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    Chapter 4   
 Red Blood Cells and the Vaso-Occlusive 
Process                     

       Nancy     J.     Wandersee      and     Cheryl     A.     Hillery    

    Abstract     While the defi nitive genetic defect in sickle cell disease (SCD) is sickle 
hemoglobin (HbS), the relationship between the HbS mutation and the pathogenesis 
of vaso-occlusion in SCD remains incompletely understood and likely involves 
multiple complex and heterogeneous steps. Since chronic transfusion can prevent 
stroke and reduce the frequency of acute vaso-occlusive events, it is clear that the 
sickle red blood cell (RBC) plays a critical role in this process. Numerous sickle 
RBC factors contribute to the vaso-occlusive process, including: HbS polymeriza-
tion; RBC cation loss and resultant cellular dehydration; oxidative injury of RBC 
membrane proteins and lipids; band 3 clustering; loss of phospholipid asymmetry 
and phosphatidylserine exposure; reduced RBC deformability; irreversibly sickled 
RBCs; increased adhesion of sickle RBCs to the endothelium and other circulating 
blood cells; intravascular hemolysis with the release of cell-free hemoglobin, argi-
nase, and adenosine deaminase; and RBC microvesiculation. These sickle RBC 
properties initiate and propagate endothelial injury, vascular stasis, and activation of 
the coagulation and infl ammatory pathways, precipitating acute vaso-occlusion.  
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4.1       The Sickle Red Blood Cell (RBC) 

 Sickle cell disease (SCD) is caused by a single amino acid substitution in the beta 
chain of hemoglobin (hemoglobin β Glu6Val) that predisposes deoxyhemoglobin S 
to polymerize and form long crystals that distort and damage the red cell membrane 
(Hillery and Panepinto  2004 ; Hebbel  1991 ; Bunn  1997 ). In addition, sickle hemo-
globin (HbS) is moderately unstable, with oxidized hemoglobin binding avidly to 
the lipid bilayer and contributing to multiple membrane defects. The link between 
HbS polymerization, its many effects on the sickle red blood cell (RBC), and the 
pathobiology of vaso-occlusion remains incompletely understood and likely 
involves many complex and heterogeneous steps. The evidence that chronic RBC 
transfusion effectively prevents most primary or recurrent stroke events (Adams 
et al.  1998 ; Russell et al.  1984 ) and reduces the incidence of pain and acute chest 
syndrome (Miller et al.  2001 ) indicates a critical role for the sickle RBC in the 
pathophysiology of vaso-occlusion. Sickle RBC characteristics that appear to con-
tribute to acute vaso-occlusion include the extent of HbS polymerization, oxidant 
injury of membrane proteins and lipids, cation loss resulting in cellular dehydration, 
reduced deformability with a propensity for vesiculation, cellular lysis and enhanced 
adhesive properties. These sickle RBC characteristics also contribute to chronic 
endothelial injury, vascular stasis and increased activation of the infl ammatory and 
coagulation pathways. This chapter will focus on the role of the sickle red blood cell 
(RBC) in the vaso-occlusive process.  

4.2     Hemoglobin S Polymerization 

 The substitution of valine for glutamic acid at the sixth position of the beta chain of 
sickle hemoglobin creates a hydrophobic pocket in the hemoglobin tetramer that 
polymerizes upon deoxygenation. This polymerization process is reversed with 
reoxygenation. The polymerization of deoxy-HbS involves a two-step, double- 
nucleation process, followed by a rapid increase in polymer/fi ber formation that 
results in RBC “sickling” (Eaton and Hofrichter  1987 ). There is a delay time 
between HbS deoxygenation and the onset of exponential polymerization, which is 
markedly infl uenced by the intracellular hemoglobin concentration (MCHC), tem-
perature, pH, and the presence of non-S hemoglobins, such as HbF or HbA. For 
example, the delay time of polymer formation is dependent on the 15th to 30th 
power of hemoglobin concentration (Eaton and Hofrichter  1987 ). Thus, the dehy-
dration found in subpopulations of sickle RBCs (described in Sect.  4.3 ) can greatly 
promote HbS polymerization. 

