (hence [4] need to as-
sume that such mirrors do not exist). Finally, another problem with the model
of [4] is that they assume that the adversary that simultaneously observes two
random strings R1 and R2 cannot compute an arbitrary function of (R1, R2),
but is restricted to functions with low communication complexity (this assump-
tion may be just an artifact of their proof, but it is completely unclear how to
remove it).

All of these issues are a very good motivation to look for other models where
the position-based cryptography is possible, and the authors of [4] leave it as an
open research direction. One natural idea is to move to the quantum settings.
Unfortunately, recently, Buhrman et al [2] extended the impossibility result of
[4] also to this case ([2] contains also some positive results, for more restricted
quantum models).

2 Our Contribution

We continue this line of research. Our main result is positive, namely we propose
an information-theoretically-secure position-based authentication protocol and a
computationally-secure position-based key agreement in Maurer’s noisy channels
model [10]. Our protocols work even if the adversary has a much better antenna
than the honest parties. Unlike the protocol of [4], our scheme works only if
the adversary does not enter what we call a “prohibited region” (which, very
roughly speaking is the line segment connecting the prover and the source of
randomness, plus some margin around it). In Section 2.4 we explain why this
restriction makes sense for several practical applications. On the other hand, our
protocol enjoys several advantages over the one of [4], in particular it is much
more efficient, it should be much easier to implement in practice, and its security
proof does not put any artificial restrictions on the power of the adversary. We
discuss this further in Section 2.3.

Position-Based Cryptography from Noisy Channels 303

Recall that in Maurer’s noisy channels model, one assumes the existence of a
publicly available source of random bits that is subject of distortions, i.e., some
bits sent by this source are randomly altered. This broadcast channel might
be, for instance, realized as a satellite transmitting bits from space without
application of any error-correction mechanism. Alternatively, the bits can come
from observations of natural phenomenons happening in deep space.

Maurer [10] showed (under additional, mild assumptions, i.e., existence of a
noise-less public channel) that in this model two honest parties can determine
a secret key k based on the satellite signal, i.e., any adversary eavesdropping
the communication and receiving satellite signal has essentially no (information-
theoretic) knowledge about k. This holds even if the adversary has a much
stronger antenna than the honest parties, i.e. when the transmission error is
much higher for the users than for the adversary. There has been lots of follow-
up works building on Maurer’s original idea, including some very interesting
implementations proposals coming from the systems community (e.g. [8]).

In this work, we apply the above noisy source of randomness scenario to the
problem of position-based authentication and key agreement. In order to do it we
extend Maurer’s model with the necessary geometric and timing information. Let
us first informally describe our security model (the formal description appears
in Section 4). In a typical deployment scenario the source of noisy randomness
(Maurer’s public satellite broadcaster), transmitting messages at the speed of
light c, would be located high in the space, while the verifiers would be placed
close to the ground level.

To keep this informal introduction simple assume for a moment that the
randomness source is positioned exactly above the prover, and the prover lies
somewhere within the triangle determined by the verifiers. Our protocol uses only
three verifiers, denoted V1,V2, and V3. Let V̂1, V̂2 and V̂3 be their respective
positions. The verifiers can receive the noisy signal and securely communicate
with each other, but not with the signal source. Similarly to [4] we assume that
the antennas are not directional, and we use an assumption (that is standard in
Maurer’s model) that the noise is independent for each receiver. We would also
like to stress that our results do not rely on the fact that the noise can be larger
if the signal travels on longer distances.

The protocol is attacked by a set of adversaries, each receiving the chunk of a
noisy signal from the randomness source. As already mentioned, there are some
restrictions about the positions in which the adversaries can be placed in order
for the protocol to be secure. We will discuss them in a moment.

2.1 Position-Based Authentication

Let us first informally describe our position-based authentication protocol (the
formal description appears in Section 5). Following the previous work in this
area we assume that the computation takes no time. When implementing this
protocol in real life one would of course need to take into account the processing
time of the prover (which would result in a scheme that proves the location within
some limited precision). Our protocol is fairly simple. Let Ŝ and P̂ denote the

304 S. Dziembowski and M. Zdanowicz

respective positions of the randomness source and the prover. Denote the bits
broadcasted by the source by S = (S1, . . . , Sn), each Sj being sent in some
time tj (with t1 < · · · < tn) specified in advance. Hence tj arrives to P in time

tj+‖ŜP̂‖/c (where ‖ŜP̂‖ denotes the length of a segment ŜP̂, and c is the speed

of light), and to each V i in time tj+‖ŜV̂ i‖/c. We also assume that the difference
between each consecutive times ti+1 and ti is large compared to the time the
light needs to travel between the satellite and the verifiers. The consequence
is that execution can be divided into n steps, each step corresponding to one
bit being sent by a randomness source, and the adversary’s behavior in step i
cannot depend on the “future” bits Si+1, . . . , Sn. We have this assumption for
the following reasons: (1) it makes the proofs in Section 6 simpler, and (2) in
the practical implementations this condition can be satisfied easily, without any
significant loss in efficiency. Actually it would probably take an extra effort to
violate this assumption, as one would need the source S to produce the random
bits at a very high rate.

Let SP
j denote the noisy version of Sj received by P . To keep the exposition

simple we assume that only one verifier, V1, say, listens to the satellite. Let SV
j

denote the version of Sj received by V1. We note that slightly better parameters
could be achieved by making more verifiers listen to the randomness source and
computing the bits SV

j using the majority voting. Denote SP := (SP
1 , . . . , S

P
n)

and SV := (SV
1 , . . . , S

V
n). Note also that there is no communication from the

verifiers to the prover.
The party P , claiming to be in position P̂ simply sends to every verifier V i

(via a noiseless channel) each noisy bit Sj received from the source. This is
done without any delay and therefore this bit should arrive to each V i in time
tj + ‖ŜP̂‖/c + ‖V̂ iP̂‖/c. If it does not arrive there precisely in this moment,
then the verifier rejects the proof. Let Si

j be the bit received by the verifier V i

from P as the bit Sj . Of course if P is honest then S1
j = S2

j = S3
j . The verifiers

check jointly (by communicating via their private channels) if this is indeed
the case (this is called the “consistency check”). The verifier V1 also checks if
the received string of bits (S1

1 , . . . , S
1
n) is “correlated” with (SV

1 , . . . , S
V
n), i.e.,

if the fraction of positions on which these two vectors are equal is substantially
greater than 1/2 (this is called the “correlation check”). These two checks can
be done offline, and hence the time needed for them is irrelevant.

The basic idea behind this protocol is the observation that any honest user P
claiming to be in position P̂ sends his message based on a single version of satellite
signal, and therefore every verifier receives the same message from him. On the
other hand, a group of adversaries not present in P̂ receive different versions of the
noisy message. Later in the security proof we show that in this case it is unlikely
that the adversaries send consistent messages to all the verifiers, the reason being
that it is hard for them to pass both the consistency and the correlation check.
Clearly passing each of these test independently is easy: in particular to pass the
correlation check it is enough to position an adversary Ai close to each V i, and
instruct him to forward to V i each bit that the receives, adding some delay. More
concretely: assume Ai is positioned exactly in V̂ i, then Ai can send each Sj to V i

Position-Based Cryptography from Noisy Channels 305

in time tj + ‖ŜV̂ i‖/c by delaying it by time ‖P̂V̂ i‖/c+ ‖ŜP̂‖/c−‖ŜV̂ i‖/c, which,
by the triangle inequality is always non-negative.

It is also easy to construct a set of adversaries that make the verifiers accept
the consistency check with probability 1: again position an adversary Ai close
to each V i and let him send as every Si some fixed constant (0, say). In this case
every V i receives the same value, although, obviously, there is no correlation
between the string received by the verifiers from the adversary and from the
satellites.

Intuitively, what we would like to say now is that for an adversary it is hard
to obtain both correlation and consistency, as long as he is not physically in
position P̂ .

Unfortunately, it is not true if we allow the adversaries to be put in arbitrary
locations. Firstly, it is easy to see that our protocol can be broken if there is
an adversary very close to the satellite (say: he is exactly in point Ŝ): such an
adversary can simply receive the noisy satellite signal and forward it via a noise-
less channel to every verifier. This has to be done after an appropriate delay, but
it is always possible since, by the triangle inequality the value of ‖ŜP̂‖+ ‖P̂V̂ i‖
(the total length of the route Ŝ → P̂ → V̂ i) cannot be smaller than ‖ŜV̂ i‖ (the
length of the route Ŝ → V̂ i). Therefore both the correlation and the consistency
conditions will be satisfied, and hence the verifiers will accept this proof.

More generally, it is easy to see that it is enough to position such a ”forwarding
adversary” A at any point Â on a line connecting P̂ and Ŝ. To see why it works,
observe that the only thing that needs to be checked is if A has enough time
to send each bit Si to every verifier Vj . This is done by the following simple
calculation. First observe that the length of the route Ŝ → Â → V̂ i is equal to
(∗) = ‖ŜÂ‖+ ‖ÂV̂ i‖. On the other hand the length of Ŝ → P̂ → V̂ i is equal to
the length of Ŝ → Â → P̂ → V̂ i (since Â is on a line form Ŝ to P̂), and hence
it is equal to ‖ŜÂ‖+ ‖ÂP̂‖+ ‖P̂V i‖, which is clearly larger than (∗) (from the
triangle inequality).

It is also easy to see that the attack above can be performed by any adversary
Â that is sufficiently close to the line connecting Ŝ and P̂ (as long as Ŝ →
Â → V̂ i is not greater than Ŝ → P̂ → V̂ i, for every V i). In Lemma 4 we
fully characterize the area where the adversary has to be in order to make the
verifiers accept. We call it a “prohibited region” Q. Very informally speaking Q
is equal to the segment ŜP plus some “margin” around it. Just to get a general
impression about how large Q is, denote by QH (for some parameter h) the set
of points in Q that are at height h above the ground, and let dH denote the
diameter of QH . The first good news is that d0 = 0, which corresponds to the
fact that if the adversaries are on the ground level then the only point from
which the adversary can convince the verifiers is exactly in point P̂ (and hence
the protocol is completely secure in this case). Since the shape of QH becomes
quite complicated for H > 0 we only performed some numerical experiments to
estimate dH , that show that dH is linear in H , for small H ’s and linear in

√
H

for larger H ’s. The details of this analysis will be provided in a full version of
this paper.

306 S. Dziembowski and M. Zdanowicz

2.2 Position-Based Key Agreement

In this section we discuss how to construct the key-agreement protocol in our
model. As remarked in the introduction, for practical purposes the key-agreement
is much more important than the authentication. The main difference is that
we want the prover and the verifiers to conclude the protocol with a secret
key k known only to them. The difficulty comes from the requirement that the
adversary should not be able to learn any information about k at any point after
the protocol has concluded. Hence, e.g., using the bits Si directly to produce the
secret key (even after the so-called “privacy amplification”) will not work, as
the adversary can at some later moment learn those bits, no matter in which
physical location he is.

Fortunately, [4] show a generic method for converting any position-based au-
thentication protocol into a key-agreement protocol. The main idea is as follows.
The verifiers first generate a public key - secret pair (pk , sk) for some CCA2
secure public key encryption scheme, and send pk to the prover1. The parties
then execute a standard non-authenticated key agreement protocol. Let k be the
agreed key, and let T denote the transcript of the communication. Then they
execute the authentication protocol, with the following modification: instead
of sending a bit Sj to a verifier V i, the provers send the following ciphertext:
E(pk , (T, Si, i)). The security of this method is based on the non-malleability [5]
of the encryption scheme, that follows from its CCA2 security (for more details
see [4]). We also note that in the original [4] approach all the bits were sent at
once, i.e., the prover sent one message E(pk , (T, S1, . . . , Sn)) to each verifier. The
problem with this is that the prover needs to compute very quickly the cipher-
texts in the CCA2-secure encryption scheme. Our approach of sending the bits
separately has the advantage of being easier to implement from this point of view,
as the prover can precompute E(pk , (T, b, j)) for all b ∈ {0, 1}, j ∈ {1, . . . , n},
and then simply choose, after learning each Sj whether to send E(pk , (T, 0, j))
to E(pk , (T, 1, j)) to the verifiers. For the lack of space we skip the details of
the key-agreement protocol. It will be presented in the full version of this paper.
Hence, from now on we concentrate only on the authentication protocol.

2.3 Comparison with the Previous Work

Our protocol is very simple to implement: the prover needs only to broadcast
the messages he observes from the satellite, and the verifiers need to compare
equality of the strings they received from P (the “consistency check”), and com-
pute the Hamming distance between SV and SP . Hence it is probably sim-
pler to implement than the protocol of [4] that involves computing a chain of
locally-computable randomness extractors. Recall that this computation has to
take very short time (much shorter than the time needed for light to travel be-
tween the parties), and therefore implementing it may be challenging, especially,

1 The assumption that the prover knows the public key of the verifiers can be actually
removed (see [4] for more on this), although, in most of the practical applications it
is reasonable to simply assume it.

Position-Based Cryptography from Noisy Channels 307

since the inputs are huge, in order to satisfy the assumption that they do not
fit into adversary’s memory. Moreover the protocol of [4] requires the verifiers
to send huge random strings, while in our case the verifiers can be completely
passive (except of some small communication in the key agreement case).

An obvious drawback of our protocol, compared to the one of [4] is that it
allows the adversary to cheat the verifiers by placing himself within the prohib-
ited region Q. In the next section we argue why is some applications it may be
ok, and propose some security improvements.

2.4 Implementation Ideas

We believe that the paradigm introduce in our paper can potentially be im-
plemented in practice, possibly in combination with other techniques (as an
additional layer of security). We argue that for some scenarios the restrictions
that we put on the position of the adversaries may be realistic. In particular,
they make sense if the honest users can control the airspace above the protected
area (plus some margins around it), which can be the case for the military appli-
cations. Also, in some cases, like granting free wifi to users within some building,
the effort needed to position the adversary above the building may not be worth
the potential gains.

Also, the users of the protocol can use more than one source of randomness,
e.g, one can fix a large set of astronomical objects S1, . . . , S� to observe and agree
on a different key ki using each Si and then use a hash of all keys for secure
communication. This would force the adversary to put several antennas above
the building. We leave the geometric analysis of this idea as an open research
direction.

Another, perhaps more intriguing approach is to use randomness coming not
from above the ground, but from the underground (like the electromagnetic
radiation of Earth’s core). In this case, in order to break the system by entering
a prohibited region, the adversary would need to go deep underground, which in
many situations would be too expensive to do.

If, instead of a satellite, we choose another source of randomness in space,
say: coming from some natural phenomena, then the authenticity of the bits has
to be verified in some other way, e.g., by using a directional antenna pointed
on a specific astronomical object. Observe also that the verifiers could use one
trusted server (available remotely) that listens to this object, and, say, publishes
the results of these observations online.

3 Notation and Assumptions

By R3 we denote 3-dimensional space representing the Universe and by x1, x2, x3
we mean usual Euclidean coordinates. The set E = {x3 = 0} represents Earth’s,
assumed planar, surface and EH is a set {x3 = H} parallel to E . Moreover, by a
letter with a subscript i, e.g. Ai, we mean the ith coordinate of a point A ∈ R3

(We use the same convention for referring to vector’s coordinates). We say that

308 S. Dziembowski and M. Zdanowicz

a vector V is hooked in a point P if it leads from P to P + V . Sometimes we
identify a point with a vector hooked in the centre of the coordinate system.

We will also use the Chernoff bound in the following form (see, e.g., [6],
Theorem 1.1):

Lemma 1 (Chernoff bound). Let X :=
∑n

i Xi where Xi’s are independently

distributed in [0, 1]. Then for all t > 0 we have that P (X > E (X) + t) ≤ e−2t2/n.

4 Security Definition

In this section we describe in details the model that was already informally
discussed in Section 2. Formally, a secure position-based authentication protocol
is a set Π(P̂) (where P̂ is a point in space) consisting of the following types of
machines positioned in a three-dimensional space:

1. the verifiers V1,V2, and V3,
2. the prover P (positioned in P̂), and
3. the randomness source S.

The protocol will be attacked be a set of adversaries {A1, . . . ,At}, each of
them positioned somewhere in the space. We assume that all the machines are
equipped with perfect clocks and that their computation takes no time. Each
machine is aware of its own position in space (more formally: it gets it as an aux-
iliary input). The position of each verifier V i is denoted by V̂ i and the position
of the randomness source is denoted with Ŝ. Additionally, the verifiers get as
input a position P̂ where the prover “claims to be”. Their goal is to check if he
indeed is in this position. The decision (yes/no) of the verifiers is communicated
at the end of the protocol by one of then (V1, say).

The only messages that are sent are of a broadcast type (i.e. there are no di-
rectional antennas). A message sent by a machine or a natural source positioned
in point U arrives to a machine in point U ′ in time ‖UU ′‖/c. We assume that the
messages sent by the randomness source are noisy. If S is a bit sent by S, then
V1 receives2 a bit SV equal to S with probability 1 − εV /2 (for both S = 0, 1),
and P receives a bit SP equal to S with probability 1− εP/2 (for both S = 0, 1),
where εP , εV ∈ [0, 1]. These events are independent for every value of S.

It is a little bit trickier to define what it means that the bits received by
the adversaries are noisy. One method of doing it would be to define an error
of an antenna of each individual adversary. The problem with this approach is
that, of course, the adversaries can communicate with each other and jointly
“correct” the errors, by using, for example, the majority voting. Hence, a much
more natural approach is to assume that the adversaries jointly cannot guess
the bit S without some error, no matter what strategy they use. To make it
precise, assume that each adversary Ai receives a bit Si. The bits received by
the adversaries are defined by a conditional distribution p(A1,...,At)|S , also called a

2 Recall that, as described in the introduction, in our protocols only one verifier,
namely V1, listens to the satellite signal.

Position-Based Cryptography from Noisy Channels 309

channel end denoted S → (A1, . . . , At). We assume that this channel is εA-noisy
(for εA ∈ [0, 1]), by which we mean the following:

1. for both s ∈ {0, 1} the events {Ai = s}ti=1 are independent conditioned on
S = s and

2. for any f : {0, 1}t → {0, 1} we have that∣∣P (f(A1
0, . . . , A

t
0) = 0|S = 0

)
− P

(
f(A1

1, . . . , A
t
1) = 0|S = 1

)∣∣ ≤ 1− εA. (1)

Any function f of a type {0, 1}t → {0, 1} will be called a guessing strategy.
Note that we do not give any concrete bounds for transmission errors for the
individual antennas. The only thing that we assume is that the adversaries jointly
cannot guess S with a high probability: it is actually easy to see that Point 2 is
equivalent to requiring that for S distributed uniformly over {0, 1} and for any
guessing strategy f : {0, 1}t → {0, 1} we have P

(
f(A1

0, . . . , A
t
0) = S

)
≤ 1−εA/2.

Of course this means that the error rates of individual antennas need to be
much larger than εA/2, especially if t is large. While at the first sight it may
look unrealistic, we would like to note that implicitly this assumption appears
in every paper that constructs protocols in the noisy channels model: obviously
the adversary can always get a “better antenna” by simply investing in a large
number of weaker antennas, in order to correct the errors.

The communication links between the verifiers are secure (secret and authen-
ticated) and every participant of the protocol can verify the authenticity of the
messages sent by a satellite (the case when, instead of an artificial satellite, we
use some natural object was already discussed in Section 2.4). Obviously, this
can be achieved by standard cryptographic techniques. Observe that there is no
formal reason to assume that the messages sent by the prover to the verifiers are
secret (as, if there exists an honest prover in P̂ , then the outcome of the protocol
should anyway be positive).

We also assume that the adversary cannot block or delay the messages sent
between the honest participants. It is clear that such an assumption is unavoid-
able, as, by blocking all the messages, the adversary can always prevent any
protocol from succeeding.

As described in the introduction, our protocols work only when the prover
is placed within some subset G of a three-dimensional space (called the set of
admissible positions), and when there is no adversary positioned in a subset Q
(without loss of generality assume that the position of P is in Q). Moreover,
we accept that with some small probability ξ an honest prover fails to convince
the verifiers, and with a small probability ρ the adversaries manage to make
the verifiers accept, even if no adversary is placed within Q. More formally, we
say that Π(P̂) (with P̂ ∈ G) is an (σ, ρ,Q)-secure position-based authentication
protocol if the following two conditions hold:

σ-correctness If the prover P is placed in the claimed position P̂ ∈ G then the
verifiers output “yes” with probability at least 1− σ,

ρ-security If the prover is not in position P̂ and there is no adversary in set Q
then the verifiers output “yes” with probability at most ρ.

310 S. Dziembowski and M. Zdanowicz

If σ and ρ are negligible in n then we will also simply say that π is an Q-secure.
We will also assume that the difference between each consecutive times tj+1

and tj is greater than maxi ‖ŜV̂ i‖ and hence the execution can be divided into
n rounds, and the adversary’s behavior in step j cannot depend on the bits
Sj+1, . . . , Sn.

5 Protocol

In this section we describe formally our main position-based authentication pro-
tocol PosAuth that has already been discussed informally in Section 2.1. Let
n ∈ N be a security parameter, let κ ∈ (0, 1/2) be some parameter whose value
will be determined later, and let P̂ be the position where the prover claims to
be. The protocol PosAuthκn(P̂) consists of the following steps:

1. For j = 1, . . . , n do:

(a) In time tj the randomness source S broadcasts a random bit Sj .

(b) Let SP
j be the version of Sj that the prover receives (this happens in

time tj + ‖ŜP̂‖/c).
(c) Immediately after receiving SP

j the prover P broadcasts (SP
j , j) to all

the verifiers.

(d) Each verifier V i checks if in time tj + ‖ŜP̂‖/c+ ‖P̂V̂ i‖/c he received a
pair (SP

j , j) from the prover. If not, then he rejects the proof and halts.

Let Si
j be equal to the bit that the verifier V i received as SP

j . The verifiers
perform the consistency check by verifying if for every j they received
the same value. If not then the verifier rejects the proof and halts.

(e) In time tj + ‖ŜV̂1‖/c the verifier V1 receives his noisy version SV
j of Sj

(note that this usually happens chronologically before V1 executes Step
(1d) above).

2. Denote
−→
S 1 = (S1

1 , . . . , S
1
n) and

−→
S V = (SV

1 , . . . , S
V
n). The verifier V1 per-

forms the correlation check, by computing the Hamming distance between−→
S 1 and

−→
S V . He outputs “yes” if this value is smaller than κ · n. Otherwise

he outputs “no”.

For every verifier V i let X i denote the set of all positions in space that have
the following property: if A is positioned in X then A can send (his version of)
a bit Sj to V i in such a way that it reaches V i exactly at the same time as
the bit SP

j reaches V i. It is easy to see that this protocol can be broken if an

adversary can send to all the verifiers an identical signal SA that is correlated
with S. Obviously, it is always possible if the adversary can position himself in
the intersection X 1 ∩ X 2 ∩ X 3. Therefore, in order to hope for any security, we
need to assume that there is no adversary in X 1 ∩ X 2 ∩ X 3. In the next section
we show that this assumption is sufficient. We postpone the geometric analysis
of the shape of X 1 ∩ X 2 ∩ X 3 until Section 7.

Position-Based Cryptography from Noisy Channels 311

6 Security without the Geometric Analysis

In this section we show the security of the protocol from Section 5 abstracting
from the geometric information. As already mentioned, the only thing that we
will assume is that there is no adversary in the set X 1 ∩ X 2 ∩ X 3 (where the
X j ’s were defined above). The main lemma that we prove is as follows.

Lemma 2. Let εA, εP , and εV be as in Section 4. Let κ ≥ (εV + εP − εV εP)/2,
let α be such that

√
α ≤ εA/12, and let Q = X 1 ∩ X 2 ∩ X 3. Then the protocol

PosAuthκn(P̂) from Section 5 is (σ, ρ,Q)-secure with

– ρ = e−n(2κ−εV −εP+εV εP)2/2, and
– σ = e−n(1/2−κ−5

√
α)2/2 + (1 − α)(1/2−κ−5

√
α)n/2

Note that the value 1/2 − κ − 5
√
α is the gap between 1 − κ, i.e., the desired

prover’s accuracy and 1/2 + 5
√
α.

As an example of an application of Lemma 2 for concrete parameters assume
that the error of the adversary is small, e.g.: εA := 0.1, and the error of the
honest participants is large, εP = εV = 0.5, say. If we then set κ = 0.4 and
α = 10−5 then we obtain ρ = e−0.00125n and σ ≤ 0.9999996n. For n = 2 · 108
(i.e.: around 20MB) we get ρ ≤ 10−83332 and σ ≤ 10−34. It is very likely that
these parameters can be improved, as we did not try to optimize them.

6.1 Single-Bit Case

As the first step towards proving Lemma 2 we consider the single-bit case, i.e.,
we analyse the possible strategies of the adversary for an individual bit S sent by
the randomness source. Recall that a guessing strategy is an arbitrary function
of a type {0, 1}t → {0, 1}.

Let Z = {Ai1 , . . . ,Ait′ } (with i1 < · · · < it) be some subset of anten-
nas. We say that f is a guessing strategy based Z if it depends only on the
inputs corresponding to antennas in Z. More precisely: for any two vectors
−→a = (a1, . . . , at) and

−→
b = (b1, . . . , bt) such that (ai1 , . . . , ait) = (bi1 , . . . , bit)

we have f(−→a) = f(
−→
b).

The following lemma shows that if the guessing strategies: f1, f2 and f3 are
based on sets that have no antenna in common, then the only way to keep
them consistent with each other (i.e.: make their outputs equal) is to make them
(almost) constant. This fact is useful, since, obviously, no function that is close
to constant can guess S with probability significantly greater than 1/2.

Lemma 3. For any εA-noisy channel S → (A1, . . . , At) consider a set of guess-
ing strategies: f1, f2, and f3, each f i based on subset of antennas Yi. Suppose
that:

– no antenna belongs to every set in the family {Yi}3i=1, i.e.,

∩3
i=1Yi = ∅, (2)

312 S. Dziembowski and M. Zdanowicz

and
– except with probability α, for some parameter α such that

√
α ≤ εA/12, (3)

the strategies agree with each other, i.e., for every bit s we have

P
(
f1(A1, . . . , At) = f2(A1, . . . , At) = f3(A1, . . . , At)|S = s

)
≥ 1− α. (4)

Then the strategies have to be “almost constant”, i.e., there exists a bit c ∈ {0, 1}
such that for every bit s we have

P
(
f1(A1, . . . , At) = c|S = s

)
≥ 1− 9 ·

√
α, (5)

Proof. For the lack of space the proof appears in the full version of paper [7]. ��

6.2 Proof of Lemma 2

We now present the proof of the main lemma of this section. Let us first address

the ρ-correctness. Let H denote the expected Hamming distance between
−→
S 1

and
−→
S V . Clearly for each j we have

P
(
S1
j �= SV

j

)
= (εV /2)(1− εP /2) + (1− εV /2)(εP/2)

= εV /2 + εP /2− εV εP /2

Therefore E (H) = n · (εV + εP − εV εP)/2, and hence from the Chernoff bound
(Lemma 1) we get that the probability that the verifiers reject the honest prover
is at most:

P (H ≥ nκ) ≤ e−2(n(2κ−εV −εP+εV εP)/2)2/n

= e−n(2κ−εV −εP+εV εP)2/2

= ρ.

Hence, the ρ-correctness is proven. Let us now consider the σ-security. Recall
that S1

j denotes the bit received by the verifiers from the prover as Sj. Assume

that if the bits received as Sj are not identical for every verifier, then S1
j = ⊥.

Without loss of generality, assume that in every j+1st step the adversaries learn
the bit Sj (so, they know if their guesses in the previous rounds were correct).
The goal of the adversary is to minimize the Hamming distance between S1 and
SV , without being disqualified. In other words: we can assume that his goal is to
earn a certain number of point in the following game. At the beginning he has 0
points. For every j = 1, . . . , n if S1

j = SV
j then he earns 1 point, and otherwise

he earns nothing. If S1
j = ⊥ then he gets disqualified and the game is halted.

Let out denote the total number of points earned by the adversary. He wins the
game if out ≥ (1 − κ)n. We now show that for any strategies of the adversary
we have

P (out ≥ (1− κ)n and the adversary did not get disqualified) ≤ σ (6)

Position-Based Cryptography from Noisy Channels 313

From the assumption that the prohibited region Q is equal to X 1 ∩ X 2 ∩ X 3

we know that there is no antenna in the intersection X 1 ∩ X 2 ∩ X 3. Therefore
we can use Lemma 3, form which it follows that in each jth step the adversary
can choose one of the following strategies. The first one, that we call a “green
strategy” has the following properties: the probability that S1

j �= ⊥ is large, more
precisely

P
(
S1
j �= ⊥

)
≥ 1− α,

but on the other hand, the probability that he guesses Sj is small, i.e.

P
(
S1
j = Sj

)
≤ 1

2
+

9

2
·
√
α

≤ 1

2
+ 5

√
α

Alternatively, he can take a “red strategy”, where probability that he guesses Sj

is large, but the probability that S1
j = ⊥ is large, more precisely:

P
(
S1
j = ⊥

)
≥ α,

and

P
(
S1
j = Sj

)
≥ 1

2
+

9

2
·
√
α.

Suppose for a moment that the adversary uses the green strategy in each step.
Without loss of generality assume that S1

j is never equal to⊥ and that P
(
S1
j = Sj

)
is actually equal to 1/2 + 5

√
α. Let g = (1− κ)− (1/2 + 5

√
α) = 1/2− κ− 5

√
α

be the gap between the required prover’s accuracy 1−κ and his average accuracy
1/2+5

√
α using green strategy, which was mentioned in the statement of Lemma

2. From the Chernoff bound (Lemma 1) we get

Pr[out > (1−κ−g/2)n]=Pr[out > (1/2+5
√
α+g/2)n] ≤ e−2(ng/2)2/n=e−ng2/2.

Now consider an adversary that behaves exactly like the one above, except that
he uses the red strategy m times. Moreover, we allow the adversary to first
play the green strategy in each step, and then choose m steps in which he “gets
another chance” and plays the red strategy. Denote the outcome of this game by
out ′. Since obviously in this way the adversary can earn at most m extra points,
hence by the previous inequality, it is easy to see that if m < gn/2 then

Pr[out ′ > (1− κ)n] ≤ Pr[out > (1− κ− g/2)n]

≤ e−ng2/2

On the other hand, each time he plays the red strategy, his probability of getting
disqualified is at least α and therefore

P (the adversary did not get disqualified) ≤ (1− α)m,

which, if m ≥ gn/2 is at most (1− α)gn/2. Hence (6) is proven. ��

314 S. Dziembowski and M. Zdanowicz

7 Geometric Analysis

What remains now is to perform the analysis of the protocol PosAuthκn(P̂) from
Section 6 to find the geometric assumptions that are sufficient to satisfy the
requirements on Q and G that are needed in Lemma 2. Obviously, the region Q
where the adversary is not allowed to put his antennas depends on the region
G where P̂ can be, and we would like to have G as large as possible, and Q as
small as possible. Unfortunately, for large G’s the description of Q becomes very
complicated. Therefore we make some simplifying assumptions. First of all we
will be only considering sets G that lie on the plane E on which the verifiers
are. Let α be the angle between this plane and the satellite. The definition of

G depends on α in the following way: we define GV̂1V̂2V̂3

Ŝ,α
to be the set of points

P̂ within the triangle)V̂1V̂2V̂3 such that each of the angles ∠V̂1P̂V̂2,∠V̂2P̂V̂3,
and ∠V̂1P̂V̂3 is less than 2α. Hence, e.g., if S is directly above P , then α = 90◦

and therefore G is simply equal to the entire interior of)V̂1V̂2V̂3, but if α < 90◦

the area of G will get smaller, as it will not contain some margins around the
edges of the triangle.

Figure 1 illustrates the margins excluded from the triangle.

2α

Fig. 1. The gray areas indicate the margins excluded from the triangle (in the admis-
sible region) for α = 70◦

Defining Q is a bit more tricky. As discussed in the introduction, it is obvious
that if there is an adversary Ai located on a line segment that connects Ŝ and P̂
then any such scheme can be broken, as Ai can simply listen to S and broadcast
his own noise-less version of the randomness source’s signal. Hence Q needs

to contain at least the line segment ŜP̂. Our protocol provides security when

Q contains a little bit more than this. Namely, QV̂1V̂2V̂3

Ŝ,P̂ will be defined as an

intersection of interiors of ellipsoids with foci in Ŝ and P̂ and an appropriately
chosen major radius (not much larger than ‖ŜP̂‖). More precisely for any points
Ŝ, P̂ and V̂ in 3-dimensional space define a set EllipseŜ,P̂(V̂) of points as:

Position-Based Cryptography from Noisy Channels 315

EllipseŜ,P̂(V̂) := {Â ∈ R3 : ‖ŜÂ‖+ ‖ÂV̂‖ ≤ ‖ŜP̂‖+ ‖P̂V̂‖}.
It is clear that the set defined this way is the interior of the ellipsoid with foci
in Ŝ and P̂ and the major radius equal to ‖ŜP̂‖+ ‖P̂V̂‖.

Intuitively the set EllipseŜ,P̂(V̂) consists of all points Q such that the sig-
nal broadcasted from S can be transmitted from Q to V before an analogous

transmission from P . We now define the set QV̂1V̂2V̂3

Ŝ,P̂ as follows:

QV̂1V̂2V̂3

Ŝ,P̂ :=

3⋂
i=1

EllipseŜ,P̂(V̂
i).

Lemma 4. Consider the protocol PosAuthκn(P̂), and let X 1,X 2 and X 3 be as in

Section 5. Let GV̂1V̂2V̂3

Ŝ,α
and QV̂1V̂2V̂3

Ŝ,P̂ be as above. Then the protocol PosAuthκn(P̂)

is
(
σ, ρ,QV̂1V̂2V̂3

Ŝ,P̂

)
-secure for σ and δ as in Lemma 2.

Proof. Suppose P̂ ∈ GV̂1V̂2V̂3

Ŝ,α
and there is no adversary in set QV̂1V̂2V̂3

Ŝ,P̂ . Recall

that each X i was defined as a set of all positions Â such that if A is positioned in
Â then he can send his version of a bit Sj to V i in such a way that it reaches V i

exactly at the same time as the bit SP
j reaches V i. Translating it into distances

we get that X i = EllipseŜ,P̂(V̂ i), and therefore QV̂1V̂2V̂3

Ŝ,P̂ = X 1 ∩X 2 ∩X 3, which

is exactly what we need to apply Lemma 2. ��

7.1 Geometric Properties

We will now analyse the geometric properties of the regions GV̂1V̂2V̂3

Ŝ,α
andQV̂1V̂2V̂3

Ŝ,P̂
defined above. In particular, we show that P̂ is the only prohibited point on the
plane defined by V̂1, V̂2, and V̂3. This implies, e.g., that if the verifiers and the
adversary are on the ground level, then there are essentially no prohibited points
(as the adversary positioned in P̂ can anyway always win). For H > 0 we only
performed some numerical experiments to estimate dH . These experiments show
that dH is linear in H , for small H ’s and linear in

√
H for largerH ’s. The details

of this analysis will be provided in a full version of this paper.

Lemma 5. Let E be the plane determined by V̂1, V̂2 and V̂3 (call it a “ground

level”). Let α be the angle between ŜP̂ and E. For GV̂1V̂2V̂3

Ŝ,α
and QV̂1V̂2V̂3

Ŝ,P̂ as above

we have
QV̂1V̂2V̂3

Ŝ,P̂ ∩ E = {P̂}.

The proof together with the rest of geometrical analysis appears in Appendix A
of full version of the paper [7]. We also note that by increasing the number of
verifiers we can cover more general areas than the “triangle without the mar-
gins”. In particular, imagine that the verifiers V 1, . . . , V � are placed regularly
on a circle. Then, a prover P can prove that he is in P̂ if he finds 3 verifiers

316 S. Dziembowski and M. Zdanowicz

2α

2α

≤ 2α

Fig. 2. The gray areas indicate the margins excluded from the polygon (in the admis-
sible region)

V i, V j and V k such that P ∈ GV̂iV̂j V̂k

Ŝ,α
. Hence, the admissible set G becomes

equal to the polygon with vertices in V̂1, . . . , V̂�, except of some margins around
the edges. This is illustrated on Figure 2.

8 Conclusions

As a conclusion, we briefly sketch the contribution of the paper in the perspective
of an explicit implementation of the protocol.

In the paper, we proposed a position-based authentication scheme applying
assumption of existence of a noisy passive source of randomness. It is important
to analyse the possible physical candidates for noisy source of randomness which
is realistic and convenient to use in our framework. Moreover, we also briefly de-
scribed some details of implementation (see, e.g., Section 2.4). They also require
additional empirical and technical justification, which might lead to a practical
deployment of the scheme.

References

1. Brands, S., Chaum, D.: Distance bounding protocols. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

2. Buhrman, H., Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R.,
Schaffner, C.: Position-based quantum cryptography: Impossibility and construc-
tions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 429–446. Springer,
Heidelberg (2011)

3. Capkun, S., Hubaux, J.P.: Secure positioning of wireless devices with application
to sensor networks. In: INFOCOM 2005, Proceedings of the IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp.
1917–1928. IEEE (2005)

Position-Based Cryptography from Noisy Channels 317

4. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptogra-
phy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer,
Heidelberg (2009)

5. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Review 45(4),
727–784 (2003)

6. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press (2009)

7. Dziembowski, S., Zdanowicz, M.: Position-Based Cryptography from Noisy Chan-
nels. In: ePrint archive (2014)

8. Mathur, S., Trappe, W., Mandayam, N., Ye, C., Reznik, A.: Secret key extraction
from level crossings over unauthenticated wireless channels. In: Liu, R., Trappe,
W. (eds.) Securing Wireless Communications at the Physical Layer, pp. 201–230.
Springer, US (2010)

9. Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized ci-
pher. Journal of Cryptology 5(1) (1992)

10. Maurer, U.: Secret key agreement by public discussion from common information.
IEEE Transcations on Information Theory 39 (May 1993)

11. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In:
Proceedings of the 2nd ACM workshop on Wireless security, pp. 1–10. ACM (2003)

12. Singelee, D., Preneel, B.: Location verification using secure distance bounding pro-
tocols. In: IEEE International Conference on Mobile Adhoc and Sensor Systems
Conference, p. 7. IEEE (2005)

A Comparison of the Homomorphic Encryption

Schemes FV and YASHE

Tancrède Lepoint1,� and Michael Naehrig2

1 CryptoExperts, École Normale Supérieure and University of Luxembourg
tancrede.lepoint@cryptoexperts.com

2 Microsoft Research
mnaehrig@microsoft.com

Abstract. We conduct a theoretical and practical comparison of two
Ring-LWE-based, scale-invariant, leveled homomorphic encryption sche-
mes – Fan and Vercauteren’s adaptation of BGV and the YASHE scheme
proposed by Bos, Lauter, Loftus and Naehrig. In particular, we explain
how to choose parameters to ensure correctness and security against
lattice attacks. Our parameter selection improves the approach of van de
Pol and Smart to choose parameters for schemes based on the Ring-LWE
problem by using the BKZ-2.0 simulation algorithm.

We implemented both encryption schemes in C++, using the arithmetic
library FLINT, and compared them in practice to assess their respective
strengths and weaknesses. In particular, we performed a homomorphic
evaluation of the lightweight block cipher SIMON. Combining block ci-
phers with homomorphic encryption allows to solve the gargantuan ci-
phertext expansion in cloud applications.

1 Introduction

In 2009, Gentry proposed the first fully homomorphic encryption scheme [16].
A fully homomorphic encryption (FHE) scheme is an encryption scheme that
allows, from ciphertexts E(a) and E(b) encrypting bits a, b, to obtain encryp-
tions of ¬a, a ∧ b and a ∨ b without using the secret key. Clearly, this allows
to publicly evaluate any Boolean circuit given encryptions of the input bits.
This powerful primitive has become an active research subject in the last four
years. Numerous schemes based on different hardness assumptions have been
proposed [16,12,5,4,30,20] and have improved upon previous approaches.

In all of the aforementioned schemes, a ciphertext contains a noise that grows
with each homomorphic operation. The noise is minimal when the ciphertext is a
fresh encryption of a plaintext bit and has not yet been operated on. Homomor-
phic operations as those above can be (and are often) expressed as homomorphic
addition and multiplication operations, i.e. addition and multiplication in the bi-
nary field F2. Both increase the noise in ciphertexts, which means that the noise

� This work was started when the first author was an intern in the Cryptography
Research group at Microsoft Research.

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 318–335, 2014.
c© Springer International Publishing Switzerland 2014

A Comparison of the Homomorphic Encryption Schemes FV and YASHE 319

in a resulting encryption is larger than the noise in the respective input en-
cryptions. In particular, homomorphic multiplication increases the noise term
significantly.

After a certain amount of such homomorphic computations have been carried
out, the noise reaches a certain maximal size after which no more homomorphic
operations can be done without losing correctness of the encryption scheme. At
this point, the ciphertext needs to be publicly refreshed to allow subsequent
homomorphic operations. This refreshing procedure is called bootstrapping and
is very costly. As a consequence, only few of the FHE schemes have been fully
implemented [17,11,9] and the resulting performances are rather unsatisfactory.

However, real-world applications do not necessarily need to handle any input
circuit. One might avoid using the bootstrapping procedure if the multiplica-
tive depth of the circuit to be evaluated is known in advance and small enough
(cf. [33,21,24,3] and even [19]). Unfortunately, for the schemes of [17,11,9] the
noise grows exponentially with the depth of the circuit being evaluated, severely
limiting the circuits that can be evaluated with reasonable parameters. To mit-
igate this noise growth, Brakerski, Gentry and Vaikuntanathan introduced the
notion of leveled homomorphic encryption schemes [5]. In such a scheme, the
noise grows only linearly with the multiplicative depth of the circuit being eval-
uated. Therefore for a given circuit of reasonable depth, one can select the pa-
rameters of the scheme to homomorphically evaluate the circuit in a reasonable
time. They describe a leveled homomorphic encryption scheme called BGV using
a modulus switching technique. Furthermore, this scheme and other ring-based
homomorphic encryption schemes allow the use of larger plaintext spaces, where
bits are replaced by polynomials with coefficients modulo a plaintext modulus
possibly different from 2. Such plaintext spaces allow the encryption of more
information in a single ciphertext, for example via batching of plaintext bits.
Unfortunately, to homomorphically evaluate a circuit of multiplicative depth d
using the modulus switching technique, the public key needs to contain d distinct
versions of a so-called evaluation key.

At Crypto 2012, Brakerski proposed the new notion of scale-invariance [4]
for leveled homomorphic encryption schemes. In contrast to a scheme that uses
modulus switching, the ciphertexts for a scale-invariant scheme keep the same
modulus during the whole homomorphic evaluation and only one copy of the
scale-invariant evaluation key has to be stored. This technique has been adapted
to the BGV scheme [5] by Fan and Vercauteren [14], and to López-Alt, Tromer
and Vaikuntanathan’s scheme [30] by Bos, Lauter, Loftus and Naehrig [3].1 The
resulting schemes are called FV and YASHE, respectively. No implementation
of the FV scheme is known (except for a proof-of-concept implementation in a
computer algebra system that is used in [21]). The YASHE scheme [3] was the first
(and only) scale-invariant leveled homomorphic encryption scheme implemented
so far. Very satisfactory timings are claimed for a small modulus (then able to

1 This technique was also adapted to the homomorphic encryption scheme over the
integers [12] by Coron, Lepoint and Tibouchi [10].

320 T. Lepoint and M. Naehrig

handle only circuits of multiplicative depth at most 2) on a personal computer.
Unfortunately the implementation is not openly available for the community.

Sending Data to the Cloud. In typical real-world scenarios for using FHE with
cloud applications, one or more clients communicate with a cloud service. They
upload data encrypted with an FHE scheme under the public key of a specific
user. The cloud can process this data homomorphically and return an encrypted
result. Unfortunately, ciphertext expansion (i.e. the ciphertext size divided by
the plaintext size) of current FHE schemes is prohibitive (thousands to millions).
For example using techniques in [11] (for 72 bits of claimed security), sending
4MB of data on which the cloud is allowed to operate, would require to send
more than 73TB of encrypted data over the network.

To solve this issue, it was proposed in [33] to instead send the data encrypted
with a block cipher (in particular AES). The cloud service then encrypts the
ciphertexts with the FHE scheme and the user’s public key and homomorphically
decrypts them before they are processed. Therefore, network communication is
lowered to the data size (which is optimal) plus a costly one-time setup that
consists of sending the FHE public key and an FHE encryption of the block
cipher secret key.

The AES circuit was chosen as a standard circuit to evaluate because it is
nontrivial (but still reasonably small) and has an algebraic structure that works
well with the plaintext space of certain homomorphic encryption schemes [19].
However, there might be other ciphers that are more suitable for being evalu-
ated under homomorphic encryption. In June 2013, the U.S. National Security
Agency unveiled a family of lightweight block ciphers called SIMON [2]. These
block ciphers were engineered to be extremely small, easy to implement and ef-
ficient in hardware. SIMON has a classical Feistel structure and each round only
contains one AND. This particularly simple structure is a likely candidate for
homomorphic cryptography.

Our Contributions. In this work, we provide a concrete comparison of the sup-
posedly most practical leveled homomorphic encryption schemes FV and YASHE.
(To our knowledge, this is the first comparison of leveled homomorphic encryp-
tion schemes.) In particular, we revisit and provide precise upper bounds for the
norm of the noises in the FV scheme, as done for the YASHE scheme in [3]. It
appears from our work that the FV scheme has a theoretical smaller noise growth
than YASHE.

We revisit van de Pol and Smart’s approach [35] to derive secure parameters
for these schemes. They use the BKZ-2.0 simulation algorithm [7,8] (the most
up-to-date lattice basis reduction algorithm) to determine an upper bound on
the modulus to ensure a given level of security. We show that their methodology
has some small limitations and we describe how to resolve them. The resulting
method yields a more conservative but meaningful approach to select parameters
for lattice-based cryptosystems.

Finally, we propose proof-of-concept implementations of both FV and YASHE
in C++ using the arithmetic library FLINT [23]. This allows us to practically

A Comparison of the Homomorphic Encryption Schemes FV and YASHE 321

compare the noise growth and the performances of the FV and YASHE schemes.
The implementations provide insights into the behavior of these schemes for
circuits of multiplicative depth larger than 2 (contrary to the implementation
described in [3]). For this purpose, we implemented SIMON-32/64 using FV,
YASHE and the batch integer-based scheme from [10]. Our implementations are
publicly available for the community to reproduce our experiments [26]. Due
to the similarity in the design of the FV and YASHE schemes and the common
basis of our implementations, we believe that our comparison gives meaningful
insights into which scheme to use according to the desired application, and on
the achievable performance of leveled homomorphic encryption.

2 Preliminaries

In this section, we provide a succinct background on lattices, the (Ring) Learning
With Errors problem and recall the FV [14] and YASHE [3] leveled homomorphic
encryption schemes.

2.1 Lattices

A (full-rank) lattice of dimension m is a discrete additive subgroup of Rm. For
any such lattice L �= {0}, there exist linearly independent vectors b1, . . . ,bm ∈
Rm such that L = b1Z ⊕ · · · ⊕ bmZ. This set of vectors is called a basis of the
lattice. Thus a lattice can be represented by its basis matrix B ∈ Rm×m, i.e. the
matrix consisting of the rows bi in the canonical basis of Rm. In particular, we
have L = {z ·B : z ∈ Zm}. The determinant (or volume) of a lattice is defined
as det(L) = (det(BBt))1/2 = |det(B)| , where B is any basis of L. This quantity
is well-defined since it is independent of the choice of basis.

Among all the bases of a lattice L, some are ‘better’ than others. The goal
of lattice basis reduction is to shorten the basis vectors and thus, since the
determinant is invariant, to make them more orthogonal. In particular, any basis
B = (b1, . . . ,bm) can be uniquely written as B = μ · D · Q where μ = (μij)
is lower triangular with unit diagonal, D is diagonal with positive coefficients
and Q has orthogonal row vectors. We call B∗ = D · Q the Gram-Schmidt
orthogonalization of B, and D = diag(‖b∗

1‖, . . . , ‖b∗
m‖) is the diagonal matrix

formed by the �2-norms ‖b∗
i ‖ of the Gram-Schmidt vectors.

Following the approach popularized by Gama and Nguyen [15], we say that
a specific basis B has root Hermite factor γ if its element of smallest norm b1

(i.e. we assume that basis vectors are ordered by their norm) satisfies

‖b1‖ = γm · |det(B)|1/m .

By using lattice basis reduction algorithms, one aims to determine an output
lattice basis with guaranteed norm and orthogonality properties. A classical lat-
tice basis reduction algorithm is LLL (due to Lenstra, Lenstra and Lovász [25]),
which ensures that for all i < m, δLLL‖b∗

i ‖2 � ‖b∗
i+1 + μi+1ib

∗
i ‖2 for a given pa-

rameter δLLL ∈ (1/4, 1]. The LLL algorithm runs in polynomial-time and provides

322 T. Lepoint and M. Naehrig

bases of quite decent quality. For many cryptanalytic applications, Schnorr and
Euchner’s blockwise algorithm BKZ [36] is the most practical algorithm for lat-
tice basis reduction in high dimensions. It provides bases of higher quality but its
running time increases significantly with the blocksize. Now if A denotes a lattice
basis reduction algorithm, applying it to B yields a reduced basis B′ = A(B).
Thus we can define γA(B) as the value such that

‖b′
1‖ = γmA(B) · |det(B′)|1/m = γmA(B) · |det(B)|1/m .

It is conjectured [15,7] that the value γA(B) depends mostly on the lattice ba-
sis reduction algorithm, and not on the input basis B (unless it has a special
structure and cannot be considered random). Thus, in this paper, we refer to
this value as γA. For example for LLL and BKZ-20 (i.e. BKZ with a blocksize
β = 20), in the literature one can find the well-known values γLLL ≈ 1.021 and
γBKZ-20 ≈ 1.013.

2.2 Ring-LWE

In this section, we briefly introduce notation for stating the Ring-LWE-based ho-
momorphic encryption schemes FV and YASHE, and formulate the Ring Learning
With Errors (RLWE) Problem relating to the security of the two schemes. For
further details, we refer to [31], [14], and [3].

Let d be a positive integer and let Φd(x) ∈ Z[x] be the d-th cyclotomic
polynomial. Let R = Z[x]/(Φd(x)), i.e. the ring R is isomorphic to the ring
of integers of the d-th cyclotomic number field. The elements of R are polyno-
mials with integer coefficients of degree less than n = ϕ(d). For any polynomial
a =

∑n
i=0 aix

i ∈ Z[x], let ‖a‖∞ = max{|ai| : 0 � i � n} be the infinity
norm of a. When multiplying elements of R, the norm of the product grows
at most with a factor δ = sup{‖ab‖∞/‖a‖∞‖b‖∞ : a, b ∈ R}, the so-called
expansion factor. For an integer modulus q > 0, define Rq = R/qR. If t is an-
other positive integer, let rt(q) be the reduction of q modulo t into the interval
[0, t), and let Δ = �q/t�, then q = Δt + rt(q). Denote by [·]q reduction modulo
q into the interval (−q/2, q/2] of an integer or integer polynomial (coefficient
wise). Fix an integer base w and let �w,q = �logw(q)� + 1. Then a polynomial

a ∈ Rq can be written in base w as
∑�w,q−1

i=0 aiw
i, where ai ∈ R with coeffi-

cients in (−w/2, w/2]. Define WordDecompw,q(a) = ([ai]w)
�w,q−1
i=0 ∈ R�w,q and

PowersOfw,q(a) = ([awi]q)
�w,q−1
i=0 ∈ R�w,q . Note that

〈WordDecompw,q(a),PowersOfw,q(b)〉 = ab (mod q) .

Let χkey and χerr be two discrete, bounded probability distributions on R.
In practical instantiations, the distribution χerr is typically a truncated discrete
Gaussian distribution that is statistically close to a discrete Gaussian. The dis-
tribution χkey is chosen to be a very narrow distribution, sometimes even such
that the coefficients of the sampled elements are in the set {−1, 0, 1}. We denote
the bounds corresponding to these distributions by Bkey and Berr, respectively.

A Comparison of the Homomorphic Encryption Schemes FV and YASHE 323

This means that ‖e‖∞ < Berr for e ← χerr and ‖f‖∞ < Bkey for f ← χkey.
With the help of χkey and χerr, we define the Ring-LWE distribution on Rq×Rq

as follows: sample a ← Rq uniformly at random, s ← χkey and e ← χerr, and
output (a, [as+ e]q).

Next, we formulate a version of the Ring-LWE problem that applies to the
schemes FV and YASHE considered in this paper.

Definition 1 (Ring-LWE problem). With notation as above, the Ring-Lear-
ning With Errors Problem is the problem to distinguish with non-negligible
probability between independent samples (ai, [ais+ ei]q) from the Ring-LWE dis-
tribution and the same number of independent samples (ai, bi) from the uniform
distribution on Rq ×Rq.

In order for FV and YASHE to be secure, the RLWE problem as stated above
needs to be infeasible. We refer to [14] and [3] for additional assumptions and
detailed discussions of the properties of χkey and χerr.

2.3 The Fully Homomorphic Encryption Scheme FV

Fan and Vercauteren [14] port Brakerski’s scale-invariant FHE scheme intro-
duced in [4] to the RLWE setting. Using the message encoding as demonstrated
in an RLWE encryption scheme presented in an extended version of [31] makes
it possible to avoid the modulus switching technique for obtaining a leveled ho-
momorphic scheme. We briefly summarize (a slightly generalized version of) the
FV scheme in this subsection.

• FV.ParamsGen(λ): Given the security parameter λ, fix a positive integer d
that determines R, moduli q and t with 1 < t < q, distributions χkey, χerr

on R, and an integer base w > 1. Output (d, q, t, χkey, χerr, w).
• FV.KeyGen(d, q, t, χkey, χerr, w): Sample s← χkey, a← Rq uniformly at ran-

dom, and e ← χerr and compute b = [−(as + e)]q. Sample a ← R
�w,q
q

uniformly at random, e ← χ
�w,q
err , compute γ = ([PowersOfw,q(s

2) − (e + a ·
s)]q, a) ∈ R�w,q ,and output (pk, sk, evk) = ((b, a), s,γ).

• FV.Encrypt((b, a),m): The message space is R/tR. For a message m + tR,
sample u ← χkey, e1, e2 ← χerr, and output the ciphertext c = ([Δ[m]t +
bu+ e1]q, [au+ e2]q) ∈ R2.

• FV.Decrypt(s, c = (c0, c2)): Output m = [�t/q · [c0 + c1s]q%]t ∈ Rt.
• FV.Add(c1, c2): Given ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1), out-
put cadd = ([c1,0 + c2,0]q, [c1,1 + c2,1]q).

• FV.ReLin(c̃mult, evk): Let (b, a) = evk and let c̃mult = (c0, c1, c2). Output the
ciphertext

([c0 + 〈WordDecompw,q(c2),b〉]q , [c1 + 〈WordDecompw,q(c2), a〉]q).

• FV.Mult(c1, c2, evk): Output the ciphertext cmult = FV.ReLin(c̃mult, evk),
where

c̃mult = (c0, c1, c2) =

([⌊
t

q
c1,0c2,0

⌉]
q

,

[⌊
t

q
(c1,0c2,1 + c1,1c2,0)

⌉]
q

,

[⌊
t

q
c1,1c2,1

⌉]
q

)
.

324 T. Lepoint and M. Naehrig

2.4 The Fully Homomorphic Encryption Scheme YASHE

In [3], a fully homomorphic encryption scheme is introduced that is based on the
modified version of NTRU by Stehlé and Steinfeld [38] and the multi-key fully
homomorphic encryption scheme presented in [30]. In this subsection, we state
the more practical variant of the leveled homomorphic scheme from [3].

• YASHE.ParamsGen(λ): Given the security parameter λ, fix a positive integer
d that determines R, moduli q and t with 1 < t < q, distributions χkey, χerr

on R, and an integer base w > 1. Output (d, q, t, χkey , χerr, w).
• YASHE.KeyGen(d, q, t, χkey, χerr, w): Sample f ′, g ← χkey and let f = [tf ′ +
1]q. If f is not invertible modulo q, choose a new f ′. Compute the inverse

f−1 ∈ R of f modulo q and set h = [tgf−1]q. Sample e, s ← χ
�w,q
err , compute

γ = [PowersOfw,q(f) + e+ h · s]q ∈ R�w,q and output (pk, sk, evk) = (h, f,γ).
• YASHE.Encrypt(h,m): The message space is R/tR. For a message m + tR,
sample s, e← χerr, and output the ciphertext c = [Δ[m]t + e+ hs]q ∈ R.

• YASHE.Decrypt(f, c): Decrypt a ciphertext c by m = [�t/q · [fc]q%]t ∈ R.
• YASHE.Add(c1, c2): Output cadd = [c1 + c2]q.
• YASHE.KeySwitch(c̃mult, evk): Output [〈WordDecompw,q(c̃mult), evk〉]q.
• YASHE.Mult(c1, c2, evk): Output the ciphertext

cmult = YASHE.KeySwitch(c̃mult, evk), where c̃mult = [�t/q · c1c2%]q .

