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Abstract. To be successful, any new business information system must
address the needs of business users, and have a short ‘time–to–value’.
Depending on the requirements, the appropriate tools and techniques
would vary. Sometimes a good way to meet the needs of business users
is by providing them with a domain–specific language (DSL) in which
they can model their problems or seek solutions.

In this paper, we discusses our experience of an industrial project for
the development of a corporate information system. A small DSL has
been created using the Haskell functional language. The DSL has given
business users the required degree of flexibility and control. The devel-
opment was completed on time, and has confirmed Haskell’s expressive
power and the high performance of its compiled code. We also argue
that Haskell is relevant to parallel Big Data processing, and to Decision
Modelling applications.

Keywords: data analysis, integration, domain–specific language, busi-
ness rules, decision modelling, functional programming, Haskell.

1 Introduction

Much of the potential value of Big Data is hidden in the insights which can be
gleaned from it. To realise this value, IT specialists need to collaborate with
domain experts, in order to devise, continuously apply and fine-tune the most
appropriate data analysis methods. One of the main challenges of Big Data today
is to make such multi-disciplinary collaboration as effective and productive as
possible.

In a recent survey [17], business executives were asked why companies may
be holding out on using Big Data. The top 3 answers were:

1. Need more education on how Big Data solves business problems (62% of
respondents)

2. Need Big Data solutions to better address the needs of business users (53%)
3. Need better time–to–value for Big Data (47%)

In other words, executives want solutions to specific business problems and needs;
and they want a quick return on investment in Big Data projects.
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The same survey also addresses technology issues. When listing reasons for
seeking commercial alternatives to Hadoop 2.0 (the popular open–source Big
Data processing framework), most respondents cite “simplified data integration”.

Business users are experts in their own field; they are not trained data ana-
lysts, computer programmers, statisticians, or experts in machine learning. Many
business users would probably point to Excel as their tool of choice; but Excel
on its own is not a tool for big data storage or analysis. Many other popular
end-user tools and underlying technologies are also inappropriate ([6], [7]). The
challenge for IT is not only to provide adequate technology, but also to help
bridge the gap between business users and that technology.

In this paper we discuss the experience of addressing such challenges in a re-
cent project for development of a data analysis system at Barings1. The business
problem is summarised first, followed by an outline of the system design. Specific
attention is given in subsequent sections to the approach to providing business
user-definable rules for data analysis.

2 The Business Problem

The aim of the project was to deliver a new system for evaluation of the com-
pany’s products (mutual investment funds) relative to each other, and within
the wider universe of funds offered by other providers. The evaluation is based
on the characteristics of funds, their historic performance, as well as market /
sector trends.

Previously, such analysis had been carried out partially, manually, using ex-
ternal data providers’ reporting and BI tools, and Excel (see Fig. 1). There were
a number of problems:

– manual, inefficient and error prone processes
– inability to combine data from multiple sources to achieve deeper, multi-

dimensional analysis
– lack of scalability - could be applied for a few funds only
– data and calculation maintenance headaches

In order to perform the required analysis fully, over 106 rows of data need to
be processed. While such a volume is not truly “Big Data” by modern standards,
it is sufficiently large to make analysis in Excel impractical.

A new, automated, scalable and flexible solution was needed, and a project
was started. A traditional “waterfall” approach was applied to this project. In
the initial feasibility stage, requirements were gathered by a business consultant
working together with representatives of the relevant business areas: product
development, investment management, sales, performance measurement. Then

1 Baring Asset Management provides investment management services in developed
and emerging markets to clients worldwide. The company operates from 11 countries,
and has around 100 investment professionals, covering equity, bond and alternative
asset classes. It is a subsidiary of MassMutual, a leading diversified financial services
organisation.
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Fig. 1. Old pre-project Excel fragment

a search was conducted in the marketplace for existing solutions (software pack-
ages or external services) fitting the requirements. As no appropriate off-the-
shelf solution was found, the project was scheduled for in-house design and
development.

3 System Design

The new system has had to provide a range of functionality including data in-
tegration, calculation of analytics, report production, and user interface. It was
decided at the outset that the system would be built of independent modules, all
using a dedicated shared database. Each module could utilise a different tech-
nology. In this way we have been able to choose the most appropriate technology
for each part, and utilise our existing investment in infrastructure, development
tools and expertise. The modular system structure is illustrated in Fig 2.

