
Resource Mining: Applying Process Mining

to Resource-Oriented Systems�

Andrzej Stroiński, Dariusz Dwornikowski, and Jerzy Brzeziński

Institute of Computing Science, Poznań University of Technology
Piotrowo 2, 60-965 Poznań, Poland

{Andrzej.Stroinski,Dariusz.Dwornikowski,Jerzy.Brzezinski}@cs.put.poznan.pl

Abstract Service Oriented Architecture is an increasingly popular ap-
proach to implement complex distributed systems. It enables implement-
ing complex functionality just by composing simple services into so called
business processes. Unfortunately, such composition of services may lead
to some incorrect system behavior. In order discover such depreciances
and fix them, process mining methods may be used. Unfortunately, the
current state of the art focuses only on SOAP-basedWeb Services leaving
RESTful Web Service (resource-oriented) unsupported. In this article the
relevance of adapting the Web Service Mining methods to new resource-
oriented domain is introduced with initial work on process discovery in
such systems.

Keywords: process mining, business process, logging, SOA, REST.

1 Introduction

Currently, often used approach to the implementation of distributed systems
is Service Oriented Architecture (SOA). This approach reduce costs of devel-
opment, maintenance and provides an easy integration of system implemented
accordingly to it. It is possible by splitting simple system functionalities into
independently developed applications called Web Services (WS). Later on, com-
position of many WS into business processes is used to provide more complex
functionality.

Nowadays, two different approaches to SOA are widely recognized [20]. The
first one are SOAP-based WS, which are highly standardized, and use WSDL
(Web Services Description Language) to describe their procedural interfaces and
rely on SOAP (Simple Object Access Protocol) as their communication protocol.
The second approach, introduced in [11] is REST (Representational State Trans-
fer) and RESTful (resource-oriented)WS, which take a declarative approach, are
based on resources rather than functions [21].

In both of the approaches however, the same problems with composition may
yield incorrect system behavior, i.e. deadlock, livelock. In addition, number of

� This work was supported by the Polish National Science Center under Grant No.
DEC-2012/05/N/ST6/03051.

W. Abramowicz and A. Kokkinaki (Eds.): BIS 2014, LNBIP 176, pp. 217–228, 2014.
c© Springer International Publishing Switzerland 2014

218 A. Stroiński, D. Dwornikowski, and J. Brzeziński

composed and invoked services during system execution may be tremendous,
making it hard to manage. In order to deal with this problem, a research of
process mining (PM) [2] may be used. Up to date, a lot of work has been already
done concerning: log extraction [15,19], process model discovery [1,13,3], con-
formance checking and enhancement [5].

Being a prominent and fast developing research area, PM has been also applied
to SOA, raising a new problems and challenges [12] that need to be address like:
cross-organization PM [8], event data preprocessing [2], process models discovery
from SOA services logs [9,10,6], improving WS behavior [4] and gathering logs
[16]. As it can be seen process discovery, and generally PM, has been only applied
to SOAP-based WS SOA systems. We believe that REST systems could also
benefit from applying PM techniques. For that to be possible, one first needs to
gather logs from a system, which are always the first step in every PM method.
There are papers that deal with gathering and collecting logs from SOA systems
in order to apply PM techniques, or Web Service mining techniques. In [16]
Authors tackle with the problem collecting event logs in order to extract process
traces from application systems and integration portal log files. In [7] and [18]
methods to deal with correlation of events with processes and processes instances
are presented.

Unfortunately, authors are considering only the interactions between services
without taking into account local events. Furthermore, all the articles focus on
SOAP-based systems, so the results they present cannot be directly applied to
resource-oriented systems (ROS, consisting of RESTful WS), due to different
nature of SOAP-WS and REST.

In this article we tackle the problem of adapting the Web Service Mining
methods to RESTFul WS domain. In addition, we introduce context logging, a
technique of log enrichment in order to make possible to infer process related
data in ROS (Sec. 2). Furthermore, process and process instance reconstruction
algorithm for ROS, based on approaches for SOAP-based WS is presented (Sec.
2.1). We also propose and discuss a prototype framework implementation (Sec.
3). Finally, utilization of proposed methods with classic PM methods in order
to achieve Resource Mining (RESTful Web Service Mining) is shown (Sec. 4).