3 Parameter Derivation

In this section, we explain how to derive parameters for the fully homomorphic
encryption schemes FV [14] and YASHE [3]. For security, we follow van de Pol
and Smart’s approach to derive the maximal size of the modulus achievable in
a given dimension [35] and consider the distinguishing attack against RLWE. In
particular, we use Chen and Nguyen’s simulation algorithm for the state-of-the-
art lattice basis reduction algorithm BKZ-2.0 [7,8]. For correctness, we provide a
lower bound on the modulus in a given dimension and for a targeted number of
levels (depending on the application), for both schemes FV and YASHE. There-
fore for a given application, it suffices to combine these upper and lower bounds
to select a suitable modulus.

3.1 Revisiting van de Pol and Smart’s Approach

We assume the reader to be familiar with Schnorr and Euchner’s blockwise
algorithm BKZ [36], and Chen and Nguyen’s improved version BKZ-2.0 [7,8].
We provide more details in the full version [27] of this paper. In the following
BKZ-2.0N,β means that BKZ-2.0 is run with blocksize β and for a maximal
number of N rounds. In [35], van de Pol and Smart use the formula of [7,8],

cost(BKZ-2.0N,β) � N×(m−β)×cost(Enumeration in dimension β)+O(1) (1)

A Comparison of the Homomorphic Encryption Schemes FV and YASHE 325

to estimate the cost of BKZ-2.0N,β (in terms of the number of nodes visited) on an
m-dimensional basis, and to generate secure parameters.2 Instead of using BKZ-
2.0 to verify heuristically selected parameters, they rather propose a rational
method to tackle the parameter selection, which we describe below.

For a given security parameter λ and a dimension m, van de Pol and Smart
propose to derive the smallest root Hermite factor γ(m) on an m-dimensional
lattice achievable using BKZ-2.0 by an adversary limited to a computational cost
of at most cost(BKZ-2.0) � 2λ. By Equation (1), this means that for all β and
N , we need to have

N × (m− β)× cost(Enumeration in dimension β) � 2λ .

Thus, for each β and using the enumeration costs in [7] (or [8]), one obtains an
upper bound Nmax on the number of BKZ-2.0 rounds with blocksize β that an
adversary bounded as above can afford to run, i.e. such that this latter inequality
is still verified. Next, the quality of the resulting basis is estimated by running
the BKZ-2.0Nmax,β

simulation algorithm on a random lattice with blocksize β and
Nmax rounds. This yields a root Hermite factor γ(m,β) for this specific blocksize
β. By taking the minimum value over all blocksizes, one obtains the minimum
root Hermite factor γ(m) achievable in dimension m for the security parameter
λ using BKZ-2.0.

Van de Pol and Smart show that, for the homomorphic evaluation of the
AES circuit of [19], by using their new approach for a given security level, it is
possible to work with significantly smaller lattice dimensions than what previous
methods recommended, which affects the performance of the underlying lattice-
based homomorphic encryption scheme.

Limitations of [35]. However, the approach presented in [35] has some limita-
tions. First of all, van de Pol and Smart only consider dimensions that are a
power of two. They use linear interpolation for the missing values and therefore
obtain a simplified model which does not reflect the real behavior of the minimal
root Hermite factor. Also, the enumeration costs used in [35] are based on the
proceedings version [7] of the BKZ-2.0 paper. Recently a full version [8] with
smaller enumeration costs has been published, which forces one to revisit van de
Pol and Smart’s results. Last but not least, they only consider blocksizes that
are a multiple of 10 (due to the tables in [7]). This leads to a phenomenon of
plateaus (cf. Fig 1) and might lead to a choice of parameters ensuring less than
λ bits of security.

Overcoming the Limitations of [35]. To overcome these issues, we performed the
same experiments as van de Pol and Smart but for all dimensions from 1000

2 The term O(1) occurs due to the fact that in high dimension, the enumeration time
is usually dominant compared to the time spent on computing the Gram-Schmidt
orthogonalization and LLL reduction [7,8]. Note again that Chen and Nguyen provide
an ideal simulation algorithm – experimental applications of BKZ-2.0 might yield a
basis with a larger root Hermite factor. Therefore, using Equation (1) to estimate
parameters is conservative.

326 T. Lepoint and M. Naehrig

0.1 0.5 1 1.5 2 2.5 3 4 5 6

·104

1.0076

1.0079

1.0081

1.0084

1.0088

1.0092

m

γ
(m

)

[35] values (with linear interpolation)

Δβ = 10 and [7] values

Δβ = 10 and [8] values

Δβ = 1 and [7] values

Δβ = 1 and [8] values

Fig. 1. Minimal root Hermite factor γ(m) achievable with a complexity less than 280,
in function of the dimension m

up to 65000. We also considered both the enumeration costs given in Chen and
Nguyen’s proceedings paper [7] as well as those in the full version [8]. We plotted
the results in Fig. 1. As expected, the linear interpolation of [35] does not fully
reflect the behavior of the experiments for the other dimensions.

However, when performing the experiments for all dimensions, but only avoid-
ing linear interpolation, we still observe the plateau phenomenon. This can be
explained by the fact that the enumeration costs from [7] are only used for
blocksizes that are a multiple of Δβ = 10 (which are the only values given in
[7]), and only those are considered in [35]. Each plateau consists of the mini-
mal root Hermite factor achievable for a specific blocksize β. Now for the whole
plateau, BKZ-2.0Nmax,β

terminates in less than Nmax rounds, i.e. a fix-point is
attained at some round i < Nmax. The next plateau corresponds to a block-
size β − Δβ = β − 10. Between plateaus, the number Nmax is the limiting fac-
tor in BKZ-2.0 (i.e. BKZ-2.0Nmax,β

terminates at round Nmax) and determines
the achievable root Hermite factor (therefore this latter value increases until a
blocksize of size β − 10 instead of β is more useful).

To resolve this issue, we used the least squares method to interpolate the
enumeration costs for blocksizes β that are not a multiple of 10 (for more details
see the full version [27] of this paper). These new costs allowed us to perform the
experiments with all blocksizes β ∈ {100, . . . , 250} (i.e. with steps Δβ = 1) and
we obtained the plain lines in Fig. 1.3 As one can see there, parameters selected
from plateaus might yield attacks of complexity smaller than 2λ if the attacker
chooses a blocksize that actually allows to achieve a smaller root Hermite factor.

Therefore, to be more conservative than [35] in our parameter selection, in the
rest of the paper, we use the values of γ(m) for Δβ = 1 using the enumeration

3 Note that, without loss of generality, we only considered blocksizes larger than 100.
Indeed, for β = 100 the cost of the enumeration of [8] is 239 and BKZ-2.0 usually
reaches a fix point in less than 100 rounds (cf. [8, Fig.7]). Therefore for a target
security level of 80 bits and dimensions up to ≈ 232, one will not be able to obtain
a better reduction with a β < 100.

A Comparison of the Homomorphic Encryption Schemes FV and YASHE 327

costs of [8]. Note that there is a significant difference in the achievable values
compared to [35].

3.2 Security Requirements for RLWE: The Distinguishing Attack

In this section, we restate and extend the security analysis of [35]. Namely, we
consider the distinguishing attack against RLWE (see [32,28]). In the following,
we denote by 0 < ε < 1 the advantage with which we allow the adversary to
distinguish an RLWE instance (a, b = a ·s+e) ∈ R2

q from a uniform random pair
(a, u) ∈ R2

q (i.e. the advantage of the adversary for solving the Decisional-RLWE
problem). For any a ∈ Rq, we denote by Λq(a) the lattice

Λq(a) = {y ∈ Rq : ∃ z ∈ R, y = a · z mod q}.

Recall that, for an n-dimensional lattice Λ, we denote by Λ× its dual, i.e. the
lattice defined by Λ× = {v ∈ Rn : ∀ b ∈ Λ, 〈v, b〉 ∈ Z}. The distinguishing attack
consists in finding a small vector v ∈ q ·Λq(a)

×. Then, for all y ∈ Λq(a), 〈v, y〉 =
0 mod q. To distinguish whether a given pair (a, u) was sampled according to
the RLWE distribution or the uniform distribution, one tests whether the inner
product 〈v, u〉 is ‘close’ to 0 modulo q (i.e. whether |〈v, u〉| < q/4) or not.

Indeed, when u is uniformly distributed in Rq and n � 2λ + 1, 〈v, u〉 is
statistically close to the uniform distribution by the leftover hash lemma and the
test accepts with probability 1/2 − negl(λ). However, when (a, u) is an RLWE
sample, i.e. there exists s ∈ Rq and e ← χerr such that u = a · s + e, we have
〈v, u〉 = 〈v, e〉 mod q, which is essentially a sample from a Gaussian (reduced
modulo q) with standard deviation ‖v‖ · σerr. Now when this parameter is not
much larger than q, 〈v, e〉 can be distinguished from uniform with advantage
exp(−πτ2) with τ = ‖v‖ · σerr/q, for details see [32,28].

The distinguishing attack against LWE is more efficient when working with a
m×n matrix with m > n [32,28,35]. Moreover, it is unknown how to exploit the
ring structure of RLWE to improve lattice reduction [15,7]. Therefore, we will
embed our RLWE instance into an LWE lattice. Next we apply the distinguishing
attack against LWE and the result can be used to distinguish the RLWE instance
from uniform. Define an LWE matrix A ∈ Zm×n

q associated to a as the matrix

whose first n lines are the coefficient vectors of xi · a for i = 0, . . . , n − 1 and
the m−n last lines are small linear combinations of the first n lines. Denote the
LWE lattice

Λq(A) = {y ∈ Zm : ∃ z ∈ Zn, y = Az mod q}.

Now, we use lattice basis reduction in order to find such a short vector v ∈
q · Λq(A)

×. An optimal use of BKZ-2.0 would allow us to recover a vector v
such that ‖v‖ = γ(m)m · qn/m (because det(qΛq(A)

×) = qn, cf. [35]). Therefore,
to keep the advantage of the BKZ-2.0-adversary small enough, we need to have
exp(−πτ2) � ε, i.e.

γ(m)m · q(n/m)−1 · σerr �
√
− log(ε)/π .

328 T. Lepoint and M. Naehrig

Table 1.Maximal values of log2(q) to ensure λ = 80 bits of security, with distinguishing
advantage ε = 2−80 and standard deviation σerr = 8

n 1024 2048 4096 8192 16384
Maximal log2(q) (method of [28]) 40.6 79.4 157.0 312.2 622.7
Maximal log2(q) (our method) 47.5 95.4 192.0 392.1 799.6

Define α =
√
− log(ε)/π. To ensure security for all m > n, we obtain the condi-

tion

log2(q) � min
m>n

m2 · log2(γ(m)) +m · log2(σ/α)
m− n

. (2)

Let us fix the security parameter λ. Following the experiment described in
Section 3.1, one can recover the minimal root Hermite factor γ(m) for all m > n.
Therefore, given a target distinguishing advantage ε, a dimension n and an error
distribution χerr, one can derive the maximal possible value for log2(q) using
Equation (2). Some interesting values are presented in Table 1. As in [35], it
seems that the parameters obtained by using Lindner and Peikert’s method [28]
are more conservative than those obtained with the BKZ-2.0 simulation.4

3.3 Correctness and Noise Growth of YASHE

Any YASHE ciphertext c carries an inherent noise term, which is an element
v ∈ R of minimal norm ‖v‖∞ such that fc = Δ[m]t + v (mod q). If ‖v‖∞
is small enough, decryption works correctly, which means that it returns the
message m modulo t. More precisely, [3, Lemma 1] shows that this is the case if
‖v‖∞ < (Δ− rt(q))/2. A freshly encrypted ciphertext output by YASHE.Encrypt
has an inherent noise term v that can be bounded by ‖v‖∞ < V = δtBkey(2Berr+
rt(q)/2), see [3, Lemma 2].

During a homomorphic addition, the inherent noise terms roughly add up such
that the resulting noise term is bounded by ‖vadd‖∞ � ‖v1‖∞ + ‖v2‖∞ + rt(q),
where v1 and v2 are the respective noise terms in c1 and c2. For a multiplication
operation, noise growth is much larger. It is shown in [3, Theorem 4 and Lemma
4] that, when ‖v1‖∞, ‖v2‖∞ < V the noise term after multiplication can be
bounded by

‖vmult‖∞ < δt(4 + δtBkey)V + δ2t2Bkey(Bkey + t) + δ2t�w,qwBerrBkey.

For a homomorphic computation with L levels of multiplications (and consider-
ing only the noise growth from multiplications), [3, Corollary 1 and Lemma 9]

4 In [29], Lin and Nguyen obtained significant improvements upon Lindner-Peikert’s
decoding attack [28] using only pruned enumeration. However, there is no detail on
how to compute the success probability, nor on how to estimate the number of nodes
to enumerate, nor on how long an enumeration takes. It remains an interesting open
problem to adapt van de Pol and Smart’s approach to Lin and Nguyen’s attack for
parameter selection, as it is currently unclear how to compute the above values.

A Comparison of the Homomorphic Encryption Schemes FV and YASHE 329

give an upper bound on the inherent noise in the resulting ciphertext as ‖v‖∞ <
CL

1 V + LCL−1
1 C2, where

C1 = (1 + 4(δtBkey)
−1)δ2t2Bkey, C2 = δ2tBkey (t(Bkey + t) + �w,qwBerr) .

In order to choose parameters for YASHE so that the scheme can correctly eval-
uate such a computation with L multiplicative levels, the parameters need to
satisfy CL

1 V +LCL−1
1 C2 < (Δ− rt(q))/2. In Table 2(a), we provide some values

for power-of-two dimensions n and levels L = 0, 1, 10, 50.

3.4 Correctness and Noise Growth of FV

We can treat FV and YASHE ciphertexts similarly by simply interchanging c0 +
c1s and fc. Thus, for an FV ciphertext (c0, c1) the inherent noise term is an
element v ∈ R of minimal norm such that c0 + c1s = Δ[m]t + v (mod q). Since
decryption is the same once [c0 + c1s]q or [fc]q are computed, respectively, this
also means that correctness of decryption is given under the same condition
‖v‖∞ < (Δ− rt(q))/2 in both schemes. In an FV ciphertext, the value v = e1 +
e2s− eu satisfies c0 + c1s = Δ[m]t + v (mod q) and therefore, we can bound the
noise term in a freshly encrypted FV ciphertext by ‖v‖∞ < V = Berr(1+2δBkey).

The same reasoning shows that noise growth during homomorphic addition
can be bounded in the same way by ‖vadd‖∞ � ‖v1‖∞+‖v2‖∞+rt(q). Following
the exact same proofs as for YASHE as in [3] (see the proofs for the more practical
variant YASHE’, which we use here), one can show that the noise growth during
a homomorphic multiplication is bounded by

‖vmult‖∞ < δt(4 + δBkey)V + δ2Bkey(Bkey + t2) + δ�w,qwBerr,

where as before, it is assumed that ‖v1‖∞, ‖v2‖∞ < V . Note that the bound on
the multiplication noise growth is smaller than the respective bound for YASHE
by roughly a factor t. This means that FV is more robust against an increase
of the parameter t. Similarly as above, when doing a computation in L levels
of multiplications (carried out in a binary tree without taking into account the
noise growth for homomorphic additions), the noise growth can be bounded by
‖v‖∞ < CL

1 V + LCL−1
1 C2, where

C1 = (1+ε2)δ
2tBkey, C2 = δ2Bkey(Bkey+t

2)+δ�w,qwBerr, ε2 = 4(δBkey)
−1,

and the correctness condition for choosing FV parameters for an L-leveled mul-
tiplication is CL

1 V + LCL−1
1 C2 < (Δ − rt(q))/2 as above. In Table 2(b), we

provide some values for power-of-two dimensions n and levels L = 0, 1, 10, 50;
these values illustrate the smaller theoretical noise growth for FV in comparison
to YASHE.

4 Practical Implementations

In order to assess the relative practical efficiency of FV and YASHE, we imple-
mented these leveled homomorphic encryption schemes in C++ using the arith-
metic library FLINT [23]; our implementations are publicly available at [26].

330 T. Lepoint and M. Naehrig

Table 2. Minimal value of log2(q) to ensure correctness of YASHE and FV, with over-
whelming probability, using standard deviation σerr = 8, plaintext modulus t = 2,
integer base w = 232, and Bkey = 1

(a) YASHE

n 1024 2048 4096 8192 16384

L = 0 20 21 22 23 24
L = 1 62 64 66 68 70
L = 10 265 286 306 326 346
L = 50 1150 1250 1350 1450 1550

(b) FV

n 1024 2048 4096 8192 16384

L = 0 19 20 21 22 23
L = 1 40 43 46 49 52
L = 10 229 250 271 292 313
L = 50 1069 1170 1271 1372 1473

Table 3. Timings of YASHE and FV using the same parameters as in [3]: R =
Z[x]/(x4096 + 1), q = 2127 − 1, w = 232, t = 210 on an Intel Core i7-2600 at 3.4
GHz with hyper-threading turned off and over-clocking (‘turbo boost’) disabled

Scheme KeyGen Encrypt Add Mult KeySwitch or ReLin Decrypt

YASHE 3.4s 16ms 0.7ms 18ms 31ms 15ms
FV 0.2s 34ms 1.4ms 59ms 89ms 16ms

YASHE [3] (estimation) – 23ms 0.020ms 27ms 4.3ms

Timings. In Table 3, we provide timings using the same parameters as in [3].
As expected from the structure of the ciphertexts, it takes twice more time to
Encrypt or Add using FV compared to YASHE and three times longer to multiply
two ciphertexts. These parameters also allow us to provide estimated timings for
the implementation of [3] on the same architecture as an illustration of a possi-
ble overhead in performances due to the arithmetic libraries (namely, FLINT)
and the C++ wrappers.5 This corroborates the significant performance gains ob-
tained in recent works in lattice-based cryptography [22,13] using home-made
implementations, instead of relying on arithmetic libraries [19,1].

Practical Noise Growth. In Sections 3.3 and 3.4, we provide strict theoretical
upper bounds on the noise growth during homomorphic operations in FV and
YASHE to ensure correctness with overwhelming probability. In practice however,
one expects a smaller noise growth on average and one could choose smaller
bounds ensuring correctness with high probability only. This yields a huge gain
in performance (allowing to reduce q, and thus n) while still ensuring correctness
most of the time. In Figure 2, we depict an average noise growth for levels 0 to
10 for FV and YASHE. For example, this figure shows that the real noise growth
allows one to reduce the bit size of q by nearly 33% to handle more than 10 levels.
Therefore, for optimal performances in practice, one should select a modulus q
as small as possible while still ensuring correctness with high probability.

5 Both Intel processors have hyper-threading turned off and over-clocking (‘turbo
boost’) disabled; thus timings were estimated proportionally to the processor speeds
of the computers (3.4 GHz versus 2.9 GHz).

A Comparison of the Homomorphic Encryption Schemes FV and YASHE 331

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

Levels

N
o
rm

o
f
n
o
is
e

YASHE (upper bound)

YASHE (practice)

30.5 + 20.5L

FV (upper bound)

FV (practice)

24.5 + 18.5L

Fig. 2. Evolution of the norm of the noise using a standard deviation σ = 8, a plaintext
modulus t = 2, a word w = 232, and Bkey = 1, R = Z[x]/(x8192 + 1), and q a 392-bit
prime

4.1 Homomorphic Evaluation of SIMON

The SIMON Feistel Cipher. In June 2013, the U.S. National Security Agency
(NSA) unveiled SIMON, a family of lightweight block ciphers. These block ci-
phers were designed to provide an optimal hardware performance. SIMON has a
classical Feistel structure with the round block size of 2n bits. For performance
reasons, in what follows we focus on SIMON-32/64 having a block size of 2n = 32
bits, a 64-bit secret key and Nr = 32 rounds. At round i, SIMON operates on
the left n-bit half xi of the block (xi,yi) and applies a non-linear, non-bijective
function F : Fn

2 → Fn
2 to it. The output of F is XORed with the right half along

with a round key ki and the two halves are swapped. The function F is defined
as F (x) = ((x ≪ 8)⊗ (x ≪ 1))⊕ (x ≪ 2) where (x ≪ j) denotes left rotation
of x by j positions and ⊗ is binary AND. The round keys ki are very easily de-
rived from a master key k with shifts and XORs. Details on how these subkeys
are generated can be found in [2].

Homomorphic Representation of the State. As in [9,10] for AES, we encrypt the
SIMON state state-wise. More precisely, the left half x = (x1, . . . , xn) ∈ Fn

2 and
the right half y = (y1, . . . , yn) ∈ Fn

2 of the SIMON state are encrypted as a
set of 2n ciphertexts c1, . . . , cn, cn+1, . . . , c2n. For each 1 � j � n, cj encrypts
xj ∈ F2 and cn+j encrypts yj . In other words, the 2n bits of the SIMON state
are represented in 2n different ciphertexts. Note that the use of batching6 with
� slots allows one to perform � SIMON evaluations in parallel by encoding the
corresponding bit of the state of the i-th SIMON plaintext into the i-th slot.

Homomorphic Operations. This state-wise encrypted representation of the steps
allows to do the SIMON evaluation easily. Swapping the halves consists in modify-
ing the index of the encrypted state cj ↔ cn+j. Define encryptions eij of the bits

6 To evaluate a Boolean circuit, one can select t = 2 and encode each plaintext bit as
the constant coefficient of a plaintext polynomial. However, if one uses batching with
� slots, where each ciphertext can represent a number of � independent plaintexts,
one obtains a significant gain in the use of both space and computational resources.
Batching was adapted to the BGV scheme in [18], and can be made compatible with
both FV and YASHE.

332 T. Lepoint and M. Naehrig

Table 4. Homomorphic Evaluations of SIMON-32/64 on a 4-core computer (Intel Core
i7-2600 at 3.4 GHz)

Scheme Parameter λ � = # Keygen Encrypt SIMON Relative Norm of Noise
set of slots State Evaluation time Final Maximal

FV Ib 64 2 4 s 7 s 526 s 263 s 509 516
YASHE Ia 64 1 64 s 4 s 200 s 200 s 561 569

YASHE (1 core) Ia 64 1 64 s 14 s 747 s 747 s 557 569

FV II > 80 1800 24 s 209 s 3062 s 1.70 s 918 1024
YASHE II > 80 1800 1300 s 104 s 1029 s 0.57 s 949 1024

SIBDGHV [10] – 64 199 1032 s 1 s 628 s 3.15 s 650 704

λ d n = φ(d) # of slots log2(q) log2(w) σ Bkey

Set-Ia 64 10501 10500 1 570 70 8 1
Set-Ib 64 9551 9550 2 517 65 8 1
Set-II > 80 32767 27000 1800 1025 257 8 1

kij of the round keys ki, for all i, j. (When using batching, one encrypts the vec-
tor (kij , . . . , kij) ∈ {0, 1}�.) This simple representation allows to XOR the right
half of the state with the key via n homomorphic additions cn+j ← cn+j+eij . A
shift of a positions as used in the function F is obtained by some index swapping
c(i+a) mod n. Finally, the only AND operation in the function F is obtained by n
homomorphic multiplications. Therefore to obtain an encrypted state c′1, . . . , c

′
2n

from an encrypted state c1, . . . , c2n, one can perform:

c′n+j ← cj; c′j = (c(j+8) mod n · c(j+1) mod n) + c(j+2) mod n + eij .

Practical Results. We homomorphically evaluated SIMON-32/64 using our C++

implementations of FV and YASHE (and also the implementation of [10] for the
leveled homomorphic encryption scheme over the integers).7

Results are provided in Table 4. Note that we selected parameters ensuring as
many bits of security for the homomorphic encryption schemes as the number
of bits of the SIMON key.8

4.2 Some Thoughts about Homomorphic Evaluations

Let us define the two notions latency and throughput associated to a homomor-
phic evaluation. We say that the latency of a homomorphic evaluation is the
time required to perform the entire homomorphic evaluation. Its throughput is
the number of blocks processed per unit of time.

The results presented in Table 4 emphasize an important point: different pa-
rameter sets can be selected, either to minimize the latency (Set-Ia and Set-Ib),
or to maximize the throughput (Set-II). In [10] and [19,9], the parameters were

7 Since each round of SIMON consists of one homomorphic multiplication, the leveled
homomorphic encryption schemes need to handle at least as many levels as the
number of rounds.

8 Parameter Set-II ensures more than 80 bits of security (more likely around 120 bits)
but the smaller the modulus q, the faster is the computation.

A Comparison of the Homomorphic Encryption Schemes FV and YASHE 333

selected to maximize the throughput using batching, and therefore claim a small
relative time per block – the latency however is several dozens of hours. However,
‘real world’ homomorphic evaluations (likely to be used in the cloud) should be
implemented in a transparent and user-friendly way. It is therefore questionable
whether the batching technique (to achieve larger throughput in treating blocks)
is suitable for further processing of data. In particular, it might only be suit-
able when this processing is identical over each block (which is likely not to be
the case in real world scenarios). Overall, one should rather select parameters
to have the latency as small as possible. The throughput can be increased by
running the homomorphic evaluations in a cluster.

5 Conclusion

In this work, we revisited van de Pol and Smart’s approach to tackle parameter
selection for lattice-based cryptosystems. We also conducted both a theoretical
and practical comparison of FV and YASHE. We obtained that the noise growth
is smaller in FV than in YASHE (both theoretically and practically). Conversely,
we obtained that YASHE is, as expected, faster than FV. As a side result, for
high performances, it seems interesting to implement all building blocks of the
schemes rather than to rely on external arithmetic libraries.

Next, we homomorphically evaluated the lightweight block cipher SIMON, and
discussed the notions of throughput and latency. We obtain that SIMON-32/64
can be evaluated completely in about 12 minutes on a single core and in about 3
minutes on 4 cores using OpenMP (when optimizing latency). If several blocks
are processed in parallel, SIMON-32/64 can be evaluated in about 500ms per
block (and less than 20 minutes total); and these timings can be lowered by
using additional cores.

Finally, note that our results can certainly be improved further by other op-
timizations. One could incorporate dynamic scaling during the computation as
discussed in [14] such that it is ensured that ciphertexts maintain their minimal
size. Another possible variant is to use the Chinese Remainder Theorem to pack
each half of the SIMON state into one single ciphertext instead of spreading it
out over n ciphertexts. Operations that need to move data between different
plaintext slots can be realized by Galois automorphisms as explained in [18].
This can possibly be further combined with batching of several SIMON states
into one ciphertext. To explore the application of these to both schemes and pos-
sibly further optimizations for realizing a fully home-made and fully optimized
implementation of a homomorphic SIMON evaluation is left as future work.

Acknowledgments. We thank the Africacrypt 2013 referees for their interest-
ing reviews, and Frederik Vercauteren for insightful comments on batching.

334 T. Lepoint and M. Naehrig

References

1. Bansarkhani, R.E., Buchmann, J.: Improvement and efficient implementation of
a lattice-based signature scheme. Cryptology ePrint Archive, Report 2013/297
(2013), http://eprint.iacr.org/

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013), http://eprint.iacr.org/

3. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam (ed.) [37], pp. 45–64

4. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical gapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 868–886. Springer, Heidelberg (2012)

5. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325. ACM
(2012)

6. Canetti, R., Garay, J.A. (eds.): CRYPTO 2013, Part I. LNCS, vol. 8042. Springer,
Heidelberg (2013)

7. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer,
Heidelberg (2011)

8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates (2013),
http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf

9. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun,
A.: Batch fully homomorphic encryption over the integers. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer,
Heidelberg (2013)

10. Coron, J.-S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic en-
cryption over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383,
pp. 311–328. Springer, Heidelberg (2014)

11. Coron, J.S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval,
Johansson (eds.) [34], pp. 446–464

12. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

13. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, Garay (eds.) [6], pp. 40–56

14. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption.
IACR Cryptology ePrint Archive 2012, 144 (2012)

15. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178. ACM (2009)

17. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
129–148. Springer, Heidelberg (2011)

18. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, Johansson (eds.) [34] , pp. 465–482

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf

A Comparison of the Homomorphic Encryption Schemes FV and YASHE 335

19. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
850–867. Springer, Heidelberg (2012)

20. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
Garay (eds.) [6], pp. 75–92

21. Graepel, T., Lauter, K., Naehrig, M.: ML confidential: Machine learning on en-
crypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS,
vol. 7839, pp. 1–21. Springer, Heidelberg (2013)

22. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67–82. Springer, Heidelberg (2013)

23. Hart, W.: et al.: Fast Library for Number Theory, Version 2.4 (2013),
http://www.flintlib.org

24. Lauter, K.E.: Practical applications of homomorphic encryption. In: Yu, T.,
Capkun, S., Kamara, S. (eds.) CCSW, pp. 57–58. ACM (2012)

25. Lenstra, A.K., Jr Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

26. Lepoint, T.: A proof-of-concept implementation of the homomorphic evaluation
of SIMON using FV and YASHE leveled homomorphic cryptosystems (2014),
https://github.com/tlepoint/homomorphic-simon

27. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes
FV and YASHE (full version). Cryptology ePrint Archive, Report 2014/062
(2014), http://eprint.iacr.org/

28. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption.
In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

29. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: An update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013)

30. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty compu-
tation on the cloud via multikey fully homomorphic encryption. In: STOC, pp.
1219–1234 (2012)

31. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
1–23. Springer, Heidelberg (2010)

32. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J.,
Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191.
Springer, Heidelberg (2009)

33. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Cachin, C., Ristenpart, T. (eds.) CCSW, pp. 113–124. ACM (2011)

34. Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237.
Springer, Heidelberg (2012)

35. van de Pol, J., Smart, N.P.: Estimating key sizes for high dimensional lattice-based
systems. In: Stam (ed.) [37], pp. 290–303

36. Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

37. Stam, M. (ed.): IMACC 2013. LNCS, vol. 8308. Springer, Heidelberg (2013)
38. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over

ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
27–47. Springer, Heidelberg (2011)

http://www.flintlib.org
https://github.com/tlepoint/homomorphic-simon
http://eprint.iacr.org/

Towards Lattice Based Aggregate Signatures

Rachid El Bansarkhani and Johannes Buchmann

Technische Universität Darmstadt
Fachbereich Informatik

Kryptographie und Computeralgebra,
Hochschulstraße 10, 64289 Darmstadt, Germany

{elbansarkhani,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. We propose the first lattice-based sequential aggregate signa-
ture (SAS) scheme that is provably secure in the random oracle model.
As opposed to factoring and number theory based systems, the secu-
rity of our construction relies on worst-case lattice problems. Generally
speaking, SAS schemes enable any group of signers ordered in a chain to
sequentially combine their signatures such that the size of the aggregate
signature is much smaller than the total size of all individual signatures.
This paper shows how to instantiate our construction with trapdoor func-
tion families and how to generate aggregate signatures resulting in one
single signature. In particular, we instantiate our construction with the
provably secure NTRUSign signature scheme presented by Stehlé and
Steinfeld at Eurocrypt 2011. This setting allows to generate aggregate
signatures being asymptotically as large as individual ones and thus pro-
vide optimal compression rates as known from RSA based SAS schemes.

Keywords: Lattice-Based Cryptography, Sequential Aggregate Signa-
tures, Aggregate Signatures.

1 Introduction

There is an inherent threat imposed by the potential production of powerful
quantum computers. In the seminal work [Sho97] due to Shor, an algorithm has
been presented that enables an attacker featured with a powerful quantum com-
puter to efficiently break most of the classical schemes that base the security
on the hardness of number theoretic assumptions. This theoretical result sub-
sequently induced the search for alternatives replacing those affected classical
schemes. Lattice-based cryptography constitutes a promising candidate solving
most of the problems inherent to classical schemes. As opposed to the discrete log
problem and factoring, lattice problems are conjectured to withstand quantum

attacks, which can classically be broken in 2Õ(n1/3) time. However, the best-
known attacks on lattice problems still take exponential time complexity. Beside
of the well-studied lattice problems and the underlying rich combinatorial struc-
ture, the worst-case to average-case reductions [Ajt96] due to Ajtai furtherly
encouraged the design of lattice-based cryptographic primitives leading to con-
ceptually new constructions such as digital signature schemes [DDLL13], [GLP12],

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 336–355, 2014.
c© Springer International Publishing Switzerland 2014

Towards Lattice Based Aggregate Signatures 337

[Lyu12], [GPV08],[MP12], preimage sampleable trapdoor functions [GPV08],
[MP12],[AP09],[Pei10],[SS11], encryption schemes [LP11], [HPS98], [SS11], fully
homomorphic encryption [BV11],[Gen09],[GSW13], oblivious transfer [PVW08]
and multilinear maps [GGH+13b], [GGH13a], just to name a few examples. This
breakthrough is particularly of great importance from a practical point of view as
it allows to efficiently instantiate lattice-based primitives while enjoying worst-
case hardness. Moreover, lattice-based schemes benefit from the simplicity of
operations and handling of small integers as compared to classical cryptography,
which is characterized by complex algorithms and the generation of huge primes.

In the last couples of years, much efforts have been spent on the construc-
tion of lattice-based signature schemes since digital signatures constitute one
of the main building blocks in many security applications. As a result, sev-
eral efficient lattice-based signature schemes arose [DDLL13], [GLP12], [Lyu12],
[GPV08],[MP12], which outperform even classical schemes in terms of perfor-
mance [DDLL13]. This is particularly due to the ring variant, which represents
a further step towards practical lattice-based cryptography as it admits very
nice constructions with small key sizes and fast processing capabilities such as
Fast Fourier Transformations. In general, one differentiates the most common
digital signature schemes into Schnorr-like signature schemes and the hash-and-
sign approach. The first approach takes advantage of the simplicity of Schnorr-
signatures and hence resulted in a sequence of improving works [DDLL13],
[GLP12], [Lyu12]. The best known representative for the hash-and-sign ap-
proach, however, is given by the GPV-signature scheme in conjunction with
a suitable trapdoor. The efficiency of the scheme mainly depends on the qual-
ity of the trapdoor and thus inspired the construction of new and improving
trapdoors [Pei10],[MP12], [GPV08], [AP09]. Other application areas for trap-
door constructions include CCA-secure and identity based encryption [GPV08],
[MP12].

Aggregate Signatures. An aggregate signature (AS) scheme enables a group
of signers to combine their signatures on messages of choice such that the com-
bined signature is essentially as large as an individual signature. Aggregate sig-
natures have many application areas such as secure routing protocols [Lyn99]
providing path authentication in networks. Moreover, ASs are important mech-
anisms used in constrained devices, e.g. wireless sensor networks, in order to
decrease the amount of transmitted data, which in turn reduces the battery
power consumption. Particularly in cluster-based sensor networks, where each
cluster consists of a small number of sensor nodes, it is reasonable to apply data
aggregation techniques including AS.

The first aggregate signature scheme is due to [BGLS03], which is based on
the hardness of the co-Diffie-Hellman problem in the random oracle model. Fol-
lowing this proposal, the aggregation mechanism can be accomplished by any
third party since it relies solely on publicly accessible data and the individual sig-
nature shares. Conceptually, this scheme is based on bilinear maps. In [LMRS04]
Lysyanskaya et al. proposed a new variant of AS, known as sequential aggregate
signatures (SAS), which differs from the conventional AS schemes by imposing

338 R. El Bansarkhani and J. Buchmann

an order-specific generation of aggregate signatures. In particular, each signer
is ordered in a chain and receives the aggregate from its predecessor before the
own signature share is added to the aggregate. A characteristical feature of this
scheme is to include all previously signed messages and the corresponding public
keys in the computation of the aggregate. In practice, one finds, for instance,
SAS schemes applied in the S-BGP routing protocol or in certificate chains,
where higher level CAs attest the public keys of lower level CAs. The generic
SAS construction provided in [LMRS04] is based on trapdoor permutations with
proof of security in the random oracle model. However, the SAS scheme suffers
from the requirement of certified trapdoor permutations [BY96] for the security
proof to go through. But the authors explain how to circumvent the need for cer-
tification in the special case of an RSA based instantiation using large exponents
e as public keys. This obviously lacks efficiency due to costly exponentiations.
Subsequent works provide similar solutions or improve upon existing ones, e.g.
the work [BNN07] removes restrictions on the choice of messages imposed by
[BGLS03]. In particular, prior to this improvement the messages were forced to
be distinct.

First steps towards eliminating random oracles in the security proof were
taken by Lu et al. [LOS+06], who proposed a new SAS variant that is based
on bilinear pairings while providing provably security in the standard model.
In a following work, the authors of [Nev08] address the requirement of certi-
fied trapdoor permutations in [LMRS04] and present a new SAS construction
removing the need for certification. As a main drawback of both schemes, a
potential signer has to verify the actual aggregate signature prior to any mod-
ification. This issue is investigated in the works [EFG+10] and [BGR12]. The
first proposal successfully solved this problem and hence allows to omit verifica-
tion beforehand when modifying the aggregate. But this approach works as the
BGLS-scheme [BGLS03] in a different setting. The SAS construction with lazy
verification [BGR12] has the advantage that each signer does not care about
the validity of the intermediate aggregate signatures. Therefore, the messages
and the corresponding public keys of precedent signers need not to be requested
when generating aggregate signatures. Verification of the aggregates is delayed
and can be accomplished at any time afterwards. Interestingly, Hohenberger et
al. present in [HSW13] the first unrestricted aggregate signature scheme that is
based on leveled multilinear maps. The underlying hardness assumptions are,
nevertheless, not directly connected to worst-case lattice problems. In this work
we address the question whether it is possible to build (S)AS schemes that can
be based on worst-case lattice problems.

1.1 Our Results and Contribution

Sequential Aggregation of Signatures from PSFs. We present the first
lattice-based sequential aggregate signature scheme that is secure in the random
oracle model [BR93]. It can be instantiated by any collection of preimage sam-
pleable trapdoor functions [GPV08], [AP09], [Pei10], [MP12], [SS11] including

Towards Lattice Based Aggregate Signatures 339

identity-based variants such as in [GPV08]. In fact, one can even use different
types of trapdoor function families simultaneously. The security model, we adopt,
is mainly influenced by [LMRS04],[BNN07], [Nev08] as it requires the scheme to
withstand potential attacks even when the forger controls all but at least one
secret key. Inspired by the work [Nev08] we prove by means of a sequential forger
that breaking the scheme is as hard as solving hard instances of lattice problems.
Specifically, we show that solving the SIS problem can be reduced to the task
of successfully forging an aggregate signature. We even prove that our scheme
is strongly unforgeable under chosen message attacks [Rüc10]. Interestingly, all
results immediately transfer to the ring setting, since the proof is based on a more
abstract notion of collision-resistant trapdoor functions [GPV08] subsuming both
the matrix and ring variant. In terms of performance, the signing costs of each
signer are limited to one run of the GPV signature scheme and (i− 1) function
evaluations, where i denotes the index of signer Si in the chain. By applying
the framework of [SMP08],[BPW12] one can additionally turn any sequential
aggregate signature scheme into a proxy signature scheme, where the security is
based on the hardness of forging signatures in the underlying SAS scheme.

Instantiation of SAS. As mentioned before, one can principally use any PSF
family that is suitable for the GPV signature scheme in order to instantiate the
SAS scheme, especially the trapdoor construction presented in [MP12]. Due to
the compressing property of lattice-based PSFs the range is in many cases much
smaller than the domain log2(Bn) > log2(Rn), where log2(C) := max

c∈C
$log2 c%

denotes the maximum bit size of a set C. Consequently, the size of the aggre-
gate signature is larger than an individual one when instantiating the chain
of signers with the same security parameters n and q. However, it is always
possible to choose the parameters of the signers in such a way that the re-
sulting aggregate signature has essentially the size of an individual signature.
To achieve this, log2(Rni+1) ≥ log2(Bni) must hold for all 1 ≤ i ≤ k. Hence,
the aggregate signature of any signer completely flows in the computation of
the aggregate signature of the next signer in the chain. A way of measuring the
quality or suitability of any PSF for use in the proposed SAS scheme is the
ratio log2(Bn)/ log2(Rn), where a value close to 1 indicates that the sizes of
the domains and ranges are of the same order. Based on this selection criterion,
we instantiate our construction with the provably secure NTRUSign signature
scheme [SS11]. It furtherly allows to achieve asymptotically optimal compres-
sion rates that are known from number-theory based SAS schemes such as the
schemes provided in [Nev08, LMRS04]. Moreover, we discuss the potential ad-
vantages of our construction over RSA based SAS schemes. In particular, we
point out that our proposal is characterized by its flexibility and simplicity of
instantiation as compared to the schemes provided in [Nev08, LMRS04]. How-
ever, the compressing property of the PSFs leads inherently to some small SAS
overheads, if n and q are chosen to be equal for all signers. A solution to this
problem consists in selecting the parameters ni and qi in such a way that the
signature of any signer completely flows in the signature computation of its
successor.

340 R. El Bansarkhani and J. Buchmann

1.2 Organization

This paper is structured as follows. In Section 3 we introduce preimage sam-
pleable trapdoor functions and give a sketch of the GPV signature scheme. In
Section 4 we provide a detailed description of our SAS construction including an
analysis and a proof of security. Afterwards, in Section 5 we focus particularly on
the provably secure NTRUSign trapdoor construction presented in [SS11] and
give an analysis of the proposed SAS scheme instantiated with NTRUSign. We
furtherly compare our setting with classical SAS schemes.

2 Preliminaries

Notation. We denote vectors by lower-case bold letters e.g. x, whereas for
matrices we use upper-case bold letters e.g. A. Integers modulo q are denoted
by Zq and reals by R. By #»v i we denote a sequence of elements v1, . . . , vi such
as vectors or bit strings.

Signature Sizes and Compression Rates. By size(σi) we define the size
of the individual signature σi corresponding to signer Si for 1 ≤ i ≤ k and
size(σSAS) denotes the size of the aggregate signature σSAS . We express the
compression rate rate(·) of an aggregate signature scheme by

rate(k) = 1− τ(k), τ(k) = size(σSAS)/
k∑

i=0

size(σi) .

The size ratio τ(·) represents the size of the aggregate or compressed signa-
ture measured as a percentage of the total size of all individual signatures.
Hence, rate(k) returns the storage savings due to compression or aggregation.
The scheme instantiation is said to be optimal in case rate(k) = 1 − 1/k or
τ(k) = 1/k holds, meaning that in average each signature completely flows in
the computation of the next signature in the chain such that the aggregate signa-
ture has the size of an individual signature. We use these notions of optimality
also for general aggregate signatures rather than for specific ones in order to
make the schemes more comparable.

Continuous and Discrete Gaussians. By ρ : Rn → (0, 1] we define the

n-dimensional Gaussian function ρ(x) = e−π·‖x‖2
2 . It follows E[x · x�] = I

2π .
Applying a linear function B on x with y = Bx leads to the following Gaussian
function, where B is a n× n-matrix with linearly independent columns

ρB(y) = ρ(B−1y) = e−π·<B−1y,B−1y> = e−π·y�Σ−1y,Σ = B�B .

One derives the probability density function f√Σ(x) =
ρ√

Σ(x)√
detΣ

of the continuous

Gaussian distribution D√
Σ by scaling ρ√Σ by its total measure

∫∞
−∞ ρ√Σdx =

Towards Lattice Based Aggregate Signatures 341

√
detΣ. If Σ = s2 · I, we simply write fs(x) = ρs(x)/s

n. The conditional prob-

ability density function is defined by f√Σ(x | x ∈ C) =
ρ√

Σ(x)/
√
detΣ

P [C]/
√
detΣ

=
ρ√

Σ(x)

P [C]

for x ∈ C ⊂ Rn and P [C] =
∫
C
ρ√Σdx. The discrete Gaussian distribution

DΛ+c,
√
Σ is defined to have support Λ+ c, where c ∈ R and Λ ⊂ Rn is a lattice.

For x ∈ Λ+ c, it basically assigns the probability

DΛ+c,
√
Σ(x) =

ρ√Σ(x)

ρ√Σ(Λ + c)
.

Lattice Problems. For the SIS problem we consider the full-rank m-
dimensional integer lattices Λ⊥

q (A) = {x ∈ Zm | Ax ≡ 0 mod q} consisting of
all vectors that belong to the kernel of the matrix A. In particular, SISq,n,β is
an average-case problem of the approximate shortest vector problem on Λ⊥

q (A)
for β > 0. Given is a uniform random matrix A ∈ Zn×m with m = poly(n),
the problem is to find a non-zero vector x ∈ Λ⊥

q (A) such that ‖ x ‖< β. For

q ≥ β
√
nω(

√
logn) finding a solution to this problem is at least as hard as proba-

bilistically Õ(β
√
n)-approximating the Shortest Independent Vector Problem on

n-dimensional lattices in the worst-case [GPV08, Ajt96]. Micciancio and Regev
introduced the smoothing parameter in [MR04]:

Definition 1. For any n-dimensional lattice Λ and positive real ε > 0, the
smoothing parameter ηε(Λ) is the smallest real s > 0 such that ρ1/s(Λ

∗\{0}) ≤ ε .

3 Trapdoor Functions and the Full Domain Hash Scheme

In the following, we recall some basic definitions and properties of trapdoor
functions [GPV08], that are required in our security proof. Later, we will partic-
ularly focus on collision-resistant preimage sampleable trapdoor functions (PSF)
that allow any signer knowing the trapdoor to create signatures in full do-
main hash schemes such as the GPV signature scheme. According to [GPV08],
[AP09, Pei10, MP12] there exists a polynomial-time algorithm TrapGen that on
input the security parameter 1n outputs a public key A and the corresponding
trapdoor T such that the trapdoor function fA : Bn −→ Rn can efficiently be
evaluated and satisfies the following properties:

1. The output distribution of fA(x) is uniform at random over Rn given x is
sampled from the domain Bn according to SampleDom(1n), e.g. DZn,s with
s = ω(

√
logn) by [GPV08, Lemma 5.2].

2. For a given syndrome y ∈ Rn, anyone knowing the trapdoor can efficiently
sample preimages x ←− SamplePre(T, y) such that fA(x) = y, where x is
distributed as SampleDom(1n). By the one-way property the probability to
find a preimage x ∈ f−1

A (y) ⊆ Bn of a uniform syndrome y ∈ Rn without
the knowledge of the trapdoor is negligible.

342 R. El Bansarkhani and J. Buchmann

3. The conditional min-entropy property of SampleDom(1n) for a given syn-
drome y ∈ Rn implies that two preimages x′, x distributed as SampleDom(1n)
differ with overwhelming property. This is due to the large conditional min-
entropy of at least ω(logn).

4. The preimage sampleable trapdoor functions are collision resistant, meaning
that it is infeasible to find a collision fA(x1) = fA(x2) such that x1, x2 ∈ Bn

and x1 �= x2.

Due to the results of [Ajt99, GPV08] a lot of research has been made on
the construction of preimage sampleable trapdoor functions in recent years re-
sulting in a sequence of improving works [GPV08, AP09, Pei10, MP12]. These
constructions often satisfy these properties only statistically, meaning that the
statistical distance between the claimed distributions and the provided ones are
negligible. As a result, the security proofs of cryptographic schemes involving
concrete constructions hold only statistically, which is quite enough for practice.
One cryptographic scheme is the GPV-signature scheme, which is secure in the
random oracle model and exploits the properties of collision-resistant trapdoor
functions. Furthermore, it is stateful, meaning that it does not generate new
signatures for messages already signed. This can be attributed to the fact that
a potential attacker could otherwise use two signatures of the same message in
order to construct an element of the kernel, which solves SISq,n,β and hence al-
lows the attacker to provide a second preimage of any message. One can remove
the need for storing message and signature pairs by employing the probabilistic
approach [GPV08], where the signer samples an extra random seed, which is
appended to the message when calling H(·).

Specifically, the GPV signature scheme consists mainly of sampling a preimage
from a hash function endowed with a trapdoor:

KeyGenGPV(1n) On input 1n the algorithm TrapGen(1n) outputs a key pair
(A,T), where T is the secret key or trapdoor and A is the public key de-
scribing the preimage sampleable trapdoor function fA.

SignGPV(T,m) The signing algorithm computes the hash value H(m) of the
message m and looks up H(m) in its table, where H(·) is modeled as a
random oracle. If it finds an entry, it outputs σm. Otherwise, it samples
a preimage σm ← SamplePre(T, H(m)) of H(m) and outputs σm as the
signature.

VerifyGPV(σ,m) The verification algorithm checks the satisfaction of H(m) =
fA(σ) and σ ∈ Bm. If both conditions are valid, it outputs 1, otherwise 0.

Probabilistic Full-Domain Hash Scheme
The probabilistic approach additionally requires the signer to generate a random
seed r (e.g. r ∈ {0, 1}n) which is appended to the message m. Doing this, we can
sign the same message m several times, since the r-part always differs except
with negligible probability. Thus, we can consider m||r as the extended message
to be signed.

Towards Lattice Based Aggregate Signatures 343

4 Sequential Aggregate Signatures from Lattices

4.1 Our Basic Signature Scheme

We aim at constructing a SAS scheme from trapdoor functions instead of trap-
door permutations. Inspired by the works of [Nev08, LMRS04] we transfer the
core ideas from trapdoor permutations to the lattice-based setting. The main
obstacle that needs to be handled is the fact that lattice-based trapdoor func-
tions operate in differing domains and ranges. The input bit size is usually larger
than the output one. This is due to the need of collisions. Therefore, we use the
encoder-technique enc proposed by [Nev08] that takes these properties into ac-
count. In particular, it breaks the signature down into two parts, where the first
part is injectively mapped to an element of the image space and flows then in
the computation of the modified aggregate signature. The second part is simply
handed over to the next signer in the chain. The encoder-technique is originally
designed to allow for hiding of additional data like messages in RSA like systems
in order to decrease not only the signature sizes but also the total amount of
data to be send. The following algorithms provide the main steps of the SAS
scheme.

Algorithm 1. AggSign(Ti,mi, Σi−1):
Signing algorithm of the i-th signer

Data: Trapdoor Ti, message
mi, Σi−1

1 if i = 1 then
2 Σ0 ← (ε, ε, ε, 0n);
3 end
4 Parse Σi−1 as

(
»
fAi−1 ,

#»mi−1, #»α i−1, σi−1, hi−1)
5 if AggVerify(Σi−1) == (⊥,⊥) then
6 return ⊥
7 end
8 (αi, βi) ← encfAi

(σi−1)

9 #»α i ← #»α i−1 | αi

10 hi ← hi−1 ⊕H(
»

fAi ,
#»mi,

#»α i−1, σi−1)
11 gi ← GfAi

(hi)

12 σi ← SamplePre(Ti, gi + βi)
13

14 Return Σi ← (
»
fAi ,

#»mi,
#»α i, σi, hi)

Algorithm 2. AggVerify(Σk):
Verification algorithm

Data: Σk

1 Parse Σk as (
»

fAk ,
#»mk,

#»αk, σk, hk)
2 for i = k → 1 do
3 if log2(Rni) ≤ l or σi /∈ Bni

then
4 return (⊥,⊥)
5 end
6 gi ← GfAi

(hi)

7 βi ← fi(σi)− gi
8 σi−1 ← decfAi

(αi, βi)

9 hi−1 =

hi ⊕H(
»

fAi ,
#»mi,

#»α i−1, σi−1)
10 end
11 if Σ0 = (ε, ε, ε, 0n) then

12 return (
»
fAk ,

#»mk)
13 end
14 Else return (⊥,⊥)

Fig. 1. Signing AggSign and Verification algorithm AggVerify of the SAS scheme

Definition 2. In a sequential aggregate signature (SAS) scheme k distinct sign-
ers, that are ordered in a chain, sequentially put their signature on messages of
choice to the aggregate signature such that the resulting aggregate signature has
the size of an individual signature.

344 R. El Bansarkhani and J. Buchmann

Definition 3. We say x-SAS, if the aggregate signature is essentially an indi-
vidual signature extended by c bits of overhead with c = (1 − x) ·

∑
i

size(σi) bits

and x ∈ [0, 1].

For x = 1, we immediately obtain the aforementioned definition of the classical
SAS scheme.

4.2 Informal Description

We give an informal description of the sequential aggregate signature scheme. We
focus on the signing and verification steps in Figure 1. Each signer Si in the chain
with 1 ≤ i ≤ k follows the same protocol steps. Let l > 0 be a public parameter
such that log2(Rni) > l for 1 ≤ i ≤ k, where Rni denotes the image space of the
trapdoor function fAi : Bni → Rni and log2(Rni) defines the maximum number
of bits needed to represent elements of Rni .

The input to the signing algorithm AggSign(·) of the i-th signer Si is its secret
key Ti, the message to be signed and a list of data Σi−1 received from signer
Si−1. If Si corresponds to the first signer, the list of data is empty. Otherwise,
Σi−1 parses as a list consisting of a sequence of trapdoor functions fA1 , . . . , fAi−1

identified by the public keys A1, . . . ,Ai−1, a sequence of messagesm1, . . . ,mi−1,
parts of the encoded signatures #»α i−1 from signers S1 to Si−2, an aggregate sig-
nature σi−1 of the predecessor Si−1 and a hash value hi−1 ∈ {0, 1}l. Before
adding its own signature to Σi, the signer checks the validity of the received
aggregate by running the verification algorithm on Σi−1. If the verification suc-
ceeds, Si continues by invoking the encoder on σi−1 resulting in a breakdown
(αi, βi). The encoder enc : {0, 1}∗ → {0, 1}∗ × Rni is an injective map that
splits up the signature into two parts such that βi can completely be embedded
in the computation of σi and can always be recovered. The second part αi is
simply appended to the list #»α i−1 and plays an important role when recovering
the intermediate aggregate signatures. We give a particular instantiation of the
proposed splitting algorithm in Section 5. The next two steps involve two hash
functions H : {0, 1}∗ → {0, 1}l and GfAi

: {0, 1}l → Rni which are modeled as
random oracles. Similar to [BR96], H(·) is considered the compressor that hashes
the message down to l bits, whereas GfAi

(·) is called the generator and outputs
random elements from the image space of fAi . Regarding the proof of security,
such a construction involving H(·) and G(·) avoids the need for certified trap-
door functions satisfying the properties specified in Appendix 3. By this means,
one gets rid of costly checks, because a potential adversary could generate keys
leaving out one of these properties. Finally, the algorithm outputs Σi containing
the modified aggregate signature. The verification algorithm AggVerify(·) pro-
ceeds in the reverse order and takes Σn as input. In each iteration it checks the
validity of σi and recovers σi−1 with the aid of the decoder dec(·).

In the following section we present the security model of our scheme includ-
ing the associated security proof. Subsequently, we show how to instantiate the
scheme with PSFs. To this end, we focus on the provably secure NTRUSign

Towards Lattice Based Aggregate Signatures 345

preimage sampleable trapdoor function and provide a comparison with RSA-
based SAS schemes as proposed in [LMRS04, Nev08]. Finally, we indicate how
to build a proxy signature scheme from any SAS scheme.

4.3 Security Model of SAS

We adopt the security model proposed by Neven [Nev08] for sequential ag-
gregate signatures. Moreover, we examine our lattice-based construction in a
slightly different setting that is build upon a stronger security assumption
ExpSSAS−SU−CMA and subsumes the former ones [Nev08, LMRS04]. Usually,
a sequential aggregate signature scheme is considered to be secure, if it is in-
feasible to provide existential forgeries of a sequential aggregate signature. The
core idea behind these security models is to let the forger F control the private
keys and sequential aggregate signatures of all but at least one honest signer.
Thus, the forger is allowed to select the public keys of the fake signers. Neven
introduces the notion of a sequential forger S that can be built from a forger F
with about the same success probability and running time [Nev08, Lemma 5.3].
Therefore, it is more convenient to consider a sequential forger in our proof of
security. The way the sequential forger is constructed out of F can directly be
transferred to our setting with some minor changes. In the full version of this pa-
per we will provide a detailed description of this transformation. The properties
of a sequential forger are as follows:

1. Any input to the random oracles H(·) and Gf·(·) is queried once, where
f· denotes any preimage sampleable trapdoor function. The signing oracle
OAggSign is also queried once for the same input.

2. Each input Qn to H(·) parses as Qn = (
»

fAk
, #»mk,

#»αk−1, σk−1) such that
log2(Rni) > l holds for 1 ≤ i ≤ k and k ≤ kmax.

3. Before any query Qk = (
»

fAk
, # »mk,

#»αk−1, σk−1) to H(·) for n > 1, the sequen-
tial forger must have made queries Qi to H(·) for 1 ≤ i < k ≤ kmax such
that decfAi

(αi, fAi(σi)−GfAi
(hi)) = σi−1 for hi = hi−1 ⊕H(Qi).

4. Preceding any signing query OAggSign(T∗,mk, Σk−1) the sequential forger
must have made the necessary H(·) and Gf·(·) queries in advance with due
regard to Property 3. Furthermore, the input query Σk−1 must be valid such
that verification algorithm AggVerify(Σk−1) does not fail.

5. Forgeries output by S must be valid and include the challenge public key
at some index i such that fAi = fA∗ for 1 ≤ i ≤ k ≤ kmax. We explicitly
allow S to output forgeries on data Σi−1 that has been signed by the signing
oracle. The only required restriction is that the signing oracle responses and
the forgery must differ on the same input.

