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Abstract. The paper presents recent results and open problems on
classes of definable relations (definability spaces, reducts, relational alge-
bras) as well as sources for the research starting from the XIX century.
Finiteness conditions are investigated, including quantifier alternation
depth and number of arguments width. The infinite lattice of definabil-
ity for integers with a successor function (a non w-categorical structure)
is described. Methods of investigation include study of automorphism
groups of elementary extensions of structures under consideration, using
Svenonius theorem and a generalization of it.
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“Mathematicians, in general, do not like
to operate with the notion of definability;
their attitude towards this notion

s one of distrust and reserve.”
Alfred Tarski [Tar4]

1 Introduction. The Basic Definition

One of the “most existential” problems of humanity is “How to define something
through something being understood yet”. It sounds even more important than
“What is Truth?” [John 18:38].

Let us recollect our understanding of the problem in the context of modern
mathematics.

Language (of definition):

— Logical symbols including connectives, (free) variables: zg, z1, ...,
quantifiers and equality =.

— Names of relations (sometimes, names of objects and operations as
well). The set of these names is called signature. Each name has its
number of arguments (its arity).

— Formulas.
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Structure of signature ¥ is a triple (D, X, Int). Here D is a set (mostly count-
able infinite in this paper) called the domain of the structure, Int is an interpre-
tation that maps every m-ary name of relation to n-ary relation on D, in other
words a subset of D™.

If the structure of signature ¥ is given then every formula in the language
with this signature defines a relation on D.

The most common language uses quantifiers over D. But sometimes we con-
sider other options like quantifiers over subsets of D (monadic language), over
finite subsets of D (weak monadic language), or no quantifiers at all (quantifier-
free language).

Let us fix a domain D and any set of relations S on D. Then we can take
any finite subset of S and give names to its elements. We have now a structure
and interpretation for elements of its signature as was given beforehand. Any
formula in the constructed language defines a relation on D. We call any relation
on D obtained in this way definable in S (over D).

All relations definable in S constitute closure of S. Any closed set of relations
is called definability space (over D).

Any definability space S has its group of automorphisms Aut(S) i. e. permuta-
tions on D that preserve all relations from the space S.

All definability spaces over D constitute the lattice of definability with natu-
ral lattice operations. Evidently lattices for different (countable infinite) D are
isomorphic. In other words we have one lattice only.

Investigation of this lattice is the major topic of our paper. In particular we
consider lattice of subspaces of a given definability space. The subspaces are
called also reducts of the space.

We shall consider finitely generated spaces mostly.

If a set of generators for a space is given we can define the theory of the
space. Choosing a system of generators is like choosing a coordinate system for
a linear space. For finitely generated spaces such properties as decidability of
their theory is invariant for the choosing different sets of generators.

Today we feel that the concept of definability space (independently of formal
definition and terminology) is very basic and central for mathematical logic and
even for mathematics in general. As we will see from the next chapter it was
in use as long as the development of the very discipline of mathematical logic
was happening. Nevertheless the major results concerning it, including precise
definitions and fundamental theorems were obtained quite late and paid much
less respect than those concerning notions of “Truth” and “Provability”.

We try to keep our text self-contained and introduce needed definitions.

2 The History and Modern Reflections

In our short historical survey we use materials from [BuDa, Smi, Hod].
We try to trace back original sources and motivations. In some important cases
understanding of problems and meaning of notions were changed considerably



The Lattice of Definability 25

over time. It is important to consider original ideas along with their maturity 30
years and even much later. As we will see the scene of events was pretty much
international.

2.1 Relations, Logic, Languages. Early Approaches of XIX Century

Our central notion of an assignment satisfying a formula is implicit in George
Peacock [Pea] and explicit in George Boole [Boo], though without a precise
notion of “formula” in either case.

In 1860 — 1890-s Frege developed understanding of relations and quantifiers
[Fre, Frel].

