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  Pref ace   

 Although sickle cell anemia was the fi rst molecular disease to be identifi ed, its 
 complex and fascinating pathophysiology is still not fully understood. A single 
mutation in the beta-globin gene incurs numerous molecular and cellular mecha-
nisms that contribute to the plethora of manifestations and complications associated 
with the disease. Knowledge regarding sickle cell disease mechanisms, while still 
not complete, has broadened considerably over the last decades. 

  Sickle Cell Anemia: From Basic Science to Clinical Practice  aims to provide an 
update on some aspects of our current understanding of the disease’s pathophysiol-
ogy and use this information as a basis to discuss its manifestations in childhood 
and adulthood, as well as therapeutic approaches to the disease. An introductory 
chapter (Chap.   1    ) describes the structure and function of hemoglobin, giving us a 
clue as to why a single gene mutation can wreak such havoc in the red blood cell. 
Chapter   2     describes the current theories regarding the emergence of the sickle muta-
tion and the subsequent epidemiology of sickle cell anemia. Chapter   3     presents an 
overview of sickle cell disease pathophysiology, describing how the polymerization 
of the abnormal sickle hemoglobin injures the red cell, causing its membrane injury 
and ultimate failure, and producing a population of heterogeneous red blood cells, 
hemolysis, and reduced nitric oxide bioavailability. In a process that is driven by 
vascular infl ammation and oxidative stress, interactions of the sickle red cells and 
leukocytes with the endothelium prolong the transit of the red cells through hypoxic 
vascular beds, resulting in red cell sickling and ultimately in the vaso-occlusive 
processes that are the hallmark of the disease. Some of these aspects are described 
in greater detail in Chaps.   4     (red cells),   5     (leukocytes), and   8     (infl ammation), while 
Chap.   6     relates the evidence for a hypercoagulable state in sickle cell anemia and its 
role in disease pathophysiology and Chap.   7     looks at the endothelium and how the 
anemia that results from red cell destruction affects the cardiovascular system. 

 Recurrent vaso-occlusive processes, together with hemolytic anemia, result in 
end-organ damage and the diversity of complications of this disease, which can 
include stroke, pulmonary hypertension, osteonecrosis, leg ulcer, nephropathy, reti-
nopathy, and priapism among numerous others. The complications of childhood 
sickle cell anemia, and their treatment, are considered in Chaps.   9     and   10    , while 
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priapism and the manifestations and current treatment and therapy of adult sickle 
cell anemia are presented in Chaps.   11     and   12    , respectively. Some of the other more 
common sickle cell diseases (caused by the inheritance of the HbS gene along with 
another abnormal Hb variant) are explored in Chap.   13    , while Chap.   14     looks at the 
management of sickle cell disease in Africa, the region with the highest burden of 
sickle cell disease, and in the Arabian Peninsula, which displays a great variety in 
terms of sickle cell disease genotype and phenotype; the challenges faced by clini-
cians in these regions are discussed. The clinical severity of sickle cell disease is 
extremely heterogeneous, and co-inheritance of numerous other genetic factors can 
signifi cantly alter the course of the disease, for better or for worse; some of these 
genetic modifi ers are discussed in Chap.   15    . Finally, prospects for the development 
of new approaches for the management of the disease, many of which have been 
developed based on our progressive understanding of the pathophysiology of the 
disease, are explored in Chap.   16    , in addition to discussion regarding the expansion 
of the use of hematopoietic stem cell transplantation as a curative option for sickle 
cell anemia and perspectives for the development of gene therapy/gene editing 
approaches for the disease.  

  Campinas, São Paulo, Brazil     Fernando     Ferreira     Costa      
    Nicola     Conran     
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Chapter 1
Hemoglobin: Structure, Synthesis and Oxygen 
Transport

Susan E. Jorge, Daniela M. Ribeiro, Magnun N.N. Santos, 
and Maria de Fátima Sonati

Abstract Human hemoglobin (Hb) is the erythrocyte hemeprotein resulting from 
the combination of one pair of α-like (α or ζ) chains and another pair of β-like (β, δ, 
γ or ε) chains. Each of these chains is associated with a heme prosthetic group, a 
tetrapyrrole ring (protoporphyrin IX) containing a central ferrous atom (Fe2+), 
which can reversibly bind to a molecule of O2, being, therefore, responsible for its 
transport from the lungs to the tissues. This introductory chapter summarizes these 
important aspects, including findings of protein structure, synthesis and function, as 
well as its gene organization and regulation. We also describe the developmental 
switches in globin chain production (from the embryonic period until hematological 
adult life), heme synthesis and globin gene expression/regulation, besides func-
tional aspects of the hemoglobin molecule. The chapter also includes models that 
predict the mechanisms of Hb-O2 ligation, mediated by the presence of allosteric 
effectors, such as H+/CO2, Cl− and organic phosphates, such as 2,3- biphosphoglycerate 
(2,3-BPG, from erythrocyte metabolism).

Keywords  Hemeproteins • Human hemoglobin • Globin chains • Globin genes • 
Oxygen transport

1.1  Human Hemoglobins

Hemoglobins (Hb) are hemeproteins that transport oxygen (O2). These proteins, or 
the genes expressing them, seem to be present in all living organisms. Like other 
vertebrate organisms, human hemoglobins are found in high concentrations in 
erythrocytes (around 640 million molecules/cell), and are their main component 
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(Shikama 2006). Despite hemoglobin diversity, the molecular structures of hemo-
globins are very similar, showing a high degree of conservation during evolution. 
Hemoglobins are globular tetramers (molecular weight, 64,450 Daltons), comprised 
of two pairs of polypeptide chains (globins); one pair of α-like (α or ζ) chains and 
another pair of β-like (β, δ, γ or ε) chains. Each chain is associated with a heme 
prosthetic group, a tetrapyrrole ring (protoporphyrin IX) containing a central fer-
rous atom (Fe2+), which can reversibly bind to a molecule of O2 to transport oxygen 
from lungs to tissues (Fig. 1.1) (Antonini and Brunori 1971; Hoffbrand and Moss 
2011).

The α and ζ globin chains have 141 residues, while the β, γ, δ and ε globins have 
146 residues. Different combinations of these chains result in the formation of dif-
ferent types of hemoglobins, adapted for distinct periods of human development. 
During the embryonic period, hemoglobin synthesis starts at  the end of  the  third 
week of pregnancy in primitive erythroblasts derived from the hematopoietic stem 
cells in the vitelline sac, with the production of the embryonic hemoglobins Gower 
1 (ζ2ε2), Hb Gower 2 (α2ε2), Hb Portland I (ζ2γ2) and Portland II (ζ2β2). After the 
tenth week of pregnancy, hemopoiesis occurs in the liver and spleen (visceral phase) 
and the embryonic hemoglobins are replaced with fetal Hb, or Hb F (α2γ2), which is 
predominant during the entire fetal period. During adult life the main site of eryth-
ropoiesis is the bone marrow and Hb F is replaced by hemoglobins A (α2β2) and A2 
(α2δ2). Hb A predominates, comprising more than 95 % of the total hemoglobin, 

Fig. 1.1  Human Hb A, represented by two α-chains (in ice blue), two β-chains (in red) and four 
heme groups (in orange). Obtained from Protein Data Bank 1ZGX coordinates, using Visual 
Molecular Dynamics (VMD) software

S.E. Jorge et al.
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while Hb A2 corresponds to 2–3 % and Hb F to a maximum of 2 % of total hemoglobin. 
The ‘adult’ hemoglobin profile is generally established by the sixth post- birth month 
(Steinberg et al. 2001; Hoffbrand and Moss 2011) (Fig. 1.2) (Table 1.1).

1.1.1  Heme Synthesis

As previously mentioned,  the  tetrapyrrole  ring  (protoporphyrin  IX)  containing  a 
bivalent iron atom (heme) constitutes the hemoglobin core, where the reversible 
binding of O2 occurs. During the process of heme synthesis, the beginning and the 
end of the protoporphyrin production and the incorporation of iron take place in the 
mitochondria, which are arranged around the nuclei of erythroid precursors. The 
intermediate steps of protoporphyrin synthesis occur outside these organelles, in the 
soluble portion of the cytoplasm. Initially, the process involves condensation of 
succinyl-coenzyme A, formed in  the mitochondria after  the Krebs cycle (aerobic 
respiration), with amino acid glycine, to produce δ-Aminolevulinic acid (δ-ALA), 
a reaction stimulated by erythropoietin and catalyzed by ALA-synthetase, employ-
ing vitamin B6 as a coenzyme. Consequently, two molecules of δ-ALA produce 
porphobilinogen, a pyrrole, where four molecules of porphobilinogen, arranged in 
a ring structure (tetrapyrrole ring), yield uroporphyrinogen, which, after successive 
decarboxylation of side-chains, originates coproporphyrinogen, followed by 

Fig. 1.2  Normal developmental  switches  in globin chain production. Adapted  from Hoffbrand 
and Moss (2011)

Table 1.1  Normal hemoglobin profile in healthy adults

Hb A Hb F Hb A2

Globin chains α2β2 α2γ2 α2δ2

Normal (%) 95–98 up to 2.0 2.0–3.0

1 Hemoglobin: Structure, Synthesis and Oxygen Transport
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protoporphyrin (protoporphyrin IX). In the final phase, protoporphyrin binds to an 
atom of iron in the ferrous state to produce heme. All these reactions are mediated 
by enzymes, including alanine synthetase, alanine dehydratase, porphobilinogen 
deaminase, uroporphyrinogen synthetase, uroporphyrinogen decarboxylase, copro-
porphyrinogen oxidase, ferrochelatase and heme synthetase (Fig. 1.3). In the human 
organism, biosynthesis of heme occurs predominantly in erythroid cells, where it is 
incorporated into recently synthesized hemoglobin, although heme can also be pro-
duced in hepatic cells, where it is used as part of cytochrome p-450 (Puy et al. 2010; 
Hoffbrand and Moss 2011).

Each gram of hemoglobin contains 3.4 mg iron which, before being incorporated 
into the molecule, is stored in macrophages located in the liver, spleen and bone 
marrow, and in cells of the liver parenchyma. Iron is transported in plasma by the 
transferrin protein and delivered to transferrin receptors present on the surface of 
the red blood cell membrane, before its incorporation into hemoglobin. Iron can be 
stored for prompt use in ferritin, a water-soluble protein, comprised of 22 subunits 
(apoferritin), arranged as a shell around a central storage cavity, where variable 
amounts of iron are found as ferric hydroxyphosphate microcrystals. Iron moves 
freely inside and outside this cavity, through channels in the protein shell and, there-
fore, is readily available for metabolic use. Iron can also be stored in the form of 
hemosiderin, an insoluble iron-protein complex, comprised of aggregates of par-
tially denatured ferritin molecules. Iron release from hemosiderin is slower than 
from ferritin. In both ferritin and hemosiderin, iron is in the ferric state and, to be 
mobilized, it must be reduced to the ferrous state in a reaction that involves vitamin 
C (Puy et al. 2010; Hoffbrand and Moss 2011).

Fig. 1.3 Heme biosynthetic pathway. ALA 5-aminolaevulinic acid, PBG porphobilinogen, ALAS1 
ALA  synthase  1,  ALAS2  ALA  synthase  2,  ALAD  ALA  dehydratase,  PBGD porphobilinogen 
deaminase, UROIIIS uroporphyrinogen-III synthase, UROD uroporphyrinogen decarboxylase, 
CPO coproporphyrinogen oxidase, PPOX protoporphyrinogen oxidase, FECH ferrochelatase. 
Adapted from Puy et al. (2010)

S.E. Jorge et al.
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1.1.2  Globin Synthesis

Globin synthesis occurs in the polyribosomes, in the cytoplasm of erythroblasts 
and  reticulocytes, where  specific messenger RNAs  (mRNAs)  are  translated  into 
different globin chains. The globin mRNA is relatively stable and, therefore, retic-
ulocytes are able to synthesize hemoglobin for at least 2 days after loss of the 
nucleus. A balanced globin synthesis is critical to the development and function of 
erythroid cells; every α chain should have a non-α chain, so that neither is in excess 
or deficient. Although the quantity of mRNA encoding α globins in normal reticu-
locytes  exceed  the  quantity  of mRNA encoding β globins, the efficiency of the 
translation of β globin mRNA seems to be higher to compensate and maintain the 
important balance between both chains (Stamatoyannopoulos et al. 2001; 
Weatherall et al. 2001). Moreover, during the synthesis process, free alpha globin 
chains are stabilized by the alpha-hemoglobin stabilizing protein (ASHP), an ery-
throid molecular chaperone that binds to α-hemoglobin (α-Hb) or α-globin until its 
association  with  beta  globin  to  form  the  Hb  tetramer  (Khandros  et  al.  2012; 
Domingues-Hamdi et al. 2014).

The polypeptide chains (primary structure), released by ribosomes, assume their 
tridimensional configuration spontaneously due to the interactions of their residues 
(Fig. 1.4). The protein folding of the alpha helix structure of hemoglobin (second-
ary structure) involves a very stable ligation to the heme group, in the globin chain 
core, favored by the creation of a hydrophobic environment that protects the heme 
group from oxidation (tertiary structure) (Figs. 1.4 and 1.5). Subsequently, a tetra-
mer of globin chains is created by the association of the tertiary conformations 
(quaternary structure) (Figs. 1.4 and 1.5). Each chain is constituted by seven or 
eight α-helical segments (named A through H, from the amino-terminal) followed 
by non-helical segments (Fig. 1.5a). The flexibility of the chain permits oxygen to 
access the heme pocket (Antonini and Brunori 1971; Mairbäurl and Weber 2012) 
(Fig .1.5b).

1.1.3  Globin Chain Genes

Globin genes are arranged in groups, or gene clusters, that organize the balanced 
production of globins during the different pre- and post-birth stages. Cluster α, 
located in a 30-kb DNA segment on the short arm of chromosome 16 (16p13.3), 
contains embryonic gene ζ, pseudogenes ψζ and ψα1, double α globin genes (α2 and 
α1) and genes θ and αD, of undetermined functions. The arrangement in the chromo-
some is the same as that expressed during human development, i.e., 5′ - ζ - ψζ - αD - 
ψα1 - α2 - α1 - θ - 3′ (Weatherall et al. 2001; Harteveld and Higgs 2010) (Fig. 1.6). 
Cluster β,  located  in  an approximately 50-kb DNA segment on  the  short  arm of 
chromosome 11 (11p15.5), includes genes ε, Gγ, Aγ, δ, β and pseudogene ψβ, in the 
following order: 5′ - ε - Gγ - Aγ - ψβ - δ - β - 3′ (Fig. 1.7).

1 Hemoglobin: Structure, Synthesis and Oxygen Transport
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Fig. 1.4  Hemoglobin formation. A fragment of the alpha globin chain (residues from the position 
72 to 89, in red), was used to represent primary, secondary and tertiary conformation. Structure 
obtained from Protein Data Bank 1GZX coordinates, using Visual Molecular Dynamics (VMD) 
software

Pseudogenes (ψ) are not functional genes, i.e. they are unable to encode proteins, 
although it has been demonstrated that they may have an important role in the regu-
lation of transcription and translation in human cells. The globin pseudogenes have 
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developed from protogenes α and β through replicating events and have been dis-
abled by mutations (substitution of bases, deletions and/or insertions) that have 
determined their loss of expression. Genes θ and αD do not have a specific function; 
they are expressed at very low levels in vivo and their protein products have not 
been identified (Johnsson et al. 2013).

Fig. 1.5 Hemoglobin structure. (a) Tetramer of Hb A with heme featured and globin chains high-
lighted; coil and α-helical regions are indicated. Structure obtained from Protein Data Bank 1GZX 
coordinates, using Visual Molecular Dynamics (VMD) software. (b) Structure of the Oxy-alpha 
chain in globin (purple); C- and N-terminals are indicated. Heme in cyan blue, distal and proximal 
histidines in orange, oxygen in red and other residues from the heme pocket (active site) in purple. 
Structure obtained from Protein Data Bank 1GZX coordinates, using Visual Molecular Dynamics 
(VMD) software

1 Hemoglobin: Structure, Synthesis and Oxygen Transport
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Globin genes are compact, measuring 1–2 kb in length, and they have three exons 
and two introns. Amino acids involved in binding to the heme group (heme pocket), 
essential for the ability of hemoglobin to bind O2 and total stability of the molecule, 
and involved in α1β2 contacts, are mainly coded by exon 2, while those that interme-
diate α1β1 contacts (increasing molecule stability and involving numerous amino 
acids in the chain interaction) are mostly coded by exon 3; the residues related to the 
binding affinity of hemoglobin for O2 (Bohr effect and binding to 2,3- BPG) are 
randomly distributed among exons (Steinberg et al. 2001;  Hoffbrand  and Moss 
2011). Genes γ and α are duplicated in chromosomes 11 and 16, respectively. Gene 
γ encodes different polypeptide chains (Gγ and Aγ), which contain alanine or glycine, 
respectively, at position 136 of the chain. Genes α2 and α1 encode identical proteins 
and are very similar, presenting only 17 % structural divergence, limited to intron 2 
(IVS-II) and exon 3, in the 3′ non-coding region (Weatherall et al. 2001; Higgs et al. 
2012; Richard et al. 2012). Although it produces identical α chains, the expression 
level of gene α2 is around 2.5 times greater than the expression level of gene α1, as 
evaluated by the proportion of synthesized messenger RNA (mRNA) and experiments 
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TEL
HS48 40

5' 3'

33 10

Cluster

ζ ψζ ψα1 α2

α

α1 θαD

-40 -30 -20 -10 0 10 20 30 40 50

Fig. 1.6 Structure of the α cluster on chromosome 16. The telomere is shown as an oval, the 
orange boxes represent functional genes, while blue boxes are pseudogenes and the red boxes 
represent genes of undetermined function. Arrows represent the α-globin regulatory region. The 
scale is in kilobases as indicated above, counting from the ζ-globin gene. Adapted from Harteveld 
and Higgs (2010)
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Fig. 1.7 Structure of the β cluster on chromosome 11. The orange boxes represent the functional 
genes and the blue box depicts a pseudogene. The arrows represent the β-globin regulatory region. 
Distances are  in kilobases, counting from the ε-globin gene, as  indicated above. Adapted  from 
Patrinos et al. (2004)
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with mutants (Liebhaber and Kan 1982). Another particularity of the α genes is that 
they are inserted, as every group, in a GC-rich DNA segment, characteristic of genes 
expressed in all tissues (housekeeping genes); however, although it has been dem-
onstrated that endothelial cells can also produce alpha- hemoglobin, the expression 
of these genes is highly erythroid specific (Straub et al. 2012).
A balanced globin synthesis is critical for the development and function of ery-

throid cells. As mentioned above, the quantity of mRNA encoding α globin in nor-
mal reticulocytes exceeds the quantity of mRNA encoding β globin, but the efficiency 
of the translation of this second mRNA seems to be higher to compensate and main-
tain  the  balance  between  both  chains. Although  a  balanced  expression  of  globin 
chains occurs during development, no feedback mechanism has been identified 
through which the expression of a globin may affect the expression of another glo-
bin; both seem to function coordinately, but with independent regulation (Liebhaber 
and Kan 1982; Weatherall et al. 2001; Higgs et al. 2012; Richard et al. 2012).

1.1.4  Regulation of Globin Gene Expression

Globin gene expression in both clusters is controlled according to the human devel-
opmental stage and in a tissue-specific manner. This complex control is dependent 
on cis-acting regulatory sequences (such as promoters and 3′ non-coding regions) 
that are close to and far from the globin genes (enhancers and negative regulatory 
elements), and the interaction of trans-acting factors with proteins, i.e. transcription 
factors. The interaction of transcription factors and regulatory elements close to the 
globin genes is similar to the regulatory mechanisms used by other human genes; 
however, the remote cis-acting control involves some particularities (Weatherall 
et al. 2001).

The expression of genes in the β cluster is controlled by regulatory sequences 
located upstream of the ε gene, which are five erythroid-specific DNase I hypersen-
sitive sites (HS 1-5) (Fig. 1.7). The DNA segment that contains these sites is called 
the β Locus Control Region (β-LCR). The β-LCR, besides acting as an enhancer 
that activates the expression of β genes, has the additional function of changing the 
chromatin structure where these genes are inserted, allowing their transcription 
(Patrinos et al. 2004).

The β cluster is located in an AT-rich genome region of highly condensed chro-
matin. A few cell types have active genes in these regions. In non-erythroid cells, 
the chromatin domain  in which  this group is  located  is not sensitive  to DNase I, 
demonstrating delayed replication (in the second half of the S phase of the cell 
cycle) and transcriptional inaction. In contrast, in erythroid cells, this domain is 
sensitive to DNase I, replicates at the beginning of the S phase and is transcription-
ally active. Tissue-specific changes in chromatin structure are attributed to the 
β-LCR, which interacts via a  loop with promoters of  the active genes, creating a 
single chromatic structure, known as the active chromatin hub (ACH), causing chro-
matin decondensation and promoting the interaction of regulatory proteins with 
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DNA and the activation of the expression of genes from the respective group. This 
erythroid-specific chromatic structure is also regulated according to different stages 
of human development as, during each developmental stage, only one gene interacts 
with the β-LCR to yield a single ACH (Patrinos et al. 2004) (Fig. 1.8).
Due to the common ancestry of the α and β clusters (they diverged around 500 

million years ago) and their similar arrangements, it was assumed for some time that 
the expression of these genes was controlled similarly. However, in vitro and in vivo 
studies employing transgenic mice suggest that these clusters are controlled in dif-
ferent manners. The regulation of the expression of the α cluster in humans is depen-
dent upon a regulatory element located 40 kb upstream of the ζ gene, close to the 
telomere, denominated HS-40, which is an erythroid-specific DNase I  hypersensitive 
site (Fig. 1.6). Its existence was perceived at first, due to deletions in this region that 
resulted in an α-thalassemia phenotype, although the α genes in these individuals 
presented a normal structure (Weatherall et al. 2001; Higgs et al. 2012).

HS-40 (today referred to as α-Major Regulatory Element, or α-MRE) does not 
change the chromatic structure in which the α cluster is inserted; its function is 
to act as an enhancer, activating the expression of genes in this cluster, located in 
a GC-rich genome region, of decondensed chromatin in both erythroid and 

Fig. 1.8  Representation of the interactions between the β-Locus Control Region (LCR and the β 
cluster genes in erythroid cells. The Active Chromatin Hub (ACH), indicated as a lilac sphere, is 
formed by LCR and Hypersensitive Sites (HSs). The genes are depicted in different colors, indica-
tive of their interaction with the β-LCR within the ACH during development. The embryonic ε- 
and fetal γ-globin genes are expressed during primitive hematopoiesis and the switch to the fetal 
γ- and adult δ- and β-globin genes occurs during early definitive hematopoiesis. Adapted from 
Patrinos et al. (2004)
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non- erythroid cells. Thus, the main question is to understand how HS-40 controls 
the expression of the α genes without  interfering  in adjacent gene expression.  In 
fact, a permanent chromatin structure is created and maintained (Vernimmen et al. 
2009). In murine erythroid cells, the recruitment of promoters of active genes from 
the α cluster and the regulatory element for this ACH results in the gene expression 
of globins. Furthermore, the exclusion of α globin genes and their regulatory ele-
ment from this chromatin structure in non-erythroid cells disables gene expression 
(Zhou et al. 2006) (Fig. 1.9).

1.2  Oxygen Transport

Hb A results from the combination of two α and two β chains. These segments con-
sist, respectively, of seven and eight α-helical structures, named from A to H, which 
are intermediated by non-helical sequences (AB, BC, and so on). The terminal por-
tions of each globin, NA and HC, are short non-helical extensions from helix A to 
the C-terminal. Thus, all residues are numbered according to the coordinates pre-
sented in the structure, from the N-terminal and/or according to its position on the 
segment  (Antonini  and  Brunori  1971;  Mairbäurl  and Weber  2012) (helix, coil, 
etc.—Fig. 1.5a).

Fig. 1.9 The linear structure of the mouse α cluster (a) and putative chromatin structure in murine 
definitive erythroid cells (b) and murine nonerythroid cells (c). In panel a, the blue stars indicate 
hypersensitive sites (HSs) and the purple boxes indicate genes. In panels b and c, the blue and gray 
stars show the positions of HSs, the purple spheres represent protein complexes on gene promot-
ers, the gray and black strings represent chromatin and the red arrows indicate transcription direc-
tion. Adapted from Zhou et al. (2006)

1 Hemoglobin: Structure, Synthesis and Oxygen Transport
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The heme group  is  located under  the E, F and G helixes and CD contacts. 
The stability of the binding of O2 to heme is, therefore, affected by a number of resi-
due interactions located at these contact regions. Of these, the most important are 
formed by proximal histidines [α87 (F8) or β92 (F8)], which bind directly to the 
iron of protoporphyrin IX, and distal histidines [α58 (E7) or β63 (E7)], which then 
interact with iron-bound O2 (Antonini and Brunori 1971; Shikama 2006; Mairbäurl 
and Weber 2012) (Fig. 1.5b). During oxygen binding, the iron atom moves 0.55–
0.63 Ǻ, which results in conformational changes on the residues surrounding the 
active heme pocket site. This event also causes significant changes in the remaining 
globin chains, in both the tertiary and quaternary structures (Antonini and Brunori 
1971; Mairbäurl and Weber 2012). These structural alterations confer two stable 
states to the hemoglobin molecule; the tense form (T or “deoxy-Hb”, with a lower 
affinity for O2) and the relaxed form (R or “oxy-Hb”, with increased affinity for O2), 
as described by Perutz, in 1970, using crystallography (Perutz 1970) (Fig. 1.10).

The protein stability of the tetramer is controlled by the interface contacts α1β1 
and α2β2, also called packing contacts, where the α- and β- chains are connected by 
34 residues located in the C, G and H helices and the BC corner. The α1β2/α2β1 
 interdimer interface is less extensive and contains 19 residues in total. This charac-
teristic ensures the stability of the T-R transition during oxygen binding. Besides 
being shorter, the α1β2/α2β1 interface is located close to the heme group, promoting 
conformational changes in the active heme site. Simultaneously, structural changes 
in the heme pocket also mediate allosteric interactions in the α1β2 area. Therefore, 
any substitution of residues at the α1β2/α2β1 interface may result in reduced heme-
heme cooperativity and changes in the affinity of hemoglobin for O2, demonstrating 
the extreme importance that α1β1 and α2β2 dimer interactions have in balancing T-R 
conformational changes when binding to O2  (Antonini  and Brunori  1971; Eaton 
et al. 2007).

Fig. 1.10 Proximal (blue) and distal histidines (purple) in the heme pocket, in the T (deoxy) and 
R (oxy) hemoglobin states. Oxygen (red) is bound to Fe2+ (brown) in the R conformation of hemo-
globin—figure produced from Protein Data Bank  1GZX  and  2DN1  coordinates,  using Visual 
Molecular Dynamics (VMD) software. The chain movements are represented in the right panel
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1.2.1  Functional Aspects of Hemoglobin

The main function of hemoglobin is to transport O2 from the lungs to peripheral 
tissues, and to take carbon dioxide from tissues back to the lungs. Usually, 95 % of 
O2 molecules transported from the lungs to tissues are maintained in chemical com-
bination with hemoglobin in the red blood cells, while the remaining 5 % are trans-
ported dissolved in plasma and cell water (Hoffbrand and Moss 2011).

The mechanism of the Hb-O2 ligation is mediated by homotropic (heme-heme 
cooperativity) and heterotropic events, such as differences in O2 pressures. Under 
high pressures of O2 (PO2), as in pulmonary capillaries, O2 binds to hemoglobin; 
when PO2 is decreased, as in tissue capillaries, O2 is released from the hemoglobin, 
in an event that is modulated by allosteric effectors, such as H+/CO2, Cl− and organic 
phosphates, such as 2,3-biphosphoglycerate (2,3-BPG). O2 binding can be mathe-
matically represented by the oxygen-dissociation curve (ODC), which is obtained 
from the PO2 versus saturated heme site under standard conditions of temperature, 
pH, atmospheric pressure, PCO2 and concentration of organic phosphates, such as 
2,3-BPG. Due to heme-heme cooperativity, the ODC results in a sigmoidal shape, 
and any change in the concentrations of gases, ions or 2,3-BPG concentration, 
among other factors, may affect the affinity of hemoglobin for O2  (Antonini and 
Brunori 1971; Shikama 2006; Mairbäurl and Weber 2012) (Fig. 1.11).

The affinity of hemoglobin for O2 is expressed by the P50: the partial pressure of 
O2 required for 50 % hemoglobin saturation (Fig. 1.11). The standard P50 value for 

Fig. 1.11  Oxygen dissociation  curves  (ODCs)  for  stripped Hb  in buffered  solution  (HbS), and 
human RBCs in whole blood (HbWB). Adapted from Mairbäurl and Weber (2012)

1 Hemoglobin: Structure, Synthesis and Oxygen Transport
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Hb A is 26.6 mmHg; thus, higher P50 values signify a decreased affinity for O2, and 
vice versa. Several genetic and environmental factors may affect O2 affinity and the 
great variation observed in hemoglobin P50 values occurs, partially, due to structural 
differences among the hemoglobins and, partially, due to differences in the intracel-
lular environment. Native human hemoglobin affinity may vary by as much as 100- 
fold, as a result of changes in pH and/or PCO2 (Bohr effect), salt ion concentrations 
(such as Cl−) and, in particular, due to the concentration of organic phosphates (e.g. 
2,3-BPG), which can shift the dissociation curve to the right (favoring the T confor-
mation  and  a  decreased  oxygen  affinity)  (Antonini  and  Brunori  1971; Shikama 
2006; Mairbäurl and Weber 2012) (Fig. 1.11).
During the last two decades, a number of different quaternary states of hemoglo-

bin, such as R2, RR2, RR3, Thigh, have been reported. These states represent different 
conformations  and  comprise  from  canonical  T-(deoxy)  to R-(ligated)  quaternary 
structures, depending on the experimental conditions, although the T and R states 
are the most stable. It is assumed that hemoglobin exists in allosteric equilibrium 
between two functional states, the T (lower-affinity) and R (higher-affinity) states, 
and that successive O2-binding shifts the allosteric equilibrium towards the higher- 
affinity  R  states,  therefore,  explaining  the  sigmoidal  Hb-O2 binding curve (Fig. 
1.11). The allosterism of the T-R transition is modulated by homotropic and hetero-
tropic mechanisms, which comprehend the heme-heme cooperativity and the allo-
steric modifications promoted by non-specific ligands that interfere in the affinity 
for O2 at the active heme site, respectively (Bruno et al. 2001; Eaton et al. 2007; 
Yonetani and Laberge 2008).

1.2.2  Homotropic Interactions: Heme-Heme Cooperativity

Heme-heme cooperativity can numerically be represented by the Hill coefficient 
(‘n’) as a global event, or calculated by the Adair equation, which considers four 
O2-binding hemes, with,  therefore,  four  equilibrium constants  (K1 < K2 < K3 < K4). 
Several models predict the T-R transition due to heme-heme cooperativity and het-
erotropic interactions (Antonini and Brunori 1971; Eaton et al. 2007).

 Allosteric Regulation: Symmetry Model—MWC

The  first  T-R  transition model was  proposed  by Monod, Wyman  and Changeux 
(MWC, symmetry model) in 1965. The model describes two stable states for hemo-
globin:  the T  and R  states, which  are  independent  of  the  presence of O2, where 
hemoglobin has a higher affinity for O2 in its R state, and a lower affinity for O2 in 
the T conformation. This model predicts  the T-R  transition as a global allosteric 
event, not based on chain-by-chain conformational changes; as such, in this model, 
hemoglobin has only two constants of O2 ligation-dissociation Khigh or KR for the R 
state and Klow or KT for the T state. The Hb-O2 ligation occurs, therefore, as the 
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result of the balanced presence of hemoglobin in its more reactive R form (with 
a higher affinity for O2) and less reactive T form (with a lower affinity for O2) 
(Fig. 1.12a). This model, however, does not take into consideration environmental 
factors and conditions, such as buffers, pH, and the types and the nature of hetero-
tropic effectors (Monod et al. 1965).
Based on  the MWC model, Brunoni  and  coworkers proposed  the  ‘Cooperon’ 

model, which considers the cooperative free energy in the microstates from R to T 
(Brunori et al. 1986) (Fig. 1.12b).

 Allosteric Regulation: Sequential Model—The Adair and KNF Model

The  second  model  of  allosteric  regulation,  denominated  the  sequential  or  KNF 
model, was proposed by Koshland, Nemethy and Filmer in 1966, and is based on 
calculations established by Adair in 1925. The model predicts a T-R dynamic transi-
tion, considering conformational changes that occur chain by chain, and assuming 
the existence of 4 O2-ligation/dissociation constants (K1, K2, K3, K4). This model, 
therefore, proposes a “globin centric” mechanism of regulation of the T-R equilib-
rium (Koshland et al. 1966) (Fig. 1.12c).

 Stereochemical Model of Perutz, SK, SKL and TTS

Based on  the MWC and KNF models of allosteric  regulation, other T-R mecha-
nisms have been proposed  to explain  intermediary states  in  the T-R equilibrium. 
Perutz, in 1970, for example, proposed the stereochemical model, which integrated 
the previous MWC and KNF models. This model considers the structural changes 
in the globin subunits during the T-R transition, as well as the T and R stable protein 
conformations (Perutz 1970) (Fig. 1.12d).
Szabo and Karplus (SK), in 1972, developed a mathematical model for hemoglo-

bin  based  on  Perutz’s  stereochemical mechanism.  The  SK model  represents  the 
statistical thermodynamical formulation of the Perutz mechanism (Szabo and 
Karplus 1972). This model was revised by Karplus and Lee (SKL), who developed 
the concept of the ‘allosteric core’ upon oxygen binding, particularly proposing the 
steric repulsion between the proximal histidine and the pyrrole nitrogens of the 
porphyrin ring, associated with the motion of the iron into the heme plane (Lee and 
Karplus 1983) (Fig. 1.12e).

The ‘Tertiary Two-State’ (TTS) allosteric model was predicted by Henry et al. 
(2002), and was also based on Perutz model, as well as on experiments performed 
by Herzfeld and Stanley (1974) and Mozzarelli et al. (1997). The model is essen-
tially similar to the MWC model, but differs in that an equilibrium of tertiary con-
formations is proposed, involving high and low affinity conformations of individual 
subunits, called r and t, which exist in equilibrium within each quaternary structure. 
The quaternary structures influence the affinity of hemoglobin by biasing the t-r con-
formation equilibrium, where the T conformation favors t and the R conformation 
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Fig. 1.12 Predictions of allosterism for Human Hemoglobin. Empty symbols correspond to unli-
gated subunits and filled subunits correspond to ligated subunits. (a) The MWC (Monod, Wyman 
and Changeux) model of allosteric regulation. Adapted from Eaton et al. (2007); (b) Cooperon 
binding model. Adapted from Eaton et al. (2007); (c) The KNF (Koshland, Némethy and Filmer) 
allosteric binding model. Adapted from Yonetani and Laberge (2008); (d) Perutz model of hemo-
globin  cooperativity. Adapted  from Eaton  et  al.  (2007); (e) SK  (Szabo  and Karplus)  and SKL 
(Szabo, Karplus and Lee) simplified binding systems. Adapted from Eaton et al. (2007)
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favors r. Ligand binding to both R and to T favors r (Herzfeld and Stanley 1974; 
Mozzarelli et al. 1997; Henry et al. 2002; Eaton et al. 2007) (Fig. 1.13).

1.2.3  Heterotropic Interactions: Allosteric Effectors

The affinity of hemoglobin for O2 is also modulated by heterotropic interactions 
(outside the heme pocket); examples of these effectors are H+, Cl− and CO2, which 
shift  the  T-R  balance  of  hemoglobin  to  the  T  state  (with  lower  affinity  for O2). 
Physiological organic phosphates, such as 2,3-Bisphosphoglycerate (2,3-BPG), 
ATP  and ADP,  also  act  at  heterotropic  sites,  shifting  the  equilibrium  towards  to 
T. Other allosteric effectors, such as inositol hexaphosphate (IHP), and other 
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hydrophobic compounds, including bezafibrate (BZF) and L35, which lead to 
reduced states of KT and KR, have been used for the study of the T-R equilibrium 
(Baldwin and Chothia 1979; Yonetani and Kanaori 2013) (Fig. 1.14).

 2,3-Bisphosphoglycerate (2,3-BPG)

The presence of organic phosphates reduces the affinity of hemoglobin for O2. The 
principal organic phosphate allosteric effector is 2,3-BPG. Physiologically, 2,3- 
BPG binds to hemoglobin at a heterotropic site, located at the β1β2 interface, in the 
central axis of the symmetry plane of the protein, which lies in the central cavity of 
the protein. At low O2 tension in peripheral tissues, hemoglobin tends towards the 
T form, exposing the positively-charged portions of the side chains of histidine 2 
and 143, lysine 82 residues and the amino-terminal groups of Val1 of the β chains. 
As such, the negatively-charged 2,3-BPG stabilizes the spatial conformation of the 
protein in its T form, allowing the release of O2  (Antonini  and  Brunori  1971; 
Baldwin and Chothia 1979; Mairbäurl  and Weber  2012;  Yonetani  and  Kanaori 
2013) (Fig. 1.15).

 The Bohr Effect

In the deoxyhemoglobin form, H+ ions establish salt bridges between individual 
globin chains, consequently the β chains separate and allow the entry of CO2 and 
2,3-BPG, which binds to the N-terminal group and amino groups of lysines at posi-
tions 143 and 82 of  the same β chains, hindering the interaction of hemoglobin 
with O2. In the oxyhemoglobin form, a sudden change in the tertiary structure of 
the molecule occurs, with the rupture of salt bridges and repositioning of the β 
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chains, leading to the removal of CO2 and 2,3-BPG. Thus, although the H+ ion 
concentration (pH) and partial pressure of CO2 (PCO2) have an important influence 
on the affinity of hemoglobin for O2, its major physiological mediator is 2,3-BPG, 
an intermediary molecule of glucose metabolism, which is the most abundant 
phosphate in red blood cells, and present in very low concentrations in tissues 
(Antonini and Brunori 1971; Mairbäurl and Weber 2012; Yonetani and Kanaori 
2013; Brunori 2014).

The ability of H+ ions to change hemoglobin’s affinity for O2 is known as the 
Bohr effect; this mechanism can be subdivided into alkaline and acid effects. 
According to the basic Bohr effect, the presence of H+ ions reduces the affinity of 
hemoglobin for O2, while the absence of H+ ions, and therefore a more alkaline 
pH, leads to increased affinity for O2 (Antonini and Brunori 1971; Shikama 2006) 
(Fig. 1.14).

 Chloride Anions – Cl−

Chloride anions reduce the affinity of hemoglobin for O2 by stabilizing the protein 
structure in the T form (deoxyhemoglobin). This stabilization occurs as the result of 
the interaction of the chloride anions with positively-charged residues (such as 
Arginine 141 in the α chain) in the central cavity of hemoglobin, which are exposed 
when the protein is in the T state (Perutz et al. 1994).

Fig. 1.15 The 2,3-biphosphoglycerate (2,3-BPG) binding pocket—from Protein Data Bank 1B86 
coordinates, using Visual Molecular Dynamics (VMD) software. 2,3-BPG (purple) in the β1 (red)/
β2 (orange) interface. Some of the important residues involved in this allosteric pocket are repre-
sented in red (Hisβ2, Valβ1 and Lysβ82,  from  the  β1 chain) and orange (Hisβ2, Lysβ82  and 
Hisβ143, from the β2 chain)
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 Transport of CO2

Hemoglobin also transports carbon dioxide (CO2) from the peripheral tissues to the 
lungs via two mechanisms:

•  The Bohr effect: When oxyhemoglobin loses O2 and binds to H+ ions present in 
the medium, this causes a change in the balanced ionization of carbon dioxide, 
increasing the transport of CO2, in the form of bicarbonate ions.

•  The production of carbaminohemoglobin, derived from the reaction of CO2 with 
groups of non-proton coupled amino acids (α− or ε−) in the hemoglobin. The 
constants of CO2 binding to oxyhemoglobin and deoxyhemoglobin are distinct 
for this mechanism.

The transport of CO2 via hemoglobin is not exclusively performed by either of the 
mechanisms above, but probably by both of them, in a higher or lower proportion. In 
addition, hemoglobin performs only 5 % of CO2 transport from the tissues to the 
lungs (Antonini and Brunori 1971; Shikama 2006; Mairbäurl and Weber 2012).

 Effect of Temperature

Hb-O2 binding is exothermal. As such, the affinity of hemoglobin for O2 is reduced 
as temperature increases. An increase of 10 °C reduces the affinity of hemoglobin 
for O2  by 1.5–2.5-fold, depending on  the  experimental  conditions  (Antonini  and 
Brunori 1971).

1.3  Hemoglobin Variants

Differences in the structure of hemoglobin can determine its ability to transport O2. 
Hb F is not able to bind 2,3-BPG with the same affinity as Hb A. This results in a 
displacement of the oxygen-dissociation curve to the left, with decreased P50. The 
reduced affinity for 2,3-BPG confers high stability of the Hb F-O2 complex and bet-
ter  access  to  oxygen  from maternal  umbilical  cord blood  (Antonini  and Brunori 
1971).
Differences in Hb function can also be observed in some rare hemoglobin vari-

ants, due to the substitution of residues at important sites, such as in the heme pocket 
and at the α1β2/α2β1 dimer interface. For example, Hb Coimbra [HBB:c.300 T > A or 
300 T > G p.99Asp > Glu] has increased O2 affinity and confers polycythemia to its 
carriers (Tamagnini et al. 1991),  while  the  double  mutant  HbS-São  Paulo 
[HBB:c.20A > T p.Glu6Val; c.196A > G p.Lys65Glu] has decreased O2 affinity and 
stable polymers, resulting in moderate anemia in its carriers (Jorge et al. 2012).
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1.3.1  Methemoglobin

Methemoglobin is the non-functional molecule of hemoglobin, where the ferrous 
iron (Fe2+) in the active heme pocket is inappropriately oxidized to ferric Fe3+. The 
clinical condition, methemoglobinemia, results from the formation of oxidized 
hemoglobin (methemoglobin, Fe3+), which is unable to bind oxygen. Among differ-
ent reasons, this methemoglobinemia may be genetically caused by hemoglobins 
with structural anomalies (Hb M-), in which the residue substitutions affect princi-
pally the heme pocket, leading to iron oxidation, deficiency of the methemoglobin 
reductase enzyme, or due to the reactivity of some drugs, such as the highly oxidant 
effects conferred by sulfa drugs, which may lead to toxic methemoglobinemia. 
Cyanosis is, therefore, the main clinical sign of this condition (Percy et al. 2005; 
Hoffbrand and Moss 2011).
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    Chapter 2   
 Sickle Cell Anemia: History and Epidemiology                     

       Frédéric     B.     Piel      and     Thomas     N.     Williams    

    Abstract     This chapter summarizes how a simple point mutation in the human 
genome has evolved to become a global public health problem, as well as a remark-
able example of evolutionary biology, population genetics and clinical epidemiol-
ogy. Through malaria selection and interactions with other genes, the sickle mutation 
of the  HBB  gene reached high population frequencies throughout much of sub- 
Saharan Africa and in parts of the Mediterranean, the Middle East and India before 
spreading globally through subsequent population migration. Sickle cell anemia is 
a severe disease that is still associated with a high mortality in low- and middle- 
income countries, where simple public health interventions could help signifi cantly 
in reducing its long-term health burden, and with high health-care costs in high- 
income countries, where life expectancy and quality of life remain suboptimal. 
Alongside huge progress in the understanding of the natural history and epidemiol-
ogy of sickle cell anemia during the last century, signifi cant gaps, discussed in this 
chapter, still remain, highlighting the need for further research to better prevent the 
adverse consequences of this disease.  
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2.1       Natural History 

2.1.1     Introduction 

 It is still unclear when the sickle mutation appeared in the human genome, but it is 
well established that sickle cell anemia has had a profound impact on human popu-
lations for centuries. In various African populations, such as the Igbo of Nigeria, the 
term “ogbanjes” has long been used to describe babies born with weak, disease- 
ridden bodies, who are chronically ill and die early in life and recent social studies 
have found a strong association between the use of this term and the diagnosis of 
sickle cell anemia (Nzewi  2001 ). In 1910, James Herrick and his intern Ernest 
Lyons described peculiar elongated red blood cells in a 20-year old patient present-
ing with severe anemia (Herrick  1910 ). The follow up of this patient of West Indian 
origins allowed the identifi cation of some of the clinical complications (including 
“muscular rheumatism” and “bilious attacks”) that are now recognized as common 
complications of sickle cell anemia, as well as the early mortality associated with it. 
The term “sickle cell anemia” was fi rst used in a case report by Vernon Mason in 
1922 (Mason  1922 ) since when the disease has been at the center of numerous dis-
coveries in Medicine and Genetics. Sickle cell anemia has indeed become a text-
book example of balanced polymorphism and was the fi rst genetic condition to be 
characterized at the molecular level.  

2.1.2       The Malaria Hypothesis 

 Early studies of patients with sickle cell anemia rapidly suggested an association 
with African descent, although patients with the disease were also observed in parts 
of the Mediterranean, the Middle East and India. In the middle of the twentieth 
century, both Anthony C. Allison and John B.S. Haldane hypothesized that the 
g eographical correspondence between the distribution of disorders affecting hemo-
globin—sickle cell anemia and the thalassemias respectively—might refl ect a selec-
tive advantage conferred by such disorders in protecting against  Plasmodium 
falciparum  malaria in heterozygous individuals (Allison  1954b ; Haldane  1949 ). 
Allison proposed that improved survival among carriers of the mutation (HbAS) in 
the face of  P. falciparum  exposure might confer an evolutionary advantage that 
could compensate for the early death of individuals affected by sickle cell anemia 
(HbSS). This hypothesis, now commonly referred to as the “malaria hypothesis”, 
has since been confi rmed by a range of clinical studies showing a remarkably high 
level of protection (>90 %) against severe and lethal malaria (Taylor et al.  2012 ). 
Although a wide range of other polymorphisms, including HbC, HbE, glucose-
6-phosphate dehydrogenase (G6PD) defi ciency and α-thalassemia and β-thalassemia, 
have also been shown to protect against malaria (Kwiatkowski  2005 ), a multicenter 
study based on nearly 12,000 cases of severe malaria and more than 17,000 con-
trols, has recently confi rmed the unique level of protection that is afforded by the 
HbS mutation (Rockett et al.  2014 ). Some of the proposed mechanisms for this 
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protection, which remain to be fully elucidated, are discussed below (see Sect. 
 2.1.3 ). In 2010, the geographical relationship between the frequency of the sickle 
cell allele and the level of transmission intensity of malaria was formally investi-
gated and confi rmed a strong relationship in Africa (Fig.  2.1 ) (Piel et al.  2010 ). The 
weak relationship found in India would benefi t from further investigations, for 
example, on the role of social structure and  P. vivax  malaria.

2.1.3          Mechanisms of Malaria Protection 

 The full details of the cellular mechanisms by which HbAS protects against malaria 
are still unclear. Various hypotheses have been formulated, with more or less evi-
dence supporting each of them, and it now seems increasingly likely that, rather 

  Fig. 2.1    ( Top ) Map of HbS allele frequency generated by a Bayesian model-based geostatistical 
framework; ( Bottom ) Historical map of malaria endemicity digitized from Lysenko and Semashko 
( 1968 ). The classes are defi ned by parasite rates (PR 2–10 , the proportion of 2- up to 10-year olds 
with the parasite in their peripheral blood): malaria free, PR 2–10  ≈ 0; epidemic, PR 2–10  ≈ 0; hypoen-
demic, PR 2–10  < 0.10; mesoendemic, PR 2–10  ≥ 0.10 and <0.50; hyperendemic, PR 2–10  ≥ 0.50 and 
<0.75; holoendemic, PR 0–1  ≥ 0.75 (this class was measured in 0- up to 1-year olds). Adapted from 
Piel et al. ( 2010 )       
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than being explained by a single mechanism, a combination of mechanisms might 
well be at play (Lopez et al.  2010 ; Gong et al.  2013 ; Bunn  2013 ). Most proposals 
have so far involved innate immunity, i.e. the ability of host cells to resist infection 
by the parasite, irrespective of previous exposure. Although earlier studies sug-
gested that HbAS might protect against parasitemia, more recent studies have 
shown that, rather than an absence of parasitemia, asymptomatic parasitemia was 
more common in HbAS children than in HbAA. The main mechanisms identifi ed 
in vitro so far are: 

  Enhanced Removal (or “Suicide”) of Parasitized Red Blood Cells     Parasitized 
red blood cells have an increased (up to eight times) chance of sickling in HbAS 
than in HbAA individuals, which may enhance phagocytosis of infected red 
blood cells and, therefore, result in reduced parasitemia (Luzzatto et al.  1970 ; 
Roth et al.  1978 ; Ayi et al.  2004 ). This process might particularly affect red blood 
cells containing small parasite forms compared to larger trophozoite and schiz-
ont forms.  

  Impaired Growth of  P. falciparum  Parasites Under Low Oxygen Tension     The 
rates of invasion and growth of  P. falciparum  parasites in  individuals with the sick-
ling disorders are markedly reduced under hypoxemic conditions (Pasvol et al. 
 1978 ). This reduction occurs even in the absence of morphologic sickling of the red 
blood cells. Impaired growth could be due to polymer-induced red blood cell dehy-
dration (Griffi ths et al.  2001 ) or to enhanced oxidant damage (Friedman  1979 ).  

  Decreased Rosette Formation     Uninfected red blood cells can bind to  P. 
falciparum-  infected red blood cells, a process called rosette formation, which con-
tributes to microcirculatory obstruction in cerebral malaria. Studies have found that 
modifi cations of the mechanical properties of red blood cells containing HbS under 
deoxygenated conditions result in a decreased ability to form rosettes. This mecha-
nism would therefore be particularly protective against cerebral malaria (Carlson 
et al.  1994 ).  

  Reduced Cytoadherence     Infected red blood cells express specifi c molecules on 
their surface. One such molecule,  P. falciparum  erythrocyte membrane protein 1 
( Pf EMP-1), has been extensively studied (Cholera et al.  2008 ). This protein allows 
 P. falciparum -infected red blood cells to adhere to the microvasculature endothe-
lium, a process known as sequestration, and therefore to avoid clearance from the 
circulation by the spleen (Fairhurst et al.  2012 ). Sequestration can lead to endothe-
lial activation and associated infl ammation in the brain and other organs, and there-
fore contribute to the progression to severe malaria.  Pf EMP-1 has been found to be 
reduced in HbAS red blood cells in comparison to HbAA red blood cells, and to be 
associated with reduced binding properties (Cholera et al.  2008 ; Opi et al.  2014 ). 
Reduced cytoadherence of HbAS and HbSS erythrocytes is likely to lead to 
increased splenic clearance, and may in part explain lower parasite densities and a 
lower incidence of severe malaria in HbAS individuals.  
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  Accelerated Immunity     Finally, Williams and colleagues recently hypothesized 
that an acquired immune response might also be part of the protective mechanisms. 
They found epidemiologic evidence of an increase in protection against malaria 
with age in HbAS Kenyan children. The protective effect of HbAS was increased by 
more than twofold between the ages of 2 and 10 years (Williams et al.  2005a ).   

2.1.4      Historical Distribution of the Sickle Mutation 

 Anthony C. Allison and Frank B. Livingstone were among the fi rst to study the 
detailed distribution of the sickle mutation between the 1950s and the 1980s. 
Allison’s work focused on sub-Saharan Africa for which he reported detailed sur-
veys of tribes from Tanganyika (Tanzania), The Gambia, Sierra Leone, Nigeria and 
the Gold Coast (Ghana) (Allison  1956 ). He also reviewed and discussed the fre-
quency of HbAS in different age groups based on published studies. This allowed 
him to estimate for the fi rst time the fi tness of each of the three genotypes 
(HbAA = 0.9511, HbAS = 1.1974, HbSS = 0.2029), estimates that supported the 
“malaria hypothesis” (see Sect.  2.1.2 ). Livingstone assembled the fi rst global data-
base of frequency data on hemoglobinopathies, G6PD defi ciency and the Duffy 
blood group, compiling approximately 8000 frequencies from more than 2000 bib-
liographical references in the latest version of his work published in the mid-1980s 
(Livingstone  1985 ). He believed that his compilation would be useful in solving 
some of challenges in explaining the distributions of red blood cell disorders and in 
relating human genetic variation to human demographic, cultural, and epidemio-
logical history. This unique resource was instrumental in the work later conducted 
by both Modell & Darlison and by Piel et al., in estimating the numbers of individu-
als born with HbS at national, regional and global scales (see Sect.  2.2.3 ) (Modell 
and Darlison  2008 ; Piel et al.  2013c ). 

  Africa     Through malaria selection, the sickle allele frequency reached 10 % in 
large parts of sub-Saharan Africa. A maximum allele frequency of about 18 % has 
been observed in pregnant women in Kaduna (Sadek  1974 ) and Abeokuta (Idowu 
et al.  2005 ), northern Angola (Fig.  2.1 ). Allele frequencies ranged between 1.5 and 
12.1 % in southern Senegal, Guinea-Bissau, Guinea and Sierra Leone (Mauran- 
Sendrail et al.  1975 ; Trincao et al.  1950 ; Spivak et al.  1992 ). Frequencies were 
somewhat lower in Liberia, Burkina Faso and Côte d’Ivoire (Sansarricq et al.  1959 ; 
Bienzle et al.  1983 ; Devoucoux et al.  1991 ), where HbC frequencies are the highest 
(Livingstone  1976 ; Piel et al.  2013b ), but increased again in Southern Ghana, Benin 
and Togo (Kreuels et al.  2008 ; Acquaye and Oldham  1973 ; Biondi et al.  1980 ; 
Bienzle et al.  1972 ). In Nigeria, frequencies of >10 % were seen in the southwest 
and northern central parts of the country (Sadek  1974 ; Odunvbun et al.  2008 ). 
Although limited surveys are available for the Democratic Republic of the Congo, 
data suggest that frequencies decrease from East (where they reach around 16 % 
near Kinshasa), to West (van den Berghe and Janssen  1950 ; Vandepitte and Motulsky 
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 1956 ; Tshilolo et al.  2008 ). In Eastern Africa, the allele frequency for HbS is highest 
in historically malarious areas around Lake Victoria and along the coast (Foy et al. 
 1954 ; Allison  1954a ; Enevold et al.  2007 ). In Madagascar, the overall frequency is 
approximately 1.5 % in the highland populations and 7.5 % in the lowland popula-
tions (Saugrain  1957 ; Hewitt et al.  1996 ). Frequencies of up to 2 % have been 
observed in North African populations including in Tunisia and Egypt (Selim et al. 
 1974 ; Fattoum  2006 ). HbS was historically absent from the Horn of Africa and from 
areas south of the Zambezi (Fig.  2.1 ).  

  The Mediterranean     The sickle mutation is also present in parts of Greece, par-
ticularly in Khalkidhiki, and in southern Turkey, Lebanon and Israel (Aksoy  1961 ; 
Barnicot et al.  1963 ; Deliyannis and Tavlarakis  1955 ; Yuregir et al.  2001 ; 
Rachmilewitz et al.  1985 ).  

  The Middle East     Frequencies up to 10 % are found in pockets within both the eastern 
and western coastal populations of Saudi Arabia, although frequencies are much lower 
in the rest of the country (Lehmann et al.  1963 ; Elhazmi and Warsy  1993 ; Elhazmi and 
Warsy  1987 ). Few data are available regarding the sickle prevalence in autochthonous 
populations from Iran and Pakistan (Farzana et al.  1975 ; Rahgozar et al.  2000 ).  

  India     The sickle mutation has historically been confi ned to isolated tribal popula-
tions in which the sickle cell trait frequency ranges between 5 and 34 % (Shukla and 
Solanki  1958 ; Balgir  2006 ; Rao  1988 ; ICMR  2002 ; Colah et al.  2014 ). The muta-
tion is thought to have been introduced into Southern India through migration of 
Dravidians from Nubia (Winters  2008 ).  

 HbS is not found in populations living further East than India (i.e. Southeast Asia 
and Australasia), or in indigenous populations in the Americas (Fig.  2.1 ).  

2.1.5     Origin and Genetic Diversity 

 Anthropologists have long been interested in the origin of the HbS mutation. Two 
main hypotheses have been formulated since the 1980s. The fi rst suggested that HbS 
arose just once in an isolated population and increased in frequency on a single hap-
lotype. Through migration, the mutation was then exposed to populations with dif-
ferent haplotypic backgrounds and subsequently spread onto new haplotypes by 
gene conversion (Livingstone  1989a ; Flint et al.  1993 ). The second hypothesis pos-
tulates that the current distribution of HbS has arisen from multiple independent 
mutations (Wainscoat  1987 ). The incredible developments of molecular biology in 
the late 1970s and 1980s, including the use of restriction fragment length polymor-
phism (RFLP) technology, favored the latter hypothesis (Kan and Dozy  1978 ). This 
method allowed for the defi nition of a range of haplotypes through the identifi cation 
of different polymorphic sites in multiple African populations. Based on analysis of 
the β-globin gene cluster, Pagnier et al. suggested that three independent mutations 
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had arisen in Senegal, the Central African Republic (CAR) and Benin (Pagnier et al. 
 1984 ), noting a remarkable homogeneity of the haplotypic background found in each 
of these populations. Subsequently, a survey of individuals from the eastern oases of 
Saudi Arabia and from the coast of India identifi ed another haplotype, not found in 
African populations, consistent with a further independent occurrence, which was 
named the Arab-India haplotype (Kulozik et al.  1986 ). To date, it remains unclear 
whether the widespread distribution of this haplotype is related to historical popula-
tion movements from the Middle East to India or vice versa. Finally, in the early 
1990s, a French team identifi ed yet another haplotype in members of the Eton ethnic 
group of Cameroon and argued that this supported a fourth independent African ori-
gin of the HbS mutation (Lapoumeroulie et al.  1992 ). Although many more haplo-
types have been identifi ed since then, all appear to be explained by genetic 
recombination. The fi ve main haplotypes—Benin, Cameroon, CAR, Senegal and 
Arab-India—are often called “classical haplotypes”, while less common haplotypes 
are usually termed “atypical haplotypes”. Our knowledge of the distribution of both 
classical and atypical haplotypes remains relatively limited (Fig.  2.2 ).

   To date, it has not been possible to fi rmly distinguish between the single and 
multi-centric origin hypotheses on the basis of genetic analyses (Antonarakis et al. 
 1984 ). Evidence cited in favor of multiple mutations includes the fact that the 5′ 
fl anking region of the β-globin gene in African patients with sickle cell anemia dis-
plays a high level of population homogeneity, and that differences between any pair 
of the Benin, CAR and Senegal haplotypes occur both upstream and downstream to 
a putative recombination hotspot. Both of these observations remain consistent with 
new sickle cell haplotypes having arisen through gene conversion and then having 
rapidly increased in frequency through malaria-selection. Furthermore, the implicit 
assumption that the four independent mutations in Africa must have either appeared 
 de novo  within a short period of time, or have been part of the standing genetic varia-
tion when malaria selection began, is diffi cult to uphold—both scenarios are improb-
able given, respectively, the low mutation rate of a point mutation such as HbS and 
the deleterious nature of the HbS mutation in the absence of malaria selection. 

 Despite limitations to the multi-centric origin theory, efforts to explore the 
single- origin hypothesis have also been limited. Livingstone used a stochastic 
model of the diffusion of different HbA- and HbS-associated chromosomes to dem-
onstrate that recombination and gene conversion readily give rise to multiple HbS 
haplotypes, with no need for recurrent mutation (Livingstone  1989b ). He consid-
ered a linear meta-population in which the sickle mutation was introduced at a fi xed 
point at the beginning of the simulation and explicitly modelled recombination 
between different haplotypic markers. He concluded that the single origin hypoth-
esis was “ at least as plausible an explanation of the world distribution of this 
remarkable gene as is the assumption of several separate mutations, especially in 
Africa where the limited amount of S haplotype variation is more likely indicative of 
the recent diffusion of the S gene to these populations. ” 

 Various attempts have been made to date the HbS mutation, with published 
estimates ranging from 700 to 21,000 years ago based on Monte Carlo maximum 

2 Sickle Cell Anemia: History and Epidemiology



30

likelihood simulations for the Niokholo Mandenka populations of Senegal (Currat 
et al.  2002 ) and 70,000–150,000 years ago based on the association between the 
sickle variant of β-globin and a characteristic pattern of human platelet antigen (Hpa 1) 
recognition site (Kurnit  1979 ; Solomon and Bodmer  1979 ). It is usually considered 
that the frequency of the sickle mutation began to rise approximately 10,000 years 
ago following the developments of agriculture and human settlements which provided 
favorable conditions for malaria transmission (Wiesenfeld  1967 ) (see Sect.  2.1.2 ). 

  Fig. 2.2    Distribution of the fi ve major β-globin haplotypes (indicated by different  colors ) in indi-
viduals with sickle cell anemia in Sub-Saharan Africa, North Africa, Middle East and India. 
Haplotype data presented are summarized from genetic epidemiological studies of sickle-cell 
populations across different regions represented in the Table. For some countries, the Table pres-
ents data from different studies, of which some refer to different regions and study populations. 
 CAR  Central African Republic. Figure prepared from data obtained from Hockham et al. ( 2015 ), 
Gabriel and Przybylski ( 2010 ), Bitoungui et al. ( 2015 ) and from Nagel and Steinberg ( 2001 ) and 
references within each. Table adapted from Hockham et al. ( 2015 ) (with permission), references 
for each study are presented in the original table, with the exception of data for Cameroon, Uganda 
and Congo which were obtained from Bitoungui et al. ( 2015 )       

βs-globin Haplotypes

Benin

Cameroon

CAR

Arab-Indian

Senegal 

 

F.B. Piel and T.N. Williams



31

Using population dynamic modelling, Livingstone suggested that the rate of gene 
fl ow and population size were key parameters for dating the mutation and explain-
ing its widespread distribution across sub-Saharan Africa, the Mediterranean, the 
Middle East and India (Livingstone  1969 ). Nevertheless, to our knowledge, phylo-
genetic studies and analyses of old DNA samples have so far provided limited 
 support in dating the origin of the HbS mutation. 

 The severity of clinical complications in patients with sickle cell anemia varies 
widely. Soon after the various sickle cell haplotypes were identifi ed, geneticists and 
clinicians attempted to explore relationships between haplotype and phenotype in 
patients with sickle cell anemia. Early on, it was suggested that the Arab-India hap-
lotype was milder than the African haplotypes (Kulozik et al.  1986 ). This was later 
ascribed to the higher levels of HbF seen in patients with the Arab-India haplotype 
(Miller et al.  1987 ). Anecdotal observations later suggested that the Bantu haplo-
type was associated with a more severe clinical course, while patients with the 
Benin haplotype appeared to follow a milder clinical course (Steinberg  2005 ). 
Nevertheless, more recent studies conducted in Saudi Arabia and India have sug-
gested that severe disease was more common than previously thought in patients 
with the Arab-India haplotype (Alsultan et al.  2014 ; Italia et al.  2015 ). Although, 
the frequency of some clinical complications associated with sickle cell anemia 
have also been reported to vary by haplotype (Adorno et al.  2008 ), a lack of system-
atic studies makes it diffi cult to confi rm such relationships.  

2.1.6     Epistatic Interactions 

 In recent years, interactions between different genes, termed epistatic interactions, 
have become increasingly relevant to a better understanding of the pathophysiology 
and geographic distribution of various genetic disorders, including hemoglobinopa-
thies (Miko  2008 ). When gene interactions result in a milder phenotype, it is called 
“positive epistasis”, while when they result in a more severe phenotype, they are 
termed “negative epistasis”. In 2005, studying two cohorts of children in Kilifi  
District on the coast of Kenya, Williams and colleagues identifi ed a remarkable 
example of negative epistasis by showing that the resistance conferred against 
malaria by HbAS was almost totally lost when co-inherited with α + -thalassemia 
(Williams et al.  2005b ) (Fig.  2.3 ). Further investigation into the underlying mecha-
nisms of these interactions showed that, in individuals co-inheriting both HbAS and 
α + -thalassemia, cytoadherence was not reduced, possibly due to a higher expression 
of PfEMP1, and the frequency of rosette formation was closer to that in normal 
HbAA individuals (Opi et al.  2014 ) (see Sect.  2.1.3 ). Interestingly, a recent study 
conducted among Cameroonians suggested that the phenotype and survival of 
patients with sickle cell anemia might be milder and improved, respectively, on co- 
inheritance with α-thalassemia (Rumaney et al.  2014 ).

   Based on this clinical evidence, Penman et al. have used evolutionary mathemat-
ical models to support the idea that the complex distribution of hemoglobinopathies 
across Africa, the Mediterranean and South Asia can be explained by their specifi c 
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intracellular interactions. They suggest that the relative patchiness of the sickle 
mutation in the Mediterranean can be explained by interactions with α- and 
β-thalassemia, rather than a later introduction (Penman et al.  2009 ). In addition, by 
contrasting Southeast Asian and African populations, they hypothesized that the 
relatively low prevalence of α-thalassemia in Africa could be due to the presence of 
HbS (Penman et al.  2011 ).   

2.2     Epidemiology 

2.2.1       Contemporary Geographic Distribution 

 While natural selection shaped the historical distribution of the sickle mutation (see 
Sect.  2.1.4 ), its contemporary distribution has largely been driven by human dias-
pora (Cavalli-Sforza et al.  1994 ). Between the beginning of the sixteenth century 
and the end of the twentieth century, millions of Africans, mostly from West and 
Central Africa, were forced to move to the Caribbean and the Eastern coast of the 
Americas through the slave trade. This human traffi c from areas of high prevalence 
of the sickle mutation to regions in which hemoglobinopathies were absent left a 
profound impact on populations of the Americas. The frequency of the HbS muta-
tion in African Americans is often similar to those observed in the African 
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  Fig. 2.3    Incidence rate ratio (IRR) of uncomplicated malaria, malaria requiring hospital admis-
sion and severe malaria for individuals with normal hemoglobin (AA) and the sickle cell trait (AS), 
with (one or two deletions: −α/αα and −α/−α, respectively) and without α + -thalassemia (αα/αα). 
Reproduced with permission from (Williams et al.  2005b )       
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subcontinent, resulting in sickle cell disease being the most common inherited 
blood disorder in the United States (Brousseau et al.  2010 ). 

 In recent decades, further expansion of the distribution of the sickle cell allele 
resulted from the globalization process (Roberts and de Montalembert  2007 ; 
Angastiniotis et al.  2013 ). This process has been the focus of a global retrospec-
tive quantitative study analyzing the number of migrants in 1960, 1970, 1980, 
1990 and 2000 for all pairs of countries in relation to the prevalence of the sickle 
cell allele in the country of origin of the migrants (Piel et al.  2014b ). It showed 
that, while the number of international migrants increased from 92.6 million in 
1960 to 165.2 million in 2000, the estimated global number of migrants with HbS 
increased from about 1.6 million in 1960, to 3.6 million in 2000. This change was 
largely due to an increase in the number of migrants from countries with HbS 
allele frequencies of higher than 10 %, from 3.1 million in 1960, to 14.2 million 
in 2000. Additionally, the mean number of countries of origin for each destination 
country increased from 70 ± 46 in 1960, to 98 ± 48 in 2000, showing an increasing 
diversity in the network of international migrations between countries. This trend 
is well-illustrated, for example, by the case of Ireland where patients with sickle 
cell crises were very rarely seen by clinicians or registered with the Paediatric 
Haematology Service in the late 1990s but are relatively common nowadays, 
prompting the debate to implement a national newborn screening program for this 
disorder (McMahon et al.  2001 ). 

 As a result of these two processes, today, sickle cell disease is very much a global 
health problem and it seems likely that most countries now number carriers amongst 
their populations. Major changes in the global distribution of the HbS mutation are 
summarized by region below, and can be visualized by comparing Figs.  2.1  and  2.4 . 
It is worth noting that due to both the presence of the HbS mutation in the 
Mediterranean region and to population admixture, sickle cell disorders occur in 

  Fig. 2.4    Contemporary distribution and prevalence of the sickle cell allele. Adapted from (Piel 
et al.  2013c )       
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Caucasian individuals who have no known African ancestry. The assumption that 
sickle cell disorders only occur in Black populations, often leading to stigmatiza-
tion, is therefore outdated.

    The Americas     In the United States, the vast majority of individuals carrying the 
sickle mutation are found in the eastern half of the country, which refl ects the distri-
bution of African Americans. Based on data from the National Newborn Screening 
Information System combined with population census data and corrected for early 
mortality, Hassell’s population study suggested that the highest numbers of indi-
viduals with sickle cell disease were found in Florida, New York and Texas (Hassell 
 2010 ). The prevalence of HbS is substantially higher in California than in most 
states, falling in the Western half of the US. Overall, it is estimated that approxi-
mately one out of every 500 Black or African-American births are affected by sickle 
cell disease as are one out of every 36,000 Hispanic-American births. Approximately 
one in 12 Black or African Americans are carriers of the HbS allele. In Canada, HbS 
is mostly found in British Columbia, Ontario, Quebec and Nova Scotia. The birth 
prevalence of sickle cell anemia was found to be 1 in 2500 in the greater Montreal 
region and 1 in 134 in a targeted population in Quebec (Robitaille et al.  2006 ). In 
Brazil, the sickle mutation is common in the north-eastern region and the States of 
São Paulo, Rio de Janeiro and Minas Gerais. The prevalence of HbAS has been 
estimated to vary between 1.1 % in Rio Grande do Sul and 9.8 % in Bahia, while 
between 0.8 and 60 per 100,000 births are affected by sickle cell anemia (Lervolino 
et al.  2011 ).  

  The Caribbean     Screening of 100,000 consecutive non-operative deliveries in the 
Jamaica Cohort Study conducted in the early 1980s found HbAS in 10.0 % (Serjeant 
et al.  1986 ). A follow up study conducted between 1995 and 2003 found similar 
frequencies, suggesting that the absence of malaria selection has not led to a decline 
in the frequency of the HbS allele in Jamaica (Hanchard et al.  2005 ). In Martinique, 
about 8 % of babies are born with HbAS while in Guadeloupe, the prevalence is one 
in 575 births, based on 27 years of universal newborn screening (Saint-Martin et al. 
 2013 ). Data from Aruba, St Maarten and Curacao found that 0.3, 0.7 and 2.2 new-
borns per year, respectively, were suffering from sickle cell anemia (van Heyningen 
et al.  2009 ).  

  Europe     The prevalence of the sickle allele varies substantially within Europe, as 
well as within each European country, with a majority of cases being seen in capital 
cities in France (Paris) and the United Kingdom (London). In an epidemiological 
overview of hemoglobin disorders across Europe, Modell et al .  estimated that sickle 
cell disorders occurred in 0 per 1000 newborns in eastern (Bulgaria and Romania) 
and parts of southern Europe (Malta and Former Yugoslavia), but in more than 0.3 
per 1000 newborns in Albania (0.99), England and Wales (0.63), the Netherlands 
(0.32), Portugal (0.31) and France (0.30) (Modell et al.  2007 ). In Scandinavian 
countries and Germany, the estimated prevalence of sickle cell disorders ranged 
between 0.03 per 1000 births in Finland and 0.10 in Norway and Sweden.  
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  Australasia     Epidemiological data on sickle cell disease from Australia and New 
Zealand are relatively limited. Cases are rare, concentrated in large cities (particu-
larly Sydney) (Harley and Concannon  1978 ) and are most commonly individuals of 
Greek or Italian ancestry (Wilkinson  1981 ).   

2.2.2      Mortality 

 Data on mortality rates of sickle cell anemia patients are relatively limited, particu-
larly in low- and middle-income countries. Based on a review of prospective cohort 
studies, age-stratifi ed cross-sectional surveys and other cross-sectional surveys con-
ducted in sub-Saharan Africa, Grosse et al. concluded that, although existing data 
were inadequate to support defi nitive statements, they were consistent with an 
early-life mortality of 50–90 % among children born in Africa with sickle cell ane-
mia. Due to differences in access to health care and infectious disease control, it is 
likely that the mortality rate varies considerably between rural and urban areas. 
With substantial progress made towards the Millennium Development Goals 
(MDG), particularly in reducing childhood mortality (Rajaratnam et al.  2010 ), the 
situation of newborns with sickle cell anemia in low- and middle-income countries 
should progressively improve. Further studies are nevertheless necessary to quan-
tify this impact. Appropriate measures are essential to provide adequate health care 
and to prevent clinical complications in sickle cell anemia patients surviving through 
childhood and adulthood (Piel et al.  2014a ). 

 By contrast to the developing world, data on life expectancy of patients with 
sickle cell anemia for the United States are detailed and have allowed the tracking 
of substantial improvements in recent decades following the implementation of a 
range of interventions (see Sect.  2.2.6 ). Median age at death attributed to sickle 
cell anemia in 1967 was around 20 years old, primarily due to infections (Scott 
 1970 ). In the mid-1990s, the median age at death was 42 years for males and 48 
years for females (Platt et al.  1994 ). Between the early 1980s and the late 1990s, 
it is estimated that mortality at age 0–3 years, 4–9 years and 10–14 years decreased 
by 68 %, 39 % and 24 %, respectively (Yanni et al.  2009 ). Similar trends have 
been observed in Jamaica (King et al.  2007 ). Despite these improvements, the life 
 expectancy of patients with sickle cell anemia is still typically reduced by 20–30 
years while, additionally, quality of life is substantially altered (Barakat et al. 
 2008 ; McClish et al.  2005 ). Furthermore, the fi nancial costs of routine treatment 
and emergency care for these patients is huge (Kauf et al.  2009 ), to which social 
and psychological effects on both the patients and their families need to be added 
(Jenerette and Brewer  2010 ). Finally, recent data from the New York newborn 
screening program highlighted the fact that mortality rates were signifi cantly 
lower among children of foreign-born mothers compared to US-born mothers, 
and signifi cantly higher among preterm infants with low birth weight, which war-
rants further investigations on the impact of genetic and environmental factors 
(Wang et al.  2014 ).  
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2.2.3      Newborn and Population Estimates 

 Only a limited number of studies have so far attempted to estimate the number of 
newborns affected by sickle cell anemia and the number of carriers of the HbS allele 
on national, regional and global scales. With support from the World Health 
Organization (WHO), Modell and Darlison assembled a global epidemiological 
database for hemoglobin disorders by country and derived several service indicators 
to refl ect the needs for care and prevention (Modell and Darlison  2008 ). Using 
demographic data from the 2003 United Nations Demographic Yearbook and cor-
recting for consanguinity based on limited data from the Bittles’s database (Bittles 
and Black  2014 ) and Murdock’s ethnographic atlas (Murdock  1967 ), they estimated 
the number of annual births with sickle cell anemia at 222,785 worldwide, 83 % of 
which were occurring in the AFRO region. More recently, Piel et al. developed a 
novel Bayesian geo-statistical method to account for sub-national heterogeneities 
and to assess the uncertainty associated with the estimates (Patil et al.  2011 ). Using 
an updated database of epidemiological surveys, their global annual estimates for 
2010 were 312,000 (inter-quartile range (IQR): 294,000–330,000) newborns with 
sickle cell anemia and 5,476,000 (IQR: 5,291,000–5,679,000) newborns with the 
sickle cell trait (Piel et al.  2013c ). Regional estimates are presented in Table  2.1 . 
Due to ongoing changes in the distribution of the HbS allele it is important to calcu-
late new estimates at regular intervals in order to assess the current and future 
burdens of this disorder (see Sects.  2.2.1  and  2.2.5 ).

   Population estimates for individuals affected by and carrying the sickle mutation 
are much harder to calculate, particularly on national, regional and global scales. 
This is well illustrated by the fact that despite having a universal newborn screening 
program in place and relatively good data on mortality, the number of individuals 
with sickle cell disease in the U.S. is unknown. Recent estimates based on birth- 
cohort disease prevalence ranged from 104,000 to 138,900, and between 72,000 and 
98,000 when corrected for early mortality (Hassell  2010 ; Brousseau et al.  2010 ). 
Due mostly to limited availability of mortality data, similar estimates for other 
countries, particularly those with a high-prevalence or a high-burden for sickle cell 
disease, are currently missing. 

 Finally, hemoglobinopathies were recently included in the Global Burden of 
Diseases, Injuries, and Risk Factors Study (GBD). This project is the largest sys-
tematic effort yet to describe the global distribution and causes of a wide array of 
major diseases, injuries, and health risk factors. It estimated that, in 2010, sickle cell 
disorders accounted for 0.42 deaths per 100,000; 28.69 years of life lost (YLLs) per 
100,000 and 53.21 years lived with disability (YLDs) per 100,000, adding up to 
81.9 disability-adjusted life years (DALYs) per 100,000 (Murray et al.  2012b ). 
Although these estimates have large uncertainties associated with them and need to 
be interpreted with caution, they allow the comparison of the burden of sickle cell 
disorders with those of other communicable and non-communicable diseases 
(Murray et al.  2012a ).  
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2.2.4      Screening Programs 

 Newborn screening programs allow for early diagnosis, parental education and 
comprehensive care, which results in a marked impact on mortality and morbidity 
throughout infancy, childhood and adulthood (see Sect.  2.2.2 ). 

 The United States was the fi rst country to implement large scale universal new-
born screening programs, starting as early as 1975 across New York State, follow-
ing the enactment of the Sickle Cell Anemia Control Act in 1972, and resulting in 
required newborn screening programs in all 50 states and the District of Columbia 
by 2006 (Benson and Therrell  2010 ). Data management by each state makes it chal-
lenging to get an accurate picture at the national level, although various initiatives 
have recently aimed at bridging this gap (e.g. RuSH’s CDC project 1 ). 

 In the United Kingdom, the National Health Service (NHS) implemented a 
linked antenatal and universal newborn screening program for sickle cell disease in 
2004 with the aim of achieving the lowest possible childhood death rate and to mini-
mize childhood morbidity from sickle cell disease (Streetly et al.  2009 ). This pro-
gram has resulted in substantial improvements in the detection rate of sickle cell 
disorders in the UK. Nevertheless, the impact of this program on the prevalence of 
these disorders remains unclear (Streetly and Rees  2013 ). France has chosen to 
implement a targeted screening program based on populations at risks, while uni-
versal screening is performed in its overseas territories (Bardakdjian-Michau et al. 
 2009 ). Although it could be argued that this option is more cost-effective than uni-
versal screening, it raises complex ethical issues including the objectivity of selec-
tion criteria potentially resulting in discrimination and stigmatization of populations 
affected (Panepinto et al.  2000 ). Other European countries, including Belgium and 
Italy, have effective local screening programs but lack national policies (Gulbis 
et al.  2009 ; Ballardini et al.  2013 ). 

 Both newborn screening and premarital screening have been implemented in the 
Middle East, often resulting in substantial decreases in the prevalence of sickle cell 
anemia at birth. In Saudi Arabia, policies including compulsory screening, genetic 
counselling and optional marriage cancellations for couples at risk have contributed 
to lowering the birth rate of children with sickle cell disease, although such policies 
seemed to have had a more pronounced impact on the prevention of β-thalassemia 
than on sickle cell disease between 2004 and 2009 (Memish and Saeedi  2011 ). In 
Bahrain, the birth prevalence of sickle cell disease declined from 2.1 % in 1985 to 
0.4 % in 2010 (Al Arrayed and Al Hajeri  2012 ). 

 No African country has so far implemented a large-scale universal screening 
program for sickle cell disorders. Various local programs have been launched, 
including in Benin, Ghana, Kenya, Tanzania and The Democratic Republic of the 
Congo (DRC) (Makani et al.  2015 ; Ohene-Frempong et al.  2008 ; Tshilolo et al. 
 2009 ; Rahimy et al.  2009 ; William et al.  2009 ). Considering the large burden associ-
ated with this disease, particularly in Nigeria and the DRC, appropriate policies are 
urgently needed in sub-Saharan Africa. 

1   http://www.cdc.gov/ncbddd/hemoglobinopathies/rush.html . 

F.B. Piel and T.N. Williams
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 Finally, awareness about sickling disorders has substantially increased in India in 
recent years and this has led to the launch of various screening initiatives, for exam-
ple in Chhattisgarh (Patra et al.  2011 ; Panigrahi et al.  2012 ), Gujarat (Patel et al. 
 2013 ) and Maharashtra (Jain et al.  2012 ). While these initiatives are still very recent, 
they will hopefully result in the release of a large amount of epidemiological data in 
the near future, allowing further studies of the natural history of this disease and the 
development of effective and appropriate models of care (Patel and Serjeant  2014 ).  

2.2.5      Future Burden 

 Various publications have suggested that the global burden of hemoglobinopathies 
has been increasing and that appropriate public health policies need to be developed 
accordingly (Weatherall and Clegg  2001 ; Weatherall  2010 ,  2011a ,  b ). In low- and 
middle-income countries, in which the prevalence of sickle cell disorders is high, 
this increase is due to the epidemiologic transition, which involves a shift from high 
infant and child mortality caused by infectious diseases to lower mortality caused 
by non-communicable diseases. Practically, this means that newborns affected by 
sickle cell anemia were previously dying undiagnosed in early life. Due to better 
health care and access to health facilities, a substantial proportion of these newborns 
are now surviving to adulthood. Early diagnosis is essential for preventing severe 
complications and adequate counselling is needed to inform patients’ parents about 
the risks for the offspring once they reach reproductive age. This alarming situation 
has been described in detail for Nigeria (Akinyanju  2010 ). In high-income coun-
tries, the increasing health burden caused by hemoglobinopathies is due to large 
population movements from areas of high prevalence to low-prevalence areas, as 
described in detail in Sect.  2.2.1  of this chapter. The recent impact of sickle cell 
disorders in high-income countries is best illustrated by the implementation of uni-
versal newborn screening programs for sickle cell disorders in various countries 
including the USA and the UK (see Sect.  2.2.4 ). 

 In order to defi ne appropriate public health policies in relation to hemoglobin-
opathies, it is nevertheless essential to quantify the magnitude of this increase. In 
order to do this, Piel et al. combined national allele frequency estimates for sickle 
cell anemia with demographic projections for 2010–2050. The study concluded that 
it was likely that Nigeria (2010: 91,000 newborns with SCA [confi dence interval 
(CI): 77,900–106,100]; 2050: 140,800 [CI: 95,500–200,600]) and the Democratic 
Republic of the Congo (2010: 39,700 [CI: 32,600–48,800]; 2050: 44,700 [CI: 
27,100–70,500]) would remain the countries most in need of policies for the pre-
vention and management of SCA, and predicted a decrease in the annual number of 
newborns with SCA in India (2010: 44,400 [CI: 33,700–59,100]; 2050: 33,900 [CI: 
15,900–64,700]) (Piel et al.  2013a ). Furthermore, it suggested that the implementa-
tion of basic health interventions for SCA in 2015, including prenatal diagnosis, 
penicillin prophylaxis, and vaccination, could lead to signifi cant reductions in 
excess mortality among children under-fi ve with SCA. By 2050, this would result in 

2 Sickle Cell Anemia: History and Epidemiology
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prolonging the lives of 5,302,900 [CI: 3,174,800–6,699,100] newborns with 
SCA. Similarly, the implementation of large-scale universal screening programs 
could save the lives of up to 9,806,000 (CI: 6,745,800–14,232,700) newborns with 
SCA globally, 85 % (CI: 81–88 %) of whom will be born in sub-Saharan Africa 
(Piel et al.  2013a ). Rigorous epidemiological evaluation of the impact of imple-
menting such interventions through time is necessary to confi rm the accuracy of 
such projections based on demographic data.  

2.2.6      Public Health Interventions 

 There is currently no cure for sickle cell anemia. Existing treatments and future 
options, including stem cell transplant and gene therapy, are described in detail in 
Chaps.   15     and   16    , respectively. 

 Systematic use of penicillin prophylaxis and pneumococcal conjugate vaccines 
has resulted in remarkable improvement in the survival of children with sickle cell 
anemia in high-income countries (Gaston et al.  1986 ; Telfer et al.  2007 ). Similar 
impact has been found in more resource-limited settings, particularly in Jamaica 
(King et al.  2007 ). Although education is usually considered to have a limited 
impact, parental education on the detection of enlarged spleens and need for medi-
cal attention was found to have an important effect in Jamaica. 

 More recently, hydroxyurea, a drug boosting the level of HbF in patients with 
sickle cell anemia (Platt et al.  1984 ), appeared as a safe and effective drug for pre-
ventive therapy in adult patients (Charache et al.  1995 ). Safety trials were later con-
ducted in adolescents and children with positive results (Scott et al.  1996 ; Kinney 
et al.  1999 ). Despite some studies suggesting that the use of hydroxyurea can lead 
to fertility problems or increased frequency of malignancies, current evidence sug-
gests that the benefi ts of this drug far outweigh these potential risks (Ware  2010 ). 

 Awareness about the disease is a key element to preventing and managing it. 
Although positive advances have been made towards this goal, including the recog-
nition by the WHO in 2006 of sickle cell disease as a worldwide public health issue 
and the adoption of a resolution on the prevention and management of birth defects, 
including those resulting from sickle cell disease, at the 63rd World Health 
Assembly, the real impact of these events is hard to assess, particularly from the 
perspective of patients living in resource-poor regions.      
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    Chapter 3   
 Overview of Sickle Cell Anemia 
Pathophysiology                     

       Martin     H.     Steinberg     

    Abstract     Sickle cell disease, caused by a mutation in the β-hemoglobin gene, is a 
Mendelian disorder with a very diverse phenotype. The primary cause of disease patho-
physiology is the deoxygenation-induced polymerization of the mutant sickle hemo-
globin. This ultimately leads to vasoocclusion by damaged sickle erythrocytes that 
interact with the endothelium and other blood cells, and the hemolysis of sickle cells 
within and outside of the vasculature. Treatment can target these separate but intercon-
nected pathophysiologic pathways of sickle vasoocclusion and hemolytic anemia but 
targeting effectively a single limb or aspect of pathophysiology might have unintended 
consequences and increase the chance of complications closely associated with the 
other pathophysiologic pathway. The prime approach to treatment would be to effec-
tively increase the level of the antisickling fetal hemoglobin in most sickle erythrocytes 
thereby thwarting all downstream effects of this primary pathophysiologic event.   

 Keywords     Fetal hemoglobin   •   Polymerization   •   Hemolytic anemia   •   Vasoocclusion   
•   Cell adhesion  

3.1         Introduction 

 A point mutation in the β-hemoglobin gene ( HBB ; 11p15.4, β6 GAG-GTG; glutamic 
acid-valine) encodes the sickle β-globin chain (β S ) (Ingram  1956 ; Marotta et al. 
 1976 ; Pauling et al.  1949 ). Dimers of α-globin and β S  globin combine to form the 
sickle hemoglobin (HbS) tetramer (α 2 β 2  S ) (Bunn  1987 ). Homozygosity for this sickle 
cell mutation is called sickle cell anemia. Compound heterozygosity for HbS and 
another hemoglobin gene mutation that changes the structure of the β-globin chain, 
like HbC (α 2 β 2  C ) or reduces the expression of  HBB  like β thalassemia, or affects the 
structure or expression of the α-globin genes ( HBA2, HBA1 ) make up other geno-
types that cause the phenotype of sickle cell disease (Steinberg  2009 ) .  Some of the 
common genotypes of sickle hemoglobinopathies are shown in Table  3.1 . Many 
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other less common and some rare genotypes are also found. Depending on the popu-
lation studied, the incidence of the various common genotypes of sickle cell disease 
can vary greatly. The pathophysiology of these disorders has many commonalities 
but differences are present that can be ascribed to the pathological effects of the other 
globin gene or genes. For example, in HbSC disease, the most common compound 
heterozygous form of sickle cell disease, HbC affects cation transport leading to cel-
lular dehydration and increased mean corpuscular HbS concentration (MC[HbS]C). 
In HbS-β thalassemia or sickle cell anemia with concurrent α thalassemia, cell den-
sity is decreased compared with sickle cell anemia. The pathophysiology of the 
sickle hemoglobinopathies has been reviewed extensively (Steinberg et al.  2009 ; 
Dean and Schechter  1978a ,  b ,  c ; Embury et al.  1994 ; Frenette and Atweh  2007 ; Bunn 
and Forget  1986 ; Bunn  1997 ; Hebbel  1991 ; Hebbel et al.  2004 ).

3.2        The Phenotype of Sickle Hemoglobinopathies 

 The phenotype of sickle hemoglobinopathies results from injury to the sickle eryth-
rocyte caused by HbS and deoxyHbS polymerization. This injury leads to extra and 
intravascular hemolysis, sickle vasculopathy and vasoocclusive disease. All sickle 
erythrocytes do not share a similar degree of cellular damage. This is due to both 
intrinsic properties of the erythrocyte that include fetal hemoglobin (HbF, α 2 γ 2 ) con-
centration and cell density and its state of hydration, and the environment the circu-
lating erythrocyte encounters. The erythrocyte population in sickle cell disease is 
noted for its heterogeneity: some cells are young and short-lived; others are young 
and long-lived; some are extraordinarily dense; others unusually light. Anisocytosis 
is a result of many reticulocytes and dense cells and poikilocytosis is caused by the 
mixture of normal biconcave discoid cells, target cells, dense pointed, elongated 
contracted cells, sickle-like shapes and holly leaf-like forms. In HbSC disease target 
cells predominate and oxygenated cells can have crystals of HbC. In the sickle thal-
assemias, microcytosis and hypochromia are prevalent. 

 Sickle cells are in dynamic fl ux as their environment constantly cycles from lam-
inar to microcirculatory fl ow, macro to microcirculation, high to low oxygen con-
tent, normal to low pH and normal to high solute concentration. The cycle of HbS 
polymerization and depolymerization can continue infi nitely but the process of 
deoxyHbS polymerization and oxidant-induced damage to the cell membrane and 
contents ultimately injures the sickle erythrocyte membrane irreversibly fi xing the 
cell in a variety of abnormal, or “sickle” shapes regardless of whether or not its HbS 
is polymerized. Prominent among these damaged cells is the irreversibly sickled cell 
or ISC. It was these cells that were fi rst glimpsed by Herrick ( 1910 ) and that gave 
the disease its present name (Mason  1922 ). Examining the interactions among the 
primary and secondary pathophysiologic components of sickling hemoglobinopa-
thies, the former due to HbS polymerization, the latter a downstream effect of poly-
mer—whose complexity is compounded by genetic and environmental modulatory 
factors—provides some basis for appreciating the well-known heterogeneity of the 
clinical features associated with sickle cell disease.  
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3.3     HbS and the HbS Polymer 

 Polymerization of deoxyHbS is dependent on HbS concentration, pH, oxygen satu-
ration and temperature (Eaton and Hofrichter  1987 ). In experiments designed to 
study polymerization, a delay occurs between the induction of the gelation and the 
detection of HbS polymer (Mozzarelli et al.  1987 ). It has been estimated that the 
delay time varies inversely with the 30th–50th power of HbS concentration 
(Hofrichter et al.  1974 ). This means that small decreases in MC[HbS]C can have 
substantial effects on polymerization and some of the pathophysiologic features of 
disease and has spurred efforts to develop agents that can reduce cell density, 
improving cell hydration and thereby decreasing MC[HbS]C) and the polymeriza-
tion tendency of HbS. 

 The deoxyHbS polymer forms by homogeneous and heterogeneous processes of 
nucleation (Ferrone et al.  1985 ; Eaton and Hofrichter  1987 ). In the former, the struc-
ture of deoxyHbS tetramers allows them to adhere to each other forming a polymer 
composed of elementary fi bers whose helix comprises 14 strands and is 210 Å thick 
(Fig.  3.1a ). The hydrophobic site of the HbS mutation fi nds a properly registered 
hydrophobic receptor in another molecule forming a double strand. The lateral 
 contacts of the fi ber are the most crucial for polymerization where the β6 valine is 
within a hydrophobic pocket formed by β88 leucine, β85 phenylalanine and several 
heme atoms. Some mutant sites are on the polymer surface and uninvolved in homo-
geneous nucleation. These surface valine residues provide the stability for the nucle-
ation of new fi bers at the polymer surface, a process called heterogeneous nucleation, 
which explains the exponential growth of the polymer phase once the process begins 
after the delay time (Fig.  3.1b ). Critical for understanding the pathophysiology of 
sickle cell anemia, neither HbA 2  nor HbF can co- polymerize with HbS because of 
the presence of a glutamine residue at δ87 in the former and an aspartic acid residue 
at γ80 and glutamine residue at γ87 in the latter (Nagel et al.  1979 ). HbA and HbC 
are able to co-polymerize extensively with HbS as neither hemoglobin has these 
amino acid residues at the corresponding position. Hence, neither hemoglobin has 
the polymerization-sparing effects of HbF or HbA 2  and their sole effect when pres-
ent with HbS in the cell is to reduce its concentration.

   Oxygen binding by HbS is normal in dilute solutions but in concentrated solu-
tions, like those in the sickle erythrocyte, the hemoglobin-oxygen dissociation curve 
is right-shifted. This is an effect of the deoxyHbS polymer with some contribution 
from the high levels of 2, 3 BPG in the sickle erythrocyte. 

3.3.1     HbF, HbS Polymer, and the Phenotype 
of Sickle Cell Anemia 

 Infants have few signs or symptoms of sickle cell anemia (Watson et al.  1948 ). Their 
high HbF retards the polymerization of deoxyHbS as neither HbF nor its mixed hybrid 
tetramer (α 2 β S γ) enters the deoxyHbS polymer phase (Noguchi et al.  1993 ; Eaton and 
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Hofrichter  1987 ). The phenotype of sickle cell disease becomes manifest within 6 
months to 2 years of age as HbF levels decline. Because of these effects on HbS 
polymerization, HbF is the predominant genetic modulator of the phenotype of sickle 
cell anemia (Akinsheye et al.  2011 ; Steinberg and Sebastiani  2012 ). Suffi cient HbF in 
each sickle cell can prevent deoxyHbS polymerization at physiologic oxygen satura-
tions and abrogate the tissue injury and hemolytic anemia exemplifying this disease 
(Maier-Redelsperger et al.  1994 ; Brittenham et al.  1985 ). The best evidence support-
ing the relevance of high concentrations of HbF within the sickle erythrocyte is the 
naturally occurring example of individuals who are compound heterozygotes for HbS 
and gene deletion hereditary persistence of HbF. In this genotype, about one third 
of the total hemoglobin in each sickle erythrocyte (~10 pg) is HbF. This is the concen-
tration of HbF needed to protect the cell from deoxyHbS polymer induced damage. 
In HbS homozygotes HbF is distributed heterogeneously among erythrocytes. 

HbS:
b6 Glu Æ Val

a

b
Homogeneous nucleation

Heterogeneous nucleation

Critical
nucleus

b88 Leu

b85 Phe

b6 Val

  Fig. 3.1    HbS polymer ( a ) The 14-strand HbS fi ber is the basic unit of the HbS polymer. Adapted 
with permission from a fi gure kindly provided by Prof. Stuart J. Edelstein (  http://www.unige.ch/
sciences/biochimie/Edelstein/sldHbS.htm    ) (HbS-HbS image from the Protein Data Bank). ( b ) The 
homogeneous and heterogeneous 2-phase model for sickle polymer growth structure, reproduced 
with permission from (Ferrone et al.  1985 )       
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Individuals with HbS-gene deletion hereditary persistence of HbF are asymptomatic 
and have nearly normal total hemoglobin levels (Conley et al.  1963 ; Ngo et al.  2012 ). 
To “cure” sickle cell disease pharmacologically similar HbF concentrations in most 
sickle erythrocytes would need to be achieved (Steinberg et al.  2014 ). 

 The average HbF level in cases of sickle cell anemia where the HbS gene had its 
origin in Africa is between 5 and 8 % (Solovieff et al.  2010 ). HbF levels are associated 
with haplotypes of the β-globin gene complex (Labie et al.  1985 ,  1989 ; Nagel et al. 
 1984 ; Nagel and Labie  1989 ; Kan and Dozy  1980 ; Costa et al.  1994 ; Lapoumeroulie 
et al.  1989 ; Kulozik et al.  1986 ,  1987 ). Four common haplotypes had an African origin 
and 1 haplotype originated in India and/or the Middle East. In the Middle East and in 
India the HbS gene is often on the Arab-Indian (AI)  HBB  haplotype that is associated 
with HbF levels 3–5 times as high as those found with African haplotypes (Miller 
et al.  1986 ; Ngo et al.  2013 ). The youngest individuals with the AI haplotype have the 
mildest phenotype of all sickle cell anemia patients, although when HbF levels fall 
from about 30 % in children to 15–20 % in adults, the disease becomes more severe 
(Perrine et al.  1972 ,  1978 ; Padmos et al.  1991 ; Adekile  2011 ; Marouf et al.  2003a ,  b ; 
Alsultan et al.  2014 ). A hierarchy of HbF levels is present among the HbS haplotypes 
after HbF levels have stabilized at age 5–10 years, with a mean of about 5 % in the 
Bantu haplotype to about 20 % in the AI haplotype (Akinsheye et al.  2011 ). However, 
within each haplotype group there is considerable heterogeneity of HbF levels sug-
gesting that the cis-acting regulatory elements have key roles to play in HbF gene 
expression. In population-based studies, any increment in HbF had a benefi cial effect 
on mortality in sickle cell anemia (Platt et al.  1994 ). F cells are erythrocytes that have 
suffi cient HbF to be enumerated by fl ow cytometry. It takes only 5–6 pg HbF/F cell for 
the cell to be visualized. Modeling the distribution of HbF/F cell suggests that very few 
F cells are protected from deoxyHbS polymer induced damage when HbF levels are 
approximately 5 %, larger numbers of protected cells are possible when HbF reaches 
levels of 10 %; HbF concentrations of about 30 % can provide protection to more than 
70 % of cells (Steinberg et al.  2014 ). Figure  3.2  shows the sub-phenotypes found in 
sickle cell anemia in patients with African-origin  HBB  haplotypes and HbF levels of 
5–8 % (L panel) compared with that seen in patients with the AI haplotype and HbF 
of 20 % (R panel). Because of less hemolysis, the hemoglobin level of AI haplotype 
patients is higher than that of African-origin haplotype carriers. They have a nearly 
similar incidence of complications most often associated with sickle vasoocclusion. 
Less hemolysis might account for a reduced incidence of leg ulcers and stroke.