According to an adaptive chosen-message attack we permit S to make arbi-
trary many sequential aggregate signature queries to the honest signer on mes-
sages of its choice. The advantage AdvAggSign∗S of S is the success probability
in the following experiments.

346 R. El Bansarkhani and J. Buchmann

Setup
The key generation algorithm is invoked in order to produce the challenge
key pair (T∗,A∗). The challenge key fA∗ is then handed over to the sequen-
tial aggregate forger S.

Queries
The adversary S has access to the signing oracle OAggSign(T∗, ∗, ∗). S acts
adaptively and provides to the signing oracle a message mi to be signed, a
sequential aggregate signature σi−1 on a sequence of messages m1, . . . ,mi−1

and data α1, . . . , αi−1 under public keys fA1 , . . . , fAi−1 . The oracle returns
an aggregate signature under the challenge public key fA∗ . Furthermore, we
allow S to have random oracle access to some random functions as required
in the random oracle model.

Response
S eventually outputs a sequential aggregate signature σk on k distinct pub-
lic keys fA1 , . . . , fAk

, where one of them corresponds to the challenge key.
Moreover, S outputs k messagesm1, . . . ,mk, each corresponding to one pub-
lic key.

The forger wins the game ExpSSAS−EU−CMA
A,SAS (n), if he succeeds in outputting

a non-trivial valid sequential signature on a sequence of k messages m1, . . . ,mk

under k distinct public keys fA1 , . . . , fAk
containing the challenge public key

fAi = fA∗ at some index i. A valid signature is said to be non-trivial, when
S has never made a query to the signing oracle on messages m1, . . . ,mi and
public keys fA1 , . . . , fAi before, or he is able to output a forgery that differs
from the received signing oracle responses. In the latter case we even allow the
forger to use already signed messages to output a forgery as opposed to the se-
curity models from [Nev08, LMRS04] focussing on trapdoor permutations. This
security notion reflects the strong sequential aggregate signature unforgeability
(SAS-SU-CMA), which can be formalized as follows.

Experiment ExpSSAS−SU−CMA
A,SAS (n)

(T∗,A∗) ←− KeyGen(1n)

Σ = (
»

fAi ,
»mi,

#»αi, σi, hi) ←− AOAggSign(T∗,∗,∗)(fA∗)

Let fAi = fA∗ be the challenge public key in
»

fAi = (fA1 , . . . , fAi) and
»mi = (m1, . . . ,mi)

Let ((fAl
,ml, Σl−1), Σl)

QAS

l=1 be query-response tuples of OAggSign(T∗, ∗, ∗)
Return 1 if AggVerify(Σ) = (

»

fAi ,
#»mi)

and Σ /∈ {Σl}QAS

l=1

The adversary is said to be successful in this experiment if he efficiently provides
a valid sequential aggregate signature with non-negligible advantage.

Towards Lattice Based Aggregate Signatures 347

4.4 Security of Our Construction

A collision-finding algorithm A is said to (t′, ε′)-break a collision-resistant preim-
age sampleable trapdoor function family (PSF) if it has running time t′ and
outputs a collision with probability

Pr[fB(x1) = fB(x2) | (B,T) ← TrapGen(1n), (x1, x2) ← A(fB)]

of at least ε′.

Proposition 1. If there exists a sequential forger S that (t, qS , qH , qG, kmax, ε)-
breaks SAS, then there exists a collision-finding algorithm A that (t′, ε′)-breaks
the collision-resistant PSF for

ε′ ≥ ε · (1− qH(qH + qG)

2l
)− qH

2ω(logn)

t′ ≤ t+ (qH + kmax) · tf· + qH · tSampleDom .

Proof: By contradiction, we assume that there exists a successful sequential
forger S that breaks the SAS with non-negligible probability ε. Using S, we
construct a poly-time algorithm A that finds a collision in the collision-resistant
trapdoor function fAi : Bni −→ Rni with probability negligibly close to ε. Given
the challenge public key A∗ of the trapdoor function fA∗ , A runs S on public
key A∗ with fA∗ : Bn −→ Rn and simulates the environment as follows:

Setup : At the beginning of this game algorithm A sets up the empty lists
HT [∗] and GT [∗, ∗].

H-Random oracle query H(Qi): After parsing the input Qi as (
»

fAi ,
#»mi,

#»α i−1, σi−1), A checks the index i. If i = 1, A sets h0 ← 0n. In case i > 1, fol-
lowing Property 3 of a sequential forger there exists a unique sequence of ran-
dom oracle queries Q1, . . . , Qi−1 with table entry H(Qi−1) = (σi−1, hi−1).
If the public key fAi does not correspond to the challenge public key fA∗ ,
then A continues as follows:
– h

$← {0, 1}l, hi = h⊕ hi−1 and sets HT [Qi] ← (⊥, hi).

Otherwise, if fAi = fA∗ , then A performs the following tasks:

– h
$← {0, 1}l, hi = h⊕ hi−1

– (αi, βi) ← encfAi
(σi−1)

– σi ← SampleDom(1n) and compute g ← fA∗(σi) − βi ∈ Rni , since Rni

is additive.
(By Property 1, fA∗(σi) ∼ U(Rni))
If GfA∗ (hi) has not been defined, he sets G[fA∗ , hi] ← g, HT [Qi] ←
(σi, hi) and outputs h to S, otherwise BAD1 occured and A aborts.

G-Random oracle query 1 GfAi
(h): On input fAi and h algorithm A checks

the entry GT [fAi , h]. If it is not defined, it selects g
$← Rni uniformly at ran-

dom, sets GT [fAi, h] = g and returns g to S. By Property 1 of a sequential
forger it does not make the same query again.

348 R. El Bansarkhani and J. Buchmann

Sequential signing query OAggSign(T∗,mi, Σi−1): A extracts the values
»

fAi−1 ,
#»mi−1,

#»α i−1, σi−1, hi−1 from Σi−1. As per Property 4
he finds a non-empty entry HT [Qi−1] = (σi, hi) with Qi−1 =

(
»

fAi−1 | fA∗ , #»mi−1 | mi,
#»α i−1, σi−1). Then A returns Σi =

(
»

fAi ,
#»mi,

#»α i, σi, hi) with (αi, βi) ← encfAi
(σi−1)

Finally, the forger S outputs a valid forgery Σ′
k = (

»

fAk
, #»mk,

#»αk, σk) with
probability ε as per property 5. Since Σ′

k is valid, we have AggVerify(Σ′
k) =

(
»

fAk
, #»mk) and

»

fAk
includes the challenge public key fAi = fA∗ at index 1 ≤

i ≤ k. During the execution of AggVerify(Σ′
k) we get mi and Σ

′
i containing σ

′
i.

A proceeds as follows in order to obtain a collision. We now have to differ two
cases:

1. If S already made a signature query on (mi, Σi−1), it received back Σi

containing the signature σ∗. Since Σ′
k is a forgery, we have σ′

i �= σ∗ such
that fA∗(σ′

i) = fA∗(σ∗)
2. In the case, S did not request a signature on (mi, Σi−1) from the signing

oracle, by Property 4 there exists an entry HT [Qi−1] = (σ∗, hi) with σ∗ ←−
SampleDom(1n) and GT [fA∗ , hi] = gi such that fA∗(σ∗) = gi+βi = fAi(σ

′
i)

and h = hi ⊕ hi−1 is returned to S. If σ∗ = σ′
i, then BAD2 occured and A

aborts.

In both casesA found a collision in fA∗ (which is infeasible according to Property
4 of trapdoor functions).

Analysis and Security: We define by ¬BADi the event that BADi does not
occur. S’s environment is perfectly simulated as in the real system, when the
events BAD1 and BAD2 do not occur. Thus, we have

P [S ouputs forgery | ¬BAD1 ∧ ¬BAD2] = ε .

A wins the game when S succeeds in providing a valid forgery and the events
BAD1 and BAD2 do not happen. Therefore, we need to estimate an upper
bound for the probability of a successful forger:

P [A wins] = ε · P [¬BAD1]− P [BAD2] .

P [A wins] = P [S outp. forgery ∧ ¬BAD1 ∧ ¬BAD2]

= P [Soutp. forgery | ¬BAD1 ∧ ¬BAD2] · P [¬BAD1 ∧ ¬BAD2]

= P [S outp. forgery | ¬BAD1 ∧ ¬BAD2] · (1− P [BAD1 ∨BAD2])

≥ P [S outp. forgery | ¬BAD1 ∧ ¬BAD2] · (1−
∑
i

P [BADi])

= P [S outp. forgery | ¬BAD1 ∧ ¬BAD2] · (P [¬BAD1]− P [BAD2])

≥ P [S outp. forgery | ¬BAD1 ∧ ¬BAD2] · P [¬BAD1]− P [BAD2]

= ε · P [¬BAD1]− P [BAD2]

Towards Lattice Based Aggregate Signatures 349

The event BAD1 occurs when algorithm A chooses a fresh random value

h
$← {0, 1}l in the H-Random oracle query step and attempts to set a table

entry GT [∗, hk] that is already defined, where hk = h ⊕ hk−1. The probability
of this event is

P [BAD1] =
|GT |
2l

≤ qH(qH + qG)

2l

where the last term follows by summation over all H-queries to the simulation.
The eventBAD2 occurs when the forger S outputs a valid forgery σ′

i that is equal
to the corresponding table entry HT (Qi−1) = (σ∗, ∗). Based on the conditional
min-entropy property of σ∗ given fA∗(σ∗) the probability of BAD2 to happen
is

P [BAD2] ≤
qH

2ω(logn)
,

which is negligible. Therefore, we obtain

ε′ ≥ ε · (1− qH(qH + qG)

2l
)− qH

2ω(logn)
.

We derive an upper bound for the running time of S taking into account only
function evaluations and invocations of SampleDom. Each verification requires
at most kmax function evaluations. Invoking H(·) implies at most one execution
of SampleDom and two function evaluations, thereof one evaluation to identify
the sequence Qk−1, . . . , Q1. Therefore, the running time is upper bounded by:

t′ ≤ t+ (2qH + kmax) · tf + qH · tSampleDom .

��

Proposition 2. The proposed sequential aggregate signature scheme is strongly
existentially unforgeable under chosen-message attack.

Proof. By Proposition 1 finding collisions for preimage sampleable trapdoor
functions can be reduced to the hardness of forging sequential aggregate signa-
tures in the SAS described above. The authors of [GPV08] give the correspond-
ing algorithms of how to instantiate preimage sampleable trapdoor functions by
means of lattices satisfying the required properties and show by [GPV08, The-
orem 5.9] that the task of finding collisions is as hard as solving SISq,n,2s

√
m. ��

The security proof of the unstateful probabilistic FDH scheme is almost iden-
tical to the stateful one. One notices, that the extended message m||r to be
signed always differs for repeated request queries on the same message m due
to the random salt r. As in Proposition 2 one reduces collision-resistance to the
unforgeability of sequential aggregate signatures.

5 Instantiation

In general, one can use any collision-resistant trapdoor function that is suit-
able for the GPV signature scheme. In particular, one can instantiate the SAS

350 R. El Bansarkhani and J. Buchmann

scheme with the trapdoor constructions from [GPV08, AP09, Pei10, MP12]. In
this section we analyze the proposed sequential aggregate signature scheme in
conjunction with NTRUSign.

Therefore, let fAi : Bni −→ Rni , 1 ≤ i ≤ k be a family of preimage-sampleable
trapdoor functions, each corresponding to the public key Ai of signer Si. Bni

denotes the domain of the trapdoor function fAi and can be represented by vec-
tors of bit size log2(Bni) := max

b∈Bi

$log2 b%. Analogously, one defines the maximum

bit size log2(Rni) of the image space. For instance, if we choose Bni = {z ∈
Zmi | ‖z‖ ≤ si

√
mi} and Rni = Zni

qi , we have log2(Rni) = ni · $log2(qi)% and
respectively log2(Bni) = mi · ($log2(4.7 ·si)+1%) with overwhelming probability.
The encoding function enc(·) can, therefore, be built as follows. The range Rni

is converted into a large bit string that is subsequently split into blocks of size
$log2(4.7 ·si)+1% bits. Each block is then filled with an entry from the signature
σi. There are many possibilities to handle the last block as it may contain less
bits. Finally, the bit string is converted back to the vector presentation βi+1.
The remaining signature bits are stored in the vector αi+1, which is appended
to the aggregate signature.

Security and Performance. The bit security of this scheme mainly depends
on the bit security of each signers key and the system parameter l. Hence, the
security of our construction is upper bounded by min

1≤i≤k
(ci, l), where ci denotes

the bit security of the i-th signer. To determine the performance we ignore
all operations beside function evaluations and preimage samplings. The signing
costs of the i-th signer amount to one call of SamplePre(·) and (i − 1) function
evaluations fA. Verification requires k function evaluations.

In what follows, we will focus particularly on the trapdoor construction
provided in [SS11] since it has some nice properties which can be utilized in
the proposed SAS construction. A crucial factor for our choice is a low ratio
log2(Bni)/ log2(Rni) as compared to other lattice-based PSFs. This ratio im-
plicitly affects the compression rate, since a ratio equal to or smaller than 1
implies optimal compression rates for equal parameters ni, meaning that signa-
tures completely fit into the image space without wrapping around.

Efficient Instantiation with NTRUSign [SS11]. The provably secure
NTRU-Sign signature scheme proposed by Stehlé et al. [SS11] is a full domain
hash scheme satisfying the properties of collision-resistant PSFs from Section 3.

KeyGenGPV(q, n, 1n) It returns public key A = g/f ∈ R×
q and trapdoor T =[

f g
F G

]
for fA(σ(1), σ(2)) = Aσ(1) − σ(2), where fA : Bn → Rn = Rq with

Bn = {(σ(1), σ(2)) ∈ R2 :
∥∥(σ(1), σ(2))

∥∥ ≤ s ·
√
2n}.

SignGPV(T,m) The signing algorithm computes the hash value H(m||r) of

the extended message m||r with a random seed r
$← U({0, 1}d). Then it

samples σ = (σ(1), σ(2)) ← SamplePre(T, H(m||r)) and outputs (r, σ(1)) as
the signature.

Towards Lattice Based Aggregate Signatures 351

VerifyGPV(σ,m) The verification algorithm computes t = H(m||r) and deter-
mines σ(2) = Aσ(1) − t. If the conditions σ ∈ Bn and r ∈ {0, 1}d are valid,
it outputs 1, otherwise 0.

When instantiating the SAS scheme with this trapdoor construction, we ob-
tain compression factors of about 60 % for practical parameters. For the sake
of simplicity, assume we have public keys Ai ∈ Rq with identical parameters q,
Rq = Zq[X]/(Xn + 1) for n a power of two, which is obviously different from
RSA where the moduli N = p · q have to be distinct since otherwise they would
share the same secret. An NTRUSign signature is a vector (r, σ(1), σ(2)) such
that the bit size of σ(j) is bounded by n · ($log2(4.7 · s)% + 1) < log2(Rn) with
overwhelming probability and r ∈ {0, 1}n. Any vector of the image space occu-
pies at most log2(Rn) = n · $log2(q)% bits of memory. In general, one can use
Algorithm 1 and 2 in order to instantiate the NTRUSign SAS scheme. Since
we consider the probabilistic FDH approach using a random seed r, one simply
replaces messages mi by the extended messages mi||ri.

5.1 Comparison with RSA Based Sequential Aggregate Signatures

RSA based sequential signatures due to [LMRS04, Nev08] are less flexible com-
pared to the proposed construction. In particular, the public keys Ni = pi · qi of
RSA based instances have to be distinct and satisfy more restrictive conditions
in order to make the scheme work. For example in [LMRS04], the hash space of
H(·) requires to be specified before starting aggregation. This can be attributed
to the differing domains Z×

Ni
as a result of different moduli Ni. For instance,

the hash space is chosen to be a proper subset of Z×
N1

. However, this is not the
case in our construction, since we can use equal domains and ranges without
incurring security. Thus, one allows the corresponding hash functions GfAi

(·) to
be equal. In order to achieve high compression without blowing up the aggre-
gate signatures too much, the bit sizes of public keys have to be identical or
are ordered to be increasing in RSA based SAS schemes. This is due to the fact
that the signatures are uniform random elements in Z×

Ni
and can only be fully

embedded in Z×
Ni+1

, if bi ≤ bi+1 or Ni < Ni+1 is satisfied for bi = $log(Ni)% and
1 ≤ i ≤ k. Indeed, this also holds for lattice-based constructions. Specifically, one
has to increase the parameters ni+1 or qi+1 such that log2(Dni) ≤ log2(Rni+1).
By this, we have aggregate signatures being as large as individual ones.

5.2 Analysis

We want to derive a measure for the quality of the SAS scheme. Therefore,
we consider the compression rate measuring the storage savings due to the SAS
scheme. One simply relates the bit size of the aggregate signature to the total size
of all individual signatures, which corresponds to the case one does not employ
SAS schemes. By [SS11, Theorem 4.2] an NTRUSign signature is distributed as
a discrete Gaussian vector with parameter s = ω(n2 ·

√
lnn · ln(8nq)·q1/2+ε) and

ε ∈ (0, ln n
ln q). In principal, it is possible to choose the parameters qi and ni of the

352 R. El Bansarkhani and J. Buchmann

signers in such a way that the aggregate signature has the size of an individual
signature. Since there is a wide choice of selecting the chain of signers, which
result in different compression rates, we restrict to the case, where qi and ni are
equal for all signers. The aggregate signature is of the form (σi,

#»α i, hi) consisting
of σi of size 2n$log2(4.7 · s)% bits, #»α i of size (i− 1) ·n(2$log2(4.7 · s)%−$log2(q)%)
bits and hi occupying l bits of memory. Each signer in the chain produces
n(2$log2(4.7 · s)% − $log2(q)%) bits of overhead.

Since the length of the signature strongly depends on q, we consider two cases for
the choice of q. First, we let q = nω(1) to be slightly superpolynomial in n such
that log2(n) = o(log2(q)). Similar to [BPR12, AKPW13] solving γ-Ideal-SVP
with slightly superpolynomial factors γ appears to be exponentially hard given
present best attack-algorithms. For the compression rate we then have:

rate(i) = 1− $2n log2(4.7 · s)%+ (i − 1) · n(2$log2(4.7 · s)% − $log2(q)%) + l

i · 2n$log2(4.7 · s)%
(1)

≥ 1−
(
1

i
+

2n($log2(4.7 · s)− log2(q
1/2)%+ 1) + l/i

2n$log2(4.7 · s)%

)
(2)

≥ 1−
(
1

i
+

$log2(4.7 · n2
√
ln(n) ln(8nq))%+ l/(2 · n · i) + 1

$log2(4.7 · s)%

)
(3)

= 1−
(
1

i
+

o(log2(q))

o(log2(q)) + log2(q
1/2)

)
. (4)

Thus the compression rate converges towards 1− 1/i which is asymptotically
optimal, meaning that in average aggregate signatures and individual signatures
are of equal size.

Secondly, we let q = Poly(n). By a trivial computation using q = n2c we have
rate(σi) ≈ 1 − 1/i − 1/c, meaning that each signer produces 1/c · size(σi) of
overhead per signature. As a result, we obtain an (1 − 1/c)-SAS scheme. So,
choosing c large enough returns an almost optimal SAS scheme. Table 1 con-
tains the compression factor for different parameter sets.

5.3 Proxy Signatures

From the aforementioned sequential aggregate signature scheme one can im-
mediately build a proxy signature scheme using the generic construction from
[SMP08]. The core idea of a proxy signature scheme is to allow a potential signer,
called delegator, to delegate its signing rights to a subentity, called proxy, which
is enabled to sign documents on behalf of the delegator. Any verifier can figure
out whether a signature is indeed produced by a proxy signer and if he received
the signing rights from the delegator. The security of the proxy signature scheme
is related to the security of the SAS scheme as stated in Theorem 1.

Towards Lattice Based Aggregate Signatures 353

Table 1. SAS instantiated with secure NTRUSign for different parameter sets

n q Parameter s Number of signers Compression rate
(in bits) (in bits) (in %)

256 70 55.1 20 57
256 100 70.4 20 65
256 160 100.7 20 74
512 70 57.2 20 55
512 100 72.5 20 63
512 160 102.8 20 72
1024 170 109.9 20 71
1024 200 125 20 74
1024 260 155.2 20 78

Theorem 1. ([SMP08, Theorem 2]) Let AS be a (t, qs, ε)-unforgeable se-
quential aggregate signature scheme. Then, the above construction provides a
(t0, q

′
s, q

′
d, ε

′)-unforgeable proxy signature scheme where ε = ε′/2qd, t = t′ and
qs = q′s + q′d.

References

[Ajt96] Ajtai, M.: Generating hard instances of lattice problems (extended ab-
stract). In: 28th Annual ACM Symposium on Theory of Computing, pp.
99–108. ACM Press (May 1996)

[Ajt99] Ajtai, M.: Generating hard instances of the short basis problem. In: Wie-
dermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 1–9. Springer, Heidelberg (1999)

[AKPW13] Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding,
revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 57–74. Springer, Heidelberg (2013)

[AP09] Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices.
In: STACS. LIPIcs, vol. 3, pp. 75–86. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany (2009)

[BGLS03] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably
encrypted signatures from bilinear maps. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

[BGR12] Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with
lazy verification from trapdoor permutations. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 644–662. Springer, Heidelberg
(2012)

[BNN07] Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signa-
tures. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 411–422. Springer, Heidelberg (2007)

[BPR12] Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 719–737. Springer, Heidelberg (2012)

354 R. El Bansarkhani and J. Buchmann

[BPW12] Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes
for delegation of signing rights. Journal of Cryptology 25(1), 57–115 (2012)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for de-
signing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993 1st Confer-
ence on Computer and Communications Security, pp. 62–73. ACM Press
(November 1993)

[BR96] Bellare, M., Rogaway, P.: The exact security of digital signatures - how to
sign with RSA and rabin. In: Maurer, U.M. (ed.)Advances in Cryptology -
EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg
(1996)

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS Annual Sympo-
sium on Foundations of Computer Science, pp. 97–106. IEEE Computer
Society Press (October 2011)

[BY96] Bellare, M., Yung, M.: Certifying permutations: Noninteractive zero-
knowledge based on any trapdoor permutation. Journal of Cryptol-
ogy 9(3), 149–166 (1996)

[DDLL13] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013)

[EFG+10] Eikemeier, O., Fischlin, M., Götzmann, J.-F., Lehmann, A., Schröder, D.,
Schröder, P., Wagner, D.: History-free aggregate message authentication
codes. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280,
pp. 309–328. Springer, Heidelberg (2010)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzen-
macher, M. (ed.) 41st Annual ACM Symposium on Theory of Computing,
pp. 169–178. ACM Press (May/June 2009)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lat-
tices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 1–17. Springer, Heidelberg (2013)

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based
encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer,
Heidelberg (2013)

[GLP12] Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based
cryptography: A signature scheme for embedded systems. In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer,
Heidelberg (2012)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.)
40th Annual ACM Symposium on Theory of Computing, pp. 197–206.
ACM Press (May 2008)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 75–92. Springer, Heidelberg (2013)

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: Ntru: A ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS-III1998. LNCS, vol. 1423, pp.
267–288. Springer, Heidelberg (1998)

Towards Lattice Based Aggregate Signatures 355

[HSW13] Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled)
multilinear maps and identity-based aggregate signatures. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512.
Springer, Heidelberg (2013)

[LMRS04] Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggre-
gate signatures from trapdoor permutations. In: Cachin, C., Camenisch,
J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer,
Heidelberg (2004)

[LOS+06] Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential ag-
gregate signatures and multisignatures without random oracles. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer,
Heidelberg (2006)

[LP11] Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based
encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp.
319–339. Springer, Heidelberg (2011)

[Lyn99] Lynn, C.: Secure border gateway protocol (s-bgp). In: ISOC Network and
Distributed System Security Symposium – NDSS 1999. The Internet So-
ciety (February 1999)

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
738–755. Springer, Heidelberg (2012)

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on Gaussian measures. In: 45th Annual Symposium on Foundations of
Computer Science, pp. 372–381. IEEE Computer Society Press (October
2004)

[Nev08] Neven, G.: Efficient sequential aggregate signed data. In: Smart, N.P. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 52–69. Springer, Heidelberg
(2008)

[Pei10] Peikert, C.: An efficient and parallel gaussian sampler for lattices. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer,
Heidelberg (2010)

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

[Rüc10] Rückert, M.: Strongly unforgeable signatures and hierarchical identity-
based signatures from lattices without random oracles. In: Sendrier, N.
(ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 182–200. Springer, Heidelberg
(2010)

[Sho97] Shor, P.W.: Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Journal on Comput-
ing 26(5), 1484–1509 (1997)

[SMP08] Schuldt, J.C.N., Matsuura, K., Paterson, K.G.: Proxy signatures secure
against proxy key exposure. In: Cramer, R. (ed.) PKC 2008. LNCS,
vol. 4939, pp. 141–161. Springer, Heidelberg (2008)

[SS11] Stehlé, D., Steinfeld, R.: Making ntru as secure as worst-case problems
over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

A Second Look at Fischlin’s Transformation

Özgür Dagdelen1 and Daniele Venturi2

1 Technical University of Darmstadt, Germany
oezguer.dagdelen@cased.de

2 Sapienza University of Rome, Italy
venturi@di.uniroma1.it

Abstract. Fischlin’s transformation is an alternative to the standard
Fiat-Shamir transform to turn a certain class of public key identification
schemes into digital signatures (in the random oracle model).

We show that signatures obtained via Fischlin’s transformation are
existentially unforgeable even if the adversary can get arbitrary (yet
bounded) information on the full state of the signer (including the signing
key and the random coins used to generate signatures). A similar fact
was already known for the Fiat-Shamir transform, however, Fischlin’s
transformation allows for a significantly higher leakage parameter than
Fiat-Shamir.

Moreover, in contrast to signatures obtained via Fiat-Shamir, signa-
tures obtained via Fischlin enjoy a tight reduction to the underlying
hard problem. We use this observation to show (via simulations) that
Fischlin’s transformation, usually considered less efficient, outperforms
the Fiat-Shamir transform in verification time for a reasonable choice of
parameters. In terms of signing Fiat-Shamir is faster for equal signature
sizes. Nonetheless, our experiments show that the signing time of Fis-
chlin’s transformation becomes, e.g., 22% of the one via Fiat-Shamir if
one allows the signature size to be doubled.

Keywords: Fischlin’s transformation, leakage, tightness, random oracle.

1 Introduction

Digital signatures are among the most fundamental primitives in cryptography.
The security of a signature scheme (as introduced by Goldwasser, Micali, and
Rivest [29]) is usually defined via a game featuring a computationally bounded
adversary A, where the game models how the system can be attacked in the real
world. More specifically, A can see valid message/signature pairs for messages of
her choice, and must forge a signature on a “fresh” message, i.e., a message A
may choose, but for which she has not seen a valid signature already. Schemes
resistant against such attacks are called existentially unforgeable under adaptive
chosen message attacks (in short: ufcma).

To prove that a given signature scheme is unforgeable, one typically builds a
“reduction” showing that if an efficient A can win the above security game, then
an adversary B can run A internally to solve a computational problem believed

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 356–376, 2014.
c© Springer International Publishing Switzerland 2014

A Second Look at Fischlin’s Transformation 357

to be hard. Such a game-based approach is sound if: (i) the security game is a
good model of reality; (ii) the constructed reduction is as “tight” as possible.
We discuss these issues in detail below.

Abstraction of Reality. One assumption (implicit in the modeling above), is that
A is assumed to interact with the signing oracle in a black-box fashion; this
means that all secrets stored “inside the box” are fully hidden to the adversary.
Unfortunately this assumption might be too strong and often easy to bypass. In
the real world, by exploiting several characteristics of an actual implementation
(e.g., timing [34], power consumption [35] and electromagnetic radiation [41]), an
attacker can learn some information about the secret key, and this information
is often sufficient to break otherwise “provably” secure schemes.

Modern-day cryptographic models (starting with [31,37,17,13]) try to formal-
ize side-channel attacks abstractly, with the goal of showing that a scheme has
some form of leakage resilience.

The standard way of defining leakage-resilient signatures, enhances the un-
forgeability game by giving A access to a leakage oracle which outputs bounded
(but arbitrary) information about the secret key sk . A signature scheme is ex-
istentially unforgeable against λ-leakage attacks if forging signatures on fresh
messages is still hard given λ bits of sk -data. Throughout the paper we, in fact,
consider a more general setting, where A leaks information not just about sk ,
but also about the full randomness used to generate signatures; a scheme secure
in this sense is called fully leakage-resilient. For a more detailed discussion on
leakage models for digital signatures, we refer the reder to Section 1.2.

The value λ is called the leakage parameter of the system. Note that the secret-
key size s must be strictly greater than the leakage parameter λ. The quantity
λ/s can be thought as the relative leakage of the system, with the obvious goal
to make it as close to 1 as possible.

Tightness. Suppose that A takes time t to break the security of a primitive (e.g.,
a signature scheme) with probability ε. If B in the reduction has runtime t′ ≈ t
and solves the hard problem with probability ε′ ≈ ε, the reduction is tight ; else
it is loose. The ratio (t′ε)/(tε′) is called the tightness gap of the reduction.

As discussed, e.g., in [33,9], tight reductions are appealing both for theoretical
purposes and because they ensure that the primitive is at least as hard to break
as the underlying hard problem. A loose reduction, by contrast, only guarantees
that a scheme is “plausibly” secure (see [28]). A loose reduction also results in
much larger parameters, and thus much slower performances (depending on the
tightness gap). In general, many researchers concerned with practice call into
question the practical value of non-tight reductionist security proofs.

1.1 Our Contributions

Σ-protocols are a well-studied class of interactive protocols, run between a prover
P and a verifier V , such that V accepts P as legitimate if it is convinced that
P knows a witness w to a shared input x. Each protocol run yields a transcript

358 Ö. Dagdelen and D. Venturi

of the form (com, ch, resp), where com is sent by the prover. The Fiat-Shamir
transform [23] is a common way of constructing efficient signature schemes (in
the random oracle model [4]) from a Σ-protocol for some “hard relation”.

Recently, Katz and Vaikuntanathan [32] (building on Alwen et al. [3]) showed
that the Fiat-Shamir transform yields fully leakage-resilient signatures, provided
that the underlying Σ-protocol satisfies two additional properties: (i) each the-
orem has exponentially many witnesses; (ii) the uncertainty of the witness con-
ditioned on the theorem is high.

The obtained scheme has relative leakage asymptotically approaching 1/2 and
a loose reduction (with a tightness gap of about 1/ε), due to the fact that the
reduction needs to rewind the adversary in order to extract a valid witness and
solve the underlying hard problem.

Fischlin’s Transformation & Leakage. Fischlin’s transformation [24] is an alter-
native to get secure signatures schemes from arbitrary Σ-protocols. Roughly,
Fischlin’s transformation consists of a tuple (of dimension r) of Fiat-Shamir
signatures, i.e., (comi, chi, respi)1≤i≤r. However, instead of computing the chal-
lenge via chi = H(comi,m), the prover tries all values in the domain of chal-
lenges such that H(m,x, com, i, chi, respi) = 0b for all i ∈ [r] where com =
(com1, . . . , comr). If no such challenge can be found the challenge chi is chosen
with the smallest output in value. Verifying includes now the check the validity
of the r Fiat-Shamir signatures and whether the sum of all hash values are below
a certain threshold S.

One important feature of signatures obtained via Fischlin, is that the resulting
non-interactive protocol has a straight-line extractor. Roughly this means that
there exists a probabilistic polynomial time algorithm (a.k.a. the extractor) that,
upon input the theorem x, a message m, a valid signature σ on m, and all hash
queries and answers made to generate σ, outputs a valid witness for x with
overwhelming probability (and without further querying the signer).

Our first result is that Fischlin’s transformation yields a fully leakage-resilient
signature if the underlying Σ-protocol satisfies properties (i) and (ii) above.

Comparing Fischlin and Fiat-Shamir. Even though the above fact is perhaps not
very surprising, Fischlin’s transformation comes with two important advantages
over leakage-resilient signatures obtained via Fiat-Shamir. The first advantage
is that for concrete schemes (e.g., the ones based on Okamoto [39] and Guillou-
Quisquater [30]), the relative leakage of the resulting signatures asymptotically
approaches 1. The second advantage is that the reduction to the security of the
underlying hard problem is tight.1

As a consequence of the above observations, one might expect that for a
pre-fixed level of security, signatures obtained via Fischlin can be instantiated
using much smaller parameters, possibly leading to better performances than
signatures obtained via Fiat-Shamir. This is surprising, as usually Fischlin’s
transformation is considered to be less efficient than Fiat-Shamir.
1 We stress that the problem of finding a tight reduction for leakage-resilient signatures
obtained via Fiat-Shamir remains open.

A Second Look at Fischlin’s Transformation 359

Our second contribution is an accurate comparison (supported by simulations)
of the performances obtained via Fischlin and Fiat-Shamir, in terms of parameters
generation, signing and verification time. The comparison is carried out for the
Okamoto scheme [39], whose security relies on the hardness of computing discrete
logarithms over a finite field. The main findings of our analysis are sketched below:

– Key generation is always faster in Fischlin’s transformation, due to the fact
that a tight reduction allows to choose smaller parameters.

– In terms of verification time, signatures obtained via Fischlin are much faster
than the ones obtained via Fiat-Shamir. This feature makes Fischlin’s trans-
formation particularly interesting for scenarios where one demands fast sig-
nature verification (e.g., in car2car and car2X communication [44] one might
need to verify 4000-5000 signatures per second).

– In terms of signature generation time, for 80-bit security, signatures obtained
via Fischlin are two times slower than the ones obtained via Fiat-Shamir if
one insists for the resulting signatures having the same size. However, in case
one allows signatures obtained via Fischlin to have twice the size of of the
ones obtained via Fiat-Shamir, then signature generation becomes 4.5 times
faster and verification reduces to 90% of that from Fiat-Shamir.

– When enforcing a certain amount of leakage resilience, Fischlin’s transfor-
mation outperforms the Fiat-Shamir transform in terms of security, perfor-
mance, and signature size.

We remark that, even though in some cases signatures obtained via Fiat-Shamir
result in better signing time, Fischlin’s transformation might still be preferable
in certain scenarios. For instance, an interesting feature of signatures obtained
via Fischlin when used in some cryptographic protocol (e.g., for key exchange),
is that parties can start verifying the signature (except checking the hash values)
before the entire signature is sent. Consequently, the effort to generate and verify
a signature consists essentially of the signing time plus 1/r-th of the verification
time. In contrast, signatures obtained via Fiat-Shamir have to be received in
full before the verification can start. Taking this feature into account, signing
and verifying for Fischlin are indeed faster than for Fiat-Shamir (for 80-bit se-
curity).2 This property and the small key sizes let us find favor with Fischlin’s
transformation if the resulting signature scheme is deployed on a smartcard.

We conclude that Fischlin’s transformation may be a reasonable alternative
to the Fiat-Shamir transform, depending on the application scenario.

1.2 Related Work

Tightness. Tight reductions are also discussed in e.g. [27] (for signature schemes
based on the family of Diffie-Hellman problems in the random oracle model),
in [40,26,45] (for the Schnorr and other related signature schemes in the random
oracle model), and in [42] (for signature schemes in the plain model).

2 The same conclusion does not hold for 128-bit security, though.

360 Ö. Dagdelen and D. Venturi

Leakage. Several leakage models exist so far in the literature. In our work we
consider the so-called bounded leakage model, where the total amount of leakage
is a-priory bounded to some fraction of the secret key length. A more general
model is the so-called continuous leakage model [14,8], where the leakage is not
a priori bounded and there is some efficient procedure to “refresh” the secret
key (leaving the corresponding public key unchanged).

Apart from [3,32], other papers on leakage-resilient signatures can be found
in [19,15,20,7,38]. These results are either complicated or inefficient, or do not
permit optimal relative leakage, and have loose reductions.

2 Preliminaries

2.1 Notation

For n ∈ N, let [n] := {1, 2, . . . , n}. We write log for base-2 logarithms and ln for
natural logarithms. We denote vectors by bold lower case letters.

For an algorithm A, y ← A(x) denotes that y is output by A on input x;
sometimes we also write y = A(x;ω) to make explicit the random coins that
A may use. Also, AO denotes that A has access to oracle O. Algorithm A
is probabilistic polynomial time (PPT) if A is randomized and for any input
x ∈ {0, 1}∗ the computation of A(x) terminates in at most poly(|x|) steps.

The min-entropy of a random variable X is H∞(X) = − logmaxx P [X = x],
and measures how well X can be predicted by the best (unbounded) predic-
tor. The conditional average min-entropy [16] of X given a random variable

Z (over some set Z) possibly dependent on X , is defined as H̃∞(X |Z) :=
− logEz←Z [2

−H∞(X|Z=z)]. Following [3], we sometimes rephrase the notion of
conditional min-entropy in terms of predictors A that are given some infor-
mation Z, so H̃∞(X |Z) = − log(maxA P [A(Z) = X]). We recall the following
useful lemma, proven in [16], bounding the conditional average min-entropy of
a random variable X given λ bits of arbitrary information on X itself.

Lemma 1 ([16]). For all random variables X,Z and Λ over sets X , Z and

{0, 1}λ such that H̃∞(X |Z) ≥ β, we have

H̃∞(X |Z,Λ) ≥ H̃∞(X |Z)− λ ≥ β − λ.

2.2 Signature Schemes

We recall here the general syntax for digital signatures.

Definition 1 (Signature scheme). A signature scheme is a triple of algo-
rithms SS = (KGen, Sign,Vrfy) defined as follows.

Key Generation. Algorithm KGen is a probabilistic algorithm which, on input
a security parameter 1k, outputs a pair (pk , sk) where pk is the public key,
and sk is the secret key.

A Second Look at Fischlin’s Transformation 361

Signature. Algorithm Sign is a probabilistic algorithm which, on input a secret
key sk together with message m, outputs a signature σ on m under sk.

Verification. Algorithm Vrfy is a deterministic algorithm which, on input a
message m and a signature σ together with the public key pk , outputs either
1 (= valid) or 0 (= invalid).

We say that SS has completeness error εcomp if P[Vrfy(pk , (m, Sign(sk ,m)) =
0] ≤ εcomp, where (pk , sk) ← KGen(1k) and the probability is over the coin
tosses of Sign.

Leakage-Resilient Signatures. Consider an oracle Oλ(x, ·) taking as input func-
tions f : {0, 1}∗ → {0, 1}∗ and returning f(x) for a total of at most λ bits.
Roughly, a signature scheme SS = (KGen, Sign,Vrfy) is (fully) leakage-resilient
if it is hard to forge a signature even given access to oracle Oλ(x, ·), where x
contains the secret key, plus the entire history of all random coins tossed by the
signing algorithm. More formally, consider the following experiment:

Experiment Explkg−ufcma
SS,A (k, λ)

(pk , sk) ← KGen(1k)
(m�, σ�) ← ASign(sk ,·),Oλ(state,·)(pk)
Output 1 iff

(a) Vrfy(pk ,m�, σ�) = 1
(b) m� �∈ Q

Set state = {sk}, and Q = ∅
If A queries Sign(sk ,m):
- let Q := Q∪ {m}
- return σ ← Sign(sk ,m;ω)
- let state := state ∪ {ω}

Definition 2 (Fully leakage-resilient signature). We say that SS = (KGen,
Sign,Vrfy) is (t, qs, ε)-unforgeable against chosen-message attacks (in short: -
ufcma) and against λ-leakage attacks if, for every algorithm A running in time
t and asking qs signing queries, we have:

P
[
Explkg−ufcma

SS,A (k, λ) = 1
]
≤ ε.

We say a signature scheme SS is (t, qs, ε)-ufcma if the algorithm A has no access
to oracle Oλ in the experiment above.

Note that in case the signature scheme SS requires the use of a public function
H modeled as a random oracle, both the adversary A and the leakage functions
have access to this random oracle.

2.3 Fischlin’s Transformation

Let L ⊆ NP be a language with a (polynomially computable) relation R ⊂
{0, 1}∗ × {0, 1}∗, i.e., x ∈ L if and only if ∃w such that (x,w) ∈ R and |w| =
poly(|x|). The value w is called a witness for x ∈ L (x is sometimes called a
“theorem” or statement). Informally, R is called hard if, given x ∈ L, it is hard
to extract a valid witness for x.

Definition 3 (Hard relation). A relation R for a language L is (t, ε)-hard if
the following holds:

362 Ö. Dagdelen and D. Venturi

(i) There exists an efficient algorithm Gen that on input a security parameter k
outputs (x,w) ← Gen(1k) such that (x,w) ∈ R and |w| = poly(|x|).

(ii) For any algorithm A running in time t we have:

P
[
(x,w′) ∈ R : w′ ← A(1k, x); (x,w) ← Gen(1k)

]
≤ ε.

Σ-Protocols. This important class of protocols (run between a prover P and a
verifier V), allows P to convince V that it knows a witness w for a shared element
x ∈ L, without giving V further information. We briefly review Σ-protocols
below. Informally, a Σ-protocol consists of three messages (com, ch, resp) (with
com sent by P) and satisfies the following properties:

– Completeness. Upon interacting with an honest prover holding (x,w), the
verifier accepts with overwhelming probability.

– Special Soundness. Given accepted proofs (com, ch, resp) and (com, ch′, resp′)
for x ∈ L (with ch′ �= ch), there exists a PPT algorithm which outputs a
valid witness w for x.

– Perfect Honest-Verifier Zero Knowledge (HVZK). There exists a PPT algo-
rithm Z (the simulator) which, on input x ∈ L and a random ch, outputs an
accepting conversation of the form (com, ch, resp), with the same probability
distribution as conversations between the honest P , V on input x.3

In the following we also assume that com has super-logarithmic min-entropy
(in the security parameter k), and that resp is quasi-unique, i.e., it is hard to
find (x, com, ch, resp, resp′) such that both (com, ch, resp) and (com, ch, resp′) are
accepting, with resp �= resp′.

The Transformation. Let (P ,V) be a Σ-protocol for an NP-language L with
hard relation R, and consider a hash function H : {0, 1}∗ → {0, 1}b, modeled
as a random oracle. As proved in [24], Fischlin’s transformation (represented
in Fig. 1) describes a non-interactive zero-knowledge proof with a straight-line
extractor, and yields an existentially unforgeable signature scheme.

Theorem 1 (Fischlin’s transformation). Consider the scheme in Fig. 1,
where the challenge space of (P ,V) has length l = O(log k). Let b, r, S, μ be
functions of k such that b · r = ω(log k), 2μ−b = ω(log k), b, r, μ = O(log k),
S = O(r) and b ≤ μ ≤ l. The following holds:

(i) The transformation describes a non-interactive zero-knowledge proof sys-

tem (PH
,VH

) for language Lmsg = {((x,m), w) : (x,w) ∈ R}, where P
(resp. V) is the signer (resp. verifier) of the signature scheme. In particu-
lar, there exists a PPT simulator Z which, on input (x,m) outputs a proof
σ = (comi, ch

∗
i , respi)i=1,...,r with the same distribution as a real proof gen-

erated via PH
(using x,m,w).

3 This is also called special HVZK, but as argued in [24] can be assumed in general.

A Second Look at Fischlin’s Transformation 363

Let R be a hard relation for language L and (P ,V) be a Σ-protocol for R. For a hash
function H : {0, 1}∗ → {0, 1}b (modeled as a random oracle), let r be the number of
repetitions, μ the challenge size, and S the bound on the sum.

Key Generation. Upon input security parameter 1k compute (x,w) ← Gen(1k).
Output pk := x as public key and sk := w as secret key.

Signature. Upon input a secret key sk = w and a message m ∈ {0, 1}∗, perform the
following steps:
1. For all i ∈ [r], obtain comi ← P(x).
2. For all i ∈ [r] and chi ∈ [2μ − 1] compute respi := resp(chi) ← P(comi,

x, w, chi). Denote chi which satisfies H(m,x,com, i, chi, respi) = 0b by ch∗i ,
where com = (com1, . . . , comr). If no such chi exists, take the one with mini-
mal hash output value.

3. Output σ = (comi, ch
∗
i , respi)i=1,...,r.

Verification. Upon input the public key pk = x and a signature σ = (comi, ch
∗
i ,

respi)i=1,...,r for message m, run the verifier of the underlying Σ-protocol to check
if V(x, (comi, ch

∗
i , respi)) = 1 for all i ∈ [r]. If not, output 0. Furthermore, if∑r

i=1 H(m,x,com, i, ch∗i , respi) ≤ S output 1; else output 0.

Fig. 1. Fischlin’s transformation applied to a Σ-protocol (P ,V) for relation R

(ii) There exists a PPT straight-line extractor K and some value εext, such that,
for any PPT A, if (x, σ) ← AH(1k), then

P
[
(x,w) �∈ R ∧ VH

(x, σ) = 1
]
≤ εext

for w ← K(x, σ,QH(A)); here QH(A) denotes A’s queries to (resp. answers
from) the random oracle H.

(iii) If the relation R is (t, ε)-hard, the resulting signature scheme is (t′, ε′)-
ufcma where t′ ≈ t and ε′ = ε+ εext.

Note that the bound on the challenge space is without loss of generality, as for
any l we can easily turn a Σ-protocol with l′-bit challenges into a Σ-protocol
with l-bit challenges [11, Lemma 2]. The following corollary follows by inspection
of the proof of [24, Theorem 2].

Corollary 1 (Concrete parameters of Fischlin’s transformation). The
following holds for the transformation of Fig. 1:

– The completeness error is upper-bounded by

εcomp ≤ er ln(e·(2S+1))−(S+1)2μ−b

.

– The failure probability of the extractor is upper-bounded by

εext ≤ (qh + 1)(S + 1)2(log(e·(S+r)/(r−1))−b)·r,

where qh = |QH(A)|.
– The total number of hash function evaluations is upper-bounded by r ·(2μ−1)

(in worst case).

364 Ö. Dagdelen and D. Venturi

3 Leakage Resilience of Fischlin’s Transformation

Let (P ,V) be a Σ-protocol for L ⊂ NP, with relation R. The main result of this
section is that Fischlin’s transformation applied to each such protocol yields a
fully leakage-resilient signature (in the random oracle model) provided that: (i)
each theorem x ∈ L has exponentially many witnesses w (and given a valid (x,w)
pair is hard to find a valid, distinct (x,w′) pair); (ii) the conditional min-entropy
of the witness W conditioned on the public theorem X is high.

A similar result is already known for the Fiat-Shamir heuristic [3,32]. The
main difference here is that we get a fully tight reduction to the underlying hard
problem and relative leakage asymptotically approaching 1—which is optimal.
In comparison the best known analysis for Fiat-Shamir has a tigthness gap of
roughly 1/ε (where ε is the hardness of the underlying relation), and relative
leakage asymptotically approaching 1/2.

We start by formalizing condition (i) above, by introducing the representation
problem for a relation R ⊂ {0, 1}∗ × {0, 1}∗.

Definition 4 (Representation problem). We say that the representation
problem is (t, ε)-hard for a relation R if for all PPT adversaries A running
in time t, we have:

P
[
w �= w′ ∧ (x,w), (x,w′) ∈ R : (x,w,w′) ← A(1k)

]
≤ ε.

In many cases, the hardness of the representation problem for R is equivalent
to the hardness of the underlying relation R. We comment on two such instan-
tiations, based respectively on the discrete-log and on factoring assumptions, in
the concrete instantiations paragraph at the end of this section.

Theorem 2 (Fischlin’s transformation is leakage-resilient). Let k ∈ N
be a security parameter and let R ⊂ {0, 1}∗ × {0, 1}∗ be an NP-relation such
that the representation problem is (t, ε)-hard for R. Assume that conditioned on
the distribution of the public input x ∈ X , the witness w ∈ W has high average
min-entropy β, i.e., H̃∞(W |X) ≥ β. Then, the signature scheme of Fig. 1 is
(t′, qs = poly(k), ε′)-ufcma against λ-leakage attacks, as long as

t′ ≈ t λ ≤ β − r log(3qh)− k ε′ ≤ ε+ εext + 2−k,

where qh = poly(k) denotes the number of queries to the random oracle.

The proof borrows ideas from [32, Theorem 4]. The original proof requires to
rewind A, yielding a loose reduction. By relying on the straight-line extractor of
Fischlin’s transformation, we avoid rewinding and thus get a tight reduction.

Proof. By contradiction assume there exists a PPT adversary A running in time
t′ and having advantage ε′ > ε+ εext+2−k in the experiment Explkg−ufcma

SS,A (k, λ)
(for leakage parameter λ as in the theorem statement). Consider all possible states
during the execution ofA in the unforgeability experiment, and for any such state
i let hi denote the hash query made at that state. If an execution of A terminates

A Second Look at Fischlin’s Transformation 365

with a valid forgery (m�, (comi, ch
∗
i , respi)i∈[r]), we say that the forgery is associ-

ated with a set of states {hi} where hi = H(m�, x, com, i, ch∗i , respi) for all i ∈ [r].
Note that the size of this set is

(
qh
r

)
≤ (qh·er)r < (3qh)

r .
We build a PPT adversary B (running in time t ≈ t′) breaking the hard-

ness of the representation problem for R with advantage larger than ε (a con-
tradiction). Without loss of generality, we assume that whenever A outputs
a forgery (m�, σ�): (i) A queried the random oracle at some point on input
(m�, x, com, i, ch∗i , respi), for i ∈ [r]; (ii) A never queried the signing oracle on
m�. For simplicity, we further assume that every leakage query makes the same
number of H evaluations. (This can always be achieved adding dummy queries.)

Adversary B starts by generating (x,w) ← Gen(1k), where (x,w) ∈ R. Hence,
B gives the public key pk = x to A and implicitly defines sk = w. Note that
since B knows a valid witness w corresponding to x, the reduction can perfectly
simulate the experiment Explkg−ufcma

SS,A (k, λ); this includes the answers to A’s
queries to both oracles Sign(sk , ·) and Oλ(state, ·), as well as the queries to the
random oracle H . Adversary B keeps also track of all the queries QH(A) of A
to H , and the corresponding answers. Eventually, A outputs a forgery (m�, σ�).
At this point B runs the straight-line extractor K on input (m�, σ�,QH(A))
and obtains a value w′ ← K(m�, σ�,QH(A)). Finally B outputs (x,w,w′) as a
solution to the representation problem for R.

By definition, B solves the representation problem for R whenever A succeeds
and: (i) the extractor K does not fail; (ii) the extracted witness w′ is different
from w. Denote by Fail the event that the extractor does not return a valid
witness and with Equal the event that the returned w′ is equal to w. Since the
event that A wins and the latter two events are all independent, we can write:

P [B wins] = P
[
w′ �= w; (x,w), (x,w′) ∈ R : (x,w,w′) ← B(1k)

]
= P [A wins ∧ ¬Fail ∧ ¬Equal]
= P [A wins] · P [¬Fail] · P[¬Equal]
≥ P [A wins]− P[Fail]− P[Equal]

≥ ε′ − εext − P [Equal] , (1)

where (1) follows by our assumption on A and by the fact that the probability
that the extractor fails is bounded by εext.

Claim. P [Equal] ≤ 2−k.

Proof (of claim). We show that the statement holds even in caseA is unbounded.

We will argue that H̃∞(W |V) ≥ k, where W is the random variable correspond-
ing to the witness, and V is the random variable corresponding to the view
of A in a run of Explkg−ufcma

SS,A (k, λ). Clearly, this is sufficient as by definition

of average min-entropy P [Equal] ≤ 2−H̃∞(W |V). The view of A is of the type
V := (Σ,R, Λ,X), where the random variable Σ = (Σ1, . . . , Σqs) lists the sign-
ing queries of A, the random variable R = (R1, . . . , Rqh) corresponds to the
responses to A’s random oracle queries, Λ corresponds to the leakage queries,

366 Ö. Dagdelen and D. Venturi

and X corresponds to the public key. Now,

H̃∞(W |Σ,R, Λ,X) ≥ H̃∞(W |Σ, X)− λ− r log(3qh) (2)

≥ H̃∞(W |X)− λ− r log(3qh) (3)

≥ k. (4)

(2) follows by Lemma 1 and the fact that: (i) Λ ∈ {0, 1}λ and (ii) a forgery
reveals at most r log(3qh) bits of information on the witness, corresponding to
the set of random oracle queries associated with the forgery itself;4 (3) follows
by (perfect) honest-verifier zero-knowledge, as we can compute each Σi using
only the public key X and the zero-knowledge simulator Z (cf. Theorem 1).

Finally, (4) follows by our assumption that H̃∞(W |X) ≥ β and the bound on
λ ≤ β − r log(3qh)− k.

The above claim together with our assumption that ε′ > ε+ εext + 2−k, clearly
imply that P [B wins] > ε, which contradicts the (t, ε)-hardness of the represen-
tation problem for R. This finishes the proof.

Concrete Instantiations. Below, we discuss two concrete instantiations of The-
orem 2, the first one based on the discrete-log assumption and the second one
based on the RSA assumption (and on factoring).

Generalized Okamoto [39]. For a cyclic group G of prime order p, let LDL :=

{(g1, . . . , g�, h) : ∃(w1, . . . , w�) s.t. h =
∏�

i=1 g
wi

i }, where (g1, . . . , g�) are gen-
erators of G. The tuple w = (w1, . . . , w�) is called a representation of h;
the �-representation problem asks to compute two distinct representations
w,w′ for some x = (g1, . . . , g�, h) ∈ L. As argued in [3, Lemma 4.1], the �-
representation problem is hard forRDL if and only if the discrete-log problem
is hard in G.5

The standard Σ-protocol (P ,V) to prove knowledge of a representation of
an element h goes as follows: (i) P chooses randomly a1, . . . , a� and sets

com :=
∏�

i=1 g
ai

i ; (ii) V selects a random ch ∈ Zp; (iii) P returns resp =
(ch ·w1 + a1, . . . , ch ·w�+ a�). Given a proof σ = (com, ch, resp), the verifier

outputs 1 if and only if
∏�

i=1 g
respi
i = hch · com.

We obtain the following result:

Corollary 2. Let G be a cyclic group of prime order p, such that the �-
representation problem is hard for RDL. Then, the signature scheme obtained
by applying Fischlin’s transformation to the generalized Okamato Σ-protocol
is fully leakage-resilient for leakage parameter λ ≤ (1 − o(1)) · n, where n =
� log p is the length of the secret key.

4 Recall that leakage queries can depend on the random oracle; this could make the
set of states associated with a forgery a function of the witness.

5 Recall that the discrete-log problem requires to compute w such that gw = h, given
(g, h,G, p).

A Second Look at Fischlin’s Transformation 367

Proof. By Theorem 2, we get that for any desired δ > 0 the leakage bound
is λ ≤ (1−1/�− δ) ·n. Now, choosing � > 1/δ gives λ ≤ (1− δ) ·n as desired.

Generalized Guillou-Quisquater [30]. For N = p · q, where p and q are
primes, let (e, d) be such that e · d = 1 mod φ(N) and e is a prime. Consider
the language LRSA := {(g1, . . . , g�, h) : ∃(ρ, (w1, . . . , w�)) ∈ Z∗

N ×Z�
e s.t. h =∏�

i=1 g
wi

i · ρe mod N}, where (g1, . . . , g�) are generators of Z∗
N . The tuple

w = (ρ, (w1, . . . , w�)) is called a representation of h; the �-representation
problem asks to compute two distinct representations w,w′ for some x =
(g1, . . . , g�, h) ∈ L. As shown in [39], the �-representation problem is hard
for RRSA if and only if the RSA problem is hard in Z∗

N .6

The standard Σ-protocol (P ,V) to prove knowledge of a representation of
an element h goes as follows: (i) P chooses randomly a1, . . . , a� ← Ze and

s← Z∗
N and sets com :=

∏�
i=1 g

ai

i ·se mod N ; (ii) V selects a random ch ∈ Ze;
(iii) P computes z = (ch ·w1 + a1, . . . , ch ·w� + a�), u = (s · ρch) mod N and
returns resp = (z, u). Given a proof σ = (com, ch, resp), the verifier outputs

1 if and only if ue ·
∏�

i=1 g
zi
i = hch · com mod N .

We obtain the following result:

Corollary 3. Let (N, e) be such that the �-representation problem is hard
for RRSA. Then, the signature scheme obtained by applying Fischlin’s trans-
formation to the generalized Guillou-Quisquater Σ-protocol is fully leakage-
resilient for leakage parameter λ ≤ (1−o(1))·n, where n = � log(e)+logφ(N)
is the length of the secret key.

A similar statement can be obtained based on factoring, following Fischlin
and Fischlin [25].

4 Comparison

In this section we investigate the efficiency of signature schemes obtained via the
Fiat-Shamir transform and Fischlin’s transformation. We do so by comparing
the performance of the two paradigms for an implementation of the signature
scheme resulting from the Generalized Okamoto scheme [39] (see Section 3). Our
implementation was carried out in the Charm cryptographic framework [2] in
Python. The experiments were performed on a single core of a 3 GHz Intel Core
i7. We instantiated the random oracle by SHA-2.

In our implementation of Fischlin’s transformation we do not impose an upper
bound on the challenge size (i.e., μ = ∞). As a consequence we do not require a
threshold S because given b · r = ω(log k) the probability of finding appropriate
challenges chi mapping H(m,x, com, i, chi, respi) to 0b is negligibly close to 1
in the security parameter k. Having no threshold in the loop-clause yields to a
signature scheme with expected (rather than strict) polynomial running time.