Peirce established the fundamental laws of the calculus of classes and created
the theory of relatives. Essentially it was the definability issue. Starting with his
1870 paper [Pei], Peirce presented the final form of his first-order logic in his
1885 paper [Peil]. Pierce’s theory was the frame that made possible the proof
by Leopold Léwenheim of the first metamathematical theorem in his [Low].
Lowenheim proved that every first-order expression [Zéhlausdriicke] is either
contradictory or already satisfiable in a countable infinite domain (see [Sko]).
So, the major concepts of semantics were used by Lowenheim as well as Thoralf
Skolem, but were not explicitly presented in their papers.

Schréder proposed the first complete axiomatization of the calculus of classes
and expanded considerably the calculus and the theory of relatives [Sch, Schi].

2.2 Automorphisms. Isomorphisms

With the appearance of Klein’s Erlangenprogramm in 1872 [Kle] it became clear
that automorphism groups are useful means of studying mathematical theories.

The word “isomorphism” appeared in the definition of categoricity bt Hunt-
ington [Hun|. There he says that “special attention may be called to the dis-
cussion of the notion of isomorphism between two systems, and the notion of a
sufficient, or categorical, set of postulates”.

Alfred Tarski in his paper “What are Logical Notions?”, presented first in 1963
[Tard] explains the subject of logic as study of “everything” up to permutations:
“T shell try to extend his [Klein’s] method beyond geometry and apply it also to
logic ... I use the term “notion” in a rather loose and general sense ... Thus
notions include individuals, classes of individuals, relations on individuals”.

2.3 How to Define Major Mathematical Structures? Geometry and
Numbers. 1900 -s. The Width

At the end of XIX century Italian (Giuseppe Peano, Alessandro Padoa, Mario
Pieri, ...) and German (Gotlob Frege, Moritz Pasch, David Hilbert, ...) math-
ematicians tried to find “the best” set of primitive notions for Geometry and
Arithmetic considered as deductive systems. This was about “how to define
something through something”.

In August 1900 The First International Congress of Philosophy [ICP] followed
by the Second International Congress of Mathematicians [ICM] met in Paris.
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At the mathematical congress Hilbert presented his list of problems [Hil],
some of which became central to mathematical logic, Padoa gave two talks on
the axiomatizations of the integers and of geometry.

At the philosophical congress Russell read a paper on the application of the
theory of relations to the problem of order and absolute position in space and
time. The Italian school of Peano and his disciples contributed papers on the
logical analysis of mathematics. Peano and Burali-Forti spoke on definitions,
Pieri spoke on geometry considered as a purely logical system. Padoa read his
famous essay containing the “logical introduction to any theory whatever”, where
he states:

“To prove that the system of undefined symbols is irreducible with re-
spect to the system of unproved propositions [axioms] it is necessary
and sufficient to find, for any undefined symbol, an interpretation of the
system of undefined symbols that verifies the system of unproved propo-
sitions and that continues to do so if we suitably change the meaning of
only the symbol considered.”

Pieri formulated about 1900 and completed in his 1908 “Point and Sphere”
memoir, a full axiomatization of Euclidean geometry based solely on the unde-
fined notions point and equidistance of two points from a third point [Pie].

Tarski’s undefined notions were point and two relations: congruence of two
point pairs and betweenness of a triple. Tarski and Adolf Lindenbaum [LiTa]
showed that in the first-order context, Pieri’s selection of equidistance as the
sole undefined relation for Euclidean geometry was optimal. No family of binary
relations, however large, can serve as the sole undefined relations.

We considered the problem of minimization of maximal number of arguments
in generators of a given definability space.

Definition 1. Let a definability space S is given. Its width is the minimal n
such as S can be generated by relations with n or less arguments.

Theorem 1. [Sem] There are definability spaces of any finite or countable width.

