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Abstract. In this paper we show some lower bounds for the size of
multiplicative circuits computing multi-output functions in some non-
commutative domains such as monoids and finite groups. We also intro-
duce and study a generalization of linear circuits in which the goal is to
compute MY where Y is a vector of indeterminates and M is a matrix
whose entries come from noncommutative rings. We show some lower
bounds in this setting as well.

1 Introduction

Let (S, ◦) be a semigroup, i.e., S is a set closed under the binary operation ◦
which is associative. A natural multi-output computational model is a circuit
over (S, ◦). The circuit is given by a directed acyclic graph with input nodes
labeled x1, ..., xn of indegree 0 and output nodes y1, ..., ym of outdegree 0.

The gates of the circuit all compute the monoid product. We assume that all
gates have fanin 2. The size of the circuit is the number of nodes in it and it
computes a function f : Sn → Sm.

This provides a general setting to some well studied problems in circuit com-
plexity. For example:

(1) If S = F2 and ◦ is addition in F2, the problem is one of computing Ax for
an m×n matrix over F2. The problem of giving an explicit A such that the size
of any circuit for it is superlinear is a longstanding open problem. By means of
counting arguments, we know that there exist such matrices A [11].

This problem has a rich literature with many interesting developments. Mor-
genstern [7] showed an Ω(n logn) lower bound for the Hadamard matrix in the
bounded coefficient model when F = C. Valiant [11] developed matrix rigid-
ity as a means to attack the problem in the case of logarithmic depth circuits.
In spite of many interesting results and developments, superlinear size lower
bounds remain elusive over any field F even for the special case of log-depth
circuits (Lokam’s monograph [6] contains most of the recent results).

(2) When S = {0, 1} and ◦ is the boolean OR, this problem is also well studied
and due to its monotone nature it has explicit lower bounds of circuit size n2−o(1)

(e.g. see section 3.4 in [3]).
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A more restricted form is S = (N,+) called SUM circuits also well studied e.g.
[3]. While for monotone settings (OR,SUM circuits) there are nontrivial lower
bounds, in the commutative case for S we do not have strong lower bounds
results. In this paper, we explore the case when (S, ◦) is noncommutative and
manage to prove strong lower bounds in some cases.

An interesting aspect is that the number of inputs can be restricted to just two:
x0, x1. The explicit functions yi, 1 ≤ i ≤ m are defined as words yi = yi1yi2...yin
where yij ∈ {x0, x1} and {y1, y2, ..., ym} are explicitly defined. We show that any
circuit C : {x0, x1} → {y1, y2, ..., ym} is of size Ω( mn

log2 n
) in the following four

settings:

1. When (S, ◦) is the free monoid X∗ for X such that |X | ≥ 2.
2. When (S, ◦) is the finite matrix semigroup over the boolean ring and matrices

are of dimension nc × nc for some constant c > 0.
3. When (S, ◦) is the free group GX generated by X = {x1, x2, x

−1
1 , x−1

2 }.
4. When (S, ◦) is the permutation group where S = SN for N = nd for some

constant d > 0.

In Section 6, we show lower bounds for a generalization of linear circuits
model. In this model we allow coefficients to come from noncommutative rings.

2 Circuits over Free Monoids

We consider the free monoid X∗ where X is a finite alphabet and the monoid
operation is concatenation with the empty string ε as identity. The notion of
a multiplicative circuits over a free monoid is also known in th area of data
compression as a straight line program [5].

Notice that when X is a singleton set X = {1} then (1∗, ◦) is essentially
the semigroup (N,+). We consider the simplest noncommutative setting with
X = {0, 1}. In the problem, we consider circuits that take the ”generating set”
X as input and the m outputs y1, y2, ..., ym ∈ Xn ( where n is the ”input”
parameter).

Since each yi is of length n, clearly n gates are sufficient to compute each
yi and hence O(mn) is an obvious upper bound for the circuit size. We will
give an explicit set y1, y2, ..., ym ∈ {0, 1}n so that Ω( mn

log2 n
) is the circuit size

lower bound. We will let m = n in the construction and it can be suitably
generalized to larger values of m. We now explain the construction of the set
S = {y1, y2, ..., ym} ⊆ {0, 1}n.