The web-basedUser Interface controls the execution of all other systemmod-
ules. The ETL (Extract–Transform–Load) module processes data from multiple
sources: two external data providers (fund returns, flows, sales etc.), an
internal performance system, and data spreadsheets. It transforms incoming data,
resolves dependencies between different data sources, and populates the common
data store, housed in a relational database management system (RDBMS). Both
the User Interface and ETL modules have been created using the webMethods
suite from Software AG, in line with our existing integration strategy [11].

The Analytics Calculation engine applies the methodology (as agreed by
the business) for calculating statistical measures and analytics based on fund
data: relative return, risk, momentum, track record, saleability, sales productiv-
ity, etc. This module has an Object–Relational mapping layer (Hybernate) [12],
and is exposed as a webMethods service. The Score Calculation module is
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Fig. 2. System structure

discussed in the next section. The Report Generator creates a set of reports
in strictly predefined Excel formats.

4 User-Definable Rules

An important requirement for the new system has been to enable business users
to formulate and maintain scoring rules. The rules are used to formally rate each
product – investment fund – against other funds within a given category. Each
rule shows how to calculate a new value from underlying product characteristics,
calculated analytics, and the output of other rules.

The following fragment shows a simplified representation of 3 such rules
(BAND, PERF_HL and PERF) defined in terms of underlying product characteris-
tics (mstarRating) and other rules defined elsewhere (MD_HL – market demand,
perfMDscoreSum – performance plus market demand score, KCGRANK1Y – key comp
group rank over 1 year, QRANK1Y – quartile rank, REL_RETURN – relative return):

BAND

| PERF_HL >= 2 && MD_HL >= 1 && perfMDscoreSum >= 3

= 2

| PERF_HL >= 1 && MD_HL >= 0 && perfMDscoreSum >= 2

= 1

| otherwise = 0

PERF_HL

| PERF >= 3.80 = 2

| PERF >= 2.35 = 1

| otherwise = 0

PERF = mstarRating * 0.25 + KCGRANK1Y * 0.25 + QRANK1Y * 0.25 +

REL_RETURN * 0.25
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The first two rules represent step functions, while the third is a weighted
average. The names (BAND etc) are cryptic, but come from the domain experts
(business users) themselves.

To meet the business requirements, we have had to give end users the means
to formulate their own scoring rules, and provide a rule evaluation module.
The fragment of scoring rules can be seen as code in a functional programming
language – Haskell; and in principle, a Haskell interpreter or compiler can be
used for evaluating such rules.

From a different viewpoint, scoring rules can be seen as statements in a simple
domain-specific language (DSL). An interpreter for such a language can easily
be created in a lazy functional programming language like Haskell.

4.1 Representation of Scoring Rules

The sample rule fragment from Sect. 4 uses Haskell syntax, but this is not
how our business analysts and users had envisaged their scoring rules to be
formulated. In the Business Requirements document, different types of rule were
presented in different tabular formats. So in the example from Sect. 4 , the BAND

and PERF_HL rules were in a table called “conditional” rules, while the PERF rule
was in another table called “scoring factor” rules.

A proposal for representing scoring rules in Haskell was put forward to Busi-
ness consultants and users, offering them greater expressive power. It was de-
clined, on the grounds that rules defined in fixed-format tables would result in
“the right balance between flexibility and change control”. In other words, busi-
ness users would have the freedom to define new rules within the predetermined
formats, and any changes to those formats would be made by developers in the
IT department.

This leads us to consider how the sample rules from Sect. 4 can be represented
in Haskell data types. The declarations can be quite straightforward2:

data ScoringRule = SR Id [ScoringRuleAlt]

data ScoringRuleAlt

= ConditionalRule [Condition] Double [Note]

| ScoringFactor [FactorWeight]

where SR is a constructor, and Id is a data type of rule identifiers. A rule has a
list of alternatives (ScoringRuleAlt), corresponding to guards in Haskell syntax.
The two alternative constructors (ConditionalRule and ScoringFactor) represent
the two types of rule from Sect. 4.