Huntington and Oswald Veblen were part of a group of mathematicians known
as the American Postulate Theorists. Huntington was concerned with providing
“complete” axiomatizations of various mathematical systems, such as the theory
of the algebra of logic and the theory of real numbers. In 1935 Hungtington
published [Hunl] “Inter-relations among the four principal types of order”, where
he says:

“The four types of order whose inter-relations are considered in this pa-
per may be called, for brevity, (1) serial order; (2) betweenness; (3) cyclic
order; and (4) separation.”

These “four types of order” will play special role in the further developments
discussed in the present paper.
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2.4 The Exact Formulation of Definability

Indirectly the notion of truth and even more indirectly definability were present
from beginning of 1900-s and even earlier. For example he word “satisfy” in this
context may be due to Huntington (for example in [Hun2]). We mentioned works
of Lowenheim and Skolem.

But only the formal (“usual” inductive) definition of truth by Tarski gives the
modern (model-theoretic) understanding of semantics of a formula as a relation
over a domain [Tar].

Complications in understanding today of Tarski and Lindenbaum meaning of
Padoa’s method (relevant for our considerations) are discussed in [Hod1].

2.5 Elimination of Quantifiers

In the attempts to describe meaning of logical formulas and to obtain “decid-
ability” (in the sense “to prove or disprove”) versions of quantifier elimination
were developed in 1910 — 1930-s. Remarkable results were published in the end
of 1920-s.

C. H. Langford used this method in 1927 [Lan, Lanl] to prove decidability of
the theory of dense order without a first or last element.

Mojzesz Presburger [Pre| proved elimination of quantifiers for the additive
theory of the integers.

Not using the formal (Tarski-style) definition Skolem illustrated in 1929 an
elimination [Skol] for the theory of order and multiplication on the natural
numbers. The complete proof was obtained by of Mostowski in 1952 [Mos].

Tarski himself announced in 1931 a decision procedure for elementary algebra
and geometry (published however only in 1948, see [Tarl]).

Elimination of quantifiers was considered as a part of introducing semantics.
A natural modern definition appealing to finite signature was not used. In fact,
both Presburger and Tarski structures DO NOT permit elimination of quantifiers
in this sense. But in these cases you can either choose using operations and terms
in atomic formulas, or take a finite set of generators,

then every formula can be effectively transform to an equivalent of a limited
quantifier depth (the number of quantifier changes).

Let S be a definability space generated by a finite set of relations F'. Consider
a quantifier hierarchy of subsets of S: Fy, Fi,.... Here Fy is a quantifier-free
(Boolean) closure of F', for every ¢ = 0,1, ... F;;1 is obtained from F; by taking
all projections of its relations (adding of existential quantifiers) and then getting
Boolean closure. (An alternative definition can be given by counting quantifier
alternations.) The hierarchy can be of infinite length if F;1; differs of F; for all
i, or finite length n — minimal for which Fj,1; = F,,.

Here are several well-known examples. We indicate informally the structure
and the — length of the hierarchy for it:

- (@;<) -0.

— Dense order [0, 1] — 0 (if we include these elements into signature).
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(Z;+1) - 1.

— Presburger arithmetic — 1. Linear forms, congruences module m
can be introduced via existential quantifiers. Extensions of + with
rapidly growing functions [Seml1].

— Tarski algebra — 1. Again, polynomials can be explained with exis-
tential quantifiers only.

— Skolem arithmetic — 1.

Multiple successor arithmetic (automata proofs) — 1.

— Arithmetic of + and x — infinity.

A priory the length of the hierarchy for the space S can depend of the choice
of (finite) F.

Problem 1. Can the hierarchy length be really different for different choices of
F?

Definition 2. The depth of a definability space is the minimal (over all finite
sets of generators) length of the quantifier hierarchy for it.

In [Sem] a problem on existing of other options was formulated. The answer was
obtained in 2010:

Theorem 2. [SeSo| There are spaces of arbitrary finite or infinite depth.
Problem 2. Are there “natural” examples of “big” (2, 3, 4, ...) finite depth?