 The estimated delay time of greater than 15 s predicts that an unimpeded sickle 
RBC should return to the lung for reoxygenation before HbS is fully polymerized 
(Mozzarelli et al.  1987 ; Du et al.  2015 ). In agreement, the majority of sickle RBCs 
in the returning venous circulation are not polymerized. However, any event that 
delays the return of the sickle RBC to the pulmonary circulation will permit pro-
gression to full polymerization. RBC adhesion to the vascular endothelium, either 
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directly to endothelial cells or via bridging adhesive ligands or bound leukocytes 
will also promote HbS polymerization due to delay in return to the pulmonary cir-
culation for reoxygenation. Reduced sickle RBC deformability will also slow traf-
fi cking through the microcirculation and prolong the time in the hypoxic 
environment. Finally, any pre-existing polymer that does not completely solubilize 
in the lung circulation may have a markedly shortened or absent delay time such 
that polymerization can more rapidly proceed in the microcirculation following 
delivery of oxygen to tissue beds (Huang et al.  2003 ). 

 While the defi nitive genetic defect in SCD is HbS, the direct link between HbS 
polymerization and the pathobiology of vaso-occlusion is more complex. Since HbS 
will only polymerize after delivery of oxygen, uninterrupted blood return to the lungs 
for reoxygenation is essential to prevent RBC sickling. Risk factors that promote 
sickling include RBC dehydration, lung or vascular disease that prevents optimal 
oxygenation, any right shift in oxygen binding curve (acidosis and fever), low HbF 
levels and delayed microvascular transit time due to leukocyte and sickle RBC adhe-
sion to injured or infl amed endothelium. Because of this, clinical care for sickle cell 
disease is often targeted to limit HbS polymerization, such as with generous hydra-
tion, optimizing oxygenation and raising HbF levels with hydroxyurea therapy.  

4.3      Cation Loss and Dehydration 

 Since the polymerization rate of deoxyHbS is critically dependent on the intracel-
lular concentration of hemoglobin, sickle RBC dehydration will promote sickling 
and may contribute to the development of vaso-occlusion in SCD cell disease; this 
may be best exemplifi ed by the papillary necrosis that occurs in the hyperosmolar 
kidney medulla. Additionally, RBC dehydration status can directly affect the adhe-
sive phenotype, possibly by exposing or altering adhesive components of the mem-
brane (Stone et al.  1996 ; Hebbel et al.  1989 ; Wandersee et al.  2005 ). 

 A signifi cant proportion of sickle RBCs are inherently dehydrated, primarily due 
to intracellular K +  and water losses via the erythrocyte Ca 2+ -dependent K +  (Gardos) 
channel (Brugnara et al.  1986 ) and the K/Cl cotransport system (Franco et al.  1996 ). 
In sickle RBCs, the pathologic activation of the Gardos channel that results in water 
loss is aggravated by transient increases in Ca 2+  permeability induced in sickle 
RBCs with every deoxygenation-reoxygenation cycle (Lew et al.  1997 ). In SCD, 
RBC K-Cl cotransport is activated by low pH (Brugnara et al.  1986 ), low magne-
sium content, oxidative damage, positively charged hemoglobin (HbS, HbC) and 
cell swelling. Clotrimazole specifi cally inhibits the Gardos channel (Brugnara et al. 
 1993 ). Magnesium decreases the K +  and water losses via the K/Cl cotransport sys-
tem. Both dietary magnesium supplementation (De Franceschi et al.  1996 ) and oral 
clotrimazole therapy (De Franceschi et al.  1994 ) improved the hydration status and 
hemoglobin levels of a transgenic sickle cell mouse model. 

 Despite the likely important link between polymerization of HbS with cellular 
dehydration, and the potential contribution of RBC dehydration to RBC adhesive 
properties (Wandersee et al.  2005 ), clinical trials to date using agents to improve 
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sickle RBC hydration have shown minimal effects on clinically signifi cant vaso- 
occlusive events. A short term study of fi ve patients with SCD treated with oral 
clotrimazole also reduced RBC dehydration and resulted in a striking reduction of 
the number of dense red cells (Brugnara et al.  1996 ). While the Phase II study using 
the novel inhibitor of the Gardos channel, ICA-17043, showed improvement of ane-
mia and reduction in reticulocytosis in patients with SCD (Ataga et al.  2006 ), the 
subsequent Phase III study was prematurely terminated due to lack of clinical effi -
cacy in reducing acute painful events in patients with sickle cell syndromes (Ataga 
et al.  2011 ). In addition, while preliminary studies using Mg pidolate to block the 
K/CL cotransport system confi rmed the benefi cial effects on red cell dehydration 
(De Franceschi et al.  2000 ; Hankins et al.  2008 ), the Phase III trial was terminated 
due to a slow rate of enrollment.  

