
Component-Based Development of a Metadata

Data-Dictionary

Frank Kramer and Bernhard Thalheim

Christian-Albrechts-University Kiel, Computer Science Institute
24098 Kiel, Germany

Abstract. Metadata provide information about data, ease access and
querying, support well-planned evolution, and allow to reason on data
quality. Moreover, heterogeneous data sources are better to integrate if
well-defined metadata are available. Therefore, metadata management
becomes a crucial element of modern database systems. We develop
a component-approach to metadata management. This approach gen-
eralises classical data dictionaries and is based on many-dimensional
schemata each dimension of it represents a specific facet of the schema.

Keywords: Conceptual Modeling, Metadata, Component-based Devel-
opment, Metadata Management, Metadata Repository.

1 Introduction

An important part in the field of data management is the metadata management.
Metadata support heterogeneous user groups to get information and assessment
over the corresponding data within a system. The management of metadata
becomes complicated, if there is a great variability of databases that covers the
metadata. Furthermore, there is an evolution in the metadata and the underlying
schema over time. Thus, a system is needed that allows a dedicated management
of the metadata and that is also safe against evolution of the metadata. Today
there exist different approaches to metadata management systems. They can be
divided into generic or high specialized approaches. The generic approaches give
only suggestions for what is needed for good metadata management systems
[1]. Specialized approaches are constructed for special applications such as data
warehousing [2] or master data management [3]. Two movements of metadata
management can be found often that cover both their own problems. On the one
hand, the metadata are integrated into the global schema. Such a schema can
become quickly confusing, unreadable and not extensible. On the other hand,
the metadata can be disembodied from the application data and worfklow data
in an external repository. This leads to a high effort for tending, reading and
connecting the metadata with other data within a special context.

Functional approaches for solving problems in large database applications can
be found within the field of the Conceptual Modelling in the Large (CoMoL). It
describes special techniques to model large applications. This covers the struc-
ture, functionality, interaction and support for such applications. All described

W. Abramowicz and A. Kokkinaki (Eds.): BIS 2014, LNBIP 176, pp. 110–121, 2014.
c© Springer International Publishing Switzerland 2014

Component-Based Development of a Metadata Data-Dictionary 111

techniques exceed the classical techniques for modelling smaller applications.
One facet of CoMol comprises the component-based development of information
systems. A component is a database schema that has an import and an export
interface by which it may be connected to other components via a standardized
interface technique [4]. With these components we get a modularization of a
schema with all the advantages like loose coupling and abstraction from com-
ponents on their content. With these components we are able to scale a global
schema into a metadata, workflow data and application data dimension. As a
result, we reduce the complexity of the whole schema drastically.

This paper presents an approach to metadata management that is based on
an internal metadata Data-Dictionary. The dictionary is a generalization of a
database data-dictionary. To construct the metadata data-dictionary we define
six disjoint categories that can be realized as components. The components build
a metadata dimension. The connection between the dimensions is enabled with
a concept called harnesses. These harnesses build the metadata data dictionary
that corresponds to a metadata repository. As distinct from other repositories,
the metadata data-dictionary is not disembodied from the system. Section 2 will
give a closer look at creating components. Furthermore, we demonstrate how we
can scale data into dimensions based on this components and how the dimensions
can be connected together with harnesses. Then, the section 3 will show, how a
generalized metadata data-dictionary can be realized. Therefore, we define the
six disjoint metadata categories and apply the component-based development on
these categories. As a result, we get the metadata data-dictionary. We will show
also that such a dictionary meets all requirements of a metadata repository. After
that, section 4 will give a short look on related work in the field of metadata
management. Finally, a conclusion and a short outlook on future research will
be given in section 5.

2 Component-Based Development

In this section, we present a component-based development of database schema.
Therefore, we will describe database components as presented in [5] and [4].
After introducing the components, we want to demonstrate how they can be
used to dimension a global schema and how the dimensions can be connected
together.

2.1 Components in a Nutshell

For our definition of a database component we use the Higher-Order Entity-
Relationship Model (HERM) [6]. In HERM a database type is defined as S =
(Struc, Op, Σ) with a structure Struc, a set of operations Op and a set of static
integrity constraints Σ. The structure is defined by a recursive type equality t
= B|t × . . .× t |[t]|{t}|l:t over a set of basic data types B, a set of labels L and
constructors for tuple (product), set and bag. A database schema S = (S1, . . . ,
Sm, ΣG) is given by a set of database types S1, . . . , Sm and a set of global
integrity constraints ΣG.