Problem 8. What is the depth of Rabin Space [Rab], [Muc]?

2.6 Decidability

Decidability in the sense of existing an algorithm to decide is a statement (closed
formula) true or false was a key question of study. For example, Tarski result on
the field of reals implies the decidability of Geometry. The decidability results
for multiple successor arithmetic led Elgot and Rabin to the following problem

Problem 4. [ElRa] Does there exist a structure with maximally decidable theory?

We say that a finitely generated definability space has a mazimally decidable
theory iff its theory is decidable and any greater finitely generated definability
space does not have a decidable theory.

Soprunov proved in [Sop] (using forcing arguments) that every space in which
a regular ordering is definable is not maximal. A partial ordering (B; <) is said
to be regular if for every a € B there exist distinct elements by, b2 € B such that
by < a, by < a,and no element ¢ € B satisfies both ¢ < b; and ¢ < by. As a
corollary he also proved that there is no maximal decidable space if we use weak
monadic language for definability instead of our standard language.

In [BeCe], Bes and Cégielski consider a weakening of the Elgot — Rabin ques-
tion, namely the question of whether all structures M whose theory is decidable
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can be expanded by some constant in such a way that the resulting structure
still has a decidable theory. They answer this question negatively by proving
that there exists a structure M with a decidable theory (even monadic theory)
and such that any expansion of M by a constant has an undecidable theory.

In [BeCel] they indicate a sufficient condition for a space with decidable
theory no to be maximal.

In our context it is natural to consider also decidability of elements of a
definability space. Of course we need a “constructivisation” of the domain D.
For example, we can take natural numbers as it.

Definition 3. We call a space decidable if all its elements are decidable. We call
a finitely generated space uniformly decidable if there is an algorithm providing
a decision procedure for any formula (using the generators) and any vector of
1ts arguments.

Problem 5. [Sem], 2003. Are there spaces of arbitrary finite or infinite depth
with decidable theory?

Problem 6. Are there decidable and uniformly decidable spaces of arbitrary finite
or infinite depth?

Problem 7. Does there exist a maximal decidable structure?

We say that a finitely generated definability space is mazimal decidable iff it’s
decidable but any greater finitely generated definability space is not decidable.

As it was shown in [Seml] there is an unary predicate R for which the space
generated by +, R on the domain of natural numbers is decidable, but not
uniformly, and has an undecidable theory.

3 General Fundamental Theorems on Definability vs.
Provability and Automorphisms. 1950 -s

Buchi and Danhof [BuDa] outlined the transition between end of 1930-s and
end of 1950-s:

“At this time it might have seemed that most of the basic problems of el-
ementary axiom systems were solved. A more careful observer however,
upon reading the papers of Tarski [Tar2, Tar3], might have wondered
about the existence of general theorems which would explain elemen-
tary definability as the above theorems explain the basic properties of
elementary logical consequence.

One such theorem, the completeness, in the sense of definability, of
elementary logic was proved by Beth in 1953 [Bet]. In 1959 Svenonius
[Sve] published a further result on elementary definability. Just as with
the earlier results of Beth and Craig, logicians seem slow in recognizing
Svenonius’ theorem as a basic tool in the theory of definability, perhaps
because it is not generally known to be available.”
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These results are generally considered as realization of Padoa’s idea (or
“method”).

Let 3 is a signature, we say that M’ = (D', X, Int') is an extension of M =
(D, %,Int) if D is a subset of D’ and Int(R) is the restriction of Int’(R) on D for
any R € X.

We say that M’ is an elementary extension of M if the previous condition
holds for any definable relation, i.e. if R is definable in M relation, then R is
the restriction on D of the relation, definable in M’ by the same formula.

In our context Svenonius’ theorem is the most useful tool. Here is its suitable
formulation.