2 Resource Mining: The Resource-Oriented Approach to
Web Service Mining

In order to discover process models in ROS there is a need to adopt the already
existing methods of Web Service Mining and/or develop new ones to respect
differences in ROS features in contrast to SOAP-WS:

1. A service is only an application component composed of a callable set of
resources, which are important from a client’s perspective. Therefore, only
individual resources need to be considered.

2. A service execution state is stored on a client’s side (active), not on a server
side (resources). Thus, a process logic is executed in a client by executing a
predefined, finite set of CRUD operations on resources.

Resource Mining: Applying Process Mining to Resource-Oriented Systems 219

3. Resources are passive, they only provide data representation and implement-
ation of a client callable operations. This approach introduces stateless com-
munication, and unified interface [11].

4. Business process is a resource. Complex functionality in ROS is achieved by
composing system resources invocations into workflows or business processes.
Upon client’s action, a passive resource may, on behalf of that client, act as
client for other resources, we call it a process resource.

5. Resources are hierarchically dependent on each other, some of resource rep-
resentations may be included in other resource representations. Correctly
modeled and implemented ROS will use URIs to pinpoint such inclusion [21].

6. HTTP protocol is used as communication layer (in SOAP-WS it only serves
as one of transport layers to ensure SOAP messages delivery), so the se-
mantics of HTTP messages drives request handling.

7. HTTP guarantees receiving response for every request. We assume only syn-
chronous communication as a basis for further discussion about more com-
plex communication patterns (sequence of synchronous interactions modeling
asynchronous communication).

8. In contrary to SOAP, HTTP lacks one-way communication so there is no
such type of communication in ROS (standard request-response model).

9. There are no standards like WS-Addressing or WS-Conversation, so there
is no support for using and logging process related information like process
IDs and process instance IDs, so the correlation patterns from [7] are hard
to fulfill and solutions like [18] are not sufficient for ROS.

10. Process resources may be nested, and may be further orchestrated into com-
plex process resources. In such a case, process logic is also nested in internal
events of resources. Consequently, there is a need to discover not only traces
of communication events and correlate them into process instances but also
internal resource events.

The crucial problem in log collecting in ROS is the lack of appropriate logging
level available in the current SOA implementations [10]. This problem occurs due
to the usage of application servers developed exclusively for request-response
model of interaction. In this model, server passively awaits for requests, upon
receiving it, it is processed and a response is sent back to the client. Hence, only
information about received message and returned response is stored in an event
log. What is lacking is process related data: process instance id and process id.
In addition, resources may act as clients and such events are usually not stored
in log (difference (4)).

Next, there is a need to group events concerning each of the resources be-
longing to the particular RESTful service (difference (1)). Usually, services store
invoked URI address in log so this information may be used, or if application
server does not support such feature, a solution is presented in Sec. 3. Next,
there is also a problem of handling resources by parallel instances. Current ap-
plication servers like Apache Tomcat create new instance of resource for each
incoming request to the same URI. In consequence, each resource instance, logs
information concurrently into a log file, so event log interleaving problem occurs
(Fig. 1).

220 A. Stroiński, D. Dwornikowski, and J. Brzeziński

Fig. 1. log interleaving problem

Instance 1 of Resource A is invoked and sends a request to resource B, an
appropriate log entry in log is stored. Next, instance 2 is created upon second
request to resource A. The instance 2 request to resource B is sent, and
response for that request is received (line 2 and 3 at Fig. 1). Next, instance
1 receives response and logs this information (line 4). As the example shows, if
there is no information about instances in the log, that create log entry, there is
no possibility to tie the receiving of message to sending it. In addition, log also
includes information about incoming messages like msg 1 and returned messages
msg 2. There is a need to correlate the messages with each other and with
outgoing messages, in order to associate them with proper service instances, as
well as to keep log ordering relation [3]. This allows to discover local process of
each resource (Fig. 2b):

a �L b iff there is trace where event b immediately precedes event a (1)

This relation orders all local events of some resource (local process at Fig. 2b).
In order to deal with above problems we introduce context logging. The main
concept is to add a unique ID (Context ID) of the resource instance to each
logged event. As a result each service instance will add additional field to event
log during logging called context. This context simply correlates incoming mes-
sages, with outgoing messages, and some local events. Such a context log allows
to specify events that take place within different instances of resources allowing
to generate an independent event log files for each resource in the service, and
each instance of that resource (local log at Fig. 2b). In addition, if we enforce
adding local context as a additional HTTP header (it is possible because of dif-
ference (6)) it is also possible to correctly preserve ordering (correlation) relation
introduced in [18] (atomic correlation condition) or in [7] (reference-based cor-
relation) between interacting resources (res) based on context information in
HTTP header (Eq. 2).