3.4         The Sickle Erythrocyte Membrane 

 The erythrocyte membrane is a lipid bilayer linked to an underlying protein mem-
brane skeleton that is penetrated by integral proteins that interact with the lipid core 
and skeletal proteins. Integral membrane proteins include but are not limited to; gly-
cophorins, the Rh proteins, transport proteins like band 3, the sodium pump, Ca2+ 
ATPase and Mg2+ ATPase. Skeletal proteins include the structural proteins of the 
spectrin-actin based membrane cytoskeleton. The lipid bilayer is made of 

M.H. Steinberg



55

  F
ig

. 3
.2

    H
bF

 a
nd

 th
e 

ph
en

ot
yp

e 
of

 s
ic

kl
e 

ce
ll 

an
em

ia
. T

he
  le

ft 
pa

ne
l  s

ho
w

s 
a 

ty
pi

ca
l a

du
lt 

pa
tie

nt
 w

ith
 a

n 
A

fr
ic

an
 H

bS
 h

ap
lo

ty
pe

 a
nd

 H
bF

 le
ve

l. 
R

ar
e 

F-
ce

lls
 h

av
e 

su
ffi

 c
ie

nt
 H

bF
 to

 p
ro

te
ct

 th
em

 f
ro

m
 p

ol
ym

er
-i

nd
uc

ed
 d

am
ag

e;
 o

th
er

 c
el

ls
 a

re
 u

np
ro

te
ct

ed
 a

nd
 c

an
 h

em
ol

yz
e 

in
tr

av
as

cu
la

rl
y 

pr
om

ot
in

g 
th

e 
su

bp
he

no
ty

pe
s 

cl
os

el
y 

as
so

ci
at

ed
 w

ith
 h

yp
er

he
m

ol
ys

is
, l

ik
e 

st
ro

ke
, p

ul
m

on
ar

y 
hy

pe
rt

en
si

on
, p

ri
ap

is
m

 in
 m

al
es

, l
eg

 u
lc

er
s 

an
d 

ne
ph

ro
pa

th
y.

 T
he

  r
ig

ht
 p

an
el

  d
ep

ic
ts

 a
n 

ad
ul

t w
ith

 th
e 

A
ra

b-
In

di
an

 h
ap

lo
ty

pe
 o

f t
he

 H
bS

 g
en

e 
an

d 
~2

0%
 H

bF
. W

ith
 a

 h
ig

h 
to

ta
l H

bF
 it

 is
 n

ow
 p

os
si

bl
e 

to
 h

av
e 

gr
ea

te
r n

um
be

rs
 o

f F
 c

el
ls

 w
he

re
 d

eo
xy

H
bS

 p
ol

ym
er

iz
at

io
n 

do
es

 
no

t o
cc

ur
 a

t p
hy

si
ol

og
ic

 o
xy

ge
n 

sa
tu

ra
tio

ns
. T

hi
s 

re
du

ce
s 

th
e 

ra
te

 o
f h

em
ol

ys
is

 a
nd

 th
e 

in
ci

de
nc

e 
of

 h
em

ol
ys

is
-a

ss
oc

ia
te

d 
co

m
pl

ic
at

io
ns

. A
 v

er
si

on
 o

f t
hi

s 
re

se
ar

ch
 

w
as

 o
ri

gi
na

lly
 p

ub
lis

he
d 

in
 B

lo
od

 (A
ki

ns
he

ye
 e

t a
l. 

Fe
ta

l h
em

og
lo

bi
n 

in
 s

ic
kl

e 
ce

ll 
an

em
ia

. B
lo

od
. 2

01
1;

 1
18

(1
):

19
–2

7.
 ©

 T
he

 A
m

er
ic

an
 S

oc
ie

ty
 o

f H
em

at
ol

og
y)

       

 

3 Overview of Sickle Cell Anemia Pathophysiology



56

phospholipids intercalated with unesterifi ed cholesterol and some glycolipids. The 
major lipids are phosphatidyl choline (PC), phosphatidyl ethanolamine (PE), sphingo-
myelin (SM) and phosphatidyl serine (PS) that are asymmetrically distributed, with 
PC and SM primarily in the outer monolayer, and most of PE, all of PS—the amino 
phospholipids—and the phosphoinositides in the inner monolayer. This distribution is 
actively maintained by several enzymes. With erythrocyte sickling, the normal lipid 
asymmetry is lost as PS translocates to the outer membrane leafl et. PS-exposing sur-
faces propagate proteolytic reactions that result in thrombin formation and activation 
of fi brinolysis. Some studies suggest that PS exposure is related to stroke, activation 
of coagulation and extravascular hemolysis (Brugnara  2001 ; de Jong et al.  2001 ; 
Joiner and Gallagher  2009 ; Franck et al.  1985 ; Kuypers et al.  1996 ; Westerman et al. 
 1984 ; Tait and Gibson  1994 ; Lane et al.  1994 ; Setty et al.  2002 ; Kuypers  2008 ). 

 The membrane contacts HbS and its polymer leading to distortion by physical 
effects (Wagner et al.  1986 ; Liu et al.  1991 ; Allan et al.  1981 ,  1982 ). DeoxyHbS 
polymer forms spicules that can physically dissociate fragments of the lipid bilayer 
from the membrane skeleton. The membrane spicule is composed of spectrin-poor 
lipid vesicles with some integral membrane proteins. Perhaps the loss of complement 
regulatory proteins in these vesicles leaves the erythrocyte susceptible to complement- 
mediated intravascular hemolysis and facilitates erythrocyte recognition and removal 
by macrophages (Wang et al.  1993 ; Test and Woolworth  1994 ). Membrane proteins 
are also subjected to oxidative stress induced by hemoglobin oxygenation and deoxy-
genation that generates reactive oxygen species.(Hebbel  1984 ,  1985 ; Hebbel et al. 
 1982 ,  1988 ). Decompartmentalization of erythrocyte iron also contributes to oxidant 
radical generation via Fenton chemistry. Unstable HbS can precipitate on the mem-
brane in the form of hemichromes (Browne et al.  1998 ; Repka and Hebbel  1991 ; 
Schwartz et al.  1987 ; Sugihara et al.  1992 ) (Fig.  3.3 ). The ISC is a result of perma-
nent deformation of the spectrin-actin membrane skeleton and perhaps a defect in 
β-actin caused by oxidative changes (Lux et al.  1976 ; Horiuchi et al.  1988 ; Goodman 
 2004 ; Bertles and Milner  1968 ; Bencsath et al.  1996 ; Shartava et al.  1995 ).

   Red cell volume and density must be closely controlled to maintain cell fl exibility 
and permit fl ow through the microcirculation. Maintenance of normal density is espe-
cially critical in the sickle erythrocyte because the MC[HbS]C is a dominant factor 
for deoxyHbS polymerization. Erythrocyte cation content is the major determinant of 
cell volume and is regulated by several transport channels whose activity can be 
altered in the sickle erythrocyte (Brugnara  1993 ,  1997 ). Erythrocyte heterogeneity in 
sickle cell disease is contributed to by variation in cell volume and water content. 
Increased numbers of reticulocytes and young red cells have low density and increased 
volume; dense, rigid, dehydrated cells, some with extraordinarily high hemoglobin 
concentrations can be both young and old cells, especially ISCs (Franco et al.  1996 , 
 2006 ; Joiner and Gallagher  2009 ; Fabry et al.  1984 ,  1991 ; Fabry and Nagel  1982 ; 
Evans et al.  1984 ). Dense, dehydrated cells are due in part to damage of cation trans-
port systems that have different activities in different segments of the erythrocyte 
population. Two have been studied most intensively. The Gardos pathway, a Na/K 
exchange channel activated by calcium is a 428 amino acid, 6 transmembrane domain 
protein with about 150 copies per red cell. Inhibitors of this pathway can reduce cell 
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density and hemolysis but have not yet been shown to decrease sickle vasoocclusive 
events. A K/Cl cotransport pathway, the products of the  KCC4 ,  KCC1  and  KCC3  
genes, is most active in reticulocytes and young cells and has little activity in older 
and dense sickle erythrocytes (Joiner and Gallagher  2009 ). K/Cl cotransport is stimu-
lated by the reduced levels of cellular magnesium found in sickle erythrocytes and by 
acid pH. Magnesium supplementation can improve cell hydration but therapeutic tri-
als of this agent to date have not been encouraging (Hankins et al.  2008 ; De Franceschi 
et al.  1997 ,  2000 ). Pathways characterized by deoxygenation-induced cation perme-
ability and sensitive to physical perturbation of the membrane are also present 
(Gallagher  2013 ). All pathways are activated in sickle erythrocytes leading to cation 
and water loss and cell dehydration. Some of these pathways are amenable to targeted 
inhibition providing a means to prevent erythrocyte cell dehydration and the tendency 
for HbS polymerization thereby reducing hemolysis. 

 Disappointingly, clinical trials aimed at rehydrating dehydrated sickle cells by 
inhibiting the Gardos channel did not achieve their primary endpoint of reducing 
sickle vasoocclusion (Ataga et al.  2008 ,  2011 ). The Gardos channel inhibitor 
worked as anticipated; cell density fell and hemolysis was reduced. As a result the 
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  Fig. 3.3    Loci of damage of the sickle erythrocyte membrane. HbS polymer can directly injure the 
membrane causing release of lipid rich microparticles that lead to the evolution of dense cells with a 
reduced membrane:cytoplasmic ratio. This increases MC(HbS)C and because of the extreme depen-
dence of HbS polymerization on HbS concentration favors polymerization. Unstable and oxidizing 
sickle hemoglobin can also damage the membrane  leading to altered cation transport, exposure of 
epitopes favoring cell adhesion and premature cell destruction in the reticuloendothelial system and 
intravascularly. The life expectancy of red cells in sickle cell anemia is about 20 days compared with 
120 days in normal individuals. Hemolytic anemia is always present, regardless of whether acute 
vasoocclusive event are taking place. Illustration kindly provided by Prof. O.Platt and adapted from 
(Platt  1994 )       
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hemoglobin level rose. Unfortunately, more cells with primarily HbS likely 
increased blood viscosity and failed to reduce, or even increased the likelihood of 
vasoocclusive complications. These results might have been predicted based on the 
naturally occurring example of sickle cell anemia-α-thalassemia (Steinberg and 
Embury  1986 ; Steinberg and Sebastiani  2012 ). In compound heterozygotes with 
this genotype—about 30 % of all patients homozygous for the HbS gene—the pres-
ence of α thalassemia reduces the density of the sickle erythrocyte and improves its 
lifespan. Higher total hemoglobin levels associated with this genotype of disease 
are associated with an increased prevalence of some vasoocclusive complications of 
the disease. Other complications more closely linked to hemolytic anemia are 
reduced. These examples highlight the diffi culties of treating directly one 
 downstream consequence of deoxyHbS polymerization without considering the 
critical primary process of polymer formation. 

 A failed erythrocyte membrane, damaged by the pathophysiologic effects of 
HbS and HbS polymer, is responsible for the hemolysis and vasoocclusion that are 
the hallmarks of sickle cell disease. An injured and abnormal red cell membrane is 
likely to initiate intercellular interactions with the endothelium and leukocytes that 
trigger sickle vasoocclusion (Hebbel et al.  2004 ; Kaul et al.  1996 ; Kaul  2009 ; 
Frenette and Atweh  2007 ).  

3.5     Cellular Interactions 

 Sickle erythrocyte and leukocyte interaction with the endothelium prolongs eryth-
rocyte transit through hypoxic vascular beds, providing the time needed for deoxy-
HbS to polymerize (Fig.  3.4 ). Adhesive interactions require the expression of certain 
epitopes on erythrocytes, leukocytes and the endothelium along with soluble plasma 
factors. Two non-mutually exclusive constructs of the adhesion process have been 
proposed. An “erythrocentric” theory posits that sickle erythrocytes interact directly 
with endothelium (Fig.  3.4a ) (Hebbel  1984 ,  1997 ). A “leukocentric” theory pro-
poses that sickle erythrocytes interact with leukocytes that then contact and damage 
the endothelium (Turhan et al.  2002 ) (Fig.  3.4b ). There is ample evidence from 
human in vitro studies and murine in vivo and ex vivo studies that both means of 
adherence can occur, but limited data that the acute vasoocclusive events, hallmarks 
of sickle cell disease, are a direct result of adhesive interactions. In vitro studies of 
human sickle erythrocytes fi rst showed in a static adherence assay that these cells 
could adhere to endothelium with physiologically relevant forces and that more 
tenacious adherence was correlated with an estimate of disease severity. In more 
physiologically relevant conditions of fl ow, sickle cells also show increased ability 
to adhere (Hoover et al.  1979 ; Hebbel  1997 ; Hebbel et al.  1980 ; Zennadi et al.  2004 ; 
Mohandas and Evans  1984 ; Burns et al.  1985 ; Kaul et al.  1989 ). Ex vivo murine 
studies confi rmed adherence in the microvasculature to the precapillary venules 
with similar observations in some strains of sickle transgenic mice (Kaul et al.  1981 , 
 1983 ,  1995 ; Lipowsky et al.  1982 ; Smith and La Celle  1986 ).
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  Fig. 3.4    Mechanisms of cellular interactions. ( a ) In an “erythrocentric” view of sickle vasoocclu-
sion, initial contact with endothelium is caused by the adherence of sickle erythrocyte to endothe-
lium via P-selectin. The subsequent strengthening of this interaction and fi rm adherence is 
mediated by other adhesion molecules (Illustration kindly provided by S.H. Embury). ( b ) In a 
“leukocentric” view of sickle vasoocclusion, sickle erythrocytes and infl ammatory mediators acti-
vate endothelium that then recruits leukocytes and generates additional signals that produce polar-
ized expression of activated αMβ2 integrin (Mac-1) at the leading edge of the crawling neutrophil. 
This permits the capture of sickle erythrocytes. These events culminate in vasoocclusion in the 
postcapillary venules. Figure drawn from information from (Manwani and Frenette  2013 )       
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   Many different molecules have been implicated in the process of sickle erythro-
cyte adhesion to endothelium (Fig.  3.5 ) (Hebbel et al.  2004 ). Characteristically, the 
least dense cells and reticulocytes are the most adherent. Some adhesion molecules 
can interact directly with the endothelial cell membrane without bridging plasma 
proteins. Others need a soluble bridge molecule; some epitopes interact with suben-
dothelial matrix proteins. All these interactions have the potential of further injuring 
the endothelium and can lead to reperfusion injury provoking infl ammation and 
oxidant radical generation. Neutrophils can bind sickle erythrocytes but in this case, 
the most dense cells and ISCs are most adherent (Frenette and Atweh  2007 ). In 
sickle mice, leukocyte-erythrocyte interactions were most prominent and were 
potentiated following an infl ammatory stimulus that provoked vasoocclusion 
(Turhan et al.  2002 ). One refl ection of endothelial damage in sickle cell disease is 
increased numbers of circulating activated endothelial cells. Compared with circu-
lating endothelial cells from control subjects, sickle cell disease-derived endothelial 
cells produced more IL-8 and were more adherent to normal erythrocytes than cul-
tured endothelium from normal subjects (Solovey et al.  1997 ; Sakamoto et al.  2013 ).

   Selectins mediate intercellular interactions that include the adhesion of sickle 
cells to endothelium. P-selectin has been proposed as the initiating step in sickle- 
endothelial adhesion process. E-selectin mediates leukocyte-endothelial interac-
tions and the capture of sickle cells by neutrophils. Early phase clinical trials of an 
oral P-selectin blocking agent and an intravenous pan-selectin inhibitor, mainly 
active against E-selectin, have shown some clinical activity and further trials of 
these agents and an anti-P-selectin antibody are in process (Kutlar and Embury 
 2014 ; Chang et al.  2010 ). 

 Sickle vasoocclusion, hemolysis and nitric oxide (NO) depletion causes infl am-
mation. Another source of infl ammation in sickle cell disease is mediated by invari-
ant natural killer T-lymphocytes (iNKT cells). Ischemia-reperfusion can be initiated 
by the activation of iNKT cells and sickle mice have increased numbers of these cells 
compared with control animals (Field et al.  2013 ; Nathan et al.  2012 ; Lin et al.  2013 ). 
Antibodies targeting iNKT cells reversed pulmonary dysfunction in sickle mice. 
Patients also have increased numbers of activated circulating iNKT cells. Activation 
of the adenosine A 2  receptor on iNKT cells reduces pulmonary injury in sickle mice 
(Wallace et al.  2009 ). A clinically approved adenosine A 2  receptor agonist, regade-
noson, is in early-phase trials in sickle cell disease. Preliminary studies suggest that 
iNKT cells can be safely depleted by an antibody suggesting a possible approach to 
infl ammation-induced tissue damage. 

 There has been little evidence to support the role of coagulation in sickle vasooc-
clusion despite studies showing activation of both the intrinsic and extrinsic coagu-
lation systems. Nevertheless, activated endothelial cells with exposure of membrane 
PS and generation of tissue factor might activate the coagulation system and con-
tribute to vasoocclusion (Stuart and Setty  2001 ; Sparkenbaugh and Pawlinski  2013 ; 
Lim et al.  2013 ).  
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  Fig. 3.5    Multiple molecules can account for the adhesion of sickle cells to the endothelium. 
Figure reproduced with permission from Hebbel et al. ( 2004 )       
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3.6     Hemolytic Anemia and the Nitric Oxide Paradigm 

 Injury to the sickle erythrocyte membrane results in their premature removal from 
the circulation. The lifespan of sickle erythrocytes is 7–14 days compared with 
120 days for normal erythrocytes. To compensate, the hematopoietic bone mar-
row increases erythropoiesis and hypertrophies while spreading into long bones. 
But, compensation is incomplete and less than expected. This is likely to be a 
result of the decreased oxygen affi nity of sickle cell blood and damage to the mar-
row with regions of necrosis. Compared with other types of anemia, erythropoi-
etin levels are inappropriately low in sickle cell anemia and decrease further as 
renal function deteriorates (Sherwood et al.  1986 ). In distinction to severe β thal-
assemia, there is little intramedullary destruction of erythroid precursors and inef-
fective erythropoiesis in sickle cell disease is minimal. Stress reticulocytes, the 
product of expanded erythropoiesis are the fi rst cells to adhere in the microcircu-
lation facilitating the further entrapment of other erythrocytes and leukocytes. 
This is likely to provide the nexus between complications of the disease that are 
believed to be a result of hemolytic anemia and disease complications that are 
closely associated with sickle vasoocclusion and blood viscosity. Reticulocytes 
are not always long-lived. Their complement of HbF is uneven and those with 
higher levels of HbF survive longer while those with little or no HbF die more 
rapidly (Franco et al.  2006 ). 

 Damaged erythrocytes are removed from circulation by two pathophysiologic 
routes: extravascular catabolism within the reticuloendothelial system; intravascu-
lar lysis. Extravascular hemolysis is prompted by membrane PS exposure, exposure 
of epitopes that are recognized by macrophages and perhaps by the physical proper-
ties of rigid and deformed sickle cells. Intravascular hemolysis is related to oxidant 
radical generation within the sickle erythrocyte (Fig.  3.3 ) and exposure to external 
oxidants generated by xanthine oxidase, NADPH oxidase and uncoupled NO syn-
thase causing reduced abundance of reduced sulfhydryl groups and increased lipid 
peroxidation. Also contributing to intravascular hemolysis is increasing cell density 
resulting from hyperactive cation transport channels and loss of membrane lipid- 
rich microparticles (Fig.  3.3 ). Sickle cells have a defect in activity of the membrane 
attack complex, C5b-9, as C5b-7 and C9 binds to the most dense cells. Exposure of 
PS and PE might facilitate this binding (Liu et al.  1999 ). This leads to C5b-9- 
mediated lysis initiated by C5b-6. 

 Based on measurement of plasma hemoglobin, an accurate biomarker of intra-
vascular hemolysis, the fraction of cells lysing within the circulation varies from 
less than 10 % to more than 30 % and plasma heme can vary from 0.25 to more than 
20 μM (Reiter et al.  2002 ). Other more easily obtainable surrogate biomarkers of 
hemolysis are reticulocyte count, bilirubin level, AST, LDH, haptoglobin and urine 
hemosiderin. Combinations of some of these biomarkers have been used in a prin-
ciple component analysis as a measure of the degree of intravascular hemolysis 
(Nouraie et al.  2013 ; Milton et al.  2013 ; Gordeuk et al.  2009 ). 

M.H. Steinberg



63

3.6.1     Subphenotypes of Disease 

 Dozens of studies of hundreds of patients have fi rmly established the association of 
markers of hemolysis with certain complications of disease (Fig.  3.6 ) (Gladwin 
et al.  2004 ; Nolan et al.  2005 ,  2006 ; Taylor et al.  2008 ; Bernaudin et al.  2008 ; 
Guasch et al.  1999 ; Kato et al.  2006a ,  b ; Liem et al.  2007 ; Nouraie et al.  2013 ; Saraf 
et al.  2014 ; Minniti et al.  2011 ; Hamideh et al.  2014 ; van der Land et al.  2013 ). 
These observations have established the generally accepted hypothesis of a 
hemolysis- driven phenotype of sickle cell anemia characterized by a higher inci-
dence of pulmonary hypertension, stroke, leg ulcers, priapism and renal failure in 
patients with hyperhemolysis compared with patients with less intense hemolysis 
(Kato et al.  2007 ). Tricuspid regurgitant velocity (TRV) and serum nt-proBNP are 
markers of general vascular stress. Pulmonary arterial hypertension, ascertained by 
right heart catheterization, and TRV are both closely associated with the intensity of 
hemolysis and mortality in sickle cell anemia. Some aspects of the hemolytic phe-
notype are prevalent in other types of hemolytic anemia where intravascular hemo-
lysis is common, like paroxysmal nocturnal hemolytic anemia, thalassemia and 
hereditary spherocytosis. Observational and epidemiological studies of widely var-
ied patient cohorts that have shown associations of hemolysis with certain disease 
subphenotypes have been amply supported by mechanistic studies in animal models 
(Hu et al.  2010 ; Hsu et al.  2007 ).

  Fig. 3.6    The NO biology of sickle cell disease. Intravascular hemolysis liberates heme and hemo-
globin that scavenges NO producing nitrate and methemoglobin. Arginase is also released into the 
plasma and can catabolize L-arginine, the substrate for the NO synthases. NO is also oxidized by 
xanthine oxidase and NAPPH oxidase to peroxynitrite and superoxide. Together these scavenge 
bioavailable NO. LDH isozymes released during intravascular hemolysis are a marker of the extent 
of intravascular hemolysis. Figure reproduced with permission from (Kato et al.  2007 )       
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   The hyperhemolytic phenotype of sickle cell disease is driven by the liberation of 
hemoglobin into the plasma where it overwhelms the available detoxifi cation mech-
anisms of haptoglobin and hemopexin binding and leads to vascular injury (Deonikar 
and Kavdia  2012 ; Jeffers et al.  2006 ). This is in distinction to red cell destruction 
within the macrophage where only small amounts of hemoglobin escape its intracel-
lular catabolism. The presence of free plasma hemoglobin and heme promotes the 
scavenging of NO and its downstream effects of endothelial damage, vasoconstric-
tion, increased infl ammation, hypercoagulability, increased expression of adhesion 
molecules like VCAM-1, P-selectin, E-selectin, altered platelet function, increased 
expression of the vasoconstrictor endothelin-1 and alteration of vascular redox bal-
ance. Acute sickle vasoocclusive events are the most dramatic manifestation of dis-
ease and are the greatest acute concern for the patient and treating physicians. 
However, hemolytic anemia never stops, even when patients are successfully treated 
with hydroxyurea. Perhaps by depleting bioavailable NO, the vasculopathy associ-
ated with chronic intravascular hemolysis, while clinically unapparent for long peri-
ods, might have a greater effect on mortality than acute vasoocclusive events. 

 NO is a free radical produced enzymatically by a family of NO synthases in 
endothelium, macrophages and neurons during the conversion of arginine to citrul-
ine (Fig.  3.6 ) (Stamler et al.  1992 ,  1997 ). After its production, endothelial NO, a 
product of the endothelial NO synthase  NOS3 , diffuses to adjacent smooth muscle 
where it binds the heme of soluble guanylate cyclase that is activated and converts 
GTP to cGMP. This produces vasodilation by activating cGMP dependent protein 
kinases that causes calcium sequestration and relaxation of the perivascular smooth 
muscle (Cannon et al.  2001 ; Dejam et al.  2004 ; Kim-Shapiro et al.  2006 ). NO is also 
depleted by the liberation from the erythrocyte of arginase that can decrease the 
availability of arginine, the substrate for the NO synthases and by the conversion of 
NO to superoxide and peroxynitrite. 

 Based on this pathophysiology, restoration of vascular NO has been tested as 
potential treatment for the complications of sickle cell disease that are postulated to 
result from decreased NO bioavailability (Gladwin and Schechter  2001 ; Reiter and 
Gladwin  2003 ). Inhibiting the degradation of cyclic GMP, which is partly respon-
sible for maintaining vascular dilation, using phosphodiesterase 5 inhibitors like 
sildenafi l or tadalafi l, has been studied as treatment for pulmonary hypertension 
(Machado et al.  2005 ,  2011 ). Arginine, the substrate of the nitric oxide synthases 
has had limited study for pulmonary hypertension (Morris et al.  2003 ). None of 
these treatments have reached the clinic. The trial of sildenafi l was stopped prema-
turely because the treatment group had more sickle cell pain. Inhibiting phosphodi-
esterase 5, the predominant enzyme catabolizing cGMP in the corpora cavernosum 
was used to treat priapism in sickle cell anemia where it might restore toward nor-
mal dysregulated NO metabolism (Burnett  2003 ; Burnett et al.  2006 ; Champion 
et al.  2005 ). Inhaled NO reduced opioid use in a small study in children with acute 
vasoocclusive pain episodes (Weiner et al.  2003 ), but in a controlled randomized 
trial in adults it was no better than a placebo (Gladwin et al.  2011 ). A short-term 
phase 1 study of topical sodium nitrite cream, a NO donor, in sickle cell leg ulcers 
showed an increase in cutaneous blood fl ow and a dose dependent decrease in ulcer 
size with some ulcers healing completely.   
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3.7     Summary 

 One view of the pathophysiology of sickle cell disease is shown in Fig.  3.7 . The HbS 
mutation allows deoxyHbS to polymerize at oxygen saturations that are present in 
some vascular beds. Sickle polymer injures the erythrocyte and is responsible for its 
membrane injury and ultimate failure that produces a population of heterogeneous 
red blood cells, many of which are very short-lived and adherent to other circulating 
cells and to the endothelium. Intravascular destruction of some sickle erythrocytes 
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VASOOCCLUSION

HbS (Fe3+)HbS (Fe2+)
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  Fig. 3.7    The pathophysiology of sickle cell disease. The adenine (A) to thymidine (T) point muta-
tion at codon 6 in the  HBB  substitutes a valine for the normal glutamic acid. This single and 
“simple” change leads to the synthesis of HbS that has the nearly unique property of polymerizing 
when it is deoxygenated. DeoxyHbS polymer injures the erythrocyte and leads to a heterogeneous 
population of sickle cells with a damaged membrane. In the vasculature, sickle cells interact with 
endothelium and other blood cells leading to vasoocclusion. Damaged erythrocytes are short-lived 
and while most hemolysis is extravascular 10–30% of hemolysis occurs intravascularly releasing 
hemoglobin into the plasma. Hemoglobin scavenges NO that binds soluble guanylate cyclase, 
converts cyclic guanosine triphosphate to guanosine monophosphate, and relaxes vascular smooth 
muscle vasodilation. Reduced endothelial NO bioavailability impairs the homeostatic vascular 
functions like inhibition of platelet activation and aggregation and transcriptional repression of 
genes transcribing cell adhesion molecules. Hemoglobin, hemin (or heme), and heme iron catalyze 
the production of oxygen radicals and protein nitration, potentially further limiting NO bioavail-
ability and activating endothelium. Lysed erythrocytes also liberate arginase, which destroys 
L-arginine, the substrate for NO production, providing another mechanism for endothelial NO 
defi ciency. Hemin is released from ferric hemoglobin (Fe 3+ ) and promotes infl ammatory and oxi-
dative effects; Adapted from (Steinberg  2006 ).  EC  = endothelial cell;  N  = neutrophil;  R  = reticulo-
cyte;  RBC  = red blood cell       
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causes a state of NO defi ciency with reduced bioavailability. Hemolytic anemia and 
sickle vasoocclusion are intimately linked. It should not be supposed that the subphe-
notypes of this very complex disease are driven exclusively by either hemolysis or 
vasoocclusion. Both processes infl uence each other at various points in their conver-
gence, for example, reticulocytes refl ect the intensity of hemolysis and are also the 
most adherent erythrocytes. Nevertheless, understanding the importance and contri-
bution of each major pathophysiologic limb shown in Fig.  3.7  to the overall patho-
physiology of disease can focus our approach to treatment modalities that are targeted 
to one or the other of these branches. Treatments directed at inhibiting endothelial 
adherence would mainly target the complications of presumed sickle vasoocclusion, 
like acute painful episodes; those reducing the density of the sickle erythrocyte 
would reduce presumed complications of hemolysis, like stroke. The naturally occur-
ring example of sickle cell anemia-α thalassemia and the aforementioned results of a 
clinical trial of an agent that improved cell density and reduced hemolysis have 
shown that targeting effectively a single limb or aspect of pathophysiology might 
have unintended consequences and increase the chance of complications closely 
associated with the other pathophysiologic feature. Perhaps the best pharmacologic 
treatment approach is to focus on the most proximal driver of the disease, deoxyHbS 
polymerization, and inhibit this by increasing the intracellular concentration of 
HbF. To be most effective, the HbF level in each cell would have to approximate the 
level present in HbS-gene deletion hereditary persistence of HbF. Although this is 
not possible with the HbF-inducing drug, hydroxyurea, gene therapeutic approaches 
where this might be achievable, perhaps incorporating editing of the elements that 
modulate HbF gene expression, can be anticipated in the near future.
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    Chapter 4   
 Red Blood Cells and the Vaso-Occlusive 
Process                     

       Nancy     J.     Wandersee      and     Cheryl     A.     Hillery    

    Abstract     While the defi nitive genetic defect in sickle cell disease (SCD) is sickle 
hemoglobin (HbS), the relationship between the HbS mutation and the pathogenesis 
of vaso-occlusion in SCD remains incompletely understood and likely involves 
multiple complex and heterogeneous steps. Since chronic transfusion can prevent 
stroke and reduce the frequency of acute vaso-occlusive events, it is clear that the 
sickle red blood cell (RBC) plays a critical role in this process. Numerous sickle 
RBC factors contribute to the vaso-occlusive process, including: HbS polymeriza-
tion; RBC cation loss and resultant cellular dehydration; oxidative injury of RBC 
membrane proteins and lipids; band 3 clustering; loss of phospholipid asymmetry 
and phosphatidylserine exposure; reduced RBC deformability; irreversibly sickled 
RBCs; increased adhesion of sickle RBCs to the endothelium and other circulating 
blood cells; intravascular hemolysis with the release of cell-free hemoglobin, argi-
nase, and adenosine deaminase; and RBC microvesiculation. These sickle RBC 
properties initiate and propagate endothelial injury, vascular stasis, and activation of 
the coagulation and infl ammatory pathways, precipitating acute vaso-occlusion.  
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4.1       The Sickle Red Blood Cell (RBC) 

 Sickle cell disease (SCD) is caused by a single amino acid substitution in the beta 
chain of hemoglobin (hemoglobin β Glu6Val) that predisposes deoxyhemoglobin S 
to polymerize and form long crystals that distort and damage the red cell membrane 
(Hillery and Panepinto  2004 ; Hebbel  1991 ; Bunn  1997 ). In addition, sickle hemo-
globin (HbS) is moderately unstable, with oxidized hemoglobin binding avidly to 
the lipid bilayer and contributing to multiple membrane defects. The link between 
HbS polymerization, its many effects on the sickle red blood cell (RBC), and the 
pathobiology of vaso-occlusion remains incompletely understood and likely 
involves many complex and heterogeneous steps. The evidence that chronic RBC 
transfusion effectively prevents most primary or recurrent stroke events (Adams 
et al.  1998 ; Russell et al.  1984 ) and reduces the incidence of pain and acute chest 
syndrome (Miller et al.  2001 ) indicates a critical role for the sickle RBC in the 
pathophysiology of vaso-occlusion. Sickle RBC characteristics that appear to con-
tribute to acute vaso-occlusion include the extent of HbS polymerization, oxidant 
injury of membrane proteins and lipids, cation loss resulting in cellular dehydration, 
reduced deformability with a propensity for vesiculation, cellular lysis and enhanced 
adhesive properties. These sickle RBC characteristics also contribute to chronic 
endothelial injury, vascular stasis and increased activation of the infl ammatory and 
coagulation pathways. This chapter will focus on the role of the sickle red blood cell 
(RBC) in the vaso-occlusive process.  

4.2     Hemoglobin S Polymerization 

 The substitution of valine for glutamic acid at the sixth position of the beta chain of 
sickle hemoglobin creates a hydrophobic pocket in the hemoglobin tetramer that 
polymerizes upon deoxygenation. This polymerization process is reversed with 
reoxygenation. The polymerization of deoxy-HbS involves a two-step, double- 
nucleation process, followed by a rapid increase in polymer/fi ber formation that 
results in RBC “sickling” (Eaton and Hofrichter  1987 ). There is a delay time 
between HbS deoxygenation and the onset of exponential polymerization, which is 
markedly infl uenced by the intracellular hemoglobin concentration (MCHC), tem-
perature, pH, and the presence of non-S hemoglobins, such as HbF or HbA. For 
example, the delay time of polymer formation is dependent on the 15th to 30th 
power of hemoglobin concentration (Eaton and Hofrichter  1987 ). Thus, the dehy-
dration found in subpopulations of sickle RBCs (described in Sect.  4.3 ) can greatly 
promote HbS polymerization. 

 The estimated delay time of greater than 15 s predicts that an unimpeded sickle 
RBC should return to the lung for reoxygenation before HbS is fully polymerized 
(Mozzarelli et al.  1987 ; Du et al.  2015 ). In agreement, the majority of sickle RBCs 
in the returning venous circulation are not polymerized. However, any event that 
delays the return of the sickle RBC to the pulmonary circulation will permit pro-
gression to full polymerization. RBC adhesion to the vascular endothelium, either 
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directly to endothelial cells or via bridging adhesive ligands or bound leukocytes 
will also promote HbS polymerization due to delay in return to the pulmonary cir-
culation for reoxygenation. Reduced sickle RBC deformability will also slow traf-
fi cking through the microcirculation and prolong the time in the hypoxic 
environment. Finally, any pre-existing polymer that does not completely solubilize 
in the lung circulation may have a markedly shortened or absent delay time such 
that polymerization can more rapidly proceed in the microcirculation following 
delivery of oxygen to tissue beds (Huang et al.  2003 ). 

 While the defi nitive genetic defect in SCD is HbS, the direct link between HbS 
polymerization and the pathobiology of vaso-occlusion is more complex. Since HbS 
will only polymerize after delivery of oxygen, uninterrupted blood return to the lungs 
for reoxygenation is essential to prevent RBC sickling. Risk factors that promote 
sickling include RBC dehydration, lung or vascular disease that prevents optimal 
oxygenation, any right shift in oxygen binding curve (acidosis and fever), low HbF 
levels and delayed microvascular transit time due to leukocyte and sickle RBC adhe-
sion to injured or infl amed endothelium. Because of this, clinical care for sickle cell 
disease is often targeted to limit HbS polymerization, such as with generous hydra-
tion, optimizing oxygenation and raising HbF levels with hydroxyurea therapy.  

4.3      Cation Loss and Dehydration 

 Since the polymerization rate of deoxyHbS is critically dependent on the intracel-
lular concentration of hemoglobin, sickle RBC dehydration will promote sickling 
and may contribute to the development of vaso-occlusion in SCD cell disease; this 
may be best exemplifi ed by the papillary necrosis that occurs in the hyperosmolar 
kidney medulla. Additionally, RBC dehydration status can directly affect the adhe-
sive phenotype, possibly by exposing or altering adhesive components of the mem-
brane (Stone et al.  1996 ; Hebbel et al.  1989 ; Wandersee et al.  2005 ). 

 A signifi cant proportion of sickle RBCs are inherently dehydrated, primarily due 
to intracellular K +  and water losses via the erythrocyte Ca 2+ -dependent K +  (Gardos) 
channel (Brugnara et al.  1986 ) and the K/Cl cotransport system (Franco et al.  1996 ). 
In sickle RBCs, the pathologic activation of the Gardos channel that results in water 
loss is aggravated by transient increases in Ca 2+  permeability induced in sickle 
RBCs with every deoxygenation-reoxygenation cycle (Lew et al.  1997 ). In SCD, 
RBC K-Cl cotransport is activated by low pH (Brugnara et al.  1986 ), low magne-
sium content, oxidative damage, positively charged hemoglobin (HbS, HbC) and 
cell swelling. Clotrimazole specifi cally inhibits the Gardos channel (Brugnara et al. 
 1993 ). Magnesium decreases the K +  and water losses via the K/Cl cotransport sys-
tem. Both dietary magnesium supplementation (De Franceschi et al.  1996 ) and oral 
clotrimazole therapy (De Franceschi et al.  1994 ) improved the hydration status and 
hemoglobin levels of a transgenic sickle cell mouse model. 

 Despite the likely important link between polymerization of HbS with cellular 
dehydration, and the potential contribution of RBC dehydration to RBC adhesive 
properties (Wandersee et al.  2005 ), clinical trials to date using agents to improve 
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sickle RBC hydration have shown minimal effects on clinically signifi cant vaso- 
occlusive events. A short term study of fi ve patients with SCD treated with oral 
clotrimazole also reduced RBC dehydration and resulted in a striking reduction of 
the number of dense red cells (Brugnara et al.  1996 ). While the Phase II study using 
the novel inhibitor of the Gardos channel, ICA-17043, showed improvement of ane-
mia and reduction in reticulocytosis in patients with SCD (Ataga et al.  2006 ), the 
subsequent Phase III study was prematurely terminated due to lack of clinical effi -
cacy in reducing acute painful events in patients with sickle cell syndromes (Ataga 
et al.  2011 ). In addition, while preliminary studies using Mg pidolate to block the 
K/CL cotransport system confi rmed the benefi cial effects on red cell dehydration 
(De Franceschi et al.  2000 ; Hankins et al.  2008 ), the Phase III trial was terminated 
due to a slow rate of enrollment.  

4.4     Oxidant Injury of the Sickle RBC Membrane 

 Hemoglobin S has a higher auto-oxidation rate compared to hemoglobin A; oxi-
dized hemoglobin has an affi nity for the lipid bilayer and can expel its heme group 
with subsequent liberation of free iron (Hebbel et al.  1988 ; Sheng et al.  1998 ). 
Membrane associated iron is catalytically active and likely contributes to the 
increased susceptibility of sickle RBC membranes to lipid peroxidation (Chiu et al. 
 1979 ). This also promotes further hemoglobin denaturation, including the forma-
tion of irreversibly oxidized hemichromes located near the membrane inner surface. 
As a consequence, the sickle RBC membrane is uniquely targeted for oxidant stress, 
effectively bypassing or depleting the RBC of natural antioxidants, such as vitamin 
E (α- and γ-tocopherol) glutathione or ascorbic acid (Darghouth et al.  2011 ). The 
increased oxidative damage to membrane proteins and lipids contributes to sickle 
RBC membrane abnormalities, including aberrant clustering of surface proteins, 
disruption of phospholipid asymmetry, dysregulated cation homeostasis, reduced 
deformability, formation of irreversibly sickled cells (ISC), increased fragility and 
release of microvesicles.  

4.5     Clusters of Band 3 

 Clustered Band 3 can also participate in sickle RBC adhesion and promote vaso- 
occlusion. Band 3 is an abundant RBC anion exchanger that spans the plasma mem-
brane multiple times and is linked to the RBC cytoskeleton. Band 3 is abnormally 
clustered on the sickle RBC surface due to binding of its cytosolic sections to dena-
tured HbS hemichromes found at the inner sickle membrane (Waugh et al.  1986 ). 
Denatured hemoglobin also colocalizes glycophorin and ankyrin on sickle RBC 
membranes, although to a lesser extent than band 3. Clustering of band 3 binds 
naturally occurring anti-band 3 autoantibodies (Kannan et al.  1988 ). Opsonized 
band 3 promotes sickle RBC phagocytosis by the reticuloendothelial system that 
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will shorten the sickle RBC lifespan. Band 3 mediates the adhesion of malaria- 
infected RBCs to the vascular endothelium via exposure of previously cryptic adhe-
sive sites (Crandall et al.  1993 ). Peptides from sites of clustered Band 3 that are 
aberrantly exposed on sickle RBCs will also inhibit sickle RBC adhesion to cultured 
endothelial cells in vitro (Thevenin et al.  1997 ).  

4.6     Increased Phosphatidylserine (PS) Exposure 

 The normal lipid bilayer maintains phosphatidylserine (PS) and phosphatidylethanol-
amine sequestered on the inner leafl et. In SCD, PS is abnormally exposed on the 
outer surface of the sickle RBC membrane (Choe et al.  1986 ). This impairment of the 
normal phospholipid asymmetry on the sickle RBC membrane may be due to thiol 
oxidation of the translocase that moves PS to the inner layer and increased calcium 
activation of the scramblase that permits PS to move outward (Zachowski et al.  1985 ). 

 When PS translocates to the cell surface under normal physiologic circumstances, 
such as during platelet activation, externalized PS serves as an anchor for factors in 
the hemostatic system, promoting the activation of the coagulation cascade (Zwaal 
and Schroit  1997 ). In agreement, there is a correlation between the level of sickle 
RBC PS exposure and the activity of the coagulation cascade in human and murine 
SCD (Setty et al.  2000 ,  2001 ). This suggests that this loss of sickle RBC membrane 
asymmetry, which results in increased PS exposure, contributes to the well described 
prothrombotic state found in individuals with SCD (Singer and Ataga  2008 ). Sickle 
membrane PS exposure also promotes RBC adhesion to endothelial cells (Setty 
et al.  2002 ; Schlegel et al.  1985 ; Manodori et al.  2000 ). In addition, PS exposure on 
sickle RBCs shortens RBC survival in sickle mice effectively increasing hemolytic 
rate (de Jong et al.  2001 ). Thus, increased PS exposure on sickle RBCs may partici-
pate in the vaso-occlusive process by increased adhesion to the microvasculature, 
activation of the coagulation cascade, and decreased RBC lifespan.  

4.7     Membrane Deformability and Irreversibly Sickled 
Cells (ISC)  

 There is reduced deformability of sickle RBCs even when oxygenated and when 
HbS is fully solubilized (Chien et al.  1970 ). Both cellular dehydration and irrevers-
ible membrane changes contribute to this effect. This includes abnormal associa-
tions and crosslinking of cytoskeletal proteins and membrane components that 
result from both repeated HbS polymerization and oxidative injury of the membrane 
lipids and proteins. 

 Irreversibly sickled RBCs (ISCs) are the predominant form of “sickled” RBCs 
seen on typical blood smears. ISCs are due to a permanent shape change as a product 
of damage to membrane and cytoskeletal proteins enabling the retention of the elon-
gated RBC shape regardless of hemoglobin polymerization status (Lux et al.  1976 ). 

4 Red Blood Cells and the Vaso-Occlusive Process



80

Consequently, even when the HbS is oxygenated and fully soluble, the ISC retains 
its abnormal elongated shape. ISCs tend to be very dense (MCHC greater than 44 g/
dL), externalize PS, have low HbF levels and very short survival (Bertles and Milner 
 1968 ). Clinically, ISCs are important in diagnosis of a sickling disorder from a blood 
smear, vary greatly in number between individual patients and contribute to the 
hemolytic rate from the shortened life span. While ISCs likely participate in RBC 
blockage associated with vaso-occlusion (Kaul et al.  1986 ), it is less clear whether 
the ISC count correlates with vaso-occlusive severity (Barabino et al.  1987b ).  

4.8     Adhesive Properties of Sickle RBCs 

 The increased adhesion of sickle RBCs to vascular endothelium in vitro has been 
described using both static adhesion assays (Hebbel et al.  1980b ; Mohandas and 
Evans  1984 ) and endothelialized fl ow chambers (Barabino et al.  1987a ). These 
observations have been confi rmed using live animal models by either infusing 
human sickle RBCs into rats (Fabry et al.  1989 ; Kaul et al.  1989 ; French et al.  1997 ) 
or by studying transgenic sickle cell mouse models (Kaul et al.  1995 ; Wood et al. 
 2004 ). In addition, leukocyte and platelet interactions with sickle RBC and vascular 
endothelium are important components of the vaso-occlusive process (Turhan et al. 
 2002 ; Dominical et al.  2015 ; Conran and Costa  2009 ). The enhanced interactions 
between sickle RBCs, leukocytes, platelets and the vessel wall play important roles 
in the pathogenesis of vascular occlusion in sickle cell disease. 

 The early fi ndings that sickle RBCs adhere to the endothelium to a variable 
degree and that the level of adhesion may correlate with disease severity (Hebbel 
et al.  1980a ) prompted further investigation into potential receptors and signaling 
pathways involved in the adhesive processes. Reticulocytes from both normal and 
sickle individuals express the adhesion molecules integrin α4β1 (Swerlick et al. 
 1993 ; Joneckis et al.  1993 ) and CD36 (GP IV) (Joneckis et al.  1993 ; Sugihara et al. 
 1992 ; Browne and Hebbel  1996 ). Immature reticulocytes have greater levels of 
adhesion to endothelial cells compared to mature RBCs, pointing to a potential 
unique role for reticulocyte adhesion under select experimental and physiologic 
conditions (Mohandas and Evans  1984 ; Brittain et al.  1993 ; Fabry et al.  1992 ; 
Joneckis et al.  1993 ; Sugihara et al.  1992 ). Potential RBC adhesion molecules that 
remain present on mature RBCs include basal cell adhesion molecule-1/Lutheran 
(BCAM/LU), intercellular adhesion molecule-4 (ICAM-4) (Zennadi et al.  2004 ), 
integrin associated protein (CD47), phosphatidylserine (PS) (Setty et al.  2002 ) and 
sulfated glycolipids (Hillery et al.  1996 ; Joneckis et al.  1996 ). 

 Integrin α4β1 is a receptor for both fi bronectin and vascular cell adhesion mole-
cule- 1 (VCAM-1) (Humphries et al.  1995 ). Sickle RBCs bind to VCAM-1 on 
cytokine- stimulated endothelial cells (Swerlick et al.  1993 ) or transfected COS cells 
(Gee and Platt  1995 ), as well as immobilized fi bronectin (Kasschau et al.  1996 ) via 
α4β1. The activation state of α4β1 is regulated by several factors, including divalent 
cation concentration and agonist-induced cell signaling (Han et al.  2003 ). The α4 
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cytoplasmic domain is directly phosphorylated in vitro by cAMP-dependent protein 
kinase A (PKA) (Goldfi nger et al.  2003 ), suggesting a role for PKA in activation of 
α4β1. In agreement, ligation of CD47 on sickle reticulocytes activates α4β1 via a 
PKA-dependent phosphorylation of the α4 cytoplasmic tail (Brittain et al.  2004 ). 
Sickle RBC α4β1 binding to endothelial VCAM-1 likely contributes to the adher-
ence of sickle reticulocytes to cytokine-stimulated retinal microvascular endothelial 
cells in vitro (Setty and Stuart  1996 ). 

 CD36 is a non-integrin adhesive receptor that binds thrombospondin (TSP) and 
collagen and is present on the surface of endothelial cells, platelets, and a 
reticulocyte- rich subpopulation of normal and sickle RBCs (Joneckis et al.  1993 ; 
Sugihara et al.  1992 ). Sickle RBCs bind to endothelial cells in the presence of solu-
ble TSP and this adhesion is blocked by anti-CD36 monoclonal antibodies in both 
static adhesion assays (Sugihara et al.  1992 ) and under fl ow conditions (Brittain 
et al.  1993 ). 

 The Lutheran blood group proteins, basal cell adhesion molecule-1 and Lutheran 
(BCAM/Lu) are derived by alternative splicing from the same gene and differ only 
in the length of their cytoplasmic tails. Sickle RBCs over express BCAM/Lu, which 
specifi cally binds to the alpha 5 subunit of the extracellular matrix protein laminin 
(Udani et al.  1998 ; Parsons et al.  2001 ). RBC intercellular adhesion molecule-4 
(ICAM-4), otherwise known as blood group Landsteiner-Weiner (LW), binds β3 
integrins, including αvβ3 expressed on vascular endothelial cells (Parsons et al. 
 1999 ). In a rat ex vivo microvascular fl ow model, ICAM-4-specifi c peptides inhib-
ited human sickle RBC adhesion to the activated ex vivo microvascular endothelium 
(Kaul et al.  2006 ). Interestingly, both BCAM/Lu and ICAM-1 can be activated by 
epinephrine in a subset of sickle RBCs via a cAMP-dependent pathway that likely 
involves PKA (Zennadi et al.  2004 ; Hines et al.  2003 ). 

 Integrin-associated protein (CD47) is a 50 kDa integral membrane protein found 
on RBCs and many other cells that associates with integrins and binds to the 
C-terminal cell binding domain of thrombospondin-1 (TSP) (Gao et al.  1996 ). 
CD47 is expressed in RBCs and protects normal RBCs from immune clearance 
(Oldenborg et al.  2000 ). CD47 on sickle RBCs binds immobilized TSP under both 
static and fl ow conditions (Brittain et al.  2001 ). Furthermore, soluble TSP binds 
CD47 and induces an increase in sickle RBC adhesion via shear stress-dependent 
and G protein-mediated signal transduction pathways (Brittain et al.  2001 ). 

 Lipids naturally present in the red cell membrane that have been abnormally 
exposed or modifi ed on the sickle RBC also contribute to their adhesive properties. 
For example, increased exposure of phosphatidylserine (PS) on the sickle RBC 
likely contributes to its proadhesive phenotype (Setty et al.  2002 ; Schlegel et al. 
 1985 ; Manodori et al.  2000 ). Sulfated glycolipids avidly bind TSP, von Willebrand 
factor, and laminin and may also play a role in sickle red cell adhesion (Hillery et al. 
 1996 ; Joneckis et al.  1996 ; Barabino et al.  1999 ; Zhou et al.  2011 ). 

 A disturbed endothelium contributes to sickle RBC, leukocyte and platelet adhe-
sion. Endothelial adhesive molecules that bind sickle RBCs include VCAM-1, inte-
grin αVβ3, E-selectin and P-selectin (Swerlick et al.  1993 ; Gee and Platt  1995 ; 
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Brittain et al.  1993 ; Natarajan et al.  1996 ; Matsui et al.  2001 ). For example, mono-
clonal antibodies directed against αVβ3 inhibited human sickle RBC adhesion to 
platelet-activating factor (PAF)-treated rat mesocecum vasculature ex vivo (Kaul 
et al.  2000b ). In agreement, αVβ3 antagonists also reduced sickle RBC adhesion to 
human endothelial cell monolayers under venular shear fl ow conditions (Finnegan 
et al.  2007 ). P-selectin is rapidly expressed on the surface of activated endothelial 
cells and promotes sickle RBC rolling and adhesion (Embury et al.  2004 ). Optimal 
surface expression of these endothelial adhesion molecules requires induction by 
cytokines, shear stress or other perturbations of the endothelium. In fact, exposure 
of endothelium to infl ammatory agonists is associated with increased RBC adhesion 
(Wick and Eckman  1996 ; Manodori  2001 ). 

 Adhesive plasma and extracellular matrix proteins may also contribute to sickle 
RBC adhesion. Thrombospondin (TSP) is a 450 kDa, homotrimeric glycoprotein 
present in the subendothelial matrix, plasma and platelet alpha storage granules; it 
can be released in high local concentrations by activated platelets (Santoro and 
Frazier  1987 ). In SCD, both soluble and immobilized TSP can bind sickle RBCs. In 
its soluble form, TSP may serve as a linker molecule between sickle RBCs and 
endothelial cells (Brittain et al.  1993 ; Gupta et al.  1999 ). TSP also interacts with 
sickle RBC CD47 (Brittain et al.  2001 ), sulfated glycolipids (Barabino et al.  1999 ), 
and a normally cryptic domain of the dominant membrane protein, band 3, which is 
subject to rearrangement in hematologic disorders (Thevenin et al.  1997 ; Sherman 
et al.  1992 ). Laminin, a major constituent of the extracellular matrix, is composed 
of a family of large heterotrimeric glycoproteins that support cell adhesion and 
migration (Tryggvason  1993 ). Sickle RBCs avidly bind both immobilized and sol-
uble laminin (Udani et al.  1998 ; Hillery et al.  1996 ). Vitronectin, fi brinogen, and 
von Willebrand factor also support sickle RBC adherence (Wick and Eckman  1996 ). 

 Sickle RBCs also bind leukocytes and platelets (Sakamoto et al.  2013 ; Frenette 
 2004 ). In fact, the leukocyte-endothelial cell adhesive event may initiate and pre-
cede sickle RBC adhesion in the microvascular bed (Turhan et al.  2002 ; Dominical 
et al.  2015 ; Conran and Costa  2009 ). The sickle RBC likely utilizes multiple adhe-
sive pathways, potentially fi rst binding to the endothelium and inducing localized 
pathologic changes, followed by a second adhesive event with the sickle RBC bind-
ing to leukocytes, platelets, or the newly exposed endothelial or subendothelial 
adhesive ligands.  

4.9     Increased Fragility and Microvesiculation 

 Sickle RBCs have increased fragility with a propensity for vesiculation and cellular 
lysis. The shortened lifespan of sickle RBCs includes both extravascular mecha-
nisms of removal, primarily through the reticuloendothelial system, and intravascu-
lar hemolysis. Intravascular RBC lysis releases intracellular components and 
generates RBC microvesicles and likely contributes most directly to the vaso- 
occlusive process. 
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4.9.1     Intravascular Hemolysis 

 Intravascular hemolysis contributes to the vascular pathologies associated with 
SCD. RBC lysis releases Hb into the plasma compartment; consequently plasma 
levels of cell-free Hb (CF-Hb) from individuals with SCD are elevated. CF-Hb is 
present mainly in the ferrous oxygenated form (oxyHb) with a smaller contribution 
of the ferric form (metHb) (Reiter et al.  2002 ). Normal individuals have plasma 
CF-Hb levels of less than 1 μM, whereas individuals with SCD have variable levels 
up to ~20 μM (Reiter et al.  2002 ). CF-Hb is an effi cient scavenger of nitric oxide 
(NO), a critical regulator of vascular homeostasis (Datta et al.  2004 ; Gladwin et al. 
 2004 ; Jison and Gladwin  2003 ; Liao  2002 ; Pawloski  2003 ; Jeffers et al.  2006 ; Kim- 
Shapiro et al.  2006 ; Lancaster Jr  1994 ). OxyHb reacts with NO with a rate constant 
in excess of 10 7  M −1 s −1  to form metHb and inert nitrate. In individuals with SCD, 
oxidation of CF-Hb by NO inhalation therapy improves forearm blood fl ow in 
response to nitrovasodilators, suggesting that CF-Hb has an acute effect on the bio-
availability of NO (Reiter et al.  2002 ). However, chronic vascular dysfunction in 
isolated vessels has been observed in animal models of SCD and other intravascular 
hemolytic models (Kaul et al.  2000a ; Frei et al.  2008 ; Ou et al.  2003 ). The role 
played by CF-Hb in chronic vascular dysfunction is less clear, but it is conceivable 
that long-term loss of NO bioavailability, due to the presence of CF-Hb, could lead 
to signifi cant changes in endothelial function, including a switch to alternate mech-
anisms of vascular control (Godecke and Schrader  2000 ; Zatz and Baylis  1998 ). 
The chronic presence of CF-Hb is also associated with other pathological presenta-
tions of SCD, including hemoglobinuria, increased blood pressure and vasocon-
striction, decreased inhibition of platelet activation, a prothrombotic tendency, and 
increased expression of endothelial cell adhesion molecules such as ICAM-1, 
VCAM-1 and E-selectin (Rother et al.  2005 ; Villagra et al.  2007 ; Silva et al.  2009 ). 

 Other cytoplasmic components of lysed RBCs also accumulate in the plasma 
during chronic intravascular hemolysis, and may be important contributors to over-
all vascular dysfunction. RBC arginase has been specifi cally highlighted as arginase 
will deplete the substrate for nitric oxide formation with a negative impact on vaso-
reactivity. In this regard it is worth highlighting that there is signifi cant evidence that 
RBC arginase, in humans, may contribute to loss of NO function through its ability 
to deplete arginine, the substrate for nitric oxide synthase (Rother et al.  2005 ; 
Gladwin  2006 ; Morris et al.  2008 ). 

 In addition, hemolysis releases adenosine deaminase (ADA) from the RBC into 
plasma, reducing extracellular adenosine stores via the conversion of adenosine to 
inosine (Tofovic et al.  2009 ). Since adenosine is involved in protective responses 
against vasculopathy, the reduction of adenosine by ADA released from RBCs may 
exacerbate vascular pathology initiated by cell-free hemoglobin and heme (Tofovic 
et al.  2009 ).  
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4.9.2     Microvesiculation 

 Patients with SCD have elevated RBC, platelet, monocyte, and endothelial microves-
icles that increase further during crisis (Shet et al.  2003 ). RBC sickling, induced by 
hypoxia and subsequent reoxygenation, causes the loss of 2–3 % of sickled RBC 
lipids in the form of microvesicles (Allan et al.  1982 ). RBC-derived microvesicles 
house hemoglobin, which scavenges NO with comparable kinetics to soluble hemo-
globin (Donadee et al.  2011 ). Circulating RBC fragments and microparticles may 
directly injure the endothelium and promote coagulation and infl ammation (Setty 
et al.  2001 ). Interestingly, when children with SCD were treated with hydroxyurea 
therapy, which should improve sickling and provide a new source of nitric oxide, 
there were reduced levels of RBC and platelet-derived microvesicles compared to 
untreated counterparts (Nebor et al.  2013 ). 

 Incubation of sickle RBC microvesicles with cultured endothelial cells induced 
reactive oxygen species (ROS) formation to a much greater extent than control RBC 
microvesicles (Camus et al.  2012 ). The ROS formation was also inhibited by pre- 
treating the microvesicles with annexin V to “cover” microvesicle anionic phospho-
lipids. When RBC microvesicles were injected into a mouse model of sickle cell 
disease, acute “vaso-occlusion” of the kidneys was observed, suggesting a potential 
role for microvesicles in the evolution of vaso-occlusion (Camus et al.  2012 ,  2015 ). 

 In summary, the sickle RBC is a critical participant in the vaso-occlusive pro-
cess, which is the major clinical manifestation of sickle cell disease. HbS directly 
injures the sickle RBC through polymerization of deoxyHbS that distorts and per-
turbs the red blood cell membrane and through oxidized HbS that binds to the lipid 
bilayer, causing further membrane damage. This results in a wide array of sickle 
RBC abnormalities, including cellular dehydration, clustering of band, increased PS 
exposure, reduced RBC deformability, increased hemolysis with release of intracel-
lular contents and microvesicles, and increased adhesion to the vascular  endothelium 
and non-erythroid blood cells. These aberrant sickle RBC properties initiate and 
propagate endothelial injury, vascular stasis, and activation of the coagulation and 
infl ammatory pathways, ultimately precipitating acute vascular occlusion.      
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    Chapter 5   
 Leukocytes in the Vaso-Occlusive Process                     

       Dachuan     Zhang      and     Paul     S.     Frenette     

    Abstract     Sickle cell disease (SCD) results from a single mutation in the  β-globin  
gene, leading to clinical manifestations that extend far beyond the mutated hemoglobin 
in red blood cells (RBCs). SCD is associated with a chronic infl ammatory condition 
that, in the presence of a “second hit”, can produce vaso-occlusive crises (VOC), the 
major cause of morbidity and mortality of the disease. Leukocytes play an important 
role in the vaso-occlusive phenomenon, as suggested initially by the fi ndings of clinical 
studies that high leukocyte count strongly correlates with clinical severity of the 
disease. Further, intravital microscopy studies in SCD mice have revealed that sickle 
RBCs directly interact with adherent neutrophils in post- capillary and collecting 
venules. These heterotypic interactions are mediated by activated α M β 2  (Mac-1) integ-
rin polarized on the leading edge of adherent neutrophils, resulting in severe VOC. A 
multistep and multicellular model for the vaso- occlusive process is proposed in which 
endothelial cells are activated by sickle RBCs and multiple infl ammatory mediators, 
leading to the recruitment of adherent leukocytes. The recruited adherent neutrophils 
capture circulating sickle RBCs, resulting in reduced blood fl ow and vascular occlusion 
in the microcirculation. This model has triggered several clinical trials targeting drivers 
of vaso-occlusion, and suggests a major contribution of leukocytes to sickle cell VOC.  
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5.1       Infl ammation in Sickle Cell Disease 

5.1.1     Sickle RBCs Promote Infl ammation 

 Repeated cycles of RBC sickling and the generation of oxygen radicals in sickle 
RBCs lead to profound changes in the surface membrane that promote their adhe-
sion to the endothelium (Kaul et al.  2009 ). The interactions between sickle RBCs 
and the endothelium lead to the activation of endothelial cells. For example, co- 
culture of human umbilical vein endothelial cells (HUVECs) with sickle RBCs in 
presence of von Willebrand factor (vWf) derived from endothelial cell-conditioned 
medium results in a dramatic increase of lipid peroxide formation and activation of 
the transcription factor NFκB in endothelial cells (Sultana et al.  1998 ). Activation 
of NFκB signaling leads to up-regulation of several adhesion molecules on endothe-
lial cells, including E-selectin, vascular cell adhesion molecule 1 (VCAM-1) and 
intercellular adhesion molecule 1 (ICAM-1) (Sultana et al.  1998 ), which mediate 
leukocyte recruitment and adhesion (Ley et al.  2007 ). The interactions of sickle 
RBCs with leukocytes also lead to the activation of leukocytes. For example, sickle 
RBCs have been shown to adhere to neutrophils in vitro, resulting in respiratory 
burst in neutrophils (Hofstra et al.  1996 ). In addition, sickle RBCs also produces 
higher amount of oxygen radicals compared to normal RBCs, thus promoting 
infl ammation and tissue damage (Hebbel et al.  1982 ). 

 Damaged surface membranes also enhance hemolysis, resulting in anemia and 
the release of hemoglobin into the circulation. Extracellular hemoglobin promotes 
infl ammation in sickle cell disease (SCD) by depleting nitric oxide (NO), triggering 
oxidative stress and releasing heme, the prosthetic moiety of hemoglobin (Schaer 
et al.  2013 ). Extracellular heme could increase the expression of adhesion mole-
cules on endothelial cells, thus enhancing leukocyte recruitment and adhesion 
(Wagener et al.  2001 ). In both SCD patients and mice, plasma heme levels are ele-
vated during vaso-occlusive crisis (VOC), leading to activation of circulating neu-
trophils and the formation of neutrophil extracellular traps (NETs) in the pulmonary 
vasculature and causing acute lung injury (Chen et al.  2014 ). In addition, adminis-
tration of exogenous heme or hemin, the oxidized form of heme, can trigger VOC 
or acute chest syndrome (ACS) in SCD mice, respectively. Heme/hemin-induced 
VOC and ACS could be largely prevented by toll-like receptor 4 (TLR4) inhibition, 
suggesting that extracellular heme/hemin signals through TLR4 to trigger an infl am-
matory response (Ghosh et al.  2013 ; Belcher et al.  2014 ).  

5.1.2     Hypoxia-Reoxygenation Promotes Infl ammation 

 Recurrent vaso-occlusive events in individuals with SCD evoke repeated transient 
cycles of hypoxia-reoxygenation in the microcirculation. Using a transgenic sickle 
cell mouse model, Kaul and Hebbel showed that the induction of hypoxia followed 

D. Zhang and P.S. Frenette



93

by reoxygenation enhances peroxide production by endothelial cells and increases 
leukocyte recruitment in the venules of sickle cell mice but not of normal mice 
(Kaul and Hebbel  2000 ). Hypoxia-reoxygenation promotes leukocyte recruitment 
by activating NFκB signaling in endothelial cells, leading to increased expressions 
of endothelial adhesion molecules, including ICAM-1 and VCAM-1 (Kaul et al. 
 2004 ; Belcher et al.  2005 ). Administration of corticosteroid drug dexamethasone or 
NFκB inhibitor sulfasalazine prevents the activation of endothelial cells induced by 
hypoxia-reoxygenation, leading to marked decreases in leukocyte adhesion and 
increased blood fl ow (Kaul et al.  2004 ; Belcher et al.  2005 ).  

5.1.3     Monocytes and iNKT Cells Promote Infl ammation 

 Several leukocyte populations exhibit an activated phenotype and promote infl am-
mation even under steady state conditions in SCD. For example, monocytes from 
SCD patients express higher levels of the activation marker CD11b, and can activate 
endothelial cells by secreting higher levels of tumor necrosis factor-alpha (TNF-α) 
and interleukin-1-beta (IL-1β) compared to normal monocytes (Belcher et al.  2000 ). 
Co-culture of monocytes from SCD patients with pulmonary microvascular and 
arterial endothelial cells results in activation of NFκB signaling and up-regulation 
of multiple adhesion molecules and cytokines in endothelial cells (Safaya et al. 
 2012 ; Belcher et al.  2000 ). One possible mechanism for monocyte activation in 
SCD individuals is the increased production of placental growth factor (PlGF), an 
angiogenic growth factor produced by erythroblasts. Levels of PlGF are elevated in 
the plasma of individuals with SCD and correlate with disease severity. Treating 
monocytes with PlGF stimulates monocyte chemotaxis and increases the expres-
sions of IL-1β, IL-8, monocyte chemoattractant protein-1 (MIP-1), and vascular 
endothelial growth factor (VEGF) in monocytes, thus activating endothelial cells 
and promoting infl ammation (Perelman et al.  2003 ). 

 The infl ammatory condition is also amplifi ed by CD1d-restricted invariant natu-
ral killer T (iNKT) cells. Compared to normal mice, SCD mice have more numer-
ous and activated iNKT cells (CD69 +  IFN-γ + ) in lung, liver and spleen that are 
hypersensitive to hypoxia-reoxygenation (Wallace et al.  2009 ). SCD mice have 
increased pulmonary levels of IFN-γ and IFN-γ-inducible CXCR3 chemokine 
CXCL9 and CXCL10, and increased numbers of CXCR3 +  lymphocytes in the lung. 
Baseline pulmonary dysfunction in SCD mice can be reversed by inhibiting iNKT 
cell activation using a CD1d antibody, by neutralizing CXCR3 on lymphocytes, or 
by completely depleting lymphocytes using genetic models (Wallace et al.  2009 ). 
Activated iNKT cells also exhibit a dramatic increase in the expression of an anti- 
infl ammatory receptor, adenosine A 2A  receptor (A 2A R). Treating SCD mice with 
A 2A R agonists decreases the activation of iNKT cells, producing an effective rever-
sal of the baseline pulmonary dysfunction (Wallace and Linden  2010 ). Patients with 
SCD also show increased activation of iNKT cells in the circulation during painful 
VOC, leading to NFκB activation and increased expression of A 2A R (Lin et al. 
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 2013 ). An A 2A R agonist, regadenoson, has been shown to reverse iNKT cell activa-
tion during VOC in SCD patients. Currently a phase 2 trial is ongoing to determine 
the therapeutic effi cacy of regadenoson infusion (Field et al.  2013 ; Nathan et al. 
 2012 ).  

5.1.4     Cytokine Profi le in SCD 

 Elevation of multiple cytokines in the circulation, including TNF-α (Francis and 
Haywood  1992 ; Malave et al.  1993 ), IL-1β (Francis and Haywood  1992 ; Croizat 
 1994 ), granulocyte macrophage colony-stimulating factor (GM-CSF), IL-3 (Croizat 
 1994 ), endothelin-1 and prostaglandin E2 (Graido-Gonzalez et al.  1998 ), have been 
reported in SCD. However, contradictory observations were also noted for TNF-α 
and IL-1β (Graido-Gonzalez et al.  1998 ), suggesting that the cytokine profi le in 
SCD patients might be affected by disease manifestations. 

 These pro-infl ammatory cytokines can activate NFκB signaling in leukocytes 
and endothelial cells, resulting in a feed-forward pro-infl ammatory response to pro-
duce more cytokines and chemokines. The importance of these infl ammatory medi-
ators is highlighted by observations that anti-infl ammatory drugs can alleviate SCD 
symptoms in patients and mouse models (Kaul et al.  2004 ; Solovey et al.  2001 ; 
Griffi n et al.  1994 ; Belcher et al.  2005 ). Although the strong adverse effects of cor-
ticosteroid therapy precludes a prolonged use, high-dose intravenous methylpred-
nisolone therapy was shown to signifi cantly shorten the duration of the pain crisis in 
patients (Griffi n et al.  1994 ). Similarly, treatment with dexamethasone or NFκB 
inhibitor sulfasalazine prevents endothelial cell activation and improves the disease 
outcome (Belcher et al.  2005 ; Kaul et al.  2004 ; Solovey et al.  2001 ).  

5.1.5     A “Second Hit” for Vaso-Occlusive Crisis 

 Interplay of these above-described factors perpetuates a continuous infl ammatory 
condition that predisposes SCD patients and mice to VOC. However, the initiation 
of VOC often requires a “second hit” or triggering event, such as infection, ischemia- 
reperfusion or hemolysis, which could induce an acute infl ammatory response that 
precipitates the crisis. For example, infection can induce a cytokine storm in which 
the levels of many cytokines, including TNF-α and IL-1β, are elevated (Ahmed 
 2011 ). In fact, TNF-α alone plus surgical injury can induce lethal VOC in SCD mice 
(Turhan et al.  2002 ). Delayed hemolytic transfusion reaction can also trigger VOC 
by elevating plasma CXCL1 levels. Exogenous administration of CXCL1 alone is 
suffi cient to induce VOC and inhibition of CXCR2, the receptor for CXCL1, pre-
vents the hemolytic transfusion reaction-induced VOC (Jang et al.  2011 ). In addi-
tion, infusion of heme can also trigger VOC by activating endothelial cells through 
TLR4 (Belcher et al.  2014 ).   

D. Zhang and P.S. Frenette



95

5.2     Leukocytes in Sickle Cell Disease 

5.2.1     Leukocyte Count Is a Major Risk Factor for VOC 

 A role for leukocytes in the pathophysiology of SCD is suggested by clinical epide-
miological studies. For many years, it has been noted that marked variation in dis-
ease severity exists between patients with SCD. For example, in a longitudinal 
cohort study of 280 subjects with homozygous SCD, benign disease occurred in 15 
% patients (Thomas et al.  1997 ). In patients with painful crisis, the most common 
disease manifestation, the severity varies between individuals, with rates of crisis 
episodes ranging from 0 per year to 10+ per year. Patients with high rates of painful 
crisis tend to die earlier than those with low rates of crisis (Platt et al.  1991 ). Such 
striking variation between patients with an identical genetic mutation raised the 
challenge to identify the risk factors for clinical severity of the disease so that pro- 
active treatment can be applied before irreversible damage to vital organs occurs. 
Among the factors that showed statistically signifi cant correlation with disease 
severity in SCD, steady-state neutrophil count was identifi ed to be a major risk fac-
tor (Anyaegbu et al.  1998 ). The patients with severe clinical manifestations have 
signifi cantly more circulating neutrophils compared to racially matched controls 
(Anyaegbu et al.  1998 ). High leukocyte counts in SCD patients also positively cor-
relate with early SCD-related death (Platt et al.  1994 ), silent brain infarcts (Kinney 
et al.  1999 ), and acute chest syndrome (Castro et al.  1994 ). High leukocyte counts 
in SCD infants also appear to be one of the three manifestations that can predict 
disease severity later in life (Miller et al.  2000 ).  

5.2.2     Myeloid Growth Factors Are Contraindications in SCD 

 An important role of leukocytes in SCD is further demonstrated by clinical studies 
that administration of myeloid growth factors, including granulocyte macrophage 
colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor 
(G-CSF), can cause severe disease outcome. In the fi rst report, local injection of 
GM-CSF to treat leg ulcers in a sickle cell patient triggered a crisis (Pieters et al. 
 1995 ). In two reports attempting to mobilize hematopoietic stem and progenitor 
cells for gene therapy, administration of G-CSF resulted in severe or fatal VOC 
(Abboud et al.  1998 ; Adler et al.  2001 ). In another case, a patient with stage II inva-
sive ductal breast carcinoma and sickle cell/β +  thalassemia received chemotherapy 
followed by G-CSF treatment to correct neutropenia. Shortly after the G-CSF treat-
ment, the patient developed severe sickle cell crisis leading to life-threatening 
multi-organ failure (Grigg  2001 ). In a more recent report, a patient was identifi ed to 
have a rare co-existence of sickle cell disease and severe congenital neutropenia 
associated with a mutation in ELANE, which resulted in signifi cantly reduced 
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sickle cell complications compared to his siblings. The patient received G-CSF 
treatment to correct his neutropenia, which markedly worsened the course of dis-
ease (Wali et al.  2012 ). 

 These reports suggest an important role of myeloid cells in the pathogenesis of 
sickle cell VOC, given that G-CSF and GM-CSF are potent inducers of myeloid cell 
expansion and activation (Hamilton  2008 ; Hakansson et al.  1997 ; Khajah et al. 
 2011 ). These fi ndings also raise important issues on the management of sickle cell 
disease that myeloid growth factors are contraindications for homozygous or com-
pound heterozygous sickle cell patients, and their usage should be carefully 
evaluated.  

5.2.3     Reduction in Neutrophil Count Benefi ts SCD 

 Hydroxyurea is the most commonly used drug that has shown clinical effi cacy for 
both SCD adults and children (Hankins et al.  2005 ; Charache et al.  1995 ; Steinberg 
et al.  2003 ). In the MSH study, hydroxyurea treatment resulted in a marked decrease 
in the frequency of painful crises and ACS, and a reduction in transfusion require-
ments and hospitalizations in patients with moderate to severe SCD (Charache et al. 
 1995 ). Hydroxyurea has been shown to be a potent fetal hemoglobin inducer (Cokic 
et al.  2003 ; Letvin et al.  1984 ), but also with many other effects that may benefi t 
SCD. For example, hydroxyurea treatment could decrease the expression level of 
soluble VCAM-1 and reduce the adhesion of sickle RBCs to the endothelium (Saleh 
et al.  1999 ; Bridges et al.  1996 ). Currently it is still not entirely clear how much of 
the clinical benefi t from hydroxyurea can be attributed to its effect on fetal hemo-
globin levels compared with its other activities. Interestingly, hydroxyurea was also 
found to suppress neutrophils numbers while inducing fetal hemoglobin expression 
in SCD patients (Charache et al.  1996 ). In fact, hydroxyurea treatment shows ben-
efi cial effects even in some patients with no detectable rise of fetal hemoglobin, 
whereas all patients who respond well to hydroxyurea treatment have a decrease in 
neutrophil count (Charache  1997 ; Charache et al.  1995 ). 

 Neutrophils from patients with SCD also show an activated phenotype with 
lower expression level of  L -selectin (CD62L) and higher level of CD11b (Lard et al. 
 1999 ). These neutrophils exhibited increased adhesive properties that could be 
reversed by inhibiting stimulating NO/cyclic guanosine monophosphate (cGMP)-
dependent signaling (Canalli et al.  2008 ). In patients treated with hydroxyurea, 
abnormalities in these neutrophil activation markers are corrected, suggesting that 
neutrophils are an important target of this drug (Benkerrou et al.  2002 ). Further 
studies suggest that hydroxyurea treatment has immediate benefi ts on acute VOC 
with a mechanism probably involving the formation of intravascular nitric oxide 
and the amplifi cation of NO/cGMP-dependent signaling (Almeida et al.  2012 ). 
These fi ndings suggest a pivotal role of leukocytes, especially neutrophils, in the 
pathophysiology of SCD.   
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5.3     Adherent Leukocytes in the Vaso-Occlusive Process 

5.3.1     Adherent Leukocytes Interact with Sickle RBCs 

 Sickle RBCs were initially thought to obstruct mechanically the blood vessels due 
to their rigidity and decreased capability to pass through the capillaries. In a rat 
mesocecum ex vivo perfusion model, sickle RBCs were found to interact with post- 
capillary and collecting venules (Kaul et al.  1989 ). The adhesion of sickle RBCs 
was also found to be density class-dependent, with young RBCs most adherent to 
the endothelium (Kaul et al.  1989 ). Following these observations, a model was pro-
posed that young RBCs adhere in post-capillary venules, resulting in secondary 
trapping of dense cells followed by vaso-occlusion. However, the post-capillary 
venule is also the primary site for leukocyte adhesion and transmigration during 
their recruitment to tissues (Ley et al.  2007 ), raising the possibility that the vaso- 
occlusive process involves complicated interactions between sickle RBCs, leuko-
cytes and the endothelium. 

 The fi rst clue that leukocytes may directly participate in the vaso-occlusive pro-
cess came from observations that neutrophils bind sickle RBCs in vitro. In contrast 
to the interactions with the endothelium, the dense cell fraction that includes irre-
versibly sickled RBCs was found to be the most adherent (Hofstra et al.  1996 ). In 
vivo evidence for this phenomenon was fi rst reported in SCD mice that exclusively 
express human sickle hemoglobin (Paszty et al.  1997 ), where dynamic interactions 
between circulating blood cells and the endothelium in the cremasteric microcircu-
lation was analyzed using intravital microscopy (Turhan et al.  2002 ). Although 
occasional interactions between sickle RBCs with the endothelium were observed 
in this model, sickle RBCs were found to predominantly interact with adherent 
leukocytes. The interactions were induced by surgical trauma, enhanced and then 
sustained by TNF-α administration, resulting in a lethal VOC. Mice defi cient in 
both P- and E-selectin were prevented from recruiting leukocytes to the endothe-
lium, and were protected from VOC in this model. These fi ndings suggest that 
recruitment of leukocytes to the activated endothelium is a necessary step in the 
vaso-occlusive process.  

5.3.2     Neutrophil Microdomains Mediate Heterotypic 
Interactions 

 The development of high-speed multichannel fl uorescence intravital microscopy 
(MFIM) allows the identifi cation of cellular and molecular mediators for the hetero-
typic interactions between sickle RBCs and adherent leukocytes (Chiang et al. 
 2007 ). In TNF-α stimulated SCD mice, Gr-1 +  neutrophils are robustly recruited to 
and comprise ~80 % of the leukocytes that adhere to the cremasteric venular endo-
thelium. These adherent neutrophils are not stationary but actively migrate on the 
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endothelium, and exhibit marked polarization of surface adhesion receptors, including 
P-selectin glycoprotein ligand-1 (PSGL-1),  L -selectin and activated α M β 2  integrin 
(CD11b/CD18 or Mac-1). Heterotypic interactions between sickle RBCs and adher-
ent neutrophils have been found to be predominantly on the leading edge, suggest-
ing a potential role of these polarized microdomains in mediating heterotypic 
interactions (Hidalgo et al.  2009 ; Chiang et al.  2007 ). 

 Although selectins are best known to mediate leukocyte rolling, they can also 
trigger “inside-out” signals that lead to integrin activation, allowing leukocytes to 
fi rmly adhere to the endothelium (Zarbock et al.  2007a ; Hidalgo et al.  2007 ; Simon 
et al.  2000 ; Lo et al.  1991 ). For example, engagement of E-selectin on adherent neu-
trophils generates a secondary wave of activating signals, transduced specifi cally by 
E-selectin ligand-1 (ESL-1), that induce polarized, activated α M β 2  integrin clusters 
on the leading edge of adherent neutrophils, allowing the capture of circulating 
RBCs and platelets (Hidalgo et al.  2009 ). In SCD mice, the capture of sickle RBCs 
by α M β 2  integrin microdomains leads to acute lethal VOC. Inactivation of E-selectin 
and α M β 2  integrin by either genetic defi ciency or antibody blocking prevents hetero-
typic interactions, leading to increased blood fl ow and prolonged survival of SCD 
mice during VOC. In addition, ESL-1-mediated signaling involves Src family 
kinases, since inhibition of Src kinases, but not p38 MAPK or spleen tyrosine kinase 
(Syk), reduces RBC-neutrophil interactions. Mice defi cient in the C3 complement 
protein, a ligand for α M β 2  integrin, have a partial reduction in RBC- neutrophil inter-
actions, suggesting a role of complement opsonization in heterotypic interactions. 
Although the responsible receptors on RBCs remain to be determined, potential can-
didates include complement (Wang et al.  1993 ) and ICAM-4 (Zennadi et al.  2008 ). 

 Activated α M β 2  integrin microdomains also promote heterotypic interactions 
between platelets and adherent neutrophils (Hidalgo et al.  2009 ). Heterotypic inter-
actions between platelets and neutrophils promote neutrophil activation in infl am-
mation (Zarbock et al.  2007b ; Caudrillier et al.  2012 ). In SCD patients, the 
circulating levels of platelet-monocyte and platelet-neutrophil aggregates are sig-
nifi cantly higher compare to healthy controls (Frelinger et al.  2014 ). Platelets have 
also been found to participate in 20–50 % of neutrophil-RBC aggregates (Dominical 
et al.  2014 ). However, direct evidence for a role of platelet-neutrophil interactions 
in sickle cell vaso-occlusion is still lacking.  

5.3.3     A Multistep and Multicellular Model of Sickle Cell VOC 

 Direct observations in SCD mice suggest that sickle cell VOC may arise from a 
complex multistep and multicellular process that involves heterotypic interactions 
between adherent neutrophils and sickle RBCs (Manwani and Frenette  2013 ; 
Frenette  2002 ). A direct role of neutrophils in the vaso-occlusive process is sup-
ported by clinical observations that high neutrophil count correlates with severe 
disease outcome. Although the exact mechanisms remain incompletely elucidated, 
the following model has been proposed (Fig.  5.1 ).
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    Step 1: Endothelial Activation     SCD is associated with a chronic infl ammatory 
condition that predisposes to sickle cell VOC. Perturbations in the plasma mem-
brane of sickle RBCs expose molecules such as phosphatidylserine (PS) and sul-
fated glycolipids, which could activate endothelial cells and leukocytes (Setty et al. 
 2002 ; Barabino et al.  1999 ). Enhanced hemolysis of sickle RBCs can also activate 
endothelial cells and leukocytes by the release of heme and the activation of the 
TLR4-mediated signaling pathway (Chen et al.  2014 ; Belcher et al.  2014 ). 
Leukocyte populations, including monocytes and iNKT cells, exhibit activated phe-
notypes and secret pro-infl ammatory cytokines including TNF-α, IL-1β and IFN-γ 
(Wallace et al.  2009 ; Perelman et al.  2003 ; Belcher et al.  2000 ). Higher levels of 
cytokines in the circulation of SCD patients result in systemic endothelial cell acti-
vation (Solovey et al.  1997 ), allowing recruitment of neutrophils to the endothelium 
in post- capillary venules. Interplay of all these factors, in the presence of a “second 
hit”, can lead to VOC.  

  Step 2: Recruitment of Adherent Leukocytes     Under infl ammatory conditions, 
leukocytes are robustly recruited to the endothelial vessel wall by a well-defi ned 
cascade of adhesive events (Ley et al.  2007 ). Due to their size and rigidity, an adher-
ent leukocyte may reduce the blood fl ow to a greater extent than the adhesion of a 

Step 3: Heterotypic interactions Step 4: Vascular occlusion
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  Fig. 5.1    The multistep and multicellular model for sickle cell vaso-occlusion. Sickle cell vaso- 
occlusion involves complex interactions between endothelial cells, leukocytes and sickle RBCs. In 
steady state, monocytes, iNKT cells and sickle RBCs contribute to a persistent infl ammatory con-
dition that leads to sporadic endothelial activation. In the presence of a triggering event that enables 
full endothelial activation, the recruitment of adherent leukocytes occurs, leading to heterotypic 
interactions between sickle RBCs and adherent neutrophils. Repeated interactions result in clog-
ging of post-capillary venules by heterotypic cell–cell aggregates, leading to irreversible vascular 
occlusion       
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sickle RBC. The largest leukocytes, monocytes, have diameters of 14–20 μm, about 
threefold larger than those of RBCs (6–8 μm). Lymphocytes (6–14 μm) and neutro-
phils (12–14 μm) are also larger than RBCs. Therefore, the hemodynamics in blood 
vessels containing large numbers of adherent leukocytes may be proportionally 
reduced. Further, adhesion of leukocytes also enables their interactions with other 
blood components, leading to further occlusion in the microvasculature.  

  Step 3: Interactions of Sickle RBCs with Adherent Neutrophils     Direct observa-
tions from intravital microscopy studies suggest that sickle RBCs predominantly 
interact with adherent neutrophils in TNF-α stimulated post-capillary venules. 
These interactions are mediated by activated α M β 2  integrin microdomains on the 
leading edge of adherent neutrophils. Heterotypic interactions are enhanced in SCD 
mice and lead to lethal VOC. Inactivation of E-selectin or α M β 2  integrin prevents 
neutrophil-RBC interactions and protects SCD mice from acute VOC. These fi nd-
ings highlight a key role of adherent neutrophils in the vaso-occlusive process.  

  Step 4: Vascular Clogging by Heterotypic Cell–Cell Aggregates     Repeated inter-
actions between sickle RBCs and adherent neutrophils cause accumulation of het-
erotypic cell–cell aggregates, followed by non-specifi c secondary trapping of 
additional sickle RBCs, resulting in transient or prolonged obstruction of venular 
blood fl ow. The obstruction of blood fl ow increases the transit time of RBCs and 
produces ischemia, which exacerbates the situation by activating the endothelium, 
increasing leukocyte recruitment and enhancing RBC sickling. All these steps con-
tribute to a vicious circle that culminates in an acute VOC, leading to tissue damage 
and life-threatening complications.    

5.4     Targeting Vaso-Occlusion 

5.4.1     Targeting Infl ammation 

  Regadenoson     As activated iNKT cells express high levels of adenosine A 2A  recep-
tor (A 2A R), they become highly sensitive to inhibition by A 2A R agonist. Regadenoson, 
an A 2A R agonist in phase 1 trial, has been reported to reduce iNKT activation to 
levels similar to control and steady-state SCD patients (Field et al.  2013 ; Nathan 
et al.  2012 ). Patients at steady state (n = 21) and during VOC (n = 6) were examined 
in this trial. No toxicities were noted for the infusion of Regadenoson at 1.44 μg/
kg/h. Based on these results, a randomized, placebo-controlled phase 2 trial is cur-
rently ongoing to determine whether administration of Regadenoson with a 48-h 
constant infusion induces faster remission in VOC and ACS. Notably, iNKT cell 
activation was found to be associated with increased phosphorylation of NFκB p65, 
increased expression of A 2A R and higher levels of IFN-γ. Although NFκB p65 phos-
phorylation was reduced to baseline levels, the reduction in A 2A R expression and 
IFN-γ levels did not reach baseline (Field et al.  2013 ).   
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5.4.2     Targeting Adhesion 

  Rivipansel (GMI-1070)     Rivipansel, a synthetic pan-selectin inhibitor, has been 
shown to predominantly inhibit E-selectin-mediated leukocyte adhesion and dra-
matically reduce RBC-leukocyte interactions, leading to improved blood fl ow and 
prolonged survival in SCD mice during VOC (Chang et al.  2010 ). In a phase 1 clini-
cal trial, GMI-1070 was well tolerated without signifi cant adverse effects. SCD 
patients receiving GMI-1070 exhibited a modest increase in total peripheral white 
blood cell count without clinical symptoms (Wun et al.  2014 ). Recently a phase 2 
randomized, double-blinded study has examined the effi cacy, safety and pharmaco-
kinetics of rivipansel in hospitalized sickle cell disease patients experiencing 
VOC. In this study, GlycoMimetics successfully enrolled 76 patients of 12–60 years 
of age at 22 trial sites in the United States and Canada. Patients treated with rivipan-
sel experienced clinically meaningful reductions in time to reach resolution of 
VOC, in length of hospital stay and in use of opioid analgesics for pain manage-
ment, in each case as compared to patients receiving placebo (Telen et al.  2015 ). 
Currently a Phase 3 study of GMI-1070 (rivipansel) has been registered.  

  Tinzaparin     Heparins are capable of binding endothelial P-selectin and leukocyte 
Mac-1 integrin (Peter et al.  1999 ; Nelson et al.  1993 ). Administration of heparin 
leads to inhibitory effects on leukocyte rolling and fi rm adhesion in vivo (Xie et al. 
 1997 ). Tinzaparin, a low-molecular-weight heparin (LMWH), was studied in a ran-
domized, double-blind clinical trial. In this trial, 253 patients with acute painful 
crisis but with no other complications of SCD were randomized to treatment or 
control groups. The group of patients that received tinzaparin treatment showed a 
statistically signifi cant reduction in the duration of painful crisis with no severe 
bleeding complications, as compared to the group of patients that received placebo 
(Qari et al.  2007 ).  

  Pentosan Polysulfate Sodium (PPS)     Pentosan Polysulfate Sodium (PPS) is an 
orally absorbable semisynthetic heparin analog with less anticoagulant activity 
compared to heparin, but with one order of magnitude greater potency in blocking 
P-selectin. In a phase 1 clinical trial, a single oral dose of 300 mg PPS was found to 
be safe, but with a relatively short half-life. In a phase 2 clinical trial, daily oral 
doses of PPS administered for 8 weeks tended to improve the microvascular blood 
fl ow in SCD patients. The phase 2 trial was prematurely terminated due to economic 
reasons (Kutlar et al.  2012 ).  

  SelG1     SelG1 is a humanized monoclonal antibody specifi cally against P-selectin. 
Single and multiple doses of SelG1 were found safe and well tolerated in a phase 1 
clinical study conducted by Selexys Pharmaceuticals. Currently a phase 2 multi-
center, randomized, placebo-controlled, double-blind clinical trial has been initiated 
to assess safety and effi cacy of SelG1 with or without hydroxyurea therapy in sickle 
cell disease patients with sickle cell-related pain crises.   
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5.4.3     Targeting Neutrophil Activation 

  Hydroxyurea     Hydroxyurea is a well-established agent that induces fetal hemoglo-
bin expression in SCD patients and requires long-term treatment. However, 
hydroxyurea administration also shows immediate benefi cial effects including 
reduced leukocyte rolling and adhesion, decreased heterotypic RBC-leukocyte 
interactions, and prolonged survival. These benefi ts are mechanistically associated 
with decreased endothelial adhesion molecule expression, diminished neutrophil 
α M β 2  integrin activation and amplifi ed NO/cGMP-dependent-signaling (Almeida 
et al.  2012 ).  

  Intravenous Immunoglobulin (IVIG)     Intravenous immunoglobulin (IVIG) can 
reverse acute VOC by rapidly inhibiting neutrophil adhesion to the endothelium and 
abrogating RBC-neutrophil interactions (Chang et al.  2008 ; Turhan et al.  2004 ). 
IVIG signaling is mediated by FcγRIII receptors, the only Fc receptor expressed on 
murine neutrophils, resulting in the recruitment of Src homology 2-containing tyro-
sine phosphatase-1 (SHP-1) and the inhibition of adhesion and α M β 2  integrin activa-
tion. The protective effects of IVIG are abrogated in SHP-1 defi cient mice, 
suggesting an important role of SHP-1 signaling in regulating neutrophil adhesion 
and activation (Jang et al.  2012 ). The effi cacy of IVIG in SCD patients with acute 
VOC is being investigated in phase 1 and 2 studies via a dose-escalation strategy.    

5.5     Conclusion 

 In summary, the vaso-occlusive process in SCD involves complex interactions 
between endothelial cells, leukocytes and sickle RBCs. Adherent leukocytes, espe-
cially neutrophils, play an important role in promoting vaso-occlusion. The obser-
vation of heterotypic interactions between adherent neutrophils and sickle RBCs 
has led to a multistep and multicellular model for vaso-occlusion, which has trig-
gered several exciting clinical trials targeting its major driving pathways. Currently 
the mechanisms that regulate the pro-infl ammatory activities of neutrophils and 
their capacity of interacting with sickle RBCs remain to be elucidated. Further 
understanding of these mechanisms may provide novel therapeutic targets and strat-
egies for sickle cell vaso-occlusion. Recent studies have also suggested that the 
levels of heme are elevated during VOC in SCD patients and mice, leading to the 
formation of NETs in the pulmonary vasculature and causing acute lung injury 
(Chen et al.  2014 ). Administration of exogenous heme or hemin can also trigger 
VOC or ACS in SCD mice (Belcher et al.  2014 ; Ghosh et al.  2013 ). These fi ndings 
suggest that targeting heme or NETs may benefi t SCD and its major acute compli-
cations. It will be exciting to see whether any of the ongoing early phase trials will 
bring forth the fi rst targeted therapy against sickle cell vaso-occlusion.     
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    Chapter 6   
 Hypercoagulability and Sickle Cell Disease                     

       Marina     Pereira     Colella     ,     Erich     Vinicius     de     Paula     ,     Margareth     Castro     Ozelo     , 
and     Fabiola     Traina    

    Abstract     Thrombotic complications have always been recognized as one of the 
hallmarks of sickle cell disease (SCD). Epidemiological data demonstrate that 
stroke and venous thromboembolism are much more frequent in these patients. 
Furthermore, hypercoagulability has been implicated in the pathogenesis of other 
complications of SCD such as acute chest syndrome. In the last two decades, robust 
experimental data have demonstrated that almost every element of hemostasis, both 
protein and cellular, is altered in a way that shifts the hemostatic balance towards a 
procoagulant state in SCD. During recent years, exciting new data have shed light 
on the mechanisms responsible for these alterations, such as infl ammation, endothe-
lial activation, and intravascular hemolysis. In this chapter, we discuss the clinical 
and laboratory evidence supporting the concept that SCD is associated with a sig-
nifi cant hypercoagulable state, as well as the potential mechanisms responsible for 
these alterations. We also discuss old, current and future therapeutic strategies 
aimed to modulate the risk of thrombosis in SCD.  

  Keywords     Sickle cell anemia   •   Thromboembolism   •   Hemolysis  

6.1       Association between Hemoglobin S and Thromboembolic 
Events 

 There is abundant clinical evidence indicating the existence of an hypercoagulable 
state in sickle cell anemia (SCA), which is best illustrated by the increased rates of 
venous and arterial thrombotic events in these patients. Ischemic stroke is a major 

        M.  P.   Colella      (*) •    E.  V.   de   Paula      •    M.  C.   Ozelo      
  Hematology Center, School of Medical Sciences, University of Campinas-Unicamp , 
  Rua Carlos Chagas, 480 ,  Campinas ,  São Paulo ,  CEP 13083-878 ,  Brazil   
 e-mail: marinasp@unicamp.br; erich@unicamp.br; margaret@unicamp.br   

    F.   Traina      
  Department of Internal Medicine ,  University of São Paulo at Ribeirão Preto Medical School , 
  Avenida Bandeirantes, 3900 ,  Ribeirão Preto ,  São Paulo   CEP 14049-900 ,  Brazil   
 e-mail: ftraina@fmrp.usp.br  

© Springer International Publishing Switzerland 2016 
F.F. Costa, N. Conran (eds.), Sickle Cell Anemia, 
DOI 10.1007/978-3-319-06713-1_6

mailto:marinasp@unicamp.br
mailto:erich@unicamp.br
mailto:margaret@unicamp.br
mailto:ftraina@fmrp.usp.br


110

cause of morbidity and mortality in adults and children with SCA, reaching a 
prevalence of almost 10 % at 50 years (Ohene-Frempong et al.  1998 ). Children with 
SCA have the highest rates of ischemic stroke in infants, with an incidence of 
approximately 240 cases per 100,000 per year (Earley et al.  1998 ) compared to the 
incidence of 2.3 per 100,000 in normal children (Fullerton et al.  2003 ). Magnetic 
resonance imaging studies show that at least 25 % of children with SCA present 
silent brain infarcts (without clinical manifestations) at 6 years of age, and this 
prevalence reaches 37 % at 14 years (Bernaudin et al.  2005 ; Kwiatkowski et al. 
 2009 ). Interestingly, the main risk factors for the occurrence of silent brain infarcts 
in SCA children are high blood pressure and lower levels of hemoglobin, suggesting 
that patients with higher hemolytic activity are at increased risk of ischemic stroke 
(DeBaun et al.  2012 ). 