Construction of S

Consider the set [n2] of the first n2 natural numbers. Each i ∈ [n2] requires
2 log2 n bits to represent in binary. Initially let D = [n2].

for i = 1, ..., n do
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pick the first � n
2 logn	 numbers from the current D, concatenate their binary

representations to obtain yi and remove these numbers from D.
end for

This defines the set S = {y1, y2, ..., yn}. Each yi constructed has the property
that yi has ≥ n

2 logn distinct substrings of length 2 logn. We show the following
two result about these strings:

– For each yi ∈ S any concatenation circuit that generates yi from input
X = {0, 1} requires size Ω( n

log2 n
).

– Any concatenation circuit that takes X = {0, 1} as input and outputs S =

{y1, y2, ..., yn} at n output gates requires size Ω( n2

log2 n
).

Lemma 1. Let s ∈ Xn be any string where |X | ≥ 2, such that the number of
distinct substrings of s of length l is N . Then any concatenation circuit for s
will require Ω(Nl ) gates.

Proof. Let C be any circuit that computes the string s. Now each gate g of C
computes some string sg. Suppose g = g1 ◦ g2 is a gate whose inputs are gates
g1, g2.

Suppose sg1 has k1 distinct substrings of length l and sg2 has k2 distinct
substrings of length l. Now, in sg notice that the new substrings of length l (not
occurring in sg1 or sg2) could only arise as a concatenation of some suffix of sg1
and prefix of sg2 such that neither of them is the empty string. The number of
such substrings is at most l − 1.

Hence, sg can have at most k1+k2+ l−1 distinct substrings of length l. Thus,
each new gate of C can generate at most l− 1 new substrings of length l. Since
the output string s has N distinct length l substrings, it follows that number of
gates in C is Ω(Nl ). 
�
Note the case not covered by the lemma: |X | = 1. In that case we know that
every string of length n (for every n) has a concatenation circuit of size ≤ 2 log2 n
and the circuit exploits the fact that for each length l there is a unique string.
Similar to Lemma 1 is known earlier (e.g. see Lemma 3 in [2]).

Theorem 1. Let S ⊆ {0, 1}n be the explicit set of n strings defined above. Any
concatenation circuit that takes X = {0, 1} as input and outputs S at its n output

gates will require size Ω( n2

log2 n
).

Proof. Let S = {y1, y2, ..., yn} as defined above. Notice that, each yi can be
generated by size n circuit. Let C be any concatenation circuit that takes X =
{0, 1} as inputs and at its n output gates generates y1, y2, ..., yn respectively. Let
C

′
be a concatenation circuit obtained from C by adding n− 1 new gates such

that C
′
outputs the concatenation y = y1y2...yn. By construction size(C

′
) =

size(C)+n−1. The number of distinct length 2 logn strings in the string y is, by

construction, ≥ n2

2 logn . This is because each yi has ≥ n
2 logn distinct substrings

and these are disjoint for different yi. Hence by Lemma 1, size(C
′
) = Ω( n2

log2 n
)

which implies size(C) = Ω( n2

log2 n
). 
�
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3 Circuits over Matrix Semigroups

The setting now is that of a finite monoid (M, ◦) where M consisting of p(n)×
p(n) matrices whose entries come from the Boolean semiring {0, 1,∨,∧}. We
will modify the lower bound of the previous section to make it work over (M, ◦)
which is a finite monoid.

Recall we constructed S = {y1, y2, ..., yn} ⊆ {0, 1}n. Let Dl be the set of all
length l substrings of each yi ∈ S. Let D =

⋃n
l=0 Dl. Clearly |D| = ∑n

l=0 |Dl| ≤
n3. The matrices in M are |D|×|D|. We now define two functions f0, f1 : D → D
corresponding to the generating setX = {0, 1} of the free monoid. For b ∈ {0, 1},
define

fb(s) =

{
s ◦ b s ◦ b ∈ D
ε otherwise

where s ∈ {0, 1}∗. These give rise to two matrices Mb, b ∈ {0, 1}. The rows and
columns of Mb are indexed by elements of D and Mb(s, s ◦ b) = 1 if s ◦ b ∈ D
and Mb(s, s

′
) = 0 if s ◦ b �= s

′
. If s ◦ b /∈ D then Mb(s, ε) = 1 and ∀s′ �= ε,

Mb(s, s
′
) = 0.