Resource Mining: Applying Process Mining to Resource-Oriented Systems 221

a �ctx b iff there is trace in event log where #ctx(a) = #hctx(b) ∧ #res(a) = resA

∧ #res(b) = resB ∧ resA, resB ∈ Res ∧ resA �= resB ∧ #destURI(a) = resB

∧ #srcURI(b) = resA, where Res is a set of all resources in the system,

and #ctx(e) = A means value of field ctx of event e is A

(2)

These relations describe a situation where resA invokes resB (#destURI (a) =
resB∧#srcURI(b) = resA) and logs this information with #ctx(a) label as event
a and resB receives this message and logs this event with context label passed by
resA (#hctx(b) = #ctx(a)) and with local context label #ctx(b). Next step is to
reconstruct session and a global process and generate appropriate processID and
instanceID, basing on context information (session reconstruction and global
process in Fig. 2b). In order to reconstruct session one needs to apply information
about which resource instance invokes other resource instance. Such information
allows to retrieve the whole workflow information of interacting resources during
business process execution. In order to achieve that, we ask each resource to
send its local context in HTTP header to its callees. Then each callee needs to
log this header as a receiving event log entry with its own local context. As a
result, each of invoked service has information about local context within it was
called. Based on the context ordering relation and partial context information,
the algorithm for session reconstruction can be applied.

2.1 Simple Process and Instance Reconstruction Algorithm for
Resource-Oriented Systems

The main idea behind session reconstruction is to add appropriate processID

and instanceID to events in the log. The main problem is to tie events with a
process instance, i.e. process run. In our approach we are using the idea of context
logging from Sec. 2. We are assuming that each resource enriches its log entries
with context field generated by each of its instances. This allows us to distinguish
event log entries created by different resource instances (even if they are in the
same log file). Next, if resource plays client role during process execution, it
must include context information into its all outgoing messages. This ensure
that context information is transfered to nearest neighbors, and allows to tie
interacting resource instances with each other. We use HTTP header (hctx)
to transfer context. The example of log entries generated by resources during
interaction is presented in The Fig. 2a.

Therefore, based on the relation in eq. 2, and the obtained context log, we
are construct a chain of connected resource instances. First, we generate a set
CTX that contains information about the dependence among resource instances
occurring in the log:

CTX = {(e1, e2) | e1 ∈ L ∧ e2 ∈ L ∧ (e1 �ctx e2)} (3)

We are looking a pair of events in the event log that represent communication
between two resource. Such events in resource-oriented (RESTful) log are easy

222 A. Stroiński, D. Dwornikowski, and J. Brzeziński

(a) Log entries example (b) Idea and limitation

Fig. 2. Context logging

to find because they include additional data related to HTTP protocol (header,
method etc.). The sender of message will include its local context into hctx

header of message, so as a result the receiver will log in event e2 the sender
local context (it is included in HTTP header) next to its own local context.
Into set CTX we put tuples of events between communication resources, where
local context of first event (e1) is equals to received from communication invoker
context in event e2. Next, we search the log for global process starting events
(communication event sent by process principal), according to:

F = {f | f ∈ L ∧ #hctx(f) = null} (4)

Global process starting event is recognized be empty hctxHTTP header value
(#hctx(f) = null). This occurs when #res(f) resource is invoked by a process
principal, because process principal is not a part of process so it does not include
context information in invoke messages. Each event in F represents the initial
event in global process execution so the size of set |F | represents a number of
process instances occurring in event log. Next, all so called context chains of
events are calculated (based at correlation condition in [18]). The context chain
is an ordered set of events that represents context flow during process execution
in one global process instance (one chain represents one global process instance).

foreach fj ∈ F do CHAINj = {fj , Ej , CTXj}, where fj is a starting event in this chain

, and Ej is a set of events in this j-th chain andCTXj is a set of context dependency between

events in Ej ∪ {f}, where j = 1...|F |(|F | is a number of process instances occurring in log).