The numeric values which rules are applied to, as well as the results of rule
evaluation can be stored in a type of ScoreValue:

data ScoreValue = SV Id Double [Note]

2 The code given here is simplified for clarity.
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4.2 Scoring Rule Evaluation

We mentioned in Sect.4 two possible approaches to the evaluation of scoring
rules:

1. Use a standard Haskell compiler or interpreter (in which case scoring rules
would be written in Haskell)

2. Write an interpreter (of a small language which scoring rules would be
written in)

Given that business users would not write their scoring rules in Haskell, the first
approach loses its attraction: in order to use a standard compiler or interpreter,
we would first have to read and pretty-print the scoring rules in Haskell syntax.
We have decided against such an approach because:

a) In the context of our organisation, it is undesirable for a development tool
(e.g. a Haskell compiler) to be used in a Production environment (i.e. beyond
the development or test environments);

b) Using a standard compiler, it would be more difficult to provide execution
trace and error messages which are clear and meaningful to a business user.

So we have decided to write an interpreter for scoring rules. This is quite easy
to do in a lazy functional language:

calcScores :: [ScoringRule]->[ScoreValue]->[ScoreValue]

calcScores scoringRules scoreValues =

let newScoreValues = map (calcScoringRule scoreValues’) scoringRules

scoreValues’ = scoreValues ++ newScoreValues

in newScoreValues

The calcScores function gets a list of rules (scoringRules), and a list of
pre-calculated values. It returns a list of new score values, by evaluating ev-
ery rule (map (calcScoringRule. . . )) in the context of all values (scoreValues’)
– both pre-calculated values (scoreValues), and the results of rule evaluation
(newScoreValues).

The function which evaluates a single rule has the following type signature:

calcScoringRule :: [ScoreValue] -> ScoringRule -> ScoreValue

calcScoringRule scoreValues scoringRule =

SV (getScoringRuleId scoringRule) val notes

where val (definition is omitted for brevity) is the floating point number to
which scoringRule evaluates; notes are associated with the applicable alternative
of the rule; and getScoringRuleId is a de-constructor:

getScoringRuleId :: ScoringRule -> Id

getScoringRuleId (SR id ruleAlts) = id

4.3 The Joy of Laziness

An interpreter for a simple language can be written in many languages, and it
is worthwhile considering what difference Haskell makes. Because scoring rules
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can be given in any order, and one rule can refer to the results of other rules,
an interpreter needs to evaluate rules in an appropriate sequence. One way of
achieving this would be to apply (albeit simple) dependency analysis to the set
of scoring rules.

The calcScores function from Sect.4.2 does not involve dependency analysis.
The complete function declaration is perhaps the simplest way of stating what
the rule evaluator is; it can be seen as a formal specification.

Moreover, the lazy evaluation semantics of Haskell ensures that calcScores

is also an executable specification. In the calcScores function, using the result
(newScoreValues) in its declaration only makes sense because of lazy evaluation.
To see that, consider the declaration of calcScoringRule: it returns a ScoreValue

with an identifier which comes straight from the rule being evaluated. Therefore
the list of new score values (the result of calcScores) can safely be unwound,
and the identifier of each element can be inspected.

4.4 Polymorphism and Higher–Order Functions

The calcScores function from Sect. 4.2 is meant for evaluating a specific set
of rules - those described by the ScoringRule data type. Using the features of
Haskell, it is straightforward to turn that function into a “generic” evaluator
(calcScoresGen) for other sets of rules:

calcScoresGen :: ([a] -> b -> a) -> [b] -> [a] -> [a]

calcScoresGen calcScoringRuleX scoringRules scoreValues =

let newScoreValues = map (calcScoringRuleX scoreValues’) scoringRules

scoreValues’ = scoreValues ++ newScoreValues

in newScoreValues

The only difference compared to calcScores is that we have added the function
calcScoringRuleX of type ([a] -> b -> a) as an argument to calcScoresGen.
Here “a” can be any type of “score value”, and “b” is an arbitrary type of
“scoring rule”.

Of course, in our example the definition of calcScoresGen is extremely simple;
but one can imagine a more sophisticated function which, by virtue of poly-
morphism and higher–order functions, is still applicable to different data types,
representing different domain-specific languages.