Thus, we have defined a morphism, Φ : (X∗, ◦) → (M, ◦) which maps
b → Mb, b ∈ {0, 1} and by natural extension maps a string s ∈ X∗ to Ms.
In particular, the set S = {y1, y2, ..., yn} defined in section 2 is mapped to
Ŝ = {My1 ,My2, ...,Myn}.
Theorem 2. Any circuit over (M, ◦) that takes M0,M1 as input and computes

{Myi|yi ∈ S} at its n output gates is of size Ω( n2

log2 n
).

Proof. Let C be a circuit over (M, ◦) computing Myi, 1 ≤ i ≤ n at the n output

gates and input M0,M1. Consider the corresponding circuit C
′
over the free

monoid X∗ with input X = {0, 1}. Let gi be the output gate of C computing
Myi , 1 ≤ i ≤ n. In C

′
let wi ∈ X∗ be the word computed at gi. We know that

Mwi = Myi for 1 ≤ i ≤ n. That means Mwi(ε, yi) = 1. By definition of the
matrices Mb, the only way this can happen is when wi = yi ◦zi for some zi ∈ X∗

for each i. Now, let C
′′
be a new circuit obtained from C

′
that outputs the

concatenation of w1, w2, ..., wn in that order. Then size(C
′′
) ≤ size(C

′
)+n− 1.

The output string by C
′′
is of the form y1 ◦ z1 ◦ y2 ◦ z2 ◦ ... ◦ yn ◦ zn. Since

the number of distinct substrings of length 2 logn in {y1, y2, ..., yn} we know

is ≥ n2

log2 n
, it follows by Lemma 1 that size(C

′′
) = Ω( n2

log2 n
). Consequently,

size(C) = size(C
′
) = Ω( n2

log2 n
). This completes the proof. 
�

4 Circuits over Free Groups

We consider the free group GX generated by the set X = {x1, x2, x
−1
1 , x−1

2 }
consisting of x1, x2 and their inverses. The group operation is concatenation with
the empty string ε as identity and the only cancellation rules we can repeatedly
use are xix

−1
i = x−1

i xi = ε for i ∈ {1, 2}. Given a word w ∈ X∗ we can repeatedly
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apply these rules and obtain a normal form w′ ∈ GX from it which cannot be
simplified further. This normal form, by Church-Rosser property, is unique and
independent of how we apply the rules.

Recall the set of binary strings we constructed in Section 2. Replacing 0 by
x1 and 1 by x2 we obtain S = {y1, y2, ..., yn} ⊆ {x1, x2}n ⊆ GX . Each word yi
constructed has the property that yi has ≥ n

2 logn distinct subwords of length
2 logn. These words are already in their normal forms.

Lemma 2. Let w ∈ GX be any word where X = {x1, x2, x
−1
1 , x−1

2 }, such that
the number of distinct subwords of length l in its normal form w′ is N . Then
any concatenation circuit for w will require size Ω(Nl ) gates.

Proof. Let C be any circuit that computes the word w. Now each gate g of C
computes some word wg and, as above, w

′
g denotes its normal form.

Suppose g = g1 ◦ g2 is a gate whose inputs are gates g1, g2. Then, by the
Church-Rosser property of cancellations, the normal form for wg satisfies

w′
g = (w′

g1 ◦ w′
g2 )

′.

Suppose w
′
g1 has k1 distinct subwords of length l and w

′
g2 has k2 distinct

subwords of length l. Now, in w
′
g notice that the new subwords of length l (not

occurring in w
′
g1 or w

′
g2 ) could only arise as a concatenation of some suffix of

word w
′
g1 and prefix of word w

′
g2 such that neither of them is the empty string.

The number of such new subwords is at most l. Hence, w′
g can have at most

k1 + k2 + l distinct subwords of length l.
Now, since the normal form w′ for the output word w has N distinct length

l subwords, it follows that number of gates in C is Ω(Nl ). 
�
Theorem 3. Let S ⊆ {x1, x2}n ⊆ GX be the explicit set of n words defined
above. Any concatenation circuit that takes X = {x1, x2, x

−1
1 , x−1

2 } as input and

outputs S at its n output gates will require size Ω( n2

log2 n
).