6 Recall that the RSA problem requires to compute ρ such that ρe = u mod N , given
(u,N, e).

368 Ö. Dagdelen and D. Venturi

Nonetheless, the running times of the original version and ours do not differ
noticeably. Our experiments have shown, in fact, that the full span of challenge
candidates was rarely explored.

We stress that our implementations are not optimized. In particular, we ex-
pect faster running times when carrying out the implementation in C/C#. How-
ever, a prototype implementation in Python gives still reasonable timings for the
purpose of comparing the two transformations.

4.1 Parameter Selection

In order to select reasonable parameters for the two signature schemes we have to
assess the hardness of the underlying hardness assumption and take the tightness
gap of the reduction into account. The security of the Generalized Okamoto
scheme relies on the hardness of the representation problem in a groupG of prime
order p, which is equivalent to the discrete logarithm problem [3, Lemma 4.1].
Here, we focus on the case where G = GF (p) is a Galois fields. More precisely,
we take the multiplicative group Z∗

p where p is a safe prime, i.e. p = 2q+1, and
p and q are both prime.

The best known algorithm to solve the discrete logarithm problem in G =
GF (p) is the Number Field Sieve (NFS), with complexity Lp[1/3, (64/9)

1/3]
for modulus p, where the complexity function Lp[t, s] is defined as Lp[t, s] =

es(1+o(1))(ln p)t(ln ln p)1−t

. When estimating security parameters we take previously
known attacks and timings into account by saying that if computing discrete
logarithms in groups of order p takes time t, than we expect that computing

discrete logarithms in groups of order p′ takes time roughly t′ ≈ t
Lp[1/3,

3
√

64/9]

Lp′ [1/3,
3
√

64/9]
.

If the difference between p′ and p is not too large, the term o(1) goes to zero.
A similar strategy was recommended in [36]. We take as reference the 2009
factorization of a 768-bit modulus, which offers roughly 66-bit security (t ≈ 266).

Let us now consider both schemes with their respective security reduction.
If an adversary A (t′, ε′)-breaks the signature scheme obtained via Fiat-Shamir
(see [3,32]), there exists an adversary B with runtime ≈ t′ that solves the �-
representation problem in G with probability (ε′)2/qh, where qh is the number
of queries to the random oracle H . Thus, we need to run B around O(qh/(ε

′)2),
yielding a runtime t ≈ t′ · qh/(ε′)2. For ε′ large enough (say ε′ > 0.1) and for
qh ≈ t′, we have t ≈ 2165 for 80-bit security. Thus, the parameters must be
chosen such that computing the discrete logarithm in G with NFS takes time
roughly 2165. This holds for a prime p of roughly 5400 bits. Analogously, for
128-bits of security one needs a prime p of roughly 15000 bits.

We compare these results to Fischlin’s scheme. Since the reduction is tight
(ε ≈ ε′ − εext − 2−k), an adversary B solves the �-representation problem in
G in time t ≈ t′ · (ε′ − εext − 2−k)−1. Recall that εext is the extractor’s suc-
cess probability to extract the witness in the security reduction. We have to set
parameters r and b such that εext ≤ qh · 2−br is smaller than the advantage of

A Second Look at Fischlin’s Transformation 369

Table 1. Comparison between Fiat-Shamir (FS) and Fischlin for the Generalized
Okamoto signature scheme. The table shows performance and sizes for � = 2.

80-bit security 128-bit security
FS Fischlin Fischlin Fischlin FS Fischlin Fischlin Fischlin

r = 7 r = 14 r = 6 r = 7 r = 19 r = 11
b = 12 b = 6 b = 14 b = 19 b = 7 b = 12

Signing time (in sec) 0.463 1.037 0.103 3.531 5.3 290.262 1.889 4.715
Verification (in sec) 1.16 0.060 0.117 0.062 30.89 0.993 2.552 1.451

Signature size (in kB) 1.98 1.94 3.87 1.67 5.49 5.22 14.15 8.2
Public-key size (in kB) 1.98 0.41 0.41 0.41 5.49 1.12 1.12 1.12
Secret-key size (in kB) 1.32 0.28 0.28 0.28 3.66 0.37 0.37 0.37

solving the representation problem ε.7 We can choose a 1130-bit prime p for G =
GF (p) for 80-bit security and 3048-bit prime for 128-bit security, respectively.

In the following we compare both signature schemes in terms of performance
and signature size. We stress that for some signature schemes obtained via Fiat-
Shamir or Fischlin (e.g., the Schnorr signature scheme [43]), signatures can be
shortened by removing the commitment(s) from the signature because the com-
mitment is re-computable from the challenge and response alone. (This holds
in particular for the signature derived from the Generalized Okamoto scheme.)
Given the above system parameters, a signature computed via Fiat-Shamir con-
sists of one hash value (the challenge, from Z∗

p), and � elements from Z∗
p (the

response), yielding a signature of size 16200 bits for 80-bit security (resp. 45000
bits for 128-bit security) and � = 2. On the other hand, a signature computed via
Fischlin consists of r challenge values of expected size b bits, and r · � elements
from Z∗

p. We obtain comparable signature sizes with r = 7 for both 80 and 128
bits of security.

In Table 1 and Figures 2 and 3 we illustrate the performances of both schemes
in terms of key generation, signing time, verification time, and leakage resilience.
The result of the comparison are discussed in the following subsections.

4.2 On Key Generation

The key generation algorithm is exactly the same for both schemes. However,
due to the loose reduction of the Fiat-Shamir transform, the resulting signature
scheme requires much larger groups than the one derived via Fischlin’s transfor-
mation.

Recall that, in order to resist special discrete logarithm solvers, we have to
instantiate the groups in Z∗

p where p is a safe prime, i.e., p = 2q + 1 with p, q
prime. Finding safe primes is an expensive task. Especially, signatures derived
via Fiat-Shamir require to sample a safe prime p of size 15000 which may take

7 We derive the bound εext ≤ qh · 2−br by adapting the proof of Corollary 1 to the
proposed modifications of the scheme, as described above.

370 Ö. Dagdelen and D. Venturi

Fig. 2. Signature running time for the Fiat-Shamir and Fischlin transformation

several days or weeks.8 Even finding a safe prime of 5400 bits (for 80-bit security)
took us roughly 12 hours using the safe prime generator of OpenSSL.

As a consequence Fischlin’s transformation is preferable when it comes to
key generation in both performance and size. Both public and secret-key size of
Fischlin’s scheme are roughly 80% shorter than the ones in Fiat-Shamir.

4.3 On Signature Generation

For what concerns the signing time, we paid attention to perform the comparison
between the two schemes as fair as possible. In particular group operations were
implemented in the same way, and the experiments were run on the same machine
using the same crypto libraries. As recommended by Fischlin [24], we enhanced
the computation of the hash function in Fischlin’s scheme by pre-computing
and saving part of the hash values H(m,x, com, ·, ·, ·) (since this part is fixed
throughout all loops).9 We also note that a clever implementation of Fischlin’s
scheme, requires just additions in the group G when searching for an appropriate
challenge (see step 2. in Fig. 1). Here, one can re-use the previously computed
response resp instead of computing it from scratch each time in the loop.

Fischlin’s transformation offers a trade-off between performance and signature
size. In Fig. 2 we illustrate the runtime of the signature algorithm for different
choices of the parameters r and b, and compare it with the case of signatures
obtained via Fiat-Shamir. We observe that for similar signature sizes and 80-bit
security, singing via Fiat-Shamir is twice as fast as generating signatures via
Fischlin. For 128-bit security, the situation is even worse (Fischlin is roughly

8 For this reason we took a slightly larger safe prime p of size 16384. More precisely
we took the publicly available prime p = 216384 − 364486013 [5].

9 We note that doing so, we distance our implementation from the random-oracle
proof.

A Second Look at Fischlin’s Transformation 371

Fig. 3. Runtime of the verification algorithm for the Fiat-Shamir and Fischlin trans-
formation

58 times slower). Nonetheless, we see that if one is flexible with respect to the
signature size, Fischlin’s transformation yields a signing time which is up to 4.5
times faster than the one for Fiat-Shamir, while the signature size only doubles.

The signing time for Fischlin’s transformation increases rapidly from a certain
threshold b = b∗.10 For instance, if b = 14 and we stick to 80-bit security, the
signing algorithm takes time roughly 3.5 seconds. Taking 128-bit security, any
b > 13 leads to huge signing time. For b = 13, a signature requires 9.47 seconds.
The signing time for Fischlin and Fiat-Shamir becomes of the same magnitude
for r = 11 and b = 12 (128-bit security).

4.4 On Verification

Recall that, as mentioned in Section 4.1, we implemented the compressed form
of the Generalized Okamoto scheme. That is, signatures consist of (ch, resp) for
the Fiat-Shamir transform and (chi, respi)1≤i≤r for Fischlin’s transformation.
Consequently, the verification algorithm first has to reconstruct the commitment
(vector) and then check for the validity of the response(s).

Fig. 3 shows the running time of the verification algorithm for the two schemes.
Interestingly, verifying signatures obtained via Fischlin’s transformation is sig-
nificantly faster than verifying signatures obtained via Fiat-Shamir. For compa-
rable signature sizes, Fischlin’s transformation yields a verification time which
is roughly 19 times faster than Fiat-Shamir for 80-bit security, and roughly 30

10 We believe that the value for the threshold b∗ is dependent on the implementation
and programming language. For example, for certain parameters, the time needed
to compute all hash values exceeds the time needed to perform all necessary group
operations. If the gap between the former and the latter changes (e.g., due to a
different programming language), one might expect that the threshold b∗ shifts,
eventually leading to a different outcome for the comparison of signing time.

372 Ö. Dagdelen and D. Venturi

times faster for 128-bit security. The latter choice of parameters, however, leads
to high signing times (209.262 seconds). For comparable signing times, Fischlin’s
transformation offers still 21 times faster verification with 37% signature size in-
crease.

4.5 On Leakage Resilience

As discussed in Section 3 (see Corollary 2), our analysis of Fischlin’s trans-
formation applied to the Generalized Okamoto scheme yields relative leakage
asymptotically approaching 1. (This is in contrast to [3,32], where the relative
leakage is always smaller than 1/2.)

In Table 2 one can find the time for running the signing algorithm when con-
sidering different values for the desired tolerated leakage λ. Note that to allow
higher relative leakage, the parameter � must be increased. This generates a lin-
ear blow-up in both the running times and signature size. However, if we set
parameters b, r, � such that signatures resulting by applying Fischlin’s transfor-
mation match Fiat-Shamir in terms of signature size and amount of tolerated
leakage, the signing time for Fischlin’s transform decreases considerably. This is
because the parameter � can be fixed to 2 if we want to tolerate relative leak-
age less than 1/2. Thus, one can choose larger r—and smaller b—to meet the
signature size of Fiat-Shamir, and end-up with an efficiency gain.

In conclusion, when we take leakage resilience into account, Fischlin’s trans-
formation outperforms the Fiat-Shamir transform in signing time, verification
time and signature size.

Table 2. Comparison of Fischlin’s transformation and the Fiat-Shamir transform for
the Generalized Okamoto signature scheme, with different leakage parameter λ. Fischlin
is instantiated with r and b such that the resulting signature size is comparable in both
schemes. For the timing (*) we selected the fastest parameters r, b where the resulting
signature size is even smaller.

Signature 80-bit security
running time λ ≤ 1/4 λ ≤ 3/8 λ ≤ 7/16 λ ≤ 3/4

(in sec) � = 2 � = 4 � = 8 —
�′ = 2 �′ = 2 �′ = 2 �′ = 4

|σ| ≈ 1.98 |σ| ≈ 3.3 |σ| ≈ 5.93 |σ| ≈ 5.52

Fiat-Shamir (with �) 0.463 0.951 1.858 —
Fischlin (with �′) 1.037 0.114 0.103∗ 0.287

5 Discussion

We have shown that Fischlin’s transformation is a viable approach to get fully
leakage-resilient signatures with a tight reduction to the underlying hard prob-
lem, and asymptotically optimal relative leakage (in the random oracle model).

A Second Look at Fischlin’s Transformation 373

This is in contrast to the situation for signatures obtained via Fiat-Shamir (hav-
ing a non-tight reduction and non-optimal relative leakage). When one takes into
account this gap (as demonstrated by our implementation), it becomes evident
that, in many important scenarios, Fischlin’s transformation might be prefer-
able (or at least comparable) to the Fiat-Shamir transformation in terms of
verification time, signing time and key generation.

We conclude with a number of remarks on our results.

– Our model of leakage resilience assumes that the overall amount of leakage
is bounded by some a-priori fixed parameter. Using the techniques of [3,1],
our results extend to continuous leakage resilience in the so-called “Floppy
model” (see also [12]), where one assumes the existence of a (leakage free)
floppy that can be used to update the secret key (leaving the corresponding
public key unchanged).

– Our analysis can be extended to the context of memory tampering (see,
e.g., [18,21,22] and references therein). In particular Theorem 2 can be gen-
eralized to the setting of bounded leakage and tamper resilience [12], where
the adversary is not only allowed to leak from the state of the signer but can
also inject (an a-priori bounded number of) faults into the secret key and
then obtain access to a “faulty” signing oracle.

– We remark that in general Fischlin’s transformation can be preferable to
Fiat-Shamir in all settings where simulation extractability is needed [20].

Furthermore, we ask ourselves how secure signature schemes are against quantum
adversaries if the underlying identification scheme is quantum immune. More
precisely, does the Fischlin’s transformation yield secure signature schemes in
the quantum random oracle model [6]. Dagdelen et al. [10] have shown that this
does not always hold for the Fiat-Shamir transformation.

Acknowledgments. Özgür Dagdelen is supported by the German Federal Min-
istry of Education and Research (BMBF) within EC-SPRIDE.

References

1. Agrawal, S., Dodis, Y., Vaikuntanathan, V., Wichs, D.: On continual leakage of
discrete log representations. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part
II. LNCS, vol. 8270, pp. 401–420. Springer, Heidelberg (2013)

2. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M.,
Green, M., Rubin, A.D.: Charm: A framework for rapidly prototyping
cryptosystems. Journal of Cryptographic Engineering 3(2), 111–128 (2013),
http://dx.doi.org/10.1007/s13389-013-0057-3

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009)

4. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for design-
ing efficient protocols. In: ACM Conference on Computer and Communications
Security, pp. 62–73 (1993)

http://dx.doi.org/10.1007/s13389-013-0057-3

374 Ö. Dagdelen and D. Venturi

5. blog, K.: Mostly on computers and mathematics. Website Blog,
http://kenta.blogspot.de/2011/01/cvogqzhd-some-large-safe-primes.html

(last acess: Januaury 31, 2013)
6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:

Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011)

7. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptol-
ogy 26(3), 513–558 (2013)

8. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage. In:
FOCS, pp. 501–510 (2010)

9. Chatterjee, S., Menezes, A., Sarkar, P.: Another look at tightness. IACR Cryptol-
ogy ePrint Archive 2011, 442 (2011)

10. Dagdelen, Ö., Fischlin, M., Gagliardoni, T.: The fiat–shamir transformation in a
quantum world. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS,
vol. 8270, pp. 62–81. Springer, Heidelberg (2013)

11. Damg̊ard, I.: On Σ-protocols. Tech. rep., Aarhus University (2013),
http://www.daimi.au.dk/~ivan/Sigma.pdf

12. Damg̊ard, I., Faust, S., Mukherjee, P., Venturi, D.: Bounded tamper resilience: How
to go beyond the algebraic barrier. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013, Part II. LNCS, vol. 8270, pp. 140–160. Springer, Heidelberg (2013)

13. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010)

14. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS, pp. 511–520 (2010)

15. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010)

16. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

17. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp.
293–302 (2008)

18. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp.
434–452 (2010)

19. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010)

20. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012)

21. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014)

22. Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and
key-derivation for poly-size tampering circuits. In: Oswald, E. (ed.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014)

23. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO
1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1986)

http://kenta.blogspot.de/2011/01/cvogqzhd-some-large-safe-primes.html
http://www.daimi.au.dk/~ivan/Sigma.pdf

A Second Look at Fischlin’s Transformation 375

24. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with on-
line extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168.
Springer, Heidelberg (2005)

25. Fischlin, M., Fischlin, R.: The representation problem based on factoring. In: Pre-
neel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 96–113. Springer, Heidelberg
(2002)

26. Garg, S., Bhaskar, R., Lokam, S.V.: Improved bounds on security reductions for
discrete log based signatures. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 93–107. Springer, Heidelberg (2008)

27. Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight
reductions to the Diffie-Hellman problems. J. Cryptology 20(4), 493–514 (2007)

28. Goldreich, O.: On the foundations of modern cryptography. In: Kaliski Jr., B.S.
(ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 46–74. Springer, Heidelberg (1997)

29. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

30. Guillou, L.C., Quisquater, J.-J.: A “Paradoxical” identity-based signature scheme
resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,
vol. 403, pp. 216–231. Springer, Heidelberg (1990)

31. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

32. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009)

33. Koblitz, N., Menezes, A.: Another look at “provable security”. J. Cryptology 20(1),
3–37 (2007)

34. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) Advances in Cryptology - CRYPTO 1996.
LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

35. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

36. Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. In: Imai, H., Zheng,
Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 446–465. Springer, Heidelberg (2000)

37. Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

38. Nielsen, J.B., Venturi, D., Zottarel, A.: Leakage-resilient signatures with graceful
degradation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 362–379.
Springer, Heidelberg (2014)

39. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993)

40. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent
to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20.
Springer, Heidelberg (2005)

41. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

42. Schäge, S.: Tight proofs for signature schemes without random oracles. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 189–206. Springer,
Heidelberg (2011)

376 Ö. Dagdelen and D. Venturi

43. Schnorr, C.P.: Efficient identification and signatures for smart cards. In:
Quisquater, J.-J., Vandewalle, J. (eds.) Advances in Cryptology - EUROCRYPT
1989. LNCS, vol. 434, pp. 688–689. Springer, Heidelberg (1990)

44. Schütze, T.: Automotive security: Cryptography for car2x communication. In: Em-
bedded World Conference (2011)

45. Seurin, Y.: On the exact security of schnorr-type signatures in the random ora-
cle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 554–571. Springer, Heidelberg (2012)

Anonymous IBE from Quadratic Residuosity

with Improved Performance

Michael Clear�, Hitesh Tewari, and Ciarán McGoldrick

School of Computer Science and Statistics,
Trinity College Dublin

Abstract. Identity Based Encryption (IBE) has been constructed from
bilinear pairings, lattices and quadratic residuosity. The latter is an at-
tractive basis for an IBE owing to the fact that it is a well-understood
hard problem from number theory. Cocks constructed the first such
scheme, and subsequent improvements have been made to achieve
anonymity and improve space efficiency. However, the anonymous vari-
ants of Cocks’ scheme thus far are all less efficient than the original. In
this paper, we present a new universally-anonymous IBE scheme based
on the quadratic residuosity problem. Our scheme has better perfor-
mance than the universally anonymous scheme from Ateniese and Gasti
(CT-RSA 2009) at the expense of more ciphertext expansion.

Keywords: Identity Based Encryption, Anonymous IBE, Cocks Scheme,
Quadratic Residuosity.

1 Introduction

Identity-Based Encryption (IBE) is centered around the notion that a user’s
public key can be efficiently derived from an identity string and system-wide
public parameters. The public parameters are chosen by a Trusted Authority
(TA) along with a master secret key, which is used to extract secret keys for user
identities. IBE was first proposed by Shamir [1]. The first secure IBE schemes
were presented by Cocks [2] (based on the quadratic residuosity problem), and
Boneh and Franklin [3] (based on bilinear pairings). More recently, there have
been IBE constructions based on worst-case lattice problems [4, 5]. Ciphertext
expansion in Cocks’ scheme is large, which has hindered its practicality. Never-
theless, it is notable as being one of the few known IBE constructions based on
number-theoretic assumptions. The quadratic residuosity problem on which it
is based has been well studied, and is held to be a hard problem. Since it relies
on such a standard assumption, Cocks’ scheme has been subject to research ef-
forts to derive more powerful primitives such as anonymous IBE or Public-key
Encryption with Keyword Search (PEKS) [6]. It is known that Cocks’ scheme is
not anonymous.

The notion of anonymity stems from that of key privacy put forward by
Bellare et al. [7]. An IBE scheme is said to be anonymous if an adversary cannot

� The author’s work is funded by the Irish Research Council EMBARK Initiative.

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 377–397, 2014.
c© Springer International Publishing Switzerland 2014

378 M. Clear, H. Tewari, and C. McGoldrick

distinguish which identity was used to create a ciphertext, even if the adversary
gets to choose a pair of identities to distinguish between. Anonymous IBE is
a useful primitive because it can be used to facilitate searching on encrypted
data, to allow anonymous broadcasts to be made in a network, and to act as a
countermeasure against traffic analysis. A multitude of anonymous IBEs have
been constructed based on both pairings and lattices including [3, 5, 6, 8].

Anonymous variants of Cocks’ IBE scheme whose security relies on the
quadratic residuosity assumption have already been proposed in the litera-
ture [9–11]. The most efficient in terms of ciphertext size is due to Boneh, Gentry
and Hamburg [10]. However, encryption time in their scheme is quartic in the
security parameter, and thus has poor performance. The PEKS scheme in [9]
performs better but still requires many Jacobi symbol computations when used
as an anonymous IBE. The most time-efficient anonymous IBE to date was
presented at CT-RSA 2009 by Ateniese and Gasti [11]. Their construction has
similarly-sized ciphertexts to Cocks’ original scheme while there is a drop of
approximately 30% in performance compared to Cocks according to our exper-
imental results (for a 1024-bit modulus used to encrypt a 128-bit symmetric
key; note that IBE is typically used as part of a KEM-DEM). While this is still
practical, it is desirable to obtain an anonymous IBE from quadratic residuos-
ity whose performance is on par with the original Cocks scheme, especially for
time-critical applications.

1.1 Universal Anonymity

Ateniese and Gasti’s scheme also enjoys the property of universal anonymization,
first introduced at Asiacrypt 2005 by Hayashi and Tanaka [12]. This property
allows any party to anonymize a ciphertext without access to the secret key of the
recipient. An illustrative application involves disparate systems distinguished by
whether they need to know the intended recipient of encrypted data. Regulations
may stipulate that some systems learn the recipient’s identity. At some suitable
point prior to sending the encrypted data to less trusted systems, the encrypted
data can be anonymized by any party without knowledge of the secret key.

1.2 Contributions

We present a new universally anonymous IBE from quadratic residuosity whose
performance closely matches that of the original Cocks scheme. Our work builds
upon techniques presented in [13], especially the homomorphic property identi-
fied therein, to construct a universally anonymous variant of Cocks’ scheme that
achieves better performance than [11]. Unfortunately, the size of ciphertexts in
our scheme is double that of Cocks, and almost double that of [11]. However, we
obtain anonymity using a different approach which we believe to be conceptually
simpler. We prove this system ANON-IND-ID-CPA secure in the random oracle
model and provide both an analytical and experimental comparison between our
approach and that of [11].

Anonymous IBE from Quadratic Residuosity with Improved Performance 379

Another contribution of this paper is a security assessment of a scheme by
Jhanwar and Barua [14], which in turn is a variant of the non-anonymous IBE
system from [10]. We consider an alternative parameter setting that ensures IND-
ID-CPA security. The resulting scheme outperforms the original Cocks scheme,
and is slightly more space-efficient. Although the same ideas do not readily
allow us to construct an anonymous IBE, the performance benefits provide good
motivation for pursuing this in future work. Performance measurements from
this scheme are reported along with the others in Section 4. However, due to
space constraints, the details of this scheme are deferred to Appendix B.

1.3 Overview of Main Construction

As pointed out in previous works, the main obstacle to achieving anonymity
for variants of Cocks’ scheme is a property that is unconditionally satisfied for
ciphertexts produced under a certain identity id. This property holds with prob-
ability negligibly close to 1/2 with respect to any other identity id′. Thus, it is
possible for an adversary to readily distinguish the recipient’s identity by check-
ing whether this property holds.

We provide an informal description here to highlight the intuition behind our
approach. Let N = pq be an integer where p and q are prime. Let x ∈ Z. We

write

(
x

N

)
to denote the Jacobi symbol of x mod N .

As in [11], we let H : {0, 1}∗ → Z∗
N [+1] be a full-domain hash. A message

bit is mapped to an element of {−1, 1} via a mapping ν : {0, 1} → {−1, 1} with
ν(0) = 1 and ν(1) = −1.

An overview of the Cocks scheme is as follows. The Trusted Authority (TA)
generates two large primes p and q, which constitute the master secret key.
It outputs the public parameters N = pq. For any identity id, the public key
corresponding to that identity is computed as a = H(id). It will be shown later
that given p and q, it is easy to derive an integer r ∈ ZN with

r2 ≡ a mod N or r2 ≡ −a mod N.

Such an r is a secret key for identity id. Now encryption of a message m ∈ {0, 1}
under identity id is straightforward: an encryptor samples two integers t1, t2 ∈
Z∗
N uniformly at random subject to the condition that(

t1
N

)
=

(
t2
N

)
= ν(m).

It then computes a ciphertext (c := t1 + at−1
1 , d := t2 − at−1

2). Decryption is
also simple: set e := c if r2 ≡ a mod N ; otherwise set e := d. Then we decrypt

by computing ν−1

((
e+ 2r

N

))
. However, to simplify the description, we will

focus our attention on the first component of a ciphertext, namely c. In fact,
the properties that we will consider concerning such c with respect to a hold
analogously for d with respect to −a.

380 M. Clear, H. Tewari, and C. McGoldrick

It was observed by Galbraith1 that for any integer c generated as above, it is
an invariant that (

c2 − 4a

N

)
= 1.

We expect this to hold with probability negligibly close to 1/2 for random a.
Hence, an adversary has a non-negligible advantage attacking anonymity. In the
XOR-homomorphic variant from [13], the integer c is replaced by a polynomial
c(x) = c1x+ c0 in the quotient ring Ra = ZN [x]/(x2 − a). We can generalize the
above test for polynomials in Ra. Define

GT(a, c(x), N) =

(
c20 − c21a

N

)
.

Now we define two subsets Ga = {c(x) ∈ Ra : GT(a, c(x), N) = 1} and Ḡa =
{c(x) ∈ Ra : GT(a, c(x), N) = −1} of Ra. In addition, the set of legally generated
ciphertext polynomials (i.e. those in the image of the encryption algorithm)
is denoted by the set Sa. It is shown in [13] that Sa ≈

C
Ga (computationally

indistinguishable) even given access to the secret key r. It is also shown that Ga

is a multiplicative group in Ra and Sa is a subgroup of Ga.
The main idea behind our construction is to allow anonymized ciphertexts to

be elements of Ḡa half of the time andGa the other half. Therefore, the adversary
cannot use Galbraith’s test to distinguish identities. The main problem however
is that we don’t know what a “ciphertext” in Ḡa decrypts to without knowing
the secret key. We can show that a random element in Ḡa can be sampled by
multiplying any fixed element in g(x) ∈ Ḡa by a uniformly random element of
Ga. Our idea is to derive this fixed element g(x) from the user’s identity using
a hash function (modelled as a random oracle in the security proofs), and then
multiply it by an encryption of the desired message, which lies in Sa. Since Sa

and Ga are computationally indistinguishable, the resultant element c′(x) is also
computationally indistinguishable from a random element in Ḡa. It can also be
shown that the homomorphic property holds even between polynomials in Ḡa

and Ga. Therefore, c
′(x) is an encryption of the desired message XORed with

whatever g(x) decrypts to. Since the decryptor can determine what g(x) decrypts
to, she can recover the message.

1.4 Related Work

Di Crescenzo and Saraswat [9] constructed an anonymous variant of Cocks’
scheme. In fact their construction is an instance of Public-Key Encryption with
Keyword Search (PEKS), a primitive introduced in [6] which allows a sender to
encrypt a message with a set of hidden keywords such that a decryptor can only
determine whether a specific keywordW appears in the ciphertext if she holds a
secret key forW (the secret keys are computed by the TA). The scheme from [9]
requires 4k elements of ZN where k is the length of keywords represented as

1 Reported as emerging from personal communication in [10].

Anonymous IBE from Quadratic Residuosity with Improved Performance 381

binary strings. Also, encryption requires 4k Jacobi symbol evaluations. PEKS

captures anonymous IBE as a special case. Two keywords W
(0)
id and W

(1)
id rep-

resenting the messages 0 and 1 respectively are associated with each identity id.

Accordingly, secret keys for W
(0)
id and W

(1)
id constitute a secret key for identity

id.
Boneh, Gentry and Hamburg (BGH) [10] constructed the first space-efficient

variant of the Cocks scheme. The size of ciphertexts using their anonymous
scheme is quite practical; an �-bit message requires a ciphertext whose size is
log2N + � + 1 bits, which contrasts with 2� · log2N bits in Cocks. However,
encryption in their scheme is time-consuming. Encryption time is dominated by
the generation of � + 1 primes which are needed to help satisfy � + 1 equations
of the form Rx2 + Sy2 ≡ 1 mod N . It is reported in [10] that a 1024-bit prime
generation takes 123.6 ms on a 2.015 GHz AMD dual-core Athlon64. To encrypt
a 128 bit key, one would expect the total time to be on the order of 16 seconds
on the same machine since 128 + 1 primes must be generated. However, the
authors give a variant that instead requires primes of length log2

√
N bits at the

expense of an increase in ciphertext length. On the same benchmark machine, a
time of 11 ms is reported for a 512-bit prime generation, which brings the total
time down to ≈ 1.4 seconds. However, this variant is not anonymous.

While we have not implemented the constructions in [10], we believe they
are significantly slower than the scheme in [11] and the one presented in this
work. Encryption time is quartic in the security parameter as opposed to cubic
for standard number-theoretic schemes. A variant of the non-anonymous BGH
construction appeared in [14]. The authors of that work claim their variant
achieves higher performance for both encryption and decryption as a trade-off
for increased ciphertext size, which is 2 · log2 $

√
�%+2� bits for an �-bit plaintext.

We describe in Appendix B why their proof of security only goes through if
a sender encrypts logλω(1) bits where λ is the security parameter. While this
fact hinders the space efficiency of the scheme, our experiments show that its
performance is on par with Cocks for a similar level of security.

2 Preliminaries

2.1 Notation

A quantity is said to be negligible with respect to some parameter λ, written
negl(λ), if it is asymptotically bounded from above by the reciprocal of all poly-
nomials in λ.

For a probability distribution D, we denote by x
$←− D that x is sampled

according to D. If S is a set, y
$←− S denotes that y is sampled from x according

to the uniform distribution on S.
The set of contiguous integers {1, . . . , k} for some k > 1 is denoted by [k]. Let

D1 and D2 be distributions. We write D1 ≈ D2 to denote the fact that D1 and
D2 are statistically indistinguishable. In addition, we write D1 ≈

C
D2 to denote

the fact that both distributions are computationally indistinguishable.

382 M. Clear, H. Tewari, and C. McGoldrick

2.2 Security Definition for Anonymous IBE (ANON-IND-ID-CPA)

An IBE scheme is said to be anonymous if any PPT adversary has only a negligi-
ble advantage in the following game. This is referred to as ANON-IND-ID-CPA
security. At the beginning of the game, the adversary A is handed the public
parameters. It then proceeds to make queries for secret keys corresponding to
identities id1, . . . , idq1 for some integer q1 that is polynomial in the security pa-
rameter. Then it sends to the challenger two identities id∗0 and id∗1 such that
id∗0 �= id∗1 �= idi for 1 ≤ i ≤ q1. It also sends two messages m0 and m1. The
challenger samples a bit b uniformly, and sends the encryption of mb under id∗b
to A. In the final phase, A is allowed to query secret keys for further identi-
ties idq1+1, . . . , idq1+q2 where q2 is polynomial in the security parameter, and
id∗0 �= id∗1 �= idq1+i for 1 ≤ i ≤ q2. Finally, A outputs a guess b′ and is said to win
if b′ = b.

2.3 Quadratic Residues and Jacobi Symbols

Let m be an integer. A quadratic residue in the residue ring Zm is an integer x
such that x ≡ y2 mod m for some y ∈ Zm. The set of quadratic residues in Zm

is denoted QR(m). If m is prime, it is easy to determine whether any x ∈ Zm is
a quadratic residue. If m is an odd prime number, we can define the Legendre
symbol as a function of any integer x ∈ Z with respect to m as

(
x

m

)
=

⎧⎪⎨⎪⎩
1 if x ∈ QR(m)

−1 if x �≡ 0 mod m and x /∈ QR(m)

0 if x ≡ 0 mod m

.

The above function can be generalized to positive odd moduli M = mα1
1 . . .mαk

k

where m1, . . . ,mk are prime, and α1, . . . , αk are positive integers. The general-
ization is called a Jacobi symbol and is defined as(

x

M

)
=

(
x

m1

)α1

· · ·
(
x

mk

)αk

.

where

(
x

mi

)
denotes the Legendre symbol of x with respect to mi for 1 ≤ i ≤ k.

The subset of ZM with Jacobi symbol +1 is denoted by J(M); that is, J(M) =

{x ∈ Z :

(
x

M

)
= 1}. Naturally, QR(M) ⊆ J(M).

2.4 Quadratic Residuosity Problem

LetN be a product of two odd primes p and q. The quadratic residuosity problem
is to determine, given input (N, x) ∈ Z2

N where x ∈ J(N), whether x ∈ QR(N),
and it is believed to be intractable.

Anonymous IBE from Quadratic Residuosity with Improved Performance 383

2.5 Blum Integers

Finally, the schemes in this paper make use of Blum integers. A Blum integer
is a product of two primes that are both congruent to 3 modulo 4. As a result,
we define BlumGen(1λ) as a PPT algorithm which takes as input a security
parameter λ and outputs two equally-sized primes p and q, whose lengths depend
on λ, such that

p ≡ q ≡ 3 (mod 4).

2.6 Cocks Scheme

Let H : {0, 1}∗ → J(N) be a full-domain hash that sends an identity string
id ∈ {0, 1}∗ to an integer in ZN whose Jacobi symbol is +1. A secret key in
Cocks’ system is a Rabin signature for id. Therefore, to guarantee existential
unforgeability of such signatures, the random oracle model is needed.

− Cocks.Setup(1λ):

1. Repeat: (p, q) ← BlumGen(1λ).

Note that by definition of BlumGen, we have p ≡ q ≡ 3 (mod 4).

2. N ← pq

3. Output (PP := N,MSK := (N, p, q))

− Cocks.KeyGen(MSK, id):

1. Parse MSK as (N, p, q).

2. a← H(id).

3. r ← a
N+5−p−q

8 (mod N).

Therefore, either r2 ≡ a (mod N) or r2 ≡ −a (mod N).

4. Output skid := (N, id, r)

Remark 1. It is important that this algorithm always output the same square
root, since otherwise N can be factored. To achieve this, one may store the
root or calculate it deterministically as done so above.

− Cocks.Encrypt(PP, id,m):

1. Parse PP as N .

2. a← H(id)

3. Generate t1, t2
$←− Z∗

N such that

(
t1
N

)
=

(
t2
N

)
= ν(m) (Recall that

ν(m) maps m ∈ {0, 1} into {−1, 1}).
4. Output ψ := (t1 + at−1

1 , t2 − at−1
2)

− Cocks.Decrypt(skid, ψ):

1. Parse ψ as (ψ1, ψ2)

2. Parse skid as (N, id, r)

384 M. Clear, H. Tewari, and C. McGoldrick

3. a← H(id)

4. If r2 ≡ a (mod N), set d← ψ1. Else if r2 ≡ −a (mod N), set d← ψ2.
Else output ⊥ and abort.

5. Output ν−1(

(
d+ 2r

N

)
)

3 Time-Efficient Universally Anonymous IBE

3.1 Overview of Our Construction

In order to explain our construction, it is necessary to first describe the XOR-
homomorphic variant of Cocks’ scheme from [13]. LetR = ZN [x] be a polynomial
ring over ZN . Let a be an integer in J(N). Then let Ra be the quotient ring
R/(x2−a). Recall the generalization of Galbraith’s test to the ring R as follows.

Definition 1 (Galbraith’s Test over R). Define Galbraith’s Test for the ring
R as the function GT : ZN ×R → {−1, 0,+1} given by

GT(a, c(x), N) =

(
c20 − c21a

N

)
.

Define the subset Ga ⊂ Ra as follows:

Ga = {c(x) ∈ Ra : GT(a, c(x), N) = 1}.

Therefore, this is the subset of Ra that passes Galbraith’s test. Define the subset
Ḡa ⊂ Ra as follows:

Ḡa = {c(x) ∈ Ra : GT(a, c(x), N) = −1}.

Correspondingly, this is the subset of Ra that fails Galbraith’s test. Now define
the subset Sa ⊂ Ga:

Sa = {2hx+ (t+ ah2t−1) ∈ Ga | h ∈ ZN , t, (t+ ah2t−1) ∈ Z∗
N}.

The subset Sa is precisely the image of the following algorithm E which takes as

input an integer a ∈ J(N) (i.e.

(
a

N

)
= 1) along with a message bit m ∈ {0, 1}

and produces an element of Sa that encrypts m. This is central to the XOR-
homomorphic variant of the Cocks scheme presented in [13], which is referred to
as xhIBE in that paper. Like Cocks’ original scheme, xhIBE requires a ciphertext
to have two components. As such, E can be viewed as the encryption algorithm
for a single component. Accordingly, to encrypt a message m in xhIBE, the
sender runs E(a,m) and E(−a,m) to produce the first and second component of
a ciphertext respectively.

Anonymous IBE from Quadratic Residuosity with Improved Performance 385

Algorithm E(a,m):

1. Choose an integer t
$←− Z∗

N uniformly such that(
t

N

)
= ν(m).

2. Choose an integer h
$←− ZN uniformly.

3. Compute c(x) ← 2hx+ (t+ ah2t−1) ∈ R

4. Repeat steps 1-4 until (t+ ah2t−1) ∈ Z∗
N .

5. Output c(x).

With overwhelming probability, (t+ ah2t−1) will be invertible in ZN .
In addition, we define a decryption algorithm D which takes an integer r ∈ ZN

and a polynomial in R as input, and outputs a bit m ∈ {0, 1}. This is defined as
follows:

Algorithm D(r, c(x)):

1. Compute j =

(
c(r)

N

)
∈ {−1, 0,+1}.

2. If j = 0, output ⊥.

3. Else output ν−1(j) ∈ {0, 1}.
Note that for the sake of notational convenience, it is assumed that N is an
implicit input in E and D. Suppose a ∈ QR(N). Then let r ∈ ZN such that
r2 ≡ a mod N . It can be shown that D(r, ·) whose domain is restricted to
Sa = image(E(a, ·)) is a group homomorphism (Sa, ∗) → (Z2,+). Therefore for
m1,m2 ∈ {0, 1}:

D(r, E(a,m1) ∗ E(a,m2)) = m1 ⊕m2.

In fact, for any c(x), d(x) ∈ R with D(r, c(x)),D(r, d(x)) ∈ {0, 1}, it holds that

D(r, c(x)d(x)) = D(r, c(x)) ⊕D(r, d(x)).

Naturally this means that an XOR homomorphism exists even between elements
of Ga and Ḡa.

Let g(x) ∈ Ḡa. Below are some basic facts which we prove in Section 3.3.

1. g(x)Ga = Ḡa.

2. {h(x) $←− Ḡa} ≈ {g(x)h′(x) | h′(x) $←− Ga}.

3. {h(x) $←− Ḡa} ≈
C
{g(x)h′(x) | h′(x) $←− Sa}.

Property 3 states that the uniform distribution defined over Ḡa and the distri-
bution of multiplying g(x) by uniformly random elements from Sa are compu-
tationally indistinguishable (without access to p and q).

We need two hash functions. Like Cocks’ scheme, a full-domain hash H :
{0, 1}∗ → J(N) is employed that maps identity strings to elements of ZN whose

386 M. Clear, H. Tewari, and C. McGoldrick

Jacobi symbol is +1. Another hash function H ′ : {0, 1}∗ → R is needed that
maps an identity string id to an element g(x) ∈ R such that GT(H(id), g(x), N) =
GT(−H(id), g(x), N) = −1 i.e. the g(x) is taken to pass Galbraith’s test for both
a = H(id) and −a. Roughly speaking, an example of constructing such as hash

function usingH is via a form of rejection sampling i.e. to sample g′(x)i
$←− H(id ‖

i) for consecutive integers i > 0 until GT(a, g′(x)i, N) = GT(−a, g′(x)i, N) = −1.
In the security proofs, H is modelled as a random oracle on J(N) and H ′ is
modelled as a random oracle whose response when queried on id is distributed
according to the uniform distribution on ḠH(id) ∩ Ḡ−H(id). To anonymize a ci-
phertext component (recall that this discussion is simplified to deal with a single
component of a ciphertext corresponding to a = H(id), the steps are repeated
for the case of −a) c(x) associated with an identity id, the following steps are
performed:

1. a← H(id)

2. c′(x) ← E(a, 0).

3. Uniformly sample a bit b
$←− {0, 1}.

4. If b = 0, output c′(x)c(x).

5. Else compute g(x) ← H ′(id), and output g(x)c(x)c′(x).
Note that the construction is universally anonymous in that anyone can
anonymize a ciphertext without having the secret key for the target identity
and without access to the random coins used by the encryptor.

The decryption function D′ for our construction is defined in terms of D.

D′(r, c(x)) =

⎧⎪⎨⎪⎩
D(r, c(x)) ⊕D(r, g(x)) if c(x) ∈ Ḡa

D(r, c(x)) if c(x) ∈ Ga

⊥ otherwise

3.2 Formal Description

Our scheme is referred to as UAIBE for the remainder of the paper; a formal
description is as follows.

Setup(1λ) : On input a security parameter 1λ in unary, generate (p, q) ←
BlumGen(1λ). Compute N = pq. Output public parameters PP = (N,H,H ′) and
master secret key MSK = (N, p, q), where H is a hash function H : {0, 1}∗ →
J(N), and H ′ is a hash function H ′ : {0, 1}∗ → R with the property that for any
identity id ∈ {0, 1}∗, a← H(id) and g(x) ← H ′(id), it holds that

GT(a, g(x), N) = GT(−a, g(x), N) = −1.

KeyGen(MSK, id) : On input master secret key MSK = (N, p, q) and identity
id ∈ {0, 1}∗, perform the following steps:

1. Compute a← H(id) ∈ J(N).

2. If r ∈ QR(N), compute the square root r = a1/2;

Anonymous IBE from Quadratic Residuosity with Improved Performance 387

3. Else compute r = (−a)1/2.
4. Output (N, id, r) as the secret key for identity id.

See the description of Cocks’ scheme in Section 2.6 for a convenient way to
compute a square root in ZN deterministically.

Encrypt(PP, id,m): On input public parameters PP = (N,H,H ′), an identity
id ∈ {0, 1}∗, and message m ∈ {0, 1} run:

1. Compute a← H(id) ∈ J(N).

2. Compute g(x) ← H ′(id) ∈ R.

3. Compute c(x) ← E(a,m).

4. Compute d(x) ← E(−a,m).

5. Uniformly sample two bits v1, v2
$←− {0, 1}.

6. If v1 = 1, then set c(x) ← c(x) ∗ g(x).
7. If v2 = 1, then set d(x) ← d(x) ∗ g(x).
8. Output c := (c(x), d(x)).

Decrypt(skid, c): On input a secret key skid = (N, id, r) and a ciphertext c =
(c(x), d(x)), do:

1. Compute a← H(id) ∈ J(N).

2. Compute g(x) ← H ′(id) ∈ R.

3. If r2 ≡ a mod N , set e(x) ← c(x). Else if r2 ≡ −a mod N , set e(x) ← d(x).
Else output ⊥ and abort.

4. If GT(r2 mod N, e(x)) = −1, set e(x) ← e(x) ∗ g(x).
5. Output D(r, e(x)).

3.3 Security

Lemma 1. Let f(x), g(x) ∈ Ra. Then GT(a, f(x)g(x), N) = GT(a, f(x), N) ·
GT(a, g(x), N).

Proof. Consider the product v(x) = f(x)g(x) ∈ Ra. We have that v0 = f0g0 +
f1g1a and v1 = f0g1 + f1g0. It is easy to verify that(

(f0g0 + f1g1a)
2 − (f0g1 + f1g0)

2a

N

)
=

(
(f2

0 − af2
1)(g

2
0 − ag21)

N

)
=

GT(a, f(x), N) · GT(a, g(x), N).

. ��

Lemma 2. Let g(x) ∈ Ḡa. Then g(x) ·Ga = Ḡa.

Proof. By Lemma 1, g(x)h(x) ∈ Ḡa for any h(x) ∈ Ga.
By Lemma 1 in [13], Ga is a multiplicative group in Ra. Hence, |g(x) ·Ga| =

|Ga|. We claim that every t(x) ∈ Ḡa can be expressed as g(x)t′(x) for some

388 M. Clear, H. Tewari, and C. McGoldrick

t′(x) ∈ Ga. Assume the contrary for the purpose of contradiction i.e. there
exists a t(x) /∈ g(x) ·Ga. It follows that t(x) ·Ga ∩ g(x) ·Ga = ∅. But by Lemma
1, t(x)2 ∈ Ga and g(x)t(x) ∈ Ga. From the commutativity of Ra, we have
g(x) · t(x)2 = t(x) · (t(x)g(x)), which implies that t(x) · Ga ∩ g(x) · Ga �= ∅, a
contradiction. The lemma follows. ��

We include the following result from [13] that is used in the proofs below.

Corollary 1 (Corollary 2, [13]). The distributions {(N, a, t + ah2t−1, 2h) :

N ← Setup(1λ), a
$←− J, t, h

$←− Z∗
N)} and {(N, a, z0, z1) : N ← Setup(1λ), a

$←−
J, z0 + z1x

$←− Ga \ Sa} are indistinguishable assuming the hardness of the
quadratic residuosity problem.

Corollary 2. Let g(x) ∈ Ḡa. Then

1. {h(x) $←− Ḡa} ≈ {g(x)h′(x) | h′(x) $←− Ga}.

2. {h(x) $←− Ḡa} ≈
C
{g(x)h′(x) | h′(x) $←− Sa}.

Proof. (1). From Lemma 2, each element in Ḡa can be represented as g(x)h′(x)
for a unique h′(x) ∈ Ga. Therefore, if h

′(x) is sampled uniformly from Ga, then
h′(x)g(x) is uniformly distributed in Ḡa.

(2). By Corollary 1, Ga ≈
C
Sa without knowledge of the prime factors of N ,

and thus this property follows from (1). ��

Theorem 1. UAIBE is ANON-IND-ID-CPA-secure in the random oracle model
assuming the hardness of the quadratic residuosity problem.

Proof. We prove the theorem by showing that a poly-bounded adversary has a
negligible advantage distinguishing between the following series of games.

Game 0. This is the ANON-IND-ID-CPA game between the challenger and an
adversary A with the scheme UAIBE as described in Section 3.2.

Game 1. The only change in this game from Game 0 is as follows. Let b denote
the bit chosen by the challenger to choose either between the tuples (id0,m0) or
(id1,m1) supplied by the adversary. Let a = H(idb). Instead of encrypting mb,
we instead encrypt a random bit b′ ∈ {0, 1} i.e. we have c(x) ← E(a, b′) and
d(x) ← E(−a, b′).

We argue that if there is an efficient distinguisher A that can distinguish
between Game 0 and Game 1, then there is efficient adversary B that can use
A to attack the IND-ID-CPA security of xhIBE. Secret key queries from A are
relayed to B’s oracle. When A chooses its challenge tuples (id0,m0) and (id1,m1),
perform the following:

1. If b′ = mb, output a random bit and abort.

2. Else choose challenge identity id∗ = idb.

Anonymous IBE from Quadratic Residuosity with Improved Performance 389

3. When B’s IND-ID-CPA challenger responds with a challenge ciphertext

(c(x)∗, d(x)∗), choose two random bits u0, u1
$←− {0, 1}: if u0 = 1, set c(x)∗ ←

c(x)∗g(x); if u1 = 1, set d(x)∗ ← d(x)∗g(x) where g(x) ← H ′(id∗) (this oracle
can be provided by B).

4. Give (c(x)∗, d(x)∗) to A, and output A’s guess.

If A has advantage ε distinguishing games Game 0 and Game 1, then B has an
advantage of 1

2ε.

Game 2. To recap, note that the challenge ciphertexts in Game 1 have the distri-

bution {(c(x), d(x)) $←− Sa×S−a : a = H(idb), b
$←− {0, 1}}. This is because by def-

inition for any a ∈ J(N), we have Sa = image(E(a, ·)) and S−a = image(E(−a, ·)).
The next step is to replace Sa with Ga. Instead of setting c(x) ← E(a, b′) where
a = H(idb), we choose c(x)

$←− Ga.
Corollary 1 1 shows that Sa ≈

C
Ga for any a ∈ J(N) without access to the

factorization of N . We follow a similar argument to the above to “embed” the
challenge element from either Sa or Ga. We handle secret key queries without the
factors ofN by programming the oracle responses fromH . Suppose the adversary
queries the secret key for an identity id′. Assume without loss of generality that
it first queries the random oracle H on id′. On the first such query, we uniformly

sample a secret key r′ $←− Z∗
N , set a′ ← r′2 mod N ∈ J(N), store the tuple

(id′, r′, a′) and return a′. This has the correct distribution and secret keys can
easily be extracted. A non-negligible advantage distinguishing Game 1 and Game
2 translates to a non-negligible advantage distinguishing the distributions Sa and
Ga, which contradicts Corollary 2 in [13].

Game 3. The change from Game 2 to Game 3 is similar to that from Game
1 to Game 2, namely the second ciphertext component d(x) is sampled from
G−a instead of S−a where a = H(idb). The argument for indistuinguishability is
analogous to that of the last game.

Game 4. This game is identical to Game 3 except that instead of setting a ←
H(idb), we instead set a

$←− J(N). Furthermore, step 2 of Encrypt is replaced with
g(x) ← Ḡa ∪ Ḡ−a ∈ R.

Clearly, the adversary has a zero advantage in this game since a ciphertext
reveals nothing about the challenger’s bit b. We now show that a ciphertext in
Game 4 is indistinguishable from a ciphertext in Game 3. Observe that each
component of the latter is computationally indistinguishable from a uniformly
random element of the set of units in R. The units in R are precisely those
elements u(x) satisfying

GT(a′, u(x), N) ∈ {−1, 1}

with respect to any a′ ∈ J(N); that is, the set of units is Ga′ ∪ Ḡa′ .
In Game 3, half of the time the ciphertext component c(x) (resp. d(x)) is

uniformly distributed in Ḡ
a
(resp. Ḡ−a) according to Corollary 2, and the other

half it is uniformly distributed in Ga (resp. G−a), by definition of Game 3.

390 M. Clear, H. Tewari, and C. McGoldrick

Thus, each component is a uniformly random element of the set of units in
R. But similarly, we have that each component of a ciphertext in Game 4 is
also uniformly distributed in the set of units in R. Therefore, both games are
indistinguishable to a poly-bounded adversary.

We can conclude that an adversary’s advantage is negligible distinguishing
between Game 0 and Game 4, which implies that its advantage attacking the
ANON-IND-ID-CPA security of UAIBE is also negligible. ��

3.4 Comparison with Ateniese and Gasti’s Construction

Our proposed construction has several advantages. Firstly, it is arguably concep-
tually simpler than existing anonymous variants of Cocks’ scheme. Furthermore,
like the construction put forward in [11], it is universally anonymous, which may
be useful in settings where messages pass through multiple systems, some of
which need to know the recipient’s identity whereas others should not be privy to
this information. Hence, a trusted proxy can be tasked with anonymizing cipher-
texts without access to the secret key. The scheme is also group-homomorphic for
the XOR operation; this is useful in some settings as discussed in [13], although
anonymity must be sacrificed for homomorphic operations to be performed. An-
other advantage of our scheme is that it faster run-time performance than other
anonymous IBEs based on quadratic residuosity. We elaborate more on its per-
formance in this section by comparing it to its nearest rival (in terms of run-tie
performance), namely the Ateniese and Gasti (AG) scheme from [11]. However,
the most significant downside of the scheme is its poor space efficiency; ciphertext
expansion is double that of Cocks, and almost double that of AG.

3.5 Analysis of Ateniese and Gasti’s Construction (AG)

Encryption in the AG scheme requires a number of Galbraith test computations
per bit of plaintext. Recall that evaluating a Galbraith test entails a costly Jacobi
symbol computation. The main intuition behind AG is to “embed” a Cocks
ciphertext within a sequence of integers Ti. Its position, k, in such a sequence
is distributed according to a geometric distribution with parameter p = 1/2.
Furthermore, the terms T1, . . . , Tk−1 are chosen such that GT(a, Ti, N) = −1
for i ∈ [k − 1]. The intuition behind this approach is grounded in the fact that
Galbraith’s test can be shown (see Section 2.3 in [11]) to be the “best test”
possible in attacking the anonymity of Cocks’ scheme. Since the probability of
a random element in Z∗

N passing Galbraith’s test is 1/2, the position of the first
element in a random sequence to pass Galbraith’s test is distributed according
to a geometric distribution with parameter p = 1/2. A hash function is used
to generate the sequence of integers based on short binary strings incorporated
in an AG ciphertext. We defer the details to Appendix A, but it sufficient here
to note that � is a global parameter in AG that determines the number of such
binary strings (this is closely related to the number of Galbraith tests that must
be performed on average during encryption).

Anonymous IBE from Quadratic Residuosity with Improved Performance 391

Let Y be a random variable representing the number of Galbraith tests eval-
uated in AG per bit of plaintext. A lower bound for the expected value E[Y] of
Y can be derived as

E[Y] ≥ 4(1 + (log κ− 1) · 2−�)

where κ is the security parameter. A rough lower bound on the variance Var(Y)
is

Var(Y) ≥ 22−2�(−8 + 7 · 22� + 21+� − 3 · 22+��).

See Appendix A for the derivations of these inequalities. Ateniese and Gasti
found � = 6 to be a good compromise between ciphertext size and performance.
See Appendix A for supporting analysis. Setting � = 6 results in a mean number
of Galbraith tests per bit of plaintext of ≈ 4.22 with a standard deviation of
≈ 6.92. Our scheme on the other hand does not require any Galbraith test to be
performed during encryption.

4 Experimental Results

To perform an empirical comparison between our scheme and AG, both schemes
were implemented in C using the OpenSSL library. Our implementation was
based on code provided by the authors of [11]. The following experiment was
run for each of the four schemes: Cocks, AG, UAIBE and JB. The latter is
a shorthand for our modification to the construction of Jhanwar and Barua
described in Appendix B. Note that JB is not anonymous and its inclusion here
is to demonstrate the fact that it achieves comparable efficiency to Cocks. Hence,
AG and UAIBE are the two anonymous schemes being compared.

1. For each t in the set {1024, 2048, 3072, 4096}:
(a) A modulus N of t bits is generated along with primes p and q that

constitute the master secret key.

(b) The public key a and secret key r are derived for some predefined identity
string id. A random 128-bit message m is generated.

(c) The following is repeated 50 times:

i. Encrypt m under identity id to produce ciphertext c.

ii. Decrypt c with secret key r and verify the decrypted message matches
m.

iii. The time elapsed performing step 3.(a) and 3.(b) is calculated.

(d) An average over the times calculated in step 3.(c) is obtained.

The code was compiled with optimization flag ’-02’ using GCC version 4.4.5-
8 with OpenSSL version 0.9.8o. The benchmarks were executed on a machine
with 4 GB of RAM and an Intel Core i5-3340M CPU clocked at 2.70 GHz.
The benchmark machine was running GNU/Linux 3.2.41 (x86-64). Our imple-
mentation however was unoptimized and did not exploit parallelization. For the
interested reader, the implementation of encryption in Cocks, AG and UAIBE

392 M. Clear, H. Tewari, and C. McGoldrick

Fig. 1. Average times to encrypt a 128-bit message for Cocks, AG and UAIBE

involved precomputation of random integers with Jacobi symbol −1 and +1.
This is not needed for JB.

The results of the experiment (average encryption times) are shown in Figure
1. Note that UAIBE and Cocks exhibit similar performance whereas JB is only
marginally less efficient than Cocks. On the other hand, AG performs notably
worse than UAIBE on average. To illustrate the comparison, encryption and
decryption times for all four schemes for the case of a 1024-bit modulus are
presented in Table 1.

Table 1. Encryption and decryption times in milliseconds for a 128-bit message with
a key size of 1024 bits, averaged over 50 runs

Scheme Encryption -Mean (Std Dev) Decryption - Mean (Std Dev)

Cocks 77.39 (3.05) 13.32 (0.14)
AG 140.35 (19.22) 40.79 (1.68)

UAIBE 79.02 (3.14) 27.52 (0.41)
JB 86.78 (0.93) 21.97 (0.42)

Acknowledgments. The authors would like to thank the anonymous reviewers
for their many helpful comments.

