Modeling Longitudinal Data by Latent Markov
Models with Application to Educational
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Abstract I review a class of models for longitudinal data, showing how it may be
applied in a meaningful way for the analysis of data collected by the administration
of a series of items finalized to educational or psychological measurement. In this
class of models, the unobserved individual characteristics of interest are represented
by a sequence of discrete latent variables, which follows a Markov chain. Inferential
problems involved in the application of these models are discussed considering, in
particular, maximum likelihood estimation based on the Expectation-Maximization
algorithm, model selection, and hypothesis testing. Most of these problems are
common to hidden Markov models for time-series data. The approach is illustrated
by different applications in education and psychology.

Keywords Forward and Backward recursions * Expectation-Maximization algo-
rithm » Hidden Markov models ¢ Rasch model

1 Introduction

Among the statistical models for the analysis of longitudinal data which are
available in the literature (Diggle et al. 2002; Fitzmaurice et al. 2009; Frees 2004),
those based on a latent Markov chain have a special role when the main interest
is on individual characteristics which are not directly observable. Such models
are based on assumptions similar to those of hidden Markov models; for a recent
review see Zucchini and MacDonald (2009). Applications focusing on individual
characteristics which are not directly observable usually arise in education and
psychology, when these characteristics are measured through the responses to a
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series of items, also corresponding to specific tasks, administered at consecutive
occasions.

One of the first authors who dealt with models for longitudinal data which are
based on a latent Markov chain, LM models for short, was Wiggins (1973); see
Bartolucci et al. (2013) for a review. The basic assumption of these models is
that the response variables, corresponding to test items in the present context, are
conditionally independent given the Markov chain. Due to the adoption of suitable
parametrizations, such as that characterizing the Rasch model (Rasch 1961) or that
characterizing the graded response model (Samejima 1969, 1996), the states of the
chain may be interpreted as different levels of ability or tendency towards a certain
behavior; these states identify different latent classes in the population from that
the observed sample comes. Of particular interest is the possibility of estimating
probabilities of transition between the classes; these probabilities may be allowed
to depend on individual covariates or experimental factors.

Aim of the present paper is to review LM models in the context of educational
and psychological measurement, also discussing likelihood based inference. In
particular, maximum likelihood estimation may be performed by an Expectation-
Maximization (EM) algorithm implemented by the Baum-Welch forward and
backward recursions (Baum et al. 1970), which have been developed in the literature
on hidden Markov models for time-series data. Moreover, model selection, regard-
ing in particular the number of states (or latent classes), is based on information
criteria, such as the Akaike Information Criterion (AIC) (Akaike 1973) or the
Bayesian Information Criterion (BIC) (Schwarz 1978). Finally, hypothesis testing
may be based on the likelihood ratio statistic which, under certain regularity
conditions (Bartolucci 2006), has a null asymptotic distribution of chi-bar-squared
type, that is, a finite mixture of chi-squared distributions.

The remainder of this paper is organized as follows. Basic assumptions of LM
models for longitudinal data are illustrated in Sect.2 with focus on educational
and psychological contexts. Likelihood inference, regarding in particular parameter
estimation, model selection, and testing, is dealt with in Sect.3. Finally, some
applications of the discussed statistical models in educational and psychological
fields are briefly described in Sect. 4.

2 Model Assumptions and Likelihood Inference

Suppose that a set of J items is administered at 7' consecutive occasions to a sample
of n subjects and let Yly), i=1...,n,j =1,...,J,t = 1,...,T, denote
the random variable for the response to item j at occasion ¢ by subject i. This
random variable is binary in the case of dichotomously-scored items and categorical,
with more than two categories, in the case of polytomously-scored items. In the
second case the response categories are typically ordered. In any case, the number
of response categories is denoted by ¢ and they are labelled from 0 to ¢ — 1.
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In the above context, the basic assumption of LM models is that, for every sample
unit i, the random variables Yiy), j=1...,J,t =1,...,T, are conditionally