 Pulmonary embolism is another important clinical complication of SCA, and is 
considered the leading cause of death associated with acute chest syndrome 
(Vichinsky et al.  2000 ). Venous thromboembolic events, especially pulmonary 
thromboembolism, also have an increased incidence in patients with SCA. Early 
autopsy studies identifi ed new and old thrombi in the pulmonary circulation of 
25–60 % of patients with SCA (Oppenheimer and Esterly  1971 ; Manci et al.  2003 ). 
Moreover, the prevalence of pulmonary thromboembolism in hospitalized patients 
with sickle cell disease (SCD) was reported to be four times higher, compared to the 
prevalence in other African-American patients (Stein et al.  2006 ); during the obser-
vation period (1979–2003), the prevalence of pulmonary thromboembolism in 
patients with SCD under 40 years of age was 0.44 %, compared with 0.12 % in 
age- matched patients of African descent. Interestingly, the prevalence of deep vein 
thrombosis (DVT) was similar in both groups. Similar fi ndings were observed in 
another study, in which the incidence of pulmonary thromboembolism was 50–100 
times higher in the hospitalized USA population with SCD compared with the gen-
eral population (Novelli et al.  2012 ). SCA is also considered a signifi cant risk factor 
for the occurrence of thromboembolism associated with pregnancy, with an odds 
ratio of 6.7 (James et al.  2006 ). More recently, data from the Cooperative Study of 
Sickle Cell Disease (CSSCD) confi rmed a higher risk of venous thromboembolism 
(VTE) in SCD. The incidence rate for fi rst VTE from ages 15–30 years was 6.7 
events/1000 person-years, which is nearly four times higher than reported rates for 
factor V Leiden carriers of the same age. Again, the incidence of pulmonary embo-
lism was around twofold higher than the incidence of DVT, although this difference 
was not statistically signifi cant (Naik et al. 2014). 

 Interestingly, studies of individuals with sickle cell trait also support the concept 
that SCA is associated with a hypercoagulable state. In the early 2000s, a study dem-
onstrated that sickle cell trait is associated with higher levels of several laboratory 
markers of coagulation activation (Westerman et al.  2002 ). This observation was fol-
lowed by epidemiological data showing that the incidence of VTE was twofold higher 
in African-Americans with sickle cell trait, compared to a control group of hospital-
ized African-Americans without sickle cell trait (odds ratio 1.8, 95 % confi dence 
interval [CI] 1.2–2.9) (Austin et al.  2007 ). The risk of pulmonary thromboembolism 
was four times higher in sickle cell trait (odds ratio 3.9; 95 % CI 2.2–6.9), but the risk 
of DVT did not signifi cantly differ between the two groups. Overall, the proportion of 
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VTE in African-American patients attributable to sickle cell trait was about 7 % 
(Austin et al.  2007 ), which is higher than the prothrombotic effect of prothrombin 
G20210A and factor V Leiden mutations in caucasians. Accordingly, the MEGA case-
control study, a large Dutch population study of VTE risk factors, identifi ed that the 
presence of sickle cell trait was associated with an odds ratio of 3.9 for pulmonary 
thromboembolism, compared with an odds ratio of 1.7 for factor V Leiden and 2.3 for 
prothrombin mutation (van Langevelde et al.  2012 ). These data were recently con-
fi rmed in a prospective study that evaluated 268 sickle cell trait individuals, compared 
with 3748 non-sickle cell trait individuals during 24 years of follow up, for the inci-
dence of pulmonary thromboembolism and DVT (Folsom et al.  2015 ). The authors 
confi rmed that sickle cell trait in African Americans carries a twofold increased risk 
of pulmonary thromboembolism (hazard ratio 2.05, 95 % 1.12–3.16), while the risk 
for DVT was not signifi cantly increased (hazard ratio 1.15, 95 % 0.58–2.27). The 
major implication of these fi ndings is the recognition that the sickle cell trait is an 
important form of inherited thrombophilia in the African-descendent population. 

 In addition to the increased incidence of thrombotic events, it is also believed 
that the hypercoagulable state in SCA contributes to a spectrum of disorders related 
to hemolysis and endothelial dysfunction, such as pulmonary hypertension, pria-
pism and leg ulcers (Morris  2008 ). There seems to be a relationship between hemo-
static activation and the development of vasculopathy leading to pulmonary 
hypertension, a major cause of mortality in SCA (Ataga et al.  2008 ). There is also 
evidence of associations between levels of procoagulant markers and retinopathy 
and ischemic stroke (Ataga et al.  2012 ). Painful crises are associated with increased 
levels of hypercoagulability markers, which suggests a possible role of hypercoagu-
lability in the development of vaso-occlusion (van Beers et al.  2009 ). 

 SC hemoglobinopathy (HbSC) is the second most prevalent hemoglobinopathy 
after SCA (Weatherall  2010 ). Studies have shown an increased risk of thromboem-
bolic events in HbSC, but HbSC patients are only the minority of patients included 
in larger cohorts of SCD (Stein et al.  2006 ; Novelli et al.  2012 ). Autopsy studies 
show that pulmonary thromboembolism is the second leading cause of mortality in 
these patients, accounting for 13.6 % of deaths, an increased frequency compared to 
SCA patients (Manci et al.  2003 ). The incidence of ischemic stroke in childhood is 
also increased, being approximately 100 times greater than for the general popula-
tion (Powars et al.  1990 ). With regard to the relative frequency of VTE in HbSC 
patients, compared with SS patients, confl icting results have emerged from two 
recent studies. In a retrospective analysis of 404 patients with SCD, the prevalence 
of non-catheter related VTE was signifi cantly higher in the subgroup of patients 
with sickle cell variants, of which 67.2 % (84 out of 125 patients) had HbSC, com-
pared to SS patients (Naik et al.  2013 ). In contrast, patients with HbSC from the 
CSSCD presented a lower frequency of VTE than SS patients, a difference that was 
partially attributed to the lower age of the latter cohort (Folsom et al.  2015 ). 

 Recently, our group performed a cross-sectional observational study evaluating 
coagulation activation markers in 56 adult HbSC patients, in comparison with 39 
SCA patients and 27 healthy controls. We found that HbSC patients present a 
hypercoagulable state, as evidenced by increased expression of the gene encoding 
tissue factor (TF), thrombin-antithrombin complex and D-dimer, compared with 
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healthy subjects, although this manifestation was not as intense as that seen in 
SCA. Hemostatic activation was associated with two very prevalent chronic compli-
cations seen in SC disease; retinopathy and osteonecrosis (Colella et al.  2015 ).  

6.2     The Hemostatic Balance in SCA 

 The hemostatic balance depends on the equilibrium between several procoagulant 
and anticoagulant factors and on the restriction of the coagulation process on cell 
surfaces. Alterations in this balance can lead to bleeding and thrombosis. The endo-
thelium is the central player in maintaining this balance, in that it separates cells 
expressing tissue factor, the physiological initiator of coagulation, from platelets 
and coagulation factors, and also regulates blood cell adhesion to the vascular wall. 

 Tissue factor is a transmembrane protein found in several sub-endothelium cells 
(Furie and Furie  2008 ). Under normal conditions, TF is expressed on cells of the 
adventitial layer of the vessel wall, being exposed in the fl ow after the occurrence of 
vascular lesions, and then triggering the activation of coagulation. TF forms a com-
plex with activated factor VII, which is present in small quantities in the circulation. 
This TF/FVIIa complex activates factor X, which converts prothrombin into throm-
bin. Markers of thrombin generation and fi brinolysis may be assessed in the plasma; 
thrombin-antithrombin complex (TAT), protrombin fragment 1+2 (F1+2) and 
D-dimer (DD) (Fig.  6.1 ).

   In various pathological conditions, especially in proinfl ammatory states, TF 
expression is upregulated in monocytes and in circulating microparticles (MPs) 
(Mackman  2009 ; Geddings and Mackman  2014 ). Previous studies in SCA have 

  Fig. 6.1    Illustrative diagram of thrombin generation. Tissue factor (TF) is the main physiological 
initiator of coagulation in vivo. TF is the cellular receptor and cofactor of factor VII. The formation 
of the TF: FVIIa complex on surfaces presenting phosphatidylserine (PS) leads to factor X activa-
tion, initiating a cascade of enzymatic reactions that culminate in the formation of thrombin and 
fi brin thrombi. The generation and degradation of thrombin and fi brin is measured by thrombin- 
antithrombin complex (TAT), protrombin fragment 1+2 (F1+2) and D-dimer (DD)       
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shown increased TF procoagulant activity in mononuclear cells (Key et al.  1998 ) 
and TF expression on microparticles (MPs) (Shet et al.  2003 ), monocytes (Setty 
et al.  2012 ) and on circulating endothelial cells (CECs) (Solovey et al.  1998 ). 
Importantly, in a sickle cell disease (SCD)-mouse-model, TF was shown to be the 
main factor responsible for coagulation activation, since inhibition of TF expression 
reduced TAT levels to normal values (Chantrathammachart et al.  2012 ). 

 It is not only TF expression that seems to be upregulated in SCA. In fact, practi-
cally every element of the hemostatic balance is altered in the pro-coagulant direc-
tion in SCA, leading to the recognition of this condition as a “hypercoagulable 
state” (Table  6.1 ). In general, these coagulation abnormalities are present in steady 
state, and are further increased during painful crisis.

6.3        Global Hemostasis Assays in SCA 

 Given the interaction of erythrocytes, platelets, leukocytes and plasma proteins in 
coagulation activation, and the limitation of classical hemostasis assays in evaluat-
ing this interaction, there has been recent interest in the so-called “global 

   Table 6.1    Hemostatic alterations observed in sickle cell anemia   

 Component  Alterations 

 Endothelium  • Expression of TF on pulmonary veins a  
 • High levels of CECs with TF expression 
 • Increased expression of proadhesive molecules: ICAM-1, VCAM-1, 

E-selectin 
 • Elevation of soluble thrombomodulin levels 
 • Release of high amounts of high molecular weight VWF multimers 
 • High levels of endothelium-derived MPs with TF expression 
 • NO consumption 

 Platelets  • Increased activation 
 • Liberation of MPs 

 Leukocytes  • Elevation of monocyte levels with expression of functionally-active TF 
 • Release of monocyte-derived MPs expressing TF 
 • Increased adhesion properties 

 Red blood cells  • Exposure of PS on membrane surface 
 • Liberation of MPs 
 • Increased adhesive properties 
 • Heme release and subsequent TF activation and NET formation a  

 Coagulation factors  • Increased TF expression and activity 
 • Consumption of coagulation factors 
 • Increased thrombin generation and fi brinolysis markers: TAT, F1+2, 

D-dimer 
 Natural anticoagulants  • Reduction of levels of protein C and protein S 

   TF  tissue factor,  CECs  circulating endothelial cells,  ICAM-1  intercellular adhesion molecule1, 
 VCAM-1  vascular cell adhesion molecule 1,  VWF  von Willebrand factor,  MPs  microparticles,  NO  
nitric oxide,  PS  phosphatidylserine,  NET  neutrophil extracellular trap,  TAT  thrombin-antithrombin 
complex,  F1+2  protrombin fragment 1+2 

  a This data was demonstrated in SCD-mouse-models  
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hemostasis assays” for the evaluation of the hypercoagulable state found in SCA 
(Lim et al.  2013 ). Among these, thromboelastometry (TEM) and the thrombin gen-
eration test (TGT) are the most well-studied. TEM evaluates the viscoelastic prop-
erties of whole blood, taking into account the role of platelets, erythrocytes and 
leukocytes (Nair et al.  2010 ). The TGT is an assay that measures the magnitude and 
kinetics of thrombin generation over time, which represent critical biomarkers of 
clot quality and hemostasis activation (Ten Cate  2012 ). Patients with increased risk 
of thromboembolic events present higher levels of thrombin generation (Hron et al. 
 2006 ). Both tests have been used to assess the presence of hypercoagulability in 
SCA (reviewed in Lim et al.  2013 ). In 2005, Yee and colleagues demonstrated that 
patients with SCA present a TEM pattern suggestive of a hypercoagulable state, 
which was even more evident during acute crisis (Yee et al.  2005 ). A much larger 
number of studies have used the TGT to evaluate hemostatic changes in 
SCA. Noubouossie et al., found increased thrombin generation compared to age- 
matched controls, but no differences were observed between patients with and with-
out acute crisis (Noubouossie et al.  2012 ). In contrast, Shah et al., found signifi cant 
differences suggestive of hypercoagulability in SCA patients during acute crisis 
(Shah et al.  2012 ). With a somewhat different experimental protocol, characterized 
by the use of higher doses of TF for initiation of thrombin generation, Gerotziafas 
et al. also found evidence of faster and stronger thrombin generation in patients with 
SCA (Gerotziafas et al.  2012 ). In contrast, Betal et al. ( 2009 ) and Wolberg et al. 
( 2009 )  did not fi nd evidence of increased thrombin generation in SCA. Despite this 
variability, most of these studies demonstrate a trend towards an increase in throm-
bin generation in patients with SCA. More recent data confi rm this impression, by 
demonstrating an increased capacity of SS red blood cells to contribute to the gen-
eration of thrombin, when compared with red blood cells from control individuals 
(Whelihan et al.  2013 ). It should be noted that, despite the importance of these tests 
in providing relevant information about the pathophysiology of hypercoagulability 
in SCA, there is currently no indication to perform any of these tests in the clinical 
management of SCA.  

6.4     Mechanisms That Lead to Hypercoagulability in Sickle 
Cell Anemia 

 Robust evidence demonstrates that endothelial dysfunction, infl ammation, exposure 
of phosphatidylserine (PS) on the surface of red blood cells (RBC) and intravascular 
hemolysis are among the most important factors contributing to the development of 
hypercoagulability in SCA. Unfortunately, the relative importance, and the hierar-
chical organization, of each of these factors to the development of a hypercoagula-
ble state in SCA remain to be determined. Indeed, while the discussion of these 
factors will be presented separately in this chapter, complex feedback mechanisms 
involving all of these mechanisms should be considered the most likely explanation 
for the increased risk of thrombotic events in SCA. 
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6.4.1     Endothelial Dysfunction and Activation 

 An abnormally activated proadhesive and procoagulant endothelium is a hallmark 
of SCA. Several biomarkers of endothelial activation are increased in SCA patients 
(Kato et al.  2005 ). In addition, higher numbers of circulating endothelial cells 
(CECs) are observed in SCA patients, which further increase during vaso-occlusive 
crises (Solovey et al.  1997 ). These CECs present an increased expression of adhe-
sion molecules, such as intercellular adhesion molecule1 (ICAM-1), vascular cell 
adhesion molecule 1 (VCAM-1) and E-selectin, and can also express surface TF 
(Solovey et al.  1998 ). A higher percentage of CECs from SCA patients express TF, 
compared with those of normal subjects (78 vs. 10 %), and TF expression is higher 
during vaso-occlusive episodes, compared to steady state (83 vs. 66 %). 
Immunofl uorescence analysis of CECs expressing TF showed that these cells also 
carry factors VII/VIIa, which are able to activate factor X, a fi nding that could be 
associated with the lower factor VII plasma half-life observed in these patients 
(Kurantsin-Mills et al.  1992 ). Von Willebrand factor (vWF), another marker of 
endothelial activation, is secreted by endothelial cells and involved in platelet adhe-
sion. Larger amounts of high molecular weight VWF multimers, as well as increased 
VWF activity, were observed in patients with SCA, suggesting a role for hyperreac-
tive VWF in the pathogenesis of SCA (Chen et al.  2011 ). 

 In addition, several lines of evidence demonstrate the increased adhesive prop-
erties of the endothelium in SCA (Conran et al.  2009 ), as described in more detail 
in Chap.   7    .  

6.4.2     Infl ammation 

 SCA is recognized as a chronic proinfl ammatory state with increased infl ammatory 
cytokines, increased total leukocyte counts, monocyte and functional changes of 
leukocytes (Platt  2000 ). The association of infl ammation and coagulation activation 
observed in SCA should be of no surprise, since hemostasis and innate immunity 
evolved together during at least 450 million years (Opal and Esmon  2003 ). 
Accordingly, coagulation activation is a hallmark of several infl ammatory processes 
such as sepsis (van der Poll and Herwald  2014 ). Patients with SCA have increased 
numbers of circulating monocytes. These monocytes are activated and, in turn, are 
able to activate endothelial cells, thereby contributing to vascular infl ammation and 
activation of coagulation. In in vitro experiments, the incubation of mononuclear 
leukocytes of patients with SCA with human umbilical vein endothelial cells 
(HUVECS) resulted in an increased expression of TF by HUVECS (Belcher et al. 
 2000 ). In a SCD-mouse-model, vessels of the pulmonary circulation presented 
increased TF expression, which was further increased after episodes of hypoxia/
reoxygenation (Solovey et al.  2004 ). In addition to activating TF expression by 
endothelial cells, monocytes in SCA can also express TF themselves. The total 
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procoagulant activity of TF, measured using whole blood coagulation assays is 
increased in SCA. In such coagulation assays, the entire TF procoagulant activity 
was concentrated in the fraction of mononuclear cells isolated from patients with 
SCA, demonstrating that monocytes are capable of expressing functional TF 
(Solovey et al.  1998 ). 

 The interaction between pro-infl ammatory and pro-coagulant pathways is bidi-
rectional. As these infl ammatory changes lead to increased expression of TF, the 
opposite is also true. There seems to be a role for TF in triggering or feeding the 
pro-infl ammatory state in SCA (Sparkenbaugh and Pawlinski  2013 ). Studies in 
SCD-mouse-models have demonstrated that TF inhibition with an anti-TF antibody 
led to the decrease in plasma levels of proinfl ammatory markers and a reduction in 
neutrophil pulmonary infi ltration (Chantrathammachart et al.  2012 ). As previously 
mentioned, although several proinfl ammatory and procoagulant changes have been 
identifi ed in clinical and non-clinical models of SCA, the key triggers and perpetu-
ators of infl ammation that ultimately lead to the increased thrombotic risk observed 
in these patients are yet to be determined.  

6.4.3     Exposure of Phosphatidylserine in Sickle RBC 

 In normal RBC, procoagulant phospholipids such as phosphatidylserine (PS) are 
almost restricted to the inner face of the cell membrane (Connor and Schroit  1991 ). 
It has been shown that repeated cycles of sickling and unsickling in SCA result in 
the loss of this asymmetry, and in the exposure of PS to the outer RBC leafl et. 
Surface PS facilitates the docking and assembly of coagulation factors on the RBC 
membrane, thereby contributing to thrombin generation and coagulation activation 
(Whelihan et al.  2012 ).  

6.4.4     Intravascular Hemolysis 

 The most compelling evidence that intravascular hemolysis is associated with a 
hypercoagulable state stems from the observation that different hemolytic anemias, 
with distinct pathogenic mechanisms, share with SCA the common fi nding of an 
increased risk for arterial and/or venous thrombotic events. Accordingly, an 
increased risk of thrombotic events is a hallmark of both thalassemia major and 
intermedia (Cappellini et al.  2000 ), hereditary spherocytosis (Schilling  1997 ), and 
paroxysmal nocturnal hemoglobinuria (PNH) (Hillmen et al.  1995 ), in which 
thrombosis represents the most important cause of death. In PNH, thrombosis is 
directly associated with hemolytic activity, as indicated by LDH levels 
(Schrezenmeier et al.  2014 ). In the context of SCA, this association between hemo-
lysis and coagulation activation is further corroborated by studies in which coagula-
tion activation markers, such as D-dimer and thrombin-antithrombin complexes, 
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correlated with hemolysis markers in independent patient cohorts (Ataga et al. 
 2012 ; Setty et al.  2012 ). 

 Based on currently available evidence, the association between intravascular 
hemolysis and hypercoagulability in SCA is caused by the constant release of free 
hemoglobin (Hb) and free heme from hemolysed RBC, which leads to nitric oxide 
(NO) depletion and innate immunity activation respectively. Nitric oxide (NO) is a 
well-known regulator of endothelial homeostasis, acting in the physiological down- 
regulation of several important elements of hemostasis such as vasoconstriction, 
platelet activation, infl ammatory cell attachment to the endothelium, and procoagu-
lant factors expression (Kato and Taylor  2010 ). It has been shown that intravascular 
hemolysis results in decreased bioavailability of NO, due to NO consumption and 
reduction by hemoglobin released from the cytoplasm of hemolysed RBC (Reiter 
et al.  2002 ). This state of NO defi ciency is further aggravated by the release of RBC 
arginase during hemolysis, which reduces the bioavailability of arginine, an impor-
tant substrate for NO synthesis. NO depletion leads to a hyperadhesive endothe-
lium, platelet activation, among others (Conran et al.  2009 ). Accordingly, impairment 
of the broad anti-coagulant functions of NO is regarded as an important contributor 
to the shift of the hemostatic balance towards a hypercoagulable state in patients 
with SCA. 

 Another important procoagulant mechanism is the release of free heme. It has 
been known for almost 50 years that patients with SCA present higher levels of 
heme in plasma, associated with lower levels of the most important heme-binding 
protein, hemopexin (Muller-Eberhard et al.  1968 ). Unbound extracellular heme 
exerts toxic effects on cells and tissues by two different mechanisms. Directly, via 
generation of reactive oxygen species (ROS), and indirectly, through the activation 
of innate immunity (Dutra and Bozza  2014 ). The latter effect was confi rmed in 
2007, by the demonstration that heme can activate TLR4 (Figueiredo et al.  2007 ), 
acting as a “danger-associated molecular pattern”, thereby triggering proinfl amma-
tory pathways similar to those activated in sepsis and in other conditions of sterile 
infl ammation. Besides these mechanistic rationales, both epidemiological and non- 
clinical experimental data support the association of plasma free heme with infl am-
mation and coagulation activation in SCA. In a study of 942 children with SCD, a 
polymorphism in the Heme-oxygenase-1 gene promoter region was associated with 
a signifi cantly lower risk of acute chest syndrome (ACS) (Bean et al.  2012 ). 
Similarly, plasma free heme levels were independently associated with the risk of 
vaso-occlusive crisis and ACS in a study with 81 children (Adisa et al.  2013 ). 
Besides these clinical data, a growing number of studies in animal models implicate 
free heme as a relevant activator of innate immunity in SCD. In animal models of 
SCA, heme was shown to induce an acute lung injury that resembles ACS (Ghosh 
et al.  2013 ) as well as vaso-occlusive events (Belcher et al.  2014 ). In these two latter 
studies, the effect of heme was reversed by the use of hemopexin, and by a TLR-4 
inhibitor, reinforcing the idea that free heme acts through the activation of innate 
immunity, rather than by ROS-mediated cell damage. 

 Tissue factor expression is one of the consequences of innate immune activation 
in several infl ammatory conditions. Heme has been shown to induce TF expression 
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in endothelial cells (Setty et al.  2008 ), and TF expression correlated with markers of 
hemolysis in a small cohort of children with SCD (Setty et al.  2012 ). More recently, 
heme infusion was directly implicated in the expression of TF and coagulation acti-
vation in mice (Sparkenbaugh et al.  2015 ). The complex roles of heme in the inter-
play between coagulation activation and infl ammation in SCD are illustrated by the 
recent demonstration that in a SCD-mouse-model, heme was capable of inducing 
neutrophil extracellular trap (NET) formation (Chen et al.  2014 ), which appears to 
have an important role in the development of DVT (Fuchs et al.  2012 ). 

 Together, these data suggest that free Hb and free extracellular heme released 
during intravascular hemolysis act in concert in several compartments of hemosta-
sis, shifting the hemostatic balance towards a prothrombotic state.   

6.5     Treatment Strategies for Hypercoagulability in Sickle 
Cell Anemia 

6.5.1     Antiplatelet Agents 

 Despite the quantity of evidence demonstrating the existence of a hypercoagulable 
state in SCA, the potential benefi t of modulating these hemostatic abnormalities is 
not yet clear. For many years, authors attempted to use anticoagulants and anti-
platelet agents in SCA patients (reviewed in Ataga and Key  2007 ). Given that aspi-
rin is not only an antiplatelet agent, but also is an anti-infl ammatory agent, it is fair 
to hypothesize that this therapy could bring benefi ts to these patients. Unfortunately, 
no correlations between the antiplatelet effects of aspirin and clinical benefi ts have 
been demonstrated in the few clinical studies performed so far (Chaplin et al.  1980 ; 
Osamo et al.  1981 ; Greenberg et al.  1983 ; Zago et al.  1984 ). More recently, a 
double- blinded randomized trial compared the use of the antiplatelet agent, prasu-
grel, versus placebo in SCA patients (Wun et al.  2013 ). There was a reduction in 
platelet activation biomarkers and a non-signifi cant decrease in painful events in 
the group taking prasugrel. Therapy with aspirin is recommended in adults with 
SCA and previous stroke, as a secondary prevention of this complication (Kernan 
et al.  2014 ).  

6.5.2     Anticoagulants 

 The evaluation of the use of oral anticoagulants in SCA has been made in a few 
studies involving a small number of patients and/or non-randomized trials (reviewed 
in Ataga and Key  2007 ). The use of warfarin was associated with a modest decrease 
in pain episodes (Salvaggio et al.  1963 ) and a reduction in D-dimer levels (Ahmed 
et al.  2004 ). 
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 The chronic use of unfractionated heparin in mini-doses occasioned a reduction 
in the frequency and severity of vaso-occlusive crises (Chaplin et al.  1989 ). A more 
recent randomized, placebo-controlled study showed that the use of a low molecular 
weight heparin, tinzaparin, in SCA patients with painful crises was able to reduce 
the number of hospitalization days and decrease the intensity and duration of the 
painful crisis (Qari et al.  2007 ). 

 Despite studies performed over a number of years, it is not yet clear what the 
benefi t that these drugs may have on SCA. Although some have reported an appar-
ent trend towards an improvement in painful crises, there is still no evidence that the 
use of antiplatelet agents or anticoagulants can reduce the occurrence of thrombo-
embolic complications or other chronic complications in SCA. The American 
College of Chest Physicians’ evidence-based clinical guideline lists no specifi c rec-
ommendations regarding the use of prophylactic anticoagulation in SCA patients 
for the prevention of thromboembolic events in nonsurgical or surgical situations 
(Gould et al.  2012 ; Kahn et al.  2012 ). However, many authors agree that, in special 
risk situations, thrombophrophylaxis should be considered, especially in painful 
crisis. Likewise, there are no formal recommendations as to the duration of antico-
agulant treatment in SCA patients that present a venous thromboembolic event.  

6.5.3     Hydroxyurea 

 Considering the role of intravascular hemolysis in SCD-associated hypercoagula-
bility, it is expected that measures that reduce hemolysis can have a benefi cial effect 
on the prevention of thrombotic complications. One of the pillars of SCA treatment 
is the use of hydroxyurea, a drug that reduces hemolysis and presents several well- 
defi ned benefi cial effects that could contribute to an inhibition of the hypercoagula-
bility state in SCA. These include; a reduction in PS exposure by RBCs (Setty et al. 
 2000 ; Nébor et al.  2013 ), a reduction in the adhesive properties of RBCs and leuko-
cytes, reductions in endothelial activation and NO depletion, and reductions in 
platelet activation and adhesion (Styles et al.  1997 ; Gladwin et al.  2002 ; Conran 
et al.  2004 ; Gambero et al.  2007 ; Cokic et al.  2008 ; Canalli et al.  2008 ). 

 Considering these benefi cial consequences of HbF elevation, our group hypoth-
esized that hydroxyurea could modulate the hypercoagulable state observed in 
SCA, and evaluated its effects on activation of coagulation in a cohort of SCA 
patients. Hydroxyurea therapy was associated with an important inhibition of TF 
expression, associated with lower levels of TAT and F1+2, refl ecting a down- 
regulation of thrombin generation. These potential benefi cial changes were associ-
ated with a signifi cant decrease in levels of markers of endothelial activation and 
infl ammation (Fig.  6.2 ). Thrombin-antithrombin complex and F1+2 levels showed 
signifi cant positive correlations with LDH levels, which suggests that the benefi cial 
effects of hydroxyurea on the hypercoagulability state were at least partially associ-
ated with decreased hemolysis (Colella et al.  2012 ). Our results are in agreement 
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  Fig. 6.2    Hydroxyurea therapy is associated with reduced levels of TF expression, TAT, F1+2, 
soluble thrombomodulin and TNF-α. Tissue factor (TF) mRNA relative expression ( a ), plasma 
levels of TF ( b ), thrombin-antithrombin complex (TAT) ( c ), prothrombin fragment F1+2 (F1+2) 
( d ), soluble thrombomodulin ( e ) and serum levels of tumor necrosis factor-alpha (TNF-α) ( f ) were 
all measured in controls and SCA patients not on hydroxyurea (SS) and on hydroxyurea (SS-HU). 
 TF  expression was analysed by real-time quantitative PCR assays (qPCR) from total leukocyte 
mRNA. ELISA kits were used to measure plasma levels of TF, soluble thrombomodulin, TAT, 
F1+2, and serum levels of TNF-α. The numbers of patients studied are indicated in each panel. 
P-values resulting from the comparison of two groups (indicated with  bars ) are shown in the fi g-
ure; *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,****p < 0.0001 (Mann–Whitney U-test or Fisher’s exact 
test). Reproduced with permission from (Colella et al.  2012 )       
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with a study in children with SCD that also showed a signifi cant association of TF 
activity and TAT with markers of hemolysis (reticulocyte count and LDH levels) 
(Setty et al.  2012 ). The authors suggested that these fi ndings support a role for the 
early use of agents such as hydroxyurea to reduce hemolytic activity and minimize 
pro-thrombotic alterations, as was demonstrated in our study.

   Hemolysis, endothelial activation and infl ammation are closely connected 
pathways, all of which are associated with coagulation activation, and modulated 
by hydroxyurea. In our study, despite the fi ndings of bivariate associations 
between coagulation activation markers and hemolysis markers, in a multiple 
regression analysis, hydroxyurea was an independent factor associated with TF 
expression and TAT levels. This fi nding could imply that hydroxyurea may have 
an additional inhibitory effect on coagulation activation, independently of its 
classical effects (Fig.  6.3 ). Although HbF induction is thought to mediate the 
principal mechanism of its action, hydroxyurea has many pleiotropic effects, 
which are not all clearly defi ned and could modulate numerous emerging thera-
peutic targets. Whatever the mechanism, the benefi ts of hydroxyurea on SCA 
hypercoagulability are suggested by clinical data. Hydroxyurea has been associ-
ated with a reduction in stroke recurrence in children with SCA (Ware and Helms 
 2012 ) and also reduces the prevalence of pulmonary hypertension in adults with 
SCA (Ataga et al.  2006 ), a clinical complication associated with pro-coagulant 
alterations. Future longitudinal prospective studies including a large number of 
patients and longer follow-up are needed to verify whether this biological effect 
of hydroxyurea may result in a decreased incidence of thrombotic complications 
in SCA patients.

  Fig. 6.3    Potential model for the benefi cial effect of hydroxyurea on the hypercoagulability state 
of sickle cell anemia       
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6.6         Future Perspectives 

 During recent years, increasing evidence suggests extracellular hemoglobin and 
heme as triggers of several adverse clinical outcomes in SCA patients. Therefore, 
investigators have been considering hemoglobin and heme scavengers as new pos-
sible therapeutic agents (Schaer and Buehler  2013 ). Hemopexin and TLR4 inhibi-
tors have been tested in animal models, incurring a reduction in the pathological 
effects of free heme. As yet, there has been no clinical experience with the use of 
these agents in SCA. Finally, considering the potential of heme in the induction of 
NET formation, the inhibition of the peptidylarginine deaminase 4 (PADI4), a cen-
tral enzyme in NET formation, may also be a novel therapeutic strategy (L’Acqua 
and Hod  2014 ). These are potential agents that could prevent and/or revert all of the 
pathological effects of intravascular hemolysis, including the pro-thrombotic com-
plications. In parallel, there are ongoing clinical trials with new anticoagulant and 
antiplatelet agents in SCA patients that can also bring new potential benefi cial 
effects on the pro-coagulant state seen in these patients.     
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Chapter 7
Cardiovascular Adaptations to Anemia 
and the Vascular Endothelium in Sickle Cell 
Disease Pathophysiology

Lydia H. Pecker and Hans C. Ackerman

Abstract The vascular endothelium is a heterogenous collection of cells whose 
actions contribute significantly to sickle cell disease pathophysiology. At the cellu-
lar level, the endothelium elaborates vasoactive, adhesive, and inflammatory signals 
that drive acute and chronic injury causing ultimately irreversible organ damage. 
The endothelium is also fundamentally involved in the cardiovascular adaptations to 
anemia. Vasodilation lowers systemic vascular resistance and allows higher cardiac 
output to maintain oxygen transport in an anemic state. Cardiovascular adaptations 
to anemia and hypoxia may play a role in the pathogenesis of sickle cell disease. 
Some measures of endothelium-dependent vasodilation appear to be impaired in 
people with sickle cell disease, but this may be due in part to the effects of chronic 
anemia. Endothelium-derived vasoactive molecules, such as endothelin-1 and nitric 
oxide, appear dysregulated and may also contribute to the vascular complications of 
sickle cell disease. The therapeutic potential of pharmacologically manipulating 
these molecules has not yet been achieved; however, evidence from patients treated 
with hydroxyurea and hematopoietic stem cell transplant shows that although it 
may be difficult to reverse pre-existing injury, effective therapies for sickle cell 
disease do change endothelial behavior. Ongoing investigations will determine how 
best to exploit our understanding of endothelial biology and pathobiology to develop 
new treatments for people with sickle cell disease.
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7.1  Introduction

7.1.1  Erythrocyte–Endothelium Interactions Give Rise 
to Sickle Cell Disease Pathophysiology

The observation that sickled erythrocytes adhere abnormally to endothelial cells 
first implicated the vascular endothelium as the red cell’s co-conspirator in sickle 
cell disease pathophysiology (Hebbel et al. 1980; Hoover et al. 1979). These obser-
vations coincided with evolving understandings of the endothelial contributions to 
vascular reactivity (Furchgott and Zawadzki 1980) and coagulation (Bunting et al. 
1977). The endothelium is no longer regarded simply as an inert lining of the blood 
vessels, but as an active participant in inflammation, adhesion, permeability, coagu-
lation, blood flow regulation and new vessel growth.

Sickle cell disease is a vascular disease driven by interactions between the endo-
thelium and the circulating components of blood: sickled, hemolyzed and/or imma-
ture erythrocytes, leukocytes, activated platelets, coagulation factors and 
inflammatory proteins. These interactions cause episodic, progressive and cumula-
tive organ injury. Most people with sickle cell disease do not have classic risk fac-
tors for vascular disease. The prevalence of hypercholesterolemia, hyperglycemia 
and hypertension is lower among individuals with sickle cell disease, although these 
factors still affect vascular function and modify the risks of vascular disease 
(Pegelow et al. 1997; Rodgers et al. 1993; Yuditskaya et al. 2009). Endothelial inter-
actions with the cellular components of blood may trigger many of the complica-
tions of sickle cell disease and help explain why a disease that originates from a 
single molecular defect can have such profound phenotypic variability.

7.1.2  The Healthy Endothelium Participates in Multiple 
Homeostatic Mechanisms

In 1865, the Swiss anatomist Wilhelm His first used the term endothelium to 
describe the internal lining of blood vessels, lymphatics and mesothelial-lined cavi-
ties. Today the term refers only to the linings of blood and lymphatic vessels. The 
endothelium covers an astonishing 350 m2 surface area, and encompasses a hetero-
geneous group of cells that participate in trans- and paracellular communication to 
coordinate local and systemic activities (Aird 2007a, b, c). Endothelial cells within 
and across vascular beds can be structurally and functionally distinct. They may be 
continuous or discontinuous and fenestrated or non-fenestrated. Arterial and venous 
endothelial cells differ in shape and alignment, reflecting differences in flow and 
function for each vessel type and the organ they serve. The single label “endothe-
lium” oversimplifies the structural and functional diversity of this thin cell layer.

Endothelial cells are challenging to study because of their functional and ana-
tomical heterogeneity and their sensitivity to their environment. For example, mea-
surements performed on accessible vascular beds, like those in the skin, eye, or 
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skeletal muscle, may lead to different conclusions about endothelial function than 
measurements made in brain, or kidney vascular beds. In vitro studies may not 
reflect in vivo endothelial cell behavior; ex vivo studies must be interpreted cau-
tiously with careful controls because endothelial cell phenotype can change even 
after brief removal from a specific environment (Durr et al. 2004). Despite these 
challenges, we continue to learn more about the endothelium in sickle cell disease 
through studies involving human patients, animal models of sickle cell disease, 
in vitro experiments, and computer modeling. Over the next four sections of this 
chapter, we will explore the systemic cardiovascular adaptations to anemia (Sect. 
7.2),  the damaging interactions between sickle cell erythrocytes and the endothe-
lium (Sect. 7.3), and  the endothelial response to hypoxia, shear stress, and vasoac-
tive molecules in patients with sickle cell disease (Sects. 7.4 and 7.5).

7.2  Chronic Anemia Causes Systemic Cardiovascular Changes

Changes in vascular resistance and cardiac output that accompany anemia are 
examples of how the endothelium integrates local signals to effect a systemic change 
in cardiovascular function. The cardiovascular changes in patients with sickle cell 
disease reflect physiologic adaptations to chronic anemia and pathologic responses 
to recurrent ischemia-reperfusion injury triggered by blood cell adhesion and small 
vessel obstruction. Few studies directly compare cardiovascular function in patients 
with sickle cell disease to other forms of anemia, making it difficult to distinguish 
the cardiovascular changes that are adaptations to anemia per se versus those caused 
by sickle cell disease-specific mechanisms. In this section, we review the cardiovas-
cular changes associated with non-hemolytic anemia and compare these changes to 
those seen in people with sickle cell disease. This background is necessary to inter-
pret studies of endothelial function in sickle cell disease, especially endothelial 
responses to hypoxia, shear stress and vasoactive molecules in patients with sickle 
cell disease (Sect. 7.4). Assessment of vascular function in sickle cell disease must 
also account for the ways anemic states affect vascular function.

7.2.1  In Chronic Anemia, Systemic Vascular Resistance Falls 
to Raise Cardiac Output and Maintain Oxygen Transport

Anemia is a state of low oxygen carrying capacity (see Text Box 7.1) (Fig. 7.1). 
When oxygen carrying capacity is low, oxygen transport to tissues can be main-
tained by increasing cardiac output and/or increasing oxygen extraction. Increasing 
cardiac output raises oxygen saturations in the venous circulation, but raises the 
oxygen and energy demands of the heart muscle. Over time, cardiomegaly develops 
as the heart works to maintain high cardiac output. Increasing oxygen extraction in 
tissues lowers the venous blood oxygen saturation, but allows more oxygen to be 
delivered without raising cardiac output.
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Evidence from chronically anemic patients shows that when the oxygen carrying 
capacity of blood is low, the cardiac output increases to maintain oxygen transport 
(Fig. 7.2). In patients with chronic anemia of blood loss from intestinal parasites, 

Text Box 7.1
Oxygen content in blood is determined by the oxygen saturation of hemoglobin 
times the hemoglobin concentration times the oxygen binding capacity of hemoglo-
bin (1.34 mL/g) plus the usually insignificant fraction of oxygen dissolved in blood:

O content mLO mL blood mL g Hb g dL Oxygen 
Satu

2 2 100 1 34( / ) . ( / ) ( / )= ´ ´
rration PaO mmHg(%) . ( )+ ´0 003 2

Hemoglobin concentration and the oxygen saturation of hemoglobin are the 
main determinants of oxygen carrying capacity. For example, someone with a 
hemoglobin of 15 g/dL and an oxygen saturation of 100 % carries 20.1 
mL/100 mL of oxygen on hemoglobin and 0.3 mL/100 mL of dissolved oxy-
gen in arterial blood. This small amount of dissolved oxygen in blood can 
become important in patients with very severe anemia (Fig. 7.1).

The amount of oxygen that is ultimately extracted by tissues can be deter-
mined from the cardiac output and the difference in oxygen content between 
arterial and venous blood:

Oxygen extracted mL arterialO content mL dL cardiacoutput( ) ( / )= ´2

(( / min) / (
) / (

L dL L arterialO content
venousO content arter

´ ´ -10 2

2 iialO content2 )

For example, if the cardiac output is 5 L/min, and the oxygen content is 20 
mL/100 mL, then 1000 mL of oxygen is transported in arterial blood each min-
ute. If oxygen saturation falls from 100 % in the artery to 75 % in the vein, then 
oxygen content falls from approximately 20 mL/100 mL in the artery to approxi-
mately 15 mL/100 mL in the vein, a difference of 5 mL/100 mL and an extraction 
fraction of 25 %. At a cardiac output of 5 L/min, 250 mL of oxygen is extracted 
each minute. In some anemic states, the oxygen extraction fraction can increase 
to extract more oxygen from blood, desaturating venous blood to a greater extent. 
In adults with sickle cell disease, venous oxygen saturation tends to be higher 
than expected, suggesting incomplete oxygen extraction or shunting.

Fig. 7.2 (continued) cells in the kidney, signal via erythropoietin (Epo) to increase the production of 
red blood cells and raise the oxygen carrying capacity of blood. As the concentration of red blood cells 
increases, the viscosity of blood also increases. More viscous blood has a greater resistance to flow, 
lowering vascular conductance. (More viscous blood also exerts a greater shear stress on the vessel 
wall, which triggers vasodilation). Anemia primarily lowers systemic vascular resistance by hypoxia- 
and shear stress-mediated vasodilation, by new vessel growth, and by the effects of lower viscosity of 
blood. The fall in systemic vascular resistance allows larger stroke volumes and a greater cardiac 
output, which raises oxygen transport to meet the oxygen demands of tissues
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Fig. 7.1 The oxygen content of blood is primarily determined by the concentration of hemoglo-
bin. Blood carries both hemoglobin-bound and dissolved oxygen. The diagonal lines represent the 
total oxygen (mL) in a deciliter (100 mL) of blood. Changing the partial pressure of inspired oxy-
gen (ambient air, 100 % oxygen, or hyperbaric oxygen) has small effects on the oxygen content of 
blood, but changing the hemoglobin concentration has large effects on the oxygen content of 
blood. At very low hemoglobin levels, dissolved oxygen becomes a more substantial fraction of 
the total oxygen in blood. This illustration assumes normal lung function

Fig. 7.2 Cardiovascular responses to anemia. Oxygen transport is primarily determined by the oxy-
gen saturation of hemoglobin, the concentration of hemoglobin, and the cardiac output (left panel). 
Oxygen extraction in the capillary beds of tissues is determined by red cell factors that alter the 
affinity of hemoglobin for oxygen (such as 2,3-DPG, pH, and CO2) and by vessel and tissue factors 
such as the oxygen gradient, and the proximity of red blood cells to mitochondria. When the oxygen 
demand of tissues exceeds the supply of oxygen, tissue hypoxia develops. Hypoxia triggers local 
responses such as vasodilation to increase blood flow to the hypoxic tissue and new vessel growth 
to increase the density of vessels where gas exchange can take place. Vasodilation increases vascular 
conductance (i.e., lowers vascular resistance), which increases local blood flow. When this occurs over 
a large region, systemic vascular resistance falls, and cardiac stroke volume and cardiac output increase. 
New vessel growth increases the vascular cross- sectional area, and can increase vascular conductance 
when new resistance arteries form. A new vessel can also form a shunt that bypasses capillary beds; a 
shunt can lower vascular resistance but doesn’t participate in oxygen delivery. Resistance arterioles 
dilate in response to vessel wall shear stress, preventing turbulent blood flow and mechanical 
injury to endothelial cells. Specialized oxygen-sensing cells, such as the juxta-glomerular 
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cardiac index was elevated in proportion to the severity of anemia (Roy et al. 1963). 
In chronic anemia, high cardiac output is sustained by a larger stroke volume, not by 
an increase in heart rate or an increase in preload (Escobar et al. 1966). Stroke vol-
ume increases primarily through a fall in systemic vascular resistance (Varat et al. 
1972). In patients with anemia, the fall in systemic vascular resistance is mediated 
by three important changes in the vasculature and blood:

 1. Vasodilation of resistance arterioles. Vasodilation is triggered by endothelial 
responses to tissue hypoxia and shear stress and is the primary mechanism for 
lowering systemic vascular resistance. 

 2. Perfusion of new vessels. The total cross-sectional area of the vasculature 
increases initially by perfusion of previously unused vessels such as those in skin 
and muscle, and over time through hypoxia-triggered new vessel growth. 

 3. Lowering of blood viscosity. Blood viscosity is proportional to the concentration 
of red blood cells. Blood that has a lower viscosity is less resistant to flow.

Additional mechanisms account for cardiovascular changes in patients with 
sickle cell disease. Cardiac index rises as systemic vascular resistance falls (Table 
7.1 and Fig. 7.3a). In patients with sickle cell disease, the increase in cardiac 
index and fall in systemic vascular resistance are greater than expected for the 
degree of anemia (Fig. 7.3b, c). This suggests that in sickle cell disease, additional 
factors, perhaps hemolysis-induced inflammation or ischemia-induced new vessel 
growth, contribute to the lower vascular resistance. Whatever the cause, elevated 
cardiac output and left ventricular volume overload contribute to sickle cell dis-
ease pathophysiology and may specifically contribute to the cardiopulmonary 
hemodynamic abnormalities observed in people with sickle cell disease (Mushemi-
Blake et al. 2015).

7.2.2  Hemodynamic and Structural Changes Induced 
by Anemia Are Reversible

Studies of the hemodynamic effects of treating anemia help to establish the relation-
ship between oxygen carrying capacity and cardiac output. Transfusion of patients 
who had chronic anemia from helminth infection raises the systemic vascular resis-
tance and lowers the cardiac index to normal (Roy et al. 1963). In patients treated 
for iron deficiency anemia, raising the mean hemoglobin from 5.8 to 12.5 g/dL 
normalized their previously elevated cardiac index and stroke volume, and reversed 
cardiac structural changes. In addition, left ventricular diameter and left ventricular 
mass index decreased significantly towards normal (Cho et al. 2014).

The cardiac abnormalities associated with sickle cell disease are dynamic, 
reversible, and partly dependent on the hemoglobin or percentage of hemoglobin 
S. Like people with other chronic anemias, people with sickle cell disease develop 
cardiomegaly with an increased left ventricular end-diastolic diameter and left ven-
tricular mass index (Fig. 7.4) (Balfour et al. 1984; Caldas et al. 2008; Lester et al. 1990; 
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Fig. 7.4 The left ventricle of the heart is enlarged in people with sickle cell disease and related to 
the severity of anemia. Left ventricular end diastolic dimension (LVEDD) was measured by ultra-
sound in 191 people with sickle cell disease, aged 13 years or older (mean age: 25.9 ± 8.8 years) at 
four centers participating in the cardiac sub-study of the Cooperative Study of Sickle Cell Disease. 
The LVEDD index was calculated by dividing the LVEDD by body surface area. Solid line depicts 
the median for patients with sickle cell disease, and the dotted lines are the 25th and 75th percen-
tiles. Patients with lower hemoglobin values had greater LVEDD indices. The shaded area repre-
sents normal values. Adapted from Covitz et al. (1995). Normal LVEDD index range values are 
from Feigenbaum, Echocardiography 3rd Ed

a b c

Fig. 7.3 Anemia is associated with low vascular resistance and high cardiac output. (a) Cardiac 
index has a reciprocal relationship with vascular resistance (flow = (pressure2 − pressure1)/resistance). 
This is represented by data from four different groups of patients: healthy, mild anemia, severe ane-
mia, and sickle cell anemia, whose cardiac indices increase as vascular resistances fall (shown as 
mean +/− standard error). (b) Vascular resistance falls with the severity of anemia, indicated here as 
the hemoglobin concentration. Patients with sickle cell disease have a lower vascular resistance than 
expected given the severity of anemia. (c) Cardiac index increases with the severity of anemia. 
Patients with sickle cell disease have a greater cardiac index than expected given the severity of 
anemia. Data calculated from tables presented in Graettinger et al. (1963) and Leight et al. (1954)
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Lindsay et al. 1974). Circulating blood volume is not elevated in sickle cell disease 
(Gross and Godel 1971). In men with sickle cell disease, blood transfusion lowered 
stroke volume (−10.8 ± 4.9 mL) and cardiac index (−0.5 ± 0.2 L/min/m2). In con-
trast, women with sickle cell disease who received transfusion increased their stroke 
volume (+3.2 ± 3.6 mL), suggesting that anemia limited their myocardial perfor-
mance. Of note, other differences in the vascular behavior of men versus women 
with sickle cell disease have been described (Gladwin et al. 2003b), but are not 
completely explained.

In most studies of patients with sickle cell disease, the left ventricular systolic 
ejection fraction is normal or elevated. Although there does not appear to be a func-
tional cardiomyopathy associated with sickle cell disease, lower velocity of cir-
cumferential myocardial muscle fiber shortening (Covitz et al. 1995), and other 
worse measures of cardiac systolic function may occur more frequently in sickle 
cell disease than in other anemias (Bahl et al. 1992; Bosi et al. 2003). Unfortunately, 
the measurements used in these studies are not directly comparable. Patients with 
sickle cell disease have impaired left ventricle relaxation (Balfour et al. 1988; Şan 
et al. 1998). Diastolic dysfunction is reported in patients with sickle cell disease 
(Caldas et al. 2008) and is associated with a 3.5-fold increase in mortality (Sachdev 
et al. 2007).

Blood pressure is lower in people with sickle cell disease, compared to age- and 
sex- matched African American controls. This difference widens with age (Fig. 7.5). 
Patients with sickle cell disease have higher blood pressures than patients with 
 beta-thalassemia major, despite having lower hematocrit. This may be explained by 
increased blood viscosity in sickle cell disease, or progression of renal or vascular 
injury (Rodgers et al. 1993). Even at the 90th percentile for blood pressure, a 
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Fig. 7.5 Blood pressure is lower in people with sickle cell disease compared to non-anemic 
African Americans. Average blood pressures of different age groups are presented for approxi-
mately 4000 people with sickle cell disease from the Cooperative Study of Sickle Cell Disease, 
1978–1988 (solid orange lines). Average blood pressures of African Americans who participated 
in the National Health and Nutrition Examination Survey II, 1976–1980 are provided for compari-
son (dotted lines). Figure adapted from Rodgers et al. (1993)
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 measure within the normal range for people without sickle cell disease, patients 
with sickle cell disease have increased risk of stroke and death (Pegelow et al. 
1997). Sickle cell-specific normal blood pressure ranges are necessary to evaluate 
blood pressure in patients with sickle cell disease.

7.2.3  Hypoxia and Shear Stress Regulate Vessel Diameter

Hypoxia stimulates endothelium to release vasodilators that increase blood flow 
locally. Endothelial nitric oxide synthesis is central to hypoxia-mediated vasodila-
tion (Meredith et al. 1996; Schrage et al. 2004). The vasodilatory response to 
hypoxia also involves endothelial release of adenosine and prostaglandins (Crecelius 
et al. 2011; Marshall 2001). In response to hypoxia, autonomic nerve endings in 
muscle vascular beds release the vasoconstrictor norepinephrine to maintain blood 
pressure. This systemic vasoconstriction helps redirect blood to hypoxic areas 
(Heistad et al. 1980; Joyner and Casey 2014).

Red blood cells also contribute to hypoxic vasodilation. Deoxyhemoglobin in 
red blood cells catalyzes the conversion of nitrite to nitric oxide, selectively releas-
ing this vasodilator in hypoxic tissues (Cosby et al. 2003; Crawford et al. 2006). 
Erythrocytes also express a functional nitric oxide synthase that can produce nitric 
oxide and lowers blood pressure (Cortese-Krott and Kelm 2014; Kleinbongard 
et al. 2006; Wood et al. 2013). ATP released from hypoxic red blood cells also 
affects vasodilation (Ellsworth et al. 2009). Whether the release of nitric oxide 
from S-nitrosylated hemoglobin contributes to hypoxia-mediated vasodilation is 
debated (Gladwin et al. 2003a; Isbell et al. 2008; Kulandavelu et al. 2015; Zhang 
et al. 2015).

Endothelium maintains shear stress by regulating vessel diameter in response to 
changes in blood velocity. Ex vivo and in vivo studies demonstrated that chronic 
exposure to high blood flow caused endothelium to produce more vasodilatory 
nitric oxide (Miller et al. 1986; Miller and Vanhoutte 1988). The relationship 
between anemia and shear stress is complex. Anemia is associated with high blood 
flow that would raise shear stress; however, the lower viscosity of anemic blood 
would lower shear stress.

In patients with anemia, who have decreased oxygen carrying capacity and high 
blood flow, endothelial nitric oxide production is enhanced. Inhibiting nitric oxide 
synthesis in anemic patients exerted a stronger vasoconstricting effect than in non- 
anemic controls, showing that increased nitric oxide synthesis is involved in the 
vasodilatory response to anemia (Anand et al. 1995). After correction of anemia, 
nitric oxide inhibition had less effect on forearm blood flow.

In sickle cell disease, low SVR and high cardiac output suggest that the anemia- 
associated vasodilatory responses to hypoxia and shear stress are active. In Sect. 7.4 
we examine the question of whether patients with sickle cell disease have specific 
impairments in the vasodilatory responses to shear stress and hypoxia.
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7.2.4  Lower Blood Viscosity in Anemic States Helps Increase 
Stroke Volume and Cardiac Output

Blood flows through a vessel in concentric layers. The fastest moving layer is in the 
center of the vessel, and the slowest layer is in contact with the endothelium. The 
extent to which one layer adheres to the next is described by the blood’s viscosity. 
Because blood is a mixture of cells and macromolecules in water, its viscosity is 
more complex than the viscosity of a pure liquid like oil. The primary determinant 
of blood viscosity is the concentration of red blood cells. In anemic states, lower 
viscosity increases cardiac stroke volume and cardiac output (Fowler and Holmes 
1975; Murray and Escobar 1968).

As in other anemic states, people with sickle cell disease have lower blood vis-
cosity than non-anemic individuals (Fig. 7.6) (Chien et al. 1970). But the viscosity 
of sickle cell blood is higher than normal blood when they are compared at the same 
hematocrit (Usami et al. 1975). Sickle red blood cells are less deformable and more 
likely to form aggregates. When deoxygenated, hemoglobin polymerization leads to 
a dramatic increase in viscosity. But even at normal oxygen tensions, sickle cell 
blood viscosity adversely affects tissue perfusion. This leads to decreased oxygen 
transport effectiveness as demonstrated by the theoretical oxygen carrying capacity 
to viscosity ratio (Fig. 7.6). When transfusing patients with sickle cell disease, the 
potentially harmful effects of increased blood viscosity must be balanced against 
the beneficial effect of increasing oxygen carrying capacity (Alexy et al. 2006; 
Detterich et al. 2013).
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Fig. 7.6 Blood viscosity increases with hematocrit. Left: Blood from patients with sickle cell 
disease (orange or red lines) has a higher viscosity than blood from healthy individuals (black 
line), at any given hematocrit. Irreversibly sickled cells (ISC) are more viscous than non- irreversibly 
sickled cells (non-ISC). Acellular hemoglobin (tan line) is much less viscous than equivalent con-
centrations of hemoglobin in red blood cells. Viscosity was measured at a shear rate of 0.052 s−1; 
data are from Chien et al. (1970). Right: As hematocrit rises, oxygen carrying capacity increases, 
but viscosity also increases. The trade-off between oxygen content and blood viscosity is illus-
trated here as the oxygen content divided by the viscosity
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7.2.5  Oxygen Extraction Is Impaired in Sickle Cell Disease

In anemic states, the rightward shift of the hemoglobin-oxygen dissociation curve 
maintains oxygen delivery to tissues. This shift favors oxygen unloading in hypoxic 
tissues at the expense of reoxygenation in the lungs. Increased 2,3- diphosphoglycerate 
(2,3-DPG) concentration decreases hemoglobin oxygen affinity and facilitates oxy-
gen unloading in hypoxic tissues (Benesch and Benesch 1969; Delivoria- 
Papadopoulos et al. 1969). Sickle erythrocytes have particularly high 2,3-DPG 
levels favoring the low oxygen affinity T state conformation of hemoglobin that is 
prone to polymerization. Sickle erythrocytes also have high sphingosine-1- 
phosphate (S-1-P) levels that may further lower sickle hemoglobin oxygen affinity 
(Zhang et al. 2014).

Despite elevated 2,3-DPG levels, adults with sickle cell disease do not seem to 
extract oxygen as effectively as patients with chronic anemia. Table 7.1 compares 
oxygen extraction fractions in patients with sickle cell disease to patients with other 
anemic conditions and shows that adults with sickle cell disease have lower oxygen 
extraction (Graettinger et al. 1963; Leight et al. 1954). During exercise, adults with 
sickle cell disease did not increase oxygen extraction as much as healthy adults did 
(sickle cell: increased from 24% to 39%; healthy adults: increased from 25% to 
50%) despite being anemic. Instead, adults with sickle cell disease increased car-
diac output to a much greater extent (sickle cell: fourfold; healthy adults: twofold) 
(Lonsdorfer et al. 1983). In contrast, adults with chronic blood loss anemia were 
able to extract as much as 80 % of the oxygen from arterial blood (Roy et al. 1963). 
Impaired oxygen extraction in sickle cell disease may be due to loss of functional 
capillaries, increased capillary wall thickness, more artery-to-vein shunts, or 
reduced capillary transit time. The observation that children with sickle cell disease 
have appropriate oxygen extraction (Pianosi et al. 1991) suggests that changes in 
oxygen extraction may be age-related.

Anti-sickling drugs are under investigation that counteract the effect of high 
intra-erythrocytic 2,3-DPG and S-1-P and stabilize hemoglobin in its R state (Safo 
and Kato 2014). Although increasing the affinity of hemoglobin for oxygen may 
limit tissue oxygen extraction, reduced hemoglobin polymerization and improved 
erythrocyte rheology may improve overall tissue perfusion and therefore oxygen 
delivery. No anti-sickling agent is yet available, but several early phase trials are 
promising (Kuypers 2014).

7.2.6  People with Sickle Cell Disease Have Exercise-Induced 
Myocardial Ischemia in the Absence of Atherosclerosis

While atherosclerotic disease of the coronary arteries is notably rare in sickle cell 
disease, there is evidence of cardiac vessel dysfunction (Gerry Jr. et al. 1978). 
Indeed, although usually attributed to pulmonary, musculoskeletal, or vaso- occlusive 
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causes, chest pain in sickle cell disease can be caused by myocardial infarction and 
exercise testing can elicit myocardial ischemia. In one study, 47 children with sickle 
cell disease aged 5–18 years (mean 10.3 years) performed exercise with electrocar-
diographic (EKG) monitoring. During exercise, seven (16 %) had definite ischemia 
and 16 (34 %) had equivocal ischemia. In contrast, among 170 healthy African 
American children, five (less than 3 %) had equivocal ischemia and none had defi-
nite ischemia (Alpert et al. 1981). Among the children with sickle cell disease, those 
with ischemia were more anemic than those without ischemia (hemoglobin 7.2 vs 
8.2 g/dL). Follow-up radionuclide perfusion studies found that those with ischemic 
EKG changes had wall motion abnormalities and were unable to increase cardiac 
output during exercise (Covitz et al. 1983). More recently, 22 children with sickle 
cell disease and chest pain or with concern for ischemia on EKG or echocardio-
graphic (ECHO) underwent thallium-201 single photon emission computed tomog-
raphy to assess myocardial perfusion. Fourteen (64 %) had perfusion defects. In 
nine children, exercise or pharmacologic stress elicited the defects. The remaining 
five children had fixed perfusion defects that were present both at rest and during 
stress. Chest pain in patients with sickle cell disease should be evaluated by EKG, 
troponin-I, and functional imaging as indicated, and treatment of myocardial infarc-
tion should begin with exchange transfusion (Voskaridou et al. 2012).

Myocardial ischemia in sickle cell disease may be primarily due to anemia, and 
in some cases to vascular stenosis. Intima-medial proliferation, rather than athero-
sclerotic plaque may cause these changes. Myocardial vessels appear to be gener-
ally spared from sickling or adhesion of red blood cells, which is surprising given 
the low oxygen tension in myocardial venules. In the laboratory, expression of 
human sickle beta globin protects ApoE-deficient mice from atherosclerosis and 
thrombosis by a mechanism that is dependent in part on hemoxygenase activity 
(Wang et al. 2013). Maybe high hemoxygenase activity, a source of anti- inflammatory 
carbon monoxide (Sylvester et al. 2004), explains the paucity of atherosclerotic 
lesions in people with sickle cell disease.

7.2.7  Hypoxia, New Vessel Growth, and Arterio-Venous 
Shunting

Severe anemia triggers new vessel growth that lowers systemic vascular resistance. In 
sheep, severe anemia led to the development of larger capillary diameters, greater 
myocardial capillary density and greater coronary blood flow (Davis et al. 1996; 
Martin et al. 1998). These changes were associated with increased myocardial expres-
sion of hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor 
(VEGF). Anemia also stimulated the formation of interarterial coronary anastomoses 
that regressed after the anemia resolved (Eckstein 1955; Rakusan et al. 2001; Zoll 
et al. 1952). In a post-mortem angiographic analysis of structurally normal human 
hearts without coronary disease, anemia was associated with a higher prevalence of 
collateral vessels connecting coronary arteries (35 % versus 9 %) (Zoll et al. 1951).
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In sickle cell disease, key angiogenic molecules are highly expressed, likely 
stimulated by hypoxia (Lopes et al. 2015). Arteriovenous shunts form following 
ischemic cerebral stroke due to in situ thrombosis and proliferative arteriopathy. 
The most severe form is moyamoya disease (“puff of smoke” in Japanese). When 
present, moyamoya disease increases the risk of hemorrhagic stroke (Dobson et al. 
2002; Fasano et al. 2014; Kassim and DeBaun 2013; Seeler et al. 1978). Retinal 
vessel proliferation is also common and associated with hemorrhage among patients 
with sickle cell disease (Figs. 7.7 and 12.6). High oxygen saturation in peripheral 
venous blood has been observed in SCD at rest and during vaso-occlusive crisis, 
suggesting that arteriovenous shunts have formed in response to chronic hypoxia or 
microvascular occlusion (Manfredi et al. 1960; Nahavandi et al. 2002; Sproule et al. 
1958; Wyche et al. 2003). These peripheral arterio-venous formations would bypass 
small resistance vessels and capillaries, thereby decreasing systemic vascular resis-
tance, increasing cardiac output, and increasing venous oxygenation level, but at the 
expense of tissue perfusion. Overall, these vascular proliferations may be a mal-
adaptive response to tissue hypoxia.

7.2.8  Summary

In anemia, cardiovascular adaptations help maintain oxygen delivery in the set-
ting of the reduced blood oxygen carrying capacity. These adaptations include 
larger cardiac stroke volume, lower blood viscosity and increased oxygen extrac-
tion. In people with sickle cell disease, these adaptations may be incomplete or 

Fig. 7.7 Proliferative vascular changes in response to hypoxia in patients with sickle cell disease. 
This is a series of fluorescein angiograms of retinal vessels in an eight and a half year old boy with 
sickle cell disease. Initially, leakage was identified from a proliferative lesion in an area with little 
capillary perfusion (left); eight days later, the proliferative lesion and surrounding area were not 
perfused at all (middle); one year later, a proliferation of new vessels appeared in this previously 
ischemic area (right). Images are reprinted from Downes et al. (2005) with permission
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dysfunctional. Although patients with sickle cell disease maintain a low systemic 
vascular resistance and a high cardiac output, the viscosity of blood is high relative 
to the hematocrit, and in adults, oxygen extraction is inefficient. The increased stiff-
ness of individual erythrocytes shifts the hematocrit to viscosity relationship. New 
vessel growth may lead to shunts that raise venous blood oxygen saturation but 
compromise tissue perfusion (Fig. 7.2). The pathophysiology of sickle cell disease 
arises from the reduced oxygen carrying capacity of blood and from the altered 
rheological and adhesive properties of blood cells, leading to small vessel occlu-
sion, ischemia, and repetitive and cumulative tissue injury.

7.3  Interactions between Erythrocytes and Endothelial Cells 
Cause Sickle Cell Pathology

In this section, we discuss how erythrocyte sickling, adhesion, and lysis contribute 
to endothelial activation and injury in sickle cell disease. Sickling and adhesion are 
discussed in greater detail in Chaps. 3 and 4.

7.3.1  Erythrocyte Sickling Activates the Vascular Endothelium 
Promoting Adhesion and Vascular Occlusion

Abnormal hemoglobin polymerization in sickle cell disease drives the pathologic 
interactions between erythrocytes and the vascular endothelium (Kaul et al. 1995). 
Hemoglobin polymerization causes red cells to take their eponymous sickle shape 
with impaired deformability and altered expression of red cell surface membrane 
proteins. Poorly deformable red cells clog the microvasculature, irritate the endo-
thelium and, when lysed, release plasma free hemoglobin and heme, stimulating the 
production of inflammatory, pro-coagulant and vasoactive molecules and contribut-
ing to the activation and recruitment of leukocytes and platelets (Frei et al. 2008).

Microvascular congestion slows blood flow and increases the opportunity for 
interactions between blood cells, plasma proteins and the endothelium. Sickle 
erythrocytes’ adherence to the endothelial wall is central to erythrocyte–endothe-
lium interactions in sickle cell disease (Hebbel et al. 1980; Hoover et al. 1979). 
Reticulocytes, immature erythrocytes that are abundant in anemic states, are a par-
ticularly adherent and injurious subpopulation of erythrocytes. Among children in 
the Cooperative Study of Sickle Cell Disease, increased reticulocyte count was 
associated with mortality (Meier et al. 2014). Whether reticulocytes have a causal 
role in sickle cell pathology or simply reflect the severity of anemia and hemolysis 
is unclear; regardless, their presence is damaging (Sakamoto et al. 2013). Sickle 
reticulocytes have increased surface adhesion receptors, including CD36 (Joneckis 
et al. 1993), very late activation antigen 4 (VLA-4) and sulfate glycolipids (Brousse 
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et al. 2014). Mature sickle erythrocytes also have increased surface adhesion recep-
tors including Lutheran blood group antigen (also called basal cell adhesion mole-
cule/Lu, BCAM/Lu or CD239), integrin associated protein (CD47), CD147 and 
intercellular adhesion molecule-4 (ICAM-4) (Johnson and Telen 2008; Telen 2014). 
In addition, red cell phosphatidylserine exposure is increased and binds with endo-
thelial matrix proteins, especially thrombospondin (Manodori et al. 2000; Setty 
et al. 2002; Wautier et al. 2011). Finally, red cell microparticles may also contribute 
to abnormal red cell adhesion (Camus et al. 2012, 2015; Kasar et al. 2014).

Endothelial cells exposed to sickle blood have increased expression of endothe-
lial cell adhesion molecules such as vascular endothelial adhesion molecule 1 
(VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and E-selectin (Brown 
et al. 2001; Gee and Platt 1995). The P-, E-, and L-selectins mediate cytoadhesion 
and are critical facilitators of leukocyte rolling in sickle cell disease (Kutlar and 
Embury 2014; Matsui 2001). Platelet activation contributes to the thrombophilia of 
sickle cell disease (Franceschi et al. 2011; Wun et al. 1998). Finally, leukocytes are 
increased in number and interact with adhesion molecules to form aggregates and 
adhere to the endothelium (Polanowska-Grabowska et al. 2010; Turhan et al. 2002).

Recognition that leukocytes, platelets, extracellular matrix proteins and endothe-
lial cell surface proteins also contribute to vaso-occlusion has led to the identifica-
tion of a novel set of therapeutic targets (Hoppe 2011; Johnson and Telen 2008). 
Therapies that target pathological cell adhesion are covered in Chap. 16. In addition 
to a host of agents in early phase trials, hydroxyurea is also recognized as affecting 
the adhesion of reticulocytes, platelets and leukocytes to endothelium (Chaar et al. 
2014). Specifically, hydroxyurea downregulates the expression of pro-adhesion 
molecules such as CD36, CD49d and CD29, leading to decreased interaction 
between sickle erythrocytes and the subendothelial matrix proteins thrombospondin 
and laminin (Gambero et al. 2007; Hillery et al. 2000; Styles et al. 1997). 
Hydroxyurea has also been found to correct dysregulated L-selectin expression 
(Benkerrou 2002), reduce phosphatidylserine expression (Covas et al. 2004), and 
reduce soluble ICAM-1 (Conran et al. 2004). The anti-adhesive effects of hydroxy-
urea might augment the primary anti-sickling effect of the drug and help to decrease 
the frequency of painful crises (Charache et al. 1995).

7.3.2  Erythrocyte–Endothelial Cell Interactions Cause 
Ischemia and Reperfusion Injury

Ischemia and reperfusion injury is a central pathophysiologic process driving organ 
injury in sickle cell disease (Conran et al. 2009). The process of ischemia and reper-
fusion injury distinguishes sickle cell anemia from other chronic anemic states. In 
ischemia and reperfusion injury, obstructed blood flow causes ischemic changes to 
downstream tissues. With resolution of the obstruction, activated inflammatory cas-
cades cause local injury that may rapidly evolve into overwhelming systemic 
inflammation, damaging organs remote from the initial site of obstruction (Eltzschig 
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and Eckle 2011; Schwartz et al. 2011). This process has the potential to culminate 
in life-threatening multi-organ injury or failure (Park et al. 2011).

Some aspects of ischemia and reperfusion injury in sickle cell disease are inferred 
from other ischemia and reperfusion injury models, but sickle cell disease mouse 
models support the importance of ischemia and reperfusion injury in sickle cell 
disease (Hebbel 2014). Under hypoxic conditions and at baseline, sickle cell mice 
have evidence of ischemia and reperfusion injury (Osarogiagbon et al. 2000).

In sickle cell disease, initial cellular damage in ischemia and reperfusion injury 
is precipitated by vaso-occlusion leading to local tissue hypoxia. Deprived of oxy-
gen, cells are unable to perform aerobic respiration and become adenosine triphos-
phate (ATP) deplete. Intracellular hypercalcemia develops in association with 
mitochondrial dysfunction and the cells swell and die (Hotchkiss et al. 2009). Cell 
death is associated with immune system activation, platelet activation and aggre-
gation (Eltzschig and Eckle 2011) and with pro-inflammatory NF-kappaB path-
way activation (Cummins et al. 2006). These mechanisms are relevant to sickle 
cell disease (Belcher et al. 2003; Davila et al. 2014; Kaul et al. 2000). Other media-
tors of adhesion, inflammation and coagulation relevant to ischemia and reperfu-
sion injury in sickle cell disease include monocyte chemoatractant protein 1 
(MCP-1), vascular endothelial growth factor (VEGF), and platelet activating factor 
(PAF) (Aufradet et al. 2013; Kaul and Hebbel 2000; Solovey et al. 2001, 2004; 
Vinchi et al. 2013).

The model of microvascular dysfunction described in ischemia-reperfusion 
injury recapitulates the microvascular pathophysiology of sickle cell disease spe-
cifically. These hallmark changes include increased microvascular permeability, 
pro-inflammatory and pro-coagulable endothelial cell activation, alterations in the 
levels of vasoactive mediators and generation of reactive oxygen species. As cells 
become hypoxic and necrose, hypoxanthine levels increase. Hypoxia also causes 
capillary xanthine dehydrogenase to become xanthine oxidase via both irreversible 
and reversible mechanisms. The ischemia-induced accumulation of xanthine oxi-
dase and hypoxanthine becomes toxic when blood flow is re-established and oxy-
gen delivery resumes (Osarogiagbon et al. 2000; Ou et al. 2003; Pritchard Jr. et al. 
2004). Nitric oxide deficiency also develops. Usually, nitric oxide exerts anti- 
inflammatory and anti-thrombotic effects on endothelial cells. The generation of 
superoxides and increased activity of NADPH oxidase leads to decreased endothe-
lial nitric oxide synthase activity. Ferrous hemoglobin released from red blood 
cells can rapidly oxygenate nitric oxide, converting it to nitrate, shortening its half-
life, and limiting its ability to diffuse across cell membranes. Loss of nitric oxide 
signaling activates platelets and leukocytes, activates NF-kappaB, and leads to the 
release of P-selectin and von Willebrand factor from Weibel-Palade bodies 
(Lowenstein et al. 2005).

Persistent, episodic microvascular occlusions chronically damage vascular beds, 
but organs seem to have different propensities to damage. Animal studies suggest 
that the brain, heart and kidney are more vulnerable to local ischemia and reperfu-
sion injury than intestine, liver, skeletal muscle or lung (Hebbel 2014), but ulti-
mately all are injured by the systemic effects of ischemia and reperfusion injury.
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7.3.3  Hemolysis Contributes to Endothelial Pathobiology 
in Sickle Cell Disease

Up to 10 % of circulating erythrocytes can be lysed per day in a patient with sickle 
cell disease, releasing 30 g of hemoglobin. Although most red cell turnover occurs 
in a controlled fashion involving macrophages and the reticulo-endothelial system, 
an estimated 30 % of erythrocyte lysis occurs in the vasculature (Crosby 1955) 
where the release of hemoglobin can exceed the capacity of endogenous hemoglo-
bin sequestration and recycling mechanisms. At normal physiologic levels of hemo-
lysis, serum haptoglobin efficiently binds to hemoglobin and macrophages and other 
cells take up the hemoglobin-haptoglobin via the CD163 receptor. Intracellularly, 
hemoxygenase processes the hemoglobin, releasing biliverdin, iron, and carbon 
monoxide. Free heme, dissociated from the hemoglobin protein, is bound by serum 
hemopexin, and taken up by liver cells via the low-density lipoprotein receptor-
related protein CD91 (Nielsen et al. 2010). However, during massive hemolysis such 
as occurs in many patients with sickle cell disease, both of these recycling pathways 
become saturated, haptoglobin and hemopexin are depleted, and extracellular hemo-
globin and heme circulate in plasma (Muller-Eberhard et al. 1968).

In sickle cell mice, free heme functions as a danger signal by stimulating toll-like 
receptor-4 (TLR4) and activating an innate inflammatory response (Belcher et al. 
2014; Buehler et al. 2012; Ghosh et al. 2013; Gladwin and Ofori-Acquah 2014). TLR4 
and members of the inflammasome pathway are highly expressed by peripheral blood 
mononuclear cells, a process that may be induced by intracellular iron (van Beers et al. 
2015). Heme also induces neutrophils to release DNA NETs (strands of DNA and 
histones that are intended to trap bacteria) in the pulmonary circulation of sickle mice 
and this mechanism may contribute to vascular occlusion (Chen et al. 2014).

Free heme is found at higher levels in children with sickle cell disease who have 
suffered acute chest syndrome, supporting a potential clinical role for heme- 
associated acute pulmonary vasculopathy in sickle cell disease patients (Adisa et al. 
2013). Sickle cell patients with high free hemoglobin levels have impaired vasodila-
tion responses to nitroprusside, a nitric oxide donor, and to shear stress—in vivo 
evidence that free hemoglobin is related to the development of vascular dysfunc-
tion. Circulating heme and hemoglobin promote oxidative stress and compromise 
nitric oxide bioavailability; these concepts are explored further in Sect. 7.5.1.

7.3.4  Endothelial Progenitors and Neovascularization 
in Sickle Cell Disease

Neovascularization in sickle cell disease is an adaptive response to microvascular 
obstruction caused by sickled erythrocytes, overabundance of adhesion molecules, 
chronic inflammation, and hypercoagulation. This process is ultimately pathologic 
and is exemplified by clinical complications of proliferative retinopathy, cerebral 
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neovascularization in moyamoya syndrome, pulmonary hypertension and leg ulcers 
(Anjum et al. 2012; Dobson et al. 2002; Downes et al. 2005; Elagouz et al. 2010; 
Minniti et al. 2014; Mohan 2005; Niu et al. 2009). Gradual, pathologic neovascular-
ization epitomizes the chronic, progressive vascular damage in sickle cell disease 
(Cheung et al. 2010) and highlights both phenotypic and genotypic disease vari-
ability. For example, although the exact incidence is unknown, only some patients 
with sickle cell disease develop moyamoya syndrome (Dobson et al. 2002) and 
proliferative retinopathy is more common in HbSC than HbSS disease (Downes 
et al. 2005; Gill and Lam 2008). Differences in the frequency of proliferative reti-
nopathy in HbSC and HbSS are attributed to differences in retinal vasculature 
occlusion rates. In HbSS, vascular obstruction inhibits de novo revascularization 
whereas in, HbSC, hyperviscosity leads to indolent hypoxia that stimulates angio-
genesis. Thrombospondin levels are elevated in HbSS disease but not HbSC and 
counteract circulating angiogenic factors (Elagouz et al. 2010).

In early development, vasculogenesis is supported by the endoderm while angio-
genesis is supported by both ectoderm and endoderm. Endothelial cells participate 
in the molecular events associated with this process by producing vascular endothe-
lial derived growth factor (VEGF) and placenta derived growth factor (PIGF). Both 
growth factors direct endothelial cell proliferation and migration. Because of the 
endothelium’s clear role in stimulating new vessel formation, it is fundamentally 
implicated in pathologic collateral vasculature formation in sickle cell disease. 
Indeed, circulating angiogenic factors VEGF, angiopoietin-1 and -2, placental 
growth factor, and erythropoietin are stimulated by hypoxia and endothelial injury 
and are elevated in sickle cell disease (Brittain et al. 2010; Cruz et al. 2014; Duits 
et al. 2006; Landburg et al. 2009; Lopes et al. 2015; Niu et al. 2009).

The collateral vessels that develop in the retinal and cerebral circulations are 
prone to bleeding. Moyamoya syndrome is sometimes managed surgically using 
encephaloduroarteriosynagiosis (EDAS) to redirect cerebral blood flow, circum-
venting areas of stenosis and collateralization (Arias et al. 2014). In sickle cell reti-
nopathy, laser and targeted anti-VEGF therapies are understudied but case reports 
suggest they may lead to regression of severe sickle retinopathy (Mitropoulos et al. 
2014; Shaikh 2008; Siqueira et al. 2006). The long-term impact of these agents on 
the prognosis of proliferative retinopathy is unknown (Elagouz et al. 2010). The 
impact of systemic sickle cell disease therapies, hydroxyurea and hematopoietic 
stem cell transplant, on inhibiting or reversing pathologic vasculogenesis is under 
investigation and discussed below.

7.4  Endothelial Regulation of Blood Flow  
in Sickle Cell Disease

The endothelium integrates information about shear stress, oxygen tension, tem-
perature and metabolic factors into a signal for vascular smooth muscle to relax or 
contract to regulate blood flow. One measure of endothelial function is its ability to 
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induce vasodilation in response to experimentally induced changes in shear stress, 
tissue oxygenation, or other factors. This approach, originally developed to study 
atherosclerosis, has been applied to patients with sickle cell disease to determine 
whether they have impaired endothelium-dependent vasodilation.

7.4.1  Endothelial Regulation of Blood Flow in the Skin 
Microcirculation

In sickle cell disease, compromised microcirculatory function is thought to contrib-
ute to painful crises and end-organ injury. Five studies comparing patients with 
sickle cell disease to non-anemic controls have examined microcirculatory blood 
flow responses after transient arterial occlusion (Table 7.2). Compared to control 
subjects, baseline microcirculatory blood flow was the same or higher in patients 
with sickle cell disease (Bachir et al. 1993; Lipowsky et al. 1987; Mohan et al. 2011; 
Tharaux et al. 2002). After a brief period of ischemia to induce endothelium- 
dependent vasodilation, patients with sickle cell disease had greater hyperemic 
blood flow than controls (Mohan et al. 2011; Rodgers et al. 1990; Tharaux et al. 
2002). In two studies, patients with sickle cell disease had significant prolongation 
of the hyperemic period, a response that is nitric oxide dependent (Bachir et al. 
1993; Rodgers et al. 1990). These studies suggest that, in sickle cell disease,  
endothelium- dependent vasodilation in the skin is intact or even enhanced. This 
may be attributable to anemia, inflammation or shunting of blood to the skin surface. 
Unfortunately, measures of microcirculatory blood flow do not capture information 
about functional capillary density. If capillary density falls, blood flow velocity in 
the remaining functional capillaries would increase. High flow might not be appro-
priate compensation and may instead represent a pathologic or maladapted state.

Two studies examined sickle cell patients’ microcirculatory response to tempera-
ture changes. They found that sickle cell patients had impaired microcirculatory 
vasodilation responses to heat (Tharaux et al. 2002) and enhanced microcirculatory 
vasoconstrictor responses to cold (Bachir et al. 1993). This may explain the poor 
cold tolerance often reported by patients with sickle cell disease.

7.4.2  Endothelial Regulation of Blood Flow in the Upper Limb

Endothelium-dependent vasodilation has been studied in patients with sickle cell 
disease using ultrasound measurements of the brachial artery, a technique originally 
used to study atherosclerosis. In this approach, the brachial artery is occluded for 
3–5 min causing hypoxia and vasodilation in the small resistance vessels in forearm 
skeletal muscle. With release of the occlusion, brachial artery blood flow accelerates 
and shear stress increases. Healthy endothelium senses this increased shear stress 
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and elaborates signals such as nitric oxide and prostaglandins that relax vascular 
smooth muscle and dilate the vessel. The percent increase in brachial artery diam-
eter after occlusive cuff release, flow mediated dilation, is a measure of vascular 
health. In people without sickle cell disease, the extent of flow mediated dilation 
correlates with atherosclerotic risk factors and coronary vasodilation responses 
(Anderson et al. 1995; Celermajer et al. 1992; Deanfield et al. 2007). In this section, 
we examine the change in blood flow elicited by transient forearm hypoxia, and the 
subsequent change in brachial artery diameter that occurs in response to changes in 
shear stress.

The increase in blood flow triggered by transient occlusion of the brachial artery 
appears to be intact or even enhanced in patients with sickle cell disease. Compared 
to non-anemic subjects, baseline forearm blood flows were twice as high in patients 
with sickle cell disease (Table 7.3). As discussed in Sect. 7.2.1, this is consistent 
with the lower systemic vascular resistance and higher cardiac output in people with 
anemia. When measured as maximum flow or absolute change in flow, blood flow 
increased to a higher level in patients with sickle cell disease compared to controls 
after brachial artery occlusion release. The percentage increase in blood flow from 
baseline was similar in the sickle cell and the healthy control group.

Both baseline and maximum brachial artery diameter were greater in patients 
with sickle cell disease compared to controls (Table 7.4). However, among patients 
with sickle cell disease, the absolute change in diameter between baseline and maxi-
mum, and the percentage change in diameter were both less. Multiple studies agree 
that patients with sickle cell disease have a low percentage increase in brachial 
artery diameter after a transient brachial artery occlusion (Table 7.5). Was the low 
percentage change due to a specific defect in endothelial response to shear stress, or 
was it due to the larger baseline brachial artery diameter observed in patients with 

Table 7.3 Blood flow in the brachial artery before and after transient occlusion

Belhassen et al. (2001) Eberhardt et al. (2003) Aessopos et al. (2007)

Healthy Sickle cell Healthy Sickle cell Healthy
Sickle cell 
(SS/B0)

Number 15 16 41 17 40 47

Baseline 
flow (mL/
min)

47 ± 12 89 ± 22* 104 ± 75 179 ± 61* 113 ± 82 196 ± 96*

Maximum 
flow (mL/
min)

132 ± 24 219 ± 32* 686 ± 317 1121 ± 324* 553a 990a

Flow 
change 
(mL/min)

85a 130a 582a 942a 440a 794a

Flow 
change (%)

234 193 771 ± 486 579 ± 238 389 ± 185 405 ± 201

*p < 0.001 compared to healthy non-anemic control group
aInferred from the published mean or percentage change. Published values have been rounded
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sickle cell disease? Eberhardt et al. (2003) used analysis of covariance to account 
for different baseline brachial artery diameters and found sickle cell disease status 
was still associated with a lower percentage change in vessel diameter. Belhassen 
et al. (2001) used blood viscosity, vessel diameter and flow to calculate the wall 
shear stress in the brachial artery. Calculated shear stress was higher in sickle cell 
patients at baseline and at maximum flow, but elicited a smaller vasodilation 
response. These studies imply that patients with sickle cell disease have impaired 
endothelium-dependent vasodilation responses to shear stress. Future studies should 
include subjects with chronic non-hemolytic anemia as comparison groups to deter-
mine whether the impaired vasodilation is related to anemia or to a more specific 
sickle cell-related pathology such as hemolysis.

Table 7.4 Diameter of the brachial artery before and after transient occlusion

Belhassen  
et al. (2001)

Eberhardt  
et al. (2003)

Aessopos  
et al. (2007)

Scoffone 
et al. (2013)

Healthy
Sickle 
cell Healthy Sickle cell Healthy

Sickle cell 
(SS/B0) Sickle cell

Number 15 16 41 17 40 47 25

Baseline 
diameter 
(mm)

4.3 ± 0.1 4.6 ± 0.2* 3.5 ± 0.8 3.7 ± 0.4 3.2 ± 0.9 3.9 ± 0.4* 3.5 ± 0.1

Maximum 
diameter 
(mm)

4.5 ± 0.1 4.7 ± 0.2* 4.0 ± 0.8 4.1 ± 0.5 3.5a 4.1a 3.8 ± 0.1

Diameter 
change 
(mm)

0.2a 0.08a 0.46 ± 0.2 0.33 ± 0.17* 0.3a 0.2a 0.3 ± 0.04

Diameter 
change 
(%)

4.0 ± 0.2 1.7 ± 0.4* 13.7 ± 7.2 8.9 ± 4.2* 9.2 ± 3.8 4.2 ± 2.9* 9.0 ± 1.0

*p < 0.05 compared to healthy, non-anemic controls. Healthy subjects were not studied in Scoffone 
et al. (2013)
aInferred from the published mean or percentage change. Published values have been rounded

Table 7.5 Flow mediated dilation of the brachial artery after transient occlusion

Brachial artery diameter (% change from baseline)

ReferenceHealthy Sickle cell

4.0 ± 0.2 1.7 ± 0.4* Belhassen et al. (2001)

13.7 ± 7.2 8.9 ± 4.2* Eberhardt et al. (2003)

11.6 ± 7.7 4.6 ± 4.1* Blum et al. (2005)

16.9 ± 1.1 6.2 ± 0.9* Zawar et al. (2005)

9.2 ± 3.8 4.2 ± 2.9* Aessopos et al. (2007)

8.0 ± 0.2 5.6 ± 0.2* De Montalembert et al. (2007) (children)

– 9.0 ± 1.0 Scoffone et al. (2013)

8.2 ± 5.0 9.3 ± 4.2 Hadeed et al. (2014) (children)

7.9 ± 1.6 5.5 ± 2.5* Detterich et al. (2015)

* p < 0.05
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Endothelium-independent vasodilation, assessed by change in brachial artery 
diameter after a single dose of the nitric oxide donor nitroglycerin, was normal in 
most studies of sickle cell disease (Table 7.6) (Eberhardt et al. 2003; de Montalembert 
et al. 2007; Zawar et al. 2005), indicating that sickle cell patients are not maximally 
dilated at baseline and that the smooth muscle response to nitric oxide is intact. 
However, this observation is inconsistent with the impaired vasodilatory response to 
intra-arterial sodium nitroprusside, another nitric oxide donor, discussed in the next 
section.

7.4.3  Forearm Blood Flow Responses to Pharmacological 
Vasodilators and Vasoconstrictors in Patients with Sickle 
Cell Disease

Another way to assess endothelial function is by measuring forearm blood flow 
response to vasoactive drug infusions. To measure forearm blood flow, an upper 
arm pneumatic cuff is briefly inflated to occlude venous return but not arterial 
inflow. A stretch gauge around the forearm measures the rate of forearm expan-
sion, which is proportional to arterial inflow (Hokanson et al. 1975). Measures of 
arterial inflow are taken before and during infusions that either stimulate endothe-
lial muscarinic receptors (acetylcholine), inhibit endothelial nitric oxide synthase 
(L-NMMA or L-NAME) or donate nitric oxide independent of the endothelium 
(sodium nitroprusside). These drugs and their expected effects are summarized in 
Table 7.7. Forearm blood flow responses from multiple studies of patients with 
sickle cell disease, non-hemolytic anemia, and healthy controls are tabulated in 
Table 7.8.

Baseline forearm blood flow was elevated in sickle cell patients compared to 
non-anemic controls (Table 7.8), consistent with the Doppler ultrasound measures 

Table 7.6 Nitroglycerin-induced vasodilation of the brachial artery.

Reference

Brachial artery dilation  
(% change from baseline)

Healthy Sickle cell

Eberhardt et al. (2003) 24.0 ± 10.7 17.6 ± 6.8*

Zawar et al. (2005) 26.1 ± 1.6 25.1 ± 1.5

de Montalembert et al. (2007) (children) 21 ± 8 20 ± 8

Brachial artery diameters were measured by ultrasound before and after a systemic dose of nitro-
glycerin in healthy, non-anemic controls and in patients with sickle cell disease. The percentage 
change relative to baseline is presented
*In Eberhardt et al., the percentage change from baseline was lower in patients with sickle cell 
disease; however, the absolute change in diameter (mm) was not different in healthy vs sickle cell, 
respectively: baseline, 3.63 ± 0.90 vs 3.85 ± 0.41, p = 0.38; post-NTG, 4.42 ± 0.79 vs 4.51 ± 0.44, 
p = 0.68; absolute change in diameter, 0.79 ± 0.25 vs 0.67 ± 0.23, p = 0.11
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of forearm blood flow in the brachial artery discussed earlier. Acetylcholine- 
stimulated blood flow (an endothelium-dependent response) was also greater among 
sickle cell patients compared to healthy individuals whether expressed as maximum 
flow (Belhassen et al. 2001; Eberhardt et al. 2003; Gladwin et al. 2003b) or as per-
centage increase from baseline (Belhassen et al. 2001; Gladwin et al. 2003b), sug-
gesting that endothelium-dependent vasodilation to acetylcholine is intact or even 
enhanced in patients with sickle cell disease.

Further evidence that endothelial function is intact in patients with sickle cell 
disease is provided by the observation of enhanced vasoconstriction to L-NMMA, a 
measure of the contribution of endothelial nitric oxide synthase to basal vasodila-
tion. In three studies, patients with sickle cell disease had greater L-NMMA-induced 
decrements in forearm blood flow than non-anemic controls (Belhassen et al. 2001; 
Bereal-Williams et al. 2012; Eberhardt et al. 2003); in a fourth study, the responses 
to L-NMMA were the same (Gladwin et al. 2003b). Overall, endothelial nitric oxide 
synthase signaling appears to be not only intact, but also enhanced in people with 
sickle cell disease, a finding that is consistent with the response to L-NMMA 
observed in patients with non-hemolytic anemia (Anand et al. 1995). One study 
evaluated the contribution of nitric oxide synthase to the acetylcholine-induced 
increase in blood flow. L-NMMA reduced acetylcholine-stimulated blood flow by 
significantly more in healthy controls than in patients with sickle cell disease 
(Eberhardt et al. 2003), suggesting that in sickle cell disease the acetylcholine 
response may be mediated by non-nitric oxide vasodilating mechanisms, such as 
prostaglandins.

Sodium nitroprusside, a nitric oxide donor, tests smooth muscle dilation inde-
pendent of the endothelium. Sodium nitroprusside infusion into the brachial artery 
increased forearm blood flow of patients with sickle cell disease to a higher level 
and by a larger amount than controls but the patients with sickle cell disease had a 
smaller percentage increase from baseline (Belhassen et al. 2001; Eberhardt et al. 
2003). This lower percentage change from baseline was also observed in patients 
with non-hemolytic anemia (Anand et al. 1995). The smaller percentage increase in 
blood flow may be explained by the high baseline blood flow. This affects the 
 calculation of percentage change and reduces the effective dose of the drug being 
infused into the artery.

Table 7.7 Drugs used to test vascular reactivity.

Vasoactive agent Mechanism Expected effect

Acetylcholine Endothelial muscarinic 
receptor stimulation

Vasodilation via nitric oxide, prostaglandins, 
and endothelium-derived hyperpolarizing 
factor

L-NMMA or 
L-NAME

Endothelial nitric oxide 
synthase inhibition

Vasoconstriction via inhibition of nitric oxide 
synthase

Sodium 
nitroprusside

Direct nitric oxide 
release

Vasodilation via diffusion of nitric oxide from 
blood to smooth muscle
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7.5  Endothelium-Derived Vasomodulators Nitric Oxide, 
Eicosanoids, and Endothelin-1 in the Pathophysiology 
of Sickle Cell Disease

Under physiologic conditions, vasoactive peptides help maintain vascular tone, direct-
ing the local and systemic vascular response to maintain blood pressure and meet the 
body’s metabolic demands. Endothelial cells produce the major vasoactive substances 
that direct vascular smooth muscle contraction and relaxation. Between 1978 and 
1988, the discovery of prostacyclin (Weksler et al. 1977), nitric oxide (NO) (Furchgott 
and Zawadzki 1980; Palmer et al. 1987), platelet-derived growth factor (PDGF) (Berk 
et al. 1986) and endothelin-1 (ET-1) (Yanagisawa et al. 1988) established the critical 
endothelium-derived mediators of vascular tone. Identification of the vasodilatory 
effects of NO and prostacyclin, and the vasoconstricting effects of ET-1 and PDGF 
enabled studies of these substances’ dynamic contributions to physiologic vascular 
muscle response, coagulation, vascular remodeling and vascular injury. Vasoactive 
peptides are both constitutively and episodically released. They contribute to physio-
logic maintenance of vascular tone and are integral to the endothelial response to 
vascular injury, shear stress, inflammatory or angiogenic stimuli. Vasoactive peptides 
are implicated in acute and chronic complications of sickle cell disease.

7.5.1  Endothelial Nitric Oxide Signaling and Vascular 
Inflammation

Nitric oxide was discovered to be the endothelium-derived relaxing factor in 
Brooklyn in 1980; in 1998 the three scientists primarily responsible for this discov-
ery shared the Nobel Prize for Medicine and Physiology (SoRelle 1998). This his-
tory reflects the evolving recognition that nitric oxide is central to the physiology 
and pathophysiology of the cardiovascular system. Several excellent texts describe 
the role of nitric oxide in the vascular endothelium (Aird 2007a; Moncada and 
Higgs 2006a). Here we focus on aspects most important to sickle cell disease 
pathophysiology.

Nitric oxide plays several important roles in the vascular endothelium (Fig. 7.8). 
First, endothelial nitric oxide regulates blood flow by relaxing vascular smooth 
muscle and dilating vessels. Second, nitric oxide modulates platelet adhesion and 
aggregation and platelet-derived nitric oxide helps regulate clot formation. Third, 
nitric oxide modulates microcirculatory leukocyte adhesion by down-regulating 
endothelial adhesion molecules and by maintaining endothelial barrier integrity. 
Fourth, nitric oxide inhibits vascular smooth muscle proliferation. Finally, nitric 
oxide interacts with vascular endothelial growth factor to promote angiogenesis 
(Moncada and Higgs 2006b).

Nitric oxide synthase catalyzes the reaction of molecular oxygen with l-arginine 
to form nitric oxide and l-citrulline (Palmer et al. 1988). The three major nitric 
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oxide synthase isoforms are endothelial nitric oxide synthase, neurologic nitric 
oxide synthase and inducible nitric oxide synthase. Endothelial nitric oxide syn-
thase is constitutively active in the endothelium, and can be stimulated by endothe-
lial exposure to high shear stress (Uematsu et al. 1995), vascular endothelial growth 
factor (Bouloumié et al. 1999), chronic exercise (Kojda et al. 2001) and statins 
(Hernández-Perera et al. 1998). In patients with sickle cell disease, there are con-
flicting data describing nitric oxide bioavailability. Compared with healthy African 
Americans, patients with sickle cell disease have low systemic vascular resistance, 
high baseline forearm blood flow, and pronounced vasoconstrictive responses to the 
nitric oxide synthase inhibitor, L-NMMA—implying that a high level of constitu-
tive endothelial nitric oxide synthesis maintains a vasodilated state. However, 
among patients with sickle cell disease, those with higher plasma hemoglobin tend 
to have diminished vasodilation responses to nitric oxide and to shear stress, and 
higher estimates of pulmonary vasoconstriction (Detterich et al. 2015; Reiter et al. 
2002). Sickle cell mice show a similar blunting of vasodilatory response to nitric 
oxide donors that is proportional to cell-free hemoglobin plasma concentration 
(Kaul et al. 2008).