Proof. Let S = {y1, y2, ..., yn} as defined above and let C be any concatenation
circuit that takes X = {x1, x2, x

−1
1 , x−1

2 } as inputs and at its n output gates

generates y1, y2, ..., yn respectively. Let C
′
be a concatenation circuit obtained

from C by adding n − 1 new gates such that C
′
outputs the concatenation

y = y1y2...yn. By construction size(C
′
) = size(C) + n − 1. The number of

distinct length 2 logn words in the words y is, by construction, ≥ n2

2 logn . This is
because each yi has ≥ n

2 log n distinct subwords and these are disjoint for different

yi. Hence by Lemma 2, size(C
′
) = Ω( n2

log2 n
) which implies size(C) = Ω( n2

log2 n
).

�

Remark 1. Let M0 =

(
1 2
0 1

)

, M1 =

(
1 0
2 1

)

be 2 × 2 matrices. Consider the

infinite group G generated by these elements and their inverses over the field
of rationals Q. It is well known (e.g. see [4] for a nice complexity theoretic
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application) that the group G is isomorphic to the free group GX , where the
isomorphism is defined by x1 → M0 and x2 → M1. It follows that Theorem 3
also applies to the group G by setting x1 = M0 and x2 = M1.

5 Circuits over Permutation Groups

We now present a lower bound in the setting of finite groups. We will transform
our free monoid construction to this setting. Recall the set of binary strings S we
constructed in Section 2. To this end, we will define two permutations π0, π1 ∈ SN

(where N = poly(n) will be defined later). These permutations correspond to
X = {0, 1} and by multiplication the target output permutations are defined:

GS = {πyi = Πn
j=1πyi[j]|yi ∈ S}, where yi[j] is the j-th bit of string yi.

Definition of π0, π1:

We pick r primes p1, p2, ..., pr where r = n2 such that n < p1 < p2 < ... <
pr < n4. The permutation π0 is defined as the product of r + 1 disjoint cycles,
π0 = C0.C1...Cr where C0, C1 are of length p1 and for i ≥ 2, Ci is of length
pi. Similarly, π1 = C

′
0.C

′
1...C

′
r is a product of r + 1 disjoint cycles with C

′
0 and

C
′
1 of length p1 and for i ≥ 2, C

′
i is of length pi. Let supp(C) denote the set

of points moved by C for a cycle C (i.e., if we write C = (i1i2...ip) it means
C maps i1 to i2 and so on ip to i1 and moves no other element of the domain.
Hence, supp(C) = {i1, i2, ..., ip}). In the construction above we pick the cycles

Ci and C
′
i , 0 ≤ i ≤ r such that supp(C0) ∩ supp(C

′
0) = {1} and ∀(i, j) �= (0, 0)

supp(Ci) ∩ supp(C
′
j) = φ. The domain [N ] on which these permutations are

defined is
⋃r

i=0(supp(Ci) ∪ supp(C
′
i)). Note that N ≤ 4p1 + 2

∑r
i=2 pi = O(n6).

Thus, the problem we consider is that of designing a circuit over SN that takes
as input x0, x1 and outputs at the n output gates πyi = Πn

j=1xyi[j] where yi[j]
is the j-th bit of string yi for each yi ∈ S.

Theorem 4. Any circuit over the group (SN , ◦) that takes as input π0, π1 and

computes GS = {πyi |yi ∈ S} as output is of size Ω( n2

log2 n
).

Proof. Let C be the circuit that solves this problem of computing GS from x0, x1.
We fix the input as x0 = π0 and x1 = π1. Now, consider the corresponding
concatenation circuit C

′
with input x0, x1 ∈ X . At each output gate gi, 1 ≤ i ≤

m, circuit C
′
computes some word wi ∈ X∗ such that ∀i, πwi = πyi where πwi

is the permutation in SN obtained by putting x0 = π0 and x1 = π1 in wi. If
wi = yi for all i, then in fact C

′
as a concatenation circuit computes the set S

at its output gates. This implies by Theorem 1 that size(C
′
) = Ω( n2

log2 n
) and

size(C) = Ω( n2

log2 n
).

Suppose wi �= yi at some output gate gi. We can write wi = u ◦ b2 ◦ s and
yi = v ◦ b1 ◦ s where b1 �= b2. Assume, without loss of generality, that b1 = 0 and
b2 = 1. Since πwi = πyi , we know πuπb2πs = πvπb1πs (i.e., πuπ1πs = πvπ0πs).
Let α ∈ [N ] such that πs(α) = 1. In πyi = πvπ0πs, the permutation π0 will
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map 1 to β ∈ C0\{1}, whereas in πwi = πuπ1πs the permutation π1 maps 1
to γ ∈ C

′
0\{1}. Since |v| < n the point β cannot be moved back to 1 and

subsequently to C
′
0\{1}. This is because p1 > n and the length of cycle C

′
0 is p1.