independent given a sequence of latent variables Ui(l), ey Ui(T). These latent vari-
ables identify latent classes of subjects sharing common characteristics. Moreover,
the distribution of these variables is assumed to follow a first-order Markov chain
with k states and homogeneous or non-homogenous transition probabilities. In
particular, the initial probabilities are denoted by 7, = p(Ui(l) =u,u=1,...,k,
whereas the transition probabilities are denoted by n‘flt; = p(Ui([) = v|U. i(l_l) =
u), u,v = 1,...,k, t = 2,...,T, in the time non-homogenous case. These
probabilities are collected in the k x k transition matrix IT « ), with the index u
running by row and the index v running by column. In the time-homogenous case
we have JTEB =myfort =2,....T.

In educational and psychological measurement, the interpretation of the model is

enforced by letting every manifest variable Yl-;-l) to depend only on the corresponding

latent variable Uim according to a suitable parametrization for the conditional
distribution of the former given the latter. For instance, with dichotomously-scored
test items (¢ = 2), we may adopt a Rasch parametrization (Bartolucci et al. 2008;

Rasch 1961) by requiring that

p(¥y) = 11U = u

log
P =0l = u)

=Vu—B;. j=1....J u=1._k

for all ¢, where v, is a parameter interpreted as the ability level of the examinees in
latent class u. Moreover, §; is the difficulty level of item j. The constraint that this
difficulty level does not vary with ¢ makes sense only if the same battery of items
is administered at all occasions and then, in certain contexts, this constraint must be
relaxed in a suitable way.

The above parametrization may be extended in a natural way to the case of
¢ > 2 response categories. If these categories are ordered, we may assume a
parametrization which is also adopted in the graded response model (Samejima
1969, 1996), that is,

¥ = U =
g
P < YU =

:WM_,Bjy»
j=1...,J, u=1,....k, y=1,...,c—1,

where the parameters have an interpretation similar to the previous one. In particular,
Y, is still interpreted as the ability level of subjects in latent class u. Note that,
in order to avoid a wrong model specification, the 8;, parameters are increasing
ordered in y for all j. Under such a parametrization, the initial probabilities of the
latent Markov chain allow us to study the distribution of the ability (or another latent
trait of interest) among the examinees at the beginning of the period of observation.
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Moreover, the probabilities of transition between the latent classes allow us to study
the evolution of the ability, even depending on particular individual covariates or
factors (e.g., teaching method).

It has to be clear that we can also use the probabilities

Syl =V =ylUY =w)., t=1..T u=1..k y=0...c—1

as free parameters, without assuming any specific parametrization. In this case,
if covariates are ruled out and the transition probabilities are not constrained to
be homogeneous, then a multivariate version of the so-called basic LM model
(Bartolucci et al. 2013) results. However, the interpretation of the latent classes may
be more difficult in terms, for instance, of different levels of ability, since it is not
ensured that these classes are monotonically ordered according to the conditional
distribution of the response variables.

More complex formulations of the LM models, with respect to those described
above, are available in the literature; see Bartolucci et al. (2013) for a complete
review about these models. A typical extension of interest is for the inclusion of
individual covariates, possibly time varying, that affect the initial and the transition
probabilities of the latent Markov chain. A more complex extension is to deal with
multilevel longitudinal data in which subjects are collected in clusters, such as
students in school. In this case, further latent variables are used to account for the
effect of each cluster on the response variables; see Bartolucci and Lupparelli (2012)
and the references therein.

Finally, it is worth noting that the modeling framework illustrated in this section
may be also applied to the case of unbalanced panel settings in which the number
of time occasions is not the same for all subjects, due to some forms of ignorable
drop-out. In this case, the number of time occasions for subject i is indicated by 7;
and must be substituted to 7" in the expressions above.