Cell-free hemoglobin can cause vasoconstriction directly by reacting with nitric 
oxide (Reiter et al. 2002) or indirectly by producing reactive oxygen species that react 
with nitric oxide (Huie and Padmaja 1993) or by downregulating endothelial nitric 
oxide synthesis. Cell-free hemoglobin causes vasoconstriction and blunts the effects 
of nitric oxide in a canine model of intravascular hemolysis (Minneci et al. 2005). 
Continuous infusion of cell-free hemoglobin accelerates hypoxia-induced pulmonary 
hypertension and can be prevented by co-infusion of haptoglobin (Irwin et al. 2015). 
Free heme released from denatured or oxidized hemoglobin can stimulate reactive 
oxygen species production, impair nitric oxide synthase activity, and upregulate the 

Fig. 7.8 Nitric oxide synthesis and activities in the vascular endothelium. Nitric oxide (NO) is 
formed from molecular oxygen and arginine. The reaction is catalyzed by nitric oxide synthase 
(NOS) and requires the reducing equivalent provided by NADPH, as well as the cofactor tetrahydro-
biopterin (BH4), which is not consumed. The reaction product citrulline can be recycled to arginine 
via the enzymes ASS1 and ASL (not pictured). Asymmetric dimethylarginine (ADMA) is an endog-
enous inhibitor of NOS that is metabolized by the enzyme DDAH (not pictured). Nitric oxide has 
pleiotropic effects on cells in the vasculature, generally maintaining endothelial quiescence. Figure 
adapted from Matthew Alkaitis, Biochemical Determinants of Nitric Oxide Synthesis in Severe 
Malaria, D. Phil. Thesis, University of Oxford, 2014, and used with permission of the author
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expression of endothelial adhesion molecules—effects that are partially reversed by 
administering exogenous hemopexin, the heme scavenger (Vinchi et al. 2013).

Hemolysis is also associated with changes in the substrates, inhibitors and co- 
factors involved in nitric oxide synthesis. In sickle cell disease, arginase activity is 
elevated, and associated with arginine deficiency and an elevated ratio of ornithine 
to arginine, which together could potentially limit nitric oxide synthesis from argi-
nine (Omodeo-Sale et al. 2010; Schnog et al. 2004). Plasma arginase is associated 
with elevated estimated pulmonary artery pressures and early mortality in sickle cell 
disease (Morris et al. 2005). Arginine deficiency can also lead to nitric oxide syn-
thase uncoupling, allowing the production of the free radical superoxide instead of 
nitric oxide (Antoniades et al. 2009; Kim et al. 2009).

Deficiency of tetrahydrobiopterin, a nitric oxide synthase co-factor, also causes 
uncoupling and superoxide production (Guzik et al. 2002). A trial of sepiapterin to 
raise tetrahydrobiopterin levels improved endothelium-dependent vasodilation 
among patients with sickle cell disease who had impaired vasodilation at baseline 
(Hsu et al. 2008). Variants in the gene encoding GTP cyclohydrolase, a gene 
involved in synthesis of tetrahydrobiopterin, are associated with altered endothelial- 
dependent blood flow in women with sickle cell disease (Belfer et al. 2014).

Asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor, is 
abundant in erythrocytes and released upon proteolysis of erythrocyte proteins 
(D’Alecy and Billecke 2010; Billecke 2006; Davids et al. 2012). Patients with sickle 
cell disease have elevated ADMA that is associated with higher estimated pulmo-
nary artery pressure (Kato et al. 2009; Landburg et al. 2008, 2010; Schnog et al. 
2004; El-Shanshory et al. 2013).

Hemolysis has the potential to limit nitric oxide signaling via direct nitric oxide 
consumption and by altering the biochemistry of nitric oxide synthesis. The con-
cepts of hemolysis-associated nitric oxide deficiency have recently been reviewed 
in detail (Potoka and Gladwin 2015; Schaer et al. 2014). The extent to which hemo-
lysis and impaired nitric oxide signaling explain the pathophysiology of sickle cell 
disease in humans needs to be determined. Studies of haptoglobin or hemopexin 
infusions in people with sickle cell disease may help define the importance of extra- 
erythrocytic hemoglobin in sickle cell disease, while efforts to restore the balance of 
arginine, ADMA, and tertrahydrobiopterin may highlight the importance of 
impaired nitric oxide synthesis in sickle cell pathophysiology (see Sect. 7.5.4 for a 
discussion of therapeutic manipulation of nitric oxide).

7.5.2  Eicosanoids Play a Mixed Role in SCD Pathophysiology

Endothelial eicosanoids are synthesized in endothelial cells and have diverse bio-
logic actions including influencing vascular tone, modulating platelet and leuko-
cyte behavior and maintaining vascular wall integrity. Eicosanoids are synthesized 
from arachadonic acid via three enzymatic pathways: the cyclooxygenase (COX), 
cytochrome p450 (CYP), and lipoxygenase (LOX) pathways. The major products 
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of the COX pathway are prostacyclin (PGI2), which inhibits platelet aggregation 
and relaxes vascular smooth muscle cells, prostaglandins (PGE2 and PGD2), which 
are involved in pain pathways, and thromboxane (TXA2), a vasoconstricting sub-
stance released by platelets. The LOX pathway synthesizes leukotrienes A4-D4. 
Finally, the CYP pathway produces epoxy eicosatetranoic acids (EETs). Overviews 
of the physiologic function of eicosanoids are available (Aird 2007a; Moncada 
and Higgs 2006b). The eicosanoids contribute to sickle cell disease’s inter-related 
pathologies of endothelial activation, vascular remodeling and inflammation 
(Hoppe 2014).

In sickle cell disease, PGI2 contributes to vascular tone modulation and inhibits 
platelet aggregation. PGI2 is synthesized via COX-1 and COX-2 mediated path-
ways, most prominently produced in endothelial cells and vascular smooth muscle 
cells (Moncada et al. 1976, 1977). In vitro and in vivo studies of PGI2 activity in 
sickle cell disease have produced contradictory results. In vivo measurements of 
PGI2 levels and the prostacyclin metabolite 6-keto-prostaglandin are variable in 
patients with sickle cell disease (Buchanan and Holtkamp 1985; Longenecker and 
Mankad 1983; Mehta and Albiol 1982). In contrast, studies of the effects of sickled 
red cells and shear stress on cultured endothelial cells indicate that these interac-
tions increase endothelial PGI2 production under static (Sowemimo-Coker et al. 
1992) and flow conditions (Shiu et al. 2002). These inconsistencies may reflect vari-
ability in PGI2 production via the constitutively active COX-1 pathway and the 
induction of the COX-2 pathway under stress and at sites of inflammation and may 
be further complicated by organ specific regulation of COX enzyme activity. 
Increases in PGI2 in vivo may be accompanied by the production of other eico-
sanoids that contribute to sickle cell pathophysiology such as leukotrienes, TXA2 
and prostaglandins. As PGI2 is the major TXA2 antagonist, increases in PGI2 in 
sickle cell disease may represent a physiologic regulatory response to increased 
TXA2 production.

7.5.3  Endothelin Is Elevated in Sickle Cell Disease

Endothelin-1 (ET-1), the most potent vasoconstrictor known, acts on large arteries 
and veins, resistance arterioles and postcapillary venules. ET-1 stimulates inflam-
mation (Huribal et al. 1994; McMillen and Sumpio 1995), and up-regulates adhe-
sion molecules (McCarron et al. 1993), while in the kidney it stimulates natriuresis 
(Nambi et al. 1992). ET-1 is constitutively produced by endothelial cells to help 
maintain vascular tone. Weibel-Palade bodies release ET-1 in response to signals of 
vascular distress such as circulating transforming growth factor-β, shear stress, 
hypoxia and the adhesion of sickled erythrocytes (Phelan et al. 1995). ET-1 effects 
are mediated through endothelin receptor-a (ETA) and -b (ETB); ETA receptors pre-
dominate in vascular beds and their stimulation causes vasoconstriction. ETB recep-
tors are expressed in lung and kidney tissue and perform a counter-regulatory 
function; by clearing ET-1 from the circulation, they inhibit vasoconstriction.
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ET-1 may be involved in several aspects of sickle cell pathophysiology. ET-1 is 
elevated in sickle cell patients at steady state, and is further elevated during crisis 
(Rybicki and Benjamin 1998) and in acute chest syndrome (Hammerman et al. 
1997). These elevations may exacerbate microvasculature occlusion and may be at 
least partially compensated for by elevations in PGE2 (Graido-Gonzalez et al. 1998). 
An endothelin-converting enzyme mutation is associated with stroke in sickle cell 
disease (Sebastiani et al. 2005) and, in adults without sickle cell disease, ET-1 is 
implicated in subarachnoid hemorrhage-associated cerebral vasospasm (Mascia 
et al. 2001). The endothelin-converting enzyme gene is expressed in peripheral 
blood mononuclear cells at 50-fold higher levels in adults with SCD than healthy 
controls (van Beers et al. 2015). Finally, red cell exposure to ET-1 may exacerbate 
sickling. Acting through the ETB receptor, ET-1 modulates Gardos channels and 
causes erythrocyte dehydration and increased intracellular hemoglobin concentra-
tion, factors that favor sickle hemoglobin polymerization (Rivera et al. 1999, 2002).

Pulmonary hypertension in SCD appears to involve high levels of ET-1, a final 
common pathway in many forms of pulmonary hypertension. High plasma levels of 
ET-1 are associated with high pulmonary artery pressure estimated by echocardiog-
raphy in adults with SCD (Sundaram et al. 2010) and ET-1 levels correlate with 
plasma levels of the VEGF family member, placenta growth factor (PlGF) (Patel 
et al. 2008). In mice, experimental overexpression of PlGF induces high levels of 
ET-1 and a pulmonary hypertension phenotype at necropsy, documenting a cause 
and effect relationship (Sundaram et al. 2010); PlGF is secreted by proerythroblasts 
under erythropoietin stimulation (Gonsalves et al. 2015; Perelman et al. 2003; 
Tordjman et al. 2001) and increased by free heme released by hemolysis (Wang 
et al. 2014).

Endothelin may also play an important role in the evolution of sickle cell kidney 
disease. Systemic ET-1 is degraded in the kidney and ET-1 excreted in the urine is 
of renal origin (Janas et al. 2000). Young adults with SCD secrete four times more 
urinary ET-1 than age- and ethnicity-matched controls (Tharaux 2005). This finding 
may be a function of the chronic ischemic injury to sickle cell kidneys, as in experi-
mental models of chronic ischemic nephropathies ET-1 is also increased (Oishi 
et al. 1991). ET-1 promotes free water clearance and counters the effects of anti- 
diuretic hormone, contributing to the classic finding of hyposthenuria in patients 
with sickle cell disease (Ge et al. 2005; Nadler et al. 1992; Oishi et al. 1991). Finally, 
albumin stimulates ET-1 production, but whether reductions in albuminuria modify 
ET-1 production is unknown.

7.5.4  Therapeutic Promise of Modulating Nitric Oxide, 
Prostacyclin or Endothelin-1

Because changes in nitric oxide bioavailability, prostacyclin synthesis and endothe-
lin- 1 synthesis have likely pathophysiologic roles in the evolution of sickle cell vas-
cular disease, they are therapeutic targets whose potential is as of yet unrealized.

7 Cardiovascular Adaptations to Anemia and the Vascular Endothelium in Sickle…



160

Despite promising pre-clinical studies (Hataishi et al. 2006; Lang et al. 2007; 
Mack et al. 2008; Mathru et al. 2007), in a multicenter study of 150 patients with 
sickle cell disease presenting to the hospital with painful crisis, treatment with inhaled 
nitric oxide gas versus placebo showed no difference in length of painful crisis, pain 
scores, opioid use or rate of acute chest syndrome (Gladwin et al. 2011). Treatment 
with sildenafil, a phosphodiesterase-5 inhibitor that prolongs the half-life of cyclic 
GMP, the second messenger of NO in smooth muscle, did not improve exercise 
capacity or estimates of pulmonary pressure (Machado et al. 2011). Patients treated 
with sildenafil had a higher rate of hospitalization for pain compared to placebo.

Promoting endogenous nitric oxide production pathways has also shown initial 
promise. Because the nitric oxide precursor arginine is depleted in patients with 
sickle cell disease, especially during painful crisis, and the inhibitor asymmetric 
dimethylarginine is elevated (Lopez et al. 2003; Morris et al. 2005; Schnog et al. 
2004, 2005), arginine therapy is of interest in sickle cell disease (Morris et al. 2000). 
Arginine supplementation in sickle cell mice increased nitric oxide metabolites, 
decreased prostaglandin (PGE2) levels, improved oxidative stress, and restored nitric 
oxide-mediated vasoreactivity (Dasgupta et al. 2006; Kaul et al. 2008). A study of 
arginine supplementation in children with sickle cell disease did not meet primary 
end points (length of stay), but opiate use in treated patients decreased by over 50 % 
(Morris et al. 2013). Arginine has also been used in the treatment of leg ulcers (Sher 
and Olivieri 1994). Arginine therapy may also be beneficial to patients with sickle 
cell disease by changing erythrocyte Gardos channel activity (Romero et al. 2002) 
and by reducing erythrocyte fragility and oxidative stress (Kehinde et al. 2015).

Hydroxyurea can act as a nitric oxide donor, an additional mechanism through 
which hydroxyurea may be beneficial to patients with sickle cell disease (Almeida 
et al. 2012, 2015; Gladwin et al. 2002; Glover et al. 1999; Nahavandi et al. 2000). 
Although the importance of this pathway is debated, recent evidence suggests that 
this is a plausible mechanism. After inducing hemolysis and acute inflammation in 
C57Bl/6 wild-type mice, treatment with hydroxyurea improved leukocyte function. 
However, administration of hydroxyurea with nitric oxide scavengers abrogated this 
response. These results suggest that hydroxyurea changes leukocyte activation by 
stimulating nitric oxide production (Almeida et al. 2015), though L-NMMA could 
have harmful effects independent of hydroxyurea.

Although PGI2 analogues are used to treat pulmonary hypertension, they have 
not been specifically evaluated for the management of pulmonary hypertension in 
patients with sickle cell disease (Klings et al. 2014). In one case report, Iloprost 
worked as analgesia in a sickle cell patient with severe bone pain (Disch et al. 2004). 
Although use of selective COX-2 inhibitors was promising in one small study of 
children with sickle cell disease (Edwards et al. 2004), they are no longer in use due 
to cardiovascular toxicity attributed to the selective inhibition of prostacyclin 
production.

Unfortunately, the therapeutic promise of endothelin-1 receptor antagonists has 
yet to be demonstrated for sickle cell disease. Bosentan, an ET-1 receptor antagonist, 
prevented death in mice exposed to hypoxic conditions (Sabaa et al. 2008), and 
decreased ET-1 production in the kidneys of sickle mice (Tharaux 2005). Bosentan 
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improved the six-minute walk distance of patients with sickle cell disease and pulmo-
nary hypertension (Barst et al. 2010; Minniti et al. 2009). ET-1 antagonism may also 
have a role in the treatment of patients with intractable leg ulcers (Lionnet et al. 2008).

7.5.5  Sickle Cell-Directed Therapies Ameliorate  
Endothelial Injury

Clinical evidence suggests that hydroxyurea and hematopoietic stem cell transplant 
(HSCT) mitigate vascular complications of sickle cell disease. Hydroxyurea 
changes many serologic measures associated with endothelial abnormalities of 
sickle cell disease (Table 7.9). Hydroxyurea not only increases fetal hemoglobin 
(HbF), but also decreases platelet, reticulocyte and leukocyte counts, decreases 
inflammatory markers, has anti-angiogenic effects (Lopes et al. 2014, 2015), alters 

Table 7.9 Hydroxyurea changes mediators of endothelial activity

Mediator Effect of hydroxyurea
In vivo/ 
in vitro

Adhesion

Reticulocytes Decreased adhesion to endothelial cells 
(Bridges et al. 1996)
Decreases expression of VLA-4  
and CD36 (Styles et al. 1997)

In vivo

Phosphatidylserine Decreases erythrocyte expression  
(Covas et al. 2004)

Neutrophils Decreases absolute count
Reduces H2O2 production  
(Benkerrou 2002)

In vivo

L-selectin Normalizes neutrophil surface expression 
(Benkerrou 2002)

In vivo

Vascular Cell Adhesion Molecule-1 
(VCAM-1)

Soluble levels decreased  
(Conran et al. 2004)

In vivo

Inducible Cell Adhesion Molecule-1 Soluble levels decreased  
(Conran et al. 2004)

In vivo

Angiogenesis

Hypoxia-inducible factor-1 Decreased expression (Lopes et al. 2014) In vitro

Vascular endothelial growth factor-D Decreased (Lopes et al. 2015) In vivo

Angiotensin-1 Decreased (Lopes et al. 2015) In vivo

Platelet derived growth factor-AA, -BB Decreased (Lopes et al. 2015) In vivo

Vasoactive mediators

Nitric oxide bioavailability Increased (Almeida et al. 2015) In vivo

Endothelin-1 Decreased (Brun et al. 2003) In vitro

Arginase Decreased (Moreira et al. 2015) In vivo
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reticulocyte-endothelial adhesion (Chaar et al. 2014) and down regulates ET-1 
expression (Brun et al. 2003). Plasma arginase levels are also lower after hydroxy-
urea therapy (Iyamu et al. 2005).

Long-term follow-up after HSCT in children is increasingly available and sug-
gests that many sickle cell complications are reversed following curative treatment. 
In a study of 22 children (ages 11 ± 3.9 years) receiving matched related donor 
HSCT, peri-transplant cerebrovascular complications occurred, but five years after 
transplant, some abnormalities resolved and no patients experienced stroke or cere-
brovascular disease progression. The same cohort demonstrated post-transplant 
improvements in splenic function, suggesting improved splenic vascular circula-
tion. In a cohort study of children with abnormal transcranial Doppler velocities 
who received either chronic transfusion therapy or HSCT, the group receiving 
HSCT had significantly greater decreases in their transcranial Doppler velocities, 
compared to the chronically transfused children (Bernaudin et al. 2014). In a meta- 
analysis of four cohorts of sickle cell disease patients receiving HSCT, 81 of 196 
patients had pre-transplant neuroimaging demonstrating cerebrovascular anoma-
lies; 16 % of these patients continued to worsen post-transplant (Bodas and Rotz 
2014). Progression of cerebral vasculopathy, even after sickled erythrocytes have 
been replaced by typical erythrocytes, implies that vascular injury may resolve 
slowly if at all (Fasano et al. 2014).

7.6  Summary

The role of the vascular endothelium in sickle cell disease is complex and must be 
interpreted with attention to how the cardiovascular system responds to anemia, 
communication between blood cells and the endothelium and the acute and chronic 
endothelial response to the conditions precipitated by erythrocyte sickling. 
Endothelial heterogeneity demands that researchers resist the temptation to general-
ize findings from one vascular bed to others. Approaches to study organ-specific 
endothelial abnormalities are especially needed to understand the devastating cere-
bral, cardio-pulmonary, renal and hepatic complications sickle cell disease. Drugs 
that ameliorate sickling and reduce ischemia-reperfusion injury may protect the 
vascular endothelium in patients with sickle cell disease. In the future, cell-based 
therapies may be available that improve sickle cell vasculopathy by regenerating 
blood vessels’ lining with new, undamaged endothelium.
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Chapter 8
Inflammation and Sickle Cell Anemia

Camila Bononi de Almeida, Gregory J. Kato, and Nicola Conran

Abstract Inflammatory processes play a key role in the initiation of the acute pain-
ful vaso-occlusive crises that constitute the main cause of hospitalization in indi-
viduals with sickle cell anemia, as well as many of its numerous complications, 
including autosplenectomy, pulmonary hypertension, acute chest syndrome, leg 
ulcers, nephropathy and stroke. Ischemia-reperfusion injury (due to microvascular 
and macrovascular occlusions), membrane alterations of the sickle red blood cell, 
and hemolysis may all trigger endogenous proinflammatory signals (damage- 
associated molecular patterns-DAMPs) that lead to the vicious circle of pan-cellular 
activation, inflammatory mediator release, leukocyte recruitment and occlusive 
mechanisms that result in the chronic inflammatory state that is associated with 
sickle cell anemia. We, herein, review the probable primary inflammatory triggers 
that initiate inflammatory mechanisms in the disease and postulate the cells and 
molecules that may contribute to establish chronic inflammation. The anti- 
inflammatory effects of hydroxyurea are discussed, as are novel anti-inflammatory 
approaches currently under study.
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8.1  Introduction

Inflammation constitutes the adaptive response of the cells of an organism to a 
stimulus, such as infection or tissue injury, that has the objective of restoring organ 
function and homeostasis. While the inflammatory response to invasion by patho-
gens has long been characterized, non-microbial activators also trigger inflamma-
tory mechanisms  in processes of  sterile  inflammation  (Shen  et  al.  2013). Sterile 
inflammation occurs during acute conditions of tissue injury and following events 
such as ischemia-reperfusion injury, as well as manifesting as chronic inflammation 
in certain diseases, such as atherosclerosis and sickle cell anemia (SCA) (Chen and 
Nunez 2010).

Tissue stress or injury can lead to the release of endogenous molecules that act 
as damage-associated molecular patterns (DAMPs), setting inflammatory processes 
in motion (Bianchi 2007). Although inflammatory responses are important for 
repairing tissue and eliminating harmful molecules, unresolved inflammation, due 
to constant tissue damage and the failure to remove harmful inflammatory stimuli, 
can be detrimental to the organism and result in tissue destruction (Chen and Nunez 
2010). In the case of sickle cell anemia, ischemia-reperfusion injury (due to micro-
vascular and macrovascular occlusions and their consequent resolution), red blood 
cell membrane alterations, and hemolysis may all trigger proinflammatory signals 
that lead to the vicious circle of pan-cellular activation and occlusive mechanisms 
that result in the chronic inflammatory state associated with SCA. These inflamma-
tory processes play a key role in the initiation of the acute painful crises that repre-
sent the main cause of hospitalization in individuals with the disease (Ballas and 
Lusardi  2005) and many of its numerous manifestations, including autosplenec-
tomy (Brousse et al. 2014), pulmonary hypertension (Brittain et al. 2010; Ataga 
et al. 2008), acute chest syndrome (Hebbel 2014), leg ulcers (Minniti et al. 2014), 
nephropathy (Nath and Hebbel 2015), impaired cognitive function (Andreotti et al. 
2014) and stroke (De Montalembert and Wang 2013).

8.2  Orchestration of Sterile Inflammatory Responses

Endogenous  inflammatory  triggers, or DAMPs,  released by apoptotic or necrotic 
cells, following injury, or by erythrocytes undergoing hemolytic processes, can be 
detected by inflammatory cells such as monocytes, T-cells, neutrophils, macro-
phages and dendritic cells (van Golen et al. 2012). Necrotic cells release a range of 
DAMPs,  including high-mobility group box 1  (HMGB1) and purine metabolites 
such as ATP, while ruptured erythrocytes liberate cell-free hemoglobin; further-
more, damage to the extracellular matrix during tissue injury results in the release 
of molecules  such  as  small  leucine-rich  proteoglycans  (SLRPs)  and  hyaluronan 
fragments (Moreth et al. 2012). Intracellular stores of pro-inflammatory cytokines, 
such  as  IL-1α  and  IL-33,  can  also  be  released  by  necrotic  cells,  together  with 
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reactive oxygen species (ROS) and activated proteases, all of which can stimulate 
sterile inflammatory pathways (Chen and Nunez 2010).

Once released, these DAMPs and sterile inflammatory stimuli, in turn, activate 
cells via interactions with a range of membrane surface receptors that include the 
toll-like receptors (TLR)-2,-4 and -9, receptor for advanced glycation end products 
(RAGE) and the purinergic P2X7 receptor, as well as intracellular receptors, such as 
NOD-like receptor pyrin domain containing 3 (NLRP3) (Lister et al. 2007; Shen 
et al. 2013; Weber et al. 2015). Activation of these receptors results in gene tran-
scription and the production of inflammatory cytokines. In some cases, DAMP 
release induces the assembly of cytosolic molecular complexes, termed inflamma-
somes, in the inflammatory cells; the most characterized being the NLRP3 inflam-
masome. These complexes contain a pattern recognition receptor (PRR), typically 
NLRP3, which once activated recruits the adapter protein ASC (apoptosis-related 
speck-like protein containing a caspase recruitment domain) and pro-caspase-1. 
Pro-caspase-1 is then cleaved into its activated form, which then cleaves pro- 
interleukin (IL)-1β and pro-IL-18 into their biologically active forms (Ozaki et al. 
2015). As a consequence of the release of proinflammatory cytokines, whether due 
to inflammasome formation or the activation of other intracellular pathways, leuko-
cyte recruitment occurs together with further oxidative stress and inflammatory 
molecule production.

The cellular response to sterile inflammation, and its resolution, are similar to 
those of microbial inflammation. One of the first cells to be recruited to the site of 
injury are the neutrophils, which have a short half-life (in the range of hours when 
non-stimulated)  and make up about 70 % of  circulating human  leukocytes, with 
numbers that can rapidly increase to propagate inflammatory responses 
(Kolaczkowska and Kubes 2013). Neutrophils migrate to the inflamed tissue in 
response to chemokine production and, in turn, stimulate the recruitment of mono-
cytes and macrophages to the site, potentiating the inflammatory response. 
Leukocyte  recruitment  to  the  blood  vessel  wall  involves  a  multi-step  cascade, 
whereby adhesion molecules (namely selectins and integrins) mediate their tether-
ing  and  subsequent  rolling  along  the  endothelium,  followed  by  their  arrest  and 
transmigration  into  inflamed  tissues  (Leick et al. 2014). Activated and infiltrated 
neutrophils and macrophages, in addition to assisting in dead cell and debris 
removal, secrete chemokines and cytokines, such as TNF-α, IL-1 and IL-6, leading 
to endothelial activation and further immune cell recruitment (Medzhitov 2008; 
Shen et al. 2013). Lymphocytes, including invariant natural killer T (iNKT) cells, 
platelets and dendritic cells are also recruited to inflammatory sites, where they 
amplify endothelial and leukocyte activation, aggravating the inflammatory response 
due to interactions with other cells and the release of proinflammatory molecules, 
such  as  interferon  (IFN)s  and  CD40L  (Van Kaer  et  al.  2013; Gros et al. 2015; 
Chistiakov et al. 2014). Activation of inflammatory cells and their signaling path-
ways, in turn, leads to the production and secretion of a plethora of molecules, 
including proteases, growth factors and leukotrienes (Serhan et al. 2014; Shen et al. 
2013; Chen and Nunez 2010).

8 Inflammation and Sickle Cell Anemia
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Effective  resolution of  inflammation  constitutes  the  conclusion of  the  recruit-
ment of immune cells to the inflammatory site and their clearance by apoptosis or 
other cell death pathways (McCracken and Allen 2014). Neutrophils often undergo 
apoptosis following their recruitment and action at the inflammatory site, while 
macrophages  ingest apoptotic neutrophils. Simultaneously, abrogation of chemo-
kine signaling inhibits continued neutrophil tissue inflammation (Ortega-Gomez 
et al. 2013).  However,  in  chronic  diseases,  such  as  sickle  cell  anemia,  constant 
hemolytic and ischemia-reperfusion processes lead to the continuous generation of 
DAMPs and inflammatory stimuli that make resolution of inflammation processes 
difficult, if not impossible.

8.3  The Chronic Inflammatory State and Sickle Cell Disease

8.3.1  Primary Inflammatory Triggers in SCA

Multiple and complex mechanisms mediated by diverse cell types are involved in 
the establishment of the chronic inflammatory state in SCA, making it difficult to 
pinpoint specific mechanisms that trigger the initial inflammatory processes leading 
to chronic inflammation in the disease. It would, however, seem reasonable to 
assume that four primary events in sickle cell anemia pathophysiology instigate the 
initial processes that result in a chronic inflammatory state (see Box 8.1, Table 8.1 
and Fig. 8.1). 

Box 8.1: Primary Inflammatory Triggers in SCA 
•  Hemolytic events
•  Abnormalities in the sickle red blood cell membrane (phosphatidylserine 

exposure, adhesion molecule expression etc.)
•  Ischemia-reperfusion processes
•  Oxidative stress

Table 8.1  DAMPs and primary sterile inflammatory stimuli reported in SCA

DAMPs/sterile inflammatory stimuli Source Event

Hemoglobin/heme Erythrocytes Hemolysis

HMGB1 Injured/necrotic cells Ischemia

Extracellular heat shock proteins 
(HSP-70)

Injured/necrotic cells Ischemia

ATP Injured/necrotic cells Hemolysis/ischemia

Circulating DNA Injured/necrotic cells Ischemia

IL-1α Injured/necrotic cells Ischemia

ATP adenosine triphosphate, HMGB1 high mobility group box B1 protein, IL-1α interleukin-1α

C.B. de Almeida et al.
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Hemolysis Hemolysis represents a major trigger of inflammation in sickle cell dis-
ease. Polymerization of HbS in red blood cells (RBC), under deoxygenated condi-
tions,  causes RBC  sickling  and makes  the  cells more  rigid  and  less  deformable 
leaving them more susceptible to rupture in the circulation. Ensuing intravascular 
hemolysis results in the release of cell-free Hb (CFHb) from the red cells, which has 
numerous  and  significant  pathophysiological  consequences  (Kato  et  al.  2007; 
Schaer et al. 2013). Sickle cell disease hemolysis and its consequences are described 
in detail in other chapters of this book (Chaps. 4 and 7), but in summary, upon RBC 
lysis,  liberation  of  CFHb  into  the  blood  stream  results  in  rapid  consumption  of 
endothelium-derived nitric oxide (NO) (Reiter et al. 2002). NO produced by endo-
thelial nitric oxide synthase (Tsoumani et al. 2012) has important anti-inflammatory 
effects, reducing leukocyte activation, leukocyte-endothelial interactions and oxida-
tive stress, as well as inhibiting platelet aggregation and modulating the production 
of endothelin-converting enzyme-1 and some inflammatory mediators, such as tis-
sue factor and TNF-α (Arndt et al. 1993; Hossain et al. 2012; Rubanyi et al. 1991; 
Wallace 2005; Kuruppu et al. 2014; Bzowska et al. 2009; Walley et al. 1999; Solovey 
et al. 2010). In addition to local endothelium-derived NO depletion by CFHb, in its 
oxidized Hb-Fe3+ form, Hb can release the toxic hemoglobin product, hemin. The 
hydrophobic hemin (also denominated heme in some reports) molecule can then 
bind to and oxidize proteins or lipids, generating reactive molecules, including oxi-
dized low-density lipoprotein and reactive oxygen species (ROS), which can have 
potent and inflammatory and damaging effects (Schaer et al. 2013; Dutra and Bozza 
2014), and cause further endothelial activation (Belcher et al. 2014). Heme-laden 
erythrocyte microparticles have recently been reported to be generated in sickle cell 
disease (SCD), and these microparticles can adhere to and transfer heme to endothe-
lial cells, inducing oxidative stress and apoptosis (Camus et al. 2015). Additionally, 
heme/hemin can act as a DAMP, interacting with a number of cell surface receptors, 
including toll-like receptor 4 (TLR4) (Gladwin and Ofori-Acquah 2014). In SCD 
mice, heme/hemin administration triggers acute chest syndrome and induces vaso- 
occlusion  via  interaction with  endothelial  TLR4  and  consequent NFκB (nuclear 
factor kappa B) activation, leading to the expression of adhesion molecules such as 
intercellular adhesion molecule (ICAM)-1 and P-selectin on the endothelial cell 
surface (Belcher et al. 2014; Dutra and Bozza 2014; Ghosh et al. 2013) (see Fig. 8.1). 
Furthermore, heme/hemin administration to SCD mice induces the release of NETs 
from activated neutrophils; these NETs have anti-microbial activity and consist of 
decondensed chromatin and granular enzymes and are likely pathogenic in the SCD 
setting (Chen et al. 2014). In addition to binding to cell surface receptors, heme/
hemin is also a major regulator of redox-sensitive gene expression, modulating the 
expressions of heme oxygenase-1 (HO-1), ferritin,  thioredoxin, Hsp70, c-fos and 
Egr-1, a regulator ofcell proliferation and apoptosis (Iwasaki et al. 2006; Hasan and 
Schafer 2008). New data also indicate a role for heme/hemin in inflammasome for-
mation in lipopolysaccharide-primed macrophages, promoting NLRP3- dependent 
processing of  interleukin  (IL)-1β (Dutra et al. 2014), where such inflammasome 
formation probably makes an important contribution to the chronic inflammatory 
state in SCD (van Beers et al. 2015).
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In addition to the release of CFHb, hemolysis is also accompanied by the release 
of ATP from the erythrocytes (Sikora et al. 2014). Extracellular ATP functions pre-
dominantly as a signaling molecule via the activation of purinergic P2 receptors 
(Idzko et al. 2014a); binding of ATP to the P2X7 receptor, for example, leads to K+ 
efflux via ATP-gated cation channel opening and may contribute to NLRP3 activa-
tion and inflammasome formation (Idzko et al. 2014b). Furthermore, extracellular 
ATP is rapidly converted to adenosine by ectonucleotidases; while interaction of 
adenosine with the Adora2a adenosine receptor may have anti-inflammatory effects 
by selectively inhibiting the iNKT cells, adenosine signaling through the Adora2b 
adenosine receptor on the RBC membrane may contribute to erythrocyte sickling in 
SCD (Field et al. 2014; Zhang et al. 2011).

Red Blood Cell Membrane Alterations Mature erythrocytes, under normal physio-
logical conditions, do not adhere to other cells and present a very low-level surface 
adhesion molecule expression (Colin et al. 2014). However, in SCA, increased RBC 
turnover and physical alterations in the erythrocyte, such as dehydration, give rise to 
alterations in the expression of molecules on the cell surface (Kaul et al. 2009; 
Wood et al. 1996). RBC of SCA (SSRBC) individuals demonstrate an augmented 
expression of a number of adhesion molecules, including integrin α4β1  (CD49d/
CD29; very-late antigen-4), CD36, ICAM-4 and Lutheran/basal cell adhesion mol-
ecule (Lu/BCAM) (Joneckis et al. 1993; Colin et al. 2014), which facilitate their 
interaction with and adhesion  to other cells. Adhesive  interactions of SSRBC,  in 
addition to participating in occlusive mechanisms, may induce endothelial oxidative 
stress and activation, upregulating the expression of surface endothelial adhesion 
molecules  (Shiu  et  al.  2000;  Sultana  et  al.  1998). Additionally, dehydrated and 
dense sickle red cells expose negatively-charged phosphatidylserine on their plasma 
membrane. In addition to interacting with phosphatidylserine receptors on the endo-
thelial surface, these exposed glycoproteins are capable of activating the coagula-
tion cascade, promoting further inflammation via the generation of tissue factor 
(Yasin et al. 2003; Setty and Betal 2008; Franck et al. 1985; Chantrathammachart 
et al. 2012).

Ischemia-Reperfusion Injury Ischemia-reperfusion tissue injury occurs as the 
result of  the  interruption of blood supply  followed by  resolution and subsequent 
reperfusion of the tissue (Kalogeris et al. 2012). In SCA, vaso-occlusive processes 
cause ischemia-induced tissue injury. Injured cells undergoing cell death mecha-
nisms  release  DAMPs  such  as  HMGB1  and  heat  shock  proteins,  known  to  be 
increased in sickle cell disease (Xu et al. 2014; Adewoye et al. 2005), and display 
cytosolic calcium accumulation, mitochondrial dysfunction, and cell swelling 
(Kalogeris et al. 2012; Hebbel 2014). HMGB1 can promote NET formation in neu-
trophils via a TLR4-signaling pathway, while ATP release from necrotic cells also 
has direct inflammatory effects, as mentioned above (Idzko et al. 2014b; Tadie et al. 
2013) (Fig. 8.1). If blood flow is then restored following ischemic processes and the 
tissue reperfused, further damage occurs upon the reoxygenation of damaged tis-
sues, due to the production of ROS and calcium overload (Kalogeris et al. 2012). 
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Ischemia-reperfusion  injury  can  activate  iNKT  cells  in  SCA, which may  subse-
quently  contribute  to  the  inflammatory  cascade  by  involving  IFN-γ and INF-γ- 
inducible chemokines (Field et al. 2011).

Oxidative Stress The production of ROS (unstable oxygen containing molecules 
with a tendency to easily form radicals) is augmented by a number of mechanisms 
in SCA. The activities of enzymes such as NADPH oxidase and xanthine oxidase 
are augmented as a result of leukocytosis and endothelial activation, respectively 
(Wood et al. 2005; Aslan et al. 2001);  additionally, HbS can auto-oxidate  in  the 
presence  of  oxygen  to  produce  superoxide  and  hydroxyl  radicals  (Hebbel  et  al. 
1982) and, as mentioned above, processes of ischemia-reperfusion lead to the pro-
duction of further oxygen radicals (Aslan et al. 2000). Asymmetric dimethylargi-
nine (ADMA) formation and resulting hyperhomocysteinaemia in SCA may also 
lead to ROS generation and nitric oxide synthase may produce superoxide rather 
than NO, in the absence of l-arginine (Xia et al. 1996; Wood and Granger 2007). On 
the other hand, endogenous anti-oxidant defense mechanisms are altered in SCA, as 
individuals demonstrate a reduction in levels of important enzymatic antioxidants, 
including glutathione peroxidase and superoxide dismutase, and low levels of non- 
enzymatic antioxidants such as vitamins A, C and E (Amer et al. 2006; Natta et al. 
1990; Schacter et al. 1988).
In turn, ROS can act as important secondary messengers for signaling pathways 

associated with cell death, damage, endothelial activation and inflammation 
(Bondeva and Wolf 2014). There is some evidence to suggest that ROS may activate 
NLRP3  and,  therefore, mediate  inflammasome  activation,  under  certain  circum-
stances (Abais et al. 2014; van Golen et al. 2012); furthermore, ROS formation has 
been shown to participate in heme-induced NET release from neutrophils in mice 
with SCD (Chen et al. 2014) (see Fig. 8.1).

8.3.2  Propagation of the Chronic Inflammatory State in SCA

In vivo imaging studies using a sickle cell mouse model demonstrate that systemic 
inflammation in these mice is significantly greater than that of wild type mice, as 
demonstrated by generalized bioluminescence visualized in these animals follow-
ing their injection with a chemiluminescent probe that reacts with myeloperoxidase 
produced by neutrophils and phagocytes (Almeida et al. 2015). Such data exemplify 
the chronic inflammatory state that is known to accompany sickle cell anemia.
Following the incidence of initial inflammatory triggering mechanisms in SCA, 

it  is  probable  that  the  consequent  release  of  inflammatory  mediators  and  ROS 
primes the endothelium, leukocytes and platelets. As previously proposed in 
Chap. 5, secondary inflammatory triggers (or a “second hit”), possibly consisting of 
an infectious or another acute inflammatory stimulus, may then be able to induce 
vaso- occlusive processes in the microcirculation. Given the evidence that leukocyte 
and inflammatory cell recruitment to the endothelium appears to constitute a key 
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step in the initiation of the vaso-occlusive process (Turhan et al. 2002, 2004), it 
seems reasonable to suggest that the inflammatory state associated with SCA, com-
prising cellular activation and the production of inflammatory molecules, is the 
driving force behind the vaso-occlusive process. In turn, repeated vaso-occlusions, 
leading to further activation of the endothelium and leukocytes, together with isch-
emia result in a vicious circle of occlusive mechanisms, pancellular activation and 
escalating inflammatory mediator production that propagate the chronic inflamma-
tory state associated with SCA.

8.4  Cellular Contribution to Inflammation in SCA

8.4.1  Endothelium

As described in more detail in Chap. 7, the endothelium controls vascular homeo-
stasis, modulates local inflammation and participates in key steps of the angiogenic 
process (Huang and Vita 2006). Intact, non-activated endothelium usually inhibits 
the adhesion of inflammatory cells to the vessel wall using inhibitory and modulat-
ing mechanisms such as the production and release of NO and prostacyclin 
(Tsoumani et al. 2012). Reduced endothelium-derived NO bioavailability in SCD, 
due to hemolysis, and uncoupling of endothelial nitric oxide synthase, resulting 
from endothelial dysfunction (Kato et al. 2007; Reiter  et  al.  2002), conceivably 
contributes  significantly  to  chronic  inflammation  in  SCD,  augmenting  leukocyte 
and platelet activity, increasing endothelial interactions and amplifying inflamma-
tory mediator production (Canalli et al. 2008).

Once activated, in addition to expressing adhesion molecules on the endothelial 
surface, including VCAM-1, ICAM-1 and E-selectin (Duits et al. 1996), the endo-
thelium produces and releases a number of potent inflammatory molecules, such as 
IL-8, IL-6, GM-CSF, PAI-1 (plasminogen activator inhibitor-1), MCP-1 (monocyte 
chemotactic protein-1),  IL-1α, RANTES and further  IL-1β (Table 8.2) (Proenca- 
Ferreira et al. 2014; Sakamoto et al. 2013; Pathare et al. 2004; Conran et al. 2007a; 
Zachlederova and Jarolim 2000; Patel et al. 2010; Almeida et al. 2015). These 
potent inflammatory mediators contribute to the chronic inflammatory state in SCD, 
while the expression of adhesion molecules on the endothelial surface can result in 
the tethering of leukocytes, red cells and platelets to the endothelium.

8.4.2  Leukocytes

As mentioned, leukocytes are key protagonists in inflammatory processes via events 
that are controlled by a range of extracellular molecular regulators, including cyto-
kines and chemokines, which mediate both cell recruitment and intracellular signal-
ing inflammatory control mechanisms (Turner et al. 2014).  Leukocytosis  is  a 
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common characteristic of sickle cell anemia, where increased leukocyte counts 
have been associated with increased mortality, acute chest syndrome and stroke 
(Platt et al. 1991), probably due to the role that these cells play in the initiation of 
vaso- occlusive processes and their innate ability to contribute to processes of oxida-
tive stress and inflammatory mechanisms.

8.4.3  Platelets

In addition to their role in hemostasis, platelets also contribute to both physiological 
and pathological inflammatory processes (Garraud and Cognasse 2015). Platelets, 
when activated, can interact with and adhere to other cells, in turn activating or 
priming these cells (McGregor et al. 2006). Platelet-neutrophil complexes, for 
example, form during inflammatory processes and are known to enhance leukocyte 
recruitment to sites of inflammation and tissue injury (Page and Pitchford 2013). 
Augmented platelet-leukocyte aggregate formation has been well documented in 
SCD (Jakubowski et al. 2014; Lee et al. 2006; Wun et al. 2002) and may contribute 
to the up regulation of leukocyte recruitment to vessel walls. Furthermore, the adhe-
sion of platelets to endothelial cells leads to their activation and expression of the 
endothelial adhesion molecules, ICAM-1 and E-selectin, and IL-8 secretion via an 
NFκB-dependent pathway (Proenca-Ferreira et al. 2014), probably due to the 
release  of  potent  platelet-derived  inflammatory  mediators  such  as  IL-1β,  CD40 
ligand, TNFSF14 (LIGHT) and IL-6 (Lee et al. 2006; Proenca-Ferreira et al. 2014; 
Garrido et al. 2012; Davila et al. 2015). Interestingly platelets may also mediate the 
adhesion of erythrocytes to neutrophils in SCD (Dominical et al. 2014), indicating 
a role for platelets in the recruitment of RBC to the vessel wall and, therefore, in the 
initiation of vaso-occlusive processes.

8.5  Molecular Mediators in SCA Inflammation

Inflammation is controlled by a huge array of extracellular mediators including 
cytokines, chemokines, growth factors, eicosanoids and peptides, which in turn 
orchestrate intracellular signaling mechanisms that activate inflammatory cells and 
regulate their function and interactions with other cells. Several cell types produce 
these inflammatory mediators and the chronic inflammatory state associated with 
SCA propagates continual inflammatory cell activation that results in the excessive 
production of many of these molecules (see Table 8.2).

Cytokines are significant modulators of inflammation and the production of a large 
number of these proteins is augmented in SCA (see Table 8.2). Interleukin (IL)-1 
family cytokine levels are modulated in SCA (Driss et al. 2012; Asare et al. 2010; 
Keikhaei et al. 2013;  Francis  and  Haywood  1992),  where  elevated  IL-1β and 
IL-18 in SCA (Cerqueira et al. 2011; Keikhaei et al. 2013; Qari et al. 2012) may be 
indicative of the formation of inflammasomes, even during steady-state SCA.
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Tumor necrosis factor-α (TNF-α) has been consistently demonstrated to be ele-
vated in steady-state SCA and during VOC (Lanaro et al. 2009; Pathare et al. 2004; 
Qari et al. 2012), presumably as the result of the activation of monocytes and mac-
rophages (Safaya et al. 2012; Wun et al. 2002). Given that this potent cytokine plays 
a key role in the inflammatory response, causing endothelial activation, lipid media-
tor expression and activation of leukocytes (Turner et al. 2014) as well as modulat-
ing cell survival, differentiation and proliferation (Bradley 2008), it is reasonable to 
assume that this molecule plays a major role in the inflammatory state in SCA. TNF-α 
interacts with two receptors, denominated TNFR1 and TNFR2, which are differen-
tially expressed on cells and tissues; TNFR1 is widely expressed while TNFR2 is 
produced predominantly on the surface of leukocytes and endothelial cells (Sedger 
and McDermott 2014). TNFR1 expression has been correlated with disease severity 
in SCA (Dworkis et al. 2011) and the importance of TNF-α in inflammatory signal-
ing in SCA can be illustrated by the fact that well-established mice models of SCD 
inflammatory vaso-occlusion employ TNF-α to stimulate leukocyte recruitment, 
resulting in widespread vaso-occlusion of the microcirculation and, generally, lead-
ing to the death of the mouse within hours (Turhan et al. 2002, 2004).
Elevated plasma levels of IL-6 have been reported in steady-state SCA patients 

and  in  transgenic  SCD mice models  (Pathare  et  al.  2004;  Hibbert  et  al.  2005). 
Furthermore, there is evidence to suggest that IL-6 concentrations further increase 
during VOC (Pathare et al. 2004; Qari et al. 2012) and that augmented mononuclear 
IL-6 production may be associated with hemolysis in SCA (da Silva et al. 2014), 
with increased plasma IL-6 correlating with a higher risk for developing pulmonary 
hypertension (Niu et al. 2009). Numerous  inflammatory  cell  types  express  IL-6, 
including neutrophils  and monocytes/macrophages, upon  stimulation of Toll-like 
receptors.  IL-6  can modulate  hematopoiesis  and  is  critical  for  the maturation  of 
B-cells into plasma cells and, therefore, antibody production. Stimulation of endo-
thelial  and  smooth-muscle  cells  by  IL-6  leads  to  chemokine  release, which  can 
result  in  the recruitment of more  immune cells  (Calabrese and Rose-John 2014). 
Furthermore, IL-6 stimulation of hepatocytes in the liver results in the synthesis of 
acute-phase  proteins  including,  C-reactive  protein  (CRP),  a  principal  marker  of 
both acute and chronic inflammation (Heinrich et al. 1990). Other cytokines known 
to  be  elevated  in  sickle  cell  disease  include  IL-3,  IL-17  and  interferon  (IFN)-γ 
(Pathare et al. 2004; Rodrigues et al. 2006; Keikhaei et al. 2013) (Table 8.2).

Chemokines are small chemotactic cytokines that regulate leukocyte trafficking, 
although they also play roles in angiogenesis, embryonic development and cell 
homeostasis (Koenen and Weber 2011). Currently, over 40 chemokines have been 
identified and these are grouped in four distinct families (C, CC, CXC and CX3C) 
(Lira and Furtado 2012), a number of which have been reported as augmented in 
SCA (see Table 8.2). IL-8 (CXCL8) is a potent chemotactic factor, principally for 
neutrophils, but also induces neutrophil adhesive properties, shape change, lyso-
somal enzyme release and the generation of ROS and of bioactive lipids (Mukaida 
et al. 1998). Circulating IL-8 levels are reported as augmented in SCA both during 
steady state and VOC (Keikhaei et al. 2013; Qari et al. 2012; Niu et al. 2009; Lanaro 
et al. 2009) and, given the initiating role that neutrophils may play in inflammatory 
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vascular occlusion (Turhan et al. 2002), it is probable that this chemokine is impor-
tant for SCA pathophysiology. Other circulating chemokines known to be elevated 
in  SCA  include MCP-1  (monocyte  chemoattractant  protein-1; CCL2),  eotaxin-1 
(CCL11) and RANTES (CCL5) (Qari et al. 2012; Pallis et al. 2014). MCP-1 and 
KC (CXCL1) expressions are  increased in  the  liver and lungs of SCD mice, and 
blood outgrowth endothelial cells (BOEC), when proliferated from the peripheral 
blood  of  SCA  individuals,  secrete  higher  concentrations  of  IL-8  and  MCP-1 
(Sakamoto et al. 2013). In addition, cultured endothelial cells produce MCP-1 and 
IL-8 following stimulation with hemoglobin products (Almeida et al. 2015), indi-
cating a role for hemolysis in chemokine production. Platelets are an important 
source of chemokines, and the activation of platelets in SCA leads to the release of 
a number of platelet-derived chemokines, including platelet factor-4 (PF4; CXCL4) 
(Tomer et al. 2001; Adamides et al. 1990; Papadimitriou et al. 1993) that has impor-
tant anti-angiogenic properties, as well having a role in hemostasis/thrombosis and 
in macrophage differentiation (Kowalska et al. 2010).

Growth Factors constitute a group of molecules that can stimulate cellular growth, 
proliferation, healing, and cellular differentiation. Of the many growth factors, 
some regulate hematopoiesis (hematopoietic growth factors), others regulate neuro-
genesis (neurotrophins) and a number of these molecules also play roles in angio-
genic processes.

The hematopoietic growth factors, granulocyte colony-stimulating factor 
(G-CSF), granulocyte-macrophage colony-stimulating  factor  (GM-CSF), erythro-
poietin (O’Donnell et al. 2009), stem cell factor (SCF), growth differentiation fac-
tor- 15  (GDF-15),  and  stromal-derived  factor-1  (SDF-1)  (Landburg  et  al.  2009; 
Tantawy et al. 2014; Conran et al. 2007b; Croizat and Nagel 1999) have all been 
reported as augmented in sickle cell disease. GM-CSF may play a role in regulating 
both leukocyte numbers and fetal hemoglobin expression in SCA (Ikuta et al. 2011; 
Conran et al. 2007b) and may promote mast cell activation and proliferation, pos-
sibly contributing to hyperalgesia in the disease (Vincent et al. 2013). On the other 
hand, increases in the neurotrophin, brain-derived neurotrophic factor (BDNF), may 
be  associated  with  elevated  transcranial  Doppler  velocities  and  stroke  in  SCA 
(Lance et al. 2014; Hyacinth et al. 2012).

A number of angiogenic growth factors are also known to be augmented in sickle 
cell disease, including vascular endothelial growth factor (VEGF), VEGF-D, pla-
centa growth factor (PlGF), angiopoietin-1, angiopoietin-2, basic fibroblast GF 
(bFGF) and the anti-angiogenic pigment epithelium derived factor (PEGF) (Duits 
et al. 2006; Landburg et al. 2009; Brittain et al. 2010; Niu et al. 2009; Lopes et al. 
2015; Cruz et al. 2015). Angiogenic factors regulate the formation of new blood 
capillaries and are essential for processes of development, reproduction and wound 
repair (Lopes et al. 2015). Alterations in angiogenic factors have been associated 
with the incidence of pulmonary hypertension and retinopathy in SCD (Landburg 
et al. 2009; Sundaram et al. 2010; Niu et al. 2009; Cruz et al. 2015; Lopes et al. 
2015). PlGF, for example, is released at high concentrations from sickle red blood 
cells and has been shown to induce hypoxia-inducible factor-1α (HIF-1) activity in 
endothelial cells, activate monocytes, and may have a role in pulmonary hypertension 
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due to the induction of endothelin-1 expression (Patel and Kalra 2010; Perelman 
et al. 2003; Sundaram et al. 2010; Patel et al. 2008). PlGF can also induce plasmino-
gen activator inhibitor-1 (PAI-1) expression, in endothelial cells and monocytes, 
with possible effects on fibrinolysis and lung injury (Patel et al. 2010).

Eicosanoids are biologically-active lipids that are generated at sites of inflamma-
tion and mediate their effects through specific receptors to coordinate specific cel-
lular responses to inflammation (Capra et al. 2013). The prostanoids, formed by the 
prostaglandins and thromboxane A2 (TxA2), are synthesized by the cyclooxygenase 
pathway from arachidonic acid, while leukotrienes and lipoxins are generated from 
the lipoxygenase pathway. TxA2, produced by activated platelets, has pro- thrombotic 
properties that can be balanced by the anti-aggregating and vasodilating effects of 
prostacyclin (or prostaglandin (PG)I2), produced by the endothelium (Capra et al. 
2013). Elevations  in TxA2 and prostaglandins, such as prostacyclin and the pro- 
inflammatory PGE2, or their metabolites, have been reported in sickle cell disease 
(Graido-Gonzalez et al. 1998; Lanaro et al. 2009; Conran et al. 2007a; Buchanan 
and  Holtkamp  1985; Mehta and Albiol 1982). Furthermore, sickle erythrocytes 
have been shown to induce prostaglandin (PGI2 and PGE2) and TxA2 production in 
isolated perfused rat lungs (Ibe et al. 1997) and to induce PGI2 synthesis by endo-
thelial cells (Shiu et al. 2000). Prostaglandins, such as PGI2 and PGE2 induce the 
classic signals of inflammation; redness, swelling and pain and have been recently 
implicated in the modulation of both anti-inflammatory mechanisms (PGI2 may 
augment IL-10 production from T helper 2 cells) and pro-inflammatory pathways 
due to the amplification of cytokine and chemokine production, as well as contribut-
ing to tissue remodeling (Aoki and Narumiya 2012; Ricciotti and FitzGerald 2011).
Leukotriene  (LT) B4  and  cysteinyl  leukotrienes  (CystLTs),  such  as  LTC4, are 

produced in the lungs during hypoxia and their production has been associated with 
the induction of pulmonary hypertension (Morganroth et al. 1984; Opene et al. 
2014). Of the leukotrienes, LTB4 has been reported as elevated in steady state SCA 
and further increased during vaso-occlusive crisis and acute chest syndrome (Setty 
and Stuart 2002), while elevated urinary LTE4 levels have been associated with pain 
and an increased risk for acute chest syndrome in sickle cell disease (Field et al. 
2009; Jennings et al. 2008). Sickle erythrocytes and activated platelets have been 
shown to increase LTC4 when perfused over rat lungs (Opene et al. 2014), while 
erythrocyte-derived PlGF can upregulate the expression of 5-lipoxygenase and, 
therefore, leukotriene production in monocytes (Patel et al. 2009).

Inflammatory Peptides and Proteins Endothelin-1  (ET-1)  is  a  vasoconstrictor 
peptide, synthesized principally by the endothelial cells, that plays a role in the 
regulation of vascular function (Pernow et al. 2012). ET-1 expression is upregulated 
during endothelial dysfunction and in response to inducers that include angiotensin 
II, cytokines such as PlGF and hypoxia. Plasma ET-1 has been reported as elevated 
in SCA both during steady state and vaso-occlusive crisis (Werdehoff et al. 1998; 
Graido-Gonzalez et al. 1998) and has been implicated in the development of acute 
chest syndrome and pulmonary hypertension (Hammerman et al. 1997; Patel et al. 
2008; Werdehoff et al. 1998).
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Plasminogen activator factor -1 (PAI-1) is a protein synthesized by a number of 
cell types including endothelial cells, hepatocytes, platelets and fibroblasts. In addi-
tion to being modulated by PlGF, PAI-1 production is also induced by hypoxia and 
oxidative stress via activation of the transcription factors HIF-1α and AP-1, respec-
tively. PAI-1 is an inhibitor of fibrinolysis, modulating fibrinolysis and cellular 
responses to vascular remodeling and may contribute to the development of lung 
injury and fibrosis, as well as angiogenic processes in SCA and, therefore, in pul-
monary hypertension (Patel et al. 2010; Diebold et al. 2008). High levels of PAI-1 
have been observed in the pulmonary endothelial cells, alveolar macrophages and 
bronchial epithelial cells of sickle mice (Patel et al. 2010) and elevated plasma con-
centrations of  this  protein have  also been observed  in  steady  state SCA patients 
(Dos Santos unpublished data; Nsiri et al. 1996; Patel et al. 2010).
C-reactive protein (CRP) is a stable acute-phase protein, synthesized in the liver, 

which is rapidly synthesized in response to inflammation. Levels of CRP have been 
consistently found to be augmented in the plasma of SCD patients during steady 
state and further increased during vaso-occlusive crisis, with some authors postulat-
ing the use of CRP as a marker of VOC onset (Krishnan et al. 2010; Mohammed 
et al. 2010; Nur et al. 2011; Okocha et al. 2014; Akinlade et al. 2013; Kanavaki et al. 
2012; Rowley et al. 2014). Another acute phase protein implicated in sickle cell 
inflammation  and  reportedly  increased  during VOC  is  pentraxin-3  (PTX3)  (Nur 
et al. 2011; Elshazly et al. 2014), while Substance P, a neuropeptide released from 
activated mast cells, is thought to contribute to neuroinflammation in SCA (Vincent 
et al. 2013; Michaels et al. 1998).

Anti-Inflammatory Molecules IL-10  is  a  class  2  cytokine  that  can  modulate 
innate and adaptive immune responses, limiting the production of pro-inflammatory 
cytokines, including IFNγ, TNF-α, IL-1β and IL-6, in order to prevent tissue dam-
age. IL-10 is ubiquitously expressed, but major producers of this cytokine include 
macrophages, T and B lymphocytes, natural killer cells and monocytes (Walter 
2014; Hofmann  et  al.  2012).  Levels  of  IL-10  have  been  reported  as  elevated  in 
steady- state SCD (Lanaro et al. 2009; Niu et al. 2009), but reduced (compared to 
steady state) in patients in vaso-occlusive crisis (Sarray et al. 2015).
Heme oxygenase-1 (HO-1) is an anti-inflammatory protein, whose expression is 

upregulated by heme as well as oxidative signals. HO-1 catalyzes the degradation of 
heme  to  carbon  monoxide,  free  iron,  and  biliverdin.  HO-1  gene  expression  is 
 reportedly up-regulated in SCD, presumably as a consequence of hemolytic events 
(Lanaro et al. 2009; Nath et al. 2001), while gene delivery of HO-1 to the liver has 
been shown to benefit SCD mice, inhibiting local hypoxia-induced stasis (Belcher 
et al. 2010). An important consequence of HO-1-mediated heme degradation may 
be the release of carbon monoxide (CO), also known to have anti-inflammatory and 
anti-sickling properties. Reports have described effects of CO on increasing RBC 
survival and decreasing leukocytosis and NFκB activation and in the upregulation 
of  anti-inflammatory  signaling  pathways  in  SCD  (Beutler  1975; Beckman et al. 
2009; Belcher et al. 2013).
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8.6  Cross Talk Between Inflammation and Coagulation

Inflammation and hemolysis both contribute to induce a state of hypercoagulability 
in SCA  (Sparkenbaugh  and Pawlinski  2013). Activation of the endothelium and 
leukocytes, particularly monocytes,  in SCA leads  to upregulation of  tissue factor 
(TF),  a  cell  surface  receptor  for  factor VII/VIIa and  the primary activator of  the 
extrinsic  coagulation pathway  (Setty  et  al.  2012; Solovey et  al.  1998; Key et al. 
1998). Additionally, the hemolytic product, heme, can also induce TF expression in 
leukocytes (Sparkenbaugh et al. 2015). Augmented TF can, in turn, promote throm-
bin generation, fibrin deposition and platelet activation, as can be observed in SCA 
(Colella et al. 2012; Proenca-Ferreira et al. 2010; Westwick et al. 1983; Shah et al. 
2012; Francis 1989).
As previously mentioned, repeated cycles of RBC sickling results in phosphati-

dylserine exposure on the cell surface (Lubin et al. 1981), further contributing to 
procoagulant activity and thrombin generation (Franck et al. 1985). Thrombin and 
fibrin generation can also be promoted by circulating microparticles released from 
erythrocytes and activated platelets, endothelial cells and monocytes, amongst other 
cells, in SCA (Shet et al. 2003; Sparkenbaugh and Pawlinski 2013). Additionally, 
ultralarge von Willebrand factor multimers are expressed on the endothelium, when 
activated, and these may mediate the binding of erythrocytes, platelets, as well as 
coagulation proteins, to the endothelial surface (Dong et al. 2002; Sultana  et  al. 
1998; Belcher et al. 2014; Kaul et al. 1993). Subsequent thrombotic events can par-
ticipate  in  ischemia-reperfusion  processes  in  SCA  and  the  production  of  potent 
inflammatory mediators  from  activated  platelets,  such  as  CD40L  and  TNFSF14 
(Lee et al. 2006; Garrido et al. 2012), may further amplify the inflammation associ-
ated with the disease (Sparkenbaugh and Pawlinski 2013).

8.7  Anti-inflammatory Effects of Hydroxyurea  
in Sickle Cell Anemia

Currently  the only drug approved by the FDA for SCA therapy, hydroxyurea (or 
hydroxycarbamide), is a cytostatic agent that significantly improves the disease’s 
clinical course, improving mortality rates and reducing hospitalization for vaso- 
occlusive crisis, the incidence of acute chest syndrome, as well as the necessity for 
transfusions. The reader is referred to Chaps. 10 and 12 for further information 
regarding the clinical effects of hydroxyurea (Charache et al. 1995; Platt et al. 1984; 
Steinberg et al. 2003). One of the principal effects of hydroxyurea is the induction 
of fetal hemoglobin (HbF) production in erythrocyte lineage cells, which inhibits 
the  polymerization  of HbS,  reducing  hemolysis  and  red  cell  sickling  (Charache 
et al. 1995; McGann and Ware 2011). However, it is becoming increasingly clear 
that hydroxyurea has major anti-inflammatory properties, which probably also 
make an important contribution to its therapeutic benefits.
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Longer-term  anti-inflammatory  effects  of  hydroxyurea  include  a  significant 
reduction  in  leukocyte  counts,  which  are  often  observed  before  HbF  elevation 
(Charache et al. 1996) and this effect certainly reduces the amplitude of inflamma-
tory  responses  in  SCA.  Hydroxyurea  therapy  also  reduces  adhesion  molecule 
expression and activity on the surface of red cells, leukocytes and the endothelium, 
probably via indirect anti-inflammatory mechanisms (Chaar et al. 2014; Bartolucci 
et al. 2010; Cartron  and Elion  2008; Proenca-Ferreira et al. 2010; Canalli et al. 
2007; Gambero et al. 2007). Furthermore, hydroxyurea therapy has been associated 
with decreases in the production and expression numerous of the inflammatory 
mediators thought to contribute to the inflammatory state, including endothelin-1, 
TNF-α,  IL-1β,  IL-17,  TF  and GM-CSF  (Brun  et  al.  2003; Lapoumeroulie  et  al. 
2005; Lanaro et al. 2009; Conran et al. 2007b; Colella et al. 2012; Keikhaei et al. 
2013), in addition to increasing the expressions of the anti-inflammatory proteins, 
IL-10 and HO-1 (Lanaro et al. 2009). Potent anti-angiogenic effects of hydroxyurea 
on endothelial cell function have also been reported both in vivo and in vitro (Lopes 
et al. 2014) and this drug appears to reduce angiogenic mediator production in 
sickle cell disease  (Lopes et al. 2015). These anti-angiogenic effects may enable 
hydroxyurea to halt or decelerate manifestations of the disease in which upregulated 
angiogenesis may play a role, such as retinopathy and pulmonary hypertension.
Emerging  evidence  indicates  that  hydroxyurea may have  important  acute  and 

immediate effects that are independent of the drug’s ability to elevate HbF produc-
tion. Hydroxyurea may release nitric oxide, in vivo (King 2003), and it is becoming 
apparent that this nitric oxide donating property may have significant anti- 
inflammatory effects. The administration of a single dose of hydroxyurea has been 
shown to decrease leukocyte recruitment to the vasculature in SCD mice following 
an inflammatory stimulus. Furthermore, a single dose of hydroxyurea synergisti-
cally augmented the effects of a phosphodiesterase 9 inhibitor, in this same model, 
by amplifying nitric oxide-cyclic guanosine monophosphate (cGMP)-signaling, 
resulting in the inhibition of vaso-occlusive processes and prolonged animal  survival 
following inflammatory stimulation (Almeida et al. 2012). Similarly, results from a 
recent study (Almeida et al. 2015) demonstrate that a single dose of hydroxyurea is 
able to abolish the effects of a hemolytic insult on systemic inflammation and on 
leukocyte recruitment in the microcirculation. As such, the anti-inflammatory prop-
erties of hydroxyurea are extensive and may represent a major mechanism by which 
this drug exerts its effects.

8.8  Other Prospective Anti-inflammatory  
Approaches for SCA

A number of anti-inflammatory drugs are currently under investigation as potential 
therapeutic approaches for SCA (the reader is referred to Chap. 16 for a more in 
depth review). Various drugs aiming to reduce leukocyte adhesion to the blood ves-
sel wall and, therefore, diminish the initiation of vaso-occlusive processes are 
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currently in clinical trials for use in SCA (Wun et al. 2014; Manwani et al. 2014; 
Cheung et al. 2004; Okpala 2015). Statins and TNF-α antagonists are also potential 
approaches for diminishing endothelial activation (Hoppe et al. 2011), while iNKT 
cell depletants and A2AR agonists in development could be useful for decreasing 
iNKT cell numbers and activation and, therefore, reduce inflammation (Field et al. 
2013, 2014). To reduce the inflammatory effects of hypoxia, pegylated hemoglobin 
carbon monoxide carriers are under investigation, as carbon monoxide delivery may 
impart  significant  anti-inflammatory  and  cytoprotective  effects  in  SCA  (Belcher 
et al. 2013).

8.9  Conclusions

Evidence gleaned over recent years has revealed the primary and driving role that 
inflammation plays in the induction of the vaso-occlusive process and primary com-
plications of sickle cell anemia. Major triggers of inflammation in sickle cell anemia 
appear to be alterations in the red cell itself and ensuing hemolytic and hypoxic 
processes. Of the plethora of inflammatory mediators that are upregulated in sickle 
cell anemia, it is difficult to identify any one of these proteins as being of more 
significance to the inflammatory response and, therefore, representing a more sig-
nificant therapeutic target in the disease. Rather, approaches to reduce hemoglobin 
S polymerization, and consequent red cell sickling, and to limit the effects of hemo-
lysis and ischemia-reperfusion, as well to reduce cellular activation in a pan-cellular 
manner may be more effective for reducing inflammation and therefore vaso- 
occlusive processes in the disease. Optimizing the manner in which hydroxyurea is 
used and administered in the disease may also be key to taking full advantage of its 
nitric oxide donating and anti-inflammatory properties.
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    Chapter 9   
 Clinical Manifestations of Sickle Cell Anemia: 
Infants and Children                     

       Robert     Sheppard     Nickel       and     Lewis     L.     Hsu     

    Abstract     Children with sickle cell disease (SCD) have varied clinical problems. 
The hallmark manifestation of SCD, the pain crisis, typically fi rst occurs in early 
childhood presenting as dactylitis. Pain increases in frequency and severity as chil-
dren age, especially during adolescence. Due to functional asplenia, children with 
SCD are at signifi cantly increased risk for certain infections, most notably 
 Streptococcus pneumoniae.  Other infections like parvovirus B19 are also special 
threats and can trigger an aplastic crisis. Unique, potentially life-threatening acute 
complications like splenic sequestration and acute chest syndrome occur in these 
children. They are at risk for neurologic disease, the most serious being stroke. In 
addition, the chronic hemolysis of SCD causes gallstones, which can lead to biliary 
tract disease. Children with SCD also frequently face chronic issues that include 
nocturnal enuresis and decreased growth. Despite these many potential problems, 
with advances in care including antibiotic treatment, stroke screening, blood trans-
fusions, and hydroxyurea therapy, children with SCD rarely die in childhood and 
can become productive adults.  

  Keywords     Dactylitis   •   Aplastic crisis   •   Splenic sequestration   •   Acute chest 
syndrome  

9.1       Introduction 

 Historically associated with mortality in childhood, the prognosis of sickle cell dis-
ease (SCD) has signifi cantly improved over the last few decades so that, with mod-
ern supportive care, all children with SCD are expected to survive to adulthood. 
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Analysis of death certifi cate data in the United States has demonstrated that death 
from SCD in childhood has decreased over time (Davis et al.  1997 ; Yanni et al. 
 2009 ). Multiple prospective cohort studies of newborns with SCD have similarly 
showed a trend of improved childhood survival (Fig.  9.1 ) (Lee et al.  1995 ; Telfer 
et al.  2007 ; Quinn et al.  2010 ). The largest such study, the Dallas Newborn Cohort, 
estimated overall survival at 18 years of age to be 93.9 % for HbSS and HbS-β 0  
thalassemia patients, and 98.4 % for HbSC and HbS-β +  thalassemia patients. 
Survival statistics for children with SCD today are likely even better as in the most 
recent analysis of this cohort from 2000 to 2007, no deaths occurred before the age 
of 18 (Quinn et al.  2010 ).

   While death in childhood secondary to SCD is very rare in high-income nations, 
sadly children with SCD born in low-income nations (where the prevalence of SCD 
is greatest, particularly in Africa) still have a high risk of dying at a young age. Due 
to the lack of universal newborn screening in most low-income nations, young chil-
dren may die from complications of SCD without ever being diagnosed. Accurate 
statistics on childhood mortality from SCD in low-income countries are thus not 
available, but it is clear that many children with SCD in these areas of the world die 
before age 5 (Makani et al.  2011 ). 

 With the proper supportive care that is routinely provided in high-income coun-
tries (and will hopefully become increasingly available in low-income countries) 
most children with SCD enjoy a fulfi lling childhood with a good quality of life 
(Constantinou et al.  2014 ). Even with excellent supportive care, however, children 
with SCD may suffer from the complications summarized in this chapter. The clini-
cal course of an individual child with SCD is highly variable; some may experience 
only minor issues, while others endure many of these serious complications.  

9.2     Childhood Manifestations of SCD 

9.2.1     Pain Crisis 

 The acute pain crisis, also referred to as vaso-occlusive crisis (VOC), is the most 
well-known clinical manifestation of SCD. Children with SCD have described this 
pain with various adjectives including: aching, pounding, sharp, and sore (Graumlich 
et al.  2001 ). The clinical presentation of VOC is variable. This pain can be steady or 

  Fig. 9.1    Comparison of 
overall survival for 
children with HbSS and 
HbS-β 0  thalassemia from 
different cohorts during 
different time periods. 
Adapted from Quinn et al. 
( 2010 )       
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intermittent; it may come on suddenly or slowly (Dampier et al.  2002a ), occur in a 
single body part, or affect many locations simultaneously with the extremities and 
lower back commonly affected. A pain crisis can be triggered by certain actions 
(swimming, overexertion), infection, or changes in the weather (colder tempera-
tures, increased wind speed) (Rogovik et al.  2011 ), but may also occur without an 
inciting event. 

 Dactylitis (also termed “hand-foot syndrome”) is a special manifestation of an 
acute pain crisis in young children in which the hands or feet are swollen, tender, 
and erythematous. It can occur before the age of 6 months but the highest incidence 
is between the ages of 6–12 months (Gill et al.  1995 ). The Cooperative Study of 
Sickle Cell Disease (CSSCD) estimated that, by age 2 years, ~25 % of all infants 
with HbSS sought medical care for this complication (Gill et al.  1995 ). Mild cases 
of dactylitis are likely more common. The BABY HUG study (discussed below) 
found that 36 % of infants (median age 13.6 months) had a history of dactylitis at 
the time of enrollment (Wang et al.  2011 ). Physical exam fi ndings of VOC are much 
less common in older children and adolescents; however, VOC of any bone can 
cause accompanying swelling, tenderness, and erythema. These fi ndings can be 
clinically indistinguishable from osteomyelitis (Almeida and Roberts  2005 ). If a 
joint is involved, VOC can cause effusions that appear similar to septic arthritis. 
VOC has been associated with a decreased hemoglobin and platelet count but an 
increased neutrophil count, lactate dehydrogenase (LDH), and C-reactive protein 
(CRP) (Najim and Hassan  2011 ). It is important to emphasize that, despite this 
association of laboratory values and VOC, the diagnosis of a pain crisis is based 
primarily on a patient’s expression of pain. 

 The frequency and duration of pain crisis varies considerably. The CSSCD found 
that half of all children with HbSS required medical care for a pain crisis by age 4.9 
years (7.1 years for HbSC) (Fig.  9.2 ) (Gill et al.  1995 ). In the United States, the 
average length of a pediatric hospitalization for a SCD pain crisis is ~4 days 

  Fig. 9.2    Data from the 
cooperative study of sickle 
cell disease infant cohort 
(CSSCD), collected 
between 1978 and 1988; 
age at fi rst clinical event in 
694 infants with SCD from 
birth to 10 years of age for 
( a ) painful event, ( b ) acute 
chest syndrome. Adapted 
from Gill et al. ( 1995 )       
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(Panepinto et al.  2005 ; Raphael et al.  2012 ). Less severe pain episodes that are man-
aged at home are more common. A study of infants with SCD not on hydroxyurea 
reported that the median age at fi rst occurrence of any pain was 13.9 months for 
infants with HbSS (43.6 months for HbSC) (Dampier et al.  2014 ). A similar study 
documenting the daily pain of older children with SCD found that while 17 % of 
patients required admission for pain during the 6-month study period, 40 % experi-
enced at least one episode of pain each month with most episodes lasting one day 
(Dampier et al.  2004 ). A striking range in the days of reported pain was also shown 
by this study group; a few children reported no days of pain versus a few who 
recorded pain on >90 % of days (Dampier et al.  2002b ). These pain diary studies 
estimate that while young children (age < ~6 years) with SCD rarely experience pain 
(Dampier et al.  2014 ), older children and adolescents (age ~6–19 years) with SCD 
have pain more frequently, on one out of every six days (Dampier et al.  2002a ). As 
children with SCD age into adolescence they also endure longer VOC hospitaliza-
tions (Panepinto et al.  2005 ; Raphael et al.  2012 ).

   Hydroxyurea has the potential to decrease the burden of pain experienced by 
young children with SCD as demonstrated by the BABY HUG study. This multi- 
center clinical trial randomized infants (age 9–18 months) with HbSS or HbS-β 0  
thalassemia, without regard to clinical severity, to receive daily hydroxyurea or pla-
cebo. With hydroxyurea treatment, the incidence of pain was signifi cantly reduced 
from 203 to 94 events per 100 patient-years; the incidence of dactylitis was also 
signifi cantly reduced from 66.5 to 12.7 events per 100 patient-years. With the 
increased use of hydroxyurea to treat young children with SCD, it is likely that VOC 
hospitalizations for children will decrease, as has already been demonstrated by one 
institution (Nottage et al.  2013 ).  

9.2.2     Infection 

 Children with SCD are at increased risk for infection from encapsulated organisms 
due to functional asplenia. Damage to the spleen from sickle vaso-occlusion occurs 
early in life so that by 1 year of age the majority of infants with HbSS have evidence 
of splenic dysfunction (Rogers et al.  2011 ). With functional asplenia, invasive bac-
terial infections often progress rapidly. From the initial symptoms of fever and mal-
aise, patients can develop potentially fatal septic shock in hours. Historically, 
bacterial infection was the major cause of death for children with SCD (Barrett- 
Connor  1971 ). 

 Today, deaths from bacteremia and meningitis among children with SCD have 
decreased due to various interventions such as urgent treatment of fever with antibi-
otics, penicillin prophylaxis, and vaccines. In the early 1980s the benefi ts of daily 
prophylactic penicillin was demonstrated in a landmark clinical trial in which young 
children (age 3–36 months) with HbSS were randomized to receive daily penicillin 
or placebo. This trial was stopped prematurely because signifi cantly more children 
in the placebo arm had severe infections due to  Streptococcus pneumoniae  (placebo 
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13/110 vs. penicillin 2/105; 84 % reduction) including three children receiving pla-
cebo who died from fulminant  S. pneumoniae  (Gaston et al.  1986 ). With the use of 
the 7-valent pneumococcal conjugate vaccine (PCV7) beginning in 2000, the inci-
dence of invasive pneumococcal disease among young children with SCD has 
declined (Fig.  9.3 ) (Halasa et al.  2007 ; Payne et al.  2013 ). The 13-valent pneumo-
coccal conjugate vaccine (PCV13) may further decrease the incidence of invasive 
pneumococcal disease, but it will not completely prevent this problem. The majority 
of recent cases of invasive pneumococcal disease in children with SCD were due to 
serotypes not included in PCV13 (Payne et al.  2013 ). Nonetheless, invasive bacte-
rial infections are now rare with current vaccines and penicillin prophylaxis. Recent 
studies in Canada and the United States have shown that less than 1 % of febrile 
children with SCD have bacteremia (Rogovik et al.  2010 ; Baskin et al.  2013 ; 
Shihabuddin and Scarfi   2014 ).

   Children with SCD are also at specifi cally increased risk of bacterial infections 
of the bone and joint. One study found that the prevalence of osteomyelitis in 
patients with HbSS was 12 % (Neonato et al.  2000 ).  Salmonella  is often the caus-
ative organism (Atkins et al.  1997 ; Burnett et al.  1998 ). It is hypothesized that sickle 
vaso-occlusion in the bowel may lead to increased mucosal barrier breakdown, 
resulting in transient bacteremia that can infect infarcted bone. Differentiating an 
acute bone infarct secondary to vaso-occlusion from osteomyelitis is diffi cult even 
with magnetic resonance imaging (MRI) (Lonergan et al.  2001 ). While VOC is 
much more common (Keeley and Buchanan  1982 ), osteomyelitis should be strongly 
considered in a child with SCD who has isolated bony pain and swelling with pro-
longed fever and pain (Berger et al.  2009 ). 

 Parvovirus B19 is another important infection in children with SCD. Children 
with SCD are not more prone to this common viral infection (Serjeant et al.  1993 ), 
but, in children with SCD, parvovirus can cause very severe anemia with reticulo-
cytopenia termed an “aplastic crisis.” While parvovirus infection is not the only 
cause of aplastic crisis in children with SCD, it is implicated in the vast majority of 
cases (Saarinen et al.  1986 ; Rao et al.  1992 ; Serjeant et al.  2001a ). Children in aplas-
tic crisis can present with increased pallor and lethargy. Delayed presentation with 
more profound anemia can include life-threatening complications like high-output 
heart failure, acute chest syndrome, ischemic stroke, or multiorgan failure. Most of 

  Fig. 9.3    Rates of invasive pneumococcal disease (IPD) in the United States: Rates of IPD in chil-
dren under age 18 years with SCD, compared to overall rate of IPD in African-American children 
under age 18 in the Active Bacterial Core surveillance system. Adapted from Payne et al. ( 2013 )       
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these children have a history of fever but few have the characteristic “slapped cheek” 
rash (Goldstein et al.  1987 ; Kellermayer et al.  2003 ). Transfusion of red blood cells 
may be necessary while waiting for hematologic recovery. This recovery, defi ned as 
a rise in the reticulocyte count, can take up to 10 days (Saarinen et al.  1986 ; Goldstein 
et al.  1987 ). Fortunately, when individuals recover, immunity to parvovirus appears 
to prevent reoccurrence of aplastic crisis (Serjeant et al.  2001a ). Many adolescents 
with SCD who had no history of an aplastic crisis have detectable IgG to parvovirus 
B19, demonstrating that parvovirus infection does not always cause clinical prob-
lems for children with SCD (Serjeant et al.  2001a ; Zimmerman et al.  2003 ). 

 Other common childhood infections can also cause issues. Children with SCD 
are frequently hospitalized with viral infections, including infl uenza and respiratory 
syncytial virus (Bundy et al.  2010 ; Sadreameli et al.  2014 ). These infections may 
cause increased morbidity in some children with SCD as they are often implicated 
in triggering VOC or acute chest syndrome. 

 Malaria is a serious infection for children with SCD in areas of the world where 
it is endemic (Ambe et al.  2001 ). While children with sickle cell trait have a lower 
risk of complications and death from malaria (Aidoo et al.  2002 ; Williams et al. 
 2005 ), individuals with SCD do not appear to enjoy this same protection. It has been 
shown that children with SCD have lower rates of parasitemia (Komba et al.  2009 ; 
Makani et al.  2010 ), but it has also been demonstrated that children with SCD are 
 more  likely to die from malaria (McAuley et al.  2010 ).  

9.2.3     Splenic Sequestration 

 A potentially critical manifestation of SCD is the acute trapping of blood in the 
spleen, termed splenic sequestration. Children with acute splenic sequestration 
present with an enlarging spleen, and may also have abdominal pain and symptoms 
of hypovolemia (pallor, lethargy, tachycardia). Nonspecifi c infectious symptoms, 
including fever, cough, diarrhea, and vomiting, are more commonly associated with 
splenic sequestration (Topley et al.  1981 ; Brousse et al.  2012 ). Severe episodes can 
progress to fatal shock in just a few hours. In addition to worsening anemia (tradi-
tionally defi ned as >2/dL drop in hemoglobin) with compensatory reticulocytosis, a 
decreased platelet count is often seen in children with splenic sequestration. 

 Splenic sequestration occurs primarily in young children with HbSS. In the 
Jamaican newborn cohort, 29 % of children with HbSS had an episode of splenic 
sequestration with the highest incidence occurring between 6 and 18 months and 
most episodes occurring before age 2 years (Emond et al.  1985 ). Similarly, a French 
study found that the median age at fi rst splenic sequestration episode was 1.4 years 
(Brousse et al.  2012 ). Splenic sequestration may be the initial presenting clinical 
manifestation of SCD, and it has been reported in infants younger than 2 months 
(Pappo and Buchanan  1989 ; Airede  1992 ). The increased use of hydroxyurea ther-
apy in infancy may change this natural history and possibly lead to more sequestra-
tion events occurring later in childhood. 
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 Historically associated with signifi cant mortality, death from splenic sequestra-
tion is rare today in settings with newborn diagnosis, parental education on spleen 
palpation, and accessible emergency medical care (Lee et al.  1995 ). While a study 
of children from the 1970s and early 1980s found a mortality rate of 12 % associ-
ated with acute splenic sequestration (Emond et al.  1985 ), a more recent study 
reported a 0.53 % risk of death (Brousse et al.  2012 ). 

 Children who have had acute splenic sequestration are at high risk for recurrent 
sequestration events in the future. The recurrence rate for children who recovered 
from their fi rst episode of splenic sequestration has been reported to be 49–67 %, 
with most children experiencing another sequestration event within 6 months of the 
fi rst episode (Emond et al.  1985 ; Brousse et al.  2012 ). Of note, even children with 
initially mild sequestration episodes have been shown to be at increased risk of 
future life-threatening sequestration events (Topley et al.  1981 ). In addition, after 
recovering from an episode of acute splenic sequestration, children are at increased 
risk of developing hypersplenism that is defi ned as a persistent reduction in steady 
state hemoglobin with increased reticulocyte count, reduced platelet count, and 
chronic splenic enlargement (Topley et al.  1981 ). Due to these future risks, surgical 
splenectomy is often recommended after a sequestration event.  

9.2.4     Acute Chest Syndrome 

 Acute chest syndrome (ACS) is a term used to describe an acute pulmonary process 
that occurs exclusively in patients with SCD. ACS has been defi ned by the presence 
of a new pulmonary infi ltrate that involves at least one complete lung segment on 
chest radiograph, and is accompanied by fever, chest pain, or respiratory symptoms 
(tachypnea, wheezing, cough). The most common presenting symptoms among 
children are fever and cough (Vichinsky et al.  1997 ). On physical exam, rales is the 
most common auscultory fi nding, yet many children may have a normal lung exam 
(Vichinsky et al.  1997 ). One study found that only 39 % of febrile children who 
presented to an emergency room (ER) and eventually diagnosed with ACS from an 
ER chest radiograph, were initially suspected by the provider to have ACS based on 
clinical fi ndings (Morris et al.  1999 ). On chest radiograph, young children (age <2 
years) have more upper lobe fi ndings than older children, but all children most com-
monly have lower lobe involvement (Fig.  9.4 ) (Vichinsky et al.  1997 ). Moreover, on 
laboratory evaluation, patients typically have a decreased hemoglobin and increased 
white blood cell count compared to steady state values (Vichinsky et al.  1997 ).

   Patients may not initially present with ACS but may instead develop it after a 
prodromal illness or a hospital admission for other indications (Creary and 
Krishnamurti  2014 ). In the CSSCD, 72 % of patients with ACS were admitted 
because of a VOC pain crisis, and among patients not admitted for ACS, ACS 
occurred a mean 2.5 days after admission (Vichinsky et al.  2000 ). ACS can also 
occur in the post-operative setting, particularly in younger children with greater 
blood and heat loss during surgery (Kokoska et al.  2004 ). The etiology of ACS 
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includes pulmonary infarction and fat embolism as well as infectious causes (spe-
cifi cally  Chlamydia pneumoniae, Mycoplasma pneumoniae , and respiratory 
viruses) (Vichinsky et al.  2000 ). Likely due to respiratory infections, the incidence 
of ACS is highest during the winter months, especially for young children 
(Vichinsky et al.  1997 ). 

 Also of note, children with asthma appear to have an increased risk of develop-
ing ACS (Boyd et al.  2006 ; Sylvester et al.  2007 ). Most children with SCD will 
experience at least one episode of ACS. The CSSCD infant cohort found that 50 % 
of children with HbSS had ACS by 5.8 years of age (Fig.  9.2 ) (Gill et al.  1995 ). The 
increased use of hydroxyurea to treat SCD in childhood is expected to lead to less 
children suffering from ACS in the future. In the BABY HUG study, children in the 
hydroxyurea arm had signifi cantly less ACS events than children in the placebo arm 
(4.2 vs. 14.6 events per 100 patient-years) (Thornburg et al.  2012 ). 

 The clinical course of ACS is variable (mild illness to respiratory failure/death) 
and likely highly infl uenced by supportive care practices and red blood cell transfu-
sion. Evolving ACS often includes progression of pulmonary infi ltrates, worsening 
hypoxia, and dropping hemoglobin. The CSSD found that the mean hospital stay 
for ACS among children was 5.4 days (Vichinsky et al.  1997 ). Adults generally 
have a more severe clinical course and higher risk of mortality associated with ACS 
(Vichinsky et al.  1997 ,  2000 ). Repeated episodes of ACS can lead to chronic lung 
disease (Powars et al.  1988 ).  

9.2.5     Neurological Complications 

 Stroke is one of the most devastating complications of SCD. Children with SCD and 
stroke most commonly present with acute hemiparesis but may also have aphasia, 
cranial nerve abnormalities, seizures, or altered mental status (Powars et al.  1978 ; 

  Fig. 9.4    Acute chest syndrome: chest radiographs of 10-year old with sickle cell anemia, hospital-
ized for pain and fever. Initial chest radiograph ( a ) was clear. Chest radiograph 36 h later ( b ) shows 
new infi ltrates at the bases of both lungs       
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Balkaran et al.  1992 ). Stroke can occur as an isolated clinical event, but also may 
occur in the setting of VOC pain crisis, ACS, splenic sequestration, or aplastic crisis 
(Balkaran et al.  1992 ; Powars et al.  1978 ). Children with SCD are more likely to 
have ischemic rather than hemorrhagic strokes and typically have partial or com-
plete occlusion of large cerebral vessels (Ohene-Frempong et al.  1998 ; Powars et al. 
 1978 ; Stockman et al.  1972 ). 

 Stroke in SCD can occur throughout childhood, but children between the ages of 
2 and 5 years have the highest rate (Ohene-Frempong et al.  1998 ). Before the imple-
mentation of stroke prevention with transcranial doppler (TCD) screening, the 
CSSCD estimated that 11 % of children with HbSS had a stroke by age 20 years 
(Ohene-Frempong et al.  1998 ). Similarly, a Jamaican newborn cohort study found 
that 7.8 % of children with HbSS had a stroke by age 14 years. Fortunately, since 
the landmark Stroke Prevention Trial in Sickle Cell Anemia (STOP), which estab-
lished that chronic transfusion therapy could effectively prevent stroke in children 
with an elevated TCD velocity, the incidence of stroke in children with SCD has 
decreased (Adams et al.  1998 ; Fullerton et al.  2004 ; McCarville et al.  2008 ). 

 While most children with SCD who have had a stroke make substantial neuro-
logic improvements, some children have severe, permanent disabilities and all 
appear to have some degree of intellectual impairment (Powars et al.  1978 ). Children 
who have suffered a stroke are also at very high risk for another stroke if they do not 
receive aggressive therapy (chronic red blood cell transfusion or stem cell trans-
plant). One natural history study documented that 67 % of children with stroke had 
at least one recurrent stroke with most recurrent events occurring within 3 years of 
the fi rst stroke (Powars et al.  1978 ). 

 “Silent strokes,” defi ned as cerebral ischemia on MRI with no history of an acute 
neurologic event, are much more common than overt strokes in children with SCD 
(Fig.  9.5 ). In the CSSCD, 21.8 % of children, age 6–16 years, with HbSS had, on 
screening MRI, a silent stroke (Pegelow et al.  2002 ). These silent strokes can occur 
at a very young age; 13 % of infants (mean age 13.7 months) screened as part of the 
BABY HUG study had silent infarcts (Wang et al.  2008 ). Additionally, a more 
recent study found that 27.7 % of children with HbSS aged less than 6 years had 
silent infarcts (Kwiatkowski et al.  2009 ). Silent strokes are not benign fi ndings; they 
are associated with neurocognitive defi cits and school diffi culties (Schatz et al. 
 2001 ; DeBaun et al.  2012 ; Armstrong et al.  1996 ). Additionally, children found to 
have silent strokes are at increased risk of both ischemia progression on MRI and 
new, overt strokes (Miller et al.  2001 ; Pegelow et al.  2002 ). Children with SCD also 
often develop cerebral vasculopathy before overt stroke (Fasano et al.  2015 ). In 
sum, neurologic abnormalities occur frequently in children with SCD. A recent 
study found that 49.9 % of children with SCD had either a stroke, abnormal TCD, 
cerebral stenosis, or silent stroke before age 14 (Bernaudin et al.  2011 ).

   Headaches are a common complaint and are more prevalent in young (age <13 
years) children with SCD compared to children without a chronic medical condition 
(Niebanck et al.  2007 ). Children with SCD who report frequent headaches are more 
likely to have frequent VOC pain crisis and also have cerebral vessel stenosis 
(Niebanck et al.  2007 ). Most children with SCD who present with acute headache 
do not have an acute central nervous system (CNS) event. Compared to children in 
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the general population, however, children with SCD have an increased association 
of headaches with an acute CNS event. Children with SCD and headache who have 
a history of a previous CNS event or an abnormal neurologic exam are at increased 
risk for an acute CNS event like a cerebral sinovenous thrombosis or an intraven-
tricular hemorrhage (Hines et al.  2011 ). 

 Sensorineural hearing loss can also occur in children with SCD, presumably 
from ischemic injury to the inner ear. Children with SCD very rarely develop deaf-
ness, but ~13 % have more mild hearing loss (Mgbor and Emodi  2004 ; Ajulo et al. 
 1993 ; Friedman et al.  1980 ). Spinal cord infarction causing lower extremity motor 
and sensory defi cits has also been reported in children with SCD (Rothman and 
Nelson  1980 ; Edwards et al.  2013 ). Finally, while epilepsy is not typically associ-
ated with SCD, children with SCD have an increased risk of also developing this 
condition (Ali et al.  2010 ).  

9.2.6     Hepatobiliary Complications 

 Bilirubin gallstones are common in children with SCD because of chronic, on-going 
sickle hemolysis. The prevalence of gallstones in children with SCD increases with 
age so that by age 20 years almost half of all individuals with HbSS have choleli-
thiasis (Walker et al.  2000 ; Bond et al.  1987 ). This biliary pathology, however, 
likely begins very early in childhood as 5 % of infants (mean age 12.9 months) in 
the BABY HUG study had biliary abnormalities (sludge, dilated common bile duct, 
thickened gallbladder wall, or cholelithiasis) (McCarville et al.  2011 ). 

  Fig. 9.5    MRI showing silent infarct of the deep white matter of the right cerebral hemisphere 
( arrow ) in a 10-year old student on the honor roll. T2 FLAIR, axial view ( a ) and sagittal view ( b )       
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 Cholelithiasis can cause a range of clinical problems including biliary colic, 
acute and chronic cholecystitis, cholangitis, and pancreatitis (see Chap.   12    , 
Fig.   12.4     depicting a gallbladder with bilirubin stones). Biliary tract disease should 
be considered in patients with SCD who complain of right upper quadrant pain. 
However, cholelithiasis often does not cause symptoms and the risk of future clini-
cal issues in asymptomatic children with cholelithiasis is unclear. 

 Children who have recovered from symptomatic biliary tract disease and do 
not undergo cholecystectomy are at high risk for continued clinical events second-
ary to their gallstones. One study found that 50 % of children had experienced 
recurrent cholelithiasis-related problems within 6 months after the initial event 
(Amoako et al.  2013 ). Cholecystectomy clearly decreases the risk of further prob-
lems but does not completely eliminate the risk of future biliary tract disease 
(Amoako et al.  2013 ). 

 Children with SCD also can rarely develop signifi cant sickling in the hepatic 
sinusoids, which leads to a complication termed intrahepatic cholestasis. Individuals 
with intrahepatic cholestasis typically present with extreme conjugated hyperbiliru-
binemia, abdominal pain, hepatomegaly, coagulopathy, and elevated transaminases. 
The clinical course of intrahepatic cholestasis is variable. It may resolve in some 
with no treatment, but can cause liver failure and death in others even with aggres-
sive support including exchange transfusion (Buchanan and Glader  1977 ) (Ahn 
et al.  2005 ).  

9.2.7     Genitourinary Complications 

 Nocturnal enuresis, the persistence of urination in the bed at night, occurs more 
commonly in children with SCD. It has been estimated that almost 50 % of chil-
dren with SCD age 5–10 years and approximately 15 % of adolescents with SCD 
age 16–20 years suffer from nocturnal enuresis (Wolf et al.  2014 ). The etiology of 
this increased prevalence of nocturnal enuresis is likely multifactorial. Due to 
sickle- related infarction to the renal medulla, children with SCD are unable to 
appropriately concentrate urine and thus produce dilute urine, termed hyposthenu-
ria. This hyposthenuria results in polyuria, increased urinary frequency. In addi-
tion to hyposthenuria- induced nocturnal polyuria, disordered sleep breathing 
secondary to obstructive sleep apnea could contribute to nocturnal enuresis in 
SCD (Lehmann et al.  2012 ). Other potential reasons for SCD nocturnal enuresis 
include decreased bladder capacity and increased arousal thresholds (Readett 
et al.  1990 ). 

 Children with SCD can also present with painless hematuria due to renal papil-
lary necrosis from sickling. This hematuria is usually benign and resolves with 
hydration (Scheinman  2009 ). Hematuria (red blood cells in the urine) should be 
distinguished from hemoglobinuria (hemoglobin in the urine), which can occur due 
to a hemolytic transfusion reaction.  
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9.2.8     Growth and Development 

 Children with SCD demonstrate a pattern of decreased growth consistent with con-
stitutional delay. Low weight is more pronounced than short height (Platt et al. 
 1984 ). In a recent prospective study of children with HbSS, 38 % were below the 
5th percentile for height, weight, or body mass index (BMI) at some point during 
the 4 years of observation (Zemel et al.  2007 ). By age 8 years, children with HbSS 
have been found to have signifi cant delay in skeletal maturation on bone age testing 
(Stevens et al.  1986 ). Adolescents with HbSS begin pubertal development at older 
ages and also progress through puberty slower (Fig.  9.6 ) (Rhodes et al.  2009 ). 
Average age at menarche for girls with HbSS has been reported to range from 13.2 
to 15.4 years, about 1–2 years later than matched controls (Zemel et al.  2007 ; 
Serjeant et al.  2001b ).