(5)

In order to do that, we need to find all events sets of context dependent events
in each of the context chains (one context chain for each starting event):

Ej = {e | (e ∈ L ∧ ∃e′∈L∧e′∈Ej
(e �ctx e′ ∨ e′ �ctx e))}, where (∃e′′∈Ej

fj �ctx e′′) (6)

Set E contains events e, such that all events in this set are context dependent
on at least one other event in this set, additionally at least one event from this set
is context dependent on starting event fj . Next, the set of context dependencies
(CTXj) between events of set Ej is calculated as follows:

CTXj = {(e1, e2) | e1 ∈ Ej ∧ e2 ∈ Ej ∧ e1 �ctx e2} (7)

Resource Mining: Applying Process Mining to Resource-Oriented Systems 223

Set CTX consists of tuples (e1, e2) where event e2 is context dependent on
event e1. In consequence, each context chain shows mutually interacting process
instances in some (still unknown) global process. As a result, the process in-

stanceID may be generated and added to each of context chains. Further, each
event can obtain instanceID from context chain it belongs to. Unlike most of
approaches, other events (el) – not only invocation events, must be added in
order to take local processing of resources under consideration (differences (10)).
This results in more accurate process models because sending messages may be
dependent on some local resource event. This results in the Instance set:

Instancej = {(fj , Ej ∪ {el | el ∈ L ∧ ∃e′∈Ej
#ctx(el) = #ctx(e

′
)}, CTXj , SUCCj)} , where

fj is a starting event in chain CHAINj and Ej is a set of events in chain

CHAINj , and CTXj is a set of context dependency occurring in this,

process instance and SUCCj is a local resource events ordering set

(8)

SUCCj is a set of tuples showing local order relation among events of the same
resource instance. It contain all the events belonging to the resources (instances)
involved in j − th context chain.

SUCCj = {(e1, e2) | e1 ∈ L ∧ e2 ∈ L ∧ ∃e′∈Ej
(#ctx(e1) = #ctx(e2) = #ctx(e

′))

∧ (#res(e1) = #res(e2)) ∧ (e1 �L e2) ∧ (e1 �= e2)}
(9)

The final step is to determine which of the found instances belong to which
process. The idea to discover processes, and correlate instances with them is
based on differences (1) and (4) that everything is represented in form of resource
(even business process). In ROS, business processes are executed by invoking
resources call other resources on behalf of the process principal. Therefore, the
final step is to analyze resource property of each first log entry (#res(fj)) of each
of Insancej in order to find such process resources. We are analyzing only the
first event in each instance, as they are invoked by process principals (#hctx(f) =
null), so they are the starting point of process execution. Next, for each unique
resource (called process resources) we are generate processID, because each
instance starting from the same resource is an instance of the same process
resource. This allows us to correlate instances with process by calculating sets
of processes instances for each of process resources occurring in the log:

Processn = {i | i ∈ AllInstaces ∧ ∃i′∈Processn
((#resfirst(i) = #resfirst(i

′
)

∧ i �= i
′
) ⊕ i=i

′
)}, where function first() returns fj for CHAINj

(10)

As a result the algorithm returns a set of Processn sets that include sev-
eral Instancej. Based on this, there is a need to review all events in event
logs of all resources in the system, and add to them instanceID accordingly
to ID of Instancej that this event belongs to. Then add processID accord-
ingly to ID of Processn to which that event Instancej belongs to. As presen-
ted in Fig. 2a there is only one global process (Process0 = {Instance0})
and one instance (Instance0 = {{a1}, E0, CTX0, SUCC0}, where E0 =
{a2, a3, a4, b1, b2, b3, b4, c1, c2, d1, d2},CTX0 = {(a2, b1), (b2, c1), (a3, d1)}, and
SUCC0 = {(a1, a2), (a2, a3) . . . (d1, d2)})

224 A. Stroiński, D. Dwornikowski, and J. Brzeziński

3 Non-invasive Context Logging for JSR-311 with
AspectJ: A Case Study

Context logging can be used to differentiate among separate resource instances in
separate process instances of multiple processes. The idea behind context logging
is to inject HTTP headers into messages that pass through the system. This
simple technique can be implemented in three ways: service instrumentation,
proxy servers introduction, and semi non-invasive way.