Hopefully the reader can see that the approach of using a DSL interpreted
in a functional language has rather bigger potential relevance than the simple
example of scoring rules might suggest.

5 Implementation

A simple rule evaluator along the lines of calcScores from Sect. 4.2 could be
written in Haskell in hours; in our case, it was done incrementally, on and off
within a week. The source code totalled under 500 lines.

Another few days were spent on a database access layer, and on exposing the
rule evaluator as a service. In total, the development and unit test of the score
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calculator took 8 man–days effort over a period of 3 weeks (interleaved with
other projects). This represents just under 10% of the development effort for the
whole project.

5.1 Program Compilation

The scoring rule evaluator was developed in Haskell, and compiled using the
Glasgow Haskell Compiler (GHC) [10]. We have also produced a naive, unopti-
mised translation into Java which preserves the lazy evaluation semantics of the
original Haskell code.

Table 1 shows the lines of code in the original programs (.hs), the Java trans-
lation (.java), and GHC-generated C code (.hc).

Table 1. Score Calculator – Lines of code

Module Description LOC

.hs .java .hc

ScoreDefs Data type declarations, access methods 115 710 6,500

ScoreParse Parsing functions 125 1,100 3,050

ScorePrint Pretty-printing 50 390 1,300

ScoreCalc Interpreter for rules 180 1,500 4,730

Total 470 3,700 15,580

5.2 Integration with Other Modules

Haskell provides interoperability with other languages via the Foreign Function
Interface (FFI) and is implemented in GHC for C/C++. There are additional
tools developed by members of the Haskell community to facilitate interfacing
to other languages, including Java. There are also packages (HDBC and others)
for connecting to database servers. In the simplest case, a process started by an
OS command can use standard Haskell IO for data communication via files or
pipes. The Network library in Haskell can also be used.

The scoring rule evaluator is a stand–alone module in an application built
in other languages. As part of the project, we would not have been able to
evaluate different approaches; in this case, the simplest route of standard Haskell
IO would suffice. However, given that we have translated the Haskell program
into Java code, we could quite easily write additional Java code which links to
the translated program. We have used this approach to call functions in the
(translated) Haskell program from other Java code in two ways:

– Use database access in Java when calling translated Haskell functions;
– Expose a translated Haskell function as a Java service in webMethods
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5.3 Experimental Results

The execution time of the scoring rule evaluator is shown in Table 2 for different
size test data sets.

Table 2. Score Calculator – Run time

Number of scores GHC code run time (sec)

103 0.02

104 0.1

105 1

106 10

Tests were run on a 2.4 GHz Intel Core 2 Duo processor machine under Mac
OS. Haskell was compiled with “ghc -O”.

6 Discussion

The work was completed successfully. Haskell’s strict static type checking helped
ensure that there was not much that could go wrong during testing. The ma-
turity of Haskell tools – in particular of the Glasgow Haskell Compiler, GHC –
has been apparent and reassuring, and the performance of compiled code has
been impressive. The GHC compiler has been continuously developed and im-
proved for over 20 years, and incorporates vast amounts of research in functional
programming language implementation.

Since project completion in 2012, the system has been in active use. In our
experience of other projects, subsequent enhancement requests are quite common
soon after the go-live date, and further development is often needed. This has
not been the case for this project. The flexibility which the new system provides
to business users (to define their own rules using a simple DSL) has made further
development unnecessary to date.

The claimed “simplicity” of the approach is twofold. First, business users and
analysts have been able to design their own rules, without having to worry about
implementing them (e.g. in Excel, or in a BI tool). Business users therefore envis-
aged a simple solution which followed their preferred data analysis methodology,
and gave them the desired flexibility. Second, from an IT development perspec-
tive, the choice of a functional language – Haskell – made it relatively easy to
create a DSL for user–defined rules. In Sect 4 we have tried to show how the
expressive power of Haskell made the implementation simple.