   Growth failure is not inherent to the genetics of SCD but likely a consequence of 
SCD chronic severe anemia, suboptimal nutrition, hypermetabolism, and possible 
endocrine dysfunction. Children with SCD on chronic transfusion therapy have 
been shown to have normalization of growth (Wang et al.  2005 ). Infants with HbSS 
treated with hydroxyurea for 2 years on the BABY HUG study had no signifi cant 
differences in height and weight compared to both untreated infants with HbSS and 
World Health Organization standards (Rana et al.  2014 ). Long-term follow-up of a 
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small number of individuals with HbSS treated with hydroxyurea since infancy 
suggests that hydroxyurea can normalize later growth and development in SCD 
(Hankins et al.  2014 ).      
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    Chapter 10   
 Treatment of Childhood Sickle Cell Disease                     

       Rouba     Abdennour       and     Miguel     R.     Abboud     

    Abstract     With the advances in our understanding of the complex mechanisms that 
come into play in sickle cell disease (SCD), medical care improves and patients 
with SCD live longer. It is, thus, essential to have adequate knowledge of the avail-
able and potential treatment modalities for all SCD complications to reduce morbid-
ity and mortality. As in all chronic illnesses, patient education is the most important 
aspect of treatment. Patients should be enrolled in a routine follow-up program with 
multidisciplinary care for better outcomes. Penicillin prophylaxis and adequate 
immunizations must be instated as soon as the diagnosis is made. Regular screening 
is warranted to predict the risk of central nervous system involvement, pulmonary 
hypertension, nephropathy and retinopathy. In this chapter, we also discuss the man-
agement of acute SCD complications including vaso-occlusive painful crises, fever, 
acute chest syndrome, acute splenic sequestration, cerebrovascular accidents, pria-
pism, aplastic crisis, hepatobiliary complications and ophthalmologic complica-
tions. We also present approaches for chronic complications such as pulmonary 
hypertension, chronic kidney disease, chronic pain, sickle retinopathy, leg ulcers 
and avascular necrosis. The indications and risks of blood transfusions are discussed 
in addition to hematopoietic stem cell transplant, the only curative treatment for 
SCD.  

  Keywords     Treatment   •   Acute complications   •   Chronic complications   •   Painful cri-
sis   •   Hydroxyurea  
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  AHS    Acute hepatic sequestration   
  AIC    Acute intrahepatic cholestasis   
  ASS    Acute splenic sequestration   
  ATS    American Thoracic Society   
  AVN    Avascular necrosis   
  CBC    Complete blood count   
  CDC    Centers for Disease Control and Prevention   
  CKD    Chronic kidney disease   
  CRAO    Central retinal artery occlusion   
  CT    Computed tomography   
  ED    Emergency department   
  ESRD    End-stage renal disease   
  FDA    U.S. Food and Drug Administration   
  G6PD    Glucose-6-phosphate dehydrogenase   
  GvHD    Graft versus host disease   
  Hb    Hemoglobin   
  Hib     Haemophilus infl uenzae  type B   
  Hib-MenCY-TT     Haemophilus  b tetanus toxoid conjugate vaccine   
  HSCT    Hematopoietic stem cell transplantation   
  HU    Hydroxyurea   
  IOP    Intraocular pressure   
  IV    Intravenous   
  LIC    Liver iron content   
  MenACWY    Quadrivalent meningococcal conjugate vaccine   
  MRI    Magnetic resonance imaging   
  MTD    Maximum tolerated dose   
  NHLBI    US National Heart Lung and Blood Institute   
  NHS    UK National Health Service   
  NO    Nitric oxide   
  NSAID    Nonsteroidal anti-infl ammatory drug   
  NT-Pro-BNP    N-terminal pro-brain natriuretic peptide   
  PCA    Patient-controlled analgesia   
  PCV13    13-valent pneumococcal vaccine   
  PCV7    7-valent pneumococcal vaccine   
  PH    Pulmonary hypertension   
  PPSV23    23-valent pneumococcal polysaccharide vaccine   
  PSR    Progressive sickle retinopathy   
  PT    Prothrombin time   
  PTT    Partial thromboplastin time   
  RBC    Red blood cell   
  SCD    Sickle cell disease   
  SNRI    Serotonin norepinephrine reuptake inhibitors   
  TCD    Transcranial doppler   
  TIA    Transient ischemic attack   
  TRV    Tricuspid regurgitant velocity   
  VOC    Vaso-occlusive crisis   
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10.1         Introduction 

 Sickle cell disease (SCD) is a chronic disease characterized by episodes of acute 
manifestations and progressive multi-organ damage (Rees et al.  2010 ). Therefore, 
health care professionals taking care or coming into contact with patients with SCD 
need to be knowledgeable about its acute and chronic complications and routine 
comprehensive multi-disciplinary medical care. This is essential to appropriately 
manage patients and reduce SCD morbidity and mortality. However, the relative 
rarity of the disease in most countries has resulted in practitioners not always having 
the knowledge required to manage the disease. It is our aim to provide a quick refer-
ence for practitioners who take care of patients either in comprehensive centers or 
in the setting of primary or emergency care.  

10.2     Health Maintenance 

10.2.1     Patient Education 

 As in all chronic illnesses, the patients and their families should be offered teaching, 
support and advice. Counseling sessions must be held as soon as the diagnosis is 
made. Patients should periodically followed-up by a pediatric hematologist and it is 
the physician’s responsibility to educate the parents or caregivers regarding all 
aspects of the disease and the implications and importance of adherence to medica-
tions. Caregivers must be trained to recognize the symptoms of SCD complications, 
such as painful crises, dactylitis, fever, pallor, spleen enlargement by palpation, neu-
rological manifestations and priapism among others, and when to contact the pri-
mary physician or seek immediate help at the emergency department. They should 
be taught how to manage pain at home and offered genetic counseling and advice on 
contraception.  

10.2.2     Penicillin Prophylaxis 

 Due to the development of functional asplenia and the defective activation of the 
alternative complement pathway in patients with SCD (Johnston et al.  1973 ), chil-
dren with any SCD subtype and particularly hemoglobin (Hb) SS are at an increased 
risk for invasive bacterial infections, most commonly those caused by Streptococcus 
pneumonia (Gill et al.  1989 ). Prophylactic penicillin signifi cantly reduces the risk 
of pneumococcal infection in pediatric SCD patients, and is generally well tolerated 
with minimal adverse reactions (Hirst and Owusu-Ofori  2012 ). Prophylactic ther-
apy with twice daily doses of oral penicillin should be promptly started as soon as 
the diagnosis is made and by 3 months of age to reduce the morbidity and risk of 
mortality of pneumococcal septicemia (Gaston et al.  1986 ). The American Academy 
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of Pediatrics (AAP) recommends the use of penicillin for all children with SCD 
below 5 years of age. Erythromycin may be used as a substitute in patients with sus-
pected or proven allergy to penicillin (AAP  2009 ). Penicillin prophylaxis may be 
discontinued in patients over 5 years of age provided they have not had a severe 
pneumococcal infection, they have not undergone splenectomy, and they are under-
going regular medical follow-up. If any of these three conditions are not met, the 
optimal duration of penicillin prophylaxis has not been studied, and most physicians 
continue prophylaxis into adulthood (AAP  2009 ; Falletta et al.  1995 ). Lifelong pro-
phylaxis with penicillin has also been recommended (Davies et al.  2011 ). Children 
younger than 5 years of age should receive oral penicillin V at a dose of 125 mg twice 
daily, and children 5 years of age or older are given 250 mg twice daily (AAP  2009 ). 

 However, compliance with daily prophylaxis is not always achieved and resis-
tance against penicillin is an increasing problem. Therefore, pneumococcal vaccina-
tion is of paramount importance (Davies et al.  2004 ). The use of the pneumococcal 
conjugate vaccine, in combination with penicillin prophylaxis and improved quality 
of care with prompt management of febrile episodes, has markedly decreased the 
incidence of fatal pneumococcal infections in children with SCD (Quinn et al.  2010 ).  

10.2.3     Immunizations 

 In addition to following the regular Centers for Disease Control and Prevention 
(CDC) immunization schedule, special attention should be made to the following 
vaccinations in patients with SCD. 

    Pneumococcal Vaccine 

 The 13-valent pneumococcal vaccine (PCV13), which was approved by the 
U.S. Food and Drug Administration (FDA) in 2010, offers a broader coverage than 
the PCV7 vaccine and is more effective than the 23-valent pneumococcal polysac-
charide vaccine (PPSV23) in children below 2 years of age. In addition, good anti-
body responses have been observed when PCV13 is administered to children 
previously vaccinated with PPSV23 (De Montalembert et al.  2015 ). 

 Infants with SCD should receive the primary 4-dose series of 13-valent pneumo-
coccal conjugate vaccine (PCV13) at 2, 4, and 6 months of age and at 12 through 15 
months as part of their routine immunization schedule. 

 In addition, for children with SCD of 2–5 years of age the Centers for Disease 
Control and Prevention (CDC) recommends the following:

 –    1 dose of PCV13 should be given to those who previously received 3 PCV doses  
 –   2 doses of PCV13 should be given at least 8 weeks apart to those who previously 

received less than 3 PCV doses  
 –   1 supplemental dose of PCV13 should be given to those who completed their 

4-dose series  
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 –   If there is no history of PPSV23 vaccination, PPSV23 should be given at least 8 
weeks after the most recent dose of PCV13    

 For children 6–18 years of age:

 –    If there is no previous history of pneumococcal vaccination, 1 dose of PCV13 
should be administered, followed by 1 dose of PPSV23 at least 8 weeks later  

 –   If only PCV13 was previously received, 1 dose of PPSV23 should be adminis-
tered at least 8 weeks after the most recent PCV13 dose  

 –   If PPSV23 has been administered, but PCV13 has not, 1 dose of PCV13 should 
be given at least 8 weeks after the most recent dose of PPSV23.  

 –   A single revaccination with PPSV23 should be administered 5 years after the 
fi rst dose    

 For adults with SCD of 19–65 years of age, the Advisory Committee on 
Immunization Practices (ACIP) recommends the following:

 –    Pneumococcal vaccine-naïve patients should receive one dose of PCV13, fol-
lowed by a dose of PPSV23 at least 8 weeks later. A second PPSV23 dose is 
recommended 5 years after the fi rst PPSV23 dose.  

 –   Patients with previous PPSV23 vaccination should be given a PCV13 dose at 
least 1 year after the last PPSV23 dose was received. For those who require addi-
tional doses of PPSV23, the fi rst dose should be given at least 8 weeks after 
PCV13 and at least 5 years after the most recent dose of PPSV23 (CDC  2012 ).    

 For adults aged 65 years or older, the most recent ACIP guideline states that, if 
not previously vaccinated, patients should receive PCV13 fi rst, then PPSV23, 6–12 
months afterwards. If previously vaccinated with PPSV23, PCV13 should be 
administered at least 12 months after the PPSV 23 (CDC  2014a ). The above recom-
mendations are summarized in Table  10.1 .

   One major obstacle to immunization with the conjugated PCV 13 vaccine 
remains its cost and the fact that it is not part of routinely covered immunizations in 
many developing countries. In Lebanon, we have partially overcome this problem 
by partnering with parents and raising money through philanthropy to provide for 
care, including PCV 13 immunization, while discussing the possibilities of cover-
age with the Ministry of Public Health.  

    Haemophilus Infl uenzae Type B (Hib) Vaccine 

 One dose of Hib vaccine for SCD patients aged >5 years, if they have not previously 
received the Hib vaccine (CDC  2014b ).  

    Meningococcal Vaccine 

 Infants with SCD should receive a 4-dose series at 2, 4, and 6 months of age, and 
again at 12 through 15 months with Meningococcal groups C and Y and  Haemophilus  
b tetanus toxoid conjugate vaccine (Hib-MenCY-TT). Children aged 24 months and 
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older, who have not received a complete meningococcal vaccination series, should 
receive two primary doses of quadrivalent meningococcal conjugate vaccine 
(MenACWY) at least 2 months apart. Children aged 2 months to 6 years should 
receive an additional dose of MenACWY 3 years after primary immunization; 
boosters should be repeated every 5 years thereafter. Patients above 7 years of age 
should receive an additional dose of MenACWY 5 years after primary immuniza-
tion; boosters should be repeated every 5 years thereafter (CDC  2014b ). 

 The above recommendations are periodically updated.   

10.2.4     Clinic Visits 

 Survival and outcomes of patients with SCD have improved as a result of the com-
bination of medical treatment, newborn screening, and integration of SCD patients 
into a routine follow-up program (Vichinsky et al.  1988 ). Therefore, specialized 

   Table 10.1    Pneumococcal immunization schedule in patients with SCD   

 Routine 
immunization 
schedule 

 Primary 4-dose series of PCV13: at 2, 4, 6 months and 12–15 months of 
age 

 Age 
 Previous pneumococcal 
vaccination  Administer 

 2–5 years  3 PCV doses  1 dose of PCV13 
 Less than 3 PCV doses  2 doses of PCV13 at least 8 weeks apart 
 Completed 4-dose 
series 

 1 supplemental dose of PCV13 

 No history of PPSV23  PPSV23 at least 8 weeks after the most recent 
dose of PCV13 

 6–18 years  Pneumococcal 
vaccine-naïve 

 1 dose of PCV13 followed by 1 dose of PPSV23 
at least 8 weeks later 

 Only PCV13  1 dose of PPSV23 at least 8 weeks after the most 
recent PCV13 dose 

 PPSV23 but not PCV13  1 dose of PCV13 at least 8 weeks after the most 
recent dose of PPSV23 
 Single revaccination with PPSV23 5 years after 
the fi rst dose 

 19–65 years  Pneumococcal 
vaccine-naïve 

 1 dose of PCV13 followed by 1 dose of PPSV23 
at least 8 weeks later. A second PPSV23 dose is 
recommended 5 years after the fi rst PPSV23 dose 

 PPSV23  PCV13 dose at least 1 year after the last PPSV23 
dose 

 65 years or 
older 

 None  PCV13 followed by PPSV23 after 6–12 months 
 PPSV23  PCV13 at least 12 months after PPSV23 

   PCV13  13-valent pneumococcal vaccine 

  PPSV23  23-valent pneumococcal polysaccharide vaccine  
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medical centers should be made available especially in endemic areas and patients 
should be routinely followed-up. The UK National Health Service (NHS) suggests 
scheduling a follow-up with the specialist every 3 months during the fi rst 2 years, 
then every 6 months till the age of 5 years, and annually thereafter unless more 
frequent visits are needed (NHS  2010 ). There should also be regular communica-
tion between the primary care physician and the specialist. 

 Routine clinic visits should include the taking of a full medical history, interval 
history of painful crises, febrile illnesses and other SCD complications, frequency 
of emergency department visits and number of inpatient hospitalizations, school 
progress and attendance, compliance with medications and review of immunization 
record. A full physical exam should be performed with focus on vital signs, growth 
and development, pallor, jaundice, cardiac murmur and spleen size (NHS  2010 ). At 
the fi rst consultation, laboratory studies should be performed with a complete blood 
count (CBC), reticulocyte count, hemoglobin electrophoresis and blood group. It 
may be worthwhile testing for glucose-6-phosphate dehydrogenase (G6PD) defi -
ciency at the fi rst newborn visit, if not done as part of the neonatal screening, as this 
condition is common in the same ethnic groups (Benkerrou et al.  2013 ). Blood tests 
including CBC and renal and liver function tests should be done as baseline and 
then at least once yearly and when needed.  

10.2.5     Screening 

    Transcranial Doppler (TCD) 

 The value of TCD screening in predicting the risk of strokes in patients with SCD 
has been established since 1992 (Adams et al.  1992 ). TCD examination should be 
performed annually in children with sickle cell anemia between 2 and 16 years of 
age (Adams et al.  1998 ), and children with elevated TCD are candidates for chronic 
transfusion therapy for primary stroke prevention. The value of TCD in patients 
with genotypes other than hemoglobin SS or Sβ 0  has not been studied.  

    Pulmonary Hypertension 

 Both pulmonary arterial hypertension by cardiac catheterization and elevated tri-
cuspid regurgitant velocity by echocardiogram have been shown to be independent 
risk factors for death in patients with SCD (Parent et al.  2011 ; Gladwin et al.  2004 ; 
Ataga et al.  2006 ; De Castro et al.  2008 ). While the latest US National Heart, Lung, 
and Blood Institute (NHLBI) expert panel report found insuffi cient evidence for 
screening in asymptomatic patients (NHLBI  2014 ), the American Thoracic Society 
(ATS) suggests performing echocardiography as a baseline in children with SCD to 
detect patients at high risk of morbidity and mortality, and every 1–3 years in adult 
SCD patients (Klings et al.  2014 ).  
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    Renal Disease 

 Sickle cell nephropathy is one of the most common and severe manifestations of 
SCD. Renal dysfunction starts at an early age with evidence of hyperfi ltration during 
infancy (Ware  2010 ). Microalbuminuria may start in late childhood and tends to 
increase with age as the kidney sustains more damage over time (Sharpe and Thein 
 2011 ). No defi nitive criteria exist for renal disease screening in SCD, but it is gener-
ally recommended to screen for albuminuria by standard dipstick urinalysis and to 
perform serum creatinine measurement at least once yearly. If urinalysis is positive 
for albuminuria, spot urine protein-to-creatinine ratio or 24-h urine collection should 
be performed (Ataga et al.  2014 ). Other non-invasive biomarkers such as urinary 
kidney injury molecule-1 (KIM-1) and N-acetyl-b-D-glucosaminidase (NAG) have 
shown associations with albuminuria in SCD patients and may be used in the future 
for further detection of patients with sickle nephropathy (Sundaram et al.  2011 ).  

    Retinopathy 

 Patients with SCD should undergo periodic dilated eye examination by an ophthal-
mologist starting at the age of 10 years, and every 1–2 years thereafter in individuals 
with a normal eye exam (NHLBI  2014 ).  

    Asthma 

 Signs and symptoms of asthma or hyperactive airway disease in pediatric and adult 
SCD patients should be assessed at every follow-up by history and physical exam. 
In patients with recurrent symptoms, pulmonary function tests should be performed. 
Patients with SCD and asthma are at higher risk of morbidity including VOC and 
ACS (Cohen et al.  2011 ) and mortality (more than twofold), compared to non- 
asthmatic SCD patients (Anim et al.  2011 ).   

10.2.6     Transitioning into Adult Care 

 Despite the improvement in survival of young children with SCD, young adults who 
transition into adult medical care remain at high risk of death, especially in the 
2-year period following their transition (Quinn et al.  2010 ). Several studies have 
looked into the possible causes, namely increasing complications with age, poor 
coordination between child-centered and adult-centered services during the transi-
tioning (Callahan et al.  2001 ), non-adherence to follow-up appointments by adoles-
cents or young adults due to personal, familial or hospital-related factors (Crosby 
et al.  2009 ), and health insurance issues (DeBaun and Telfair  2012 ). Perhaps one of 
the major factors is the fear of transitioning experienced by the adolescents when 
leaving the pediatric medical team and being transferred to a less familiar 
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environment with less reliance on parents and more focus on self-management. 
Transition planning should be started as early as 13 years of age, and the process 
should involve the patient, parents, and pediatric and adult teams and it should 
occur over several years (de Montalembert et al.  2014 ).   

10.3     Management of Acute Sickle Cell Disease 
Complications 

 Clinical manifestations and complications of SCD have been discussed in previous 
chapters. We now look into the treatment of each of these. 

10.3.1     Vaso-Occlusive Painful Crisis 

 Vaso-occlusive crisis (VOC), also known as painful crisis, is the most common 
complication of SCD. It may present in infancy as dactylitis (Delicou and Maragkos 
 2013 ) and later in life manifest as pain most commonly involving the abdomen, 
back, femur and knees (Serjeant et al.  1994 ). Known triggers of VOC in patients 
with SCD include emotional stress, pain, hypoxic conditions, high altitude, dehy-
dration (Wright and Ahmedzai  2010 ), extremes of temperature, alcohol and tobacco 
use and infections (Ahmed  2011 ). Patients should be instructed on how to avoid 
these triggers to prevent the development of VOC. Treatment of painful crisis starts 
at home and it is believed that most VOCs are entirely managed at home unless oral 
analgesia is not suffi cient. Patients and their caregivers should be taught to identify 
alarming signs and should be instructed when to contact their caregiver and when to 
present to the hospital (Rees et al.  2003 ). 

 Most emergency department (ED) visits and hospitalizations in SCD patients are 
for treatment of VOCs (Yang et al.  1995 ). Suboptimal pain management increases 
morbidity and may contribute to mortality (Benjamin et al.  2000 ), therefore, it is 
essential to establish clinical pathways for the treatment of patients with acute VOC 
(Co et al.  2003 ). The initial step consists of assessing the intensity of the pain, using 
objective tools such as the Wong-Baker faces scale or the numerical scale for older 
children (Luffy and Grove  2003 ; Smith et al.  2008 ). Both rapid pain management 
and investigations to differentiate between VOC and other causes of pain or SCD 
complications should then be initiated. The three principles of management consist 
of analgesia, warmth and hydration, in addition to the treatment of the precipitating 
factor, if known. 

 Simple VOCs with mild pain can be managed with a trial of oral hydration and 
analgesics starting with standing dose of acetaminophen (paracetamol), unless con-
traindicated, every 6–8 h. If the pain is still uncontrolled, oral NSAIDs such as 
ibuprofen or ketoprofen every 8 h may be added in absence of any contraindications 
to NSAIDs treatment (e.g. renal insuffi ciency, peptic ulcers). This management can 
be started at home, in the clinic or the ED. Pain should be reassessed every 30 min. 
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Once pain is controlled, the treatment should be continued for 2 days and a follow-
 up with the treating physician should be ensured. 

 Hydration decreases sickling events. There are no established standards on the 
amount and duration of fl uids required (Okomo and Meremikwu  2012 ), but the 
general trend is to give 1 to 1.5 times maintenance fl uid requirement or 60 mL/kg/24 
h (Delicou and Maragkos  2013 ), or 1.5 L/m 2 /day (Okpala  2004b ), care should be 
taken to avoid fl uid overload. In patients who cannot tolerate oral hydration, intra-
venous (IV) fl uids should be promptly initiated. In euvolemic patients it is safe to 
give maintenance IV fl uids to avoid overhydration (NHLBI  2014 ). Normal saline 
infusion is avoided because it increases plasma osmolality leading to intracellular 
dehydration and ultimately RBC sickling (Okpala  2004b ). Five percent dextrose in 
water is not used either as it may lead to hyponatremia (Miller  2011 ). Therefore, the 
maintenance intravenous solution of choice is 5 % dextrose in water with half- 
normal saline (D5% + 0.45 % sodium chloride). Intravenous fl uid boluses should be 
avoided in euvolemic patients. 

 Opioids are indicated in acute VOC in patients presenting with moderate-to- 
severe pain. After assessing the medication doses that have been taken prior to pre-
sentation and the patient’s opiate intake history, opioids should be rapidly initiated. 
Morphine is the gold standard opiate used for VOC (Delicou and Maragkos  2013 ). 
There are no signifi cant differences between oral sustained release morphine and 
parenteral morphine infusion with respect to mean pain scores, frequency of rescue 
analgesia, and adverse-effect profi le (Jacobson et al.  1997 ). However, the general 
trend is to administer oral opioids for mild pain and IV or subcutaneous opioids for 
severe pain (Delicou and Maragkos  2013 ). Around-the-clock doses have been 
shown to be more effective than on-demand doses in reducing pain and decreasing 
hospital stay (Udezue and Herrera  2007 ). Morphine by patient-controlled analgesia 
(PCA) allows patients to titrate the doses based on pain intensity and was found to 
have fewer side-effects than continuous IV infusion of morphine (van Beers et al. 
 2007 ). Evidence supports the regular use of NSAIDs in acute VOCs in the absence 
of any contraindications, because of their effi cacy in decreasing pain and their 
opioid- sparing effect (McQuay and Moore  1998 ). 

 Oxygen is administered if O 2  saturation falls below 95 % on room air or below 
the patient’s steady-state levels. Laxatives are given to treat opioid-induced consti-
pation and incentive spirometry to avoid acute chest syndrome. Adjunctive 
approaches such as applying heat to the painful area or distraction of children with 
games may be helpful (NHLBI  2014 ). 

 Indications for hospitalization of patients with acute VOC include:

 –    Failure to achieve adequate pain relief within 6–8 h at the ED or outpatient clinic  
 –   Suspected infection  
 –   Suspected organ involvement or other SCD complications  
 –   Continued need for IV hydration and analgesia.    

 A suggested algorithm for management of acute severe VOC is outlined in 
Fig.  10.1 .
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Assess level of pain and previous use of pain medications
Monitor vital signs
If oxygen saturation falls below 95%, supplement with oxygen and do

workup for acute chest syndrome
Use incentive spirometry at 10 puffs every 2 hours
Administer IV fluids at 1 to 1.5 times maintenance

Start opioids around the clock or patient-controlled analgesia
Use adjunctive acetaminophen (15mg/kg) every 6 hours or ibuprofen

(10mg/kg) every 8 hours
Suggested dosage of morphine every 2 hours:

Supportive treatment with laxatives, antihistamines, antiemetics
Frequent pain and vital signs assessment

Pain controlled

Pain controlled

If discharge criteria
are met, discharge on
oral analgesics
(acetaminophen,
NSAIDs)
Arrange MD follow-
up

Increase opiates
to the previous
level

Gradually decrease the doses Consider rescue
doses of morphine
at 0.05 mg/kg
every 15 minutes
for 3 doses
Consider pain
team consult

Reassess pain
2-3 days later

Pain not
controlled

Pain not
controlled

a.0.15 mg/kg/dose (children >2years)
b.0.1 mg/kg /dose (narcotic naïve children< 2
years)

  Fig. 10.1    Algorithm for inpatient management of acute severe VOC       
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   Indications for hospital discharge include:

 –    Adequate pain relief on oral analgesics  
 –   Tolerating oral hydration and medications  
 –   Patient has been afebrile for more than 24 h with negative cultures (if 

applicable)  
 –   Resolution of any pulmonary symptoms or documentation of adequate oxygen-

ation on room air  
 –   Stable hemoglobin or hematocrit  
 –   Follow-up with MD is arranged.     

10.3.2     Fever in a Patient with Sickle Cell Disease 

 Fever in patients with SCD is a medical emergency, especially with the emergence 
of penicillin-resistant organisms and possible non-compliance with the vaccination 
regimen. In addition, even in children who have been immunized with PCV 7, 
infections due to strains of pneumococcus that are not covered by the vaccine have 
been reported (McCavit et al.  2011 ). Patients and their caregivers should be 
instructed to present immediately to the emergency department (ED) or sickle cell 
clinic in any case of fever. In fact, fever is the second most common presenting 
symptom to the ED in patients with SCD (Yusuf et al.  2010 ). 

 The initial step in managing a febrile patient with SCD is to take an adequate 
history and physical exam to fi nd a focus of infection and to search for signs of other 
SCD complications, such as acute chest syndrome and osteomyelitis. Laboratory 
workup should include complete blood count, reticulocyte count and blood culture. 
In patients with respiratory symptoms such as dyspnea, tachypnea, cough or abnor-
mal breath sounds, a chest X-ray is warranted. Urinalysis and urine culture are 
performed in patients with no other focus or in patients with urinary symptoms. 
X-rays and/or magnetic resonance imaging (MRI) are done for patients with sus-
pected osteomyelitis. 

 After cultures are taken, parenteral antibiotics should be administered to SCD 
patients with a temperature of 38.5 °C or greater to cover against  Streptococcus 
pneumoniae  and gram-negative enteric organisms (NHLBI  2014 ). Empiric ceftriax-
one administration in febrile SCD patients has been linked to improved outcomes 
and decreased mortality (Wilimas et al.  1993 ). Subsequent management depends on 
the patient. Stable patients who are not ill-looking may be discharged on oral anti-
biotics with close follow-up, whereas toxic appearing patients need hospitalization 
and a course of parenteral antibiotics. Criteria for admission include fever above 
39.5 °C, elevated white blood cell count, severe anemia, poor oral intake, surgical 
splenectomy, history of poor compliance and living far from a medical center. 

 Despite the low rate of true bacteremia shown in some studies (Shihabuddin 
and Scarfi   2014 ), fever must always be promptly managed in these patients. 
Some markers may be associated with a higher likelihood of bacteremia such as 
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elevated absolute neutrophil count, high proportion of band cells, and the 
 presence of vomiting (Savlov et al.  2014 ). In addition, patients should be 
closely evaluated for other complications such as the development of splenic 
sequestration, or aplastic crises. Newly detected splenomegaly and/or dropping 
platelet counts are, in our view, an indication for admission and close 
observation.  

10.3.3     Acute Chest Syndrome 

 Acute chest syndrome (ACS) is a serious life-threatening condition that needs 
prompt management and hospitalization. Chest X-ray should be performed on any 
patient with SCD presenting with fever and respiratory symptoms. Management of 
ACS includes; oxygen saturation monitoring, supplemental oxygen, incentive spi-
rometry, adequate antibiotic coverage, hydration, analgesia and transfusion. 
Antibiotics are always indicated in the treatment of ACS as the causative agent can-
not always be determined. The regimen should combine a cephalosporin and a mac-
rolide to treat both the common bacterial pathogens, in addition to atypical bacteria 
such as  Mycoplasma pneumonia  (Wright  2004 ). 

 Opiates are generally used to control the pain, but one must be cautious to achieve 
adequate analgesia without causing respiratory depression. They are usually supple-
mented with NSAIDs. Maintenance IV fl uids are required but overhydration may 
worsen the symptoms and cause pulmonary edema. Incentive spirometry given at a 
regimen of 10 puffs every 2 h while the patient is awake has been shown to signifi -
cantly reduce pulmonary complications (atelectasis or infi ltrates) associated with 
ACS in patients hospitalized for acute chest or back pain (Bellet et al.  1995 ). The 
use of intermittent positive expiratory pressure has also been proposed (Hsu 
et al.  2005 ). 

 Transfusion is the cornerstone of ACS treatment as it improves oxygen deliv-
ery to the tissues by correcting severe anemia and decreasing HbS fraction (Emre 
et al.  1995 ). Exchange transfusion also decreases blood viscosity. Simple trans-
fusion is effective and adequate in most patients with SS disease whose hemo-
globin concentration is more than 1 g/dL below the baseline (NHLBI  2014 ). 
Exchange or partial exchange transfusion is preferred in patients with no acute 
drop in hemoglobin. The general target is to lower hemoglobin S below 30 %. 
Patients may require repetitive transfusions as hemoglobin concentrations may 
continue to drop in patients with ACS; therefore it is essential to follow hemo-
globin and reticulocyte count (Miller  2011 ). Urgent exchange transfusion is indi-
cated in rapidly deteriorating patients (oxygen saturation below 90 % despite 
oxygen supplementation, worsening respiratory distress, multilobar involve-
ment, pleural effusions) (NHLBI  2014 ). 

 The use of bronchodilators such as inhaled salbutamol is encouraged in children 
with ACS even in the absence of wheezing (Vichinsky et al.  2000 ). Data on the use 
of corticosteroids for treatment of ACS has been confl icting (Miller  2011 ). 
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Dexamethasone use has been associated with higher readmission rates and 
VOCs after the resolution of ACS (Bernini et al.  1998 ; Sobota et al.  2010 ) and use 
of dexamethasone has been associated with hemorrhagic strokes in some series 
(Strouse et al.  2006 ). At this point, we do not recommend the routine use of steroids 
in patients with sickle cell disease who present with acute chest syndrome. Instead, 
we reserve steroids for the management of patients who also have asthma. One 
should thus be careful not to withhold steroids in these patients (Miller  2011 ). As 
mentioned earlier in this chapter, SCD patients with asthma are at a higher risk of 
developing ACS (Boyd et al.  2004 ). Therefore, adequate asthma control is essential. 
All practitioners taking care of individuals with SCD should familiarize themselves 
with the management of asthma. 

 The use of inhaled nitric oxide (NO) remains controversial. NO may be helpful 
in ACS because of its vasodilator and cytoprotective properties, which improve 
blood fl ow to hypoxic tissues. NO may also inhibit erythrocyte adhesion to the 
endothelium (Jia et al.  1996 ). Despite the fact that no adequate trials have been 
conducted to determine its effi cacy in ACS treatment (Al Hajeri et al.  2008 ), some 
reports have shown positive results in critical cases that were treated with NO (Atz 
and Wessel  1997 ; Sullivan et al.  1999 ; Oppert et al.  2004 ), and NO may be consid-
ered in refractory cases of ACS (Miller  2011 ). 

 Recurrent ACS episodes are a risk factor for the development of chronic lung 
disease and ischemic strokes and are also associated with long-term increased 
mortality in patients with SCD (Vichinsky et al.  2000 ; Platt et al.  1994 ). Care 
should hence be taken to prevent the development of ACS in these patients. In 
the acute setting, the use of incentive spirometers for patients admitted with 
painful crises has been shown to effectively prevent the development of ACS. In 
a tertiary care center care setting, education of heath care providers and the 
implementation of guidelines to manage painful crises led to a 50 % decrease in 
the incidence of ACS in patients admitted for painful VOC (Reagan et al.  2011 ). 
ACS is a common post operative complication in patients with SCD and ade-
quate care including preoperative transfusions, intra and post operative fl uid 
management, incentive spirometry and post- operative pain management can 
decrease the incidence of this complication. Outside the acute setting, long-term 
hydroxyurea has been shown to decrease the incidence of ACS in infants, chil-
dren and adults. Therefore, patients who have more than one episode of ACS 
should be started on hydroxyurea therapy. Chronic transfusions also effectively 
prevent the development of ACS (Miller et al.  2001 ), but should be  recommended 
only for patients who fail hydroxyurea, given the cumbersome nature of the ther-
apy and the risk of iron overload. As recurrent ACS is associated with increased 
mortality, patients who have suffered more than two episodes are considered 
candidates for bone marrow transplantation, which is very effective in prevent-
ing ACS. Some debate remains as to whether this modality of therapy should be 
offered only to patients who fail hydroxyurea. In our view, patients who have had 
two or more episodes of ACS and who have a matched sibling donor should be 
offered transplant regardless of the response to hydroxyurea.  
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10.3.4     Acute Splenic Sequestration 

 In patients with HbSS, acute splenic sequestration (ASS) usually occurs in infancy 
and early childhood. The risk decreases with age as they develop splenic fi brosis 
and autosplenectomy, which is usually complete by 5 years of age (Brousse et al. 
 2014 ). In patients with HbSC and HbSβ + , ASS can occur later during childhood or 
even in adulthood. As mentioned earlier, parents must be taught to assess splenic 
size by palpation, especially when the patient has symptoms of severe anemia. The 
implementation of parental education programs has been shown to be associated 
with an increase in ASS incidence and a concomitant decrease in case fatality rate, 
probably refl ecting increased awareness and earlier detection and management 
(Emond et al.  1985 ). 

 As ASS may lead to severe life-threatening anemia, immediate management 
consists of urgent blood transfusion to prevent hypovolemic shock. The target is to 
increase Hb to no greater than 8 g/dL in order to avoid the “overshoot” phenome-
non, a process by which transfusion triggers the spleen to release the trapped eryth-
rocytes into the circulation over the following days, leading to hyperviscosity. 

 Regular transfusion programs to prevent recurrence of splenic sequestration have 
shown limited benefi ts (Kinney et al.  1990 ). In addition, regular transfusions carry 
the risk of alloimmunization and iron overload (Rao and Gooden  1985 ) and have a 
high cost and poor availability of donor blood. Splenectomy is recommended for 
children with recurrent splenic sequestrations or a single life-threatening sequestra-
tion. It is also done in older children and adults with chronic splenic sequestration 
accompanied by local pain and hypersplenism. Patients should receive pneumococ-
cal vaccine before splenectomy and every 3 years thereafter, in addition to Hib and 
meningococcal vaccines (Working Party of the British Committee for Standards in 
Haematology Clinical Haematology Task  1996 ). Partial splenectomy has been per-
formed to retain some splenic function and immune competence, but the remaining 
splenic fragment might show recurrence of ASS (Owusu-Ofori and Hirst  2013 ). 
The effi cacy of partial splenectomy, as compared to total splenectomy, remains 
unclear (Mouttalib et al.  2012 ). In our view, given the splenic dysfunction prevalent 
in patients with SCD, we see no role for partial splenectomy in this patient 
population.  

10.3.5     Neurological Complications 

 As mentioned earlier in this chapter, children with a cerebral blood fl ow rate of 200 
cm/s or more on TCD are at a high risk for cerebrovascular accidents (CVA). 
Chronic blood transfusion regimen is the mainstay of treatment for primary and 
secondary CVA prevention and it was reported as early as 1976 (Lusher et al.  1976 ). 
The Stroke Prevention in Sickle Cell (STOP 1) trial showed a 92 % reduction in 
stroke incidence in the study group receiving regular transfusion regimen (Adams 
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et al.  1998 ). The STOP 2 trial showed normalization in TCD in patients receiving 
transfusions for a minimum of 30 months, and an increase in TCD and risk of stroke 
after discontinuing the transfusions (Adams et al.  2005 ). The Stroke With 
Transfusions Changing to Hydroxyurea (SWiTCH) trial revealed that transfusion 
and chelation are superior to hydroxyurea in the treatment of patients with SCD, 
stroke and iron overload (Ware et al.  2012 ). At this time, transfusions and chelation 
remain the mainstay of secondary stroke prevention in patients with SCD. For 
patients with elevated cerebral blood velocity, hydroxyurea may be effective in pri-
mary stroke prevention as suggested by the preliminary results of the TCD With 
Transfusions Changing to Hydroxyurea (TWiTCH) trial, but these have at this time 
not yet been published. 

 SCD patients who present with acute onset symptoms such as altered level of 
consciousness, paralysis, headache or slurred speech must undergo urgent com-
puted tomography (CT) scan of the brain followed by MRI and magnetic resonance 
angiograpy (MRA) to evaluate for stroke (NHLBI  2014 ). A neurologist and a sickle 
cell specialist should be consulted. Exchange transfusion is preferred over simple 
transfusion as the fi rst line treatment, as it is associated with a lower risk of recurrent 
stroke (Hulbert et al.  2006 ). These patients are then initiated on a monthly transfu-
sion program for secondary stroke prevention. Management of SCD patient with 
acute stroke is outlined in Table  10.2 .

   The optimal duration of treatment is still unknown, and some patients remain at 
risk for recurrent strokes or transient ischemic attacks (TIAs) despite maintaining 
an HbS level below 30 % on transfusions (Scothorn et al.  2002 ; Pegelow et al. 
 1995 ). The risk of recurrence is highest within 2–3 years of the fi rst stroke (Powars 
et al.  1978 ). In addition, regular transfusion regimens have not been shown to be 
effective in preventing progression of cerebral vasculopathy on MRI in children 

   Table 10.2    Management of sickle cell patients presenting with acute stroke   

 Primary assessment and 
management 

 History, physical exam and vital signs 
 Stabilization, oxygenation, cautious IV hydration 

 Laboratory tests  CBC, reticulocytes, coagulation studies, BUN, creatinine, 
serum electrolytes 
 Blood group and typing cross-match (extended RBC 
phenotyping if available) 
 Lumbar puncture if meningitis is suspected 

 Imaging  Urgent CT scan of the brain 
 Brain MRI and MRA 

 Transfusion  Exchange transfusion (manual or automated) 
 Simple transfusion if exchange transfusion is not available 
 Target Hb below 10 g/dL to avoid hyperviscosity 

   CBC  complete blood count,  BUN  blood urea nitrogen  

R. Abdennour and M.R. Abboud



247

with SCD and stroke (Brousse et al.  2009 ).These patients will, as a result, require 
long-term follow up and we recommend that this includes yearly MRI and MRA.  

10.3.6     Priapism 

 Priapism is a serious SCD complication that can lead to impotence if diagnosis and 
therapy are delayed. Recurrent priapism may lead to fi brosis. No controlled studies 
for prevention of recurrent priapism are available (Chinegwundoh and Anie  2004 ). 
Initial management of includes IV hydration, analgesia with morphine, oxygen and 
sedation if needed. 

 Several drugs have been used for the treatment of priapism. In the past, data have 
indicated benefi ts from stilboestrol (estrogen analogue) in preventing stuttering pria-
pism, but possible side-effects include gynecomastia, loss of normal erections and 
gastrointestinal symptoms (Serjeant et al.  1985 ). Other hormonal agents have been 
used, as well such as fi nasteride (Rachid-Filho et al.  2009 ) and leuprolide (Maples 
and Hagemann  2004 ). The α-adrenergic agonist etilefrine is often used in the treat-
ment and prevention of priapism, as various studies have shown its effectiveness in 
SCD patients with stuttering priapism or history of one major attack. Alpha-agonists 
act as vasoconstrictors and are thought to act on the penile arteries to force blood out 
of the corpora cavernosa (Powars and Johnson  1996 ). Blood pressure should be 
closely monitored in these patients. Contraindications to treating with etilefrine 
include hypertension, cerebral vascular disease, transient ischemic attacks, among 
others (Okpala et al.  2002 ; Gbadoe et al.  2001 ). Beta agonists have been used in 
some studies to induce smooth muscle relaxation and allow oxygenated blood to 
enter the corpora cavernosa and wash out the stagnant damaged sickle cells (Maples 
and Hagemann  2004 ). Combined alpha and beta agonists, such as pseudoephedrine, 
are also used. When these drugs do not achieve an immediate response, penile aspi-
ration and irrigation with saline and alpha adrenergic agents is performed (Mantadakis 
et al.  2000 ). When a second irrigation is unsuccessful, surgical shunting of the blood 
away from the corpora cavernosa may be considered (Noe et al.  1981 ).  

10.3.7     Aplastic Crisis 

 Parvovirus B19 infection in SCD patients causes acute severe anemia, characterized 
by low reticulocyte count, which differentiates it from acute splenic sequestration. 
Acute management consists of transfusing the patient to achieve a safe level of 
hemoglobin, not necessarily reaching the patient’s baseline level. The patient’s 
counts recover in 1–2 weeks. The patient should be isolated from vulnerable con-
tacts such as siblings with SCD or pregnant women to prevent the spread of the 
infection (Okpala  2004a ).  
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10.3.8     Hepatobiliary Complications 

    Liver Disease 

 Patients with SCD may develop acute hepatic sequestration (AHS), characterized 
by decreased Hb and increased reticulocyte count, in addition to increased liver 
size. Since about two-thirds of SCD patients have chronic mild hepatomegaly, 
change in size should be monitored. Some episodes of AHS self-resolve, while oth-
ers might necessitate simple or exchange transfusion. 

 An uncommon complication of SCD is acute intrahepatic cholestasis (AIC) 
(Ahn et al.  2005 ). It may present with right upper quadrant pain and tenderness, 
fever, vomiting and leukocytosis. Laboratory fi ndings include elevated total serum 
bilirubin (total 50 mg/dL or higher), hypoalbuminemia, thrombocytopenia, elevated 
alkaline phosphatase, variable levels of transaminases and increased prothrombin 
time (PT) and partial thromboplastin time (PTT). AIC can progress to liver failure 
(Issa and Al-Salem  2010 ). Treatment includes hydration, rest, close observation and 
exchange transfusion (Irizarry et al.  2006 ; Shao and Orringer  1995 ).  

    Gallbladder Disease 

 Despite the high prevalence of pigment gallstones in SCD patients due to hemoly-
sis, acute cholecystitis occurs in less than 10 % of patients with SCD. Children and 
adults with asymptomatic cholelithiasis are treated with watchful waiting (NHLBI 
 2014 ). SCD patients presenting with acute cholecystitis are treated with antibiotics 
and supportive care, followed by elective cholecystectomy like in the general popu-
lation (Johnson  2004 ). Symptomatic gallstones are also managed by cholecystec-
tomy. Preoperative transfusion for patients undergoing cholecystectomy is warranted 
to decrease the risk of sickle cell events. The laparoscopic approach is preferred, 
when possible, as it incurs a shorter hospital stay, lower cost and fewer surgical 
complications than open cholecystectomy (Haberkern et al.  1997 ).   

10.3.9     Ophthalmologic Complications 

 Acute ophthalmological complications of SCD include; hyphema secondary to 
blunt trauma, central retinal artery occlusion (CRAO), orbital and periorbital infec-
tions, orbital infarction, and orbital compression syndrome. 

 Hyphema can lead to elevated intraocular pressure (IOP) due to sickling in the 
anterior chamber of the eye and may cause permanent visual loss. Various agents 
including antifi brinolytics such as aminocaproic acid, corticosteroids and cyclople-
gics have been used, but data on management of SCD patients with hyphema is 
limited, and these approaches carry a risk of rebleed. Any elevation in IOP in SCD 
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patients may cause vision loss, therefore, close monitoring of IOP is essential and 
any elevation might require paracentesis (Gharaibeh et al.  2013 ). 

 CRAO by sickled red cell sludge is an ocular emergency. It presents with acute 
painless loss of vision. Bilateral presentation is extremely rare. Pharmacological 
IOP reduction with carbonic anhydrase inhibitors, mechanical IOP reduction, ocu-
lar massage, direct thrombolysis and hyperbaric oxygen have been used without 
proven benefi t. Most patients undergo exchange transfusion (Liem et al.  2008 ). The 
use of hyperbaric oxygen therapy combined with exchange transfusion has been 
successfully reported in a patient with SCD presenting with CRAO (Canan et al. 
 2014 ). Prognosis of CRAO in SCD is poor, and more studies are needed to establish 
guidelines for the management of this condition. 

 Orbital infarction is usually associated with VOC. Presentation may mimic peri-
orbital cellulitis and the diagnosis is made with imaging studies. Surgical manage-
ment may be required (NHLBI  2014 ). Orbital compression syndrome may be seen 
with orbital infarction. After an infectious cause is ruled-out, corticosteroids, like 
methylprednisolone, may be effective in decreasing orbital edema (Sokol et al. 
 2008 ). If optic nerve dysfunction or large hematomas are present, surgical evacua-
tion is needed to prevent loss of vision and to speed recovery (Curran et al.  1997 ). 

 Any patient with SCD presenting with eye symptoms should be immediately 
referred to an ophthalmologist to prevent irreversible visual loss.   

10.4     Management of Chronic Sickle Cell Disease 
Complications 

 As the life expectancy of people with SCD has increased, chronic complications are 
now a larger area of concern. 

10.4.1     Pulmonary Hypertension 

 Pulmonary artery pressure can be assessed by echocardiography where the tricuspid 
regurgitant velocity (TRV) is used to calculate pulmonary artery pressure. Despite 
the unclear relationship between elevated TRV and true pulmonary hypertension 
(PH), the defi nite diagnosis of which is made by right heart catheterization 
(Pashankar et al.  2008 ), both parameters have been shown to be associated with 
higher mortality in adult SCD patients. The American Thoracic Society (ATS) 
defi nes patients with SCD who are at an increased risk of death as those who have 
elevated TRV, elevated serum N-terminal pro-brain natriuretic peptide (NT-pro- 
BNP) level, or PH confi rmed by right heart catheterization (Klings et al.  2014 ). 

 Antihypertensive agents are no longer used in the treatment of PH in SCD, as 
SCD patients have lower systemic blood pressure compared to normal controls and 
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are at risk of severe hypotension (Okpala  2004c ). Hydroxyurea (HU) treatment 
decreases the frequency of ACS and VOC (Charache et al.  1995 ), both of which 
increase the risk of mortality in patients with SCD and PH (Mehari et al.  2013 ). In 
addition, the use of HU was shown to be associated with decreased mortality in 
SCD patients (Steinberg et al.  2003 ,  2010 ). Therefore, the ATS recommends the use 
of HU in patients with a high risk of mortality. Chronic transfusions are suggested 
as an alternative therapy, with no strong supportive evidence (Klings et al.  2014 ). 

 Other pharmacologic agents targeting PH have been studied. However, the pres-
ence of PH needs to be confi rmed by right heart catheterization prior to considering 
therapy for PH. The phosophodiesterase type 5 inhibitor sildenafi l is used for the 
treatment of pulmonary hypertension. However, its use in the setting of SCD has 
been controversial. While sildenafi l was shown to improve PH and exercise capacity 
in a study performed on SCD patients with PH (Machado et al.  2005 ), a randomized 
double blind clinical trial evaluating the role of sildenafi l in decreasing PH in SCD 
patients was closed early due to an increase in serious adverse events associated 
with sildenafi l use (Machado et al.  2011 ). Therefore, the ATS strongly advises 
against the use of sildenafi l in SCD patients with PH (Klings et al.  2014 ). The endo-
thelin receptor antagonist, bosentan, has not been shown to signifi cantly improve 
pulmonary vascular resistance or exercise tolerance in SCD patients with PH (Barst 
et al.  2010 ), but may be used in patients with confi rmed PH, elevated pulmonary 
vascular resistance and normal pulmonary capillary wedge pressure (Hsu et al. 
 2005 ). 

 As mentioned earlier, NO has shown some benefi t in patients with ACS and may 
benefi t PH by the same mechanism. The use of NO requires special equipment and 
is cumbersome. Arginine is the nitrogen donor for synthesis of NO, and patients 
with SCD and PH who received L-arginine showed a 15.2 % mean reduction in 
estimated pulmonary artery systolic pressure, but these benefi ts were short-term 
(Morris et al.  2003 ). L-carnitine treatment may also decrease PH in SCD patients. 
The possible mechanisms include decreased production of tumor necrosis factor 
and improvement in endothelial dysfunction (El-Beshlawy et al.  2006 ). 

 At this point, the need for screening patients with echocardiography remains con-
troversial and the management of patients with SCD and PH is also unclear. The high 
risk of mortality in patients with sickle cell disease and PH requires that these patients 
be managed in conjunction with pulmonary specialists who have experience in this 
domain. Optimizing HU therapy and chronic transfusions should be considered. 
Furthermore, a recent study utilizing reduced intensity conditioning and matched-
sibling transplant was shown to effectively decrease TRV (Hsieh et al.  2014 ).  

10.4.2     Chronic Kidney Disease 

 In infants with SCD, hydroxyurea may improve urine concentrating ability and 
decrease renal enlargement (Alvarez et al.  2012 ). Patients on HU are less likely to 
exhibit proteinuria, and the use of HU may prevent or slow the development of overt 
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nephropathy or end-stage renal disease (ESRD) (Laurin et al.  2014 ). Therefore, HU 
should be considered in all patients with sickle cell nephropathy unless contraindi-
cated (Sharpe and Thein  2014 ). 

 The benefi ts of angiotensin-converting enzyme (ACE) inhibitors in sickle cell 
nephropathy have been established since the early 1990s. Treatment with enalapril 
was shown to reduce the degree of proteinuria (Falk et al.  1992 ). Discontinuation of 
the drug may lead to increase in microalbuminuria to pre-treatment levels or higher 
(Aoki and Saad  1995 ). ACE inhibitors may slightly decrease blood pressure, so 
SCD patients on treatment need to be monitored to avoid hypotension (Foucan et al. 
 1998 ). Patients should also be monitored for hyperkalemia (McKie et al.  2007 ). 
ACE inhibitors are the current standard of care of pediatric and adult SCD patients 
with microalbuminuria or proteinuria (Ataga et al.  2014 ). 

 As individuals with SCD age, the risk of ESRD increases. Poor blood pressure 
control and use of nonsteroidal anti-infl ammatory agents (NSAIDs) can increase the 
rate of renal disease progression. There are no clear guidelines on the treatment of 
hypertension in SCD patients, but diuretics should be used cautiously to avoid dehy-
dration (Ataga et al.  2014 ). The risk of mortality in patients with SCD-ESRD is 
higher than for patients with ESRD due to other causes, especially when they reach 
the renal replacement therapy stage. This mortality rate, however, is lower in those 
who receive pre-dialysis nephrology care, highlighting the importance of follow-up 
with a nephrologist in SCD patients with chronic kidney disease (CKD) prior to 
reaching ESRD (McClellan et al.  2012 ). Erythropoietin-stimulating agents may be 
useful in CKD patients (Sharpe and Thein  2014 ). Hemodialysis and peritoneal dial-
ysis are both performed, but renal transplant shows better outcomes (Ataga et al. 
 2014 ). Over the recent years, survival among SCD kidney transplant recipients has 
markedly improved (Huang et al.  2013 ). Candidates for kidney transplant should be 
carefully picked, as most SCD patients with ESRD have other SCD complications 
and poor prognosis.  

10.4.3     Chronic Pain 

 Chronic pain in SCD is less frequent than acute VOCs. Its management, however, is 
more challenging and it involves analgesic medications, adjuvant therapy, physio-
therapy, psychological support and possible surgery. This syndrome of chronic pain 
was originally described by Ballas and has gained increased recognition (Ballas 
et al.  2010 ). It is important in this context to trust patients and listen carefully to 
their complaints. In diagnosing chronic pain syndrome, it important to rule-out 
other types of chronic pain such as trauma or other comorbid conditions not related 
to SCD. Chronic SCD pain may also be due to an identifi able pathology such as leg 
ulcers or avascular necrosis, or may be due to chronic neuropathic pain or break-
through pain in patients on opioids. 

 Oral opiates such as methadone, morphine, codeine, oxycodone, and hydroxyco-
done may be given (Delicou and Maragkos  2013 ). Combinations of long-acting 
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opioid together with a short-acting opioid have been used (Shaiova and Wallenstein 
 2004 ). Morphine sulphate or hydromorphone tablets are given for breakthrough 
pain. When tolerance develops to one drug, the patient can be switched to another 
(Okpala  2004a ). Methadone is effective for chronic pain, but is not widely used in 
SCD due to its side-effect profi le. Patients should be referred for evaluation by a 
psychiatrist. Serotonin norepinephrine reuptake inhibitors (SNRIs) and tricyclic 
antidepressants may be helpful in altering the perception of pain, although their use 
has not been established in sickle cell pain (Co et al.  2003 ). 

 Psychotherapy, especially cognitive behavioral therapy, is effective for dealing 
with the emotional component of chronic pain and the psychological burden of SCD 
(Thomas  2000 ). Non-pharmacological methods have been suggested for the treat-
ment of chronic SCD pain, such as meditation, progressive relaxation, dreaming, 
transcutaneous electrical nerve stimulation, hypnosis, music therapy and acupunc-
ture, among others (Delicou and Maragkos  2013 ). Many patients report using com-
plementary and alternative medicine as adjunctive therapy for pain management 
(Thompson and Eriator  2014 ). The values of these interventions need to be carefully 
evaluated and their benefi ts studied. It is, however, important to note that they may 
help individual patients and should be considered in this context.  

10.4.4     Retinopathy 

 Progressive sickle retinopathy (PSR) may lead to vitreous hemorrhage and signifi -
cant vision loss (Moriarty et al.  1988 ). Spontaneous regression may occur in up to 
32 % of affected eyes (Downes et al.  2005 ). PSR is managed with laser photocoagu-
lation. Photocoagulation helps decrease the rate of loss of visual acuity and reduces 
the incidence of vitreous hemorrhage (Farber et al.  1991 ). It can also help induce 
regression of pre-existing lesions (Kimmel et al.  1986 ). Surgical vitrectomy is used 
to treat severe vitreous hemorrhage and may show favorable outcomes (Williamson 
et al.  2009 ).  

10.4.5     Leg Ulcers 

 Sickle cell ulcers are a debilitating, painful and often recurring complication of 
SCD. Initial treatment includes gentle debridement and wet to dry dressings, effec-
tive in most cases. A variety of topical agents have been used and studied. 

 Arginylglycylaspartic acid (RGD) peptide matrix acts as a topical synthetic sub-
stitute matrix at the ulcer site (Wethers et al.  1994 ). It was found to be the only 
intervention that signifi cantly reduces ulcer size in a recent Cochrane review (Marti- 
Carvajal et al.  2014a ). The administration of arginine butyrate combined with stan-
dard care (twice daily cleaning and wet-to-dry dressing changes) can promote 
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healing of long-standing refractory ulcers. The mechanism is not well defi ned yet 
and may include a combination of the ability of butyrate to stimulate platelet- derived 
growth factor (PDGF) production, blockage of infl ammatory cytokines and down- 
regulation of matrix metalloproteinases (McMahon et al.  2010 ). 

 One trial of topical preparation of neomycin, bacitracin, and polymyxin B resulted 
in a signifi cant reduction in ulcer size (Baum et al.  1987 ). Solcoseryl has been shown 
to increase ulcer healing, but the effect was not statistically signifi cant compared to 
controls (La Grenade et al.  1993 ). Oral zinc sulphate showed higher healing rates 
(Serjeant et al.  1970 ). A 6-week treatment regimen with subcutaneous heparin and 
human antithrombin concentrate showed improved healing (Cacciola et al.  1989 ). 

 Patients with chronic deep leg ulcers should be evaluated for osteomyelitis. 
Wound cultures should be taken and antibiotics should be started if infection is 
suspected (NHLBI  2014 ). Recently a nitrite cream has been used with encouraging 
results in this very frustrating condition (Minniti et al.  2014 ), this preparation is 
however only available on a research basis.  

10.4.6     Avascular Necrosis 

 Avascular necrosis (AVN) of the femoral and humeral head is associated with 
reduced quality of life and chronic pain. It is a frequent and severe SCD complica-
tion and its treatment is not standardized (Marti-Carvajal et al.  2014b ). The thera-
peutic approach depends on the radiographic staging of AVN. Initial treatment 
includes analgesia, physiotherapy and partial weight bearing on crutches and ortho-
pedic assessment. A small study showed that physical therapy is as effective as hip 
core decompression, followed by physical therapy (Neumayr et al.  2006 ); however, 
other studies showed a signifi cant benefi t of surgical core decompression in improv-
ing pain and decreasing necrotic bone lesions (Mukisi-Mukaza et al.  2009 ). 
Conservative treatment has been shown to yield poor results (Ebong and Kolawole 
 1986 ). At this time, hip replacement seems to be the mainstay of therapy for patients 
with severe or very symptomatic disease. Despite the controversy, we recommend 
core decompression for patients with early symptomatic disease in a center with 
experience, as this may delay the need for hip replacement.   

10.5     Blood Transfusions 

 Blood transfusions are a mainstay of treatment for patients with sickle cell disease. 
Chronic transfusions have the ability to prevent strokes and silent infarcts. 
Furthermore, in all the randomized studies of stroke prevention, i.e. STOP, SWiTCh 
and SIT (Miller et al.  2001 ; Alvarez et al.  2013 ; DeBaun et al.  2014 ; Beverung et al. 
 2015 ), patients in the transfusion arms had signifi cantly fewer sickle cell related 
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non-neurologic complications. In this section, we will briefl y review the benefi cial 
role of transfusions in SCD as well as the problems associated with this form of 
treatment. 

10.5.1     Indications for Acute Transfusion 

 –      Acute exacerbation of anemia : Seen in splenic sequestration, hepatic sequestra-
tion, aplastic crisis secondary to parvovirus B19 infection or any symptomatic 
anemia. The aim is to correct Hb to a level around 8 g/dL.  

 –    Acute chest syndrome : Early simple transfusion is benefi cial. Exchange transfu-
sion is carried out if clinical deterioration occurs or if Hb levels are not low 
enough.  

 –    Multiorgan failure   
 –    Preoperative management : A conservative transfusion regimen to increase 

the hemoglobin level to 10 g per deciliter is effective in preventing periopera-
tive complications in SCD patients (Vichinsky et al.  1995 ; Howard et al. 
 2013 ).  

 –    Stroke or acute neurological defi cit:  Simple transfusion is given if exchange 
transfusion is not readily available.     

10.5.2     Indications for Chronic Transfusion Regimen 

 –      Primary and secondary stroke prevention : Regular transfusions to keep HbS less 
than 30 % (Wang and Dwan  2013 ).  

 –    Recurrent ACS:  In cases refractory to treatment with HU, chronic transfusion 
reduces the frequency of ACS (Miller et al.  2001 ).  

 –    Controversial indications : Frequent VOCs (Miller et al.  2001 ), chronic pain, 
avascular joint necrosis, leg ulcers, priapism (Rees et al.  2010 ), recurrent splenic 
sequestration (limited data, splenectomy is the standard of care), pregnancy 
(Koshy et al.  1988 ; Mahomed  2000 ).    

 Chronic packed red blood cell (pRBC) transfusion reduces SCD complica-
tions by reducing the burden of sickled RBCs and decreasing hemolysis (Lezcano 
et al.  2006 ).  

10.5.3     Exchange Transfusion 

 The benefi ts of exchange transfusion include increased HbA after transfusion, 
increased volume without increase in viscosity and reduced iron overload. 
Its risks are: higher potential rates of alloimmunization, high cost, need for 
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specialized equipment and personnel and frequent need for permanent venous 
access. 

 Exchange transfusion is indicated in management of acute stroke and in severe 
worsening ACS.  

10.5.4     Complications of Transfusions 

    Alloimmunization 

 Alloimmunization to minor RBC antigens is a signifi cant complication of chronic 
transfusions that leads to increased risk of hemolytic transfusion reactions and 
limits the number of compatible RBC donors. Prevalence of alloimmunization 
can be as high as 35–40 % in the absence of minor RBC antigen phenotype 
matching (McPherson et al.  2010 ). Autoimmunization can also occur in this 
 setting, and most autoantibodies are IgG and can fi x complement. The risk of 
 alloimmunization can be reduced by matching for the red cell antigens D, C, E, 
and Kell (Klings et al.  2014 ). SCD patients on chronic transfusions should 
undergo phenotype identifi cation and RBC antigen matching (Godfrey et al. 
 2010 ).  

    Transfusional Iron Overload 

 Levels of serum ferritin correlate with volume of pRBCs transfused, but the rate 
of increase varies widely between different patients (Files et al.  2002 ). Data from 
the patients enrolled in the STOP 1 and 2 trials showed that ferritin levels of less 
than 1500 ng/mL are acceptable and levels of 3000 ng/mL or greater refl ect sig-
nifi cant iron overload and are associated with liver injury (Adamkiewicz et al. 
 2009 ). 

 Liver biopsy has been the gold standard in the diagnosis of iron overload as 
it allows a direct measure of iron stores and there is a poor correlation between 
serum ferritin levels and liver iron content (LIC) (Karam et al.  2008 ). New less 
invasive diagnostic tools using MRI have been developed to measure LIC and 
are being used in randomized controlled trials. Iron overload is treated with 
iron chelation to control LIC in order to reduce the risk of cirrhosis and hepato-
cellular carcinoma (Porter and Garbowski  2013 ). Cardiac overload may also 
occur in SCD patients on chronic transfusion regimens (Meloni et al.  2014 ), 
although the myocardium is relatively protected in SCD compared to thalas-
semia. Oral deferasirox and subcutaneous deferoxamine treatments have been 
compared in adults and children with SCD and transfusional iron overload 
and have yielded similar results (Vichinsky et al.  2007 ). High-dose intravenous 
desferrioxamine is a suitable option for poorly compliant patients (Kalpatthi 
et al.  2010 ). 
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 Other risks of chronic transfusions include febrile reactions, allergic reactions, 
delayed hemolytic reactions, and volume overload. Taken together, these occur in 
15 % of patients (Klings et al.  2014 ).    

10.6     Pharmacotherapy in Sickle Cell Disease 

10.6.1     Hydroxyurea 

 Hydroxyurea (HU), also known as hydroxycarbamide, is a ribonucleotide reductase 
inhibitor that was fi rst synthesized in 1869 and has been used for several decades in 
the treatment of patients with myeloproliferative disorders. It was fi rst shown to 
enhance HbF production in patients with SCD in a study published in 1984 (Platt 
et al.  1984 ). Increased HbF levels in the cells lead to a decrease in HbS concentra-
tion resulting in less polymerization, and less RBC sickling. 

 The exact mechanism by which HU increases HbF is not fully understood. One 
theory suggests that HU is cytotoxic to late erythroid precursors resulting in recruit-
ment of early precursors with higher HbF production. Other hypotheses state that 
HU acts directly on late precursors to produce HbF or may alter transcription fac-
tors that act around the globin gene enhancer or promoter regions. HU may also act 
as a NO donor (Segal et al.  2008 ). Its rheological benefi ts include the ability to 
increase RBC water content and volume, to decrease the number of circulating 
leukocytes to limit the interaction of RBCs with the endothelium (Davies and 
Gilmore  2003 ). 

 A clinical trial published in 1995 showed that HU reduces the frequency of VOC 
and ACS, the need for transfusions and the frequency of hospitalization (Charache 
et al.  1995 ). A 9-year follow-up of the study showed signifi cantly decreased mortal-
ity in patients whose HbF levels increased on HU treatment (Steinberg et al.  2003 ). 
The US FDA approved HU for the treatment of sickle cell anemia in adults in 1998. 

 The BABY HUG trial conducted on children 9–18 months of age showed signifi -
cant benefi t of HU use, including decreased VOC and dactylitis rates, and some 
evidence suggesting decreased ACS, hospitalization and transfusion rates (Wang 
et al.  2011 ). These effects are related to the increased Hb in patients on HU 
(Lebensburger et al.  2012 ). Currently, HU is the only approved disease-modifying 
drug for treatment of SCD in patients above 2 years of age. 

 Indications for initiation of HU include recurrent VOCs (3 or more severe epi-
sodes requiring admission in the last 12 months including dactylitis), 2 or more 
episodes of ACS, severe anemia, and as an alternative to transfusion to prevent new 
or recurrent stroke, in situations where transfusion therapy is not feasible (Ware 
et al.  2010 ). HU is also used in patients with evidence of sickle cell nephropathy to 
delay the onset of ESRD (Sharpe and Thein  2014 ). The effi cacy of HU on chronic 
organ damage prevention or treatment has not yet been proven (McGann and Ware 
 2011 ). HU treatment should be discussed with and offered to all patients with SCD, 
starting from 9 months of age. Studies on HU have mostly included patients with 
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HbSS or HbSβ 0 . However, treatment should also be considered for people with 
HbSβ+-thalassemia or HbSC who have recurrent sickle cell-associated pain. 

 HU is rapidly absorbed and has high bioavailability. Baseline investigations prior 
to initiation of HU therapy should include; complete blood count (CBC) with dif-
ferential, reticulocyte count, quantitative measurement of HbF (e.g., hemoglobin 
electrophoresis, high-performance liquid chromatography), renal and liver function 
tests and pregnancy test for women (NHLBI  2014 ). HU can then be safely started at 
doses of 20 mg/kg/day in children and 15 mg/kg/day in adults given orally once 
daily. CBC is usually repeated weekly for the fi rst 4 weeks then once every 4 weeks 
if the counts are stable (Ware  2010 ). HU dose may be escalated by 5 mg/kg/day at 
8-week intervals if needed. Some patients only achieve a therapeutic effect at the 
maximum tolerated dose (MTD), of up to 35 mg/kg/day. MTD is usually well toler-
ated with sustained hematologic response (Zimmerman et al.  2004 ). If bone marrow 
suppression (thrombocytopenia or neutropenia) occurs, HU is withheld to allow for 
marrow recovery and CBC is monitored weekly. When counts recover, HU is 
restarted at a dose of 5 mg/kg/day less than the dose causing myelosuppression 
(Davies and Gilmore  2003 ). Clinical response usually occurs 3–6 months after ini-
tiation of adequate HU doses. 

 Short-term complications of HU include myelotoxicity, mouth ulceration, mac-
rocytosis and megaloblastoid changes, gastrointestinal (GI) discomfort, skin 
toxicity- rashes and hyperpigmentation. GI complaints are not severe and may be 
reduced by changing the timing of the daily HU dose. Skin and nail complaints are 
mild and rarely signifi cant (Ware  2010 ). Toxicity in children 9–18 months of age 
was found to be limited to mild-to-moderate neutropenia (Wang et al.  2011 ). HU 
toxicities are mild and similar for children, adolescents and adults with SCD 
(Kinney et al.  1999 ). Bone marrow suppression is common after dose escalation, 
but resolves within 2 weeks of temporary discontinuation of therapy (Steinberg 
et al.  2010 ). 

 To date, no signifi cant long-term HU toxicities have been found in pediatric or 
adult SCD patients on chronic HU therapy. No adverse effects on growth, develop-
ment, or number of acquired DNA mutations were found in pediatric patients 
(Zimmerman et al.  2004 ), and there have been no reported cases of myelodysplasia 
or leukemia in adults (Voskaridou et al.  2010 ).  

10.6.2     Investigational Agents/Emerging Drugs 

 Besides HU, several HbF-inducing agents are under study in SCD patients, includ-
ing the thalidomide analog pomalidomide, the short chain fatty acid derivative 
2,3-sodium dimethyl butyrate (HQK-1001), and the hypomethylating agent 
decitabine and the histone deacetylase inhibitor vorinostat. 

 Other novel therapies targeting different disease mechanisms are being investi-
gated (please see Chap.   16     for a full description of these therapies). Drugs targeting 
adhesion inhibit selectins and include rivipansel sodium, heparin and low molecular 
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weight heparins, among others. Intravenous immunoglobulin (IVIg), propranolol, 
platelet aggregation inhibitors and factor Xa inhibitors are also being studied in 
clinical trials (Singh and Ballas  2015 ). Clinical trials on purifi ed poloxamer 188 
have also been conducted, as this molecule decreases blood viscosity, RBC aggre-
gation and decreases friction between RBCs and the vascular endothelium (Gibbs 
and Hagemann  2004 ). 

 Anti-infl ammatory drugs include regadenoson, carbon monoxide, statins, 
omega-3 fatty acids, zileton, prasugrel, NO and arginine. Prasugrel has reached 
Phase III trial. NO and arginine also function indirectly as fetal Hb induction agents. 
Arginine, a natural amino acid, is being evaluated in adults and children and has 
reached Phase III studies. Finally, drugs that prevent oxidative injury include gluta-
mine, α-lipoic acid, acetyl- L -carnitine and Aes-103 (5-hydroxymethyl-2-furfural) 
are under study. The latter inhibits activation of the Gardos channel, leading to 
improved RBC hydration (Singh and Ballas  2015 ). A recent Cochrane review on 
phytomedicines highlights Niprisan( ® ) as a safe and effective intervention in reduc-
ing severe VOCs over a 6-month follow-up period (Oniyangi and Cohall  2013 ).   

10.7     Stem Cell Transplant 

 Allogeneic hematopoietic stem cell transplantation (HSCT) is currently the only 
curative treatment for SCD. The objective of HSCT is to replace sickle erythropoi-
esis or to reduce its clinical impact by inducing the expression of β-globin chains 
(Walters  2005 ). HSCT is increasingly being used for young children with early 
SCD complications. Older adults are considered less favorable candidates for HSCT 
due to the higher risk for organ toxicities and greater susceptibility to severe graft 
versus host disease (GvHD) (Platt  2005 ). Several studies on HSCT in children 
showed good results with long-term disease-free survival ranging from 82 to 86 % 
(Bhatia and Walters  2008 ). 

 Indications for HSCT in SCD are weighed based on the risk-benefi t ratio, depend-
ing on the patient’s status and donor availability. When a matched sibling donor is 
available, indications for HSCT may include: stroke, elevated TCD velocity, ACS, 
recurrent VOCs (more than three episodes per year requiring hospitalization), pul-
monary hypertension, TRV >2.5 m/s, AVN, alloimmunization, silent stroke espe-
cially with cognitive impairment, recurrent priapism and sickle nephropathy (Shenoy 
 2013 ). After the identifi cation of a matched donor, the recipient undergoes extensive 
evaluation to check for organ dysfunction and health status. The recipient then 
receives the conditioning regimen, which usually provides both myeloablation and 
immunosuppression (Oringanje et al.  2013 ). The initial and most challenging step is 
to identify patients with severe disease requiring HSCT, but without conditions that 
would impede the use of intensive myeloablative regiments (Abboud  2009 ). 

 Myeloablative conditioning regimens have utilized a backbone consisting of 
busulfan and cyclophosphamide, with or without other immunosuppressive drugs 
such as anti-thymocyte globulin (ATG), anti-lymphocyte globulin (ALG) and total 
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lymphoid irradiation (TLI) (Khoury and Abboud  2011 ). Most studies have used 
cyclosporine (CSP) and methotrexate (MTX) for post-transplant immunosuppres-
sion (Walters  2005 ). 

 The preparative regimen for myeloablative HSCT on children has severe adverse 
effects on growth and gonadal function. To reduce this toxicity, reduced intensity 
conditioning regimens have been used, including purine analogs (such as fl udara-
bine, cladribine and pentostatin), alkylating agent or low-dose total body irradiation 
(TBI) (Oringanje et al.  2013 ). Adults with multiple comorbidities are not candidates 
for myeloblative transplant regimens. Recently, Hsieh and colleagues published a 
report on the successful transplant of adults using a non-myeloablative regimen 
(Hsieh et al.  2014 ). The applicability of transplants remains limited by the avail-
ability of donors and the willingness of parents and patients to undergo the proce-
dure. Experimental approaches with haploidentical donors have shown some 
promise (Bolanos-Meade et al.  2012 ). The future will see more use of these tech-
niques and the start of gene therapy protocols.     
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    Chapter 11   
 Priapism in Sickle Cell Disease: New Aspects 
of Pathophysiology                     

       Mário     A.     Claudino       ,     Carla     F.     Franco Penteado       , and     Kleber     Yotsumoto     Fertrin      

    Abstract     Priapism is a prolonged, persistent, and painful penile erection unassoci-
ated with sexual interest or stimulation, which affects a large percentage of male 
sickle cell disease (SCD) patients. It manifests either as an acute, severe event, or as 
recurrent, stuttering priapism, with very limited therapeutic options. Untreated pria-
pism can cause irreversible erectile dysfunction and surgical treatment remains the 
only option for severe cases. The mechanisms that contribute to the development of 
sickle cell disease-associated priapism are not fully understood, precluding effi ca-
cious pharmacological approaches. In this chapter, we review the physiology of 
penile erection, defi nitions of priapism, and summarize current knowledge of the 
pathophysiology underlying SCD-associated priapism. We discuss current and 
future possible therapeutic interventions, with emphasis on dysregulated signaling 
pathways that contribute to the development of this complication, such as the nitric 
oxide/cyclic guanosine monophosphate system and the RhoA/ROCK system, as 
well as the role of adenosine, opiorphins, and androgens in the pathogenesis of 
priapism.  
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11.1       Introduction 

 Priapism is a pathologic condition consisting of a prolonged and persistent penile 
erection, unassociated with sexual interest or stimulation (Montague et al.  2003 ). 
This condition was fi rst reported as being associated with sickle cell disease (SCD) 
in 1934 (Diggs and Ching  1934 ) and has been related by approximately 3.6–6.4 % 
of male children and adolescent patients (Tarry et al.  1987 ; Furtado et al.  2012 ) and 
by 20–89 % of adult male SCD patients (Adeyoju et al.  2002 ; Broderick et al.  2010 ; 
Lionnet et al.  2012 ). The rate of resulting erectile dysfunction (ED) may exceed 30 
% (Bivalacqua and Burnett  2006 ; Claudino and Fertrin  2012 ). According to the 
American Urological Association Guidelines on the Management of Priapism and 
the European Association of Urology Guidelines on Priapism, priapism can be sub-
divided into three categories; ischemic (veno-occlusive, low fl ow), nonischemic 
(arterial, high fl ow) and stuttering (acute, intermittent). 

 Ischemic priapism is the most common forms of priapism, accounting for 
approximately 95 % of all priapic episodes, and is characterized by a painful and 
rigid penile erection. SCD is the primary cause of ischemic priapism in 23 % of 
adults, and 63 % of children (Salonia et al.  2014 ). Ischemic priapism beyond 4 h 
constitutes a compartment syndrome of the penis, resulting from a persistent erec-
tion, marked by rigidity of the corpora cavernosa (CC) and little or no cavernous 
arterial infl ow. Penile sinusoids are regions prone to red blood cell sickling in men 
with SCD, due to blood stasis and slow fl ow rates; ischemic priapism is thought to 
result from the prolonged blockage of venous outfl ow by the vaso-occlusive pro-
cess. This veno-occlusive episode requires emergency urological intervention to 
minimize potential irreversible consequences, such as corporal fi brosis and perma-
nent erectile dysfunction (Spycher and Hauri  1986 ; El-Bahnasawy et al.  2002 ; 
Bivalacqua and Burnett  2006 ). In ischemic priapism, time-dependent changes occur 
in the corporal metabolic environment with progressive hypoxia, hypercapnia, and 
acidosis that typically generate penile pain (Muneer et al.  2008 ). The duration of 
priapism represents the most signifi cant predictor of the maintenance of premorbid 
erectile function. Histologically, between 12 and 24 h after priapism ensues, corpo-
ral specimens show interstitial edema, progressive destruction of sinusoidal endo-
thelium, exposure of the basal membrane, and platelet adhesion. After 48 h, thrombi 
are observed in the sinusoidal spaces, and fi broblast-like cell transformation takes 
place, along with smooth muscle necrosis. Thus, while interventions beyond 48–72 
h after onset may eventually help relieve erection and pain, they have little benefi t 
in preserving erectile function (El-Bahnasawy et al.  2002 ; Salonia et al.  2014 ). 
Studies show that 21–59 % of male SCD patients have experienced low-fl ow pria-
pism for 24–48 h with impairment to erectile mechanisms, resulting in the develop-
ment of erectile dysfunction (El-Bahnasawy et al.  2002 ; Adeyoju et al.  2002 ; 
Broderick  2012 ). 

 Non-ischemic priapism (arterial, high fl ow) is a persistent erection caused by 
unregulated cavernous arterial infl ow. Typically, the corpora are tumescent but not 
fully rigid and not associated with pain (Broderick et al.  2010 ). High fl ow priapism 
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is caused by trauma, and has not been associated with increased risk in SCD patients 
(Crane and Bennett  2011 ), or with the development of erectile dysfunction (Salonia 
et al.  2014 ). 

 Stuttering or recurrent ischemic priapism (acute, intermittent ischemic priapism) 
is a distinct condition characterized by recurrent painful penile erection, with com-
plete detumescence between episodes (Salonia et al.  2014 ; Muneer et al.  2008 ). 
Stuttering priapic episodes are frequently self-limiting, but frequency and/or dura-
tion of these distressing priapic episodes may increase, and a single episode can 
sometimes develop into a major ischemic priapic event (Claudino and Fertrin  2012 ; 
Salonia et al.  2014 ). SCD is the most common cause of stuttering priapism and 
reaches a prevalence of 42–64 %. Of this group of patients, 89 % report their fi rst 
priapic episode by the age of 20 years (Fowler et al.  1991 ; Mantadakis et al.  1999 ; 
Adeyoju et al.  2002 ). Recurrent episodes are usually nocturnal and may be triggered 
by sexual activities, which may suppress sexual desire for fear of episodes (Chow 
and Payne  2008 ). The underlying mechanism is similar to that of other types of 
ischemic priapism (Salonia et al.  2014 ), occurring due to a defi ciency of endothelial 
nitric oxide in the penis, leading to downregulation of the phosphodiesterase type 5 
(PDE5) enzyme (Champion et al.  2005 ), and causing alterations in the functioning 
of the control system of the corporal smooth muscle tone. Hence, responses to any 
sexual or nonsexual stimulus (such as that occurring during rapid eye movement 
sleep) can induce a prolonged erectile episode (Salonia et al.  2014 ). In addition, 
patients with short-lived intermittent priapic attacks are still at risk of erectile dys-
function (Adeyoju et al.  2002 ). Anele and Burnett ( 2015 ) showed that erectile dys-
function is associated with recurrent ischemic priapism, occurring in nearly 40 % of 
affected individuals overall. SCD patients with stuttering priapism are nearly fi ve 
times more likely to develop erectile dysfunction, compared with those having stut-
tering priapism, when associated with non-SCD etiologies. Moreover, the frequency 
of episodes and minor episode durations (≤ 2 h) also seem to be associated with the 
development of erectile dysfunction in SCD patients (Anele and Burnett  2015 ). 

 Basic science investigations have focused on defi ning abnormalities in the penile 
tissue at the molecular level, which may refl ect on the end-stage consequences of 
priapism. SCD-associated priapism involves dysfunction of the nitric oxide (NO) 
signaling pathway, increased oxidative stress, adenosine overproduction, alterations 
in the Rho A/Rho-kinase system, androgens and opiorphins.  

11.2     Physiology of Normal Erectile Function 

 Penile erection is a hemodynamic biological phenomenon involving increased 
penile arterial infl ow and reduced venous outfl ow from the penis. It is regulated by 
the smooth muscle tone of the CC and associated arterioles during sexual stimula-
tion, along with afferences of neuronal, endocrine, and paracrine origin, determin-
ing the functional status of the penis (Giuliano  2011 ). Penile fl accidity (detumescent 
state) is mainly maintained by tonic release of norepinephrine through the 

11 Priapism in Sickle Cell Disease: New Aspects of Pathophysiology



272

sympathetic innervations of vascular and cavernosal smooth muscle cells. During 
penile erection (tumescent state), vascular smooth muscle relaxation decreases vas-
cular resistance, thereby increasing blood fl ow through cavernous and helicine 
arteries and fi lling sinusoids, which are expanded due to the relaxation of smooth 
muscle cells in the CC (Andersson  2001b ). 

 Physiological relaxation of penile smooth muscle is mainly, although not exclu-
sively, mediated by the NO/cyclic guanosine monophosphate (cGMP) signaling 
pathway. NO is a gaseous molecule that is synthesized from its precursor amino 
acid,  L -arginine, under the catalytic function of the NO synthases (NOSs). NOSs are 
subdivided into three isoforms, endothelial NOS (eNOS or NOS3), neuronal NOS 
(nNOS or NOS1), and inducible NOS (iNOS or NOS2) (Förstermann and Sessa 
 2012 ). In the penile smooth muscle, NO is released from both penile nitrergic nerves 
(nNOS enzyme) upon sexual stimulation, and the sinusoidal endothelium (eNOS 
enzyme) (Burnett  2004 ). Increased blood fl ow activates endothelial PI3-kinase to 
stimulate Akt, phosphorylate and activate eNOS, and provide persistent NO produc-
tion for sustained penile erection (Hurt et al.  2002 ; Burnett  2004 ). Moreover, neuro-
nal stimulation increases cAMP to activate PKA, which phosphorylates and 
stimulates nNOS catalytic activity, in turn increasing NO production (Hurt et al. 
 2012 ). NO release stimulates the soluble guanylyl cyclase (sGC) enzyme in the 
cavernosal smooth muscle, triggering increased synthesis of cGMP, which activates 
cGMP-specifi c protein kinase I (cGK I), providing the main signal for smooth mus-
cle relaxation (Lucas et al.  2000 ). cGMP levels in the CC are regulated by the rate 
of cGMP synthesis by sGC and the rate of cGMP hydrolysis by phosphodiesterase 
type 5 (PDE5) (Gopal et al.  2001 ). In addition, PDE5 regulation (i.e., inhibition) 
then serves to control (i.e., promote) corporal smooth muscle relaxation (Corbin 
 2004 ). 

 Similarly to NO, adenosine is a potent vasodilator produced by adenine nucleo-
tide degradation. Adenosine is predominantly generated by adenosine monophos-
phate (AMP) dephosphorylation, catalyzed by intracellular 5′-nucleotidase. 
Hydrolysis of s-adenosyl-homocysteine also contributes to the intracellular pool of 
adenosine (Phatarpekar et al.  2010 ). Extracellular adenosine may be generated by 
both adenine nucleotide degradation and dephosphorylation by ectonucleotidases 
(Colgan et al.  2006 ). Two enzymes then catabolize adenosine; adenosine kinase 
(ADK), which phosphorylates adenosine to AMP and is an important regulator of 
intracellular adenosine levels; and adenosine deaminase (ADA), which catalyzes 
the irreversible conversion of adenosine to inosine (Phatarpekar et al.  2010 ). 
Adenosine-induced vasodilation is mediated by increasing intracellular cyclic ade-
nosine monophosphate (cAMP) levels in vascular smooth muscle cells via A2 
receptor signaling (Olsson and Pearson  1990 ; Tager et al.  2008 ). cAMP activates 
protein kinase A (PKA), resulting in decreased calcium calmodulin-dependent 
MLC phosphorylation and enhanced smooth muscle relaxation (Lin et al.  2005 ). Its 
role in penile erection has been investigated in studies showing that intracavernous 
injection of adenosine results in tumescence and penile erection (Mi et al.  2008 ; 
Tostes et al.  2007 ; Prieto  2008 ). In addition, adenosine induces NO synthesis in 
endothelial cells through A2 receptor signaling, and adenosine-mediated CC 
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 relaxation is partially dependent on endothelium-derived NO (Faria et al.  2006 ; 
Mi et al.  2008 ; Wen et al.  2010 ; Sobrevia and Mann  1997 ). 

 Although the penile vascular endothelium and smooth muscle cells are sources 
of vasodilators such as NO and adenosine, vasoconstriction pathways are also 
important for penile hemodynamics. Penile vessels and cavernosal tissue receive 
rich adrenergic innervation that maintains the penis in the fl accid state, mainly via 
a tonic activity of these nerves. Hence, in the absence of an active NO/cGMP path-
way, the cavernosal smooth muscle remains in the contracted state, possibly medi-
ated by the effects of norepinephrine released from sympathetic nerves (Cellek 
 2000 ; Andersson  2001a ). In addition to the well-established noradrenergic contrac-
tion mechanisms in the penis, the Rho A/Rho-kinase (ROCK) signal transduction 
pathway also controls erectile function by regulating smooth muscle tone through 
the modulation of the sensitivity of contractile proteins to Ca 2+  (Linder et al.  2005 ; 
Musicki et al.  2009 ; Priviero et al.  2010 ). RhoA regulates smooth muscle contrac-
tion by cycling between a GDP-bound inactive form (coupled to a guanine disso-
ciation inhibitor, RhoGDI) and a GTP-bound active form (Wettschureck and 
Offermanns  2002 ; Riento and Ridley  2003 ). Upstream activation of heterotrimeric 
G proteins leads to the exchange of GDP for GTP, an event carried out by the gua-
nine exchange factors (GEFs) p115RhoGEF, PDZRhoGEF, and LARG (Leukemia- 
associated RhoGEF). These factors are able to transduce signals from G protein 
coupled receptors to RhoA (Riento and Ridley  2003 ). ROCK is activated by Rho A, 
which phosphorylates the regulatory subunit (MYPT1) of myosin light chain 
(MLC) phosphatase, causing inhibition of its phosphatase activity and enhancing 
the contractile response at a constant intracellular calcium concentration (Somlyo 
and Somlyo  2003 ; Webb  2003 ). The RhoA/ROCK Ca2+ sensitization pathway has 
been implicated in the regulation of penile smooth muscle contraction and tone 
both in animal models and in humans (Mills et al.  2003 ; Rees et al.  2002 ; Wang 
et al.  2002 ). ROCK is also involved in the modulation of calcium entry, induced by 
α1-adrenoceptor stimulation of the penile arteries (Villalba et al.  2007 ,  2008 ). 
Application of a vasoconstrictor agent combination of endothelin-1 and phenyleph-
rine augments constrictor responses in CC tissue by a mechanism involving Rho A/
ROCK (Filippi et al.  2003 ). Thus, several studies have shown that the RhoA/ROCK 
pathway is important for maintaining penile fl accidity (Mills et al.  2003 ; Bivalacqua 
et al.  2004 ; Linder et al.  2005 ; Priviero et al.  2010 ). The NO/cGMP system regu-
lates the transcription of the gene encoding RhoA in corporal smooth muscle. In 
turn, cGK I inhibits the contractile system by phosphorylating RhoA and possibly 
other effectors of RhoA/ROCK signaling (Burnett and Musicki  2005 ; Priviero et al. 
 2010 ). 

 Penile erection regulation is also mediated by both pro-erectile and anti-erec-
tile factors that are released locally or centrally by the brain and the spinal cord. 
Multiple regulatory systems/agents, such as purines (e.g., adenosine), peptides 
(e.g., opiorphins), and other gaseous molecules (e.g., carbon monoxide, hydrogen 
sulfi de) are described as pro-erectile local factors (Srilatha et al.  2007 ; Liaw et al. 
 2011 ). Anti- erectile factors include norepinephrine, neuropeptide Y, and endothe-
lin-1 (Bivalacqua et al.  2012 ). Androgens also serve a major modulatory role in 
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the  biology of penile erection and operate at both central and peripheral levels 
(Traish et al.  2011 ).  

11.3     Nitric Oxide/cGMP and SCD Priapism 

 The NO/cGMP system is well-known to play a crucial role in the penile erection 
process and in the homeostasis of the penis; thus, it is paradoxical that chronically- 
impaired NO bioavailability accounts for priapism in SCD (Kato et al.  2007 ). 
Although the pathogenesis of SCD-associated priapism has not been completely 
elucidated, it has been suggested that hemolysis and oxidative stress in SCD con-
tribute to a reduction in NO bioavailability in the erectile tissue, skewing the normal 
balance of smooth muscle tone towards vasoconstriction (Anele et al.  2015 ). 

 Due to the diffi culty in exploring these mechanisms in patients, the use of animal 
models of priapism has become of extreme importance to decipher this devastating 
clinical challenge. In eNOS-defi cient mice, electrical fi eld stimulation promotes an 
increase in CC relaxation responses (mediated by a reduction in NO bioavailabil-
ity). This suggests that the increased sensitivity of the cavernosal smooth muscle to 
nNOS-derived NO may be an important compensatory mechanism in eNOS- 
defi cient mice, particularly since the cavernous nerves likely initiate the erectile 
process (Hurt et al.  2002 ). In addition, a study found similar results in CC for eNOS- 
or nNOS-defi cient mice (both characterized by a reduction in NO bioavailability), 
where sodium nitroprusside (a NO donor) induced an enhanced relaxing response. 
These authors suggested a compensatory mechanism for eNOS-derived NO release 
in nNOS-defi cient mice and nNOS-derived NO release in eNOS-defi cient mice, 
inducing retained erectile function in these animals (Nangle et al.  2004 ). A subse-
quent study showed that the priapic phenotype exhibited by NOS-defi cient mice and 
SCD transgenic mice is associated with downregulation of PDE5 expression and 
activity (Champion et al.  2005 ). SCD transgenic mice also present spontaneous 
priapism, an amplifi ed CC relaxation response (mediated by the NO/cGMP signal-
ing pathway), and increased intracavernosal pressure in vivo (Claudino et al.  2009 ; 
Bivalacqua et al.  2009 ), implying that the NO/cGMP pathway may indeed consti-
tute a potential therapeutic target to treat priapism in SCD individuals.  

11.4     Oxidative Stress and SCD Priapism 

 Oxidative stress is a major component of the pathophysiology of ischemic priapism 
as it affects the NO/cGMP system in the penis and reduces NO bioavailability. NO 
bioavailability is reduced by functional uncoupling of eNOS, characterized by the 
diversion of electron transfer within the enzyme from  L -arginine oxidation. 
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This molecular event reduces molecular oxygen to superoxide, instead of produc-
ing NO (Kietadisorn et al.  2012 ). Thus, the uncoupled eNOS fails to produce NO 
and increases reactive oxygen species (ROS) formation, as can be observed in SCD- 
associated vasculopathy (Hsu et al.  2007 ; Kanika et al.  2010 ; Musicki et al.  2012 ). 

 The enzymes xanthine oxidase, NADPH oxidase, and uncoupled eNOS are all 
major sources of ROS (Wood et al.  2005 ,  2006 ). In the penises of SCD mice, oxida-
tive stress increases due to eNOS uncoupling and upregulation of NADPH oxidase 
subunits p67 phox , p47 phox , and gp91 phox  (Musicki et al.  2012 ; Lagoda et al.  2013 ; 
Bivalacqua et al.  2013 ). Uncoupled eNOS and low NO bioavailability in both mice 
(Champion et al.  2005 ; Musicki et al.  2012 ,  2014 ; Bivalacqua et al.  2013 ) and 
humans with SCD (Lagoda et al.  2013 ) are associated with PDE5 downregulation. 
Resulting cGMP accumulation, upon neurostimulation, promotes an intense smooth 
muscle relaxation (Claudino et al.  2009 ) and priapism. More recently, long-term 
treatment with sildenafi l was able to reverse both the nitrosative stress effect, oxida-
tive stress generated by NADPH oxidase, and eNOS uncoupling in the penis of SCD 
mice, restoring endothelial NO synthesis, supporting the hypothesis that an “NO 
imbalance” in the penis is the molecular pathogenic basis for SCD-associated pria-
pism (Bivalacqua et al.  2013 ; Musicki et al.  2014 ).  

11.5     Rho A/ROCK and SCD Priapism 

 The Rho A/ROCK system exerts vasoconstriction of the penile vasculature via 
smooth muscle contraction effects due to the Ca 2+ -independent promotion of 
myosin light chain (MLC) kinase or the attenuation of MLC phosphatase activity, 
and consequent reduction in endothelial-derived NO production (Linder et al. 
 2005 ; Musicki et al.  2009 ; Priviero et al.  2010 ). Two isoforms of ROCK are 
known, ROCK1 (ROK b) and ROCK2 (Rho-kinase or ROK a), and both are 
important for maintaining the penis in a fl accid state (Mills et al.  2003 ; Gratzke 
et al.  2010 ). Rho A activation, ROCK protein expression, and total ROCK activ-
ity, decline in the penile tissue of SCD transgenic mice, indicating that the molec-
ular mechanism of priapism in SCD is associated with decreased vasoconstrictor 
activity in the penis (Bivalacqua et al.  2010 ). eNOS activity and endothelial NO 
levels directly infl uence ROCK activity to maintain the homeostasis of the penile 
vasculature, according to a feedback control mechanism. The eNOS-deleted 
mouse presents phenotypic in vivo evidence of priapism, similar to that seen in 
transgenic SCD mice. In this model, despite normal ROCK2 expression, its activ-
ity is reduced and can be rescued with eNOS gene transfer (Bivalacqua et al. 
 2007 ). ROCK2 protein expression is also reduced in the penis of the transgenic 
SCD mouse, along with reductions in RhoA GTPase and ROCK activities 
(Bivalacqua et al.  2010 ), which may contribute similarly to reduced NO bioavail-
ability and the pathogenesis of priapism in SCD.  
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11.6     Adenosine and SCD Priapism 

 Adenosine is a potent vasodilator and is involved in normal and abnormal penile 
erection (Lue  2000 ; Andersson  2001a ). The contribution of adenosine to the patho-
physiology of priapism was fi rst suggested after the observation that adenosine 
deaminase (ADA)-defi cient mice display priapism. ADA is an enzyme of the purine 
metabolism that catalyses irreversible deamination of adenosine to inosine and its 
defi ciency results in excess adenosine in the penile tissue (Mi et al.  2008 ). SCD 
transgenic mice also have higher levels of adenosine in whole blood and penile tis-
sues (Mi et al.  2008 ; Zhang et al.  2011 ). Adenosine accumulation and PDE5 down-
regulation were observed in cavernous smooth muscle cells under ischemic and 
hypoxic conditions (Lin et al.  2003 ). Adenosine mediated hypoxia-inducible factor 
1 (HIF-1) induction and reduced PDE5 gene transcription via A2B receptor activa-
tion increases cGMP, leading to priapism in SCD mice (Ning et al.  2014 ). Moreover, 
both SCD transgenic mice and ADA-defi cient mice present penile fi brosis, a late 
complication of priapism (Wen et al.  2010 ). 

 PEG-ADA enzyme therapy regulates adenosine levels, reduces increased caver-
nosal relaxation and prevents priapic events in both ADA-defi cient and SCD trans-
genic mice. It also attenuates penile vascular damage and fi brosis and its effect is 
associated with reduced adenosine levels (Wen et al.  2010 ). Importantly, PEG-ADA 
therapy has long been used in humans as a life-saving therapy to treat ADA-defi cient 
individuals (Hershfi eld  1995 ). Therefore, excess of adenosine contributes to the 
pathophysiology of priapism and this pathway is a potential therapeutic target for 
the treatment SCD priapism.  

11.7     Opiorphins and SCD Priapism 

 Opiorphins are a class of peptides expressed in the penis that infl uence cavernosal 
tissue function (Davies  2009 ). This pentapeptide family has been described as a 
group of potent endogenous neutral endopeptidase (NEP) inhibitors, which act in 
the metabolism of multiple signaling peptides. Inhibition of NEP in the corporal 
smooth muscle leads to increased relaxation in response to peptide agonists (Wisner 
et al.  2006 ). In an experimental priapism model, opiorphins affect peptide signaling, 
mediated through the G protein-coupled receptor (GPCR) (Tong et al.  2008 ), whose 
activity affects intracellular levels of cAMP and cGMP, both involved in penile 
erection. Opiorphins also activate genes of mediators of the ornithine decarboxylase 
(ODC) pathway and the NOS/cGMP system, and can regulate HIF-1a and A2Br 
expression (Kanika et al.  2009 ). The administration of the ODC inhibitor, 1,3 diami-
nopropane, prevents the opiorphin-induced priapic state. Rats treated with plasmids 
encoding opiorphins display reduced cavernosal tissue PDE5 and eNOS expres-
sions (Morrison and Burnett  2012 ). Additionally, transgenic SCD mice present up- 
regulation of mice opiorphin homologue genes in corporal tissue prior to any 
detectable indication of priapism (Kanika et al.  2009 ). Opiorphin up-regulation in 
response to SCD-associated hypoxia activates relaxant pathways in the smooth 
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muscle and may increase blood fl ow, resulting in priapism. Interestingly, opiorphins 
can be measured in the bloodstream and saliva of patients and determining levels of 
this peptide in blood from SCD patients could be useful in the identifi cation of 
patients at risk for priapism crisis (Fu et al.  2014 ).  

11.8     Androgens and SCD Priapism 

 Androgens are involved in erectile physiology through the release of stimulatory 
neurotransmitters, such as dopamine, oxytocin, and nitric oxide (NO) in humans 
and animals (Traish and Kim  2005 ). These hormones control erectile function by 
affecting the release of pro-erectile and anti-erectile mediators (Isidori et al.  2014 ). 
The NO/cGMP system is controlled at different levels by androgens; NOS isoform 
expression in the CC is regulated by androgens in various animal species (Reilly 
et al.  1997 ; Morelli et al.  2004 ; Traish et al.  2007 ). In animal models of androgen 
defi ciency, reduced PDE5 expression was restored by testosterone supplementation 
(Traish et al.  1999 ). 