112 F. Kramer and B. Thalheim

Formally, a component can be described as input-output machines. Every
machine gets a set of all database states SC , a set of input views IV and a set
of output views OV. A view can be defined as V = (V, OpV) with an algebraic
expression V on a database schema S and a set of HERM algebra operations
OpV on the view V. The views are used for the collaboration of the components
by exchanging data over them. Therefore, an input view of one machine can be
connected to an output view of another machine. This data exchange is done by
a channel C. The structure of the channel is defined by a function type : C → V
that maps a channel C on a corresponding view schema V. In general, the input
and output sets from a component can be seen as words from a set of words M∗

of the underlying database structure.
Thus, a database component is defined as K = (SK, IVK ,OV

K ,SC
K ,ΔK) with

a database schema SK that describes the database schema of K, a syntactic
interface composed of a set of input views IVK and output views OV

K , a set of
all database states SC

K and a channel function ΔK : (SC
K × (OV

K → M∗)) →
P(SC

K × (IVK → M∗)) that connects an output view with a set of input views. To
connect two components together they must be free of name conflicts and the
input and output views have to be domain-compatible. Assume two components
K1 = (S1, I

V
1 ,OV

1 ,SC
1 ,Δ1) and K2 = (S2, I

V
2 ,OV

2 ,SC
2 ,Δ2). They are free of name

conflicts if the names of their entity, relationship and attribute names within their
schema S1 and S2 are disjoint. Two channels C1 from K1 and C2 from K2 are
domain-compatible, if dom(type(C1)) = dom(type(C2)). So the output O

V
1 ∈ OV

1

of component K1 is domain-compatible to input IV2 ∈ IV2 of component K2 when
dom(type(OV

1)) ⊆ dom(type(IV2)). For the definition of unification, permutation
and renaming of channels together with the introduction of fictitious channels
and the parallel composition of channels with feedback we refer back to [4].

2.2 Dimensioning of Data

The modularisation of a database schema with components is then used to scale
the schema into dimensions. To do this, the assumption is made that the whole
schema is transformed into a component-based schema. After this transforma-
tion the data are partitioned into three orthogonal dimensions for application,
workflow and metadata, as done in [7]. The application data tier contains all
the data that are used by the application. For example, measured data from a
research cruise could be seen as application data. The workflow tier contains
all data about the structure and process of the workflows that exist within the
application. The procedure steps of taking soil samples from the ocean can be
such workflow data. The metadata tier contains all metadata that exist within
the system. Longitude and latitude of a soil sample can be stored in this tier.
To connect the dimensions, we will use a concept, we called harness because
the behaviour is similar to wired harnesses in electrical engineering. A detailed
description of harnesses is given in section 2.3. Figure 1 shows how the dimen-
sioning can look like.

With the dimensioning of a schema, it is possible to store data based on
their origin and purpose. This reduces drastically the complexity of the whole

Component-Based Development of a Metadata Data-Dictionary 113

application data

metadata

worflow data

harness

component 1

component 2

component 3

component 1

co
mponent 2

component 3

component 1 component 2

component 3

Fig. 1. Data Dimensions

database schema. Because of the dimensioning the data there exist only small
components and not a huge global schema. Problems such as saving the same
data on different parts of the schema are avoided. Every component can be
connected over harnesses to all schema parts where it is needed.

2.3 Harnesses

In this section, we want to present the concept of harnesses. They are based on
the work of [4]. A harness is based on a harness skeleton. This is a special form
of metaschema architecture. The skeleton consists of a set of components and
a set of harnesses that represent the overlapping functions for the components.
A n-ary harness skeleton can be defined as a triple H = (K,L, τ) with a set of
components K = {K1, . . . ,Km}, a set of lables L = {L1, . . . , Ln} having n ≥ m
that represent roles of components in the skeleton and a total function τ : L → K
that assigns a component to its roles. Figure 2 displays an example of a graphical
representation of a harness skeleton.

exam study
participant student

Fig. 2. Graphical harness skeleton

A student and an exam are components. They are represented as single edge
circles. The double edge circle represents a harness skeleton that connects the