A drawback of this approach is the reliance on specific programming language
skills; there are not nearly as many Haskell programmers as there are Java or
SQL programmers. Another drawback comes from the need to integrate a module
written in Haskell with the rest of the system which uses different technologies.
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6.1 Related Work

A review of modern business intelligence technology is presented in [2]. The
system discussed in this paper has elements of a typical BI architecture, like
Extract–Transform–Load (ETL) tools, Relational DBMS, Analytics calculation
engine, Front-end and reporting applications. In this project there was not a
requirement for online analytical operations (filtering, aggregation, drill-down,
pivoting) or advanced visualisation, as described in [14]. On the other hand we
had very specific reporting requirements, fixed in terms of content and layout. It
was a conscious design decision not to employ an OLAP server, thereby foregoing
the potential benefits of powerful BI tools. However we do have OLAP capability
elsewhere in our IT architecture [11], e.g. for financial management information.

The use of DSLs for facilitating the collaboration between between domain
experts and IT developers has been well established [5]. The design and imple-
mentation of DSLs embedded in Haskell has also been an area of productive
research and development [1]. Our implementation is not ‘embedded’; it is com-
paratively simple and straightforward, but has nonetheless helped to meet a real
business requirement.

In the realm of business rules and decision support, there has been recent
progress towards bridging the gap between Business and IT [15]. The Decision
Model and Notation (DMN) specification has been submitted to the OMG, and
has just been adopted and published in draft. The specification’s main goal is
to define an industry standard notation for decision management and business
rules which is understandable by business users, analysts, and IT developers. The
new specification is related to the Business Process Model and Notation (BPMN)
OMG standard, in that BPMN decision tasks can be modelled with DMN. The
DMN specification concerns a special type of business rules, and as such is more
concise and application–focused than the Semantics of Business Vocabulary and
Business Rules (SBVR) specification. DMN covers both modelling and execution
aspects. We think that it would be appropriate to consider the implementation
of DMN’s Friendly Enough Expression Language (FEEL) – which is free of side
effects – as a DSL in a functional language such as Haskell.

How relevant is a pure functional language like Haskell to the challenges of
Big Data? It can be quite relevant, due to its support for parallel and concurrent
programming [9], and the high performance of compiled code. With respect to
concurrent programming, researchers have found that “applications built with
GHC enjoy solid multicore performance and can handle hundreds of thousands
of concurrent network connections.” [3]. But it is the parallel programming ca-
pability which makes Haskell particularly relevant to Big Data processing. In
[8], the author reverse–engineers Google’s MapReduce programming model [4],
and creates a formal executable specification in Haskell. The specification is
then refined to model parallel execution opportunities. The author also consid-
ers Google’s domain–specific language Sawzall from a functional specification
perspective.

It is said that writing MapReduce routines in languages like Java, Python or
Ruby is rather more difficult than writing relational database queries in SQL
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[16]. There are different approaches for making this task easier [2]. With its
expressive power and support for parallel programming, Haskell could prove to
be a good tool for MapReduce programming.

7 Conclusion and Future Work

In this paper we have discussed our experience in addressing some of the chal-
lenges associated with Big Data processing: data integration, and involvement
of business users. We have applied a modular approach, employing different
technologies and languages which are appropriate for the different stages in
data processing. We have focused in particular on the use of a small domain-
specific language (DSL) with an interpreter written in Haskell, a pure functional
programming language.

The functional language development described here, while self-contained and
completed successfully, is only a modest beginning for future work. The same
approach can be adopted in other cases where there is a requirement for eval-
uating declarative rules. There are other possible applications of a similar rule
engine in the context of the investment management industry, for example:

– Scoring of securities in equity research / quantitative analysis;
– Ensuring compliance with various regulatory rules and client–specific man-

date restrictions;
– Calculation of client fees and rebates – the methods of fee calculation can

vary from client to client;
– Master Data Management functionality – flexible rules for market data val-

idation and “golden copy” construction

For wider industrial use, stability of the programming language and compilers
is extremely important. Haskell is now a mature language with a stable spec-
ification and compliant implementations, most notably GHC. It is backed and
developed by a wide community of researchers and industry practitioners [13].
Some of its features have been adopted by other languages, thereby becoming
more familiar; and it is taught at an increasing number of universities. With its
high–performance parallel implementation, Haskell can be a serious contender
for effective Big Data processing.
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