4.4     Oxidant Injury of the Sickle RBC Membrane 

 Hemoglobin S has a higher auto-oxidation rate compared to hemoglobin A; oxi-
dized hemoglobin has an affi nity for the lipid bilayer and can expel its heme group 
with subsequent liberation of free iron (Hebbel et al.  1988 ; Sheng et al.  1998 ). 
Membrane associated iron is catalytically active and likely contributes to the 
increased susceptibility of sickle RBC membranes to lipid peroxidation (Chiu et al. 
 1979 ). This also promotes further hemoglobin denaturation, including the forma-
tion of irreversibly oxidized hemichromes located near the membrane inner surface. 
As a consequence, the sickle RBC membrane is uniquely targeted for oxidant stress, 
effectively bypassing or depleting the RBC of natural antioxidants, such as vitamin 
E (α- and γ-tocopherol) glutathione or ascorbic acid (Darghouth et al.  2011 ). The 
increased oxidative damage to membrane proteins and lipids contributes to sickle 
RBC membrane abnormalities, including aberrant clustering of surface proteins, 
disruption of phospholipid asymmetry, dysregulated cation homeostasis, reduced 
deformability, formation of irreversibly sickled cells (ISC), increased fragility and 
release of microvesicles.  

4.5     Clusters of Band 3 

 Clustered Band 3 can also participate in sickle RBC adhesion and promote vaso- 
occlusion. Band 3 is an abundant RBC anion exchanger that spans the plasma mem-
brane multiple times and is linked to the RBC cytoskeleton. Band 3 is abnormally 
clustered on the sickle RBC surface due to binding of its cytosolic sections to dena-
tured HbS hemichromes found at the inner sickle membrane (Waugh et al.  1986 ). 
Denatured hemoglobin also colocalizes glycophorin and ankyrin on sickle RBC 
membranes, although to a lesser extent than band 3. Clustering of band 3 binds 
naturally occurring anti-band 3 autoantibodies (Kannan et al.  1988 ). Opsonized 
band 3 promotes sickle RBC phagocytosis by the reticuloendothelial system that 
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will shorten the sickle RBC lifespan. Band 3 mediates the adhesion of malaria- 
infected RBCs to the vascular endothelium via exposure of previously cryptic adhe-
sive sites (Crandall et al.  1993 ). Peptides from sites of clustered Band 3 that are 
aberrantly exposed on sickle RBCs will also inhibit sickle RBC adhesion to cultured 
endothelial cells in vitro (Thevenin et al.  1997 ).  

4.6     Increased Phosphatidylserine (PS) Exposure 

 The normal lipid bilayer maintains phosphatidylserine (PS) and phosphatidylethanol-
amine sequestered on the inner leafl et. In SCD, PS is abnormally exposed on the 
outer surface of the sickle RBC membrane (Choe et al.  1986 ). This impairment of the 
normal phospholipid asymmetry on the sickle RBC membrane may be due to thiol 
oxidation of the translocase that moves PS to the inner layer and increased calcium 
activation of the scramblase that permits PS to move outward (Zachowski et al.  1985 ). 

 When PS translocates to the cell surface under normal physiologic circumstances, 
such as during platelet activation, externalized PS serves as an anchor for factors in 
the hemostatic system, promoting the activation of the coagulation cascade (Zwaal 
and Schroit  1997 ). In agreement, there is a correlation between the level of sickle 
RBC PS exposure and the activity of the coagulation cascade in human and murine 
SCD (Setty et al.  2000 ,  2001 ). This suggests that this loss of sickle RBC membrane 
asymmetry, which results in increased PS exposure, contributes to the well described 
prothrombotic state found in individuals with SCD (Singer and Ataga  2008 ). Sickle 
membrane PS exposure also promotes RBC adhesion to endothelial cells (Setty 
et al.  2002 ; Schlegel et al.  1985 ; Manodori et al.  2000 ). In addition, PS exposure on 
sickle RBCs shortens RBC survival in sickle mice effectively increasing hemolytic 
rate (de Jong et al.  2001 ). Thus, increased PS exposure on sickle RBCs may partici-
pate in the vaso-occlusive process by increased adhesion to the microvasculature, 
activation of the coagulation cascade, and decreased RBC lifespan.  