 SCD patients present low levels of androgens (testosterone and dihydrotestoster-
one) (Osegbe and Akinyanju  1987 ; Parshad et al.  1994 ). Evidence suggests an asso-
ciation of priapism risk and testosterone levels. Clinical reports relate the 
development of priapism in two adolescents with SCD, about 1 week after receiving 
an intramuscular injection of testosterone enanthate (Slayton et al.  1995 ). However, 
testosterone replacement has been shown to improve sexual function without induc-
ing priapism in hypogonadal men with SCD (Morrison et al.  2013 ). More recently, 
a study found no association between low testosterone levels and priapism risk in 
SCD patients, since only 25 % of SCD patients with a history of priapism had tes-
tosterone defi ciency (Morrison et al.  2015 ). 

 Transgenic SCD mice have low systemic testosterone levels, and testosterone 
administration partially corrected the priapism phenotype (Morrison and Burnett 
 2012 ), suggesting that low testosterone levels could contribute to the development 
of priapism by affecting the NO/cGMP signaling pathway. Moreover, testosterone 
can also prevent priapism by regulating factors involved in the control of opiorphins 
(Chua et al.  2009 ). Furthermore, treatment with ketoconazole and prednisone pre-
vented recurrent ischemic priapism by reducing testosterone levels, possibly through 
decreased opiorphin expression (Abern and Levine  2009 ). Further studies to clarify 
whether testosterone defi ciency induces episodes of priapism and if testosterone 
replacement therapy may be indicated in SCD are needed.  

11.9     Conclusions 

 Preventative and curative strategies for priapism must ideally address the patho-
physiologic basis of this disorder. This may only be possible with a clear under-
standing of the pathogenesis of priapism in order to develop new therapeutic 
modalities targeting disease-specifi c molecular mechanisms. The NO-cGMP 
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signaling pathway has been particularly explored as a means to target priapism 
treatment. While there are reports showing a potential role of hydroxyurea treat-
ment in preventing recurrent priapism in SCD patients and in restoring erectile 
function loss subsequent to a very prolonged episode (Anele et al.  2015 ), most 
patients do not respond to this treatment modality. PDE5 inhibitors such as silde-
nafi l and tadalafi l have emerged as promising options, but results so far have not 
yet been convincing. Therefore, novel options are still needed, and there is poten-
tial for drugs interfering with other pathways involving adenosine, opiorphins, 
androgens and the RhoA/ROCK system (Fig.  11.1 ). Finally, it is also possible that 
priapism may be treatable with other therapeutic strategies, not specifi cally 
designed for priapism, which are currently under investigation, such as adhesion 

   Fig. 11.1     Pathophysiological mechanisms involved in sickle cell disease (SCD)-associated pria-
pism. The interaction of neuronal fi bers, endothelial cells, and cavernosal smooth muscle cells in 
the penis is disturbed by SCD. Hemolysis causes uncoupling of nitric oxide synthase (eNOS), 
reducing endothelial NO production. Cholinergic stimulation contributes to the production of 
prostaglandin E2 (PGE2) by cyclo-oxygenase (COX). Hemolysis also releases ATP, which is con-
verted to adenosine, a potent vasodilator. It activates its receptor A2B in smooth muscle cells 
linked to the soluble adenylate cyclase/cAMP/PKA pathway, resulting in decreased intracellular 
calcium and muscle relaxation. Vaso-occlusion and ischemia in corpora cavernosa stimulates the 
expression of adenosine A2B receptor via opiorphins, GPCR, and HIF1a. Free hemoglobin in SCD 
binds NO, and chronic low NO bioavailability causes PDE5 down-regulation, reducing cGMP 
hydrolysis and activating PKG, also lowering intracellular calcium. SCD affects the Rho A/ROCK 
system, interfering with norepinephrine-estimulated vasoconstrictor activity in penile tissue, 
favoring uncontrolled penile erection. These intracellular mechanisms may act alone or together to 
cause priapism associated with SCD       
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molecule adhesion inhibitors (rivipansel, formerly GMI-1070 and SelG21, an 
anti-P-selectin) and direct modulators of hemoglobin oxygen affi nity, such as 
5-hydroxymethylfurfural.
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    Chapter 12   
 Clinical Manifestations and Treatment 
of Adult Sickle Cell Disease                     

        Fernando     Ferreira     Costa         and     Kleber     Yotsumoto     Fertrin       

    Abstract     Despite being a disease that stems primarily from abnormalities in the 
erythrocytes, clinical manifestations and complications of sickle cell disease are 
known to affect virtually all organs and systems in the human body. Chronic hemo-
lytic anemia and a systemic infl ammatory state are the basic pathophysiological 
mechanisms that underlie the occurrence of both acute vaso-occlusive events (pain-
ful episodes, acute chest syndrome, priapism, stroke, etc.) and long-term end-organ 
damage (heart failure, chronic kidney disease, retinopathy, pulmonary hyperten-
sion, leg ulcers, osteoporosis, etc.). Adequate treatment for sickle cell disease in 
children with vaccination and prophylactic penicillin has allowed most of these 
patients to reach adulthood. Nevertheless, morbidity in the adult population is high, 
with many patients presenting with two or more vital organ complications by the 
age of 40. There is still room for improvement in the prevention, early diagnosis, 
and treatment of complications more frequently encountered by adult hematolo-
gists, and need for consultation with other subspecialties becomes a rule when car-
ing for adult sickle cell patients. We review the clinical presentation, diagnosis, and 
management of the most relevant aspects of sickle cell disease in adults and sum-
marize current treatment approaches, from supportive care with blood transfusions 
and hydroxyurea, to curative care with hematopoietic stem cell transplantation.  
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12.1       General Features and Major Manifestations of Adult 
Sickle Cell Disease 

 While the transition from childhood to adulthood in patients with sickle cell disease 
(SCD) is sometimes blurred by challenges in this process and can affect the achieve-
ment of adequate healthcare, some manifestations and complications of SCD remain 
unchanged, while others knowingly have a later onset, and are usually managed by 
adult hematologists and other specialists. Scheduled outpatient visits every 4–6 
months may be the adequate follow-up for patients not presenting any complica-
tions, while the need for specifi c therapy will signifi cantly shorten intervals between 
visits, e.g. patients starting hydroxyurea, or receiving chronic blood transfusions, 
iron chelation, etc. 

 Clinical features that characterize sickle cell disease at any age include pallor 
and jaundice secondary to chronic hemolytic anemia. Patients with SCD are usually 
of slender build, with normal to low body mass index. This may be the result of 
increased energetic expenditure due to bone marrow activity, in association with 
hypoxia and a chronic infl ammatory state. Hemolysis results in a normocytic nor-
mochromic anemia in which levels of hemoglobin may vary between 6 and 10 g/dL, 
infl uencing the degree of pallor. Jaundice intensity varies widely across patients due 
to different levels of predominantly unconjugated hyperbilirubinemia. A typical 
complete blood count shows hyperproliferative anemia with reticulocyte counts 
ranging around 5–20%. Examination of peripheral blood smears shows red blood 
cells with evident polychromasia, a variable number of sickled or leaf-like cells, and 
occasional circulating erythroblasts can be observed. Hyposplenism (see Fig.  12.1 ) 
is usually present due to the splenic dysfunction that usually commences during 
early childhood (see Chap.   9    ), and explains the presence of erythrocytes containing 
Howell–Jolly bodies. Leukocytosis with neutrophilia and mild monocytosis is also 
a frequent feature, particularly in homozygous sickle cell anemia patients. 

  Fig. 12.1    Auto-
splenectomy. 
Computerized tomography 
coronal section showing 
atrophic, calcifi ed spleen in 
an adult male with sickle 
cell anemia       
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Thrombocytosis can be found and is probably caused both by hyposplenism and 
chronic infl ammation.

   There are distinct hematological features in other forms of SCD: HbSβ thalas-
semia presents with hypochromic microcytic anemia, which may range from mild 
to severe. While HbSC disease causes normochromic normocytic anemia, some 
patients may display mild microcytosis due to frequent co-inheritance of alpha thal-
assemia in some populations, and occasionally these patients are not even anemic, 
with only compensated hemolysis, which makes non-hematologists less likely to 
consider an inherited hemoglobin disorder as a diagnostic possibility in adults. Mild 
thrombocytopenia may occur in these milder phenotypes due to preserved splenic 
function resulting in hypersplenism; leukocytosis is a less frequent feature in com-
plete blood counts. 

 Ensuing clinical complications of adult sickle cell disease vary from individual 
to individual and are extremely diverse. All complications stem, ultimately, from 
processes of vascular occlusion in organs or as a result of the hemolytic anemia that 
accompanies the disease. The variation in manifestations observed in a patients will 
depend on the type of sickle cell disease (HbSS, HbSβ 0  thalassemia, HbSβ +  thalas-
semia, HbSC, etc.), on the many genetic modifi ers of the disease (as covered in 
Chap.   15    ), in addition to some environmental factors. Complications of sickle cell 
disease can be divided into acute and chronic, as listed in Table  12.1 .

   While hematopoietic stem cell transplantation can be curative for SCD, most 
therapeutic options for adult patients are still palliative. Figure  12.2  represents sche-
matically the basic pathophysiology of SCD and where in this process current treat-
ment options intervene. Since the limited availability of matched sibling stem cell 
donors precludes most adult patients from being eligible for stem cell transplanta-
tion, treatment strategies for adult SCD aim at improving acute events and prevent-
ing chronic complications of the disease. Typical supportive care includes folic acid 
supplementation, pain management, fetal-hemoglobin induction with hydroxyurea, 
red blood cell transfusion, iron chelation, and specifi c screening and treatment of 
complications.

12.2        Folic Acid Supplementation 

 One of the cornerstones in the management of chronic hemolysis is folic acid sup-
plementation. Red blood cells have a shortened lifespan in SCD and other chronic 
hemolytic anemias (Gillette et al.  1971 ), therefore it is generally accepted by physi-
cians that these patients should receive prescription folic acid supplements to avoid 
megaloblastic anemia. Nevertheless, there is limited scientifi c evidence of either the 
benefi ts or potential harm of this approach. On one hand, the only double-blind 
controlled trial looking at folic acid supplementation in children failed to show 
hematologic improvement in the supplemented group, although an excess of cases 
of dactylitis was noticed in the control group (Rabb et al.  1983 ). Low serum zinc 
levels are known to occur in SCD patients and folate supplementation has been 
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demonstrated to favor zinc defi ciency (Simmer et al.  1987 ), while the chronic use of 
oral folate can mask cobalamin defi ciency, and may allow SCD patients to develop 
neurological complications (Dhar et al.  2003 ). On the other hand, plasma homocys-
teine levels, known to correlate with endothelial dysfunction, are increased in chil-
dren with SCD and decrease after folate supplementation, supporting a secondary 
benefi cial role for folic acid supplements (Schnog et al.  2000 ). Epigenetic effects of 
folate on ovulation have also been considered as a possible explanation for an asso-
ciation between folate supplementation and increased incidence of twin pregnan-
cies in SCD (Ballas et al.  2006 ). Besides the controversy over the indication of folic 
acid supplements, even less is known about the ideal dosage. One study studied 
homocysteine levels before and during progressive folic acid supplementation and 
proposed that 0.7 mg of daily folic acid may be an ideal dosage for children with 
SCD. Different formulations of folic acid supplement make the standard treatment 
schedule vary from 1 to 5 mg daily, depending on the country, and data from adult 
populations are still lacking.  

Increase HbF production
Hydroxyurea 

HbA HbS

β6 Glu Val

NO

metHbRNS
platelet

granulocyte

endothelial cell

free Hb

Reduce adhesion
and improve

anemia
Transfusion

Hydroxyurea

HbF

Correct mutation
Stem cell transplantation

PAIN
INFLAMMATION

Manage pain
Opiates, NSAIDs

Sickled RBC

Hemolysis

Vaso-occlusion

Acidosis
Hypoxia

  Fig. 12.2    Basic pathophysiology of sickle cell disease and currently available treatments       
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12.3     Vaso-Occlusive Events and Pain Management 

 Of the serious acute presentations of the disease, the most frequent constitutes the 
acute pain crisis (or vaso-occlusive event, VOE), experienced as pain usually local-
ized to bones and joints. The frequency of pain episodes requiring a clinic visit or 
hospitalization varies enormously from patient to patient, but was found by the 
Cooperative Study of Sickle Cell Disease (CSSCD) to average 1.0 pain episodes per 
patient year in male HbSS adults aged 20–39 years, with over 10 % of patients aged 
20–29 years experiencing more than 3.0 pain episodes per patient year (Platt et al. 
 1991 ). The pain rate in patients over the age of 20 years was found to be indicative 
of clinical severity and to correlate with mortality. 

 Pain is a hallmark of SCD, so adequate pain management is of utmost impor-
tance in this population. While pain itself cannot be objectively measured, its 
presence should be evaluated by the clinician and care of pain will vary according 
to whether it occurs as an episodic event or as chronic pain. On average, painful 
episodes last for 4–5 days, but can sometimes last for weeks. A VOE is often the 
fi rst diagnosis made for a SCD patient at the emergency department (ED) as 
almost any type of pain ensues. VOE should be only diagnosed once alternative 
diagnostic possibilities have been excluded, since there is no single exam that can 
confi rm this diagnosis. Clinicians correctly seldom consider the diagnosis of VOE 
when pain is localized to the head. Pain localized elsewhere should also prompt 
consideration of other diseases, particularly during episodes of abdominal or 
chest pain, in which differential diagnosis for acute myocardial infarction, pulmo-
nary embolism, acute cholecystitis, acute pancreatitis, or aortic aneurysm rupture 
can only be made with careful clinical evaluation, and sometimes demands appro-
priate laboratory and imaging exams. Figure  12.3  summarizes an example 
approach (described below) for an adult patient with SCD, arriving at the ED, 
whose complaint is, or includes, pain.

    Example approach for an adult SCD patient, arriving at the ED, in pain  

   a.     Triage : Nurses in EDs that treat SCD patients usually use triage scales. One of 
the most commonly used is the Emergency Severity Index (ESI), a simple fi ve- 
level triage algorithm that helps to quickly classify patients according to acuity 
level. In the ESI algorithm, level 1 patients are the most severe and require 
immediate attention, while level 5 patients have the lowest priority and usually 
correspond to stable, mild cases. For example, ESI level for a typical SCD patient 
in pain will usually yield a minimum level 3 classifi cation, since any such patient 
in this situation, will require more than one of the hospital “resources” (in this 
case, labs, imaging, IV fl uids, and specialty consultation). Careful consideration 
should be taken as to whether the patient should be classifi ed as more severe, 
since a pain score of 7 or higher on a scale from 0 to 10 due to intense ischemic 
pain is a possible level 2, and occasional patients will present with other level 
2 criteria, such as low oxygen saturation, tachycardia, tachypnea, disorientation, 
or lethargy. Therefore, any SCD patient with pain should be considered a potential 
severe patient.   
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   b.     Severity assessment : After the initial assessment, VOE should be classifi ed 
according to severity. Most clinicians are aware that pain scales, such as the 
Numeric Rating Scale (NRS-11, in which pain intensity is measured on a scale 
from 0 to 10) or the horizontal 100 mm Visual Analog Scale (Bijur et al.  2003 ) are 
useful and have been shown to be reasonably equivalent in pediatric SCD patients 

SCD patient in acute pain
not responding to non-opioids

Chest pain or
respiratory symptoms

PRESENT:
Possible

Acute Chest
Syndrome

Chest pain or
respiratory symptoms

absent

1. Monitor pulse, BP, SpO2, temperature
2. Order complete blood count with

reticulocytes
3. Consider chest radiograph, urine test
4. Assess pain score (NRS-11)
5. Assess prior opioid today

Morphine (0.1mg/kg) IV
Consider:

Codeine PO
Tramadol PO or IV 

No opioid
AND

NRS<7

Prior opioid
OR 

NRS≥7

No 
improvement

after 30´

Rule out 
alternative
diagnoses

1. Morphine (0.05mg/kg) IV
2. Cardiac monitor
3. Pulse oximetry and respiratory rate
4. Supplemental O2 if SpO2 <92% 
5. Pain and sedation scores

No 
improvement

after 30´

  Fig. 12.3    Summarized example approach for an adult SCD patient, arriving at the emergency 
department, in pain       
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(Myrvik et al.  2015 ), although data in the adult population are still lacking. 
Unfortunately, these scales are often misused as the only tool to decide whether to 
prescribe analgesic medication and which drug to choose. In the ED, NRS-11 is 
most benefi cial if used to monitor pain improvement, not to decide treatment 
modality, since discrepancies between pain reported and visible distress fre-
quently raise doubts about how urgently medication is needed (Patrick et al. 
 2015 ). A VOE should be classifi ed as mild if pain subsides after common, over-
the-counter (OTC) oral analgesic medications, such as acetaminophen 
(paracetamol), dipyrone (metamizole), or ibuprofen. Patients with mild VOEs may 
be treated as outpatients, and having mild VOEs come to the ED should be a sign 
of a possible loss of follow-up or that the primary caregiver failed to give proper 
orientation on how to handle mild pain before going to the ED. If the patient pres-
ents with pain that fails to respond to OTC medication, the event should be consid-
ered as at least moderate, and treated with lower potency opioids, such as tramadol 
or codeine. Patients may have used tramadol or codeine at home, or may be in 
chronic use of methadone and other potent opioids. Breakthrough pain or refracto-
riness to opioids in these cases already characterizes severe VOE.   

   c.     Acute pain treatment : Parenteral opioids, such as IV morphine or hydromor-
phone, are the standard of care for situations of severe VOE in the ED. The usual 
initial dose of morphine is 0.1 mg/kg (maximum recommended single dose 10 mg, 
or one vial), and may range from 0.05 to 0.2 mg/kg depending on previous use 
of opioids, tolerance and comorbidities, such as chronic hepatic disease, 
advanced age, or pulmonary disease. Transdermal, transmucosal, intranasal or 
oral opioids have also been used in several reports and can be employed depend-
ing on previous experience of the staff and drug availability in a particular center. 
Patient controlled analgesia (PCA) is also encouraged if available, and has 
proven to be as successful in achieving pain control as continuous IV infusion 
with lower morphine doses. Undertreatment of severe pain with mild opiates or 
non-opiates only adds to the patient’s degree of distress and actually contributes 
to increased unreliability of subjective assessment of pain (persistent “10 out of 
10” pain score) and the development of apparent drug-seeking behavior. 
Clinicians, nurses, and all healthcare professionals involved in SCD patient care 
should be aware that opiate addiction is relatively uncommon, and at most as 
frequent in SCD patients as in oncologic patients, so denying opiates because of 
fear about addiction should be avoided, and concerns about drug addiction 
should be addressed in psychiatric consultation. Rescue doses of 25–50 % of the 
initial dose should be considered every 15–30 min until pain improves (typically 
a pain score below 7).   

   d.     Monitoring : Reassessment of vital signs including pulse oximetry, respiratory 
rate, pain score, and level of consciousness (sedation score) every 15–30 min is 
mandatory for patients receiving IV opioids. Continuous cardiac and pulse 
oximetry monitoring is encouraged, particularly if several doses are required to 
improve pain.   

   e.     Supportive care : Intravenous hydration should aim at normalizing the hydration 
status of clinically dehydrated patients. This means that so-called “hyperhydration” 
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should be avoided. About 3 L of fl uids (PO and IV combined) should suffi ce for 
most cases, and clinicians should also consider insensible water loss due to fever, 
tachypnea, and elevated room temperature. There is no scientifi c evidence to 
suggest which type of fl uid is more benefi cial (Okomo and Meremikwu  2012 ), 
so the choice amongst a wide variety of crystalloid options (saline, NaCl 0.45 %, 
Ringer’s solution, etc.) is often personal, although the idea of infusing hypotonic 
solutions is favored by many specialists as making pathophysiological sense, for 
promoting red blood cell rehydration and, probably, less sickling. Most adult 
SCD patients, particular those over 30, have either heart or kidney failure to 
some degree, so one should be cautious when prescribing bolus IV fl uids to pre-
vent iatrogenic pulmonary edema.   

   f.     Complementary evaluation : Careful history and physical examination upfront 
can easily uncover precipitating factors such as cold exposure, dehydration or an 
obvious skin infection, for example. Additional exams for VOE assessment var-
ies according to associated signs and symptoms, but typically should include a 
complete blood count with reticulocyte count, chest radiograph, and routine 
urine testing. Ordering blood or urine cultures and additional lab exams depend 
on the differential diagnoses considered.   

   g.     Admission : Patients without pain improvement after two or more doses of IV 
opioids should be admitted and receive around-the-clock IV opioids every 4 h 
with rescue doses of 25–50 %. Association with non-steroidal anti-infl ammatory 
drugs (NSAIDs), such as dipyrone, paracetamol or ibuprofen is also recom-
mended. Hydroxyurea should not be withheld unless there are clear signs of 
toxicity due to hydroxyurea, such as reticulocytopenia or thrombocytopenia 
below 80,000/m 3 , or neutrophil count below 2000/mm 3 . Refractory pain is fre-
quently an indication to consider exchange transfusion (or simple transfusion 
depending on Hb levels), and infections should be ruled out as cause for a refrac-
tory pain crisis. Patients presenting with generalized pain despite oral opioids 
before coming to the ED should be considered as particularly prone to admis-
sion, since the incidence of acute chest syndrome seems to be higher among such 
patients when compared to patients with more localized pain. Incentive spirom-
etry is encouraged to reduce risk of acute chest syndrome in all patients admitted 
for VOE.   

   h.     Opioid tapering : Once pain is controlled and no additional rescue doses are 
needed, daily morphine doses can be redistributed every 4 h, patients can be 
transitioned to oral medication, and slowly tapered.   

   i.     Discharge : Patients can be discharged when they meet the following criteria: (1) 
pain improvement (either pain rate below 7 or at least 2 points lower than upon 
arrival); (2) pain controllable with oral medication; (3) tolerance to oral medi-
cation and hydration (adequate control of nausea/vomiting associated with 
opioid use, oral analgesics available); (4) absence of signs of infection; (5) no 
need for transfusion; (6) stable vital signs; (7) scheduled follow-up at the 
Hematology Clinic. These criteria also apply to patients at the ED within 4–6 h 
of arrival.    
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12.4       Acute Chest Syndrome in Adults 

 Acute chest syndrome (ACS) is classically defi ned by an acute event with the 
presence of: (1) acute onset of pain in the thoracic region; (2) respiratory symp-
toms, such as cough, dyspnea, or tachypnea; (3) a chest radiogram with a new 
pulmonary opacity; (4) fever; and (5) hypoxemia in severe cases. ACS may be 
triggered by events such as infection, fat embolism, or lung infarction and is still 
one of the most common causes of death in adults with sickle cell disease (Howard 
et al.  2015 ; Fitzhugh et al.  2010 ). It is noteworthy that only a few patients present 
with the full blown tetrad (or pentad if severe). Failing to promptly treat a patient 
lacking an abnormal chest X-ray (which is often the case), may result in rapidly 
evolving respiratory distress, need for mechanical ventilation, and even death. 
Therefore, it is safe to say that any physician encountering a SCD patient with 
acute chest pain should consider the possibility of ACS and, in our experience, 
early and aggressive treatment in cases presenting solely with chest pain and 
hypoxemia may prevent fatal outcomes. 

 Differential diagnoses of ACS include acute pulmonary thromboembolism 
(PE) and myocardial infarction (although rarely reported). PE incidence is 
increased in SCD, although one should remember that cases of ACS in adults 
result more frequently from fat embolism from the ischemic bone marrow, rather 
than blood clots formed in deep vein thromboses elsewhere. Patients undertreated 
for simple, localized pain crises tend to develop generalized pain, which increases 
the probability of bone marrow ischemia and subsequent ACS. Moreover, the 
presence of lower than usual platelet counts, under 200,000/mm 3 , is non-specifi c, 
but may favor the diagnosis of fat embolism in homozygous sickle cell anemia 
patients, who normally have a much higher platelet count due to autosplenectomy 
and chronic infl ammation. 

 Treatment of ACS is symptomatic, and includes both analgesia and adequate 
fl uid management, as for VOEs, but also oxygen supplementation if oxygen satu-
ration drops below 92 % in room air, and careful evaluation of the need for simple 
or exchange transfusion. Severe cases on mechanical ventilation or developing 
shock may benefi t from erythrocytapheresis, if available. Large-spectrum paren-
teral antibiotics should be prescribed, aiming at the most common respiratory 
microbial agents in this population ( Streptococcus pneumoniae ,  Mycoplasma 
pneumoniae ,  Chlamydia pneumoniae , and viruses), i.e. combination of third gen-
eration cephalosporin and macrolide (e.g. ceftriaxone and azithromycin), or so-
called “respiratory” fl uoroquinolones (e.g. levofl oxacin) are frequent and adequate 
options, along with seasonal antivirals, such as oseltamivir for regions experienc-
ing infl uenza virus outbreaks (e.g. H1N1). Patients with life-threatening ACS epi-
sodes or recurring ACS should be considered for long-term hydroxyurea therapy 
after discharge.  
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12.5     Vaso-Occlusive Episode Long-Term Management: 
Hydroxyurea 

 Hydroxyurea (HU), or hydroxycarbamide, is a chemotherapeutic agent that inhibits 
ribonucleotide reductase, an enzyme required for nucleotide and protein synthesis. 
The main benefi cial effect of hydroxyurea in SCD is the induction of fetal hemoglo-
bin (HbF) production (Charache et al.  1987 ). Ideally, HbF levels should reach 20 %, 
which corresponds to over 90 % of F-cells (erythrocytes that are rich in HbF), with 
decreased HbS polymerization, less sickling and reduced cell adhesion. Despite this 
primary effect on erythropoiesis, other benefi cial effects of HU in SCD have been 
recognized. It also reduces the production of other cell types involved in vaso- 
occlusion, such as white blood cells and platelets, and is a nitric oxide donor. These 
effects are listed in Box  12.1 . 

  The Multicenter Study of Hydroxyurea (MSH) was the largest study to prospec-
tively address the clinical benefi cial effects of chronic use of HU in SCD (Charache 
et al.  1995 ). Patients diagnosed with homozygous HbSS sickle cell anemia or 
sickle-beta zero thalassemia (HbSβ 0 ) that were treated with HU presented with 
decreased number of VOEs, decreased number of hospitalizations and a trend 
towards a lower transfusion requirement. There are several indications for chronic 
HU use, and while not all of them are evidence-based, particularly in the adult popu-
lation, the absence of other therapeutic options often leads to a trial with HU in 
these patients. Common indications for initiation of HU therapy are listed in Box 
 12.2 . Patients should provide informed consent, since HU therapy is associated with 
infertility with reversible azoospermia in men (Garozzo et al.  2000 ). Teratogenesis 
is still a concern in pregnant women, even though the contraindication of HU during 
pregnancy is based on animal studies using high doses of HU, and so far scientifi c 

  Box 12.1: Benefi cial Effects of Hydroxyurea in SCA Patients 
•     Increases HbF production  
•   Decreases white blood cell count  
•   Decreases reticulocyte count  
•   Decreases hemolysis  
•   Decreases frequency of vaso-occlusive pain crisis and acute chest 

syndrome  
•   Decreases mortality  
•   Increases nitric oxide bioavailability  
•   Decreases red blood cell, white blood cell, and platelet adhesive 

properties  
•   Decreases endothelial dysfunction markers  
•   Decreases hypercoagulability    
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evidence fails to prove that HU increases the risk for human birth defects (Diav- 
Citrin et al.  1999 ). Nevertheless, we recommend women be screened for pregnancy 
with human chorionic gonadotrophin levels before treatment initiation and be 
advised to use contraceptives during the entire period of time they are on HU. In 
terms of toxicity, HU is a safe drug. A systematic review reported moderate level of 
causality with cytopenias, but there is insuffi cient evidence to associate HU with 
other cancers. Moreover, there is evidence to support HU does not increase the inci-
dence of hematologic neoplasia in SCD patients (Lanzkron et al.  2008 ). A common 
concern amongst patients starting HU is the development or worsening of chronic 
leg ulcers. Hematologists should be aware that high-grade evidence of the associa-
tion of HU with leg ulcer in other diseases does not apply to sickle cell disease 
patients, with good evidence that supports the absence of this association (Lanzkron 
et al.  2008 ). Similarly, association of HU in SCD patients has not been found with 
interstitial pneumonitis, hepatitis, corneal limbal stem cell defi ciency, pruritus, or 
skin neoplasms, despite reports in other diseases (Lanzkron et al.  2008 ). Usual HU 
dosage, taken from the original MSH study (Charache et al.  1995 ,  1996 ), is 15–35 
mg/kg/day, with monthly increments of 500 mg/day until a maximum tolerated dose 
(MTD) is reached (see Box  12.3  for recommendations for the use of hydroxyurea in 
adult sickle cell patients). MTD is defi ned as the maximum dose at which no signifi cant 

  Box 12.2: Indications for Initiation of Hydroxyurea Therapy in Adults 
with SCD 

 Strongly recommended (Yawn et al.  2014 )

    1.    Three or more hospitalizations for vaso-occlusive crisis in the past 12 
months   

   2.    Severe or recurrent acute chest syndrome   
   3.    Sickle cell-associated pain that affects daily activities and quality of life   
   4.    Symptomatic anemia that affects daily activities and quality of life (typically 

Hb < 6 g/dL)    

  Consider on case-by-case basis:

    1.    Adult onset stroke not eligible for chronic transfusion   
   2.    Anemia (Hb < 8g/dL) in association with erythropoietin for end-stage renal 

disease to improve response   
   3.    Anemia (Hb < 8g/dL) associated with structural cardiac disease   
   4.    Pulmonary hypertension confi rmed by right heart catheterization   
   5.    Tricuspid regurgitant jet velocity above 2.5 m/s on echocardiography   
   6.    Recurrent acute priapism   
   7.    HbSC disease or HbS-β + -thalassemia with complication affecting daily 

activities and quality of life     
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toxicity occurs. Reticulocytopenia or thrombocytopenia below 80,000/μL or neu-
trophil count below 2000/μL are considered thresholds to defi ne hematologic toxic-
ity in SCD patients taking HU, since these patients primarily present with 
reticulocytosis, thrombocytosis and leukocytosis. HbF levels should be monitored 
at least every trimester and HU increased until HbF reaches 20 %, preferably with 
Hb levels above 9 g/dL, or MTD is reached. Although anecdotal, the occurrence of 
acute myocardial infarction was reported in association with an increase of Hb lev-
els to over 10 g/dL (Fattori et al.  2005 ), so excessive increases in Hb levels with 
hyperviscosity should be avoided. Patients reaching MTD without HbF > 20 % 
should be considered refractory, but suspension of HU therapy should be discussed 
on a case-to-case basis, since many patients report improvement of symptoms to 
their caregivers despite suboptimal HbF levels. Refractoriness to 35 mg/kg/day 
without any hematologic toxicity is very rare, and the possibility of low compliance 
should be investigated, particularly in the absence of a high MCV (usually above 
120 fL). In the MSH study, patients were more likely to respond to HU if they were 
female, presented fewer VOEs at baseline, reticulocyte count over 300,000/μL, neu-
trophil count over 7500/μL, or a baseline fetal hemoglobin over 7.5 %. Patients 
bearing the Central African Republic haplotype were less likely to respond to HU, 
but this should not be grounds for not trying to reach MTD (Charache et al.  1996 ). 

    Box 12.3: Recommendations for the Use of Hydroxyurea in Adult Sickle 
Cell Patients  

  (modifi ed from Yawn et al., JAMA 2014;312(10):1033–48) 

  Before initiating hydroxyurea :

    1.     Explain  indication, aims, benefi ts that can be expected, and possible 
side effects of HU therapy to the patient—include possible supportive 
family members (spouse, children);   

   2.    Order appropriate  laboratory exams : CBC (including mean red blood 
cell corpuscular volume [MCV], neutrophil, platelet, and reticulocyte 
counts), renal function tests (BUN, creatinine), liver function tests 
(AST, ALT, total bilirubin and fractions), pregnancy test for women, 
baseline quantitative fetal hemoglobin (preferably HPLC);   

   3.    Prescribe  contraceptive methods  and, if the patient intends to have 
children, stress the need for a planned pregnancy.    

   Starting dosage : 15 mg/kg/day, rounded up to the nearest 500 mg; 5–10 mg/
kg/day if chronic kidney disease; pills can be taken as a single dose or multi-
ple smaller doses. 

  Monitoring : CBC, renal and liver function tests every 4 weeks until MTD 
(see below); also measure fetal hemoglobin every 2–3 months afterwards. 

(continued)
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  Box 12.3: (continued)

Maximum tolerated dose (MTD) : Highest dose at which neutrophil count is 
above 2000/μL (may reach 1250/μL in young adults), with platelet and reticu-
locyte counts above 80,000/μL. 

  Dose escalation : Increase 5 mg/kg/day every 8 weeks until MTD is reached. 

  Toxicity : If neutrophils <2000/μL (depending on age), platelet <80,000/μL or 
reticulocytes <80,000/μL, stop hydroxyurea, monitor CBC weekly until 
recovery, and restart HU at dose 5 mg/kg/day lower than previously. 

  Maximum dose : 35 mg/kg/day or MTD. 

  Minimum duration of treatment : 6 months. 

  Do NOT :

    1.    Double up doses if patient misses dose;   
   2.    Stop HU during hospitalization or acute illness;   
   3.    Stop HU due to lack of increase in MCV or fetal hemoglobin.    

  CBC, complete blood count; HU, hydroxyurea; BUN, blood urea nitrogen; 
AST, aspartate aminotransferase; ALT, alanine aminotransferase; HPLC, high 
performance liquid chromatography  

 Compliance is one of the main challenges of HU therapy. With age and, depend-
ing on their weight, many patients will need to take four or more pills per day, which 
can prove to be cumbersome and lead to poor compliance for long periods of time. 
Another limitation is the fear of increasing the dose of HU to prevent hematologic 
toxicity. Physicians are encouraged to follow the blood count thresholds described 
and not be afraid to increase HU dosage before HbF levels rise to 20%, even if the 
patient reports improvement in the incidence of pain crises. In our experience, neu-
trophil counts of between 1500 and 2000 cells/μL are well tolerated and not 
 associated with febrile neutropenia, and should not be considered an emergency. 
Hematologists should aim for the best compliance possible, since a minimum 80% 
of adherence to the treatment was associated with response to HU in the MSH study 
(Charache et al.  1996 ).  

12.6     Aplastic Crisis 

 Aplastic crisis is a very particular type of acute complication that is not exclusive to 
SCD. It is typically caused by parvovirus B19 infection, and since this virus has 
tropism for erythroblastic precursors, it causes transient pure erythroid aplasia, 
resulting in acute onset of anemia with reticulocytopenia. This complication is most 
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frequently seen in children, but may affect adults. Diagnostic confi rmation depends 
on bone marrow aspirate showing typical viral inclusions in immature erythroblasts 
and serological tests. Since it is self-limited, management is based on blood transfu-
sions, which should be only enough to reverse cardiac decompensation, such as 
congestive heart failure due to severe anemia (see comment under “Blood transfu-
sion and iron chelation in SCD”).  

12.7     Heart Disease 

 Chronic hemolytic anemia causes a strain on the cardiovascular system, ultimately 
predisposing SCD patients to early development of high output heart failure, with 
left ventricle hypertrophy and dilation. Myocardial iron overload is a very rare 
occurrence in SCD, differently from what is found in thalassemia patients, and most 
probably SCD patients are protected from heart siderosis by a lower transfusional 
burden with exchange transfusion approaches, a later onset of transfusion programs, 
and chronic infl ammation that may reduce the ability of iron to be transferred from 
the reticuloendothelial system to cardiomyocytes. Symptomatic patients with exer-
tional dyspnea, cardiopulmonary abnormalities on physical examination, or periph-
eral edema should be evaluated with chest X-ray, electrocardiogram, and 
transthoracic Doppler echocardiography to screen for abnormalities. Asymptomatic 
patients may be screened annually in research centers dedicated to SCD. Since the 
severity of anemia impacts on the development of high cardiac output, hydroxyurea 
therapy can be recommended in some patients with very severe anemia (Hb under 6 
g/dL) as an attempt to prevent heart disease, among other complications, but this 
indication should take into consideration the opinion of a SCD expert. Patients 
receiving blood transfusions had a lower left ventricle mass in one study, and this 
has been used as evidence to indicate chronic blood transfusion in more anemic 
patients (Hb under 7 g/dL) that do not respond to hydroxyurea (HU) and present 
with structural cardiac disease. Studies have also shown that diastolic dysfunction 
precedes overt cardiomyopathy and is a predictor of mortality (Sachdev et al.  2007 ; 
Caldas et al.  2008 ), reinforcing the idea that heart disease is a relative indication for 
more aggressive management. There are no specifi c guidelines for heart failure 
associated with SCD, but a small study reported a reduction in cardiac remodeling 
in SCD patients taking enalapril for microalbuminuria (Lima et al.  2008 ). Therefore, 
the use of angiotensin converting enzyme inhibitors (ACEi) or angiotensin receptor 
blockers (ARBs), as used for other causes of heart failure, is recommended in SCD- 
associated cardiomyopathy. 

 Myocardial infarction (MI) does occur in SCD patients, but it is probably under-
diagnosed, and consequently underreported, in this patient population. Chest pain, 
epigastric pain, and dyspnea frequently guide physicians towards a diagnosis of 
vaso-occlusive crises, acute chest syndrome, or side effects secondary to non- 
steroidal anti-infl ammatory drugs rather than MI, so physicians fail to order an elec-
trocardiogram and appropriate serum cardiac enzymes (e.g. troponin I, which is less 
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likely to be falsely elevated due to muscular ischemia or intramuscular analgesic 
administration). Coronary angiography is usually normal, but echocardiography 
may demonstrate segmental ventricular wall motion dysfunction. If MI is diag-
nosed, SCD patients should be treated with prompt analgesia, oxygenation, and 
hydration, along with exchange transfusions to ensure proper oxygen delivery, aim-
ing at HbS below 30%, but with a hematocrit not exceeding 30%, as MI has been 
reported in a patient developing high hematocrit under hydroxyurea (HU) therapy 
(Fattori et al.  2005 ). Thrombolytic therapy or emergency coronary angioplasty are 
rarely indicated unless the patient has a high risk profi le suggesting atherosclerotic 
etiology, rather than SCD-associated vascular occlusion. While hematologists may 
be unwilling to prescribe HU for fear of relative polycythemia and precipitation of 
a new MI, HU therapy has been shown to improve cardiac perfusion in some chil-
dren evaluated with myocardial thallium-201 single photon emission computerized 
tomography (SPECT) (de Montalembert et al.  2004 ). Sudden cardiac death has 
become an increasing concern, not only in SCD patients, but also in sickle cell trait 
carriers, but effi cient screening methods to determine which patients could be more 
susceptible to this complication are still unavailable. A review of heart complica-
tions in SCD has been published by Voskaridou et al. ( 2012 ).  

12.8     Liver Complications 

 Hepatic disease can be challenging to diagnose and treat in SCD. Chronic liver 
disease or cirrhosis solely as a consequence of SCD is rare, so actively searching for 
alternative causes of liver disease, such as alcohol, medication, chronic viral hepa-
titis, autoimmune hepatitis, and even other genetic conditions, such as Wilson’s 
disease, is mandatory. Iron overload is an expected complication in patients getting 
transfused throughout their lifetime which may result in chronic liver disease, and 
can be confi rmed by magnetic resonance imaging with T2*. The use of liver trans-
plantation in SCD patients has been reported, but worldwide experience does not 
exceed 30 cases (Gardner et al.  2014 ). 

 In the acute scenario, upper abdominal pain associated with jaundice, also known 
as “right upper quadrant syndrome”, requires differential diagnosis among SCD- 
associated complications and other diseases, particularly when hyperbilirubinemia 
is severe (defi ned by some authors as a bilirubin level above 12–13 mg/dL) (Gardner 
et al.  2014 ; Ahn et al.  2005 ). Common conditions, such as acute cholecystitis (see 
Fig.  12.4  depicting gallstones), cholangitis, biliary pancreatitis, and viral hepatitis 
must be ruled out with the appropriate lab exams, i.e. liver and pancreatic enzymes, 
serology tests, and imaging exams, such as ultrasound, computerized tomography, 
or magnetic resonance cholangiopancreatography. Physicians at the ED should 
keep in mind that presentation of common liver diseases may be unusual in SCD 
patients, and careful history taking is crucial to reach a correct diagnosis in many 
cases. A SCD patient with acute pancreatitis may remember how the pain typically 
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started in the abdomen and radiated to the back at fi rst, but by the time he or she was 
brought to the ED, vaso-occlusive pain crisis had already ensued, precipitating 
s econdary generalized pain and an acute chest syndrome that obscures the original 
cause of a severe VOE.

   SCD-associated complications that should be considered in this setting are 
hepatic sequestration (HS) and sickle cell intrahepatic cholestasis (SCIC). HS is a 
life-threatening condition which usually presents with sudden onset of severe ane-
mia associated with painful hepatomegaly and severe jaundice. Liver enzymes can 
increase by up to ten times normal, but median levels are between 100 and 200 UI/L 
and may be even only minimally elevated (Norris  2004 ). Bilirubin levels can reach 
30 mg/dL and higher (Berry et al.  2007 ). Treatment requires emergent blood trans-
fusion and erythrocytapheresis may eventually be considered, since HS has a high 
rate of mortality. 

 SCIC may present acutely, or as a chronic progressive complication. It is char-
acterized by severe jaundice with predominantly conjugated bilirubin levels, simi-
larly to those found in HS, with milder changes in liver enzymes than in 
HS. Absence of signifi cant change in hemoglobin levels helps differentiate it from 
typical HS. Absence of liver enlargement makes HS less likely, but hepatomegaly 
may occur in SCIC. Liver failure with coagulopathy and encephalopathy may fol-
low in adults, differently from the spontaneous improvement reported mostly in 
the pediatric population. Physicians should always consider keeping SCIC 
patients in hospital until it is certain that bilirubin levels are normalizing and 
hepatic function is preserved. Exchange blood transfusions to yield a HbS below 
20 or 30% have been suggested (Gardner et al.  2014 ) and even chronic transfusion 
programs may be indicated for patients with recurrent SCIC, but no scientifi c 
evidence is available to determine the actual effi cacy of this approach, and no 
specifi c treatment for SCIC exists.  

  Fig. 12.4    Cholelithiasis. 
Computerized tomography 
coronal section showing 
multiple gallstones ( white 
arrow ) in an adult SCD 
patient       
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12.9     Priapism 

 Priapism affects over 80% of men with SCD at least once in their lifetime (see 
Chap.   11    ). SCD-associated priapism is either acute ischemic or stuttering (Montague 
et al.  2003 ), and consists of a compartment syndrome of the penis, caused by sick-
ling that blocks the venous drainage of the corpora cavernosa, resulting in pro-
longed painful penile erection. It may be bicorporal, affecting only the corpora 
cavernosa, a more common presentation in children, or tricorporal, also affecting 
the corpus spongiosum, which is more frequently the case in older SCD patients. 
Tricorporal priapism probably represents a later stage of bicorporal priapism devel-
oping a venous blockade by contiguous compression of the corpus spongiosum by 
the corpora cavernosa, so it would be reasonable for ED physicians to consider tri-
corporal priapism a more severe case upfront. Patients should be advised to seek 
medical attention if priapism does not subside after 4 hours, although, in our experi-
ence, a 2-hour long event typically prompts the patient to go to the ED, since 24/7 
urology consultation is not widely available, and sometimes requires referencing 
the patient from a local ED to a tertiary care center, a process that may delay actual 
treatment. Patients should also be advised to try different strategies at home before 
coming to the ED (e.g. voiding the urinary bladder, exercise, warm or cold com-
presses, oral hydration, and even oral pseudoephedrine (Mantadakis et al.  2000 ) or 
etilefrine (Gbadoé et al.  2001 ), etc. Management in hospital should include oral 
and/or intravenous analgesics, hydration, and urological consultation. Urologists 
will both confi rm ischemia and treat it by aspirating penile blood from the corpora 
cavernosa under dorsal nerve or penile shaft block. Irrigation of corpora cavernosa 
with saline or alpha-adrenergic agonists can be performed after aspiration. 
Phenylephrine injection can be associated to increase the effi cacy of treatment, and 
can even be used as outpatient self-injection if the patient is trained to do so at home 
(Mantadakis et al.  2000 ). Other sympathomimetics agents, such as ephedrine, nor-
epinephrine, or epinephrine may be used if phenylephrine is unavailable, but they 
carry a greater risk of cardiovascular side effects. 

 Refractoriness is a frequent possibility and can be managed with surgical shunts 
(e.g. Winter or Ebbehoj corporoglanular shunts, open proximal shunts, open distal 
shunts, etc.) with varying degrees of post-operative erectile dysfunction. Prosthetic 
surgery should also be considered for patients with permanent erectile dysfunction, 
but there still remains controversy on the best timing to perform this type of treat-
ment. Recurrent acute priapism has been successfully managed with chronic low 
dose PDE5 inhibitors, such as sildenafi l in a group of 13 patients (Burnett et al. 
 2014 ). Successful anti-androgen therapies with stilbestrol (Serjeant et al.  1985 ), 
fl utamide (Costabile  1998 ), or ketoconazole (Hoeh and Levine  2014 ) have been 
reported in cases or series of cases, but side effects, such as diminished libido, 
gynecomastia, and oligo or azoospermia, prevent their use in boys and adolescents, 
or men wishing to conceive. Stuttering priapism can eventually also cause erectile 
dysfunction, so despite the lack of specifi c therapies, its impact should not be 
underestimated, and urological consultation is key in the search for adequate 
patient relief.  
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12.10     Osteopenia and Osteoporosis 

 Hemoglobin disorders, such as thalassemia and SCD, are recognized as causes of 
early onset of osteopenia and osteoporosis (Sarrai et al.  2007 ). Vitamin D defi -
ciency seems to play a prominent role in the pathogenesis of bone mass reduction 
(Arlet et al.  2013 ), but other mechanisms involving hemolysis must be involved 
(Baldanzi et al.  2011 ). Bone density loss tends to be more severe to the spine than 
the femoral neck, and pathologic fractures may occur if osteoporosis is left unrec-
ognized. Adults with SCD should be screened yearly with dual-energy X-ray 
absorptiometry (DXA) scans to measure bone mineral density, but frequency of 
scans may be reduced to once every other year if no bone density loss is detected. 
There are no randomized trials to guide treatment of SCD-associated osteopenia/
osteoporosis, so most hematologists rely on evidence obtained from the general 
population. It is not uncommon to encounter elevated T-scores when measuring 
bone mineral density in SCD patients, due to pathological fractures or bone 
infarcts that falsely elevate measurements, so an experienced specialist in scintig-
raphy should be consulted. Oral calcium carbonate (500 mg bid) and vitamin D 
(e.g. 50,000 UI of vitamin D2 daily) can be prescribed for osteopenic patients to 
improve bone marrow density (Adewoye et al. 2008), while full-blown osteoporo-
sis should be additionally managed with oral bisphosphonates, such as sodium 
alendronate 70 mg weekly. Refractoriness to this approach may occur, and patients 
whose bone mineral density decreases despite adequate treatment should be con-
sidered for parenteral bisphosphonates, such as intravenous zoledronate or pami-
dronate. Newer therapeutic options, such as denosumab, have yet to be studied in 
the SCD setting. Patients should also be screened for hypomagnesemia, since low 
magnesium levels have been associated with lower absorption of vitamin D and 
may favor bone mass loss.  

12.11     Avascular Necrosis 

 Avascular necrosis (AVN) or osteonecrosis is a well-recognized complication of 
SCD and prevalent in all genotypes (Mukisi-Mukaza et al.  2000 ; Mont et al.  2010 ; 
Milner et al.  1991 ). Bilateral involvement is frequent, and may affect femoral or 
humeral heads (Milner et al.  1993 ; Poignard et al.  2012 ). AVN of the femoral head 
(Fig.  12.5 ) has been reported more frequently in homozygous SCA, SCD with alpha 
thalassemia trait, lower HbF, and higher hemoglobin levels (Milner et al.  1991 ). 
Shoulder and hip girdle pain are most commonly reported before the range of 
motion is affected. While simple radiographs have long been used for evaluation 
when patients complain of pain, magnetic resonance imaging (MRI) should be pre-
ferred, since it can detect lesions in the contralateral hip or shoulder before the 
patient becomes symptomatic or develops femoral or humeral head collapse 
(Hernigou et al.  2006 ).
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   Compared with other causes of AVN of the femoral head, such as steroid use or 
alcohol, SCD-associated AVN has an earlier onset and more rapid progression 
(Hernigou et al.  2006 ). The natural history of femoral head AVN in SCD pro-
gresses from an asymptomatic stage without radiological abnormalities (Steinberg 
stage 0) to magnetic resonance imaging alterations (Steinberg stage I) (Steinberg 
et al.  1995 ), followed by radiographic alterations without (Steinberg stage II) or 
with a crescent sign (Steinberg stages III and IV); the crescent sign represents overt 
femoral head collapse, which occurs in 77% of patients. A positive MRI in an 
asymptomatic patient (stages I and II) represents 95% of chance of progression to 
pain in 3 years. The average time to progression between pain and collapse is about 
35 months, but this can happen in a little as 3 months. Therefore, patients should 
be screened with MRI on a regular basis, and patients with pain should be evalu-
ated as soon as possible, since pain always precedes collapse (Stoica et al.  2009 ). 
Total hip arthroplasty (THA) is the standard of care for end-stage femoral head 
AVN (Hernigou et al.  2008b ; Clarke et al.  1989 ). Although the risk of post-opera-
tive infection and aseptic loosening have decreased with better perioperative care 
(transfusion, antibiotic prophylaxis), complication rates are still higher than in 
patients with other indications for THA. Acute chest syndrome is the main SCD-
related complication, and patients should be also managed for ACS if fat embolism 
is considered. Joint preserving procedures, such as single coring or multiple 

  Fig. 12.5    Avascular necrosis of the femoral head. Plain radiograph showing left femoral head 
with severe collapse and deformation in a male adult sickle cell anemia patient       
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drilling decompression (Al Omran  2013 ), and autologous stem cell grafting 
(Hernigou et al.  2008a ,  2009 ) have been used in patients with less severe AVN and 
pain with improvement, although studies have not determined whether any of these 
approaches should be preferred. Physical therapy is also useful, and one study 
found no benefi t in adding core decompression to physical therapy in pain manage-
ment (Neumayr et al.  2006 ). 

 Humeral head AVN is more frequently observed in patients with hemoglobin SC 
disease and S-beta thalassemia than in homozygous SS (Poignard et al.  2012 ). 
Nevertheless, the SS genotype is a risk factor for more extensive lesion and more 
rapid progression to collapse. Patients that have already developed femoral head 
AVN are also more prone to humeral head AVN and hip involvement predicts earlier 
humeral collapse. Therefore, patients with isolated humeral head AVN should 
undergo bilateral hip MRI and be advised of their higher risk for hip AVN. Shoulder 
AVN also progresses more rapidly: the average time between pain and head col-
lapse is 6 months, and differently from observations in steroid-related AVN, spon-
taneous regression does not occur. Shoulder arthroplasty is the mainstay of 
treatment, but as for AVN of any cause, core decompression, arthroscopic debride-
ment, synovectomy, and capsular release may be used to improve pain and delay 
defi nitive surgery.  

12.12     Ophthalmologic Complications 

 Retinopathy, particularly proliferative retinopathy (see Fig.  12.6a ), is more common 
in HbSC than HbSS disease and probably caused by retinal ischemia and a proan-
giogenic component (Nagel et al.  2003 ; Lopes et al.  2015 ). SCD-associated reti-
nopathy may also be non-proliferative, which is characterized by a variety of retinal 
lesions, such as black sunbursts (see Fig.  12.6b ) and salmon patches, and while they 
indicate intraretinal hemorrhage, they do not need specifi c treatment.

   Proliferative retinopathy is classifi ed in fi ve different Goldberg stages (Goldberg 
 1971 ):

   Stage 1—Peripheral arteriolar occlusion;  
  Stage 2—Arteriolovenular anastomoses;  
  Stage 3—Neovascularization;  
  Stage 4—Vitreous hemorrhage;  
  Stage 5—Retinal detachment.    

 Stage 3 retinopathy can present with seafan formation (Fig.  12.6a ), and indicates 
treatment (e.g. laser photocoagulation) to prevent progression and eventual visual 
loss. There is no preventative measure to avoid or slow the progression of SCD- 
associated proliferative retinopathy yet.  
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12.13     Renal Disease 

 The most common renal manifestation of SCD is loss of concentrating capacity 
(hyposthenuria). Renal medullary infarctions can result from increased sickling 
inside the hypertonic milieu of the renal medulla, which is also known to occur in 
sickle cell trait individuals. This process also causes loss of urine acidifi cation and 
decreased potassium excretion. Renal disease is one of the most severe chronic 
complications of SCD and its incidence increases with patients’ age. Most patients 
over 40 years old will have some degree of microalbuminuria or overt proteinuria. 
Repeated cycles of ischemic injury in the inner medulla lead to sickle cell 
nephropathy, causing an increased cortical renal blood fl ow and glomerular fi ltra-
tion rate. Glomerular hyperfi ltration leads to misleadingly low creatinine levels, 
frequently causing physicians to overlook proteinuria before glomerulosclerosis 
and tubulointerstitial fi brosis eventually result in chronic kidney disease (Sharpe 
and Thein  2014 ,  2011 ). 

 It is generally recommended to screen SCD adults for microalbuminuria at least 
once a year. Blood pressure (BP) is a major determinant of renal damage, so BP 
measurement every time the patients comes to the clinic is mandatory. Although 
solid scientifi c evidence in this regard is still lacking, it is safe to say that hyperten-
sion (systolic BP over 140 mmHg or diastolic BP over 90 mmHg) should be 
treated, and in our experience, anti-hypertensive treatment should be considered in 
patients with BP over 120/80 mmHg, similarly to recommendations for other high-
risk populations, such as diabetics. The presence of microalbuminuria can be man-
aged by using angiotensin converting enzyme (ACE) inhibitors, such as captopril 

  Fig. 12.6    Ophthalmologic complications. Proliferative retinopathy with neovascularization and 
seafan formation ( a ) in patient with hemoglobin SC disease. Non-proliferative retinopathy with 
black sunburst lesion ( b ). Courtesy of Dr. Monica Barbosa de Melo and Dr. José Paulo Cabral de 
Vasconcellos       
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and enalapril, although a Cochrane analysis searching for randomized trials 
addressing the effi cacy of in SCD failed to fi nd enough data to recommend ACE 
inhibitors in this setting. In the experience of our group and others, proteinuria 
levels may normalize with this strategy, and this approach is relatively safe, with 
only a mild risk of hypotension.  

12.14     Leg Ulcers 

 Leg ulcers remain a challenge in SCD management. They are more prevalent among 
men and can affect 20% or more of patients, but are less common in SC disease and 
S-beta thalassemia. They are more commonly found around the maleolar regions, 
and frequently start with minor trauma or insect bites. Physicians should routinely 
examine the patients’ ankles during outpatient visits, since small lesions may be 
overlooked before a full-blown ulcer appears. Leg ulcer may take years to heal or 
not heal at all, and sometimes can become large and mutilating (Fig.  12.7 ).

   The use of a peptide gel containing a combination of arginine, glycine, and 
aspartate (RGD) was able to improve healing in a study with 55 patients, but its 
production has been discontinued (Wethers et al.  1994 ). Secondary infection should 
be treated with wide spectrum antibiotics that must be effective against  Salmonella  
species. Bed rest and adequate pain management are often major factors for 
improvement in severe cases. There is no evidence that blood transfusions improve 
leg ulcers, and studies have failed to demonstrate an association between hydroxy-
urea and leg ulcer in SCD despite case reports in other populations taking hydroxyurea, 
such as myeloproliferative neoplasms.  (Chaine et al.  2001 ). Although zinc defi -
ciency has been associated with a higher incidence of leg ulcers, zinc supplementa-
tion did not improve leg ulcer healing in a study with 29 Jamaican patients (Serjeant 
et al.  1970 ). More recently, a phase I/II clinical trial showed improved leg ulcer 

  Fig. 12.7    Leg ulcer. 
Extensive perimaleolar 
skin ulceration in a 42-year 
old female sickle cell 
anemia patient       
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healing and reduced pain scores following the use of a topical sodium nitrite cream 
(Minniti et al.  2014 ). Underlying osteomyelitis should be considered in refractory 
infection of a leg ulcer, and can be evaluated with plain radiographs, computerized 
tomography, or magnetic resonance imaging, but sensitivity and specifi city fall 
short from ideal to distinguish between osteomyelitis and bone infarct. Osteomyelitis 
is most often caused by  Salmonella ,  Staphylococcus aureus  or gram-negative 
bacilli, so treatment should include antibiotics with an adequate spectrum, but a 
defi nitive diagnosis of osteomyelitis should take clinical presentation and other 
exams into account before indicating sometimes extensive periods of treatment 
(e.g. treatment may exceed 6 weeks).  

12.15     Pulmonary Arterial Hypertension 

 Pulmonary arterial hypertension (PAH) may represent a major cause of morbidity 
and mortality in adults with SCD and has been linked to hemolytic processes. PAH 
is defi ned as a resting mean pulmonary arterial pressure (mPAP) ≥25 mmHg by 
right heart catheterization (RHC) (Hoeper et al.  2013 ) and is caused by restriction 
in the lumen and wall stiffening of the pulmonary arteries, leading to exercise intol-
erance, fatigue, peripheral edema and chest pain (Gladwin et al.  2004 ; Yawn et al. 
 2014 ). Prevalence of PAH in SCD has not been accurately established, due to the 
practical diffi culties of confi rming the disease by RHC. A surrogate marker for the 
risk of PAH is increased echocardiography-derived regurgitant triscupid jet velocity 
(TRV), and TRV above 2.5 m/s has been associated with increased mortality in 
adults with SCD. A study carried out in 192 patients with SCD showed that 32% 
had a TRV greater than or equal to 2.5 m/s, while 9.2% presented a TRV of greater 
than or equal to 3 m/s (Gladwin et al.  2004 ). A more recent study reported that while 
40 % of patients in an SCD cohort displayed a TRV of ≥ 2.5 m/s, right heart cathe-
terization confi rmed PH in 10% of the cohort and post-capillary and pre-capillary 
PH in 6.25% and 3.75%, respectively (Fonseca et al.  2012 ), although prevalence of 
PH in SCD, as confi rmed by RHC, has been suggested to be approximately 6–11%, 
and therefore, not insignifi cant (Ataga and Klings  2014 ). 

 Patients should be screened every 1–3 years with transthoracic echocardio-
gram, or at shorter intervals if presenting with unexplained dyspnea or low oxy-
gen saturation at rest or during exertion; patients with TRV over 3 m/s should be 
referred to RHC. Treatment options for PAH are still scarce. If PAH is confi rmed 
by RHC, prostacyclin agonists and endothelin receptor antagonists, such as 
bosentan and ambrisentan, may be considered, although evidence supporting this 
recommendation is marginal, since no placebo-controlled randomized studies 
have been completed. A trial with sildenafi l was interrupted due to an increase in 
the incidence of VOEs in the treatment arm. Hydroxyurea may be considered for 
patients with elevated TRV, since this by itself is a predictor of increased mortal-
ity, and red blood cell transfusions should be discussed on a case-by-case basis. 
Chronic defi nitive anticoagulation can also be employed in patients with a low 
risk of bleeding or with confi rmed previous venous thromboembolism. There is 
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no consensus as to whether PH constitutes a defi nitive indication for hematopoietic 
stem cell transplantation, but improvement in PAH after transplant has been 
reported (Colombatti et al.  2011 ).  

12.16     Management of the Pregnant SCD Patient 

 Pregnancy is frequently a situation in which blood transfusions are considered, 
because of the general belief that HU should not be used in pregnant women, and 
that HU therapy should be stopped once pregnancy is confi rmed. These recommen-
dations are based on animal studies using doses of HU that are higher than those 
recommended for human use, and evidence that HU increases the risk for birth 
defects in pregnant women taking HU is lacking. Nevertheless, increased concern 
with such patients is justifi ed, since SCD tends to be more severe during pregnancy. 
Even patients with milder forms of SCD, such as SC disease or S-β +  thalassemia 
should discuss the risks and benefi ts of prophylactic transfusion. Only one random-
ized study has addressed prophylactic transfusion in pregnant SCD patients (Koshy 
et al.  1988 ) and failed to show any benefi t to either the mothers or their offspring. 
Nevertheless, several case reports have leaned towards a more aggressive transfu-
sional approach in pregnant women, since the risk of a fatal outcome to either the 
mother or the child does not seem to be negligible, and prophylactic erythrocy-
tapheresis has emerged as one of the safest options in this setting. A recent system-
atic review based on the few studies available concluded that prophylactic 
transfusions may impact adverse maternal outcomes by reducing mortality, vaso- 
occlusive pain events, pyelonephritis, pulmonary complications including infection, 
infarction or embolism, and may improve neonatal outcomes by reducing perinatal 
mortality, neonatal death, and preterm birth (Malinowski et al  2015 ). The same 
review suggested that prophylactic transfusions did not affect the occurence of acute 
chest syndrome, lower urinary tract infection, endometritis, preeclampsia, intrauter-
ine fetal demise or low-birth-weight infants, and highlighted the need for prospec-
tive, randomized trials. Combined follow-up with Ob/Gyn and Hematology experts 
is encouraged, since pregnant SCD women are at higher risk for eclampsia, preterm 
labor and delivery, deep venous thrombosis, intrauterine growth restriction, urinary 
tract infections, and sepsis. 

 In contrast to most pregnant women, SCD patients should not receive iron sup-
plementation during pregnancy and lactation, except if iron defi ciency is confi rmed 
by low ferritin levels and transferrin saturation below 20 %.  

12.17     Neurological Complications 

 Stroke, or cerebrovascular accident, while more common in children with SCD, can 
still occur during adulthood; in a retrospective cohort study of adult 2875 patients 
followed-up from 1970 through 2008 with SCD in France, 69 patients had 
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experienced at least one stroke, where 27 ischemic strokes and 17 hemorrhagic 
strokes were recorded during adulthood (>20 years) (Gueguen et al.  2014 ), support-
ing suggestions that hemorrhagic strokes may be more common during young 
adulthood, while ischemic strokes become more frequent in later adulthood (Ohene-
Frempong et al.  1998 ). A study showed that while ischemic stroke in childhood 
SCD is associated with vasculopathy in over 90% of the cases, the main cause of 
adult SCD stroke was sickle vaso-occlusion in only 41%, while cardioembolism 
contributed to 25% of cases (Calvet et al.  2015 ). Management of acute stroke in 
adults with SCD does not differ from children due to the lack of studies addressing 
this particular situation, so chronic blood transfusions are also recommended in 
ischemic stroke. Hemorrhagic stroke does not require specifi c treatment for SCD, 
and can be managed by neurosurgeons as in non-SCD patients. Nevertheless, 
patients with SCD will be more susceptible to other vaso-occlusive events and 
infections while hospitalized, so combined hematology and neurosurgery follow-up 
is recommended, and an SCD expert should recommend the appropriate pre-opera-
tive transfusion method for patients undergoing neurosurgical intervention. 

 Moyamoya syndrome, a chronic, occlusive cerebrovascular disease involving bilat-
eral stenosis or occlusion of cerebral arteries, constitutes a relatively common manifes-
tation of cerebral vasculopathy in SCD (Kassim and DeBaun  2013 ), more prominently 
seen in children. Moyamoya can be diagnosed in SCD by either cerebral angiography 
or magnetic resonance angiography and its development represents a grave prognostic 
fi nding in patients that may increase the risk of recurrence of cerebrovascular events, 
such as overt stroke or transient ischemic attack (Hulbert et al.  2011 ). 

 Neuroimaging abnormalities have been reported in adults with SCA and associ-
ated with altered cognition (Mackin et al.  2014 ). Neurocognitive impairment has 
been recognized to be common in SCD, particularly in those patients with a previ-
ous stroke, and probably accentuates with age due to continual hypoxia and chronic 
anemia even in neurologically intact SCD adults (Vichinsky et al.  2010 ). Silent 
cerebral infarcts (SCIs) have also been recognized in the adult SCD population 
(Vichinsky et al.  2010 ; Kugler et al.  1993 ; Silva et al.  2009 ), although most studies 
have focused in the pediatric population. There is still some discussion on the radio-
logical defi nition of SCI in adults (DeBaun et al.  2012 ), which further complicates 
studies in this population. One study reported that almost 40% of the patients will 
reach the age of 18 with SCI (Bernaudin et al.  2015 ), but there still is no specifi c 
management for adults with SCD-associated SCI. 

 Finally, a high burden of, possibly pain-related, sleep disordered breathing and 
other sleep-related complaints have also been reported in the adult SCD population 
and may affect the quality of life of these individuals (Sharma et al.  2015 ).  
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12.18     Blood Transfusion and Iron Chelation in Adult SCD 

 The indication for blood transfusion in adults with SCD is less well studied than in 
children. Transfused blood should ideally always be matched for ABO, C, D, E, and 
K antigens, and donors must not carry sickle cell trait. Acute indication of blood 
transfusion should be considered in cases with symptomatic acute anemia, which 
usually only happens when hemoglobin levels drop more than 2 g/dL below basal 
hemoglobin levels. The amount of transfused blood should be just enough to 
improve symptoms, rather than aiming at specifi c hemoglobin values. Refractory 
pain crisis is a common indication for exchange transfusion in the acute setting, as 
well as acute chest syndrome. Emergent exchange transfusion or erythrocytaphere-
sis is strongly recommended for acute stroke and acute chest syndrome that is devel-
oping the need for mechanical ventilation. Special care should be taken if transfusing 
patients with suspected aplastic crisis, because hemoglobin recovery can be more 
rapid than anticipated and result in overcorrection of anemia with severe complica-
tions, such as acute chest syndrome or stroke. 

 With regard to chronic blood transfusion, while the STOP study has clearly 
shown the benefi ts of transfusion in children with abnormal transcranial 
Dopplerfl uxometry (TCD) for the prevention of stroke (Adams et al.  1998 ), there is 
no defi ned role for blood transfusion or TCD in the prevention of stroke in adults. 
Therefore, the use of chronic transfusion in SCD adults with stroke relies on the 
extrapolation of the results from the STOP 2 study, since no safe time interval for 
stopping blood transfusion could be determined. Other frequent indications of 
chronic use of blood transfusion include recurrent pain crisis with lack of response 
to HU, severe anemia not responsive to HU, end-stage renal disease, and heart fail-
ure. The aims of a transfusion program vary based on the indication; typically main-
taining HbS levels below 30% for the fi rst couple of years for stroke, HbS below 
50% after the second year for stroke and for refractory pain crises, or an average Hb 
level of 9 g/dL for other indications. It is of utmost importance to refrain for over-
correcting anemia: Hb levels above 10 g/dL (or hematocrit above 30%) are associ-
ated with an increased risk of severe iatrogenic acute vaso-occlusive events, or even 
stroke. In spite of the improvements in the quality assurance of blood products, all 
patients should be immunized against hepatitis B, and patients that receive blood 
transfusions should be periodically screened (once a year) for hepatitis C and HIV. 

 Chronic blood transfusions will lead to a variable degree of iron overload. 
Severely anemic patients tend to receive “top-up” transfusion, with a higher iron 
balance than patients subjected to exchange transfusion, while erythrocytapheresis 
causes the least amount of iron load. High ferritin levels, combined with a transfer-
rin saturation level above 45–50% and transfusional history, should be taken into 
account to determine the likelihood of iron overload, but more accurate assessment 
of iron overload in SCD patients should preferably be based on magnetic resonance 
imaging with T2* protocols (Porter and Garbowski  2013 ). In comparison with thal-
assemia patients, SCD patients present with a lower degree of iron overload, pre-
dominantly accumulated in the liver, with cardiac and pancreatic iron overload 
being extremely rare. Iron chelation can be prescribed with any of the three avail-
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able agents (deferoxamine, deferiprone, and deferasirox). Studies have confi rmed 
the effi cacy of all chelators in removing excess liver iron in SCD, albeit with signifi -
cant difference among the numbers of patients studied (Porter and Garbowski 
 2013 ). Deferasirox has been increasingly the drug of choice to chelate iron over-
loaded patients because of its oral route of administration (compared to parenteral 
use of deferoxamine) and convenient schedule of treatment (once daily dissolved in 
water, compared with thrice daily for deferiprone). Nevertheless, side effects of 
deferasirox include increases in creatinine levels and proteinuria. SCD patients are 
more prone to develop microalbuminuria and end stage renal disease than other 
patients treated with iron chelators, so it is still undetermined whether using this 
chelator in patients with renal disease is safe. Combination therapy with deferox-
amine and deferiprone is preferred in the rare cases with documented cardiac iron 
overload.  

12.19     Curative Treatment: Hematopoietic Stem Cell 
Transplantation 

 Similarly to the pediatric setting, the only curative treatment available for adults is 
hematopoietic stem cell transplantation (HSCT). As expected, published scientifi c 
reports show that, in contrast to younger children, patients over 16 years of age have 
only been offered cellular-based approaches for sickle cell disease from 2004 
onwards. 

 Evidence in this group is much more scarce than in the pediatric population, 
and a retrospective search on PubMed yielded nine reports with a total not exceed-
ing 60 cases of sickle cell anemia (SCA) patients over 21 years of age that have 
been transplanted, with only 21 patients aged over 30 years worldwide (Table  12.2 ). 
The Multicenter Pilot Investigation of Bone Marrow Transplantation in Adults 
with Sickle Cell Disease (STRIDE) has recently reported 22 SCD patients pre-
pared for HSCT with busulfan 13.2mg/kg, fl udarabine 150mg/m2 and anti-thy-
mocyte  globulin 6mg/kg (Krishnamurti et al.  2015 , oral communication). Another 
oral communication from an international survey by Eurocord-Monacord/
European Group for Blood and Marrow Transplantation (EBMT) and Center for 
International Blood and Marrow Transplant Research (CIBMTR) (Capelli et al. 
2015), reported the outcomes after HLA-matched sibling HSCT of 154 SCD 
patients over 16 years of age prepared most frequently with myeloablative combi-
nation of busulfan and cyclophosphamide. There have been major concerns 
regarding the toxicity of myeloablative approaches, thus conditioning regimens 
used in these studies vary widely and employ different combinations of busulfan, 
cyclophosphamide, anti-thymocyte globulin (ATG), fl udarabine, and total body 
irradiation. The type of ATG, the inclusion of other drugs, and radiation dose also 
vary. There is no consensus regarding the ideal stem cell source, which can range 
from matched sibling to haploidentical bone marrow, but encouraging results with 
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the latter may mean that successful transplantation in sickle cell patients can 
become less dependent on the stem cell source than on the use of adequate condi-
tioning regimens with optimized supportive care. Success rates have been largely 
similar to those found in children with very low mortality rates (under 10%) and 
a low incidence of graft-versus-host disease.

   Other curative approaches to SCA are still under development—gene therapy 
targeting autologous stem cells for subsequent transplantation is one of the most 
promising options, and will be addressed in Chap.   16    .     
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    Chapter 13   
 Hemoglobin Sβ Thalassemia, SC Disease 
and SD Disease: Clinical and Laboratorial 
Aspects                     

       Sara     T.     Olalla     Saad      and     Simone     O.     Gilli    

    Abstract     Sickle cell disorders are inherited hemolytic anemias, associated with the 
presence of Hemoglobin S. This group of disorders comprises homozygotes (HbSS), 
compound heterozygotes for hemoglobin C (HbSC) or β-thalassemia (Sβ thalas-
semia) (the most frequent associations) and, uncommonly, hemoglobin D (HbSD) 
and hemoglobin E (HbSE). This abnormal phenotype is caused by mutations in the 
Beta globin genes of both chromosomes 11. Thus, these disorders are recessively 
inherited and abnormalities in both alleles lead to structural defects in the beta- 
globin chain (HbS, HbC, HbD, HbE), or a reduction in its expression (thalassemia 
and HbE). Consequently, normal HbA, which is an α 2 β 2  tetramer, is absent and 
substituted by the mutated hemoglobins, containing an α 2 β 2  Mutated  tetramer. 
Ultimately, the clinical phenotype is caused by the relatively high amounts of the 
α 2 β 2  sickle  tetramer, which allows hemoglobin polymerization and, in turn, leads to 
vasoocclusion, the hallmark of all sickle cell disorders. In this chapter, we will dis-
cuss clinical and laboratorial aspects of the compound sickle cell disorders SC, SD 
and Sβ thalassemia. In this book, sickle cell anemia is a synonymous for the homo-
zygote state and it is approached elsewhere.  

  Keywords     Genotype   •   Hemoglobinopathy SC   •   Hemoglobinopathy SD   •   Sβ 
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13.1       Hemoglobinopathy SC 

 Despite the high prevalence of Hemoglobin SC disease, this hemoglobinopathy is 
often regarded as being clinically milder than homozygotic sickle cell anemia 
(HbSS) and very little is known specifi cally regarding this condition. After Hb SS 
disease, hemoglobinopathy SC is the most frequent sickle cell disorder worldwide. 
Hemoglobin C, as HbS, is also African-derived and is caused by a mutation in 
codon 6 of the Beta-globin chain; however this mutation changes glutamic acid to 
lysine, instead of to valine, as occurs in HbS. In HbSC disease, red cells contain 
approximately 50 % HbS and 50 % HbC; however, the presence of HbC is associ-
ated with increased K-Cl cotransport activity, which induces loss of K +  and intracel-
lular water, in turn facilitating the polymerization of HbS (Nagel et al.  2003 ), Thus, 
HbSC carriers suffer from acute episodes of vaso-occlusion and a number of com-
plications that are secondary to chronic disease. While hemoglobinopathy SC is 
generally believed to be a clinically milder disease, compared to sickle cell anemia 
(homozygotes), it presents a higher frequency of proliferative retinopathy. 

13.1.1     Epidemiology 

 Hemoglobin C is an African-derived mutation and reaches a frequency of 20 % in 
northern Ghana and Burkina Faso. Recently, genotypic data for sickle cell disease 
(Saraf et al.  2014 ) showed that the HbSC genotype ranges from 4 to 12 % of sickle 
cell diseases in Nigeria and Senegal, but reaches 49.6–92.2 % in Burkina Faso, 
located in northwestern Africa, bordering Benin. In the Americas and UK, the 
HbSC genotype ranges from 17.8 to 24.3 % of the total sickle cell disease patient 
population. Curiously, in Brazil, some regions in the North of the country and in the 
Northeast of the state of Minas Gerais present an equal incidence of HbSS and 
HbSC among newborns, reaching 0.1 % of neonates (Fernandes et al.  2010 ).  

13.1.2     Clinical Data 

  Growth and Development     In the Jamaica cohort, the height and weight of HbSC 
children was found not to differ from normal controls, from birth up to 5 years of 
age. Anthropometric measurements in 103 HbSC (47 male and 56 female) adult 
patients from our center (Hematology Center, University of Campinas, Brazil) show 
a median body mass index (BMI) of 25.9 (min–max; 18.8–46.6), median weight of 
68 kg (39–109.2) and median height of 165 cm (143–183), which are similar those 
of the Brazilian population in general (  http://www.ibge.gov.br/home/estatistica/
populacao/censo2010/default.shtm    ). Data are presented in Table  13.1 .

     Painful Episodes     In our cohort, at the time of writing, 8.7 % of HbSC patients had 
experienced at least two pain episodes per year requiring hospitalization. More than 
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50 % of patients were asymptomatic and had received an incidental diagnosis after 
routine blood counts, ophthalmological visits or family investigation of a proband 
with diagnosis of hemoglobinopathy, based on newborn screening. These data are 
in accordance with those of Platt et al. ( 1991 ) who reported an incidence of 0.4 pain-
ful episodes/HbSC patient-year, less than half the rate observed in homozygotes.  

  Complications     Complications occur frequently in this population; in our cohort, 
64.08 % of patients had experienced either an acute or a chronic clinical manifesta-
tion at least once. As shown in Table  13.1 , retinopathy was the most frequent com-
plication in the HbSC cohort with a prevalence of 39 %. Osteonecrosis occurred in 
25 patients (24 %), whereas acute chest syndrome (ACS) had been experienced by 
17 patients (16 %).  

 Additionally, cerebrovascular accidents had occurred in four patients (3.89 %); 
one patient had had a transient ischemic stroke with normal cerebral angiography 
and three patients had had an ischemic stroke. One patient in follow up and 
 undergoing a transfusion program was uneventful. Other thromboembolic events 
occurred in 6.8 % of patients, including three patients with pulmonary thromboem-
bolism, two of which occurred during labor or delivery. 32.3 % of patients presented 

       Table 13.1    Clinical data for double heterozygotes for the sickle cell diseases   

 Diagnosis  HbSC  HbSβ 0   HbSβ +  

 Number  103  31  15 
 Female:Male  56:47  19:12  6:9 
 Age (y)  38 (13–70)  35 (15:53)  37 (23:56) 
 Weight (kg)  68 (39.0–109.2)  51 (45:64)  69.4 (50–81) 
 Stature (m)  1.65 (1.43–1.83)  1.62 (1.57–1.69)  1.63 (1.52–1.82) 
 Body mass index (BMI)  25.9 (18.80–46.64)  19.7 (17.75–24.42)  25.1 (22.47–28.69) 
 Retinopathy  39.8 %  10.3 %  26.6 % 
 ACS  16.5 %  20.6 %  57.1 % 
 Priapism  2.9 %  10.0 %  0 % 
 Osteonecrosis  24.2 %  10.7 %  26.6 % 
 VTE  6.8 %  3.57 %  7.1 % 
 Stroke  3.9 %  6.9 %  6.6 % 
 Cholecystopathy  32.3 %  66.6 %  46.6 % 
 Splenic sequestration  2.9 %  0 %  6.6 % 
 Leg ulcer  2.9 %  7.1 %  0 % 
 Osteopenia  27.9 %  46 %  10 % 
 Osteoporosis  8.8 %  0 %  0 % 
 RBC transfusion  40.7 %  96.5 %  86.6 % 
 In hydroxyurea therapy  7.8 %  48 %  27 % 

  Clinical data were collected from cohorts of patients accompanied at the Hemoglobinopathies 
Clinic, Hematology Center, University of Campinas, at the time of writing. Percentages refer to the 
proportion of patients that had experienced the referred manifestation or were undergoing speci-
fi ed therapy 

  ACS  acute chest syndrome,  VTE  venous thromboembolism,  RBC  red blood cell  
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cholecystopathy and only 2.9 % of patients developed other complications such as 
leg ulcers or priapism. Auto-splenectomy occurred in 45 % of our patients, corrobo-
rating data from Lane et al. ( 1995 ). Spleen enlargement had occurred in the remain-
ing patients and, in three of them, at least one episode of splenic sequestration was 
noted. Osteopenia occurred in 27.9 % and osteoporosis in 8.8 % of the patients, 
where frequencies were lower than those in homozygotes (57 % with osteopenia 
and 24.5 % with osteoporosis) (Baldanzi et al.  2011 ). Our patients underwent at 
least one echocardiography every 2 years, which showed parameters suggestive of 
mild or moderate pulmonary hypertension in 5.8 % of the patients and left chamber 
diastolic dysfunction in 7 %. Hypertension was detected in 22 % of the patients, 
where two thirds of these individuals were older than 50 years old. In an important 
review published by Saraf et al. ( 2014 ), data regarding pulmonary and cardiac com-
plications in HbSS, HbSC and HbSβ +  thal patients are discussed (see Table  13.2 ).

   In our HbSC cohort, liver complications were uncommon and appeared only in 
very severe cases. Two female patients developed chronic hepatopathy, as detected 
by ultrasound and liver biopsy. Both had a very severe phenotype, with basal hemo-
globin levels of above 12 g/dL and were submitted to frequent phlebotomy due to 
pain. One of these patients (currently 58 years old) developed a cerebrovascular 
accident (CVA) and is on a red blood cell (RBC) transfusion program. We presume 
that the sickling process was the primary cause of liver disease in this patient, as we 
could not fi nd any signs of hepatitis virus, cholelithiasis, clinical hemosiderosis, 
alcoholism or diabetes. The other patient had hepatitis C and died at 47 years due to 
G-bacteria infection. With regard to liver enzymes, only two female patients pre-
sented a mild increase in alanine aminotransferase (ALT; 69 U/L and 81 U/L respec-
tively, normal < 33). Gamma-glutamyl transpeptidase (GGT) was higher than 
normal (normal female < 40 U/L and male < 60 U/L) in 25 % of the patients. 
Conjugated bilirubin was abnormal (above 0.4 mg/dL) in 54 % of the patients, but 
never reached values above 1.4 mg/dL. One patient had cirrhosis, as detected by 
ultrasound, and liver steatosis occurred in less than 30 % of the patients. A summary 
of the laboratorial data is presented in Table  13.3 .

   Kidney complications also seem to be uncommon in HbSC. In our cohort, the 
glomerular fi ltration rate (GFR), measured by clearance of  51 Cr-EDTA (Barros 
et al.  2006 ) and by serum creatinine values (Cockcroft and Gault  1976 ), was 
normal in most patients. Half of our patients older than 50 years old ( n  = 9) 
showed a mild reduction in GFR ( 51 Cr-EDTA varying from 50 to 77 mL/
min/1.73 m 2  and serum creatinine 0.94–1.47 mg/dL). Persistent microalbumin-
uria (20–200 μg/min) occurred in 15 % of the patients and two patients presented 
albuminuria (a 37 year old woman with albuminuria of 319 μg/min, serum creati-
nine of 0.61 mg/dL and GFR of 120 ml/min/1.73 m 2 ; and a 58 year old woman 
with albuminuria of 780 μg/min, serum creatinine of 0.94 mg/dL and GFR of 77 
mL/min/1.73 m 2 ). 

  Pregnancy     We evaluated the impact of prophylactic transfusion support in preg-
nant women diagnosed with HbSC disease. The patients were divided into two 
groups, according to the type of transfusion support received; 10 women received 
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    Table 13.3    Laboratorial data of double heterozygotes for sickle cell diseases   

 Parameters 
 HbSC mean 
(min–max) 

 HbSβ 0  mean 
(min–max) 

 HbSβ +  mean 
(min–max) 

 Reference 
range 

 Number  103  31  15 
 Hemoglobin, (g/dL)  11.9 (7.27–16.3)  8.7 (5.7–12.2)  9.9 (7.66–13.7)  11.8–16.7 
 Reticulocytes (×10 9 /L)  244 (47.6–485.9)  231.3 

(67.5–540) 
 187.5 
(66.78–561.1) 

 22–139 

 MVC (fl )  80.8 (60.1–103.3)  77.4 
(59.2–101.9) 

 72.1 
(65.9–85.1) 

 82–98 

 MCHC (%)  34.3 (30.5–38.4)  33.2 (29.9–35.4)  31.5 
(30.5–36.7) 

 31.6–34.9 

 Leukocytes (×10 9 /L)  8.35 (1.52–16.01)  8.48 
(3.99–15.07) 

 7.4 
(3.01–16.01) 

 3.7–11.1 

 Neutrophils (×10 9 /L)  4.55 (1.47–10.33)  4.0 (2.03–7.96)  3.73 (0.84–6.7)  1.5–7.5 
 Lymphocytes (×10 9 /L)  2.75 (0.9–5.96)  2.86 (0.96–5.97)  2.0 (0.99–5.5)  1.0–3.5 
 Monocytes (×10 9 /L)  0.45 (0.06–1.04)  0.45 (0.1–0.95)  0.32 (0.6–0.84)  0.2–0.92 
 Eosinophils (×10 9 /L)  0.25 (0–0.67)  0.24 (0–1.02)  0.23 (0.01–0.6)  0.02–0.67 
 Platelets (×10 9 /L)  319 (73–644)  418 (98–818)  174 (74–644)  130–400 
 HbF (%)  1.0 (0.2–5)  7.6 (1.3–24.9)  2.9 (0.3–6.6) 
 Ferritin (ng/mL)  209.4 

(8.97–1059) 
 415.7 
(64.53–654.8) 

 316.1 
(22.88–1955) 

 13–400 

 Serum iron (μg/dL)  81 (26–125)  114.5 (44–243)  70.5 (39.92)  30–160 
 TIBC (μg/dL)  277.5 (164–358)  230 (172–338)  273 (214–325)  228–428 
 Transferrin saturation 
(%) 

 29.4 (8.42–52.61)  47.52 
(16.54–95.34) 

 27.03 
(13.13–42.99) 

 Lactate dehydrogenase 
(U/L) 

 471 (257–819)  612 (328–932)  469.5 
(260–1050) 

 <480 

 Serum creatinin (mg/
dL) 

 0.73 (0.39–1.16)  0.57 (0.32–0.96)  0.69 (0.48–1.1)  F < 0.9; 
M < 1.2 

 Clearance  51 Cr EDTA 
(ml/min) 

 98.5 (47–141)  105 (81–151)  106.6 
(54.6–157) 

 <103.4 ± 15 

 Microalbumin (μg/min)  6.22 (0.78–25.7)  5.85 (1.99–41.8)  5.3 (1.99–9.3)  <30 
 AST (U/L)  25 (13–48)  33.5 (16–73)  27 (14–61)  <40 
 ALT (U/L)  19 (8–40)  22 (8–70)  23 (12–54)  <41 
 GGT (U/L)  27.5 (5–97)  27 (9–69)  42 (19–98)  5–61 
 Alkaline phosphatase 
(U/L) 

 67 (20–150)  83 (41–180)  86 (42–206)  35–129 

 Conjugated bilirubin 
(mg/dL) 

 0.5 (0.2–0.87)  0.6 (0.25–0.9)  0.66 
(0.38–0.87) 

 <0.3 

 Unconjugated bilirubin 
(mg/dL) 

 1.0 (0.3–1.53)  1.2 (0.7–2.4)  0.9 (0.73–5.1)  <0.9 

  Clinical data were collected, at the time of writing, from cohorts of patients accompanied at the 
Hemoglobinopathies Clinic, Hematology Center, University of Campinas 
  AST  aspartate aminotransferase,  ALT  alanine aminotransferase,  GGT  gamma glutamyl transpepti-
dase,  TIBC  total iron binding capacity  
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prophylactic erythrocytapheresis or manual exchange transfusion at 28 weeks of 
gestation, and 14 received transfusions only on demand, due to acute complications, 
or no transfusions at all. Our results indicate higher frequencies of SCD related 
complications in the group of women who had not received prophylactic transfu-
sion support (35.7 % versus 10 % in the erythrocytapheresis group). The complica-
tions were also more severe in the latter group, including all cases of acute chest 
syndrome. Statistical difference was observed concerning gestational age at birth 
(38.7 weeks in the transfusion group versus 34.4 weeks,  p  = 0.037), with a higher 
frequency of preterm births in the non-transfused group (69.23 % versus 30 % in the 
transfusion group). Thus, we observed a clear reduction in unfavorable outcomes in 
patients receiving prophylactic transfusions, probably refl ecting better maternal and 
fetal conditions.  

  Survival     Median survival of HbSC carriers is higher than that of HbSS individuals. 
Recently, Elmariah et al. ( 2014 ) reported that the median survival for HbSC is 66 
years and 58 years for HbSS. Elevated white blood counts, lower estimated glo-
merular fi ltration rates, proteinuria, higher frequency of pain crises, pulmonary 
hypertension, cerebrovascular events, seizures, stroke, sVCAM-1, and short-acting 
narcotics use were signifi cantly associated with decreased survival.   

13.1.3     Laboratorial Data 

  Red Blood Cells     HbSC blood smears show very few sickle cells, however many 
target cells are easily identifi ed, as well as dense and microcytic cells. The low solu-
bility of HbC induces intraerythrocytic crystal formation that may also be identifi ed 
in the blood smear. Deformability of HbSC cells is lower than normal (Serjeant and 
Serjeant  2011a ; Nagel and Steinberg  2009 ) and measurements by optical tweezer 
(Fontes et al.  2011 ; Brandão et al.  2003 ) demonstrate a huge heterogeneity; how-
ever, many cells show a very low elasticity, with elasticity being even lower than 
that of RBC of HbS homozygotes or patients with hereditary spherocytosis 
(Fig.  13.1 ). Recently, Mozar et al. ( 2015 ) reported increased activation of nitric 
oxide synthase in the RBC of HbSC patients, associated with increased RBC nitrite 
concentration, refl ecting RBC-NOS dependent NO production.

     Hematology Data     Reticulocytes are usually mildly increased and leukocytes and 
platelets show normal values and distribution, except in patients with splenomegaly, 
who may have reduced neutrophil and platelet numbers due to sequestration. 
Hematological data are presented in Table  13.1 .  

  Alpha thalassemia  is common in African-derived populations, especially in popula-
tions from West African; therefore HbSC coexistence is expected. In our cohort, 
heterozygous alpha thalassemia occurred in 15.5 % of HbSC patients and three 
patients (2.91 %) were homozygotes. The effect of alpha thalassemia on clinical 
severity of HbSC is unknown; however, a mild clinical course in a 86 year old 
patient carrying both hemoglobinopathies has been reported (Rodgers et al.  1986 ). 
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In our cohort, disease was very severe in two of the alpha-thalassemia homozygotes, 
who presented CVA, pulmonary thromboembolism (PTE), ACS, pulmonary hyper-
tension, osteonecrosis and retinopathy. 

  Haplotype     Most HbC carriers present haplotype CI, nevertheless CII and CIII as 
well as atypical haplotypes can be found in a minority of patients. The association 
of these haplotypes with HbS haplotypes does not modify the hematological char-
acteristics of the patients (Nagel and Steinberg  2009 ). In our cohort, Haplotypes 
CII, CIII and atypical, together, were found in less than 10 % of the HbSC patients.  

  Hemoglobin Distribution     As mentioned above, red cells contain equal amounts of 
HbS and HbC, probably as a result of both abnormal chains competing similarly for 
alpha-globin chains. HbA2 and HbF are produced in normal amounts; however 
some patients exhibit a mild increase in HbF, probably related to the genetic back-
ground of HbS. In our cohort, HbF values were mostly normal and the median val-
ues in our sample were 1 %.  

  Hemolysis     Hemolysis is known to be lower in HbSC, compared to HbSS homozy-
gotes, and the severity of the disease is mainly attributed to high blood viscosity due 
to high hematocrit values. LDH has long been considered a clinical marker of intra-
vascular hemolysis, which could contribute to complications associated with sickle 
cell disease (Kato et al.  2006 ). As such, we investigated associations between LDH 
and markers of hemolysis and organ dysfunction in our population of 103 patients 
with HbSC disease. LDH was positively correlated with markers of hemolysis and 
correlated signifi cantly with reticulocyte counts, but was inversely correlated with 
haptoglobin levels (Table  13.4 ). Among patients who did not have complications, 

  Fig. 13.1    Red cell elasticity (Dyn/cm), as measured by optical tweezers, in healthy controls 
(AA), and individuals with sickle cell anemia (SS), sickle cell trait (AS), sickle cell anemia on 
hydroxyurea therapy (HU), HbSC disease and hereditary spherocytosis (HS). Adapted from 
Brandão ( 2005 )       
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the median LDH concentration was 449 UI/L [257–603 UI/L]. This differed signifi -
cantly from the median LDH concentration in patients with complications; 479 
UI/L [322–2283 UI/L] ( p =  0.012). Interestingly, an association was observed 
between LDH and platelet counts ( rho  0.304,  p =  0.005). These fi ndings could be 
related to disease severity, as infl ammation may induce thrombocytosis 
(Griesshammer et al.  1999 ); however, the high platelet count in our cohort was cor-
related with auto-splenectomy.

13.1.4         Association between LDH and Clinical Manifestations 
in HbSC 

 Although the intensity of hemolysis, as assessed by plasma LDH levels, is expected 
to be lower in HbSC than in HbSS patients, we investigated this specifi c parameter 
and analyzed its correlation with HbSC complications. We found a signifi cant dif-
ference between median LDH levels in the subgroups with or without retinopathy 
and venous thromboembolism (VTE) (451.5 IU/L [257–1816] versus 537 IU/L 
[354–2283],  p = 0.03  and 461 IU/L [257–1816] versus 664 IU/L [389–2283] 
 p =  0.018, respectively). To further investigate the application of this marker, we 
determined the associations between LDH levels and complications. ROC curve 
analysis showed that for retinopathy, LDH > 535 UI/L had a sensitivity of 51.3 % 
and a specifi city of 76 % [95 % confi dence interval: 51.8–75.5 %],  p =  0.013 and 
OR: 3.3. For VTE, LDH > 606.5 UI/L had a sensitivity of 71.4 % and a specifi city 
of 84.6 % [95 % confi dence interval: 55.3–99.2 %],  p =  0.003 and OR = 13.1. For 
stroke, LDH > 614.5 UI/L had a sensitivity of 75 % and a specifi city of 85.2 % [95 
% confi dence interval: 38.7–100 %],  p =  0.016 and OR = 16.3. Finally, for leg ulcer, 
LDH > 668.5 UI/L had a sensitivity of 100 % and a specifi city of 89 % [95 % confi -
dence interval: 83.64–96.85 %],  p = 0.002  and OR = 2.8 (Fig.  13.2 ). When these 
four complications were grouped together, LDH > 535.5 UI/L had a sensitivity of 
51.2 % and specifi city of 78.6 % [95 % confi dence interval: 52.09–75.96 %], 
 p  = 0.007 and OR = 3.78 (Fig.  13.3 ).

   Table 13.4    Correlations between LDH levels and hemolytic parameters in HbSC disease   

 Number of patients  rho   p  

 Hemoglobin  85  −0.014  0.901 
 Reticulocyte count  80  0.471  <0.001 
 Haptoglobin  69  −0.323  0.007 
 Indirect bilirubin  57  0.059  0.661 

  Data collected, at the time of writing, from HbSC patients accompanied at the Hemoglobinopathies 
Clinic, Hematology Center, University of Campinas. Spearman’s rank test  
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  Fig. 13.2    Receiver operating characteristic (ROC) analysis using plasma lactate dehydrogenase 
levels as a parameter for the prediction of ( a ) stroke, ( b ) venous thromboembolism, ( c ) leg ulcer 
and ( d ) retinopathy in HbSC patients accompanied at the Hemoglobinopathies Clinic, Hematology 
Center, University of Campinas       

  Fig. 13.3    Receiver operating characteristic (ROC) analysis using plasma lactate dehydrogenase 
levels as a parameter for the prediction of grouped complications (stroke, venous thromboembo-
lism, leg ulcer and retinopathy) in HbSC patients accompanied at the Hemoglobinopathies Clinic, 
Hematology Center, University of Campinas       
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13.1.5         Elevated Hypercoagulability Markers in Hemoglobin 
SC Disease 

 While an increased risk for thromboembolic events in SC disease has been related 
(Stein et al.  2006 ; Novelli et al.  2012 ), there is a lack of studies evaluating hemo-
static alterations in this population. We described a cross-sectional observational 
study to evaluate coagulation activation markers in adult SC patients, in comparison 
with SS patients and healthy controls. A total of 56 SC and 39 SS patients were 
included in the study, all in steady state, and 27 healthy controls. None of the 
patients were in use of hydroxyurea. HbSC patients presented a signifi cantly up- 
regulated relative expression of  tissue factor , as well as elevations in thrombin- 
antithrombin complex and D-dimer, in comparison to controls ( p  < 0.01). 
Furthermore, HbSC patients presented lower  tissue factor  expression, and thrombin- 
antithrombin complex and D-dimer levels, when compared to SS patients ( p  < 0.05). 
Endothelial activation (soluble thrombomodulin and soluble vascular cell adhesion 
molecule-1), and infl ammation (tumor necrosis factor-alpha) markers were both 
signifi cantly elevated in HbSC patients when compared to controls, being as high as 
the levels seen in HbSS. Overall, in HbSC patients, higher hemolytic activity and 
infl ammation were associated with a more intense activation of coagulation, and 
hemostatic activation was associated with two very prevalent chronic complications 
seen in HbSC disease; retinopathy and osteonecrosis. In summary, our results dem-
onstrate that HbSC patients present a hypercoagulable state, although this manifes-
tation was not as intense as that seen in sickle cell anemia (Colella et al.  2015 ).  

13.1.6     Blood Cell Transfusion and Alloimmunization 
in HbSC Disease 

 Overall, patients with HbSC disease have a milder clinical course with a later onset 
of symptoms. Despite fewer episodes of acute chest syndrome (ACS) and vaso- 
occlusive crisis (VOC), the incidence of avascular necrosis, retinopathy, and 
pregnancy- related complications may be high in patients with HbSC. Furthermore, 
disease severity presents marked variability and some patients with HbSC disease 
have the same amount of complications as those patients with HbSS disease. 