Anonymous IBE from Quadratic Residuosity with Improved Performance 393

References

1. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) Advances in Cryptology CRYPTO - 1984. LNCS, vol. 196, pp.
47–53. Springer, Heidelberg (1985)

2. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

3. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

4. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC 2008: Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, pp. 197–206. ACM, New York (2008)

5. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010)

6. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

7. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

8. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

9. Di Crescenzo, G., Saraswat, V.: Public key encryption with searchable key-
words based on jacobi symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007)

10. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: FOCS, pp. 647–657. IEEE Computer Society (2007)

11. Ateniese, G., Gasti, P.: Universally anonymous IBE based on the quadratic residu-
osity assumption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 32–47.
Springer, Heidelberg (2009)

12. Hayashi, R., Tanaka, K.: Universally anonymizable public-key encryption. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 293–312. Springer, Heidelberg
(2005)

13. Clear, M., Hughes, A., Tewari, H.: Homomorphic encryption with access policies:
Characterization and new constructions. In: Youssef, A., Nitaj, A., Hassanien, A.E.
(eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 61–87. Springer, Heidelberg
(2013)

14. Jhanwar, M.P., Barua, R.: A variant of boneh-gentry-hamburg’s pairing-free iden-
tity based encryption scheme. In: Yung, M., Liu, P., Lin, D. (eds.) Inscrypt 2008.
LNCS, vol. 5487, pp. 314–331. Springer, Heidelberg (2009)

15. Barua, R., Jhanwar, M.: On the number of solutions of the equation rx 2 + sy 2 = 1
(mod n). Indian Journal of Statistical 2010 72-A (pt. 1), 226–236 (2010)

394 M. Clear, H. Tewari, and C. McGoldrick

A Expected Number of Galbraith Tests in the Ateniese
and Gasti Scheme

Ateniese and Gasti proposed the following approach to anonymize a Cocks ci-
phertext (c, d) ∈ Z∗

N which has been computed with public key a = H(id), .
Two integers k1 and k2 are independently sampled according to a geometric
distribution with parameter 1/2. Two sequences of integers T1, . . . , Tm ∈ Z∗

N

and V1, . . . , Vm ∈ Z∗
N are randomly generated subject to the condition that for

1 ≤ i < k1 and 1 ≤ j < k2

GT(a, Z1 − Ti, N) = −1 and GT(−a, Z2 − Vj , N) = −1 (A.1)

where Z1 = c + Tk1 and Z2 = d + Tk2 . Note that since GT(a, c,N) = 1 and
GT(−a, d,N) = 1 by virtue of (c, d) being a Cocks ciphertext, it obviously holds
that GT(a, Z1−Tk1 , N) = GT(−1, Z2−Tk2, N) = 1. The anonymized ciphertext
is outputted as (Z1, T1, . . . , Tm) ∈ (Z∗

N)m+1 and (Z2, V1, . . . , Vm) ∈ (Z∗
N)m+1. If

m is large enough, i.e. polynomial in the security parameter, it can be shown
that this construction is ANON-IND-ID-CPA-secure.

A significant disadvantage of this construction is the fact that 2(m + 1) el-
ements of Z∗

N are needed per bit of plaintext in comparison to the 2 elements
required by Cocks. To address this, Ateniese and Gasti present a more space-
efficient variant.

The main difference in the space-efficient variant is in how the Ti and Vi are
generated. A new global parameter � ∈ N is fixed. Also, the existence of a hash
function G : {0, 1}∗ → ZN is assumed. Let X be a multi-bit message. Alice
chooses a random identifier MIDX when encrypting X . Now to encrypt the j-th
bit of X , she computes a ciphertext

(Z1, α1, . . . , α�) and (Z2, β1, . . . , β�)

where αi, βi ∈ {0, 1}e for i < �, and α�, β� ∈ {0, 1}e′. Note that e and e′ > e are
fixed global parameters. The sequences Ti and Vi are generated as follows:

Ti = G(MID ‖ 0 ‖ αi ‖ j) and Vi = G(MID ‖ 1 ‖ βi ‖ j) (A.2)

for 1 ≤ i < � and

Ti = G(MID ‖ 0 ‖ α� ‖ j) and Vi = G(MID ‖ 1 ‖ β� ‖ j) (A.3)

for i ≥ �. Alice must choose appropriate αi and βi in order to satisfy A.1. When
k1 ≤ � and k2 ≤ �, this is not too costly because each selection affects only
one member of the respective sequence. Moreover, this will be the case with
high probability for sufficiently large �, However, as pointed out in [11], in the
case when either k1 ≥ � or k2 ≥ �, the cost is exponential in k1 − � or k2 − �
respectively.

We now compute the average number of Galbraith tests per bit of plaintext. In
fact, it suffices to restrict our attention to a single ciphertext component because
we can double the result to obtain the total number of Galbraith tests.

Anonymous IBE from Quadratic Residuosity with Improved Performance 395

Now the expected number of Galbraith tests is computed as follows. Let X
be random variable following a geometric distribution with parameter 1/2 over
the space {0, 1, 2, . . .}. Denote by Y ′ the random variable that determines the
number of Galbraith tests performed. There are always at least k Galbraith tests

performed, where k
$←− X . Thus,

E[Y ′] ≥ E[X] = 1.

Consider a random variable Z giving the number of tests performed when se-
lecting α1, . . . , α�−1. It holds that E[Z] = 2 · E[min(X, � − 1)], since there are
2 expected trials per αi for i ≤ k subject to the constraint that k ≤ � − 1. We
calculate E[min(X, �− 1)] as follows:

�−1∑
k=0

k

2k+1
+ (�− 1)

�−1∑
k=0

1

2k+1
= 1− 21−�.

It is necessary to subtract E[min(X, � − 1)] from E[Z] because these particular
tests are already incorporated into E[X]. Therefore, we now have

E[Y ′] ≥ E[X] + E[Z]− E[min(X, �− 1)] = 2(1− 2−�).

There is a 1/2� chance that k ≥ �. In this case, a single binary string, namely
α� ∈ {0, 1}e′ must be selected that satisfies k − � Galbraith tests. Conditioned
on k ≥ �, the expected value of k is �+1, and the expected number of trials per
selection of α� is therefore 2((� + 1) − �) = 2. Now it remains to compute the
expected number of selections of α�. It turns out that this is equivalent to the St.
Petersburg lottery. Thus, the expected value is infinite if no bound is set on k and
equal to the bound otherwise, all conditioned on k ≥ �. To preserve security, this
bound cannot be polylogarithmic in the security parameter κ. However, setting
it as such allows us to derive a (loose) lower bound on the number of selections.
As a consequence, we formulate a lower bound on the number of selections as

log κ

2�
.

A lower bound on the expected number of tests induced by k ≥ � is

log κ

2�−1
.

Putting all components together yields

E[Y ′] ≥ 2(1 + (log κ− 1) · 2−�).

A rough lower bound on the variance Var(Y ′) can be calculated in a similar
manner as

Var(Y ′) ≥ Var(Z) = 21−2�(−8 + 7 · 22� + 21+� − 3 · 22+��).

Figure 2 shows approximations for the mean and standard deviation based on
these lower bounds by taking the security parameter κ to be 80 (the value used
in [11]). The figure supports the empirical findings of [11] from which � = 6 was
found to be a good compromise between ciphertext size and performance.

396 M. Clear, H. Tewari, and C. McGoldrick

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
u
m
b
er

o
f
G
a
lb
ra
it
h
te
st
s

Parameter �

Mean
Standard Deviation

Fig. 2. Dependence on number of Galbraith tests on parameter �

B Variant of the Boneh, Gentry and Hamburg (BGH)
Construction with Improved Performance

Due to space constraints, we do not describe the Boneh, Gentry and Hamburg
(BGH) [10] construction here. We refer the reader to [10] and the full version of
this work for more details. It is sufficient to point out that their approach hinges
on solving equations of the form Rx2 + Sy2 = 1 modulo N to yield (x, y) ∈ Z2

N

and outputting polynomials f(r) ← xr + 1 and g(s) ← 2ys + 2. The method
they propose to solve such equations involves the generation of primes, which is
the main expense.

B.1 Jhanwar and Burua (JB) Variant

An alternative approach was explored by Jhanwar and Burua in [14], which we
refer to as JB. Their approach is based on finding a random point (x, y) ∈ Z2

N

on the curve Rx2 + Sy2 = 1 by making use of the following lemma.

Lemma 3 (Lemma 2.1, [15]). Let N be prime. Let R,S ∈ ZN where S ∈
QR(N). Let s be a square root of S modulo N . Then any solution (x0, y0) ∈ Z2

N

to the equation Rx2 + Sy2 = 1 is of the form(
−2st

R+ St2
,
R− St2

s(R+ St2)

)
∈ Z2

N

for some t ∈ Z∗
N such that R+ St2 ∈ Z∗

N .

Anonymous IBE from Quadratic Residuosity with Improved Performance 397

In [14], the authors exploit Lemma 3 to generate a random solution to Rx2 +
Sy2 = 1 by choosing a t ∈ Z∗

N uniformly at random. However, only the sender,
who has access to s, can generate such a solution. Therefore, it is necessary to
incorporate the x-coordinate in the ciphertext per bit of plaintext so that the
receiver can form the polynomial f(r) ← xr + 1. This leads to considerable
ciphertext expansion compared to BGH since 2� elements x1, . . . , x�, x̄1, . . . , x̄�
must be incorporated in the ciphertext. To counteract this considerable blowup
in ciphertext size, an optimization is employed in JB, based on the product
formula from [10], whereby only 2κ elements need to be sent for some parameter
κ.

JB is claimed to be IND-ID-CPA secure by Theorem 2 in [14]. We make an
observation here concerning this theorem. Jhanwar and Barua propose setting
κ = $

√
�% to ensure the ciphertext size is kept “small”. However, their argument

that Game 5 and Game 6 in the proof of Theorem 2 are indistinguishable in the
view of an adversary bounds the probability of an attacker guessing correctly
by 1

2κ . Hence if � is polylogarithmic in the security parameter, it follows that
an adversary has a non-negligible advantage distinguishing both games, which
invalidates the proof of security. As a result, to guarantee μ bits of security, it
becomes necessary to ensure that plaintexts consist of at least μ2 bits. Concretely,
a plaintext of 800 bytes would have to be encrypted to guarantee 80 bits of
security if the parameter setting proposed in [14] is employed. A more sensible
setting is

κ = min(max(μ,
√
�), �) (B.1)

where μ is the desired security level and � is the length of a plaintext in bits.
Even with this change, the scheme still provides excellent performance. In con-
crete terms, we see that to encrypt a 128-bit symmetric key using a 1024-bit
modulus, the ciphertext size is 20,512 bytes (note that κ = 80) in comparison
to 32,768 bytes for Cocks. Furthermore, the scheme outperforms Cocks. The
modified scheme with κ chosen according to Equation B.1 achieves compara-
ble efficiency to Cocks, but with lower ciphertext expansion. Our experimental
results in Section 4 provide a performance comparison.

Anonymity. Given the performance benefits of this scheme, a natural question
is whether an anonymous variant can be constructed. Unfortunately, attempts
to exploit the same techniques to construct an anonymous IBE have not been
successful. It may be tempting to start from the anonymous IBE presented
in [10] and incorporate the solutions to the relevant equations in the ciphertext.
However, it then becomes easy for an attacker to tell whose identity was used
to create a ciphertext.

Expressive Attribute Based Signcryption

with Constant-Size Ciphertext

Y. Sreenivasa Rao and Ratna Dutta

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721302, India
ysrao,ratna@maths.iitkgp.ernet.in

Abstract. In this paper, we propose a new attribute-based signcryp-
tion (ABSC) scheme for linear secret-sharing scheme (LSSS)-realizable
monotone access structures that is significantly more efficient than ex-
isting ABSC schemes in terms of computation cost and ciphertext size.
This new scheme utilizes only 6 pairing operations and the size of ci-
phertext is constant, i.e., independent of the number of attributes used
to signcrypt a message. While the secret key size increases by a factor of
number of attributes used in the system, the number of pairing evalua-
tions is reduced to constant. Our protocol is proven to provide ciphertext
indistinguishability under adaptive chosen ciphertext attacks assuming
the hardness of decisional Bilinear Diffie-Hellman Exponent problem and
achieves existential unforgeability under adaptive chosen message attack
assuming the hardness of computational Diffie-Hellman Exponent prob-
lem. The proposed scheme achieves public verifiability of the ciphertext,
enabling any party to verify the integrity and validity of the ciphertext.

Keywords: attribute based signcryption, constant-size ciphertext, pub-
lic ciphertext verifiability, linear secret-sharing scheme.

1 Introduction

In some applications, both encryption and signing are needed to ensure confiden-
tiality and authenticity of the transmitted data. For instance, electronic voting
and cloud technology, where the user wants to encrypt his data to guarantee pri-
vacy, and at the same time, the user should also be able to prove his genuineness
at the destination center (voting center or cloud). One possible approach for such
scenarios is to perform both encryption and signing sequentially. However, this
technique is inefficient due to the fact that the resulting complexity is sum of the
complexities of both the primitives. In order to deploy this approach widely in
practice, Zheng [10] devised a novel cryptographic primitive called signcryption
that is a proper mixture of both encryption and signing in a single primitive.
And, the cost of signcryption is significantly smaller than the cumulative cost
of both the primitives. With the development of identity based encryption [12],
Malone-Lee [11] proposed the first identity based signcryption by combining

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 398–419, 2014.
c© Springer International Publishing Switzerland 2014

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 399

encryption and signature schemes in the identity based setting. Later, Sahai
and Waters [1] introduced a versatile cryptographic primitive called Attribute
Based Encryption (ABE) by assigning a set of abstract credentials (attributes)
to each user in the system. ABE is classified as Key-Policy ABE (KP-ABE)
[2] or Ciphertext-Policy ABE (CP-ABE) [3]. In KP-ABE, each user is issued a
secret key computed according to an access structure T over his attributes and
ciphertext is created with an attribute set L. On the other hand, in CP-ABE,
user secret key is generated according to his attribute set L and ciphertext is as-
sociated with an access structure T over receivers’ attributes. In both the cases,
decryption is admissible only when T accepts L. A recent direction is to com-
bine the functionalities of ABE [1,2,3,21,8,9,19] and Attribute Based Signature
(ABS) [13,14,15,16] to design Attribute-Based Signcryption (ABSC) schemes.

Our Contribution. The main focus of this article is to design efficient constant-
size1 ciphertext ABSC scheme with constant number of pairings. To this end, we
use the KP-ABE framework of [19]. We present the first signcryption scheme in
the attribute based key-policy setting wherein the user secret key is computed
according to Linear Secret Sharing Scheme (LSSS)-realizable Monotone Access
Structure (MAS) [9]. We give formal selective security proofs in the random or-
acle model for message confidentiality and ciphertext unforgeability based on
decisional n-Bilinear Diffie-Hellman Exponent (n-dBDHE) and computational
n-Diffie-Hellman Exponent (n-cDHE) assumptions, respectively. More interest-
ingly, our scheme exhibits the public ciphertext verifiability similar to [7] which
allows any intermediate party, e.g., firewalls, to check the ciphertext’s validity
before sending to actual recipient. This in turn reduces unnecessary burden on
the receiver for unsigncrypting invalid ciphertexts. Our construction also pro-
vides insider security with respect to both confidentiality and unforgeability
which ensures that the scheme is secure even when either the signcryptor or the
unsigncryptor colludes with the adversary against the other.

Table 1 exhibits the efficiency of our scheme against existing attribute based
signcryption schemes [4,7,6,5,18,17] in terms of ciphertext size, and computation
cost for exponentiations and pairing operations. The functionality comparison
of our scheme against [4,7,6,5,18,17] is presented in Table 2.

The ciphertext consists of only 6 group elements in our design, whereas the
existing signcryption schemes have ciphertext size that depends on the number
of attributes involved to create a ciphertext. On a more positive note, our scheme
is pairing efficient as it requires only 6 pairings to unsigncrypt any ciphertext. On
the other hand, the number of pairings used in previous constructions are linear
to the number of required attributes. To the best of our knowledge, our proposal
is the first signcryption scheme in the attribute based key-policy setup with
constant ciphertext size and constant bilinear pairings. While the signcryption
cost of the existing schemes depend on both signing and encryption attributes,

1 According to ABE literature (see [8]), we do not consider the description of the access
policy (or the attribute set) as being part of the secret key (or the ciphertext), while
measuring its size.

400 Y.S. Rao and R. Dutta

Table 1. Comparison of communication and computation costs of ABSC schemes

Secret Key (SK) Size Signcryption Cost Unsigncryption Cost
Sig. SK Dec. SK CT Size Exp. Exp. Pair. Exp. Exp. Pair.

in G in GT in G in GT

[4] 2Ls 3Le O(φs + we)O(φs + we) 1 - O(φe) O(φe) O(φs + φe)
[5] 2Ls 2Le O(φs + we)O(φs + we) 1 - - O(φe) O(φe)
[6] 2Ls + 1 2Le + 1 O(φs + we)O(φs + we) 2 1 - O(φs logφs O(φs + φe)

+φe logφe)
[7] 2Ls 2Le + 2vk + 1O(Ls + ue) O(Ls + ue) 1 - - - O(Ls + ue)
[18] Ls + d − 1 Le + d − 1 O(φs + we)O(φs + we) 1 - O(φe + we) O(φe) O(φe)
[17] (Ls + d)2 2Le O(id+ we) O(id+ we) 1 - - O(φe) O(id+ φe)
Our usLs ueLe 6 O(φs) 1 - O(φe) - 6

Note that by size, we mean the number of involved group elements. We exclude the message size
from the ciphertext (CT) size. Ls = number of signature attributes annotated to a user’s signing
secret key, Le = number of decryption attributes annotated to a user’s decryption secret key, φs =
number of signature attributes involved in the signcryption, φe = minimum number of decryption
attributes required to recover a message, we = number of encryption attributes used to encrypt a
message, us = number of signature attributes in the signature attribute space Us, ue = number of
decryption attributes in the decryption attribute space Ue, vk = bit length of verification key, d
= threshold value of the system, id = length of user’s identity, CT = ciphertext.

Table 2. Functionality comparison of ABSC schemes

CP/ Access Structure (AS) Security Hardness Assumption
KP Signature AS Decryption AS MC CU MC CU PV ROM

[4] KP Threshold policy Threshold policy IND-CCA EUF dHmBDH cmDH No No
[5] KP Threshold policy Threshold policy IND-CCA - dBDH - No No
[6] CP Monotone tree Monotone tree IND-CPA EUF Generic group n-DHI No Yes
[7] CP Monotone tree AND-gate policy IND-CCA sEUF dBDH cDH Yes No
[18] KP Threshold policy Threshold policy IND-CCA EUF dBDH cDH No Yes
[17] KP Threshold policy Threshold policy IND-CCA EUF dBDH n-cDHE No Yes
Our KP LSSS-realizable LSSS-realizable IND-CCA EUF n-dBDHE n-cDHE Yes Yes

Note that all the schemes listed in the table are selectively secure. MC = message confidential-
ity, CU = ciphertext unforgeability, d(Hm)BDH = decisional (hashed modified) bilinear Diffie-
Hellman, c(m)DH = computational (modified) Diffie-Hellman, n-DHI = computational n-Diffie-
Hellman inversion, IND-CCA, CPA = indistinguishability of ciphertexts under chosen ciphertext,
plaintext attack, (s)EUF = (strongly) existential unforgeability, PV = public verifiability, ROM =
random oracle model, CP (or KP) = ciphertext (or key) policy.

the same for our construction depends only on signing attributes2. The secret key
size is increased by a factor of attribute space size in our construction. However,
storage is much cheaper nowadays even for a large amount (e.g., smart phones),
while the main concerns lie with low bandwidth and computation overhead.

The unsigncryption process in [CCA secure KP-ABE of [19]] + [ABS of [15]]
requires 9 pairing operations (in this case, the signing access structure is limited
to threshold policy only), while that for our ABSC is only 6. All other com-
plexities are asymptotically same for both the approaches. This in turn implies
that cost[our ABSC] < cost[CCA secure KP-ABE of [19]] + cost[ABS of [15]].
In addition, the new ABSC outperforms all the existing ABSC schemes in terms

2 This cost in our construction is related to general LSSS-realizable MAS. If the ac-
cess structure is a boolean formula as in existing schemes, our signcryption and
unsigncryption processes require only 10 and 1 exponentiations respectively. Thus,
we achieve constant computation cost during signcryption and unsigncryption.

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 401

of communication and computation cost while realizing more expressive access
policies, namely LSSS-realizable access structures.
Related Work. The first ABSC was introduced by Gagné et al. [4] with formal
security definitions of message confidentiality and ciphertext unforgeability for
signcryption in attribute based setting. In order for users to provide different
rights for signature and decryption, signing attributes are separated from en-
cryption/decryption attributes. Later, Emura et al. [7] designed an ABSC scheme
with dynamic property allowing updation of signing access structures without re-
issuing secret keys of users. The signature part makes use of access trees whereas
AND-gate policies are used in encryption/decryption process. Wang and Huang
[6] proposed another ABSC by employing access trees for both signature and
encryption parts. While the security of [6] is argued in the generic group model
and using random oracles, the schemes [4,7] are secure in standard model. Hu
et al. [5] suggested a fuzzy ABSC in order to introduce authenticated access
control in body area networks, although no formal security proof for ciphertext
unforgeability is provided in existing security models. Ciphertext size in all these
schemes are linear to the sum of required signing and encryption attribute set
sizes. Moreover, the number of essential bilinear pairing computations are also
linear to the required attribute set sizes. Recently proposed attribute-based ring
signcryption [18] and traceable attribute-based signcryption [17] are also suffer-
ing from linear-size ciphertexts and hence bilinear pairings as well. This in turn
lowers the communication and computation efficiency of [4,7,6,5,18,17] in the
sense of ciphertext size and pairing evaluations, respectively.

2 Preliminaries

Notation. Let s
$← S denote the operation of picking an element s uniformly at

random from the set S. We denote the set {1, 2, . . . , n} as [n]. By op ← Alg(ip),
we denote that algorithm Alg(·) takes as input ip and outputs op. By f : A → B,
we mean that f is a mapping from A to B.

Definition 1 (Access Structure). Let U be the universe of attributes and
P(U) be the collection of all subsets of U. Every non-empty subset A of P(U)\{∅}
is called an access structure. The sets in A are called authorized sets and the sets
not in A are called unauthorized sets with respect to A. An access structure A is
said to be monotone access structure (MAS) if every superset of an authorized
set is again authorized in A, i.e., for any C ∈ P(U), with C ⊇ B where B ∈ A
implies C ∈ A. An attribute set L satisfies A if and only if L ∈ A.

Definition 2 (Linear Secret-Sharing Scheme (LSSS)). Let U be the uni-
verse of attributes. A secret-sharing scheme ΠA for the access structure A over
U is called linear (in Zp) if ΠA consists of the following two polynomial time
algorithms, where M is a matrix of size �×k, called the share-generating matrix
for ΠA and ρ : [�] → IU is a row labeling function that maps each row i ∈ [�] of
the matrix M to an attribute attρ(i) in A, IU being the index set of the attribute
universe U.

402 Y.S. Rao and R. Dutta

– Distribute(M, ρ, α): This algorithm takes as input the share-generating matrix
M, row labeling function ρ and a secret α ∈ Zp which is to be shared. It

selects z2, z3, . . . , zk
$← Zp and sets v = (α, z2, z3, . . . , zk) ∈ Zk

p . It outputs a

set {Mi · v : i ∈ [�]} of � shares, where Mi ∈ Zk
p is the i-th row of M. The

share λρ(i) = Mi · v belongs to an attribute ρ(i).
– Reconstruct(M, ρ,W): This algorithm will accept as input M, ρ and a set of

attributes W ∈ A. Let I = {i ∈ [�] : ρ(i) ∈ IW }, where IW is the index set
of the attribute set W. It returns a set {ωi : i ∈ I} of secret reconstruction
constants such that

∑
i∈I ωiλρ(i) = α if {λρ(i) : i ∈ I} is a valid set of shares

of the secret α according to ΠA.

The target vector which is used to characterize access structures is (1, 0, . . . , 0),
i.e., a set W ∈ A iff (1, 0, . . . , 0) is in the linear span of the rows of M that are
indexed by W .

Lemma 1. [9] Let (M, ρ) be a LSSS access structure realizing an access struc-
ture A over the universe U of attributes, where M is share-generating matrix of
size � × k. For any W ⊂ U such that W /∈ A, there exists a polynomial time
algorithm that outputs a vector w = (−1, w2, . . . , wk) ∈ Zk

p such that Mi ·w = 0,
for each row i of M for which ρ(i) ∈ IW , here IW is index set of attribute set W.

2.1 Bilinear Maps and Complexity Assumptions

Bilinear Map. We use multiplicative cyclic groups G,GT of prime order p
with an efficiently computable mapping e : G × G → GT such that e(ua, vb) =
e(u, v)ab, ∀ u, v ∈ G, a, b ∈ Zp and e(u, v) �= 1GT whenever u, v �= 1G.
Computational n-DHE Assumption. An algorithm (or an adversary) A for
solving the computational n-DHE (Diffie-Hellman Exponent) problem in G takes

as input a tuple of the form (g, ga, . . . , ga
n

, ga
n+2

, . . . , ga
2n

) ∈ G2n, where a
$←

Zp, g
$← G and outputs ga

n+1

. The advantage of A in solving the computational
n-DHE problem is defined as

Advn-cDHE
A = Pr

[
A(g, ga, . . . , ga

n

, ga
n+2

, . . . , ga
2n

) = ga
n+1]

.

Definition 3. The computational n-DHE problem in G is said to be (T , ε)-hard
if the advantage Advn-cDHE

A ≤ ε, for any probabilistic polynomial time (PPT)
algorithm A running in time at most T .
Decisional n-BDHE Assumption. An algorithm A for solving the decisional
n-BDHE (Bilinear Diffie-Hellman Exponent) problem in (G,GT) takes as input

a tuple (ya,θ, Z) ∈ G2n+1 × GT , where a, θ
$← Zp, g

$← G, gi = ga
i

, ∀i ∈ [2n] \
{n + 1},ya,θ = (g, gθ, g1, . . . , gn, gn+2, . . . , g2n) and determines whether Z =
e(gn+1, g

θ) or a random element in GT . The advantage of a 0/1-valued algorithm
A in solving the decisional n-BDHE problem in (G,GT) is defined to be

Advn-dBDHE
A =

∣∣Pr[A(ya,θ , Z) = 1|Z = e(gn+1, g
θ)]− Pr[A(ya,θ, Z) = 1|Z $← GT]

∣∣
where the probability is over randomly chosen a, θ

$← Zp, g
$← G, Z

$← GT .

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 403

Definition 4. The decisional n-BDHE problem in (G,GT) is said to be (T , ε)-
hard if the advantage Advn-dBDHE

A ≤ ε, for any PPT algorithm A running in
time at most T .

2.2 Attribute Based Signcryption (ABSC)

In this section, we define attribute based signcryption as a set of five algorithms
following [4] wherein Ue and Us respectively are disjoint universe of encryp-
tion/decryption attributes and signature attributes. A Central Authority (CA)
manages all the (encryption and signature) attributes and their public-secret key
pairs by executing the Setup algorithm. When a decryptor requests a decryption
secret key, the CA creates a decryption access structure Ad over Ue according
to her role in the system and then computes the decryption secret key SKAd

by
running dExtract algorithm, and finally sends it to the decryptor. Similarly,
the CA computes the signing secret key SKAs by executing sExtract algorithm
with the input a signing access structure As over Us and sends to the signcryp-
tor. While the decryption access structure enables what type of ciphertexts the
user can decrypt, the signing access structure is used to signcrypt a message.

When a signcryptor wants to signcrypt a message M , it selects a set We of
encryption attributes that decides a group of legitimate recipients and an autho-
rized signing attribute set Ws of its signing access structure As (i.e., Ws ∈ As),
and then executes the Signcrypt algorithm with the input M, SKAs ,Ws,We.
Here, We is used to encrypt a message and Ws is used to sign a message. On
receiving the ciphertext CT(Ws,We) of some message M, the decryptor/recipient
performs the Unsigncrypt algorithm with the input CT(Ws,We), SKAd

. The
unsigncryption will correctly return M only if We ∈ Ad and the ciphertext
CT(Ws,We) contains a valid signature with signing attributes Ws used in the
ciphertext. We denote this ABSC system as follows.

ΣABSC =

⎡⎢⎢⎢⎢⎣
(PK,MK) ← Setup(κ,Ue,Us)
SKAs ← sExtract(PK,MK,As)
SKAd

← dExtract(PK,MK,Ad)
CT(Ws,We) ← Signcrypt(PK,M, SKAs ,Ws,We)
M or ⊥ ← Unsigncrypt(PK,CT(Ws,We), SKAd

)

⎤⎥⎥⎥⎥⎦
2.3 Security Definitions for ABSC

Following [4] , we describe the security definitions of message confidentiality and
ciphertext unforgeability for ABSC as follows:
Message Confidentiality. This security notion is defined on indistinguisha-
bility of ciphertexts under adaptive chosen ciphertext attack in the selective
attribute set model (IND-ABSC-sCCA) through the following game between a
challenger C and an adversary A.
Init. The adversary A outputs the target set W ∗

e of encryption attributes that
will be used to create the challenge ciphertext during Challenge phase.

404 Y.S. Rao and R. Dutta

Setup. The challenger C executes Setup(κ,Ue,Us), gives the public key PK to
the adversary A and keeps the master secret key MK to itself.
Query Phase 1. The adversary A is given access to the following oracles which
are simulated by the challenger C.

– sExtract oracle OsE(As): on input any signing access structure As over sig-
nature attributes, the challenger C returns SKAs ← sExtract(PK,MK,As)
to the adversary A.

– dExtract oracle OdE(Ad): on input a decryption access structure Ad over
encryption attributes such that W ∗

e /∈ Ad, the challenger C sends SKAd
←

dExtract(PK,MK,Ad) to A.
– Signcrypt oracle OSC(M,Ws,We): on input a messageM , a signing attribute

set Ws and an encryption attribute set We, C samples a signing access
structure As such that Ws ∈ As and returns the ciphertext CT(Ws,We) ←
Signcrypt(PK,M, SKAs ,Ws,We) toA, here SKAs ← sExtract(PK,MK,As).

– Unsigncrypt oracle OUS(CT(Ws,We),Ad): on input a ciphertext CT(Ws,We)

and a decryption access structure Ad used to decrypt, the challenger C first
obtains the secret decryption key SKAd

← dExtract(PK,MK,Ad) and gives
the output of Unsigncrypt(PK,CT(Ws,We), SKAd

) to the adversary.

Challenge. The adversary A outputs two equal length messages M∗
0 ,M

∗
1 and

a signing attribute set W ∗
s . The challenger C selects a signing access structure

A∗
s such that W ∗

s ∈ A∗
s and returns the challenge ciphertext CT∗

(W∗
s ,W∗

e) ←
Signcrypt(PK,M∗

b , sExtract(PK,MK,A∗
s),W

∗
s ,W

∗
e) to the adversaryA, where

b
$← {0, 1}.

Query Phase 2. The adversary can continue adaptively to make queries as
in Query Phase 1 except the queries: OUS(CT

∗
(W∗

s ,W∗
e),A

∗
d), for any A∗

d with
W ∗

e ∈ A∗
d.

Guess. The adversary A outputs a guess bit b′ ∈ {0, 1} and wins the game if
b′ = b.

The advantage of A in the above game is defined to be AdvIND−ABSC−sCCA
A =

|Pr[b′ = b]− 1/2|, where the probability is taken over all random coin tosses.

Remark 1. The adversary A is allowed to issue the queries OsE(As), for any
signing access structure As with W ∗

s ∈ As, during Query Phase 2. This provides
insider security, which means that A cannot get any additional advantage in the
foregoing game even though the signing secret key corresponding to the challenge
signing attribute set W ∗

s is revealed.

Definition 5. An ABSC scheme is said to be (T , qsE, qdE, qSC, qUS, ε)-IND-ABSC-
sCCA secure if the advantage AdvIND−ABSC−sCCA

A ≤ ε, for any PPT adversary A
running in time at most T that makes at most qsE sExtract queries, qdE dExtract
queries, qSC Signcrypt queries and qUS Unsigncrypt queries in the above game.

Ciphertext Unforgeability. This notion of security is defined on existential
unforgeability under adaptive chosen message attack in the selective attribute
set model (EUF-ABSC-sCMA) through the following game between a challenger
C and an adversary A.

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 405

Init. A outputs a set of signature attributes W ∗
s to C that will be used to forge

a signature.
Setup. The challenger C runs Setup(κ,Ue,Us) and sends the public key PK to
the adversary A.
Query Phase. The adversary A is given access to the following oracles.

– sExtract oracle O′
sE(As): on input a signing access structure As over sig-

nature attributes such that W ∗
s /∈ As, the challenger C returns SKAs ←

sExtract(PK,MK,As) to A.
– dExtract oracle O′

dE(Ad): on input any decryption access structure Ad over
encryption attributes, the challenger C gives SKAd

← dExtract(PK,MK,Ad)
to A.

– Signcrypt oracle O′
SC(M,Ws,We): on input a messageM , a signing attribute

set Ws(�=W ∗
s) and an encryption attribute setWe, the challenger C samples

a signing access structure As such that Ws ∈ As and returns the ciphertext
CT(Ws,We) ← Signcrypt(PK,M, SKAs ,Ws,We) to the adversary A, where
SKAs ← sExtract(PK,MK,As).

– Unsigncrypt oracle O′
US(CT(Ws,We),Ad): on input a ciphertext CT(Ws,We)

and a decryption access structure Ad used to decrypt, the challenger C ob-
tains the secret decryption key SKAd

← dExtract(PK,MK,Ad) and sends
the output of Unsigncrypt(PK,CT(Ws,We), SKAd

) to A.
Forgery Phase. The adversary A outputs a forgery CT∗

(W∗
s ,W∗

e) for some mes-
sage M∗ with a decryption access structure A∗

d.
A wins if the ciphertext CT∗

(W∗
s ,W∗

e) is valid and is not obtained from Signcrypt

oracle, i.e., M∗ ← Unsigncrypt(PK,CT∗
(W∗

s ,W∗
e),dExtract(PK,MK,A∗

d)) and
M∗ �= ⊥, and A did not issue O′

SC(M
∗,W ∗

s ,W
∗
e).

The advantage of A in the above game is defined as AdvEUF−ABSC−sCMA
A =

Pr[A wins].

Remark 2. In this security model, A can query dExtract oracle for the receiver’s
decryption access structure to whom the forgery is created in the foregoing game
which captures the insider security model for signature unforgeability.

Definition 6. An ABSC scheme is said to be (T , qsE, qdE, qSC, qUS, ε)-EUF-ABSC-
sCMA secure if the advantage AdvEUF−ABSC−sCMA

A ≤ ε, for any PPT adversary
A running in time at most T that makes at most qsE sExtract queries, qdE dEx-
tract queries, qSC Signcrypt queries and qUS Unsigncrypt queries in the above
game.

3 Our ABSC Construction

Let Ue = {atty} and Us = {att′x} be the universes of encryption and signature
attributes, respectively. In our construction, both signing and decryption access
structures are LSSS-realizable. We denote a signing LSSS access structure by
(S, ρ) and a decryption LSSS access structure by (D, φ). We describe now our
attribute based signcryption as a set of the following five algorithms.
Setup(κ,Ue,Us). To initialize the system the CA performs the following steps.

406 Y.S. Rao and R. Dutta

– Generate cyclic groups G and GT of prime order p whose size is determined
by the security parameter κ. Let g be a generator of the group G and let
e : G×G → GT be an efficiently computable bilinear mapping.

– Choose α
$← Zp,K0, T0, δ1, δ2

$← G and set Y = e(g, g)α.

– For each attribute att′x ∈ Us (resp., atty ∈ Ue), select Tx
$← G (resp.,

Ky
$← G).

– Let {0, 1}�m be the message space, i.e., �m is the length of each message sent.
Choose a secure one-time symmetric-key cipher Σ = (Enc,Dec) which takes
a plaintext and ciphertext of length �m + �2 with key space GT .

– Sample three one-way, collision resistant cryptographic hash functions
H1 : G → Zp, H2 : {0, 1}∗ → {0, 1}�2, H3 : {0, 1}∗ → G.

– The public key and master secret key are PK = [p, g, e, Y, T0,K0, {Tx : att′x ∈
Us}, {Ky : atty ∈ Ue}, δ1, δ2, Σ,H1,H2,H3] and MK = α, respectively.

sExtract(PK,MK, (S, ρ)). Each row i of the signing share-generating matrix S
of size �s × ks is associated with an attribute att′ρ(i). The CA carries out the
following steps and returns the signing secret key to a legitimate signcryptor.

– Obtain a set {λρ(i) = Si · vs : i ∈ [�s]} ← Distribute(S, ρ, α) of �s shares,

where Si is i-th row of S, vs
$← Zks

p such that vs · 1 = α, 1 = (1, 0, . . . , 0)
being a vector of length ks.

– For each row i ∈ [�s], choose ri
$← Zp and compute Ds,i = gλρ(i)(T0Tρ(i))

ri ,

D′
s,i = gri , D′′

s,i =
{
D′′

s,i,x : D′′
s,i,x = T ri

x , ∀ att′x ∈ Us \ {att′ρ(i)}
}
.

– Return the signing secret key as SK(S,ρ) =
[
(S, ρ), {Ds,i, D

′
s,i, D

′′
s,i : i ∈ [�s]}

]
.

dExtract(PK,MK, (D, φ)). Each row i of the decryption share-generating matrix
D of size �e × ke is associated with an attribute attφ(i). In order to issue the
decryption secret key to a legitimate decryptor, the CA executes as follows.

– Compute a set {λφ(i) = Di · ve : i ∈ [�e]} ← Distribute(D, φ, α) of �e shares,

where Di is i-th row of D, ve
$← Zke

p with ve · 1 = α, here 1 = (1, 0, . . . , 0)
is a vector of length ke.

– For each row i ∈ [�e], choose τi
$← Zp and compute De,i = gλφ(i)(K0Kφ(i))

τi ,

D′
e,i = gτi , D′′

e,i =
{
D′′

e,i,y : D′′
e,i,y = Kτi

y , ∀ atty ∈ Ue \ {attφ(i)}
}
.

– Return the secret decryption key as SK(D,φ) =
[
(D, φ), {De,i, D

′
e,i, D

′′
e,i : i ∈

[�e]}
]
.

Signcrypt(PK,M, SK(S,ρ),Ws,We). To signcrypt a message M ∈ {0, 1}�m, the
signcryptor executes the following steps. Where SK(S,ρ)=[(S, ρ), {Ds,i, D

′
s,i, D

′′
s,i :

i ∈ [�s]}].

– Select an authorized signature attribute set Ws of the signing LSSS access
structure (S, ρ) hold by the signcryptor and choose a set of encryption at-
tributes We which describes the intended recipients.

– Obtains a set {ωi : i ∈ Is} ← Reconstruct(S, ρ,Ws) of reconstruction con-
stants, where Is = {i ∈ [�s] : att

′
ρ(i) ∈Ws}.

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 407

– Sample θ, ϑ
$← Zp and compute

key = Y θ, C1 = gθ, C2 = (K0

∏
atty∈We

Ky)
θ, σ1 = gθϑ.

– Compute μ = H1(C1) and set C3 = (δμ1 δ2)
θ.

– Choose ξ
$← Zp and set σ2 = gξ

∏
i∈Is

(D′
s,i)

ωi .
– Compute r = H2(M, key, C1, C2, C3, σ1, σ2,Ws,We) and encrypt the mes-

sage as C = Enckey(M ||r).
– Set Q = H3(C,C1, σ1,Ws,We) and generate
σ3 =

∏
i∈Is

(
Ds,i ·

∏
att′x∈Ws,x �=ρ(i)D

′′
s,i,x

)ωi × (T0
∏

att′x∈Ws
Tx)

ξ QθCϑ
3 .

The signcryption of M is CT(Ws,We) = [Ws,We, C, C1, C2, C3, σ1, σ2, σ3].

Note that since Ws satisfies S,
∑

i∈Is
ωiλρ(i) = α (this implicitly holds and we

use this fact in Lemma 2 below), although the secret shares {λρ(i)}i∈Is are not
explicitly known to the signcryptor and hence so is α. However, the secret α
can correctly be embedded in the exponent as g

∑
i∈Is

ωiλρ(i) = gα in the ciphertext
component σ3 by using the secret key components Ds,i, D

′′
s,i (see Lemma 2 below).

Unsigncrypt(PK,CT(Ws,We), SK(D,φ)). The decryptor performs as follows.

1. Compute Q′ = H3(C,C1, σ1,Ws,We), μ
′ = H1(C1) and check the validity of

the ciphertext CT(Ws,We) as

e(σ3, g)
?
= Y · e

(
T0

∏
att′x∈Ws

Tx, σ2
)
· e(Q′, C1) · e(δμ

′

1 δ2, σ1), (1)

if it is invalid, output ⊥; otherwise, proceed as follows.
2. Obtain {νi : i ∈ Ie} ← Reconstruct(D, φ,We), where Ie = {i ∈ [�e] : attφ(i) ∈
We}.

3. Compute E1 =
∏

i∈Ie

(
De,i ·

∏
atty∈We,y �=φ(i)D

′′
e,i,y

)νi
, E2 =

∏
i∈Ie

(D′
e,i)

νi

and recover the symmetric decryption key as key′ = e(C1, E1)/e(C2, E2).
4. Decrypt the message M ′||r′ = Deckey′ (C) and compute
r = H2(M

′, key′, C1, C2, C3, σ1, σ2,Ws,We).
5. If r′ = r, accept the message as M =M ′; else, output ⊥.

Note that the exponents {ωi} and {νi} are 1 for boolean formulas [9]. Hence,
Signcrypt and Unsigncrypt require only 10 and 1 exponentiations, respectively.

Remark 3. We note here that the verification process stated in Eq. (1) is for-
mulated based on the public key parameters and the ciphertext components,
thereby any user who has access to the ciphertext can verify the integrity and
validity of the sender and the ciphertext. This provides the property of Public
Ciphertext Verifiability to our scheme.

In addition, the receiver can convince a third party TP that the sender has
signed the message concealed in the ciphertext without exposing his secret key.
Precisely, the receiver computes key′ using his secret key and sends the ciphertext
CT(Ws,We) = [Ws,We, C, C1, C2, C3, σ1, σ2, σ3] along with key′ to TP. Then, TP
can perform the steps 1, 4 and 5 of the above Unsigncrypt algorithm serially
and can conclude that whether CT(Ws,We) is valid. This algorithm is known as

408 Y.S. Rao and R. Dutta

TP-Verify. The above signcryption with the TP-Verify is called Third Party
Verifiable Attribute Based Signcryption. For ease of presentation, we consider
security models without TP-Verify; however, our security proofs will work for
the security models with TP-Verify similar to [20].

The correctness of the unsigncryption is proved in the following two lemmas.

Lemma 2. The Unsigncrypt algorithm can verify whether the received cipher-
text CT(Ws,We) has been altered or not according to Eq. (1).

Proof. Assume the ciphertext CT(Ws,We) = [Ws,We, C, C1, C2, C3, σ1, σ2, σ3] is
not altered. Then Q′ = H3(C,C1, σ1,Ws,We) = Q,μ′ = H1(C1) = μ and
hence Eq. (1) is established as follows. Since Ws satisfies (S, ρ), we have that∑

i∈Is
ωiλρ(i) = α. Then,∏

i∈Is

(
Ds,i ·

∏
att′x∈Ws,x �=ρ(i)

D′′
s,i,x

)ωi

=
∏
i∈Is

(
gλρ(i)(T0Tρ(i))

ri ·
∏

att′x∈Ws,x �=ρ(i)

T ri
x

)ωi

= g
∑

i∈Is
ωiλρ(i)

∏
i∈Is

(
T ri
0

∏
att′x∈Ws

T ri
x

)ωi

= gα
(
T0

∏
att′x∈Ws

Tx

)∑
i∈Is

riωi

,

σ3 =
∏
i∈Is

(
Ds,i ·

∏
att′x∈Ws,x �=ρ(i)

D′′
s,i,x

)ωi

×
(
T0

∏
att′x∈Ws

Tx

)ξ
QθCϑ

3

= gα
(
T0

∏
att′x∈Ws

Tx

)∑
i∈Is

riωi

×
(
T0

∏
att′x∈Ws

Tx

)ξ
Qθ
(
δμ1 δ2

)θϑ
= gα

(
T0

∏
att′x∈Ws

Tx

)ξ+∑
i∈Is

riωi

Qθ
(
δμ1 δ2

)θϑ
.

Now, σ2 = gξ
∏

i∈Is
(D′

s,i)
ωi = gξg

∑
i∈Is

riωi = gξ+
∑

i∈Is
riωi . Hence,

e(σ3, g) = e
(
gα
(
T0

∏
att′x∈Ws

Tx

)ξ+∑
i∈Is

riωi

Qθ(δμ1 δ2)
θϑ, g

)
= e(g, g)α · e

(
T0

∏
att′x∈Ws

Tx, g
ξ+

∑
i∈Is

riωi

)
· e(Q, gθ) · e(δμ1 δ2, gθϑ)

= Y · e
(
T0

∏
att′x∈Ws

Tx, σ2

)
· e(Q,C1) · e(δμ1 δ2, σ1)

This proves the lemma. ��

Lemma 3. The Unsigncrypt(PK,CT(Ws,We), SK(D,φ)) algorithm can correctly
unsigncrypt the ciphertext CT(Ws,We) if the Eq. (1) is valid and We satisfies the
decryption LSSS access structure (D, φ).

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 409

Proof. Since the Eq. (1) is valid, all the ciphertext components are consistent.
The identity

∑
i∈Ie

νiλφ(i) = α implicitly holds since We satisfies (D, φ). Now,
compute

E1 =
∏
i∈Ie

(
gλφ(i)(K0Kφ(i))

τi ·
∏

atty∈We,y �=φ(i)

Kτi
y

)νi
= g

∑
i∈Ie

νiλφ(i)

∏
i∈Ie

(
Kτi

0

∏
atty∈We

Kτi
y

)νi
= gα

(
K0

∏
atty∈We

Ky

)∑
i∈Ie

τiνi
,

E2 =
∏
i∈Ie

(D′
e,i)

νi =
∏
i∈Ie

gτiνi = g
∑

i∈Ie
τiνi .

Therefore,

key′ =
e(C1, E1)

e(C2, E2)
=
e(gθ, gα(K0

∏
atty∈We

Ky)
∑

i∈Ie
τiνi)

e((K0

∏
atty∈We

Ky)θ, g
∑

i∈Ie
τiνi)

= Y θ = key.

Thus, M ||r = Deckey(C) and r = H2(M, key, C1, C2, C3, σ1, σ2,Ws,We). This
completes the proof. ��

4 Security Proof

Theorem 1 (Indistinguishability). Assume that the encryption attribute uni-
verse Ue has n attributes and collision-resistant hash functions exist. Then our
attribute based signcryption scheme is (T , qsE, qdE, qSC, qUS, ε)-IND-ABSC-sCCA
secure in the random oracle model, assuming the decisional n-BDHE problem in
(G,GT) is (T ′, ε′)-hard, where ε′ = ε − (qUS/p) and T ′ = T + qSC · Tenc + qUS ·
Tdec +O

(
|Us|2 · (qsE + qSC) + n2 · (qdE + qUS)

)
· Texp +O(qUS) · Tpair . Here, Tenc

and Tdec denote the running time of symmetric-key encryption and decryption,
respectively. Texp and Tpair denote the running time of one exponentiation and
one pairing computation, respectively.

Proof. Suppose there is an adversary A which can (T , qsE, qdE, qSC, qUS, ε)-break
our signcryption scheme in the IND-ABSC-sCCA security model. We will con-
struct a distinguisher D to show that the decisional n-BDHE problem in (G,GT)
is not (T ′, ε′)-hard. On input the decisional n-BDHE challenge (ya,θ, Z), where

ya,θ = (g, gθ, g1, . . . , gn, gn+2, . . . , g2n), gi = ga
i

, and Z = e(gn+1, g
θ) or a ran-

dom element of GT , the distinguisher D attempts to output 1 if Z = e(gn+1, g
θ)

and 0 otherwise. Now, D plays the role of a challenger in IND-ABSC-sCCA
game and interacts with A as follows. Throughout the simulation, we use three
one-way, collision resistant cryptographic hash functions H1 : G → Zp, H2 :
{0, 1}∗ → {0, 1}�2, H3 : {0, 1}∗ → G, where H3 is modeled as a random ora-
cle. In addition, we use a secure one-time symmetric-key cipher Σ = (Enc,Dec)
which takes a plaintext and ciphertext of length �m+ �2 with key space GT . Let
Ue = {att1, att2, . . . , attn} be the encryption attribute universe.
Init. The adversary submits the target encryption attribute set W ∗

e .
Setup. The distinguisher D programs the public parameters as follows.

410 Y.S. Rao and R. Dutta

– Sample α′ $← Zp and implicitly set α = α′ + an+1 by letting

Y = e(g, g)α
′
e(g1, gn) = e(g, g)α.

– For each atty ∈ Ue (i.e., y ∈ [n]), sample γy
$← Zp and compute

Ky = gγygn+1−y.

– Sample γ0
$← Zp and set K0 = gγ0

∏
atty∈W∗

e
K−1

y .

– Sample t0
$← Zp, tx

$← Zp, for each att′x ∈ Us and set T0 = g1g
t0 , Tx = gtx .

– Set C∗
1 = gθ and μ∗ = H1(C

∗
1). Note that g

θ is taken from n-BDHE challenge
(g, gθ, g1, . . . , gn, gn+2, . . . , g2n, Z) ∈ G2n+1 ×GT .

– Compute δ1 = g
1/μ∗

n , δ2 = g−1
n gd, where d

$← Zp.

Note that from A’s point of view, all public parameters have the same distribu-
tion as in the original construction.
Query Phase 1. A issues a series of queries to which D responds as follows.
sExtract oracle OsE(S, ρ): When A asks for signing secret key corresponding to
the signing LSSS access structure (S, ρ), the distinguisher D constructs the sign-
ing secret key SK(S,ρ) as follows. Note that D does not know an+1 and the master
secret key α = α′ + an+1, but has the knowledge of α′. Let S = (Si,j)�s×ks and
Si is the i-th row of the matrix S.

The distinguisher D samples z2, . . . , zks

$← Zp and implicitly sets vs = (α′ +
an+1, z2, . . . , zks), which will be used for generating secret shares of α as in the
original scheme. The vector vs can be written as vs = ws + (an+1, 0, . . . , 0),
where ws = (α′, z2, . . . , zks) which is known to D. Observe that λρ(i) = Si ·vs =

Si · ws + an+1Si,1 contains the term an+1 and hence gλρ(i) contains terms of

the form ga
n+1

= gn+1 which is also unknown to D. Therefore, D must make
sure that there are no terms of the form gn+1 involved in secret key components.
To this end, the distinguisher implicitly creates suitable ri values in such a way
that the unknown terms are eliminated automatically. Now, the signing secret
key corresponding to each row Si, i ∈ [�s], of S is computed by D as follows.

Sample r′i
$← Zp and implicitly set ri = r′i − anSi,1. Then compute

Ds,i = gSi·ws
(
T0Tρ(i)

)r′i g−(t0+tρ(i))Si,1

n , D′
s,i = gr

′
ig−Si,1

n

D′′
s,i =

{
D′′

s,i,x : D′′
s,i,x = T

r′i
x g

−txSi,1
n , ∀ att′x ∈ Us \ {attρ(i)}

}
Return the secret key SK(S,ρ) = [(S, ρ), {Ds,i, D

′
s,i, D

′′
s,i : i ∈ [�s]}] to A.

Claim 1. The adversary’s view to the above values of Ds,i, D
′
s,i, D

′′
s,i, ∀i ∈ [�s]

simulated by D are identical to that of the original construction.

Proof. Note that λρ(i) = Si ·ws + an+1Si,1 and ri = r′i − anSi,1.

Ds,i = gSi·ws g
Si,1

n+1 (T0Tρ(i))
r′i g

−Si,1

n+1 g
−(t0+tρ(i))Si,1

n

= gSi·wsg
Si,1

n+1(T0Tρ(i))
r′i(g1g

t0gtρ(i))−anSi,1 = gλρ(i)(T0Tρ(i))
ri ,

D′
s,i = gr

′
ig−Si,1

n = gr
′
i−anSi,1 = gri ,

D′′
s,i,x = T

r′i
x g

−txSi,1
n = T

r′i−anSi,1
x = T ri

x . 	 (of Claim 1)

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 411

dExtract oracle OdE(D, φ): The distinguisher D constructs secret decryption key
SK(D,φ) as follows for a decryption LSSS access structure (D, φ) such that W ∗

e

does not satisfy D.
Let �e × ke be the size of a share-generating matrix D. Since W ∗

e does not
satisfy D, by Lemma 1, there exists a vector w = (−1, w2, . . . , wke) ∈ Zke

p such
that Di · w = 0, for all rows i where attφ(i) ∈ W ∗

e , where Di is i-th row of

the matrix D. The distinguisher selects z′2, z
′
3, . . . , z

′
ke

$← Zp and implicitly sets

ve = (α′ + an+1,−(α′ + an+1)w2 + z′2, . . . ,−(α′ + an+1)wke + z′ke
) ∈ Zke

p . Note
that ve can be written as ve = −(α′ + an+1)w + v′, where v′ = (0, z′2, . . . , z

′
ke
).

Now, the secret decryption key corresponding to each row Di, i ∈ [�e], of D is
computed as one of the following two cases.
Case (1): For i where attφ(i) ∈ W ∗

e .
In this case, λφ(i) = Di · ve = −(α′ + an+1)Di ·w +Di · v′ = Di · v′. Then,

D chooses τi
$← Zp and computes De,i = gDi·v′

(K0Kφ(i))
τi , D′

e,i = gτi,

D′′
e,i =

{
D′′

e,i,y : D′′
e,i,y = Kτi

y , ∀ y ∈ [n] \ {φ(i)}
}

It is easy to see that the values of De,i, D
′
e,i, D

′′
e,i are identical to that of

original scheme from A’s point of view.
Case (2): For i where attφ(i) �∈ W ∗

e .
In this case, φ(i) �= y, ∀atty ∈ W ∗

e . Note that λφ(i) = Di · ve = Di · (v′ −
α′w) − (Di · w)an+1. The distinguisher samples τ ′i

$← Zp and implicitly sets
τi = τ ′i + (Di ·w)aφ(i). Then computes

De,i = gDi·(v′−α′w)(K0Kφ(i))
τ ′
i

(
g
γ0+γφ(i)

φ(i) ·
∏

atty∈W∗
e

(g
−γy

φ(i) · g
−1
n+1−y+φ(i))

)Di·w
,

D′
e,i = gτ

′
igDi·w

φ(i) ,

D′′
e,i =

{
D′′

e,i,y : D′′
e,i,y = K

τ ′
i

y (g
γy

φ(i) · gn+1−y+φ(i))
Di·w, ∀ y ∈ [n] \ {φ(i)}

}
.

Claim 2. The simulated values of De,i, D
′
e,i, D

′′
e,i by D are identical to that of

original scheme from the A’s point of view.

Proof.

De,i = gDi·(v′−α′w)(K0Kφ(i))
τ ′
i

(
gγ0

∏
atty∈W∗

e

K−1
y

)(Di·w)aφ(i)

g
(Di·w)γφ(i)

φ(i)

= gDi·(v′−α′w) g
−(Di·w)
n+1 (K0Kφ(i))

τ ′
iK

(Di·w)aφ(i)

0 g
(Di·w)γφ(i)

φ(i) g
(Di·w)
n+1

= gDi·(v′−α′w)g
−(Di·w)
n+1 (K0Kφ(i))

τ ′
i

(
K0 · gγφ(i)gn+1−φ(i)

)(Di·w)aφ(i)

= gDi·(v′−α′w)−(Di·w)an+1

(K0Kφ(i))
τ ′
i+(Di·w)aφ(i)

= gλφ(i)(K0Kφ(i))
τi ,

D′
e,i = gτ

′
igDi·w

φ(i) = gτ
′
i+(Di·w)aφ(i)

= gτi ,

D′′
e,i,y = K

τ ′
i

y

(
gγygn+1−y

)(Di·w)aφ(i)

= Kτi
y , ∀ y ∈ [n] \ {φ(i)}. 	 (of Claim 2)

412 Y.S. Rao and R. Dutta

H3 hash oracle OH3(C,C1, σ1,Ws,We): In order to answer H3 queries, the dis-
tinguisher D maintains a list HList3 of records [IP, η,H3(IP)] as described below.