4.7     Membrane Deformability and Irreversibly Sickled 
Cells (ISC)  

 There is reduced deformability of sickle RBCs even when oxygenated and when 
HbS is fully solubilized (Chien et al.  1970 ). Both cellular dehydration and irrevers-
ible membrane changes contribute to this effect. This includes abnormal associa-
tions and crosslinking of cytoskeletal proteins and membrane components that 
result from both repeated HbS polymerization and oxidative injury of the membrane 
lipids and proteins. 

 Irreversibly sickled RBCs (ISCs) are the predominant form of “sickled” RBCs 
seen on typical blood smears. ISCs are due to a permanent shape change as a product 
of damage to membrane and cytoskeletal proteins enabling the retention of the elon-
gated RBC shape regardless of hemoglobin polymerization status (Lux et al.  1976 ). 
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Consequently, even when the HbS is oxygenated and fully soluble, the ISC retains 
its abnormal elongated shape. ISCs tend to be very dense (MCHC greater than 44 g/
dL), externalize PS, have low HbF levels and very short survival (Bertles and Milner 
 1968 ). Clinically, ISCs are important in diagnosis of a sickling disorder from a blood 
smear, vary greatly in number between individual patients and contribute to the 
hemolytic rate from the shortened life span. While ISCs likely participate in RBC 
blockage associated with vaso-occlusion (Kaul et al.  1986 ), it is less clear whether 
the ISC count correlates with vaso-occlusive severity (Barabino et al.  1987b ).  

4.8     Adhesive Properties of Sickle RBCs 

 The increased adhesion of sickle RBCs to vascular endothelium in vitro has been 
described using both static adhesion assays (Hebbel et al.  1980b ; Mohandas and 
Evans  1984 ) and endothelialized fl ow chambers (Barabino et al.  1987a ). These 
observations have been confi rmed using live animal models by either infusing 
human sickle RBCs into rats (Fabry et al.  1989 ; Kaul et al.  1989 ; French et al.  1997 ) 
or by studying transgenic sickle cell mouse models (Kaul et al.  1995 ; Wood et al. 
 2004 ). In addition, leukocyte and platelet interactions with sickle RBC and vascular 
endothelium are important components of the vaso-occlusive process (Turhan et al. 
 2002 ; Dominical et al.  2015 ; Conran and Costa  2009 ). The enhanced interactions 
between sickle RBCs, leukocytes, platelets and the vessel wall play important roles 
in the pathogenesis of vascular occlusion in sickle cell disease. 

 The early fi ndings that sickle RBCs adhere to the endothelium to a variable 
degree and that the level of adhesion may correlate with disease severity (Hebbel 
et al.  1980a ) prompted further investigation into potential receptors and signaling 
pathways involved in the adhesive processes. Reticulocytes from both normal and 
sickle individuals express the adhesion molecules integrin α4β1 (Swerlick et al. 
 1993 ; Joneckis et al.  1993 ) and CD36 (GP IV) (Joneckis et al.  1993 ; Sugihara et al. 
 1992 ; Browne and Hebbel  1996 ). Immature reticulocytes have greater levels of 
adhesion to endothelial cells compared to mature RBCs, pointing to a potential 
unique role for reticulocyte adhesion under select experimental and physiologic 
conditions (Mohandas and Evans  1984 ; Brittain et al.  1993 ; Fabry et al.  1992 ; 
Joneckis et al.  1993 ; Sugihara et al.  1992 ). Potential RBC adhesion molecules that 
remain present on mature RBCs include basal cell adhesion molecule-1/Lutheran 
(BCAM/LU), intercellular adhesion molecule-4 (ICAM-4) (Zennadi et al.  2004 ), 
integrin associated protein (CD47), phosphatidylserine (PS) (Setty et al.  2002 ) and 
sulfated glycolipids (Hillery et al.  1996 ; Joneckis et al.  1996 ). 