Therefore by πyi the point α is mapped to some point in C0\{1}. Since πwi must

map α to the same point and π1πs has mapped α to a point in γ ∈ C
′
0\{1}, πu

must have at least p1 > n occurrences of π1 in it to move γ to 1 and subsequently
to the final point in C0\{1} (using some π0 applications). We will now argue that
this forces wi to be a long string.

Pick any tuple of points (α1, α2, ..., αr) where αi ∈ C
′
i , 1 ≤ i ≤ r. Notice that

only π1 moves this tuple because αi, 1 ≤ i ≤ r do not belong to supp(π0). Since
p1, ..., pr are distinct primes, the permutation π1 maps (α1, α2, ..., αr) to a set of
Πr

i=1pi−1 distinct r-tuples before returning to (α1, α2, ..., αr). Suppose there are
l occurrences of π1 in πyi , l < n. Thus, if πyi(α1, α2, ..., αr) = (β1, β2, ..., βr) then
πl
1(α1, α2, ..., αr) = (β1, β2, ..., βr). Then πwi(α1, α2, ..., αr) = (β1, β2, ..., βr).

However we know number of occurrences of π1 in πwi is some k ≥ n which
means πwi(α1, α2, ..., αr) = (β1, β2, ..., βr) = πk

1 (α1, α2, ..., αr).
It follows that πk−l

1 (α1, α2, ..., αr) = (α1, α2, ..., αr) which implies k − l is a
multiple of Πr

i=1pi. Hence |wi| ≥ Πr
i=1pi. This implies that the circuit needs

at least logΠr
i=1pi multiplication gates to compute wi. This gives, size(C) ≥

logΠr
i=1pi ≥ log 2n

2

= n2.

Putting it together size(C) = Ω( n2

log2 n
) in any case. This completes the proof.


�

6 Linear Circuits over Rings

In this section we consider a generalization of the linear circuits model. In this
generalization we allow the coefficients come from noncommutative rings. In
principle, we can expect lower bounds could be easier to prove in this model. The
circuits are more constrained when coefficients come from a noncommutative ring
as fewer cancellations can take place. This is in the same spirit as Nisan’s [8] work
on lower bounds for noncommutative algebraic branching programs. However,
in this paper we succeed in showing only some limited lower bounds. We leave
open problems that might be more accessible than the notorious problems for
linear circuits over fields.

Let (R,+, ·) be an arbitrary ring (possibly noncommutative). A linear circuit
over R takes n inputs y1, y2, . . . , yn labeling the indegree 0 nodes of a directed
acyclic graph. The circuit has m output nodes. Each edge of the graph is labeled
by some element of the ring R. The indegree of each non-input node is two. Each
node of the circuit computes a linear form

∑n
i=1 αiyi for αi ∈ R as follows: the

input node labeled yi computes yi. Suppose g is a node with incoming edges
from nodes g1 and g2, and the edges (g1, g) and (g2, g) are labeled by α and β
respectively. If g1 and g2 computes the linear forms �1 and �2 respectively, then
g computes α�1 + β�2. Thus, for an m× n matrix A over the ring R, the circuit
computes Ay at the m output gates.
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When R is a field we get the well-studied linear circuits model [7,11,6]. How-
ever, no explicit superlinear size lower bounds are known for this model over
fields (except for some special cases like the bounded coefficient model [7] or in
the cancellation free case [1]).

When the coefficients to come from a noncommutative ring R, we prove lower
bounds for certain restricted linear circuits. Suppose the coefficient ring is R =
F〈x0, x1〉 consisting of polynomials over the field F in noncommuting variables
x0 and x1.

Let M ∈ F
n×n〈x0, x1〉 where x0, x1 are noncommuting variables and Y =

(y1, y2, . . . , yn)
T is a column vector of input variables. The first restriction we

consider are homogeneous linear circuits over the ring F〈x0, x1〉 for computing
MY . The restriction is that for every gate g in the circuit, if g has its two
incoming edges from nodes g1 and g2, then the edges (g1, g) and (g2, g) are
labeled by α and β respectively, where α, β ∈ F〈x0, x1〉 are restricted to be
homogeneous polynomials of same degree in the variables x0 and x1. It follows,
as a consequence of this restriction, that each gate g of the circuit computes a
linear form

∑n
i=1 αiyi, where the αi ∈ F〈x0, x1〉 are all homogeneous polynomials

of the same degree. Our goal is to construct an explicit matrix M ∈ F
n×n〈x0, x1〉

such that MY can not be computed by any circuit C with size O(n) and depth
O(log n). We prove this by suitably generalizing Valiant’s matrix rigidity method
[11] as explained below.