When the adversary A queries the OH3 hash oracle with input of the form
IP = (C,C1, σ1,Ws,We), the distinguisher first checks if the list HList3 contains

the record [IP, η,H3(IP)]. If yes, D returnsH3(IP). Otherwise,D samples η
$← Zp

and sets H3(IP) = gη. The distinguisher stores the new record [IP, η,H3(IP)] in
the list and returns H3(IP) to the adversary.
Signcrypt oracle OSC(M,Ws,We): The adversary A queries the distinguisher D
on a tuple (M,Ws,We) consisting of a message, signing and encryption attribute
sets, respectively. The distinguisher then selects a signing access structure (S, ρ)
such that Ws satisfies (S, ρ) and generates the secret key SK(S,ρ) for (S, ρ) by
running the sExtract oracle OsE(S, ρ) described above. Finally, D sends the ci-
phertext CT(Ws,We) ← Signcrypt(PK,M, SK(S,ρ),Ws,We) to A.
Unsigncrypt oracle OUS(CT(Ws,We), (D, φ)): The ciphertext is CT(Ws,We) = [Ws,

We, C, C1, C2, C3, σ1, σ2, σ3]. The distinguisher D checks whether C1 = C∗
1 . If

yes, the simulation aborts (since C1 = gθ is random in A’s view, the probability
of this type of ciphertext submitted by the adversary is at most 1/p). Otherwise,
D proceeds as follows.

IfW ∗
e does not satisfy the decryption access structure (D, φ), the distinguisher

D computes the secret decryption key SK(D,φ) ← OdE(D, φ) and returns the
output of Unsigncrypt(PK,CT(Ws,We), SK(D,φ)) to the adversary. On the other
hand, if W ∗

e satisfies (D, φ), the distinguisher performs as follows.
The distinguisher D first checks the validity of the ciphertext CT(Ws,We) ac-

cording to Eq. (1). If it is invalid, outputs ⊥. Otherwise, set μ = H1(C1) and
compute

key′ = e
(
C3/C

d
1 , g1

)(μ
μ∗ −1)−1

· e(C1, g
α′
). (2)

Note that μ = H1(C1) �= H1(C
∗
1) = μ∗ since C1 �= C∗ and H1 is collision-

resistant. Finally, the message is calculated as M ′||r′ = Deckey′(C) and return
M ′ if r′ = H2(M

′, key′, C1, C2, C3, σ1, σ2,Ws,We). Otherwise, output ⊥.
Claim 3. The value of key′ in Eq. (2) simulated by D is identical to that of real
construction from A’s point of view.

Proof. e(C3/C
d
1 , g1) = e((δμ1 δ2)

θ/gθd, g1) = e((g
μ/μ∗

n g−1
n gd)θ/gθd, g1)

= e(gθn, g1)
(μ
μ∗ −1) = e(C1, g

an+1

)(
μ
μ∗ −1) and hence

e(C3/C
d
1 , g1)

(μ
μ∗ −1)−1

· e(C1, g
α′
) = e(C1, g

α′+an+1

) = e(C1, g
α).

Since Eq. (1) is valid, all the ciphertext components are consistent and hence
e(C1,K0

∏
atty∈We

Ky) = e(C2, g). Therefore,

e(C3/C
d
1 , g1)

(μ
μ∗ −1)−1

· e(C1, g
α′
) = e(C1, g

α) ·
e(C1,K0

∏
atty∈We

Ky)
∑

i∈Ie
τiνi

e(C2, g)
∑

i∈Ie
τiνi

=
e(C1, g

α(K0

∏
atty∈We

Ky)
∑

i∈Ie
τiνi)

e(C2, g
∑

i∈Ie
τiνi)

=
e(C1, E1)

e(C2, E2)
= key′.

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 413

We refer to the values of E1 and E2 in Lemma 3. 	 (of Claim 3)

Challenge. The adversary A outputs two equal length messagesM∗
0 ,M

∗
1 along

with a signing attribute set W ∗
s . The distinguisher D then chooses b

$← {0, 1}
and signcrypts M∗

b under the challenge encryption attribute set W ∗
e and sign-

ing attribute set W ∗
s . The components of challenge ciphertext CT∗

(W∗
s ,W∗

e) are
simulated as follows:

– C∗
1 = gθ (which is programmed during Setup phase),

– C∗
2 = (gθ)γ0 , key∗ = Z · e(gθ, gα′

), σ∗
1 = (gθ)ϑ, where ϑ

$← Zp,
– C∗

3 = (gθ)d, where μ∗ = H1(C
∗
1),

– σ∗
2 = gξ

′+ΩW∗
s g−1

n ,

where ξ′, ΩW∗
s

$← Zp and implicitly sets ξ = ξ′ − an,
∑

i∈Is
riωi = ΩW∗

s
,

– C∗ = Enckey∗(Mb||r∗), where r∗ = H2(Mb, key
∗, C∗

1 , C
∗
2 , C

∗
3 , σ

∗
1 , σ

∗
2 ,W

∗
s ,W

∗
e),

– σ∗
3 = gα

′(
T0
∏

att′x∈W∗
s
Tx
)ξ′+ΩW∗

s
(
g−t0
n

∏
att′x∈W∗

s
g−tx
n

)
(gθ)η

∗+dϑ, where η∗

is retrieved from the record [IP, η∗,H3(IP)] with IP = (C∗, C∗
1 , σ

∗
1 ,W

∗
s ,W

∗
e)

added to the list HList3.

Claim 4. If Z = e(gn+1, g
θ), then the simulated challenge ciphertext CT∗

(W∗
s ,W∗

e)

is same as in the original ciphertext construction of the message M∗
b under the

encryption attribute set W ∗
e and signature attribute set W ∗

s .

Proof. Suppose Z = e(gn+1, g
θ).

– C∗
1 = gθ, μ∗ = H1(C

∗
1) = H1(g

θ),

– C∗
2 = (gθ)γ0 = (gγ0)θ =

(
K0

∏
atty∈W∗

e
Ky

)θ
,

– σ∗
1 = (gθ)ϑ = gθϑ,

– C∗
3 = (gθ)d = (gd)θ = ((g

1/μ∗

n)μ
∗
g−1
n gd)θ = (δμ

∗

1 δ2)
θ,

– σ∗
2 = gξ

′+ΩW∗
s g−1

n = gξ
′−an

g
∑

i∈Is
riωi = gξ

∏
i∈Is

(D′
s,i)

ωi , where implicitly
D′

s,i = gri , ∀i ∈ Is,

– key∗ = Z · e(gθ, gα′
) = e(gn+1, g

θ) · e(gθ, gα′
) = e(g, g)θ(α

′+an+1) = Y θ,
– C∗ = Enckey∗(Mb||r∗), where r∗ = H2(Mb, key

∗, C∗
1 , C

∗
2 , C

∗
3 , σ

∗
1 , σ

∗
2 ,W

∗
s ,W

∗
e),

– H3(C
∗, C∗

1 , σ
∗
1 ,W

∗
s ,W

∗
e) = gη

∗
= Q∗ and

σ∗
3 = gα

′
gn+1

(
T0

∏
att′x∈W∗

s

Tx

)ξ′+ΩW∗
s
(
g−1
n+1 g−t0

n

∏
att′x∈W∗

s

g−tx
n

)
(gθ)η

∗+dϑ

= gα
′+an+1

(
T0

∏
att′x∈W∗

s

Tx

)ξ′+ΩW∗
s
(
g1g

t0
∏

att′x∈W∗
s

gtx
)−an

(gη
∗
)θ(gθd)ϑ

= gα
(
T0

∏
att′x∈W∗

s

Tx

)∑
i∈Is

riωi
(
T0

∏
att′x∈W∗

s

Tx

)ξ′−an

(Q∗)θ(C∗
3)

ϑ

=
∏
i∈Is

(
Ds,i ·

∏
att′x∈W∗

s ,x �=ρ(i)

D′′
s,i,x

)ωi

×
(
T0

∏
att′x∈W∗

s

Tx

)ξ
(Q∗)θ(C∗

3)
ϑ,

414 Y.S. Rao and R. Dutta

since, from Lemma 2, we have that∏
i∈Is

(
Ds,i

∏
att′x∈Ws,x �=ρ(i)

D′′
s,i,x

)ωi

= gα
(
T0

∏
att′x∈Ws

Tx

)∑
i∈Is

riωi

.

This completes the proof. 	 (of Claim 4)

From the claim 4, we can say that if Z = e(gn+1, g
θ), then the challenge cipher-

text CT∗
(W∗

s ,W∗
e) is a valid signcryption of the message M∗

b under the encryption
attribute set W ∗

e and signature attribute set W ∗
s . If Z is a random element in

GT , then the challenge ciphertext is independent of b in the adversary’s view.
Query Phase 2. The adversary A performs a second series of queries and
the distinguisher D answers to these queries in the same way as it did in the
Query Phase 1. Here, A cannot ask the Unsigncrypt oracle for the challenge
ciphertext CT∗

(W∗
s ,W∗

e) received during Challenge Phase. Note that A can query
the sExtract oracle for any signing access structure As with W ∗

s ∈ As, which
makes our scheme insider secure.
Guess. The adversary A outputs its guess b′ ∈ {0, 1} on b. If b′ = b, then
D outputs 1 in the decisional n-BDHE game to guess that Z = e(gn+1, g

θ);
otherwise it outputs 0 to indicate that Z is a random element in GT .
Probability Analysis. The event in whichD aborts the game is when A queries
the Unsigncrypt oracle OUS(·) with the ciphertext satisfying C1 = C∗

1 . The
probability of this event happened is at most qUS/p, where qUS is the maximum
number of Unsigncrypt queries made by the adversary. If D does not abort and
Z = e(gn+1, g

θ), then D provides a perfect simulation and hence

Pr[D(ya,θ, e(gn+1, g
θ)) = 1] >

1

2
+ ε− qUS

p
.

If Z is a random element X ∈ GT , then A cannot obtain any information
about M∗

b and hence Pr[D(ya,θ, X) = 1] = 1/2. Therefore, the distinguisher
D can solve the n-dBDHE problem with advantage at least ε − (qUS/p), i.e.,
Advn-dBDHE

D > ε− (qUS/p). Thus, the decisional n-BDHE problem in (G,GT) is
not (T ′, ε′)-hard, where ε′ = ε− (qUS/p). ��
Theorem 2 (Unforgeability). Assume the signing attribute universe Us has n
attributes and collision-resistant hash functions exist. Then, our attribute based
signcryption scheme is (T , qsE, qdE, qSC, qUS, ε)-EUF-ABSC-sCMA secure in the
random oracle model, assuming that the computational n-DHE problem in G is
(T ′, ε)-hard, where T ′ = T +qSC ·Tenc+qUS ·Tdec+O

(
n2 ·(qsE+qSC)+ |Ue|2 ·(qdE+

qUS)
)
· Texp+O(qSC+ qUS) · Tpair . Here, Tenc and Tdec denote the running time of

symmetric-key encryption and decryption, respectively. Texp and Tpair denote the
running time of one exponentiation and one pairing computation, respectively.

Proof. Assume that there is an adversary (or an algorithm) A which can
(T , qsE, qdE, qSC, qUS, ε)-break our signcryption scheme in the EUF-ABSC-sCMA
security model. We will construct another algorithm C that can solve the compu-
tational n-DHE problem with advantage at least ε′ in time at most T ′. Hereafter,
we refer C as a challenger.

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 415

The challenger C is given the computational n-DHE instance (g, ga, . . . , ga
n

,

ga
n+2

, . . . , ga
2n

) ∈ G2n, where a
$← Zp and a generator g

$← G. In order to calcu-

late ga
n+1

from the tuple given, C runs the adversary A answering its queries in
each phase of the EUF-ABSC-sCMA security game as follows. As in Theorem
1, we use, throughout the simulation, three one-way, collision resistant crypto-
graphic hash functions H1 : G → Zp, H2 : {0, 1}∗ → {0, 1}�2, H3 : {0, 1}∗ → G,
where H3 is modeled as a random oracle. In addition, we use a secure one-time
symmetric-key cipher Σ = (Enc,Dec) which takes a plaintext and ciphertext
of length �m + �2 with key space GT . Let Us = {att′1, att′2, . . . , att′n} be the
signature attribute universe.
Init. The adversary A sends the challenge signing attribute set W ∗

s to the chal-
lenger C.
Setup. The challenger C programs the public parameters as follows.

– Set Y = e(g, g)α
′ · e(g1, gn) = e(g, g)α by implicitly setting α = α′ + an+1,

where α′ $← Zp is sampled by C.
– For each att′x ∈ Us (i.e., x ∈ [n]), choose tx

$← Zp and compute Tx =
gtxgn+1−x.

– Select t0
$← Zp and set T0 = gt0

∏
att′x∈W∗

s
T−1
x .

– Sample γ0
$← Zp, γy

$← Zp, for each atty ∈ Ue and set K0 = g1g
γ0 ,Ky = gγy .

– Set δ1 = gd, δ2 = gd
′
, where d, d′ $← Zp.

All public parameters have the same distribution as in the original construc-
tion in the adversary’s view.
Query Phase. The adversary A issues a series of queries to which C responds
as follows.
sExtract oracle O′

sE(S, ρ): When A queries C for signing secret key on a signing

access structure (S, ρ) such that W ∗
s does not satisfy (S, ρ), the challenger C

proceeds exactly as it did in dExtract oracle OdE(·) of Theorem 13 and returns
the obtained secret key SK(S,ρ) = [(S, ρ), {Ds,i, D

′
s,i, D

′′
s,i : i ∈ [�s]}] to A.

dExtract oracle O′
dE(D, φ): The adversary A can request the secret decryption

key for any decryption access structure (D, φ) over encryption attributes. The
challenger computes the corresponding secret decryption key SK(D,φ) = [(D, φ),
{De,i, D

′
e,i, D

′′
e,i : i ∈ [�e]}] similar to the sExtract oracle OsE(·) of Theorem 1

and sends it to A.
H3 hash oracle O′

H3
(C,C1, σ1,Ws,We): The challenger C maintains a list HList′3

of records [IP, η,H3(IP)] to answerH3 queries. When the adversaryA queries the
O′

H3
hash oracle with input of the form IP = (C,C1, σ1,Ws,We), the challenger

checks if the list HList′3 contains the record [IP, η,H3(IP)]. If yes, C returns

H3(IP). Otherwise, C samples η
$← Zp and sets

3 This is possible due to the fact that the computation procedure of public parameters
of signing (resp. decryption) attributes is same as that of decryption (resp. signing)
attributes in Theorem 1.

416 Y.S. Rao and R. Dutta

H3(IP) = H3(C,C1, σ1,Ws,We) =

{
g−1
n gη, if Ws �=W ∗

s ,
gη, if Ws =W ∗

s .

The challenger stores the new record [IP, η,H3(IP)] in the list and returns H3(IP)
to the adversary.
Signcrypt oracle O′

SC(M,Ws,We): The challenger C formulates a signing ac-

cess structure (S, ρ) with Ws an authorized set. If the challenge signing at-
tribute set W ∗

s does not satisfy (S, ρ), the challenger C can obtain the se-
cret signing key SK(S,ρ) ← O′

sE(S, ρ) and returns the ciphertext CT(Ws,We) ←
Signcrypt(PK,M, SK(S,ρ),Ws,We) to A. Suppose W ∗

s satisfies (S, ρ). In this
case, C performs as follows.

– Sample θ′ $← Zp and implicitly set θ = θ′ + a. Compute C1 = gθ
′
g1.

– C2 =
(
K0

∏
atty∈We

Ky

)θ′(
g2g

γ0

1

∏
atty∈We

g
γy

1

)
.

– Select ϑ
$← Zp and set σ1 = Cϑ

1 .

– C3 = (δμ1 δ2)
θ′
(gμd+d′

1), where μ = H3(C1).

– Choose ξ′ $← Zp and set σ2 = gξ
′
. Note that ξ′ implicitly contains the term∑

i∈Is
riωi, i.e., we can assume that ξ′ = ξ +

∑
i∈Is

riωi.

– key = Y θ′ · e(g, g1)α
′ · e(g2, gn).

– Compute r = H2(M, key, C1, C2, C3, σ1, σ2,Ws,We) and C = Enckey(M ||r).
– Process the list HList′3 and set Q = g−1

n gη since Ws �=W ∗
s .

– Compute σ3 = gα
′(
T0
∏

att′x∈Ws
Tx
)ξ′

(g−1
n gη)θ

′
gη1C

ϑ
3 .

The ciphertext CT(Ws,We) = [Ws,We, C, C1, C2, C3, σ1, σ2, σ3] is sent to A.
Unsigncrypt oracle O′

US(CT(Ws,We), (D, φ)): A can perform an unsigncryption

query on a ciphertext CT(Ws,We) and a decryption access structure (D, φ). The
challenger C computes the secret decryption key SK(D,φ) ← O′

dE(D, φ) and re-
turns the output of Unsigncrypt(PK,CT(Ws,We), SK(D,φ)) to the adversary.
Forgery Phase. A produces a valid forgery CT∗

(W∗
s ,W∗

e) = [W ∗
s ,W

∗
e , C

∗, C∗
1 , C

∗
2 ,

C∗
3 , σ

∗
1 , σ

∗
2 , σ

∗
3] for some message M∗ and an encryption attribute set W ∗

e . Then,
the challenger solves the computational n-DHE problem as follows.

Since [W ∗
s ,W

∗
e , C

∗, C∗
1 , C

∗
2 , C

∗
3 , σ

∗
1 , σ

∗
2 , σ

∗
3] is a valid signcryption of M∗, it

must pass the verification test stated in Eq. (1), which means that

σ∗
3 = gα

(
T0
∏

att′x∈W∗
s
Tx
)ξ′
Qθ(C∗

3)
ϑ, σ∗

2 = gξ
′
, C∗

1 = gθ, σ∗
1 = gθϑ, C∗

3 =

(δμ
∗

1 δ2)
θ = g(dμ

∗+d′)θ, where α = α′ + an+1, ξ′ = ξ +
∑

i∈Is
riωi, μ

∗ = H1(C
∗
1),

and Q = H3(C
∗, C∗

1 , σ
∗
1 ,W

∗
s ,W

∗
e).

The challenger C retrieves η from HList′3 asQ = H3(C
∗, C∗

1 , σ
∗
1 ,W

∗
s ,W

∗
e) = gη

and computes

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 417

σ∗
3

gα′ · (σ∗
2)

t0 · (C∗
1)

η · (σ∗
1)

(dμ∗+d′)
=

gα
(
T0
∏

att′x∈W∗
s
Tx
)ξ′
Qθ(C∗

3)
ϑ

gα′ · (gξ′)t0 · (gθ)η · (gθϑ)(dμ∗+d′)

=
gα

′+an+1(
T0
∏

att′x∈W∗
s
Tx
)ξ′
Qθ(C∗

3)
ϑ

gα′ · (gt0)ξ′ · (gη)θ · (g(dμ∗+d′)θ)ϑ

=
gα

′
ga

n+1(
T0
∏

att′x∈W∗
s
Tx
)ξ′
Qθ(C∗

3)
ϑ

gα′(T0∏att′x∈W∗
s
Tx
)ξ′
Qθ(C∗

3)
ϑ

= ga
n+1

Success Probability. The advantage of C in solving the computational n-DHE
problem is

Advn-cDHE
C = Pr

[
C(g, ga, . . . , gan

, ga
n+2

, . . . , ga
2n

) = ga
n+1]

= Pr
[
A wins the EUF-ABSC-sCMA game

]
= AdvEUF−ABSC−sCMA

A > ε.

Therefore, the challenger C can solve the computational n-DHE problem with
advantage at least ε, if A creates valid forgery with advantage ε. ��

5 Discussion

Reducing the number of secret keys. In our construction, the secret keys used
for decryption and signature are essentially the same. As pointed out in [4], it
would be possible to use the same attribute universe and the same key generation
algorithm for both encryption and signature by defining appropriate security
model. This reduces the number of secret keys by exactly half.
Non-monotone access structure realization. We can build an ABSC for Non-
Monotone Access Structure (nonMAS) with constant-size ciphertext and con-
stant number of pairings by employing the moving from MAS to nonMAS
technique [21] that represents non-monotone access structures in terms of mono-
tone access structures with negative attributes.

6 Conclusion

We present the first constant-size ciphertext attribute based key-policy signcryp-
tion scheme with constant number of pairings. Both ciphertext confidentiality
and unfogeability against selective adversary have been proven under decisional
n-BDHE and computational n-DHE assumptions, respectively, in the random
oracle model. Additionally, it provides public ciphertext verifiability property
which allows any third party to check the integrity and validity of the ciphertext.
The secret key size in our scheme increases by a factor of number of attributes
used in the system.

Acknowledgement. The authors would like to thank the anonymous reviewers
of this paper for their valuable comments and suggestions.

418 Y.S. Rao and R. Dutta

References

1. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

2. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute Based Encryption for Fine-
Grained Access Control of Encrypted Data. In: ACM Conference on Computer and
Communications Security, pp. 89–98 (2006)

3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-Policy Attribute-Based Encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

4. Gagné, M., Narayan, S., Safavi-Naini, R.: Threshold Attribute-Based Signcryption.
In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 154–171.
Springer, Heidelberg (2010)

5. Hu, C., Zhang, N., Li, H., Cheng, X., Liao, X.: Body Area Network Security: A Fuzzy
Attribute-based Signcryption Scheme. IEEE Journal on Selected Areas in Commu-
nications 31(9), 37–46 (2013)

6. Wang, C., Huang, J.: Attribute-based Signcryption with Ciphertext-policy and
Claim-predicate Mechanism. In: CIS 2011, pp. 905–909 (2011)

7. Emura, K., Miyaji, A., Rahman, M.S.: Dynamic Attribute-Based Signcryption
without Random Oracles. Int. J. Applied Cryptography 2(3), 199–211

8. Attrapadung, N., Herranz, J., Laguillaumie, F., Libert, B., de Panafieu, E., Ràfols,
C.: Attribute-Based Encryption Schemes with Constant-Size Ciphertexts. Theor.
Comput. Sci. 422, 15–38 (2012)

9. Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Effi-
cient, and Provably Secure Realization. Cryptology ePrint report 2008/290 (2008)

10. Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)

11. Malone-Lee, J.: Identity-based signcryption. Cryptology ePrint Archive, Report
2002/098 (2002)

12. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) Advances in Cryptology CRYPTO -1984. LNCS, vol. 196,
pp. 47–53. Springer, Heidelberg (1985)

13. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-Based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011);
The first version available as Cryptology ePrint report 2008/328

14. Ge, A., Ma, C., Zhang, Z.: Attribute-Based Signature Scheme with Constant Size
Signature in the Standard Model. IET Information Security 6(2), 1–8 (2012)

15. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short Attribute-Based Sig-
natures for Threshold Predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS,
vol. 7178, pp. 51–67. Springer, Heidelberg (2012)

16. Gagné, M., Narayan, S., Safavi-Naini, R.: Short Pairing-Efficient Threshold-
Attribute-Based Signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 295–313. Springer, Heidelberg (2013)

17. Wei, J., Hu, X., Liu, W.: Traceable attribute-based signcryption. Security Comm.
Networks, doi: 10.1002/sec.940 (2013)

18. Guo, Z., Li, M., Fan, X.: Attribute-based ring signcryption scheme. Security Comm.
Networks 6, 790–796 (2013), doi:10.1002/sec.614

19. Rao, Y.S., Dutta, R.: Computationally Efficient Expressive Key-Policy Attribute
Based Encryption Schemes with Constant-Size Ciphertext. In: Qing, S., Zhou, J.,
Liu, D. (eds.) ICICS 2013. LNCS, vol. 8233, pp. 346–362. Springer, Heidelberg
(2013)

Expressive Attribute Based Signcryption with Constant-Size Ciphertext 419

20. Selvi, S.S.D., Sree Vivek, S., Pandu Rangan, C.: Identity Based Public Verifiable
Signcryption Scheme. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS,
vol. 6402, pp. 244–260. Springer, Heidelberg (2010)

21. Ostrovksy, R., Sahai, A., Waters, B.: Attribute Based Encryption with Non-
Monotonic Access Structures. In: ACM Conference on Computer and Commu-
nications Security, pp. 195–203 (2007)

DRECON: DPA Resistant Encryption

by Construction

Suvadeep Hajra1, Chester Rebeiro1, Shivam Bhasin2, Gaurav Bajaj1,
Sahil Sharma1, Sylvain Guilley2,3, and Debdeep Mukhopadhyay1

1 Dept. of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, India

{suvadeep.hajra,chetrebeiro,bajaj.gaurav92,shlshrm000,
debdeep.mukhopadhyay}@gmail.com

2 Institut MINES-TELECOM, TELECOM ParisTech,
Department COMELEC, 46 rue Barrault,

75634 PARIS Cedex 13, France
{bhasin,guilley}@telecom-paristech.fr

3 Secure-IC S.A.S., 80 avenue des Buttes de Coësmes,
35700 Rennes, France

Abstract. Side-channel attacks are considered as one of the biggest
threats against modern crypto-systems. This motivates the design of ci-
phers which are naturally resistant against side-channel attacks. The
present paper proposes a scheme called DRECON to construct a block
cipher with innate protection against differential power attacks (DPA).
The scheme is motivated by tweakable block ciphers and is shown to
be secure against first-order DPA using information theoretic metrics.
DRECON is shown to be less expensive than masking and re-keying
countermeasures from the implementation perspective and can be effi-
ciently realized in both hardware and software platforms. On FPGAs
especially, DRECON can optimally utilize the abundant block RAMs
available and therefore have minimal overheads. We estimate the cost
overhead of DRECON in micro-controllers and FPGAs, two common
targets for cryptographic applications. Finally we demonstrate practi-
cal side-channel resistance of a DRECON implementation on a Xilinx
Virtex-5 FPGA (SASEBO GII board).

1 Introduction

In 1998, Paul Kocher demonstrated a new class of cryptographic attacks known
as differential power analysis (DPA) [13], which utilize information leakages from
power or electro-magnetic radiation of the cipher’s implementation. Since then,
several DPA attacks have been demonstrated on almost every crypto-system in
use. Today DPA has become one of the biggest threats to modern security sys-
tems. Over the years there have been several attempts to prevent these attacks.
A current trend is to either eliminate [37,38] or randomize [2,7] side-channel
leakage. An alternate trend is a modification of the protocols, for example,

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 420–439, 2014.
c© Springer International Publishing Switzerland 2014

DRECON: DPA Resistant Encryption by Construction 421

by changing a secret in every encryption [8,19,28]. However in both these preven-
tion methodologies, the underlying cryptographic algorithm is unchanged and
by itself remains weak against the attack. Further, many of the countermeasures
are ad-hoc, platform dependent, or require customized development processes. It
has also been seen that several countermeasures can only make the attack more
difficult and not fully protected.

Better protection can be achieved if the cryptographic algorithm itself is de-
signed with DPA in the hindsight in addition to the conventional cryptanalytic
attacks as the primitives used can be chosen with better side-channel attack
resistance. Due to this reason, research is being carried out in developing cryp-
tographic primitives that are easily protectable by masking [29,6], or that can
inherently tolerate these attacks. In this paper, we show how cryptographically
good sboxes can be arranged in such a way that would result in a cipher with
increased resistance against DPA. This strategy ensures DPA resistance without
compromising on classical cryptographic properties.

The scheme we present is called DRECON (DPA Resistant Encryption by
CONstruction), which attempts to design a complete block cipher with DPA
prevention as a pre-requisite. The scheme currently guarantees first-order secu-
rity, and can be used as a starting point to build ciphers with higher order DPA
resistance. The construction is inspired from tweakable block ciphers [14], where
in addition to the plaintext and key, the cipher takes a tweak. However, unlike the
tweakable block ciphers in [14], the construction requires the tweak to be kept
secret. The tweak is used to choose an sbox from a given pool of cryptographi-
cally strong sboxes, thus modifying the mapping between the plaintext and the
ciphertext. Protection against DPA is obtained based on the assumption that
the tweak is exclusively shared between the sender and the receiver and modified
in every encryption. Besides the fact that the primitives used in DRECON have
higher resistance against DPA attacks, there are several advantages over contem-
porary DPA countermeasures. Compared to randomization techniques such as
masking, we show that encryptions in software can be done faster. In hardware,
the area and performance overheads are considerably less compared to masking.
Further no custom libraries or design flows are required as compared to hid-
ing countermeasures such as [37,38] and unlike protocol countermeasures such
as [8,19,28], key expansion needs to be done just once. The construction is sup-
ported by information theoretic proofs of security. We show that the DRECON
is resistant against the first-order (1O) DPA attack in the presence of glitches
also. We have experimentally validated the result on a version of DRECON using
the powerful correlation-collision attacks.

The organization of the paper is as follows: in Section 2, the necessary back-
ground for DPA is presented along with an introduction to commonly used
countermeasures. Section 3 presents DRECON and evaluates its security against
DPA. In Section 4, implementation aspects of the scheme are presented for both
hardware and software platforms. We also validate its resistance to correlation-
collision attack on the SASEBO-GII side-channel evaluation board [33]. The
final section has the conclusion of the paper.

422 S. Hajra et al.

2 Preliminaries

2.1 Notations

We denote random variables by capital letters (e.g. X) and their realization by
small letters (e.g. x). The universe for the variable is represented as a calligraphic
letter (e.g. X).

Let x be part of the plaintext which gets ex-ored with part of a sub-key, k,
in an encrypting block cipher. Assume that x and k are chosen from X and
K respectively and its choice is represented by the random variable X and K
respectively. Generally, X is ex-ored with a unknown but fixed key k and then
undergoes a non-linear transformation with an sbox. We denote this operation
by S(X ⊕ k).

2.2 Differential Power Attacks

The aim of a DPA adversary is to use the side-channel leakage from either X⊕k
or S(X ⊕ k) to reveal the secret data k. The steps involved is to rank each
possible candidate k∗ ∈ K for the key k by statistically comparing the actual
leakage with a model of the leakage. The candidate ranked first is the most likely
and the one ranked last is the least likely candidate. The o−th order average
success rate of the attack is the probability with which the correct value of k
has a rank between 1 and o [36].

The success of the attack depends on how much information gets leaked. In
2004, Micali and Reyzin used leakage functions (denoted φ) to encapsulate the
information leaked through the side-channels [21]. The ideal leakage function is
one which leaks the entire internal state of the cipher. It can be defined as:

Id : y ∈ Fn
2 �→ y ∈ Fn

2 , (1)

where y = S(x⊕ k) is the intermediate state. A more realistic leakage function
is the Hamming weight leakage, which leaks the Hamming weight of y. It is
defined as

HW : y ∈ Fn
2 �→

n−1∑
i=0

yi ∈ N , (2)

where yi is the i
th bit of the intermediate state y.

2.3 Countermeasures for DPA

Countermeasures for DPA are applied at the implementation level or at the
protocol level. The most common countermeasures used in the implementation
level are masking, shuffling, and hiding. The advantage of this is that they can
be applied on any cipher algorithm. On the other hand, they are affected by
the platform of implementation and do not always provide provable security.
Several hiding schemes have been proposed, which essentially use side-channel
resistant logic styles in order to prevent information leakage through the power
consumption. Examples of this can be found in [37,38]. These countermeasures
may require specific CMOS libraries or full custom designs. Masking and shuffling
do not have these limitations and will be discussed here in greater detail.

DRECON: DPA Resistant Encryption by Construction 423

Masking: Masking is the most frequently used countermeasure [2,7] applied
to implementations. A p-order masking scheme involves spreading each sen-
sitive variable Z into p + 1 shares Z0, . . . , Zp maintaining the invariant Z =
g(Z0, · · · , Zp). Each of the Zi’s are uniformly random and the joint distribution
of any p variables are independent of Z. Thus, any collection of variables less
than or equal to p contains no information about the sensitive variable Z. The
most commonly used masking is the first order masking (denoted 1O masking)
where a single uniformly random mask is used.

Let M be a random variable M with entropy hm ≤ n. In the 1O Boolean
masking scheme, it gets added to the sensitive variable X ⊕ k resulting in two
shares: X ⊕ k ⊕ M and M . Each sbox S is also replaced by a masked sbox
SM such that SM (X ⊕ k ⊕M,M,M ′) = S(X ⊕ k) ⊕M ′. In other words, the
masked sbox SM first unmasks the randomized variable X ⊕ k ⊕ M , passes
it through the sbox S and then re-masks the output S(X ⊕ k) by the output
mask M ′. The mask M is also replaced by the new mask M ′, thus the invariant
S(X⊕k) = SM (X⊕k⊕M,M,M ′)⊕M ′ is maintained. Now, the 1O side-channel
leakage has the form φ(S(X ⊕ k)⊕M ′). In the case where the leakage function
φ = Id (Equation 1), the entire output S(X⊕k)⊕M ′ is revealed to the adversary.
Information leakage is measured by the mutual information (abridged I) between
what can be observed by the attacker and the sensitive variable. Renaming the
variable M ′ as M :

I[S(X ⊕K)⊕M,X;K] = n− hm . (3)

This means that the countermeasure is perfect at 1O if and only if M has
entropy hm = n, i.e. M is uniformly distributed over Fn

2 .
In the case where φ = HW (defined in Equation 2), only the Hamming weight

of S(X ⊕ k)⊕M is revealed. The information leakage is equal to:

I[HW(S(X ⊕K)⊕M), X;K] =H[HW(K)]

−
∑
x,k

P[K = k]P[X = x] · H[HW(S(x⊕ k)⊕M)] .

(4)

If M is independent of X , the second term of the difference is equals to
H[HW(M)]. The value of Equation (4) is lower than that of Equation (3), but a
priori hard to make null if hm < n.

If hm = n, the single mask can perfectly shield against first-order attacks but
not against attacks of higher order such as [20]. This is because, in a second-
order attack the adversary is capable of obtaining the leakage φ(M) in addition
to φ(S(X ⊕ k) ⊕ M). However, the complexity of the attack increases. The
complexity is reduced significantly when the computations ofM and S(X⊕k)⊕
M overlap. The leakage then takes the form φ(M)+φ(S(X⊕k)⊕M) and follows
a distribution whose higher order moment depends on X ⊕ k. These attacks are
known as univariate higher order attacks (the one which uses variance is called
univariate second order attack [39]).

A 1Omasking scheme is secure against a 1O attack in an idealistic model. Most
of the model is based on the assumption that the output of a circuit switches
only once in a clock cycle. However due to asymmetric path delay, output of

424 S. Hajra et al.

a CMOS gate may switch more than once in a clock cycle. This phenomenon
is referred to as ‘glitch’ [16]. Since most of the masking schemes combine the
masked value X ⊕ k ⊕M and the masks M , M ′ within the same combinatorial
circuit, the leakage takes the form φ(X ⊕ k ⊕M,M,M ′). Due to the glitches,
this leakage φ(X ⊕ k⊕M,M,M ′) becomes strongly correlated to the unmasked
sensitive variableX⊕k [27]. Consequently, the circuit becomes vulnerable to first
order DPA attacks [17,4,22,23]. Secure implementation of non-linear function in
the presence of glitches has been proposed in [27]. However, implementation of
such a scheme increases the hardware cost drastically [25,31].

Shuffling: An alternate randomization technique is shuffling [10,34]. Here in-
stead of a random mask being added, executions of several sensitive operations
are shuffled in time. If the execution of an operation is spread over m different
signals, then the information per signal is reduced m times. This works well
because DPA can target a single signal at a time. However 1O DPA attacks can
defeat shuffling using m2 times traces [3].

Protocol Level: DPA requires several power traces in order to successfully
retrieve the secret key due to the noise present in the target device and due to
the non-injective nature of the leakage function. Protocol level countermeasures
prevent the adversary from collecting the required number of traces. In [28],
Kocher suggests to update the key on a regular basis. The rate of updation should
be fast enough to prevent an adversary from collecting the necessary traces. The
updation rate should be evaluated for each device and cipher implementation.
In the strongest form, every encryption is done with a new key.

There are various ways in which key updation (or re-keying) can be done.
Abdalla and Bellare in [1] classify them into two schemes: parallel and serial.
In the parallel re-keying scheme, a key update is derived directly from the mas-
ter key using a suitable function f . For example the ith key update (denoted
Ki) can be obtained from Ki = f(K, i), where K is a master key. Methods of
key updation using this scheme have been suggested in [19] and [8]. To obtain
provable security using the scheme, it is required that the key updates are pre-
computed and stored in memory. Thus the number of encryptions is limited by
the size of memory. In the serial re-keying scheme, a new key is obtained from
the previous key using a suitable function f . For example, the ith key can be
obtained from the previous key as follows: Ki = f(Ki−1), while the first key
used is derived from the master key (i.e. K1 = f(K)). Re-keying mechanisms
using this technique were suggested in [28] and [18].

The drawback of the re-keying mechanisms is that with each key update, new
round keys have to be computed. Thus, the overhead is not only in the genera-
tion of the new key, but also the computation of the key expansion algorithm.
This can add significant overheads in the performance, especially in software im-
plementations. Our proposal does not suffer from this drawback. In DRECON,
the round keys are fixed for all encryptions. Instead, only the tweak is updated
by a function similar to f used in the previous schemes.

DRECON: DPA Resistant Encryption by Construction 425

3 The DRECON Scheme

In 2002, Liskov, Rivest, and Wagner introduced tweakable block ciphers to add
more variability to the functionality [14]. Here an additional secret input called
the tweak is present, which if changed alters the map between the plaintext and
ciphertext thereby obtaining more variations in the mapping. Both the sender
and the receiver need to know the tweak in addition to the secret key. The
proposal in this paper is inspired by tweakable block ciphers, and uses a regularly
changing tweak to stymie differential power attacks. In this section, we present
the proposal and then compare its security with that of 1O masking.

DRECON: The secret in DRECON comprises of the tuple (t, k), where t is
called the tweak and k the key used in the block cipher. The key k is held
constant for all encryptions, while the tweak t changes for each encryption,
using a tweak generation algorithm. The tweak is used to select a function from
the set F{F1,F2, · · · ,Fr}, where Fj : {0, 1}n → {0, 1}n and (1 ≤ j ≤ r), are
cryptographically strong sbox functions. For every application of the sbox on
X , a function from F is selected depending on the value of the tweak (t) and
applied to X . This sbox, known as the tweaked-sbox, is represented by S(·, ·) and
defined as follows:

S(t,X) ← Ft(X) where t
R← {1, 2, · · · , r}.

In a typical iterative block cipher, the first round key is added to plaintext before
the sbox operation and the sbox operation has the form S(x ⊕ k). However, in
DRECON, we choose to omit the whitening at the beginning of the encryption.
Thus, each round except the last round consists of substitution layer, diffusion
layer and key addition layer. The last round consists of only substitution layer.
The sboxes of the substitution layers is replaced by the tweaked-sbox. For all
round, the same tweaks are used though two different tweaked-sboxes of the same
round use two different tweaks independently. The first round of DRECON is
shown in Figure 1. It may be noted that DRECON requires no key whitening
at the beginning and end of the block cipher since the tweaked-sboxes provide
the required randomization of the input and output respectively.

3.1 Information Theoretic Analysis

First we will analyse the security of the above scheme for glitch-free circuit. Then
we will analyse its resistance in the presence of glitches. For all the analysis, we
consider the known plaintext attacks where its distribution is uniformly random.

In the Absence of Glitch: Let us assume there is no diffusion layer, since
its presence does not dilute the side-channel security of DRECON. Let T be
the random variable representing the tweak and having entropy ht. In the worst
case, the entire state gets leaked (that is φ = Id). Hence, one can get the 1O
leakage S(T,X)⊕ k. The information leakage can be shown to be

I[S(T,X)⊕K,X;K] = H[X] −
∑
x

P[X = x] · H[S(T, x)] . (5)

426 S. Hajra et al.

Tweaked
Sbox

Tweaked
Sbox

Diffusion Layer

Tweaked
Sbox

Tweaked
Sbox

. . .

. . .

. . .

Fi
rs

t R
ou

nd
Se

co
nd

 R
ou

nd

. . .

. . .

T1 Tq

k1

Zq

Z1 ⊕ k1 Zq ⊕ kq

T1 Tq

Z1

X1 Xq

S(X1, T1) S(Xq, Tq)

kq

Fig. 1. First round of DRECON. The same structure is repeated for all rounds except
the last round which is consisted of only substitution layer.

This quantity is greater than or equal to n − ht if ht ≤ n. When ht > n, it is
greater than or equal to 0.

Comparing Equations (5) and (3), we note that DRECON performs as good
as 1O masking scheme for the Id leakage functions (the worst case), provided the
following propositions are respected.

Proposition 1. I[S(T,X)⊕K,X ;K] = n− ht if and only if �(x, t0, t1) ∈ Fn
2 ×

T × T , such that S(t0, x) = S(t1, x).

This means that for all x ∈ Fn
2 , the values taken by the random variable S(T, x)

are of cardinality 2ht .

Proposition 2. I[S(T,X) ⊕ K,X ;K] = n − ht if and only if ∀x, t ∈ T →
S(t, x) ∈ Fn

2 is balanced.

Thus, to make the information leakage null, ht should be atleast n. In other
words, the tweak should be atleast n bit long.

In the Presence of Glitches: Let us first assume that there is no glitch in
the key addition layer. This assumption is aligned with the existing observations
in the literature [16] and much of the effort has been directed to make a non-
linear circuit resistant in the presence of glitches [27]. We also assume that tweak
T is following an uniformly random distribution with entropy ht ≥ n and the
tweaked-sbox satisfies the balancedness property of Proposition 2.

Under the above assumptions, the output of the substitution layer in the first
round (see Figure 1) is a uniformly random unknown variable. Hence the leakages
of the linear layer of the first round take the form φ(R ⊕ k) for some uniformly
distributed unknown random variable R. Thus, univariate attack targeting that
layer is not feasible. However, the leakage of an sbox S(R ⊕ k, T) in an inter-
mediate round takes the form φ(R ⊕ k, T) which may leak some information of

DRECON: DPA Resistant Encryption by Construction 427

the secret k if there exists a dependency between R and T . To analyse the case
further, we assume that the diffusion layer consists of q/m maximum distance
separable (MDS) mapping M : ({0, 1}n)m → ({0, 1}n)m where q is the number
of sboxes present in a single round, m ≥ 2 and q is divisible by m. Lemma 1
provides the following result.

Lemma 1. Let X1, . . . , Xq be the random variables representing the plaintext
inputs of DRECON. Let Z ⊕ k and T be the inputs to an sbox S(Z ⊕ k, T) of an
intermediate round where T is the random variable representing the tweak input
to the sbox. Then the random variable Z is independent to the joint distribution
of X1, . . . , Xq and T .

The proof of the above lemma is given in Appendix A. Before computing the
bound of the information leakage, we state without proof two well known results
of information theory [5]:

Lemma 2. Let U1, . . . , Ur be r mutually independent variables. Then

H[U1, . . . , Ur] =
r∑

i=1

H[Ui]

Lemma 3. Let U1 and U2 be two random variables. Then

I[U1;U2] = H[U1] + H[U2]− H[U1, U2]

Applying the above three lemmas, the information leakage φ(Z⊕k, T) due to
the sbox S(Z ⊕ k, T) can be computed as

I[φ(Z1 ⊕K,T), X1, . . . , Xq;K] ≤I[Z1 ⊕K,T,X1, . . . , Xq ;K]

=0 .

Hence, DRECON is resistant against 1O DPA in the presence of glitches also.

DRECON and Shuffling: DRECON is not a shuffling countermeasure. A
typical shuffling countermeasure would have computed the correct result some-
times and at others something which is totally uncorrelated from the data. Thus
shuffling is not perfect at first order. On the other hand, DRECON is sound at
1O using the mutual information metric.

DRECON and Masking: As discussed in Section 2.3, a simple masking like
Boolean masking provides perfect secrecy against 1O DPA only in glitch free
circuits. By custom design of circuits, glitches can be reduced, but can never
be eliminated totally. On the other hand, masking schemes that of [27] provides
high resistance against 1O DPA in the presence of glitches, but are very costly
to implement. Thus, DRECON provides a cost-effective alternative to those
masking schemes against 1O DPA in the presence of glitches.

428 S. Hajra et al.

DRECON and Re-keying: DRECON, in some sense, is similar to re-keying
mechanisms. However unlike re-keying, the key is held constant for all encryp-
tions while it is the tweak that changes and needs to be synchronized between
the sender and receiver. If the key is changed such as in [28,8,18,19], then in
addition to the generation of the new key, the key expansion algorithm has to
be executed in order to generate the new round keys. DRECON doesn’t suffer
from this drawback since it is only the tweak that needs to be generated.

4 An Application of the DRECON Scheme

DRECON is implementation friendly for both software and hardware platforms
and can be easily derived from any legacy block cipher, preferably one which has
small sboxes of dimensions for example 4×4. When implemented with DRECON,
each of the sboxes of the legacy cipher is chosen from a pool of cryptographically
equal strong sboxes for each encryption based on the unknown tweak such that
Proposition 2 is satisfied. Thus, the classical blackbox cryptanalytic attacks are
no more applicable under the assumption that the tweak is a uniformly random
variable parameter.

In this article, we consider two implementations of DRECON which are based
on AES algorithm. The first implementation is more resource friendly and based
on a simplified AES algorithm. The simplified AES algorithm, which we name
as 4× 4 AES, follows the standard AES specification, except that the 8× 8 sbox
is replaced by a pair of 4 × 4 sboxes. Thus, there are 32 sbox access per round
instead of 16 for the regular AES algorithm. The second implementation is based
on the standard AES which we refer as 8× 8 AES.

The adapted n× n AES algorithm with DRECON is called n×n DRECON-
AES where possible values of n is 4 and 8. The DRECON-AES has the following
properties. Each round of DRECON-AES has the same structure as that of
n×n AES except the AddRoundKeys of the first and the last round are omitted.
The ShiftRow operation of the last round is also omitted, and thus last round
is left with only the SubBytes operation (Figure 2). Further, each n × n bit
sbox is replaced by a n × n bit tweaked-sbox. Each tweaked-sbox is a set of
2n (r = 2n, n = 4 or 8) non-linear functions having the equal cryptographic
strength, which put together satisfies Proposition 2. The criteria for selection of
these sboxes is specified in Section 4.3.

4.1 Operation of DRECON-AES

Using DRECON-AES to secure communication between a sender and receiver
has three phases as shown in Figure 3. The phases are explained below.
– Bootstrapping: To bootstrap, both parties need to agree on a secret key

as well as a secret master tweak. Standard key exchange protocols can be
used for the purpose.

– Key Expansion: The next step is to generate the round keys at both ends
using a key scheduling algorithm. The sboxes in AES key scheduling algo-
rithm are replaced by the tweaked-sbox. The tweak bits are generated by a

DRECON: DPA Resistant Encryption by Construction 429

A
dd

 R
ou

nd
 K

ey

M
ix

 C
ol

um
ns

32
 T

w
ea

ke
d

4x
4

s−
bo

xe
s

32
 T

w
ea

ke
d

4x
4

s−
bo

xe
s

A
dd

 R
ou

nd
 K

ey

Sh
if

t R
ow

s

Sh
if

t R
ow

s

M
ix

 C
ol

um
ns

32
 T

w
ea

ke
d

4x
4

s−
bo

xe
s

A
dd

 R
ou

nd
 K

ey

Sh
if

t R
ow

s

M
ix

 C
ol

um
ns

32
 T

w
ea

ke
d

4x
4

s−
bo

xe
s

Plaintext

Key

Ciphertext

Round 1 Round 2 Round 9 Round 10

Fig. 2. 4× 4 AES Adapted for DRECON

Key Expansion

Secure Exchange of the Key

Key Expansion
Tweaked

Tweaked Tweaked
Encryption Decryption

Ciphertext

Secure Exchange of the Tweak

Algorithm
Tweak Generation

Algorithm
Tweak Generation

Secret

Tweaked

Secret
Master TweakMaster Tweak

Secret KeySecret Key

SENDER RECEIVER

Bootstrap

Fig. 3. Application of DRECON

tweak generation algorithm discussed in Section 4.2. The same tweak is used
for all accesses during the key generation. The round keys are thus gener-
ated once and stored which are then used for every encryption until there is
a change in the session key.

– Encryption: is then performed. Each encryption requires 128 bits of tweak
to be generated, since each sbox takes a tweak input of equal size of its
original input and all rounds use the same tweak.

The entire operation of the 4× 4 DRECON-AES is summarized in Algorithm 1
of Appendix B. The operations of the 8× 8 DRECON-AES are similar to those
of 4 × 4 DRECON-AES except every pair of consecutive 4 × 4 tweaked-sboxes
is replaced by a 8× 8 tweaked-sbox.

4.2 Tweak Generation Algorithm

From the master tweak agreed upon by the sender and receiver, tweaks need
to be generated for each encryption. The tweak generation needs to produce
uniformly random tweaks in the range of 1 to r in order to select one of the r
sboxes (for DRECON-AES r = 16 or 256). Further, the algorithm needs to be
secure against power attacks as is discussed in detail in [19].

Any mask generation function (MGF) or stream cipher implemented in a
secure manner can be used as a tweak generator. However, given the fact that
the adversary has no control or knowledge of the input and output of the tweak
generator, lightweight solutions can be developed by balancing registers and

430 S. Hajra et al.

minimizing the combinational logic, which can otherwise leak [9]. A possible
construction for a tweak generation algorithm makes use of an LFSR as shown in
figure 4. The design uses two pairs of shift registers (S and S), each comprising
of n flip-flops. The flip-flops in S are a complement of the flip-flops in S. To
obtain such a state, the master tweak is used to seed S and the complement
of the master tweak is used to seed S. Further, the feedback obtained from
an n degree primitive polynomial is complemented before being fed back to
S. Since all clocks toggle at the same time, the leakage from the registers is
minimised. The alternate source of leakage, from the combinational paths, is
also kept minimum by choosing a primitive polynomial with small number of
coefficients. For DRECON-AES, n = 128 and the primitive polynomial chosen
was α128 ⊕ α7 ⊕ α2 ⊕ α⊕ 1.

4.3 Choosing the S-boxes

Proposition 2 mandates that in order to make I[S(T,X)⊕K,X ;K] minimum,
S(T, x) should be balanced for all x. To make I[S(T,X) ⊕ K,X ;K] zero, it is
enough to have ht = n. Again to make S(T, x) balanced, we can choose the size
of T to be 2n. Further, each of the sboxes needs to have good cryptographic
properties to ensure security against black box attacks.

Exhaustive search can be used to find such sboxes. However, when the size
of the sbox is large, it becomes infeasible. We choose the set of sboxes which
are obtained using an affine transformations of a cryptographically strong sbox.
That is, if S(·) is a cryptographically strong sbox, we find a set of 2n strong
sboxes by setting Fi(x) = αS(x)⊕ i for all i = 0, · · · , 2n−1 where α is an invert-
ible matrix of dimensions n × n. Since affine transformation does not changes
the cryptographic properties of sboxes, all the sboxes of the set possess equal
cryptographic straingth of the original sbox.

4.4 Software Implementation of DRECON-AES

DRECON-AES can be efficiently implemented on a micro-controller. We define
a micro-controller model to compare the cost of DRECON-AES with the first-
order masking of AES. We use an 8-bit micro-controller model [11] which takes:

Clock

n degree primitive polynomial

sn−1 sn−3sn−2 s0sn−4

s0sn−4sn−3sn−2sn−1

S

S

Fig. 4. Tweak Generation for DRECON

DRECON: DPA Resistant Encryption by Construction 431

– load/store from/to RAM takes one clock cycle,
– load/store from/to ROM takes two clock cycles,
– XOR two registers takes one clock cycle,
– shift by one bit takes one clock cycle.
– swapping two nibbles of a byte takes one clock cycle.
We assume that the tweaked-sbox is stored in ROM. The masked implemen-

tations are assumed to use GLUT (global look-up table) with the same input
and the output mask (as it is first order protection). The GLUT is also stored
in ROM. Key Expansion is considered precomputed and thus omitted.

8 × 8 DRECON-AES: In the given scenario, the cost of each AES sub-
operation for a standard 8× 8 AES in terms of number of cycles are [11]:
– SubBytes (SB): 80
– ShiftRows (SR): 24
– MixColumns (MC): 256
– AddRoundKey (ARK): 64
– Memory Size: 256 Bytes
In DRECON-AES, the linear operations are exactly same as AES. The Sub-

Bytes is the only component which has changed. For 8× 8 DRECON-AES, the
number of clock cycles required for the SubBytes operation is SB∗ = 96. It also
needs one SR and two ARK operations less than the standard AES. Thus, the
full 8 × 8 DRECON-AES (without Key Expansion) would need Encryption =
10× SB∗ + 9× SR+ 9 ×MC + 9 ×ARK i.e. 4056 clock cycles and 256× 256
bytes or 64Kbytes of ROM.

For masking using GLUT approach, the total number of 8 × 8 sboxes are
256 which is same as 8 × 8 DRECON-AES. The number of cycles to compute
SubBytes is also same as 8× 8 DRECON-AES i.e. SB∗ = 96 clock cycles. Apart
from SubBytes, there is one initial masking and a final demasking. This is called
Extra Mask Addition (MA) and takes as many clock cycles as ARK. At each
round, the MixColumns and ShiftRows operations need to be performed for the
mask also. Thus a total masked AES (without Key Expansion), would need
Encryption = 10× SB∗ +20× SR+18×MC +11×ARK +2×MA i.e. 6880
clock cycles and 256× 256 bytes or 64Kbytes of ROM. Total cost estimation of
8× 8 DRECON-AES and masked AES is shown in Table 1.

Table 1. Cost Comparison for 8-bit Micro-controller in terms of number of clock cycles
taken for various operations

Architecture SB SR MC ARK ROM (bytes) MA Encryption

AES 80 24 256 64 256 0 4048
8× 8 DRECON-AES 96 24 256 64 64K 0 4056

Masked AES 96 24 256 64 64K 64 6880

432 S. Hajra et al.

Table 2. Cost Comparison for 8-bit Micro-controller in terms of number of clock cycles
taken for various operations

Architecture SB SR MC ARK ROM (bytes) MA Encryption

4× 4 DRECON-AES 256 24 256 64 128 0 5656
Masked Alternative 224 24 256 64 128 64 8160

4×4 DRECON-AES: Implementation of 4×4 DRECON-AES in 8-bit micro-
controller is a bit more tricky. The tweaked-sbox comprising of 16 non-linear
functions can be stored in 128-bytes of ROM. The tweak determines the correct
sbox for the current operation by additional XOR (Figure 5). Since the ROM
in micro-controllers are often organised in bytes, a conditional swap operation
followed by AND operation with 0x0F determines the correct output nibble.

With the defined model in the beginning of Section 4.4 into consideration, we
have derived the number of clock cycles for each encryption and compare with
its masking counterpart. Table 2 gives the number of cycles for SubBytes (SB),
ShiftRows (SR), MixColumns (MC), AddRoundKeys (ARK). The table also lists
the ROM required for the implementations.

The 8 × 8 DRECON-AES has almost null performance overhead, while its
masking counterpart has a significant performance overhead, both having a 256X
memory overhead. The memory overhead of the 8 × 8 DRECON-AES can be
further reduced to as low as 16X for 4 × 4 DRECON-AES only at the cost of
slightly higher performance overhead. For both the cases, DRECON-AES has
an advantage over its masking counterpart in terms of the performance while
having same memory overhead.

4.5 Hardware Implementation DRECON-AES

In hardware, two implementation styles are followed for DRECON-AES. The
first one is parallel implementation which is preferred when sbox is small as in

ADDR

SBOX7 SBOX15

SBOX1 SBOX9
SBOX8SBOX0

10

4 4

SBOX_OUT

TWEAK[3]

SBOX_SEL[3]

SBOX_IN

7

4

TWEAK[2:0]

SBOX_SEL[2:0]

128X8 ROM

3

Fig. 5. 4× 4 tweaked-sbox in Software

������������������������������
������������������������������
������������������������������
������������������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

R
ow

 S
el

ec
t

Output Select

Output(4 bits)

input
4 bits

Tweak (4−bits)

Column Select

Fig. 6. 4× 4 tweaked-sbox with in Hardware

DRECON: DPA Resistant Encryption by Construction 433

Table 3. Comparing Resource Requirements for 8 × 8 DRECON-AES with Masking
on an FPGA (XC5VLX50-2FF324)

Implementation Slices LUTs Registers Clock Clock Period
Cycles (ns)

4× 4 AES1 1120 3472 1270 11 11.14
Masked 4× 4 AES 3427 10589 1765 11 23.83
4× 4 DRECON-AES 1379 3868 1583 11 10.3

14× 4 AES is an implementation of the AES-128 algorithm with the 8× 8 bit sbox
replaced by a pair of 4× 4 cryptographically strong sboxes.

the case of 4 × 4 DRECON-AES. The second is the serialized implementation
used when sboxes are larger or when small area implementations are required.
We adopted serialized implementation for 8× 8 DRECON-AES.

4× 4 DRECON-AES: Much like the RSM countermeasure proposed in [26],
DRECON makes excessive use of tables. This especially suits FPGA platforms
which possess large memory blocks (BRAM) to implement arrays of sboxes. The
BRAM are used to store the pool of sboxes (F) efficiently. BRAM based un-
protected implementation of ciphers have been shown to offer higher resistance
against DPA as compared to other unprotected implementations [35]. The mem-
ory is addressed by a 4 bit tweak as shown in Figure 6. For DRECON-AES, we
replicated this memory 32 times; once for each tweaked-sbox in the round. The
value of the tweak is used to select a row while the input data selects a column
in order to obtain the result. There are 32 such structures, one for each of the 32
substitution functions, present in the design. We use distributed RAM instead of
BRAM to accelerate the attack. Resource requirements for the DRECON-AES
implementation is compared with masked implementations of an equivalent AES
with 4× 4 sboxes in Table 3. The estimation for the masked implementation is
computed from [32].

