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Abstract Aflexible bar-and-joint framework is said to be moving expansively if the
distance between any two of its joints either increases or stays the same. Expansive
motions of finite 2D frameworks have been fully characterized. Here, we investigate
their periodic counterparts. The key to their understanding is a family of one-degree-
of-freedom mechanisms called periodic pointed pseudo-triangulations. Expansive
infinitesimal motions for mechanisms with several degrees of freedom form a poly-
hedral cone whose extremal rays are obtained from different completions of the
framework to pseudo-triangulations. We illustrate its structure on a framework asso-
ciated to a stellated tiling of the plane.
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1 Introduction

In this chapter we study the kinematics of a remarkable family of planar periodic
bar-and-joint frameworks: those which possess periodic expansive deformations.
For instance, we show that the periodic framework from Fig. 1 has locally a smooth
4-dimensional space of periodic deformations and all directions for expansive trajec-
tories are contained in a polyhedral cone which has a natural geometric description
and can be determined with precision. By definition, a one-parameter deformation
of a flexible framework is expansive if the distance between any pair of joints either
increases or stays the same. Taken in reverse, an expansive motion is contractive.
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Fig. 1 A periodic bar-and-
joint framework

Of particular interest are those one-degree-of-freedom (1dof) mechanisms which
are expansive in some neighborhood of the initial configuration. We show that all
expansive deformations are, infinitesimally, linear combinations with non-negative
coefficients of underlying 1dof expansive mechanisms.

Expansion is a type of kinematic behavior with multiple applications which
include deployable structure design and nano-mechanics. A popular example of a
truss structurewith reversible expansion/contraction properties isHoberman’s sphere
[8]. Kovacs et al. [9] describe a kinematic model of a virus and argue that it has
expansive properties. More recently, Tanaka et al. [17, 18] study repetitive assem-
blies with expanding properties. Expanding or auxetic features, as considered in the
materials science literature [4–6, 10, 12] have been shown in [3] to be implied by
the stronger expansive property as defined above. In dimension two, finite expansive
framework deformations have applications to robot arm motion planning [14, 15]
and are well-understoodmathematically [13–15]. One-degree-of-freedom expansive
frameworks arise from a planar pointed pseudo-triangulation with a convex hull edge
removed [15]. In the expansive interval, such a framework has a smooth configu-
ration space. Infinitesimal expansive motions of mechanisms with more than one
degree-of-freedom form a polyhedral cone [13] whose extremal rays correspond to
refinements with just 1dof of the given linkage. Our purpose here is to demonstrate
a similar structure underlying planar periodic frameworks.

2 Preliminaries: Periodic Frameworks and Deformations

2.1 Planar Periodic Frameworks

A periodic bar-and-joint framework (G, Γ, p, π) in the plane is given by an infinite
graph G, a periodicity group Γ acting on G, a placement p of the vertices of G in
the Euclidean plane and a representation π of the periodicity group Γ by a lattice
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of translations. The edges are viewed as rigid bars: they may rotate freely around
their incident joints, and maintain their lengths during framework deformations. The
graph G = (V, E) has an infinite set of vertices V and (unoriented) edges E and
is connected. The periodicity group Γ is a free Abelian group of rank two acting
on G without fixed vertices or fixed edges. We assume that the quotient multigraph
G/Γ is finite, and denote the number of vertex and edge orbits by n = |V/Γ | and
m = |E/Γ |. For example, the periodic framework in Fig. 1 has 6 vertex orbits and 9
edge orbits. The function p : V → R

2 gives a specific placement of the vertices as
points in the plane, in such a way that any two vertices joined by an edge in E are
mapped to distinct points. The placement is periodic in the obvious sense that the
abstract action of the periodicity groupΓ is replicated by the action of the periodicity
lattice Λ = π(Γ ) on the placed vertices.