Theorem 3. (Svenonius Theorem) Let M — countable structure with sig-
nature ¥ and let ¥ C T, R € ¥F. The following statements are equivalent:
(i) Relation R belongs to closure of ¥ in M,
(it) For any M’ countable elementary extension of M and any permutation
of the domain of M’ which preserves ¥, preserves R.

The idea here is to use an additional structure to the original one and consider
its elementary extensions. The additional structure narrows the class of exten-
sions and makes the extensions more comprehensible, so we can find the needed
automorphism.

In fact, we can use one universe only in a modification of the theorem as was
shown in [SeSol].

By F we denote the set of everywhere defined functions f:N — D. If R is
n-ary relation on D and ¢ is a mapping F — F then we say that ¢ almost
preserves R if {i | R(f1(7),..., fn(2)) £ R(o(f1)(@),...,o(fn)(i))} is finite for
any fi,..., fn in Dom(y).

Theorem 4. (CH) Let S be a definability space. The following conditions are
equivalent:

(1) Relation R € S,

(2) any permutation ¢ on F which almost preserves all relations from S almost
preserves R.

The remarkable feature of this form of Svenonius Theorem is that the condition
(2) is purely combinatorial, not appealing to any logical language.

4 The Definability Lattice

Numerous results were devoted to the study of specific definability spaces. For
example, Inan Korec in [Kor] surveyed different natural generation sets for the
definability space generated by addition and multiplication of integers.

Cobham — Semenov’s theorem [Sem2| states that nontrivial intersection of
spaces generated by automata working in different bases should be exactly the
space generated by +. (This will be considered later in the context of self-
definability of Muchnik.)
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4.1 Authomorphisms and Galois Correspondence. w-categoricity

As we see in Svenonius theorem the authomorphism group is an important object
in the study of definability spaces.

The symmetric group Sym(D) on a set D is the group consisting of all per-
mutations of D.

There is a natural topology on the symmetric group, we mean the topology
of pointwise convergence: a basis of neighborhoods of an element consists of all
permutations that coincide with the element on a finite set.

It’s easy to see that for spaces S and T we have S C T = Aut(S) 2 Aut(T)
and that automorphism groups for spaces are closed. So, we can call groups
corresponding to reducts of a space S supergroups of Aut(S).

Groups for different spaces can coincide.

An w-categorical structure is one for which all countable structures that are
elementary equivalent to it are isomorphic to it.

For w-categorical structures definability subspaces are in one-to-one corre-
spondence with closed automorphism groups, so S C T' iff Aut(S) 2 Aut(7T), i.e
the correspondence between definability spaces and their automorphism groups
is an antitone Galois connection.

It immediately follows from Svenonius theorem, but in the special case of
w-categoricity it may be concluded from so called Engeler — Ryll-Nardzewski —
Svenonius Theorem (see e. g. [Hod2]).

4.2 The Rational Order. Homogeneous Structures

We start with a case of the most famous definability space where all subspaces
were discovered first. This result describing the lattice of subspaces of (Q; <)
was obtained by Claude Frasnay in 1965 [Fra]. All subspaces of rational order
are given by the following descriptions:

— One may view the ordering up to reversal, and so obtain a (ternary)
linear Betweenness relation B on Q, where B(z;y,z) holds if and
onlyif y<z<z or z<z<y.

— Alternatively, by bending the rational line into a Circle one obtains
a natural (ternary) circular ordering K on Q; here, K(z,y, z) <=
(z<y<z)Vy<z<z)V(z<z<y).

— The latter too may be viewed up to reversal, to obtain the (qua-
ternary) Separation relation S: S(x,y; z, w) if the points z, y in the
circular ordering separate the points z, w.

The remarkable fact is that these are exactly the structures that in axiomatic
form were described by Huntington in 1935 [Hunl] (as was mentioned above).

The structure (Q; <) is w-categorical. The method of proof for this is “back-
and-forth” argument discovered by Huntington (not Cantor) [Hun3]. In fact the
proof shows that (Q; <) is homogeneous in the following sense.