8 × 8 DRECON-AES: To implement 8× 8 DRECON-AES, we followed the
design of [23]. Serialised architecture with a rotating shift register and a single
sbox is used. Each sbox access is split into two cycles. In the first cycle, two bytes
- one from the state register and other from the tweak register - are applied to
the input of the tweaked-sbox and its output is saved into the state byte. In
the next cycle, both the state register and the tweak register are rotated by
one byte. Thus, the SubBytes operation requires 2 × 16 = 32 clock cycles. The
purpose of performing the state-byte update and rotation of state register in two
different clock cycles is to be able to perform a sound security analysis of the
implementation [23]. After the SubBytes operation, ShiftRows, MixColumns and
AddRoundKey operations are performed in one clock cycle making a single round
consisting of 33 clock cycles. The 8× 8 tweaked-sbox consists of 28 8× 8 sboxes.
Each of the 28 sboxes was generated from AES sbox using the second strategy
of Section 4.3. The resource requirement of 8 × 8 DRECON-AES implemented

434 S. Hajra et al.

Table 4. Comparing Resource Requirements for 8 × 8 DRECON-AES with Masking
on an FPGA (XC5VLX50-2FF324)

Implementation Slices LUTs Registers Clock Period
(ns)

Masked AES1 3948 13278 1592 14.955
8× 8 DRECON-AES 1355 3716 1568 10.789

1The implementation exclude the PRNG used to generate mask.

0 100 200 300 400 500 600 700 800
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Sample Points

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

(a) 1O correlation-collision attack

0 100 200 300 400 500 600 700 800
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Sample Points

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

(b) 2O correlation-collision attack

Fig. 7. Results of correlation-collision attack on 8 × 8 DRECON-AES using about
10, 00, 000 traces. The correlation coefficients for wrong key differences are shown in
grey and for the correct key difference (in this case k1 ⊕ k2 = 108) in black.

in SASEBO-GII FPGA platform is shown in Table 4. The table also shows
the resource requirement of the second scheme of [15] implemented in the same
platform.

4.6 Attack on the Hardware Implementation

Recently correlation-collision attacks [24,22,23] have become a very effective tool
to expose the vulnerabilities of 1O masking scheme in the presence of glitches.
In [23], the authors have discussed the security of several ROM-based masking
scheme of AES against correlation-collision attacks. In this section, we provide
a similar security analysis of 8× 8 DRECON-AES.

In correlation-collision attack [24], two sets of leakages of the same sbox in-
stant during two different clock cycles with two different inputs, xi ⊕ ki and
xj ⊕ kj , are compared using a statistical test. If the two sets of leakages are
similar in some statistical sense, a collision between the two sets are detected
by the statistical test. The collision assures the relation xi ⊕ ki = xj ⊕ kj or
ki ⊕ kj = xi ⊕ xj . Correlation-collision attack was originally proposed to detect
collision using the correlation between the mean values of the two sets of leak-
ages. However in [22,23], it has been used to consider the higher order moments
of the leakages also.

DRECON: DPA Resistant Encryption by Construction 435

To verify the resistance of 8 × 8 DRECON-AES against DPA attack in the
presence of glitches, we performed correlation-collision attack using both 1O
and the 2O moments as described in [22]. For this evaluation also, SASEBO-GII
board was used. The algorithm was implemented in Virtex 5 XC5VLX50 FPGA
of SASEBO-GII which is driven by a clock frequency of 2 MHz. The power traces
were acquired using Tektronix MSO 4034B Oscilloscope at the rate of 2.5 GS/s
i.e. 1, 250 samples per clock period. Figure 7 shows the result of both 1O and the
2O correlation-collision attack on the leakages of the first and the second sbox
access of the second round 8 × 8 DRECON-AES using about 10, 00, 000 traces.
It may be noted that similar implementations of several masking schemes have
been reported to be vulnerable to correlation-collision attack in [23].

5 Conclusion

DRECON provides a simple and efficient method of constructing block ciphers
with inherent and provable security against DPA. The use of off-the-shelf sboxes
ensures that the cipher is secure against classical cryptanalysis. In a glitch-free
scenario, the security against DPA is proved to be equal to first-order Boolean
masking from an information theoretic perspective. Its resistance against uni-
variate DPA is also proved in the presence of glitches. Additionally, the first-
order and second-order univariate DPA security is validated empirically with
implementations on the SASEBO GII side-channel evaluation board. From the
implementation perspective, DRECON has several advantages over standard
countermeasures such as masking, hiding, and re-keying. In future, we hope to
extend DRECON to provide security against higher-order DPA attacks as well.

References

1. Abdalla, M., Bellare, M.: Increasing the Lifetime of a Key: A Comparative Analysis
of the Security of Re-keying Techniques. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 546–559. Springer, Heidelberg (2000)

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: Wiener (ed.) [40], pp. 398–412

3. Clavier, C., Coron, J.S., Dabbous, N.: Differential Power Analysis in the Presence
of Hardware Countermeasures. In: Koç, Ç.K., Paar (eds.) [12], pp. 252–263

4. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved
Collision-Correlation Power Analysis on First Order Protected AES. In: Preneel,
B., Takagi, T. (eds.) [30], pp. 49–62

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Series in
Telecommunications and Signal Processing. Wiley-Interscience (July 2006)

6. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block Ciphers That
Are Easier to Mask: How Far Can We Go? In: Bertoni, G., Coron, J.-S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

7. Goubin, L., Patarin, J.: DES and Differential Power Analysis (The “Duplication”
Method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

436 S. Hajra et al.

8. Guajardo, J., Mennink, B.: On side-channel resistant block cipher usage. In:
Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531,
pp. 254–268. Springer, Heidelberg (2011)

9. Guilley, S., Sauvage, L., Flament, F., Vong, V.N., Hoogvorst, P., Pacalet, R.: Eval-
uation of Power Constant Dual-Rail Logics Countermeasures against DPA with
Design Time Security Metrics. IEEE Trans. Computers 59(9), 1250–1263 (2010)

10. Herbst, C., Oswald, E., Mangard, S.: An AES Smart Card Implementation Resis-
tant to Power Analysis Attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006.
LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)

11. Hoheisel, A.: Side-Channel Analysis Resistant Implementation of AES on Automo-
tive Processors. Master’s thesis, Ruhr-University Bochum, Germany (June 2009)

12. Paar, C., Koç, Ç.K. (eds.): CHES 2000. LNCS, vol. 1965. Springer, Heidelberg
(2000)

13. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener (ed.) [40],
pp. 388–397

14. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

15. Maghrebi, H., Prouff, E., Guilley, S., Danger, J.-L.: A first-order leak-free masking
countermeasure. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp.
156–170. Springer, Heidelberg (2012)

16. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

17. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

18. McEvoy, R.P., Tunstall, M., Whelan, C., Murphy, C.C., Marnane, W.P.: All-or-
Nothing Transforms as a Countermeasure to Differential Side-Channel Analysis.
IACR Cryptology ePrint Archive 2009, 185 (2009)

19. Medwed, M., Standaert, F.X., Großschädl, J., Regazzoni, F.: Fresh Re-keying: Se-
curity against Side-Channel and Fault Attacks for Low-Cost Devices. In: Bern-
stein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296.
Springer, Heidelberg (2010)

20. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant
Software. In: Koç, Ç.K., Paar (eds.) [12], pp. 238–251

21. Micali, S., Reyzin, L.: Physically Observable Cryptography (Extended Abstract).
In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg
(2004)

22. Moradi, A.: Statistical Tools Flavor Side-Channel Collision Attacks. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
428–445. Springer, Heidelberg (2012)

23. Moradi, A., Mischke, O.: How Far Should Theory Be from Practice? - Evaluation
of a Countermeasure. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS,
vol. 7428, pp. 92–106. Springer, Heidelberg (2012)

24. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

25. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)

DRECON: DPA Resistant Encryption by Construction 437

26. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: A small and fast counter-
measure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Rosenstiel,
W., Thiele, L. (eds.) DATE, pp. 1173–1178. IEEE (2012)

27. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlin-
ear Functions in the Presence of Glitches. J. Cryptology 24(2), 292–321 (2011)

28. Kocher, P.C.: Leak-Resistant Cryptograhic Indexed Key Update, US Patent
6539092 (2003)

29. Piret, G., Roche, T., Carlet, C.: PICARO – A Block Cipher Allowing Efficient
Higher-Order Side-Channel Resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.)
ACNS 2012. LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)

30. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917, pp. 2011–2013.
Springer, Heidelberg (2011)

31. Prouff, E., Roche, T.: Higher-Order Glitches Free Implementation of the AES Using
Secure Multi-party Computation Protocols. In: Preneel, B., Takagi, T. (eds.) [30],
pp. 63–78

32. Regazzoni, F., Yi, W., Standaert, F.X.: FPGA Implementations of the AESMasked
Against Power Analysis Attacks. In: Proceedings of 2nd International Workshop
on Constructive Side-Channel Analysis and Secure Design (COSADE) (February
2011)

33. Research Center for Information Security National Institute of Advanced Indus-
trial Science and Technology: Side-channel Attack Standard Evaluation Board
SASEBO-GII Specification, Version 1.01 (2009)

34. Rivain, M., Prouff, E., Doget, J.: Higher-Order Masking and Shuffling for Software
Implementations of Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

35. Shah, S., Velegalati, R., Kaps, J.P., Hwang, D.: Investigation of DPA Resistance of
Block RAMs in Cryptographic Implementations on FPGAs. In: Prasanna, V.K.,
Becker, J., Cumplido, R. (eds.) ReConFig, pp. 274–279. IEEE Computer Society
(2010)

36. Standaert, F.X., Pereira, O., Yu, Y., Quisquater, J.J., Yung, M., Oswald, E.:
Leakage Resilient Cryptography in Practice. Cryptology ePrint Archive, Report
2009/341 (2009), http://eprint.iacr.org/

37. Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards. In: ESSCIRC 2002, pp. 403–406 (2002)

38. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA Re-
sistant ASIC or FPGA Implementation. In: DATE, pp. 246–251. IEEE Computer
Society (2004)

39. Waddle, J., Wagner, D.: Towards Efficient Second-Order Power Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

40. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)

http://eprint.iacr.org/

438 S. Hajra et al.

Appendix A: Proof of Lemma 1

Without loss of generality, we assume that the sbox in the statement of Lemma 1
belongs to the second round. Thus, the random variable Z is the output of a MDS
mapping M of the diffusion layer in the first round (see Figure 1) which takes the
outputs of m sboxes of the first round as inputs. Let S(Xi1 , Ti1), S(Xi2 , Ti2),
. . ., S(Xim , Tim) be the inputs to the the MDS mapping. Since the operation is a
MDS mapping, it can be realised by a q×q matrix whose elements are essentially
non-zero. Thus Z can be represented as a1 ·S(Xi1 , Ti1)⊕ · · · ⊕ am ·S(Xim , Tim)
where aj ∈ {0, 1}n \ {0}n. We can now compute the posterior probability of
Z = z given X1, . . . , Xq, T as

P[Z = z|X1 = x1, . . . , Xq = xq, T = t] =P[Z = z|Xi1 = xi1 , . . . , Xim = xim , T = t]

=P[a1 · S(Xi1 , Ti1)⊕ · · · ⊕ am · S(Xim , Tim)=z

|Xi1 = xi1 , . . . , Xim = xim , T = t]

=P[a1 · S(xi1 , Ti1)⊕ · · · ⊕ am · S(xim , Tim) = z

|T = t]

The variable T may or may not belong to {Ti1 , · · · , Tim}. Let us first assume
that T does not belong to {Ti1 , · · · , Tim}. In that case, the above probability
can be given by

P[Z = z|X1 = x1, . . . , Xq = xq, T = t] =P[a1 · S(xi1 , Ti1)⊕ · · · ⊕ am · S(xim , Tim) = z]

Since, the sbox S(·, ·) satisfies Proposition 2 and Tis are uniformly random, the
variable a1 · S(xi1 , Ti1) ⊕ · · · ⊕ am · S(xim , Tim) is also uniformly random and
consequently P[Z = z|X1 = x1, . . . , Xq = xq, T = t] = 1/2n.

On the other hand, if T belongs to {Ti1 , · · · , Tiq}, let say T = Ti1 , the posterior
probability of Z = z can be given by

P[Z = z|X1 = x1, . . . , Xq = xq, T = t] =P[a1 · S(xi1 , Ti1)⊕ · · · ⊕ am · S(xim , Tim) = z

|Ti1 = t]

=P[a1 · S(xi1 , t)⊕ · · · ⊕ am · S(xim , Tim) = z]

=P[a2 · S(xi2 , Ti2)⊕ · · · ⊕ am · S(xim , Tim) =

z ⊕ a1 · S(xi1 , t)]

Since m ≥ 2, this probability is also equates to 1/2n. Thus, in both the cases the
posterior probabilities of Z = z is 1/2n which is equals to its a priori probability
P[Z = z]. Thus we conclude that Z is independent of the joint distribution of
the variables X1, . . . , Xq and T .

DRECON: DPA Resistant Encryption by Construction 439

Appendix B: Algorithm of 4× 4 DRECON-AES

Algorithm 1: Compute 4× 4 DRECON-AES

Input: T : Master Tweak, ntr: number of encryption, P : Array of ntr plaintext
Output: C: Array of ntr ciphertext

1 begin
2 Generate Key Expansion Tweak TK ∈ [0, 63] from Master Tweak T
3 Generate 16 Tweaked Sboxes
4 KeyExpansion k[1] . . . k[9]
5

6 for i = 1 to ntr do
7 Generate: 128 − bit Session Tweak TS

8 state ← P [i]
9 for round r = 1 to 9 do

10 for nibble n = 1 to 32 do
11 Sbox ← Sboxes[TS[(4 ∗ n : 4 ∗ n+ 3)mod16]]
12 state[n] ← Sbox(state[n]) (SubBytes)

13 end
14 state ← ShiftRows(state)
15 state ← MixColumns(state)
16 state ← AddRoundKey(state,k[r])

17 end
18 for nibble n = 1 to 32 do
19 Sbox ← Sboxes[TS[(4 ∗ n : 4 ∗ n+ 3)mod16]]
20 state[n] ← Sbox(state[n]) (Final SubBytes)

21 end
22 C[i] ← state

23 end
24 return C

25 end

Counter-bDM: A Provably Secure Family

of Multi-Block-Length Compression Functions

Farzaneh Abed, Christian Forler, Eik List, Stefan Lucks, and Jakob Wenzel

Bauhaus-Universität Weimar, Germany
{farzaneh.abed,christian.forler,eik.list,stefan.lucks,

jakob.wenzel}@uni-weimar.de

Abstract. Block-cipher-based compression functions serve an impor-
tant purpose in cryptography since they allow to turn a given block
cipher into a one-way hash function. While there are a number of secure
double-block-length compression functions, there is little research on gen-
eralized constructions. This paper introduces the Counter-bDM family
of multi-block-length compression functions, which, to the best of our
knowledge, is the first provably secure block-cipher-based compression
function with freely scalable output size. We present generic collision-
and preimage-security proofs for it, and compare our results with those
of existing double-block-length constructions. Our security bounds show
that our construction is competitive with the best collision- and equal
to the best preimage-security bound of existing double-block-length con-
structions.

Keywords: block cipher, compression function, hash function, provable
security.

1 Introduction

While the SHA-3 competition has encouraged many new interesting ideas for
designing hash and compression functions (e.g., the sponge framework [3]), one
of the most popular approaches is to use a given block cipher and turn it into a
one-way function. While the roots to this simple principle can be tracked back
to Rabin [33] at the end of the 70s, the knowledge about it is still highly relevant
today. For instance, the standardized SHA-1 and SHA-2 hash function families
base on the SHACAL-1/2 ciphers. But also many submissions for the SHA-3
contest, such as – Blake [2], Skein [37], or SHAvite-3 [4] – are built on block
ciphers. The advantages are obvious: not only can compression-function design-
ers profit from the pseudo-randomness of an IND-CCA-secure cipher, but also
do they require only a single primitive to obtain both encryption and hashing –
an important matter when designing hardware for resource-constrained devices.

The best understood principle for block-cipher-based compression functions
are so-called single-block-length constructions, which compress a 2n-bit input
to an n-bit output, where n is the state size of the cipher. However, the state
size of the AES is 128 bits, which yields a 64-bit collision security, which is

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 440–458, 2014.
c© Springer International Publishing Switzerland 2014

Counter-bDM: A Provably Secure Family of MBL Compression Functions 441

insufficient for many applications. As a consequence, one is usually interested
in double-block-length or, more generally, multi-block-length block-cipher-based
hash functions, which take an (an)-bit input and produce a (bn)-bit output, for
a > b ≥ 2.

Related Work. The idea of double-block-length hashing can be attributed
to Meyer and Schilling and their proposal of the rate-1/2 and rate-1/4 hash
functions MDC-2 and MDC-4 [6] in 1988. Together with the Davies-Meyer-like
schemes Abreast-DM and Tandem-DM from Lai and Massey [24], these four
are commonly known as classical constructions. A number of further double-
block-length functions have been proposed recently. According to Mennink [34],
these can be ordered into the classes DBL2n – which employ a cipher with
a 2n-bit key – and DBLn – which use a cipher with an n-bit key (see [41]
for example). The former class contains Abreast-DM, the variants by Lee
and Kwon [27], Tandem-DM, Hirose-DM [17], Stam’s supercharged Type-I
compression function [30,43,44], as well as the generalizations by Özen and
Stam [38] and by Hirose [16].

Moreover, Fleischmann et al. generalized several classes of Davies-Meyer de-
signs and proposed a class of cyclic constructions that contains the compression
functions Weimar-DM, Add-k-DM, and Cube-DM [12,14]. A more detailed
review of related work is provided in Appendix A. All of the mentioned pro-
vide a birthday- type collision security; in addition, there are security proofs
for Weimar-DM, Hirose-DM, Tandem-DM, and Abreast-DM are given in
[12,17,26,27,29].

While double-block-length hashing can offer an acceptable collision security, a
variety of applications demand secure multi-block-length functions with a freely
scalable output of the compression function. For instance, public-key signature
schemes expect inputs of the exact length of the signing key. Moreover, in the era
of SHA-3, hash values with a length of ≥ 256 bits are standard. But it is still an
open research question how to create provably secure b-block-length compression
functions for b > 2.

Contribution. First, we define the class MBLbn for multi-block-length com-
pression functions that employ a (bn, n)-bit keyed block cipher E : {0, 1}bn ×
{0, 1}n → {0, 1}n, and produce a bn-bit chaining value. Then, we present a freely
scalable multi-block-length compression function, called Counter-bDM, which,
to the best of our knowledge, is the first provably secure multi-block-length com-
pression function for b > 2. It is a generalization of the double-block-length com-
pression function Hirose-DM [18]. For the generic Counter-bDM, we present
a detailed security analysis for proofs of collision and preimage security, which
employs the idea of super queries by Armknecht et al. [1]. Similar approaches
were presented by Mennink [34] and Lee [25].

For b = 2 our resulting collision-security bound shows that every adversary
that wants to find a collision with advantage 1/2 requires 2125.18 queries, which is
comparable to the currently best collision- security bound of Weimar-DM [12].
Concerning preimage security, we obtain a near-optimal bound of 2251 queries,

442 F. Abed et al.

Table 1. Comparison of security results on double-block-length compression functions,
evaluated for n = 128 bits and a success probability of 1/2. For Cyclic-DM, k > 1;
for Add-k-DM k′ ≥ 2.

Compression function Collision bound Preimage bound

Abreast-DM [24] 2124.42 [14,26] 2246 [1]

Add-k-DM [14] 2127−k′
[14] ≈ 2128 [14,26]

Counter-2DM [Sec. 3] 2125.18 [Sec. 5] 2251 [Sec. 6]
Cube-DM [14] 2125.41 [14] ≈ 2128 [14,26]

Cyclic-DM (cycle length > 2) [14] 2127−k [14] ≈ 2128 [14,26]
Cyclic-DM (cycle length 2) [14] 2124.55 [14] ≈ 2128 [14,26]
Hirose-DM [17] 2125.23 [13] 2251 [1]
Lee/Kwon [27] 2125.0 [26] ≈ 2128 [14,26]
Tandem-DM [24] 2120.87 [29] 2246 [1]
Weimar-DM [12] 2126.73 [9] 2251 [12]

which is equivalent to the currently best bound of Weimar-DM. Table 1 com-
pares our bounds with that of previously published double-block-length com-
pression functions.

Outline. In what remains, Section 2 revisits the basic notions concerning block-
cipher-based compression functions. Section 3 introduces Counter-bDM.
Section 4 summarizes the formal security definitions that are essential for our
analysis. In Section 5 we present the proof for the collision security of Coun-

ter-bDM. Section 6 then derives the preimage-security bound. Finally, Section 7
concludes the paper.

2 Basic Notions

This section recaps the relevant basic notions. We borrow the description of
block-cipher-based compression functions from [12]:

Definition 1 (Block Cipher). Let k, n ≥ 1 be integers. We define a (k, n)-bit
block cipher as a keyed family of permutations, which consists of an encryption
function E : {0, 1}k × {0, 1}n → {0, 1}n, and its inverse (decryption) function
D = E−1 : {0, 1}k × {0, 1}n → {0, 1}n. Both take a k-bit key K and an n-bit
input block X, and produce an n-bit output Y , where DK(EK(X)) = X, for all
X ∈ {0, 1}n,K ∈ {0, 1}k. We denote by Block(k, n) the set of all (k, n)-bit block
ciphers.

Definition 2 (Single-Block-Length Compression Function). Let n ≥ 1 be
an integer. A single-block-length (SBL) block-cipher-based compression function
is a function HSBL : {0, 1}n ×{0, 1}n → {0, 1}n which uses a block cipher from
Block(n, n).

Counter-bDM: A Provably Secure Family of MBL Compression Functions 443

The idea was discussed in the literature first by Rabin [33]. Most SBL func-
tions use a block cipher from Block(n, n) and compress a 2n-bit string to an
n-bit string. A popular example is the Davies-Meyer (DM) [46] mode:

HDM (M,U) = EM (U)⊕ U,

which is essentially used twice inside Hirose-DM and b times, in slightly mod-
ified fashion, inside Counter-bDM.

Definition 3 (Multi-Block-Length Compression Function). Let b, n ≥ 1
be integers. A multi-block-length (MBL) block-cipher-based compression function
is a function HMBL : {0, 1}bn × {0, 1}n → {0, 1}bn, which takes an n-bit mes-
sage and a bn-bit chaining value, and outputs a new bn-bit chaining value.

Independent Ciphers. The sophisticated task of proving the security for a
multi-block-length compression function simplifies greatly if one can ensure that
the b outputs of the individual block-cipher calls in one invocation of the com-
pression function are independent and distinct from each other. Previous double-
block-length constructions achieve this requirement by either. . .

Distinct Permutations: . . . using b independent permutations in the compres-
sion function. This approach is used, e.g., by the early construction of Hirose
[16] or those by Rogaway and Steinberger [41].

Distinct Keys: . . . guaranteeing that all key inputs Ki used for the block-
cipher calls inside one compression-function call are different: Ki �= Kj , 1 ≤
i < j ≤ b, which results in having de facto different permutations. This
approach is used, e.g., by Weimar-DM [12].

Distinct Plaintexts: . . . guaranteeing that all b plaintext inputs Xi used as
inputs to the block cipher in one compression-function call are different:
Xi �= Xj , 1 ≤ i < j ≤ b. This approach is used, e.g., by Cube-DM [14] or
Hirose-DM [18].

The first approach renders unpractical in practice since it requires multiple
permutation implementations of the class MBLbn. The further two approaches
are similar. However, using a different key in every block-cipher call implies
the potential need of running the key schedule of the underlying block cipher
multiple times. Therefore, we employ the latter strategy function for Coun-

ter-bDM, i.e., we ensure that all plaintext inputs to the block-cipher calls are
different.

3 Counter-bDM

This section defines the Counter-bDM family of multi-block-length compres-
sion functions. Note that we use HCbDM as short notion of Counter-bDM.

Definition 4 (Counter-bDM). Let E be a block cipher from Block(bn, n).
The compression function HCbDM : {0, 1}bn × {0, 1}n → {0, 1}bn is defined by

HCbDM (M,U1, . . . , Ub) = (V1, . . . , Vb),

444 F. Abed et al.

where the outputs Vi are given by Vi = EK(U1 ⊕ (i − 1)) ⊕ U1, with K =
U2 || . . . || Ub || M .

Two concrete examples of our multi-block-length compression-function family,
Counter-3DM (left) and Counter-4DM (right), are illustrated in Figure 1.
However, in our security analysis in Sections 5 and 6 we consider the generic
version Counter-bDM.

E V

E

E V

MU U

MU U

2 3

2 3

1

3

V2

U1

1

2

V

MU U

V

V

U

MU U U

2 3

2 3

1

3

4

4

4

E

E

E

E

V2

U1

1

2

3

Fig. 1. Two examplary compression functions HC3DM (left) and HC4DM (right) from
the family of compression functions HCbDM

It is easy to see that, due to the XOR with the counter i − 1, all plaintext
inputs Xi to the block-cipher calls are pair-wise distinct. Additionally, since all
values i − 1 are in the range of [0, . . . , b − 1], the counter values affect only
the least significant $log2(b)% bits of the plaintexts. We call the most significant
n− $log2(b)% bits of the plaintexts a common prefix.

Definition 5 (Common-Prefix Property). Let X = Xpre || Xpost, X ∈
{0, 1}n be an n-bit integer, where Xpre denotes the n−$log2(b)% most significant
bits, and Xpost the $log2(b)% least significant bits of X. Further, let Xi = X ⊕
(i − 1) (with 1 ≤ i ≤ b) denote the values which are used as plaintext inputs to
the block-cipher calls in one invocation of HCbDM . Then, all values Xi share the
same common prefix Xpre ∈ {0, 1}n−�log2(b)�.

Remark 1. For the remainder of this paper, we denote by c = 2�log2(b)� ≥ b the
maximal number of plaintexts X = Xpre || Xpost which can share the same
prefix Xpre.

Counter-bDM: A Provably Secure Family of MBL Compression Functions 445

We will see later that both the pair-wise distinct plaintexts and the common-
prefix property will be beneficial for an easy-to-grasp security analysis of Coun-

ter-bDM.

4 Proof Preliminaries

This section formally describes the notions and properties that are relevant for
our security analysis of Counter-bDM.

4.1 Proof Model

The security of a block-cipher-based compression function should depend only
on the security of the construction, and not on that of the (potentially insecure)
chosen block cipher inside. Thus, one usually considers the ideal-cipher model
, wherein a block cipher is modeled as a family of random n-bit random per-
mutations {EK}. The permutation E that is used in the compression function

is chosen at random from Block(k, n): E
$←− Block(k, n). Thus, we follow the

notions by Black et al. [5].
An adversary A is defined as a probabilistic, computationally unbounded al-

gorithm that is limited only by a number of q queries it can ask to an oracle
E. For any of its queries, the adversary is allowed to ask either a forward (en-
cryption) query EK(X) = Y , or a backward (decryption) query X = DK(Y),
where X,Y ∈ {0, 1}n and ∀X : DK(EK(X)) = X . Each query Qi is stored as
a 3-tuple (Xi, Yi,Ki) in a query history Q, where we denote by Qi the state of
the query history after i queries have been asked by the adversary, for 1 ≤ i ≤ q.
We further borrow two usual assumptions about A from [12]:

1. If A has successfully found a collision or a preimage for HCbDM , it has ob-
tained the necessary encryption or decryption results only by making queries
to the oracle E.

2. A does not ask queries to which it already knows the answer, e.g., if A
already knows the answer to a forward query Y = EK(X), it will not ask
DK(Y) – which must return X – and vice versa.

4.2 Collision-Security

We define the collision security of our compression function HCbDM by the
advantage of an adversary A to win Experiment 1.

Experiment 1 (Collision-Finding Experiment Exp-CollA, HCbDM (bn))

1. An adversary A is given oracle access to a block cipher E ∈ Block(bn, n).
2. After asking at most q queries (Xi, Yi,Ki) for 1 ≤ i ≤ q, it outputs a pair

(M,U1, . . . , Ub), (M
′, U ′

1, . . . , U
′
b) ∈ {0, 1}(b+1)n × {0, 1}(b+1)n.

446 F. Abed et al.

3. The adversary wins the experiment iff its output is a valid collision for
HCbDM , i.e.,

HCbDM (M,U1, . . . , Ub) = HCbDM (M ′, U ′
1, . . . , U

′
b) and

(M,U1, . . . , Ub) �= (M ′, U ′
1, . . . , U

′
b).

Otherwise, A loses the experiment.

The advantage of an adversary A to find such a collision for HCbDM is given
by the probability that A can win Experiment 1, or formally written, by

AdvCOLL
HCbDM (A) = Pr

[
Exp-CollA, HCbDM (bn) = 1

]
Since we only limit the adversary by the number of queries, it is allows to ask
to E, we write

AdvCOLL
HCbDM (q) := max

A

{
AdvCOLL

HCbDM (A)
}
,

where the maximum is taken over all adversaries that ask at most q oracle queries
in total.

4.3 Preimage Security

There are various notions considering preimage security (see [40] for example).
We adapt that of everywhere preimage security (EPRE), which was introduced
by Rogaway and Shrimpton in [40]. There, the adversary commits to a hash value
before it makes any queries to the oracle. The preimage security of our compres-
sion function HCbDM is therefore defined by the advantage that an adversary A
wins Experiment 2.

Experiment 2 (Preimage-Finding Experiment Exp-ePreA, HCbDM (bn))

1. An adversary A is given oracle access to a block cipher E ∈ Block(bn, n). Be-
fore it makes any queries, it announces a hash value (V1, . . . , Vb) ∈ {0, 1}bn.

2. After asking at most q queries (Xi, Yi,Ki) for 1 ≤ i ≤ q, it outputs a (b+1)-
tuple (M,U1, . . . , Ub) ∈ {0, 1}(b+1)n.

3. The adversary wins the experiment iff its output is a valid preimage for
(V1, . . . , Vb) and H

CbDM , i.e.,

HCbDM (M,U1, . . . , Ub) = (V1, . . . , Vb).

Otherwise, A loses the experiment.

We let AdvEPRE
HCbDM (A) be true iff Exp-ePreA, HCbDM (bn) returns 1. The pre-

committed hash value (V1, . . . , Vb) is an omitted parameter of AdvEPRE
HCbDM (A).

We define
AdvEPRE

HCbDM (q) := max
A

{
AdvEPRE

HCbDM (A)
}
,

where the maximum is taken over all adversaries that ask at most q oracle queries
in total.

Counter-bDM: A Provably Secure Family of MBL Compression Functions 447

5 Collision-Security Analysis of Counter-bDM

Let A be a collision-finding adversary for HCbDM that can ask queries to an or-
acle E. In between A and E, we construct another adversary A′ which simulates
A, but sometimes is allowed to make additional queries to E that are not taken
into account. Since A′ is more powerful than A, it is easy to see that it suffices
for us to upper bound the success probability of A′. Thereby, we say that an
adversary A (or A′, respectively) is successful if its query history contains the
means of computing a collision for HCbDM .

Attack Setting. During the attack, A maintains a query history Q wherein
it stores all queries it poses to E. An entry in the query history of A is a
tuple (K,X, Y), where Y = EK(X). Simultaneously, A′ maintains a query list
L which contains all input/output pairs to the compression function HCbDM

that can be computed by A. An entry L ∈ L is a tuple (K,X, Y1, . . . , Yc) ∈
{0, 1}(b+1+c)n, where K ∈ {0, 1}bn, X ∈ {0, 1}n is the input to the compression
function HCbDM , and c = 2�log2(b)� (see Remark 1). The values Yi ∈ {0, 1}n are
given as the results of the forward queries Yi = EK(X ⊕ (i − 1)), for 1 ≤ i ≤ c.
Moreover, we define Lj to denote the state of L, which contains the first j queries
of A′, with j ≥ 1.

Collision Events. When E is modeled as an ideal cipher, we run into problems
when A asks close to or even more than q = 2n queries. In the case when A asks
q queries under the same key to E and q reaches 2n− 1, E loses its randomness.
As a remedy to this problem, Armknecht et al. proposed the idea of super queries
[1]; given some key K, A′ can pose regular queries to E or D until N/2 queries
with the same key K have been added to its query list L, where N = 2n.

If L contains N/2 queries for a key K and A requests another query for the
key K from A′, then, A′ poses all remaining queries (K, ∗, ∗) under this key to
E at once. In this case, we say that a super query occurred. All queries that are
part of a super query are not taken into account, i.e., they do not add to q, the
number of queries A is allowed to ask. Since these free queries are asked at once,
one no longer has to consider the success probability of a single query; instead,
one can consider the event that A′ is successful with any of the contained queries.
Thus, E does not lose its randomness. In the following, we define three mutually
exclusive events which cover all case when A′ can be successful.

NormalQueryWin(L). This describes the case when A′ finds a collision with its
current query Lj and a query Lr ∈ Lj−1, where L

j was a normal query.
SuperQueryWin(L). This describes the case when A′ finds a collision with its

current query Lj and a query Lr ∈ Lj−1, where L
j was part of a super query.

SameQueryWin(L). This describes the case when A′ finds a collision within
the same entry Lj ∈ L.

Since the adversary can only win if it finds a collision using either one of
the mentioned events, it is sufficient for us to upper bound the sum of the
probabilities. Thus, it holds that

448 F. Abed et al.

AdvCOLL
HCbDM (q) ≤ Pr[NormalQueryWin(L)] + Pr[SuperQueryWin(L)] (1)

+ Pr[SameQueryWin(L)].

Remark 2. Note that a tuple L ∈ L consists of c = 2�log2(b)� query results. Since
c always divides N/2, i.e., c |N/2, each tuple L is either part of a normal query
or a super query, but never both.

Before we present our bound, we describe more precisely what we mean by
A′ has found a collision for HCbDM . Let Lr = (Kr, Xr, Y r

1 , . . . , Y
r
c) represent

the r-th entry in L, and Lj = (Kj ,Xj,Y j
1 , . . . , Y

j
c) the j-th entry in L, where

1 ≤ r < j ≤ q. We say that Lr and Lj provide the means for computing a
collision if ∃ �,m ∈ {0, . . . , c− 1} so that b equations of the following form hold:

EKr (Xr ⊕ �⊕ 0)⊕Xr = EKj (Xj ⊕m⊕ 0)⊕Xj,

EKr (Xr ⊕ �⊕ 1)⊕Xr = EKj (Xj ⊕m⊕ 1)⊕Xj,

...

EKr (Xr ⊕ �⊕ (b− 1))⊕Xr = EKj (Xj ⊕m⊕ (b− 1))⊕Xj.

Theorem 3. Let N = 2n. Then, it applies that

AdvCOLL
HCbDM (q) ≤ c2 · 2b · q2

N b
+
c3 · 2b+2 · q2

N b+1
.

Proof. After A has asked a (normal) forward query Y j = EKj (Xj) or a (nor-
mal) backward query Xj = DKj (Y j), A′ checks if Lj−1 already contains an
entry Lr = (Kj, Xj

pre || ∗, ∗, . . . , ∗), where Xj
pre denotes the prefix of Xj (see

Definition 5) and ∗ denotes arbitrary values. In the following, we analyze two
possible cases.

Case 1: Lr is not in Lj−1. In this case, A′ labels Y j as Y j
1 and asks (c− 1)

further queries to E that are not taken into account:

∀i ∈ {2, . . . , c} : Y j
i = EKj (Xj ⊕ (i− 1)).

A′ creates the tuple Lj = (Kj , Xj, Y j , . . . , Y j
c) and appends it to its query list,

i.e., Lj = Lj−1 ∪ {Lj}. Now, we have to upper bound the success probability
of A′ to find a collision for HCbDM , i.e., the success probabilities for the events
mentioned above.

Subcase 1.1: NormalQueryWin(L). In this case, the adversary finds a collision
using a normal query Lj and a query Lr that was already contained in L. While
super queries may have occurred for different keys before, the query history of A′

may contain at most N/2− c plaintext-ciphertext pairs for the current key Kj .
So, our random permutation E samples the query responses Y j

1 , . . . , Y
j
c for the

current query at random from a set of size of at least N/2 + c ≥ N/2 elements.

Counter-bDM: A Provably Secure Family of MBL Compression Functions 449

Hence, the probability that one equation from above holds for some fixed � and
m can be upper bounded by 1/(N/2); and the probability for b equations to hold
is then given by

1

(N/2)b
=

2b

N b
.

There are c2 possible combinations for � and m, s.t. b values V j
i can form a

valid collision with b values V r
i , with i ∈ {0, . . . , b − 1}. Thus, A′ has a success

probability for finding a collision for HCbDM for two fixed queries Lj and Lr is
at most

c2

(N/2)b
=

c2 · 2b
N b

.

Since the j-th query can form a collision with any of the previous entries
in Lj−1, we have to determine the maximum number of queries in Lj−1. If A′

obtained a super query for each key it queried before, Lj−1 may contain up to
2(j − 1) entries. Since the winning query has to be a normal query in this case,
L can contain at most q normal queries and up to (q − 1) queries (without the
current one) resulting from super queries in the history. This would imply that
one had to sum up the probabilities up to 2q − 1:

2q−1∑
j=1

2(j − 1) · c2 · 2b
N b

.

However, we can do better. In the NormalQueryWin(L) case, A′ will not win if
its last (winning) query was part of a super query. Hence, we do not need to test
if any of the super queries will produce a collision with any of their respective
previous queries, and we have to test only possible collisions with the (at most
q) normal queries. Nevertheless, A′ still has to test each of the q normal queries
if they collide with any of the at most 2q previous queries (including those which
were part of a super query). Therefore, the success probability of A′ to find a
collision for HCbDM can be upper bounded by

Pr[NormalQueryWin(L)] ≤
q∑

j=1

2(j − 1) · c2 · 2b
N b

≤ q2 · c2 · 2b
N b

. (2)

Subcase 1.2: SuperQueryWin(L). In this case, A′ wins with a super query,
i.e., it has asked the (N/2 + 1)-th query for Kj, triggering a super query to
occur. We can reuse the argument from Subcase 1.1 that the success probability
of A′ to obtain b colliding equations for two fixed queries Lr, Lj can be upper
bounded by

c2

(N/2)b
.

Here, the query history Lq contains at most 2q queries. But this time, we do
not have to test if any of the q normal queries produces a collision with any of

450 F. Abed et al.

their respective predecessors. Hence, we can upper bound the success probability
of A′ to find a collision for HCbDM with one super query by

2q · c2 · 2b
N b

.

For a super query to occur, A has to ask at least N/(2c) regular queries. Thus,
there can be at most q/(N/2c) super queries in L and we obtain

Pr[SuperQueryWin(L)] ≤ 2q · c2 · 2b
N b

· q

N/2c
=

c3 · 2b+2 · q2
N b+1

. (3)

Subcase 1.3: SameQueryWin(L). In this case, A′ wins if it finds two integers
�,m ∈ {0, . . . , c− 1} with � �= m s.t.:

EKj (Xj ⊕ �⊕ 0)⊕Xj = EKj (Xj ⊕m⊕ 0)⊕Xj,

EKj (Xj ⊕ �⊕ 1)⊕Xj = EKj (Xj ⊕m⊕ 1)⊕Xj,

...

EKj (Xr ⊕ �⊕ (b− 1))⊕Xj = EKj (Xj ⊕m⊕ (b− 1))⊕Xj.

However, due to the XOR with the distinct values i − 1, all plaintext inputs
Xj⊕(i−1) in one compression-function call differ from each other. Furthermore,
since all plaintext inputs are encrypted under the same key Kj and E is an ideal
block cipher, their corresponding outputs Y j

i are all different and uniformly

distributed, and so are the values Y j
i ⊕ Xj after the feed-forward operation.

Hence, it is not possible for A′ to find a collision for HCbDM among the values
Y j
i ⊕Xj:

Pr[SameQueryWin(L)] = 0. (4)

Case 2: Lr is in Lj−1. In this case, the key Kj and the plaintext prefix

Xj
pre of A’s current query (Kj , Xj

pre || Xj
post′) are already stored in some en-

try Lr ∈ Lj−1, where L
r = (Kr, Xr

pre || Xr
post, Y

r
1 , . . . , Y

r
c). A′ just extracts

Y r
(Xr

post⊕Xj

post′)+1
from Lr, and passes it to A. This implies that A can learn only

information which A′ already possesses. Thus,

AdvCOLL
HCbDM (A) ≤ AdvCOLL

HCbDM (A′).

Our claim is given by summing up equations (2), (3), and (4). ��

Table 2 shows the minimal number of queries q an adversary has to ask in
order to obtain an advantage of AdvCOLL

HCbDM (q) = 1/2 for the most practical
block lengths n ∈ {64, 128} and depending on b.

Counter-bDM: A Provably Secure Family of MBL Compression Functions 451

Table 2. Minimum number of block-cipher queries q that an adversary must ask in
order to find a collision for HCbDM with advantage 1/2

n = 64 n = 128

#blocks #queries optimal bound #blocks #queries optimal bound

b q 2bn/2 b q 2bn/2

2 261.50 264 2 2125.50 2128

4 2123.50 2128 4 2251.50 2256

8 2248.50 2256 8 2504.50 2512

6 Preimage-Security Analysis of Counter-bDM

Attack Setting. Let (V1, . . . , Vb) ∈ {0, 1}bn be the point to invert (see Defini-
tion 4), chosen by an adversary A before it makes any query to E. We define
that A has the goal to find a preimage for (V1, . . . , Vb) as described in Exper-
iment 2. For our preimage-security analysis, we adapt the procedure from our
collision analysis, i.e., we construct another adversaryA′, which simulatesA, but
sometimes is allowed to make additional queries to E that are not taken into
account. Again, since A′ is more powerful than A, it suffices to upper bound the
success probability of A′. Here, we say that A′ is successful if its query history
Q contains the means of computing a preimage for (V1, . . . , Vb).

The procedures of A and A′ asking queries to the oracle E and building
the query histories Q and L are the same as that described in our collision-
security proof. Furthermore, we adopt the events NormalQueryWin(L) and
SuperQueryWin(L) from there, which in this context, cover all possible winning
events for A′. Thus, it holds that

AdvEPRE
HCbDM (q) ≤ Pr[NormalQueryWin(L)] + Pr[SuperQueryWin(L)]. (5)

Before we present our bound, we describe more precisely what is meant by A′

has found a preimage for HCbDM . Let Lj = (Kj, Xj , Y j
1 , . . . , Y

j
c) represent the

j-th entry in L. We say that Lj contains the means of computing a preimage if
∃ � ∈ {0, . . . , c− 1}, so that the following b equations hold:

EKj (Xj ⊕ �)⊕Xj = V1

EKj (Xj ⊕ �⊕ 1)⊕Xj = V2

...

EKj (Xj ⊕ �⊕ (b− 1))⊕Xj = Vb.

Theorem 4. Let N = 2n. Then, it applies that

AdvEPRE
HCbDM (q) ≤ c · 2b+1 · q

N b
.

452 F. Abed et al.

Proof. After A has asked a (normal) forward query Y j = EKj (Xj) or a (nor-
mal) backward query Xj = DKj (Y j), A′ checks if Lj−1 already contains an
entry Lr = (Kj , Xj

pre || ∗, ∗, . . . , ∗), where Xj
pre denotes the prefix of Xj. In the

following, we analyze the possible cases and upper bound their success proba-
bilities separately.

Case 1: Lr is not in Lj−1. In this case, A′ labels Y as Y j
1 and asks c − 1

further queries to E that are not taken into account:

∀i ∈ {2, . . . , c} : Y j
i = EKj (Xj ⊕ (i− 1)).

Then, A′ creates the tuple Lj = (Kj, Xj, Y j
1 , . . . , Y

j
c) and appends it to its

query list, i.e., Lj = Lj−1 ∪ {Lj}. Note that due to the XOR with i − 1, all

plaintexts Xj
i , with i ≤ i ≤ c, are pair-wise distinct. Thus, all ciphertexts Y j

i ,

and the results of all feed-forward operations (Y j
i ⊕ Xj) are always uniformly

distributed.
In the following, we have to upper bound the success probability of A′ to find

a preimage for HCbDM using either a normal query or a super query.

Subcase 1.1: NormalQueryWin(L). Since we assume that the winning query
is a normal one, A′ can have collected at most N/2 − c queries for the current
key Kj. Thus, E samples the query responses Y j

1 , . . . , Y
j
c at random from a

set of size of at least N/2 + c ≥ N/2 elements. From the c values Yi of L
j , the

probability that one equation EKj (Xj⊕�)⊕(Xj⊕�) = Vi from above holds for
some fixed value of �, can be upper bounded by 1/(N/2). The probability that
b equations from above hold for a fixed � can be upper bounded by 1/(N/2)b.
Since there are c possible values for �, the probability to obtain a preimage with
the j-th query is given by

c

(N/2)b
=

c · 2b
N b

.

Since A′ is allowed to ask at most q queries, it applies that

Pr[NormalQueryWin(L)] ≤ c · 2b · q
N b

. (6)

Subcase 1.2: SuperQueryWin(L). In this case, A′ has already posed and
stored N/2c queries for the keyKj of its winning query. From the super query, it
obtains the remaining N/2c queries forKj. We denote the latter set of queries by
SQ. From above, we already know that the probability that one point Lj ∈ SQ
satisfies the preimage property can be upper bounded by

c

(N/2)b
=

c · 2b
N b

.

Since the adversary obtains N/2c points from the super query, the success prob-
ability that one of them yields a preimage for the given point is given by

N

2c
· c · 2

b

N b
=

2b−1

N b−1
.

Counter-bDM: A Provably Secure Family of MBL Compression Functions 453

Table 3. Minimum number of block-cipher queries q that an adversary must ask in
order to find a preimage for HCbDM with advantage 1/2

n = 64 n = 128

#blocks #queries optimal bound #blocks #queries optimal bound

b q 2bn b q 2bn

2 2123 2128 2 2251 2256

4 2248 2256 4 2504 2512

8 2499 2512 8 21011 21024

For every super query to occur, A′ has to collect N/2c queries in advance. Thus,
there are at most q/(N/2c) super queries and we obtain

Pr[SuperQueryWin(L)] ≤ q

N/2c
· 2b−1

N b−1
=

c · 2b · q
N b

. (7)

Case 2: Lr is in Lj−1. Like in the Case 2 of our collision-security proof, the

key Kj and the plaintext prefix Xj
pre of A’s current query (Kj, Xj

pre || Xj
post′)

are already stored in some entry Lr ∈ Lj−1, where L
r = (Kj , Xj

pre || Xj
post,

Y r
1 , . . . , Y

r
c). Again, A′ extracts Y r

(Xr
post⊕Xj

post′)+1
from Lr, and passes it to A.

This implies that A can learn only information that A′ already possesses and

AdvCOLL
HCbDM (A) ≤ AdvCOLL

HCbDM (A′).

Our claim is given by summing up equations (6) and (7). ��

For n = 128 and AdvEPRE
HCbDM (q) = 1/2, we list in Table 3 the amounts of

queries q an adversary has to make, depending on the value of b.

7 Conclusion and Outlook

This paper introduced Counter-bDM – the first provably secure family of
multi-block-length compression functions, that maps (b+1)n-bit inputs to bn-bit
outputs for arbitrary b ≥ 2. With Counter-bDM, we propose a simple, though,
very neat design, that not only avoids costly requirements such as the need of
having independent ciphers, or having to run the key schedule multiple times,
but also simplifies the analysis greatly. In our collision- and preimage-security
analysis we provided proofs for arbitrary block lengths b > 2. It remains an open
research topic to find a multi-block-length hash function with arbitrary output
size employing an n-bit or at most 2n-bit keyed block cipher.

454 F. Abed et al.

References

1. Armknecht, F., Fleischmann, E., Krause, M., Lee, J., Stam, M., Steinberger, J.:
The Preimage Security of Double-Block-Length Compression Functions. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 233–251. Springer,
Heidelberg (2011)

2. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R.C.-W.: SHA-3 proposal BLAKE.
Submission to NIST, Round 3 (2010)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. Ecrypt
Hash Workshop (May 2007)

4. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function. Submission to NIST,
Round 2 (2009)

5. Black, J.A., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

6. Meyer, C., Matyas, S.: Secure Program Load With Manipulation Detection Code
(1988)

7. Chang, D., Nandi, M., Lee, J., Sung, J., Hong, S., Lim, J., Park, H., Chun, K.:
Compression Function Design Principles Supporting Variable Output Lengths from
a Single Small Function. IEICE Transactions 91-A(9), 2607–2614 (2008)

8. Coppersmith, D., Pilpel, S., Meyer, C.H., Matyas, S.M., Hyden, M.M., Oseas,
J., Brachtl, B., Schilling, M.: Data Authentication Using Modification Dectection
Codes Based on a Public One-Way Encryption Function. U.S. Patent No. 4,908,861
(March 13, 1990)

9. Ewan Fleischmann. Analysis and Design of Blockcipher Based Cryptographic Al-
gorithms. PhD thesis, Bauhaus-Universität Weimar (2013)

10. Fleischmann, E., Forler, C., Gorski, M., Lucks, S.: Collision-Resistant Double-
Length Hashing. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS,
vol. 6402, pp. 102–118. Springer, Heidelberg (2010)

11. Fleischmann, E., Forler, C., Lucks, S.: The Collision Security of MDC-4. In:
Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp.
252–269. Springer, Heidelberg (2012)

12. Fleischmann, E., Forler, C., Lucks, S., Wenzel, J.: Weimar-DM: A Highly Secure
Double-Length Compression Function. In: Susilo, W., Mu, Y., Seberry, J. (eds.)
ACISP 2012. LNCS, vol. 7372, pp. 152–165. Springer, Heidelberg (2012)

13. Fleischmann, E., Gorski, M., Lucks, S.: On the Security of Tandem-DM. In:
Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 84–103. Springer,
Heidelberg (2009)

14. Fleischmann, E., Gorski, M., Lucks, S.: Security of Cyclic Double Block Length
Hash Functions. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS,
vol. 5921, pp. 153–175. Springer, Heidelberg (2009)

15. Hattori, M., Hirose, S., Yoshida, S.: Analysis of Double Block Length Hash Func-
tions. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898,
pp. 290–302. Springer, Heidelberg (2003)

16. Hirose, S.: Provably Secure Double-Block-Length Hash Functions in a Black-Box
Model. In: Park, C., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342.
Springer, Heidelberg (2005)

17. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Func-
tions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer,
Heidelberg (2006)

Counter-bDM: A Provably Secure Family of MBL Compression Functions 455

18. Hirose, S.: Some Plausible Constructions of Double-Block-Length Hash Func-
tions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 210–225. Springer,
Heidelberg (2006)

19. Hohl, W., Lai, X., Meier, T., Waldvogel, C.: Security of Iterated Hash Functions
Based on Block Ciphers. In: Stinson, D.R. (ed.) Advances in Cryptology - CRYPTO
1993. LNCS, vol. 773, pp. 379–390. Springer, Heidelberg (1994)

20. ISO/IEC. ISO DIS 10118-2: Information technology - Security techniques - Hash-
functions, Part 2: Hash-functions using an n-bit block cipher algorithm. First re-
leased in 1992 (2000)

21. Knudsen, L.R., Lai, X., Preneel, B.: Attacks on Fast Double Block Length Hash
Functions. J. Cryptology 11(1), 59–72 (1998)

22. Knudsen, L.R., Muller, F.: Some Attacks Against a Double Length Hash Pro-
posal. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 462–473. Springer,
Heidelberg (2005)

23. Krause, M., Armknecht, F., Fleischmann, E.: Preimage Resistance Beyond the
Birthday Bound: Double-Length Hashing Revisited. IACR Cryptology ePrint
Archive 2010, 519 (2010)

24. Lai, X., Massey, J.L.: Hash Functions Based on Block Ciphers. In: Rueppel, R.A.
(ed.) Advances in Cryptology - EUROCRYPT1992. LNCS, vol. 658, pp. 55–70.
Springer, Heidelberg (1993)

25. Lee, J.: Provable Security of the Knudsen-Preneel Compression Functions. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 504–525.
Springer, Heidelberg (2012)

26. Lee, J., Kwon, D.: The Security of Abreast-DM in the Ideal Cipher Model. Cryp-
tology ePrint Archive, Report 2009/225 (2009), http://eprint.iacr.org/

27. Lee, J., Kwon, D.: The Security of Abreast-DM in the Ideal Cipher Model. IEICE
Transactions 94-A(1), 104–109 (2011)

28. Lee, J., Stam, M.: MJH: A Faster Alternative to MDC-2. In: Kiayias, A. (ed.)
CT-RSA 2011. LNCS, vol. 6558, pp. 213–236. Springer, Heidelberg (2011)

29. Lee, J., Stam, M., Steinberger, J.: The Collision Security of Tandem-DM in the
Ideal Cipher Model. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
561–577. Springer, Heidelberg (2011)

30. Lee, J., Steinberger, J.P.: Multiproperty-Preserving Domain Extension Using
Polynomial-Based Modes of Operation. IEEE Transactions on Information The-
ory 58(9), 6165–6182 (2012)

31. Lucks, S.: A Collision-Resistant Rate-1 Double-Block-Length Hash Function. In:
Symmetric Cryptography (2007)

32. Luo, Y., Lai, X.: Attacks On a Double Length Blockcipher-based Hash Proposal.
IACR Cryptology ePrint Archive 2011, 238 (2011)

33. Rabin, M.: Digitalized Signatures. In: De Millo, R., Dobkin, D., Jones, A., Lipton,
R. (eds.) Foundations of Secure Computation, pp. 155–168. Academic Press (1978)

34. Mennink, B.: Optimal Collision Security in Double Block Length Hashing with Sin-
gle Length Key. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 526–543. Springer, Heidelberg (2012)

35. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) Advances
in Cryptology - CRYPT0 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg
(1990)

36. Nandi, M., Lee, W.I., Sakurai, K., Lee, S.-J.: Security Analysis of a 2/3-Rate
Double Length Compression Function in the Black-Box Model. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 243–254. Springer, Heidelberg
(2005)

http://eprint.iacr.org/

456 F. Abed et al.

37. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: Skein Source Code and Test Vectors, http://www.skein-hash.info/
downloads

38. Özen, O., Stam, M.: Another Glance at Double-Length Hashing. In: Parker, M.G.
(ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 176–201. Springer,
Heidelberg (2009)

39. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining Compression
Functions and Block Cipher-Based Hash Functions. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 315–331. Springer, Heidelberg (2006)

40. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: Definitions, Im-
plications, and Separations for Preimage Resistance, Second-Preimage Resistance,
and Collision Resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017,
pp. 371–388. Springer, Heidelberg (2004)

41. Rogaway, P., Steinberger, J.P.: Constructing Cryptographic Hash Functions from
Fixed-Key Blockciphers. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 433–450. Springer, Heidelberg (2008)

42. Satoh, T., Haga, M., Kurosawa, K.: Towards Secure and Fast Hash Functions. TIE-
ICE: IEICE Transactions on Communications/Electronics/Information and Sys-
tems (1999)

43. Stam, M.: Beyond Uniformity: Better Security/Efficiency Tradeoffs for Compres-
sion Functions. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 397–412.
Springer, Heidelberg (2008)

44. Stam, M.: Blockcipher-Based Hashing Revisited. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 67–83. Springer, Heidelberg (2009)

45. Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal Cipher Model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

46. Robert, S., Winternitz: A Secure One-Way Hash Function Built from DES. In:
IEEE Symposium on Security and Privacy, pp. 88–90 (1984)

A Related Work

This part summarizes related work regarding to single- and double-block-length
hash functions.

Double-Block-Length Schemes. The essentially first double-block-length hash
functions were presented by Merkle [35], who proposed three constructions on
the basis of DES. Today, there are four so-called “classical” double-block-length
constructions, which were introduced in the early 1990s: MDC-2, MDC-4,
Abreast-DM, and Tandem-DM. MDC-2 and MDC-4 [8,20] are (n, n)-bit
double-block-length hash functions with rates 1/2 and 1/4, respectively. For
MDC-2, Steinberger [45] proved in 2006 that no adversary asking less than
274.9 queries will obtain a significant advantage at finding a collision. In a so-
phisticated proof, it was shown by Fleischmann, Forler, and Lucks [11] in 2012,
that for MDC-4 an adversary requires at least 274.7 queries to find a collision
with an advantage of 1/2.

Concerning rate-1 double-block-length hash functions, Lucks [31] presented
a first construction at Dagstuhl’07. Stam [44] also proposed a rate-1 single-call

http://www.skein-hash.info/downloads
http://www.skein-hash.info/downloads

Counter-bDM: A Provably Secure Family of MBL Compression Functions 457

double-block-length function, for which he showed an almost-optimal collision-
resistance, up to a logarithmic factor. However, while Lucks and Stam claimed
a rate-1 property for their constructions, those are actually much slower, as
pointed out by Luo and Lai [32]. At CRYPTO’93, Hohl et al. [19] analyzed the
security of compression functions of rate-1/2 double-block-length hash functions.
In 1998, Knudsen, Lai, and Preneel [21] discussed the security of rate-1 double-
block-length hash functions. In 1999, Satoh, Haga, and Kurosawa [42] as well
as Hattori, Hirose, and Yoshida [15] in 2003 attacked rate-1 double-block-length
hash functions. At FSE’05, Nandi et al. [36] presented a rate-2/3 compression
function, which was later analyzed by Knudsen and Muller at ASIACRYPT’05
[22]. At CT-RSA’11, Lee and Stam [28] presented a faster alternative toMDC-2,
called MJH.