2.2 Periodic Deformations

A one-parameter periodic deformation is a family of placements and a family of
lattices parametrized by time (p(t), π(t))t , such that all bar lengths are maintained
and the same abstract periodicity groupΓ acts on all the frameworks of the deformed
family. A periodic framework is rigid if it has no periodic deformations other than
the trivial ones resulting from Euclidean isometries. The configuration space of the
periodic framework is obtained from the placements of vertex orbits, subject to
the algebraic constraints of prescribed (squared) lengths for edges. We factor out
the 3-dimensional space of planar rigid transformations. This concept of periodic
deformation was introduced in [1]. A framework is rigid when corresponding to
an isolated point of the configuration space; otherwise it is flexible. After choosing
vertex representatives for all vertex orbits and two generators for the periodicity
lattice, the Jacobean matrix at a given placement p is a (2n + 4) × m matrix (called
the periodic rigidity matrix and denoted by R) whose rank thus cannot exceed 2n + 1.
At a regular point the rank of the Jacobean equals the dimension of the configuration
space in a small neighborhood. We say that a periodic framework is infinitesimally
rigid if its periodic rigidity matrix has the maximum rank of 2n + 1. In this case,
the framework must have at least 2n + 1 edges, properly placed. In [2], we have
characterized the graphs which are periodically minimally rigid, when generically
placed. A finite graph is said to be of “2n − 2”-sparsity type if it has exactly 2n − 2
edges (where n is its number of vertices), and any of its subsets of n′ ≤ n vertices
spans at most 2n′ − 2 edges.

Theorem 1 [2] A (multi)graph with 2n + 1 edges (on n vertices) is the quotient
graph of a minimally rigid periodic framework if and only if it contains a subgraph
of 2n − 2 sparsity type spanning all the vertices.

A framework is minimally rigid if it is infinitesimally rigid and the removal of
any edge turns it into a flexible framework. Classical arguments can be used to show
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that infinitesimal (periodic) rigidity implies (periodic) rigidity and that, if a periodic
framework is obtained from a minimally rigid one by the removal of k edges then
the rank of its rigidity matrix is 2n + 1− k and its deformation space has dimension
k in a neighborhood of the given placement. We say, in this case, that the framework
has k degrees of freedom.

2.3 Periodic Expansive Motions

A one-parameter deformation (p(t), π(t))t∈(−ε,ε) of a flexible framework is said to
be expansive if, as the time t increases, all the distances between pairs of vertices
increase or stay the same. Here, (p(0), π(0)) gives the initial framework and the
corresponding infinitesimal deformation is the tangent vector to the deformation
space given by the derivative at 0.

We describe now a family of planar periodic frameworks distinguished by two
elementary and easy to verify properties.

2.4 Non-crossing Periodic Graphs

A periodic framework is non-crossing if all pairs of non-incident bars are disjoint
(they do not cross, touch or overlap). All the frameworks illustrated in this chapter are
non-crossing. A non-crossing framework subdivides the plane into two-dimensional
regions, called faces. The periodicity group of the given framework also acts on its
set of faces. The examples in Fig. 2 have 3, 2, 3 and 3 face orbits, colored distinctly.
Euler’s formula n − m + f = 0 for the torus relates the numbers n, m and f of
vertex, edge and face orbits.

2.5 Periodic Pseudo-Triangulations

A pseudo-triangle is a simple closed planar polygonwith exactly three internal angles
smaller than π . A set of vectors is pointed if no subset allows a linear combination
with strictly positive coefficients that sums to 0. Equivalently, for a pointed set of
vectors, some consecutive pair (in the circular rotational order around the common
vertex) induces an angle larger than π . A planar non-crossing periodic framework is
a periodic pointed pseudo-triangulation when all faces are pseudo-triangles and the
framework is pointed at every vertex. An illustration for n = 3 is given in Fig. 2d.

Proposition 2 [3] A periodic pseudo-triangulation has m = 2n, that is, the number
of edge orbits m = card(E/Γ ) is twice the number of vertex orbits n = card(V/Γ ).
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Fig. 2 Four pointed periodic tilings from [7]

Combined with Theorem 1, this proposition shows that periodic pointed pseudo-
triangulations have the right number of edges to be smooth one-degree-of-freedom
periodic mechanisms. The fact that this is indeed the case was proved in [3] based
on our generalization to the periodic setting of Maxwell’s Theorem [11] on liftings
and stresses of planar bar-and-joint frameworks, where we showed that a periodic
pseudo-triangulation cannot have nontrivial periodic stresses.

Proposition 3 [3] The local deformation space of a periodic pseudo-triangulation
is smooth and one-dimensional and continues to be so as long as the deformed frame-
work remains a pseudo-triangulation. This is true for any relaxation of periodicity
Γ̃ ⊂ Γ of finite index.

Finally, we have proved the following, most remarkable property of periodic
pseudo-triangulations.

Theorem 4 [3] Let (G, Γ, p, π) be a planar periodic pseudo-triangulation. Then
the framework has a one-parameter periodic deformation, which is expansive for the
entire open interval where it remains a pseudo-triangulation.