We show that non-invasive logging is possible for a wide range of enter-
prise systems, i.e. Java based RESTFul-WS, implemented according to the JSR-
311 standard [14]. Here we use AspectJ [17] (Aspect Oriented Programming
paradigm, AOP) and Apache Tomcat application server.

Jersey comprises to JAX-RS, a JSR-311 standardized API of implementing
RESTful-WS in Java. Both, the standard, and Jersey are widely used in a number
of enterprise application servers and frameworks. We present a proof of concept
implementation of our AspectJ context logger for RESTful systems implemented
according to JSR-311, and in fact, this is our only technical requirement. Our
approach will work for any Java application server and implementation of JAX-
RS. We believe that the same approach can be used for any other technology
that offers support for AOP, such as .NET, Python or Ruby.

We take advantage of the fact that in JAX-RS (Jersey), every RESTful
Web service needs to be defined in a class, annotated with certain decorators,
e.g. @Path. The listing below shows a simple Web service implemented in Jersey.
@Path("/hello") says that the Web service will be accessible under "/hello"
URI resource. The method annotated with @GET and @Path handles every GET
operation issued on "/hello/world" resource, @GET can be substituted with any
other HTTP operation. @Produces or @Consumes in the case of POST, PUT
defines content type the resource returns or accepts.

@Path(”/ h e l l o ”) // every c l a s s has @Path
public class Hel lo {

// every method has @OP annotation
@Produces (”t ex t/html”) @GET @Path(”/world ”)
public Resource hand le r (@Context HttpHeader headers ,

@Context HttpServ le tRequest r e que s t) {}

Thanks to the standardized API, AspectJ context logger for incoming mes-
sages can be implemented in a simple way. One needs only to define pointcut,
which catches every execution of any method placed in any class annotated with
@Path, @Produces and @GET. In our implementation an advice is called when
the pointcut is reached. First local context is generated, which in our case is the
hash-code of a current object instance. Next, if the HCTX header is present in the
request, it is stored and logged alongside with the local context, remote caller IP,
HCTX value, and request URI from the @Path. Local context is then appended
to every outgoing request from the current service instance in a HCTX header.

execut ion (@javax . ws . r s .GET @javax . ws . r s . Produces public ∗ ∗ (. .)) &&
with in (@javax . ws . r s . Path ∗)

The situation gets more complicated when we want to catch and log messages
sent from a service. In that case, not only we have to alter the outgoing message

Resource Mining: Applying Process Mining to Resource-Oriented Systems 225

with context logging HTTP header HCTX but also the HTTP client call may be
done in some arbitrary way. In our case, we assume that these external calls are
done from the same thread that handles the incoming request, i.e. synchronously.
We also assume that JSR-311 client API is used. Therefore, a pointcut can be
defined to catch all calls to methods named request* within classes annotated
with @Path. Such an approach allows us to alter the request headers originating
from the service, and thus pass the context to external services, according to
context logging approach. Assuming that external services are also equipped
with our aspect context logger, logs of all messages received and sent in the
whole system can be created.

c a l l (public ∗ ∗ . r e que s t (. .)) && with in (@javax . ws . r s . Path ∗)

There are some requirements we need to impose on how services are implemen-
ted with Jersey. We require that every method handling requests needs to return
Resource object, and take the following arguments: @Context HttpHeader and
@Context HttpServletRequest. This is needed to extract information, such as
remote caller IP, request headers, and to inject our own header. Another diffi-
culty we came across is the way the situation when service we equip with aspects
calls some external service. In our approach we assumed that the call is done in
the same thread as incoming request handling but this does not need to be the
case. If it’s not the case, it is still possible to implement a logger, by examining
the call stack to determine how the current thread was called. By comparing
this with the call list kept in aspects, it is possible to determine which service
instance was the original caller.

4 Applying Alpha Algorithm for Resource-Oriented
Context Preprocessed Log

After preprocessing the context log by the algorithm in Sec. 2.1, it is now possible
to apply classic PM algorithms. As it is shown in Sec. 1, there are a lot of
process model discovery approaches available up-to-date, but in our initial work
on service mining in ROS, we have used basic alpha algorithm (AA) [3]. The
reason for this is to show on simple and representative example that PM is
applicable but some additional work is still need to be done. The idea behind
AA is to use ordering relation (Eq. 1) that occurs in the log file to discover process
model in form of a petri net. Unfortunately, in the real case scenario in ROS, it
is unlikely that each resource in the system will log into the same log file with
respect to some global clock and with respect to some global ordering relation.
Therefore the problem of gathering logs from distributed resources with respect
to global ordering arises. In addition, the basic version of AA does not take the
resource perspective into account. So the first step is to make logs unique globally
(usually events IDs are only unique locally at resource). Without distinction of
resources, two events occurring at different resources may leave identical log
entries, so as a global identifier is the concatenation of resource URI (is unique
by the definition) and its local identifier (unique at the resource).