Double-Block-Length Schemes with Birthday-Type Collision Security.

Abreast-DM and Tandem-DM base on the famous Davies-Meyer scheme, and
have been presented by Lai and Massey [24] at EUROCRYPT’92. In 2004, Hirose
added a large class of rate-1/2 double-block-length hash functions, composed of
two independent (2n, n)-bit block ciphers, with 2n being the key and n the block
size [16] . At FSE’06, he proposed a new scheme called Hirose-DM [17], which
dropped the requirement of independent ciphers, and for which he provided
a collision-security proof in the ideal-cipher model, stating that no adversary
asking less than 2124.55 queries can find a collision with probability ≥ 1/2.

In [39], Peyrin et al. analyzed techniques to construct larger compression
functions by combining smaller ones. The authors proposed 3n-to-2n-bit and
4n-to-2n-bit constructions composed of five public functions, yet they did not
show proofs for their concepts.

In 2008, Chang et al. introduced a generic framework for purf-based multi
block length constructions [7], where purf denotes a public random function.

Considering Tandem-DM, Fleischmann, Gorski, and Lucks [13] gave a
collision-security proof at FSE’09, showing that no adversary can obtain a sig-
nificant advantage without making at least 2120.4 queries. In 2010, Lee, Stam,
and Steinberger [29] have shown that the proof of Fleischmann et al. has several
non-trivial flaws. Further, they provided a bound of 2120.87 queries for a collision
adversary.

For Abreast-DM, Fleischmann, Gorski, and Lucks [14] as well as Lee and
Kwon presented, independent from each other, collision-security bound of 2124.42

queries. More general, [14] introduced the class notion of Cyclic-DL, which in-
cluded the constructions Abreast-DM, Cyclic-DM, Add-k-DM, and Cube-

DM, and applied similar proofs for these. At IMA’09, Özen and Stam [38] pro-
posed a framework for double-block-length hash functions by extending the gen-
eralized framework by Stam at FSE’09 for single-call hash functions. Still, their
framework based on the usage of two independent block ciphers. At ProvSec’10,
Fleischmann et al. [10] extended their general classification of double-block-
length hash functions by the classes Generic-DL, Serial-DL, and Parallel-

DL. For the framework by Özen and Stam, they relaxed the requirement of

458 F. Abed et al.

distinct independent block ciphers and gave collision bounds for Tandem-DM

and Cyclic-DM. In [23], Krause, Armknecht, and Fleischmann provided tech-
niques for proving asymptotically-optimal preimage-resistance bounds for block-
cipher-based double-length, double-call hash functions. They introduced a new
Davies-Meyer double-block-length hash function for which they proved that no
adversary asking less than 22n−5 queries can find a preimage with probability
≥ 1/2. At ACISP’12, Fleischmann et al. [12] showed a very similar Davies-Meyer
construction – called Weimar-DM– for which they could prove the currently
best collision-security bound of 2126.23 queries, and the currently best preimage-
security bound among the previously known double-block-length hash function.

Universal Hash-Function Families:

From Hashing to Authentication

Basel Alomair

National Center for Cybersecurity Technology (C4C)
King Abdulaziz City for Science and Technology (KACST)

alomair@kacst.edu.sa

Abstract. Due to their potential use as building blocks for constructing
highly efficient message authentication codes (MACs), universal hash-
function families have been attracting increasing research attention, both
from the design and analysis points of view. In universal hash-function
families based MACs, the message to be authenticated is first compressed
using a universal hash function and, then, the compressed image is en-
crypted to produce the authentication tag. Many definitions of universal
hash families have appeared in the literature. The main focus of earlier
definitions is to classify universal hash functions based on their message
collision properties. In this paper, we introduce a different classification of
universal hash families. As opposed to classifying universal hash families
based on message collision probabilities, our classification aims to give
direct relation between universal hash families used as building blocks to
design MACs and the encryption algorithm used to process their hashed
images. We give two examples of universal hash families with equivalent
collision resiliency. We show that, while one constructs secure MACs, the
other can lead to insecure MAC construction even when coupled with an
encryption algorithm that provides perfect secrecy (in Shannon’s sense).
We formally define two classes of universal hash families: independent
and dependent universal hash families. We show that, while independent
universal hash families provide the desired unforgeability independently
of the used encryption algorithm, the security of MACs based on depen-
dent universal hash families is not guaranteed for all choices of encryption
algorithms. We conclude by giving a sufficient condition on the encryp-
tion algorithm that guarantees the construction of secure MACs, even
when combined with a dependent hash family.

1 Introduction

With todays technology, huge amount of data is being transmitted over inse-
cure channels, such as wireless communications, Internet communications, etc.
In most scenarios, users have no control over the route transmitted messages take
in their way to the destination. Since some, if not all, links that messages take in
their route can be insecure, it is desirable, even necessary in many applications,
to protect exchanged messages against malicious users. Message integrity, in par-
ticular, is one of the most concerning problems when communicating through

D. Pointcheval and D. Vergnaud (Eds.): AFRICACRYPT 2014, LNCS 8469, pp. 459–474, 2014.
c© Springer International Publishing Switzerland 2014

alomair@kacst.edu.sa

460 B. Alomair

insecure channels. Fortunately, however, the literature of cryptography is rich
with techniques to protect the integrity of messages transmitted over insecure
channels, and message authentication codes (MACs) are amongst the most ex-
tensively used primitives for preserving message integrity.

Universal hash-function families based MACs belong to a class of MACs that
has been increasingly popular due its fast implementation. In MACs based on
universal hash functions, the message to be authenticated is first compressed
using a universal hash function and then the compressed image is encrypted to
produce the authentication tag.1 Processing messages using hash functions is
much faster than processing them block by block using block ciphers. Since the
compressed image is usually much shorter than the message itself, applying a
cryptographic function on the compressed image can be accomplished efficiently.
To date, this construction of MACs is the fastest technique for message authen-
tication [1–3, 8, 9, 11, 15].

A typical example of a universal hash function works as follows. The message
is broken into multiple blocks of a predefined length, e.g., M = m1|| · · · ||mB,
where B is the number of blocks. Let each block be of size N bits and choose an
N -bit long prime integer p. Define a universal hash function by the secret key
K = k1|| · · · ||kB , where each ki is chosen randomly from the set {1, 2, · · · , p−1},
along with the operation

h(M) =

B∑
i=1

kimi mod p. (1)

(It will be shown in Section 3 that this is indeed a universal hash function.)
As can be seen from equation (1), the compressed image of an NB-bit long

message is only N -bit long. The problem, however, with such universal hash
functions is that they are not cryptographic functions. That is, the observation
of multiple message-image pairs can reveal information about the secret key K
(for example, by constructing a system of linear equations of the formMK = H
mod p). This implies that the output of the universal hash function must be
encrypted before transmission (to maintain the secrecy of the universal hash
function’s key).

When two distinct messages collide (i.e., hash to the same image), however,
their authentication tag will be the same. Therefore, if given a message-tag
pair, call it (M, τ), one can come up with a different message M ′ that hashes
to the same value, the pair (M ′, τ) will be accepted as authentic. That is, in
universal hashing based MACs, an adversary able to come up with distinct col-
liding messages can forge valid authentication tags with high probabilities, even
if the hashing key remains secret. Consequently, a critical property of univer-
sal hash-function families is their resilience to message collision. Since Carter

1 Since the purpose of the authentication tag is preserving message integrity, encryp-
tion algorithm can be replaced with other noninvertible cryptographic primitives.
For instance, cryptographic hash functions such as the SHA family have been used
in the construction of universal hashing based MACs [3].

Universal Hash-Function Families: From Hashing to Authentication 461

and Wegman introduced universal hash families [4,5] and their potential use for
message authentication [16, 17], many definitions that classify universal hash-
function families based on their message collision resiliency have appeared (see,
e.g., [5, 9, 10, 13]).2

In this work, we investigate the relation between the universal hash-function
family used for message compression and the encryption algorithm used to pro-
cess the compressed image. We give two examples of universal hash families with
equivalent message collision probabilities. Although the two universal hash fam-
ilies are equivalent when characterized based on their resiliency against message
collision, they possess completely different properties when used to construct
message authentication codes. We give two examples in which we couple the
two universal hash families with an encryption algorithm that provides perfect
secrecy (in Shannon’s information theoretic sense) and show that, while one uni-
versal hash family results in a secure MAC algorithm, the other universal hash
family results in a totally insecure MAC algorithm. Motivated by these examples,
we propose a new classification of universal hash-function families that is not
based on their message collision resiliency. That is, based on their security im-
plications on the constructed MAC, we classify universal hash-function families
into independent and dependent universal hash-function families. We provide a
formal definition for each of the two categories. For independent universal hash-
function families, we show that any encryption algorithm that maintains the
secrecy of the universal hash function’s key suffices to provide message integrity.
On the other hand, we show that the integrity of messages compressed with
dependent universal hash-function families is not guaranteed, even if the en-
cryption algorithm is perfectly secret. On the positive side, we derive a sufficient
condition on the encryption algorithm that guarantees the secure construction
of message authentication codes, even when coupled with dependent universal
hash-function families.

The rest of the paper is organized as follows. In Section 2 we give a list of
the used notations, current classification of universal hash families, and some
preliminaries. Section 3 provides the two examples of universal hash families. In
Section 4, we introduce a hypothetical scenario that will help in our classifica-
tion of universal hash families. In Section 5 we formally define independent and
dependent universal hash families. We analyze the two classes of universal hash
families in Section 6, and conclude our paper in Section 7.

2 Notations and Definitions

In this section we list the notations and definitions that will be used for the
remainder of the paper, and state the algebraic preliminaries that will be used
for our security analysis.

2 Although some definitions reach beyond the collision probabilities, such as the ε-
AXU and the ε-AΔU [9], they are directed to specific constructions and do not
generalize to all possible MAC constructions.

462 B. Alomair

2.1 Notations

The following notations will be used throughout the rest of the paper.

- For two sets A and B, the set C = A\B contains all elements in A that are
not in B.

- For the finite integer ring Zn, the notation Z∗
n denotes the multiplicative

group modulo n; that is, the set of integers relatively prime (co-prime) to n.
- For any non-empty set I, the cardinality of the set is denoted as |I|.
- For any two strings a and b, (a ‖ b) denotes the concatenation operation.
- For the rest of the paper, addition and multiplication are performed over
elements in the ring Zn, even if the “mod n” part is dropped for ease of
notations.

- For any two integers a and b, gcd(a, b) is the greatest common divisor of a
and b.

- For an element a in a ring R, the element a−1 denotes the multiplicative
inverse of a in R, if it exists.

2.2 Definitions

A family of hash functions H is specified by a finite set of keys K. Each key k ∈ K
defines a member of the family Hk ∈ H. As opposed to thinking of H as a set
of functions from D to R, it can be viewed as a single function H : K×D → R,
whose first argument is usually written as a subscript. A random element h ∈ H
is determined by selecting a k ∈ K uniformly at random and setting h = Hk. The
following are previously defined classes of universal hash families [4,8–10,13,16]

Definition 1 (Universal Hash Families). Let H = {h : D → R} be a family
of hash functions.

– H is said to be universal if for all distinct M,M ′ ∈ D, we have that

Pr
h←H

[h(M) = h(M ′)] = 1/|R|.

– H is said to be ε-almost universal, denoted ε-AU, if for all distinct M,M ′ ∈
D, we have that Prh←H[h(M) = h(M ′)] ≤ ε.

– H is said to be strongly universal if for all distinct M,M ′ ∈ D and all
a, b ∈ R, we have that Prh←H[h(M) = a, h(M ′) = b] = 1/|R|2.

– H is said to be ε-almost-strongly universal, denoted ε-ASU, if for all distinct
M,M ′ ∈ D and all a, b ∈ R, we have that Prh←H[h(M) = a, h(M ′) = b] =
ε/|R|.

– H is said to be ε-almost XOR universal, denoted ε-AXU, if for all distinct
M,M ′ ∈ D, and any a ∈ R we have that Prh←H[h(M)⊕ h(M ′) = a] ≤ ε.

– H is said to be Δ-universal if for all distinct M,M ′ ∈ D, and any a ∈ R we
have that Prh←H[h(M)− h(M ′) = a] = 1/|R|, where R is an Abelian group
and ‘-’ denotes the subtraction operation over R.

Universal Hash-Function Families: From Hashing to Authentication 463

– H is said to be ε-almost-Δ-universal, denoted ε-AΔU, if for all distinct
M,M ′ ∈ D, and any a ∈ R we have that Prh←H[h(M) − h(M ′) = a] ≤ ε,
where R is an Abelian group and ‘-’ denotes the subtraction operation over
R.

A message authentication scheme consists of a signing algorithm S and a
verifying algorithm V . The signing algorithm might be probabilistic, while the
verifying one is usually not. On input a key K and a message M , algorithm
S outputs a string τ called the authentication tag, or simply the “tag” of M .
On input a key K, a message M , and a tag τ , algorithm V outputs a bit, with
1 standing for accept and 0 for reject. Authentic tags must be accepted with
probability one. That is, if τ = S(K,M), it must be the case that V(K,M, τ) = 1
for any key K, message M , and tag τ .

A message authentication code (MAC) algorithm based on universal hash-
function families is composed of two primitives: a universal hash function and
an encryption algorithm. Given a messageM to be authenticated, the message is
first compressed into a short string of convenient length. Then, the compressed
image is encrypted with an encryption algorithm. The output of the encryption
algorithm is the authentication tag of the message.

Another definition that will be used in the rest of the paper is the notion of
negligible functions.

Definition 2. [6] [Negligible Functions] A function γ : N → R is said to be
negligible if for any nonzero polynomial p, there exists N0 such that for all N >
N0, |γ(N)| < 1

|p(N)| . That is, the function is said to be negligible if it converges

to zero faster than the reciprocal of any polynomial function.

2.3 Preliminaries

We list, and prove, below two facts about integer rings that will be used in our
analysis.

Lemma 1. Let Zn be any finite integer ring, and let α and β be nonzero el-
ements of Zn. Then, αβ ≡ 0 mod n only if both α and β are non invertible
elements of Zn. That is, for any nonzero elements α and β in Zn, the following
one-way implication holds

αβ ≡ 0 mod n⇒ {α, β ∈ Zn\Z∗
n} (2)

Proof. Let α and β be nonzero elements of Zn. Without loss of generality, assume
that α ∈ Z∗

n; that is, there exists an element α−1 ∈ Zn so that αα−1 ≡ 1 mod n.
Then,

αβ ≡ 0 mod n⇒ α−1αβ ≡ 0 mod n⇒ β ≡ 0 mod n,

a contradiction to the hypothesis that β is not the zero element; and the lemma
follows. ��

464 B. Alomair

Lemma 2. Given an integer k ∈ Z∗
n, the following must hold:

1. for an r1 uniformly distributed over Z∗
n, the value ε1 given by

ε1 ≡ r1k mod n (3)

is uniformly distributed over Z∗
n.

2. for an r2 uniformly distributed over Zn\Z∗
n, the value ε2 given by

ε2 ≡ r2k mod n (4)

is uniformly distributed over Zn\Z∗
n.

Proof. To prove the first part, it suffices to show that for every ε1 ∈ Z∗
n, there

exists an r1 ∈ Z∗
n that satisfies equation (3) and that this r1 is unique.

Fix any ε1 ∈ Z∗
n and any k ∈ Z∗

n. Since k ∈ Z∗
n, by Bézout’s lemma [14], k−1

does exist. That is, there exists k−1 ∈ Z∗
n so that

k−1k ≡ 1 mod n, (5)

and multiplying both sides of equation (5) by ε1 gives:

(ε1k
−1)k ≡ ε1 mod n. (6)

Hence, r1 = ε1k
−1 mod n satisfies equation (3). Further, r1 ∈ Z∗

n since r−1
1 =

ε−1
1 k does exist. Therefore, there exists an r1 ∈ Z∗

n that satisfies equation (3).
To show that this r1 is unique, let r′1 �= r1 also satisfies equation (3). Then,

r′1k ≡ ε1 mod n. (7)

Multiplying both equations (3) and (7) by k−1 gives:

r1 ≡ ε1k
−1 mod n, (8)

and
r′1 ≡ ε1k

−1 mod n. (9)

Therefore, r1 ≡ r′1 mod n and, hence, the r1 in Z∗
n that satisfies equation (3)

for any fixed ε1 ∈ Z∗
n is unique.

The proof of the second part of the lemma is similar to the proof of the first
part and, thus, it is omitted. ��

3 Two Universal Hash Families

In this section, we give two examples of universal hash-function families that are
equivalent in their message collision resiliency.

Universal Hash-Function Families: From Hashing to Authentication 465

3.1 Description of the Universal Hash Families

Fix a security parameter N . Without loss of generality, assume the message can
be divided into B blocks of length N -bits, that is M = m1||m2|| . . . ||mB, where
mi ∈ Z2N denotes the ith message block. Let K = k1||k2|| . . . ||kB for ki’s drawn
uniformly and independently at random from Z2N . The key K is the shared
secret key that will be used for message compression. (We overload mi and ki
to denote both the N -bit strings and their integer representation as elements of
Z2N , depending on the context.) Note that the hashing key K can be used to
hash messages of arbitrary lengths, not only NB-bit messages or shorter. The
extension to hash arbitrary-length messages with the same key can be achieved
with a variety of methods, e.g., [3, 8, 17]; the details of such extensions are out
of the scope of this paper.

The First Example: Universal Hash Family 1 (UHF1). Choose an N -bit
prime integer p. For every messageM to be authenticated, the compressed image
of message M is computed as:

h(M) =

B∑
i=1

kimi mod p, (10)

assuming each ki is chosen uniformly at random from the multiplicative group
Z∗
p.

The Second Example: Universal Hash Family 2 (UHF2). Let k1 be
drawn uniformly at random from the multiplicative group Z∗

2N , and let K =
k2||k3|| . . . ||kB for ki’s drawn uniformly and independently at random from Z2N .
For every message M to be authenticated, the compressed image of message M
is computed as:

h(M) = k1m1 mod 2N +

B∑
i=2

kimi mod 22N . (11)

We will show in the next section that both UHF1 and UHF2 lead to a uni-
versal hash family. In either universal hash family, the authentication tag, τ , is
computed by applying an encryption algorithm on the compressed image. That
is,

τ = E
(
h(M)

)
, (12)

where E is the used encryption algorithm.

3.2 Message Collision Analysis

We show in this section that both UHF1 and UHF2 are universal hash families
with equivalent resiliency to message collision.

466 B. Alomair

UHF1. Recall that two messages, M = m1 ‖ · · · ‖ mB and M ′ = m′
1 ‖ · · · ‖

m′
B, will have the same image if and only if the following holds:

h(M) ≡
B∑
i=1

kimi ≡
B∑
i=1

kim
′
i ≡ h(M ′) mod p. (13)

We consider now the three possible scenarios: single-block difference, two-block
difference, and more than two-block difference.

a) Single block: without loss of generality, assume that only the first message
block is different. That is, mi = m′

i for all i �= 1 but m1 �≡ m′
1 mod p. Let

m′
1 ≡ m1+δ mod p for some δ ∈ Zp\{0}. Since only the first message block

is different, equation (13) is equivalent to

k1m1 ≡ k1m
′
1 ≡ k1(m1 + δ) ≡ k1m1 + k1δ mod p. (14)

That is, M and M ′ will have the same image iff k1δ ≡ 0 mod p. Since
neither k1 nor δ is the zero element in the field Zp, M and M ′ can never
have the same image if they are different by only a single block.

b) Two blocks: without loss of generality, assume that only the first two message
blocks are different. That is, mi = m′

i for all i �= 1, 2 but m1 �≡ m′
1 mod p

and m2 �≡ m′
2 mod p. Let m′

1 ≡ m1 + δ1 mod p and m′
2 ≡ m2 + δ2 mod p

for some δ1, δ2 ∈ Zp\{0}. Since only the first two message blocks are different,
equation (13) is equivalent to

k1m1 + k2m2 ≡ k1m
′
1 + k2m

′
2 ≡ (k1m1 + k1δ1) + (k2m2 + k2δ2) mod p.

(15)

That is, M and M ′ will have the same image iff

k1δ1 + k2δ2 ≡ 0 mod p. (16)

By Lemma 2, the values k1δ1 and k2δ2 are uniformly distributed over Zp\{0}.
Consequently, the probability of satisfying equation (16) is 1/(p− 1). Given
that p is an N -bit prime, the probability of satisfying equation (16) can be
bounded by 1/2N−1.

c) More than two blocks: letm′
i ≡ mi+δi �≡ mi mod p; ∀ i ∈ I ⊆ {1, 2, · · · , B};

|I| ≥ 3. Then, equation (13) is equivalent to

kiδi +
∑
j∈I
j �=i

kjδj ≡ 0 mod p, (17)

for some i ∈ I. The only difference between this case and the case in which
only two blocks are different is that

∑
j∈I,j �=i kjδj in equation (17) can still

be congruent to zero modulo p, while k2δ2 in equation (16) can be chosen
not to be congruent to zero in the two block case. Consequently, similar to
the two block analysis, the probability of satisfying equation (17) is 1/p.

Universal Hash-Function Families: From Hashing to Authentication 467

UHF2. Recall that two messages, M = m1 ‖ · · · ‖ mB and M ′ = m′
1 ‖ · · · ‖

m′
B, will have the same image if and only if the following holds:

h(M) ≡ k1m1 mod 2N +

B∑
i=2

kimi mod 22N

≡ k1m
′
1 mod 2N +

B∑
i=2

kim
′
i mod 22N ≡ h(M ′). (18)

When the ki’s, for i = 2, · · · , B, are chosen uniformly at random from Z2N ,
the probability that

∑B
i=2 kimi ≡

∑B
i=2 kim

′
i mod 22N is known to be 1/2N for

any distinct messages M �= M ′ (see [3] for a proof). For an odd k1 ∈ Z∗
2N , the

probability that k1m1 ≡ k1m
′
1 mod 2N is zero. This is a direct consequence of

Lemma 1 and the fact that any odd integer is invertible in Z2N . Therefore, the
probability of satisfying equation (18) is 1/2N .

Corollary 1. Both UHF1 and UHF2 are 1
2N−1 -AU.

In the following sections, we will show that, although both UHF1 and UHF2
are 1

2N−1 -AU, the resulting MAC is secure when UHF1 is used while a man-in-
the-middle can forge a valid MAC with probability one when UHF2 is used. We
start by describing a hypothetical scenario to help formalizing our results.

4 Hashed-Image Attack

As it is typically assumed that the adversary has the ability to modify the trans-
mitted message and its tag, it is not assumed that the adversary can modify the
compressed image before it is passed to the encryption algorithm, and there is
a good reason for this assumption: only the message and the corresponding tag
are transmitted in the clear, which makes them vulnerable to modification (on
the other hand, an adversary will need a physical access to the MAC hardware
in order to be able to modify the hashed image before it is passed to the crypto-
graphic function). However, we assume the possibility of hashed-image attacks
in our analysis because it leads to our formalization and helps understanding
other practical attacks (as will be detailed later).

Assume now that both the message M and its compressed image h(M) have
been modified to M ′ and h′(M), respectively. Then, if the compressed image of
the modified message is equal to the modified compressed image of the original
message, the modified message will pass the integrity check. That is, if an ad-
versary can modify M to M ′ and h(M) to h′(M) such that h′(M) = h(M ′), by
receiving M ′ the intended user will compute h(M ′). Since h′(M) = h(M ′), the
computed authentication tag at both the sender and the receiver ends will be
the same. Therefore, the modified M ′ will be accepted as an authentic message.

We will now analyze the probability of successfully launching such an attack
on the universal hash families of Section 3.

468 B. Alomair

4.1 UHF1

Assume that h′(M) ≡ h(M) + γ mod p, for some γ ∈ Zp\{0}. Recall that
a modified message-image pair (M ′, h′(M)) will be accepted if the following
condition holds:

h(M ′) ≡
B∑
i=1

kim
′
i

?≡
B∑
i=1

kimi + γ ≡ h′(M) mod p. (19)

To analyze equation (19), we will break the problem into two cases: modifying
a single message block and modifying more than one message block.

1. Without loss of generality, assume that only the first message block m1

has been modified to m′
1 ≡ m1 + δ1 �≡ m1 mod p. Then, equation (19) is

equivalent to
k1δ1 ≡ γ mod p, (20)

for an unknown k1 ∈ Z∗
p, and some δ1, γ ∈ Zp\{0} of the adversary’s choice.

2. Assume that two or more message blocks have been modified, i.e., m′
i ≡

mi + δi �= mi mod p; ∀i ∈ I ⊆ {1, 2, · · · , B}; |I| ≥ 2. Then, equation (19) is
equivalent to ∑

i∈I

kiδi ≡ γ mod p, (21)

for unknown ki’s in Z∗
p, and some δi’s and γ in Zp\{0} of the adversary’s

choice.

Lemma 3. In UHF1, an adversary modifying both the message M and its com-
pressed image h(M) to M ′ and h′(M) so that h′(M) = h(M ′) will be successful
with a negligible probability.

Proof. Observe that, by Lemma 2, the value of k1δ1 in equation (20) is uni-
formly distributed over Z∗

p. Therefore, the probability of choosing a pair (δ1, γ)
that satisfies equation (20) is 1/(p − 1). Similarly, by Lemma 2 and the fact
that

∑
i∈I kiδi can be congruent to zero modulo p, the probability of satisfying

equation (21) is at most 1/p. Therefore, the probability of satisfying equation
(19) is at most 1/2N−1, a negligible function in the security parameter N . ��

4.2 UHF2

Assume that h′(M) = h(M)+ γ, for some γ ∈ Z22N \{0}. Recall that a modified
message-image pair (M ′, h′(M)) will be accepted if the following condition holds:

h(M ′) ≡ k1m
′
1 mod 2N +

B∑
i=2

kim
′
i mod 22N

?≡ k1m1 mod 2N +

B∑
i=2

kimi mod 22N + γ ≡ h′(M). (22)

Universal Hash-Function Families: From Hashing to Authentication 469

Lemma 4. In UHF2, an adversary modifying both the message M and its com-
pressed image h(M) to M ′ and h′(M) so that h′(M) = h(M ′) can be successful
with probability one.

Proof. Recall that the key k1 is chosen from Z∗
2N . Therefore, k1 must be an odd

integer. Let m′
1 = m1+δ1, for δ1 = 2N−1, and write k1 = 2r+1, for some integer

r. Then,
k1δ1 ≡ (2r + 1)2N−1 ≡ 2N−1 mod 2N , (23)

for any integer r. That is, by replacing m1 with m′
1 = m1 + 2N−1 and setting

γ = 2N−1, equation (22) will be satisfied with probability one, and the lemma
follows. ��

5 Classification of Universal Hash-Function Families

In this section we define two general classes of universal hash families. As men-
tioned earlier, this classification will have security implications on the encryption
algorithm that can be combined with the universal hash function to construct the
MAC. We start with the notion of independent universal hash-function families.

Definition 3 (Independent universal hash-function families). Let H =
{h : D → R} be a family of hash functions. We say that H is independent if
for any message M ∈ D, for all messages M ′ �= M , for any function f , the
probability that Pr[h(M ′) = f(h(M))] is negligible for any h ∈ H.

As can be inferred from their name, independent universal hash families can
be used to construct a secure MAC independently of the combined encryption
algorithm (as will be shown later). Observe that this definition can be viewed
as a generalization of the ε-AXU and the ε-AΔU in which the function f is not
restricted to be an XOR or a linear function. The second class of universal hash
families is the dependent one defined as follows.

Definition 4 (Dependent universal hash-function families). Let H = {h :
D → R} be a family of hash functions. We say that H is dependent if for a
message M ∈ D, there exists a message M ′ �= M and a function f so that the
probability that Pr[h(M ′) = f(h(M))] is non-negligible for at least one h ∈ H.

Intuitively, the security of MACs based on dependent universal hash-function
families will depend on the combined encryption primitive. By Lemma 3, the
UHF1 of Section 3 is independent while, by Lemma 4, the UHF2 is dependent.

Observe the difference between our classification of universal hash families
and the previous classifications in Definition 1. Our definitions deal with the

470 B. Alomair

ability to come up with a message M ′ different than the original message M
and predict its hashed image as a function of the image of M (not strictly the
absolute value of h(M ′) or a linear or XOR function of h(M)). This classification
gives a general and direct relation between the used universal hash function and
the used encryption algorithm.

6 Analysis of the Two Classes of Universal Hash Families

We will show in this section the effect of the used universal hash family on the
security of the constructed MAC. We will restrict our analysis to man-in-the-
middle (MITM) attacks; the generalization to other attacks is straightforward.

Recall that there are two cases to be considered in MITM attacks: modifying
plaintext only and modifying both the plaintext and its corresponding tag. When
only the plaintext message M is modified to M ′, the fact that the used hash
function is ε-AU guarantees that the compressed image h(M ′) will be different
than h(M) with probability 1 − ε. Now, if the compressed image is processed
with any one-to-one encryption algorithm, the tag τ = E(h(M)) will be accepted
only if E(h(M ′)) = τ . Since E is one-to-one, this implies that h(M ′) = h(M),
which will occur with the negligible probability ε.

Consider now the use of many-to-one primitives, such as cryptographic hash
functions. Of course, if h(M ′) = h(M) the tag will be accepted. This, however,
will occur with a negligible probability ε. Since the cryptographic primitive is
many-to-one, however, there is a possibility that τ = E(h(M)) = E(h(M ′)) for
h(M ′) �= h(M). Typical cryptographic hash functions, however, are pseudoran-
dom functions; hence, it is computationally infeasible to predict their outputs
on two different inputs h(M) and h(M ′) (see the proof Theorem 1).

Therefore, the fact that the used hash family is ε-AU guarantees that it is
computationally infeasible to modify only the plaintext message in a way unde-
tected by its unmodified tag (provided that the secret keys are protected against
exposure). This is regardless of whether the used universal hash family is inde-
pendent or not. In what follows, we show how this is not the case when both the
message and its tag are modified.

6.1 Independent Universal Hash Families

Here we will show that any encryption algorithm can be used to construct a
secure MAC when combined with an independent universal hash family, as long
as the primitive provides the necessary protection against key exposure of the
universal hash family. Observe that a MITM modifying a message-tag pair to
(M ′, τ ′) will be successful if the following holds.

τ ′ = τ + δ = E
(
h(M)

)
+ δ

?
= E

(
h(M ′)

)
, (24)

Assume now that the compressed image is not processed by any encryption
algorithm. Then, equation (24) can be reduced to

Universal Hash-Function Families: From Hashing to Authentication 471

τ ′ = τ + δ = h(M) + δ
?
= h(M ′). (25)

That is, the problem is reduced to modifying the compressed image by some
value δ so that f(h(M)) := h(M) + δ = h(M ′). For independent universal hash
families such as UHF1, however, the probability of satisfying equation (25) is
negligible (by Definition 3 of independent universal hash families).

Now, consider the use of any semantically secure encryption scheme3 to pro-
cess the hashed image. The adversary’s inability to satisfy equation (24) follows
directly from her inability to satisfy equation (25) when the universal hash family
is independent, and her inability to predict the ciphertext of any given plaintext.

Therefore, the use of independent universal hash families can lead to the secure
construction of universal hash functions based MACs regardless of the choice of
the cryptographic primitive, given that it provides the required security against
key exposure. Thus the name “independent universal hash-function families”.

6.2 Dependent Universal Hash Families

In this section, we will show that dependent universal hash families, although can
lead to secure constructions of MACs, can also lead to totally insecure MACs,
depending on the used encryption algorithm. Consider the use of a perfectly
secret additive one-time pad cipher as the cryptographic primitive. (An additive
one-time pad cipher is an encryption algorithm that adds the message to be
encrypted to a key of equal length. When they key is used for only a single
encryption, it is known that such encryption is perfectly secret in Shannon’s
information theoretic sense [12].)

Consider now a MITM modifying both the transmitted message and its cor-
responding tag to M ′ �= M and τ ′ = τ + δ, respectively. Then, the modified
message-tag pair will be accepted as valid if the following holds

τ ′ = τ + δ =
(
h(M) + ke

)
+ δ

?
=
(
h(M ′) + ke

)
, (26)

where ke is the one-time key.
Consider now the use of UHF2 for message compression, the dependent uni-

versal hash family of Section 5. Then, equation (26) can be written as

τ ′ ≡ τ + δ ≡
(
k1m1 mod 2N +

B∑
i=2

kimi mod 22N + ke

)
+ δ

?≡
(
k1m

′
1 mod 2N +

B∑
i=2

kim
′
i mod 22N + ke

)
. (27)

3 Semantic security is shown to be equivalent to indistinguishability under chosen
plaintext in [7]. Which means that given two plaintexts of the adversary’s choice
and a ciphertext corresponding to one of them, the adversary cannot determine,
with probability significantly higher than 1/2, to which plaintext the ciphertext
corresponds.

472 B. Alomair

Assume that the first message block has been modified to m′
1 := m1+2N−1 and

recall that k1 is an odd integer; then, similar to the proof of Lemma 4, equation
(27) can be written as

τ ′ ≡ τ + δ ≡
(
k1m1 mod 2N +

B∑
i=2

kimi mod 22N + ke

)
+ δ

?≡
(
k1m1 mod 2N +

B∑
i=2

kimi mod 22N + ke

)
+ 2N−1. (28)

Hence, choosing δ = 2N−1 will satisfy equation (28). That is, modifying the
first message block by 2N−1 and modifying the authentication tag by 2N−1

will go undetected. In other words, forgery can succeed with probability one.
This shows that dependent universal hash-function families can lead to totally
insecure MAC construction, even when coupled with an encryption algorithm
that provides the highest degree of secrecy. (The use of one-time pad ciphers to
encrypt the compressed image has been proposed in, e.g., [8, 16].)

However, this does not imply that dependent universal hash families cannot
be used for the construction of secure MACs. In fact, Theorem 1 states that a
sufficient condition for the construction of a MAC based on an ε-AU family to
be secure is to be combined with a secure pseudorandom function.

Theorem 1. Let ε ≥ 0 be a real number and let H = {h : {0, 1}∗ → {0, 1}∗} be
an ε-AU family of hash functions. Let F = {f : {0, 1}∗ → {0, 1}β}, where β is
a positive integer, be a pseudorandom function family that can be distinguished
from a true random function family with a probability at most δ ≥ 0. Then the
probability of forging a valid tag for MAC:=f(h(M)), where f and h are any
members of F and H respectively, is at most ε + δ + 2−β.

Proof. Let ε ≥ 0 be a real number and letH = {h : {0, 1}∗ → {0, 1}∗} be an ε-AU
family of hash functions. Let F = {f : {0, 1}∗ → {0, 1}β}, where β is a positive
integer, be a pseudorandom function family that can be distinguished from a
true random function family with a probability at most δ ≥ 0. Let τ = f

(
h(M)

)
be the authentication tag for a message M . Assume an adversary is given the
(M, τ) pair and wants to authenticate a different message M ′. Define C to be
the event that a collision in the hashing phase occurred, and let C denote the
complement of C.

Observe that if h(M) �= h(M ′) then the adversary chance of predicting the
correct tag is bounded by the adversary’s chance of predicting the output of
the pseudorandom function. If f is truly random and h(M) �= h(M ′) then the
adversary’s probability of successfully predicting the valid τ is 2−β . However,
since f is not truly random, the adversary’s probability of predicting its out-
put is bounded by δ + 2−β . Therefore, we have that Pr(forgery|C) ≤ δ + 2−β.

Universal Hash-Function Families: From Hashing to Authentication 473

Consequently,

Pr(forgery) = Pr(forgery|C) · Pr(C) + Pr(forgery|C) · Pr(C) (29)

≤ Pr(C) + Pr(forgery|C) (30)

≤ ε + δ + 2−β, (31)

and the theorem follows. ��

The use of pseudorandom functions to process the compressed image has
appeared in, e.g., [3].

7 Conclusion

In this work, we studied the use of universal hash-function families in the con-
struction of message authentication codes (MACs). We showed that driving the
probability of message collision as small as possible does not guarantee a secure
MAC construction. We gave an example in which coupling a universal hash-
function family with a perfectly secret encryption algorithm can lead to com-
pletely insecure MAC. We gave another examples of a universal hash-function
family with the same message collision resiliency that can lead to secure MAC
construction when coupled with any secure encryption algorithm. Based on these
two examples, we classified universal hash families into two classes: dependent
and independent universal hash families. We give a sufficient condition on the
encryption algorithm so that MACs based on dependent universal hash fami-
lies are secure; namely, the cryptographic primitive is a pseudorandom function
(PRF).

References

1. Alomair, B.: Authenticated Encryption: How Reordering Can Impact Performance.
In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 84–99.
Springer, Heidelberg (2012)

2. Alomair, B., Clark, A., Poovendran, R.: The Power of Primes: Security of Au-
thentication Based on a Universal Hash-Function Family. Journal of Mathematical
Cryptology 4(2) (2010)

3. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and
Secure Message Authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 216–233. Springer, Heidelberg (1999)

4. Carter, J., Wegman, M.: Universal classes of hash functions. In: Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing-STOC 1977, pp.
106–112. ACM, New York (1977)

5. Carter, L., Wegman, M.: Universal hash functions. Journal of Computer and Sys-
tem Sciences, JCSS 18(2), 143–154 (1979)

6. Goldreich, O.: Foundations of Cryptography. Cambridge University Press (2001)
7. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-

tem Sciences 28(2), 270–299 (1984)

474 B. Alomair

8. Halevi, S., Krawczyk, H.: MMH: Software message authentication in the
gbit/Second rates. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 172–189.
Springer, Heidelberg (1997)

9. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.)
Advances in Cryptology - CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer,
Heidelberg (1994)

10. Krawczyk, H.: New hash functions for message authentication. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) Advances in Cryptology - EUROCRYPT 1995. LNCS,
vol. 921, pp. 301–310. Springer, Heidelberg (1995)

11. Rogaway, P.: Bucket hashing and its application to fast message authentication.
Journal of Cryptology 12(2), 91–115 (1999)

12. Shannon, C.: Communication Theory and Secrecy Systems. Bell Telephone Labo-
ratories (1949)

13. Stinson, D.: Universal hashing and authentication codes. Designs, Codes and Cryp-
tography 4(3), 369–380 (1994)

14. Tignol, J.: Galois’ Theory of Algebraic Equations. World Scientific (2001)
15. van Tilborg, H.: Encyclopedia of cryptography and security. Springer (2005)
16. Wegman, M., Carter, J.: New classes and applications of hash functions. In: 20th

Annual Symposium on Foundations of Computer Science-FOCS 1979, pp. 175–182
(1979)

17. Wegman, M., Carter, L.: New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences, JCSS 22(3), 265–279 (1981)

Author Index

Abed, Farzaneh 440
Alomair, Basel 459
AlTawy, Riham 109
Ariffin, Muhammad Rezal Kamel 178
Arriaga, Afonso 31

Bahig, Hatem M. 178
Bajaj, Gaurav 420
Bhasin, Shivam 420
Bilgin, Begül 267
Bogdanov, Andrey 147
Bottinelli, Paul 126
Buchmann, Johannes 336

Clear, Michael 377

Dagdelen, Özgür 356
Das, Sourav 69
Devigne, Julien 13
Ding, Lin 136
Dutta, Ratna 398
Dziembowski, Stefan 300

El Bansarkhani, Rachid 336

Forler, Christian 440

Gaborit, Philippe 1
Gierlichs, Benedikt 267
Grosso, Vincent 251
Großschädl, Johann 215
Guan, Jie 136
Guerrini, Eleonora 13
Guilley, Sylvain 420

Hajra, Suvadeep 420
Hu, Lei 165
Huang, Zhangjie 165

Jin, Chenhui 136

Kuila, Sukhendu 88
Kurosawa, Kaoru 51
Kutzner, Sebastian 235

Laguillaumie, Fabien 13
Lepoint, Tancrède 318

List, Eik 440
Liu, Zhe 215
Lucks, Stefan 440

McGoldrick, Ciarán 377
Meier, Willi 69
Mukhopadhyay, Debdeep 420

Naehrig, Michael 318
Nassr, Dieaa I. 178
Nguyen, Phuong Ha 235
Nikov, Ventzislav 267
Nikova, Svetla 267
Nitaj, Abderrahmane 178

Ohara, Kazuma 285
Ohta, Kazuo 285

Pal, Madhumangal 88
Peng, Liqiang 165
Poschmann, Axel 235
Prouff, Emmanuel 251

Qi, Chuanda 136

Rao, Y. Sreenivasa 398
Rebeiro, Chester 420
Reyhanitabar, Reza 126
Rijmen, Vincent 267
Roy Chowdhury, Dipanwita 88
Ruatta, Olivier 1
Ryan, Peter 31

Saha, Dhiman 88
Schrek, Julien 1
Sharma, Sahil 420
Standaert, François-Xavier 251
Stöttinger, Marc 235
Suzuki, Koutarou 285

Tang, Qiang 31
Tewari, Hitesh 377
Tran, Christophe 199
Trieu Phong, Le 51

Vaudenay, Serge 126
Venturi, Daniele 356

476 Author Index

Wang, Meiqin 147
Wen, Long 147
Wenzel, Jakob 440

Xie, Yonghong 165
Xu, Jun 165

Yoneyama, Kazuki 285

Youssef, Amr M. 109

Zdanowicz, Maciej 300

Zémor, Gilles 1

	Preface
	AFRICACRYPT 2014
	Table of Contents
	New Results for Rank-Based Cryptography
	1 Introduction
	2 Background on Rank Metric Codes and Cryptography
	2.1 Definitions and Notation
	2.2 Difficult Problem for Rank-Based Cryptography
	2.3 Complexity of the Rank Decoding Problem

	3 Low Rank Parity Check Codes and Their Decoding
	3.1 Definition of Low Rank Parity Check Codes
	3.2 Decoding Algorithm for LRPC Codes

	4 Application of LRPC Codes to Cryptography: The LRPC Cryptosystem
	4.1 The LRPC Cryptosystem
	4.2 Security of the LRPC Cryptosystem
	4.3 Examples of Parameters

	5 Zero-Knowledge Authentication with Rank Metric
	5.1 Previous Work and Definitions
	5.2 Description of the Protocol

	6 Signature with Rank Metric
	7 Conclusion
	References

	Public-Key Cryptography
	Proxy Re-Encryption Scheme Supportinga Selection of Delegatees
	1 Introduction
	2 Preliminaries
	2.1 Definitions and Security Model
	2.2 Algorithmic Assumption and Notations

	3 The Scheme
	3.1 Intuition
	3.2 Description of Our New Scheme
	3.3 sIND − CPA Security of Our Scheme
	3.4 Transferability Issues and Traceability

	4 Concluding Remarks
	References

	Trapdoor Privacy in Asymmetric SearchableEncryption Schemes
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Anonymous Identity-Based Encryption

	3 Security Definitions
	3.1 Key Unlinkability for IBE
	3.2 Function Privacy for IBE: An Independent Security Notion
	3.3 Adversarially-Chosen Joint Probability Distributions of Keywords

	4 From Weak to Strong Key Unlinkability
	5 Conclusions and Future Directions
	References

	Kurosawa-Desmedt Key EncapsulationMechanism, Revisited
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Other Usage of KEM Beyond Hybrid Encryption
	1.4 More Related Works

	2 Preliminaries
	3 Kurosawa-Desmedt KEM, Revisited
	3.1 Our Proposed KEM under DDH
	3.2 Comparison and Implementation
	3.3 Security Proof

	4 Generalization to Universal Hash Proof System
	4.1 Hash Proof System
	4.2 IND-CCA-Secure KEM from Hash Proof Systems
	4.3 Instantiation under the DLIN Assumption
	4.4 Instantiation under the DCR Assumption

	References

	Hash Functions
	Differential Biases in Reduced-Round Keccak
	1 Introduction
	2 Description of Keccak
	3 Propagation Properties of the Keccak Constituent Functions
	3.1 Propagation Properties of θ, ρ, π and ι
	3.2 Propagation Properties of χ

	4 Application of Propagation Properties: Two Rounds Distinguishers
	4.1 Method for Finding Distinguishers
	4.2 Two Rounds Distinguishers for Low Weight Differentials
	4.3 The Effect of ι in Differential Bias Propagation

	5 Distinguishers of Six Rounds of Keccak
	5.1 Extension to 3 Rounds - Starting with a Kernel
	5.2 Extension to 4 Rounds - Starting with a Double Kernel
	5.3 Differential Distinguishers with All Possible Double Kernels Up to Weight Six
	5.4 A Concrete Six Round Distinguisher of Keccak-224

	6 A Second Application of Propagation Properties
	7 Conclusion
	References

	Practical Distinguishers against 6-RoundKeccak-f Exploiting Self-Symmetry
	1 Introduction
	2 Notations
	3 Distinguishing Strategies Exploiting Self-Symmetry
	3.1 The Kernel Strategy
	3.2 The Quartet Strategy
	3.3 Self-Symmetric State Construction (SSC)
	3.4 Simplified Target Internal Difference Algorithm (sTIDA)

	4 Experimental Results
	4.1 The Basic 3-Round Distinguisher Using Only the Kernel
	4.2 The 4-Round Distinguisher Employing Multiple Strategies
	4.3 The 5-Round Distinguisher Employing Multiple Strategies
	4.4 The 6-Round Distinguisher Deploying All the Strategies

	5 Conclusion
	References

	Preimage Attacks on Reduced-Round Stribog
	1 Introduction
	2 Specification of Stribog
	2.1 Notation

	3 MitM Preimage Attacks on AES-Based Hash Functions
	4 5-Round Pseudo Preimage of the Compression Function
	5 Extending the Attack to 6-Rounds
	6 Preimage of the Stribog Hash Function
	7 Conclusion and Discussion
	References

	Secret-Key Cryptanalysis
	Breaking the IOC Authenticated Encryption Mode
	1 Introduction
	2 Description of IOC
	2.1 Differences between Two Versions of IOC

	3 Forgery Attack against IOC
	4 Conclusion
	References

	New Treatment of the BSW Sampling and ItsApplications to Stream Ciphers
	1 Introduction
	2 New Time-Memory-Data Tradeoff Attack
	2.1 BSW Sampling Technique
	2.2 New Treatment of the BSW Sampling Technique

	3 Applications and Discussions
	3.1 Previous Works on MICKEY and Grain Stream Ciphers
	3.2 New Attacks on MICKEY and Grain Stream Ciphers
	3.3 General Guess and Determine-TMDTO Attack

	4 Conclusions
	References

	Multidimensional Zero-Correlation LinearCryptanalysis of E2
	1 Introduction
	2 Preliminaries
	2.1 Basics of Zero-Correlation Linear Cryptanalysis [3]
	2.2 Multidimensional Zero-Correlation Linear Cryptanalysis [5]
	2.3 Description of E2

	3 Zero-Correlation Linear Approximations over 6-Round E2
	4 Multidimensional Zero-Correlation LinearCryptanalysis of E2 without IT and FT
	4.1 Key Recovery Attack on 8-Round E2-128 without IT and FT
	4.2 Key Recovery Attack on 9-Round E2-256 without IT and FT

	5 Multidimensional Zero-Correlation LinearCryptanalysis of E2 with IT and FT
	5.1 Key Recovery Attack on 6-Round E2-128 with IT and FT
	5.2 Key Recovery Attack on 7-Round E2-256 with IT and FT

	6 Conclusion
	References

	Public-Key Cryptanalysis and Number Theory
	Further Improvement of Factoring RSA Moduliwith Implicit Hint
	1 Introduction
	2 Preliminaries
	3 Factoring Two RSA Moduli with Implicitly Common LSBs
	4 Extending to Factoring Multiple RSA Moduli with Implicitly Common LSBs
	5 Factoring RSA Moduli with Implicitly Common MSBs
	6 Conclusion
	References

	New Attacks on the RSA Cryptosystem
	1 Introduction
	2 Preliminaries
	2.1 Coppersmith’s Method
	2.2 Lattice Reductions and Simultaneous Diophantine
	2.3 Primes Sharing LSBs
	2.4 Approximations of the Primes in RSA

	3 The First Attack on k RSA Moduli
	4 The Second Attack on k RSA Moduli
	5 The Third Attack on RSA With Primes and Decryption Exponents Sharing Bits
	5.1 The Attack
	5.2 Comparison with Former Attacks

	6 Conclusion
	References

	Formulae for Computation of Tate Pairing on Hyperelliptic Curve Using Hyperelliptic Nets
	1 Introduction
	2 Background on Hyperelliptic Curves
	3 Sigma Function
	3.1 The Weierstrass Sigma Funtion
	3.2 The Kleinian Sigma Funtion

	4 Background on Hyperelliptic Nets
	4.1 The Genus One Case
	4.2 The General Case

	5 The Hyperelliptic Net Algorithm in the Caseg ≡ 1,2 (mod 4)
	5.1 Definitions of the Blocks and the Settings
	5.2 Formulae

	6 The Hyperelliptic Net Algorithm in the Caseg ≡ 0,3 (mod 4)
	6.1 Definitions of the Blocks and the Settings
	6.2 Formulae

	7 Genus 3 Case
	7.1 Initialization
	7.2 An Example

	8 Conclusion
	References

	Hardware Implementation
	New Speed Records for Montgomery ModularMultiplication on 8-Bit AVR Microcontrollers
	1 Introduction
	2 Montgomery Modular Multiplication
	2.1 Separated Operand Scanning (SOS)
	2.2 Finely Integrated Product Scanning (FIPS)
	2.3 Coarsely Integrated Operand Scanning (CIOS)
	2.4 Coarsely Integrated Hybrid Scanning (CIHS)
	2.5 Finely Integrated Operand Scanning (FIOS)
	2.6 Separated Product Scanning (SPS)
	2.7 Analysis and Comparison

	3 Our Implementation
	3.1 Optimized Hybrid Multiplication
	3.2 Evaluation of Our Optimized Hybrid Multiplication
	3.3 Hybrid Montgomery Multiplication
	3.4 Regular Execution of Final Subtraction

	4 Performance Evaluation and Comparison
	5 Conclusions
	References

	Minimizing S-Boxes in Hardware by UtilizingLinear Transformations
	1 Introduction
	2 Decomposing S-boxes for TI Scheme
	2.1 Optimal 4-Bit S-boxes
	2.2 Decomposition of Optimal 4-bit S-boxes for the TI Scheme
	2.3 Decomposing all S-Boxes of A16 with One QuadraticPermutation

	3 Application on the Present Block Cipher
	3.1 S-Box Decomposition
	3.2 Decomposed S-box Structure for Threshold Implementation

	4 Implementation of Present with Merged S-boxes
	4.1 Resource Consumption of Merged Designs
	4.2 Merged Present Design for Encryption and Decryption

	5 Side-Channel Evaluation
	6 Conclusion
	References

	Efficient Masked S-Boxes Processing– A Step Forward –
	1 Introduction
	2 Existing Schemes for Elementary Operations
	3 New Proposal for Power Functions Evaluation
	4 Efficiency Comparisons and Simulations
	Conclusion
	References

	A More Efficient AES Threshold Implementation
	1 Introduction
	2 Threshold Implementation
	2.1 Notation and Definitions
	2.2 Security from Correctness and Incompleteness
	2.3 Uniformity for the Cascaded and Parallel Functions
	2.4 Reducing the Randomness Used in a Re-masking Step

	3 Implementation
	3.1 General Data Flow
	3.2 TI of the AES S-box
	3.3 Performance

	4 Power Analysis
	References

	Protocols
	Constant Rounds Almost Linear ComplexityMulti-party Computation for Prefix Sum
	1 Introduction
	2 Preliminaries
	2.1 Known MPC Techniques
	2.2 Toft’s Almost Linear Bit Decomposition Protocol

	3 Proposed MPC Protocol for Generic Prefix Sum
	3.1 MPC Protocol for Prefix Sum with O(l log l) Complexity
	3.2 Proposed Protocol for Prefix Sum with O(l log∗l) Complexity
	3.3 Proposed Protocol for Prefix Sum with O(l log∗(c) l) Complexity

	4 Proposed MPC Protocol for Bit Addition
	4.1 Computation of Carry Bits
	4.2 Proposed Prefix Carry Protocol
	4.3 Comparison

	References

	Position-Based Cryptographyfrom Noisy Channels
	1 Introduction
	2 Our Contribution
	2.1 Position-Based Authentication
	2.2 Position-Based Key Agreement
	2.3 Comparison with the Previous Work
	2.4 Implementation Ideas

	3 Notation and Assumptions
	4 Security Definition
	5 Protocol
	6 Security without the Geometric Analysis
	6.1 Single-Bit Case
	6.2 Proof of Lemma 2

	7 Geometric Analysis
	7.1 Geometric Properties

	8 Conclusions
	References

	Lattice-Based Cryptography
	A Comparison of the Homomorphic EncryptionSchemes FV and YASHE
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Ring-LWE
	2.3 The Fully Homomorphic Encryption Scheme
	2.4 The Fully Homomorphic Encryption Scheme

	3 Parameter Derivation
	3.1 Revisiting van de Pol and Smart’s Approach
	3.2 Security Requirements for RLWE: The Distinguishing Attack
	3.3 Correctness and Noise Growth of
	3.4 Correctness and Noise Growth of

	4 Practical Implementations
	4.1 Homomorphic Evaluation of SIMON
	4.2 Some Thoughts about Homomorphic Evaluations

	5 Conclusion
	References

	Towards Lattice Based Aggregate Signatures
	1 Introduction
	1.1 Our Results and Contribution
	1.2 Organization

	2 Preliminaries
	3 Trapdoor Functions and the Full Domain Hash Scheme
	4 Sequential Aggregate Signatures from Lattices
	4.1 Our Basic Signature Scheme
	4.2 Informal Description
	4.3 Security Model of SAS
	4.4 Security of Our Construction

	5 Instantiation
	5.1 Comparison with RSA Based Sequential Aggregate Signatures
	5.2 Analysis
	5.3 Proxy Signatures

	References

	Public-Key Cryptography
	A Second Look at Fischlin’s Transformation
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Signature Schemes
	2.3 Fischlin’s Transformation

	3 Leakage Resilience of Fischlin’s Transformation
	4 Comparison
	4.1 Parameter Selection
	4.2 On Key Generation
	4.3 On Signature Generation
	4.4 On Verification
	4.5 On Leakage Resilience

	5 Discussion
	References

	Anonymous IBE from Quadratic Residuositywith Improved Performance
	1 Introduction
	1.1 Universal Anonymity
	1.2 Contributions
	1.3 Overview of Main Construction
	1.4 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Security Definition for Anonymous IBE (ANON-IND-ID-CPA)
	2.3 Quadratic Residues and Jacobi Symbols
	2.4 Quadratic Residuosity Problem
	2.5 Blum Integers
	2.6 Cocks Scheme

	3 Time-Efficient Universally Anonymous IBE
	3.1 Overview of Our Construction
	3.2 Formal Description
	3.3 Security
	3.4 Comparison with Ateniese and Gasti’s Construction
	3.5 Analysis of Ateniese and Gasti’s Construction (AG)

	4 Experimental Results
	References

	Expressive Attribute Based Signcryptionwith Constant-Size Ciphertext
	1 Introduction
	2 Preliminaries
	2.1 Bilinear Maps and Complexity Assumptions
	2.2 Attribute Based Signcryption (ABSC)
	2.3 Security Definitions for ABSC

	3 Our ABSC Construction
	4 SecurityProof
	5 Discussion
	6 Conclusion
	References

	Secret-Key Cryptography
	DRECON: DPA Resistant Encryptionby Construction
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Differential Power Attacks
	2.3 Countermeasures for DPA

	3 The DRECON Scheme
	3.1 Information Theoretic Analysis

	4 An Application of the DRECON Scheme
	4.1 Operation of DRECON-AES
	4.2 Tweak Generation Algorithm
	4.3 Choosing the S-boxes
	4.4 Software Implementation of DRECON-AES
	4.5 Hardware Implementation DRECON-AES
	4.6 Attack on the Hardware Implementation

	5 Conclusion
	References

	Counter-bDM: A Provably Secure Familyof Multi-Block-Length Compression Functions
	1 Introduction
	2 BasicNotions
	3 Counter-bDM
	4 Proof Preliminaries
	4.1 Proof Model
	4.2 Collision-Security
	4.3 Preimage Security

	5 Collision-Security Analysis of Counter-bDM
	6 Preimage-Security Analysis of Counter-bDM
	7 Conclusion and Outlook
	References

	Universal Hash-Function Families:From Hashing to Authentication
	1 Introduction
	2 Notations and Definitions
	2.1 Notations
	2.2 Definitions
	2.3 Preliminaries

	3 Two Universal Hash Families
	3.1 Description of the Universal Hash Families
	3.2 Message Collision Analysis

	4 Hashed-Image Attack
	4.1 UHF1
	4.2 UHF2

	5 Classification of Universal Hash-Function Families
	6 Analysis of the Two Classes of Universal Hash Families
	6.1 Independent Universal Hash Families
	6.2 Dependent Universal Hash Families

	7 Conclusion
	References

	Author Index