114 F. Kramer and B. Thalheim

student and the exam to a study participant. Components can be connected to
other components in a great variety. In the classical schema design this will lead
to a huge and confusing schema because for every introduced subschema a new
usage type must be introduced too. To avoid this problem for the component-
based design, a filter can be defined for the skeleton. A filter connects the views
of the components with the labels of the harness skeleton. Let H = (K,L, τ) be
a n-ary harness skeleton having m components Kj = (Sj , I

V
j ,OV

j ,SC
j ,Δj) with

1 ≤ j ≤ m. Furthermore, let V
Kj

1 , . . . V
Kj

lKj
be all input and output views of a

component Kj . A filter F = (L, ι) connects a view from the component Kj with

a label Li, if ι(Li) = l for j = τ(Li) and l ∈ {V Kj

1 , . . . V
Kj

lKj
} holds. A harness

is then defined as H = (K,L, ι ◦ τ) composed of a harness skeleton (K,L, τ)
and a filter (L, ι). With this harness we are able to connect components in
different dimensions of a dimensioned schema. After the formal construction of
components and harnesses for dimensioning data, we want to use these constructs
to create our approach of metadata management based on components.

3 Metadata Management

Metadata management covers all functions a system must provide for creation,
maintenance and deployment of metadata [2]. Such a management system is
normally represented by an independent repository system that is separate from
the other system. In this section, we will present a metadata repository that
covers all the provided functions of a management system without separating it.
Beforehand, we present our approach of such a repository, and we take a quick
glance at what kind of data is defined as metadata.

Generally, metadata are defined as data about data [1],[8],[3],[2]. In this paper,
we want to use a more specialized definition from [1]. Therefore, we first introduce
instance data. Instance data cover all data that are used as input into a tool,
an application, a database or other process engines. All data that describe the
format and characteristic of instance data are called metadata.

One problem of separating data into instance data and metadata is the fact
that the separation depends on the user’s point of view on the data. Take as
example a relation person = (EMail, familyName, firstName, address, fon). If
a system developer uses this relation the data within the rows are the instance
data he wants to work with. The caption of the columns is the metadata for him
because they describe what instance data the developer can find in the columns
of a row. If an administrator of the database looks on the same relation, the
caption of the columns is the instance data he works with. The data within the
rows are not of interest for him. Information about the domain of the columns
and the disc space usage are then the metadata for his instance data. As a
consequence, instance data and metadata can not be directly separated. They
are always in relation to the user’s point of view and the context of the user.
Thus, in the next step we have to structure metadata in a global context to
avoid the user’s point of view on the data [2],[1].

Component-Based Development of a Metadata Data-Dictionary 115

3.1 Metadata Categories

In this section, we categorize metadata in a global context to describe the dif-
ferent issues they are used for. For this categorization, we are only interested in
functional metadata [9], [2]. These are metadata that are used to interpret appli-
cation data and to recognize correlations between the data. Technical metadata
are not dealt with in this paper as they describe the structure and the behaviour
of application data. In general, technical metadata can be found in all modern
systems as, for example, the data-dictionary of a database management system.

To divide the functional metadata into categories, we use the fact that meta-
data are used to describe instance data. This can be represented by the classical
W6H-questions: who, what, when, where, why, how and by what means. These
questions are first mentioned in the classical rhetoric of Hermagoras of Tem-
nos1 and can be found in the Zachman Enterprise Architecture Framework for
Information Systems [10]. Therefore, we will use only a single metadata object
to answer one of these questions. In the next step, we generate categories using
an extended W6H-question set. Every category covers the questions that belong
together and that are disjoint to the other questions. After this, we get a set of
metadata categories that are shown in Figure 3.

As a result, we get six disjoint categories that cover a set of metadata. Because
of answering exactly one question, every metadata can be classified exactly into
one of these categories. Time and Space covers all relevant metadata about the
time and the space for the application data. The Quality component contains
the metadata for quality information. Service metadata gives information about
the reason why data is in the system and the method how the data comes
into the system. The Administrative category covers the information about all
administrative information such as rights on the data or roles of the user. The
Structure consists of metadata that describe the structure of the data it belongs
to. Provenance covers the history of data from the creation to the deletion of
data in the system.