226 A. Stroiński, D. Dwornikowski, and J. Brzeziński

Fig. 3. a(left) – original process model, b(right) – discovered process model

Lets consider example shown in Fig. 3. The resource resA is a process resource
and invokes resource resB during its execution. Next, two events with IDs a

occur in two different resources resA and resB. If we omit resource information
they are indistinguishable form each other. In order to use basic AA we need
to flatten the log, to make sure ID of such events in the system are unique, we
are concatenate resource URI and local ID — A::a and B::a. AA takes one log
file with multiple traces (instances) of exactly one process as its input. In order
to use it, first we need to gather distributed resource log files and concatenate
them into one file for each process found by algorithm from Sec. 2.1. The first
problem with concatenation, of independently generated log files, is the order in
which concatenation is performed. Different approaches to deal with this problem
have different impact on the results. It is because the AA only uses flat order of
events in a log file to determine if two events are executed in parallel, in some
order, or are independent on each other. In consequence, simple concatenation
of resource log files will result in violation of causal dependency of events. In the
considered example (Fig. 3a) adding resB log file at the and of resA file will
result in incorrect dependency relation between event A::e and B::a. This will
lead to incorrect conclusion that these events are not independent. In order to
deal with this problem there we need to perform another preprocessing phase of
the event log in order to identify the communicing resources and appropriately
concatenate event logs of subinvoked resources. We consider only synchronous
communication so if a resource does not execute multiple parallel threads, all
invocation events must be followed by corresponding response events (A::b and
A::c). If there are two parallel threads, then all events in the second thread must
be parallel to both the invocation and the response handling event (A::d). In
order to concatenate log files and respect ordering relation among events in both
resources (context dependency between two events in different resource A::b

and B::a), and in addition to respect local ordering of events, we use previously
calculated sets of context chains in Eq. 5. For each chain, and for each resource
instance occurring in context chain, we look for communication events invoking
and handling response (communication pair CP = (start, end, ctx1, ctx2)). Each
of such pairs consists of: start - starting event (invoking event), end - ending
event (response handling event), ctxA - context of invoking resource and ctxB

- context of invoked resource. Thanks to that, during pre-processing phase we
put all events in the invoked resource event log file between the starting event

Resource Mining: Applying Process Mining to Resource-Oriented Systems 227

and the ending event. Additionally, not to disturb parallel relation of concurrent
events there is a need to generate additional traces, not originally included in
log file. Lets consider example in Fig. 3. We search for all CPs in the log. The
only found CP is: A::b, A::c, A::07C and B::AGF. Because we are dealing
with synchronous communication, we add all events of resource instance B::AGF
between the events A::b and A::c of resource instance A::07C. The problem
occurs with event A::d, which is parallel to communication events in resA. In
order to respect the parallel relation, we need to generate new traces (the minimal
set of them) that will render all events in log file of resB to be also parallel to
event A::d. To do that, we need to generate new process traces (instances) with
respect to the following condition:

∀CP∈LogA
((e || start ∧ e || end) =⇒ (∀f∈LogB

(f || e)), where LogA is invoking resource

log and LogB is invoked resource log, and a || b ⇔ a �L b ∧ b �L a , where L is some log
(11)

As a result, new traces are generated and we can execute the AA for each
process occurring in the log. The discovered petri net is shown at Fig. 3b. In
comparison to the original model in Fig. 3a, the dotted places and arcs are
not present. It is because, there is no longer relation between events b and c

at resA after log preprocessing. This is a side effect of adding resB log. In
conclusion, presented example shows that AA is able to mine processes based
on a preprocessed resource-oriented log. Some drawback of this approach is that
during mining interaction between resources, some local dependencies are lost.
In context of global PM this is not an issue, because from a global point of view
the workflow is in fact transfered to invoked resource.