 Integrin α4β1 is a receptor for both fi bronectin and vascular cell adhesion mole-
cule- 1 (VCAM-1) (Humphries et al.  1995 ). Sickle RBCs bind to VCAM-1 on 
cytokine- stimulated endothelial cells (Swerlick et al.  1993 ) or transfected COS cells 
(Gee and Platt  1995 ), as well as immobilized fi bronectin (Kasschau et al.  1996 ) via 
α4β1. The activation state of α4β1 is regulated by several factors, including divalent 
cation concentration and agonist-induced cell signaling (Han et al.  2003 ). The α4 
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cytoplasmic domain is directly phosphorylated in vitro by cAMP-dependent protein 
kinase A (PKA) (Goldfi nger et al.  2003 ), suggesting a role for PKA in activation of 
α4β1. In agreement, ligation of CD47 on sickle reticulocytes activates α4β1 via a 
PKA-dependent phosphorylation of the α4 cytoplasmic tail (Brittain et al.  2004 ). 
Sickle RBC α4β1 binding to endothelial VCAM-1 likely contributes to the adher-
ence of sickle reticulocytes to cytokine-stimulated retinal microvascular endothelial 
cells in vitro (Setty and Stuart  1996 ). 

 CD36 is a non-integrin adhesive receptor that binds thrombospondin (TSP) and 
collagen and is present on the surface of endothelial cells, platelets, and a 
reticulocyte- rich subpopulation of normal and sickle RBCs (Joneckis et al.  1993 ; 
Sugihara et al.  1992 ). Sickle RBCs bind to endothelial cells in the presence of solu-
ble TSP and this adhesion is blocked by anti-CD36 monoclonal antibodies in both 
static adhesion assays (Sugihara et al.  1992 ) and under fl ow conditions (Brittain 
et al.  1993 ). 

 The Lutheran blood group proteins, basal cell adhesion molecule-1 and Lutheran 
(BCAM/Lu) are derived by alternative splicing from the same gene and differ only 
in the length of their cytoplasmic tails. Sickle RBCs over express BCAM/Lu, which 
specifi cally binds to the alpha 5 subunit of the extracellular matrix protein laminin 
(Udani et al.  1998 ; Parsons et al.  2001 ). RBC intercellular adhesion molecule-4 
(ICAM-4), otherwise known as blood group Landsteiner-Weiner (LW), binds β3 
integrins, including αvβ3 expressed on vascular endothelial cells (Parsons et al. 
 1999 ). In a rat ex vivo microvascular fl ow model, ICAM-4-specifi c peptides inhib-
ited human sickle RBC adhesion to the activated ex vivo microvascular endothelium 
(Kaul et al.  2006 ). Interestingly, both BCAM/Lu and ICAM-1 can be activated by 
epinephrine in a subset of sickle RBCs via a cAMP-dependent pathway that likely 
involves PKA (Zennadi et al.  2004 ; Hines et al.  2003 ). 

 Integrin-associated protein (CD47) is a 50 kDa integral membrane protein found 
on RBCs and many other cells that associates with integrins and binds to the 
C-terminal cell binding domain of thrombospondin-1 (TSP) (Gao et al.  1996 ). 
CD47 is expressed in RBCs and protects normal RBCs from immune clearance 
(Oldenborg et al.  2000 ). CD47 on sickle RBCs binds immobilized TSP under both 
static and fl ow conditions (Brittain et al.  2001 ). Furthermore, soluble TSP binds 
CD47 and induces an increase in sickle RBC adhesion via shear stress-dependent 
and G protein-mediated signal transduction pathways (Brittain et al.  2001 ). 

 Lipids naturally present in the red cell membrane that have been abnormally 
exposed or modifi ed on the sickle RBC also contribute to their adhesive properties. 
For example, increased exposure of phosphatidylserine (PS) on the sickle RBC 
likely contributes to its proadhesive phenotype (Setty et al.  2002 ; Schlegel et al. 
 1985 ; Manodori et al.  2000 ). Sulfated glycolipids avidly bind TSP, von Willebrand 
factor, and laminin and may also play a role in sickle red cell adhesion (Hillery et al. 
 1996 ; Joneckis et al.  1996 ; Barabino et al.  1999 ; Zhou et al.  2011 ). 

 A disturbed endothelium contributes to sickle RBC, leukocyte and platelet adhe-
sion. Endothelial adhesive molecules that bind sickle RBCs include VCAM-1, inte-
grin αVβ3, E-selectin and P-selectin (Swerlick et al.  1993 ; Gee and Platt  1995 ; 
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Brittain et al.  1993 ; Natarajan et al.  1996 ; Matsui et al.  2001 ). For example, mono-
clonal antibodies directed against αVβ3 inhibited human sickle RBC adhesion to 
platelet-activating factor (PAF)-treated rat mesocecum vasculature ex vivo (Kaul 
et al.  2000b ). In agreement, αVβ3 antagonists also reduced sickle RBC adhesion to 
human endothelial cell monolayers under venular shear fl ow conditions (Finnegan 
et al.  2007 ). P-selectin is rapidly expressed on the surface of activated endothelial 
cells and promotes sickle RBC rolling and adhesion (Embury et al.  2004 ). Optimal 
surface expression of these endothelial adhesion molecules requires induction by 
cytokines, shear stress or other perturbations of the endothelium. In fact, exposure 
of endothelium to infl ammatory agonists is associated with increased RBC adhesion 
(Wick and Eckman  1996 ; Manodori  2001 ). 