Thus, we have found a way to divide metadata into six global categories that
are independent from the user’s point of view. Every functional metadata in
a system could be assigned to one of these categories. Therefore, a model is
needed that can map these categories on an application view. This will build a
metamodel as defined in [1] for our categories. For this, we use the component-
based development of database schemes from section 2.1. Consequently, every
metadata category becomes a single component in the metadata dimension. The
advantage of taking the component based approach is that we get all advantages
from this approach for every metadata category, for example, the easy extension
of a schema and the good understandable schema of the component. The last part
missing from our approach is the connection between the metadata components
and the corresponding application data components.

1 Unfortunately, the work of Hermagoras of Temnos is lost. However, the Roman
author Cicero refers back to the work of Temnos in his opus ”‘De Inventione”’.
Therefore, parts of Temnos‘ work are still available to the present day.

116 F. Kramer and B. Thalheim

Fig. 3. Metadata categories

3.2 Metadata Data-Dictionary as Repository

The last step for our metadata management approach is the connection between
the metadata components to the components in the other dimensions. In this
section, we will only describe the connection of metadata with application data.
The connection to the workflow data can be realized in the same way. In 2.3
we have described the concept of harnesses to connect components in different
dimensions. We will use these harnesses to connect the metadata categories with
the application data. These harnesses are then realized as a metadata data-
dictionary that represents an internal metadata repository for a system.

Data-Dictionaries can be found primarily in the area of database management
systems (DBMS). They represent a set of system tables that covers different in-
formation like the definition of schema objects, logging from actions, comments
for tables and rows and much more. For example, take the SYSIBM table from
the DBMS DB2. They cover information about the structure of tables, rows, trig-
gers and functions within the DBMS. So a Data-Dictionary contains all needed
technical metadata for a DBMS. The great advantage of such a dictionary is
the separation of the metadata from the application data of the DBMS [11].

Component-Based Development of a Metadata Data-Dictionary 117

Thereby, the structure of the dictionary is different in most DBMS. For exam-
ple, the system tables in Oracle can not be read by users of the system. A user
only gets access over defined views of the system tables. There is no general
schema of a Data-Dictionary. The advantage of covering metadata and applica-
tion data over relations or views within a DBMS is the possibility, to access the
connected data over a query language like SQL. To avoid inconsistency on the
data, all tables in the data-dictionary are set to read-only for the user. Changing
data in the dictionary is only implicitly possible by using a system query like
CREATE TABLE or ALTER TABLE that changes the data in the dictionary.

Metadata
categories Metadata Application

data

(a) Harness skeleton for metadata

application data

metadata
view

[Time and Space]

[Service]

[Structure]
[Quality][Provenance]

[Administrative]

(b) Metadata view pattern

Fig. 4. Harness realization

For our approach to use harnesses to connect metadata with application data,
we will use similar techniques as used in the design of a Data-Dictionary in a
DBMS like DB2 [11]. As described in 3.1, our six metadata categories are repre-
sented by components. A harness can be used to connect these metadata compo-
nents with the application data dimension. Figure 4(a) shows a general harness
skeleton that represents this connection. We now map this skeleton on a HERM
model that represents it. To find such a model, it is important that every meta-
data apply only to one category. Therefore, every application data can only have
zero till six connections to the metadata components. The number of connections
depends on the existing metadata for the application data. Thus, a harness can
be mapped to a view that covers all relevant metadata for the description of an
application date. The harness will not be used for inserting data directly into the
system. Consequently, the harness can be connected to the output views of the
components and builds a read-only connection. Metadata modifications are only
implicitly possible by using the input views of the corresponding component.
Figure 4(b) shows a pattern of a generic realization of a harness into a HERM
model that connects application data with the corresponding components from
the metadata dimension. Every connection to a metadata category is optional
for the relationship type. It is important that such a relationship type is only
compiled, if at least one connection to a metadata category exists. Otherwise,
such a relationship is dispensable and must not be compiled. So a harness can
be mapped on a n-ary relationship type with n ∈ {2, 3, 4, 5, 6, 7} connections.
This relationship type represents a metadata view. Such a view has a similar
structure, functionality and content as a view in a data-dictionary of a DBMS.

118 F. Kramer and B. Thalheim

Therefore the quantity of all metadata views in a system builds a metadata data-
dictionary. This dictionary covers all metadata that exist for the application data
within the system.