 RBC transfusion remains an essential part of the management of patients with 
SC hemoglobinopathy. Despite the benefi ts, this procedure increases the risk of 
serious hazards related to transfusions such as delayed hemolytic transfusion reac-
tions and alloimmunization. Alloantibody formation against RBC antigens is a 
major complication associated with RBC transfusions in patients with sickle cell 
disease (which comprises HbSC disease). The alloimmunization rate in this popula-
tion ranges considerably; dependent primarily on the extent of minor RBC antigen 
matching and exposure frequency, and the development of multiple alloantibodies 
is not uncommon, often delaying the location of compatible RBCs. 
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 There are few data in the literature reporting on alloimmunization rates in HbSC 
disease, specifi cally. Rosse et al. ( 1990 ) found no signifi cant difference between the 
proportion of alloimmunized HbSS patients (13.1 %) and the proportion of alloim-
munized non-HbSS patients (9.1 %) ( p  = 0.07). Studies have reported that in the 
United Kingdom (UK), United States (US) and Kuwait, rates for alloimmunization 
in SCD patients are 18–76 % with ABO and D matching alone (Davies et al.  1986 ; 
Ambruso et al.  1987 ; Vichinsky et al.  1990 ; Olujohungbe et al.  2001 ; Aygun et al. 
 2002 ; Castro et al.  2002 ; Sakhalkar et al.  2005 ; Ameen et al.  2009 ), 5–11 % with 
additional limited phenotype matching for C, E, and K antigens (Sakhalkar et al. 
 2005 ; Vichinsky  2001 ), and 0–7 % for extended minor RBC antigen matching 
beyond C, E, and K (Tahhan et al.  1994 ; Lasalle-Williams et al.  2011 ). In Jamaica 
and Uganda, alloimmunization rates in SCD patients are even lower: 2.6–6.1 % 
with ABO and D matching alone (Olujohungbe et al.  2001 ; Natukunda et al.  2010 ). 
The lower incidence of RBC sensitization in these reports is probably infl uenced by 
low transfusion burdens as well as homogeneity between recipients and donors of 
African origin, compared to the UK and US, where donors of African descent rep-
resent a minority (Osby and Shulman  2005 ). 

 The rate of alloimmunization in our HbSC patients is 21.3 % which is apparently 
lower than the rate in HbSS patients (32.7 %); however with no statistical difference 
 (p  = 0.13). Despite the current employment of extended phenotyping, we believe 
that several factors contribute to this result, including transfusions in other services 
that do not employ the use of the extended phenotype and the age of the patients 
who were alloimmunized during childhood when only ABO and RH typing were 
used. Finally, the high rates of Rh gene variants, which are not identifi ed in conven-
tional serological tests, may also have contributed to this index.  

13.1.7     Diagnosis 

 The diagnosis of HbSC is based on the identifi cation of hemoglobin S and hemoglo-
bin C, in equal amounts, in the red cells. They are both easily identifi ed by electro-
phoresis, isoeletric focusing or HPLC. However, since other hemoglobins may run 
in the position of HbC, it is important to differentiate them by acid citrate agar. 
Moreover, in alkaline electrophoresis, HbA2 and HbC migrate in the same region 
however, the amount of HbA2 is usually below 5 %, thus, when more than 40 % is 
observed in the HbA2 position, we presume that it is HbC.   

13.2     Sβ Thalassemia 

 The occurrence of Sβ thalassemia is dependent on the distribution and prevalence of 
both alleles in a given region. Beta-thalassemia is very prevalent in individuals of 
Italian, Greek and Mediterranean region descent. As such, Sβ thalassemia is more fre-
quent in areas where miscegenation of African descendants and descendants from 
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these populations occur and can be more prevalent than HbSS in homozygosis in some 
parts of Greece; however in the Americas, beta thalassemia gene frequency is lower 
than 0.005 (Saraf et al.  2014 ; Christakis et al.  1990 ; Serjeant and Serjeant  2011b ). 

 In patients with Sβ 0  thalassemia, the relative amount of HbS inside the RBCs is 
comparable to that observed in homozygotes and, as such, the phenotype of the dis-
ease is similar to that of HbSS. Conversely, the Sβ +  phenotype may vary depending 
on the expression of HbA. Thus, the amount of HbS in RBCs may be similar to that 
observed in HbSC, with Hb levels of higher than 9 g/dL, splenomegaly and mild 
hemolysis. Additionally, the Sβ +  phenotype may be even better if more than 20 % 
HbA is synthesized. This variation in hemoglobin synthesis is related to the muta-
tional profi le of the beta-thalassemic allele. Data from Sβ 0  and Sβ +  patients seen in 
our clinic are shown in Tables  13.1  and  13.3 . A comparison of hematological data for 
Sβ thalassemia individuals from the northeastern region of Brazil is shown in Table 
 13.5 . In our cohort of S beta thalassemia patients (Table  13.1 ), Sβ 0  patients (com-
pared to Sβ +  patients) presented a signifi cantly lower weight (median, 51 kg vs 69.4 
kg;  p  = 0.002), BMI (median 19.7 vs 25.1; p < 0.001), lower densitometry values for 
lumbar spine (median −0.8 vs 0.95;  p =  0.01) and femoral neck (median −0.2 vs 1.2; 
 p  = 0.015), hemoglobin levels (8.7 vs 9.9 g/dL,  p =  0.005), higher platelet number 
(418 vs 174 × 10 9 /L;  p  = 0.021), HbF (7.6 vs 2.9 %,  p  = 0.001), serum iron (114 vs 70 
μg/dL;  p =  0.014) and transferrin saturation (47.5 vs 27 %;  p  = 0.004). These differ-
ences are easily understood, since the absence of HbA in the RBC may lead to greater 
anemia, lower growth, more hemolysis and consequently more osteoporosis/osteo-
penia and more iron absorption, which would increase transferrin saturation. 
Moreover, severity of sickle cell disorder is also related to early auto- splenectomy, 
which causes increased platelet number.

13.2.1       Diagnosis 

 The diagnosis of Sβ thalassemia is based on the presence of HbS and increased Hb 
A2 in a patient with low MCV and MCH. The amount of HbA varies according to 
the molecular defect of the βthal allele.   

13.3     Hemoglobinopathy SD 

 SD disease is a rare sickle cell syndrome, characterized by compound heterozygos-
ity for HbS and HbD. HbD Punjab or Los Angeles is the result of a mutation in 
codon 121 of the beta-globin chain, which substitutes glutamic acid for glutamine. 
The glutamine residue facilitates HbS polymerization and patients with both alleles 
exhibit vaso-occlusion and hemolytic anemia. Both hemoglobins have the same 
electrophoretic behavior at alkaline pH; however the solubility test, acid pH electro-
phoresis, HPLC and isoelectric focusing distinguish SD from homozygotes. Data 
from two patients with HbSD are shown in Table  13.6 .
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   Table 13.6    Clinical and laboratorial data for patients with double heterozygosity for HbS and 
HbD   

 Parameter  CASE 1  CASE 2  Reference range 

 Gender  M  F 
 Age  39  38 
 Hb (g/dL)  9.5  8.5  11.8–16.7 
 Reticulocytes (×10 9 /L)  251.7  241.3  22–139 
 MCV (fL)  104.1  99.3  82–98 
 MCHC (%)  32.9  33.6  31.6–34.9 
 Leukocytes (×10 9 /L)  7.5  6.86  3.7–11.1 
 Neutrophils (×10 9 /L)  2.88  3.23  1.5–7.5 
 Lymphocytes (×10 9 /L)  3.24  2.76  1.0–3.5 
 Monocytes (×10 9 /L)  0.76  0.5  0.2–0.92 
 Eosinophils (×10 9 /L)  0.26  0.24  0.02–0.67 
 Platelets (×10 9 /L)  346  376  130–400 
 HbF %  7.5  8.5 
 Microalbuminuria (μg/min)  15.4  3.09  <30 
 Serum creatinin (mg/dL)  0.8  0.52  F < 0.9; M < 1.2 
 Clearance  51 Cr EDTA (ml/min)  94  129  <103.4 ± 15 
 Lactate dehydrogenase (U/L)  2038  1650  <480 
 AST (U/L)  57  45  <40 
 ALT (U/L)  19  17  <41 
 GGT (U/L)  61  12  5–61 
 Alkaline phosphatase  62  199  35–129 
 Conjugated bilirubin (mg/dL)  0.7  0.6  <0.3 
 Unconjugated bilirubin (mg/dL)  5.1  2.04  <0.9 
 Osteonecrosis  Yes  Yes 
 Retinopathy  Yes  No 
 ACS  No  No 
 stroke  No  No 
 VTE  No  No 
 Priapism  No  No 
 Leg ulcer  No  No 
 Transfusion  Yes  Yes 
 Alloimmunization  No  No 
 Cholecystopathy  Yes  Yes 
 Alpha thalassemia  No  No 
 Hydroxyurea  No  No 

  Data are from patients accompanied at the Hemoglobinopathies Clinic, Hematology Center, 
University of Campinas 
  AST  aspartate amino transferase,  ALT  alanine amino transferase,  GGT  gamma glutamyl transpep-

tidase,  HbF  fetal hemoglobin,  VTE  venous thromboembolism  
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   An epidemiological study carried out at the Federal University of Minas Gerais 
in Brazil (Orsini et al.  2014 ) showed an incidence of SD carriers of approximately 
0.7 % of all sickle cell disease patients, comprising equally SD-Punjab and SD-Korle 
Bu. SD-Punjab patients have the same clinical phenotype as that of HbS homozy-
gotes and SD-Korle Bu behaves as a sickle cell trait. The β73 residue mutated in 
HbD Korle Bu does not reduce HbS polymerization.  

13.4     Conclusion 

 Sickle cell disorders are heterogeneous with regard to clinical and laboratorial data, 
depending mostly on the genotype. Sβ 0  thalassemia patients present similar param-
eters to those of HbSS homozygotes; while Sβ +  thalassemia, hemoglobinopathy SC 
and hemoglobinopathy SD have similar phenotypes. However, adults from any of 
these groups can demonstrate severe complications and early death.     
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    Chapter 14   
 Sickle Cell Disease in Africa and the Arabian 
Peninsula: Current Management 
and Challenges                     

       Adekunle     Adekile      and     Julie     Makani    

    Abstract     Africa and the Arabian Peninsula are two regions of the world that are of 
particular interest in sickle cell disease. While the former has the highest burden of 
the disease in the world, the latter has the highest variety in terms of the genotypes, 
haplotypes and phenotypes that are encountered. The disease is usually severe in 
Africa because of complex interactions between genetic and environmental factors, 
but the Arabian Peninsula has a relatively mild expression because of the prevalence 
of the high-HbF phenotype, although the presentation is still quite heterogeneous, 
with some patients having a severe clinical course and developing complications. 
One major difference in the two regions is that the vast majority of African patients 
are homozygous, SS, while among Arabs, there is a high prevalence of other com-
pound heterozygotes especially Sβ 0 -thal. This chapter presents the contrasting pic-
tures in terms of the epidemiology, clinical presentation, management practices and 
the prevailing challenges. It looks at the peculiar issues of resource limitation in 
Africa and outlines strategies that could surmount some of the challenges. While 
most of the countries in the Arabian Peninsula are endowed with the necessary 
resources, the wide variation in the phenotypic patterns poses challenges in adopt-
ing uniform control strategies.  
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14.1       Sickle Cell Anemia in Africa 

14.1.1     Introduction 

 The greatest burden of sickle cell anemia (SCA) in the world is in Africa, with the 
highest rates of prevalence and mortality. The occurrence of severe forms of SCA in 
Africa is the result of complex interactions between genetic and environmental fac-
tors. This is compounded by the limitations in many African countries that result in 
the failure to implement interventions that are known to be effective for improving 
survival. This section explores the epidemiology of SCA in Africa, focusing on the 
prevalence, morbidity and mortality, as well as clinical presentation and factors 
determining its severity. This is followed by a review of management of SCA in 
Africa, exploring current practice, challenges and outlining strategies that are being 
adopted to improve its management in Africa.  

14.1.2     Epidemiology: Prevalence and Geographical Distribution 

    Birth Prevalence of SCA 

 One of the parameters used to determine the magnitude of SCA in a population is 
the birth prevalence of the disease, defi ned as the number of affected births per 1000 
live births. In an ideal setting, this is determined by screening of all live births and 
identifying all newborns with confi rmed SCA. Unfortunately, newborn screening 
(NBS) for SCA is not available in many African countries. Due to the absence of 
this information, the birth prevalence has been estimated from the available data on 
the prevalence of sickle cell trait and assuming that the sickle gene is in Hardy–
Weinberg equilibrium. There are several limitations in the series of assumptions that 
are made with these estimates. However, in the absence of more accurate informa-
tion, these fi gures are currently used to estimate the birth prevalence of SCA, and 
suggest that four out of fi ve of the countries with the highest birth prevalence of the 
disease in the world are in Africa [Nigeria, Democratic Republic of Congo (DRC), 
India, Tanzania and Uganda]. With increasing population growth from increasing 
birth rates, it is estimated that, globally, 14 million babies will be born with SCA 
between 2010 and 2050, with 80 % of these births being in sub-Saharan Africa (Piel 
et al.  2013a ) (Fig.  14.1 ).

       Population Prevalence of SCA 

 African countries recognize the need to provide accurate estimates of population 
prevalence of SCA in order to plan health care for affected patients. The population 
prevalence of SCA refers to the number of people with SCA within a specifi ed 
population, which is reported per 100 or per 1000 or 100,000, depending on the 
magnitude of the condition. For most conditions, this is determined during 
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population census or as part of demographic health surveillance programmes. 
However, most countries do not include the collection of information on 
SCA. Therefore, the estimate of population prevalence is determined by using the 
birth prevalence and mortality rate, as well as information from hospital records. In 
the United States of America (USA), it is estimated that there are 100,000 individu-
als with SCA (Hassell  2010 ). In sub-Saharan Africa, it is estimated that there could 
be over 6,000,000 individuals with SCA; assuming that life expectancy in individu-
als with SCA is 50 % that of the norm in Africa (Modell and Darlison  2008 ). Since 
the survival of individuals with SCA is bound to differ in different settings, depend-
ing on various genetic, environmental and social factors, defi nitive estimates of  
population prevalence are needed.  

    Geographical Distribution of SCA 

 The hypothesis proposed by Haldane suggested that individuals with the heterozy-
gous state of thalassemia are protected from malaria, resulting in a high prevalence 
of thalassaemia in malaria-endemic areas (Haldane  1949 ). This hypothesis has been 
popularly referred to as the ‘malaria hypothesis’. Allison, more specifi cally explored 
the relationship between sickle cell trait, SCA and malaria in Africa, which led to 
the description of lower prevalence of malaria in individuals with sickle cell trait 
and the geographical distribution of SCA in Eastern Africa (Allison  1954a ,  b ). This 
led to further discussion on the natural selection of the sickle gene by malaria, 
which is balanced by the high mortality that occurs in individuals with the homozy-
gous state. This state of balanced polymorphism is one of the factors that account 
for the occurrence of the high prevalence of the sickle gene in eastern Africa (Allison 

  Fig. 14.1    Estimated number of newborns with sickle cell anemia, per country, between 2010 and 
2050. Reproduced from Piel et al. ( 2013a )       
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 1964 ). Allison further went on to discuss the occurrence of negative epistasis 
between two ‘malaria-protective’ genes within a population (Allison  1964 ), which 
may account for the geographical distribution of thalassaemia in Asia-India-Europe, 
and SCA in Africa (Penman et al.  2009 ). These hypotheses have led to maps that 
show the geographical distribution of the sickle gene, which matches the geographi-
cal distribution of malaria (Piel et al.  2010 ). However, there are two limitations to 
this approach. The fi rst being that it uses information on prevalence of sickle cell 
trait from few data points to make assumptions on the prevalence within a country 
and continent. The second limitation is the assumption that malaria is the major fac-
tor that determines the prevalence of SCA. This simplifi ed approach does not 
explain the maintenance of high prevalence of SCA in the Mediterranean (Penman 
et al.  2012 ) and there is a need to conduct micromapping studies to accurately deter-
mine the birth and population prevalence of the disease in different geographical 
areas within a country and continent (Weatherall et al.  2006 ).  

    Mortality 

 There is a high mortality rate in individuals with SCA in Africa. A study conducted 
in the Garki district in Nigeria reported that, within a population of individuals with 
SCA identifi ed at birth, only 2 % were alive at the age of 5 years (Fleming et al. 
 1979 ). Recent literature suggests that childhood survival in SCA in Africa is likely 
to have improved, and is estimated to be 50 % in some settings (Weatherall et al. 
 2006 ). This however, does not approach the survival estimates that have been 
achieved in high-income countries, with childhood survival ranging between 94 and 
95 % (Telfer et al.  2007 ; Quinn et al.  2004 ) (Fig.  14.2 ). There are limited reports of 
current mortality rates in SCA from African countries. Tanzania reported a sickle 
cell disease (SCD)-specifi c mortality rate of 1.9 [95 % confi dence interval (CI): 
1.5–2.9)] per hundred person-years of observation (100 PYO) (Makani et al.  2011a ). 
This compares to 0.15 and 0.6 per 100 PYO in the United Kingdom (UK) and the 
United States of America (USA), respectively (Telfer et al.  2007 ; Quinn et al.  2010 ). 

  Fig. 14.2    Childhood 
survival for sickle cell 
anemia in different parts of 
the world       
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Globally, and within Africa, the period with the highest mortality in SCA is the fi rst 
5 years of life: 7.3 per 100 PYO in Tanzania, compared to 0.72 and 0.43 per 100 
PYO for children ages 0–2 and 2–4 in the USA (Quinn et al.  2004 ). It is diffi cult to 
get accurate information on under-fi ve mortality rates due to SCA in African coun-
tries, as there is no newborn screening and therefore most children with SCA will 
die before a diagnosis is made. Estimates by Modell et al. suggest that hemoglobin 
disorders contribute the equivalent of 3.4 % of mortality in children aged under 5 
years worldwide or 6.4 % in Africa (Modell and Darlison  2008 ).

   The causes of mortality, both in children and adults, in the USA, UK and Jamaica 
include infections, acute chest syndrome (ACS), acute splenic sequestration (ASS), 
and aplastic crisis (Thomas et al.  1982 ; Brozovic and Anionwu  1984 ; Leikin et al. 
 1989 ; Gill et al.  1995 ). Within Africa, it is likely that the most common causes of 
mortality are infections, anemia and acute episodes leading to stroke and acute chest 
syndrome (Makani et al.  2007 ). Other events such as pain, pulmonary hypertension, 
and hemolysis are associated with an increased risk of death. The absence of litera-
ture on SCA beyond childhood, as well as the limited number of adolescents and 
adults with SCA in hospital-based facilities, has resulted in the assumption that 
there is high childhood mortality in SCA in Africa. However, there is increasing 
evidence that the number of individuals with SCA is high (Rahimy et al.  2003 ; 
Tshilolo et al.  2008 ; Makani et al.  2011a ). This suggests that there has either been a 
reduction in childhood mortality, or that the detection of individuals with SCA who 
have mild disease has increased.   

14.1.3     Clinical Presentation: Different Phenotypes 
and Peculiarities 

 The heterogeneity of SCA that has been described in SCA populations in Europe 
and Americas is also seen in Africa. Its clinical presentation is heterogeneous in 
several ways. There is inter-individual variability with some individuals who are 
completely asymptomatic while others have extreme, debilitating illness. There is 
also variability within an individual, with changes in the type and frequency of 
clinical events with age. The general pattern of clinical disease is characterized by 
quiescent periods interspersed with episodes of acute illness, which were previously 
known as ‘crises’ that require emergency or urgent intervention. However, with 
improvement in healthcare and awareness about the natural history of SCA, there is 
increasing recognition of the chronic, life-long nature of the disease, which results 
in chronic complications involving end-organ dysfunction, as well as the effect of 
SCA on reducing the quality of life. As a result, there has been an increase in the 
number of health facilities that provide life-long care for SCA. Although there is 
limited information on clinical epidemiology of the illness in Africa, it is likely that 
there will be similarities with SCA populations in other parts of the world. However, 
it is important to explore and identify differences in the spectrum of disease in 
Africa due to the infl uence of various factors within genes, environment and society. 
Table  14.1  provides a summary of selected clinical phenotypes.
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   Table 14.1    Clinical features of sickle cell disease   

 Clinical event  Characteristics and comments  References 

 Pain  More than 60 % patients 
 Most common cause of hospital 
admission 
 Frequent pain is a risk factor for 
mortality 

 Platt et al. ( 1991 ), Gill et al. ( 1995 ), 
Ibidapo and Akinyanju ( 2000 ), Charles 
et al. ( 2006 ), Olabode and Shokunbi 
( 2006 ), and Quinn et al. ( 2007 ) 

 Malaria  Risk factor for mortality. 
Chemoprophylaxis recommended 
in high transmission areas and 
children under 5 years 

 Fleming et al. ( 1979 ), Fleming ( 1989 ), 
Makani et al. ( 2010a ), and Komba et al. 
( 2009 ) 

 Bacterial 
infections 

 10 % of children under 5 years. 
Prophylaxis recommended 
against  Streptococcus 
pneumoniae  

 Overturf et al. ( 1977 ), Ellison et al. 
( 2013 ), Ramakrishnan et al. ( 2010 ), and 
Williams et al. ( 2009 ) 

 Anemia  Chronic. Acute episodes 
associated with mortality. Causes 
include infection, hemolysis, 
splenic sequestration 

 Hayes et al. ( 1985 ), El-Hazmi et al. 
( 1987 ), Maude et al. ( 1987 ), Bayoumi 
et al. ( 1988 ), Christakis et al. ( 1990 ), 
Mohamed et al. ( 1992 ), and Akenzua 
et al. ( 1994 ) 

 Aplastic anemia  Associated with parvovirus B19 
infection 

 Serjeant et al. ( 1981 ), Neonato et al. 
( 2000 ), and Juwah et al. ( 2004 ) 

 Hyperhemolysis  Not common in Africa. Reduced 
with Hydroxyurea 

 Nolan et al. ( 2005 ), Kato et al. ( 2006 ), 
Ballas and Marcolina ( 2006 ), and 
Taylor et al. ( 2008 ) 

 Cholelithiasis  Prevalence is 40 % by 
adolescence 

 Childs ( 1995 ) 

 Acute splenic 
sequestration 

 Frequently occurs before the age 
of 3 years 

 Topley et al. ( 1981 ), Emond et al. 
( 1985 ), and Gill et al. ( 1995 ) 

 Leg ulcers  Prevalence is 10–25 % in adults  Koshy et al. ( 1989 ) and Durosinmi et al. 
( 1991 ) 

 Priapism  Prevalence is 10–40 % males. 
Occurs frequently in the 5–14 
years age group 

 Gbadoe et al. ( 2007 ) 

 Stroke  Prevalence is 10 % in children. 
Risk factor for mortality. High 
rate of recurrence. Leads to poor 
quality of life 

 Ohene-Frempong et al. ( 1998 ) 

 Cognitive/silent 
stroke 

 Prevalence is 20 %. Risk factor 
for overt stroke 
 Leads to impairment of executive 
function 

 DeBaun et al. ( 1998 ), Kinney et al. 
( 1999 ), Miller et al. ( 2001 ), and Marouf 
et al. ( 2003a ) 

 Retinopathy  Prevalence is >30 % in HbSC  Hayes et al. ( 1981 ) and Kent et al. 
( 1994 ) 

 Acute chest 
syndrome (ACS) 

 Prevalence is 40 %. Occurs 
frequently in children, severe 
consequences in adults 
 12.8 per 100-patient years (Castro 
et al.  1994 ) 

 Vichinsky et al. ( 2000 ), Castro et al. 
( 1994 ), and Platt et al. ( 1994 ) 

(continued)
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      Genetic Determinants of Clinical Disease in Africa 

 There are four major β-globin haplotypes that have been described in Africa, each 
is associated with different levels of severity (see Fig.  14.3 ). In West Africa, the 
Senegal haplotype, which is associated with a high fetal hemoglobin level and a 
mild phenotype and the Benin haplotype, associated with a moderately severe phe-
notype, predominate. The Central African Republic (CAR), also known as the 
Bantu haplotype, occurs predominantly in East and Central Africa and carries a 
severe phenotype. The Arab/Indian haplotype, also associated with high fetal hemo-
globin, is found predominantly in the Arabian Peninsula and the Indian sub- 
continent, but is also found in a few areas within Africa, such as Zanzibar, where 
there are populations of Arabs and Indians. The Cameroon haplotype, also found 
east of Nigeria in West Africa, is not widely distributed and is also associated with 
moderately severe disease. It should be noted that, in addition to SCA, West Africa 
has a high prevalence of hemoglobin C, resulting in occurrence of SC disease, 
which is another form of sickle cell disease (SCD) (Piel et al.  2013b ).

   One of the principal factors that determine severity in SCA, is the level of fetal 
hemoglobin (HbF). Following the genomic revolution and completion of the human 
genome project, efforts have been made to identify genetic loci that are associated 
with HbF production in SCA in Africa. Genetic variants at three principal loci have 
been shown to contribute to the inter-individual HbF variation in SCA (Thein et al. 
 2009 ; Lettre et al.  2008 ; Creary et al.  2009 )—the region on chromosome 11p that 
contains the  HBB  and olfactory receptor gene clusters (Solovieff et al.  2010 ) and 
two hematopoietic regulator loci, on chromosome 6q ( HBS1L-MYB  intergenic poly-
morphism,  HMIP ) and on chromosome 2p ( BCL11A ). These loci are thought to 
account for less than 50 % of HbF variability in healthy European Caucasians 
(Thein and Menzel  2009 ). The genetic contribution to HbF in Africans is not clear; 
but is likely to be lower, with fi gures estimated at 2–20 % (unpublished observa-
tions). Initial work in Tanzania reported that of the three known genetic factors 
infl uencing HbF, only one is prevalent in Tanzanian patients, while the other two are 
rare in this population (Makani et al. 2011b). For this reason, there is a need to rep-
licate genetic studies in African populations and conduct further studies to identify 
new loci.  

Table 14.1 (continued)

 Clinical event  Characteristics and comments  References 

 Pulmonary 
hypertension 

 Prevalence of 30 % in adults 
 Risk factor for mortality 

 Castro et al. ( 2003 ), Gladwin et al. 
( 2004 ), Ataga et al. ( 2006 ), Nelson et al. 
( 2007 ), and Onyekwere et al. ( 2008 ) 

 Avascular 
necrosis 

 Prevalence is 10–50 %  Griffi ths ( 1968 ), Ebong ( 1977 ), and Lee 
et al. ( 1981 ) 

 Renal disease  Prevalence of chronic renal 
failure is 5–20 % 

 Abbott et al. ( 2002 ) 

  Adapted from Yardumian and Crawley ( 2001 )  
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    Environmental and Social Determinants of Clinical Disease in Africa 

 Infections, especially malaria and bacterial infections, due to  Streptococcus pneu-
moniae , are the leading cause of mortality in SCA. In high-income countries, inter-
ventions to prevent infections with pneumococcal vaccination and penicillin 
prophylaxis are thought to be one of the major factors that have resulted in improved 
survival, particularly in the fi rst 5 years of life. Unfortunately, few countries in 
Africa have implemented these interventions. The factors that have led to a delay in 
implementation of these interventions include debate about the burden of pneumo-
coccal infection in SCA (Kizito et al.  2007 ; Obaro  2009 ). However, there is now 
unequivocal evidence that pneumococcal infection occurs with high prevalence in 
SCA in Africa (Reddy et al.  2010 ; Ramakrishnan et al.  2010 ; Campbell et al.  2004 ; 
Williams et al.  2009 ). 

 Within Africa, the prevalence of malaria is still high in some areas, although 
there is increasing evidence that there are changes in the transmission intensity with 
a decrease in prevalence, particularly in urban areas (O’Meara et al.  2008 ; Snow 

  Fig. 14.3    Geographical distribution of the four haplotypes of the sickle gene. ( a ) Map identifi es 
the three distinct areas in Africa and one in the Arab-India region where the sickle gene is present 
( dotted lines ). Numbers of individuals with sickle-cell disease ( red lines ) in Senegal, Benin, and 
Bantu are higher near the coast, and falls concentrically inland. ( b ) The β-globin gene cluster hap-
lotype is determined by DNA polymorphic sites ( boxes ) that are identifi ed by endonuclease 
enzymes. Figure reproduced with permission from Stuart and Nagel ( 2004 )       
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et al.  2005 ; Omumbo et al.  2005 ; Noor et al.  2014 ; Wang et al.  2006 ). However, 
malaria is still a cause of morbidity and mortality in some areas with the highest 
burden of disease in children under 5 years of age. The presence of sickle hemoglo-
bin confers protection against malaria infection (Allison  1954b ; Abdulhadi  2003 ; 
De Paz et al.  2006 ; Crompton et al.  2008 ; Rosenthal  2011 ; Aidoo et al.  2002 ). 
However, malaria is associated with increased mortality in SCA (McAuley et al. 
 2010 ; Makani et al.  2010 ; Komba et al.  2009 ). The issue of malaria chemoprophy-
laxis is complex due to the lack of evidence to guide the appropriate drug to be used. 
In the past, chloroquine was the chemoprophylactic agent of choice as it was cheap, 
effective, had minimal side effects and had a convenient dosing regime, being taken 
once a week. Current recommendations for chemoprophylaxis are limited because 
there is no agent that has a suitable profi le that would be effective in the long-term 
for SCA in Africa (Kotila et al.  2007 ; Oniyangi and Omari  2006 ; Nwokolo et al. 
 2001 ; Mnyika et al.  2000 ). As a result, it is advisable to ensure malaria prevention 
with insecticide-treated nets as well as prompt diagnosis and treatment of malaria 
infection. This is of particular importance in areas with high malaria endemicity, as 
well as in children under 5 years of age. 

 The other factors that determine the natural history of SCA in Africa include 
access to healthcare, socioeconomic status, as well as cultural and religious beliefs 
(Wonkam et al.  2014 ; Fullwiley  2011 ; Brown et al.  2010 ; Addis et al.  2007 ; Ohaeri 
and Shokunbi  2002 ; Reese and Smith  1997 ). These factors have a signifi cant role in 
determining the spectrum of disease, independently of its biological nature. There 
is a need for more research in Africa, as these factors will allow proper planning to 
ensure equitable access to health services.   

14.1.4     Management (Healthcare) 

    Summary of Standard-of-Care Practice (Recommended Guidelines) 

 Management programmes for SCA should provide appropriate advice, counselling 
and support to parents and affected individuals. A key element of this is providing 
health education about SCA. This includes interventions such as drinking adequate 
quantities of fl uid to avoid dehydration, recognition of acute events and triggers to 
seek medical care. Teaching mothers to recognise enlargement of the spleen and 
anemia was effective in diagnosing and treating anemia due to ASS (Emond et al. 
 1985 ; Al-Hawsawi and Ismail  2001 ). There are four options for SCA management 
that are recommended (Table  14.2 ). Most African countries are working towards 
option one, which involves providing the best possible patient care with the use of 
prophylactic penicillin following diagnosis, together with retrospective genetic 
counselling.

   Current recommendations for management of SCA have been recently  provided, 
following review of existing evidence (Yawn et al.  2014 ). These guidelines provide 
recommendations based on the level of strength of evidence available. Box  14.1  
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   Table 14.2    Options for the management of sickle cell anemia   

 Option one: Best possible patient care with the use of prophylactic penicillin following 
diagnosis, together with retrospective genetic counseling 
 Option two: Best possible patient care, together with a neonatal screening program and the use 
of penicillin for all homozygous babies, together with retrospective screening and genetic 
counseling 
 Option three: Best possible patient care, together with a neonatal screening and the use of 
prophylactic penicillin from birth for homozygotes, together with population screening and 
prospective genetic counseling 
 Option four: As for option three, plus the availability of prenatal diagnosis, bone marrow 
transplantation, or both 

  Adapted from Weatherall et al. ( 2006 )  

 Box 14.1: Selected Interventions for Sickle Cell Anemia That Can Be 
Implemented in Africa. Adapted from Yawn et al. ( 2014 ) 

  Preventive services  
 • Daily oral prophylactic penicillin up to the age of 5 years 
 •  Annual transcranial Doppler examinations from the ages of 2 to 16 years in those with 

sickle cell anemia 
 •  Long-term transfusion therapy to prevent stroke in those children with abnormal 

transcranial Doppler velocity (≥200 cm/s) 
  Management of acute complications  
 •  Rapid initiation of opioids for treatment of severe pain associated with a 

vasoocclusive crisis 
 • Use of incentive spirometry in patients hospitalized for a vasoocclusive crisis 
  Management of chronic complications  
 • Use of analgesics and physical therapy for treatment of avascular necrosis 
 • Use of angiotensin-converting enzyme inhibitor therapy for microalbuminuria in 
adults with SCD 
 •  Referral to expert specialists for consideration of laser photocoagulation for children 

and adults with proliferative sickle cell retinopathy 
 •  Referral to expert specialists for consideration for echocardiography to evaluate signs 

of pulmonary hypertension 
  Indications for hydroxyurea therapy  
 • Adults with three or more severe vasoocclusive crises during any 12-month period 
 • Adults with SCD pain or chronic anemia interfering with daily activities 
 • Adults with severe or recurrent episodes of acute chest syndrome 
 •  Consider offering treatment with hydroxyurea without regard to the presence of 

symptoms for infants, children, and adolescents 
  Blood transfusion for SCA  
 • Preoperative transfusion therapy to increase hemoglobin levels to 10 g/dl 
 •  Maintain sickle hemoglobin levels of less than 30 % prior to the next transfusion 

during long-term transfusion therapy 
 •  Assess iron overload, accompanied by a moderate strength recommendation to 

begin iron chelation therapy when indicated 
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outlines some of the recommendations based strong or moderate evidence. For most 
African counties, a limited diagnostic capacity exists; for example, many centers do 
not have access to transcranial Doppler ultrasonography. Furthermore, there are limi-
tations in treatment capacity, for approaches such as long-term transfusion therapy, 
incentive spirometry and laser photocoagulation. However, most African countries 
should be able to provide at least the following: prophylactic penicillin, opioids for 
treatment of severe pain, hydroxyurea and blood transfusion for acute episodes of 
anemia, stroke and acute chest syndrome. Most centers are not in a position to provide 
long-term blood transfusion therapy for those with abnormal TCD (≥200 cms/s). 

14.1.5         Current Practice, Challenges and Opportunities 

    Burden of Disease 

 Most African countries will have the challenge of dealing with large numbers of 
patients. As previously mentioned, estimates suggest that there will be 14,000,000 
children born with SCA between 2010 and 2050 (Piel et al.  2013c ). With increasing 
detection and survival, the number of individuals with SCA seeking healthcare will 
steadily increase (Modell and Darlison  2008 ). Furthermore, the SCA population in 
Africa will increasingly have individuals with the severe form of the disease, who 
will present with advanced complications in the acute and chronic form. This is 
within a background of limited diagnostic and treatment capacity, as well as within 
the context of complex ethical, social and cultural issues. As such, an approach that 
implements the best possible care within this setting is required, as well as the col-
lection of evidence in the form of research in order to modify interventions based on 
locally appropriate evidence.  

    Health Systems 

  Health Facilities: Primary, Secondary and Tertiary Care Level Healthcare in 
Africa     Healthcare in many African countries is administered at three levels. There 
has been an increase in the number of health facilities within African countries that 
provide care for SCA (Galadanci et al.  2014 ; Rahimy et al.  2003 ; Tshilolo et al. 
 2008 ; Makani et al.  2011a ); most of these are in urban areas or centered in academic 
or research-oriented health facilities. In order to increase services beyond these few 
centers, there must be active strategies to ensure that appropriate management is 
built into services at all levels of healthcare with adequate support from these spe-
cialized centers. SCD stakeholders have been working with governments and inter-
national health agencies, such as the WHO, to ensure that there is appropriate 
management at different levels of healthcare with the development of referral cen-
tres for specialised diagnosis and treatment. This approach ensures a cost-effective 
way of effectively dealing with a highly prevalent condition in areas where resources 
are limited. However, to ensure adoption and sustainability of these strategies, there 
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must be adequate political will on the part of national governments. Most African 
countries still do not have legislative policies for the control and management of 
sickle cell disease. It is doubtful whether much progress can be achieved until this 
is rectifi ed.  

  Diagnostic Facilities: Laboratory Investigations for the Diagnosis of SCA     There 
are three laboratory tests that are commonly used for diagnosis of SCA; hemoglo-
bin electrophoresis (HbE), isoelectric focusing (IEF) and high performance liquid 
chromatography (HPLC). DNA-based tests can be done to precisely describe the 
genotype. However, for clinical purposes, diagnosis usually involves screening 
(sickling or solubility test), followed by confi rmation of phenotype using one or 
two of these tests (HbE, IEF or HPLC). In most African hospitals, screening is 
done using the ‘sickling test’, which involves making a thin blood fi lm, which is 
then put under hypoxic conditions by the addition of sodium metabisulphite, and 
the detection of ‘sickled’ red blood cells under a light microscope. A ‘positive’ 
sickling test identifi es the presence of sickled RBCs, which occur in both homo- 
(SS) and heterozygous (AS) states. Confi rmation of SCA is then usually carried out 
by hemoglobin electrophoresis, although for some hospitals in Africa there is 
capacity for IEF or HPLC. There is a rationale for centralizing the diagnostic ser-
vices for confi rmation of SCA in a few hospitals, which would receive samples in 
the form of dried blood spots. The screening could be done at point-of-care and 
there are currently efforts being made to develop rapid screening tests for SCA 
(Kumar et al.  2014 ; Yue et al.  2014 ). 

 The identifi cation of individuals with SCA at birth by newborn screening 
(NBS) and the enrolment of these infants into care programs has been found to 
be associated with a 70 % decrease in mortality in the fi rst 3 years of life (Yanni 
et al.  2009 ). Efforts are therefore being made to advocate the introduction of 
NBS for SCA within the health systems in Africa (Makani et al.  2015 ). There are 
challenges associated with the introduction of NBS such as fi nancial costs, labo-
ratory capacity, as well as logistical challenges associated with screening and 
feeding back results. However, there is increasing evidence that this is feasible 
(Tshilolo et al.  2009 ; Rahimy et al.  2009 ; Odunvbun et al.  2008 ; Mutesa et al. 
 2007 ). Furthermore, the survival benefi ts are evident as are the economic costs 
associated with the prevention of complications, as well as their prompt diagno-
sis and treatment.  

  Diagnostic Facilities: Laboratory Investigations for Acute and Chronic 
Complications     In addition to developing capacity for diagnosis of SCA, most 
African countries need to strengthen their laboratories for the investigation of acute 
and chronic complications. The priority should be on tests that would identify con-
ditions associated with increased risk of morbidity and mortality. This includes tests 
in hematology (blood counts, reticulocyte count, direct antiglobulin test for autoim-
mune hemolysis), chemistry (hemolysis, liver function tests) and infections (malaria, 
blood cultures). Most African countries have a health system that includes a referral 
process that will allow individuals to access these services.  
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  Diagnostic Facilities: Imaging     Important imaging tests that are needed for SCA 
management include ultrasound, X-Ray, neuroimaging (CT and MRI), as well as 
Transcranial Doppler ultrasonography (TCD). Most referral hospitals in African 
countries have ultrasound facilities, which are useful for the diagnosis of gall blad-
der disease as well as having capacity for X-ray services, which are needed for 
diagnosis of osteomyelitis (acute/chronic) and avascular osteonecrosis. With the 
increasing recognition of the prevalence of stroke, both overt and silent, the confi r-
mation of cerebrovascular disease requires computerized tomography (CT) or mag-
netic resonance imaging (MRI) of the brain. Unfortunately, these services (including 
TCD) are limited to a few hospitals in most African countries, and the high cost 
associated with these tests means that they may not be accessible to everyone.   

    Medicines and Vaccines 

 There are a few hospitals in Africa that have a dedicated service for SCA or hema-
tology. Therefore, most healthcare is provided by general practitioners or, where 
available, specialists in paediatrics and internal medicine. In areas where it is 
feasible, patients are seen on a regular basis and provided with folic acid 
supplements. 

 Prompt treatment of acute episodes, often caused by pain, fever or anemia, par-
ticularly at outpatient or in day-care facilities has been found to be effective and 
reduces the burden of hospitalization to the individual and the health system 
(Rahimy et al.  1999 ,  2003 ). This has been found to have a signifi cant impact on, not 
only quality of life, but also mortality (Rahimy et al.  2003 ; Okpala et al.  2002 ). 

 Infection management is critical, as this is a major cause of morbidity and mortal-
ity. Although not widespread, many African countries are starting to provide penicil-
lin prophylaxis in the under 5-year-old age group (Makani et al.  2015 ). Furthermore, 
where available, it is recommended that vaccination against pneumococcal infection 
should be done. However, there are areas with gaps in knowledge with regards to 
infection prevention in Africa, which would benefi t from further research. The fi rst 
uncertainty is whether oral penicillin is the best way of providing chemoprophylaxis, 
considering that this route requires daily administration, which may be associated 
with diffi culties in compliance. The question is, therefore, whether intramuscular 
penicillin, administered on a monthly basis, would be a better alternative. This is the 
method used for the prevention of acute rheumatic fever in Africa for children with 
valvular and rheumatic heart disease. The second question is whether the pneumo-
coccal vaccines that are available will provide coverage against the serotypes of 
 Streptococcus pneumoniae  that are prevalent in Africa. The third area is to determine 
the prevalence, pattern and antibiotic sensitivity of the bacterial organisms that cause 
infection in SCA. There is a surprising dearth of information in this area, which is 
compounded by the diagnostic capacity for blood stream infections. 

 It is recommended that the management of malaria in SCA should involve pre-
ventative measures, such as the use of insecticide-treated nets. There are challenges 
with regards to the agent that can be used for chemoprophylaxis, but mefl oquine 

14 Sickle Cell Disease in Africa and the Arabian Peninsula…



352

and malarone are recommended. Chloroquine is not recommended for treatment or 
prophylaxis because of the high prevalence of choloroquine-resistant malaria. 
Management should include prompt diagnosis and treatment of malaria. 

 Blood transfusion is used for the management of acute, life-threatening anemia 
in Africa, although the level of hemoglobin, which is used as a cut-off to make a 
clinical decision on whether to transfuse, is much lower. There has been an improve-
ment in blood transfusion services in many African countries, with improvement in 
blood transfusion infection safety. This was triggered by strategies to address the 
HIV epidemic as part of the efforts to reduce transmission of HIV infections through 
transfusion. The current challenge is that the supply of blood is not adequate to meet 
the demand for acute interventions (acute stroke, acute chest syndrome, acute ane-
mia). In addition, long-term transfusion programs, which have been found to be 
effective in reducing the incidence of stroke in high-risk individuals, are not an 
option for intervention in many African countries. The other challenge with blood 
transfusion in Africa is the risk of alloimmunization. Although the prevalence of 
alloimmunization may be lower than that in the West, due to similarities in ethnicity 
between the blood donor and SCA population, the risk is still present. Most hospi-
tals and transfusion centers in Africa do not have the capacity to perform extended 
red blood cell phenotyping in order to provide appropriate blood for those known to 
have red blood cell antibodies. Finally, there is limited information on the preva-
lence of iron overload, particularly as a complication of blood transfusion. Despite 
these challenges, there is a need to increase efforts to improve blood transfusion 
practice for the management of SCA in Africa. 

 Hydroxyurea is used for SCA in some African countries (Akingbola et al.  2014 ; 
Makubi et al.  2012 ; Aloni and Nkee  2014 ; Galadanci et al.  2014 ). There has been 
discussion with regards to the potential risks within Africa, such as increased prob-
ability of bacterial infection due to myelosuppression, which is a recognized com-
plication of hydroxyurea, as well as concern about an increase in the risk of malaria 
(Bakanay et al.  2005 ). However, the current thinking is that the benefi ts of hydroxy-
urea far outweigh the risks. It is, therefore, recommended that hydroxyurea should 
be used when indicated for SCA in Africa, whilst gathering evidence from clinical 
trials. However, even with encouraging use of hydroxyurea, there are challenges 
with regards to supply and access. Although it is a drug that has been used in many 
African countries for treatment of chronic myeloid leukaemia, its use for SCA is not 
widespread. As a consequence, it is not readily available in both public and private 
hospitals and pharmacies. Efforts are being made in African countries to increase 
drug accessibility, either by engaging pharmaceutical companies to support local 
production or improving local supply. 

 Hematopoietic stem cell transplantation (HSCT), which replaces the host’s bone 
marrow with stem cells containing normal β-globin genotype, is a potential cure for 
SCA. Since the fi rst successful transplant reported in 1984 (Johnson et al.  1984 ), 
there has been a signifi cant reduction in risks due to SCT and increasing success, 
with the results, of up to 85 % event-free survival, occurring with HLA-matched 
sibling donors and transplantation early in the course of the disease before end- 
organ damage occurs (Walters et al.  1996 ,  2000 ; Bernaudin et al.  1993 ; Vermylen 
et al.  1998 ; Talano and Cairo  2015 ). In high-income countries, there are limitations 
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regarding the availability of sibling donors (Krishnamurti et al.  2003 ) and therefore 
there have been attempts to improve survival for matched unrelated stem-cell donors 
(Woodard et al.  2002 ; Adamkiewicz et al.  2004 ). Within Africa, the issue of fi nding 
matched sibling donors may not be such a limiting factor, as families tend to be 
larger in size. Furthermore, although a huge proportion of individuals with SCA in 
Africa are from a background where HSCT is not an option, there is increasing 
demand for this intervention (Bazuaye et al.  2014 ). It is therefore critical that HSCT 
remains an option that is made available for some individuals with SCA in Africa 
(Pule and Wonkam  2014 ).   

14.1.6     Conclusion 

 The course of SCA is heterogeneous, with a wider spectrum of disease-modifying 
factors in Africa. Despite the knowledge of the various genetic and environmental 
factors that alter disease severity, it is still diffi cult to accurately identify individuals 
with risk of severe disease before extensive damage has occurred, as well to target 
interventions. 

 In most African countries, SCA is a disorder of public health signifi cance due to 
the high prevalence and considerable burden to individuals, communities and the 
health system. Therefore, there is an urgency to develop national policies and guide-
lines that will direct interventions that can be used in the short term, and start plan-
ning a more detailed management plan for the long term. In the medium to long 
term, with economic development in low resource countries in Africa, there will be 
a demographic transition, making chronic, non-communicable diseases such as SCA 
have increasing importance. Research has shown evidence of reductions in disease 
morbidity and mortality with the application of relatively simple interventional mea-
sures. Until such time that a low-risk, defi nitive cure is available, the cornerstone of 
management of SCA in many African countries, as is the case in other areas in the 
world, is the reduction of early childhood mortality, prevention of end-organ damage 
and improvement in the quality of life. Primary, community- based care, with facili-
ties for referral to secondary and tertiary centers, would be the most cost-effective 
strategy to reach the large numbers of affected patients and their families.   

14.2      Sickle Cell Disease in the Arabian Peninsula 

14.2.1     Introduction 

 The Arabian Peninsula is home to some of the oldest civilizations in the world and 
it has witnessed massive migrations from time immemorial. While it contains 
extensive deserts, it also has fertile areas where agriculture thrived and malaria was 
endemic. Hemoglobinopathies, including thalassemias and sickle cell disease are 
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quite prevalent. The region is noted for its variety of sickle genotypes, haplotypes, 
and phenotypes. The high prevalence rates of α- and β-thalassemia (thal) alleles 
lead to interesting interactions with HbS. The only known dominantly inherited 
sickle syndrome, in which heterozygotes present with severe phenotype, HbS 
Oman, is found in the region. Standard-of-care management practice is available in 
most countries, while newborn and premarital screening programs have also been 
instituted in many. However, the marked phenotypic heterogeneity is a challenge in 
formulating uniform management guidelines in the region. This section outlines the 
pattern of SCD found in the region and the lessons that can be learned from their 
study. 

 The Arabian Peninsula covers an area of ~3 million km 2 , with an estimated popu-
lation of ~52 million. It shares borders with Jordan and Iraq in the North, the Persian 
Gulf and the Gulf of Oman in the East, the Arabian Sea and the Gulf of Aden in the 
South and the Red Sea in the West. The countries of the Peninsula are Saudi Arabia, 
which is the largest and most populous with ~27 million people, Yemen, Oman, 
United Arab Emirates, Qatar, Bahrain and Kuwait. It is essentially a vast plateau, 
but there are mountain ranges in the Southeast and Southwest. The climate is 
extremely arid and there are extensive desert areas. However, there are oases and an 
outer ring of fertile tracts especially in Yemen, Oman and Eastern Saudi Arabia. 
These support agriculture and malaria was once endemic in parts of the Peninsula, 
but this has been relatively controlled with only sporadic and imported cases now 
occurring (Al-Hamidhi et al.  2014 ).  

14.2.2     The Peoples of Arabia 

 Different peoples have continuously occupied the Peninsula since pre-historic 
times, with the earliest being Semites in the central region, Ubaidians on the Eastern 
coast, Hamites in the south and Negroids in the southern coast (Adekile  1997 ; 
Nayeem  1990 ). However, there were waves of migration out of the central part of 
the Peninsula with the Post-Pleistocene desertifi cation, starting from the fourth mil-
lennium BC (Tixier  1986 ; Oates  1986 ). The initial centers of civilization were, 
therefore, established in the fertile area of Southwestern Arabia around Yemen from 
1200 BC to 525 AD. The Mediterranean and Indian Seas also linked the great cen-
ters of civilization in Egypt, Mesopotamia, Southern Iran and the Indus Valley. An 
important link in the trade among these centers was the Dilmun civilization, which 
fl ourished between 3000 and 1200 BC and extended from present-day Kuwait to 
Eastern Saudi Arabia and Bahrain (Abu-Hakima  1988 ). 

 The greatest revolution in the region occurred with the fl ight of Prophet 
Mohammed to Medina in 622 AD, which was the onset of the Islamic Era that 
brought Arabian culture and infl uence to a large part of the Middle East, North 
Africa, Asia and Europe. More recent migrations followed inter-ethnic and recur-
rent drought in central Arabia. Signifi cantly, members of the Utub tribe left Najd, 
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East–Central Saudi Arabia in the late seventeenth and early eighteenth centuries and 
founded settlements in present-day Qatar, Kuwait and the Bahrain Islands 
(Abu- Hakima  1988 ). However, both the United Arab Emirates (UAE) and Oman 
were never under Utub control, but were infl uenced by Southern Persia and Indus 
Valley civilizations and were favored by immigrants from Baluchistan over the last 
two millennia. Oman has maintained close contact with Yemen since the BC era, 
but by early nineteenth century, the country also controlled Mombasa, and the 
Island of Zanzibar in East Africa, establishing fl ourishing trade endeavors (Daar 
et al.  2000 ). These migrations and interactions have infl uenced the gene pool in the 
region and contributed signifi cantly to the prevalent diversity and complexity of 
sickle cell and other genetic diseases.  

14.2.3     Sickle Cell Disease in Arabia: Genotypes, 
Haplotypes and Phenotypes 

 The Arabian Peninsula presents the most variety, of any region of the world, in 
terms of the prevalent sickle genotypes, haplotypes and phenotypes, with all the 
known patterns being represented. Some variants are, indeed, peculiar to this part of 
the world and are not seen elsewhere. Socio-cultural factors also play a role in sus-
taining the prevalence of mutant genes in the Peninsula. Of importance is the high 
consanguinity rate, which is as high as 60 % in Saudi Arabia and about 54 % in 
Kuwait. The most common of these unions, is fi rst-cousin, especially paternal, 
including double fi rst-cousin marriages (El-Hazmi et al.  2011 ). The second factor is 
the large sibship size with averages of 6–7 children per family in many communi-
ties. The high prevalence of β- and α-thal alleles and glucose-6-phosphate dehydro-
genase defi ciency also accounts for different compound forms of SCD, much more 
than seen in other populations. 

 The prevalence of the β S  trait varies considerably in the different countries of the 
Peninsula, being highest in agricultural oases, where malaria was quite prevalent. In 
Saudi Arabia, prevalence of the trait varies from 2 to 27 %, with up to 1.4 % of the 
population having the disease in some areas (el-Hazmi and Warsy  1999 ; Jastaniah 
 2011 ; Lehmann et al.  1963 ). Patients in the Western provinces have a more severe 
phenotype compared to those in the Eastern provinces. Padmos et al. ( 1991 ) were 
the fi rst to show that the former behave like West African patients and that the pre-
dominant β S -globin haplotype is Benin, associated with low HbF levels, while 
patients in the Eastern provinces carry the Arab/Indian haplotype characterized by 
the  HBG2, −158 Xmn-1  (C→T) and have elevated Hb F levels. Patients in the 
Western province have a more severe phenotype compared to those in the East, 
although pain crisis and avascular necrosis of the femoral head occur in both. The 
incidence of overt stroke among hospitalized children with SCD in the former is 
about 9.4 % (Hawasawi et al.  1998 ), but is estimated to be lower in the latter (El 
Sayed et al.  1999 ). 
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 White et al. ( 1986 ) reported a frequency of 0.95 % for sickle trait among Yemenis 
with a predominance of the Benin haplotype and high α-thal trait frequency 
(Al-Saqladi et al.  2010 ; el-Hazmi and Warsy  2000 ). The patients have a severe phe-
notype with the most common presenting symptom being dactylitis in 54 %, while 
the most common causes of hospitalization were pain crisis (36 %), anemic crisis 
(16 %) and acute chest syndrome in 11 % (Al-Saqladi et al.  2007 ). 

 Bahrain has the oldest and most comprehensive SCD prevention program in the 
Arabian Peninsula. The program was instituted in 1984, with newborn screening 
starting in 2007. The incidence of affected babies has reduced from 0.7 % in 2008 
to 0.4 % in 2010 (Al Arrayed and Al Hajeri  2012 ). Screening of school children 
reported a prevalence of 1.2 % for SCD and 13.8 % for AS (Al-Arrayed et al.  2003 ), 
while among pregnant women, HbAS was found in 32.5 % (el-Shafei et al.  1992 ). 
The Arab/Indian haplotype predominates at about 90 % (Al-Arrayed  1995 ). 

 The fi rst report of SCD from Kuwait was in 1970, of three siblings with a mild 
phenotype and high Hb F levels, who were asymptomatic until late childhood (Ali 
 1970 ). More recent reports have confi rmed that the Arab/Indian haplotype is pre-
dominant with >85 % of the patients being either homozygous or compound hetero-
zygous with the Benin haplotype (Adekile et al.  1994 ; Adekile and Haider  1996 ). 
The phenotype is, however, heterogeneous, but complications like dactylitis, leg 
ulcers and stroke are uncommon, while osteonecrosis is frequently seen. The com-
monest presentation is with pain crisis, with low incidence of hemolysis or severe 
infections. 

 The frequency of the sickle trait in the United Arab Emirates was reported at 
1.9 % in a study of about 5000 Peninsular Arabs (White et al.  1986 ), while Miller 
reported a fi gure of 4.6 % in a survey of preschool children in the country (Miller 
et al.  2003 ). However, newborn screening showed a fi gure of 1.1 % incidence 
for both UAE nationals and expatriates (Al Hosani et al.  2005 ). The prevalence of 
the Arab/Indian haplotype has been put at about 52 %, with considerable pheno-
typic heterogeneity (Baysal  2001 ; el-Kalla and Baysal  1998 ). 

 According to a survey of ~1702 individuals, the frequency of HbAS in Qatar is 
about 7.5 % (Fawzi et al.  2003 ), with the predominant haplotype being Arab/India 
with a relatively mild, but variable phenotype. Oman presents the most variety in the 
distribution, haplotype and phenotypic patterns of SCD in the Peninsula. In an anal-
ysis of 7837 neonates, an incidence of 4.8 % was reported for HbAS and 0.3 % for 
SCD (Alkindi et al.  2010 ). This is similar to the fi gure of 5.8 % reported by 
Al-Riyami et al. who also showed a higher prevalence (>70 %) of the disease in 
areas of high malaria endemicity—Dharia, Dakhliya, North and South Shargiya 
(Al-Riyami et al.  2001 ). Because of the historical links to Yemen, Indian subconti-
nent and East Africa, the three main haplotypes are represented with Benin account-
ing for 48.7 %, Arab/India 25.8 % and Bantu 20.5 % (Daar et al.  2000 ). The 
phenotype of the disease therefore varies relative to the different haplotypes. 
Interestingly, the dominant sickle cell syndrome (HbS Oman), in which the hetero-
zygote presents with a severe phenotype, has been described among some Omani 
families (Nagel et al.  1998 ).  
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14.2.4     Peculiarities of SCD in the Arabian Peninsula 

 More than any other region, the Arabian Peninsula presents a very interesting inter-
play of varieties of the disease that are either not encountered or are less prevalent 
in other populations. The region therefore presents natural models to study and 
understand these genetic variants. The presence of the Arab/Indian haplotype with 
high levels of HbF in many patients in the Peninsula, offers an opportunity to eluci-
date its role as a phenotype modifi er. Secondly, the high prevalence of α- and β-thal 
alleles combines with HbS to produce SCD of variable phenotypes. Glucose-6- 
phosphate dehydrogenase is also quite prevalent and its infl uence on SCD has been 
reported in a number of studies in the region. Lastly, the region presents HbS Oman, 
which is the only known dominantly-expressed allele in which heterozygotes show 
a severe phenotype and homozygosity is not compatible with life. 

    Role of HbF as a Phenotype Modifi er 

 The protective effects of HbF in SCD are evident from the absence of symptoms in 
affected newborns and young infants. Studies have shown that the heterotetramer, 
α 2 γβ S , which is formed by the incorporation of γ chains into the HbS molecule is 
much more soluble than the homotetramer (α 2 β S  2 ), thus polymerization is reduced in 
such patients (Poillon et al.  1993 ; Sunshine et al.  1979 ). SCD patients with HbF >8.6 
% have a better survival and levels of ≥20 % have a milder phenotype and less end-
organ pathology (Powars et al.  1984 ). Probably, the fi rst publication alluding to the 
mild phenotype of some patients in the Arabian Peninsula was Ali’s report of  1970  
of older asymptomatic Kuwaiti SCD patients who happened to have elevated Hb F 
levels (Ali  1970 ). Padmos et al.’s study of  1991  compared Saudi patients in the 
Western province who had low Hb F levels to those in the Eastern province with high 
levels (Padmos et al.  1991 ). They showed the marked phenotypic differences in 
both, with the latter having a much more severe phenotype than the former. Western 
patients had more dactylitis and acute chest syndrome, while Eastern patients had 
more persistent splenomegaly, but painful crises and avascular necrosis of the femo-
ral (AVN) head were common in both. More recently, Al-Sultan et al. have con-
fi rmed the severity of the SCD among Southwestern Saudi patients and reported 
prevalence fi gures of 22 %, 14 %, 11.5 % and 7.5 % for acute chest syndrome, 
osteonecrosis, serious infections and stroke, respectively (Alsultan et al.  2012 ). It 
must be stressed, however, that the genetics of HbF and its role as a phenotype modi-
fi er are not completely understood and there are still areas that need elucidation. 

 The distinguishing polymorphism that characterizes the Arab/Indian (AI) and 
Senegal haplotypes is the  HBG2 −158 Xmn-1 , (C→T) and this, to a large extent is 
responsible for the sustained elevated HbF levels seen in the patients, even as adults. 
Other QTLs especially the BCL11A on chromosome 2 and the HBS1L-MYB on 
chromosome 6 have been shown to be powerful inducers of HbF in the normal 
population and among patients with beta thalassemia in different ethnic backgrounds 
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(Akinsheye et al.  2011 ; Makani et al.  2011b ; Thein and Menzel  2009 ). Indeed, 
polymorphisms in these two QTLs account for ~20 % of HbF expression in these 
groups. However, studies of SCD patients with the AI haplotype showed that they 
contribute only about 8 % to the HbF variance (Alsultan et al.  2013 ; Akinsheye 
et al.  2011 ). This raises the possibility that other yet-unknown, ethnocentric poly-
morphisms might be important in this group of patients. 

 It is intriguing, however, that among Arab patients with elevated HbF levels, 
there is still considerable phenotypic heterogeneity. Among patients in Kuwait, in 
whom the mean HbF is >20 % and, until the age of ~4 years, it is close to 30 % 
(Adekile et al.  2007 ), HbF levels do not signifi cantly infl uence the frequency of 
vaso-occlusive crisis or AVN (Adekile and Haider  1996 ; Adekile et al.  2001 ). 
Indeed, AVN is particularly common in this population, being seen in ~26 % of 
children and 45 % of adults (Adekile et al.  2001 ; Gupta and Adekile  2004 ; Marouf 
et al.  2003b ). However, there are some complications that are not encountered or are 
milder in Kuwaiti patients, including dactylitis, leg ulcers, priapism and acute chest 
syndrome. 

 Another distinguishing factor among children with the Arab/Indian haplotype is 
the absence of signifi cant bacterial infections. This is also attributed to the high HbF 
levels, especially in the fi rst 2 years of life when SCD patients are most vulnerable 
to sepsis with encapsulated organisms, especially pneumococcus. Several reports 
have alluded to the maintenance of spleen function to an older age among Arab 
patients. An early study (Al-Awamy et al.  1984 ) showed that a group of children 
with SCD from Eastern Saudi Arabia had low numbers of pocked RBCs in compari-
son to American patients who had high levels, indicating normal spleen function in 
the former. A study of 46 Kuwaiti patients with SCD, aged 2–16 years (Adekile 
et al.  2002a ), using technetium splenic scintigraphy, showed that 39.1 % had normal 
function, 32.6 % had partial function and 28.3 % had no function. While there was 
no signifi cant difference in HbF levels in the three groups, the prevalence of α-thal 
trait was signifi cantly higher in the group with normal function. Similarly, another 
study from Eastern Saudi Arabia (Al-Jam’a et al.  2000 ) of 74 adults and children 
with SCD found that, among the children up to age 4 years, only 16.6 % had func-
tional hyposplenism, which increased to 50 % by the age of 10 years. HbF also had 
no infl uence on spleen function and, while α-thal genotyping was not done, patients 
with low mean corpuscular volume (MCV) had better spleen function. 

 Of particular interest are central nervous system (CNS) manifestations, which 
are quite uncommon among Arab patients with the Arab/India haplotype. Stroke is 
seen in <1.0 % (Adekile  2001 ) and silent brain infarcts are rare in childhood 
(Adekile et al.  2002b ). However, contrary to reports from the US (Kinney et al. 
 1999 ), where new silent infarcts are not seen in adult SCD patients, they are com-
mon in adult Kuwaiti patients in whom they are seen in ~20 % (Marouf et al.  2003a ). 
It is, therefore, thought that the high HbF in these patients delays the onset and 
progression of cerebral small vessel vasculopathy such that brain infarcts are not 
seen in childhood. However, there is a cumulative, temporal effect, such that 
sequelae of the disease start to be expressed in adult patients in spite of the high HbF 
levels. Indeed, a recent study of 104 adult Saudi SCD patients, with elevated HbF 
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levels (Alsultan et al.  2014 ), confirmed the non-benign nature of their disease. 
It reported that 47 % had at least one episode of acute chest syndrome; symptomatic 
osteonecrosis was reported in 18 %, priapism in 17 % and overt stroke in 6 %. Leg 
ulcers were not seen and there was a high prevalence of persistent splenomegaly. 
The fi ndings from the Kuwait SCD registry also refl ect this pattern of more compli-
cations in the adult patients compared to children (Adekile, unpublished data).  

    Infl uence of Co-existing α-Thal Trait 

 The Arabian Peninsula has some of the highest frequencies of α-thalassemia alleles 
in the world and this is refl ected in the degree of its co-inheritance with SCD. The 
frequency of α-thal trait among Kuwait patients was found to be about 40.0 %, of 
whom ~30 % carried the α2 −3.7 kb deletion and ~10 % carried the T Saudi  non- 
deletional (AATAAA → AATAAG) allele (Adekile and Haider  1996 ; Adekile et al. 
 2007 ). Among 80 adult patients from Eastern Saudi Arabia with predominant Arab/
India haplotype, as in Kuwait, 41 (51 %) had α-thalassemia trait of whom 16 (39 %) 
were homozygous for the −3.7 kb deletion, while 15 were heterozygous for the 
T Saudi  (Alsultan et al.  2014 ). While it is believed, in general, that α-thalassemia trait 
has an ameliorating effect in Arab SCD patients (el-Hazmi and Warsy  1993 ), stud-
ies from Saudi Arabia and Kuwait did not fi nd an infl uence on the incidence of 
vaso-occlusive crisis, osteonecrosis or silent brain infarcts (Adekile et al.  2001 , 
 2007 ; Alsultan et al.  2014 ; Adekile and Haider  1996 ). However, α-thalassemia trait 
signifi cantly reduces the chance of developing gallstones or hyposplenia in Kuwaiti 
children with SCD (Haider et al.  1998 ; Adekile et al.  1996 ).  

   Infl uence of Glucose-6-Phosphate Dehydrogenase (G6PD) Defi ciency 

 The frequency of G6PD defi ciency varies from ~6 to ~40 % in the different coun-
tries of the Arabian Peninsula (Warsy and El-Hazmi  2001 ; White et al.  1986 ). There 
have been contradictory reports of its interaction with SCD with both ameliorating 
and enhancing effects on the phenotype described (El-Hazmi et al.  2011 ). G6PD 
defi ciency was found in 47 % of SCD patients in Bahrain (Mohammad and Ardatl 
 1998 ), but there was no mention of how it infl uenced the phenotype. G6PD defi -
ciency by itself did not alter the SCD phenotype among Saudi patients, but in addi-
tion to α-thal trait, there was an ameliorating effect (el-Hazmi et al.  1994 ).  

   HbSβThal 

 The high frequency of β-thalassemia in the Arabian Peninsula is refl ected in the 
preponderance of Sβthal compound heterozygotes in the region. The phenotype is 
heterogeneous, determined to a large extent by the nature of the β-thal mutation 
(El-Hazmi et al.  2011 ). While Sβ + thal carries a generally mild phenotype, Sβ 0 thal is 
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as severe, if not more so, than SS. Among SCD patients in Saudi Arabia, groups 
with the highest severity index were Sβ 0 thal patients with one α-gene deletion and 
SS without α-thal (el-Hazmi et al.  1994 ). In Kuwait ~40 % of the patients in the 
SCD registry are Sβ 0 thal and present more complications of the disease e.g. splenic 
sequestration, gallstone, osteopenia and osteonecrosis (Adekile, unpublished data).  

   HbSD-Punjab 

 HbD-Punjab or D-Los Angeles is a β-globin chain variant resulting from a Glu → Gln 
substitution at codon 121 (Itano  1951 ; Babin et al.  1964 ). It is most prevalent in the 
Indian sub-continent, but is seen sporadically in other ethnic groups. Both heterozy-
gotes and homozygotes are clinically and hematologically normal. However, com-
pound heterozygotes with HbS tend to present with a severe course, which may be 
indistinguishable from HbSS (Kelleher et al.  1984 ). HbSD is encountered in the 
Arabian Peninsula, where, indeed it is quite severe. Among Kuwaiti patients, in 
spite of elevated HbF levels of ~23 %, and HbD concentration of ~45 % and S of 
<30 %, the phenotype is, indeed, more severe than is generally seen in SS patients 
with similar Hb F levels (Adekile et al.  2010 ). It has been hypothesized that the 
Gluβ121 plays a vital role in gelation and that it weakens the α1/β2 contacts in 
HbS. When Glu is replaced by another residue (Gln in HbD and Lys in HbO-Arab), 
a pro-sickling molecule is created, thus explaining why HbSD and HbSO-Arab 
have such severe phenotypes (Adachi et al.  1988 ). When two pro-sickling mutations 
are inherited on the same chromosome, as happens in HbS Oman, a severe pheno-
type is seen, even in the heterozygote (see below).  

   HbS Oman 

 HbS Oman carries the β121 (Glu → Lys) and the β6 (Glu → Val) mutations 
(Langdown et al.  1989 ) on the same chromosome. The former is the mutation 
causing HbO Arab , while the latter is the HbS mutation. The two, together, produce 
additive sickling effects such that heterozygotes for HbS Oman demonstrate a phe-
notype similar to HbSS. Nagel et al. ( 1998 ) described three individuals with 20–23 
% HbS Oman and two others with levels of 13 % and 14 % respectively. The high 
HbS Oman group had co-existent silent α-thal (−α/αα), while the second group 
had α-thal trait (−α/-α). The latter had signifi cantly lower MCV and MCH and 
higher Hb levels. The patients with high HbS Oman had frequent painful crises, 
acute chest syndrome and hypoxic encephalopathy. It is believed that the patho-
physiology of the SCD syndrome in HbS Oman is due to the sickling propensity of 
both the β6 Val and β121 Lys mutations, but in addition, the latter also has an 
abnormal interaction with the RBC membrane, inducing hemolysis and RBC 
changes. Homozygosity for HbS Oman has not been described and it is thought to 
be incompatible with life.   
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14.2.5     Challenges to SCD Management in the Arabian Gulf 

 While many of the countries in the region have excellent facilities to provide ade-
quate comprehensive care, this is not true of all. There is also a dearth of well- 
trained personnel in many centers, especially in the following cadres that are 
essential for a robust care program; nurses, social workers, counselors, psycholo-
gists, and technical staff. Newborn and obligatory premarital screening programs 
are available in some, but not all the countries. These programs have been quite 
successful in Bahrain, where they are starting to make an impact on the incidence of 
the disease. 

 Probably the greatest dilemma in producing uniform guidelines for the manage-
ment of SCD in the region is the wide phenotypic variability encountered in the 
different affected populations. The β-globin haplotype, fetal hemoglobin level and 
co-inheritance of α-thalassemia trait have signifi cant infl uences on the phenotype. 
Thus among those with the Arab/India haplotype, severe bacterial infections, stroke, 
leg ulcers and acute chest syndrome are relatively uncommon. Nonetheless, most 
patients receive penicillin prophylaxis in the fi rst 5 years of life and pneumococcal 
vaccination is given. Folic acid is also administered on a routine basis. In Kuwait, 
where most patients have the Arab/India haplotype with elevated HbF, most patients 
do not present until the age of 4 or 5 years, penicillin prophylaxis is prescribed on 
an individual basis for those presenting in infancy and any patient <5 years of age 
with functional hyposplenism. In addition, folic acid is prescribed routinely for 
patients with Hb <10 g/dl. 

 Blood transfusion services are excellent in most of the countries with capability 
for extended phenotypic cross matching and screening for infective agents. Chronic 
transfusion therapy is available when indicated. 

 Transcranial Doppler (TCD) screening to identify patients at risk for stroke is 
advised in SCD patients with a severe phenotype and this is done in many of the 
centers. However, the two publications on TCD from Kuwait (Asbeutah et al.  2014 ) 
and Oman (Gujjar et al.  2013 ) did not fi nd any abnormal values predictive of stroke 
using the STOP guidelines. It follows, therefore, that more studies are required to 
document the “normal” values for this region; otherwise, the current guidelines may 
not be applicable. 

 While most centers follow standard practice for the management of SCD acute 
events, the use of narcotic analgesics for pain control is not uniform. There is still 
reluctance on the part of some doctors and patients in using morphine especially 
among adult patients. There is therefore a need for more education in this area. 

 The use of hydroxyurea is widespread, following the usual indications of fre-
quent, severe pain crisis, acute chest syndrome and severe anemia. Studies from 
Oman demonstrated the benefi cial effects of the drug on hematological parameters, 
reduction in pain crisis and acute chest syndrome, even with low doses (Sharef et al. 
 2013 ; Wali and Moheeb  2011 ). Hydroxyurea is also effective in patients with high 
fetal hemoglobin, with no signifi cant adverse effects. MRI hip studies have not 
shown any increase in avascular necrosis of the femoral head in patients on pro-
longed therapy (Adekile, unpublished data).  
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14.2.6     Conclusions 

 There is a wide variety of SCD genotypes, haplotypes and phenotypes in the coun-
tries of the Arabian Peninsula. While the Arabian/Indian haplotype is associated 
with generally mild disease, there is still considerable heterogeneity among the 
patients. Indeed, the adult patients may have signifi cant morbidity. There is high 
level of care with excellent facilities for preventive services, immunization and pen-
icillin prophylaxis and TCD screening in most centers. Blood transfusion services 
are excellent and hydroxyurea is readily available. However, newborn and premari-
tal screening are still not available or mandatory in many of the countries. The main 
challenge to recommending uniform management guidelines is the marked pheno-
typic variability that exists across the region.      
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    Chapter 15   
 Genetic Factors Modifying Sickle Cell Disease 
Severity                     

       Kate     Gardner      and     Swee     Lay     Thein    

    Abstract     Sickle cell disease (SCD) is a monogenic disorder caused by a single 
base mutation but despite its apparent genetic simplicity, the clinical phenotype is 
hugely variable. In addition to environmental factors, family and epidemiological 
studies indicate that genetic variants co-inherited with the sickle mutation have a 
key role in modifying the disease course. This article provides an overview of the 
genetic modifi ers of SCD known to date. Co-inheritance of α-thalassemia and per-
sistent fetal hemoglobin (HbF) production are established major genetic modifi ers 
but they do not explain the full spectrum of the phenotypic variability of SCD. While 
characterization of some of the key variants and pathways involved in HbF regula-
tion have provided new therapeutic targets for HbF reactivation, generation of a 
personalized genetic risk score to inform prognosis and guide management requires 
a larger panel of genetic modifi ers yet to be discovered. Elucidation of new genetic 
modifi ers may also provide an insight into other “druggable” targets for therapeutic 
intervention.  
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15.1       Introduction 

 Sickle cell disease (SCD) has been heralded as the fi rst “molecular disease” when 
Pauling ascribed its basis to the presence of an abnormal hemoglobin in 1949 
(Pauling et al.  1949 ). In 1957, Ingram ( 1957 ) described the abnormal hemoglobin 
as being caused by a single amino acid substitution (glutamic acid changed to 
valine) at position 6 of the β-globin chain of hemoglobin and in 1963, Goldstein 
et al. ( 1963 ) showed that this arose from a single base change of T > A at codon 6. 
Figure  15.1  summarizes a timeline of the signifi cant events that have contributed to 
the understanding of the genetic basis, and management of SCD.

   In addition to homozygosity for the β S  allele (HbSS, also referred to as sickle cell 
anemia, SCA), the syndrome of SCD includes HbSC disease (compound heterozy-
gosity of HbS with HbC, Glu 6  to Lys 6 ), and HbSβ thalassemia (HbSβ +  or HbSβ 0  
thalassemia, depending on the type of the β-thalassemia mutation). Generally, the 
compound heterozygotes have a milder disease than HbSS, but even within each 
genotypic and ethnic group, a spectrum of clinical variability is the recurring theme. 
For example, within the HbSS group, at the mild end, patients can be asymptomatic 
while early mortality, frequent hospital admissions with acute pain episodes, child-
hood strokes and other end organ damage, typify the severe end of the clinical 
spectrum. 

 Both environmental and genetic factors contribute to this clinical variability. The 
importance of weather changes such as cold and rain as triggers of acute pain have 
been recognized and reported for many years but the conclusions were not consis-
tent due to logistical diffi culties in conducting such studies. Environmental factors 
also include nutritional state, access to social support, and medical care, all of which 
infl uence risk factors such as infections. The impact of environmental factors is 
demonstrated most graphically on the differences in the natural history and out-
comes of SCD between the high- and low-income countries. 

 Twin studies, based on the concordance and discordance of disease complica-
tions and severity, have traditionally been used to assess the relative contributions of 
genetic and environmental factors in complex disorders such as diabetes and schizo-
phrenia. Since monozygotic twins have identical DNA sequences, variation in their 
disease course can be attributed largely to the effects of the environment. There are 
three reports of this kind in SCD; two were limited to single pairs of identical twins, 
one with HbSS and α-thalassemia, and the other with HbSβ thalassemia (Amin 
et al.  1991 ; Joishy et al.  1976 ). The third study investigated nine pairs of identical 
twins, six with HbSS and three HbSC, from Jamaica (Weatherall et al. 2005). These 
twins have been followed for 15 years or more, and as a comparison group for 
examining degrees of concordance between laboratory parameters, 350 gender- and 
age-matched sibling pairs were also studied. These studies reported that while the 
twins showed similarities and concordance in laboratory parameters, and attained 
height and weight, there was discordance in frequency of acute painful episodes 
and other clinically critical complications. The conclusion was that environmental 
factors are of great importance in defi ning the clinical course of SCD. 

K. Gardner and S.L. Thein



373

  F
ig

. 1
5.

1  
  A

 t
im

el
in

e 
of

 s
ig

ni
fi c

an
t 

ev
en

ts
 t

ha
t 

ha
ve

 c
on

tr
ib

ut
ed

 t
o 

th
e 

un
de

rs
ta

nd
in

g 
of

 t
he

 g
en

et
ic

 b
as

is
 a

nd
 m

an
ag

em
en

t 
of

 S
C

D
.  S

C
A

  s
ic

kl
e 

ce
ll 

an
em

ia
, 

 m
R

N
A

  m
es

se
ng

er
 r

ib
on

uc
le

ic
 a

ci
d,

  P
N

D
  p

re
na

ta
l d

ia
gn

os
is

,  R
F

L
P

  r
es

tr
ic

tio
n 

fr
ag

m
en

t l
en

gt
h 

po
ly

m
or

ph
is

m
,  C

SS
C

D
  c

o-
op

er
at

iv
e 

st
ud

y 
of

 s
ic

kl
e 

ce
ll 

di
se

as
e,

 
 P

G
D

  p
re

im
pl

an
ta

tio
n 

ge
ne

tic
 d

ia
gn

os
is

, 
 B

M
T

  b
on

e 
m

ar
ro

w
 t

ra
ns

pl
an

ta
tio

n,
  P

C
R

  p
ol

ym
er

as
e 

ch
ai

n 
re

ac
tio

n,
  R

E
  r

es
tr

ic
tio

n 
en

zy
m

e,
  G

W
A

S  
ge

no
m

e-
w

id
e 

as
so

ci
at

io
n 

st
ud

y       

 

15 Genetic Modifi ers of SCD



374

 Family and epidemiological studies indicate that genes co-inherited with the 
sickle mutation have a key role in modifying the disease course, including higher 
incidence of stroke (Driscoll et al.  2003 ) and concordant response to hydroxy-
carbamide therapy in siblings (Steinberg et al.  1997 ). Co-inheritance of α-thalassemia 
and persistent fetal hemoglobin (HbF) production are established major genetic 
modifi ers of SCD. Numerous candidate gene and genome-wide association studies 
(GWAS) have defi ned genetic differences in SCD patients and attempted to identify 
other genetic variants with particular disease complications. However, the disease 
complexity has presented immense challenges, and these studies have only pro-
vided a small amount of the variation in SCD severity observed in the clinic. Roles 
for other genetic modifi ers of SCD severity have been proposed based on the patho-
physiology downstream of the primary event (HbS polymerization), however, the 
majority of these putative markers have not been replicated. 

 The clinical diversity of SCD itself presents diffi culties for genotype/phenotype 
correlation studies in terms of accurately defi ning clinical “sub-phenotypes” (Ballas 
et al.  2012 ; Smith-Whitley and Pace  2007 ; Rees et al.  2010 ). The clinical implica-
tions of a clearer understanding of the genetic variants and mechanisms responsible 
for the phenotypic variability of SCD are signifi cant. First, the ability to predict 
disease severity based on a genetic SCD “panel” to facilitate risk stratifi cation of 
patients: high risk patients might then be followed more intensively, and higher risk 
therapies (hematopoietic stem cell transplantation, hydroxycarbamide) could be tar-
geted at these patients. Second, new modifying genetic variants might suggest new 
therapeutic targets for investigation. 

 We describe the current understanding in terms of determining this phenotypic 
diversity as well as provide an update of the genetic modifi ers of severity in SCD.  

15.2     Complications of SCD and Problems in Defi ning 
Severity of Phenotypes: Global vs Sub-phenotypes 

 While full genetic understanding of SCD remains incomplete, the emergence of 
genome-wide genotyping platforms, next generation sequencing, and rapid advances 
in genetic research has re-focused some attention back onto phenotyping. Clear and 
consistent defi nition of phenotypes is critical to the success of genetic association 
studies. This is particularly pertinent in SCD where there is profound variety in both 
the severity and nature of complications. Many of its complications are acute such 
as recurrent acute pain episodes, acute chest syndrome, priapism and stroke; some 
are intermittent, leading eventually to chronic complications and organ damage, 
such as chronic pain, pulmonary hypertension and sickle chronic lung disease, 
penile dysfunction and cognitive disability. The acute complications vary consider-
ably not only between patients but also in the same patient with time. 

 Phenotypes can be clinical or laboratory parameters. While laboratory parame-
ters are simple to measure, their values vary with the clinical state of the patient; for 
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example, lactate dehydrogenase and white cell count which are normally elevated 
during steady-state, further increase during acute clinical events. Phenotypes are not 
always consistent or valid, e.g. pulmonary hypertension. Furthermore, some com-
plications are uncommon (e.g. overt strokes) which makes related or “intermediate” 
traits a preferred endpoint (e.g. imaging results such as raised trans-cranial Doppler 
(TCD) velocities, or silent infarcts on magnetic resonance imaging). 

 Many studies focus on  specifi c  complications of SCD—sometimes described as 
“ sub-phenotypes ”—i.e. particular end organ damage/failure (e.g. stroke, protein-
uria, osteonecrosis, pulmonary hypertension) as separate, individual phenotypic 
endpoints.  Global  markers of severity—for example mortality—offer the potential 
for a more cohesive endpoint that may be more informative overall. However, global 
severity scores have proved diffi cult to defi ne. Accurate end-point defi nitions are 
crucial to enable differentiation of “cases” and “controls”. Examples of proposed 
global severity scores include: (1) a “severity index” based on frequency of 
acute painful episodes, hospitalization, blood transfusion, infection and specifi c 
complications during the previous years starting from the birth of the child (el- 
Hazmi  1992 ); (2) the presence of dactylitis in infants, white cell count and hemo-
globin (Hb) level to predict severe disease outcomes as defi ned by death, stroke, 
frequent pain and acute chest syndrome (Miller et al.  2000 ); and (3) a global sever-
ity score using a Bayesian network model (a “statistical” phenotype) (Sebastiani 
et al.  2007 ).  

15.3     Genetic Methodologies 

 Generally, two approaches have been used to locate genetic variants in human dis-
ease: linkage analysis and association studies (Hirschhorn and Daly  2005 ).  Linkage 
analysis studies  aim to establish linkage between genes that co-segregate with a 
trait/disease within a family. This technique has been successful in highly penetra-
tive single gene disorders, but has had limited success in many common diseases 
which comprise complex traits.  Association studies  look for differences in the fre-
quencies of genetic variants between  cases  and  controls  to fi nd genetic variants that 
are strongly associated with a trait/disease. If a variant is more common in cases 
than controls, an association is described. Such studies require large sample num-
bers and until recently have not been feasible due to genotyping cost. Crucially, 
SNPs identifi ed in pilot studies (“ discovery cohort ”) should always be replicated in 
additional independent populations (“ validation cohort ”). 

 Prerequisites for any genetic association study include: (1)  heritability  (correla-
tion of trait in sibling pairs, good r value); and (2) a clear distinction between  cases  
and  controls  (or suffi cient variability in a quantitative trait). These criteria present 
problems in many clinical manifestations of SCD. For example, hospital admis-
sions and duration of stay have used for an objective defi nition of pain but these 
measures are infl uenced by cultural and social factors as well as intermittent illness, 
such as infections. For convenience, common or “pooled” controls have been used 
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and this can compromize the analysis by contaminating cases in the controls. 
 Adequate patient numbers  are essential to allow robust statistical analysis and 
replication. Again, this presents problems in SCD genetic association studies; most 
institutions have small numbers of patients (in contrast to hypertensive or diabetic 
cohorts). Admixture of different ethnic groups is a confounder when different 
cohorts are pooled for analysis unless population stratifi cation is accounted for prior 
to association analysis. 

 Two types of association studies have been utilized in SCD: candidate gene and 
genome wide association studies (GWAS).  Candidate gene association studies  
look for differences in the frequencies of genetic variants in targeted genes between 
cases and controls, while  GWAS  involve an unbiased scan of the whole human 
genome (Manolio  2013 ). Many candidate gene association studies in SCD have 
been published, but often these associations have not been replicated/validated in 
independent cohorts. Furthermore, critics of candidate gene studies argue that our 
limited knowledge of SCD pathophysiology is inadequate to predict functional can-
didate genes (Manolio  2013 ). By design, GWAS are more likely to reveal unsus-
pected interactions as the GWAS approach delivers a “hypothesis free” method that 
could reveal new genes controlling SCD, and thereby exposing novel pathophysio-
logical pathways. 

 GWAS will also confi rm previous candidate genes if the association is robust 
(Menzel et al.  2007a ; Milton et al.  2012 ). A case in point is the application of GWAS 
in the unexpected discovery of  BCL11A  (an oncogene that, hitherto, was not known 
to have a role in erythropoiesis) as a quantitative trait locus (QTL) controlling HbF 
(Menzel et al.  2007a ; Uda et al.  2008 ). GWAS also confi rmed association of the 
other two loci— Xmn 1- HBG2  ( rs782144 ) on chromosome 11p and  HBS1L - MYB  
(HMIP) on chromosome 6q—with HbF production, that were previously discov-
ered through candidate gene (Labie et al.  1985 ) and genetic linkage studies (Craig 
et al.  1996 ). Similarly, GWAS confi rmed the association between bilirubin level and 
 UGT1A1  polymorphism in SCD (Milton et al.  2012 ). 

 It has also become evident that simpler, “intermediate” phenotypes, such as HbF, 
that are reproducible and measurable, and disease-related, are much more success-
ful in genetic association in SCD studies than clinical endpoints. Such intermediate 
endpoints or endo-phenotypes are often quantitative traits; they provide more power 
in genetic strategies. For example, blood fl ow velocity in the middle cerebral artery 
as detected by TCD screening is a biomarker of early cerebrovascular disease in 
SCD. Studies have shown that chronic blood transfusion therapy at this stage can 
prevent overt stroke (Adams et al.  1998 ). In this regard, TCD velocity would be an 
extremely attractive intermediate phenotype in studies for detecting genetic variants 
associated with sickle vasculopathy and stroke risk. 

 Whole genome or whole exome sequencing using next generation sequencing 
technology in combination with well-defi ned phenotypes offers the possibility of 
identifying new genetic variants (Bamshad et al.  2011 ). GWAS in combination with 
exome sequencing identifi ed mutations in  GOLGB1  and  ENPP1  with stroke protec-
tion in sickle cell anemia (SCA) (Flanagan et al.  2013 ). In this study, overt stroke 
was the clinical marker but these variants have yet to be independently validated in 
a different population group.  
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15.4     Genetic Modifi ers of SCD Severity 

 Global markers of SCD severity represent the “holy grail” of accurate clinical 
phenotyping. Multiple attempts at providing scoring systems, and using these for 
genetic associations have been made. Using the global severity index propounded 
by El-Hazmi ( 1992 ), Nishank identifi ed three  eNOS  gene polymorphisms- eNOS  
4a/b,  eNOS  894G > T and  eNOS  -786 T > C associated with SCD severity (Nishank 
et al.  2013 ) .  A GWAS study (Sebastiani et al.  2010 ) utilized the global severity 
score devised by the same group (Sebastiani et al.  2007 ) in over 1200 SCD patients, 
and replicated in a validation set of samples. Validated SNPs included:  KCNK6  
(potassium channel gene) and  TNKS  (telomere length regulator gene). 

15.4.1     Modifi ers of Global SCD Severity at the Primary Level 

 The central mechanism underlying the pathophysiology of SCD is the polymerization 
of deoxygenated HbS and formation of irreversibly sickled erythrocytes that lead to 
the two hallmarks of the disease—recurrent episodes of vaso-occlusion and pain, and 
chronic hemolytic anemia. Factors that impact the primary event of the disease pro-
cess will thus have a global effect on the disease phenotype. They include the caus-
ative genotype, co-existing α-thalassemia and the innate ability to produce HbF. 

    Causative Sickle Genotype 

 In African-descended populations, HbSS typically accounts for 65–70 %, and HbSC 
30–35 % of the cases of SCD, with most of the remainder having HbSβ thalassemia. 
Other genotypes of SCD have been described, including compound heterozygotes 
of HbS with HbD, HbO-Arab, but these are rare. While presence of HbS is funda-
mental to the pathobiology, the likelihood of HbS polymerization and sickling is 
also highly dependent on the concentration of intra-erythrocytic HbS, as well as the 
presence of non-HbS hemoglobin (Noguchi et al.  1983 ). Thus, individuals with 
HbSS or HbSβ 0  thalassemia, where the intra-cellular Hb is almost all HbS, tend to 
have the most severe disease, followed by HbSC and HbSβ +  thalassemia. Most stud-
ies discussed below consider the homozygous SCD state of HbSS disease only. 

 HbA (α 2 β 2 ) or HbA 2  (α 2 δ 2 ) do not participate in HbS polymerization. Since the β +  
thalassemia alleles in Africans are of the milder type with minimal defi cit in β glo-
bin production, Africans with HbSβ +  thalassemia have substantial proportions of 
intra-erythrocytic HbA and the SCD tends to be very mild. In contrast, individuals 
with HbSβ +  thalassemia in the Mediterranean, have SCD almost as severe as that of 
HbSS (Serjeant and Serjeant  2001 ). Subjects with sickle cell trait (HbAS) with HbS 
of 35–40 %, rarely suffer from symptoms of SCD. Under exceptional circum-
stances, however, such as intense physical activity and dehydration, the consequent 
increased intracellular HbS concentration can induce vaso-occlusive pain (Bonham 
et al.  2010 ). 
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 The HbS gene is found on a genetic background of four common β-globin 
haplotypes: Senegal, Benin, Central African Republic (or Bantu), and Arab-Indian. 
Clinical studies demonstrate variation in SCD severity between the β S  haplotypes, 
with decreasing severity from the Bantu > Benin > Senegal > Arab-Indian haplo-
types. Disease severity correlates inversely with the HbF levels seen in these groups; 
lowest HbF seen in individuals with Bantu haplotype, and highest HbF in individu-
als with Arab-Indian haplotype (Nagel et al.  1985 ,  1987 ,  1991 ; Powars  1991 ; 
Figueiredo et al.  1996 ). The differences in clinical severity were ascribed to the 
difference in HbF levels implicating the  Xmn 1- HBG2  site which is linked to the 
Senegal and Arab-Indian β S  haplotype but not to the Bantu haplotype (Labie et al. 
 1985 ) (see below for further discussion on modifying effects of HbF on SCD). 

 Other major genetic factors that infl uence the primary event of HbS polymeriza-
tion include the co-inheritance of α-thalassemia and HbF (α 2 γ 2 ) levels.  

    Alpha Genotype 

 About one-third of African-descended patients with SCD have co-existing 
α-thalassemia (Steinberg and Embury  1986 ). Most commonly, this is due to the 
deletion variant (−α 3.7 /); the majority of patients are heterozygous (αα/–α 3.7 ) with 
3–5 % homozygous for the deletion (−α 3.7 /−α 3.7 ) (Steinberg and Embury  1986 ; 
Vasavda et al.  2007 ). Co-inheritance of α-thalassemia affects SCD red cell pheno-
type; it reduces intracellular HbS concentration and the propensity of HbS polym-
erization, reducing the number of irreversibly sickled cells and decreasing hemolysis 
(Embury et al.  1982 ; Ballas  2001 ). 

 Clinically, co-inherited α-thalassemia protects against complications related to 
severe hemolysis including pulmonary hypertension, leg ulceration, priapism and 
albuminuria (Steinberg  2009 ; Buchanan et al.  2004 ). Conversely, the increased 
hematocrit and associated blood viscosity in α-thalassemia predispose to an 
increased likelihood of developing osteonecrosis, acute chest syndrome (ACS), reti-
nopathy and acute painful vaso-occlusive episodes (Embury et al.  1994 ). Several 
studies have also demonstrated association of α-thalassemia with lower TCD mea-
surements and, hence, reduced risk for stroke (Bernaudin et al.  2008 ; Rees et al. 
 2009 ; Flanagan et al.  2011 ; Cox et al.  2014 ) while another study could not demon-
strate association between α-thalassemia and magnetic resonance angiography 
(MRA)-defi ned vasculopathy in paediatric patients with HbSS disease (Thangarajh 
et al.  2012 ). The lack of association in the latter study could be related to patient 
selection. Co-existing α-thalassemia also reduces bilirubin with a quantitative effect 
that is independent to that of the  UGT1A1  promoter polymorphism (Vasavda et al. 
 2007 ). Co-inheritance of α-thalassemia blunts the response to hydroxycarbamide 
therapy in SCD; this may be explained by its effect on HbF levels and MCV, two 
key parameters associated with hydroxycarbamide response (Vasavda et al.  2008 ). 

 In Jamaicans, the absence of α-thalassemia and higher HbF levels appeared to 
predict a more benign disease (Thomas et al.  1997 ), while a subsequent study 
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reported that α-thalassemia did not promote survival in older Jamaicans with HbSS 
SCD (Serjeant et al.  2007 ).  

   Fetal Hemoglobin 

 Fetal hemoglobin (HbF, α2γ2) is a major ameliorating factor in SCD. Understanding 
fetal hemoglobin control and its therapeutic reactivation (pharmacological and 
genetic approaches) remains a top research priority. HbF reduces the propensity for 
HbS polymerization and its sequelae in two major ways: (1) the hybrid tetramers 
(α 2 γβ S ) do not partake in HbS polymerization, and (2) the presence of intra- 
erythocytic HbF dilutes the concentration of HbS (Noguchi et al.  1988 ). The clinical 
phenotype of SCD becomes evident within 6 months to 2 years of age as HbF levels 
decline. 

 HbF levels impact the “primary” level of disease pathology—HbS polymeriza-
tion—thus HbF levels have a global benefi cial effect. Indeed, in SCD, high HbF 
levels are a major predictor of survival (Platt et al.  1994 ), and reduced pain (Platt 
et al.  1991 ; Dampier et al.  2004 ); conversely, low levels of HbF have been associ-
ated with increased risk of brain infarcts in young children (Wang et al.  2008 ). At 
the sub-phenotype level, there appear to be disparities in its effects on complications 
such as renal impairment, retinopathy and priapism (Thein  2011 ; Steinberg and 
Sebastiani  2012 ). The failure of HbF to modulate all complications of SCD uni-
formly in the different reports may be related to the small sample sizes in genetic 
studies and even smaller numbers of end complications, and to ascertainment of 
phenotypes. 

   Update on the Genetic Control of Fetal Hemoglobin (HbF) 

 Developmental stage-specifi c expression of the β-like globin genes appears to be 
governed by two principles: competition for the upstream β-locus control region 
(LCR), and autonomous silencing of the embryonic and fetal globin genes involving 
various ubiquitous and erythroid-specifi c transcription factors (Wilber et al.  2011 ; 
Stamatoyannopoulos  2005 ). Although the fetal globin genes are autonomously 
silenced in adults, genetic variants lying both within and outside the  HBB  locus lead 
to natural variation in the level of expression of the fetal globin genes and HbF, of 
over 20-fold (Thein and Craig  1998 ). Some of these variants signifi cantly amelio-
rate the clinical symptoms of the β-hemoglobinopathies. These variants account for 
89 % of the quantitative variation but the genetic etiology is complex with no clear 
Mendelian inheritance patterns (Garner et al.  2000 ). Three known quantitative trait 
loci (QTLs) for the common HbF variation in adults include:  Xmn1 - HBG2  
( rs782144 ) within the β-globin gene cluster on chromosome 11p,  HBS1L - MYB  
intergenic region (HMIP) on chromosome 6q23, and  BCL11A  on chromosome 
2p16 (Thein and Menzel  2009 ; Thein et al.  2009 ; Sankaran et al.  2010 ). 
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 Variants in the  HBB ,  HMIP  and  BCL11A  loci account for 10–50 % of the variation 
in HbF levels in adults, healthy or with SCD or β-thalassemia, depending on the 
population studied (Menzel et al.  2007a ; Lettre et al.  2008 ; Galanello et al.  2009 ; 
Bhatnagar et al.  2011 ; Makani et al.  2011 ; Badens et al.  2011 ; Bae et al.  2012 ; 
Mtatiro et al.  2014 ). The remaining variation (‘missing heritability’) is likely to be 
accounted for by many loci with relatively small effects, and/or rare variants with 
signifi cant quantitative effects on γ-globin gene expression that are typically missed. 

   HBB Cluster on Chromosome 11p 

  Xmn1 - HBG2  (rs782144) in the  HBB  cluster was the fi rst known QTL for HbF and 
long-implicated by clinical genetic studies (Labie et al.  1985 ) (see section “Causative 
Sickle Genotype ”  above). The differences in clinical severity of SCD were ascribed 
to the difference in HbF levels implicating the  Xmn1 - HBG2  site which is linked to 
the Senegal and Arab-Indian β S  haplotype but not to the Bantu haplotype (Labie 
et al.  1985 ). Recent high resolution genotyping, however, suggests that rs782144 is 
not likely to be the variant itself, but in tight linkage disequilibrium with causal 
element(s) that remain to be discovered in the β-globin cluster. In vitro reporter gene 
assays suggest that Gγ globin promoters isolated from Asian and Senegal chromo-
somes exert higher transcriptional activity than their counterparts from Benin and 
Bantu chromosomes (Ofori-Acquah et al.  2001 ). In particular, the Bantu Gγ pro-
moter is 10 times weaker than the Asian promoter (Ofori-Acquah et al.  2001 ). 
However, the association between haplotypes, HbF levels and disease severity in 
SCD remains somewhat contentious due to the wide variation in HbF levels among 
individuals of the same haplotype.  