Definition 4. A structure M is homogeneous if every isomorphism between its
finite substructures extends to an automorphism of M.
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This definition is a generalization of its “group counterpart”.

Definition 5. A permutation group is homogeneous iff any finite subset of its
domain can be translated to any other subset of the same cardinality with an
element of the group.

It’s obvious, that if Aut(S) is homogeneous, then the structure is homogeneous
as well. Actually not only the structure (Q; <) is homogeneous, but also the
group Aut({Q; <)) is homogeneous.

Peter Cameron [Cam1] showed that there are just four homogeneous nontrivial
groups of permutations on a countable set. As the corollary we get, that in
the case of (Q;<) apart from Aut({Q;<)) and Sym(Q), there are just three
homogeneous groups. The first is the group of all permutations of Q which either
preserve the order or reverse it. The second is the group of all permutations which
preserve the cyclic relation “z <y <z or y<z<z or z<z<Y’;
this corresponds to taking an initial segment of Q and moving it to the end. The
third is the group generated by these other two: it consists of those permutations
which preserve the relation “exactly one of x, y lies between z and w”.

All countable homogeneous structures are w-categorical, if they have a finite
signature or signature finite for any fixed number of variables. For w-categorical
structures homogeneity is equivalent to quantifier elimination. All reducts of
(Q; <) are homogeneous and have quantifier elimination.

A good source for information related to homogeneous structures is [Mac].

4.3 The Random Graph. Thomas Conjecture
Our next example is one more remarkable homogeneous structure.

Definition 6. We call a countable graph random iff given two finite disjoint
sets U, V' of vertices, there exists a vertex z joined to every vertex in U and to
no vertezx in V.

This Is called “Alice’s Restaurant Property”. The term was coined by Peter
Winkler [Win], in reference to a popular song by Arlo Guthrie. The refrain of
the song “You can get anything you want at Alice’s restaurant” catches the spirit
of this property.

Any two random graphs are isomorphic. The proof is similar to the isomor-
phism proof for every two countable dense unlimited orders (the Q case). The
term “random” can be explained by the following property:

If a graph X on a fixed countable vertex set is chosen by selecting edges
independently at random with probability 1/2 from the unordered pairs
of vertices, then Prob(X=R) = 1.

An explicit construction of R in [Rad]:

The set of vertices is N, and x is connected to y if and only if the z-th
digit in the base 2 expansion of y is equal to 1 or vice versa.
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Here are the subspaces of the random graph R

Let R*) be the k-ary relation that contains all k-tuples of pairwise distinct
elements x1, ..., x in V such that the number of (undirected) edges between
those elements is odd.

R(a,b) — “(ab) is an edge in R”; R®) ;R® ;R®) :Sym — equality

This description is given in [Tho].

It easy to see that structure of R®) is not homogeneous and does not have
quantifier elimination.

Simon Thomas proved obtained this description in [Thol]. and suggested the
following conjecture:

If M is a finitely generated homogeneous structure then M has finitely
many reducts.

Problem 8. Verify Thomas conjecture.

4.4 Further Examples

In order to verify Thomas conjecture the superposition of two homogeneous
structures: (Q; <) and random graph (G; E) was considered in [BoPiPo|. They
presented a complete classification of the reducts of this random ordered graph
up to equivalence. It was shown that without counting obvious reducts (D; <, E)
and (D;=) there are precisely 42 such reducts.

In [JuZi] was described a complete lattice of the reducts of expansion of the
structure (Q; <) by a constant. This expansion can be considered as expansion
by three unary predicates: “z < a”; “x = a”; and “x > a”. Actually in this
paper different expansions of (Q; <) by unary predicates that have quantifier
elimination were studied. They classified the reducts of such expansions and
showed that there are only finitely many such. In particular it shows that in the
simplest case: expansion of rational numbers by two convex subsets (a cut of
the rational numbers) there are exactly 53 reducts, generated by the 5 standard
reducts on the elements of the cut as well as permutations preserving, swapping
and mixing elements of the cut.