In the rest of this chapter, we extend this result from periodic pointed pseudo-
triangulations to arbitrary pointed and non-crossing periodic frameworks and show
how to design expansive trajectories for them. Ultimately, we obtain a complete
characterization of the frameworkswhich support expansivemotions. In addition, we
give a precise procedure for calculating the set of all possible infinitesimal expansive
motions of a given framework, which we show to be a polyhedral cone, called the
cone of expansive infinitesimal motions. Expansive trajectories can be obtained by
integrating an appropriate vector field of expansive infinitesimal motions belonging,
at each point, to the corresponding cone.

3 Designing Expansive Trajectories: Examples

We illustrate the theory presented so far with the four periodic frameworks from
Fig. 2, where they are depicted with colored face orbits and highlighted face rep-
resentatives to facilitate the visual identification of the periodicity lattice. These
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Fig. 3 The periodic framework from Fig.2a can be turned into pointed pseudo-triangulations by
the addition of three edges on the large stellated face, placed in 14 distinct ways (shown here up to
symmetries)

examples are the stellated planar tilings of [7] (p. 239). They are all non-crossing
and pointed, but only (d) is a pseudo-triangulation.

3.1 Counting Degrees of Freedom

An argument similar to the one used in [3] (based on our periodic extension of
Maxwell’s Theorem) can be applied to show that none of the examples in Fig. 2
(more generally, no periodic non-crossing and pointed framework) supports a peri-
odic stress. In particular, this implies that Theorem 1 can be applied to compute their
degrees of freedom, as follows.

Framework (a) has n = 6, m = 9, f = 3, and k = 2n + 1 − m = 4 dofs.
Framework (b) has n = 4, m = 6, f = 2, and k = 2n +1−m = 3 dofs. Framework
(c) has n = 6, m = 9, f = 3, and k = 2n + 1 − m = 4 dofs. Framework (d),
which has n = 3, m = 6, f = 3, and k = 2n + 1 − m = 1, has a well-defined
one-parameter expansive trajectory. This framework is a deformed configuration of
the familiar Kagome framework [3, 16]. Our goal now is to explain our approach for
designing expansive trajectories for the other three frameworks (a), (b) and (c).

3.2 Subdividing Faces

The faces of a periodic non-crossing and pointed framework which are not pseudo-
triangles can be subdivided by new edges which maintain non-crossing and pointed-
ness. This is always possible (Theorem5 below), but not uniquely. Figure3 illustrates
three of the ways in which the large stellated face of the framework from Fig. 2a can
be subdivided; the others are obtained by applying appropriate symmetries to these
three types of constructions, for a total of 14 possibilities.
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3.3 Designing Expansive Trajectories

For the example under discussion, each of the 14 pseudo-triangulations induces a
distinct expansive trajectory of the original framework. However, these are not the
only possibilities. One may imagine the following scenario: start with one pseudo-
triangulation and deform the original framework for a small time step δt according
to its induced trajectory. Since the points have not moved too much, there will still be
14 ways of pseudo-triangulating the deformed framework, so now we may choose a
different one. This can be continued for as long as each of the intermediate pseudo-
triangular frameworks retains its pointedness. We remark that no crossings of edges
will occur during an expansive motion: joints move away from each other, by defin-
ition, and the same holds for arbitrary points on the edges.

This scenario can be further refined. If we make the time step δt infinitesimally
small, we may look not just at the finite motions induced by the pointed pseudo-
triangular completions of the original framework, but also at the corresponding
infinitesimal expansive motions.

3.4 Cone of Infinitesimal Expansive Motions

Given an infinitesimal deformation and a pair of vertices, the condition expressing
the infinitesimal increase of the squared distance between the vertices is a linear
inequality: infinitesimal deformations on one side of the equality subspace produce
infinitesimal increase and on the other side infinitesimal decrease. It follows that all
expansive infinitesimal motions must lie in a polyhedral cone with the apex at the
origin which is the intersection of all half-spaces determined by pairs of vertices. The
extremal rays of this cone correspond to the possible refinements of the framework to
periodic pseudo-triangulations. For the example in Fig. 2a there are 14 possibilities
(Fig. 3), hence a section of the cone away from the origin will result in a convex
polyhedron in R3, with 14 vertices (Fig. 4). The combinatorics of this polyhedron
can be explained as follows: each face corresponds to adding onemore (non-crossing,
pointedness respecting) edge-orbit to the given framework (in 9 ways); an edge of
the polyhedron corresponds to adding two edge-orbits to the framework (21 ways),
and a vertex of the polyhedron corresponds to adding three edges, i.e. to one of the
14 ways in which the framework can be completed to a pseudo-triangulation.