   BCL11A on Chromosome 2p16 

 Functional studies in primary human erythroid progenitor cells and transgenic mice 
demonstrated that BCL11A acts as a repressor of γ-globin gene expression that is 
effected by SNPs in intron 2 of this gene (Sankaran et al.  2008 ). Fine-mapping 
demonstrated that these HbF-associated variants, in particular rs1427407, localized 
to an enhancer that is erythroid-specifi c and not functional in lymphoid cells (Bauer 
et al.  2013 ). BCL11A does not interact with the γ-globin promoter but occupies 
discrete regions in the  HBB  complex (Jawaid et al.  2010 ). The silencing effect of 
BCL11A involves re-confi guration of the  HBB  locus through interaction with 
GATA-1 and SOX6 that binds the proximal γ globin promoters (Xu et al.  2010 , 
 2013 ). In a proof-of-principle,  bcl11a  knock-out in sickle mice increased HbF up to 
30 %, reversing end-organ damage caused by the SCD (Xu et al.  2011 ).  

   HMIP on Chromosome 6q23 

 High resolution genetic mapping and resequencing refi ned the 6q QTL to a group of 
variants in tight linkage disequilibrium (LD) in a 24-kb block between the  HBS1L  
and  MYB  gene, referred to as  HMIP-2  (Thein et al.  2007 ). The causal SNPs are likely 
to reside in two clusters within the block, at −84 and −71 kb respectively, upstream 
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of  MYB  (Stadhouders et al.  2014 ; Menzel et al.  2014 ). Functional studies in transgenic 
mice and primary human erythroid cells provide overwhelming evidence that the 
SNPs at these two regions disrupt binding of key erythroid enhancers affecting long-
range interactions with  MYB  and  MYB  expression, providing a functional explana-
tion for the genetic association of the 6q  HBS1L-MYB  intergenic region with HbF 
and F cell levels (Stadhouders et al.  2012 ,  2014 ; Suzuki et al.  2013 ). A three-base 
pair (3-bp) deletion in  HMIP-2  -84 region is one functional element in the  MYB  
enhancers accounting for increased HbF expression in individuals who have the sen-
tinel SNP rs9399137 that was found to be common in European and Asian popula-
tions, although less frequently in African-derived populations (Farrell et al.  2011 ). 

 The  HBS1L-MYB  intergenic enhancers do not appear to affect expression of 
 HBS1L , the other fl anking gene (Stadhouders et al.  2014 ).  HBS1L  was excluded as 
having a role in the regulation of HbF and erythropoiesis in a recent report of rare 
uncharacterized disorders, where whole-exome sequencing revealed mutations in 
the  HBS1L  gene leading to a loss-of-function in the gene (Sankaran et al.  2013 ). The 
individual had normal blood counts and normal HbF levels. Thus,  HMIP-2  is likely 
to affect HbF and hematopoietic traits via regulation of  MYB. MYB  was also caus-
ally implicated by fi ne-mapping which identifi ed rare missense  MYB  variants asso-
ciated with HbF production (Galarneau et al.  2010 ). 

  MYB  expression is also reduced by GATA-1 (Welch et al.  2004 ) and micro (mi)
RNA-15a and -16-1 (Sankaran et al.  2011 ). Elevated levels of the latter have been 
proposed as the mechanism for the persistently elevated HbF levels, one of the 
unique features in infants with trisomy 13 (Huehns et al.  1964 ). These infants have 
increased expression of miRNAs 15a and 16-1 produced from an extra copy of the 
genes encoding miRNAs 15a and 16-1 on the triplicated chromosome 13. A recent 
study provided evidence that the increased HbF effect is mediated, at least in part, 
through down-modulation of  MYB  via targeting of its 3′ UTR by the miRNAs 15a 
and 16-1 (Sankaran et al.  2011 ). 

 The  MYB  transcription factor is a key regulator of erythropoiesis, and modulates 
HbF expression via two mechanisms: (1) indirectly through alteration of the kinet-
ics of erythroid differentiation: low MYB levels accelerate erythroid differentiation 
leading to release of early erythroid progenitor cells that are still synthesizing pre-
dominantly HbF (Jiang et al.  2006 ), and (2) directly via activation of  KLF1  and 
other γ-globin repressors (e.g., nuclear receptors TR2/TR4) (Bianchi et al.  2010 ; 
Suzuki et al.  2013 ; Tallack and Perkins  2013 ). 

 Modulation of  MYB  expression also provides a functional explanation for the 
pleiotropic effect of the  HMIP-2  SNPs with other erythroid traits such as red cell 
count, MCV, MCH, HbA 2  levels, and also with platelet and monocyte counts 
(Menzel et al.  2007b ,  2013 ; Soranzo et al.  2009 ; van der Harst et al.  2012 ).  

   KLF1 on Chromosome 19p13 

  KLF1  (previously termed  EKLF ), discovered by Jim Bieker in 1993 (Miller and 
Bieker  1993 ), re-emerged as a key transcription factor controlling HbF through 
genetic studies in a Maltese family with β-thalassemia and hereditary persistence of 
HbF (HPFH). Linkage studies identifi ed a locus for the HPFH that segregated 
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independently of the  HBB  locus on chromosome 19p13 which encompassed  KLF1  
(Borg et al.  2010 ). Subsequent studies, which included expression profi ling of ery-
throid progenitor cells, confi rmed  KLF1  as the γ-globin gene modifi er in this family. 
Family members with HPFH were heterozygous for the nonsense K288X mutation 
in  KLF1  that disrupted the DNA-binding domain of KLF1, a key erythroid gene 
regulator. Collective studies have now confi rmed that  KLF1  is key in the switch 
from  HBG  to  HBB  expression; it not only activates  HBB  directly, providing a com-
petitive edge, but also silences the γ-globin genes indirectly via activation of 
 BCL11A  (Siatecka and Bieker  2011 ; Zhou et al.  2010 ; Esteghamat et al.  2013 ). 
KLF1 may also play a role in the silencing of embryonic globin gene expression 
(Viprakasit et al.  2014 ; Magor et al.  2015 ). 

 Although there have been numerous reports of association of  KLF1  variants with 
increased HbF either as a primary phenotype, or in association with other red cell 
disorders (Borg et al.  2011 ), several GWASs of HbF (including ones in SCD patients 
of African descent) failed to identify common variants (Bhatnagar et al.  2011 ; 
Mtatiro et al.  2014 ). 

 The emerging network of HbF regulation also includes  SOX6 , chromatin- 
modeling factor  FOP  and the  NURD  complex, the orphan nuclear receptors TR2/
TR4 (part of DRED) and the protein arginine methyltransferase PRMT5, involving 
DNA methylation and histone deacetylases 1 and 2 epigenetic modifi ers. Regulators 
of the key transcription factors, such as miRNA-15a and 16-1 in  controlling MYB , 
could also have a potential role in regulating HbF levels (Suzuki et al.  2014 ).     

15.4.2     Glucose-6-Phosphate Dehydrogenase Defi ciency 

 Glucose-6-phosphate dehydrogenase defi ciency (G6PD) is common in patients 
with SCD of African ancestry (Bouanga et al.  1998 ). There is controversy about the 
effects of G6PD on TCD velocities, a biomarker for stroke risk in SCD; some stud-
ies report that G6PD increases the risk for high cerebral blood fl ow velocities 
(Bernaudin et al.  2008 ; Thangarajh et al.  2012 ) but others observed no effects (Rees 
et al.  2009 ; Cox et al.  2014 ; Flanagan et al.  2011 ). These confl icting reports could 
be related to the methodology used in the assay of the enzyme, or the panel of 
 G6PD  variants genotyped (Thangarajh et al.  2012 ; Flanagan et al.  2011 ). An earlier 
study showed that G6PD defi ciency did  not  infl uence SCD clinical endpoints 
including survival, Hb levels, hemolysis, rate of acute pain or acute anemic episodes 
(Steinberg et al.  1988 ). 

   Genetic Modifi ers of Organ-Specifi c Complications 

 The striking phenomenon in SCD is its clinical diversity. Multiple complications 
are common in SCD, both acute (frequent pain episodes, acute chest syndrome, 
strokes) and chronic (pulmonary hypertension, sickle nephropathy, gallstones, 
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osteonecrosis). The variation in global severity of the disease, as well as the incidence 
of specifi c end-organ complications (“sub-phenotypes”) in SCD, cannot be 
explained by these three major genetic modifi ers—causative sickle genotype, HbF 
level and α-globin genotype—alone. While the primary etiology in SCD is HbS 
polymerization, multiple different (but inter-related) downstream pathological 
mechanisms contribute to SCD phenotype: hemolysis/heme damage, infl ammation, 
oxidant injury, nitric oxide biology, vaso-regulation, cell adhesion and blood coagu-
lation. These factors have modifying effects independent of HbS polymerization 
and are likely be multi-genic traits. All of these downstream pathways suggest can-
didate genes that could plausibly affect the different sickle-related complications. 
Based on this pathophysiology, researchers have identifi ed candidate genes for  gene 
association studies  related to specifi c sickle complications or “sub-phenotypes”. 

 Genetic association studies (both candidate gene studies and GWAS) have iden-
tifi ed multiple possible genetic associations with SCD complications (Table  15.1 ).

     Acute Pain Episodes 

 Acute pain episodes (APE) are the hallmark clinical feature in SCD. They are a 
measure of disease severity and a predictor of early mortality (Platt et al.  1991 ). 
Frequency of APE varies widely in SCD patients, with highest pain rates seen in 
those with high hematocrit and low HbF (Platt et al.  1991 ). Outwith these associa-
tions, there is no concrete further understanding of the genetic basis of APE fre-
quency in SCD. It is probably the complication most affected by environmental 
factors. A compounding problem with pain studies is the clinical defi nitions of phe-
notypes. Nearly all patients with SCD have pain, and it is often diffi cult to quantitate 
objectively both frequency and severity of individual APE. Furthermore, the stan-
dard treatment for pain in APE is parenteral opioids, and individual response to 
opioid analgesia is itself related to genetic variability of their metabolism (Ballas 
 2007 ), making it harder still to dissect and measure APE accurately. As a result of 
these complicating features, many genetic studies on pain in SCD are poor, in par-
ticular because of lack of clear-cut defi nitions of  cases  versus  controls  required to 
make objective associations. Furthermore, some of the studies described are poorly 
conducted and not corrected for other key modifying factors including genotype and 
HbF levels. In African American patients and patients from Cameroon, association 
of HbF with the 3 loci ( BCL11A ,  HBS1L-MYB , and  Xmn I- HBG2 ) was accompanied 
by a corresponding reduction in APEs and hospitalization (Lettre et al.  2008 ; 
Wonkam et al.  2014 ). 

 Published studies have chosen candidate genes based on APE pathology, itself a 
complex event involving: red cell deformation, enhancement of white cell adhesion, 
infl ammation, endothelial injury and activation of the coagulation and complement 
pathways. Examples of studies relating to APE in SCD include genes related to:

•     Oxidative stress . SCD complications, and notably APE, are associated with oxi-
dative stress. Glutathione S-transferases (GSTs) are a group of enzymes that 
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   Table 15.1    Reported genetic associations with specifi c SCD sub-phenotypes   

 SCD sub-phenotype  Gene  References 

 Acute pain episodes  GSTM1 null genotype  Shiba et al. ( 2014 ) 
 Stroke   VCAM1 /G1238C  Taylor et al. ( 2002 ) 

  VCAM1 /T1594C  Hoppe et al. ( 2004 ) 
  IL4R /S503P  Hoppe et al. ( 2004 ) 
  TNFA /G-308S  Hoppe et al. ( 2004 ) 
 TNF-α/-308G > A allele  Belisario et al. ( 2015 ) 
  LDLR /Ncol +/−  Hoppe et al. ( 2004 ) 
  ADRB2 /Q/27E  Hoppe et al. ( 2004 ) 
  AGT /AG repeats  Tang et al. ( 2001 ) 
 HLA genes  Styles et al. ( 2000 ) and Hoppe et al. 

( 2003 ) 
 Osteonecrosis   MTHFR /C677T  Zimmerman and Ware ( 1998 ) 

 IL-1β (-511C > T and 
+3954C > T) 

 Vicari et al. ( 2015 ) 

  BMP6   Baldwin et al. ( 2005 ) and Ulug et al. 
( 2009 ) 

 Acute chest 
syndrome 

  NOS3 /T-786C  Sharan et al. ( 2004 ) 
  NOS1 /AAT repeats  Sullivan et al. ( 2001 ) 
  COMMD7   Galarneau et al. ( 2013 ) 
  HMOX1   Bean et al. ( 2012 ) 

 Gallstones   UGT1A /promoter repeats  Passon et al. ( 2001 ), Fertrin et al. ( 2003 ), 
and Vasavda et al. ( 2007 ) 

 Priapism   KL   Nolan et al. ( 2005 ) and Elliott et al. 
( 2007 ) 

 Pulmonary 
hypertension 

 TGFβ/BMP pathway genes  Ashley-Koch et al. ( 2008 ) 
 IL-1β (-511C > T and 
+3954C > T) 

 Vicari et al. ( 2015 ) 

  MAPK8  A allele  Zhang et al. ( 2014 ) 
  eNOS  intron 4 VNTR 
polymorphism 

 Tantawy et al. ( 2015 ) 

 Leg ulcers   KL ,  TEK , TGFβ/BMP 
pathway genes 

 Nolan et al. ( 2006 ) 

 IL-6 (-597G > A and 
-174G > C) genes 

 Vicari et al. ( 2015 ) 

 Bacteraemia  TGFβ/BMP pathway genes  Adewoye et al. ( 2006 ) 
 Renal disease   APOL1   Ashley-Koch et al. ( 2011 ) 
 Retinopathy  IL-6 (-597G > A and 

-174G > C) genes 
 Vicari et al. ( 2015 ) 

 Splenic sequestration  TNFA/-308G > A  Cajado et al. ( 2011 ) 
 IL-8/-251A > T  Cajado et al. ( 2011 ) 

  Acute pain studies have not been included due to poor quality of the studies  
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protect against oxidative stress. Shiba found the  GSTM1  null genotype to be 
associated with increased risk of severe APE in Egyptian SCD patients (Shiba 
et al.  2014 )  

•    Vasculopathy . Vascular endothelial growth factors (VEGF) are known to contrib-
ute to the pathogenesis of APE in SCD. A study in Bahrain associated multiple 
VEGF gene polymorphisms with the risk of APE (Al-Habboubi et al.  2012 ). 
Unfortunately, the differences between cases and controls was not clear cut 
(compared patients with SCD having had a recent APE or not).  

•    Thrombosis . Cystathionine beta-synthase (CBS) enzyme gene mutations are a 
risk factor for thromboembolic disorders. CBS 844ins68 was three times more 
frequent among SCD patients with APE (Alves Jacob et al.  2011 ). Again, there 
was poor clarifi cation of the difference between “severe” and “mild” individuals 
with APE.  

•    Infections. MBL2  codes for mannose-binding lectin (MBL), and is associated 
with modifi cations in the progression of infectious and infl ammatory vascular 
diseases. Using better defi nitions of APE severity (using APE frequency),  MBL2  
polymorphisms have been associated with APE in children with SCD (Oliveira 
et al.  2009 ; Mendonça et al.  2010 ). Unexpectedly, studies have observed no asso-
ciation of  MBL2  variants with susceptibility to infections (Oliveira et al.  2009 ) 
(Dossou-Yovo et al.  2009 ).     

   Gallstones 

 Jaundice and a predisposition to gallstones is associated with a variant in the pro-
moter (TA repeats) of uridine diphosphate (UDP)-glucuronosyl-transferase 1A 
( UGT1A1 ), also referred to as Gilbert’s syndrome. Co-inheritance of Gilbert’s syn-
drome with SCD has been shown in multiple populations to increase the risk for 
developing gallstones (Passon et al.  2001 ; Fertrin et al.  2003 ; Vasavda et al.  2007 ). 
The infl uence of  UGT1A1  polymorphism became more evident in patients while on 
hydroxycarbamide therapy; children with 6/6  UGT1A1  genotype achieved normal 
bilirubin levels while children with 6/7 or 7/7  UGT1A1  genotypes did not (Heeney 
et al.  2003 ). 

 The association of Gilbert’s syndrome with gallstones has also been validated in 
other populations with different hemolytic anemias e.g. hereditary spherocytosis 
(del Giudice et al.  1999 ), HbE/β-thalassemia (Premawardhena et al.  2001 ) and 
β-thalassemia (Galanello et al.  2001 ). Thus, the association of  UGT1A1  polymor-
phisms and gallstones in SCD is a well-replicated phenomenon. GWAS also 
 confi rmed the association between bilirubin level and  UGT1A1  polymorphism in 
SCD (Milton et al.  2012 ). 

 The triad of Gilbert’s syndrome, SCD and gallstones presents a possible clini-
cal context where genetic information may aid clinical decision-making. More 
widely in SCD, the role of elective cholecystectomy in asymptomatic gallstones 
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remains controversial. While one study of SCD patients with asymptomatic 
gallstones showed signifi cant increased morbidity in patients who were not elec-
tively cholecystectomized and subsequently had a symptomatic cholecystectomy 
(Curro et al.  2007 ), another study of SCD patients with gallstones demonstrated 
that the large majority remained asymptomatic over a 13-year follow up period 
(Attalla et al.  2013 ). 

 Thus, the addition of the ( UGT1A1 ) genotype to the clinical phenotype of 
gallstones in SCD presents the question of whether these patients should have 
elective cholecystectomy.  

   Sickle Nephropathy 

 Renal impairment as measured by either proteinuria or glomerular fi ltration rate 
(GFR) are common complications of SCD (Sharpe and Thein  2014 ; Nath and 
Hebbel  2015 ), and in some cases sickle renal disease progresses to end-stage renal 
failure. Renal dysfunction is associated with severity of hemolysis (Becton et al. 
 2010 ; Maier-Redelsperger et al.  2010 ; Day et al.  2012 ). As a result of this, co- 
inheritance of α-thalassemia is protective against albuminuria (Nebor et al.  2010a ). 

 The  MYH9-APOL1  locus, an important genetic risk factor for end-stage renal 
failure in non-SCD populations of African ancestry (Genovese et al.  2010 ), has also 
been shown to be associated with sickle cell nephropathy (Ashley-Koch et al.  2011 ). 
It is broadly considered that the true association is with  APOL1 , due both to the 
stronger statistical association with that gene and the lack of identifi cation of causal 
functional variants in  MYH9.  The original association with  MYH9  has been attrib-
uted to the strong linkage disequilibrium between  MYH9  and  APOL1 .  

   Stroke 

 A familial predisposition to stroke in HbSS SCD was fi rst identifi ed by Driscoll 
et al. ( 2003 ). This has prompted numerous gene association studies where a variety 
of associations have been established between multiple genes and stroke— VCAM1 /
G1238C,  VCAM1 /T1594C,  IL4R /S503P,  TNFA /G-308S, TNF-α/-308G > A allele, 
 LDLR /Ncol +/,  ADRB2 /Q/27E,  AGT /AG repeats, HLA genes (Hoppe et al.  2004 ; 
Taylor et al.  2002 ; Belisario et al.  2015 ; Tang et al.  2001 ; Styles et al.  2000 ). In some 
studies, stroke was subdivided into large and small vessel disease based on imaging 
studies (Hoppe et al.  2004 ). Of the 38 published SNPs associated with stroke, the 
effects of α-thalassemia and SNPs in four genes ( ADYC9 ,  ANXA2 ,  TEK  and 
 TGFBR3 ) could be replicated, although only nominally signifi cant association 
results were obtained (Flanagan et al.  2011 ). More recently, GWAS in combination 
with whole exome sequencing have identifi ed mutations in two genes— GOLGB1  
and  ENPP1 —associated with reduced stroke risk in pediatric patients but, again, 
this needs validation in independent studies (Flanagan et al.  2013 ).  
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   Priapism 

 In males, priapism remains a common manifestation of SCD, found in about 35 % 
of men (Adeyoju et al.  2002 ). Independent association studies have identifi ed 
KLOTHO ( KL ) with priapism in different populations (Nolan et al.  2005 ; Elliott 
et al.  2007 ). Separately, the  TGFβ / SMAD  pathway has also been implicated in pria-
pism risk (Elliott et al.  2007 ).  

   Osteonecrosis 

 Osteonecrosis (avascular necrosis of the bone) occurs in about half of all adults in 
HbSS. Higher hematocrits are a predisposing factor, hence an increased incidence 
in HbSS patients with co-existing α-thalassemia, and patients with HbSC and HbSβ +  
thalassemia genotypes. Association with bone morphogenic protein 6 ( BMP6 ) have 
been replicated across populations (Baldwin et al.  2005 ; Ulug et al.  2009 ). This 
relates to TGF-β/SMAD/BMP pathway in bone metabolism. As for BMP6, regulat-
ing the activity of the TGF-β pathway to modulate its effects on bone may be pos-
sible (Callahan et al.  2002 ). Studies suggesting that factors in the coagulation 
pathway may be involved, such as  MTHFR  and platelet adhesion ( HPA-5B  allele), 
have been inconclusive (Castro et al.  2004 ; Zimmerman and Ware  1998 ; Galanello 
et al.  2001 ; Kutlar et al.  2001 ; Andrade et al.  1998 ).  

   Leg Ulcers 

 Leg ulceration varies widely in SCD with much higher prevalence in Jamaican 
patients than other cohorts (Alexander et al.  2004 ). This complication is closely 
associated with hemolysis severity, and therefore co-existing α-thalassemia is pro-
tective. Genetic association studies have implicated several genes in the TGF-β/
SMAD/BMP pathway (Nolan et al.  2006 ). Duffy antigen receptor for chemokines 
( DARC ) has also been shown to be associated with persistence of leg ulcers. It was 
suggested that the relatively higher white cell and neutrophil counts potentiate 
infl ammation in the  Duffy  positive patients (Drasar et al.  2013 ).  

   Pulmonary Hypertension 

 Pulmonary hypertension has been defi ned in SCD studies using echocardiography, 
with tricuspid regurgitant jet velocity >2.5 m/s when right heart catheterization is 
unavailable (when it is defi ned as mean pulmonary artery pressure ≥25 mmHg 
and pulmonary capillary wedge pressure ≤15 mmHg). A tricuspid regurgitant jet 
(TRJ) velocity of >2.5 m/s occurs in about 30 % adults with SCD and is a risk fac-
tor for premature death (Gladwin et al.  2004 ). Pulmonary hypertension is asso-
ciated with “hemolytic” sickle-complications—renal dysfunction, leg ulceration 
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and priapism—which suggests a vasculopathy driven by chronic hemolysis underlies 
pulmonary hypertension, too (Taylor et al.  2008 ). Association studies have 
suggested multiple gene associations including: the  TGF- β /BMP  signalling path-
way ( ACVRL1 ,  BMPR2  and  BMP6 ) (Ashley-Koch et al.  2008 ) and polymorphisms 
previously implicated in primary idiopathic pulmonary hypertension (Machado 
et al.  2001 ). 

 A more recent multi-center study (Zhang et al.  2014 ) considered the hypoxic 
response as contributory to pulmonary hypertension. To identify genes regulated by 
the hypoxic response and not other effects of chronic anemia, individuals with SCD 
were compared with patients with Chuvash polycythemia (constitutive upregulation 
of hypoxia-inducible factors in the absence of anemia or hypoxia). A SNP associ-
ated with reduced  MAPK8  expression (encoding a mitogen-activated protein kinase 
important for apoptosis, T-cell differentiation, and infl ammatory responses), corre-
lated with pulmonary hypertension. The association was further confi rmed in an 
independent cohort (Walk-Treatment of Pulmonary Hypertension and Sickle Cell 
Disease With Sildenafi l Therapy (walk-PHaSST) population). The homozygous 
AA genotype of  rs10857560  was present in all 14 patients with pulmonary 
hypertension.  

   Acute Chest Syndrome 

 Acute chest syndrome (ACS) represents a severe acute manifestation of SCD that 
is potentially life-threatening. One study showed increased susceptibility to ACS 
associated with a SNP in endothelial NO synthase gene ( eNOS  or  NOS3 ) (Sharan 
et al.  2004 ), albeit in female patients only. Separately, low exhaled nitric oxide 
and a polymorphism in the  NOS1  gene has been implicated in ACS (Sullivan 
et al.  2001 ). 

 Galarneau et al. ( 2013 ) performed a gene-centric association study for ACS with 
individuals from the Cooperative Study of Sickle Cell Disease (CSSCD), with rep-
lication in independent cohorts. In the combined analysis, an association was found 
between ACS and  rs6141803 . This SNP is located 8.2 kb upstream of  COMMD7 , a 
gene highly expressed in the lung that interacts with nuclear factor-κB signalling. 

 Another candidate gene is Heme oxygenase-1 ( HMOX1 ) which produces the 
protein HO-1, the rate-limiting enzyme in the catabolism of heme;  HMOX1  might 
attenuate the severity of APE and hemolysis. Bean et al. ( 2012 ) investigated a highly 
polymorphic (GT)n dinucleotide repeat in the promoter of  HMOX1  and showed that 
children with two shorter alleles had lower rates of ACS.  

   Splenic Sequestration 

 Cajado et al. ( 2011 ) identifi ed an association between infl ammatory markers TNF-α 
and IL-8 and splenic sequestration in children with SCD. Specifi cally, the A allele 
of the TNF-α -308G > A gene polymorphism was associated with an increased risk 
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of splenic sequestration; and the T allele of the IL-8 -251A > T gene polymorphism 
was considered to be a protective factor for splenomegaly.  

   Infection 

 Infections are common events in SCD, especially in children. Studies have sug-
gested that the incidence may be modulated by polymorphisms in the  HLA  locus, 
 MBL2  gene which encodes the mannose binding protein,  MPO  (gene encoding 
myeloperoxidase), Duffy antigen receptor for chemokines ( DARC ) and  TGF- β /
BMP  pathway ( BMP6 ,  TGFBR3 ,  BMPR1A ,  SMAD6  and  SMAD3 ) (Costa et al. 
 2005 ; Nebor et al.  2010b ; Tamouza et al.  2002 ,  2007 ; Neonato et al.  1999 ; Cordero 
et al.  2009 ; Al-Ola et al.  2008 ; Adewoye et al.  2006 ).  

   Variable Response to Hydroxycarbamide Therapy 

 Hydroxycarbamide remains a major treatment option for SCD (Ware  2010 ; Yawn 
et al.  2014 ; National Institutes of Health: National Heart Lung and Blood Institute 
 2014 ). Clinical and laboratory response to hydroxycarbamide therapy however, is 
variable, a main determinant of response appears to be the baseline HbF level. 
Numerous association studies on HbF response to hydroxycarbamide have been 
reported, of which the association with baseline HbF levels and  Xmn 1- HBG2  seems 
to be the most robust (Ware et al.  2002 ; Green et al.  2013 ).     

15.5     Conclusion 

 Although environmental factors are important in determining the clinical outcome 
of SCD, it is evident that the genetic background of the affected individual imparts 
a substantial contribution to the clinical severity and response to medication. The 
attraction of being able to generate a personalized genetic risk score as prognostic 
marker, and to guide therapeutics, plus the relative ease of genotyping and reduc-
ing costs, has been a major driver underlying the recent output of genetic associa-
tion studies in SCD. But the results are questionable in the majority of these 
genetic association studies because of lack of replication. Nonetheless, genetic 
studies have been successful in characterizing some of the key variants and path-
ways involved in HbF regulation, providing new therapeutic targets for HbF 
reactivation. 

 We must continue the quest to discover key modifi er genes of SCD as a major 
research priority. This requires taking advantage of whole genome sequencing and 
the new genomic platforms, but much larger sample sizes (and therefore multi- 
center collaborations) are required to tease out small statistical differences. Care 
must be taken to consider, and appropriately classify, different ethnicities. 

15 Genetic Modifi ers of SCD



390

 Additionally, we must focus on developing rigorous clinical phenotypes and the 
importance of identifi cation of “cases” and “controls”. Clinical researchers need to 
address the issue of defi ning and quantifying global sickle severity, as well as 
precise sub-phenotype defi nitions. As well as using clinical end points (stroke), it 
may be useful to use intermediate end points (trans-cranial Doppler velocities) with 
association studies. Many of the described association studies have highlighted the 
importance of identifi cation of “cases” and “controls”. 

 Finally, for those variants already identifi ed, we must endeavour to: validate the 
variants in independent, large populations; identify the causal variants; support 
the genetic evidence by functional assays or relevant models to uncover the under-
lying pathogenesis. Understanding of the underlying mechanisms may guide trans-
lation of these genetic discoveries into clinical benefi t as targeted, novel therapies.     
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    Chapter 16   
 Future Perspectives for the Treatment 
of Sickle Cell Anemia                     

       Kerri     Nottage      ,     Jeremie     Estepp      , and     Jane     Hankins     

    Abstract     After decades with few treatment options for individuals with sickle cell 
disease (SCD), we have entered a treatment era of promising new therapeutic agents. 
These novel approaches target the diverse pathophysiology associated with SCD 
(e.g., increased blood cell adhesion, activated coagulation system, hyperinfl amma-
tion, endothelial dysfunction). Potential therapies can be classifi ed according to the 
“level” of the target intervention and related to the pathophysiology of SCD (upstream 
versus downstream events). In this chapter, “upstream therapies” refer to those that 
correct the genetic defect (correction of the sickle mutation in the beta globin gene 
via hematopoietic stem cell transplantation or gene therapy/gene editing), alter the 
natural hemoglobin switch phenomenon (enhancement of fetal hemoglobin produc-
tion via gene therapy/gene editing), or prevent hemoglobin polymerization (e.g., 
drugs that alter the hemoglobin oxygen affi nity or enhance fetal hemoglobin produc-
tion). “Downstream therapies” are those aimed at quelling the downstream effects of 
hemolysis and vaso-occlusion (e.g., anti-adhesive, anti- infl ammatory, or vaso-dila-
tory agents). This chapter discusses new therapies both in pre-clinical and clinical 
stages of investigation, and emphasizes those with the highest likelihood for impact 
on the disease and translation into clinical use over the next decade.  

  Keywords     Intervention   •   Sickle cell disease   •   Gene therapy   •   Anti-adhesive   •   HbF 
inducer  

16.1       Introduction 

 This chapter will cover current and future novel treatments for sickle cell disease 
(SCD), or those in pre-clinical development that appear promising in offering new 
avenues or in exploring new mechanisms or approaches to treat or cure SCD. The 
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fi eld is undergoing a true revolution in terms of development of new interventions 
for the disease, as exemplifi ed by a current search within   www.clinicaltrials.gov     
that resulted in 412 ongoing clinical trials for SCD (as of September 2014); thus, 
only a selection of the new therapies will be discussed here. Our criteria used for 
selecting an intervention to discuss in this chapter included (1) its potential for 
transforming the fi eld, (2) the maturity of its associated clinical trials, or (3) new 
strategies for utilization of established therapies, the results of which could imme-
diately alter current practice. 

16.1.1     Single Mutation; Multi-System Disease 

 SCD is a genetic disorder caused by a single point mutation (adenine → thymine in 
the sixth codon of the β gene), resulting in valine being substituted for glutamic acid 
in the sixth position of the β chain. This mutation leads to polymerization of the 
hemoglobin (Hb) tetramer in deoxygenated conditions and gives rise to the classic 
“sickle-shaped” erythrocyte. The clinical consequences of this mutation are severe, 
wide-spread, and involve aberration of multiple downstream systems, including 
infl ammatory, coagulation, and vaso-regulation (Fig.  16.1 ) (see Chaps.   3    –  8     for 
details). In this chapter, SCD refers to all disease genotypes (HbSS, HbSC, 
HbSβ 0 thalassemia, HbSβ + thalassemia, HbSD, HbSO, HbSE), whereas sickle cell 
anemia (SCA) refers to the two most severe ones: HbSS and HbSβ 0 -thalassemia.

16.1.2        Therapeutic Classifi cation 

 Many therapeutic agents will have multiple targets or overlapping mechanisms of 
action; however, for this chapter we have classifi ed them based on their main mech-
anism of action, or target within the pathophysiology of SCD. We have divided 
therapies into two main groups: (1) those with “upstream” targets and (2) those with 
“downstream” targets (Table  16.1 ). Upstream therapeutic targets include therapies 
aimed at correcting the point mutation and those reversing the physiologic switch in 
hemoglobin production. These upstream strategies, such as genetic reprogramming 
of fetal hemoglobin (HbF) production, could profoundly alter all downstream events 
and provide signifi cant clinical improvement or actually cure SCD (Sankaran and 
Nathan  2010 ). The downstream targets involve multiple systems (infl ammation, 
coagulation, vaso-regulation, etc.) that can also be targeted to ameliorate symptoms 
of SCD, without a curative intent (Fig.  16.1 ). Selected therapies, some of which are 
listed in Table  16.1 , will be discussed in the next two sections.

K. Nottage et al.

http://www.clinicaltrials.gov/
http://dx.doi.org/10.1007/978-3-319-06713-1_3
http://dx.doi.org/10.1007/978-3-319-06713-1_8


401

  Fig. 16.1    Upstream and downstream targets in sickle cell disease. The pathophysiology of sickle 
cell disease is complex and involves a single point mutation in the beta globin gene that subse-
quently affects multiple systems downstream. An array of possible therapeutic targets are identi-
fi ed as upstream or downstream, according to the disease pathobiology       
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16.2         Therapies with Upstream Targets 

16.2.1     Gene Therapy 

 Perhaps one of the most exciting prospects in the fi eld is the potential for cure 
through gene transfer therapy. Therapeutic gene transfer for SCD is the process 
whereby a viral vector containing genetic information for normal β-globin produc-
tion is administered to a patient; genetic material is inserted into the host genome to 
correct the underlying genetic defect. Gene therapy has proven successful in hemo-
philia B (Nathwani et al.  2011 ,  2014 ); however, this has not yet been tested in SCD, 
despite substantial effort over more than two decades. Early investigations using 
adeno-associated viruses failed because of the inability to maintain expression of 
the transferred genetic material (Nathwani et al.  2000 ). In addition, high levels of 
gene expression, estimated at 20 % of hematopoietic stem cells, are necessary to 
have therapeutic benefi t (Nienhuis and Persons  2012 ). In the 1990s, a lentiviral vec-
tor was used to successfully transfer β- or γ-globin genetic material with resultant 
phenotypic expression in thalassemic mice (May et al.  2000 ; Rivella et al.  2003 ; 
Romero et al.  2013 ). Successful gene transfer was demonstrated in sickle murine 
models with improvement in the SCD phenotype (Levasseur et al.  2003 ; Pawliuk 
et al.  2001 ). Since this discovery, gene transfer therapy has continued to move for-
ward with several clinical trials now open to evaluate safety and expression of gene 
transfer using γ-globin (NCT02186418) and β-globin lentivirus vectors 
(NCT02247843 and NCT02151526). As proof of principle, gene therapy has been 
used successfully in an adult with thalassemia (HbE/β 0 -thalassemia), who has 
become transfusion-independent (Cavazzana-Calvo et al.  2010 ). 

 Most recently, a new modality of genetic engineering with theoretically greater 
precision and larger applicability is genome editing (or gene editing). This process 
involves a form of genetic engineering in which DNA is inserted into, replaced 
within, or removed from the genome using nucleases (Carroll  2011 ; Kim and Kim 
 2014 ; Sander and Joung  2014 ), which create double-stranded breaks at targeted 
locations, disrupting or repairing genetic defects. There are currently three nucle-
ases in use: zinc fi nger nucleases, transcription activator-like effector nucleases, and 
clustered regularly interspaced short palindromic repeats (CRISPRs), such as the 
Cas9 system. Nuclease-induced double-stranded breaks are then repaired by differ-
ent pathways, such as non-homologous end-joining and homology-directed repair; 
both repairing processes can allow the introduction of insertion or deletion muta-
tions, or allow the introduction of specifi c desired coding sequences. The power of 
targeted genome editing is such that it can promote highly effi cient alterations of the 
genome sequence and gene expression (e.g., enabling reverse genetics and assign-
ment of function), and can be applied to several human diseases, such as SCD and 
thalassemia. Many different approaches are being investigated with application to 
different diseases, in which the mechanisms of certain genes are well understood. 
For example, gene editing might be applied in SCD through suppression of HbF 
controlling regions. KLF1 and BCL11A are genes whose natural role is suppression 
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of γ-globin production during adulthood (Sankaran et al.  2008 ; Zhou et al.  2010 ). 
Inhibition of these genes in mice has led to increases in pancellular HbF (Xu et al. 
 2011 ). An alternative approach for HbF induction is activation of the γ-globin pro-
moter in erythroblasts derived from human CD34 +  cells using an artifi cial zinc fi n-
ger transcriptional activation factor (Hoban et al.  2015 ; Wilber et al.  2010 ). Given 
the fast pace at which this technique is being developed, it is conceivable that 
genome editing will be translated to the clinic in the next few years, providing a new 
generation of approaches to genetic correction of human disorders.  

16.2.2     Bone Marrow (Hematopoietic Stem Cell) 
Transplantation (HSCT) 

 HSCT is currently the only curative therapy available for SCD. The fi rst HSCT 
performed in a person with SCD occurred more than 30 years ago in a child with 
both SCD and acute myeloblastic leukemia; this patient was cured of both diseases 
(Johnson et al.  1984 ). Since then, over 1000 individuals with SCD (most selected 
for clinically severe disease) have been transplanted in the US and Europe using 
human leukocyte antigen (HLA)–identical sibling donors (Gluckman  2013 ). Overall 
survival (OS) and event-free survival (EFS) for HLA-identical sibling donor HSCT 
are very high today, ranging from 90–100 % to 80–100 %, respectively (Bernaudin 
et al.  2007 ; Bhatia et al.  2014 ; Gluckman  2013 ; Krishnamurti et al.  2008 ; Panepinto 
et al.  2007 ). The rate of graft versus host disease (GVHD) is progressively decreas-
ing and is presently less than 10 %. Furthermore, the use of non-myeloablative 
HLA-identical conditioning regimens has allowed the extension of HSCT to adults 
with multiple co-morbidities and organ dysfunction, which would have been 
expected to increase their risk of HSCT-related complications (Hsieh et al.  2014 ). 
Non-myeloablative and reduced-intensity preparative regimens have also been suc-
cessful in children and have provided excellent OS and EFS (Table  16.2 ) (Bhatia 
et al.  2014 ; Gluckman  2013 ; Krishnamurti et al.  2008 ).

    Unfortunately, most individuals with SCD do not have an HLA-identical matched 
sibling bone marrow donor (Table  16.3 ). Therefore, it is imperative that future stud-
ies of HSCT in SCD explore the use of alternative sources of hematopoietic stem 
cells, which should include not only unrelated matched adult donors or partially- 
matched umbilical cord blood (UCB) grafts, but also related haplo-identical donors. 
Expanding the pool of donors could potentially increase the availability of HSCT to 
all eligible SCD individuals.

   Results of HSCT using HLA-matched unrelated grafts (from both adult donors 
and UCB) in SCD are limited, but have been signifi cantly inferior to HLA-identical 
or haplo-identical HSCT (Table  16.2 ) (Gluckman  2013 ; Kamani et al.  2012 ). Use of 
haplo-identical grafts could improve donor availability, but the risk of alloreactivity 
(GVHD) is higher. Reports of haplo-identical HSCT for hemoglobinopathies are 
scarce in the literature, but seem promising. In 31 children with thalassemia major, 
a T-cell depletion approach has been used to reduce the risk of GVHD in haplo- 
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identical HSCT, and demonstrated both OS and EFS of 93 % (Table  16.2 ) (Sodani 
et al.  2011 ). A study with adults with SCD who received non-myeloablative haplo- 
identical non-manipulated grafts, with additional cyclophosphamide dosing post- 
graft infusion (to reduce GVHD risk), showed high OS (100 %), albeit with high 
graft rejection (43 %) (Table  16.2 ) (Bolanos-Meade et al.  2012 ). The non- 
myeloablative haplo-identical approach is now being tested in children with SCD 
(NCT00977691 and NCT01850108). Currently, T-cell depleted grafts (using 
CD34+ selection) are being tested in children and adults (NCT01966367) using 
HLA-identical sibling or unrelated donors and in children with haplo-identical 
donors (NCT01461837 and NCT02165007). 

 UCB is a valuable source of stem cells, which promote early engraftment and 
lower rates of acute GVHD even with one allele mismatch (5/6 HLA match). 
However, due to insuffi cient cell number (in relationship to the size of the recipient), 
the engraftment rate and sustainability of the graft may be reduced. An interesting 
study is investigating the use of UCB along with a new product, NiCord ®  (nicotin-
amide and noncultured T-cell fraction), a stem-cell based product composed of 
ex vivo expanded allogeneic cord blood cells (NCT01590628) (Horwitz et al.  2014 ). 
If successful, this approach could improve effi cacy of HSCT using UCB grafts. 

 Finally, although the overwhelming majority of HSCT for SCD have occurred in 
patients with severe disease complications (stroke, recurrent episodes of acute chest 
syndrome [ACS] and pain), there has been recent discussion about considering indi-
viduals with less severe disease for HSCT (Nickel et al.  2014 ). This argument fi nds 
support from previously transplanted milder cases (e.g., children of African immi-
grants to Europe who returned to their home countries where the care for SCD was 
suboptimal) and went on to have excellent outcome post procedure. Unfortunately, 
in early life, there are no reliable predictors of those who eventually will develop 
severe complications, which might justify early lower risk transplants in patients 
who are in better overall health. This discussion will likely continue as a result of 
improved successes with HSCT and greater availability due to the use of alternative 
sources of graft.  

   Table 16.3    Probability of available graft for SCD, according to source of graft and degree of HLA 
matching (if considering the majority of SCD African American) (Gragert et al.  2014 )   

 Type of graft  Likelihood of fi nding available donor 

 HLA-matched sibling (marrow or UCB)  14 % 
 Unrelated HLA-matched (adult donor marrow (8/8 
alleles)) 

 19 % 

 Unrelated 6/6 HLA-matched cord blood a   6 % for recipient < 20 years of age 
 2 % for recipient > 20 years of age 

 Unrelated 5/6 HLA-matched cord blood a   58 % for recipient < 20 years of age 
 24 % for recipient > 20 years of age 

   UCB  umbilical cord blood 

  a With adequate cell dose  

K. Nottage et al.
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16.2.3     HbF Inducers 

 HbF is one of the most powerful determinants of clinical severity (Platt et al.  1991 ; 
Serjeant  1995 ; Steinberg et al.  1995 ). Fetal hemoglobin (α 2 γ 2 ) inhibits the 
deoxygenation- induced polymerization of mutant sickle hemoglobin (HbS, α 2 β S  2 ). 
This inhibition occurs mainly due to two factors: (1) neither HbF homotetramers 
(α 2 γ 2 ) nor heterotetramers (α 2 γβ s ) participate in the polymerization process; and (2) 
the intracellular concentration of HbS, which is the prime determinant of polymer-
ization, is lessened by dilution with increased HbF (Eaton and Hofrichter  1987 ). In 
natural history studies, higher HbF levels are associated with reduced morbidity and 
mortality (Leikin et al.  1989 ; Platt et al.  1991 ,  1994 ; Stevens et al.  1981 ). These 
clinical observations provided strong evidence that pharmacologically induced HbF 
would be benefi cial to individuals with SCD. 

 Several medications, with different mechanism of action, have the ability to 
induce HbF production. Any drug that substantially increases intracellular HbF in a 
homogenous distribution (pancellular HbF distribution) has the potential to improve 
clinical outcomes dramatically in patients with SCD. 

    Hydroxyurea 

 Hydroxyurea is an antimetabolite chemotherapeutic agent known to stimulate HbF 
production and is the only FDA-approved therapy for use in adult patients with 
SCD. Hydroxyurea has predictable laboratory benefi ts: it raises Hb concentrations 
and HbF levels, as well as promotes a parallel increase in red cell mean corpuscular 
volume (MCV) (Ferster et al.  2001 ; Kinney et al.  1999 ). The myelosuppressive and 
cytotoxic effects of hydroxyurea induce erythroid regeneration and the recruitment 
of earlier progenitors programmed to produce higher levels of HbF (Dover et al. 
 1986 ). The exact mechanism by which hydroxyurea increases HbF levels is 
unknown, but it seems to be mediated through a nitric oxide (NO)-dependent activa-
tion of soluble guanylyl cyclase within erythroid progenitor cells (Cokic et al.  2003 , 
 2008 ). Hydroxyurea has additional benefi cial laboratory effects in individuals with 
SCA, including lowering white blood cell count (WBC), reticulocytes, and plate-
lets, increasing NO production (Nahavandi et al.  2002 ), improving RBC hydration 
(Orringer et al.  1991 ), and decreasing RBC adhesiveness to endothelium (Hillery 
et al.  2000 ). 

 The usual starting dose of hydroxyurea is 20 mg/kg/day given once daily orally 
(Heeney and Ware  2010 ; Platt et al.  1991 ), and therapy reduces the incidence of 
pain, ACS, hospitalization, and transfusions in adults and children (Charache et al. 
 1995 ; Ferster et al.  2001 ; Jayabose et al.  1996 ; Wang et al.  2011 ), but more impor-
tantly, hydroxyurea reduces mortality in individuals with SCD (Lobo et al.  2013 ; 
Steinberg et al.  2003 ). Additionally, when hydroxyurea is included in pre- 
conditioning regimens prior to bone marrow transplantation of patients with SCD, a 
lower incidence of rejection and engraftment failure is frequently seen (Brachet 
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et al.  2004 ). When hydroxyurea is initiated early in life, there is evidence of protec-
tion for some end organs. In young children with SCA, splenic function was pre-
served and, in some cases, regained when hydroxyurea was escalated to the maximum 
tolerated dose (approximately 30 mg/kg/day) (Hankins et al.  2005 ,  2008a ; Heeney 
and Ware  2010 ; Nottage et al.  2014 ). Similar benefi cial fi ndings in other organs have 
also been reported, such as improvement of renal function, proteinuria, retinopathy, 
resolution of hypoxemia, and protection against recurrent stroke (Aygun et al.  2013 ; 
Estepp et al.  2013 ; Fitzhugh et al.  2005 ; Singh et al.  2008 ; Ware et al.  2004 ). The 
BABY HUG study (Wang et al.  2011 ) (  www.clinicaltrials.gov     NCT00006400) was 
a landmark randomized multicenter trial investigating the role of hydroxyurea in 
organ preservation in very young (9–18 months) clinically asymptomatic children 
with SCA. Although the trial’s primary endpoints, assessing organ preservation 
(spleen assessment by  99 Tc spleen scan and glomerular fi ltration rate by  99 Tc-DTPA 
clearance), were not met, other quantitative measures of splenic function (Howell-
Jolly bodies and pit counts) and renal function (urine osmolality and specifi c grav-
ity) suggested improvement with hydroxyurea therapy (Table  16.4 ). 

 Recently, several clinical trials evaluating the use of hydroxyurea for secondary 
protection in children with previous stroke, and primary prophylaxis for those with 
abnormal transcranial Doppler (TCD) velocities have been concluded. The SWiTCH 
trial (Ware et al.  2012 ) (NCT00122980) was a Phase 3 randomized trial comparing 
chronic erythrocyte transfusion and chelation versus hydroxyurea and phlebotomy 
in children with SCA who had a previous stroke and iron overload. This trial failed 
to demonstrate noninferiority of hydroxyurea in comparison with transfusions and, 
currently, transfusions and chelation therapy remain the preferred way to manage 
children with SCA, stroke, and iron overload. Recently, the TWiTCH trial 
(NCT01425307) compared erythrocyte transfusions to hydroxyurea therapy for the 
reduction of primary stroke risk in children with abnormal TCD velocities who did 
not have cerebral vasculopathy or history of stroke and had received at least 12 

   Table 16.4    Qualitative evaluation of organ function in hydroxyurea versus placebo in the BABY 
HUG (Wang et al.  2011 )   

 Hydroxyurea  Placebo  Difference b  
(95 % CI)   p -value   n   Entry  Exit  %Δ a    n   Entry  Exit  %Δ a  

 HJB 
(per 10 6  RBC) 

 76  663  1360  106 %  82  495  1470  197 %  −274 
(−538 to −10) 

 0.04 

 Pitted cells (%)  85  4.3  5.7  32 %  82  4.6  8.4  84 %  −2.5 
(−4.7 to −0.2) 

 0.04 

 Urine osmolality 
(mOsm/kg H 2 O) 

 81  384  494  29 %  84  400  454  13 %  57 (3–110)  0.04 

 Urine- specifi c 
gravity 

 86  1.010  1.012  0 %  82  1.012  1.011  0 %  0.002 
(0.0004–0.004) 

 0.02 

   HJB  Howell-Jolly body,  RBC  red blood cell 
  a Percent difference from entry to exit 
  b  p -value calculated with Student’s t test comparing the exit versus entry differences between mean 
values in hydroxyurea and placebo groups  

K. Nottage et al.
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months of chronic transfusion. This trial was closed early since its primary endpoint 
was met. If results of the TWiTCH trial indicate that hydroxyurea is not inferior to 
chronic transfusion, hydroxyurea can be considered as an alternative therapy for 
children with SCA and abnormal TCD without signifi cant vasculopathy. 

 Given the collective accumulated evidence of benefi t of hydroxyurea, in 2014, 
the National Heart, Lung, and Blood Institute (NHLBI) issued evidence-based 
guidelines recommending that hydroxyurea therapy be offered to all children with 
SCA (≥9 months of age), independent of disease severity, and that it should be pre-
scribed for all adults with clinically severe disease (Yawn et al.  2014 ). 

 Interestingly, limited information about the pharmacokinetics (PK) of hydroxy-
urea is available. In a small cohort of SCD patients, no signifi cant differences in PK 
parameters occurred between adult and pediatric individuals (De Montalembert 
et al.  2006 ); however, in children receiving hydroxyurea for the fi rst time, signifi -
cant interparticipant variability has been reported, both in PK parameters and sys-
temic drug exposure (Ware et al.  2011 ). Given the increasing use of hydroxyurea in 
the pediatric population and a paucity of PK information, the FDA offered a written 
request under the Best Pharmaceuticals for Children Act (BPCA) to specifi cally 
address the PK of hydroxyurea in children, specifi cally highlighting the need for 
data comparing liquid and capsule formulations. In response to this written request, 
the “Pharmacokinetics and Relative Bioavailability of a Liquid Formulation of 
Hydroxyurea in Pediatric Patients with Sickle Cell Anemia” (NCT01506544) trial 
was designed to characterize the disposition of a liquid hydroxyurea formulation in 
a cohort of toddlers (≥2 to ≤5 years) with SCA and to evaluate the relative bioavail-
ability of a liquid formulation compared to a proprietary capsular formulation in 
older (>5 to ≤17 years) children. The results of this trial are forthcoming. Because 
hydroxyurea undergoes renal clearance, its dose must be adjusted in individuals 
with renal impairment. A reduced initial dose of hydroxyurea (7.5 mg/kg/day) is 
recommended in individuals with a creatinine clearance <60 mL/min (Yan et al. 
 2005 ), and close monitoring of myelotoxicity is essential in these patients. 

 The long-term safety of hydroxyurea continues to be of concern. The risk of 
cancer development no longer seems prominent, as no evidence suggests an 
increased rate of malignancy associated with hydroxyurea therapy (Brawley et al. 
 2008 ), and, in children treated with hydroxyurea therapy, no genotoxicity or chro-
mosomal damage has been identifi ed (McGann et al.  2011 ,  2012 ). Some effect on 
sperm production has been reported in men being treated with hydroxyurea, and this 
is a signifi cant concern for both practitioners and patients (Berthaut et al.  2008 ; 
DeBaun  2014 ; Smith-Whitley  2014 ). However, data suggesting that there are issues 
with male fertility related to hydroxyurea therapy are limited and of poor quality. A 
prospective study was recently completed to evaluate this risk (NCT01609192) and 
results should be forthcoming. 

 Signifi cant clinical questions still remain regarding hydroxyurea therapy that 
need to be addressed. For example: What is the optimal age of initiation? What is 
the optimal dosage, low fi xed-dose or escalated to a level of moderate myelosup-
pression (i.e., maximum tolerated dose)? Are there laboratory benchmarks that 
should be targeted, such as HbF or Hb levels? Can hydroxyurea therapy be utilized 
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safely in resource-poor countries, where the burden of SCA is the highest and co- 
morbidities (e.g., malaria, malnutrition) are common? What are its effects on qual-
ity of life? How do we maximize adherence to a daily medication to optimize 
long-term outcomes? How do we study novel therapeutic agents in SCD in combi-
nation with hydroxyurea in future clinical trials? 

 To address the issue of optimal dosing of hydroxyurea, a prospective cohort of 
children treated with hydroxyurea (NCT00305175) was evaluated for the effect of 
higher HbF levels. In this study, during intervals when children had HbF levels of 
20 % or less, they were twice as likely to be hospitalized, both for SCD-related 
causes or any cause (Estepp et al.  2014 ). This suggests that the clinical threshold for 
achieving maximum clinical benefi ts of the drug is when HbF values are ≥20 %. 
These data suggest that hydroxyurea therapy (dose and adherence) should be tai-
lored to achieve this HbF level, which could be used as a benchmark for future clini-
cal trials using hydroxyurea (or other HbF inducers) alone or in combination.  

    Decitabine 

 Decitabine and its analogue, 5-azacytidine, are cytidine surrogates. Once incorpo-
rated into the DNA, they form covalent bonds with DNA methyltrasferase (DNMT), 
leading to depletion of this enzyme, and resulting in DNA hypomethylation (Creusot 
et al.  1982 ). Hypomethylation of the γ-globin gene promoter triggers its expression 
and induces γ-globin synthesis, resulting in the so called “γ-globin reverse switch,” 
the postulated mechanism of action for increased HbF production (Charache et al. 
 1983 ; DeSimone et al.  1983 ). In addition, these compounds induce selective degra-
dation of DNMT1, also resulting in re-expression of γ-globin genes (Ghoshal et al. 
 2005 ). 

 Following early reports of success in baboons, a remarkable increase in F-cell 
and HbF production was observed in patients with SCD and thalassaemia with 
5-azacytidine use, in addition to a reduction in the proportion of dense RBCs in 
patients with SCD (DeSimone et al.  1982 ; Dover et al.  1985 ; Ley et al.  1983a ,  b ). 
These initial reports were very encouraging; however, concerns related to malignant 
transformation in rats, presumed to be related to 5-azacytidine, halted future inves-
tigation (Carr et al.  1984 ). The 5-azacytidine analogue, decitabine (2-deoxy 
5- azacytidine), was shown to promote similar molecular and cellular effects to its 
counterpart, with no apparent tumorigenic risks (DeSimone et al.  2002 ; Koshy et al. 
 2000 ). Prompted by the fact that some patients treated with hydroxyurea will have 
a poor response, even in the setting of good adherence (i.e., hydroxyurea low 
responders), more effort has been recently placed into the development of decitabine 
as an alternative or adjunct therapy in SCD. Low dose subcutaneous use of decitabine 
(0.2 mg/kg 1–3 times/week) was tested in a small group of adult patients who had 
responded poorly to hydroxyurea; decitabine promoted a marked increase in HbF, F 
cell proportion, and Hb concentration, and decreased reticulocyte and absolute neu-
trophil counts (Saunthararajah et al.  2003 ). In this study, however, the platelet count 
increased with decitabine therapy, an incompletely understood effect that may 
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trigger undesirable clotting activation and will require close monitoring in subse-
quent studies. A report of four adult patients with multiple complications of SCD 
described clinical benefi t of decitabine in reducing vaso-occlusive events and 
improved symptoms of heart dysfunction (Saunthararajah et al.  2008 ). 

 Decitabine has only been tested parenterally (IV or SQ) in human subjects. An 
oral form of decitabine, which was tested in baboons and seemed to offer the same 
benefi ts as the parenteral formulations (Lavelle et al.  2007 ), would improve the 
 likelihood of this drug becoming an acceptable therapy for SCD. The long-term 
clinical effects (e.g., reduction in vaso-occlusive events and protection against end 
organ damage) and long-term side effects of decitabine (e.g., malignancy and male 
infertility) have not yet been investigated. Clinical investigation of decitabine in 
larger groups and for longer periods is warranted. Currently, “Decitabine for High-
Risk Sickle Cell Disease” (NCT01375608) is an open-label, Phase 2 trial utilizing 
decitabine injections for up to 1 year in adults with SCD who have been refractory 
to or are unable to take hydroxyurea. The primary endpoint in this study, which is 
estimated to be completed in 2015, is the change in HbF level.  

    Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) 

 Vorinostat (SAHA) is a histone deacetylase inhibitor that binds directly to the cata-
lytic site of the enzyme and blocks substrate access. SAHA is now being studied in 
clinical trials for the treatment of several forms of cancer. In a sickle cell mouse 
model (Hebbel et al.  2010 ), pulmonary vascular endothelial receptor VCAM-1 and 
tissue factor (TF) expression, both markers of endothelial activation, were signifi -
cantly reduced following administration of SAHA. This inhibition of endothelial 
activation was seen in settings of acute and chronic administration of the compound. 
Additionally, SAHA induced expression of HbF and exhibited some functionality 
as an iron-chelating agent. Currently, a Phase 2 trial is recruiting adults with all 
genotypes of SCD and a history of clinically severe disease who have failed 
hydroxyurea therapy (NCT01000155). In this Phase 2 trial, SAHA is administered 
orally once a day, three times a week. The trial is designed to determine the effi cacy 
of SAHA in inducing HbF levels over 2 years and to evaluate the safety of the 
treatment.  

    2,2-Dimethylbuterate (HQK-1001) 

 2,2-Dimethylbuterate (HQK-1001) is an orally-administered short-chain fatty acid 
butyrate derivative, which was shown to stimulate HbF production in vitro and in 
animal models. HQK-1001 was evaluated in a Phase 2 trial (NCT0160134) designed 
to evaluate its pharmacodynamics, effi cacy, and safety in adults with HbSS or 
HbSβ 0 thalassemia. The study was terminated early following a planned interim 
analysis that showed lack of effect in inducing HbF levels (Reid et al.  2014 ).  
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    Lenalidomide and Pomalidomide 

 Lenalidomide and pomalidomide are immunomodulatory drugs that inhibit the pro-
duction of the cytokine tumor necrosis factor (TNF)-α. In vitro, lenalidomide and 
pomalidomide slow erythrocyte maturation and increase the proliferation of imma-
ture erythrocytes. Additionally, these medications result in signifi cant induction of 
HbF without evidence of cytotoxicity. When these medications were combined with 
hydroxyurea, they were found to have a synergistic effect on HbF production 
(Moutouh-de Parseval et al.  2008 ). In a mouse model, pomalidomide induced HbF 
levels with similar effi cacy to hydroxyurea without myelosuppression; however, 
when pomalidomide was used in combination with hydroxyurea, no HbF was 
induced (Meiler et al.  2011 ). The results of a Phase 1 trial (NCT01522547) designed 
to determine the maximum tolerated dose and safety of pomalidomide in adults 
with SCA who had clinically signifi cant disease are awaited and might provide 
important early evidence for continued investigation of this compound.   

16.2.4     Modulators of HbO2 Affi nity 

 The compound 5-hydroxymethyl-2-furfural (5HMF) is a naturally occurring alde-
hyde that has been shown to have anti-sickling properties. 5HMF is found in various 
food products including coffee, honey, dried fruits, juices, and wine, though con-
centrations are highly variable (Van Gorsel et al.  1992 ). When administered to 
sickle mice, the percentage of sickled cells decreased in a dose-dependent fashion. 
In addition, sickle mice treated with 5HMF had longer survival time under hypoxic 
conditions than sickle mice that were not exposed to the drug. The drug was 
unchanged and highly bioavailable after a single oral dose (Abdulmalik et al.  2005 ). 
The compound readily traverses the red cell membrane and binds to HbS. This bind-
ing allosterically shifts the oxygen dissociation curve to the left, thereby increasing 
the oxygen affi nity of Hb and inhibiting sickling of Hb S. The drug also has the 
advantage of maintaining red cell ion and water homeostasis in vitro (Hannemann 
et al.  2014 ). A Phase 1 study of 5HMF (also known as AES-103) was completed 
and the drug was determined to be safe among adult patients with SCD (Kato et al. 
 2013 ). Investigators also report a dose-dependent reduction in pain, trend toward 
less hemolysis, and higher oxygen saturation and oxygen affi nity. A Phase 2 study 
in adults is currently ongoing (NCT01987908). 

 A second compound, which also alters the oxygen affi nity of the hemoglobin and 
thereby prevents sickling, GBT440 (formerly known as GTx011), has been shown 
to delay HbS polymerization and prevent sickling of isolated RBCs in vitro under 
hypoxic conditions (Dufu et al.  2014 ). Results of ongoing clinical trials in adults are 
expected soon.   
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16.3     Therapies with Downstream Targets 

16.3.1     Anti-adhesives 

 Vaso-occlusion in SCD involves a complex cascade of events with interactions 
between adhesion molecules in erythrocytes, white blood cells, and platelets 
(Chiang and Frenette  2005 ). Selectins are a group of membrane adhesion molecules 
(E-selectin, P-selectin, and L-selectin) that mediate cellular adhesion between blood 
cells and the vascular endothelium and facilitate leukocyte rolling along the vessel 
wall. The potential involvement of selectins in vaso-occlusion has led to their evalu-
ation as a novel therapeutic target in SCD. 

    GMI-1070 (E-selectin Inhibitor) 

 In mouse models, GMI-1070 (rivipansel) inhibited E-selectin-mediated adhesion 
and inhibited erythrocyte-leukocyte interactions, leading to improved microcircula-
tory blood fl ow (Chang et al.  2010 ). In a Phase 1 trial (NCT00911495), GMI-1070 
was administered to 15 adult participants with HbSS. The study drug was well toler-
ated, and it signifi cantly reduced biomarkers of endothelial and leukocyte activa-
tion, in addition to decreasing activation of the coagulation cascade (Wun et al. 
 2014 ). A Phase 2 trial (NCT01119833), utilizing GMI-1070, randomized adoles-
cents and adult participants (12–60 years of age) with HbSS or Hbβ 0 thalassemia 
who had been admitted to the hospital with an acute vaso-occlusive pain episode. 
This trial, which was designed to identify a reduction in the time to resolution of 
pain, has recently completed enrollment and results are forthcoming.  

    Poloxamer 188/MST 188 

 Poloxamer 188 is a nonionic block copolymer surfactant composed of hydrophobic 
polyoxypropylene and hydrophilic polyoxyethylene. It has been found to improve 
microvascular blood fl ow by lowering viscosity and adhesive frictional forces. The 
mechanism of action is not entirely known, but it is hypothesized that the hydropho-
bic portion of the molecule interacts with the hydrophobic areas of cells and leaves 
the hydrophilic chains free to interact with surrounding media, providing a barrier 
blocking adhesive interaction (Adams-Graves et al.  1997 ). 

 A randomized, double-blind, placebo-controlled, pilot trial enrolled 50 partici-
pants (>15 years of age) with any form of SCD admitted to the hospital for vaso- 
occlusive pain (NCT01737814) (Adams-Graves et al.  1997 ). Participants were 
randomized to receive either poloxamer 188 or placebo; those receiving poloxamer 
188 may have had a reduction in duration of pain, narcotic utilization, and hospital-
ization time. A Phase 3 trial (NCT01737814), utilizing poloxamer 188 (MST-188), 
is currently enrolling participants (4–65 years of age) with any form of SCD who 
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were admitted to the hospital for a vaso-occlusive pain episode. The study is 
designed to compare the duration of vaso-occlusive pain utilizing poloxamer 188 
versus placebo. The estimated date of completion for this trial is winter 2015.   

16.3.2     Anti-thrombotic and Anti-platelet Agents 

 At baseline, individuals with SCA exhibit elevated thrombin generation, micropar-
ticle formation, tissue factor expression, and platelet activation; in addition, indi-
viduals with SCD have depletion of natural anticoagulants and a reduced fi brinolytic 
activity (Ataga et al.  2008a ; De Franceschi et al.  2011 ; Green and Scott  1986 ; Lee 
et al.  2006 ; Lim et al.  2013 ; Noubouossie et al.  2013 ; Tomer et al.  2001 ; van Beers 
et al.  2009 ; Westerman et al.  1999 ). These alterations are amplifi ed during acute 
vaso-occlusive events, and although ameliorative therapies (hydroxyurea and 
chronic transfusion) decrease the hypercoagulation state, they are not able to com-
pletely correct it (Colella et al.  2012 ; Liesner et al.  1998 ; Nebor et al.  2013 ). Given 
that the hypercoagulable state worsens during acute complications and is only par-
tially rectifi ed with standard (hydroxyurea and transfusion) therapies, alternative 
therapeutic approaches that have anticoagulant, anti-platelet, and anti-adhesion 
effects are being investigated. 

    Heparinoids 

 Heparinoids [unfractionated heparin (UFH) and low-molecular-weight heparins 
(LMWH)] are highly sulfated mucopolysaccharides that bind to antithrombin via a 
high-affi nity pentasaccharide sequence. Heparinoids exert their anticoagulant effect 
by increasing natural anticoagulant activity of antithrombin up to 1000-fold, and 
facilitate inactivation of thrombin (IIa) and factors (F) Xa, IXa, XIa, and XIIa (Björk 
and Lindahl  1982 ; Garcia et al.  2012 ; Hirsh and Raschke  2004 ; Rosenberg  1989 ; 
Rosenberg and Lam  1979 ; Verstraete  1990 ; Weitz  1997 ). 

 A single small cohort utilizing UFH has been reported in individuals with SCA 
(Chaplin et al.  1989 ). In this study, UFH (5000–7500 units subcutaneously twice 
daily) was administered for 12 months to four adults with HbSS who had severe, 
recurrent vaso-occlusive pain. No treatment related complications were identifi ed. 
Cumulatively, patients had 73 % fewer days in the hospital and a 74 % reduction in 
the hours spent in the emergency room when compared to the year prior to initiating 
UFH. The use of LMWH molecules has also been evaluated. A prospective, ran-
domized, double-blinded clinical trial utilized tinzaparin (LMWH) in individuals 
>12 years of age with HbSS admitted to the hospital for vaso-occlusive pain (Qari 
et al.  2007 ). In the 253 randomized participants, those who received tinzaparin had 
faster resolution of pain symptoms, correlating with shorter hospital stays and less 
overall days of pain reported. 
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 Additional studies with different doses and forms of LMWH are necessary to 
confi rm their benefi t (van Zuuren and Fedorowicz  2013 ) and, currently, two trials of 
heparinoid medications are underway. The fi rst is a feasibility study of UFH in 
adults with HbSS and ACS (NCT02098993). If feasibility of enrollment is docu-
mented, the corresponding larger trial would assess if UFH could decrease the 
duration of hospitalization or improve hypoxemia (caused by ACS) or pain. The 
second trial evaluating heparinoids is a prospective, randomized,   double-blind 
placebo-controlled evaluation of dalteparin (a LMWH) in adults with HbSS or 
HbSβ 0 thalassemia admitted for vaso-occlusive pain (NCT01419977). The primary 
outcome measure is reduction of hypercoagulable markers (D-dimer, thrombin anti-
thrombin complex -TAT, prothrombin fragment 1.2, and thrombin generation 
assay), with secondary measures evaluating reduction in clinical pain scores.  

    Target-Specifi c Oral Anticoagulants (TSOACs) 

 Rivaroxaban (Xarelto © ) and Apixaban (Eliquis © ) are orally administered selective 
inhibitors of factor Xa that function independently of antithrombin. 1  ,  2  In a Berkeley 
sickle cell mouse model, rivaroxaban normalized plasma levels of TAT without 
causing spontaneous bleeding (Sparkenbaugh et al.  2014 ).The drug is currently 
being evaluated in a single-center, double-blinded, randomized, cross-over trial 
designed to evaluate its effect on markers of infl ammation, coagulation and endo-
thelial activation in adults with HbSS (NCT02072668). In this trial, participants in 
steady-state are randomized to receive 4 weeks of either rivaroxaban or placebo; 
then, they undergo a 2-week washout period and are crossed-over to receive an 
additional 4 weeks of the alternative therapy. Additionally, a double-blinded, Phase 
3 trial of Apixaban (NCT02179177) is being planned for adults with HbSS or 
HbSβ 0 thalassemia with the primary endpoint being a reduction in pain.  

    Antiplatelet Agents 

 Currently, antiplatelet agents have not been proven to be safe or effective in amelio-
rating the complications of SCA; several trials are currently underway which may 
provide insight into this potential therapeutic class of medications. 

 Prasugrel (Effi ent © ) and ticagrelor (Brilinta © ) belong to the thienopyridine class 
of platelet inhibitors and reversibly inhibit the P2Y 12  ADP-receptor. 3  ,  4  Recently, 
 prasugrel was evaluated in a randomized, double-blinded, adaptive, Phase 2 study in 

1   2014c. Eliquis (apixaban).  Package insert ,  http://www.accessdata.fda.gov/drugsatfda_docs/
label/2012/202155s000lbl.pdf . 
2   2014d. Xarelto (rivaroxaban).  Package insert ,  http://www.xareltohcp.com/sites/default/fi les/pdf/
xarelto_0.pdf , Accessed 1 September 2014d. 
3   2014a. Brilinta (ticagrelor).  Package insert ,  http://www1.astrazeneca-us.com/pi/brilinta.pdf . 
4   2014b. Effi ent (prasugrel).  Package insert ,  http://pi.lilly.com/us/effi ent.pdf . 
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an adult population with any SCD genotype (NCT01167023) (Wun et al.  2013 ). 
Participants were randomized to receive 5 mg of prasugrel daily versus placebo for 
30 days. Prasugrel decreased biomarkers of platelet activation, and there were trends 
in improvement in the intensity and frequency of pain episodes (Wun et al.  2013 ). 
Currently, an international, Phase 3, double-blinded, placebo-controlled trial of pra-
sugrel in children is underway (NCT01794000). Eligible participants have HbSS or 
HbSβ 0 thalassemia and   clinically severe disease. Following randomization, partici-
pants are followed for 24 months with the primary endpoint being a reduction in 
vaso-occlusive events. Another antiplatelet agent, ticagrelor, is also being investi-
gated in a pharmacokinetic and pharmacodynamic dose-ranging trial (NCT02214121) 
in children with HbSS or HbSβ 0 thalassemia and clinically severe disease.   

16.3.3     Anti-infl ammatory Agents 

 Vaso-occlusion causes direct cellular damage from disrupted blood fl ow and resul-
tant ischemia. Upon restoration of blood fl ow, the delivery of oxygen to the once 
ischemic tissue triggers a secondary, infl ammatory reaction. The complex infl am-
matory cascade in ischemia-reperfusion injury involves activation of leukocytes and 
platelets and release of various cytokines, chemokines, and infl ammatory molecules 
such as TNF-α, IL-1, IL-6, IL-8, monocyte chemoattractant protein 1 (MCP-1), 
platelet activating factor (PAF), leukotriene B4 and E4 and vascular endothelial 
growth factor (VEGF) (Hebbel  2014 ; Hibbert et al.  2005 ). Prevention of the activa-
tion of the infl ammatory cascade has been a target of newer therapies for 
SCD. Historically, corticosteroids have been used to abate the infl ammatory compo-
nent of the disease; however, use of these agents has been associated with rebound 
vaso-occlusion and hospital readmission and has fallen out of favor (Bernini et al. 
 1998 ; Strouse et al.  2008 ). Other drugs being studied for their anti-infl ammatory 
properties include agents that inhibit leukotrienes such as montelukast and zileuton, 
adenosine 2A receptor agonists, and HMG-CoA reductase inhibitors (statins). 

    Adenosine 2A Receptor Agonist (A 2A R) 

 Activated invariant natural killer T-cell NKT (iNKT) cells are elevated in individu-
als with SCD (Wallace et al.  2009 ) and have been implicated in ischemia- reperfusion 
injury through their ability to propagate the infl ammatory cascade (Shimamura 
et al.  2005 ). The A 2A R agent, regadenoson, functions by disturbing iNKT cell acti-
vation and reducing its activity. In a sickle mouse model, iNKT cells were present 
in greater numbers and were hyper-responsive to ischemia-reperfusion injury com-
pared to wild type mice. Furthermore, disrupting activation of iNKT cells in these 
mice decreased pulmonary infl ammation (Wallace et al.  2009 ). These preclinical 
data were the basis for a Phase 1 clinical trial of regadenoson in 27 adults with 
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HbSS and 14 healthy controls. The study demonstrated the safety of a low-dose IV 
infusion (1.44 mcg/kg/hr) during a painful vaso-occlusive crisis, as well as a reduc-
tion of iNKT cell activation compared to that of controls during steady-state (Field 
et al.  2013 ). No dose limiting toxicities were identifi ed. A Phase 2 placebo- controlled 
study is underway (NCT01788631) to evaluate the impact of regadenoson on iNKT 
cells, as well as its impact on clinical parameters such as hospital length of stay, 
opioid use, and respiratory symptoms among patients with a painful vaso-occlusive 
crisis or ACS. 

 Utilizing the same principle of reducing iNKT cells activity, the humanized 
monoclonal antibody NKTT120, is also being tested in clinical trials. This drug was 
recently granted fast track designation by the FDA to facilitate development and 
expedite its review (Scheuplein et al.  2013 ). A Phase 1 study is being conducted in 
adults with SCD and is investigating safety and dosing (NCT01783691).  

    HMG-CoA Reductase Inhibitors (Statins) 

 HMG-CoA reductase inhibitors (statins) are used in the general population primar-
ily for their lipid-lowering effects, and multiple clinical trials have demonstrated a 
reduction in mortality with their use (Palmer et al.  2014 ; Taylor et al.  2013 ). There 
is accumulating evidence that statins have pleiotropic effects as a result of enhance-
ment of endothelial function and a reduction in infl ammatory mediators (Marzilli 
 2010 ). A meta-analysis evaluating the impact of statin therapy on infl ammatory 
factors in patients with rheumatologic disease found down-regulation of multiple 
infl ammatory mediators (e.g., TNF-α, IL-1, and IL-6), and overall reduction in clin-
ical symptomatology (Lv et al.  2015 ). Statins also reduce adhesion of monocytes to 
endothelial cells (Teupser et al.  2001 ), release of TNF-α and IL-1β from monocytes 
(Ferro et al.  2000 ), and expression of adhesion molecules (e.g., P-selectin, ICAM-1, 
and VCAM-1) (Stach et al.  2012 ; Yang et al.  2012 ). The activated coagulation sys-
tem of patients with SCD might be responsive to the additional action of statins in 
reducing hypercoagulation. The mechanism involves decreasing both thrombin 
generation and platelet activation (Pastuszczak et al.  2010 ). Finally, statins improve 
NO synthase function, thereby reducing oxidant stress and mitigating the endothe-
lial dysfunction that is a mainstay in SCD (Hebbel et al.  2009 ). 

 A Phase 1/2 study of statin use in 26 patients with SCD showed that NO levels 
increased and C-reactive protein and IL-6 decreased in a dose-dependent fashion 
(Hoppe et al.  2011 ). Sub-analyses demonstrated a potential additive effect of statins 
with hydroxyurea. Importantly, no serious adverse events occurred, and there were no 
apparent ill effects of lowering cholesterol in patients who are relatively hypocholes-
terolemic at baseline. This work has led to additional clinical investigations evaluating 
the impact of statins on endothelial dysfunction, vaso-occlusive pain, and albumin-
uria. Two trials are completed and awaiting results (NCT00508027 and NCT00072826) 
and two trials are currently enrolling (NCT01702246 and NCT01732718). Results of 
these trials will help establish the role of these agents in SCD.  
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   Phosphodiesterase 9 (PDE9) Inhibitor 

 Phosphodiesterase 9 (PDE9) is another therapeutic target for SCD that has the 
advantage of being somewhat tissue specifi c, since its expression is high in hemato-
poietic cells. Inhibition of this enzyme prevents degradation of cGMP. Higher levels 
of NO and cGMP have been linked with decreased leukocyte-endothelial interac-
tion, thus less infl ammation (Almeida et al.  2008 ; Miguel et al.  2011 ). The com-
pound BAY73-6691 is a PDE9 inhibitor that has shown some success in reducing 
the infl ammatory state associated with SCD in mouse models (Almeida et al.  2012 ). 
When hydroxyurea was administered concomitantly with BAY73-6691 there was 
even greater inhibition of leukocyte adhesion, improvement in leukocyte rolling 
velocity, and greater plasma cGMP concentration, indicating a synergistic effect of 
the two agents.   

16.3.4     Vaso-Dilators 

   Nitric Oxide (NO) 

 NO is a potent vaso-dilator that is critical to the maintenance of vascular tone and 
is a key modulator of ischemia-reperfusion injury. In SCD, there is both increased 
consumption and decreased production of NO (Morris  2014 ). Vaso-dilation is 
compromised as a result of NO defi ciency and may contribute to the pathophysi-
ologic mechanisms of vaso-occlusive events. Multiple clinical observations have 
been made of resolution of SCD-related complications after treatment with inhaled 
NO (iNO) (Chang et al.  2008 ; Montero-Huerta et al.  2006 ; Oppert et al.  2004 ). 
Therapeutic iNO was tested in 20 patients with SCD age 10–21 years who were 
experiencing painful vaso-occlusive crisis. Opioid consumption was reduced in the 
patients receiving iNO when compared to placebo and there was a reduction in 
pain scores in the iNO group (Weiner et al.  2003 ). In a larger clinical trial, 150 
patients with painful vaso-occlusive crisis were randomized to iNO or placebo, but 
no difference was observed between the two study arms (Gladwin et al.  2011 ). 
Despite these results interest still exists in understanding the therapeutic role of 
iNO for ACS and in combination with other therapies such as transfusion and 
nitroglycerin.  

   Arginine 

 Arginine is an obligate substrate for NO and is converted through the enzyme NO 
synthase (NOS); thus, it indirectly affects vascular tone. Arginine defi ciency is 
common in patients with SCD, who have relatively normal levels in childhood, fol-
lowed by gradual decline associated with aging and acute decreases during SCD- 
related complications (Morris et al.  2000 ,  2005 ). Early studies of arginine therapy 
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were unsuccessful, likely due to insuffi cient dosing and choice of suboptimal study 
endpoints (Morris  2014 ; Styles et al.  2007 ). Arginine therapy has been used for the 
treatment of SCD-related leg ulcers (McMahon et al.  2010 ), and anecdotally for 
priapism (Morris  2014 ). There are confl icting data on the use of arginine for pulmo-
nary hypertension, though differences in the defi nition of pulmonary hypertension 
and the dosing of arginine may explain these fi ndings (Little et al.  2009 ; Morris 
et al.  2003 ). A small placebo-controlled trial of arginine for painful vaso-occlusive 
crisis in children with SCD demonstrated a reduction in parenteral opioid use and 
lower pain scores upon hospital discharge without a difference in the hospital length 
of stay (Morris et al.  2013 ). Though arginine metabolism is clearly disrupted in 
patients with SCD, its therapeutic role still warrants further investigation. Multiple 
trials examining the role of arginine in various clinical SCD-related complications 
such as vaso-occlusive crisis, ACS, and leg ulcers (NCT01796678, NCT00029731, 
and NCT00004412) have been completed and results are pending.  

   Sildenafi l 

 Another vaso-dilator of interest is sildenafi l, a phosphodiesterase-5 inhibitor. 
Sildenafi l has been shown to improve pulmonary hemodynamics and exercise 
capacity among adults in the general population with pulmonary hypertension 
(Galie et al.  2005 ). However, a multi-institutional randomized trial investigating this 
agent in SCD patients was terminated early due to an increase in hospitalizations for 
painful vaso-occlusive crisis in the sildenafi l arm (Machado et al.  2011 ). As a result, 
momentum surrounding this drug has ceased and no active trials are in progress.   

16.3.5     Anti-RBC Dehydration Agents 

 The sickling process is uniquely dependent on the intracellular concentration of 
HbS; the greater the HbS concentration, the shorter the lag time to polymer forma-
tion and the greater the propensity for sickling (Eaton and Hofrichter  1987 ; Ferrone 
et al.  1985 ). HbS concentration is directly dependent upon cellular hydration status 
with dehydrated RBCs having higher intracellular HbS concentrations. Three main 
pathways are involved in red cell dehydration: the calcium-activated potassium 
effl ux channel (Gardos channel) (Vandorpe et al.  1998 ), the KCl co-transport chan-
nel (Brugnara et al.  1986 ), and the Na + pump (Joiner et al.  1986 ). Inhibition of any 
of these pathways could potentially prevent RBC dehydration and provide clinical 
benefi t. 

 The combination of magnesium pidolate and hydroxyurea was investigated in a 
Phase 1 clinical trial in children with HbSS (Hankins et al.  2008b ). A signifi cant 
reduction of KCl co-transport activity occurred after introduction of oral magne-
sium pidolate, supporting previous reports of its membrane effects in SCD (De 
Franceschi et al.  1997 ,  2000 ). Subsequent clinical studies, however, have not been 
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able to demonstrate the clinical benefi t of using either magnesium sulfate or a 
Gardos channel blocker (Senicapoc) in reducing either vaso-occlusive events or 
duration of hospitalization (Ataga et al.  2008b ; Goldman et al.  2013 ).  

16.3.6     Anti-oxidants 

  L -glutamine, alpha-lipoic acid, and omega-3 fatty acid (docosahexanoic acid, DHA) 
have all been tested in SCD with mixed results. DHA was recently shown to improve 
red blood cell deformability in mice and reduce the rate of vaso-occlusive pain 
events in children, albeit with limited clinical benefi t (Daak et al.  2013 ; Wandersee 
et al.  2015 ). It is not clear if anti-oxidants will have a signifi cant role in preventing 
SCD-related complications, and their effects need to be confi rmed in future larger 
clinical trials.   

16.4     Conclusion 

 At present, only three treatments for SCD are considered standard of care: hydroxy-
urea therapy, chronic transfusion, and HLA-identical sibling donor HSCT. In the 
US, hydroxyurea is the only FDA-approved drug for SCD (as of December 2014, 
only for severely affected adults with HbSS). In Europe, the European Medicines 
Agency granted a favored marketing authorization and recommendation for the use 
of hydroxyurea in children and adults with SCA in 2007. However, with so many 
drugs in pre-clinical and clinical development today, one can only expect that we 
will most certainly have greater options of treatment in the next decade. Of all the 
clinical therapeutics currently under investigation, two classes of drugs seem poised 
to undergo a faster translation into clinical use: anti-adhesives (particularly anti-E 
selectin agents), and anti-infl ammatory agents (particularly modulators of iNKT 
cells). New agents or modalities of treatment that are under investigation and are 
likely to alter the natural history of SCD are the HbO2 affi nity modulators and gene 
therapy. 

 Gene therapy, especially the newest form of genetic engineering, gene editing, 
could have a powerful impact in ameliorating or curing the disease given its highly 
specifi c targeting ability. The combination of a newer agent with an established 
therapy (e.g., hydroxyurea) also appears to be an opportunity for rapid development 
since this approach could take advantage of drugs with different mechanisms of 
action and non-overlapping toxicity. An ideal drug regimen could combine upstream 
and downstream targets for maximum benefi t. Moreover, as we investigate new 
therapies, especially drug combination therapy for SCD, careful choices of clinical 
and laboratory endpoints are necessary to provide the best opportunity to answer 
questions of effi cacy. 

 Finally, widespread application of HSCT may become a reality with improve-
ment in utilization of alternative graft sources, such as haplo-identical related donors 
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and UCB from unrelated donors. The reduction in graft rejection and GVHD, cou-
pled with decreased transplant-related mortality (using non-myeloablative and 
lower toxicity regimens), may provide the impetus for offering HSCT to many more 
severe, and, perhaps, less severe individuals living with SCD, including both adults 
and children. 

 In summary, after many years of sluggish “anti-sickling” drug development, it 
appears we have entered an era of true revolution in the development of new thera-
peutic opportunities for amelioration and potential cure of SCD. After more than 
100 years since this condition was fi rst described, it is fi nally time that we look 
forward to a day when we will have many choices to offer children and adults living 
with SCD.     
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                       Glossary 

  Acute chest syndrome (ACS)    Pulmonary illness in sickle cell disease, character-
ized by fever and/or respiratory symptoms, typically defi ned by the radiographic 
fi nding of a new lung infi ltrate.   

  Acute splenic sequestration    Rapid trapping of cellular blood elements in the 
spleen, resulting in an acute drop in hemoglobin, often associated with thrombo-
cytopenia and hypovolemia.   

  Alloimmunization    Clinically signifi cant development of new antibodies against 
erythrocyte antigens in the transfusion receiver; detected by direct antiglobulin 
testing (DAT) or through screening of irregular antibodies in the absence of clini-
cal or laboratory signs of hemolysis.   

  Allosteric regulation    Conformational changes of a protein, usually in an enzyme, 
which may modulate its affi nity to the ligand at the active site.   

  Aplastic crisis    Severe anemia with reticulocytopenia due to a temporary failure 
of the bone marrow to make red blood cells, typically caused by infection with 
parvovirus B19 in children with sickle cell disease.   

  Balanced polymorphism    A stable polymorphism maintained by natural selection.   
  Band 3 clustering    Abnormal clustering of the RBC anion exchanger Band 3 in 

sickle RBCs, due to binding to HbS hemichromes.   
  Cation loss/dehydration    The loss of intracellular K+ and water through the Gardos 

channel and K/Cl cotransport system resulting in dehydration of sickle RBCs.   
  Cholelithiasis    Gallstones.   
  Cytokines    Low-molecular-weight (non-antibody) proteins that regulate the inten-

sity and duration of immune responses and mediate communication between 
cells. Can be secreted by various cell types.   

  Dactylitis    Painful swelling of the hands or feet due to vaso-occlusion that occurs in 
young children with SCD (also termed “hand-foot syndrome”).   

  Damage-associated molecular patterns (DAMPs)    Molecules that can initiate 
and amplify sterile infl ammatory responses mediated via pattern recognition 
receptors (PRRs).   



432

  Delay time    The time between HbS deoxygenation and the onset of exponential 
polymerization.   

  Delayed hemolytic transfusion reactions    Development of antibodies to antigen 
erythrocytes after transfusion, with the discernible clinical signs of hemolysis 
usually appearing from 24 h to 28 days after a transfusion and a positive direct 
antiglobulin test and positive elution test or newly identifi ed erythrocyte alloan-
tibodies in the serum of the receiver’s serum, as well as an insuffi cient increase 
in post-transfusion hemoglobin.   

  Disease burden    The overall impact of diseases and injuries at an individual level 
or at the societal level. May refer to the economic costs of a disease.   

  Downstream target    In the context of sickle cell disease intervention therapy, tar-
get defi ned based on the temporal sequence of events according to the patho-
physiology of the disease. A downstream target is one that occurs later in the 
process, such as the increased adhesivity of red blood cells.   

  Endothelins    Peptides that induce vasoconstriction and, therefore, increase blood 
pressure.   

  Enhancer    A short (50–1500 bp) sequence of DNA that can be bound to proteins 
to activate transcription of a gene or genes. Enhancers are often  cis - acting and 
located far away from the gene. Enhancers can be upstream or downstream from 
the start site of the gene in the forward or backward direction.   

  Epistasis    Interaction between alleles and their effect on a trait. If a quantitative 
trait results from adding up contributions from different loci, then it is said that 
there is no epistasis.   

  Erythrocytapheresis    Extracorporeal blood separation method whereby whole 
blood is extracted from a donor or patient, the red blood cells are then separated, 
and the remaining blood is returned to the circulation.   

  F cell    An erythrocyte containing suffi cient HbF to be detectable by fl ow cytom-
etry using anti-HbF antibodies. Usually, about 6 pg. of HbF per cell is required 
for an F cell to be detectable. For an F cell containing HbS as the predominant 
hemoglobin 10 pg. of HbF is needed to prevent deoxyHbS polymerization at 
physiologic oxygen saturations.   

  Flow mediated vasodilation    The endothelium-dependent ability of blood vessels 
to dilate in response to an increase in shear stress.   

  Functional capillary density    The number of perfused capillaries per volume of 
tissue.   

  Gene editing    A form of genetic engineering in which DNA is inserted into, 
replaced within, or removed from the genome using nucleases.   

  Genetic modifi er    A gene that infl uences the expression or the effects of another 
gene.   

  Genome-wide association study (GWAS)    Approach that compares genetic 
between people with a particular disease and unaffected individuals, often mea-
suring SNPs that form haplotypes across the entire genome.   

  Genotype    In the context of sickle cell disease, this refers primarily to the β-globin 
gene alleles inherited by the patient and responsible for the disease. With the 
identifi cation of several other genes that modify the severity of the disease, the 
genotype may be extended to refl ect these.   
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  Haplo-identical hematopoietic stem cell transplantation    A type of bone  marrow 
transplant that utilizes a donor who is half-matched with the patient.   

  Haplotype    DNA variations that are inherited together. The β S -globin haplotype is a 
group of polymorphisms that are inherited together, along with the β S  mutation. 
Five major patterns have been described, some of which affect the phenotype 
signifi cantly.   

  HbS-β thalassemia    Compound heterozygous state wherein an HbS gene is co-
inherited with a β (beta)-thalassemia gene, which causes the under expression 
of the β-globin gene. Can be divided into two subtypes; HbS-β +  thalassemia and 
HbS-β 0  thalassemia, whereby HbS-β +  thalassemia is generally clinically milder 
than HbS-β 0  thalassemia, as some Hb A is produced.   

  HbSC disease    Inheritance of the HbS gene together with the HbC gene, also 
referred to as hemoglobinopathy SC.   

  HbSS    Individuals homozygous for the HbS gene (β S  mutation), also known as 
sickle cell anemia.   

  Heme    Molecule composed by iron linked to four groups of porphyrin released 
from hemoglobin during hemolysis. Extracellular heme exerts toxic effects via 
generation of reactive oxygen species and through the activation of innate immu-
nity thereby triggering proinfl ammatory pathways.   

  Hemoglobinopathies    Diseases caused by genetic variants that lead to one of the 
globin chains of the hemoglobin molecule inferring an abnormal structure on the 
hemoglobin protein or being abnormally produced (in excess or defi cit).   

  Hemolytic anemia    Anemia that results from the premature destruction of the red 
blood cell. This destruction can occur either outside the vasculature in the reticu-
loendothelial system where most normal erythrocytes are destroyed or within 
the vasculature. In sickle cell disease, up to a third of red cell destruction is 
intravascular.   

  Heterotropic regulation    Modulation of the protein activity (usually enzymes) by 
different ligands outside the active site. The ligation with non-specifi c molecules 
can confer some conformational changes at the active site, changing its affi nity 
for the native ligand.   

  Heterotypic cellular interaction    Sickle RBCs can interact with endothelial cells 
and leukocytes through multiple receptors and adhesion molecules on their sur-
face membrane. These heterotypic cell–cell interactions can induce infl amma-
tion and promote cell aggregation in the vaso-occlusive process.   

  Homotropic regulation    Regulation of a protein’s activity (usually enzymes) by its 
ligand at the active site. This ligation can also modulate other active sites of the 
protein by conformational changes.   

  Hydroxyurea    Drug used in the treatment of sickle cell disease patients. Its main 
benefi cial effect is the induction of fetal hemoglobin expression, with a subse-
quent reduction of the hemolytic rate and of vaso-occlusive crisis occurrence.   

  Hypercoagulable state (hypercoagulability)    A state of increased activation of 
the coagulation process in which there is a higher risk of thromboembolic events.   

  Infl ammatory mediator    Varied cytokines and other molecules, such as hista-
mine, bradykinin, prostaglandins, cell adhesion molecules and leukotrienes, that 
orchestrate the infl ammatory response.   
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  Integrin activation    Integrins are transmembrane receptors that are expressed with 
low ligand-binding capacity. Intracellular signaling through cell surface recep-
tors, for example, G-protein-coupled receptors (GPCRs), is required to induce 
conformational and avidity changes that greatly increase their affi nity to ligands.   

  Intravascular hemolysis    Process in which red blood cells suffer destruction in the 
circulation. In sickle cell disease this occurs due to polymerization of hemoglo-
bin S, followed by sickling and rupture of red blood cells.   

  Intravital microscopy    Intravital microscopy is a technique used to observe bio-
logical systems in live animals. Mouse cremaster muscle is a classical model 
tissue for studying leukocyte behavior during their recruitment and activation in 
the vasculature. Injection with low doses of fl uorescent antibodies allows iden-
tifi cation of differential leukocyte subset behavior during recruitment in vivo.   

  Irreversibly sickled RBCs (ISCs)    Sickle RBCs with permanent shape change due 
to damage to membrane proteins and independent of hemoglobin polymerization.   

  Ischemia-reperfusion (IR) injury    Tissue injury resulting from vascular occlusion 
(ischemia) or lack of oxygen, followed by the return of the blood (reperfusion) to 
the ischemic area.   

  Leukocyte adhesion cascade    Recruitment of leukocytes requires adhesion and 
transmigration through the vessel walls. The classical model of leukocyte adhe-
sion cascade includes selectin-mediated rolling, chemokine- triggered activa-
tion and integrin-dependent adhesion. These steps are followed by intraluminal 
crawling and paracellular and transcellular transmigration.   

  Linkage disequilibrium    SNPs or genes that are inherited together more often than 
by chance alone.   

  Microvesicles    Small particles derived from RBCs, platelets, monocytes, and endo-
thelial cells that may greatly infl uence adhesive properties of RBCs and WBCs 
in SCD.   

  Neutrophil microdomain    Neutrophils rapidly polarize to form leading and trail-
ing edges during their recruitment. Polarization of neutrophils also induces 
rapid redistribution of surface receptors to form functional microdomains. These 
microdomains are important for the directional, chemokine- driven movement of 
neutrophils within blood vessels and across the endothelium.   

  Nitric oxide    A signaling molecule with a short spatial and temporal half-life that is 
rapidly produced by endothelial cells to regulate a variety of vascular processes 
such as vasodilation, adhesion, infl ammation, coagulation and vessel growth.   

  Phenotype    The clinical characteristics that defi ne the disease, and in a genetic disor-
der like sickle cell anemia, are directly or indirectly a result of the gene mutation.   

  Proliferative retinopathy    Neovascularization of the retina, extending into the vit-
reous body.   

  Prostacyclins    Metabolites of arachidonic acid, produced by the endothelium that 
inhibit platelet aggregation and regulate vessel diameter.   

  Prosthetic group    An organic (such as a vitamin, sugar, or lipid) or inorganic 
(such as a metal ion) specifi c non-polypeptide unit required for the activity of an 
enzyme or other protein. In enzymes, they are often involved in the active site. 
Prosthetic groups are bound tightly to proteins and may even be attached through 
a covalent bond.   
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  Reticulocyte    Immature red blood cell found in the peripheral blood and used as a 
marker for bone marrow red blood cell production; elevated at baseline in sickle 
cell disease (reticulocytosis, elevated reticulocyte count; reticulocytopenia, 
decreased reticulocyte count).   

  Shear stress    A longitudinal force exerted against endothelial cells by blood fl ow-
ing along the vessel wall.   

  Sickle cell anemia    Refers to the homozygous state, HbSS.   
  Sickle cell disease    Caused by the inheritance of the HbS gene along with another 

abnormal Hb variant and encompasses the homozygous state, HbSS and other 
compound heterozygous states, e.g. HbSβ, HbSC, HbSD, HbSO Arab  etc.   

  Silent infarcts    Changes on magnetic resonance imaging (MRI) of the brain, con-
sistent with infarction without any history of overt neurological symptoms or 
abnormal neurological examination.   

  Splenic sequestration    Trapping of blood in the spleen that causes severe anemia 
in children with sickle cell disease.   

  Sterile infl ammation    Infl ammatory response to non-microbial activators 
(DAMPs).   

  Thrombin generation    The fi nal result of the activation of coagulation, in particu-
lar activated factor X, culminating with the transformation of prothrombin into 
thrombin, a fi nal mediator of the coagulation process.   

  Tissue factor    A transmembrane protein found in several sub-endothelium cells 
of the vessel wall, being exposed in the fl ow after the occurrence of vascular 
lesions, and then triggering the activation of coagulation.   

  Upstream target    In the context of sickle cell disease intervention therapy, target 
defi ned based on the temporal sequence of events according to the pathophysiol-
ogy of the disease. An upstream target is one that occurs early in the process, 
such as the genetic lesion (single point mutation) resulting in the sickle mutation.   

  Vasoocclusion    The obstruction of fl ow in blood vessels, usually in the microcircu-
lation, initiated by the presence of sickle erythrocytes.   

  Vaso-occlusive crisis, also known as sickle pain crisis    New onset of pain that 
lasts at least 4 h that can only be explained by vaso-occlusion and which may 
require analgesic therapy in a medical setting.        
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