Consider n×n matrices Fn×n over field F. The support of a matrix A ∈ F
n×n

is the set of locations supp(A) = {(i, j) | Aij �= 0}.
Definition 1. Let F be any field. The rigidity ρr(A) of a deck of matrices A =
{A1, A2, . . . , AN} ⊆ F

n×n is the smallest number t for which there are a set of
t positions S ⊆ [n]× [n] and a deck of matrices B = {B1, B2, . . . , BN} such that
for all i: supp(Bi) ⊆ S and the rank of Ai + Bi is bounded by r. A collection
A = {A1, A2, . . . , AN} ⊆ F

n×n is a rigid deck if ρε·n(A) = Ω(n2−o(1)), where
ε > 0 is a constant.

Notice that for N = 1 this is precisely the notion of rigid matrices. We are
interested in constructing explicit rigid decks: I.e. a deck A such that for each
k ∈ [N ] and each 1 ≤ i, j ≤ n there is a polynomial (in n) time algorithm that

outputs the (i, j)th entry of Ak. We describe an explicit deck of size N = 2n
2

over any field F and use it to prove our first lower bound result. It is convenient
to write the deck as A = {Am | m ∈ {x0, x1}n2} with matrices Am indexed by
monomials m of degree n2 in the noncommuting variables x0 and x1. The matrix
Am is defined as follows:

Am[i, j] =

{
1 if mij = x1

0 if mij = x0

Note that all the matrices Am in the deck A are in F
n×n. Clearly, A is an

explicit deck. We prove that it is a rigid deck.

Lemma 3. The deck A = {Am | m ∈ {x0, x1}n2} is an explicit rigid deck for
any field F.



On Lower Bounds for Multiplicative Circuits and Linear Circuits 73

Proof. Valiant [11] showed that almost all n × n 0-1 matrices over any field F

have rigidity Ω( (n−r)2

log n ) for target rank r. In particular, for r = ε · n, over any

field F, there is a 0-1 matrix R for which we have ρr(R) ≥ δ·n2

log n for some constant
δ > 0 depending on ε.

We claim that for the deck A we have ρεn(A) ≥ δ·n2

log n . To see this, let

E = {Em ∈ F
n×n|m ∈ {x0, x1}n2} be any collection of matrices such that

|supp(Em)| ≤ δn2

logn for each m. Since the deck A contains all 0-1 matrices, in
particular R ∈ A and R = Am for some monomial m. From the rigidity of R
we know that the rank of R + Em is at least εn. This proves the claim and the
lemma follows. 
�
We now turn to the lower bound result for homogeneous linear circuits where
the coefficient ring is F〈x0, x1〉. We define an explicit n× n matrix M as

Mij = (x0 + x1)
(i−1)n+j−1 · x1 · (x0 + x1)

n2−((i−1)n+j). (1)

It is easy to see that we can express the matrixM asM =
∑

m∈{x0,x1}n2 Amm,

where A = {Am | m ∈ {x0, x1}n2} is the deck defined above.

Theorem 5. Any homogeneous linear circuit C over the coefficient ring
F〈x0, x1〉 computing MY , for M defined above, requires either size ω(n) or depth
ω(logn).

Proof. Assume to the contrary that C is a homogeneous linear circuit of size O(n)
and depth O(log n) computing MY . We know that by Valiant’s graph-theoretic
argument (see e.g. [6]) that in the circuit C there is a set of gates V of cardinality
s = c1n

log log n = o(n) such that at least n2 − n1+δ, for δ < 1, input-output pairs
have all their paths going through V . Thus, we can write M = B1B2 + E
where B1 ∈ F

n×s〈x0, x1〉 and B2 ∈ F
s×n〈x0, x1〉 and E ∈ F

n×n〈x0, x1〉, and
|supp(E)| ≤ n1+δ. By collecting the matrix coefficient of each monomial we can
express M and E as

M =
∑

m∈{x0,x1}n2

Amm, and E =
∑

m∈{x0,x1}n2

Emm,

where Am are already defined and | ∪m∈{x0,x1}n2 supp(Em)| ≤ n1+δ. Now con-
sider the matrix B1B2. By collecting matrix coefficients of monomials we can
write B1B2 =

∑
m∈{x0,x1}n2 Bmm.