 Adhesive plasma and extracellular matrix proteins may also contribute to sickle 
RBC adhesion. Thrombospondin (TSP) is a 450 kDa, homotrimeric glycoprotein 
present in the subendothelial matrix, plasma and platelet alpha storage granules; it 
can be released in high local concentrations by activated platelets (Santoro and 
Frazier  1987 ). In SCD, both soluble and immobilized TSP can bind sickle RBCs. In 
its soluble form, TSP may serve as a linker molecule between sickle RBCs and 
endothelial cells (Brittain et al.  1993 ; Gupta et al.  1999 ). TSP also interacts with 
sickle RBC CD47 (Brittain et al.  2001 ), sulfated glycolipids (Barabino et al.  1999 ), 
and a normally cryptic domain of the dominant membrane protein, band 3, which is 
subject to rearrangement in hematologic disorders (Thevenin et al.  1997 ; Sherman 
et al.  1992 ). Laminin, a major constituent of the extracellular matrix, is composed 
of a family of large heterotrimeric glycoproteins that support cell adhesion and 
migration (Tryggvason  1993 ). Sickle RBCs avidly bind both immobilized and sol-
uble laminin (Udani et al.  1998 ; Hillery et al.  1996 ). Vitronectin, fi brinogen, and 
von Willebrand factor also support sickle RBC adherence (Wick and Eckman  1996 ). 

 Sickle RBCs also bind leukocytes and platelets (Sakamoto et al.  2013 ; Frenette 
 2004 ). In fact, the leukocyte-endothelial cell adhesive event may initiate and pre-
cede sickle RBC adhesion in the microvascular bed (Turhan et al.  2002 ; Dominical 
et al.  2015 ; Conran and Costa  2009 ). The sickle RBC likely utilizes multiple adhe-
sive pathways, potentially fi rst binding to the endothelium and inducing localized 
pathologic changes, followed by a second adhesive event with the sickle RBC bind-
ing to leukocytes, platelets, or the newly exposed endothelial or subendothelial 
adhesive ligands.  

4.9     Increased Fragility and Microvesiculation 

 Sickle RBCs have increased fragility with a propensity for vesiculation and cellular 
lysis. The shortened lifespan of sickle RBCs includes both extravascular mecha-
nisms of removal, primarily through the reticuloendothelial system, and intravascu-
lar hemolysis. Intravascular RBC lysis releases intracellular components and 
generates RBC microvesicles and likely contributes most directly to the vaso- 
occlusive process. 
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4.9.1     Intravascular Hemolysis 

 Intravascular hemolysis contributes to the vascular pathologies associated with 
SCD. RBC lysis releases Hb into the plasma compartment; consequently plasma 
levels of cell-free Hb (CF-Hb) from individuals with SCD are elevated. CF-Hb is 
present mainly in the ferrous oxygenated form (oxyHb) with a smaller contribution 
of the ferric form (metHb) (Reiter et al.  2002 ). Normal individuals have plasma 
CF-Hb levels of less than 1 μM, whereas individuals with SCD have variable levels 
up to ~20 μM (Reiter et al.  2002 ). CF-Hb is an effi cient scavenger of nitric oxide 
(NO), a critical regulator of vascular homeostasis (Datta et al.  2004 ; Gladwin et al. 
 2004 ; Jison and Gladwin  2003 ; Liao  2002 ; Pawloski  2003 ; Jeffers et al.  2006 ; Kim- 
Shapiro et al.  2006 ; Lancaster Jr  1994 ). OxyHb reacts with NO with a rate constant 
in excess of 10 7  M −1 s −1  to form metHb and inert nitrate. In individuals with SCD, 
oxidation of CF-Hb by NO inhalation therapy improves forearm blood fl ow in 
response to nitrovasodilators, suggesting that CF-Hb has an acute effect on the bio-
availability of NO (Reiter et al.  2002 ). However, chronic vascular dysfunction in 
isolated vessels has been observed in animal models of SCD and other intravascular 
hemolytic models (Kaul et al.  2000a ; Frei et al.  2008 ; Ou et al.  2003 ). The role 
played by CF-Hb in chronic vascular dysfunction is less clear, but it is conceivable 
that long-term loss of NO bioavailability, due to the presence of CF-Hb, could lead 
to signifi cant changes in endothelial function, including a switch to alternate mech-
anisms of vascular control (Godecke and Schrader  2000 ; Zatz and Baylis  1998 ). 
The chronic presence of CF-Hb is also associated with other pathological presenta-
tions of SCD, including hemoglobinuria, increased blood pressure and vasocon-
striction, decreased inhibition of platelet activation, a prothrombotic tendency, and 
increased expression of endothelial cell adhesion molecules such as ICAM-1, 
VCAM-1 and E-selectin (Rother et al.  2005 ; Villagra et al.  2007 ; Silva et al.  2009 ). 