Finally, we want to show that our metadata Data-Dictionary represents a
metadata repository. In [1], a metadata repository is defined as an integrated,
virtual area to charge with metadata. Input, access and structure are inde-
pendent from a special vendor. The repository is used to store metadata and
can be used as interface to external metadata. A repository has to meet six
requirements:

1. The content of the repository can be connected to every other content within
or outside the repository.

2. Input, access and structure are independent from a vendor.
3. The metamodel of the repository is easily extended without effects on the

functionality.
4. Every user can search and access the metadata directly without getting

irrelevant data.
5. There is a versioning of metadata within the repository.
6. Metadata and the metamodel are protected against unauthorized access.

Our approach of a component-based metadata Data-Dictionary meets all of
these six requirements and is a valid metadata repository. The metamodel is
based on components. The components are independent from a distributor and
can be extended easily. Connections to every data inside and outside our repos-
itory can be established by harnesses. Accessing and searching within the meta-
data Data-Dictionary without irrelevant data is given because every harness in
the dictionary can be compiled for a special usage with the needed metadata
information. The last two items depend on a good implementation of such a
data dictionary. Thus, with a good implementation these requirements are also
met.

4 Related Work

The categorization of metadata can be found in different scientific works in
literature. In [1], there is a categorization into specific, unique and common. It
is based on the assumption that different disjoint user groups can be identified
within a system. Specific metadata cover all data that is only created and used
by the same user group. If a user group utilizes metadata that is created by
another single user group, it is unique metadata. Metadata that is created and
used through all user groups in the system is called common metadata. This is
an user centric approach that requires the user group identification in a system.
Furthermore, there exist metadata that could not be immediately categorized.
A categorization that is not user centric can be found in [9]. There, we can
also find six different categories of functional metadata; namely Administration,
Terminology, Context driven, Governance, Structure and Operative. They should

Component-Based Development of a Metadata Data-Dictionary 119

support the terminology management for master data management. All this
categories are also answering special WH-questions.

Beside the categorization of metadata, there exist a lot of standards that take
a close look at the field of metadata management. Two of the important stan-
dards are the Dublin Core and the Common Warehouse Metamodel (CWA).
The Dublin Core is standardised International Organization for Standardization
(ISO) under ISO 1583 [12]. It covers 15 metadata elements that can be used
to describe a resource. The purpose of using the Dublin Core is the easy de-
tection of resources within a system. Examples for Dublin Core elements are
title, type and format of a resource. The Common Warehouse Metamodel was
standardised by the OMG in 2001. It is the prime standard for the field of
data warehousing [2]. The CWA is a component-based approach and covers five
layers; namely Object-Model, Foundation, Resource, Analysis and Management.
Every layer consists of packages, and every package consists of components that
cover a set of metadata elements for the package. There exist other standards for
metadata for different levels. There are meta-meta architectures like the Meta
Object Facility (MOF). Also there are languages for describing metadata like
the Resource Description Framework (RDF) or describing the interchange of
metadata like the XML Metadata Interchange (XMI). Furthermore, there are
standards for special areas like the Learning Object Metadata (IEE LOM), or
the ISO 19115 for geographic information.

There exist a great set of papers about metadata models for highly specialized
problems2. But there are only some works about generic metadata models. Most
of these generic metadata models are models for special areas. An example of
such a generic framework can be found in [13]. The framework is based on
XML and describes a metadata format for multimedia data that covers general
informations on the one hand, such as the title or the author of a special content,
and on the other hand special media data metadata such as the GPS location and
the resolution of an image. Additionally, the general information can be extended
by standards like the Dublin Core. An approach for a generic metadata model
that covers any kind of metadata can be found in [14]. This approach is based on
a combination of the generic Modelling Principles and the architecture of Data
Vaults.

5 Conclusion and Outlook

There is a need for a metadata management system that allows a dedicated man-
agement of evolutionary metadata. The approach outlined in this paper is based
on components which are used to create a set of six metadata components. These
components allow a modularization of the global schema with all advantages as,
for example, loose coupling. The components make it possible to construct a
metadata dimension that lies orthogonally to the application data and workflow
data in the global schema. The metadata dimension can be connected to the
other dimensions by using a construct called harness. Harnesses can be created

2 Due to the limitation of this paper we go without citations of these works.

120 F. Kramer and B. Thalheim

for the special needs of a user group within a system. All harnesses within a
system build the metadata Data-Dictionary. The metadata Data-Dictionary is a
generalized version of a database Data-Dictionary. Thus, we get an internal meta-
data repository that allows an evolution safe dedicated metadata management
system that reduces drastically the complexity of the global schema without the
disembodiment of metadata into an external system.