3.5 Convex Faces and Rigid Components

The frameworks (b) and (c) inFig. 2 eachhave a convex facewithmore than3vertices.
Such faces can be subdivided inmanyways, butwhen all the possible edges have been
added, the result is a triangulation of the convex face. Since each triangle is rigid, the



402 C. S. Borcea and I. Streinu

Fig. 4 A section of the cone
of infinitesimal expansive
motions for the 4dof frame-
work from Fig. 2a

triangulated face becomes a (periodically repeated) rigid component. The pseudo-
triangulation ultimately obtained will expand in a manner that does not depend on
how the convex face was triangulated. Therefore, although the framework in Fig. 2b
can be extended in 4 ways (two ways for the convex face and 2 ways for the non-
convex face) to a pseudo-triangulation, only two of them lead to distinct expansive
trajectories. The framework inFig. 2c has only one face that canbe further subdivided,
and it is convex: this framework supports exactly one expansive trajectory, in spite
of the fact that it can also be pseudo-triangulated in 14 ways.

4 Kinematics of Periodic Expansive Motions

Wenow present a complete characterization of the frameworks which support expan-
sive motions. First, we show that any periodic non-crossing and pointed framework
can be extended to a pointed pseudo-triangulation by subdividing faces. The next
goal is to understand the rigid components, as we have already seen in the previous
examples that they play a role in determining the expansive behavior of a periodic
non-crossing and pointed framework.

4.1 Extending a Periodic Non-crossing Pointed Framework
to a Pseudo-Triangulation

There is a simple procedure for designing frameworks similar to those shown in
Fig. 3: start with an arbitrary periodic point set in general position (i.e. triplets of
points are collinear only when they belong to the same orbit). Then insert edge
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Fig. 5 Extending a periodic pointed non-crossing framework which is not a pseudo-triangulation. a
All graph cycles are trivial homology cycles. b Cycles span a one-dimensional homology subspace.
c, d Cycles span the full (rational) homology group of the torus

representatives, one by one, maintaining non-crossing and pointedness, and replicate
them periodically. The following theorem proves the correctness of this procedure.

Theorem 5 Let G be a non-crossing and pointed periodic framework which is not a
pseudo-triangulation. Then there exists a new edge orbit which can be added, while
maintaining the non-crossing and pointedness of the framework.

Proof Compared to the proof for finite pseudo-triangulations [15], in the periodic
setting we have to show that it is not possible that the only non-crossing edges that
could be inserted have endpoints in the same orbit. The proof proceeds through a
case analysis of three possible situations, differentiated by the nature of the cycles
of the quotient graph G/Γ , when viewed as a graph embedded on the (flat) torus:
(a) all graph cycles are trivial homology cycles; (b) cycles span a one-dimensional
homology subspace and (c) cycles span the full homology group of the torus. We
now reason in the Euclidean plane and for the infinite framework G. In case (a),
G is disconnected and all its connected components (which repeat periodically) are
finite frameworks (Fig. 5a). Vertices in the same orbit do not belong to the same
component, and the planar subdivision induced by G has exactly one unbounded
face F . If two such connected components are visible to each other, then a standard
geometric argument as in [15], based on (piecewise linear) geodesic paths, shows
the existance of a tangent edge. Since it lies in the unbounded face, the tangent does
not cross any existing edge, and since it is tangent, its endpoints are pointed, hence
it satisfies the conclusion. In case (b) (illustrated in Fig. 5b), G is still disconnected
but at least one of its connected components (as a subgraph) is infinite (and so are
all of its periodically repeated copies). The existence of a tangent segment, with
endpoints lying on two different connected components, and not in the same vertex
orbit, follows by taking a geodesic path between two non-adjacent, inner convex
vertices on the infinite face: such a path is piecewise linear and contains at least one
tangent edge. Finally, in case (c) (illustrated in Fig. 5c, d) all the face cycles of the
periodic graph G are finite and thus enclose polygonal regions (which may have
holes). However, such a face cycle may contain vertices belonging to the same orbit
(Fig. 5c, d). If such a face is not an empty pseudo-triangle, then it will have an internal
tangent along the geodesic path joining two inner convex vertices. All that remains
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Fig. 6 A flip in a periodic pointed pseudo-triangulation

to be shown is that the two endpoints of one such tangent are not in the same vertex
orbit. This follows from two observations: (a) on any simple polygonal cycle, the
vertices in the same orbit appear with an inner reflex angle at most once, and (b) if
an edge is tangent to a polygonal chain, then the inner angles of the polygonal cycle
at these endpoints are both reflex.