3 Likelihood Inference

Estimation of an LM model is usually performed by maximizing its likelihood. In
the case of independent sample units and when individual covariates are ruled out,
this likelihood has logarithm

(6) = log p(yi). (1)

where @ is the vector of all model parameters and p(y;) is the manifest probability
of the sequence of item responses provided by subject i, which are collected in the
vector y;. This probability is in practice computed by a suitable recursion which is
well known in the hidden Markov literature and has been set up by Baum and Welch
(Baum et al. 1970; Welch 2003; Zucchini and MacDonald 2009).
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In order to maximize the log-likelihood in (1), the main tool is the Expectation-
Maximization (EM) algorithm (Baum et al. 1970; Dempster et al. 1977), which
is based on the so-called complete data log-likelihood, that is, the log-likelihood
that we could compute if we knew the value of Ui(t) for every subject i and time
occasion ¢. When the conditional response probabilities do not depend on 7, as in
the parametrizations illustrated in Sect. 2, this function may be expressed as:

CO =300 amlogdyn+ Y bl logm+ 355 b log
j t u y u t>1 u v
2

(t) - . . . . .
where a;,, is the frequency of subjects responding by y to item j at occasion ¢ and

belonging to latent state u at the same occasion, b,St) is the frequency of subjects in
latent state u at occasion ¢, and bL(fV) is the number of transitions from latent state u
at occasion ¢ — 1 to state v at occasion ?.

The EM algorithm alternates two steps until convergence in the model log-
likelihood £(@#). The E-step consists of computing the conditional expected value
of every frequency in (2) given the observed data and the current value of the
parameters. The M-step consists of maximizing the function £*(#) in which
these frequencies have been substituted by the corresponding expected values.
An implementation of this algorithm, and of a bootstrap algorithm to compute
standard errors for the parameter estimates, is available in the package LMest for
R (Bartolucci 2012).

With more complex formulations of the LM model, the EM algorithm is still
used for parameter estimation. In particular, in the presence of individual covariates
affecting the initial and transition probabilities of the Markov chain, the log-
likelihood to be maximized is expressed as in (1) with p(y;) substituted by p(y;|x;).
The latter may be computed by the same recursion mentioned above (Baum et al.
1970), while an extended version of the complete log-likelihood in (2) is used within
the algorithm; then the EM algorithm is not much more complex than the one used
for the model without covariates. On the other hand, estimating a multilevel LM
model requires a more complex implementation of the EM algorithm and then we
refer the reader to specific articles, see in particular (Bartolucci and Lupparelli 2012;
Bartolucci et al. 2011), for a detailed description.

A crucial point in applying an LM model is the choice of the number of latent
states, k. This choice is usually accomplished by an information criterion based
on penalizing the maximum value of the log-likelihood. For instance, BIC leads
to selecting the value of k which minimizes BIC = —24(0) + glog(n), where g
is the number of free parameters (Schwarz 1978). Alternatively, we can use AIC
(Akaike 1973), which is based on an index similar to the previous one, where the
penalization term is 2g instead of g log(n). BIC usually leads to more parsimonious
models and it is typically preferred to AIC.

Another important point concerns how to test hypotheses of interest on the
parameters. In many cases, the standard asymptotic theory may be employed to
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test these hypotheses on the basis of a likelihood ratio statistic. In particular, the
null asymptotic distribution turns out to be of chi-squared type. However, in certain
cases, and in particular when the hypothesis is expressed through linear constraints
on the transition probabilities, a more complex asymptotic distribution results,
that is, the chi-bar-squared distribution. This distribution may be expressed as a
mixture of standard chi-squared distributions with suitable weights, which may be
computed analytically in certain simple cases or by a suitable Monte Carlo method
in general (Bartolucci 2006; Shapiro 1988). In particular, this distribution arises
when testing that transitions between latent states are not allowed and then an LM
model specializes into a latent class model (Bartolucci 2006). This hypothesis is
simply expressed by constraining the transition matrices to be equal to an identity
matrix. A less restrictive constraint is that these matrices are triangular, so that a
certain type of evolution of the latent trait is considered. For instance, with k = 3
states, these two constraints are expressed as follows:

(ny () ()

@) 100 ) nlll H%% ”3(|§

) __ ) __ t t

nmn’=1010), O0vV=j]o T T3y
001 0o 0 1

When the latent states correspond to increasing levels of ability in an educational
application, the second matrix corresponds to the hypothesis that the ability never
decreases during the period of observations. Many other constraints on the transition
matrices may be of interest, such as that of symmetry.