We have only outlined a general approach on how a good metadata man-
agement has to be modelled. In a subsequent step, we must create conceptual
models for the six metadata categories. Such a detailed metadata schema that
combines all potential aspects for metadata management is under development.
Moreover, we must create a system that implements our approach of a metadata
Data-Dictionary. Furthermore, such a system must cover some other problems
that can be found, for example, in the field of scientific data management [15]
or master data management [3]. All these fields need interfaces for the import of
metadata from heterogeneus systems. Also the export of data into external and
heterogeneous data massive must be possible in such a system. Topical privacy
of data is another part such a system must regard. Privacy covers problems such
as the property and disclosure of data inside and outside of such a metadata
management system. For all this, our approach should be a first step towards
such a metadata management system.

References

1. Tannenbaum, A.: Metadata Solutions: Using Metamodels, Repositories, XML, and
Enterprise Portals to Generate Information on Demand. Addison Wesley, Reading
(2001)

2. Marquardt, J.: Metadatendesign zur Integration von Online Analytical Processing
in das Wissensmanagement. Kovač (2008)

3. Berson, A., Dubov, L., Dubov, L.: Master Data Management and Customer Data
Integration for a Global Enterprise. illustriert edn. McGraw Hill Professional (2007)

4. Thalheim, B.: Component Development and Construction for Database Design.
Data & Knowledge Engineering 54, 77–95 (2005)

5. Schewe, K.D., Thalheim, B.: Component-driven engineering of database applica-
tions. In: Proceedings of the 3rd Asia-Pacific Conference on Conceptual Modelling,
APCCM 2006, vol. 53, pp. 105–114 (2006)

6. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.
Springer (2000)

7. Noak, R., Thalheim, B.: Architecturing for Conceptual Modelling in the Large.
In: Kiyoki, Y., Tokuda, T., Yoshida, N. (eds.) Proceedings of the 23rd European-
Japanese Conference on Information Modelling and Knowledge Bases. Information
Modeling and Knowledge Bases XXIII, pp. 29–48. IOS Press (2013)

8. Heinrich, L.J., Stelzer, D.: Informationsmanagement: Grundlagen, Aufgaben,
Methoden, vol. 10. Oldenbourg Wissensch. Vlg (2011)

9. Scheuch, R., Gansor, T., Ziller, C.: Master Data Management: Strategie, Organi-
sation, Architektur. Dpunkt. Verlag GmbH (2012)

10. Zachman, J.A. (2008),
http://www.zachmaninternational.com/index.php/the-zachman-framework

http://www.zachmaninternational.com/index.php/the-zachman-framework

Component-Based Development of a Metadata Data-Dictionary 121

11. Denne, N.: DB2: Theorie und Praxis, vol. 7. DGD-Ed. (2001)
12. Gordon, K., Society, B.C.: Principles of Data Management: Facilitating Informa-

tion Sharing. British Computer Society (2007)
13. Brut, M., Laborie, S., Manzat, A.M., Sedes, F.: A Generic Metadata Framework

for the Indexation and the Management of Distributed Multimedia Contents. In:
NTMS, pp. 1–5 (2009)

14. Saratchev, P.: Towards a Generic Metadata Modeling. Yearbook of the Faculty of
Computer Science 1(1), 161–174 (2012)

15. Neuroth, H., Strathmann, S., Oßwald, A., Scheffel, R., Klump, J., Ludwig, J.:
Langzeitarchivierung von Forschungsdaten: Eine Bestandsaufnahme. Hülsbusch,
W (2012)

	Component-Based Development of a MetadataData-Dictionary
	1 Introduction
	2 Component-Based Development
	2.1 Components in a Nutshell
	2.2 Dimensioning of Data
	2.3 Harnesses

	3 Metadata Management
	3.1 Metadata Categories
	3.2 Metadata Data-Dictionary as Repository

	4 Related Work
	5 Conclusion and Outlook
	References