We now analyze the matrices Bm. Crucially, by the homogeneity condition
on the circuit C, we can partition V = V1 ∪ V2 ∪ . . . V�, where each gate g in Vi

computes a linear form
∑n

j=1 γjyj and γj ∈ F〈x0, x1〉 is a homogeneous degree
di polynomial. Let si = |Vi|, 1 ≤ i ≤ �. Then we have s = s1 + s2 + . . . s�. Every
monomial m has a unique prefix of length di for each degree di associated with
the gates in V . Thus, we can write Bm =

∑�
j=1 Bm,j,1Bm,j,2, where Bm,j,1 is the

n×sj matrix corresponding to the dj -prefix of m and Bm,j,2 is the sj×n matrix
corresponding to the n2 − dj-suffix of m. It follows that for each monomial m
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the rank of Bm is bounded by s. Putting it together, for each monomial m we
have Am = Bm+Em, where Bm is rank s and |∪m∈{x0,x1}n2 supp(Em)| ≤ n1+δ.
This contradicts the fact that A is a rigid deck. 
�
Remark 2. For the matrix M = (mij), as defined above, it does not seem that
Shoup-Smolensky dimension method [10] can be used to prove a similar lower
bound. To see this, suppose ΓM (n) is the set of all monomials of degree n in
{mij} and let DM (n) be the dimension of the vector space over F spanned by the
set ΓM (n). The upper bound for DM (n) that we can show for a depth d and size

O(n) linear circuit over the ring F〈x0, x1〉 is as large as (O(n)
d )dn. This bound,

unfortunately, is much larger than the bounds obtainable for the commutative
case [10]. On the other hand, the lower bound for DM (n) is only nΘ(n). Thus,
we do not get a superlinear size lower bound for the size using Shoup-Smolensky
dimensions when the coefficient ring is F〈x0, x1〉.
We next consider homogeneous depth 2 linear circuits. These are linear circuits
of depth 2, where each addition gate can have unbounded fanin. More precisely,
if g is an addition gate with inputs from g1, g2, . . . , gt then the gate g computes∑t

i=1 αigi, where each edge (gi, g) is labeled by αi ∈ F〈x0, x1〉 such that αi, 1 ≤
i ≤ t are all homogeneous polynomials of the same degree. We again consider the
problem of computing MY for M ∈ F

n×n〈x0, x1〉. The goal is to lower bound
the number of wires in the linear circuit. This problem is also well studied for
linear circuits over fields and only an explicit Ω(n log2 n/ log logn) lower bound is
known for it [6,9], although for random matrices the lower bound is Ω(n2/ logn).

We show that for the explicit matrix M as defined above, computing MY by

a depth 2 homogeneous linear circuit (with unbounded fanin) requires Ω( n2

logn )
wires.

Theorem 6. Let M ∈ F
n×n
2 〈x0, x1〉 as defined in Equation 1. Any homogeneous

linear circuit C of depth 2 computing MY requires Ω( n2

logn ) wires.

Proof. Let C be a homogeneous linear circuit of depth 2 computing MY . Let
w(C) denote the number of wires in C. Let s be the number of gates in the
middle layer of C. We can assume without loss of generality that, all input to
output paths in C are of length 2 and hence pass through the middle layer. A
level 1 edge connects an input gate to a middle-layer gate and a level 2 edge is
from middle layer to output. Thus, we can factorize M = M

′ ∗M ′′
where the

matrix M
′
is in F

n×s〈x0, x1〉 and M
′′
is in F

s×n〈x0, x1〉, and the complexity of
C is equivalent to total number of nonzero entries in M

′
and M

′′
. As before,

write M =
∑

m∈{x0,x1}n2 Amm.

Given Am for m ∈ {x0, x1}n2

, we show how to extract from C a depth-2 linear
circuit over the field F, call it C(m), that computes Am such that the number of
wires in C(m) is at most the number of wires in C. Indeed, we do not add any
new gate or wires in obtaining C(m) from C.