The examples in Fig. 5 (where vertices of the same color indicate that they are
in the same orbit) have been chosen to illustrate the properties used in the proof of
the theorem. Each subsequent framework is obtained by inserting a tangent in the
previous one.

As a corollary we obtain:

Corollary 6 (Flips in pseudo-triangulations) If we remove an edge orbit from a
periodic pointed pseudo-triangulation, then there always exists a different edge orbit
that can be added to obtain another pointed pseudo-triangulation.

Proof We use an idea from finite pointed pseudo-triangulations [15], namely that
the removal of one edge creates a face with four inner convex angles (as in Fig. 6,
middle), which can be pseudo-triangulated in two ways by two distinct tangents
(Fig. 6, left and right). The argument from case (c) of Theorem 5 shows that the
endpoints of these tangents belong to distinct vertex orbits.

4.2 Kinematically Equivalent Frameworks

A flexible framework decomposes into rigid parts called rigid components (Fig. 7).
Two periodic frameworks on the same point set are kinematically equivalent if one
is obtained from the other by placing differently the bars inside rigid components,
while maintaining them rigid. Such frameworks have the same configuration space.
An example is illustrated in Fig. 7. Since adding a bar to a rigid component does not
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Fig. 7 A rigid component in a periodic pseudo-triangulation and a kinematically equivalent frame-
work

change the deformation space, we assume that our frameworks are non-redundant,
i.e. they use the minimum number of bars on all rigid components.

Proposition 7 A rigid component of a periodic pseudo-triangulation is a finite
pointed pseudo-triangulation; in particular, it is contained in its convex hull.

Proof We only need to prove that a rigid component is finite. Then we apply a result
from [15] about finite pointed pseudo-triangulations, which are contained in their
convex hulls. An infinite rigid component must be, as an induced graph, periodically
rigid, hence its quotient graph (on n′ vertices) has 2n′+1 edges. As an induced graph,
it is still pointed and non-crossing, hence it has at most 2n′ edges, a contradiction.
Hence there can’t be any infinite rigid components.

Theorem 8 A non-redundant periodic framework is an expansive 1dof mechanism
if and only if it is a periodic pointed pseudo-triangulation, or is kinematically equiv-
alent to one. A periodic framework has an expansive deformation if and only if it is
pointed and non-crossing or is kinematically equivalent to one.

Proof Indeed, if a set of points belong to a rigid component, theway they are intercon-
nected does not matter (they stay at the same distance anyway), so we can replace the
interconnecting pseudo-triangulation with any finite minimally rigid (Laman) graph.
The construction may violate pointedness and it may be self-intersecting, but only in
the interior region of the rigid component convex hull. Figure7 illustrates the idea.

4.3 The Cone of Infinitesimal Expansive Motions of a Periodic
Non-crossing and Pointed Framework

It is possible to compute with precision how many, and which edges can be
used for subdividing a face into pseudo-triangles. This information is related to a
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combinatorial characterization of the polyhedral cone of expansive motions, and is
a natural generalization of a similar result for the finite case [13].

Theorem 9 A planar periodic non-crossing and pointed framework with n vertex
orbits and m = 2n − k edge orbits has a smooth local deformation space of dimen-
sion k + 1 and allows expansive deformation trajectories. The set of all possible
directions for these expansive trajectories forms a polyhedral cone in the infinitesi-
mal deformation space of the given framework. This cone of expansive infinitesimal
motions has dimension at most k + 1 and all its extremal rays are obtained from
completions of the framework to periodic pointed pseudo-triangulations.

Proof (Sketch) The first statement is a direct consequence of the previous discussion
and of the results in [2]. The cone of expansive motions is given as the half-space
intersection of the set of all linear inequalities that express the property of infini-
tesimal expansiveness for a pair of vertices in the periodic framework. Corollary 6
characterizes the edges of the cone. The extension to faces of all dimensions is a
direct generalization of the argument used in the finite case [13].

As a final remark, we point out that if a non-crossing and pointed periodic frame-
work has convex faces, these faces must be rigid in any expansive deformation. Any
triangulation of a convex face will serve the purpose of rigidifying it.

5 Conclusion

In this chapter, we have characterized those planar non-crossing periodic bar-and-
joint frameworks which allow an expansive deformation trajectory. Those with
a single degree of freedom are the periodic pointed pseudo-triangulations or are
obtained from them by simple replacement operations on rigid components. For sev-
eral degrees of freedom, we investigated all completions of the framework to 1dof
expansive mechanisms (up to kinematic equivalence). Infinitesimally, they provide
the extremal rays of the cone of infinitesimal expansive motions.
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