5 Conclusions and Future Work

We have shown how our approach may be used to extend the current methods
of PM and Web Service Mining discussed in Sec 1 to make them applicable in
ROS. We have discussed how RESTful log, including interaction events of ROS,
can be obtained, and further used to discover the process model in such systems.

Presented considerations leads to several conclusions and feature challenges.
First, framework to obtain context enriched log concerns only ROS implemented
accordingly to JSR-311. In the case of other technologies more work may be
required. In future we would like to address this problem. Another direction
of research is to develop algorithms dedicated for ROS that do not need to
preprocess event log. This may lead to more accurate process models by using
all information available in the log, like hierarchy relation along resources and/or
message semantics. Finally, current PM methods work only with global process.
In our approach to reconstruct process related information we discover multiple
process resources but later we execute process discovery algorithm for each of
them separately. Our current work concerns developing methods for discovering
processes models based on multiple process logs.

228 A. Stroiński, D. Dwornikowski, and J. Brzeziński

References

1. van der Aalst, W.M.P., et al.: Process mining: a two-step approach to balance
between underfitting and overfitting. Software and Systems Modeling (2009)

2. van der Aalst, W.M.P., et al.: Process mining manifesto. In: Daniel, F., Barkaoui,
K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194.
Springer, Heidelberg (2012)

3. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. on Knowledge and Data Eng. (2004)

4. van der Aalst, W.: Service mining: Using process mining to discover, check, and
improve service behavior. IEEE Transactions on Services Computing (2012)

5. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer Publishing Company, Incorporated (2011)

6. van der Aalst, W., Verbeek, H.: Process Mining in Web Services: The WebSphere
Case. IEEE Bulletin of the Tech. Committee on Data Engineering (2008)

7. Barros, A., et al.: Correlation patterns in service-oriented architectures. In: Proc. of
the 10th Int. Conf. on Fundamental Approaches to Soft. Eng., pp. 245–259 (2007)

8. Buijs, J., et al.: Towards cross-organizational process mining in collections of pro-
cess models and their executions. In: BPM Workshops (2011)

9. Dustdar, S., et al.: Web services interaction mining. Tech. Rep. (2004)
10. Dustdar, S., et al.: Discovering web service workflows using web services interaction

mining. Int. J. of Business Process Integration and Management 1, 256–266 (2007)
11. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. Ph.D. thesis, University of California, Irvine (2000)
12. Gaaloul, W., Bhiri, S., Godart, C.: Research challenges and opportunities in web

services (2006)
13. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining: Adaptive process simplific-

ation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

14. Hadley, M., Sandoz, P.: Jax-rs: Java api for restful web services (2008)
15. Ingvaldsen, J.E., Gulla, J.A.: Preprocessing support for large scale process mining

of sap transactions. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.)
BPM Workshops 2007. LNCS, vol. 4928, pp. 30–41. Springer, Heidelberg (2008)

16. Khan, A., Lodhi, A., Köppen, V., Kassem, G., Saake, G.: Applying process mining
in soa environments. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/Service-
Wave 2009. LNCS, vol. 6275, pp. 293–302. Springer, Heidelberg (2010)

17. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: Getting
started with aspectj. Communications of the ACM 44(10), 59–65 (2001)

18. Motahari-Nezhad, H.R., Saint-Paul, R., et al.: Event correlation for process discov-
ery from web service interaction logs. The VLDB Journal 20(3), 417–444 (2011)

19. Mueller-Wickop, N., Schultz, M.: Erp event log preprocessing: Timestamps vs. ac-
counting logic. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST
2013. LNCS, vol. 7939, pp. 105–119. Springer, Heidelberg (2013)

20. Pautasso, C., et al.: Restful web services vs. “big” web services: Making the right
architectural decision. In: Proc. of the 17th Int. Conf. on WWW, pp. 805–814.
ACM (2008)

21. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media (2007)

	Resource Mining: Applying Process Miningto Resource-Oriented Systems
	1 Introduction
	2 Resource Mining: The Resource-Oriented Approach to Web Service Mining
	2.1 Simple Process and Instance Reconstruction Algorithm for Resource-Oriented Systems

	3 Non-invasive Context Logging for JSR-311 with AspectJ: A Case Study
	4 Applying Alpha Algorithm for Resource-Oriented Context Preprocessed Log
	5 Conclusions and Future Work
	References