For each gate g in the middle layer, there are at most n incoming edges and n
outgoing edges. As C is a homogeneous linear circuit we can associate a degree dg
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to gate g. Each edge (i, g) to g is labeled by a homogeneous degree-dg polynomial
αi,g in F〈x0, x1〉. Likewise, each edge (g, j) from g to the output layer is labeled
by a degree (n2 − dg) homogeneous polynomial βg,j . Let m = m1m2, where m1

is of degree dg and m2 of degree n2 − dg. For each incoming edge (i, g) to g we
keep as label the coefficient of the monomial m1 in αi,g and for outgoing edge
(g, j) from g we keep as label the coefficient of the monomial m2 in βg,j . We
do this transformation for each gate g in the middle layer of C. This completes
the description of the depth-2 circuit C(m). By construction it is clear that C(m)

computes Am and the number of wires w(C(m)) in C(m) is bounded by w(C) for

each monomial m ∈ {x0, x1}n2

. However, {Am | m ∈ {x0, x1}n2} is the set of all
0-1 matrices over F and it is known that there are n× n 0-1 matrices Am such
that any depth-2 linear circuit for it requires Ω( n2

log n ) wires (e.g. see [6]). Hence,

the number of wires in C is Ω( n2

log n ). 
�
If we restrict the edge labels in the linear circuit computingMY to only constant-
degree polynomials, then we can obtain much stronger lower bounds using Nisan’s
lower bound technique for noncommutative algebraic branching programs. We
can define the matrix M as follows. Let Mij = wijw

R
ij , where wij ∈ {x0, x1}2 log n

and 1 ≤ i, j ≤ n are all distinct monomials of degree 2 logn. We refer to M as
a palindrome matrix. All entries of M are distinct and note that each entry of
MY can be computed using O(n log n) gates.

Theorem 7. Any linear circuit over F〈x0, x1〉 computing MY , where edge labels

are restricted to be constant-degree polynomials, requires size Ω( n2

logn ).

Proof. Let C be such a linear circuit computing MY . Since edges can be la-
beled by constant-degree polynomials, we can first obtain a linear circuit C′

computing MY such that each edge is labeled by a homogeneous linear form.
The size size(C′) = O(size(C) log n). From C′, we can obtain a noncommuta-
tive algebraic branching program Ĉ that computes the palindrome polynomial∑

w∈{x0,x1}2 log n wwR such that size(Ĉ) = O(size(C′)). By Nisan’s lower bound

[8] size(Ĉ) = Ω(n2), which implies size(C) = Ω( n2

logn ). 
�
Theorem 8. Any linear circuit, whose edge labels are restricted to be either
a homogeneous degree 4 logn polynomial or a scalar, computing MY requires
Ω(n2) size, where M is the palindrome matrix. Moreover, there is a matching
upper bound.

Proof. Let C be any linear circuit computing MY . Each entry mij of the matrix
M can be written as sum of products of polynomials mij =

∑
ρij

∏
e∈ρij

l(e)

where ρij is a path from input yj to output gate i in C and l(e) is the label of
edge e in C. Let S be set of all edge labels in C with degree 4 logn polynomial.
Thus, each mij is a linear combinations of elements in the set S over F. This
implies that mij ∈ Span(S) where i ≤ i, j ≤ n. Since all mij are distinct,

|S| ≥ n2. Since fan in is 2, size(C) ≥ n2

2 = Ω(n2).
For upper bound, we use n2 edges (n edges starting from each input yi) each

labeled by a corresponding monomial in M (of degree 4 logn) and then we add
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relevant edges to get the output gates. Thus, upper bound is O(n2) for computing
MY . 
�
Note that, since we have not used noncommutativity in the proof, Theorem 8
also holds in the commutative settings (we require Ω(n2) entries of M to be
distinct).

7 Concluding Remarks

For multiplicative circuits we could prove lower bounds only for large monoids
and large groups. The main question here is whether we can prove lower bounds
for an explicit function f : Sn → Sm, for some constant size nonabelian group
or monoid S.

We introduced the notion of rigidity for decks of matrices, but the only
explicit example we gave was the trivial one with a deck of size 2n

2

. A natural
question is to give explicit constructions for smaller rigid decks of n × n
matrices, say of size n! or less. Or is the construction of rigid decks of smaller
size equivalent to the original matrix rigidity problem?

Acknowledgments. We are grateful to the referees for their detailed comments
and useful suggestions.
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