4 Applications in Educational and Psychological
Measurement

In order to illustrate how LM models may be used in the educational and psycho-
logical measurement, in the following we describe some benchmark applications.

4.1 Evolution of Ability Level in Mathematics

The first application concerns testing the hypothesis of absence of tiring or learning-
through-training phenomena during the administration of a series of 12 items on
Mathematics (Bartolucci 2006; Bartolucci et al. 2008). In this case, we are not
properly dealing with longitudinal data since all items were administered at the same
occasion; however, an LM model makes sense since these items were administered
in the same order to all examinees. In particular, the adopted LM model is based on
a Rasch parametrization.
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The main conclusion of the study is that there is not an evolution of the ability
during the administration of the test items and then there is no evidence of the
existence of tiring or learning-through-training phenomena. This conclusion is
reached by comparing, by a likelihood ratio test statistic, the LM Rasch model
with homogenous transition probabilities with a constrained version of this model
in which the transition matrices are equal to an identity matrix (null hypothesis).
The corresponding p-value, which is larger than 0.05, is computed on the basis of
the chi-bar-squared distribution and leads to the conclusion that there is not enough
evidence against the null hypothesis.

4.2 Evolution of Psychological Traits in Children

The second application (Bartolucci and Solis-Trapala 2010) concerns data collected
through a psychological experiment based on tests which were administered at
different occasions to pre-school children in order to measure two types of ability:
inhibitory control and attentional flexibility. In this case, the model is more complex
than the one adopted for the first application since it is multidimensional and then
subjects are classified in latent classes according to different abilities. Moreover,
more complex parametrizations than the Rasch parametrization are adopted and
transition probabilities are suitably formulated so as to account for certain exper-
imental features. In particular, the maximum number of items administered to the
same child is 132; these items were administered in three separated periods of time.

This application led to the conclusion that the two abilities must be conceptu-
alized as distinct constructs, and so a unidimensional latent variable model cannot
be validly used in this context. Moreover, it was demonstrated that these abilities
develop at an early age and that there are different dynamics within different
sequences of task administration, with mild tiring effects within certain sequences
and learning-through-training phenomena concerning other sequences.

In dealing with this applications, the authors also fitted an extended version of the
LM model in which the Markov chain is of second order. This was reformulated as
a first-order model with an extended state space having k? elements. However, the
data did not provide evidence in favor of this second-order extension, meaning that
the ability level at a given occasion only depends on that at the previous occasion.

4.3 Evaluation of School Effectiveness on Proficiency
of Students

The third application (Bartolucci et al. 2011) involves a multilevel LM model based
on a Rasch parameterization, which is used to analyze data collected by a series of
test items administered to middle-school students. The overall number of items is
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97; these items were administered at the end of each of the 3 years of schooling.
The adopted model takes into account that students (level 1 units) are collected in
schools (level 2 units) by the inclusion of further latent variables. This extension,
already mentioned in Sect. 2, allows us to evaluate the effect of every school and
then allows us to perform an analysis of the school effectiveness, also considering
characteristics such as the type of school (e.g., public or not).

As a main result, the study found evidence of four different typologies of school
which have a different effect on the ability level of their students and on the way in
which this ability evolves across time. These typologies cannot be easily ordered
because the effect is not in general constant across time. However, it emerges
that most public schools have an intermediate positive effect on the proficiency of
their students. On the other hand, a polarization is observed for non-public schools
with some of them which have poor performance, while the others have very good
performance.

This application may be considered as one attempt to implement an LM model
having a causal perspective, which may be then used for evaluation purposes; for
a similar application see Bartolucci et al. (2009). This is a promising field of
application of LM models since, in a single framework, these models allow us to
evaluate the effect of certain factors, not only on the distribution of a characteristic
of interest, but also on its evolution, even when in a longitudinal setting this
characteristic is not directly observable but it is observed through a series of time-
specific response variables.
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