 Other cytoplasmic components of lysed RBCs also accumulate in the plasma 
during chronic intravascular hemolysis, and may be important contributors to over-
all vascular dysfunction. RBC arginase has been specifi cally highlighted as arginase 
will deplete the substrate for nitric oxide formation with a negative impact on vaso-
reactivity. In this regard it is worth highlighting that there is signifi cant evidence that 
RBC arginase, in humans, may contribute to loss of NO function through its ability 
to deplete arginine, the substrate for nitric oxide synthase (Rother et al.  2005 ; 
Gladwin  2006 ; Morris et al.  2008 ). 

 In addition, hemolysis releases adenosine deaminase (ADA) from the RBC into 
plasma, reducing extracellular adenosine stores via the conversion of adenosine to 
inosine (Tofovic et al.  2009 ). Since adenosine is involved in protective responses 
against vasculopathy, the reduction of adenosine by ADA released from RBCs may 
exacerbate vascular pathology initiated by cell-free hemoglobin and heme (Tofovic 
et al.  2009 ).  
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4.9.2     Microvesiculation 

 Patients with SCD have elevated RBC, platelet, monocyte, and endothelial microves-
icles that increase further during crisis (Shet et al.  2003 ). RBC sickling, induced by 
hypoxia and subsequent reoxygenation, causes the loss of 2–3 % of sickled RBC 
lipids in the form of microvesicles (Allan et al.  1982 ). RBC-derived microvesicles 
house hemoglobin, which scavenges NO with comparable kinetics to soluble hemo-
globin (Donadee et al.  2011 ). Circulating RBC fragments and microparticles may 
directly injure the endothelium and promote coagulation and infl ammation (Setty 
et al.  2001 ). Interestingly, when children with SCD were treated with hydroxyurea 
therapy, which should improve sickling and provide a new source of nitric oxide, 
there were reduced levels of RBC and platelet-derived microvesicles compared to 
untreated counterparts (Nebor et al.  2013 ). 

 Incubation of sickle RBC microvesicles with cultured endothelial cells induced 
reactive oxygen species (ROS) formation to a much greater extent than control RBC 
microvesicles (Camus et al.  2012 ). The ROS formation was also inhibited by pre- 
treating the microvesicles with annexin V to “cover” microvesicle anionic phospho-
lipids. When RBC microvesicles were injected into a mouse model of sickle cell 
disease, acute “vaso-occlusion” of the kidneys was observed, suggesting a potential 
role for microvesicles in the evolution of vaso-occlusion (Camus et al.  2012 ,  2015 ). 

 In summary, the sickle RBC is a critical participant in the vaso-occlusive pro-
cess, which is the major clinical manifestation of sickle cell disease. HbS directly 
injures the sickle RBC through polymerization of deoxyHbS that distorts and per-
turbs the red blood cell membrane and through oxidized HbS that binds to the lipid 
bilayer, causing further membrane damage. This results in a wide array of sickle 
RBC abnormalities, including cellular dehydration, clustering of band, increased PS 
exposure, reduced RBC deformability, increased hemolysis with release of intracel-
lular contents and microvesicles, and increased adhesion to the vascular  endothelium 
and non-erythroid blood cells. These aberrant sickle RBC properties initiate and 
propagate endothelial injury, vascular stasis, and activation of the coagulation and 
infl ammatory pathways, ultimately precipitating acute vascular occlusion.      
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