Let us mention the example of an w-categorical structure, which shows that
the condition of quantifier elimination in the Thomas’ Conjecture is necessary:
[AhZi] describes infinitely many reducts of a doubled infinite-dimensional pro-
jective space over binary field (F3).

4.5 Not w-categorical Spaces. Integers with Successor — Depth 1

We don’t know too much about the reducts of not w-categorical structure. An-
swering the dual question to Thomas’ one [BoMa] constructs an example of not
w-categorical structure with the finite reducts lattice — actually the lattice con-
tains only two items. This example is based on tree of valency three structure.

Another (more simple) example was demonstrated in the [KaSi]. Answer-
ing a question from [BoMa| they show that the structure (Q;S(zx,y, z)), where
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S(z,y,2) = (2=(x+y)/2) (or, the same, the structure (Q; f(z,y,z)) where
f(z,y,2z) = z—y+z) admits no definable reduct. Though Svenonious theorem
is not used explicitly in the proof, the approach is rather similar. They note that
the structure (Q<%;+) is the saturated elementary extension of the (Q;+), so
it’s enough to consider permutations of the structure (Q<%;+) only. Now the
fact that Aut({(Q<¥; f)) is maximal closed nontrivial subgroup (proved in the
same paper) is used.

The structure (Z;+1) — integer numbers with the successor relation is not
w-categorical, and has depth 1. For any natural number n we define spaces by
their generators

“mi—x9 =n" — Ay,

“Ti—To =T3—Tg=n V T1—To = x3—24 = —Nn” — B,, and
b))

“log—x2| =n” — Cy.

Theorem 5. [SeSo2] Any subspaces of (Z;+1) is A, or By, or C, for a natu-
ral n.

A, = By = Cy for any n and if n # m then A, = A.,, Bn = B, Cn = Cpy iff
n 1s a divisor of m.

Problem 9. Describe the lattice of subspaces for (N;+1).

Problem 10. Describe the lattice of subspaces for natural numbers with multiple
SUCCESSOrs.

We leave out the researches on the reducts of the field of real [MaPe, Pet] and
complex [MaPi] numbers.

4.6 Decidability of the Lattice Problems. Muchnik’s Self-definability

A natural algorithmic problem for an algebraic structure of definability lattice is
does an element of a space (given by a formula in or case) belong to a subspace
generated by a given set of elements? Positive and negative results on this for
homogeneous structures were obtained in [BoPiTs].

Andrei Muchnik in his work [Mucl] introduced the following

Definition 7. A definability space S is called self-definable iff there is a finite
signature (set of generators) X for S and sequence of formulas Fy,..., F,,...
such that for anyn =1,2,...
1. F,, is a closed formula in signature XU {P}, where P is an n-ary symbol
2. F, is true iff we take as interpretation of P an element from S.

He proved
Theorem 6. The space (N;+) is self-definable.

He writes:

“Unfortunately, we do not know any other examples of nice self-definable
structures.
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Structures with unsolvable elementary theory are usually mutually inter-
pretable with the arithmetic of addition and multiplication of integers,
the non-self-definability of which is proved in [Add] (using category ar-
guments and [Tan| using measure arguments).

We believe that the structure formed by algebraic real numbers (with
addition and multiplication) is not self-definable; however, a formal proof
is missing (and seems to be rather complicated).

(Note that it is easy to prove that the structure formed by all real
numbers with addition and multiplication is not self-definable. Indeed,
let us assume that ®(A) is true if and only if A is definable. Now we
replace A(z) by = y. The new formula ®'(y) is true if and only if y
is algebraic. But we can eliminate quantifiers in ®'(y) and get a finite
union of segments. So we come to a contradiction.)”

Problem 11. Give more examples of structures with self-definability property.
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